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PREFACE 

The authors have taught statistics and given statistics workshops in France and the 
Netherlands for almost 4 years by now. Their material, mainly on power point, 
consists of 12 lectures that have been continuously changed and improved by 
interaction with various audiences. For the purpose of the current book simple 
English text has been added to the formulas and figures, and the power points 
sheets have been rewritten in the format given by Kluwer Academic Publishers. 
Cartoons have been removed, since this is not so relevant for the transmission of 
thought through a written text, and at the end of each lecture (chapter) a 
representative number of questions and exercises for self-assessment have been 
added. At the end of the book detailed answers to the questions and exercises per 
lecture are given. The book has been produced with the same size and frontpage as 
the textbook "Statistics Applied To Clinical Trials" by the same authors and edited 
by same publishers ( 2nd Edition, DordrechtiBostonlLondon, 2002), and can be 
applied together with the current self-assessment book or separately. 
The current self-assessment book is different from the texbook, because it focuses 
on the most important aspects rather than trying to be complete. So, it does not deal 
with all of the subjects assessed in the texbook. Instead, it repeats on and on the 
principle things that are needed for every analysis, and it gives many examples that 
are further explained by arrows in the figures. 
The authors were very enthousiastic to prepare the manuscript since the workshops 
and Statistics Module for the European College of Pharmaceutical (Socrates Project 
of the European Community) are their passion, and it is very stimulating for them to 
fmd that students respond so well. The students and participants at the workshops 
are currently offered an exam at the end of the module, and many of them are doing 
extremely well. 
The readership of the self-assesment book should be the students of the European 
Interuniversity College in Lyon (4th Academic Year starting September 2002, at the 
Claude Bernard University). The EC Socrates Program, Brussels, is now 
considering a larger financial support for this college after the first 3 successful 
years. The next year's module statistics in Lyon is planned for the first week of 
February 2003. Readership of the self-assessment book should also be the students 
participating at the Statistics Workshops in the Netherlands: we will have 1-3 day 
workshops June 13 Rotterdam, June 17 Rotterdam, June 24 Roosendaal, September 
3-30 Tilburg, September 16-23 Amsterdam, October 2-16 Veldhoven, January 16-
23, 2003, Amsterdam, and, so the authors have been said, there are many to come. 
Third, one of the authors, Professor Zwinderman who is head of the division 
Statistics of the Department of Biostatistics and Epidemiology at the Academic 
Medical Center of the University of Amsterdam has prepared the self-assesment 
book in such a manner that it can also be used for his students at the Amsterdam 
University. Finally, the readership of the self-assesment book should be everyone 
who is going to buy the current textbook. We often hear from the participants at the 
workshops that there are many staff physicians in Dutch hospitals who want to 
learn more about statistics but who are just to busy to make the time reservation for 
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a full course. The two books can be used by busy staff physicians in their own time 
schedule. We will tIy to focus and remove the difficult mathematics, in order for 
readers to even enjoy reading the books while on holiday. 
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FOREWORD 

Many doctors are notoriously bad at understanding statistics. Some even believe 
that either you are a good clinician or you are good at statistics. This, of course, is 
pure nonsense. It stems from the fact that, historically, statistics was poorly taught 
and books on the subject were as dry as a bone. The truth is, that without a good 
comprehension of statistics, clinicians cannot fully understand clinical trials. And 
without an understanding of clinical trials, evidence-based medicine becomes a 
farce. 

This book is different. Rather than being comprehensive, it concentrates on the 
most relevant aspects. Rather than being theoretical and boring, it uses real life 
examples and is entertaining. Rather than being overloaded with formulas, it uses a 
language that physicians are used to. 

The book is meant as a companion to a more in-depth textbook. As its subtitle 
points out, it is a 'self-assessment book'. For most purposes, however, it can be 
used as a stand alone reference text. It will be equally as helpful for the student as 
for the seasoned clinician or researcher. 

Collectively, the authors of this book have considerable experience in teaching 
statistics and enough background in clinical medicine to know what is relevant and 
how to get it across to doctors. Much of statistics for clinical trials is essentially 
based on good old common sense. The authors have understood that a common 
sense approach is often the most constructive for problem-solving in clinical trials. 
It is also an approach that is close to the heart of most clinicians. 
In my view, this book is a very readable, easy to understand text for doctors and 
scientists involved in clinical trials. It is as authoritative as it is to the point. I am 
sure it is an extremely valuable addition to the literature on medical statistics. It 
deserves to be a great success. 

Univ. Prof. Dr. Dr. Edzard Ernst, FRCP, 
Editor-in-Chief, Perfusion, the official journal of the Deutsche 
Gesellschaft fUr Arterioskleroseforschung, University of Exeter, School 
of Postgraduate Medicine and Health Sciences, Exeter, United Kingdom. 



CHAPTER 1 

INTRODUCTION TO THE STATISTICAL ANAL YSIS 
OF CLINICAL TRIALS, CONTINUOUS DATA 

ANALYSIS 

1. SCIENTIFIC RIGOR 

Scientific rigor requires: strict and consistent scientific rules: 
1. Prior hypothesis. 

This hypothesis is tested with a probability of 5% (5% chance it is untrue). 
Why not posterior? Posterior hypotheses can easily generate hundreds of P­
values: significances are then found by chance (compare: gamble 20x at 5% 
chance: you get about up to 40% chance of a significant results by chance). 

2. Valid designs. 
It reduces chance of biases (= systematic errors) and placebo effects. Blinded, 
randomized, controlled, objective measurements, adequate sample sizes make 
for a valid design. 

3. Strict description o/methods. 
Describe validity criteria in detail, including methods of recruitment, 
randomization etc. 

4. Data analysis uniform and thoroughly. 
This should be done as described in the methods. 

No clinical trial without proper statistics. 

2. TWO TYPES OF DATA 

Clinical trials: 2 types of data. 

Efficacy data, e.g., blood pressures, 
80,81,82,80,84, ... (continuous variables), 
t-statistic, analysis of variance (ANOVA). 

Safety data, e.g., division sum: patients with side effect / all of patients, 
(fractions between 0.0- 1.0) , 
Chi-square or McNemar statistic. 
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3. HISTORICAL CONTROLS 

A special point: Historical controls. 
A randomized controlled trial with major differences between old and new 
treatment is unethical, because half of patients received an inferior treatment. 
So, why not use historical data as control? 
Problem is, of course, the risk of asymmetries, e.g., different times, populations, 
equipments. 

4. FACTORIAL DESIGNS 

Another special point: factorial designs. 
Mostly, randomized controlled trials answer a single question. 
Research is costly, why not test 2 or more modalities. 
E.g., patients with angina pectoris are treated with calcium channel blocker with or 
without beta-blocker. 

Beta-blocker 
No beta-blocker 

Calcium channel blocker no calcium channel blocker 

regimen 1 
regimen 3 

regimen 2 
regimen 4 

5. BIOLOGY IS FULL OF VARIA nONS 

The remainder of this chapter involves continuous data only. 
Because biological processes full of variations: 
Statistics gives no certainties only chances. 
What chances?: chances that hypotheses are true/untrue. 
What hypotheses? E.g., (1) no difference from a 0 effect, 

(2) real difference from a 0 effect, 
(3) worse than a 0 effect. 

Statistics is about estimating such chances / testing such hypotheses. 

Note: trials often calculate difference between test treatment and control, and, 
subsequently, test whether this difference is larger than o. So, a simple way to 
reduce a study of two means to one of a single mean and single distribution of data, 
is to take the difference and compare it with o. 



INTRODUCTION TO THE STATISTICAL ANALYSIS 3 

6. SUMMARIZE THE DATA 

added up numbers of diff. sizes 

70 

50 

30 

10 

~~IU+U~LU~~~~~~~----
5 outcome size 

-3 -2 -1 mean 2 3 4 

probability distribution 

-3 -2 -1 mean 2 3 4 5 80s 

I.Histogram - On the x-axis individual datal on the y-axis "how often" 
(e.g., mean occurs most frequently, bars both sides 
gradually grow shorter). 

- This method is not adequate for testing hypotheses. 

2.Gaussian curve - On the x-axis individual data or SDs· -distant-from-mean. 
- On the y-axis bars are replaced by continuous line. 
- Now, it is impossible to determine from graph how many 

patients had a particular outcome! 
- Instead, important inferences (conclusions) can be made, e.g.: 

Total area under the curve (AUC) = 100% of the data of our trial, 
AUC left from mean = 50% of data, 
AUC left from -1 SDs = 15% of data, 
AUC left from -2 SDs = 2.5% of data. 

- This method is not yet adequate for testing hypotheses, but better. 

• SD = standard deviation = is estimate of spread in data, is calculated according to 

SD=,j[I: (x- X)2! (n-I)] 
-

where x = individual data, X = mean, n number of data. 
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7. TWO GAUSSIAN CURVES 

95 % of all data ... 
95 % of all means I.... ~ 

1 
1 
1 

il 
V 

J: / 1 

-2 SEMs mean +2 SDs 

Two gaussian curves are given: a narrow and a wide one, both based on the same 
data, but with different meaning. The wide one summarizes the data of our trial. 
The narrow one summarizes means of many trials similar to ours. 
We won't try to make you understand why so. Still, it's easy to conceive that 
distribution of means of many trials is narrower, and has fewer outliers than the 
distribution of the actual data from our trial. 

Believe it or not: 
The narrow curve with SEMs' on the x-axis can be effectively used for testing 
important statistical hypotheses: 1. No difference between new and standard. 

2. Real difference " 
3. New treatment is worse than old. 
4. Two treatments are equivalent. 

SEM-curve is narrower than SD-curve because SEM=SD/-Vn. 

• SEM= standard error of the mean. 

8. HUMAN BRAIN 

The human brain excels in making hypotheses. We make hypotheses all the time, 
but they may be untrue. E.g., once you might have thought that only girls can 
become doctors. Later, this was, obviously, untrue. Hypotheses must be assessed 
with hard data. 
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9. NULL-HYPOTHESIS 

Important hypothesis: Hypothesis O. 

No difference from a 0 effect. 
We will now try and make a graph of hypothesis 0 = null hypothesis. 

PROBABILITY 
DISTRIBUTION 

5 

Ho 

-3 -1 o 2 3 4 5 SEMs 
-2 

What does O-hypothesis look like in graph? 
HI = graph based on the data of our trial with SEMs on the x-axis (in statistics 

often called z-axis). 
HO = the same graph with mean 0 (mean ± SEM = 0 ± I). 

Now we will make a giant leap from our data to the entire population (data are 
representative ). 
HI = also summary of means of many trials similar to ours (this assumption is 

correct, because our study is representative for population, and because 
we have SEM-units on the x-axis). 

HO = summary of means of many trials similar to ours but with overall effect 0 
(our mean is not 0, but 2.9 SEMs. It, still, could be an outlier of many 
studies with an overall effect of 0). 

So think from now on ofHO as the distribution of the means of many trials with an 
overall effect ofO. If hypothesis 0 is true, then the mean of our study is part ofHO. 
We can't prove but can calculate chance I probability of this possibility. 
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A mean result of2.9 SEMs is far distant from O. Suppose it belongs to HO. 
Only 5% of the HO-trials are >2.1 SEMs distant from 0, 
because the AUC here = only 5% (Figure: striped area). 
The chance that our trial belongs to HO is thus <5% 
(reject null hypothesis of no effect). 

Conclude here: 
<5% chance to fmd this result. 
In usual tenns: we reject the null hypothesis of no effect at 
Probability (P) < 0.05 or P < 5%. 

10. ALPHA, THE TYPE I ERROR 

-3 -2 

Note: 

PROBABILITY 
DISTRIBUTION 

-1 o 

Alpha: small AUe right from 2.101 SEMs. 
Alpha: area of rejection ofHO. 

2 3 4 

Ho 

5 SEMs 

Alpha: type I error or the chance of fmding a difference where there is none. 
Note: 
2.9 SEMs is far from 2.1 SEMs: so probability offmding 2.9 may be lot <5%. 
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11. T-TABLE 

Two-tailed P-value 

df 0.10 0.05 0.01 0.001 
l------ ------ -~- ------~ -~~-

1 6.314 12.706 63.656 636.58 

2 2.920 4.303 9.925 31.600 

3 2.353 3.182 5.841 12-924 

4 2.132 2.776 4.604 8.610 

5 2.015 2.571 4.032 6.869 

6 1.943 2.447 3.707 5.959 
7 Ul95 2.365 3.499 5.408 

8 1.860 2.306 :1355 5.041 

9 1.833 2.262 3.250 4.781 

10 1.812 2.228 3.169 4.587 

11 1.796 2.201 3.106 4.437 

12 1.782 2.179 3.055 4.318 

13 1.771 2.160 3.012 4.221 

14 1.761 2.145 2.977 4.140 

15 1.753 2.131 2.947 4.073 
16 1.746 2.120 2.921 4.015 

17 1.740 2.110 2.898 3.965 

18 1.734 2.101 2.878 3.922 

19 1.729 2.093 2.861 3~883 

20 1.725 2.086 I 2.845 I 3.850 

21 1.721 2.080 2.831 3.819 

22 1.717 2.074 2.819 3.792 

23 1.714 2.069 2.807 3.768 

24 1.711 2.064 2.797 3.745 

25 1.708 2.060 2.787 3.725 

26 1.706 2.056 2.779 3.707 

27 1.703 2.052 2.771 3~689 

28 1.701 2.048 2.763 3.674 

29 1.699 2.045 2.756 3.660 

30 1.697 2.042 2.750 3.646 

40 1.684 2.021 2.704 3.551 

50 1.676 2.009 2.678 3.496 

lOO 1.660 1.984 2.626 3.390 

200 1.653 1.972 2.601 3.340 

5000 1.645 1.960 2.577 3.293 

The above Hable tells us the exact % AVC right from 2.9 SEMs. 
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Four right columns -Trial results: expressed in SEM units distant from 0 
(=also T-values) 

Upper row 
Left column 

-AUC values right from trial results. 
-Adjustment for numbers of patients. 

with a sample ofn = 20 the AUC right from 2.9 SEMs is right from 2.845 
~ AUC<O.OI (Probability not <0.05, but even<O.Ol). 

T -distribution = adjustment of normal distribution = just a 
bit wider for small samples (but with sample size of 120 or more 
identical to normal distribution). 

a/2 

-3 -2 

12. REJECT THE NULL-HYPOTHESIS 

PROBABILITY 
DISTRIBUTION 

-1 o 2 

a/2 

// 
12.101 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

3 4 5 

Ho 

SEMs 

Alpha = outlier AUC ofHO= area of rejection ofHO= usually 5% = rather 2 x 2.5% 
= 2 x a / 2 ( if a trial-mean is within this AUC: null hypothesis is rejected) 

Alpha = chance of fmding a difference where there is none. 

Alpha = therefore, so-called, type I error. 
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13. NEGATIVE TRIAL 

-2.101 o 0.9 

Example of negative trial( = trial unable to reject null hypothesis). 
Mean of our trial is 0.9 SEMs distant from o. 
Not on right side of 2.1 SEMs. 
Null hypothesis not rejected. 
AUC right from 0.9 = not 5 %, but no less than 35% of total AUC. 
Do not reject 0 hypothesis, because P = 0.35 or 35 %. 

14. BORDERLINE RESULT 

-3 -2 

PROBABILITY 
DISTRIBUTION 

-1 o 

Example of borderline result. 

al2 

12.101 

2 3 4 5 

SEMs 

9 

Ho 

SEMs 

Ho 

Hi 
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Mean = exactly 2.101 SEMs distant from o. 
Alpha level of rejection = 2.101 SEMs. 
AUC right from 2.101 only 5%. 
Reject null hypothesis at P = 0.05 or P = 5%. 
P of 5% borderline result: 5% chance untrue. 

15. TESTING TWO MEANS 

So far, we have analyzed a single mean versus 0, now we will analyze 2 means 
versus each other. F.e., a parallel-group study of two groups tests the effects of two 
beta-blockers on cardiac output. 

group 1 (n=lO) 
group 2 (n=lO) 

Mean± SD 

5.9 ± 2.4 liter/min 
4.5 ± 1.7 liter/min 

5.76/10 
2.89/10 

Calculate: mean] - mean2 = 1.4 
Then calculate pooled SEM = .y(SEM]2 + SEM/)=.y 0.433 = 0.658 
Note: for SEM of difference: take square root of sums of squares of 
separate SEMs and, so, reduce the analysis of two means to one of a single mean. 

T= 
mean] - mean2 

_____ ~ = 1.4 / 0.658 = 2.127 with degrees of freedom 20-2=18' 
Pooled SEM 

2.127 is larger than 2.101. Thus, at-value of2.127 indicates an AUC < 5% as can 
be concluded from the t-table below. 
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Two-tailed P-value 
-- -

dr 0.10 0.05 0.01 0.001 
. -- - .. ---~--

1 6.314 12.706 63.656 636.58 
2 2.920 4.303 9.925 31.600 
3 2.353 3.182 5.841 12.924 
4 2.132 2.776 4.604 8.610 
5 2.015 2.571 4.032 6.869 
6 1.943 2.447 3.707 5.959 
7 1.895 2.365 3.499 5.408 
8 1.860 2.306 3.355 5.041 
9 1.833 2.262 3.250 4.781 

10 1.812 2.228 3.169 4.587 

11 1.796 2.201 3.106 4.437 
12 1.782 2.179 3.055 4.318 
13 1.771 2.160 3.012 4.221 
14 1.761 2.145 2.977 4.140 
15 1.753 2.131 2.947 4.073 
16 1.746 2.120 2.921 4.015 
17 1.740 2.1 10 2.898 3.965 
18 1.734 I!!2!l 2.878 3.922 
19 1.729 2.093 2.861 3.883 
20 1.725 2.086 2.845 3.850 

21 1.721 2.080 2.831 3.819 
22 1.717 2.074 2.819 3.792 
23 1.714 2.069 2.807 3.768 
24 1.711 2.064 2.797 3.745 
25 1.708 2.060 2.787 3.725 
26 1.706 2.056 2.779 3.707 
27 1.703 2.052 2.771 3.689 
28 1.701 2.048 2.763 3.674 
29 1.699 2.045 2.756 3.660 
30 1.697 2.042 2.750 3.646 
40 1.684 2.021 2.704 3.551 
50 1.676 2.009 2.678 3.496 

100 1.660 1.984 2.626 3.390 
200 1.653 1.972 2.601 3.340 

5000 1.645 1.960 2.577 3.293 

Reject the 0 hypothesis of no difference at a probability (P) <0.05 or 5%. 
Conclude that there is a true difference between the samples (in clinical tenns). 

* Calculations have to be adjusted for degrees of freedom: with 2 groups of each 10 
patients, we have 2x I 0 - 2 = 18 degrees of freedom. 
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16. TESTING PAIRED SAMPLES 

Another example of two means is given. 
Crossover trial to test efficacy of sleeping pill versus placebo. 
Unlike previous sheet, there is only one group treated twice instead of two groups 
treated once. 

hours of sleep 

patient drug placebo difference 

1 6.1 5.2 0.9 
2 7.0 7.9 -0.9 
3 8.2 3.9 4.3 
4 7.6 4.7 2.9 
5 6.5 5.3 1.2 
6 7.8 5.4 3.0 
7 6.9 4.2 2.7 
8 6.7 6.1 0.6 
9 7.4 3.8 3.6 
10 5.8 6.3 -0.5 
Mean 7.06 5.28 1.78 
SD l.79 

Simply calculate mean and SD of the various differences. 
Next fmd SEM by taking SD / --J n = 0.56. 
Mean difference ± SEM= l.78 ± 0.56. 

Mean difference 1.78 
T= 

---::S ...... E-M--
= ~= 3.18 with a sample size of 10 (with I group of 10 

0.56 patients we have 10-1= 9 degrees of freedom). 
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T-Table: v= degrees offreedomfor t-variable, Q=area under the curve right from the 
corresponding t-value, 2Q tests both right and left of the total area under the curve 

v Q = 0.4 0.25 0.1 0.05 0.025 0.01 0.005 0.001 

2Q =0.8 0.5 0.2 0.1 0.05 0.02 0.01 0.002 

1 0.325 I. 000 3.078 6.314 12.706 31.821 63.657 318.31 

2 .289 0.816 1.886 2.920 4.303 6.965 9.925 22326 
3 .277 .765 1.638 2.353 3.182 4.547 5.841 10.213 

4 .171 .741 1.533 2.132 2.776 3.747 4.604 7.173 

5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 5.893 

6 .265 .718 1.440 1.943 2.447 3.143 3.707 5.208 
7 .263 .711 1.415 1.895 2.365 2.998 3.499 4.785 

8 .262 .706 1.397 1.860 2.306 2.896 3355 4.501 

9 .261 .703 1383 1.833 2.26212.821 3.250 14.297 

10 0.261 O. 700 1.372 1.812 2.228 2.764 3.169 4.144 

11 .269 .697 1.363 1.796 2.201 2.718 3.106 4.025 

12 .269 .695 1356 1.782 2.179 2.681 3.055 3.930 

\3 .259 .694 1.350 1.771 2.160 2.650 3.012 3.852 

14 .258 .692 1.345 U61 2.145 2.624 2.977 3.787 

15 0.258 0.691 1.341 1.753 2. I3l 2.602 2.947 3.733 
16 .258 .690 1.337 1.746 2.120 2.583 2.921 3.686 
17 .257 .689 1333 1.740 2.1 \0 2.567 2.898 3.646 
18 .257 688 1.330 1.734 2.101 2.552 2.878 3.610 
19 .257 688 1328 1.729 2.093 2.539 2.861 3.579 

20 0.257 0.687 1.325 1.725 2.085 2.528 2.845 3.552 
21 .257 .686 1323 1.721 2.080 2.518 2.831 3.527 
22 .256 .686 1.321 1.717 2.074 2.508 2.819 3.505 

23 .256 .685 1.319 1.714 2.069 2.600 2.807 3.485 

24 .256 .685 1.318 1.711 2.064 2.492 2.797 3.467 

25 0.256 0.684 1,316 1.708 2.060 2.485 2.787 3.450 

26 .256 .654 1,315 1.706 2.056 2.479 2.779 3.435 

27 .256 .684 1,314 1.701 2.052 2.473 2.771 3.421 

28 .256 .683 1,313 1.701 2.048 2.467 2.763 3.408 
29 .256 .683 1.311 1.699 2.045 2.462 2.756 3.396 

30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.385 

40 .255 .681 1.303 1.684 2.021 2.423 2.704 3.307 

60 .254 .679 1.296 1.671 2.000 2.390 2.660 3.232 

120 .254 .677 1.289 1.658 1.950 2.358 2.617 3.160 

00 .253 .674 1.282 1.645 1.960 2.326 2.576 3.090 
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T-table shows that with T = 3.18 = between 2.821 and 3.250 
~AUC right from 2.821 is 2 %. 
~Conclude: P < 0.02 or < 2 %. 
~Reject 0 hypothesis. 

17. UNPAIRED TESTING OF PAIRED SAMPLES 

The same data as on the previous page are given. 

hours of sleep 

patient drug placebo difference 

1. 6.1 5.2 0.9 
2. 7.0 7.9 --0.9 
3. 8.2 3.9 4.3 
4. 7.6 4.7 2.9 
5. 6.5 5.3 1.2 
6. 7.8 5.4 3.0 
7. 6.9 4.2 2.7 
8. 6.7 6.1 0.6 
9. 7.4 3.8 3.6 
10. 5.8 6.3 --0.5 
Mean 7.06 5.28 1.78 
SD 0.76 1.26 1.79 
SEM 0.24 0.40 0.56 

Difference: mean! - mean2 ± -V (SEM!2 + SEM/) = 7.06 - 5.28 ± -V [(0.24)2 + 
(0.40)2 ] = 1.78 ± 0.48. 
T = Mean / SEM = 1.78/0.48 = 3.71 (degrees of freedom = 20-2 = 18). 
P = 0.005. 
This is approximately the same result as with paired testing. With strong positive 
or negative correlations this will not be so, however!! 
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18. POSITIVE AND NEGATIVE CORRELATIONS 

The figure below shows two crossover studies of patients with Raynaud treated 
with two different vasodilators, the left study has a strong negative, the right study 
a strong positive correlation. 

vasodilator 1 vasodilator 1 
(Raynaud attacks/wk) 

50 • • 
•• r!l. -1 r~' •• 

40 • 40 • 
•• •• 

30 • • 30 • • 
• • 

20 20 

• • 
10 n&gatiw correlation 10 positive correlation 

10 20 30 40 10 20 30 40 
vasodilator 2 

(Raynaud attacks/wk I 
vasodilator 2 

(Take the following few lines on faith; you can calculate it for yourself; chapter 9). 
Strong positive correlation: Right graph. 
If treatment 1 performs well, treatment 2 will do equally so. 
Paired T-test will provide a T = 4 .... and a P of <0.001. 
Unpaired T-test will provide a T = 2 .. and a P of only <0.05. 

Strong negative correlation: Left graph. 
If treatment 1 performs well, treatment 2 will not do so. 
Paired T -test will provide a T = 1.7 ... and is thus not significant. 
Unpaired T-test will provide a T = 2 ... and a P of <0.05. 

19. UNP AlRED ANALYSIS OF VARIANCE (ANOV A) 

So far everything relaxingly simple. 
Now something really complicated is coming up. 
Ifwe want to analyze 3 groups rather than 2 we will need unpaired ANOV A. 

Total variation 
I 

Between group variation within group variation 
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InANOVA: 
Variations expressed as sums of squares (SS) and can be added up to obtain total 
variation. 
Assess whether between-group variation is large compared to within-group 
variation. 

Group 
1 
2 
3 

n patients mean 

Grand mean = (mean 1 + 2 +3) / 3 

SD 

SS between groups = n, (mean, - grand meanf + n2 (mean2 - grand mean)2 + .... 
SS within groups = (n, -1)(SD,2) + (nr1) SDz2 + ..... 

F = SS between groups / degrees of freedom' 

SS within groups / degrees of freedom' 

F-table gives P-value (see section Tables). 
'Degrees of freedom equals nl + n2 + n3 -3 for SS within, and 3 - 1 = 2 for SS 

between. 

Example: Effect of 3 compounds on hemoglobin levels. 

Group n patients mean SD 
1 16 8.7125 0.8445 
2 10 10.6300 1.2841 
3 15 12.3000 0.9419 
Grand mean = (mean 1 + 2 +3) / 3 = 10.4926 

SSbetween groups = 16 (8.7125-10.4926)2 + 10(10.6300 -10.4926)2 .... (adjust 
for degrees of freedom) 
SSwithin groups = 15 x 0.84452 + 10 x l.28412 +... ..... (adjust 
for degrees of freedom) 

F = 49.9 and so P <0.00l. 
ill case of2 groups: ANOVA= T-test (F = T2). 
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20. PAIRED ANALYSIS OF VARIANCE (ANOVA) 

ANOV A can make lot of mess from only a few numbers. 
Paired ANOVA is for 3 treatments in single group. 

Total variation 
I I 

Between subj variation Within-subj variation 
I I 

Between treatment variation Residual variation (random) 

Variations expressed as sums of squares (SS) and can be added up. 
Assess whether between treatment variation is large compared to residual 
variation. 
Subject treatment 1 treatment 2 treatment 3 SDz 

1 
2 
3 
4 
Treatment mean 
Grand mean = (treatment mean 1 + 2 + 3) /3 = ..... 

SS within subject = SD)z +SDZ2 +SD/ 

17 

SS treatment=(treatment mean) -grand meani + (treatment mean2 -grand mean)2+ .. 
SS residual = SS within subject - SS treatment 

F= SS treatment! degrees of freedom' 

SS residual/degrees of freedom' 
F table gives P-value. 

'Degrees of freedom equals 3 -1 = 2 for SS treatment, and 4-1 = 3 for SS residual. 

Example: Effect of 3 treatments on vascular resistance (mm Hg.min /1 ). 

Person treatment 1 treatment 2 treatment 3 SD2 

1 22.2 5.4 10.6 147.95 
2 17.0 6.3 6.2 77.0 
3 14.1 8.5 9.3 18.35 
4 17.0 10.7 12.3 21.45 

Treatment mean 17.58 7.73 9.60 
Grand mean = 11.63 
SS within subject = 147.95 + 77.05 + .... 
SS treatment = (17.58 - 1l.63)2 + (7.73 - 1l.63)2 + .... 
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SS residual = SS within subject - SS treatment. 

F= 14.31 and, so, P<O.OI (see section Tables). 

In case of2 treatments: ANOVA=T-test (F = T2). 

2l. NON-PARAMETRIC TESTING FOR SKEWED DATA 

Statue of liberty to teU you're free to use non-parametric test for any type of data. 
C2 

-4 -3 -2 -1 o 2 3 4 

When data are skewed you must use a non-parametric test. 
A non-parametric test "normalizes" skewed data but can also appropriately used 
for non-skewed data. 
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For paired comparisons: 
Mann-Whitney test(= Wilcoxon signed rank test= paired Wilcoxon test). 

For unpaired comparisons: 
Wilcoxon rank sum test(=unpaired Wilcoxon test). 

22. PAIRED NON-PARAMETRIC TEST: MANN-WHITNEY TEST 

Placebo-controlled crossover trial to test efficacy of sleeping drug 
from few pages ago. 

Hours of sleep rank 

Patient drug placebo difference (ignoring sign) 

1 6.1 5.2 0.9 3.5x 
2 7.0 7.9 -0.9 3.5 
3. 8.2 3.9 4.3 10 
4. 7.6 4.7 2.9 7 
5. 6.5 5.3 1.2 5 
6. 8.4 5.4 3.0 8 
7. 6.9 4.2 2.7 6 
8. 6.7 6.1 0.6 2 
9. 7.4 3.8 3.6 9 
10. 5.8 6.3 -0.5 1 

patients are tested twice: with sleeping pill and with placebo. 
Put differences in sleeping time in rank of ascending order. 
Patient 1 and 2 are equal (0.9 hours different from 0) , so give them rank number 
3.5 instead of rank numbers 3 and 4. 

1. add up the rank numbers of positive and negative differences separately; 
+ rank numbers = 3.5+ 10+7+5+8+6+2+9=50.5 

rank numbers = 3.5+ I = 4.5 

19 

2. For testing: table below uses smaller of two rank numbers = 4.5: with nl and 
n2 both=1O ~ P<0.02. 

Paired non-parametric test is called Mann-Whitney test, 
the table uses smaller of the two rank numbers. 
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N pairs P<0.05 P<O.Ol 

7 2 0 
8 2 0 
9 6 2 

10 8 3 
11 11 5 
12 14 7 
13 17 10 
14 21 13 
15 25 16 
16 30 19 

23. UNPAIRED NON-PARAMETRIC TEST: WILCOXON RANK SUM TEST 

Table: two groups of patients (thin print group 1, fat print group 2) treated with 
different beta-blockers that reduce heart rate (beats/min). 

Reduction heart rate (beats/min) 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
28 
28 
29 
29 
30 
31 
32 
35 
35 

rank number 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12.5 
12.5 
14.5 
14.5 
16 
17 
18 
19.5 
19.5 
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2 steps: 
1. The data from both groups (nl = 10, n2 = 10) ranked together in ascending 

order of magnitude. Average equal values. Instead of 12 and 13 we take 12.5 
and 12.5. 

2. Add up the rank numbers per group. We have 81.5 thin data and 128.5 fat 
data. Table for Wilcoxon rank sum test: 
difference >71 ~ P<O.05. Therefore: we cannot reject null hypothesis, 
groups not significantly different. 

Unpaired non-parametric test: Wilcoxon rank sum test. 
Table uses difference of added up rank numbers between group 1 and group 2. 

n,--> 
n, 2 3 4 5 6 7 8 9 10 II 12 13 14 15 
L 

5 15 
6 10 16 23 
7 10 17 24 32 
8 II 17 25 34 43 
9 6 II 18 26 35 45 56 

10 6 12 19 27 37 47 58 71 
II 6 12 20 28 38 49 61 74 87 
12 7 13 21 30 40 51 63 76 90 106 
13 7 14 22 31 41 53 65 79 93 109 125 
14 7 14 22 32 43 54 67 81 96 112 129 147 
15 8 15 23 33 44 56 70 84 99 115 133 151 171 
16 8 15 24 34 46 58 72 86 102 119 137 155 
17 8 16 25 36 47 60 74 89 105 122 140 
18 8 16 26 37 49 62 76 92 108 12'5 
19 3 9 17 27 38 50 64 78 94 III 
20 3 9 18 28 39 52 66 81 97 
21 3 9 18 29 40 53 68 83 
22 3 10 19 29 42 55 70 
23 3 10 19 30 43 57 
24 3 10 20 31 44 
25 3 II 20 32 
26 3 11 21 
27 4 II 
28 4 
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24. SUMMARY 

What you should know: 
I. Scientific rules (prior hypothesis, valid design, strict description, uniform 

analysis). 
2. Efficacy and safety data are generally continuous and proportional data 

respectively. 
3. Historical controls, factorial designs. 
4. "Mean ± SEM" summarizes many trials similar to ours, and can be used for 

statistical testing. 
5. Difference between paired and unpaired t-test. 
6. Use oft-table, calculate examples of data for yourself. 
7. Notion of negative and positive correlation in paired comparisons. 
8. ANOYA appropriate for more than 2 groups or treatments (don't learn by 

heart). 
9. Non-parametric tests; don't learn by heart but make sure that you can do it 

when looking it up. 

25. EXERCISES TO CHAPTER I 

I. Give the four scientific rules for randomised controlled trials: 
A. prior hypothesis, strict description of methods, uniform data analysis, strict 

inclusion criteria, 
B. prior hypothesis, strict description of methods, uniform data analysis, valid 

design, 
C. strict description of methods, uniform data analysis, strict inclusion criteria, 

valid design, 
D. uniform data analysis, strict inclusion criteria, prior hypothesis, valid 

design. 

Which alternative is correct? 

2. Efficacy data and 
A. continuous data 
B. proportional data 
C. binary data " 
D. binary data 

Which alternative is correct? 

safety data in a trial. 
proportional data, 
continuous data, 
continuous data, 
ordinal data. 
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3. Factorial trial designs are for: 
A. multiple groups, 
B. historical data, 
C. continuous monitoring, 
D. multimodal therapies. 

Which alternative is correct? 

4. Mean ± SEM sununarizes 
A. many data similar to ours, 
B. many trials similar to ours, 
C. many means similar to ours, 
D. many standard deviations similar to ours. 

Which alternative is correct? 

5. Using unpaired statistical test for paired data is wrong because: 
A. with + correlation the analysis is flawed, 
B. with - correlation the analysis is flawed, 
C. with 0 correlation the analysis is flawed, 
D. with - correlation power is lost. 

Which alternative is correct? 

6. Calculate p-value of unpaired data using t-test 
data group 1: 6.0, 7.1, 8.1, 7.5, 6.4, 7.9, 6.8, 6.6, 7.3, 5.6 

group 2: 5.1, 8.0, 3.8, 4.4, 5.2, 5.4,4.3,6.0,3.7,6.2 
A. n.s. 
B. 0.05<P<0.10 
C. P<0.05 
D. P<O.Ol 

Which alternative is correct? 

7. Calculate p-value of paired data using t-test 
data sample 1: 6.2, 7.0, 8.1, 7.5, 6.5, 7.9, 6.8, 6.7, 7.3, 5.9 
data sample 2: 5.1, 7.8, 3.9, 4.5, 5.3, 5.4, 4.9, 6.1, 3.8, 6.3 
A. n.s. 
B. 0.05<P<0.1O 
C. P<0.05 
D. P<O.Ol 

Which alternative is correct? 

23 
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8. Multiple groups ANOYA assesses whether: 
A. between groups sums of squares (SS) is large compared to within groups 

SS, 
B. within subject SS is large compared to within group SS, 
C. treatment SS is large compared to residual SS, 
D. within subject SS is larger compared to residual SS. 

Which alternative is correct? 

9. Paired ANOYA assesses whether: 
A. between groups sums of squares (SS) is large compared to within 

groups SS, 
B. within subject SS is large compared to within group SS, 
C. treatment SS is large compared to residual SS, 
D. within subject SS is larger compared to residual SS. 

Which alternative is correct? 

10. Calculate p-value of unpaired data using Wilcoxon rank sum test 
data group 1: 6.0, 7.1, 8.1, 7.5,6.4,7.9,6.8,6.6,7.3,5.6, 

group 2: 5.1, 8.0, 3.8,4.4,5.2,5.4,4.3,6.0,3.7,6.2. 
A. n.s. 
B. 0.05<P<O.lO 
C. P<O.05 
D. P<O.OI 

Which alternative is correct? 

11. Calculate p-value of paired data using Mann-Whitney test: 
data sample 1: 6.2, 7.0, 8.1, 7.5, 6.5, 7.9,6.8,6.7,7.3,5.9 
data sample 2: 5.1, 7.8, 3.9,4.5,5.3,5.4,4.9,6.1,3.8,6.3 
A. n.s. 
B. 0.05<P<0.1O 
C. P<O.05 
D. P<O.OI 

Which alternative is correct? 
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EQUIV ALENCE TESTING 

1. A NEGATIVE STUDY *- EQUIVALENT STUDY, WHY SO? 

A study unable to find difference is not same as an equivalent study. 
For example, a study of 3 patients fmds no difference because the study is too 
small. Equivalence testing is important for diseases for which a placebo control 
group is unethical. In this case the new treatment has to be compared with standard 
treatment, and this comparison is at risk of fmding little difference. 

2. SUMMARIZE THE DATA 

added up numbers of diff. sizes 

70 

50 

30 

-3 -2 -1 mean 2 3 4 
5 outcome size 

probability distribution 

-3 -2 -1 mean 2 3 4 5 80s 

I.Histogram - On the x-axis individual datal on the y-axis "how often" 
(e.g., mean occurs most frequently, bars both sides 
gradually grow shorter). 

- This method is not adequate for testing hypotheses. 
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2.Gaussian curve - On the x-axis individual data or SOs' -distant-from-mean. 
On the y-axis bars are replaced by continuous line. 
Now, it is impossible to determine from graph how many 
patients had a particular outcome! 
- Instead, important inferences (conclusions) can be made, e.g.: 

Total area under the curve (AUe) = 100% of the data of our trial 
AUC left from mean 50% of data 
AUC left from -1 SOs 15% of data 
AUC left from -2 SOs 2.5% of data 

- This method is not yet adequate for testing hypotheses, but berter. 

· so = standard deviation = is estimate of spread in data, and is calculated 

according to SD = '" [ L (x- X )2 / (n-l)] 

where x = individual data, x = mean, n number of data). 

3. TWO GAUSSIAN CURVES 

95 % of all data ... 
95 % of all means 

I~ ~ 

~ 
I 
I 

II) I 
I: I 
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I, 
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0 / I .... 

/ 
I 
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I 
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I 

~~ 

-2 SEMs mean 

Two gaussian curves are given: a narrow and a wide one, both based on the same 
data, but with different meaning. The wide one summarizes the data of our trial. 
The narrow one summarizes means of many trials similar to ours. 
We won't try to make you understand why so. Still, it's easy to conceive that 
distribution of means of many trials is narrower, and has fewer outliers than the 
distribution of the actual data from our trial. 
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Believe it or not: 
The narrow curve with SEMs' on the x-axis can be effectively used for testing 
important statistical hypotheses: 

1. No difference between new and standard. 
2. Real difference" 
3. New treatment is worse than old. 
4. Two treatments are equivalent. 

SEM-curve is narrower than SD-curve because SEM=SD ! ...j n. 
'SEM= standard error of the mean. 

-3 -2 

4. NULL-HYPOTHESIS 

PROBABILITY 
DISTRIBUTION 

-1 o 2 3 

What does O-hypothesis look like in graph? 

4 5 

SEMs 

Ho 

H1 
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HI = graph based on the data of our trial with SEMs on the x-axis (in statistics 
often called z-axis). 

HO = the same graph with mean 0 (mean ± SEM = 0 ± 1). 

Now we will make a giant leap from our data to the entire population ( we can do 
so because data are representative for entire population ). 
HI = also summary of means of many trials similar to ours (this assumption is 

correct, because our study is representative for population, and because 
we have SEM-units on the x-axis). 

HO = summary of means of many trials similar to ours but with overall effect 0 
(our mean is not 0, but 2.101 SEMs. It, still, could be an outlier of many 
studies with an overall effect of 0). 
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So think from now on of HO as the distribution of the means of many trials with an 
overall effect of o. Ifhypothesis 0 is true, then the mean of our study is part ofHO. 
We can't prove but can calculate chance / probability of this possibility. 
A mean result of2.9 SEMs is far distant from o. Suppose it belongs to HO. 

Only 5% of the HO-trials are ~2.1 SEMs distant from 0, 
because the AUC here = only 5% (Figure). 
The chance that our trial belongs to HO is thus ~ 5% 
(reject null hypothesis of no effect). 

Conclude here: 
~ 5% chance to fmd this result. 
In usual terms: we reject the null hypothesis of no effect at 
Probability (P) ~ 0.05 or P ~ 5%. 

5. NEGATIVE STUDY 

-2.101 o 0.9 

If our mean result is not 2.1 but only 0.9 SEMs distant from 0, 
we say not significantly different from O. Do not interpret in terms of 
statistical equivalence. 
What it does mean: suppose our result belongs to HO trials. 

Ho 

SEMs 

Up to 30% of HO trials are 0.9 SEMs or more distant from 0, 
because AUC right from 0.9 is 30%. 
Chance that our result belongs to HO is up to 30%. 
This is not good enough to reject 0 hypothesis. 
This is not good enough to accept equivalence either. 

there is a subtle difference between "not different" and "similar". 
So far we have talked about differences. 
Now we are going to talk about similarities. 
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6. EQUIVALENCE TESTING 

-3 1-2 -1 0 2 1 3 
1 1 

-0, t-I -----------+1 +0, 
4 5 SEMs 

l-----------------+ +02 

How similar versus (vs) control or vs 0 is our trial? The mean result of our trial 0.9 
SEMs distant from 0, so not significantly different from O. Is it then equivalent?? 
This depends on criterion of equivalence. The so-called D sets defmed interval of 
equivalence. If our trial is completely within this interval: equivalence 
demonstrated. With D1 boundaries: no equivalence demonstrated. With D2 
boundaries: yes, equivalence demonstrated. 
Note: striped area under the curve = so-called 95% confidence intervals (CIs) = 

interval between approximately - 2 SEMs and +2 SEMs distant from the mean. 

7. EQUIVALENT AND AT THE SAME TIME SIGNIFICANTLY DIFFERENT 

3 -2 -1 o 2 3 4 
SEMs 

-0, +--____________ --++0, 

-0, ~----------------------+- +0, 
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Another example. The mean result of our trial is 2.9 SEMs distant from 0, and so 
significantly different from O. Is it not equivalent then?? With DI the trial not 
completely within D-boundaries: we have no equivalence. With D2 the trial is 
completely within D-boundaries: yes, we have equivalence. 

Note: with D2 there is a significantly different result and yet equivalence. 
Conclude: 
Equivalence testing is not complicated. 
Just set your boundaries of equivalence, 
check whether 95% CIs intervals are ... 

- completely within: equivalence is demonstrated; 
- partly within: unsure; 
- completely without: no equivalence demonstrated. 

8. OVERVIEW OF ALL POSSIBILITIES 

Study Statistical 
(1-8) significance 

demonstrated 

equivalence 
demonstrated 

I. yes--------------------------------------------------------------------------------< not equivalent > 
2. yes--------------------------------------------------------------------< uncertain >-------------
3 . Yes -------------------------------------------------------< eq uivalent >-------------------------
4. No ---------------------------------------< equivalent >-----------------------------------
5. Yes-----------------------------< equiv alent >---------------------------------------------------
6. yes------------< uncertain >-----------------------------------------------------------------
7. Yes-< not equivalent >------------------------------------------------------------------------------
8. No--------< uncertain >--------

--------------------D~----------O~-----------+=D!----------­
true difference 

Overview of all possibilities is given above: between brackets are 95%CIs of trials, 
on x-axis the place of 0- effect and D boundaries are given. 

Study 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

Completely without D-boundaries: no equivalence, 
Partly without... ... .... : uncertain, 
Completely within.... : yes equivalence, 

" : yes equivalence, 
: yes equivalence, 

Partly without. ......... . 
Completely without... 
Partly without .......... . 

: uncertain, 
: no equivalence, 
: uncertain. 

Also an overview is given of whether or not a significant difference from 0 is 
demonstrated: 
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Particularly, possibilities 3 and 5 are remarkable: studies are equivalent because 
95% CIs do not cross D-boundaries and significantly different because 95% Cis 
do not cross 0 value. 
95% CIs interval = interval between approximately - 2 SEMs and +2 SEMs distant 
from the mean, so not crossing 0 indicates that mean result is > 2SEMs distant 
from 0 (statistically significant at p<0.05). 

9. DEFINING D-BOUNDARIES 

Hardest part: defme D-boundaries. 
For a rabbit -50 to + 50 mileslhour 

turtle -2 to + 2 
snail -2 to + 2 meters/" . 

D-boundaries indicate area-of-undisputed-clinical-relevance. 

10. ROBUSTNESS OF EQUIVALENCE TRIALS 

Robustness of equivalence trials 
-Equivalence testing is increasingly getting routine in clinical trials. 
-E.g., for comparing test treatment with standard treatment: 

efficacy parameters are then often equivalent, 
while safety parameters (side effects) may be largely different. 

In many trials patients are lost! 
Intention-to-treat (ITT) population includes patients lost. 
Completed-protocol-population includes only patients who completed study. 
Usual hypothesis testing uses ITT population: 

1. It makes differences look more similar. 
2. It mirrors what will happen in practice (including non-compliants). 
3. It shifts study towards negative result. 

Equivalence testing using ITT population: 
1. Idem. 
2. Idem. 
3. It shifts study towards positive result. 

Note: Perform both ITT and completed protocol analysis. If difference is little, we 
have a robust study. 

11. EXAMPLE 

Example: Compound A and B are used for the treatment of asthma attacks, using 
peak expiratory flow (Umin) as primary outcome. The boundaries of equivalence 
were set at ± 15 l/min , which means that D= 15 l/min. The results were the 
following: 
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Mean expiratory flow 
Treatment A 420 lImin 
Treatment B 417 I/min 
Mean difference 3 lImin 

The estimated standard error of this difference was calculated to be SEM = 4 
The 95% CIs for this difference range between -1.96 and + 1.96 SEM. 
This means that the interval is approximately between -5 and + 11 SEMs and is 
thus entirely within the range of equivalence of -15 lImin and + 15 I/min, and, so, 
equivalence is confmned. 

12. CROSSOVER EQUIVALENCE STUDIES WITH DIFFERENT LEVELS OF 
CORRELA nON 

50 • 50 • .. p .. -l p,,,-o .. p"".' 
40 40 40 • - • • •• 
30 • • :10 ' .. 30 • • 

• • 
20 ~o :10 

• • 
10 negative co,.,ei>B~ion 10 lero correlafion 10 positive correiation 

• 

10 20 30 40 10 20 30 40 .0 20 30 40 

treatment effects of vasodilator 2 (Raynaud attacksfwk) 

Example: 
Three equivalence trials for patients with Raynaud's phenomenon treated with 
vasodilator 1 for one week and vasodilator 2 for another week. Data are the 
numbers of Raynaud attacks per week. 
Left trial shows a strong negative correlation between treatments: every time one 
treatment performs well, the second does not so, 
Middle trial: the correlation is approximately zero. 
Right trial: strong positive correlation between treatments exists: every time one 
treatment performs well, the other performs well too. 

Observe that mean difference is every time 5, 5, and 5, but SEMs are very different 
6.46, 2.78, and 0.76. 
The graph below shows 95% CIs of 3 studies and the given D-boundaries. 
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Only the positive-correlation-study demonstrates equivalence! 
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Note: crossovers mostly have a positive correlation and are therefore very suitable 
for equivalence testing. 

13. CONCLUSIONS 

1. The use of placebos is unethical when an effective active comparator is 
available. 

2. With active comparator new treatment may simply match standard treatment. 
3. Equivalence trials have to be at least twice as large as comparative trials, you 

will understand after reviewing power analysis (chapter 3). 
4. Predefmed area of equivalence between -D and +D is based on clinical 

arguments. 
5. Equivalence testing is indispensable in drug development( for comparison of 

new treatment versus an active comparator). 
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14. EXERCISES TO CHAPTER 2 

1. A. study unable to find difference demonstrates therapeutic equivalence, 
B. .. has little power, 
C. .. does not have little power, 
D. .. has adequate power. 

Which alternative is correct? 

2. Therapeutic equivalence in a trial indicate: 
A. 95 % confidence intervals (CIs)completely within predefmed boundaries of 

equivalence, 
B .............................. . partly within ..................................... , 
C ............................... . completely without. ................................ , 
D ............................... . partly without. ...................................... . 

Which alternative is correct? 

3. A. presence of equivalence includes the possibility of significant difference, 
B. presence of equivalence and significant difference cannot be found 

simultaneously, 
C. significant difference means that 95 % CIs cross 0 value, 
D. equivalence means that 95 % CIs cross D boundary of equivalence. 

Which alternative is correct? 

4. A robust or sensitive equivalence trial indicates that: 
A. intention to treat (ITT) analysis yields better sensitivity than completed trial 

(CT) analysis, 
B. ITT analysis yields less sensitivity than CT analysis, 
C. ITT analysis yields similar sensitivity as CT analysis, 
D. ITT analysis shifts trial towards negative result. 

Which alternative is correct? 



EQUIVALENCE TESTING 

5. Example of therapeutic equivalence trial yields mean result in group I of 
415 lim in (n=100), in group 2 of421l1min (n=IOO); SEM of the mean 
differences between the two groups 4 \/min; D boundaries are set 
at + and - 10 lImin. 
A. equivalence demonstrated, 
B. equivalence unsure, 
C. no equivalence, 
D. significant difference demonstrated. 

Which alternative is correct? 

6. Paired data are very sensitive to equivalence testing: 
A. with + correlation, 
B. with - correlation, 
C. with 0 correlation, 
D. always. 

Which alternative is correct? 

7. Equivalence studies are adequate for: 
A. comparison of new treatment vs standard treatment, 
B. . ............................................... vs baseline, 
c. . ............................................... vs placebo, 
D. testing small differences. 

Which alternative is correct? 

35 



CHAPTER 3 

POWER, SAMPLE SIZE 

I. DEFINITION OF STATISTICAL POWER 

Clinical trials are for testing possible differences between new and standard 
treatment (or placebo).Statistical power is the chance of finding difference where 
there is one, and is thus very relevant, because it assesses the underlying 
hypothesis of most research. Biostatistics is at the interface of mats and biology. 
Biostatistics is based on approximations rather than exactnesses( e.g. normal 
distributions, linear relation etc). 
Big power means a big chance of finding a difference where there is one. Large 
trials have big power. Less relevant possibilities: chance of fmding no difference 
where there is one (type II error), and the chance of fmding a difference where 
there is none (type I error). How to calculate size of power? 

2. STATISTICS GIVES NO CERTAINTIES 

what does statistics do for you? Statistics gives no certainties, only chances 
What chances? Chances that hypotheses are true/untrue (we accept 95% truths). 
What hypotheses? 
E.g. 1. no difference from a 0 effect, 

2. real difference from a 0 effect, 
3. worse than a 0 effect. 

Statistics is about estimating such chances / say testing such hypotheses. 

Note: Trials often calculate differences between test treatment and control (for 
example, standard treatment, placebo, baseline), and, subsequently, test whether 
difference-between-two is different from O. 
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3. SUMMARIZE THE DATA 

added up numbers of diff. sizes 

70 

50 

30 

-3 -2 -1 mean 3 4 
5 outcome size 

probability distribution 

-3 -2 -1 mean 2 3 4 
5 SOs 

I.Histogram - On the x-axis individual datal on the y-axis "how often" 
(e.g., mean occurs most frequently, bars both sides gradually 
grow shorter). 

- This method is not adequate for testing hypotheses. 

2.Gaussian curve - On the x-axis individual data or SDs' -distant-from-mean. 
- On the y-axis bars are replaced by continuous line. 
- Now, it is impossible to determine from graph how many 

patients had a particular outcome! 
- Instead, important inferences (conclusions) can be made, e.g.: 

Total area under the curve (AUC) = 100% of the data of our trial, 
AUC left from mean = 50% of data, 
AUC left from -1 SDs = 15% of data, 
AUC left from -2 SDs = 2.5% of data. 

- This method is not yet adequate for testing hypotheses, but better. 

* SD = standard deviation = is estimate of spread in data, is calculated according to 

SD = vi [ L (x- x ) 2 / (n-l)] 

where x = individual data, x = mean, n number of data). 
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4. TWO GAUSSIAN CURVES 

95 % of all data ... • 
95 % of all means 
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-2 SEMs mean +2 SDs 

Two gaussian curves are given: a narrow and a wide one, both based on the same 
data, but with different meaning. The wide one summarizes the data of our trial. 
The narrow one summarizes means of many trials similar to ours. 
We won't try to make you understand why so. Still, it's easy to conceive that 
distribution of means of many trials is narrower, and has fewer outliers than the 
distribution of the actual data from our trial. 

Believe it or not: 
The narrow curve with SEMs' on the x-axis can be effectively used for testing 
important statistical hypotheses: 

1. No difference between new and standard. 
2. Real difference " 
3. New treatment is worse than old. 
4. Two treatments are equivalent. 

SEM-curve is narrower than SD-curve because SEM=SD/ '-In. 

• SEM= standard error of the mean. 

5. IMPORTANT HYPOTHESES 

-Important Hypotheses are 
Hypothesis 0, 
No difference from a 0 effect, 
Hypothesis 1, 
Real difference from a 0 effect. 

-We will now, particularly, emphasize hypothesis 1. 
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6. HYPOTHESIS 1 

12.101 
1 
1 

Ho 

·3 -2 -1 0 1 2 4 
SEMs 

-What do 2 hypotheses look like in graph? 
-HI = graph based on the data of our trial ( mean ± SEM= 2.9± 1). 
-HO = same graph with mean O(mean ± SEM= O± 1). 
-Now we make a giant leap from our data to the entire population (our data were 
representative). 
-HI = also summary of means of many trials similar to ours ( if we repeated trial, 

difference would be small, and distribution of means of many such trials 
would look like HI. 

-HO = summary of means of many trials similar to ours, but with overall effect 0 
(our mean not 0 but 2.9. Still, it could be outlier of many studies overall 
effect O. 

-So, think from now on ofHO and HI as summary of means of many trials. 
-If hypothesis 0 is true, then mean of our study is part ofHO. 
-I f hypothesis 1 is true, then mean of our study is part of H 1. 
-So, mean of our study may be part ofHO, or may be part of HI. 
-We can't prove anything, but we can calculate the chance of either of these 
possibilities. 
-A mean result of2.9 is far distant from 0: 

Suppose it belongs to HO. 
Only 5% of the HO trials >2.1 SEM distant from O. 
Chance that it belongs to HO is thus < 5%. 
We reject this possibility if probability < 5%. 
(We say reject null hypothesis of no effect). 
Suppose it belongs to HI. 
Only 30% of the H I trials <2.1 SEM distant from O. These 
30% cannot reject null hypothesis, only 70% can. 
Conclude here if HO true, <5% chance to fmd it, 

if H 1 true, 70% chance to fmd it. 
Or in usual statistical terms: we reject null 
hypothesis of no effect at P<0.05 and with 
a statistical power of 70%. 
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7. ALPHA, BETA, I-BETA 

Alpha: small area under the curve (AUe) right from 2.1. 
Alpha: level of rejection ofHO. 
Beta: AVC left from 2.1. 
Beta: chance of fmding no difference where there is one. 
Beta= type II error. 
I-Beta = chance offmding a difference where there is one. 
1-Beta= statistical power of a trial. 

Please remember the little words. 
Alpha = chance to fmd a difference where there is none. 
Beta = chance to fmd no difference where there is one. 
I-Beta = chance to fmd a difference where there really is one. 
I-Beta = STATISTICAL POWER. 

8. POWER GETS LARGER WHEN THE MEAN GETS LARGER 

-3 

again:Alpha 

Beta 

-2 

PROBABILITY 
DISTRIBUTION 

-1 o 2 

12.101 
1 
1 

Ho 

3 4 5 SEMs 

= outlier AVC of HO=area of rejection ofHO =usually 5% 
(trials within this AVC: null hypothesis is rejected), 

= chance to find a difference where there is none, 
= type I error. 

= left AVC of HI 

41 

(trials within this AVC: HI is true but HO cannot be rejected), 
= chance to fmd no difference where there is one, 
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= type II error. 
I-Beta = AVC right from 2.10 I. 

= STATISTICAL POWER. 
As the mean result of our trial gets larger, the alpha level remains 5%, but the AVC 
of I-beta gets larger, and so the trial gets more power. As the mean result of our 
trial gets smaller, alpha again remaining 5%, the AVC of I-beta gets smaller, and 
so the trial loses power. 

9. EXAMPLE OF POOR POWER 

PROBABILITY 
DISTRIBUTION 

-3 -2 -1 o 

Example of poor power. 
Mean result 2.10 I SEMs distant from o. 
AVC right from 2.1015% of total AUC. 
Reject the null hypothesis of no effect. 

12.101 

2 3 4 5 

SEMs 

However, I-beta: covers only 50% of the AUC ofaItemative hypothesis HI. 
Power is, thus, only 50%. 
Note: a power of 50% is unacceptable for reliable testing (type II error 50%). 

HO 

H1 
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10. HOW TO CALCULATE POWER 

PROBABILITY 
DISTRIBUTION 

43 

Ho 

SEMs 

T' T = 2.878 = mean 

How to calculate power? 
1. Estimate from graph (AVC in the above example: I-beta= approximately 70%), 
2. extrapolate from statistical table, 
3. use computer. 

It is useful to master method 2. Mean result of our trial 2.878 SEMs distant from 0 
= T-value of our trial; 2.878 is, thus, the T-value of our trial. 
Find beta by subtracting T_Tl where Tl is the T yielding AVC of 5% =2.101. 
T_Tl= 2.878-2.101=0.777. 
Now use T-table to find I-beta. 

11. USE OF T-TABLE TO FIND POWER 

-8 Columns ofT-values =mean results of trials in numbers of SEMs distant from O. 
-Left-hand column gives degrees of freedom (adjustments for number of patients 
and number of groups, for example, with 20 patients consisting of 2 groups we 
have 20-2= 18 degrees of freedom (dfs)). 

-Vpper two rows: AVCs right from T-values. 
-E.g., a T of2.11 and 20 subjects and 2 groups (18 degrees of freedom) means that 
the AVC right from 2.101 is < 0.05 (tested 2 sided, testing 2-sided means testing 
both right and left end of total AUC simultaneously). 
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Now for power analysis. Our T= approximately 2.9. TI = approximately 2.l. T-
Tl= 0.777, AUC right from 0.777 means right from 0.688, is thus close to 0.25 = 
25%. Beta (always tested I-sided)= 25%, I-Beta = statistical power is close to 1-
25%=75%. 

T-Table: v= degrees offreedomfor t-variable, Q=area under 
the curve right from the corresponding t-value, 2Q tests both 

right and left end of the total area under the curve 

\' Q ~ 0.4 0.1 0.05 0.025 0.01 0.005 0.001 
2Q ~ 0.8 0.2 0.1 0.05 0.02 0.01 0.002 

I 0.325 I. 000 3.078 6.314 12.706 31.821 3.657 318.31 
2 .289 0.816 1.886 2.920 4.303 6.965 9.925 22.326 

3 .277 .765 1.638 2.353 3.182 4.547 5.841 10.213 
4 .171 .741 1.533 2.132 2.776 3.747 4.604 7.173 

5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 5.893 

6 .265 .718 1.440 1943 2447 3.143 3.707 5.208 
7 .263 .711 1.415 1.895 2.365 2.998 3.499 4.785 
8 .262 .706 1.397 1.860 2.306 2.896 3.355 4.501 

9 261 .703 1.383 1.833 2.262 2.821 3.250 4.297 

10 0.261 0 700 1.372 1.812 2.228 2.764 3.169 4.144 

II .269 .697 1.363 1.796 2.201 2.718 3.106 4025 

12 .269 .695 I 356 1.782 2.179 2.681 3.055 3.930 
13 .259 .694 1.350 1.771 2.160 2.650 3.012 3.852 
14 .258 .692 1.345 1.761 2.145 2.624 2.977 3.787 

15 0.258 0.691 1.341 1.753 2.131 2.602 3.733 
16 .258 3.686 
17 .257 3.646 
18 .257 3.610 
19 .257 .688 1.328 1.729 2.093 2.539 2.861 3.579 

20 0.257 0.687 1.325 1.725 2086 2.528 2.845 3.552 
21 .257 .686 1.323 1.721 2.080 2.518 2.831 3.527 
22 .256 .686 1.321 1.717 2.074 2.508 2.819 3.505 
23 .256 .685 1.319 1.714 2.069 2.600 2.807 3.485 
24 .256 .685 1.318 1.711 2.064 2.492 2.797 3.467 

25 0.256 0.684 1,316 1.708 2.060 2.485 2.787 3.450 
26 .256 .654 1,315 1.706 2.056 2.479 2.779 3.435 
27 .256 .684 1.314 1.701 2.052 2.473 2.771 3.421 
28 .256 .683 1,313 1.701 2.048 2.467 2.763 3.408 
29 .256 .683 1.311 1.699 2.045 2.462 2.756 3.396 

30 0.256 0.683 1.310 1.697 2042 2.457 2.750 3.385 
40 255 .681 1.303 1.684 2.021 2.423 2.704 3.307 
60 .254 .679 1.296 1.671 2.000 2.390 2.660 3.232 

120 .254 .677 1.289 1.658 1.950 2.358 2.617 3.160 

00 .253 .674 1.282 1.645 1.960 2.326 2.576 3090 
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12. USE OF T-TABLE TO FIND POWER, ONE MORE EXAMPLE 

-3 -2 -1 

Different example. 

o 

PROBABILITY 
DISTRIBUTION 

12.101 

Mean result is 2.1 SEMs distant from zero. 
2.1 the T from the T -table for our trial. 

4 5 

SEMs 

Find Beta by subtracting T-Tl where Tl is the T yielding Aue of 5% =2.1Ol. 
T-Tl= 0.0. 
Now use T-table to fmd I-beta. 

45 

HO 

H1 

T= 2.101, Tl = 2.101, T-Tl= 0.0, which is a bit less than 0.257, Aue right from 
0.0 = bit more than OAO, For example, 0.50= 50%, beta (always tested I-sided) = 
50%, I-Beta = statistical power = 1-0.50= 0.50= 50%, Power of only 50% is 
unacceptable for testing. 
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T-Table: v= degrees a/freedom/or t-variable, Q=area under 
the curve right from the corresponding t-value, 2Q tests both 

right and left end 0/ the total area under the curve 

I Q = O. 5 I Q = 0.4 0.25 0.1 0.05 0.01 0.005 0.001 

2Q = 0.8 0.5 0.2 0.1 0.02 0.01 0.002 

1 0.325 I. 000 3.078 6.314 1.821 63.657 318.31 

2 .289 0.816 1.886 2.920 .965 9.925 22.326 

3 .277 .765 1.638 2.353 3.182 4.547 5.841 10.213 

4 .171 .741 1.533 2.132 2.776 3.747 4.604 7.173 

5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 5.893 

6 .265 .718 1.440 1.943 2447 3.143 3.707 5.208 
7 .263 .711 1.415 1.895 2.365 2.998 3.499 4.785 

8 .262 .706 1.397 1.860 2.306 2.896 3.355 4.501 

9 .261 .703 1383 1.833 2.262 2.821 3.250 4.297 

10 0.261 O. 700 1.372 1.812 2.228 2.764 3.169 4.144 

II .269 .697 1.363 1.796 2.201 2718 3.106 4.025 
12 .269 .695 1.356 1.782 2.179 2.681 3.055 3.930 

13 .259 .694 1.350 1.771 2.160 2.650 3.012 3.852 
14 .258 .692 1.345 1.761 2.145 2.624 2.977 3.787 

15 0.258 0.691 JJ41 1.753 2.131 2.602 2.947 3.733 

16 .690 1.337 2.120 2.583 2.92 I 3.686 
17 2.567 2.898 3.646 
18 2.552 2.878 3.610 
19 2519 2.861 3.579 

20 0.257 0.687 1.325 1.725 2086 2.528 2.845 3.552 
21 .257 .686 1.323 1.721 2.080 2.518 2.831 3.527 
22 .256 .686 1.32 I 1.717 2.074 2.508 2.819 3.505 
23 .256 .685 !J19 1.714 2.069 2.600 2.807 3.485 
24 .256 .685 L318 1.7 I I 2.064 2.492 2.797 3.467 

25 0.256 0.684 1,316 1.708 2060 2.485 2.787 3.450 
26 .256 .654 1,3 I 5 1.706 2.056 2.479 2.779 3.435 
27 ,256 .684 1,314 1.701 2.052 2.473 2.771 3.421 
28 .256 .683 1,3 I 3 UOI 2.048 2.467 2.763 3.408 
29 .256 .683 1.3 I I 1.699 2.045 2.462 2.756 3.396 

30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.385 
40 .255 .681 1.303 1.684 2021 2.423 2.704 3.307 

60 .254 .679 1.296 1.671 2.000 2.390 2.660 3.232 
120 .254 .677 1.289 1.658 1.950 2.358 2.617 3.160 

OC! .253 .674 1.282 1.645 1.960 2.326 2.576 3.090 
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13. USE OF T-TABLE TO FIND POWER, ONE MORE EXAMPLE 

Things may get worse. 
Mean result is 0.9 SEMs distant from zero. 
T = 0.9. Find Beta by subtracting T-Tl where TI is the Tyielding AUC of 0.05 = 
2.101. 
T-Tl= -1.20. 

-2.101 

PROBABILITY 
DISTRIBUTION 

o T = 0.9 T' = 2.101 
SEMs 

Our T is 0.9. Tl is 2.101. T-Tl= -1.2. 1.2 is again between 0.68 and 1.3, and it is 
close to 1.3 which corresponds with a little bit more than an AUC of 10%: 15% or 
so, -1.2 corresponds with AUC of 100% -15% = 85%, Beta = 85% , I-Beta= 
15%= STATISTICAL POWER. You already noticed that the procedure is rather 
imprecise with extreme values. 
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T-Table: p= degrees offreedomfor t-variable. Q=area under 
the curve right from the corresponding t-value. 2Q tests both 

right and left end of the total area under the curve 

\' Q ~ 0.4 0.25 0.1 0.05 0.025 0.01 0.005 0.001 

2Q ~ 0.8 0.5 0.2 0.1 0.05 0.02 0.01 0.002 

0.325 .000 3.078 6.314 12.706 31.821 63.657 318.31 

2 .289 .816 1.886 2.920 4.303 6.965 9.925 22326 

3 .277 765 1.638 2.353 3.182 4.547 5.841 10.213 

4 .171 .741 1.533 2.132 2.776 3.747 4.604 7.173 

5 0.267 .727 1.476 2.015 2.571 3.365 4.032 5.893 

6 .265 .718 1.440 1.943 2.447 3.143 3.707 5.208 

7 .263 .711 1.415 1.895 2.365 2.998 3.499 4.785 

8 .262 .706 1397 1.860 2.306 2.896 3,355 4.501 

9 .261 .703 1.383 1.833 2262 2.821 3.250 4.297 

10 0.261 .700 1.372 1.812 2.228 2.764 3.169 4.144 

11 .269 .697 1.363 1.796 2.201 2.718 3.106 4.025 

12 .269 .695 1.356 1.782 2.179 2.681 3.055 3.930 

13 .259 .694 1.350 1.771 2.160 2.650 3.012 3.852 
14 .258 .692 1.345 1.761 2.145 2.624 2.977 3.787 

15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3733 

16 .258 .690 1.337 1.746 2.120 2.583 2.921 3.686 
17 .257 .689 1.333 1.740 2.110 2.567 2.898 3.646 

18 .257 688 ~1.734 2.101 2.552 2.878 3.610 
19 .257 .688 1328 1.729 2093 2.539 2.861 3.579 

20 0.257 0.687 1.325 1.725 2086 2.528 2.845 3.552 
21 .257 .686 1.323 1.721 2.080 2.518 2.831 3.527 
22 .256 .686 1.321 1.717 2.074 2.508 2.819 3.505 

23 .256 .685 1.319 1.714 2.069 2.600 2.807 3.485 
24 .256 .685 1.318 1.711 2.064 2.492 2.797 3.467 

25 0.256 0.684 1,316 1.708 2060 2.485 2.787 3.450 
26 .256 .654 1,315 1.706 2.056 2.479 2.779 3.435 
27 .256 .684 1,314 1.701 2.052 2.473 2.771 3.421 
28 .256 .683 1,313 1.701 2.048 2.467 2.763 3.408 
29 .256 .683 1.311 1.699 2.045 2.462 2.756 3.396 

30 0.256 0.683 1.310 1.697 2042 2.457 2.750 3.385 

40 .255 .681 IJ03 1.684 2021 2.423 2.704 3.307 

60 .254 .679 !.296 1.671 2.000 2.390 2.660 3.232 
120 .254 .677 1.289 1.658 1.950 2.358 2.617 3.160 

00 .253 .674 1.282 1.645 1.960 2.326 2.576 3.090 



POWER, SAMPLE SIZE 

14. POWER FORMULAS 

The above calculations made use of the formula: 
Power= 1- prob (z< T-TI), 
T=Tofdata, 
Ti=Tyielding AUC of5%, 
z= an interval on the Z-axis, 
Prob = AUC between T and Tl. 

For proportions different formula: 

(learn by heart) 

Z power= 2(arcsine "PI-arcsine "P2)"n!2-z1. (don't learn by heart) 

For equivalence testing: 
Power=l-prob z<D/SEM-z(1-alpha). 

Take note of z-values: 

zl and z(1-alpha) 

(don't learn by heart) 

are intervals on the z-axis (x-axis) which are 1.96 SEMs wide with normal 
distributions and bit wider with T -distributions. 

15. SAMPLE SIZE REQUIREMENTS 

How many data are required in a sample ? 
Just pulling the sample sizes out of a head gives rise to 

ethical problems ( too many patients given a potent inferior treatment 
unethical), 

scientific" ( negative studies require repetition), 
financial" (costs involved in too small or too large studies). 

49 

Essential part of planning a clinical trial is to decide: how many people need to be 
studied in order to answer the study objectives. 

16. A SIMPLE METHOD TO CALCULATE REQUIRED SAMPLE SIZE 

Mean should be at least 1.96 or approximately 2 SEMs distant from 0 to obtain 
statistical significance. 
Assume mean = 2 SEM. 
Then mean! SEM=2. 
Then mean! SDI "n = 2. 
Then "n= 2.SD/mean. 
Then n= 4. (SD/mean)2 . 
For example, with mean 10 and SD 20. 
We will need a sample size of at least n= 4 (20110)2= 4.4=16. 
P-value is then 0.05 but power is only 50%. 



50 CHAPTER 3 

17. A MORE ACCURATE METHOD TO CALCULATE REQUIRED SAMPLE 
SIZE, POWER INDEX METHOD 

The statistical power (I) of a trial assessing a new treatment vs control is 
determined by 3 major variables: 
(2) D (mean difference or mean result). 
(3) Variance in the data estimated as SD or SEM. 
(4) Sample size. 
It follows that we can calculate (4) if we know the other 3 variables. 
The relationship between (4) and the 3 other variables can be expressed in fancy 
formulas with (z a + Z i3) 2 = power index as an important element in all of them. 

18. SAMPLE SIZE COMPUTA nONS FOR CONTINUOUS VARIABLES, 
EXAMPLE 

Formula for continuous variables: 
n = 2. (SD/mean)2 (z a + Z i3 ) 2 

What is the size of this (z a + Z Il) 2 ? 

2112 % = al2 2112 % = al2 

-3 -2 -1 0 Za=1.96 3 4 5 
SEMs 

Z a means" a place" on the Z-line. If alpha is defmed 5%, or rather 2 x 2 112 % , 
then right from this place on the Z-line AUC=5%, or rather 2x2 112 %. So this 
place must be 1.96 SEMs distant from 0, or a bit more with T-distribution. 
So, Z a = 1.96 = approximately 2.0. 

~ =20% 

SEMs 

ZI3=O.8 

Ifbeta is defined 20%, what is place on Z-line of Z i3 ? Right from this place AUC= 
20% of total AUe. This means that this place must be approximately 0.8 SEMs 
distant from O. So Z i3 = approximately 0.8. Thus, Z (alpha) = approximately 2.0, 
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and z (beta) = approximately 0.8. 

Power index = (z a. + Z II ) 2 = (2.8) 2 = 7.8 ~ 7.8. 

Required sample size n= 2. (SD/mean )2 (Z a + Z ll) 2 (learn by heart) 
Conclude that with a = 5% and power = 1- ~ = 80%, the required sample size is 
n = 15.6 (SD/mean)2 . 

51 

E.g., with SD 20 and mean 10, we will need sample size ofn= 15.6 (20/ 10)2 = 62. 

19. OTHER FORMULAS TO CALCULATE REQUIRED SAMPLE SIZE 

Required sample size formula for proportions: 

N= 2 P average (1- P average) (z a. + Z ll) 2 / D2 (don't learn by heart) 

Required sample size formula for equivalence testing ("" 
N = 2(between subject variance) (z I. Y, a. + Z I. Y, II ) 2 / D 2 

(where D is minimal difference we wish to detect). 

" 

What is size of power index of equivalence testing (z ,.y,o. + Z 1.Y,6 ) 2? 

Z(1-a/2) = 1.96 

" ) 

SEMs 

If alpha is defmed 5%, then liz alpha = 2 liz %. What is the place on the Z-line of 
z I. y,o. ? Left from this place: AUC = 1- liz alpha = 100- 2 liz %= 97 liz % of total 
AUC. So place is, just like Zo. , 1.96 SEMs distant from 0, or bit more with T­
distribution. So, z 1. y, a. = 1.96 or app 2.0. 

SEMs 

Z(1-J3I2) = 1.2 

Now, ifbeta is defmed 20%, then liz beta = 10% ,what is the place on the Z-line of 
z 1- y, II ? Left from the place the AUC = 100% -10% = 90% oftotal AUe. 



52 CHAPTER 3 

This means that this place must be approximately 1.2 SEMs distant from 0, or bit 
more. 
z 1- 1, Jl = approximately 1.2. 
z 1 _ 1, a = approximately 2.0. 
Power index for equivalence testing = (2.0 + 1.2)2 = app 10.9. 

NOTE: Power index null hypothesis testing = 7.8. 
" "equivalence testing = 10.9. 

Obviously, for equivalence testing much larger sample sizes are required! 

20. TYPE I, TYPE II AND TYPE III ERRORS 

We now address something really useful and very simple too. 
If you can't demonstrate superiority of a new product, 
maybe you're interested to test whether it is inferior. 
Testing inferiority = testing the chance of type III error. 
Note: type I error = alpha = chance offmding a difference where there is none, 

type II error =beta =chance of finding no difference where there really is 
one. 

How it works? 

I 
2 

I 
3 

I 
4 

Suppose: mean result approximately 1 SEM distant from zero, 
which is not enough to reject the null hypothesis. 

I 
5 

Ho 

SEM& 

H'o 

SEMs 
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So, we have a negative trial (not able to reject its null hypothesis).Is this trial able 
to reject the chance of a type III error? 
It is simple: we just need a new null hypothesis at approximately -2SEMs distant 
from 0 ( HOI ). Our mean result is now approximately 3 SEMS distant from the 
new null hypothesis. 3 SEMS means a P value ofO.OOl. 
And so, we have strong evidence to reject the null hypothesis of worse than zero. 
Our new treatment is, thus, not significantly worse than control. 

21. CONCLUSIONS 

1. If underlying hypothesis in research is that one treatment is really different 
from control, power analysis is a more reliable approach to statistically evaluate 
the data than null hypothesis testing; a power level of at least 80% is 
recommended. Power = chance of fmding a difference where there actually is 
one. 

2. Despite the sometimes speculative character of prior estimates of presumable 
results of a trial, it is currently appropriate to calculate required sample size 
based on expected results. 

3. The type III error can demonstrate in a negative trial whether the new treatment 
is significantly worse than the control treatment. 

4. Important formulas: 
Power = 1- prob ( z < t-t1), 
Power index needed for calculating sample size( z u + z 1l)2 is generally 7.8, 

Required sample size = 2. (SD/mean)2 ( z u + Z 1l)2 . 
5. Required knowledge for the exam of the module statistics of European College 

of Pharmaceutical Medicine Lyon france: 
be prepared to calculate power from simple example of (continuous) trial data 
using T -table. Be prepared to calculate required sample size of continuous data 
with alpha=0.05 and beta = 0.20 using power index (of proportional data see 
page 88). 
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22. EXERCISES TO CHAPTER 3 

1. Statistical power 
A chance of finding a difference where there is none, 
B ........................................................ one, 
C ...................... no difference ................ none, 
D ....................... no difference .................. one. 

Which alternative is correct? 

2. Statistical power is 
Au 
B. 1- u 

C. ~ 
D. 1- ~ 

Which alternative is correct? 

3. The mean result of a trial is 3.6 SEMs distant from O. Find power using formula 
power= 1- prob(z<t-t1), where z is interval on the z-axis and e 
is the t of AUC of5%, and nl=n2=n=1O (2 parallel groups). 
A 90% < power < 95%, 
B. power> 80%, 
C. power <75%, 
D. power >75%. 

Which alternative is correct? 

4. Calculate required sample size of a trial of continuous data that is expected to 
have normal distribution, a mean of 5 and SD of 15 and should produce a 
P-value of at least P=0.05 (mean result versus 0). 
A 16, 
B. 36, 
C.64, 
D. 100. 

Which alternative is correct? 
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5. The amount of statistical power is determined by 
A. mean effect-variance-sample size-power index, 
B. mean effect-variance-sample size, 
C. mean effect-variance, 
O. sample size- power index. 

Which alternative is correct? 

6. The required sample size in unpaired trial is determined by: 
A. mean - SO - alpha level, 
B. mean - SO - beta level, 
C. mean - SO - power index, 
o. mean - SO - correlation level. 

Which alternative is correct? 

7. Chance offmding a difference where there none 
A. type I error, 
B. type II error, 
C. type III error, 
o. null hypothesis. 

Which alternative is correct? 

8. Chance of fmding that new treatment is worse than control treatment 
A. type I error, 
B. type II error, 
C. type III error, 
o. null hypothesis. 

Which alternative is correct? 

9. Chance offmding no difference where there is one 
A. type I error, 
B. type II error, 
C. type III error, 
o. null hypothesis. 

Which alternative is correct? 

55 
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10 Calculate required sample size of a trial of continuous data that is expected to 
have normal distribution, a mean of 5 and SD of 15 and should produce a 
P-value of at least P=0.05 (mean result vs 0), and a power of at least 80%. 
A. 115, 
B. 51, 
C. 205, 
D.320. 

Which alternative is correct? 

11. A parallel-group study of 40 subjects measures the effect of drug versus 
placebo on systolic blood pressure. We include the possibility of testing 
therapeutic equivalence and set the d-boundaries of equivalence between 
Oto 6 mm Hg. 

N 
Group 1 (drug) 20 
Group 2 (placebo) 20 

mean(mm Hg) 
9 
6 

1. Calculate the level of statistical significance. 
2. Calculate the level of statistical power. 
3. Is statistical equivalence demonstrated? 

SD(mmHg) 
4 
2 

12. In a study we expect a fall in cholesterol of2 mmolJl with a SD of 4 mmolJl 
from baseline. 
1. How many subjects have to be included to demonstrate a p-value of 0.05 and 

a power of 50%? 
2. How many subjects have to be included to demonstrate a significant fall at 

u=0.05 and p=0.20 (power index= (Za +Zp )2 = 7.8)? 
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PROPORTIONAL DATA ANALYSIS: PART-l 

l. SAFETY DATA ARE, GENERALLY, SUMMARIES OF PATIENTS WITH 
SIDE EFFECTS 

-For efficacy data we, generally, use null-hypothesis testing. 
-For safety data, more often, simply summaries of patients with side effects are 
given (±95% CIs= ± 2x p(1-p )/n x 100%, where p= proportion of patients with side 
effect). 

2. EXAMPLE 

-Sleepiness occured differently, 33% of the patients in left, 60% in right group. Is 
the difference true or due to chance? 

Alpha blocker alpha plus beta blocker 
n=16 n=15 

side effect yes no yes no 

nasal congestion 10 6 10 5 
alcohol intolerance 2 12 2 13 
urine incontinence 5 11 5 10 
disturbed ejaculation 4 2 2 2 
disturbed potence 4 2 2 2 
dry mouth 8 8 11 4 
tiredness 9 7 11 4 
palpitations 5 11 2 13 
dizziness at rest 4 12 5 10 
dizziness with exercise 8 8 12 3 
orthostatic dizziness 8 8 10 5 
sleepiness 5 10 9 6 

In left group 5/10 sleepy, in right group 9/15. Is this difference in proportions real 
or due to chance? For that purpose an indication of certainty is required ( e.g., the 
standard deviation). 
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3. STANDARD DEVIATION OF PROPORTION 

To test whether there is a significant difference between two proportions standard 
deviations (SDs) of either of the proportions is required. 

(1) SDcontinuousdata "[I: (x- X)2 I (n-l)] 
(2) SD proportional data "[ ( p (1-p) ] 
Important difference between formula (1) and (2) is that (2) is independent of n 
(=sample size). 

4. WHY IS SD OF PROPORTION" [(p(1-p)] 

This is not easy to prove. Yet, it is easy to conceive that the formula must be close 
to the truth. 
For example, many samples of 15 patients are assessed for sleepiness. The 
proportion of sleepy people in the population is 10 out of every 15. Thus, in a 
representative sample from this population 10 sleepy patients will be the number 
most frequently encountered. It also is the mean proportion, and left and right from 
this mean proportion proportions grow gradually smaller, according to a binomial 
distribution ( which becomes normal distribution with large samples). The figure 
below shows that the chance of 8 or fewer sleepy patients is 15% ( AUC left from 
8.3=15%). The chance of 6 or less sleepy patients is 2.5 % ( AUC left from 6.6= 
2.5%). The chance of 5 or less sleepy patients = 1%. This is a so-called binomial 
frequency distribution with mean 10 and a standard deviation ofp (1-p)= 10115 (1-
5115)= 1.7. -ISD means AUC of 15%, -2SDs means AUC of 2.5%. And, so, 
according to the curve below SD= p(I -p) is close to the truth. 

5 10 15 x 

Note: for null-hypothesis-testing SE rather than SD is required, and SE = SDI "n. 

5. METHOD-I TO TEST DIFFERENCE BETWEEN TWO GROUPS OF 
PROPORTIONAL DATA 

Normal test (= z-test for binomial or binary data) looks very much like T-test for 
continuous data. T= dlSE, z= dlSE, where d= mean difference between two 
groups or difference of proportions and SE is the pooled SE of this difference. 
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What we test is, whether this ratio is larger than approximately 2 ( 1.96 for 
proportions, a little bit more, e.g., 2.1 or so, for continuous data). 

Example of continuous data (testing two means). 

group I (n=IO) 
group 2 (n=IO) 

Calculate: mean, - mean2 = 1.4. 

Mean ± SD 

5.9 ± 2.4 liter/min 
4.5 ± 1.7 liter/min 

5.76110 
2.89110 

Then calculate pooled SEM = --i (SEMl2 + SEM22 )= --i 0.433 = 0.658. 
Note: for SEM of difference: take square root of sums of squares of separate SEMs 
and, so, reduce the analysis of two means to one of a single mean. 

meanl - mean2 
T = = 1.4 /0.658 = 2.127 with degrees of freedom (dfs) I 8> p<0.05. 

Pooled SEM 
oWe have 2 groups ofn=IO which means 2xlO=20-2=18 dfs. 

Example of proportional data ( testing two proportions). 

2x2 table 
Left treatment (left group) 
Right treatment (right group) 

Sleepiness 
5 
9 

No sleepiness 
10 
6 

z = difference between proportions of sleepers per group / pooled standard 
error difference, 

z = (5115 - 9115) / --i(SEI2+ SE22), 
SEI (or SEMI) = PI (l-pl)/ ni where PI = 5115 etc ........ , 

d= 1(5115 - 9115)1 = 4 115 pooled SE= --i(SE 12+ SE22) , 
dlSE = 1.45, and difference is not statistically significant, because for a p<0.05 a 

dlSE of at least 1.96 is required. 
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6. NORMAL TABLE RATHER THAN T-TABLE MUST BE USED FOR 
PROPORTIONAL DATA 

T-Table: p= degrees offreedom/or t-variable. Q=area under 
the curve rightfrom the corresponding t-value. 2Q tests both 

right and left end o/the total area under the curve 

\' Q = 0.4 0.25 0.1 0.05 0.025 0.01 0.005 0.001 

2Q =0.8 O.S 0.2 0.1 0.05 0.02 0.01 0.002 

I 0.325 1.000 3.078 6.314 12.706 31.821 63.657318.31 

2 .289 0.816 1.886 2.920 4.303 6.965 9.925 22.326 

3 .277 .765 1.638 2.353 3.182 4.547 5.841 10.213 

4 .171 .741 1.533 2.132 2.776 3.747 4.604 7.173 

5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 5.893 

6 .265 .718 1.440 1.943 2.447 3.143 3.707 5.208 

7 .263 .711 1.415 1.895 2.365 2.998 3.499 4.785 

8 .262 .706 1.397 1.860 2.306 2.896 3.355 4.501 

9 .261 .703 1.383 1.833 2.262 2.821 3.250 4.297 

10 0.261 0.700 1.372 1.812 2.228 2.764 3.169 4.144 

II .269 .697 1.363 1.796 2.201 2.718 3.106 4.025 

12 .269 .695 1.356 1.782 2.179 2.681 3.055 3.930 

13 .259 .694 1.350 1.771 2.160 2.650 3.012 3.852 

14 .258 .692 1.345 1.761 2.145 2.624 2.977 3.787 

15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.733 

16 .258 .690 1.337 1.746 2.120 2.583 2.921 3.686 

17 .257 .689 1.333 1.740 2.110 2.567 2.898 3.646 

18 .257 688 1.330 1.734 2.101 2.552 2.878 3.610 

19 .257 .688 1.328 1.729 2.093 2.539 2.861 3.579 

20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.552 

21 .257 .686 1.323 1.721 2.080 2.518 2.831 3.527 

22 .256 .686 1.321 1.717 2.074 2.508 2.819 3.505 

23 .256 .685 1.319 1.714 2.069 2.600 2.807 3.485 

24 .256 .685 1.318 1.711 2.064 2.492 2.797 3.467 

25 0.256 0.684 1,316 1.708 2.060 2.485 2.787 3.450 

26 .256 .654 1.315 1.706 2.056 2.479 2.779 3.435 

27 .256 .684 1.314 1.701 2.052 2.473 2.771 3.421 

28 .256 .683 1,313 1.701 2.048 2.467 2.763 3.408 

29 .256 .683 1.311 1.699 2.045 2.462 2.756 3.396 

30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.385 

40 .255 .681 1.303 1.684 2.021 2.423 2.704 3.307 

60 .254 .679 1.296 1.671 2.000 2.390 2.660 3.232 

120 .254 .677 1.289 1.658 1.950 2.358 2.617 3.160 

<Xl .253 .674 1.282 1.645 1.960 2.326 2.576 3.090 

The normal table is, actually, the bottom row of the T-table. 
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7. MORE EASY WAY TO TEST PROPORTIONS IS THE X2 TEST 

More easy way to test proportional data is the X2 test: 
-Upper graph below presents a normal distribution. 
-Lower graph: same distribution, but z-values have been squared, y-values 
are unchanged. 

-Because z-values have been squared we have no negative values on 
z-axis anymore. 

-Curve is skewed to right. 
-Interpretation of chi-square (X 2 ) curve: total AUC presents 100% of 
squared data. 

Normal distribution 

o 2 3 z-values 
(SEMs) 

Chi-square distribution 
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8. HOW TO USE SQUARED CURVE 

z-value = L din = mean result of trial, 
z-value2 = L d 2 In = variance of trial, 
-Upper graph= frequency distribution of means (review chapter I) of 
many trials similar to our trial: if mean trial result> 2 (1.96) distant 
from 0, and thus p<S%. 

-Lower graph= frequency distribution of 
variances of many trials similar to our trial: if 
variance> 1.96 2 distant from mean result, and thus p<O.OS. 

Interpretation: A chi-square value> 1.96 2 indicates that our variance is larger 
could happen by chance. 

Normal distribution 

z-values 
(SEMs) 

Chi-square distribution 

\----- - - ----

2 
.Z 
2 

2.58 
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9. HOW THE i TEST FOR PROPORTIONS WORKS IN PRACTICE: lX2 
TABLE 

Sleepiness No-sleepiness 
observed 

number number 

Sleepiness No-sleepiness 
expected from population 
number number 

a (5) b (10) a (10) ~-,(",,-5),--_----, 

Is our observed sample significantly different from population? 
a- a =5-10=-5 
b- ~ =10-5 = ~+ 

o 
So adding up differences from expected values does not tell us. 
Alternative: takes the square differences instead of differences. 
(a- a)2 = 25 divide by a to standardize = 2.5 

2 
(b- ~) = 25 " " J3 " " =5 + 

= 7.5 
Add-up sum of squared distances from supposed mean of population follows X 2 

distribution, i = 7.5, 1 df p<O.OI (see section Tables). 

10. HOW THE X2 TEST FOR PROPRTIONS WORKS IN PRACTICE: 2x2 
TABLE 

Sleepiness No-sleepiness Sleepiness No-sleepiness 

Left treatment (left group) 
Right treatment (right group) 

observed expected 

5 (a) 
9( c) 

10 (b) 
6 (d) 

.... ( a) 
... (y) 

(O-Ei/E= (a-aila=(5-14/30xI5il 14/30 x 15= .. 
= (b- ~)2 I ~ = 
= (c- y) 2 I Y = 

( ~) 
.... ( 8 ) 

cell 1: 
2: 
3: 
4: = (d- 8) 2 I i) = + 

= 2.106 
0= observed number; 
E= expected number=(proportion sleepers Itotal number) x numbergroup. 

Add-up sum of squared distances from expected number = best estimate of mean 
of population, and follows X2 distribution. X2 =2.106, and with 2-1 = 1 degrees of 
freedom (dfs), and thus p>O.l. 
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11. ALTERNATIVE WAY TO FIND THE ADEQUATE X2 -VALUE: 
2x2 TABLE 

Left treatment (left group) 
Right treatment (right group) 

Sleepiness no sleepiness total 

5 (a) 
9( c) 

10 (b) 
6 (d) 

a+c b+d 

a+b 
c+d 

Calculating X 2 value. 
(ad-bc)(a+b+c+d) 

(a+b )(c+d)(b+d)(a+c) 

Value of chi-square again 2.106 at 2-1=1 degree of freedom, and thus p>O.l. 

12. ONE MORE WAY TO FIND ADEQUATE THE ADEQUATE X2 -VALUE, 
FISHER-EXACT TEST: 2x2 TABLE 

Fisher-exact test. It uses faculties. 5! indicates 5x4x3x2xl. 

Sleepiness no sleepiness 

Left treatment (left group) 
Right treatment (right group) 

5 (a) 
9( c) 

(a+b)! «c+d)! (a+c)! (b+d)! 
P = (a+b+c+d)! a!b!c!d! 

10 (b) 
6 (d) 

= 0.2 (much larger than 0.05) 

Computer can calculate faculties within 1-2 seconds. 
Fisher-exact test is more adequate for testing small samples than the chi-square test 
(additional examples and discussion is given on page 87). 
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13. WITH X2 WELCOME TO THE REAL WORLD OF STATISTICS 
BECAUSE IT CAN BE USED FOR Kx2 TABLES 

Group 1 
Group 2 
Group 3 
Group 4 
Group 5 

Sleepiness 
5 (a) 
9 (c) 
.. (e) 

no sleepiness 
10 (b) 
6 (d) 
... (t) 

cell a: (O-Ef 1 E = (5 - 14/30 x 15f 1 14/30 x 15 = .. 
b: (0-E)2 1 E 
c: (O-Ef 1 E 
d: (0-E)21 E 
e: .. 
f: .. 

--------~-------

X2 = .. 

+ 
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The only difference is the degrees of freedom: they are 2-1 with 2x2 table and 5-1 
with 5x2 table. 
Note:- X2 looks weird at fIrst. 

-Main difference from normal-test or t-test: it uses squared values. 
-Basis modem statistics. 

14. MCNEMAR'S TEST FOR PAIRED YESINO OBSERVATIONS 

315 subjects tested for hypertension with: 
automated device (test 1) and sphygmomanometer (test 2) 

Finding discordant pairs. 

Test 1 
+ total 

Test 2 + 184 54 238 
14 63 77 

total 198 117 315 

(54-14)2 
X2 = = 23.5 1 df p< 0.001 

54+14 

184 subjects + twice, 63 - twice, no information. 54 and 14 subjects scored once + 
and once -. The latter two groups tell us which test is more likely to be positive. 
examples and discussion on this subject isgiven on page 90. 
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15. DIFFERENCES BETWEEN PROPORTIONS CAN ALSO BE ASSESSED 
BY CALCULATING THE ODDS RATIO (OR) AND ITS 95% CONFIDENCE 

INTERVALS (CIs) AND CHECKING WHETHER THE CONFIDENCE 
INTERVALS CROSS 1.0 

Not crossing 1.0 means that the OR is significantly different from 1.0 at p<0.05. 
The 95% confidence intervals of an OR of unpaired data can be calculated as 
follows. 

Ln OR ± 1.96'; (lIa+ 1/b+ lIc+ lid) 

For example 

Group 1 
Group 2 

Hypertension yes 
a n=5 
b n=1O 

OR=a/c I bid = 0.25 

hypertension no 
c n=1O 
d n=5 

95% confidence intervals of In OR = In OR± 1.96.y (l/a+l/b+lIc+lId) 
= In 0.25 ± 1.96 .y (115+ 111 0+ 1110+ 1/5) 
= -l.3863 ± 1.5182 
is between - 2.905 and 0.132, 

95 % confidence interval of OR is between antiIn -2.905 and antiln 0.132, 
is between 0.055 and 1.14. 

This confidence interval crosses 1.0, and is, thus, not significantly different 
from 1.0. 
Additional examples and discussion on this subject is given on page 84. 

16. HOW TO CALCULATE 95% CONFIDENCE INTERVALS OF AN ODDS 
RATIO WITH PAIRED OBSERVATIONS 

Ln OR ± 1.96 ,; (lIR + liS) where Rand S are the discordant pairs (see paragraph 
14). 
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17. SURVIVAL ANALYSIS (KAPLAN-MEIER METHOD) 

x-axis time, y-axis % survival. 

12Q-

~ ::J 
M SO~ 
j4H ---- ~--I~_-

20l 
o TTI'I "-1 'i 'I "I Ic-TI I 1 1 1 1 1 I 1 1 1 I' 1 :lTTT-:-'TTTTTlTTTT'-~, 

o 3 6 3 I? 1j 18 21 24 27 30 33 36 3Y 4r 
TIIT9 in I'tItnts 

-Fifteen patients followed for 36 months. 
-At time 0 everybody is alive, At time 36 months 40% (6/15) alive. 
-% does decrease whenever a patient dies. 
-Problem: lost data (censored data), they live at the time they are lost, and so 
useful information. 
-Solution:-recalculate fraction survivors at the end of every 2nd month, 

-those who are lost are excluded, 
-e.g., 1 lost and 1 death ~ 15115 ~ 13/14 instead of 14115. 
-95% CIs ofline can be calculated according to ± 2p(l-p)/n.l00%. 

18. TESTING SIGNIFICANCE OF DIFFERENCE BETWEEN 2 KAPLAN­
MEIER CURVES 

Time in Months 

67 
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-In a certain 2-month period we have left the following numbers: a and b in curve 
1, c and d in curve 2, 

death alive 
curve I!lj bi 

( i= 1,2,3, .... ) curve 2 Cj di 
Odds Ratio = !ljlbi / c/di = !lj dj / bi Cj 

Significance of difference between curves calculated according to: 
- Mantel-Haenszl (M-H) summary X2 test (=log rank test) : 

L [(!lj +bj )(Ci +di )(!lj +Ci )(bi +di ) / (!lj +bi +Cj +di )3] 

Note: alternative: Cox's proportional hazards model, analogous multiple linear 
regression for continuous data and logistic regression for multiple proportions, ± 
same result. Additional examples and disxussion on Kaplan-Meier methods is 
given on pages 94-99. 

19. WHAT YOU SHOULD KNOW 

I-For efficacy data null-hypothesis testing, for safety data summaries (95% CIs). 
2-Test obvious differences in side effect scores between test and control using 

2x2 tables. 
3-Use chi-square or z-test for that purpose. 
4-Paired data ( each patient serves as his-her own control): Mc Nemar test is 

adequate. 
5-Kaplan Meier curve: include lost patients. 
6-Comparing Kaplan-Meier Curves: use Mantel-Haenszl chi-square = Log 

rank test. 

20. QUESTIONS TO CHAPTER 4 

1. A. Efficacy data analysis involves summaries and confidence intervals. 
B. Safety data analysis involves null-hypothesis testing. 
C. Efficacy data analysis mostly involves X2 - testing of proportional data. 
D. Safety data analysis mostly involves X2 - testing of proportional data. 

Which of the alternatives is the best answer? 
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2. SE of proportion =...j p (l-p) 1 n 
Is the difference between two unpaired proportions 4/16 and 12116 different at 
A. 0.05<p<0.10 
B. p<0.05 
C. p<O.OI 
D. 0<0.001 
using normal test: z = d/SE = proportion! - proportion2 1 ...j (SE!2+SEl). 

Which alternative is correct? 

3. Is difference between the proportions from question 2 different at 
A. 0.05<p<O.lO 
B. p<0.05 
C. p<O.OI 
D. 0<0.001 
using the X2- test for 2x2 tables. 

Which alternative is correct? 

4. Two groups of internists include 10 internists per group. 3 internists are 
burned out in group 1 while none is so in group 2. 
Is this difference significant at 
A. 0.05<p<0.10 
B. p<0.05 
C. p<O.OI 
D. 0<0.001 
using the X2 - test for 2x2 tables. 

Which alternative is correct? 

5. A X2- curve is 
A. a squared Gaussian curve, 
B. a squared polynomial curve, 
C. a squared F-curve, 
D. a squared power curve. 

Which alternative is correct? 



70 CHAPTER 4 

6. With X2- test and 1 dfthe null-hypothesis of no difference of our variance from 
a variance of 0 is rejected at p<0.05 if X2 > 1.960, (A) 

2.576, (B) 
3.484, (C) 
6.636, (D) 

Which alternative is correct? 

7. Is the difference between two unpaired proportions 2/6 and 4/6 different at 
A. 0.05<p<O.lO 
8. p<0.05 
C. p<O.OI 
D. not significantly different, 
using the Fisher-exact test. 

Which alternative is correct? 

8. Our sample includes 4 blue eyed subjects out of 12, while the proportion in the 
general population is supposed to be 8 out of 12. At what probability is our 
sample different from the general population? 
A. 0.05<p<0.1 
B. p<0.05 
C. p<O.OI 
D. p<O.OOI 

Which alternative is correct? 

9. Two antihypertensive drugs are tested for causing orthostatic hypotension in a 
single group of patients with hypertension. Is the difference between the 
numbers of patients suffering from orthostatic hypotension significant at 
A. 0.05<p<0.1 
B. p<0.05 
C p<O.Ol 
o p<O.OOI 
using McNemar X2- test. 

Drug 1 
yes no 

Drug 2 yes 65 28 
No 12 34 

Which alternative is correct? 
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10. What is the odds ratio of discordant pairs and its 95% confidence intervals for 
orthostatic hypotension with drug-2 versus that of drug-l from the above data? 

11. In a parallel-group study the data are listed accordingly. 
orthostatic hypotension 

drug 1 
drug 2 

yes 
77 

103 

no 
62 
46 

What odds ratio and what confidence intervals can be calculated and is this 
result significantly different from an odds ratio of 1.0? 

12. Two groups of 15 subjects are followed for 6 periods, resp. 13 and 10 survive. 
Are the two Kaplan Meier curves significantly different from one another? 

survivors 2x 15 ___ _ 
I 

I 

2 

I 

I 

3 4 5 6 period 
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PROPORTIONAL DATA ANALYSIS: PART 2 

1. EXAMPLES 

• How large is the response rate? 
• How many patients do have side-effects? 
• How many patients were alive (after 5 years)? 

• Is the response rate under treatment A larger than under B? 
• Are there more side-effects after than before treatment? 
• What is the dose-effect curve? 

Discrete data are encountered all over biomedical research. Basically a discrete 
variable is a characteristic that varies over patients but can occur in only a few 
different values. Gender is a typical example of a variable that can have two values 
"male" or "female", and "death" or "alive" is another example of a discrete 
variable. Variables that can attain only two values are called dichotomous or 
binary. Typical examples of discrete variables with more than two values are, e.g., 
blood type (A, B, AB, 0), genotype in general, race. 
In clinical (pharmacology) trials typical discrete data are sampled when 
investigating the response rate of drugs (response: yes or no), or the likelihood of 
side-effects (side-effect: yes or no), survival rate after a fixed time-period (alive: 
yes or no). In comparative trials the principal question is more complex like 
whether the response rate, or the survival rate is different between treatment A and 
B, or different before and after treatment, or different for varying doses. 
A special type of discrete observation concerns the possibility that observations 
occur at different time points. This happens very often in trials with time-to-event 
as primary interest, e.g. time-to-death, or time-to-progression. Death or disease­
progression varies between patients, and this variation requires special statistical 
analysis methods. A complication is caused by so-called censored data: when the 
event of interest is not observed in a patient during the trial, this does not entail that 
it will never occur in that patient, only that it did not occur in the time-period of the 
trial. Such an observation is called censored, and such data require special 
statistical handling. These methods and the methods required to analyze discrete 
data in general are subject of this chapter, but only the most basic methods will be 
discussed. 
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2. CHOICE OF STATISTICAL METHOD: A. 

The type of "experiment", 
and 
the "type" of data sampled 
determine 
the required statistical method. 

Discrete 

Censored 

1 sample 
1 measurement 

z- or chi -squared 
test 
(kaplan -meier) 

Quantitative one sample t -test! 
Wilcoxon test 

2 samples >2 samples 
1 measurement 1 measurement 

Z- or chi -squared test chi -squared test 

logrank test logrank test 

unpaired t-test / Mann - ANOVA, Kruskal-
~E:itney~ ___ Wal~s te~_~ __ 

There are many different statistical techniques, and most students and applied 
researchers are confused by the abundance, and the necessity to make choices 
among them. Luckily, there are many aids for making the choice somewhat easier. 
One is based on the rule that "the type of experiment, and the type of data together 
determine the required statistical analysis technique". This is a simplification 
naturally, the type of research question is important too, but the rule works quite 
well in most situations. The next two tables summarize the most important 
combinations of type of experiments, and type of data. 

3. CHOICE OF STATISTICAL METHOD: B 

1 sample 
2 measurements 

Discrete Mc Nemar test 

Censored stratified 
logrank test 

Quantitative paired t-test / 

1 sample > 1 samples 
>2 measurements >1 measurement 

---------- - ------------.-~-.. --- ----- - -

Cochran's Q test 

stratified 
logrank test 

ANOYA! 

logistic 
regression 

stratified 
logrank test 

ANOYA 
Wilcoxon test Friedman test 

-~-- ~---~- --- -~-~ ~---

Quantitative data were discussed in previous chapters, in this chapter we look at 
discrete and censored data. There are other data types (ordinal data for instance, 
where observations denote a rank order only), but most data can be interpreted as 
quantitative or discrete ( qualitative). 
There are many different types of experiments, and we discuss only the simplest 
designs here: where we have only one group of individuals, two groups of 
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individuals, or three of more groups of individuals, and each individual measured 
only once. When data are quantitative, the required statistical techniques are often 
analysis of variance techniques (of which the t-test is a special case), and these 
have been discussed in previous chapters. Equivalent techniques for discrete and 
censored data are the chi-squared test, and the logrank test. 

4. CHOICE OF STATISTICAL METHOD: C 

1 sample 1 sample > 1 samples 
2 measurements >2 measurements > 1 measurement 

-------,---"-

logistic 
Discrete Mc Nemar test Cochran's Q test regression 

Censored stratified stratified stratified 
logrank test logrank test logrank test 

Quantitative paired t-test / ANOVN ANOVA 
Wilcoxon test Friedman test 

-------------

Other research designs concern one or more groups of individuals who are 
measured repeatedly. For quantitative data mixed-models (and the paired t-test) are 
used, for discrete and censored data the corresponding methods are stratified 
analysis procedures which are quite complex. If there is one group of individuals 
measured twice or more on a dichotomous variable, these stratified methods are 
known as McNemar's or Cochran's test. The other methods involved are not 
discussed here. 

5. ELEMENTS OF STATISTICAL ANALYSIS 

• Operationalisation of research question in quantitative hypothesis, 

• quantitative effect estimation: 'average' + variability, 

• indication of the certainty ( standard error (SE= SEM), confidence 
interval (CI)), 

• hypothesis testing. 

The basic steps taken in the statistical analysis of discrete and censored data are 
similar to those for quantitative data. Step 1 is always the translation of the 
research question into a quantitative hypothesis: statistics is about numbers. The 
research question is often formulated verbally, but for statistical analysis it must be 
translated into observable numbers. Usually the research question is translated into 
the so-called alternative hypothesis (Ha or HI) , and its negation, otherwise called 
the null-hypothesis (Ho). 
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The specific type of numbers sampled in an experiment is determined by the 
research question, but in most cases many numbers, i.e., a lot of data is sampled. 
The second step, therefore, is to summarize the great amount of data into 
meaningful statistical entities. In general, these so-called statistics will be 
interpreted as a quantification of the effect of interest: examples are the mean, the 
median, and the proportion, or percentage. When data are quantitative, the 
variability of the data is important too, but this is less so with discrete data. 
These statistics are based on finite samples, and it is easily imagined that in a new 
sample a somewhat different statistic will be found; this uncertainty must be 
quantified in the third step, and it entails calculation of the SE or a CI, usually a 
95% CI. 
Finally, we define the prior hypothesis which is going to be tested; a decision must 
be taken as to whether the hypothesis is true or false. This is often difficult, but in 
most cases we can calculate the likelihood of the data that will be found, if the 
(null-)hypothesis is correct: if this likelihood is small (say less than 0.05), then we 
will decide that the hypothesis is false. 

6. EXAMPLE 1: ONE GROUP OF PATIENTS MEASURED ONCE 

side-effects of ACE-inhibitors 
• 135 diabetic patients with nephropathy, 
• one year treatment with ACE-inhibitor, 
• 10 patients experienced episodes of dry cough, 

¢ dry cough event rate = 10/135 = 0.074 = 7.4% = p, 

• 95% confidence interval: 0.030 - 0.118. 

The four elements of statistical analysis may be illustrated with the above data 
from a clinical trial on the side-effects of ACE-inhibitors. In this trial 135 diabetic 
patients with nephropathy were treated for one year with an ACE-inhibitor, and it 
was recorded in each patient whether or not specific side-effects occurred, and in 
this case we looked at episodes of dry cough. Hence, we observed a dichotomous 
variable 'dry cough' with outcomes 'yes' or 'no' for all of the 135 patients. Dry 
cough was observed in 10 patients, and the event rate was therefore 10/135 = 0.074 
or 7.4%, and the 95% confidence interval was calculated to be between 0.030 and 
0.118. The proportion or percentage is often denoted by "p". 

7. EXAMPLE 1: QUANTIFICATION 

p = proportion or percentage. When n is large, p is normally distributed 
(binomial distribution becomes normal distribution). 
with mean p (the true probability of side-effects) and a variance of 
SE2(p) = P x (l-p) / n we can calculate the (l-a)% CI. 
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8. EXAMPLE 1: CONFIDENCE INTERVAL 

• If a = significance level= 0.05, then (I-a)% CI= 95% CI, 

• 95% CI = p ± Za ~ p(1 : p) , 

• 95%CI=0.074±1.96 0.074(1-0.074) . 
135 

With the standard error of p, SE(P), it is easy to calculate confidence intervals of p. 
The formulas are not much different from those used for the means of quatitative 
data as given in chapter I: add or subtract from p the standard error multiplied by 
Za. This latter factor is the ordinate of the standard normal distribution associated 
with a, and determines the width of the confidence interval. Usually 95% 
confidence interval are used where Za equals 1.96. 
The normal approximation of the binomial distribution works fine when the 
number of observations is large, say 30 or more, but less so when n is small (say 
less than 10). The approximation is less good also when p is very small or very 
large, and it may easily happen that the confidence interval is larger than I or 
smaller than zero. In these cases, it is better to construct the CIon the basis of the 
exact binomial distribution (paragraph 11). The calculations required are more 
complex, but several computer programs are available, for instance CIA 
(Confidence Interval Analysis) provided by the book of Altman, Practical Statistics 
for Medical Research, Chapman & Hall, London, UK, 1991. 

9. EXAMPLE 1: HYPOTHESIS TEST 

Review chapter 4, paragraphs 1-6. 
Greek letters are often used in statistics to represent population names, Roman 
lettter to represent sample names. 

Ho: TC = TC 0= 0.10 
test: 

Z = p-tro 
o ~tro(1-tro)/n 

p-value: P(!Z!>!Zol) = 0.31 

0.074-0.10 =-1.01 
~O.l0(1-0.10)/135 

In the present example hypothesis-testing is not obvious, but a natural concern 
would be whether the event-rate of this drug is better or worse than the event-rate 
of another drug, e.g., another ACE-inhibitor with an established event-rate of 10%. 
Then the research question might be whether or not the present ACE-inhibitor has 
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lower event-rate. The alternative hypothesis (HI) is therefore that the true event­
rate of the present ACE-inhibitor (re) is unequal to the known event-rate of the 
other ACE-inhibitor (reo=O.lO). HI is defmed as K1oreO=O.lO, and the null-hypothesis 
is its negation, therefore Ho: re=reo=0.10. 
This null-hypothesis can be tested using the Z-test as given. This test-statistic is the 
ratio of the difference between the observed proportion p and its null-hypothesis 
value reo over the corresponding standard error (ifthe null-hypothesis is true): here 
we fmd the Z=-I.O 1. If Ho is true, the test-statistic follows a standard normal 
distribution. This means that, in principle, every value between minus and plus 
infinity is possible, but the likelihood of very small or very large z-values is much 
less than of values close to zero. The basic decision strategy is similar to that 
discussed in earlier chapters: the null-hypothesis is rejected when the probability of 
the test-statistic value that was calculated or even more extreme, is small (usually 
smaller than a=0.05). This probability is denoted as "p-value", and in this case the 
p-value is 0.31. 

10. STANDARD NORMAL DISTRIBUTION 

0,5 

0,4 
>- 0,3 ~ 
III 
c: 0,2 Q) 

" 0,1 

0 

-4 -2 0 2 4 

Z 

The standard normal distribution is illustrated here. On the x-axis (generally called 
z-axis in statistics) we have a normal distribution of proportions expressed as SEs 
(=SEMs) distant from the mean proportion (defmed 0). On the y-axis we have"how 
often" the proportion will occur. The total area under the curve (AUC) represents 
100% of all possible proportions. To the right of 1.96, and to the left of -1.96 lies 
2.5% of the AUe. The AUC corresponds to the probability of observing that value 
of the z-statistic, hence the probability of Z> 1.96 is 0.025, and similarly the 
probability of Z<-1.96 is also 0.025. When we add these two probabilities we find 
that the probability that the absolute value IZI > 1.96 equals 0.050. 
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11. STANDARD NORMAL DISTRIBUTION: P-VALUE 

0,5 

0,4 
:>. 

0,3 :!:: 
en 
c 0,2 CD 

"C 
0,1 

° -4 -2 ° 2 4 

Z 

The observed z-value was -l.0 1, and the probability of finding -l.0 1 or less equals 
0.156, as can be found in the table of the standard normal distribution. Since our 
alternative hypothesis was formulated in a two-sided fashion (HI: n:,cn:o), the p­
value is defined as the probability of IZI> 1.01, and therefore the p-value must be 
doubled: p-value=2 x 0.156 = 0.312. When the alternative hypothesis was 
formulated -a priori- in a one-sided fashion (HI: n:<n:o), then the p-value would not 
have to be doubled. 

12. EXAMPLE 1: GRAPHICAL ILLUSTRATION 
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A nice graphical display of dichotomous data is provided by drawing both the 
estimates of the proportions of side-effects, together with their 95% CIs. In the 
above graph both point-estimates (7.4% for dry cough) and the uncertainties of 
these estimates are given (it could as well be as high as 11.8% or as low as 3%). In 
the display the proportions of other side-effects are readily shown as well. Notice 
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that the event-rates or incidences of these side-effects are very small, and, 
therefore, we used the exact approach to calculate confidence intervals. This 
approach· may give asymmetric intervals (never exceeding zero or one) in contrast 
to intervals based on the normal approximation which are always symmetric 
around p. 
• The chance that x<k can be calculated from the binomial formula 

n!k!(n-k)!(p)k (l-pt-k where x=number of patients with side effects, n= total 
number of patients, p= (n-k)/n, and ! indicates faculty, e.g., 5!=5x4x3x2xl. 

13. EXAMPLE 2: COMPARING TWO GROUPS OF PATIENTS 

progression in the so-called REGRESS Study 
• 884 patients with proven coronary artery disease (CAD), 
• randomized between placebo (n=337) and pravastatin (n=322), 
• after two year patients showed progression of CAD (angiographically or 

having had events (death, infarction, coronary intervention, stroke)). 

Slightly more complex, but also more interesting, methods are needed to compare 
two groups of different patients with respect to a discrete variable. We introduce as 
an example a clinical trial on patients with proven CAD randomized to either 
placebo (n=337) or a stat in (n=322), and of each patient we recorded after two 
years of treatment whether disease progressed. Progression was defmed as the 
occurence of an event (death, infarction, stroke, coronary interventions) or as a 
decrease of the diameter of the coronary arteries which was measured by 
angiography. Thus, there are two groups of patients, measured once on a discrete 
variable: yes/no progression after two years. According to the overview given in 
the next paragraph we will discuss the chi-squared test. 

14. EXAMPLE 2: DATA 

Effect quantification: 
Placebo: progression 220/337 = PI = 0.653 
Pravastatin: progression 168/322 = P2 = 0.522 

95% Confidence Intervals for the progression risks: 
Placebo: (0.602 - 0.704) 
Pravastatin: (0.467 - 0.576) 

Progression was found in 220 out of 337 placebo-patient, hence the progression­
rate was PI=220/337=0.653, and in the statin-group it was P2=168/332=0.522. 
Using the formulas given in paragraph 7 we can immediately calculated the 
corresponding 95% confidence intervals, and these vary between 0.602 and 0.704 
in the placebo group, and between 0.467 and 0.576 in the statin-group. 



PROPORTIONAL DATA ANALYSIS: PART 2 81 

The research question is whether statin-treatment is effective, or in other words 
whether the progression-rate is smaller under statin-treatment than under placebo­
treatment. The two confidence intervals do not overlap, and this fact is strong 
evidence for a significant difference, but formally a somewhat different approach is 
needed to answer the research question. 

15. EXAMPLE 2: GRAPHICAL ILLUSTRATION 

1 

0.8 

i! 0.6 

·i 0.4 

;0.2 
0-1--

A'a\astatin 
The research question involves the difference in progression-rate between the two 
treatment groups, and it is very natural to display the two progression-rates to 
answer that question. Of course, it is necessary to indicate the certainty of the 
(estimated) progression-rates, and therefore the confidence intervals are indicated 
with the small black error-bars. 

16. EXAMPLE 2: RISK DIFFERENCE 

Alternative Quantification: 
Risk Difference 
d = PI - P2 = 0.653 - 0.522 = 0.131 

n1 

0.653 (1- 0.653) + 0.522(1- 0.522) = 0.0380 
337 322 

For the comparison of two rates several effect-quantifications are possible, but the 
difference of the two rates of risks is straightforward. The effect of stat in-treatment 
is quantified then as a decrease of the progression-risk by d = PI-P2 = 0.653 - 0.522 
= 0.131. 
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The uncertainty of this estimate, expressed as SE of d, is easily calculated as the 
square root of the sum of the squared standard errors of PI and pz which was 0.038 
in this case. Again this standard error is based on the normal approximation to the 
binomial distribution. 

17. EXAMPLE 2: CONFIDENCE INTERVAL 

95% CI in the above example is given by 
d ± 1.96 SEed) = 0.l31 ± 1.96 x 0.038 = 

interval is between 0.0565 and 0.2055. 
A confidence interval for d is, thus, calculated in similar fashion as before: subtract 
from or add to d the product of Zu x SEed), and for a 95% CI Za equals 1.96 
(compare page 50). Thus d ± 1.96xO.038 yields an interval from 0.0565 to 0.2055. 
In other words, the risk-reduction of disease-progression by statin-treatrnent is 
estimated to be 0.131 with confidence interval (0.0565 - 0.2055). 

18. EXAMPLE 2: GRAPHICAL ILLUSTRA nON 

0.8 

0.6 

~ 0.4 
~ 

0.2 

o -l - ,- --,-----

Placebo Pravastatin difference 

The graphical illustration of the risk-difference can be done on the same scale as is 
used for the risks themselves, and the uncertainty of the estimate can be indicated 
with a confidence interval. Notice that the risk-difference varies between -1 and + 1 
(whereas the risks themselves vary between 0 and + 1), and the confidence interval 
may well be less than zero. In fact, the observation that zero lies inside or outside 
the confidence interval is the basis of the statistical hypothesis test to be discussed 
next: when zero is outside of the confidence interval of d, d is significantly 
different from zero. 
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19. EXAMPLE 2: HYPOTHESIS TESTING 

hypothesis test 
Ho: 11 I = 11 2 

test: 

Z __ d_ -r==~P=,=1 =-~P",=2 === 
0- SFiJi) - £1(1- PI) + p2(1- P2) 

~ 11z 

Z is standard normally distributed: 
p-value: P(IZI>Zo) = 0.001. 

0.653-0.522 =3.44 
0.65~1-0.653) 0.52~1-0.522) ------+- - -- -----

337 322 
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The relevant research question is whether the progression rates differ in the two 
treatment groups. The alternative hypothesis is therefore that the true progression 
rates, denoted by 111 and 112, are different: HI: 111 *- 112. This alternative hypothesis is 
formulated in a two-sided fashion, but one could argue that only an improvement 
of the progression rate is of interest leading to a one-sided hypothesis: HI: 111 > 112. 
Whichever method chosen, the null-hypothesis is the negation: Ho:11I= 112. 
This null-hypothesis can be tested with a generalization of the Z-test discussed in 
paragraph 9: the Z-statistic equals the ratio of d versus its standard error SEC d), and 
yields 3.44 here. Again, when the null-hypothesis is true, Z follows a standard 
normal distribution meaning that all values between minus and plus infinity are 
possible, but the likelihood of extremely low or high values is small. When the 
probability of fmding Z (i.e. 3.44) or a more extreme value is as small as 5% (a = 
0.05), we decide that the difference is statistically significant. In our example the 
two-sided p-value is 0.001, much less than 0.05, and we therefore may conclude 
that the progression risk under statin-treatment is much less than under placebo­
treatment. 

20. EXAMPLE 2: 2-BY-2 TABLE 

Alternative Presentation (review chapter 4, paragraphs 15, 16): 
Observed 2-by-2 t~l'.~ ______________________ _ 
______ _____ _ Placebo ~avastatin _u _ totaL_~ 
Progression 220 (65.3%) 168 (52.2%) 388 (58.9%) 

_IH! ___ _ ___ ~17_ (34.7Y~ ___ !?<t(<t7!~) _____ 2~1(41·~oL_ 
~_____ 337 _______ ~~_____ _ _ ~52 ____ _ 

Relative Risk (RR) = 0.653/0.522 = 1.25 (95% CI: 1.10-1.43), 
Odds Ratio (OR) =(0.653x0.478)1(0.522x0.347) = 1.72, 

(95 CI: 1.26 - 2.36). 
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An alternative way of presenting the progression data is the two-by-two table. In 
such a table the different groups are represented by different columns and the 
different outcomes by different rows. Again 220 out of 337 patients showed 
progression in the placebo-group(65.3%), whereas 168 out of322 (52.2%) showed 
progression in the statin-group. A nice feature of this presentation is that row-wise 
interpretation is also possible: 220 out of 388 patients with progression was treated 
with placebo in contrast to 117 of271 without progression. 
Often the effect of placebo treatment is quantified by the relative risk instead of the 
risk-difference. The relative risk (RR) is equal to the risk of progression under 
placebo treatment (65.3%) divided by the risk of treatment under statin treatment 
(52.2%): RR = 65.3/52.2 = 1.25. Thus, the risk of progression is 25% larger when 
treated with placebo compared to treated with statin. 
The relative risk varies from zero to infmity, and is not defmed when the 
denominator equals zero. The uncertainty is usually defmed using the natural 
logarithm (In) ofRR, instead ofRR itself: the standard error ofln(RR) equals 

SE(lnRR) = 1- p] + 1- P2 and in this case we found SE(lnRR)=0.0665. 

PIn] P2 n2 

Subsequently, the 95% confidence interval is defmed as 1nRR±1.96xSE(lnRR), and 
we find In(l.25) ± (1.96 x 0.0665): 0.0928 to 0.3535. By taking the antiln 
transformation we fmd the 95% CI ofRR itself: eO 0928 to eO 3535 (1.10 - 1.43). 

Another effect-quantification that is used in many studies is the odds ratio (OR). 
Instead of calculating the ratio of the progression-risks, the ratio of the odds is 
calculated: 

placebo group 
statin group 
ratio 

Risk 
Pl=0.653 (a) 
P2=0.522 (c) 
1.25 

odds 
Pl/(1-Pl)=1.88 (b) 
P2/(1-P2)=1.09 (d) 
1.72 

Similarly to the relative risk, the standard error of natural logarithm of the odds 
ratio is calculated. Defme in the above 2-by-2 table the entries in the four cells as a, 
b, c, and d, then the standard error ofln(OR) is given by 

11111111 . 
SE(lnOR) = -+-+-+- = -+~+~+~ =0.1598 

abc d 220 168 117 154 

Again the 95% CI ofln(OR) is calculated as: lnOR±1.96xSE(lnOR), and the 95% 
CI of OR is found by taking anti In of the interval of In OR. 
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Both intervals are based on the nonnal approximation, which is adequate only 
when sample sizes are sufficient. Exact methods are available for small samples. 

21. EXAMPLE 2: GRAPHICAL ILLUSTRATION OF RR AND OR 

2.5 

1.5 I 2 

t 1+-----------------r----------------, 

0.5 
RR OR 

o 
The graphical display of the estimated RR and OR is similar to the display of the 
risks or the risk difference, except for the scales that vary from zero to infmity. 
When there is no effect of statin treatment, the RR and the OR equal 1.0. Positive 
effect means that RR or OR is less than 1.0, but this rule depends on the specific 
defmitions of RR and OR. When the CI does not contain 1.0, the risks or odds are 
significantly different from 1.0. 
OR is generally larger than RR, but the CI too. When the risks (PI and P2) are low, 
the difference between RR and OR become smaller and that is the reason why OR 
is sometimes called an approximation of the RR. There are no defmite arguments 
to prefer the RR above the OR, but in general the RR seems clinically more useful 
than the OR. The RR can be calculated in cohort studies only, not in case-controls 
studies, whereas the OR can be calculated in both. Since most regression models 
for discrete data use odds instead of risks, the odds ratio is encountered very often 
in biomedical and epidemiological literature. 

22. EXAMPLE 2: HYPOTHESIS TESTING 

Expected 2-by-2 table 
if HO is correct 

Placebo -- --- ---------- -- -- - --- - - ---

O.589x337 

0.411x337 
Progression 
~XI'~ogression _ . 
total 

- -- -------------- --

337 

Pravast=a=t=in~ ______ ~to~t=a=I ____ _ 
O.589x322 388 (58.9%) 

0.411x322 271 (41.1%) 
-- --- ---- - - ----- -- -

322 659 
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Placebo Pravastatin total - ------ - - ------ -- -------- - ------ ----

Progression 198.5 189.5 388 (58.9%) 

IloYrogressig~ ____ J~!l.5_ _ _ _ __ 132.~ _____ 2"0(~1 ___ 1(J~L_ . 
total 337 322 659 

The null-hypothesis of no difference can be tested with an alternative hypothesis 
test, the so-called chi-squared test. This test is statistically equivalent to the Z-test 
discussed above, but the chi-squared test can be generalized to discrete data with 
more than two classes, and also to research-designs involving three or more 
patient-groups. 
The idea of the chi-squared test is based on a comparison of the observed and 
expected 2-by-2 table. When the null-hypothesis is true (Ho: Tel = Te2), the total 
number of patients with progression (388, 58.9%) will be distributed over the two 
groups proportionally to the two sample sizes. Thus the expected number of 
patients with progression in the placebo group will be O.589x337=198.5, and the 
expected number of patients with progression in the statin-group will be 
O.589x322=189.5. Similarly, the expected number of patients without progression 
in both groups can be calculated. 

23. EXAMPLE 2: CHI-SQUARED TEST 

Review chapter 4, paragraphs 7-11. 

X 2 = i (0 j - E j ) 2 = 11 .83 
,~l E j 

X2 is chi-squared (X2 )-distributed with one degree of freedom. 
For 2-by-2 tables X2 equals Z2 (compare page 177). 
The chi-squared test is also applicable in RxC tables when 3 or more (=R) samples 
are compared for 3 or more (=C) variables. 

When the null-hypothesis of no difference between the treatment groups is true, the 
observed and expected tables should be identical. Obviously, there will be small 
differences and the larger the difference the more indication for a real existing risk­
difference. 
The extent of difference between the observed and expected tables is quantified by 
the test statistic, which is a sum over the four cells of the 2-by-2 table of the 
squared difference of the observed and expected numbers divided by the expected 
cell number. When the null-hypothesis is true, the test-statistic is chi-squared -
distributed with 1 degree of freedom. The chi-squared distribution is more complex 
than the normal distribution, but when there is one degree of freedom Z2 is equal to 
X2. The two-sided p-value of the chi-squared distribution is therefore the same as 
the p-value of the Z-test. 
The advantage of the chi-squared test is its applicability to comparing R groups on 
a discrete variable with C levels. When there is no difference between the R 
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groups, the corresponding chi-squared test X2 is chi-squared distributed with (R-
1 )x(C-l) degrees of freedom. This test is often called the Pearson Chi-squared test. 

24. EXAMPLE 2: FISHER EXACT TEST 

Review chapter 4, paragraph 12. 

Progression 
~~~Qg!ession 
total 

Placebo 
a 
c 

337 
-------- -----------

Pravastatin 
- - ---,-- -

b 

d 

322 

total 
388 (58.9%) 
271 (41.1%) 

------
659 

The Fisher-exact test follows a socalled hypergeometric distribution: 

(337)( 322 ) 
Pea = 220) = 220 388- 220 

(659) 
388 

The chi-squared test is valid only with large samples (the expected numbers must 
be 5 or larger). In small samples an exact test is needed, and this is Fisher's exact 
test. It is based on the hypergeometric distribution of the cell counts given the 
marginal counts. The one-sided p-value is calculated as the probability that cell 
count a equals the observed value or less: in our case Pr(aQ20). 

Pr(a ~ 220) = Pr(a = 0) + Pr(a = 1) + ... + Pr(a = 220) 

The hypergeometric distribution is a complex function of binomial coefficients 

(:) and;s laborious to calculate when the cell counts "'" la.-ge, hut;t prov;dcs an 

exact p-value. 

25. SAMPLE SIZE CALCULATION 

Sample size for a two-group clinical trial. 
Suppose standard treatment has efficacy Ph say PI = 0.5, 
and the new treatment increases this to Pz, say P2 = 0.6. 

How many patients must be included in the two samples to achieve 80% I 90% 
power for this expectation? 
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Until now we have discussed the statistical analysis of data, but in the design of 
trials an important question, for many reasons, is how many patients should be 
included in the trial. Suppose that a trial is to be designed comparing two 
treatments with progression rates PI and Pz, say PI=O.5 and Pz=0.6. How many 
patients must be sampled to have 80% or 90% power to fmd this assumed 
difference to be significant? There is a straightforward formula for this question .... 

N = (z + Z )2 PI (1- pJ + P2 (1- P2) 
a fJ (PI - P2)2 

a=0.05: Za = 1.96 
13 = 0.10: Zp = 1.28 
13 = 0.20: Zp = 0.84 

N = (1.96 + 0.84)2 0.5(1- 0.5) + 0.6~1 - 0.6) = 384/ group.! 
(0.5 -0.6) 

In this equation "N" is the required number of patients in each group. Za is the 
standard normal ordinate associated with significance level a; the significance 
level is almost always 0.05, in which case Za is 1.96 (compare page 50). zp is the 
standard normal ordinate associated with (1-13)% power. When power is 80%, zp is 
0.8, and when power is 90% zp equals 1.3 (compare page 50). 
In our case 384 patients per group (768 in total) are needed. 
In many cases an old therapy with known event-rate (PI) will be compared to a 
new therapy of which the event-rate is unknown. Instead of specifYing pz a 
clinically relevant difference is considered (PI-PZ)' 

26. DISCUSSED SO FAR .... 

1 sample 
____ ~l--=m""e.asurement 

Discrete 

Censored (kaplan-meier 
curve) 

2 samples 
1 measurement 

logrank test 

>2 samples 
I measurement 

logrank test 

Quantitative one sample t-testl unpaired t-test / Mann- ANOVA, Kruska~ 
__________ Wil~()2'()IlJ:~sL __ _J\'!l!!rl~YJesL ______ Wallis t~sL __ ._ 
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Discussed so far were the statistical methods to analyze discrete data from 
experiments involving one, two, or more groups of patients measured once. Next 
we will discuss methods for discrete data from one group of patients measured 
twice. 

27. EXAMPLE 3: I SAMPLE, TWO MEASUREMENTS 

1 sample, two measurements, 
dose-fmding. 

• 25 patients with familial hyperlipidemia, 
• response to 2 months treatment with 0 or 20 mg simvastatin: < 5.5 

mmollL? 

::: 100 0 

E 75 E 
~ 50 
It) 

1\ 25 .., 
t-

O 
~ 

0 10 20 30 40 

Dose 

In clinical pharmacology a typical example of a study in which the same patients 
are measured twice, is a dose-finding study. This phase-2 type ofresearch is done 
to fmd the optimal dose of a new drug, and involves almost always fmding the 
balance between efficacy and side-effects. Here we consider a study in 25 patients 
with familial hyperlipidemia. Their total cholesterol (Tc) wa-s measured before and 
after 2 months of treatment with 0 or 20 mg of a specific statin. Tc was 
dichotomized into high or low «5.5 mmollL), and the latter observation was 
defined as a response. 
The graphical display show that before treatment almost 80% of the patients had 
high Tc, whereas after treatment about 50% of the patients had high Tc. The small 
bars represent the 95% CIs. The quantification of the effect (i.e., the proportion of 
patient with Tc<5.5 mmollL) is largely similar to that of the above example where 
we compared two groups of different patients. But there is a difference. In our case 
Tc of all patients was measured twice. Data were dichotomized. The fact that we 
have repeated measurements complicates the statistical analysis because of the 
likely correlation of the data before and after treatment. This means that the 
standard chi-squared test approach cannot be used because for that purpose it is 
required that all data are independent of each other. Here we have paired data 
which need not be independent, and the correlation must be taken into 
consideration. This is done by using McNemar's test. 
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28. McNEMAR'S TEST 

Hypothesis test according to McNemar (review chapter 4, paragrpah 14). 
HO: 11: Omg = 11: 20mg 

Tc after dose 0 1< 5.5 mmollL 

X 2 = 

I> 5.5 mmollL 

(b - C)2 

b + C 

Tc after dose 20 m~ 
< 5.5 mmollL > 5.5 mmolfL 

a b 
c d 

X2 is chi-squared distributed with one degree of freedom. 
McNemar's test can be readily performed using SPSS statistical software 
(command: "Exact" test). 

Again we can present the data in a 2-by-2 table as is shown here, but the four cells 
have different entries. The left upper cell (indicated by "a") contains the patients 
whose Tc was low on both occasions, and the cell right-below contains the patients 
whose Tc was high on both occasions ("d"). In these patients the discrete variable 
(yes/no Tc<5.5 mmoUL) did not change, and one can argue that therapy was 
ineffective or unnecessary in these patients. As a consequence information on 
treatment-efficacy can only be obtained from patients whose Tc-status changed: 
the upper-right cell contains the patients whose Tc deteriorated, and the left-below 
cell the patients who improved. If the null-hypothesis of no treatment-effect is true, 
then the proportion of patients with low Tc will be equal before and after therapy: 
Ho:11:o mg= 11:20 mg' And also if Ho is true, then every change of Tc-status is affected 
by chance alone, and one may expect as much patients who deteriorated as those 
who improved. 
This expectation is tested by McNemar's test. This test-statistic is the ratio of the 
squared difference (b-c)2 divided by their sum b+c. If Ho is true, band care 
expected to be the same, and hence the test-statistic will be close to zero. The test­
statistic follows a chi-squared distribution with one degree of freedom if Ho is true 
and ifthe sample is sufficiently large, and on this basis the p-value is calculated. 
If the sample size is small, and exact p-value can also be calculated. 
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29. EXAMPLE 3: McNEMAR'S TEST 

Tc after dose 20 m2 
< 5.5 mmol/L >5.5 mmol/L total 

Tc after dose 0 < 5.5 mmol/L 4 1 5 
>5.5 mmollL 8 12 20 
total 12 13 25 

X2=(b-c)2 (8-1)2 =5.44 
b+c 8+1 

a = 0.05; X2 a = 3.841 => P-value < 0.05 

thus reject Ho. 

In our case we found that in 8 patients Tc decreased to below 5.5 mmol/L, and that 
Tc increased to above 5.5 mmollL in 1 patient. McNemar' test gives value 
(8-1i/(8+ 1 )=5.44, with p-value 0.020 (exact p-value is 0.039). 
The effect of statin-treatment must be quantified with the difference of the two 
response-proportions: d=prPI = (12/25) - (5/25) = 0.48 - 0.20=0.28. The standard 
error of the difference is given by 

SE(d)= b+c-nx(p2 -PI) 
n(n -1) 

8 + 1- 25 x 0.28 = 0.058 
25x24 

and the 95% CI by d ± (l.96 x SE(d» : 0.l66 - 0.394. 

30. EXAMPLE 4: >2 REPEATED MEASUREMENTS 

1 sample, four measurements, 
dose-fmding: 
• 25 patients with familial hyperlipidemia, 
• response to 2 month treatment with 0 or 20 mg simvastatine: < 5.5 

mmollL? 
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These statistical techniques can be easily generalized to research design with 3 or 
more repeated measurements. In dose-fmding studies often many doses are tested, 
and in our example the response proportions of two additional doses were found to 
be about 30% for 40 mg, and about I % for 80 mg. 

Although data are pretty clear here, one might want to test the overall null­
hypothesis of no effect by testing each dose-pair individually using the McNemar's 
test: this involves 6 tests here. A better approach is to perform one single overall 
statistical test which compares all four proportions all at once with the null­
hypothesis Ho:1ro mg =1r20 mg =1r40 mg =1rSO mg-

31. EXAMPLE 4: COCHRAN'S TEST 

Hypothesis test: 
Ho: 1r Omg = 1r 20mg = 1r 40mg = 1r SOmg, 

test: Cochran's Q, 
Q = 14.53 is chi-squared distributed with k degrees of freedom: p<O.OO 1. 

Cochran's test may be used to compare k (2 or more) repeated measurements of a 
dichotomous variable. When k is 2 Cochran's test is equal to McNemar's test. 
Cochran's test-statistic is somewhat complex to calculate but all major statistical 
computer programs have it available. When the null-hypothesis is true, it follows a 
chi-squared distribution with k-I degrees of freedom. 

32. OTHER REPEATED MEASUREMENTS DESIGNS 

>1 sample, 
> 1 measurements. 

100 

.~ 75 
til 
c::: 

~ 
50 G> 

Q. 

>-
J: 

~ 0 25 

0 

0 

- - - - - _L __ _ .- __ -. 

• • 
• • 

13 26 39 52 

Weeks 

1=-:----:...---- 1 

• 100M 

l_~_ N_'D~MJ 

IDDM=insulin dependent diabetics; NIDDM= non-insulin dependent diabetics 
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We discussed repeated measurements only in case of one group of patients 
measured repeatedly. This is the most simple case, and very often one has several 
different patient subgroups measured repeatedly. Especially when patients are 
followed in time repeated (discrete) data will occur. Below an example is given of 
NIDDM and IDDM patients who were followed weekly for one year, and their 
hypertension status was recorded. The research question is whether the proportion 
of patients with hypertension changes, and whether the changes are different for 
NIDDM and IDDM patients. Such research designs require specialized statistical 
techniques .... 

33. OTHER REPEATED MEASUREMENT DESIGNS: SPECIAL 
TECHNIQUES 

• Marginal logistic regression models, 

• random effect logistic regression models, 

• complex mathematics but now widely available in dedicated and general 
purpose software: e.g. S-plus or SAS. 

These techniques are based on the logistic regression model which will be 
discussed later, and use two different methods to account for the repeated 
measurements: either by using a population-average model, or by using a random­
effect model. The mathematics, and statistical reasoning is complex, but software 
is widely available. 

34. CENSORED DATA 

• Incompletely observed 'failure' times, 
• occur everywhere in biomedicine, most notably in cancer research. 

1 of ± t r- t 
t + + + ---,--

0 5 10 15 20 25 30 

Months since start study 

A special case of discrete data occurs when patients are followed until some event 
occurs. This kind of data arises often in follow-up trials. Complications happen 
because the follow-up periods of patients differ, for instance due to the fact that 
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patients enter into the trial at different times, and also because events occur at 
different time-points in different patients. In some patients the event of interest did 
not occur, but this should be interpreted in terms of "did not yet occur". Such 
observations are called censored observations, and should be handled carefully, 
and the statistical tecJmiques to do this are known as survival analysis methods. 

35. KAPLAN-MEIER CURVE 

Quantification (review chapter 4, paragraphs 17, 18): 
Kaplan-Meier Curves 

.2! 
CIl 
Q. c: 0.8 

~.~ 0.6 
.. !!l 
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Months since start therapy 

In a follow-up study of one group of patients the occurence of events is usually 
summarized with the Kaplan-Meier curve. For each individual one needs the time 
until the event of interest occured or the time until the date of the last follow-up 
visit. It requires also the discrete variable "yes/no, event occured", and a common 
zero time-point. In clinical trials this zero-time point may be the date when 
treatment commenced. Important assumption is that censoring occurs at random. 
This is difficult to ascertain, but censoring is usually random when it occurs 
because the study is randomized and blinded. When patients in whom events are 
imminent, are likely to end their participation to the study (causing censored 
observations), then these censored data are not random. In the latter case statistical 
analysis is much more complicated, and here we assume that censoring is random. 
The Kaplan-Meier curve is a nonparametric estimate of the cumulative event-free 
survival distribution with characteristically rectangular shape. At each time-point it 
gives the cumulative proportion of patients with an event. Therefore the curve 
starts at zero at time-point zero, and will increase at each time-point where one or 
more patients had an event, thus each jump in the curve represents one or more 
patients with events. 
Often the Kaplan-Meier is given in inverse fashion, starting at 1 or 100% at time­
point zero, representing the cumulative proportion patients without events, hence 
the name survival function. Like all other statistics, the Kaplan-Meier curve is an 
estimate and its uncertainty is illustrated with confidence intervals. 
A nice feature of the curve is that the median (and any other percentile point) time­
to-event can be read inunediately from the graph: at the y-axis choose the value 
0.5, take a straight horizontal line, and where it intersects the curve, go straight 
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down to the x-axis. In our case the median time to remission (of depression) is 
about 8 months after start of treatment. 

36. KAPLAN-MEIER CURVE: DEFINITION 

At time t: 

Set) = Set -1)(1- #eve~ts) 
#atrlsk 

The value of the Kaplan-Meier curve at time-point t, denoted Set), is given as 

S(t) = Set -1) x (1- #eve~ts), where "#events" denotes the number of patients 
#at risk 

with events at time-point t, and "#at risk" denotes the number of patients that are 
still under observation at time-point t. This defmition leads to the possibility that 
the curve may go down to zero even ifnot all patients had events. A small example 
may illustrate the calculations. 
Suppose one has 8 patients with the following time-to-event times: 1,2,3+,4,6,6, 
6+, 8. Six patients had events at time-points 1, 2, 4, 6, 6, and 8, whereas two 
patients were followed for 3 and 6 months but did not have events (denoted as 3+, 
and 6+). 

Time at risk events Set) 
0 8 1 
1 8 1 lx(I-I/8)=0.875 
2 7 1 0.875x(l-I!7)=0.75 
3+ 6 0 0.75 
4 5 1 0.75x(l-1I5)=0.6 
6 4 2 0.6x(1-2/4)=0.3 
8 1 1 0.3x(l-1I1)=0 

At t=O the survival is 100% naturally, or the proportion alive is l. At t=1 there are 
8 patients at risk, and 1 patient died, thus survival is 1-l/8=0.875=S(I). At t=2 
there are only seven patients left (one died at t= I), and 1 of these seven died, thus 
survival equals (1-117) times the preceding survival (S(1)=0.875) giving S(2)=0.75. 
At t=3 there were 6 patients left, one patient was censored, but none died, thus S(3) 
is the same as S(2). At t=6 there were still 4 patients left, two died, and one was 
censored, thus S(6)=0.3. Finally, at t=8 there was only one patient at risk, and 
he/she died, thus S(8) equalled zero. 
This little example illustrates that the survival curve may become zero, even in a 
sample where some patients did not have the event of interest. This happens always 
when the patient with the longest follow-up did have an event. It illustrates also 
that interpretation of survival curves must be done carefully: Set) is the proportion 
patients who were followed at least until time-point t, that were still event free. 
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37. HAZARD, CUMULATIVE HAZARD, SURVIVAL CURVE 

Alternative quantification: 
• Hazard at time t = risk of event at time t given that no event occurred up 

to t = A (t), 
• cumulative hazard up to t = 

A (t) = 1..(1) + A (2) + ... + A (t) 

A (t) = 0 f t A (u) du 

• S(t) = exp(- A (t» or A (t) =-In(S(t)). 
The Kaplan-Meier survival curve is found in numerous epidemiological papers. 
Related statistical quantities that are also often used, are the hazard at time t, and 
the cumulative hazard at time t. The hazard at time t, denoted as A(t), is the 
proportion patients who were event-free until time t, and had the event at time t: 
basically it is the ratio (#events) divided (# at risk) as was calculated in the 
preceding slide in the computation of the Kaplan-Meier curve. The cumulative 
hazard up to t, denoted as A(t) is the summation of all hazards until t: A(t)= 1..(1)+ 
1..(2)+ ... + A(t), and when there are many time-points this specializes to the integral 

t 

A(t) = fA(U) du. The survival can also be estimated as the exponent of minus 
o 

A(t). This quantification is used in regression models (chapter 10). 

38. CUMULATIVE HAZARD FUNCTION: EXAMPLE 

.2~-----------------------------------------. 

.2 

.1 

"E .1 

'" N 

'" J: 

E 
::l 

0.0 0 
0 365 730 

event free interval 

The cumulative hazard function looks very much like a survival function: it starts 
at zero, and is rectangularly shaped like the Kaplan-Meier curve. 
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39. HAZARD FUNCTION: EXAMPLE 
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The hazard function is very jumpy with zero values at all time-points where 
patients were censored. This means that the hazard function cannot be used 
directly, which is disappointing because the concept itself is of direct clinical value 
as it represents the probability of getting the event at time-point t. When analyzing 
death, it is called the instantaneous death rate. 
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40. COMPARING SURVIVAL CURVES: LOGRANK TEST 

Comparison of Curves: 
Logrank test 

1.0 

.9 praYastatln 

.8 ~ __________________ ~~ __________________ ~ 

o 385 730 

Days since randomisation 

logrank=9.69, df=l, p=0.0019. 

The null-hypothesis of no difference between two or more survival curves of 
different groups of patients can be tested by the logrank test. This is a 
generalization of nonparametric tests, discussed in earlier chapters, and the same 
reasoning applies therefore here: when the null-hypothesis of no difference among 
k groups is true, the logrank test follows a chi-squared distribution with k-l 
degrees of freedom. 

41. COl\1PARING SURVIVAL CURVES: COMMENTS 

• When no censored data are present, (a special case of) the logrank test is 
equal to the Mann-Whitney teste chapter 1, paragraph 22). 

• Quantification can best be described using the difference of the median 
survival time, and not by using the mean survival time. 

• Alternatively, the difference can be described using the relative risk, 
calculated from a censored-regression model, e.g. the Cox proportional 
regression model (chapter 10, paragraphs 6-8). 

• Life table method. 

There are several different tests for comparing survival curves to each other, other 
tests are known as the Breslow statistic, the Tarone-Ware statistic. These tests 
differ slightly in weighing of early and late events, but in general the logrank test is 
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used. When there are no censored observations, the Breslow statistics equals the 
Mann-Whitney test discussed earlier. 
Due to the existence of censored observations, the quantification of treatment 
effect is best done with the difference of median survival times, and with means. 
When the survival curve remains above the 50ste percentile, however, the median 
does not exist either, and another percentile must be chosen. 
An alternative effect-quantification is the relative risk, defmed as the ratio of the 
hazard at time t under treatment B divided by the hazard at time t under treatment 
A. This effect-quantification is also used very often, especially with regression 
models for survival data (i.e. the Cox regression model), but it is sensible only 
when the hazard ratio is more or less the same for all time-points. 

• SAS 

• SPSS 

• S-plus 

• Stata 

• Statgraphics 

• Excel 

• 

* help function 
* statistics coach 

42. FINALL Y: SOFTWARE 

Nowadays all these computations are carried out with computer-programs for 
statistical analyses. Much used programs are SAS (www.sas.com). often in 
pharmacology, and SPSS (www.spss.com) often used at university research 
institutes. Both programs have been used for decades, and are improved and 
expanded continuously. But there are many other packages, such as S-plus 
(www.splus.com), and Stata (www.stata.com). These programs are quite 
expensive, but common procedures are also available in microsoft's excel, and in 
excel-add' ins. There are also many websites offering online statistical analyses for 
free. 
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43. QUESTIONS TO CHAPTER 5 

In a clinical trial diabetes patients with microalbuminuria were randomized to 
either placebo (n=IOO) or treatment with ACE-inhibitors (n=100) during one year. 
In the placebo-group 15 patients (15%) suffered from severe headaches, and 40 
patients (40%) in the ACE-inhibitor group. 

1. The best statistical test to compare these two percentages is: 
A. the two-sample Student's t-test, 
B. the chi-squared test for a two-by-two table, 
C. the McNemar test. 

2. The 95% confidence-interval for the proportion patients with severe headaches 
in the ACE-inhibitor group is: 
A. 0.4 ± 1.645 .j ( 0.4 (1-0.4) / 40) 
B. 0.4 ± 1.960 .j (0.4 (1-0.4)/40) 
C. 0.4 ± 2.021 .j (0.4 (1-0.4)/40) 

A new trial was designed to investigate the occurrence of severe headaches 
during ACE-inhibition. It was decided to design a randomized controlled 
parallel-group trial comparing patients on placebo with patients on ACE­
inhibitor therapy. It was assumed that severe headaches would occur in 10% of 
patients on placebo and in 20% of the patients on ACE-inhibition. The 
significance level was set to 0.05. 

3. How many patients must be included in each treatment group to ensure 80% 
power for this expectation? 
A. 200 per group, 
B. 33 per group, 
C. 16 per group. 

In an retrospective case-control investigation of chronic leukemia in first 
complete remission, 30 adult patients who had received bone marrow 
transplantation (BMT: cases) were compared to 30 adult patients who were 
treated with maintenace chemotherapy (CT: controls). Each BMT-patient was 
matched to a CT-patient such that their age, gender, disease duration, and prior 
treatment were comparable. The treatments (BMT and CT) were evaluated by 
comparing the percentage patients alive after five years. The following data 
were found 

CT 
Died Alive Total 

BMT Died 12 9 21 
Alive 2 7 9 
Total 14 16 30 
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4. For comparing between treatments the percentages of the patients alive after 
five years the best statistical test is 
A. the chi-squared test for a two-by-two table, 
B. the logrank test, 
C. the McNemar test. 
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All of the above tests are test-statistics that are chi-squared distributed when the 
null hypothesis (HO) is true. The following value of the test-statistic was found: 
X 2 =4.45 with one degree of freedom. 

5. The following conclusion may be drawn. 
A. 0.10 < p-value < 0.05; HO may be rejected, 
B. 0.05 < p-value < 0.025; HO may be rejected, 
C. 0.05 < p-value < 0.025; HO may not be rejected. 

6. The odds ratio for death of BMT versus CT is 
A. (12 x 7) / ( 9 x 2 ), 
B. (21 x 9) / (14 x 16 ), 
C. this study does not permit the estimation of the odds ratio. 

In a clinical trial comparing the efficacy of lipid-lowering treatment using 
statins in patients with age>70 years, 6000 patients were randomized between 
placebo or pravastatin treatment during five years. One of the efficacy criteria 
was the cognitive function after five years of treatment as measured using the 
minnesota mental state examination (MMSE). This score was dichotomized 
into a score of 25 or higher or below 25. Scores below 25 are indication for 
dementia. The following results were found: 

MMSE 
<25 >25 Total 

Placebo 352 2648 3000 
Pravastatin 248 2752 3000 
Total 600 5400 6000 

7. The 95% confidence interval for the proportion patients with MMSE<25 in the 
placebo group is 
A. 0.106 - 0.129 
B. 0.108 - 0.127 
C. 0.113 - 0.121 
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8. The relative risk for MMSE<25 of placebo versus pravastatin equals: 
A. 1.03 
B. 1.42 
C. 1.48 

9. The best statistical test for comparing the percentages of patients with 
MMSE<25 in both treatment groups is 
A. the Mantel-Haenszel test, 
B. the Chi-square test for a two-by-two table, 
C. the McNemar's test. 

The two treatment groups appeared to be inbalanced with respect to age; the 
mean age of the pravastatin patients was 75.2, and of the placebo patients 78.4. 
Since age is the most important risk factor for dementia (MMSE<25), it was 
important to evaluate the effect of stat in-treatment adjusted for the age­
differences. 

10. This is best achieved by 
A. a cox regression analysis, 
B. a linear regression analysis, 
C. a logistic regression analysis. 
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META-ANAL YSIS 

1. REVIEW OF THE PAST 

Meta-analyses are post-hoc analyses. 
What they test, is, however, close to the primary hypotheses. 
With the established guidelines, probability statements, may therefore, be as valid 
as with randomized controlled trials. 
JAMA, BMJ, and Lancet published, in 1998, 14,24, and 7 meta-analyses. All of 
them met standard Cochrane- guidelines. N Engl J Med had no single meta­
analysis in its index ( instead, it published 61 review monographies, which is 
another, maybe, less objective way to communicate state of the art knowledge). 
Specialists'journals ( JACC, Diabet Care, Oncol J, Gastroenterology, Ang, J Neur 
Neurosurg Psychiatr, J Am Geriat Soc, J Clin Endocrin Metab) published in the 
same year 8 meta-analyses, 1-3 each, none of them accounting all of the standard 
guidelines: publication bias was accounted never, heterogeneity only twice, and 
robustness only twice. 
- The method of meta-analysis is increasingly appreciated. 
-It is made use of by regulatory bodies. 
- Meta-analysis can reduce our boundaries of uncertainty. 
- The development of new drugs can benefit from it. 

2. A LOT OF MISUNDERSTANDING 

Mathematics of meta-analyses is not complicated. 
Master basic principles: 
Publication bias means that negative trials are not published. 
Heterogeneity means that trials are often different because of different methods, 
and different populations. 
In the field of meta-analyses, there is a lot of misunderstanding. 

-anecdote 1 
Groningen pharmacologists performed a meta-analysis 
of efficacy of ACE-inhibitors. 
They reported that they excluded publication bias by 
thoroughly searching Medline. 
They excluded heterogeneity by strict inclusion criteria. 
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-anecdote 2 

What is? 

CHAPTER 6 

Prof vd Broucke from Leyden (Neth) had a major 
controversy with important international meta-analists 
after publishing that he believed negative trials were 
irrelevant. Negative trials are necessary to complement 
meta-analyses. 

3. WHAT IS A META-ANALYSIS? 

A systematic review of trials with pooled data. 
How long? 
1970, psychologists were the inventors. 
First, there were systematic reviews only(no pooling). 
Since 1995 more homogeneous trials were published: pooling became a possibility. 
How? 

4. AN EXAMPLE OF A SUMMARY OF META-ANALYSES HELPFUL TO 
CARDIOLOGISTS FOR EVERYDAY DECISION-MAKING 

AMI 

Ca ch bl 
lidocain 

n=1,500-50,000 -1994 

.... 

.... 
,6'-blockers 

anticoagulants 
magnesium 
vasodilators 
asperin 
thrombolysis 

....... <0.05 
-+- <0.01 

+- <0.001 

-+- <0.001 

-+- <0.00001 
-+- <0.00001 

0,5 1,0 2,0 

The above figure shows the pooled data of many large meta-analyses of optimal 
treatment of acute myocardial infarction (AMI). On the x-axis are the pooled odd 
ratios = chances of mortality in users of the compound / chances of mortality in the 
non-users. <1.0 indicates the compound is efficaceous; >1 not efficaceous. P­
values are also given: P=0.05 means 5% chance to find this odds ratio if a odds 
ratio of 1.0 is true. 
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5. PROPORTIONS, STANDARD ERRORS OF PROPORTIONS, ODDS, ODDS 
RATIOS 

Odds = likelihood = chance = probability = risk that an event will occur divided by 
the chance that it won't. 

Contingency table 

Test treatment (groUPI ) 
Control treatment (groUP2 ) 

numbers of subjects 
who died 

a 
c 

numbers of subjects 
who did not die 

b 
d 

The proportion of subjects who died in group 1 (or the risk ( R) or probability of 
having an effect) 

= p = a / (a+b) , in group 2 p= c / (c+d), 

the quotient of a / (a+b) and c / (c+d) is called risk ratio (RR) . 

Another approach is the odds approach, where alb and c/d are odds, and their 
quotient is odds ratio(OR). 

In clinical trials we use ORs as surrogate RRs, because, here, a/a+b is simply nuts. 

For example, 

Sleepiness(n) 
No sleepiness(n) 

treatment group 
32 a 
24 c 

control group 
4 b 

52 d 

whole population 
4000 

52000 

We assume that the control group is just a sample from the population, but its ratio 
ofb/d is that of population. 
So suppose 4 = 4000, and 52 = 52000, then a/a+b is close to alb = RR of the 
population. c/c+d c/d 

Like with continuous data we can calculate SOs and SEMs and 95% confidence 
intervals of rates ( or numbers, or scores) and of proportions or percentages. 

SO of sample of n = -vn, 
SO of difference between two samples ofnl and ~ = (nl-n2)!-v (nl+n2), 

SO proportion = -V [p(l-p)], 
SEM proportion = -V [p/(l-p)] / -Vn. 

We assume, that the distribution of proportions of many samples follows a normal 
distribution ( in this case called the z-distribution) with 95% confidence intervals 
between 
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p ±2 "[p/(l-p)] I "n, 
a formula looking very similar to the 95% CI intervals formula for continuous data, 

mean ±2 " (SD2I n). 

Differences and sums of the SDs and SEMs of proportions can be calculated 
similarly to those of continuous data 

SEM of differences=" ( [Pl/(l-PI)] I n l + [p/(l-pz)]/ nz ) 

with 95% CI intervals: PI -Pz ± 2. SEMs. 

The odds approach is not much different from the RR approach, particularly, not 
with rare diseases. Odds ratios are used in mortality studies, meta-analyses of 
them, retrospective epidemiological case control studies. RRs in epidemiological 
cohort studies (common diseases). 

6. HOW TO CALCULATE 95%CONFIDENCE INTERVALS OF AN ODDS 
RATIO 

Ln OR ± 1.96" (lIa+ lIb+ lIc+ lid). 

For example 

Group I 
Group 2 

Hypertension yes 
a n=5 
b n=lO 

OR=a/c I bid = 0.25. 

hypertension no 
c n=lO 
d n=5 

95% confidence intervals of In OR = In OR ± 1.96 " (lIa+ 1 /b+ lIc+ lid) 
= In 0.25 ± 1.96 " (115+ 111 0+ III 0+ 1/5) 
= -1.3863 ± 1.5182 
is between - 2.905 and 0.132. 

95 % confidence interval of OR is between antiln -2.905 and antiln 0.132 
is between 0.055 and l.l4. 

This confidence interval crosses 1.0 and is thus not significantly different 
from 1.0. 
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7. ANOTHER EXAMPLE OF A SUMMARY OF META-ANALYSES 
HELPFUL TO CARDIOLOGISTS FOR EVERY-DAY DECISION MAKING 

Sec Prev MI 

CI I antiarrh 
Ca ch bl 

Aspirin 
anticoagulants 
chol reduction 

n= 4,000-20,000 -1994 

-+-
--+-
--+-

<0.05 • 

<0.05 
<0.001 
<0.0001 

0,5 1,0 2,0 

The above figure shows the pooled data of many large meta-analyses of secundary 
prevention of myocardial infarction. On the x-axis are the pooled odd ratios = 
chances of a second myocardial infarction in users of the compound / chances of 
second infarction the non-users. <1.0 indicates the compound is efficaceous; > 1 
not efficaceous. P-values are also given: P=0.05 means 5% chance to fmd this odds 
ratio if a odds ratio of 1.0 is true. 

8. EXAMPLE OF AN EPIDEMIOLOGICAL META-ANALYSIS 

-Honolulu hean study 
I no (n-=800:ij 

-('hical;O Western 
Fletlric Company study 
Iq~w (n 1832) 

-I\al~el-perrnanente 

experience 11.181 (n-8060) 

·1 onrion civil ~er\'ant 
~l\ldy 1981 (n-14~:?) 

-hillnirlgharn study 
1984 (n-52UY) 

-MHs~achusctts elder!) 
col!ol1 swdv 198" 
(n=-1226) 
~Japancse male 
phy!>iClans S!uriv 
1936 (n" 50,15) 

-'\!!Ier-jean Cancer Sm"jet\' 
')tIlC1\- 19-JO 

",,1E rA-:\l\/\J.YSIS 

01 

I-..t DRII\KS c~:; DRJNKS 
I"'ILY DAILY 

+ Oi 
, :r 
t 

I() 10 Relali\'c ris" 
19,)~'o <,:ollfidell~c 

inlc(\'ai) 
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Epidemiologists borrowed the technique from clinical pharmacologists, and started 
to meta-analyze themselves. The above figure shows an epidemiological meta­
analysis of cohort studies comparing carriers of a risk factor (alcoholic beverages) 
versus non-carriers of risk factor. On the x-axis are the RRs instead ofORs, which 
means here chances of myocardial infarction in drinkers! chances of myocardial 
infarction in non-drinkers. RR < I means that the risk factor protects, > 1 risk factor 
does not protect. 

9. IMPORTANT MATTERS NEED FEW WORDS 

Important matters need few words. The ten commandments has only 279 words, 
the American Declaration of Independence has exactly 300. Recent European 
Community Directives on the import of caramel and caramel products needed 
26,921 words. Books have been written on guidelines for meta-analyses. However, 
meta-analyses are not so complex as selling caramel to the European Community. 
The only thing to account is the scientific method. Scientific rigor requires that we 
stick to 
(1) a clearly defmed prior hypothesis, 
(2) to a thorough search of trials, 
(3) to strict inclusion criteria for trials, and 
(4) to uniform guidelines for data analysis. 

I O. CLEARLY DEFINED PRIOR HYPOTHESIS 

Item (1) of scientific method is a clearly defmed prior hypothesis. 
Why prior and not posterior hypothesis? 
Good research starts with prior hypothesis. 
This hypothesis is tested at P=0.05. 
The problem posterior hypotheses is that 
often they are tested 20x or more times. 
Significancies are found by chance. 
This procedure is called data dredging, and can be compared with 
gambling ( e.g., gambling 20 times at 5% chance gives up to 40 % chances of 
success). 
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11. THOROUGH SEARCH OF TRIALS 

Step search term 
Indication 
I tendinitis.sh. 
2 elbow.sh 
3 elbow joint.sh. 
4 2or3 
5 I and 4 
6 tennis elbow.sh. 
7 5 or 6 
8 epicondylitis. tWo 
9 elbow.tw. 

10 7or8or9 
Intervention 
II injections.sh. 
12 inject$.tw. 
13 infiItr$ tWo 
14 exp glucocorticosteroids. sh. 
15 triamcinolon$. two 
16 hydrocortison$. tw 
17 methylprednisolon$. two 
18 betamethason$. tWo 
19 lidocain$.tw. 
20 bupivacain$. tWo 

Checklist for Medline Search 

Step search term 
Publication type 
22 randomized controlled trial. pt. 
23 controlled clinical trial. pt. 
24 randomized controlled trials.sh. 
25 random allocation.sh. 
26 double blind method.sh. 
27 single blind method.sh. 
28 22 or 23 or 24 or 25 oe 26 or 27 
29 (animal not (human and animal)).sh. 
30 28 or 29 
31 clinical trial. pt. 
32 exp clinical trials.sh. 
33 (c1in$ adj25 trial$).tw. 
34 « singl$ or doubl$ or tripl$) adj25 (blind$ or 

mask$)).tw. 
35 
36 
37 
38 
39 
40 
41 

placebos.sh. 

placebo$.tw. 
random$.tw. 
research design.sh. 
volunteer$.tw. 
31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 
40 not 29 

21 II or 12 or 13 or 14 or 15 or 16 42 41 not 30 
or 17 or 18 or 19 or 20 43 30 or 42 

Indication, intervention and publication type 
4410and21and43 

Item (2) of scientific method is a thorough search of trials. 
A systematic procedure is required. 
It is helpful just like an aircraft-checklist is. 
Without it, things go wrong, 
e.g., an airplane-door not appropriately locked. 
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With a checklist we are on the right track in no time, but, MEDLINE still requires 
45 steps to be taken. 
Start with logging in indication ( could be diagnosis group). 
Then log in intervention (could be a medicine). 
Then take steps to arrive at randomized controlled trials. 
Trick have to be learnt: sh means subject headings (main words, e.g., diagnosis 
groups, medicines etc), 

Tw means free text words (connective words, make you 
communicate with the software), 
$ means no money, but word-endings (e.g., injections, 
able, ing etc), 
pI means not patient, but type of publication (parallel, 
crossover, selfcontrolled etc). 

Without checks or tricks, search doesn't make any sense. 
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12. STRICT INCLUSION CRITERIA 

Item (3) of scientific method is strict inclusion criteria. 
It reduces the chance of bias. Bias = systematic error that no one is aware of. 
A trial includes less bias if blinded, statistics is proper, ethics is proper, description 
of methods is proper. 

13. UNIFORM GUIDELINES FOR DATA ANALYSIS 

Item (4) of scientific method is uniform guidelines for data analysis. 
Here statistics comes in. Professor Hills, the famous statistician from London, UK, 
once said: investigators use statistics as a drunk uses a lamppost, for support rather 
than illumination. This is of course inapporopriate use. 
Adequate statistics is a powerful aid to prevent erroneous conclusions. 
It should not be too complicated, and data dredging for significances should be 
rejected. Prior hypotheses should be tested rather than posterior hypotheses. 

14. OAT A ANALYSIS: FIRST PITFALL, PUBLICATION BrAS 

lJC 

SIJ 
d 

CL 4C 

I 
i [j 

First we plot the data with on the x-axis results of studies, and on the y-axis size of 
the studies. We, thus, get a funnel plot or christmas tree plot. A statistical necessity 
is that small studies have a large variance, and large studies have a small variance. 
It is also a statistical necessity that the pattern to be obtained is symmetrical. 
A cut-off pattern indicates that a number of studies have not been published. 
Publication bias means that small studies with a negative result are les likely to be 
published. The pattern may be obvious from the graph, but in case of doubt can be 
statistically tested, e.g., by comparing the means of small studies versus the means 
of large ones). 
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15. DATA ANALYSIS: SECOND PITFALL, HETEROGENEITY 
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The second pitfall of meta-analyses is the heterogeneity. 
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The above example shows on the x-axis odds ratios = chances of fatal esofageal 
varices bleeding with sclerotherapy/ chances of the same without sclerotherapy. An 
odds ratio <1 indicates that sclerotherapy is helpful, > 1 that it is not so. 
We can test heterogeneity by testing whether differences between trials are larger 
than could happen by chance, and use for that purpose multiple-groups-ANOV A 
for continuous data, and Chi-square for odds ratios or risk ratios. 

16. TESTING HETEROGENEITY 

For continuous data multiple-groups-ANOVA can be applied. 
Assess whether between-study variance is large compared 
to within-study variance. 

SSbetweenstudies = nl (meanj - grand mean)2 + n2 (mean2 - grand mean? + .... 
SSwithinstudies = (nl-I)(SOj2) + (nz-I) sol + ..... 

F value = test statistic= SS between studies / dfs 

S S within studies / dfs 
F-table gives P-value. 
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For odds ratios multiple groups chi-square test can be applied. 
Assess whether variance in ORs is large compared to variance in 95% Cis. 
Normalize ORs and 95% CIs of the ORs because CIs around ORs are skewed. 
E.g.,OR ( 95% CI s) = 0.17 ( 0.02 to 1.55), 

In OR (In 95% CI s) = -1.8 (-3.9 to 0.4) (nicely symmetric around-1.8) 
chi-square value = test statistic= 
L (In OR; -In pooled OR)2 (111.96 .In 95% CIl k-l dfs 
chi-square table gives P-value. 

CI= confidence interval, 
k= number of studies in the meta-analysis. 

The above approach is called the fixed model for testing heterogeneity. Random 
effect model for heterogeneity of Dersimonian and Laird assumes heterogeneity 
and introduces separate variable. If both are not significant, no heterogeneity can 
be assumed with confidence, if either of them is positive, pooling will be a 
problem. 

17. HOW TO TEST HETEROGENEITY, CALCULATE AND POOL ODDS 
RATIOS OF VARIOUS STUDIES AND TO TEST WHETHER POOLED ODDS 

RATIOS IS DIFFERENT FROM 1.0 , EXAMPLE 

For example, 4 studies assessed odds ratios of all cause deaths in patients with 
heart failure treated with beta-blockers. In order to meta-analyze these studies, first 
calculate from 95% Cis s=standard error. 
s= (In upper value minus In lower value)/1.96. 
For example: 
with a 95% CI of 0.97-1.43 
s= (0.3576 minus -O.0305)/l.96 = 0.1980, 
then S2 = 0.0393, 
then l/s2 = 25.510. 

OR 95%CI InOR 
Waagstein l.l8 0.97-1.43 0.16 
Packer 0.41 0.39-0.80 -0.89 
CIBIS 0.66 0.54-0.81 -0.42 
MERIT 0.66 0.53-0.81 -0.42 

1/s2 

25.510 
13.33 
100 
100 

pooled data 238.84 

InOR/s2 (InOR)2/s2 
4.08 0.653 

-1l.86 10.56 
-42 17.64 
-42 17.64 

-9l.78 46.493 

Test if pooled OR is significantly different from 1.0 (InORI /Sl 2 + InORz /S2 2 + .. .i 

X 2 pooling for 1 df 
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Calculate pooled 95% CIs 

(-91.78)2/238.84 = 39.65 
p<O.OOOI. 

= 46.493 - 39.65 for 4-1 =3 dfs 

6.843 0.05 <p< 0.10. 

OR ± 1.96/;J (1/S,2 + l/s22+ ... ) 
e 

-91.78/238.84 ± 1.96d 238.84 
e 

-0.3842 ± 0.127 
e 

0.68 (0.59-0.77) 
significantly different from 1.0. 

18. WHAT TO DO IN CASE OF HETEROGENEITY? 

c( 

::: 0,8 .. 
~ 0,6 

1~::,~ 
'£ O~--,- ---,--- ~-"'-----'~-r-"""'--------' 
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additive biological model 

m 11 
::: 0,8· 
.. I 
~ 0,6 i 
'0 0,4., ' _________ 

~O,21~ 
fi 0-:--- 1---~ - ,---------~-- -~--

35 40 45 50 55 60 65 

multiplicative model 
age (years) 

Significant heterogeneity in a meta-analysis is not a disaster. 
What you should do, is find the cause. E.g.: chance of disease increases when age 
increases as demonstrated in the above figure. Right hand graph shows a pattern 
raising heterogeneity in a meta-analysis because there is no not linear pattern 
anymore. 
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Another cause of heterogeneity is outlier studies. The above figure shows that 
the chance of myocardial infarction decreases when plasma-cholesterol decreases. 
However, two outlier studies disturb the otherwise strong linear relationship. 

Mean (SE) 
No of difference in 
caru:er No of serum cholesterol 
cases studies (mmol/I)* Heterogeneity 

All stud; es: 
Overall 12516 33 -0·041 (0-009) X2 = 53, df= 32, P=O·Ol 
Socioeconomic 
status: 

High 619 4 +0-032 (0-048) 1 
Mixed 10 378 20 -0-030 (0010) J X~=37, df=30, P~0-18 
Low 1 519 9 -0-130 (0025) 

Studies with 
lung cancer data: 

All cancers 8062 19 -0043 (0-012) X2 =40, df= 18, P=0-OO2 
Lung cancers 2239 19 -0101 (0-022) X2 =36, df= 18, P=OOO7 
Cancers other 5823 19 -0023 (0014) K'=32. df= 18, P=O'02 
than lung 

• Mean cholesterol in those who subsequently developed cancers minus mean in 
those who did not. 

A third cause of heterogeneity is shown in the above figure: outlier-popUlations. 
The chance of cancer increase when cholesterol increases. However, only in the 
lowest-social-group this effect was highly significant, and so the heterogeneity was 
probably due to a social factor rather than to differences in plasma-cholesterol­
levels. 
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19. DATA ANALYSIS: THIRD PITFALL, LACK OF ROBUSTNESS 
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Lack of robustness or lack of sensitivity is the third pitfall of meta-analyses. 

115 

It is defined as the phenomenon that studies with borderline quality produce more 
spectacular results than do high quality studies. The main cause is placebo effects, 
which may also be doctor-mediated. 
The above examples show in the left upper graph that the pooled result is mainly 
determined by the 4 lower quality studies. In the lower graph it is shown that lower 
and higher quality studies do not necessarily have different results. 
What to do?: (l)remove low quality studies, 

(2)look whether pooling changes results, 
(3)Yes?, then don't pool. 

Leaving out the studies at this stage is impossible (according to item (2) of the 
scientific method (strict inclusion criteria». 
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20. CRITICIZMS OF META-ANALYSES 

Criticizms of meta-analyses. 
-They do not predict large trials. 
-They do not predict adverse effects. 
Cause: 3 pitfalls of meta-analyses: 

(1) publication bias, 
(2) heterogeneity, 
(3) lack of robustness. 

Initiatives against heterogeneity. 
CONSORT=consolidated standards rcts (randomized controlled trials); 
70 editors of international journals participate. 

Initiatives against publication bias. 
I-CONSORT. 
2-Unpublished Paper Amnesty Movement (Lancet and BMJ participate). 
3-World Association of Medical Editors (hundreds of journals 

participate). 

Cochrane-Group and Evidence-based Movement has offices in every western 
country, and is in favor of meta-analyses as gold standard in any aspect of clinical 
research including. 
1. Reporting randomized experimental research. 
2. Development of new drugs. 
3. Determination of individual therapies. 
4. Leading the way for regulatory organs. 
5. Epidemiological research. 

Meta-analysis is simple and straight 
Just remember the scientific method: 
1. Clearly defined prior hypothesis. 
2. Thorough search of trials. 
3. Strict inclusion criteria. 
4. Uniform guidelines for analysis. 
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21. EXAMPLE OF PUBLISHED META-ANALYSIS 

ANGIOTENSIN II ANTAGONISTS FOR HYPERTENTION: ARE THERE 

DIFFERENCEW IN EFFICACY? 

Paul R. Conlin, M.D.', J. David Spence, M.D.', Bryan Williams, MD.', Arthur B. Ribeiro, M.D., 

PhD4 , Ikuo Saito, MD5 , Claude Benedict, M.D6 , Antonius M.G. Bunt, M.D., Ph.D.7 

lEndocrinology-Hypertension Division, Brigham and Women's Hospital and Harvard 
Medical School, Boston, M.A; 2Siebens-DrakelRobarts Research Institute, University of 
Western Ontario, London, ON, Canada; 3Cardiovascular Research Institute, University of 
Leicester, Leicester LE27LX, United Kingdom; ~ephrology Division, UNIFESP-EPM, Sao 
Paulo, Brasil; 5Health Center, Keio University, Tokyo, Japan; 6Universaty of Texas Medical 
School, Houston, TX; 7Merck & Co. Inc., Whitehouse Station, NJ. 

Running Head: Antihypertensive efficacy of angiotensin II antagonists 

Correspondence and reprint requests to: 

Paul R. Conlin, M.D. 
Endocrinology-Hypertension Division 
Brigham and Women's Hospital 
221 Longwood Avenue 
Boston, MA 02115 
Phone: 1-617-732-5661 
FAX: 1-617-732-5764 
E-mail: pconlin@rics.bwh.harvard.edu 

Meta-analysis of 43 All-antagonist trials in patiens with hypertension. 
Item 1 of scientific method: prior hypothesis?: yes, how large effect of losartan 

versus the rest. 
Item 2 of scientific method: thorough search?: yes, Medline. 
Item 3 of scientific method: strict inclusion criteria?: yes only randomized 
controlled trials. 

Minor flaw: Oddoustock's data size. 
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DBP(mmHg) SBP(mmHg) 
First Author n Mean SD 95%CI Mean SD 

Trimarco 45 72 -11.9 6.8 [-13.5,-10.3] -14.6 11.8 

Gradman22 79 -10.1 7.0 [-11.7,-8.5] -13.0 12.7 

Dalof3o 132 -9.0 7.7 [-10.3,-7.7] -11.8 12.2 
W ·48 elf 110 -8.9 7.5 [-10.3,-7.5] -9.6 13.0 

Mackay47 138 -8.8 7.6 [-10.1,-7.5] -10.7 14.3 

Chan28 89 -8.8 7.7 [-10.4,-7.2] -12.6 13.8 

Townsend27 132 -8.8 7.7 [-10.1,-7.5] -8.6 13.8 
Roca- 192 -8.7 7.7 [-9.8,-7,6] -12.0 13.8 

Cusachs48 

Tikkanen25 200 -8.4 7.1 [-9.4,-7.4] -10.6 13.0 

Wilson29 36 -8.4 5.9 [-10.4,-6.4] -10.0 9.2 
Oddou- 534 -8.0 7.7 [-8.7,-7.3] -10.5 13.8 

Stock8 

Ikeda48 125 -7.7 9.0 [-9.3,-6.1] -9.2 13.8 

Oparil5o 97 -7.3 9.0 [-9.1,-5.5] -6.1 14.4 

Mallion25 109 -7.0 8.6 [-8.3,-5.7] -9.3 11.9 

Byyny51 29 -6.7 7.8 [-9.7,-3.7] -11.7 17.6 

Andersson9 83 -6.6 8.7 [-8.5,-4.7] -11.1 21.2 

Oparil ll 192 -6.2 7.7 [-7.3,-5. I] -8.3 13.8 

Martina52 10 -4.0 9-9.2,12] -7.0 8.2 

Hegner38 82 -13.4 7.7 [-15.1,-11,7] -16.1 15.8 

Mallion34 94 -13.2 7.6 [-14.8,-11.8] -17.2 11.9 

Corea3S 84 -11.5 6.8 [-13.0,-10.0] -13.1 14.8 

Holwerda32 136 -9.5 6.2 [-10.6,-8.4] -12.4 12.7 
Oddou- 545 -8.3 12.0 [-9.3,-7.3] -11.0 17.5 

StockS 

Oparif3 150 -7.2 14.6 [-9.6,-4.9] -8.6 25.1 

Black33 384 -7.1 14.7 [-8.6,-5.6] -8.0 17.5 

Data analysis. 
1 st Pitfall. pUblication bias. 
-Trials are divided into 2 groups: large trials involving> 100 

patients, small ones < 100 patients. 
-Small trials gave best results. 

[-17.4,-11.8] 

[-15.8,-10.2] 

[-13.9,-9.7] 

[-12.9,-7.1] 

[-13.1,-8.3] 

[-15.5,-9.7] 

[-11.0,-6.2] 
[-14.0,-10.0] 

[-12.4,-8.8] 

[-13.1,-6.9] 
[-117,-9.3] 

[-11.6,-6.8] 

[-9.0,-3.2] 

[-11.6,-7.0] 

[-18.4,-5.0] 

[-15.7,-6.5] 

[-10.3,-6.3] 

[-129,-1.1] 

[-19.6,-12.6] 

[-19.6,-14.8] 

[-16.3,-9.9] 

[-14.5,-10.3] 
[-12.5,-9.5] 

[-12.6,-4.6] 

[-9.8,-6.2] 

responders 
(%) 

49 

52 

56 

56 

51 

44 

46 

46 

44 

74 

61 

67 

55 
46 

43 

42 

-Have small trials with negative results been excluded from publication? 

Table Publication bias 

Fall systolic blood pressure 
Fall diastolic blood pressure 

trials n> 100 P 
10.2 <0.05 
8.1 <0.05 

trials n< 100 
10.8 
8.5 
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-Christmas tree plot: x-axis results studies, y-axis size of studies. 
-Small trials large range of results, large studies small range of results. 
-Cut the Christmas tree, the lower left-hand side is empty indeed. 
-Some publication bias (difference 3 small studies). 

Data analysis. 
2nd Pitfall: heterogeneity. 
-Wide range between effects of various studies. 
-Test for heterogeneity significant for systolic pressures. 
-95% CIs pooled data (also estimate of heterogeneity) not wider 5% of treatment 
effect(eg 10.5 mm Hg (9.8-10.9). 

monotherapy 
Fall in systolic pressure (range) 
Fall in diastolic pressure (range) 

duplicate therapy 
Fall in systolic pressure (range) 
Fall in diastolic pressure (range) 

Data analysis. 
3rd pitfall: Lack of robustness. 

Tabel heterogeniteit 

6.1 to 17.2mmHgl 
4.0 to 13.4 mm Hg 

11 to 21.5 mm Hgl 
9.0 to 15.5 mm Hg 

-Definition: low quality studies have more spectacular results. 
-Table high and low quality studies. 
-Low quality studies have, indeed, a better mean result (ns, but pooled it would 

have been significant). 
-So not 100% robustness, yet differences clinically irrelevant. 

119 
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Tabellack of robustness 

Overall mean results mean results no SDstudies 
(lower quality studies) 

Low-dose data 
Fall in systolic pressure (mm Hg) 10.8 
Fall in diastolic pressure (mm Hg) 8.5 

High-dose data 
Fall in systolic pressure (mm Hg) 13.3 
Fall in diastolic pressure (mm Hg) 8.9 

Duplicate-therapy data 
Fall in systolic pressure (mm Hg) 13.3 
Fall in diastolic pressure (mm Hg) 9.9 

Conclusions of this example. 
l. Some publication bias, heterogeneity, and lack of robustness. 
2. Cause heterogeneity: lack of dose titration in some studies. 
3. Effects of3 pitfalls small (5-6% of total effect). 
4. Maybe, testing publication bias, heterogeneity, robustness not 

always needed with large meta-analyses!! 
5. Efficacy of different All-antagonists is not different. 
6. Large doses almost as effective as low doses. 

11.2 
8.9 

13.7 
9.9 

13.9 
10.8 
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22. EXERCISES TO CHAPTER 6 

Indicate which alternative is not correct. 

1. Scientific rules for meta-analyses include: 
A. prior hypothesis, thorough search of trials, strict inclusion criteria, uniform 

data analysis, 
B. prior hypothesis, thorough search of trials, testing pitfalls, uniform data 

analysis, 
C. prior hypothesis, thorough search of trials, valid design, uniform data 

analysis, 
D. prior hypothesis, thorough search of trials, pooling the data, uniform data 

analysis. 

2. Frequent cause of heterogeneity: 
A. heterogeneous ages of study participants, 
B. outlier data, 
C. social factors, 
D. low quality trials. 

3. Frequent cause oflack of robustness: 
A. heterogeneous ages of study participants, 
B. low quality trials, 
C. placebo effects patient-mediated, 
D. placebo effects doctor-mediated. 

4. Initiatives against pitfalls of meta-analyses: 
1. CONSORT (Consolidated Standards Randomized Trials), 
2. Unpublished Paper Amnest Movement, 
3. World Association of Medical Editors, 
4. Evidence-based Movement. 

5. The most important pitfalls of meta-analyses are: 
A. publication bias, heterogeneity, lack of robustness, post hoc analysis, 
B. publication bias, heterogeneity, post hoc analysis, 
C. publication bias, lack of robustness, post hoc analysis, 
D. publication bias, heterogeneity, lack of robustness. 
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6. Publication bias: 
A. cannot be excluded, 
B. can be excluded by thoroughly searching for trials, 
C. cannot be adjusted, 
D. is due to negative trials being published. 

7. Heterogeneity: 
A. cannot be excluded, 
B. can be excluded by strict inclusion criteria, 
C. can be adjusted, 
D. can be excluded by thoroughly searching for trials. 

8. Odds is a surrogate for risk in clinical trials because: 
A. calculated risk would overestimate true risk, 
B. calculated risk would underestimate true risk, 
C. calculated risk ratio would overestimate true risk ratio, 
D. calculated risk ratio would underestimate true risk ratio. 

9. A. Describe the four most important scientific rules for meta-analysis. 
B. Name and explain the three most important pitfalls of meta-analyses. 
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INTERIM ANALYSIS 

1. INTERIM ANALYSIS: LOOKING AT DATA BEFORE CLOSURE 

In clinical trials, especially in trials involving many patients or with very long 
duration, it is tempting to look at the data to see whether expectations come true, 
whether differences are already significant. In general this should be discouraged 
because the validity of trial and its results is endangered: if participants know what 
happened to patients treated so far, they might change the protocol knowingly or 
unknowingly. This should not be allowed and, therefore, data should not be looked 
at before formal end of the trial. 
Sometimes there are however valid reasons to look at data before closing the trial. 
When the new treatment is much more efficacious than expected it is unethical to 
randomize patients to a placebo treatment (or the other way around), and if a new 
treatment has much more side-effects than expected this may be reason to stop the 
trial as well. In order to check this, it may be worthwhile to look at the data, and 
this is called an interim analysis. Interim analyses must be specified in the research 
protocol; it must be specified what will be looked at and what decisions will be 
taken dependent on results found. Often this looking at data requires unblinding of 
treatment given to the patients so far. 
Also it is worthwhile to look at data to ensure that protocol is adequately followed 
by the participants. This type of looking at data does not require unblinding the 
treatment, and is called monitoring. Monitoring is of utmost importance to increase 
the likelihood of a successful trial. 

2. MONITORING 

Purposes: 
• In order to maintain quality, 
• to ensure that the protocol is followed, 
• to ensure that in-/exclusion are appropriate, 
• to check accrual rate, 
• to check the availability and consistency of the data sampled. 
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Monitoring clinical trials is used to ensure that quality standard are maintained. 
When monitoring it is checked whether (1 )patients and physicians adequately 
follow the trial protocol, (2)informed consent is obtained, (3)the inclusion and 
exclusion criteria are met, (4 )the included patients are truly randomized, (5)the 
required data are adequately sampled, and (6) the data input in the database is 
correct. Important also is the monitoring of the accrual rate. The number of patients 
included in the trial directly influences the power of the trial, and often the required 
number of patients included in the trial is computed sharply. Thus, it is of great 
importance that the target number of patients is obtained. 

3. DATA CONSISTENCY AND A V AILABILITY 

Success of a trial depends entirely on sampling the correct information, and that 
means that it is of paramount importance to check whether the data entered in 
CRFs (case report forms) are correct. All CRFs must be checked therefore against 
hospital files. This will minimize the chance of fraud, but more important it will 
minimize the number of false entries into the database, and, thus, will minimize 
residual variance in the statistical analysis, increasing the power of the trial. By 
checking CRFs missing data are identified which are always difficult to handle, but 
less so when identified early instead of late in the trial. Correspondence of data in 
the CRF and the database is more efficiently checked by double data-entry, but any 
other solution may be used for the monitoring process instead. 

4. P A TlENT ACCRUAL 

Monitors should report regularly to all participating centers. 
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Number of patients included directly determines the power and, therefore, the 
success-probability of a trial, and it important that projected numbers are obtained. 
It is empirically shown that, initially, physicians are participating with much 
enthusiasm, but this decreases with time. One way of stimulating centers to 
continue to include patients in the trial is regular reporting of the progress of the 
trial, for instance by reporting the numbers of patients included in the trial, and the 
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fmal goal. Monitoring these numbers can also be the basis for changing the 
protocol along the way, for instance by enlarging inclusion criteria. 

5. CHANGING INCLUSION CRITERIA 

When changing in-/exclusion criteria or when adjusting sample size, 
• always make protocol amendments, 
• consider the statistical consequences such as type-I error rate, 

sample size, power, 
• monitoring is essential for good quality. 

Any change in the study protocol, for instance change of inclusion or exclusion 
criteria, or any other adjustment of sample size must be accompanied by a formal 
protocol amendment. In such amendment one must consider the statistical 
consequences of the change for the type-I error rate, sample size and power. 
It cannot be stressed too much that monitoring is essential for good quality of a 
clinical trial. 

6. INTERIM ANALYSIS 

Interim analyses should be done 

• for analyzing efficacy and/or side-effects 

• for ethical concerns, 

• for efficiency reasons, 

• and to check assumptions made while designing, 

• only when decisions can be taken. 

In contrast to monitoring where it is not necessary to know which treatment was 
given to whom, interim analysis requires unblinding the results. Interim analysis is 
an analysis of effect or side-effect before formal end of the trial. It is performed 
mainly for ethical reasons, efficiency reasons, or to check whether the prior 
assumptions made are met. Ethical reasons play an important role when there is 
valid suspicion that the new tested treatment is really much more effective than 
standard treatment. If this is the case, it is not ethical to treat patients with an 
inferior therapy, and it is important to know as early as possible. This can be 
observed at an interim analysis. 
Time, energy, and financial resources are similarly reasons to perform an interim 
analysis: when a new treatment is truly more effective than the standard treatment, 
to continue such a trial means unnecessary spending of scarce money, time, 
energy, and patients. At an interim analysis it may be decided to end the trial 
accordingly. Similarly, it may be observed that the new treatment is no more 
effective than standard treatment. When interim calculations indicate that the trial 
is likely to be successful, the trial may be stopped, and the standard treatment 
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favored. It is important to realize that interim analyses are only sensible when 
decisions can be taken. If only a few patients are entered in the trial, an interim 
analysis is useless, and when all patients have been entered and follow-up is almost 
completed, an interim analysis is equally so. 

7. DANGERS: RANDOM HIGH 

• Every look at the data increases the type-I error rate and may 
introduce bias. 

• Suppose null-hypothesis is correct, and k analyses are performed, 
with type I error=a =O.OS, then the true significance level = 1-(0.9S)k. 

Interim analyses cannot be performed at libitum, there is an important price, 
because every statistical analysis runs the risk of a type-I error of accepting there is 
a significant difference where there is actually none. When analyzing the data more 
than once, which is done in studies with interim analyses, the type-I error will 
increase, and, obviously, a risk of bias is introduced. This is easy to conceive when 
realizing that the standard type-I error rate is usually specified to be a=O.OS. When 
k analyses are performed (that is 1 fmal analysis, and k-l interim analyses), and a 
significance level of O.OS is used at each analysis, then the actual type-I error rate 
will be must larger than O.OS, and will be 1-(0.9S)k. 

8. SIGNIFICANCE LEVEL 
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In the above graph it is illustrated that the type-I error rate may increase 
dramatically with increasing number of interim analyses. In general it will not be 
as dramatical as shown here, but it may increase until the likelihood of a type-I 
error is almost certain. This is not acceptable for adequate clinical trials. 
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9. CORRECTION FOR INCREASING TYPE-I ERROR RATE 

Methods for correcting the increassed risk of type I error: 

• Bonferroni corrected significance level a*=0.051k, 
• Group-sequential methods (for comparing means): 

• k=2; a = 0.0294 
• k=3; a = 0.0221 
• k=4; a = 0.0182 
• k=5; a = 0.0158 

• Pocock's method (Biometrika 1977; 64: 191-9). 

There are several ways of correcting for the increase of the type-I-error rate. They 
are all based on lowering the nominal significance level a. 
The best known method is the Bonferroni method. This method entails lowering 
the nominal significance level to a divided by the number of interim analyses: 
a*=a/k. This method works because the type-I error rate (l-(l-a*h remains close 
to a=0.05 for any k: 

k=1 
k=2 
k=3 
k=4 

k=lO 

type-I error= 0.05 
0.0494 
0.0492 
0.0491 

0.0489 

But the formula given (1-(I-a*)k) applies only when the interim analyses are 
independent and that is clearly not the case as data in the first analysis are also 
considered in the second analysis, and so on. This means that the Bonferroni 
correction method is very conservative: the actual significance level will be less, 
and sometimes much less, than the required or desired significance level. 
Several investigators have looked at actual significance levels when analyzing data 
on an interim basis, among who is Pocock. He suggested a group-sequential 
method for interim analysis. This means that a specified significance level is to be 
used depending on the number of interim analyses planned: .02994, .0221, .0182, 
.0158 for 2,3,4, or 5 analyses respectively. 
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10. SOME RULES 

• Make always a formal report of the interim analysis, 
• look only at the most important evaluation criterion (only I) and use the 

others to confirm the result, 
• do the analysis on up-to-date material, 
• do the analysis only when there is a substantial number of patients, 
• keep results secret if the trial continues, 
• use a triple blind procedure and an independent committee, 
• predefine (in the protocol) "when to decide what". 

Some common-sense rules about interim analyses include that the analysis be done 
by an independent committee, and that this committee be blinded to the actual 
treatment (triple blind procedure). This means that if the trial is continued, the 
trialists will not be aware of the results so far. In general, results should be kept 
secret if the trial continues, but a formal report of the analysis must be made in any 
case. 
It is obvious that interim analyses should only be done when there are sufficient 
patients already included in the trial, and that they should be done on up-to-date 
material: this will guarantee optimal power for the analysis. In order not to increase 
type-[ error rate, it is wise to do the analysis on a single efficacy criterion only. 
Others may be used to confirm results when a certain decision is reached. 
Decisions must be specified in detail in the protocol: the protocol must contain the 
rules when to decide what. 

11. DECISION RULES 

• Stop and reject ''the HO of no effect" when the difference in efficacy is 2: e 
and statistically significant, 

and 

• stop and accept "the HO of no effect" when the difference in efficacy is ::; 
S, and the p-value 2: 0.5 (for example), 

or 

• stop the trial when the adverse event rate> A. 

Two decisions can be taken on the basis of interim analyses: to continue or to stop 
the trial. The latter should be done only when the null-hypothesis of no effect is 
rejected and when, at the same time, effIcacy is greater than some pre-specified 
level. Stopping is also considered when efficacy level is less than an expected 
level, and, of course, not significant. Independently of efficacy the trial may be 
stopped when the side-effects are too numerous, but the protocol must define the 
acceptability of the side-effect rate. 
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Apart from stopping or continuing the trial, the assumptions made in designing the 
trial may be checked in the interim analysis. When these assumptions are observed 
to be invalid, the trial-design may be adapted, usually leading to an adaptation of 
the sample size. 

12. SEQUENTIAL TRIALS 

Another approach to stopping the trial. 
• Calculate after every patient the treatment difference Z and its information 

content V. 
• Stop the trial when the "stopping boundary"is crossed. 

30 

REJECT HO 

15 

N ACCEPT HO 

O~~~----~-----------------------V 

·15 

When many interim analyses are planned, it may be more efficient to perform a so­
called continuous sequential trial. This means that a statistical analysis is planned 
after each patient that fmishes the trial. Each time, the effect of treatment is 
quantified (denoted by Z), as well as the amount of information sampled so- far 
(denoted by V). This is plotted against each other, shown by the dotted line in the 
figure. Decisions rules must be defmed in order to make decisions about 
significance of effect, or lack of it. Shown here is one way, called a triangular 
design. As long as the dotted trial-line remains within the boundary the trial 
continues, but as soon as it crosses the boundaries the null-hypothesis of "no 
effect" will be rejected (upper left area), or accepted (lower right area). 
The definition of the boundaries is according to established formulas, for instance 
given by Whitehead (Evaluating sequential trials (PEST version 3) 
www.reading.ac.uk/mps/pest/pest.html) . 
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13. EFFICACY (Z) 

• Z is the quantification of efficacy ofthe above sequential trial: 
risk difference: Z = PI - P2, 
relative risk: Z = PI / P2 , 
hazard ratio: Z = Ie 1 (t) / Ie 2(t), 
odds ratio: Z= PI(l-PI) / P2 (l-P2), 
mean difference = X.I - X.2 . 

Efficacy (Z) is quantified differently based on the type of data sampled. If data is 
dichotomous (death/alive; ilVrecovered; yes/no relapse) Z may be the risk­
difference, the odds ratio, or the relative risk (p=proportion). When the variable 
(Xij , ith group,jth subject) is numerical (quantitative), Z is typically a difference 
of means. When data is of the survival-data type, Z is usually a hazard-ratio 
(Ie = uO'IDepm: e'IDeVT pUTe). 

14. DIFFERENCE OF TWO MEANS (V) 

• V is a quantification of the certainty of Z. 

• In general V=lISE2(Z). 
• IfZ = PI - P2: V=nI/(PI(1-PI)) + n2/(p2(1-P2))· 

The amount of information sampled so far, is usually the inverse of the squared 
standard error associated with Z: so if Z is the difference of two means V equals 

n n 
_I + _2 where nl and n2 are the sample sizes of the two means, and S, and S2 
S2 S2 

1 2 

are the associated standard deviations. When Z is the difference of two proportions, 
n n 

V equals I + 2 . When Z is an odds ratio or relative risk, the 
Pl(l-PI) P2(I-P2) 

formulas for V are given in chapter 6, paragraphs 21, 22. 
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15. CONCLUSION 

• Monitoring is essential for a high quality trial. 
• Interim analysis of efficacy is rarely required, but if it is planned: 

• plan only a few (Pocock (paragraph 9): never more than 5), 
• do it when a substantial number of observations are available, 
• specify (as much as possible) the comparisons to be made and their 

associated decisions in the protocol, 
• use an independent committee, 
• use a triple-blind procedure. 
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Again, monitoring is essential in clinical trials, interim analyses should be done 
only in specific circumstances. It endangers the type-I error rate and this must be 
taken care of in the statistical analysis. Best are the group-sequential trial 
procedures developed by Pocock (paragraph 9). If an interim analysis is performed, 
its rules must be specified as much as possible in the study protocol. 

16. EXERCISES TO CHAPTER 7 

Indicate which alternative is correct. 

1. The primary goal of interim analyses is 
A. controlling the risk of a type I error of a clinical trial, 
B. controlling the risk of a type II error of a clinical trial, 
C. controlling design assumptions of a clinical trial. 

2. The consequence of an interim analysis is 
A. increased risk of a type I error, 
B. decreased risk of a type I error, 
C. increased risk of a type II error. 

3. An interim analysis should ideally be done by 
A. the trial's data committee, 
B. the trial's executive committee, 
C. an independent committee. 

4. The best way of controlling the statistical consequences of interim analyses is 
A. a bonferroni adjustment ofp-values, 
B. a group-sequential trial approach, 
C. using a larger power level. 
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5. A sensible stopping-rule in an interim analysis of a clinical trial could be 
A. "stop the trial when the p-value is less than 0.05", 
B. "stop the trial when the side-effects occur in more than 25% of the 

patients", 
C. "continue when the p-value >0.05". 

6. The results of an interim analysis must be kept confidential because 
A. this is required by the governmental authorities, 
B. in that way the results of the analysis cannot influence treatment of new 

patients included in the trial, 
c. in that way statistical analysis is unbiased. 
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MULTIPLE TESTING 

1. TWO SITUA nONS 

Two situations are given. 
• Comparing many groups of different patients: multiple comparison. 
• Using many evaluation criteria: multiple testing. 

There are, thus, two different situations where the problem of multiple 
comparisons arise, (a.) where more than two groups of patients are compared with 
each other, and (b.) where two or more criteria are used to compare two (or more) 
groups. In both cases the problem is that the type-I error rate is endangered. 

2. TYPE-I ERROR RATE 

(1) Assume that the null-hypothesis of no-difference is true. 
(2) Suppose 2 comparisons/tests are performed. 
The chance of at least one significant test at p <0.05 
is the twice the chance with 1 test. 
(3) With k tests and a = 0.05 the chance of at least 1 significant test 

increases to 1 - 0.95k. 
The type-l error is the conclusion that a difference exists on the basis of the trial­
data while it does not exist in reality. This risk of this error is the statistical 
significance, and, worldwide, the upper limit is accepted as a=0.05. Multiple 
comparisons, and multiple testing increase the actual significance level. 
To further explain this, suppose that there is no difference in reality. Also, suppose 
that k comparisons or tests are performed each with significance level a=0.05. The 
actual chance (=probability=Pr) ofa false conclusions equals 

Pr(1 or more significant tests) = 1 - Pre no significant tests). 

Assuming that the k comparisons are independent, then the type-l error-risk can be 
written as 

(kJ 0 k Pr(type-I error) = 1- 0 a (l-a)k = l-(l-a) . 
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If the significance level a is set to 0.05, the risk will be larger for any value ofk> I, 
and for large k the risk will be close to I. Multiple comparisons and multiple tests 
will not be independent in most cases, therefore the error-rate will not be as 
dramatical as implied by the above formula, but even with small dependencies, the 
error rate will soon get large, and need correction. Both for multiple comparisons, 
and for multiple tests there are different ways to adjust the significance level, and 
some of them will be discussed here. 

3. MULTIPLE COMPARISONS 

• Suppose k treatment groups, 
• Ho: 8 j = 82 = 83 = ... = 8k where 8 = treatment effect, 
• k(k-I)/2 different comparisons are possible, 
• example: 

compare 4 different selective serotonin reuptake inhibitors (SSRls) with 
each other and with placebo with respect to the intravaginal ejaculation 
latency time (lEL T) after 6 weeks of treatment in patients with ejaculation 
praecox. Baseline IEL T<60 sec, on average 20 sec. 

Multiple comparisons are encountered in trials where k treatment groups are 
compared with respect to some efficacy criterion 8. The standard null-hypothesis is 
that all theta's are equal: Ho: 8]=82= ... =8k• With k groups, there are k(k-I)12 
different comparisons possible: group 1 with 2, group I with 3, and so forth, until 
group k-I with group k. 
Patients with ejaculatio praecox have a very quick ejaculation upon intromission 
(within 60 seconds in over 90% of intromissions), and in our example the average 
IEL Twas 20 seconds. Latency times were skewed-distributed, and we therefore 
analyzed 10g(IEL T) values. 

4. EXAMPLE I: DATA SUMMARY 

After 6 weeks of treatment· 

sample size mean standard deviation 
Treatment n x S 

Placebo 9 3.34 1.14 

SSRIA 6 3.96 1.09 

SSRIB 7 4.96 1.18 

SSRlC 12 5.30 1.51 

SSRlD 10 4.70 0.78 
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The average log(lELT) values after six weeks varied between 3.34 for the placebo 
group and 5.30 for the third SSRl. There are several questions that a researcher 
may ask here. One may focus on differences between each active drug (SSRl A, B, 
C, and D) versus placebo, thereby inferring efficacy of each SSRl against no 
treatment. On the other hand one may also inquire whether the active drugs differ 
amongst each other in efficacy. In this example both questions are of interest, and 
this leads to 5*(5-1)/2 = 10 different paired comparisons. 

5. EXAMPLE 1: GRAPHICAL DISPLAY 

u 
! 500] 
~ 400 
w ! 
r::: 300 . 
III 

200 J CI) 

E 
u 
';: 100 
1ii 
E 0 0 
CI) placebo A B C 0 C'I 

Significant differences? 

Although we summarized the IEL T data on the log scale, it is very informative to 
display this summary on the original time scale. Back-transforming the average of 
log-transformed individual observations yields the geometric mean of the original 
observations, and is often very close to the median. The standard deviation of the 
log-transformed observations is often close to the variation coefficient (CV) of the 
original data points, and therefore the limits of the 95% confidence of the log­
transformed data will often coincide with the 95% confidence interval of the 
median of the original scale. Naturally, this procedure can be applied only with 
positive data only. If zero values or negative data are observed, other 
transformation must be looked at in order to standardize and normalize 
distributions. 
The confidence intervals of the placebo group and of the SSRl B, C, and D groups 
do not overlap and this suggests significant differences, but here there is a need for 
a multiple-comparison-correction. The intervals of the 4 SSRI's do overlap, and 
this suggests no-significant-differences, but this must be interpreted with care, 
because the relevant confidence is the confidence of the difference of the means, 
and not of the two means separately, 
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6. TWO STRATEGIES 

Two strategies are possible: 
(1) ANOVA, 

(2) 

ifp-value >0.05 then accept HO. 
<0.05 then perform a least significant 
difference (LSD) procedure. 

Direct multicomparisons: 
Bonferroni t-test, 
Tukey's highest significant difference(HSD) test, 
Student-Newman-Keuls test, 
Dunnett's test. 

For the comparison of k groups of different patients we can take two different 
scenarios. The first scenario is to start with analysis of variance (ANOV A), and 
inspect the global test of the null-hypothesis of no di fference among the k groups. 
This test is a single test, and only one p-value is interpreted, hence there is no 
multiple comparisons problem: the type-I error risk is at the nominal level a=0.05. 
If the p-value is larger than a, then the analysis stops, and the null-hypothesis of no 
difference is not rejected. When the p-value is less than a, then the null-hypothesis 
of no difference is rejected. Paired comparisons are, subsequently, done using the 
LSD procedure without further correction for multiple comparisons. The basic 
philosophy of this strategy is that the type-I error rate is controlled through the 
ANOV A procedure. 
The second strategy ignores the p-value of the ANOV A procedure, and starts 
directly with paired comparisons. Since the type-I error rate is not controlled 
through a global test, a correction for the multiple testing is needed. There are 
many procedures, and some of the best known procedures are called: Bonferroni, 
Tukey's HSD, Student-Newman-Keuls, and Dunnett's procedures. 
We will also discuss each of these multiple comparisons procedures. 

7. LSD TEST 

Tukey's least significant difference (LSD) test 
• is to be used in connection with ANOV A, 
• is (sort of) pairwise t-tests, 

S2w = residual variance of ANOV A 

2 1 1 
Sw(-- + ) 

n i nj 

tij is distributed as a Student's t with N-k degrees of freedom 
The LSD procedure consists of calculating a t-type statistic for each pair of groups: 
it is the ratio of the difference of the two means divided by the standard error of 
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this difference. It looks very much like the Student's t-test, and, in fact, the only 

difference is the estimate of the within-groups-variance (or pooled variance: s:). 
Here it is estimated on the basis of all k groups (via the ANOVA procedure), 
whereas in Student's t-test it is estimated on basis of data in the two groups only. 
The LSD-statistic follows a t-distribution (like Student's t-test ) but with N-k 
degrees of freedom where N is the total number of patients in the k groups. 

8. AL TERNA TIVES 

The alternative strategy to test mUltiple samples/groups is a pairwise test without 
ANOVA, 

• with a Bonferroni corrected significance level: O.05/(k(k-l )/2), 
• considering the distribution of the various tij-values (HSD test), 

• multiple ranging (SNK test), 
• specialized treatment comparisons (e.g. against placebo) (Dunnett's test). 

The Bonferroni procedure consists of calculating Student's t-test for each pair of 
treatment groups, but instead of using a(=O.05) as significance level, aI(k(k-l )/2) 
is used as significance level. When k is 5, ten different pairs of groups can be 
made, and a*(=allO=O.05110)=O.005 is used as significance level. Bonferroni's 
correction is very simple, but, unfortunately, it is too strict, otherwise called 
conservative. 
Less conservative is Tukey's highest-significant-difference (HSD) test. Again a t­
type statistic is calculated as given in the previous sheet (LSD-statistic), but here 
the p-value is not calculated using the t-distribution with N-k degrees of freedom, 
but according to a much more complex distribution which entails the multiple 
comparison correction. 
The Student-Newman-Keuls procedure is a multiple-ranging-procedure of which 
there are also much more variants. Dunnett's procedure entails focusing on special 
contrasts only, for instance the comparison of each active treatment with placebo. 

9. MULTIPLE RANGING 

How do we proceed with multiple testing: 
I. test homogeneity of all k means, 
when rejected, 
2. test homogeneity in all possible sets of (k-I) means, 
when rejected, 
3 ..... . 

The Student-Newman-Keuls procedure is a multiple-ranging-procedure. This 
means a procedure to fmd homogeneous subsets of treatment groups. A 
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homogeneous subset is a set of groups for which the global null-hypothesis of no 
difference cannot be rejected. 
The strategy is basically a step-procedure with the global ANOV A test of no 
difference among the k groups as fIrst step. When this global test is rejected 
(denoting heterogeneity), all possible subsets of k -1 groups are considered. T f the 
overall test for a subset is not significant, the procedure stops for that subset, and 
homogeneity is not rejected. When there is at least one subset with a significant 
overall test, subsets of k-2 groups are considered, and this procedure continues 
until homogeneity for all subsets cannot be rejected. 
The advantage of multiple ranging is that less statistical tests need to be performed, 
and therefore a less stringent correction factor is needed. 

10. EXAMPLE I : RESULTS 

Difference P value 

Mean (SE) LSD lISD Bonferroni Dunnett 

Placebo vs A -0.62 (0.63) 0.33 0.86 0.99 0.73 
B -1.62 (0.60) 0.01 0.07 0.10 0.035 
C -1.96 (0.52) 0.001 0.005 0.006 0.002 
D -1.36 (0.55) 0.017 0.12 0.17 0.058 

A vs B -1.00 (0.66) 0.14 0.56 0.99 
C -1.34 (0.60) 0.03 0.18 0.30 
D -0.74 (0.61) 0.24 0.75 0.99 

B vs C -0.34 (0.57) 0.56 0.98 0.99 
D 0.26 (0.59) 0.66 0.99 0.99 

C vs D 0.60 (0.51) 0.25 0.76 0.99 

A highly signifIcant global ANOV A statistic was provided in our example, 
indicating that the null-hypothesis of no difference must be rejected. Paired 
comparisons clearly indicated that the p-values of the LSD-procedure were the 
smallest illustrating their liberality. P-values of the Bonferroni correction were 
highest, and Tukey's HSD values were in between. Dunnett's procedure only 
considered special contrasts, which entailed less inflation of p-values than seen 
with the HSD procedure. 



MUL TIPLE TESTING 139 

11. EXAMPLE 1: ANOTHER GRAPHICAL DISPLAY 
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versus Placebo 

Results of our analysis may be displayed in many ways, but when differences of 
groups are of main interest, these differences must be displayed. A big advantage 
of showing the results in this way is that when the value zero is not contained in 
the interval, the difference must be significant. This requires the calculation of 
confidence intervals corrected for multiple comparisons, and indeed these can be 
calculated in association with the method chosen. 

12. CORRECTED CONFIDENCE INTERVALS 

• Confidence intervals (CIs) may be constructed using similar methods 

Most computer programs allowing multiple comparisons procedures also provide 
associated confidence intervals. 

13. NO METHOD IS BEST 

• Which method is best? No preference, specify arguments for any method 
has to be provided in protocol. 

• There are no multiple comparison tests available for discrete, or censored 
data or non-parametric methods. Best is to use an overall test, and perform 
pairwise comparisons only when the overall test is significant. 

There are few compelling arguments for prefering one method for multiple 
comparisons over another. When the consequences of incorrectly deciding that a 
difference is for real, are large, a conservative method may be prefered (like the 
Bonferroni method), but the consequence of such choice is decrease of power. 
We have discussed only methods for quantitative data, and unluckily these 
methods have not been developed as much for discrete or censored data. Also these 
methods require more-or-less normally distributed data, and multiple comparisons 
procedures have neither been developed for ranked data. 
When discrete or censored data need to be corrected for multiple comparisons, or 
when a non-parametric statistical analysis tool is used, the best way to proceed is to 
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use a global test first (as in the above first strategy), and continue with pairwise 
comparisons only when the global test is significant. The conservative Bonferroni 
method is, of course, also a possibility. 

• 

• 

14. MUL TlPLE TESTING 

In a decent trial there are often 
several primary evaluation criteria, 

" secondary " " 
tertiary " 

Generally, a multitude of tests is performed and this, dramatically, 
increases the type-l error risk. 

The second circumstance where the problem with repeated statistical analysis 
arises, is when effIcacy in a clinical trial is characterized with two or more 
different variables. This happens everyday. Almost all clinical trials use so-called 
primary, secondary, and tertiary effIcacy criteria, and each criterion is tested for 
significance between the two (or more) treatments that are compared in a clinical 
trial. The multitude of criteria increases the type-I error rate when the significance 
level is not adjusted. 

15. WHAT TO DO? 

How to handle multiple endpoints in a trial: 
• Use as few as possible, say only one, effIcacy criterion 

There is a simple remedy to the problem of multiple testing; use as few effIcacy 
criteria as possible, preferably only one. But this is hardly possible in many areas 
of biomedical research: cardiovascular disease, for instance, is characterized by 
myocardial, cerebral, or peripheral vascular conditions, and often many more 
relevant event-types. Rheumatoid arthritis is similarly characterized by a multitude 
of different symptoms and signs: swollen joints, pain, movement limitations, 
inflammation markers et cetera. In fact, few diseases can be typified with a single 
disease marker, and therefore many markers need to be included in most trials in 
order to adequately assess treatment effIcacies .. 
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16. CORRECTION 

Corrections for multiple endpoints: 
• Use the Bonferroni correction: a* = aIk. 
• Weigh each p-value (Hochberg): multiply 

• the largest with weight 1, 
• the second largest with weight 2, 
• the third largest with weight 3, 
• the smallest with weight k, 
• preserve the original ordering. 

In case of multiple criteria the Bonferroni method can be used: basically when 
there are k variables, the Bonferroni correction means that a*= alk is used as 
significance level. It is very conservative. Somewhat less conservative is 
Hochberg's method, which uses a Bonferroni type correction factor, but ranked by 
the level of the p-values, provided that the original order is maintained. 

17. EXAMPLE 2: DATA 

Placebo Statin 
Change of: (n=31) (n=48) P 

. p' p@ 

Total cholesterol -0.07 (0.72) 0.25 (0.73) 0.06 0.24 0.11 
decrease 

HD L cholesterol increase -0.02 (0.18) 0.04 (0.12) 0.07 0.28 0.11 

LD L cholesterol decrease 0.34 (0.60) 0.59 (0.65) 0.09 0.36 0.11 

Triglycerides increase 0.03 (0.65) 0.28 (0.68) 0.11 0.44 0.11 

Take a small trial as an example, comparing the efficacy of statin and placebo of 
lowering total cholesterol (Tc), LDL cholesterol (LDL), and triglycerides (Tg), and 
increasing HDL cholesterol (HDL). Since two groups are compared with respect to 
mean values, the appropriate test statistic is the Student's t-test. The uncorrected p­
value is given (p' ), as well as the Bonferroni corrected value (p# ), which is given 
here as four times Student's p-value. Naturally, the p-value should remain less than 
1. In Hochberg's procedure (p@ ) the smallest p-value is multiplied by k = 4, the 
second smallest is multiplied by (k-l)=3, and so on, and the largest p-value is 
multiplied by unity. But since the original rank order is to be maintained, all 
Hochberg's corrected p-values are 0.11 here. 
An important advantage of both Bonferroni's and Hochberg's method is that they 
can be applied with any type of statistical test. 
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18. EXAMPLE 2: GRAPHICAL DlSPLA Y 
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The differences between the mean values of the statin- and placebo-groups are 
displayed above, as well as the associated CIs. The CIs can be corrected for 
multiple testing as well. 

19. ALTERNATIVES 

How to correct CIs for multiple testing: two possibilities. 
• Two steps: 

• l. overall test: Hotelling's T-square (or another form), stop ifnot 
significant, 

• 2. t-tests without correction. 
• Make a composite of variables on the same scale (when they are not too 

highly interrelated). 

When two treatment groups are compared on a number of quantitative (normally 
distributed) variables, an overall test is available for testing globally the null 
hypothesis of no difference on all variables: this test statistic is called Hotelling's 
T-square. Using this statistic, a strategy similar to that of multiple comparisons can 
be followed. When the global test statistic is non-significant, the analysis is 
stopped, but when it is significant no further correction is needed for the individual 
test statistics. 
Another possibility is to make first a composite variable which combines all 
efficacy criteria, and perform the statistical analysis on the composite only. In our 
example it is reasonable to believe that statin-treatment has similar effect on all 
four lipid variables, and, thus, a composite of these four variables might be 
adequate. 
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20. COMPOSITE 

How to perform a composite analysis ofthe four variables. 

Z = (Tc* + HOL * + LOL * + Tg*)/4 
Tc* = standardized Tc: Tc* = (Tc-mean(Tc))/SOTc ..... . 

Placebo: mean Z = -0.23 (SO 0.59) 
Statin: mean Z = 0.15 (SO 0.56) 

P = 0.006 
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One possible composite is the mean value of the four variables. But in calculating 
the mean it is sensible to take care that the variables are measured on the same 
scale, and have the same direction. Standardization is easily obtained by 
subtracting data from the mean and dividing this by the standard deviation. 
In our example the composite mean is lowered significantly more in the statin­
group than in the placebo-group: hence the power to detect statin-efficacy is not 
sufficient for each variable on itself, but for the average the power is sufficient. 

21. EXAMPLE 2: GRAPHICAL DISPLAY 
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For each of the four criteria the 95% CI for the difference of the two treatment 
groups contains the zero value, but not for the composite variable .... 
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21. CONCLUSION 

• Beware of the multiple testing/comparison problem. 

• Whatever you choose, may be acceptable, provided decisions are taken 
• a priori and 
• as specified in the protocol. 

The important message of this chapter is that multiple comparisons and multiple 
testing pose a serious statistical problem. There are few arguments to prefer a 
specific method of correction; whichever method, the decision must be taken a 
priori and must be specified as much as possible in the study protocol. We should 
add that another, more philosophical, approach to the problem of multiple 
endpoints has been described ( Cleophas et aI, Statistics applied to clinical trials, 
Kluwer Academic Publishers, Boston, MA, 2002, pp 1-3). 

22. EXERCISES TO CHAPTER 8 

Indicate which alternative is correct. 
In a study into genetic determinants of the effect of anti-TNF (tumor necrosis 
factor) treatment in patients with severe rheumatoid arthritis the role of the TNF-a 
marker was assessed. This marker had 10 polymorphisms in this sample. In this 
study all patients were treated with anti-TNF for one year. Before and after the 
disease-activity-score (DAS) was assessed in all patients. Below are the results of 
the change in this DAS-score. 

TNF-a sample size average change SD 
99 13 1.65 0.47 
101 11 1.05 0.32 
103 7 1.12 0.55 
105 17 0.75 0.41 
107 6 0.88 0.39 
109 14 1.01 0.44 
111 10 0.84 0.35 
113 5 1.44 0.42 
115 13 0.95 0.27 
121 4 0.66 0.31 

1. Comparing statistically each genotype with all others in a pairwise fashion 
using a fixed significance value 
A. increases the power, 
B. decreases the risk of a type-I error, 
C. increases the risk of a type-II error. 
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2. The best statistical test for the hypothesis of no difference between these 10 
genotypic groups is 
A. the Student t -test, 
B. the chi-square test for two-by-two tables, 
c. oneway analysis of variance. 

3. Suppose the above statistical test yields a p-value ofless than 0.05. The 
investigator is interested in genotypes in which the DAS-change is extremely 
large or small. He decides to compare statistically all genotype groups with 
each other. This is best done with 
A. the Student's t-test , 
B. the Dunnett t-test, 
C. the LSD test. 
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4. Another investigator, using the same data, decides that when two mean 
DAS-changes of two genotype-groups are not significantly different, then other 
genotype groups with DAS-changes lying in between, cannot be significantly 
either. This investigator should use 
A. the modified t-test, such as the HSD test, 
B. a multiple range test, such as of Student-Newman-Keuls, 
C. oneway analysis on selected genotype groups. 

5. In a clinical trial using 5 different efficacy criteria, the bonferroni correction 
means that the significance level must be set to 
A. 0.05 
B. 0.025 
C. 0.01. 
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PRINCIPLES OF LINEAR REGRESSION ANALYSIS 

1. PAIRED OBSERVATIONS: REGRESSION ANALYSIS CAN BE USED FOR 
PREDICTING ONE OBSERVATIONS FROM ANOTHER 

patient no. new treatment bisacodyl 
(y-variables) (x-variables) 
(days with stool) (days of stool) 
VAROOOOI VAROOO02 

I 24 8 
2 30 13 
3 25 15 
4 35 10 
5 39 9 
6 30 10 
7 27 8 
8 14 5 
9 39 13 
10 42 15 
11 41 11 
12 38 II 
13 39 12 
14 37 10 
15 47 18 
16 30 13 
17 36 12 
18 12 4 
19 26 10 
20 20 8 
21 43 16 
22 31 15 
23 40 14 
24 31 7 
25 36 12 
26 21 6 
27 44 19 
28 II 5 
29 27 8 
30 24 9 
31 40 15 
32 32 7 
33 10 6 
34 37 14 
35 19 7 
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2. PAIRED DATA SHOULD BE FIRST PLOTTED 

50~----------------------------------~ 

40 

30 

20 

o 10 
o o 
o 
0:: 

~ o~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ 
2 4 6 8 10 12 14 16 18 20 

VAR00002 

A linear correlation is obvious( x- variable gets larger, the y-variable gets larger). 
A regression line can be calculated from the data according to equation. 

y=a+bx 
The line drawn provides the best fit for the data given, 
where y= socalled dependent, and x=independent variable, b = regression 
coefficient, a= intercept. 

3. REGRESSION LINE, THE EQUATION 

A regression line can be calculated from the data according to the equation 
y=a+bx 

The line drawn from this linear function provides the best fit for the data given, 
where y = socalled dependent, x = independent variable, b = regression coefficient. 

a and b from the equation y=a+bx can be calculated. 

b = regression coefficient 

a = intercept = y - bx 

[L(X - x)(y - yW 

L(X-X)' 
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r = correlation coefficient = is another important determinant and looks a lot like b. 

r = 

[L(X - x)(y - y)r 
L(x - xrL(Y _y)2 

r = measure for the strength of association between y- and x-data. The stronger the 
association, the better y predicts x. 

4. CORRELA nON COEFFICIENT 

r varies between -1 and + 1. 
-Strongest association is either -1 or + 1 (all data exactly on the line), 
-weakest association 0 all data are parallel either to x-axis or to y-axis, or half one 
direction, half the other, 

-for convenience standardize r by dividing it by standard deviation ofy-values, 
then b=r . 
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5. USE SPSS 8 FOR WINDOWS 99 STATISTICAL SOFTWARE TO ANALYZE 
DATA FROM PARAGRAPH 1 (THE STOOL DATA) 

-Command: Statistics; Regression; Linear 

Model Summary 

Adjusted ~td. Error 0 

Mode R R Square R Square he EstimatE 
1 .794a .630 .618 6.1590 

a. Predictors: (Constant), VAR00002 

Sum of 
Model Squares df Mean Square F 
1 Regression 2128.393 1 2128.393 56.110 

Residual 1251.779 33 37.933 
Total 3380.171 34 

a. Predictors: (Constant), VAR00002 

b. Dependent Variable: VAR00001 

Coefficients" 

Unstandardized 
Coefficients 

Model B Std. Error 
1 (Constant) 8.647 3.132 

VAROOO02 2.065 .276 

a. Dependent Variable: VAR00001 

Interpretation: 

Model Summary: 

Standardi 
zed 

Coefficien 
ts 

Beta 

.794 

t 
2.761 

7.491 

Sig. 
.000a 

Sig. 
.009 

.000 

0.630 ~63.0% of variation in y-data is explained by variation in x-data, the 
adjusted r-square for small samples. 

ANOVA: 
SS regression = (SPxy)2 ) / SSx = 2128.393. SS total= SS y. 
SS regression / SS total = 2128.393/ SStotal = 2128.393/3380.171 = 0.630 = r 2 

Coefficients: 
Regression equation--+ new laxant = 8.647 +2.065.bisacodyl, 
rfSS y is defmed to be 1, then r = b, t = 7.494 =....; F =....; 56.110 
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6. THREE COLUMNS OF PAIRED DATA INSTEAD OF TWO 

patient new tr bisacodyl age patient new tr bisacodyl age 
no. y-variable xl-variable X2 -variable no. y-variable xl-variable x2variable 

1 24 8 25 19 26 10 27 
2 30 3 30 20 20 8 20 
3 25 15 25 21 43 16 35 
4 35 10 31 22 31 15 29 
5 39 9 36 23 40 14 32 
6 30 10 33 24 31 7 30 
7 27 8 22 25 36 12 40 
8 14 5 18 26 21 6 31 
9 39 13 14 27 44 19 41 
10 42 15 30 28 11 5 26 
11 41 11 36 29 27 8 24 
12 38 11 30 30 24 9 30 
l3 39 12 27 31 40 15 20 
14 37 10 38 32 32 7 31 
15 47 18 40 33 10 6 29 
16 30 13 31 34 37 14 43 
17 36 12 25 35 19 7 30 
18 12 4 24 

7. USE SPSS 8 FOR WINDOWS 99 STATISTICAL SOFTWARE TO ANALYZE 
THE ABOVE DATA 

Model Summary 

Adjusted Std. Error of 
Model R R Square R Square the Estimate 
1 .848a .719 .701 5.4498 

a. Predictors: (Constant), VAR00003, VAR00002 

Sum of 
Model Squares df Mean Square F Sig. 
1 Regression 2429.764 2 1214.882 40.905 .000" 

Residual 950.407 32 29.700 
Total 3380.171 34 

a. Predictors: (Constant), VAR00003, VAR00002 

b. Dependent Variable: VAR00001 
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Coefficients a 

Standardi 
zed 

Unstandardized Coefficien 
Coefficients ts 

Model B Std. Error Beta t SiQ. 
1 (Constant) -1.547 4.233 -.366 .717 

VAROOO02 1.701 .269 .653 6.312 .000 
VAROOO03 .426 .134 .330 3.185 .003 

a. Dependent Variable: VAR00001 

Interpretati on: 
Model Summary 
0.719~ 71.9 %variation in the y-data is explained by variation in the x-data. The 
adjusted r-square is for small samples. Addition of age produces 71.9 - 63.0 = 8.9% 
extra explanation of the variance in the y-data. 

ANOVA 
SS regression = (SPxy/ ISS x = 2429.764. SS total = Ssy. SS regression I SS 
total = 2429.764 I 3380.171 = 0.719 = r 2; 

Coefficients 
Regression equation-+ new laxant = -1.547 + 1.701.bisacodyl, + 0.426.age. If SSy 
is defmed I, then r=b, both the efficacy of bisacodyl and age are significantly 
correlated with the efficacy of the new laxant. 

8. ANOTHER EXAMPLE OF A MULTIPLE LINEAR REGRESSION MODEL 

Quality of life in patients with coronary artery disease and angina pectoris has 
various determinants. 
y-variable= quality of life 
x-variables=l.Age 

2.Gender 
3.Rhythm disturbances 
4.Peripheral vascular disease 
5.Concomitant calc channel bl 
6.Concomitant beta blockers 
7. NYHA -classification 
8. Smoking 
9.body mass index 
10.hypercholesterolemia 
II.hypertension 
I2.diabetes mellitus 

Index of quality oflife = a + b l (age) +b2 ( gender) + ...... bl2 ( diabetes). 
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9. MULTICOLLINEARITY TESTING IN THE ABOVE EXAMPLE 

Correlation between independent variables may be correlated but not too closely: 
e.g. bmi, body weight, body length should not be included all three ( single linear 
regression is used for this purpose, r -values). 

age / gender / rhythm / vase dis / eeb / bb / NYHA / smoking / bmi / ehol / hypt 

gender 0.19 
rhythm 0.12 ns 
vase dis 0.14 ns ns 
eeb 0.24 ns 0.07 ns 
bb 0.33 ns ns ns 0.07 
NYHA 0.22 ns ns 0.07 0.07 ns 
smoking -0.12 ns 0.09 0.07 0.08 ns 
bmi 0.13 ns ns ns ns 0.10 -0.07 
ehol 0.15 ns ns 0.12 0.09 ns 0.08 0.09 
hypt 0.09 ns 0.08 ns 0.10 0.09 0.09 0.09 0.07 
diabetes 0.12 ns 0.09 0.10 ns 0.08 ns 0.11 0.12 0.10 

vasc dis= peripheral vascular disease; ccb= calcium channel blocker therapy; bb= 
beta-blocker therapy; bmi= body mass index; hypt= hypertension; ns= not 
statistically significantly correlated (Pearson correlation P-value>O.05). 

10. RESULTS FROM THE ABOVE EXAMPLE 

Regression Coefficients and Standard Errors for a Multiple Linear Regression of 
index of quality-of-life on various concomitant variables (=covariates). 

Covariate estimated regression estimated standard test statistic Significance level 
coefficient error (T) (P-value) 

Age -0.03 
Gender 001 
Rhythm disturbances -0.04 
Peripheral vascular disease -0.00 
Calcium channel blockers 0.00 
beta blockers 0.03 
NYHA -classification -0.08 
Smoking -0.06 
body mass index -0.07 
hypercholesterolemia 0.07 
hypertension -0.08 
diabetes mellitus 0.06 

NYHA= New York Heart Association 
Results nicely fit in prior hypotheses 

0.04 0.8 
0.05 0.5 
0.04 1.0 
0.01 0.1 
0.01 0.1 
0.04 0.7 
0.03 2.3 
0.04 1.6 
0.03 2.1 
0.03 2.2 
0.03 2.3 
0.03 2.0 

I.Patients with angina pectoris and concomitant diabetes mellitus benefit better. 
2. With cholesterolemia equally so. 

0.39 
0.72 
0.28 
0.97 
0.99 
0.43 
0.02 
0.08 
0.04 
0.03 
0.02 
0.05 
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3. Hypertension causes diastolic dysfunction but reduces endothelial function 
less so. 

4. Nicotine causes vasoconstriction of resistance arteries but leaves endothelial 
function. 

5. Mobility reducing obesitas and low NYHA give little anginal symptoms and thus 
little benefit. 

11. CONCLUSIONS 

If you are confused now by the complexity of this chapter, don't be: multiple linear 
regression analysis and its extensions like logistic regression and Cox's 
proportional hazard model is not as important for clinical trials as it is for 
observational research: 

1. Regression analysis assesses associations not causalities. 
2. Clinical trials assess causal relationships. 
3. We believe in causality iff actor is introduced and gives rise to a part 

outcome. 
4. Always air of uncertainty with regression analysis 

Multiple linear regression is interesting, but, in the context of clinical trials only 
exploratory. 

12. QUESTIONS TO CHAPTER 9 

I. Suppose in a multiple regression equation 
y= 24.4 + 5.6 XI + 6.8 Xz , 

Y stands for weight (pounds) 
and Xz for age (years. For each additional year of age, then, it can be expected 
that weight will increase by 24.4 pounds. 

1. Right 2. Wrong 
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2. A study of independent determinants oflongevity provides the following results 
s = standard error = 13.4 R -square = 89.1 % 
Analysis of variance 

Sums of squares(SS) df mean square(MS) f 
Regression 
Residual 
Total 

7325.33 4 
898.28 5 

8223.60 9 

l83l.33 10.19 
179.66 

Coeff St -error t-ratio sig. 
Constant 82.237 81.738 1.01 0.361 
School -1.553 4.362 -0.36 0.736 
Age -1.685 1.253 -l.35 0.236 
Psychological score 0.110 0.291 0.38 0.720 
Social score 6.876 7.658 0.89 0.410 

The regression equation for the given data is 
a. y = 82.2 - 1.55 Xl - 1.69 Xz + 0.11 X 3+ 6.88 '4, 
b. y = 13.4 - 1.55 Xl - 1.69 Xz + 0.11 X 3+ 6.88 '4, 
c. Y = 81.74 - 4.36 Xl + 1.25 Xz + 0.29 X 3+ 7.66 X4, 

d. y = 82.24 - 0.36 Xl - 1.35 X2 + 0.38 X 3+ 0.90 X4. 

sig. 
0.013 

3. From question 2 how much ofthe variation in the longevity is explained by the 
regression? 
a. 94% 
b. 82% 
c. 89% 
d. 13 % 

4. From question 2 
a. Is school an independent determinant of longevity? 
b. Is age an independent determinant of longevity? 
c. Is social score an independent determinant of longevity? 
d. Is longevity dependent on all of the x-variables? 

5. From question 2, the proportion of variation in longevity explained by variation 
in the x-variables can be calculated from 
1. dividing SS reg by SS residual, 
2. dividing SS reg by SS total, 
3. dividing SS residual by SS total, 
4. dividing MS reg by MS residual. 

6. The ... test is a statistic used to test the significance of a regression as a whole. 
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7. In a multiple linear regression of longevity a negative regression coefficient of 
determinant x indicates that 
a. Longevity increases when the determinant increases, 
b. Longevity decreases when the determinant increases, 
c. None of these. 

8. Signs of possible presence of multicollinearity in a multiple regression are 
a. Significant t values for the coefficients, 
b. Low standard errors for the coefficients, 
c. A sharp increase in a t value for the coefficient of an x-variable when 

another x-variable is removed from the model, 
d. All of the above. 

9. Nine patients are tested subsequently with two different driugs for the 
urate-clearance-potential. Mean results are virtually the same, but also there 
seems to be a strong positive correlation, every time 1st drug performs well, the 
2nd drug does so equally. The drugs are obviously from one and the same class. 
How strong does 1 st drug predict the effect of 2nd drug? 
patient 1 st drug 2nd drug 
1. 0.645 0.1117 
2. 0.750 0.6296 
3. 1.000 1.1475 
4. 1.300 1.6654 
5. 1.750 2.1833 
6. 2.205 2.7013 
7. 3.500 3.2192 
8. 4.000 3.7371 
9. 4.500 4.2550 

regression analysis 
s = standard error = 0.3957 R2 = 93.6% 
Analysis of variance 

Regression 
Residual 
Total 

Sums of squares(SS) df 
16.094 I 

1.096 7 
17.191 8 

mean square(MS) f 
16.094 102.77 
0.157 

Coeff St-error t-ratio sig. 
0.201 
0.000 

Constant 
Drug 1 

-0.4063 0.2875 -1.41 
0.51792 0.0511 10.14 

Provide the regression equation from the above data. 

sig. 
0.000 
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10. The analysis from 9 shows a strong positive, strong negative correlationship. 
1. positive 2. negative 

11. From the data from question 10 
R2 = 93.6% indicates that 
a. 93.6% of the variation in drug 2 is explained by the variation in drug 1, 
b. 93.6% of the variation in drug 1 is explained by the variation in drug 2, 
c. None of these. 

12. Is the f-value from the ANOV A table identical to the squared t-ratio (drug 1) 
from the coefficient table? 
a. yes b. no 

13. The r-square can be calculated from SS regression / Sstotal. 
a. yes b. no 
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SUBGROUP ANALYSIS USING REGRESSION 
MODELING 

1. SUBGROUP QUESTIONS 

Subgroup questions include: 
• Who has unusual large response? Is such occurrence associated with 

subgroups of patients? 

• they can be used for refming patient- or dose-selection for future trials. 

• Subgroup-analyses are -by nature- almost surely underpowered to 
defmitely answer the above questions and therefore hypothesis generating 
rather than hypothesis confirming. 

In addition to the primary questions of clinical trials, there are often many other 
scientific issues that may be addressed using the data sampled. Some of these issues 
may be completely different from the primary question of the trial, but others may 
be associated with it. When the trial indicates that the new treatment is significantly 
more effective than the standard treatment, a natural question is to wonder if 
specific patients may be identified for whom effectiveness is unusually larger or 
smaller than for others. The same applies with negative trials where no significant 
difference between two treatments is demonstrated. In such a case, it is often 
questioned whether this lack of efficacy-difference regards all of the patients or 
whether it results from averaging subgroups of patients that do have a real efficacy­
difference from control. Questions like these are addressed in subgroup analyses. It 
must be stressed that subgroup analyses can only be interpreted as hypothesis­
generating: they may point to specific aspects of the research-design that should be 
altered in a subsequent clinical trial to maximize power. Inclusion- and exclusion­
criteria may have to be different from the current ones in order to better select those 
patients likely to have large efficacy, or to better select the most effective dosage. 
Subgroups are usually defmed on the basis of observable characteristics of the 
patients enrolled in the trial, for instance gender, age, body mass index (bmi). The 
basic question is then whether efficacy is different for women and men, for older 
and younger patients, or for patients with high and low bmi. The trial has almost 
surely little power to answer such questions, especially when subgroups are further 
refmed, like "young men with high bmi". A statistical model providing better power 
than that of subgroup analysis is in this situation given by regression modeling. The 
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use of the latter models, although they will not completely solve the power­
problem, they suffer less from it, and, in addition, may be used to address questions 
on confounding, and interaction. Results of regression modeling can be used 
immediately to predict individual treatment-efficacy, and thus to tailor treatment to 
individual needs and possibilities. 

2. DIFFERENT REGRESSION MODELS 

Regression models: many possibilities: 
• Quantitative data: linear/nonlinear regression models. 

• Discrete data: (probit) logistic regression. 

• Censored data: Cox regression. 

The first step in subgroup analysis is the defmition of treatment-efficacy. The data­
nature determines the specific regression model to be used. When treatment­
efficacy is defmed in terms of events to occur, then the variable describing efficacy 
is typically dichotomous: the value 1 indicates efficacy, and the value 0 inefficacy. 
For dichotomous data the logistic regression model is generally used. When 
treatment-efficacy is scored in discrete (ordinal) categories such as "good­
moderate-bad", ordinal or multinomial regression analysis is required. 
When events vary in time, and the follow-up duration of the patients is variable as 
well, then the data are socalled censored event-times, and the usual regression 
model is the Cox proportional hazards regression model, or Cox model in short. 
When efficacy is measured on a continuous scale, like amount of LDL-cholesterol 
or systolic blood pressure lowering, applicable models are the well known linear 
regression model, or nonlinear regression model depending on the assumed relation 
between efficacy and patient characteristics. In most cases, the linear model is used. 

3. GENERAL FORM OF REGRESSION MODELS 

General form: 

E[Yil Xi] = g -1 ( ~o + ~I Xli + ~ 2 X~ + ... + ~ k Xk) 
2 

Var[Yil Xi] = G e 

Yi is the dependent variable in the ith subject (primary efficacy variable), 
Xi is a covariate, predictor or independent variable in the ith subject, 
E[Yil Xi] is the expected V-value in the ith subject given the X-values in the same 
subject, 
g-I is the link-function, 
~ is a regression parameter, which must be estimated. 
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Regression models are used to estimate the expected value of the efficacy-variable 
E[Yil Xi]. So Yi is the efficacy in patient i, and its expectation is supposed to 
depend on the characteristics of patient i: Xli , X2i. ... , Xki. The dependence varies 
among different regression models (linear, logistic, or Cox), and is indicated by the 
link-function "g-J". The expectation must be interpreted as follows: "take patients 
with characteristics x\, X2, ... , Xk. In such patients efficacy can be calculated to be 
E[YIX]' In models for quantitative efficacy-data (linear, or nonlinear models) it is 
necessary to describe, in addition, how efficacy varies among patients with the 
same characteristics, and this is mostly assumed to be constant (Var(YIX)=a2). 
The efficacy-variable Y is called the dependent variable, and the patient 
characteristics are called independent variables, or predictors, or covariates. The 
parameters that will be estimated are indicated as "W' and are called regression 
weights, or regression parameters. Notice that when !3-values are known, we can 
predict the expected treatment-efficacy for any patient of which we observed X\, 
X2, ... ,Xk -values: the linear predictor is then !3o+!3,Xli+!32X2i+ ... +!3kXki. 

4. LINK-FUNCTIONS 

P (Y=llX) is the expected proportion Y given the I/X-variables. 

S(YIX) is the expected survival Y given the X-variables. 

13 is a direct effect with linear regression, a log-odds-ratio with logistic 
regression, or a log-relative risk with Cox regression. 

The link-function g-' determines the nature of the regression model. For the linear 
model the link-function is 1, thus the mean ofY given X is modeled by: E[YiIXi]= 
!3o+!3,Xli+!32X2i+ ... +!3kXki. 
For the logistic model the link-function is the logit-function= logistic function, 
which means that Y is transformed into In (YI (l-Y». and consequently the 
probability of effective treatment (Y=l) is modeled as a function of the covariates: 
exp( .... ). Exp. indicates "e to the power ... ", where "e" is defmed as 2.71828 .... 
(In( e)= 1). In this logistic model the regression parameter 13 can be interpreted as the 
natural logarithm of the odds ratio. 
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For the Cox-model the link-function is the "log minus log"-function, and 
consequently the cumulative percentage of patients with effective treatment as time 
proceeds is modeled. In this model the regression parameter 13 can be interpreted as 
the natural logarithm of the relative risk. 

5. ASSUMPTIONS OF THE LINEAR REGRESSION MODEL 

Linear regression model- assumptions: 
• The relation between Y and 

z= 130 + 13 1 Xl + 132 X2 + ... + 13k Xk +e is linear, where z is the way our 
transformed Y -data can be written. 

• Distribution of the residual e is normal. 
• The residual variance is the same for all Z-variables (homoscedasticity). 
• The residual e is independent. 

Important assumptions when using the linear regression model are 
(i) linearity, 
(ii) normal distribution, 
(iii) homoscedasticity, 
(iv) independence. 

The name linear regression model already indicates that it is assumed that the 
relation between efficacy and patient characteristics is linear. This is obvious when 
a patient characteristic has only two values (e.g. gender), but need not be the case 
when a characteristic varies widely (e.g. age, or lipid level). The assumed linearity 
must be checked, and the easiest way to do so is to inspect scatter-plots ofY-values 
versus X-values. 
A second assumption is that Y follows a normal distribution for each different 
combination of XJ,X2""'Xk, and it is also supposed that the variation for each 
different combination of X],X2" .. ,Xk is the same. This latter thing is called 
homoscedasticity, a pretty strong assumption in practice. Finally, the residual 
between the observation Yi and the expectation E[YIX] must be independent of each 
other and of all covariates. This latter assumption is met in most cases. Normality 
can be inspected by inspecting the histogram of the residuals, and homoscedasticity 
by the scatter-plot of Y versus !30+!3IX]j+!32X2i+ ... +!3kXki and superimposing the 
regression line. 
When these assumptions are violated (which to decide is often rather subjective), 
alternative regression models must be used. Many exist but their are statistically 
increasingly complex. 
In the graph below a linear regression line is iIIustrated, as well as the key-concepts. 
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6. LOGISTIC AND COX REGRESSION MODEL 

• Logistic regression model: 
relation between P(Y=IIX) and X variables follow the logistic 
transformation. 

• Cox regression model: 
relation between S(Y/X) and X-variables follow a log-relative risk 
transformation. 

The basic assumption of the logistic curve is that the relation between the 
probability of observing an event (Y=l) and the combination of covariates follows 
the logistic transformation. In the graph below an example is given of a logistic 
curve. This assumption is not very strong. Indeed, the applicability of the 
appropriateness of the logistic model is rarely checked. One can show that the curve 
cannot be logistic if important covariates are not in the model, or when the 
functional form of covariates is wrong. Deviations from the logistic curve are the 
basis of socalled goodness of fit assessment (Hosmer-Lemeshow), but a good start 
is to make a scatter-plot. 
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The basic assumption of the Cox regression model is that the risks are proportional 
over follow-up time: this means that if the risk of an event for males is R times 
larger than for females at month t, then it can be assumed that the same 
proportionality applies at month t+x. This assumption is, however, hard to check, at 
least not by inspecting the plots of the hazards, or survival curves. 

7. AN EXAMPLE WHERE THE COX MODEL FITS 

1
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To illustrate that it is difficult to ensure the fit of the Cox model, look at the log-
hazard curves (upperleft) associated with a covariate with three categories (X=O, 
X=20, or X=30). It is evident that the distances between the curves is constant over 
time, because the log-risks are increasing equally in all of the three groups. In the 
upperright graph the risks themselves are given, and it is clear that proportionality 
is hard to establish. The same applies for the cumulative hazards (lower left) and to 
the survival curves (lower right). 
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8. AN EXAMPLE WHERE THE COX MODEL DOES NOT FIT 

-o X9l 

-o X~ 

X=4(J 

~----~----~'2------'-.----~24 ~X~ 
10 20 30 

time time 

12 ,. 12 ,. 2. 

time time 

In the upper left graph it can be clearly seen that the difference of the log-risks are 
not constant, thus proportionality does not apply. This cannot be concluded from 
the hazards themselves (upper right), or from the cumulative hazard (lower left), or 
from the survival curves (lower right). 
Concluding: proportionality can only been seen directly in the log-hazard plot but 
this plot is unfortunately not readily available. 
Instead, proportionality can be inspected visually by looking at so-called martingale 
residuals, or functions thereof., which is an increasingly important subject in 
current clinical research, however, far beyond the scope of this book. 

In the sequel we will only discuss the linear regression model, but all of the aspects 
to be discussed almost without qualifications equally apply to the logistic and the 
Cox model. 
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9. INCREASING PRECISION: EXAMPLE 

A real data example is given: 

a parallel-group study of placebo (n=434) versus pravastatin (n=438), 

• two years treatment, 
• main endpoint average LDL-decrease: 

pravastatin: 1.23 (SO 0.68) 
placebo: -0.04 (SO 0.59), 

• efficacy-result: 1.23 - -0.04 = 1.27 
standard error (SE)= 0.043. 

The first application of regression models is the possibility to increase precision of 
the estimated treatment effect. Take as an example a randomized trial comparing 
placebo and statin treatment in 434 and 438 patients, respectively. LDL is measured 
before and after two years of treatment and the average decreases are 

statin: 
placebo: 

1.23 (SO 0.68) 
-0.04 (SO 0.59) 

Obviously, LDL-decrease varies at lot in both treatment groups but -on average­
treatment efficacy can be quantified as 1.23 - (-0.04) = 1.27. Since the patients in 
the two groups are independent of each other the standard error of this estimate 
equals "«0.682/438)+(0.5921434)) = 0.043. 

10. INCREASING PRECISION: USING A REGRESSION MODEL 

Yi = 130 + 131 Xli + ei 
XI = 1 if a patient receives pravastatin and zero if placebo 

=> 131 is efficacy: 1.27 (SE = 0.043 is a function of G e 
2 ). 

Suppose there is a covariate X2 which is related to Y, but not to XI: 

Yi = 130 + 131 Xli + 132 X2i + ei 
131 remains the same, but the variance G e

2 will become (much) smaller 

=> SE(131 ) will be smaller => increased precision. 

The same analysis (and results) can be obtained by using a regression model 
Yi=l3o+I3IXli+ei, where Yi is the LOL-decrease of patient i (i=1, .. ,434+438), and Xli 
equals 1 ifpatient i receives statin, or zero if patient i receives placebo. The term ei 
represents the residual variation and has standard deviation G e• 

This linear regression analysis yields an estimate of 131 of 1.27 with standard error 
0.043; hence, completely equal to the above analysis. It is important to realize that 
the standard error of 13 is a monotonic increasing function of G e. 
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Suppose further that there exists a second covariate X2 which is related to Y, but not 
toX1: 

In this case (X2 not related to Xl, but related to Y), inclusion ofX2 in the regression 
model will not change the estimated value of 131 but it will result in (much) smaller 
estimate of the residual standard deviation cre: 

Y,~1lo + ~,X,; +\ 
Y;=l3o + I3IX li ~ 

The decrease of cre results in a smaller standard error of 13. 

1l. INCREASING PRECISION: EXAMPLE OF A REGRESSION MODEL 

An example is baseline LDL. 
Baseline LDL is not related to treatment (randomized trial). 

placebo: 4.32 (SD 0.78) 
pravast: 4.29 (SD 0.78) p=0.60 

Baseline LDL is (almost surely) related to LDL-decrease. 
132 = 0.41 (SE 0.024, p<O.OOOl) 

=> efficacy: 13 1 = l.27 (SE 0.037, was 0.043). 

The baseline LDL values are almost surely unrelated to treatment (in a randomized 
trial), but baseline levels are usually correlated to change-values (almost surely), 
thus baseline levels are a good example of a second covariate. In our case we- fmd 
no difference between the two treatment groups on baseline levels, but a highly 
significant relation between baseline levels and change-values (132=0.41, p<O.OOOl). 
The estimated treatment-effect (131) was l.27, the same as above, but the standard 
error was lowered to 0.037. 
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12. INCREASING PRECISION: GRAPHICAL ILLUSTRATION 
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The difference between the two regression line (grey and black) represents the 
treatment efficacy: for each level of the x-axis (baseline LDL) the average LDL­
decrease is a constant amount larger in the statin (grey) group than in the placebo 
(black) group, even though the decrease is much less in patients with low baseline 
LDL than in patients with high baseline LDL. 
The residual variance is a measure of the spread around the two regression lines, 
which is much less when conparing the spread of the black points around the black 
line with the spread of grey points around the grey line. This residual variance is 
much less than it is when considering the spread of all grey and black points 
together. 
This decrease of the residual variance leads to smaller standard errors, by which the 
efficiency of the estimated treatment effect is increased. In the logistic and in the 
Cox models the same arguments apply, although somewhat more complicated 
arguments are needed due to the non-linearity of these models. 

13. INCREASING PRECISION 

• Usually there are many many many candidates to consider: 
specifY which ones will be used in the protocol. 

• In non-linear regression models [31 always changes by including 
covariates, thus its interpretation changes (can be greatly 
inflated). 
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In most trials many baseline patient characteristics are sampled, and are candidates 
for inclusion in the regression model. In order to protect oneself against chance 
findings, one should only consider covariates that are specified in the protocol. 

14. CONFOUNDING 

Confounding 
• can be defmed a covariate Z that is associated with both Y and X], 
• and troubles interpretation of the efficacy estimate 13]. 

• What is thought to be efficacy may just reflect the unbalance of Z between 
treatment groups. 

Regression models can also be used to estimate treatment effect when there are 
characteristics asymmetrically distributed between treatment groups. Suppose the 
covariate X] is the covariate representing treatment (i.e. Xli=l if patient i receives 
active treatment, and Xli=O when patient i receives placebo). Suppose further that a 
covariate exists denoted by Z (e.g., gender or age) which is associated both with X] 
and with treatment-efficacy Y. Such covariate is called a confounding variable. Z 
will trouble unbiased estimation of the treatment-effect 13], because part of the 
treatment effect may be due to the unbalance with respect to Z. For instance, when 
there are far more women in the active treatment group than in the placebo group, 
then the difference in treatment-efficacy may be due to the fact that (whatever) 
treatment is simply more effective in women than in men. 

15. CONFOUNDING: SOME RULES 
Confounding 

• will not happen often in randomized trials, 
• will happen always in non-randomized research. 
• When it happens, adjustment of 13] is required using the linear regression 

model: 
Yi = 130 + 13\ Xli + 132 Zi + ei 

if rxz>O and ryz>O then 

ifrxz>O and ryz<O then 
ifrxz<O and ryz>O then 
ifrxz<O and ryz<O then 

13*]<13] 

13*]>13] 

13*]>13] 
13']<13] 

In well-controlled trials confounding will rarely exist because all of the (baseline) 
patient characteristics will be equally distributed across treatment groups due to the 
randomization process, and this means that Z and X] will not be associated. Even 
when there is a patient characteristic that shows a significant difference between 
treatment groups one may consider this as a chance fmding (because so many 
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characteristics are evaluated). If an important covariate is unbalanced it mayor will 
bias the estimated treatment-effect ~I. In non-randomized studies confounding will 
almost always occur. 
Correction of the confounding effects of Z on the estimation of the treatment-effect 
~I may be done with regression models such as the linear regression model: 

Yi = ~o + ~; Xli + ~2 Zi + ei. The estimate of ~; will in general be different from 

the estimate ~I of the regression model without Z. The relation between ~; and ~I 
depends on the correlations of XI and Z with Y (rxz and ryz, r=correlation 
coefficient): the treatment-effect can be too large, or too small when the 
confounding effect of Z is ignored. 

16. CONFOUNDING: WARNING 

• Check only the necessary (known) confounders. 
• Beware of multiple testing. 

In most trials there are huge numbers of covariates, all candidates for inspection of 
their confounding effects. This is not a sensible strategy because of chance findings 
due to the multiple testing problem (chapter 8). It is, therefore, sensible to specifY in 
the protocol which covariates will be assessed. 
When two or more confounders are found, the (linear) regression model can be 
extended with both or more confounders to remove their confounding effect. There 
are limitations to the number of covariates that should be incorporated in regression 
models; a rule of thumb suggests that at least 10 observations are required for each 
term in a regression model, thus ifk confounders are considered and one treatment­
variables one should aim for lOx(k+ 1) patients in the study. 

17. INTERACTION/SYNERGISM 

Looking for subgroups with different efficacy. 
Yi = ~o + ~I Xli + ~2 X2i + ~3 X li·X2i + ei Suppose X2 =0 or 1 : 

X2=1: Yi=~O+(~I+~3)Xli+ei 

X 2=0: Yi = ~o + ~I Xli + ei 

The fmal use of regression models is to investigate whether treatment is equally 
effective in different subgroups of patients. This phenomenon is called interaction 
(mainly in statistical literature), or synergism in pharmacological literature. 
Treatment (XI) and a covariate X2 are said to interact with respect to the treatment­
efficacy when the regression parameter ~3 associated with the product X I *X2 in the 
regression model below is unequal to zero: 
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Suppose X2 is a dichotomous covariate with values 0 or 1, the treatment-effect will 
be different for patients characterized by X2=1 or X2=0: 

Y j = [30 + [31 Xli + ej, 

Y j = ([30+[32) + ([31+[33) Xli + ej, 

18. INTERACTION/SYNERGISM: EXAMPLE 

Primary question: Ho: [33 = 0 
Example: is there interaction between statins and calcium channel 
blockers (CCBs)? 
Efficacy criterion = change of diameter of coronary vessels. 

placebo 

statin 

noCCB 
CCB 
noCCB 
CCB 

0.097 (0.20) 
0.130 (0.22) 
0.088 (0.19) 
0.035 (0.19) 

Take the example of a trial evaluating the effect of statins versus placebo to reduce 
progression of coronary artery disease as measured by the decrease of the minimum 
obstruction diameter of the coronary arteries. About half of the patients received a 
calcium channel blocker (CCB) in addition to the statin or placebo, and the question 
was whether effect of statins was mediated by concomitant CCB medication. The 
average MOD (maximal observed diameter)-decreases were 0.097, 0.13, 0.088, and 
0.035 in the four groups of patients. 

19. INTERACTION/SYNERGISM: GRAPHICAL ILLUSTRATION 
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The difference between the average MOD-decrease of the placebo- and statin-goups 
represent statin-efficacy, and this difference is much larger in patients who received 
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a CCB than in patients who did not receive a CCB. This difference in efficacy can 
be estimated with a regression model as given above. 

20. INTERACTION/SYNERGISM: GRAPHICAL ILLUSTRATION 

Efficacy: 
no CCB: /31 = 0.097 - 0.088 = 0.011 

CCB: /31 + /33 = 0.130 - 0.035 = 0.095 

/33 = 0.095 - 0.011 = 0.084, p=O.OII 

The estimates of /31 and /33 can be derived immediately from the means as observed: 

noCCB: /31 = 0.097 - 0.088 = 0.011 
CCB: /31 + /33 = 0.130 - 0.035 = 0.095 => /33 = 0.084. 

The advantage of using the regression model instead of subgroup analysis, is the 
possibility to test statistically whether the estimate of /33 differs significantly from 
zero. Another important advantage is that hypotheses on more complex interactions 
(and or confounding) can be estimated and tested simultaneously. 

21. INTERACTION/SYNERGISM: WARNINGS 

• Be careful investigating interactions: multiple testing problem. 
• Do not enter too many covariates in a regression model: (k<n1lO). 

Like with confounding, interactions of many many covariates with treatment may 
be evaluated. Since the likelihood of chance-findings is huge, it is again sensible to 
evaluate only those interactions that were specified a priori. Similarly, caution is 
needed regarding the total number of covariates in the regression model. 

22. CONCLUSION 

Good models: 
• Check assumptions. 
• Use selection algorithms sparsely. 
• Instead use penalized methods, shrink regression weights. 
• Caution against optimistic results: cross-validation may be helpful. 

We conclude with some cautions. Application of regression models is very easy, 
since many computer programs are available. Successful application should 

always check fit of the regression models, 
use covariate selection sparsely, 
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23. QUESTIONS TO CHAPTER 10 

Indicate which alternative is correct. 

1. In randomized clinical trials subgroup analysis for identification of patients with 
unusually high or low response is most often 
A. unwanted because of bias in the data sampled, 
B. a hypothesis confirming analysis, 
c. a hypothesis generating analysis. 

2. When using the standard linear regression model (Y=a+bX+e) it is assumed that 
the residual term of the regression model (e) is 
A. independent ofthe dependent variable Y, 
B. normally distributed given the independent variable X, 
C. the same for all values of the dependent variable Y. 

3. When in the above linear regression model the standard deviation of e given X, 
Se, is proportional to the mean of Y given X it is sensible to transform Y using 
A. the square-root transformation, 
B. the logarithmic transformation, 
C. the identity transformation. 

4. When in a randomized clinical trial comparing two treatments, a linear 
regression model is used to evaluate the randomized treatments (Xl) next to a 
covariate X2, and X2 is independent of Xl, this analysis 
A. will correct for the confounding effect of X2, 
B. will increase precision of the effect-estimates of the treatments (Xl), 
C. is pointless because X2 and Xl are independent. 

5. When in the above clinical trial, the linear regression model 
Y=bo+b1XI +b2X2+b3(Xl.X2)+e is used and the regression weight b3 is 
significantly larger than zero, this points to 
A. confounding ofX2 on the efficacy estimate of Xl, 
B. interaction between Xl and X2, 
C. the inappropriateness of the regression model for the data sampled. 
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RELATIONSHIP AMONG STATISTICAL 
DISTRIBUTIONS 

1. VARIABLES TO ASSESS CLINICAL DATA 

Sample of clinical data mainly assessed through 3 variables: 
1. The mean result. 
2. The spread or variability of the data. 
3. The sample size. 

-F.e., in pharmacokinetics we want little-variability(l) in drug-levels(2) because too 
low not efficaceous, too high not safe, and so (1) is here more relevant than (2). 

-We test variability using Chi-SQuare-distribution. 
-Chi-square distribution closely related to normal-distribution. 
-It was invented by Pearson 1 1900, 300 years after normal-distribution 

(De Moivre 1667-1754). 
-Chi-square-distribution: heart of modem statistics 

(modem stats is more interested in variances of data and samples 
of data than in means of them). 

-Chi-square provides simple device to analyze complex data: multiple groups and 
multivariate analyses. 

2. CENTRAL TENDENCY AND SPREAD OF DATA 

Repeated observations: Central-tendency and spread (departure from 
central tendency). 
(Compare right and wrong bets). 
The more wrong bets, the more spread in data. 
We need index to estimate size of spread. 

Why not: Ld In = mean distances of our data from mean (doesn't work). 
Better: Ld2 In = add-up sum of squared distances (works very well and is called 

variance of n observations. 
Note: Ld In also used to describe something else: 

mean of a sample of data if d is defined from 0 rather than from mean. 

-Considering the two formulas, means and variances of sample look a lot the same. 
-Frequency distribution of variances nothing else than distribution of squared 

values of normal distribution. 
-Chi-sQuare-distribution is squared normal-distribution. 
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3. CREATING A CHI-SQUARE DISTRIBUTION 

-Upper graph below shows a normal distribution. 
-Lower graph shows the same distribution, but z-values have been squared, 

y-values are unchanged. 
-Because z-values have been squared, we have no negative values on 

z-axis anymore. 
-Curve is skewed to right ( a socalled chi-square (X; ) curve). 
-Interpretation of skewed curve: total area under the curve (AUC) =100% of the 

squared data. 
Normal distribution 

4. HOW TO USE THE SQUARED CURVE 

'Ld In = mean = z-value upper graph. 
'Ld2/n = variance (=sd2 ) = r-value lower graph. 

-Upper graph= frequency distribution of means, and presents mean results of 
many trials similar to our trial: ifmean trial-result> 2 (1.96) distant from 0 
~ p<0.05, if>2.58 ~ p<O.01. 

-Lower graph= frequency distribution of 
variances of many trials similar to our trial: if 
variance> 1.962 distant from mean ~p<0.05, if> 2.58~p<0.01. 



RELATIONSHIP AMONG STATISTICAL DISTRIBUTIONS 177 

Normal distribution 

T­
o' 

z-values 
(SEMs) 

Chi-square distribution 

1.962 

5. HOW X2 WORKS IN PRACTICE: lx2 TABLE 

Sleepines No-sleepiness Sleepines No-sleepines 
observed expected from population 

number number number number 
a (5) b (10) all 0) [3(5) 
Is our observed sample significantly different from population? 

a- a =5-10=-5 
b- [3 =10-5 = +5 + 

o 
So adding up differences from expected values does not tell us. 
Alternative: takes the square differences instead of differences 
(a- a)2 = 25 divide by a to standardize = 2.5 
(b- (3)2 = 25 " [3 " = 5 + 

X2 = 7.5 
Add-up sum of squared distances from supposed mean of population is larger than 
compatible with a X2 distribution, and we reject that our sample is not different 
from the population with p<O.OI (chi-square-table on page 205, 1 degree of 
freedom (df)). 
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6. HOW X2 WORKS IN PRACTICE: 2x2 TABLE 

Sleepiness no-sleepiness sleepiness no-sleepiness 

Left treatment (left group) 
Right treatment (right group) 

observed expected 

5 (a) 
9( c) 

10 (b) 
6 (d) 

.... ( a) 
... ( y) 

(0-E)2/E= (a-a)2/a=(5-14/30x 15)2 I 14/30 x 15= .. 
= (b- 13)2 I 13 = 

= (c- y) 2 I Y = 

(13) 
.... ( 8 ) 

cell 1: 
2: 
3: 
4: = (d- 8) 2 I 8 = _____________ + 

= 2.106 
0= observed number; 
E= expected number=(proportion sleepers Itotal number) x numbergroup 
Add-up sum of squared distances from expected number = best estimate of variance 
of the data, and follows X2 distribution. With X2 =2.106 and 2-1 =1 df ~ p>O.1 (chi­
sqaure table on page 205). 

7. WITH X2 WELCOME TO THE REAL WORLD OF STATISTICS BECAUSE 
IT CAN BE USED FOR k x 2 TABLES 

Group 1 
Group 2 
Group 3 
Group 4 
Group 5 

Sleepiness 
5 (a) 
9 (c) 
... (e) 

no sleepiness 
10 (b) 
6 (d) 
... (t) 

cella: (0-E)2/E=(5-14/30x 15)2 I 14/30 x 15= .. 
b: (O-Ei IE 
c: (O-Ei I E 
d: (0-E)2 IE 
e: .. 
f: .. 

The main difference from the 2x2 table test is the degrees of freedom (dfs): they are 
2-1 = 1 with 2x2 table, and 5-1 =4 with 5x2 table. 
Note:- X2 looks weird at first. 

-Main difference from normal or t-test: uses squared values. 
-Basis modem statistics. 



RELATIONSHIP AMONG STATISTICAL DISTRIBUTIONS 179 

8. WHY NOT X2 FOR CONTINUOUS DATA 

Any sample of data, either continuous or proportional, can be characterized by 
mean ± standard deviation (SD). 

,----------:-

( 1) SD continuous data = [ L (x - x) 2 ] dependent on sample size, 

(n -1) 

( 2) SD proportional data = .J[p(1- p)] independent of sample size. 

Note: z-test = t-test but (1) replaced with (2). 

Proportional data follow binomial distribution ("'=' normal distribution). 
Sleepines No-sleepiness Sleepines No-sleepines 

observed expected from population 
number number number number 
a(5) b(10) 10 (a) 5(~) 

What is chance=probability=P ofx = 5 sleepy patients with random sample ofn = 
15 patients? 
P (x=k) = n! 1 x! (n-x)! (pY (l-p) u-x where <!> is faculty, e.g., 5!= 
5x4x3x2x1). 
P (x=5) = 15! 1 5! ( 1O!) (10/15)5 (5/15)10= 0.000273 
P (x :::;5) = < 0.000273= <0.001. 
Mean proportion = n x p = 15 x 10115 = 10. 
SD = "[p(1-p)] independent of sample size. 

5 10 15 

Note: Why SD =" [p(1-p)] . assume n=l and XI =0 and X2 =1. 

= p2 (l-p) + (l_p)2 p= (p+l-p) p(1-p)= p(l-p). 

x 
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9. WHAT ARE THE ADVANTAGES OFAX2 -TEST COMPARED TO Z-TEST 
OR T-TEST 

1. SO not dependent on sample size. 
2. Like with variances squares are used: no-negative values. 
3. In statistics variances encountered all the time ( between subject, within 

subject, within group, between-........ ). 
4. Mean variances of multiple samples can be simply added up. 

With X2 we can play magic; analyses are bit messy; amazing that it works 

10. WITH CHI-SQUARE WELCOME TO THE REAL WORLD OF STATISTICS 

-Variances of multiple samples can be added up. 
-(Variance, actually, is defined as add-up sum of squared distances from the mean). 
-Add-up sum can be analyzed simultaneously. 
-Possible both for continuous, proportional data, percentages, odds ratios, risk 

ratios et cetera. 
-Only difference: breadth of the chi-square curve gets wider and wider the more 
samples of variances are added. 
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11. EXAMPLES 

Example 1: (note (}" = sd of population, s = sd of random sample). 
Population with (}"2 = 12. We take an at random sample of 10. What is probability of 
variance = S2 >20? S2 I (}"2 is standardized variation per datum. We have a sample 
of 10 and thus 10 data. Add-up sum provides "l and equals 10 x S2 I d or slightly 
better (10-1) x S2 I d. X2 = (n-l) 20 112 = 15 for 9 dfs ~ 0.05<p<0.1. 

Example 2: pill producing machine: sd of::;; 8 mg requested, 
random sample of n=25 produces s= 10 mg. 
l = (n-l) 10 18= 24.100/64= 37.5 for 24 dfs p<0.05 Stop machine. 

More examples: 
1. Anxious people have high variability in performance, mean performance like 

non-anxIous. 
2. For hospitals more variability in stay-days requires more demanding care. 
3. Diagnostic tests should have small test-retest variability. 

12. MORE EXAMPLES, HOW TO CALCULATE 95%CONFIDENCE 
INTERVALS OF AN ODDS RATIO WITH UNPAIRED OBSERVATIONS 

Ln OR ± 1.96 -V (1/a+ IIb+ lIc+ lid) 
where In indicates natural or socalled Napierian logarithm. 
For example 

Group 1 
Group 2 

Hypertension yes 
a n=5 
b n=10 

OR=a/c I bid = 0.25 

hypertension no 
c n=10 
d n=5 

95% confidence intervals of In OR = In OR ± 1.96 -V (lIa+ IIb+ lIc+ lid) 
= In 0.25 ± 1.96 -V (115+1110+1110+1/5) 
= -1.3863 ± 1.5182 
is between - 2.905 and 0.132 

95 % confidence interval of OR is between antiIn -2.905 and antiIn 0.132 
is between 0.055 and 1.14 

This confidence interval crosses 1.0 and is thus not significantly different from 1.0. 
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13. MORE EXAMPLES, HOW TO CALCULATE 95% CONFIDENCE 
INTERVALS OF AN ODDS RATIO WITH PAIRED OBSERVATIONS 

Ln OR ± 1.96 -V (l/R + liS) where R and S are discordant pairs. 

For example: 
59 patients are treated with beta-blocker for angina pectoris. 

major side effects 
no side effects 

clinical benefit 
9 

41 

no benefit 
2 
18 

x2 -McNemar = (18-9f 1 (18+9) = 81127= 3 1 df p=0.08 

OR benefit/risk = 20/50 1 11159= 2.145 
Calculation 95% confidence intervals: 
In 2.145 - 1.96 x 0.408 to In 2.145 + 1.96 x 0.404 means from -0.l23 to 1.509. 
Find 95% confidence interval (CI) by taking the anti-ln 0.9-4.5 (95% CI crosses 
1.0, thus p=0.08). 

14. MORE EXAMPLES, HOW TO CALCULATE AND TO POOL ODDS 
RATIOS OF VARIOUS STUDIES (UNPAIRED DATA) 

For example 4 studies assessed odds ratios of all cause deaths in patients with heart 
failure treated with beta-blockers 

First, calculate from 95% CIs the standard error (s). 
s= (In upper value minus In lower value)l1.96 , 
for example: 
with 95% CI 0.97-1.43 
s= (0.3576 minus --0.0305)/1.96= 0.1980 
then S2 = 0.0393 
then 1/s2 = 25.510. 

OR 95%CI InOR 
Waagstein 1.18 0.97-1.43 0.16 
Packer 0.41 0.39-0.80 -0.89 
CIBIS 0.66 0.54-0.81 -0.42 
MERIT 0.66 0.53-0.81 -0.42 

lIs2 
25.510 
13.33 
100 
100 

pooled data 238.84 

lnOR/s2 

4.08 
-11.86 
-42 
-42 

-91.78 

(lnOR)2/s2 
0.653 
10.56 
17.64 
17.64 

46.493 
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Test if pooled OR is significantly different from l.0 
(lnOR1 lSI 2 + lnOR2 /S2 2 + .. i 

= X2 pooling for 1 df 

= (-9l.78)2/238.84 = 39.65 p<O.OOOI 

Test if heterogeneity between the studies is significantly different 

Calculate pooled 95% CIs 

= 46.493 - 39.65 for 4-1 =3 dfs 

= 6.843 0.05 <p< 0.10 

OR ± l.96/'" (1/s/ + 1/S22+ ... ) 
e 

-9l.78/238.84 ± l.96/'" 238.84 
e 

-0.3842 ± 0.127 
e 

0.68 ( 0.59-0.77) 
significantly different from 1.0. 
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15. MORE EXAMPLES, HETEROGENEITY OF TRIALS IN A META­
ANALYSIS 
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Meta-analysis of 19 trials of endoscopic sclerotherapy for esophageal bleeding is 
shown. On x-axis results (RR= bleeders on sclerotherapylbleeders on sham 
sclerotherapy). Chi-square is calculated according to: In RR/S 12 + In RR2/S22 + In 
RR3/s/ + ... , where In= natural logarithm is used to normalize the data and S2 = 
variance of the means. 
Result chi-square= 43 ( 18 dfs) ~P<O.OOl. 
Significant heterogeneity demonstrated, overall pooling of these data is not 
warranted. 

16. MORE EXAMPLES, EXTENSION OF CHI-SQUARE IS F-DISTRIBUTION= 
DIVISION-SUM OF TWO CHI-SQUARE DISTRIBUTIONS(USED IN 

ANAL YSIS OF VARIANCE (ANOV A» 
Total variation 
I I 

Between-group-variation within-group-variation 
Variations are expressed as sums of squares (SS) and can be added up to obtain the 
total variation. We assess whether between-group-variation is large compared to 
within-group-variation. 
Group n patients mean sd 
1 
2 
3 
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Grand mean = (mean 1 + 2 +3)/3 
SSbetweengroups = nl (meanl --- grand meani + nz (meanz --- grand mean)z + .... 

SSwithingroups = (nl-1)(sd1z ) + (nr1) sdl + ..... 
F= test-statistic = SS between groups / dfs • 

S S within groups / dfs 
The F-table gives P-value. 

5% 1 % 

I I 
dfs 4 and 20 

--+- ~~---'-~: +-+---t--j-
o 2 

2.87 4.43 

Degrees of freedom equals nl + n2 + n3 + .. + nk -k for SSwithin and k-1 for 
SSbetween. 

17 . LIMITATIONS OF STATISTICAL TESTS AS DISCUSSED AND 
CONCLUSIONS 

T-test, normal-test, chi-square test, F-test, all assume that repeated observations 
follow normal distribution. 
Mathematical formula F (x)= 1/ ...j2nsz / e-(x-m) 12S 

where s = standard deviation and m = mean value. 

However: 
-repeated observations in nature do not precisely follow this single formula, 
-may even follow largely different patterns. 
-formula approximation, amazing that it works. 

-p-values for making predictions is tricky. A p-value of e.g. 0.001 means: 
chance 0.001 ifHO true, chance ± 80% if HI true. 
only true if data follow normal distribution, and representative for population 
at large. 

We wish that more often these limitations be accounted by the advocates of 
evidence-based medicine. Ifwe accept the above limitations, normal distribution 
can be used to try and make predictions, on the understanding that statistical testing 
cannot give certainties, only chances. 
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18. QUESTIONS AND EXERCISES TO CHAPTER 11 

1. A sample of clinical data is detennined by the following variables 
a. mean, 
b. sample size, 
c. variance, 
d. statistical power. 

Which answer is wrong. 

2. Why can variability in a sample of clinical data not be assessed as add-up sum 
of differences from the mean value of the sample? 

3. X2 -distribution is 
a. squared t-distribution, 
b. nonnal distribution, 
c. f-distribution, 
d. binomial distribution. 

Which answer is correct? 

4. X2 -distribution is used to assess 
a. whether mean of data is significantly different from 0, 
b. whether variability of data is significantly different from 0, 
c. whether variability of data is significantly different from mean, 
d. whether mean of data is significantly different from baseline. 

Which answer is correct? 

5. The X2 -distribution is used to test the null-hypothesis that 
a. X2 > 1. 96 distant from 0 
b. X2 > 2.56 distant from zero 
c. X2 > 3.84 distant from zero 
d. X2 > 6.55 distant from zero. 

Which answer is correct? 
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6. The X2 - test for 2xl table tests the following data. In a sample from given 
population 60 patients have a borderline hypertension, 100 patients have not. 
From epidemiological surveys we know that the population distribution is 40 
versus 120. Is this sample significantly different from the given population? 

7. The X2 - test for 2x2 table is used to test whether two groups are significantly 
different from one another. 

Group 1 
Group 2 

hypertension 
yes 

a n=60 
b n=lOO 

no 
c n=40 
d n=120 

8. The X2 - test for 3x2 table is used to test whether three groups are significantly 
different from one each other. 

hypertension 
yes no 

Group 1 a n = 60 d n= 40 
Group 2 b n=100 e n = 120 
Group 3 c n= 80 f n= 60 

9. The X2 - test for 2x3 table is used to test whether two groups are significantly 
different from one each other. 

Group 1 
Group 2 

hypertension 
yes 

a n=60 
b n=50 

no 
c n=40 
d n=60 

don't know 
e n=60 
f n=50 

10. A pill should have a diameter of 6 mm with a standard error (SE) of 0.5 mm. 
We test and fmd an SE of 0.9. Is our result significantly different from 
the required SE? 
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11. Four studies assessed odds ratios of sudden deaths in patients with heart failure 
treated with beta-blockers. Odds ratios (ORs) of sudden death are given. Pool 
the data and test heterogeneity. Also calculate the pooled OR and 95% CIs (s is 
standard error). 

OR 95% CI InOR 1Is2 InOR/s2 (lnOR)2/s2 
Waagstein 1.46 0.72-2.68 0.378 9.26 3.037 0.996 
Packer 0.45 0.21-0.99 -0.796 6.67 -5.31 4.226 
CIBIS 0.58 0.40-0.83 -0.545 31.25 -17.03 9.280 
MERIT 0.59 0.45-0.77 -0.528 35.71 -18.85 5.255 

pooled data 82.29 -38.153 19.757 

12. Four studies assessed odds ratios (ORs) of deaths due to progressive heart 
failure in patients treated with beta-blockers. Odds ratios of sudden death are 
given. Pool the data and test heterogeneity. Also calculate the pooled OR and 
95% CIs (s is standard error). 

OR 95%CI InOR 1/s2 !nOR/s2 (lnORf /S2 

Waagstein 1.03 0.42-2.53 0.0296 5.00 0.148 0.004 
Packer 0.20 0.076-0.64 -1.514 3.57 -5.40 8.183 
CIBIS 0.92 0.724-1.20 -0.083 71.4 -5.93 0.492 
MERIT 0.50 0.33-0.79 -0.0693 3.33 -0.231 0.016 

pooled data 83.3 -11.413 8.695 
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STATISTICS IS NOT BLOODLESS ALGEBRA 

1. BIOLOGICAL PROCESSES ARE FULL OF VARIATIONS 

Statistics can not give certainties, only chances. 
Chances that prior hypotheses true/untrue. 
The human brain hypotheses all the time, may be untrue. 
In clinical medicine: hypotheses may be untrue, must be assessed with hard data. 
When statistics comes in, many a clinician becomes nervous. 

Clinicians leave data to statistician. 
Statistician runs data through SAS [2001, Chicago, IL] or SPSS [2001, New York, 
NY] who sees if any significancies: scenario bad practice, kills data. 
Biostatistics can do more than provide irrelevant P-values. 

2. STATISTICS IS FUN FOR CLINICAL INVESTIGATORS 

.Is not maths. 
• Proofs prior hypothesis. 
• Discipline at interface of biology and maths. 
• Maths used to answer biological questions. 
• Above scenario does not answer reasonable biological questions, is data dredging. 
• Source oflot of misinterpretations in clinical medicine. 
• Statistical analysis: confine to prior hypotheses. 
• Problem with multiple tests like gambling: 

20 times with chance 5%. After game (1-0.05)20 = (0.95)20 = 0.36= 36% 
chance prize. Result not based on significant effect but play of chance. 

3. USE SIMPLE TESTS 

• Statistical result not confirming prior belief, don't trust. 
• Simplest univariate test adequate for data. 
• Fancy multivariate procedures not in place. 
• Statistics confirms prior hypotheses. 
• Appropriate because based on sound arguments. 
• If not, [md out why: imperfections in design or execution? 
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Another fun thing with statistics, although not as important, method of secondary 
analyses: it proves nothing, kind of sports, new ideas. 

4. STATISTICAL PRINCIPLES IMPROVE QUALITY OF TRIAL 

(1) Take care of symmetries in data, 
(2) emphasis on statistical power, 
(3) assess why drug works, 
(4) accounting Type I, II, III errors, 
(5) weighing benefits drug against risks. 

5. STATISTICS PROVIDES EXTRAS 

Parallel designs cannot: 
(1) manage multimodal therapies, 
(2) manage historical data, 
(3) manage ethics and efficacy during long-term trials, 
(4) study drugs, before toxicity information is available, 
(5) account therapeutic equivalence, 
(6) study multiple treatments/groups, 
(7) adjust baseline levels. 

6. STATISTICS PROVIDES EXTRAS, SPECIAL DESIGNS CAN MANAGE 
WHAT PARALLEL DESIGNS CANNOT 

Special designs for such purposes: 
(1) factorial design, 
(2) historical controls design, 
(3) group-sequential interim analysis design, 
(4) sequential design for continuous monitoring, 
(5) therapeutic equivalence design, 
(6) multiple crossover-periods / multiple parallel-groups design, 
(7) multivariate adjustment for age, gender, baseline differences. 

7. FOR EXAMPLE, INTERIM ANALYSES 

Goals: 
(1) ethical concern, 
(2) financial concern, 
(3) check prior assumptions (sample size, expected efficacy, expected safety). 
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Problems: 
(1) risk of finding differences by chance if you test many times (type I error), 
(2) bias due to unblinding the interim result. 

Rules: 
(1) 1 variable, 
(2) 1 or 2 interim analyses, 
(3) predefmed stopping rules, 
(4) only if enough patients are included, 
(5) performed by independent investigators, 
(6) results must be as confidential as possible, 
(7) adjust p-values (p<O.O 1 is safe advise). 

Special form of interim analysis: continuous monitoring. 
(1 ) Recalculate result -so-far after each new patient. 
(2) Provide a-priori-stopping-boundaries. 
(3) For the benefit of early studies, before toxicity information. 
(4) Stop study any time. 
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8. STATISTICS IS NOT LIKE ALGEBRA AND REQUIRES BIOLOGICAL 
THINKING AND JUST A BIT OF MATHS 

(1) Mathematically: representative samples required, biologically the fITst datum in 
complete ignorance greatest information (fITst case of disease great deal of 
information). 

(2) Flexible alpha and beta required. When false+ is worse for patient than false-, 
respectively 5% and 20% levels are okey. With life-threatening diseases better 
reduce beta-level to 10% or less .. 

(3) Include" safety factor" with sample size. Sample size is based on pilot data or 
expectations. To reduce risk of type IIII make sample size larger, e.g., 10 % larger 
than required. 

9. STATISTICS TURNS ART INTO SCIENCE 

Science of medicine consists of experiments. 
- Art of medicine trust, sympathy, the threatened patient. 

Science of medicine estimated by statistical methods. 
Psychosocial and personal factors difficult to measure. 
Last 5 years quality-of-life assessments produce reproducible results and turns 
art into science 
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10. STATISTICS FOR SUPPORT RATHER THAN ILLUMINATION? 

-1948 fIrst randomized controlled trial [Medical Research Council 1948]. 
-Until then, observations uncontrolled. 
-Initially (1) trials frequently negative, 

(2) little sensitivity due to small samples, 
(3) inappropriate hypotheses based on biased prior data. 

-Subsequently flaws recognized and accounted 
(I) interaction, 
(2) time effects, 
(3) negative correlations, 
(4) asymmetries. 

Now clinical trials rarely-negative/ rather confmnational. 

Clinicians used to apply statistics as a drunk uses a lantern standard, for support 
rather than illumination. Not anymore. Statistics is now an important help to 
reliable conclusion. 

11. STATISTICS HELPS CLINICIANS TO BETTER UNDERSTAND THE 
LlMITATIONS OF RESEARCH 

- Medical literature snowed under with mortality trials. 
- Invariably lO-30 % relative rise survival. 
- Mortality important endpoint, may be so. 
- Yet, a relative rise survival of 30 % means that your risk of death goes from 3 to 

2% or less. 
- Mortality is insensitive variable of preventive medicine begun at middle-age. 
- Background noise associated senescence then high. More sensitive endpoint then 

morbidity. 

Notes: 
(1) Patients prefer better quality of life and reduced morbidity instead of 1-2 % 

increased survival in return for long-term-drug-treatment with side effects. 
(2) Relative risk reductions are often overinterpreted in publications as though they 

were absolute risk reductions. 
(3) So are underpowered P-values: 0.05 means chance of type I error 5%, type II 

error of 50%. 
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12. LIMITATIONS OF STATISTICS 

(1) Type I / II errors, 
(2) little clinical significance of statistically significant data, 
(3) statistics gives no certainty but predicts a chance under the understanding 

that: 
-HO is true 
-HI is true 
-data follow a particular normal distribution 
-data are representative 
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Statistics leaves a lot of uncertainty, and, correspondingly, evidence-based medicine 
does so. 

13. CONCLUSIONS 

1. Statistics fun for clinical investigator, confirms hypotheses. 
2. Accounting statistical principles helps reduce imperfections. 
3. Getting command of non-classical study designs provides extras. 
4. Statistics not like algebra, requires biological thinking and bit of maths. 
5. Statistical analyses can be performed on quality oflife. 
6. Clinical investigator must know what statistics cannot answer. 
7. Statistics helps to interpret limitations clinical research. 
8. Statistics has limitations of its own: gives only chances, does not 

automatically indicate clinical relevance, can not test every possible bias. 

Not being familiar with statistics raises a two-way risk: you're not only missing the 
benefit of it but also fail to adequately recognize its limitations. We hope that this 
book will be an incentive for participants to improve statistical skills in order to 
better understand the statistical data of others and themselves. 

14. QUESTIONS TO CHAPTER 12 

1. What alternative is correct? 
A . Statistics provides certainties 
B. Statistics provides hypotheses. 
C. Statistics provides chances. 
D. Statistics provides hard data. 
E. Statistics tests hard data. 

2. What do we mean by data dredging? 
A. Ask a statistician to explore the data for any significances. 
B. Multiple posterior hypothesis testing for explorative purposes. 
C. Look into the data for any corrrelations and trends for confirmational 

purposes. 
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3. What is the main statistical problem with multiple testng? 
A. The chance of type I errors is increased. 
B. You have to test without a null-hypothesis 
C. You have to test with an alternative hypothesis. 

4. Secondary analyses are: 
A. for exploring new hypotheses, 
B. for confirmation of primary endpoints, 
C. more reliable than primary analyses because instead of univariate they use 

multivariate assessments, 
D. require a study with larger sample sizes than do primary analyses. 

5.How can we weigh efficacy versus safety? 
A. Division sum of scores. 
B. Product of scores. 
C. Subtraction sum of scores. 
D. Add-up sum of scores. 

6. For a multimodal therapy, what study design is adequate? 
A. Factorial design. 
B. Historical control design. 
C. Group-sequential interim analysis design. 
D. Equivalent study design. 
E. None of these. 

7. For a efficacy study prior to availibility oftoxic data, what design is required? 
A. Factorial design. 
B. Historical control design. 
C. Group-sequential interim analysis design. 
D. Equivalent study design. 
E. None of these. 

8. For a crossover study with multiple periods what study design is required? 
A. Factorial design. 
B. Historical control design. 
C. Group-sequential interim analysis design. 
D. Equivalent study design. 
E. None ofthese. 
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9. Interim analyses are for: 
A. ethical reasons, 
B. fmancial reasons, 
C. scientific reasons, 
D. all of the three above reasons. 
What answer is the most adequate one? 

10. Interim analyses should include: 
A. more than one variable, 
B. more than one interim analysis per trial, 
C. analysis by a dependent group, 
D. a priori defmed stopping rules. 

11. Flexible alpha and beta: for fatal disease and non-toxic compound choose: 
A. I-beta = 70%, 
B. I-beta = 80%, 
C. I-beta = 90%. 

12. Flexible alpha and beta: for non-fatal disease and toxic compound choose: 
A. I-beta = 70%, 
B. I-beta = 80%, 
C. I-beta = 95%. 

13. How can the art of medicine be changed into the science of medicine? 
A. By quality oflife assessments. 
B. By flexible alphas. 
C. By including a safety factor in a sample size computation. 
D. By assessment of interaction between patients and their physicians. 

14. The first randomized controlled trials in the 50ths were often negative 
because of: 
A. Umepresentative samples. 
B. Wrong prior hypotheses. 
C. Biases. 
D. Inappropriate statistics. 

What statement is untrue. 
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CHAPTER 13 

BIAS DUE TO CONFLICTS OF INTERESTS, SOME 
GUIDELINES 

1. INTRODUCTION 

The controlled clinical trial, the gold standard for drug development, is injeopardy. 
The pharmaceutical industry rapidly expands its commend over clinical trials. 
Scientific rigor requires independence and objectivity. Safeguarding such criteria is 
hard with industrial sponsors, benefiting from favorable results, virtually 
completely in control. The recent Good Clinical Practice Criteria adopted by the 
European Community! were not helpful , and even confirmed the right of the 
pharmaceutical industry to keep everything under control. Except for the 
requirement that the trial protocol should be approved by an external protocol 
review board, little further external monitoring of the trial is required in Europe 
today. The present paper was written to review flawed procedures jeopardizing the 
credibility of current clinical trials, and to look for possible solutions to the 
dilemma between sponsored industry and scientific independence. 

2. THE RANDOMIZED CONTROLLED CLINICAL TRIAL AS THE GOLD 
STANDARD 

Controlled clinical trials began in the UK with James Lind, on H.M.S. Salisbury, a 
royal Frigate, by the end of the 18th century. However, in 1948 the first randomized 
controlled trial was actually published by the English Medical Research Council in 
the British Medical Journal? Until then, published observations had been 
uncontrolled. Initially, trials frequently did not confirm hypotheses to be tested. 
This phenomenon was attributed to little sensitivity due to small samples, as well as 
inappropriate hypotheses based on biased prior trials. Additional flaws were being 
recognized and, subsequently were better accounted for: carryover effects due to 
insufficient washout from previous treatments, time effects due to external factors 
and the natural history of the condition under study, bias due to asymmetry between 
treatment groups, lack of sensitivity due to a negative correlation between treatment 
responses etc. Such flaws mainly of a technical nature have been largely 
implemented and lead to trials after 1970 being of significantly better quality than 
before. And so, the randomized clinical trial has gradually become accepted as the 
most effective way of determining the relative efficacy and toxicity of new drug 
therapies. High quality criteria for clinical trials include clearly defined hypotheses, 
explicit description of methods, uniform data analysis, but, most of all, a valid 
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design. A valid design means that the trial should be made independent, objective, 
balanced, blinded, controlled, with objective measurements. Any research but, 
certainly, industrially-sponsored drug reseach where sponsors benefit from 
favorable results, benefits from valid designs. 

3. NEED FOR CIRCUMSPECTION RECOGNIZED 

The past decade focused, in addition to technical aspects, on the need for 
circumspection in planning and conducting clinical trials.3 As a consequence, prior 
to approval, clinical trial protocols started to be routinely scrutinized by different 
circumstantial organs, including ethic committees, institutional and federal review 
boards, national and international scientific organizations, and monitoring 
committees charged with conducting interim analyses. And so things seems to be 
developing just fme until something else emerged, the rapidly expanding commend 
of the pharmaceutical industry over clinical trials. Scientific rigor requires 
independence and objectivity of clinical research, and safeguarding such principles 
is hard with sponsors virtually completely in control. 

4. THE EXPANDING COMMEND OF THE PHARMACEUTICAL INDUSTRY 
OVER CLINICAL TRIALS 

Today megatrials are being performed costing billions of dollars paid by the 
industry. Clinical research has become fragmented among many sites, and the 
control of clinical data often lies exclusively in the trial sponsor's hands.4 A serious 
issue to consider here are adherence to scientific criteria like objectivity, and 
validity criteria like blindness during the analysis phase. In the USA, the FDA 
audits ongoing registered trials for scientific validity. However, even on-site-audits 
can hardly be considered capable of controlling each stage of the trial. Not any 
audits are provided by the FDA's European counterparts. Instead, in 1991, the 
European Community endorsed the Good Clinical Practice (GCP) criteria 
developed l as a collaborative efforts of governments, industries, and the profession. 
For each of the contributing parties benefits are different. Governments are 
interested in uniform guidelines and uniform legislation. For the profession the 
main incentives are scientific progress, and the adherence to scientific and validity 
criteria. In contrast, for the pharmaceutical industry a major incentive is its 
commercial interest. And so, the criteria are, obviously, a compromise. Scientific 
criteria like clearly defmed prior hypotheses, explicit description of methods, 
uniform data analyses are broadly stated in the guidelines given. 1 However, 
scientific criteria like instruments to control independence and objectivity of 
research are not included. Validity criteria like control groups and blinding are 
recognized, but requirements like specialized monitoring teams consistent of a 
group of external independent investigators guiding such criteria, and charged with 
interim analysis and stopping rules are not mentioned. And so, the implementation 
of the Good Clinical Practice Criteria are not helpful for the purpose of 
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safeguarding scientific independence. Instead, they confmned the right of the 
pharmaceutical industry to keep everything under control. 

5. FLAWED PROCEDURES JEOPARDIZING CURRENT CLINICAL TRIALS 

Flawed procedures jeopardizing current clinical trials can be listed as follows. 
Industries, at least in Europe, are allowed to choose their own independent protocol 
review board prior to approval. Frequently, a pharmaceutical company chooses one­
and-the-same-board for all of its (multicenter) studies. The independent protocol 
review board may approve protocols, even if the research is beyond its scope of 
expertise, for example, specialized protocols like oncology-protocols without an 
oncologist among its members. Once the protocol is approved, little further external 
review is required in Europe today. Due to recent European Community 
Regulations, health facilities hosting multicenter trials are requested to refrain from 
scientific or ethic assessment. Their local committees may assess local logistic 
aspects of the trial but no more than that. And so, the once so important role oflocal 
committees to improve the objectivity of sponsored research is minimized. Another 
problem with the objectivity of industrially-sponsored clinical trials is the fact that 
the trial monitors are often employees of the pharmaceutical industry. Furthermore, 
data control is predominantly in the hands of the sponsor. Interim analyses are 
rarely performed by independent groups. The scientific committee of the trial 
consists largely of prominent but otherwise uninvolved physicians attached to the 
study, the socalled guests. Analysis and report of the trial is generally produced by 
clinical associates at the pharmaceutical companies, the socalled ghosts, and, after a 
brief review, co-signed by prominent physicians attached to the study the socalled 
graphters. 

Table Flawed procedures jeopardizing current clinical trials. 

1. Pharmaceutical industries, at least in Europe, are allowed to choose their 
own independent review board prior to approval. 

2. the independent protocol review board approves protocol even if the 
research is beyond the scope of its expertise. 

3. Health facilities hosting multicenter research are requested to refrain from 
ethic or scientific assessment after approval by the independent review 
board. 

4. Trial monitors are often employees of pharmaceutical industry. 
5. Data control is predominantly in the hands of the sponsor. 
6. Interim analyses are rarely peformed by independent groups. 
7. The scientific committee of a trial consists largely of guests (names of 

prominent physicians attached to the study) and graphters ( for the purpose 
of giving the work more impact). 

8. The analysis and report is produced by ghosts (clinical associates at the 
pharmaceutical companies) and is after a brief review co-signed by the 
guests and graphters. 
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6. THE GOOD NEWS 

The Helsinki guidelines rewritten in the year 2000 have been criticized5 for its 
incompleteness regarding several ethical issues, e.g., those involving developing 
countries. However, these independently written guidelines also included important 
improvements. For the first time the issue of conflict of interests has been assessed 
in at least 5 paragraphs. Good news is also the American FDA's initiative to start 
auditing sponsored trials on site. In May 1998 editors of 70 major journals have 
endorsed the Consolidated Standards of Reporting Trials Statement (CONSORT) in 
an attempt to standardize the way trials are conducted, analyzed and reported. The 
same year, the Cochrane Collaborators together with the British journals The 
Lancet and The British Medical Journal have launched the "Unpublished Paper 
Amnesty Movement", in an attempt to reduce publication bias. There is also good 
news from the basis. E.g., in 30 hospitals in the Netherlands local ethic committees, 
endorsed by the Netherlands Association of Hospitals, have declared that they will 
not give up scrutinizing sponsored research despite approval by the independent 
protocol review board. 
In our educational hospital house officers are partiCUlarly critical of the results of 
industrially-sponsored research even if it is in the Lancet or the New England 
Journal of Medicine, and they are more reluctant to accept results not fitting in their 
prior concept of pathophysiology, if the results are from industrially-sponsored 
research. Examples include: ACE-inhibitors for normotensive subjects at risk for 
cardiovascular disease (HOPE Stud/ ), antihypertensive drugs for secondary 
secondary prevention of stroke in elderly subjects (PROGRESS Study7 ), beta­
blockers for heart failure (many sponsored studies, but none of them demonstrating 
an unequivocal improvement of cardiac performance8 ), cholesterol-lowering 
treatment for patients at risk of cardiovascular disease but normal LDL-cholesterol 
levels ( Heart Protection Study), hypoglycemic drugs for prediabetics 
(NAVIGATOR Study). As a matter offact, all of the above studies are based on not 
so sensitive univariate analyses. When we recently performed a multivariate 
analysis of a secondary prevention study with statins, we could demonstrate that 
patients with normal LDL-cholesterollevels did not benefit.9 

7. FURTHER SOLUTIONS TO THE DILEMMA BETWEEN SPONSORED 
RESEARCH AND THE INDEPENDENCE OF SCIENCE 

After more than 50 years of continuous improvement, the controlled clinical trial 
has become the most effective way of determining the relative efficacy and toxicity 
of new drug therapies. This gold standard is, however, in jeopardy due to the 
exanding commend of the pharmaceutical industry. Mega-trials are not only paid 
for by the industry but also designed, carried-out, and analyzed by the industry. 
Because objectivity is at stake when industrial money mixes with the profession9 it 
has been recently suggested to separate scientific research and the pharmaceutical 
industry. However, separation may not be necessary, and might be 
counterproductive to the progress of medicine. After all, pharmaceutical industry 
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has deserved substantial credits for developing important medicines, while other 
bodies including governments have not been able to develop medicines in the past 
40 years, with the exception of one or two vaccines. Also, separation would mean 
that economic incentives are lost not only on the part of the industry but also on the 
part of the profession while both are currently doing well in the progress of 
medicine. Money was and is a major motive to stimulate scientific progress. 
Without economic incentives from industry there may soon be few clinical trials. 
Circumspection from independent observers during each stage of the trial has been 
recognized as an alternative for increasing objectivity of research and preventing 
bias.3 In addition, tight control of study data, analysis, and interpretation by the 
commercial sponsor is undesirable. It not only raises the risk of biased 
interpretation, but also limits the opportunities for the scientific community to use 
the data for secondary analyses needed for future research.4 If the pharmaceutical 
industry allows the profession to more actively participate in different stages of the 
trial, scientific research will be better served, and reasonable biological questions 
will be better answered. First on the agenda will have to be the criteria for adequate 
circumspection (Table underneath). Because the profession will be more convinced 
of its objective character, this allowance will not be counterproductive to the sales. 
Scientific research will be exciting again, confirming prior hypotheses, and giving 
new and sound ideas for further research. 

Table Criteria for adequate circumspection. 

1. Disclosure of conflict of interests and the nature of it from each party 
involved 

2. Independent ethical and scientific assessment of the protocol 
3. Independent monitoring of the conduct of the trial 
4. Independent monitoring of data management 
5. Independent monitoring of statistical analysis including the cleaning-up of 

the data 
6. The requirement to publish even if data do not fit in the commercial 

interest of the sponsor. 
7. Requirement that interim analyses be performed by an independent group. 

-----~---- ------ -------------------------
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T-Table: v = degrees offreedomfot t-variable, Q = area under 
the curve right from the corresponding t-value, 2Q tests both 
right and left end of the total area under the curve 

v Q ~ 0.4 0.25 0.1 0.05 0.025 0.01 0.005 0.001 
12Q ~ 0.8 0.5 0.2 0.1 0.05 0.02 0.01 0.002 

1 0.325 1. 000 3.078 6.314 12.706 31.82163.657318.31 
2 .289 0.816 1.886 2.920 4.303 6.965 9.925 22.326 
3 .277 .765 1.638 2.353 3.182 4.547 5.841 10.213 
4 .171 .741 1.533 2.132 2.776 3.747 4.604 7.173 

5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 5.893 
6 .265 .718 1.440 1.943 2.447 3.143 3.707 5.208 
7 .263 .711 1.415 1.895 2.365 2.998 3.499 4.785 
8 .262.706 1.397 1.860 2.306 2.896 3.355 4.501 
9 .261.703 1.383 1.833 2.262 2.821 3.250 4.297 

10 0.261 0.700 1.372 1.812 2.228 2.764 3.169 4.144 
11 .269 .697 1.363 1.796 2.201 2.718 3.106 4.025 
12 .269 .695 1.356 1.782 2.179 2.681 3.055 3.930 
13 .259 .694 1.350 1.771 2.160 2.650 3.012 3.852 
14 .258 .692 1.345 1.761 2.145 2.624 2.977 3.787 

15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.733 
16 .258 .690 1.337 1.746 2.120 2.583 2.921 3.686 
17 .257 .689 1.333 1.740 2. 110 2.567 2.898 3.646 
18 .257 688 1.330 1.734 2.101 2.552 2.878 3.610 
19 .257 .688 1.328 1.729 2.093 2.539 2.861 3.579 

20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.552 
21 .257 .686 1.323 1.721 2.080 2.518 2.831 3.527 
22 .256 .686 1.321 1.717 2.074 2.508 2.819 3.505 
23 .256 .685 1.319 1.714 2.069 2.600 2.807 3.485 
24 .256 .685 1.318 1.711 2.064 2.492 2.797 3.467 

25 
26 
27 
28 
29 

30 
40 
60 

0.256 0.684 
.256 .654 
.256 .684 
.256 .683 
.256 .683 

1,316 1.708 2.060 2.485 2.787 3.450 
1,315 1.706 2.056 2.479 2.779 3.435 
1,314 1.701 2.052 2.473 2.771 3.421 
1,313 1.701 2.048 2.467 2.763 3.408 
1.311 1.699 2.045 2.462 2.756 3.396 

120 

0.256 0.683 
.255 .681 
.254 .679 
.254 .677 

1.310 1.697 2.042 2.457 2.750 3.385 
1.303 1.684 2.021 2.423 2.704 3.307 
1.296 1.671 2.000 2.390 2.660 3.232 
1.289 1.658 1.950 2.358 2.617 3.160 

00 .253 .674 1.282 1.645 1.960 2.326 2.576 3.090 
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Chi-square distribution 

Two-tailed P-va1ue 

df 0.10 0.05 0,01 0.001 

1 2.706 3.841 6.635 10.827 

2 4.605 5.991 9.210 13.815 

3 6.251 7.815 11.345 16.266 

4 7.779 9.488 13.277 18.466 

5 9.236 11.070 15.086 20.515 

6 10.645 12.592 16.812 22.457 

7 12.017 14.067 18.475 24.321 

8 13.362 15.507 20.090 26.124 

9 14.684 16.919 21.666 27.877 

10 15.987 18.307 23.209 29.588 

11 17.275 19.675 24.725 31.264 

12 18.549 21.026 26.217 32.909 

13 19.812 22.362 27.688 34.527 

14 21.064 23.685 29.141 36.124 

15 22.307 24.996 30.578 37.698 

16 23.542 26.296 32.JOO 39.252 

17 24.769 27.587 33.409 40.791 

18 25.989 28.869 34.805 42.312 

19 27.204 30.144 36.191 43.819 

20 28.412 31.410 37.566 45.314 

21 29.615 32.671 38.932 46.796 

22 30.813 33.924 40.289 48.268 

23 32.007 35.172 41.638 49.728 

24 33.196 36.415 42.980 51.179 

25 34.382 37.652 44.314 52.619 

26 35.563 38.885 45.642 54.051 

27 36.741 40.113 46.963 55.475 

28 37.916 41.337 48.278 56.892 

29 39.087 42.557 49.588 58.301 

30 40.256 43.773 50.892 59.702 

40 51.805 55.758 63.691 73.403 

50 63.167 67.505 76.154 86.660 

60 74.397 79.082 88.379 99.608 

70 85.527 90.531 100.43 112.32 

80 96.578 101.88 112.33 124.84 

90 107.57 113.15 124.12 137.21 

100 118.50 124.34 135.81 149.45 i 
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APPENDIX 

Paired non-parametric test: Mann-Whitney test, 
the table uses smaller of the two ranknumbers 

N pairs 

7 
8 
9 

10 
11 
12 
l3 
14 
15 
16 

P<0.05 

2 
2 
6 
8 

11 
14 
17 
21 
25 
30 

P<O.OI 

o 
o 
2 
3 
5 
7 

10 
l3 
16 
19 

207 
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Unpaired non-parametric test: Wilcoxon rank sum test. Table uses 
difference of added up rank numbers between group J and group 2 

P<O.O 1 levels 
n 1-+ 

n 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
~ 

4 10 
5 " 11 17 
6 7 12 18 26 
7 7 13 20 27 36 
8 3 8 14 21 29 38 49 
9 3 8 15 22 31 40 51 63 

10 3 9 15 23 32 42 53 65 78 
11 4 9 16 24 34 44 55 68 .81 96 
12 4 10 17 26 35 46 58 71 85 99 115 
13 4 10 18 27 37 48 60 73 88 103 119 137 
14 4 11 19 28 38 50 63 76 91 106 123 141 160 
15 4 II 20 29 40 52 65 79 94 110 127 145 164 185 
16 4 12 21 31 42 54 67 82 97 114 131 150 169 
17 5 12 21 32 43 56 70 84 100 117 135 154 
18 5 13 22 33 45 58 72 87 103 121 139 
19 5 13 23 34 46 60 74 90 107 124 
20 5 14 24 35 48 62 77 93 110 
21 6 14 25 37 50 64 79 95 
22 6 15 26 38 51 66 82 
23 6 15 27 39 53 68 
24 6 16 28 40 55 
25 6 16 28 42 
26 7 17 29 
27 7 17 
28 7 
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Unpaired non-parametric test: Wilcoxon rank sum test. Table uses 
difference of added up rank numbers between group 1 and group 2 

P<0.05 levels 
n\ .... 

n2 2 3 4 5 6 7 8 9 lO 11 12 13 14 15 
! 

5 15 
6 10 16 23 
7 lO 17 24 32 
8 11 17 25 34 43 
9 6 11 18 26 35 45 56 

10 6 12 19 27 37 47 58 71 
11 6 12 20 28 38 49 61 74 87 
12 7 13 21 30 40 51 63 76 90 106 
13 7 14 22 31 41 53 65 79 93 109 125 
14 7 14 22 32 43 54 67 81 96 112 129 147 
15 8 15 23 33 44 56 70 84 99 115 133 151 171 
16 8 15 24 34 46 58 72 86 102 119 137 155 
17 8 16 25 36 47 60 74 89 105 122 140 
18 8 16 26 37 49 62 76 92 108 12'5 
19 3 9 17 27 38 50 64 78 94 111 
20 3 9 18 28 39 52 66 81 97 
21 3 9 18 29 40 53 68 83 
22 3 10 19 29 42 55 70 
23 3 10 19 30 43 57 
24 3 10 20 31 44 
25 3 11 20 32 
26 3 11 21 
27 4 11 
28 4 
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CHAPTER 11 INTRODUCTION TO THE STATISTICAL ANALYSIS OF 
CLINICAL TRIALS, CONTINUOUS DATA ANAL YSIS 

1. B 
2. A 
3. D 
4. B 
5. A 
6. C 
7. d 
8. A 
9. C 
10. A 
11. D 

CHAPTER 2 I EQUIVALENCE TESTING 

1. B 
2. A 
3. A 
4. C 
5. B 
6. A 
7. A 

CHAPTER 3 I POWER, SAMPLE SIZE 

1. B 
2. D 
3. A 
4. B 
5. B 
6. C 
7. A 
8. C 
9. B 
10. A 
11. 1. p<O.OI 

2.75-90% 
3. yes 

12. 1. n = 16 
2. n = 62 
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CHAPTER 4/ PROPORTIONAL DATA ANALYSIS, PART I 

1. D 

2. SE!2= [4/16 ( 1 - 4/16)] /16 = 48 /163 

SEl= [12/16 (1- 12/16)] /16 = 48 /163 

z = d!SE = proportion! - proportion2 / ...j (SE!2+SE22 ) 
= 8/16 / ...j (6/162) = 0.5 /0.153 = 3.26 

p<0.002 answer C is correct. 

3. yes no 
Group 1 4(a) 12 (c) 
Group 2 12(b) 4 (d) 
X2 = (4x4 -12xI2? (32) / 16x16x16x16 = 524,288 / 65,536 = 8. 
With 1 dfs p< 0.01 answer C is correct. 

4. burn out no burn out 
Group 1 3 7 
Group 2 0 10 
X2 =(0-3.10)2(20) /3.17.10.10=18,000/5,100=3.6. 
With 1 df 0.05< p< 0.01 answer A is correct. 

5. A. 

6. C. 

7. yes no 
Group 1 4 2 
Group 2 2 4 
P = 6!.6!.6!.6! / 12!.4!.2!.4!.2! = 13,095/ 133,065 = 0.0984, 
A is the correct answer. 

8. (a-al/ a = 42 /8= 2 
(b-f3)2/ f3 = 42 /4= 4 + 

X2 = 6 1 df p< 0.05, B is correct answer. 

213 
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9. X2 = (28-12)2 / (12 +28)= 256 / 40 = 6.4 1 df 
B is correct answer. 

10. Odds ratio = 28/12= 2.33 
95 % confidence interval (CI): 

p < 0.05, 

In 2.33 - 1.96 ,j (1112 + 1128) to In 2.33 + 1.96 ,j (1112 + 1128)= 
(0.847-0.690) to (0.847+0.690)= 
0.157 to l.537, 
to fmd 95% confidence intervals convert back using anti In: 
95% confidence intervals = 1.16 to 4.65 (p<0.05). 

11. Odds ratio= 103/46 / 77/62 = 2.239 / 1.242= 1.803 
95 % confidence interval: 
In 1.803 - 1.96 ,j (1/1 03+ 1146+ 1177+ 1162) 
to In 1.803 + 1.96 ,j (1/103+ 1146+ 1177+ 1162)= 
0.589±0.482= 0.107 to 1.071, 
to find 95% confidence intervals convert back using anti In: 
95% confidence intervals = 1.11 to 2.92 (p<0.05). 

12. Are the two Kaplan Meier curves significantly different from one another? 
survivors 2x 15 ____ _ 

I I 

2 3 

Answer to 12: a b 15 0 14 
cd 14 13 2 

period 2 

4 5 

14 1 
12 3 

3 

Mantel Haenszl X2 summary test ( = log rank test): 
X2 = 1.42, Idf, ns. 

6 period 

13 2 
11 4 

4 

13 2 
11 4 

5 

13 2 
105 

6 
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CHAPTER 5 / PROPORTIONAL DATA ANALYSIS, PART II 

1. B 
2. B 
3. A 
4. C 
5. B 
6. C 
7. A 
8. B 
9. B 
lO.C 

CHAPTER 6 / META-ANALYSIS 

1. A 
2. A 
3. B 
4. 4 
5. D 
6. A 
7. A 
8. B 

CHAPTER 7 / INTERIM-ANALYSES 

1. C 
2. A 
3. C 
4. B 
5. B 
6. B 

CHAPTER 8 / MULTIPLE TESTING 

1. A 
2. C 
3. C 
4. B 
5. C 
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CHAPTER 9 / PRINCIPLES OF LINEAR REGRESSION 

1. WRONG 
2. A IS CORRECT 
3. C IS CORRECT 
4. D IS CORRECT 
5. 2 IS CORRECT 
6. F-TEST 
7. C IS CORRECT, A IS CORRECT ONLY IF P<0.05 
8. C IS CORRECT 
9. 2ND DRUG = -0.41 + 0.52 1ST DRUG 
10. POSITIVE 
11. A IS CORRECT 
12. YES. EXPLANATION: 102.77 = ( 10.14)2 
13. YES 

CHAPTER 10 / SUBGROUP ANALYSIS USING REGRESSION MODELING 

1. C 
2. B 
3. B 
4. B 
5. B 

CHAPTER II/RELATIONSHIP AMONG STATISTICAL DISTRIBUTIONS 

1. D IS WRONG 
2. BECAUSE WITH NORMAL DISTRIBUTIONS THE ADD-UP SUM 

EQUALS ZERO 
3. B IS CORRECT 
4. B IS CORRECT 
5. C IS THE CORRECT ANSWER 

Answer to 6. 

(a-a? / a = (60-40i / 40 = 10.0 
(b-[3)2 / [3 = (100-120)2/120 = ~ + 

13.5 p < 0.001 
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Answer to 7. 

(ad-bc)2 (a+b+c+d) I (a+b)( c+d)( b+d )(a+c) = 5.81818 for 1dfp<0.02 

Alternative approach a = [(a+c) I (a+b+c+d)] x (a+b)=50 
p = 50 
y= 110 
3= 110 
(a-ai la = (60-50)2 I 50 2 
(b-pi IP = (40-50f / 50 2 
(c-y)2/y=(100-110)2/110 = 0.9 
(d-3)2/3 = ....... 0.9 + 

5.8 for 1 df p<0.02 

Answer to 8. 

a = [( a+b+c) I (a+b+c+d+e+f)] x (a+d) = 52.17 
P ..... =114.78 
Y =73.04 
3 = [(d+e+f))/(a+b+c+d+e+f)] x (a+d) = 47.83 
E.... = 57.39 
~ .... = 66.96 
(a- a)2/a = 1.175 
(b- ... =1.903 
(c- ... = 0.663 
(d- ... = 1.282 
(e- ... =68.305 
(f- ... = 0.723 + 

= 72.769 for 3-1= 2 dfs 
(2 columns and 3 rows= (2-1)x(3-1)= 2dfs) 
p< 0.001 
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Answer to 9. 

a = [(a+b) f (a+b+c+d+e+f)] x (a+c+e) = 55.000 
f3 .... = 55.000 
y =[(c+d) f (a+b+c+d+e+f)] x (a+c+e) 
8 = ... 

= 51.613 
= 5l.6l3 
= 55 E ••. 

~ ... = 55 
(a_a)2 fa = 0.45 
(b ... = 0.45 
(c.. = 0.847 
(d.. = l.363 
(e.. = 0.45 
(f .. = 0.45 + 

=2.21 for 3-1 = 2 dfs (2 rows and 3 colums = 

Answer to 10. 

SE data 

SE required 

Answer to 11. 

(2-1)x(3-1)= 2dfs) 0.05 < p< 0.1 

0.9 f 0.5 = 1.8. Our SE is thus 1.8 times the SE 
required and so our variance 
is 1.82 = 3.24 times the required 
variance. with 1 df X2 = 3.24 
0.05<p<O.l 

pooled OR (95% CI) = 0.63 (0.51-0.79) p<O.OOOI, heterogeneity is ns. 

Answer to 12. 

pooled OR (95% CI) = 0.87 (0.70-1.09) ns, heterogeneity p= 0.025. 
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CHAPTER 12/ STATISTICS IS NOT BLOODLESS ALGEBRA 

1. D 
2. C 
3. A 
4. A 
5. A 
6. A 
7. E 
8. E 
9. D 
1O.D 
11. A, BEING F ALSEL Y NEGATIVE (TYPE II ERROR) IS NOT SO 

SERIOUS HERE, AS LONG AS SOME PATIENTS BENEFIT. 

219 

12. C, BEING FALSELY NEGATIVE IS SERIOUS HERE BECAUSE OF 
THE RISK OF SERIOUS ADVERSE EFFECTS. 

l3.A 
14. D 
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