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Preface

A word about la raison d’étre of this book could be useful, especially since the first
question to arise in the prospective reader’s mind might be: why another book on flow-
induced vibration?

Flow-induced vibrations have been with us since time immemorial, certainly in nature,
but also in artefacts; an example of the latter is the Aeolian harp, which also makes
the point that these vibrations are not always a nuisance. However, in most instances
they are annoying or damaging to equipment and personnel and hence dangerous, e.g.
leading to the collapse of tall chimneys and bridges, the destruction of heat-exchanger and
nuclear-reactor internals, pulmonary insufficiency, or the severing of offshore risers. In
virtually all such cases, the problem is ‘solved’, and the repaired system remains trouble-
free thereafter — albeit, sometimes, only after a first and even a second iteration of the
redesigned and supposedly ‘cured’ system failed also. This gives a hint of the reasons why
a book emphasizing (i) the fundamentals and (ii) the mechanisms giving rise to the flow-
induced vibration might be useful to researchers, designers, operators and, in the broadest
sense of the word, students of systems involving fluid-structure interactions. For, in many
cases, the aforementioned problems were ‘solved’ without truly understanding either the
cause of the original problem or the reasons why the cure worked, or both. Some of the
time-worn battery of ‘cures’, e.g. making the structure stiffer via stiffeners or additional
supports, usually work, but often essentially ‘sweep the problem under the carpet’, for it
to re-emerge under different operating conditions or in a different part of the parameter
space; moreover, as we shall see in this book, for a limited class of systems, such measures
may actually be counterproductive.

Another answer to the original question ‘Why yet another book?’ lies in the choice
of the material and the style of its presentation. Although the discussion and citation of
work in the area is as complete as practicable, the style is not encyclopaedic; it is sparse,
aiming to convey the main ideas in a physical and comprehensible manner, and in a way
that is fun to read. Thus, the objectives of the book are (i) to convey an understanding
of the undoubtedly fascinating (even for the layman) phenomena discussed, (ii) to give a
complete bibliography of all important work in the field, and (iii) to provide some tools
which the reader can use to solve other similar problems.

A second possible question worth discussing is ‘Why the relatively narrow focus?’
By glancing through the contents, it is immediately obvious that the book deals with
axial-flow-related problems, while vortex-induced motions of bluff bodies, fluidelastic
instability of cylinder arrays in cross-flow, ovalling oscillations of chimneys, indeed all
cross-flow-related topics, are excluded. Reasons for this are that (i) some of these topics
are already well covered in other books and review articles; (ii) in at least some cases, the
fundamentals are still under development, the mechanisms involved being incompletely
understood; (iii) the cross-flow literature is so vast, that any attempt to cover it, as well as
axial-flow problems, would by necessity squeeze the latter into one chapter or two, at most.

X1



Xii PREFACE

After extensive consultations with colleagues around the world, it became clear that there
was a great need for a monograph dealing exclusively with axial-flow-induced vibrations
and instabilities. This specialization translates also into a more cohesive treatment of the
material to be covered. The combination of axial flow and slender structures implies, in
many cases, the absence or, at most, limited presence of separated flows. This renders
analytical modelling and interpretation of experimental observation far easier than in
systems involving bluff bodies and cross-flow; it permits a better understanding of the
physics and makes a more elegant presentation of the material possible. Furthermore,
because the understanding of the basics in this area is now well-founded, this book
should remain useful for some time to come.

In a real sense, this book is an anthology of much of the author’s research endeavours
over the past 35 years, at the University of Cambridge, Atomic Energy of Canada in
Chalk River and, mainly, McGill University — with a brief but important interlude at
Comell University. Inevitably and appropriately, however, vastly more than the author’s
own work is drawn upon.

The book has been written for engineers and applied mechanicians; the physical systems
discussed and the manner in which they are treated may also be of interest to applied
mathematicians. It should appeal especially to researchers, but it has been written for
practising professionals (e.g. designers and operators) and researchers alike. The material
presented should be easily comprehensible to those with some graduate-level under-
standing of dynamics and fluid mechanics. Nevertheless, a real attempt has been made to
meet the needs of those with a Bachelor’s-level background. In this regard, mathematics
is treated as a useful tool, but not as an end in itself.

This book is not an undergraduate text, although it could be one for a graduate-level
course. However, it is not written in lext-book format, but rather in a style to be enjoyed
by a wider readership.

I should like to express my gratitude to my colleagues, Professor. B.G. Newman for
his help with Section 2.2.1, Professors S.J. Price and A.K. Misra for their input mainly
on Chapters 3 and 6, respectively, Dr H. Alighanbari for input on several chapters and
Appendix F, and Professor D.R. Axelrad for his help in translating difficult papers in
German.

I am especially grateful and deeply indebted to Dr Christian Semler for some special
calculations, many suggestions and long discussions, for checking and rechecking every
part of the book, and particularly for his contributions to Chapter 5 and for Appendix F,
of which he is the main creator. Also, many thanks go to Bill Mark for his willing help
with some superb computer graphics and for input on Appendix D, and to David Sumner
for help with an experiment for Section 4.3.

I am also grateful to many colleagues outside McGill for their help: Drs D.J. Maull and
A. Dowling of Cambridge, J.M.T. Thompson of University College London, S.S. Chen
of Argonne, E.H. Dowell of Duke, C.D. Mote JIr of Berkeley, F.C. Moon of Cornell,
J.P. Cusumano of Penn State, A.K. Bajaj of Purdue, N.S. Namachchivaya of the Univer-
sity of Illinois, S. Hayama and S. Kaneko of the University of Tokyo, Y. Sugiyama of
Osaka Prefecture, M. Yoshizawa of Keio, the late Y. Nakamura of Kyushu and many
others, too numerous to name.

My gratitude to my secretary, Mary Fiorilli, is unbounded, for without her virtuosity
and dedication this book would not have materialized.
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1
Introduction

1.1 GENERAL OVERVIEW

This book deals with the dynamics of slender, mainly cylindrical or quasi-cylindrical,
bodies in contact with axial flow — such that the structure either contains the flow
or is immersed in it, or both. Dynamics is used here in its generic sense, including
aspects of stability, thus covering both self-excited and free or forced motions
associated with fluid-structure interactions in such configurations. Indeed, flow-induced
instabilities — instabilities in the linear sense, namely, divergence and flutter — are a
major concern of this book. However, what is rather unusual for books on flow-induced
vibration, is that considerable attention is devoted to the nonlinear behaviour of such
systems, e.g. on the existence and stability of limit-cycle motions, and the possible
existence of chaotic oscillations. This necessitates the introduction and utilization of some
of the tools of modern dynamics theory.

Engineering examples of slender systems interacting with axial flow are pipes and other
flexible conduits containing flowing fluid, heat-exchanger tubes in axial flow regions of
the secondary fluid and containing internal flow of the primary fluid, nuclear reactor
fuel elements, monitoring and control tubes, thin-shell structures used as heat shields in
aircraft engines and thermal shields in nuclear reactors, jet pumps, certain types of valves
and other components in hydraulic machinery, towed slender ships, barges and submarine
systems, etc. Physiological examples may be found in the pulmonary and urinary systems
and in haemodynamics.

However, much of the work in this area has been, and still is, ‘curiosity-driven',"'
rather than applications-oriented. Indeed, although some of the early work on stability of
pipes conveying fluid was inspired by application to pipeline vibrations, it soon became
obvious that the practical applicability of this work to engineering systems was rather
limited. Still, the inherent interest of the extremely varied dynamical behaviour which
this system is capable of displaying has propelled researchers o do more and more
work — to the point where in a recent review (Paidoussis & Li 1993) over 200 papers
were cited in a not-too-exhaustive bibliography.* In the process, this topic has become
a new paradigm in dynamics, i.c. a new model dynamical problem, thus serving two
purposes: (i) to illustrate known dynamical behaviour in a simple and convincing manner;

*With the present emphasis on utilitarianism in engineering and even science research, the characterization
of a piece of work as ‘curiosity-driven’ stigmatizes it and, in the minds of some, brands it as being ‘useless’.
Yet, some of the highest achievements of the human mind in science (including medical and engineering
science) have indeed been curiosity-driven; most have ultimately found some direct or indirect, and often very
important, practical application.

See also Becker (1981) and Paidoussis (1986a, 1991).



2 SLENDER STRUCTURES AND AXIAL FLOW

(ii) to serve as a vehicle in the search for new phenomena or new dynamical features,
and in the development of new mathematical techniques. More of this will be discussed
in Chapters 3-5. However, the foregoing serves to make the point that the curiosity-
driven work on the dynamics of pipes conveying fluid has yielded rich rewards, among
them (i) the development of theory for certain classes of dynamical systems, and of new
analytical methods for such systems, (ii) the understanding of the dynamics of more
complex systems (covered in Chapters 6-11 of this book), and (iii) the direct use of
this work in some a priori unforeseen practical applications, some 10 or 20 years after
the original work was done (Paidoussis 1993). These points also justify why so much
attention, and space, is devoted in the book to this topic, indeed Chapters 3-6.

Other topics covered in the book (e.g. shells containing flow, cylindrical structures
in axial or annular flow) have more direct application to engineering and physiological
systems; one will therefore find sections in Chapters 7-11 entirely devoted to applications.
In fact, since ‘applications’ and ‘problems’ are often synonymous, it may be of interest to
note that, in a survey of flow-induced vibration problems in heat exchangers and nuclear
reactors (Paidoussis 1980), out of the 52 cases tracked down and analysed, 36% were
associated with axial flow situations. Some of them, notably when related to annular
configurations, were very serious indeed — in one case the repairs taking three years, at
a total cost, including ‘replacement power’ costs, in the hundreds of millions of dollars,
as described in Chapter 11.

The stress in this book is on the fundamentals as opposed to techniques and on physical
understanding whenever possible. Thus, the treatment of each sub-topic proceeds from
the very simple, ‘stripped down’ version of the system, to the more complex or realistic
systems. The analysis of the latter invariably benefits from a sound understanding of the
behaviour of the simpler system. There are probably two broad classes of readers of a
book such as this: those who are interested in the subject matter per se, and those who
skim through it in the hope of finding here the solution to some specific engineering
problem. For the benefit of the latter, but also to enliven the book for the former group,
a few ‘practical experiences’ have been added.

It must be stressed, however, for those with limited practical experience of flow-induced
vibrations, that these problems can be very difficult. Some of the reasons for this are:
(i) the system as a whole may be very complex, involving a multitude of components,
any one of which could be the real culprit; (ii) the source of the problem may be far
away from the point of its manifestation; (iii) the information available from the field,
where the problem has arisen, may not contain what the engineers would really hope to
know in order to determine its cause. These three aspects of practical difficulties will be
illustrated briefly by three examples.

The first case involved a certain type of boiling-water nuclear reactor (BWR) in which
the so-called ‘poison curtains’, a type of neutron-absorbing device, vibrated excessively,
impacting on the fuel channels and causing damage (Paidoussis 1980; Case 40). It was
decided to remove them. However, this did not solve the problem, because it was then
found that the in-core instrument tubes, used to monitor reactivity and located behind
the curtains, vibrated sufficiently to impact on the fuel channels — ‘a problem that was
“hidden behind the curtains” for the first two years’! Although this may sound amusing
at this point, neither the power-station operator nor the team of engineers engaged in the
solution of the problem can have found it so at the time.
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The second case also occurred in a nuclear power station, this time a gas-cooled system
(Paidoussis 1980; Case 35). It involved excessive vibration of the piping — so excessive
that the sound associated with this vibration could be heard 3 km away! The excitation
source was not local; it was a vortex-induced vibration within the steam generator, quite
some distance away. A similar but less spectacular such case involved the perplexing
vibration of control piping in the basement of the Macdonald Engineering Building at
McGill University, which occurred intermittently. The source was eventually, and quite
by chance, discovered to be a small experiment involving a plunger pump (to study
parametric oscillations of piping, Chapter 4) three floors up!

Another case involved a boiler (Paidoussis 1980; Case 23), and the report from the
field stated that ‘There is severe vibration on this unit. The forced draft duct, gas duct
and superheater-economizer sections all vibrate. The frequency I would guess to be
60-100 cps. It feels about like one of those ‘ease tired feet’ vibration machines’. A
very colourful description, but lacking in the kind of detail and quantitative information
one would wish for. The difficulty of instrumenting the troublesome operating system a
posteriori should also be remarked upon.

To be able to deal with practical problems involving flow-induced vibration or insta-
bility, one needs first of all a certain breadth of perspective to be able to recognize in
what class of phenomena it belongs, or at least in what class it definitely does not belong.
Here experience is a great asset; reference to books with a broader scope would also
be recommended [e.g. Naudascher & Rockwell (1994), Blevins (1990)]. Once the field
has been narrowed, however, to be able to solve and to redesign properly the system, a
thorough familiarity with the topic is indispensable. If the problem is one of axial flow,
then here 1s where this book becomes useful.

A final point, before embarking on more specific items, should also be made: despite
what was said at the beginning of the discussion on practical concerns — that applica-
tions and problems are often synonymous — flow-induced vibrations are not necessarily
bad. First of all, they are omnipresent; a fact of life, one might say. They occur when-
ever a structure is in contact with flowing fluid, no matter how small the flow velocity.
Admittedly, in many cases the amplitudes of vibration are very small and hence the
vibration may be quite inconsequential. Secondly, even if the vibration is substantial, it
may have desirable features, e.g. in promoting mixing, dispersing of plant seeds, making
music by reed-type wind instruments; as well as for wave-generated energy conversion,
or for the enhancement of marine propulsion (Chapter 4). Recently, attempts have been
made ‘to harness’ vibration in heat-exchange equipment so as to augment heat transfer,
so far without spectacular success, however. Even chaotic oscillation, usually a term with
negative connotations, can be useful, e.g. in enhancing mixing (Aref 1995).

1.2 CLASSIFICATION OF FLOW-INDUCED VIBRATIONS

A number of ways of classifying flow-induced vibrations have been proposed. A very
systematic and logical classification is due to Naudascher & Rockwell (1980, 1994), in
terms of the sources of excitation of flow-induced vibration, namely, (i) extraneously
induced excitation, (ii) instability-induced excitation, and (iii) movement-induced excita-
tion. Naudascher & Rockwell consider flow-induced excitation of both body and fluid
oscillators, which leads to a 3 x 2 tabular matrix within which any given situation can
be accommodated; in this book, however, we are mainly concermned with flow-induced
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structural motions, and hence only half of this matrix is of direct interest. The struc-
ture, or ‘body oscillator’, is any component with a certain inertia, either elastically
supported or flexible (e.g. a flexibly supported rigid mass, a beam, or a shell). Thus,
in a one-degree-of-freedom system, the equation of which may generally be written as
jé+w,2,x+g(x, X, X¥) = f(1), the first two terms must be present, i.e. the structure, if
appropriately excited, must be able to oscillate!

Extraneously induced excitation (EIE) is defined as being caused by fluctuations in
the flow or pressure, independently of any flow instability and any structural motion. An
example is the turbulence buffeting, or turbulence-induced excitation, of a cylinder in flow,
due to surface-pressure fluctuations associated with turbulence in the flow. Instability-
induced excitation (IIE) is associated with a flow instability and involves local flow
oscillations. An example is the alternate vortex shedding from a cylindrical structure.
In this case it is important to consider the possible existence of a control mechanism
governing and perhaps enhancing the strength of the excitation: e.g. a fluid-resonance or
a fluidelastic feedback. The classical example is that of lock-in, when the vortex-shedding
frequency is captured by the structural frequency near simple, sub- or superharmonic reso-
nance; the vibration here further organizes and reinforces the vortex shedding process.
Finally, in movement-induced excitation (MIE) the fluctuating forces arise from move-
ments of the body; hence, the vibrations are self-excited. Flutter of an aircraft wing and
of a cantilevered pipe conveying fluid are examples of this type of excitation. Clearly,
certain elements of IIE with fluidelastic feedback and MIE are shared; however, what
distinguishes MIE is that in the absence of motion there is no oscillatory excitation
whatsoever.

A similar classification, related more directly to the nature of the vibration in each
case, was proposed earlier by Weaver (1976): (a) forced vibrations induced by turbulence;
(b) self-controlled vibrations, in which some periodicity exists in the flow, independent of
motion, and implying some kind of fluidelastic control via a feedback loop; (c) self-excited
vibrations. Other classifications tend to be more phenomenological. For example, Blevins
(1990) distinguishes between vibrations induced by (a) steady flow and (b) unsteady
flow. The former are then subdivided into ‘instabilities’ (i.e. self-excited vibrations) and
vortex-induced vibrations. The latter are subdivided into: random, e.g. turbulence-related;
sinusoidal, e.g. wave-related; and transient oscillations, e.g. water-hammer problems.

All these classifications, and others besides, have their advantages. Because this book
is essentially a monograph concerned with a subset of the whole field of flow-induced
vibrations, adherence to a single classification scheme is not so crucial; nevertheless, the
phenomenological classification will be used more extensively. In this light, an important
aim of this section is to sensitize the reader to the various types of phenomena of interest
and to some of the physical mechanisms causing them.

1.3 SCOPE AND CONTENTS OF VOLUME 1

Chapter 2 introduces some of the concepts and methods used throughout the book, both
from the fluids and the structures side of things. It is more of a refresher than a textbook
treatment of the subject matter, and much of it is developed with the aid of examples.
At least some of the material is not too widely known; hence, most readers will find
something of interest. The last part of the chapter introduces some of the differences in



INTRODUCTION 5

dynamical behaviour as obtained via linear and nonlinear analysis, putting the emphasis
on physical understanding.

Chapters 3 and 4 deal with the dynamics, mainly the stability, of straight (as opposed
to curved) pipes conveying fluid: both for the inhcrently conscrvative system (both cnds
supported) and for the nonconservative one (e.g. when one end of the pipe is free).
The fundamentals of system behaviour are presented in Chapter 3 in terms of linear
theory, together with the pertinent experimental research. Chapter 4 treats some ‘less
usual’ systems: pipes sucking fluid, nonuniform pipes, parametric resonances, and so on,
and also contains a section on applications. The nonlinear dynamics of the system, as
well as chaotic oscillations, are presented in Chapter 5, wherein may also be found an
introduction to the methods of modern nonlinear dynamics theory.

The ideas and methods developed and illustrated in Chapters 3-5 are of importance
throughout the rest of the book, since the fundamental dynamical behaviour of the systems
in the other chapters will be explained by analogy or reference to that presented in these
three chapters; hence, even if the reader has no special interest in the dynamics of pipes
conveying fluid, reading Chapter 3 is sine qua non for the proper understanding of the
rest of the book.

Chapter 6 deals with the dynamics of curved pipes conveying fluid, which, surprisingly
perhaps, is distinct from and analytically more complex than that of straight pipes.

1.4 CONTENTS OF VOLUME 21

The pipes considered in Chapters 3~6 are sufficiently thick-walled to suppose that ideally,
their cross-section remains circular while in motion, so that the dynamics may be treated
via bean theory. In Chapter 7, thin-walled pipes are considered, which must be treated as
thin cylindrical shells. Turbulence-induced vibrations, as well as physiological applications
are discussed at the end of this chapter.

Chapters 8 and 9 deal with the dynamics of cylinders in axial flow: isolated cylinders
in unconfined or confined flow in Chapter 8, and cylinders in clusters in Chapter 9. The
stability and turbulence-induced vibrations of such systems are also discussed. Engineering
applications are also presented: e.g. submerged towed cylinders, and clustered cylinders
such as those used in nuclear reactor fuel bundles and tube-in-shell heat exchangers.
Chapter 10 deals with plates in axial flow.

Chapter 11 treats a special, technologically important, case of the material in Chapters 7
and 8: a single cylinder or shell in a rigid or flexible tube, subjected to annular flow in the
generally narrow passage in-between. This chapter also closes with discussion of some
engineering applications.

Chapter 12 presents in outline some topics involving axial flow not treated in detail in
this book, and Chapter 13 contains some general conclusions and remarks.

*Volume 2 is scheduled to appear later, but soon after Volume 1.



2

Concepts, Definitions and
Methods

As the title implies, this also is an introductory chapter, where some of the basics of the
dynamics of structures, fluids and coupled systems are briefly reviewed with the aid of a
number of examples. The treatment is highly selective and it is meant to be a refresher
rather than a substitute for a more formal and complete development of either solid or
fluid mechanics, or of systems dynamics.

Section 2.1 deals with the basics of discrete and distributed parameter systems, and the
classical modal techniques, as well as the Galerkin method for transforming a distributed
parameter system into a discrete one. Some of the definitions used throughout the book
are given here. A great deal if not all of this material is well known to most readers;
yet, some unusual features (e.g. those related to nonconservative systems or systems with
frequency-dependent boundary conditions) may interest even the cogrnoscenti.

The structure of Section 2.2, dealing with fluid mechanics, is rather different. Some
generalities on the various flow regimes of interest (e.g. potential flow, turbulent flow)
are given first, both physical and in terms of the governing equations. This is then followed
by two examples, in which the fluid forces exerted on an oscillating structure are calcu-
lated, for: (a) two-dimensional vibration of coaxial shells coupled by inviscid fluid in
the annulus; (b) two-dimensional vibration of a cylinder in a coaxial tube filled with
viscous fluid.

Finally, in Section 2.3, a brief discussion is presented on the dynamical behaviour of
fluid-structure-interaction systems, in particular the differences when this is obtained via
nonlinear as opposed to linear theory.

2.1 DISCRETE AND DISTRIBUTED PARAMETER SYSTEMS

Some systems, for example a mathematical simple pendulum, are sui generis discrete;
i.e. the elements of inertia and the restoring force are not distributed along the geometric
extent of the system. However, what distinguishes a discrete system more precisely is that
its configuration and position in space at any time may be determined from knowledge of
a numerable set of quantities; i.e. the system has a finite number of degrees of freedom.
Thus, the simple pendulum has one degree of freedom, even if its mass is distributed
along its length, and a double (compound) pendulum has two.

The quantities (variables) required to completely determine the position of the system
in space are the generalized coordinates, which are not unique, need not be inertial, but
must be equal to the number of degrees of freedom and mutually independent (Bishop &
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Figure 2.1 (a) A mathematical double pendulum involving massless rigid bars of length /, and

I, and concentrated masses M, and M,; (b) a three-degree-of-freedom (N = 3) articulated pipe

system conveying fluid, with rigid rods of mass per unit length m and length /, interconnected by

rotational springs of stiffness k, and generalized coordinates 6;(t), i = 1, 2, 3; (c) a continuously

flexible cantilevered pipe conveying fluid, the limiting case of the articulated system as N — oo,
with EI = kI (see Chapter 3). In most of this chapter U = 0.

Johnson 1960; Meirovitch 1967, 1970). Thus, for a double pendulum [Figure 2.1(a)], the
two angles, 8, and 6, may be chosen as the generalized coordinates, each measured from
the vertical; or, as the second coordinate, the angle x between the first and the second
pendulum may be used. Closer to the concerns of this book, a vertically hung articulated
system consisting of N rigid pipes interconnected by rotational springs (Chapter 3) has N
degrees of freedom; the angles, 6;, of each of the pipes to the vertical may be utilized as
the generalized coordinates [Figure 2.1(b})]. Contrast this to a flexible pipe [Figure 2.1(c)],
where the mass and flexibility (as well as dissipative forces) are distributed along the
length: it is effectively a beam, and this is a distributed parameter, or ‘continuous’, systent;
in this case, the number of degrees of freedom is infinite. Discrete systems are described
mathematically by ordinary differential equations (ODEs), whereas distributed param-
eter systems by partial differential equations (PDEs). If a system is linear, or linearized,
which is admissible if the motions are small (e.g. small-amplitude vibrations about the
equilibrium configuration), the ODEs may generally be written in matrix form. This is
very convenient, since computers understand matrices very well! In fact, a number of
generic matrix equations describe most systems (Pestel & Leckie 1963; Bishop et al.
1965; Barnett & Storey 1970; Collar & Simpson 1987; Golub & Van Loan, 1989) and
they may be solved with the aid of a limited number of computer subroutines [see, e.g.
Press et al. (1992)]. Thus, a damped system subjected to a set of external forces may be
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described by
(Mg} + [Clig} + [KNHq} = {0}, 2.1

where [M], [C] and [KX] are, respectively, the mass, damping and stiffness matrices, {gq}
is the vector of generalized coordinates, and {Q} is the vector of the imposed forces; the
overdot denotes differentiation with time.

On the other hand, the form of PDEs tends to vary much more widely from one
system to another. Although helpful classifications (e.g. into hyperbolic and elliptic types,
Sturm-Liouville-type problems, and so on) exist, the fact remains that the equations of
motion of distributed parameter sytems are more varied than those of discrete systems,
and so are the methods of solution. Also, the solutions are generally considerably more
difficult, if the equations are tractable at all by other than numerical means. Furthermore,
the addition of some new feature to a known problem (i.e. to a problem the solution
of which is known), is not easily accommodated if the system is continuous. Consider,
for instance the situation of the articulated pipe system which can be described by an
equation such as (2.1), and the ease with which the addition of a supplemental mass at
the free end can be accommodated. Then, contrast this to the difficulties associated with
the addition of such a mass to a continuously flexible pipe: since the boundary conditions
will now be different, this problem has to be solved from scratch, even if the solution of
the problem without the mass (i.e. the solution of the simple beam equation) is already
known. Hence, it is often advantageous to transform distributed parameter systems into
discrete ones by such methods as the Galerkin (or Ritz—-Galerkin) or the Rayleigh-Ritz
schemes (Meirovitch 1967).

In this section, first the standard methods of analysis of discretc systems will be
reviewed. Then, the Galerkin method will be presented via example problems, as well
as methods for dealing with the forced response of continuous systems. Along the way,
a number of important definitions and classifications of systems, e.g. conservative and
nonconservative, self-adjoint, positive definite, etc., will be introduced.

2.1.1 The equations of motion

The equations of motion of discrete systems are generally derived by either Newtonian
or Lagrangian methods. In the latter case, for a system of N degrees of freedom and
generalized coordinates ¢,, the Lagrange equations are

g(ar) 3T+3V
dr \ 9g,

2. o, =0, r=1,2,...,N, (2.2)
where T is the kinetic energy and V the potential energy of some or all of the conservative
forces acting on the system, while Q, are the generalized forces associated with the rest
of the forces (Bishop & Johnson 1960; Meirovitch 1967, 1970).

For continuous (distributed parameter) systems, the equations of motion may be
obtained either by Newtonian methods (by taking force and moment balances on an
element of the systemn) or by the use of Hamilton’s principle and variational techniques,
i.e. by using

S/Z(T—V+W)d1=0, (2.3)
4l
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where § denotes the variational operator and W is the work done by forces not included in
V. The use of Hamilton’s principle is especially convenient in cases of unusual boundary
conditions, because the equation(s) of motion and boundary conditions are determined in
a unified procedure [see, for example, Meirovitch (1967)].

Special forms or interpretation of (2.2) and (2.3) may be necessary for ‘open systems’,
where the mass is not conserved, e.g. with in-flow and out-flow of mass and momentum,
as is common in fluidelastic systems. These, however, will be discussed in the chapters
that follow (e.g. in Section 3.3.3).

2.1.2 Brief review of discrete systems

A system is conservative if all noninertial forces may be derived from a potential function,
i.e. if they are all functions of position alone; thus, if the system is displaced from a to
b, the work is not path-dependent (or, equivalently, if the system is returned to a by
whatever path, the total work done is null). For a conservative system, the equations of
motion may be written as

(M1{q} + (K}{q) = {0}, 2.4)

a special form of (2.1); the matrices are of the same order as the number of degrees
of freedom, N. Provided that (i) the generalized coordinates arc measured from the
(stable) equilibrium configuration, (ii) the potential energy is zero at equilibrium, and
(iii) the constraints are scleronomic — conditions that are not difficult to satisfy in many
cases — the [M] and [K] matrices are symmetric.

Constraints are auxiliary kinematical conditions; e.g. in Figure 2.1(a) the mass M
cannot move freely in the plane but must remain at a fixed distance !, from the point of
support. The two constraint equations that must implicitly be satisfied for the system of
Figure 2.1(a) are what makes this system have two and not four degrees of freedom. If
a constraint equation may be reduced to a form f(x, y, z,¢t) = 0, then the constraint is
said to be holonomic; a subclass of this is when the constraint equation does not contain
time explicitly, in which case the constraint is said to be scleronomic (Meirovitch 1970;
Neimark & Fufaev 1972). Thus, if /| were a prescribed function of time, the constraint
would be holonomic but not scleronomic.”

The homogeneous form of equation (2.4), representing free motions of the system,

[M1}{q} + [K]{q} = {0}, 2.5)

may be re-written as
{g} + [Wl{q} = {0}, (2.6)

in which [W] = [M]7[K] — provided that [M] can be inverted, i.e. if it is nonsingular.
Oscillatory solutions are sought, of the form

{q) = (A}, Q.7)

YThese words derive from the Greek: 6Aos = whole or total and vopos = law, hence holonomic means
totally demarcated or defined; 1he first component of scleronomic is from oxAnpos = hard, hence the word
denotes a hard and fast rule!
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where {A} is a column of unknown amplitudes and {2 the circular frequency. Substi-
tuting (2.7) into (2.6) and defining A = £2?, leads to the standard eigenvalue problem,

(A[I1 = [WD{A} = {0}, (2.8)
where [/] is the unit matrix. Nontrivial solution of (2.8) requires that
det (W] - AlI]) =0, (2.9)

which is the characteristic equation, from which the eigenvalues, A;,i=1,2,..., N,
and hence the corresponding eigenvectors, {A}; or A;, may be found. The free-vibration
characteristics of the system are fully determined by the eigenvalues (and hence the cigen-

frequencies £2; = )\,-l /%) and the corresponding eigenvectors. The latter may be viewed as
shape functions. Thus, for the double pendulum of Figure 2.1(a), if M, =2M, M, =M
and [y = [, =/, one obtains A, = %(g/l) and A, = 2(g/!). The first- and second-mode
eigenvectors are, respectively {1, 1}T and {1, —2}T, which means that, for motions purely
in the first mode (at §2;), the second pendulum oscillates with the same angular ampli-
tude as the first, and in the same direction; while in the second mode (at £2;), the second
pendulum has twice the amplitude of the first, but in the opposite sense. Pure first-
mode motions could be generated via initial conditions {g(0)} = {1, 1}7, {g(0)} = {0},
and similarly for second-mode motions. Other initial conditions generate motions which
involve — can be synthesized from — both eigenvectors and both eigenfrequencies.

As a consequence of [M] and [K] being symmetric, the eigenvalues are real (as in
the foregoing example),’ and the following weighted orthogonality holds true for the
eigenvectors:

(A} [K){AY; =0,  (A)] IMI{A); =0  for i#j: (2.10)

if [W] is symmetric too — recall that the product of two symmetric matrices is not neces-
sarily symmetric — then direct orthogonality also applies, i.e. {A}}'[A},- =0 for i # j.
Relations (2.10) hold true, provided that the eigenvalues are distinct; the case of repeated
eigenvalues will be treated later.

Since [M] is, or can be, derived from the kinetic energy, which is a positive definite
function, [M] is a positive definite matrix (Meirovitch 1967; Pipes 1963).% If [K] is also
positive definite, then so is the system, and the eigenvalues are all positive. If [K] is only
positive, the system is said to be semidefinite, and it may have zero eigenvalues — e.g.
if the system as a whole is unrestrained.

For the forced response, equation (2.4) has to be solved. This may be done in many
ways, e.g. by the use of Laplace transforms or by modal analysis. This latter will be
reviewed briefly in what follows. First, the modal matrix is defined,

(Al = [{A}L{A)2 - - {AlN]; (2.1

then, the so-called expansion theorem is invoked, stating that any vector, including {g},
in the vector space spanned by [A] may be expressed (‘synthesized’) in terms of the

*This is physically reasonable — sce equation (2.7).

*If the determinant of successive submatrices, each containing the left-hand corner element are all positive,
then the matrix is positive definite. That is, for a 3 x 3 matrix [M]:my > O, myyma — myym2 > 0 and
det[M] > O; and similarly for higher order matrices. If any of the determinants is zero, then [A] is said to be
only positive rather than positive definite.
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eigenvectors making up [A]. Hence, the coordinate transformation

{q} = [Al{y} (2.12)
is introduced, in which y;, i =1, ..., N, are the normal or principal coordinutes. Substi-
tuting (2.12) into (2.4), and pre-multiplying by [A]" leads to

[P} + (S1(y} = [ATT(Q) = (F), (2.13)
in which
[P] = [A]"[M][A], [S] = [A]"[K][A] (2.14)

are diagonal, in view of the relations (2.10).

The system (2.13) has therefore been decoupled. Each row reads p;y; + s; y; = F;(1),
which is easily solvable, subject to the initial conditions {y(0)} = [A]~!{q(0)} and
{7(0)} = [A]"'{g(0)}. The response in terms of the original coordinates may then be
obtained by application of (2.12).

In case of repeated eigenvalues, or if [M] or [K] are not symmetric but the eigenvalues
are still real, provided that linearly independent eigenvectors may be found,” one may
proceed as follows: (i) equation (2.4) is pre-multiplied by [M]7Y, (ii) transformation (2.12)
is introduced, and (iii) the equation is decoupled by pre-multiplication by [A]™!; this
leads to

(3 + iy} = (47" (M171{Q), (2.15)

where [A]7'[W][A] = [A] has been utilized, and [A] is the diagonal matrix of the eigen-
values.

If damping is present, then the full form of equation (2.1) applies — provided, of
course, that the damping is viscous or that it may be approximated as such. In this case,
eigenvalues and eigenvectors are no longer real. The procedure that follows applies to
cases where [M], [K] and [C] are symmetric — the latter being so if [C] is derived from
a dissipation function, for instance (Bishop & Johnson 1960). The following partitioned
matrices and vectors of order 2N are defined:

_ | [0] [M] _ [ [0 [0 [
[B]—[[M] [C]]’ [E]—[ [0] [K]]’ {¢}—{{Q}}, {z}—{{q}}, (2.16)

and equation (2.1) may now be reduced into the first-order form
1B){z} + |E)z} = {@}). (2.17)

The procedure henceforth parallels that of the conservative system. Assuming solutions of
the form {z} = {A} exp(At) = {A} exp(152?), the reduced equation (2.17) eventually leads
to the eigenvalue problem

(AU] = YDA} = {0}, (2.18)

where [Y] = —[B]"![E]. The eigenvalues, A;, and eigenvectors {A};, i=1,2,..., 2N,
may now be determined. The A; occur in complex conjugate pairs,* and the eigenvectors

FHence, in principle and if desired, a set of orthogonal eigenvectors may be determined via the Gram-Schmidt
procedure.

*Note that, even for a conservative mass-spring one-degree-of-freedom system, one obtains 2 = +./k/m,
where the negative value is usually ignored (see Section 2.3); here £2; = A, 50 Aj = 0i £ (k/m)'/2.
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fori=1,...,N are those for i =N+ 1,...,2N, multiplied by A;. Since the A; are
complex, so are the §2; — the real part of £2 being associated with the frequency of
oscillation and the imaginary part with damping (see Section 2.3); recall that A; = 1£2;.

A modal matrix, [A], is then constructed, and the transformation {z} = [A]{y} intro-
duced. In view of the weighted orthogonality of the {A};, for a set of distinct eigenvalues,
one obtains

[P + (S}{y} = (A1 (@} = (¥}, (2.19)
where [P] = [A]T[B][A] and [S] = [A]T[E][A] are diagonal. Hence, cach row reads y; —
Aivi=a;¥;, i =1,2,...,2N, which is easily solvable. As before, the solution in terms

of {gq}, and redundantly in terms of (g}, is obtained by {z} = [A]{y}.

In fluidelastic systems [C] and [K] are often nonsymmetric, and the foregoing decou-
pling procedure then needs to be modified (Meirovitch 1967). To that end, the adjoint of
eigenvalue problem (2.18) is defined,

(AL - [YT7) {4} = {0}, (2.20)

the eigenvalues of which are the same as those of (2.18), but the eigenvectors, [/i},-,
are different. Then, the original system may be decoupled by introducing in (2.17) the
transformation {z} = [Al{y}, and (ii) making use of the biorthogonality properties

{A)T{A}; =0, {A)T[Y1{A); = {0}, for i# ], (2.21)

which lead to a decoupled equation, similar, in form at least, to (2.19).

2.1.3 The Galerkin method via a simple example

As already mentioned, it is advantageous to analyse distributed paramcter (or continuous)
systems by transforming them into discrete ones by the Galerkin method (or, for that
matter, by collocation or finite element techniques), and then utilizing the methods outlined
in Section 2.1.2. The Galerkin method will be reviewed here by means of an example.

Consider a uniform cantilevered pipe of length L, mass per unit length m, and flexural
rigidity EI. The simplest equation describing its flexural motion is

F*w 4 ’w
ot o
where w(x, t) is the lateral deflection — according to the Euler-Bernoulli beam theory,

as opposed to the Timoshenko or other higher order theories. The boundary conditions
are

El =0, (2.22)

92 Py
=0, EIZY| =0, EIZZ| =0 (2.23)

ow
=0, 2 3
x=0 ox a=L ox x=L

w -
x=0 ox

The solution of this problem is well known [e.g. Bishop & Johnson (1960)]. After sepa-
ration of variables, with scparation constant A%, the spatial equation admits a solution
consiting of exponentials of A, and +A,i. Substitution into (2.23) gives a system of
four homogeneous equations, the condition for nontrivial solution of which leads to the
characteristic equation,

cos AL cosh A, L +1=0. (2.24)
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This transcedental equation yields an infinite set of eigenvalues, the first three of which are
ML =1.87510, AL = 4.69409, AL = 7.85476; (2.25)

the corresponding natural- or eigenfrequencies are

ULV E’_)”z 2
2, = (ML) (mU . (2.26)

The modal shapes or eigenfunctions are
¢, (x) = cosh A,x — cos A,.x — g, (sinh A,x — sin A,x), (2.27)

where . .
o, = sinh A,L —sin A, L ' (2.28)
cosh A,L 4+ cos A, L

Before proceeding further, an important note should be made. It is customary in vibra-
tion theory and in classical mathematics to define the eigenvalue as being essentially the
square or, as in equation (2.26), the square-root of the frequency, except possibly for a
dimensional factor as in (2.26); the main point is that a positive eigenvalue here is associ-
ated with a positive eigenfrequency. In dynamics and stability theory, however, solutions
are expressed as being proportional to exp(if2r) or exp(Af), so that £2 and A are 90°
out of phase; a positive eigenvalue in this case would represent divergent motion, i.e. an
unstable system! This can lead to confusion, no doubt. However, these different meanings
and notations are so deeply embedded in these fields [cf. equations (2.26) and (2.36)] that,
in the author’s opinion, trying to unify the notation and meanings would create even more
confusion. Instead, the context and occasional reminders will be preferable, to make the
reader aware of which of the two notations for eigenvalue is being used.

When a concentrated mass M, is added at the free end of the pipe,’ the equation of
motion is the same, but the boundary conditions are

3 3? 9
Y20, Y| =0 @ EZY

w
a2 Wl =M

x=L ¢ 8t2

.\':L‘
(2.29)

x=0 ax {10

hence there is a shear force at the free end, associated with the inertia of the supplemental
mass. Of course, for a simple problem like this, it is possible to proceed in the normal
way and determine the eigenvalues and eigenfunctions of the modified problem. It will
nevertheless be found convenient to transform such systems into discrete ones by the
Galerkin method. To this end, for the problem at hand, the end-shear is transferred from
the boundary conditions into the equation of motion, which may be re-wrilten as

4

[ A M, 5(x — L
5;4_ [m+ e(x_ )J

82
F’: =0, (2.30)

*The main purpose here is purely tutorial; nevertheless, the dynamics of a pipe conveying fluid with an
added mass at x = L is considered in Chapter 5 {Section 5.8.3), and it is shown to add a lot of zest to the
dynamics of the system.
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where 8(x — L) is the Dirac delta function; boundary conditions (2.29) then reduce to
(2.23). According to Galerkin’s method, the solution of (2.30) may be expressed as

N
wix, 1) >~ wy(x, 1) = Z V(g (), (2.31)

j=1

where the y;(x) are appropriate comparison functions, i.e. functions in the same domain,
9% = [0, L], satisfying all the boundary conditions (both geometrical and natural®), and
q;(t) are the generalized coordinates of the discretized system which will eventually
emerge by application of this method (Meirovitch 1967). It is now clear why it is advan-
tageous to recast this problem into the form of equations (2.30) and (2.23), for it is then
possible to use ¥;(x) = ¢;(x), i.e. to use the eigenfunctions given by (2.27) as suitable
comparison functions: suitable, since they satisfy the boundary conditions associated with
(2.30), and also convenient, since they are already known.

When approximation (2.31) is substituted into the left-hand side of (2.30), the result
will generally not be zero, but equal to an error function, which may be denoted by €[wy].
Galcrkin’s method requires that

/ Elwh 1y, (x)dD = 0, r=12,...,N; (2.32)
D

i.e. over the domain, the integrated error, weighted by I/f,(x),* should be zero (Finlayson
& Scriven 1966).

Thus, in this example, substituting approximation (2.31) with ¥;(x) = ¢;(x) into equa-
tion (2.30), multiplying by ¢,(x) and integrating over @ = [0, L], leads to

N
D {EINq;L8,; + [mLs,; + Mo (L) $;(L)1G;} =0,  r=12,...,N,  (2.33)
j=1

in view of the orthogonality of eigenfunctions (2.27), i.e.

L
/0 6,(0); (x) dx = L3, (2.34)

where §,; is the Kronecker delta (0 for r # j and | for r = j). Clearly the system is now
discretized. Thus, if a two-mode approximation (¥ = 2) is utilized, equation (2.33) may
be written in the following matrix form:

mL + M,¢}(L) Me¢l<L)¢z<L)] {él}+E1 [A?L 0 ]{q.
M.p(L)g2(L)  mL+M5(L) | L4 0 ML lg
The eigenvalues and eigenfrequencies of this matrix system are approximations

of the lowest two of the continuous system; thus, if M, = %mL, then £2, =
2.018(EI/mL*)!/2, 2, = 17.165(EI/mL*)"/2. The corresponding eigenvectors give, in a

} ={0}. (2.35)

*Geometrical boundary conditions are of the type w‘ o= 0, while natural ones involve forces or moments,
RES
e.g. EI(@w/ox> )( _, =0

*The weighting function comes in ‘naturally’ if Galerkin's method is derived via variational techniques.
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sense, the ‘mix’ of first- and second-mode eigenfunctions of the original system, necessary
to approximate the eigenfunctions of the modified one; thus, for this example,

Ah = {—0].02}’ A= { 1.;8}'

In general, N must be sufficiently large to assure convergence. Table 2.1 shows that
convergence can be very rapid. The exact values, by solving (2.22) with boundary condi-
tions (2.29), are 2,(EI/mL*)~"/? = 2.0163, 16.901, 51.701 for r = 1,2, 3.

Galerkin’s method will now be expressed formally in a generalized form, useful for
further development. The cigenvalue problem associated with equations (2.22) and (2.30)
may be expressed as

LIw] = AM[w], (2.36)

subject to the appropriate boundary conditions. Generally, £ and A are linear differential
operators, although M in many cases is a scalar, and A(= %) is the eigenvalue. In the
case of equation (2.30), £ = EI(3*/ax*) and M = m + M,8(x — L). The equivalent 1o
statement (2.31) now is

N

wy(x) = Z a;y(x). (2.37)

j=1

The elements of the mass and stiffness matrices [cf. equation (2.1)], the two matrices in
(2.35), may be obtained by

L L
my= [ woMtneld, k= [ ot @ (2.38)

In the case where M, is incorporated in M and the boundary conditions are (2.23), this
is a standard problem. If, however, M, is left out of the equations of motion, boundary
conditions (2.29) may be re-written as

w(0) =0, w'(0) =0, w’(L) =0, EIw" (L) = —AM,w(L), (2.39)
in which ( ) = 8/dx, and the problem is unusual in that the eigenvalue appears in
the boundary conditions. Hence, strictly (Friedman 1956), the domain % depends upon
A. In this example, for the calculations with equation (2.22) and boundary conditions
(2.29) leading to the ‘exact results’ to which those of Table 2.1 were compared, we have
proceeded by blithely ignoring this subtlety (by retaining @ = [0, 1]), yet still obtained
the correct results. However, this is not always true, as will be seen in Section 2.1.4.

Table 2.1 Approximations to the lowest three eigenfrequencies of the modified
cantilevered pipe for various N in the case of M, = %mL.

N 2 4 6 8 10
,(El/mL%)~17? 2.0184 2.0166 2.0164 2.0163 2.0163
2:(El/mL*)~172 17.166 16.936 16912 16.906 16.904

25(El/m L)™' - 52.125 51.826 51.754 51.728
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2.1.4 Galerkin's method for a nonconservative system

Consider next that a fluid of constant velocity U and mass per unit length M is flowing
through the pipe in the example of Section 2.1.3, i.e. the pipe with the extra mass M, at
the free end. As shown in Chapter 3, the equation of motion in this case is

*w 5 3w ?w ?w
EI F™ +MU o +2MU8x8t+(m+M) 5 =0, (2.40)
with boundary conditions (2.23) or (2.29) for M, = 0 and M, # 0, respectively.

For M, # 0, the problem is solved by the same two methods as before: (a) with M,
included in the equation of motion, with a Dirac delta function, and boundary conditions
(2.23); (b) with equation (2.40) as it stands and boundary conditions (2.29). Table 2.2
gives the results for '=M,/[(m+M)L] =03 and B=M/(m+ M) =0.1 for two
values of the dimensionless flow velocity u = (M/EIY2LU. Two interesting observa-
tions may be made from the results of Table 2.2. First, for u = 2, the eigenfrequencies
are no longer real; in fact, for all u # O they need not be real because the system is noncon-
servative. Second, the eigenfrequencies for u = 2 (again, for all u # 0) as obtained by
the two methods are not identical as they should have been.

That the system is nonconservative may be assessed by calculating the rate of work
done by all the forces acting on the pipe. If it is zero, then there is no net energy flow
in and out of the system, which must therefore be conservative; otherwise, the system is
nonconservative. In this case,

dw L aw
o= _/0 = gl dx (2.41)

is found not to be zero by virtue of the forces represented by the second and third terms in
(2.40)" — see Chapter 3. Viewed another way, this means that it is not possible to derive
these forces from a potential; like dissipative forces, for instance, they are nonconservative,
at least for this set of boundary conditions.

The second observation suggests that, for u 7~ 0, the results from either method (a) or
(b) must be wrong. Indeed, those of method (b), utilizing equations (2.40) and (2.29) as
they stand, are wrong because of the remark made at the end of Section 2.1.3. There is

Table 2.2 The lowest two eigenfrequencies calculated by two different methods for different
u; I' =03, B =0.1. In method (a) the extra mass, M., is included in the equation of motion via a
Dirac delta function, while in (b) it is accounted for in the boundary conditions.

u=20 u=2
Method (a) Method (b) Method (a) Method (b)
Q,[EI/(m + M) L*]~1/? 2.36 2.36 2.71 4+ 0.660i 2.18 + 1.16i
2, [EI/(m + M)L*~1/? 17.58 17.58 16.48 + 0.084i 16.34 + 1.56i

“In this problem, the definition of & is not clear-cut, because of the mixed derivative. However, by
taking Llw] = [E1(8*/8x*) + MU2(8% /ox?) + 2M U(8*/3x 31)]w, one obtains (dW /dr) = —MU[(dw/d1)2 +
U(aw/ax)(aw/at)]’ _ A0
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a way of solving the problem correctly while utilizing boundary conditions (2.29), but
the meaning of the domain @ has to be expanded (Friedman 1956; Meirovitch 1967); an
example is given in Chapter 4 (Section 4.6.2).

2.1.5 Self-adjoint and positive definite continuous systems

The eigenvalue problem of equation (2.36), and thereby the system, is said to be self-
adjoint™ if for any two comparison functions, « and v,

/u&f[v]d?b:/ vL[u] dD, /u.M[v]dEb:/ vM[u]dD, (2.42)
)] D D D

are satisfied. A consequence of self-adjointness is that the eigenvalues are real. Another
consequence is that a generalized or weighted orthogonality of the eigenfunctions then
holds true for nonrepeated eigenvalues; thus,

/ & M{p]dD = 0, / ¢ Llp]dD =0 for Ar 7 As. (2.43)
D D
Furthermore, if
/ uL{u]d® > 0 and / uMlu]d® > 0 (2.44)
) D

for all nonzero u, the operators are positive definite, and hence so is the system. The
consequence of this is that the eigenvalues of such a system are positive — refer to
Section 2.3 for the significance of this and back to Section 2.1.3 for further clarification
of the different usage of the word ‘eigenvalue’. In cases where & is only positive, rather
than positive definite, i.e. when the first integral (2.44) can be zero for some nonzero u,
while M remains positive definite, the system is called positive semidefinite, and admits
solutions with A = 0.

Clearly, for the system of equations (2.22) and (2.23), the problem is self-adjoint. To
illustrate the case of a non-self-adjoint system in as simple a manner as possible while
still keeping in the framework of the examples already discussed, consider the system

LIw] = EI(d*/dx*) + P(d?/dx?), Mw] = m; (2.45)
w0)=0, w(©)=0, EIW'(L)=0  EIW"(L)=0. (2.46)

This could represent a cantilevered beam, subjected to a compressive tangential ‘follower’
force P, such that the boundary conditions remain unaffected. A follower force is one
retaining the same orientation to the structure in the course of motions of the system, in
this case remaining tangential to the free end.* By applying the integrals (2.43) it is found
that the integrated out parts do not vanish {since Pu(1)v/(1) and Pu'(1)v(1) are not zero
for the boundary conditions given].

*If & and M are complex operators, the cquivalent property is for the eigenvalue problem to be Hermitian.
*In fact, such a compressive follower force could be generated by a light rocket engine [M,/(mL) ~ 0]
mounted on the free end of the cantilever, so that the force of reaction is always tangential to the free end.
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2.1.6 Diagonalization, and forced vibrations of continuous systems
The equation of motion associated with the problem defined by (2.45) is

El tw P 9w N 9w 0 (2.47)
— — +m— =0, .
ax* ox? or?

with the boundary conditions as given in (2.46). This clearly represents free motions of the
system; hence, of interest are the eigenfrequencies and the corresponding eigenfunctions
and how they vary with P (or its nondimensional counterpart, PL2/EI). This can be
done by direct application of the Galerkin method with wy = Zj ¢;(x)q;(t), in which
the cantilever-beam eigenfunctions (2.27) are used as comparison functions, since they
satisfy boundary conditions (2.46), which are identical to (2.23). In this way, one obtains
an equation similar to (2.35), i.e.

(M1{g} + [K]{q} = {0}, (2.48)

but with only [M] being diagonal, while [K] is nondiagonal. In fact, the elements of
[K] are

L
k,j = EIX!LS,; + P / ¢, ¢ dx,
0
the prime denoting differentiation with respect to x.

Suppose now that this system is subjected also to a distributed force, F(x, t), so that
the equation of motion is

Fw 9w Fw
E1SY  pl¥ Y
e e T

see Figure 2.2. After discretization by the Galerkin procedure, we obtain

=F(x, 1) (2.49)

(M1{q} + [K]{q} = {Q}. (2.50)

If this had been a self-adjoint conservative system, matrices ([M] and [K] in equation (2.50)
would both be symmetric. For the problem at hand, however, the system is non-self-
adjoint, as remarked earlier, and hence [K] is asymimetric, by virtuc of the fact that
fOL é.¢ dx # fOL ¢;¢) dx. Hence, the decoupling procedure leading to equation (2.15)
should be adopted.

Before proceeding further, however, it is useful 10 transform equation (2.49) into dimen-
sionless form, which serves lo introduce the kind of dimensionless terms appearing
frequently in the following chapters. Hence, defining

£ =x/L, n=w/L, T = (EI/mL%)'*,
(2.51)
® = PLY/EI, f = FL*/EI, w= (EI/mL*7?0

and taking, as a concrete example, f = fo&sin(wy7) — representing a triangularly
distributed load along the beam, as shown in Figure 2.2 — substitution into (2.49) yields

I’),m + @n" + I’) = fo&' sin(a)fr), (252)
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Fyxsin{kt

Figure 2.2 A cantilevered beam subjected to a tangential, follower compressive load, P, and to
a time-dependent distributed force, Fox sin £2;¢.

in which primes and overdots denote, respectively, partial differentiation with respect to
& and t. The discretized form of (2.52) is

[/1{g} + [K]{q} = {Q} sin(w/7), (2.53)

and the elements of [K] and {Q} are

| 1
kij = A8, + @ / boldE Q= /O fokdy de, (2.54)
0

in which the ¢; = ¢;(&), the dimensionless version of (2.27). The decoupled equation,
corresponding to equation (2.15), is

{3} + [A){y} = [A)7{Q} sin(w;7) = (¥} sin(w; D), (2.55)
in which [A] is the diagonal matrix of the eigenvalues; the solution therefore is

Vi = ¢ COS A,}./zt + Br sin A,{,/zt-{- (W /(A — w?)]sin(wft), k=1,2,...,N.
(2.56)

Numerical results for the case of P =1, fo =7, w; = 0.6 are shown in Figure 2.3
(a) for ax = B =0, i.e. showing only the particular solution, and (b,c) for n(l,0) =
0.15, n(1,0) = 1.5. The dimensionless natural frequencies, obtained with N = 4, are
found to be w| = 3.64, wy = 21.73, w3 = 61.32 and w4 = 120.5; w; is chosen to be far
below all of them.

In Figure 2.3(a), where the homogeneous part of the solution is totally absent, it is
seen that the response is a pure sinusoid with period T = 2m/w; = 10.47. The effect
of the homogeneous part of the solution, however, complicates the response, as shown
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Figure 2.3 Solutions to cquation (2.52) showing n(l,t) versus t, for P =1, fo =7 and

wy =0.6: (a) the particular solution alone [i.e. a; = B =0 in equation (2.56)], which would
correspond to the steady-state solution if damping were included; (b) full solution for N = I;
(c) full solution for N =2 (——) and N =4 (---) on an expanded scale of 1.
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in Figure 2.3(b), obtained with N =1. A higher frequency component, at wj, is now
superposed on the solution. Two observations should be made: (i) since, unrealistically,
there is no damping in the system, the effect of initial conditions persists in perpetuity,
whereas, with even a small amount of damping, the steady-state response would be like
that in Figure 2.3(a); (ii) since w;/wy is not rational, the response is not periodic but
quasiperiodic, although the effect of ‘unsteadiness’ in the response time-trace is just
barely visible. This is more pronounced in Figure 2.3(c), plotted on an expanded time-
scale, showing calculations with N = 2 and N = 4; in the latter case, the contribution of
all four eigenmodes is visible. On the other hand, the period associated with the forcing
frequency is hardly discernible in the time-scale used in Figure 2.3(c).

The fact that the response in Figure 2.3(b,c) is quasiperiodic is most apparent in the
phase plane, as shown for example in Figure 2.4. It is seen that the response evolves by
winding itself around a torus, the projection of which is shown in the figure, instead of
tracing a planar curve, as would be the case for periodic motion.

3
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Figure 2.4 The response of Figure 2.3(b) plotted in the phase plane: the dimensionless tip velocity,
n(l, 1), versus displacement, n(l, 7).

There is another, more general method for obtaining the response of such a system,
specific to non-self-adjoint problems (Washizu 1966, 1968; Anderson 1972). This begins
with the determination of the adjoint problem. If the eigenfunctions of the homogeneous
form of equation (2.47), i.e. of the compressively loaded beam, are x;(£¢) and those of the
adjoint problem ¥;(£), the adjoint problem is defined through the new operators £* and
M*, such that

/@ Y(ELIx(E)}dD — /@ XxEEY(ENAD = Clx (&), ¥(E)la (2.57)

in which it is required that the so-called concomitant, C, vanish. A similar expression for
M should be satisfied, but since for the problem at hand M is a scalar, we immediately

*Sometimes referred to as the adjugate problem (Collar & Simpson 1987).
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have M* = M. In the nondimensional notation used here, @ = [0, 1] and & = x/L. This
problem has in fact been solved by Chen (1987), but it is not difficult to reproduce the
results. One finds £* = &, but a new set of boundary conditions for the adjoint problem,
namely

¥(0) = ¥'(0) =0, Y (1) +Py(1) =0, Y1) +PY (1) =0. (2.58)
Solving the two eigenvalue problems, one obtains
x(&) = A, sin p& + A, cos p& + Az sinh g& + A4 cosh 4§,
W(&) = B, sin p& + B, cos pt + B sinh g& + By cosh g,
p=[Gor+ 02 119)"2 g=[deP+ 02 - 1)
A =1, Ay = —(p? sin p + pq sinh ¢q)/(p? cos p + q* cosh @), (2.59)
Ay=—p/q,  As=—4Ay

(P — p?) sin p— (p/)(P + ¢*) sinh q]
[(® — p?) cos p— (P + ¢?) cosh q]

By =—p/q, By = —B;.

B =1, Bz=—[

The characteristic equation is

P2 4+ 20(1 + cos pcosh g) + P+/A sin p sinh ¢ =0,

and it is the same for both problems; hence, so are the eigenvalues.
The essence of this method is that it achieves direct decoupling of the equations of
motion via the so-called biorthogonaliry of the initial and adjoint eigenfunctions, viz.

1 1
/0 Ve Llxj1dE = kyjé,j, /O e MIx;1dE = m,;5,. (2.60)

By introducing ny = 3 x;(£)g;(7) into equation (2.52), then multiplying by ¥,(£) and
integrating over 9%, the system is decoupled in a single operation, by virtue of relations
(2.60), yielding

m;q; +kjq; = f; sin wyr, J=1L2...,N. (2.61)

Calculations with the same set of parameters produce virtually identical results as those
shown in Figure 2.3 for N = 4. What is more surprising is that the rate of convergence
with & is not better with this method than with the previous one. Clearly, therefore, in this
particular casc, there is no advantage in utilizing this second, more general but more labori-
ous, procedure rather than the first. Similar conclusions are reached by Anderson (1972),
who tested a very similar problem, essentially by the same two methods — although very
small differences are found in that case in the results obtained by the two methods.

fA typographical error in p and ¢ is noted in Chen (1987, Appendix C).
*The results obtained by integrating the equations numerically are also identical, although in that case it
took about one order of magnitude longer in time to obtain them.
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2.2 THE FLUID MECHANICS OF FLUID-STRUCTURE
INTERACTIONS

2.2.1 General character and equations of fluid flow

Trying to give a selective encapsulation of the ‘fluids’ side of fluid-structure interactions
is more challenging than the equivalent effort on the ‘structures’ side, as attempted in
Section 2.1. Solution of the equations of motion of the fluid is much more difficult.
The equations are in most cases inherently nonlinear, for one thing; moreover, unlike
the situation in solid mechanics, linearization is not physically justifiable in many cases,
and solution of even the linearized equations is not trivial. Thus, complete analytical and,
despite the vast advances in computational fluid dynamic (CFD) techniques and computing
power, complete numerical solutions are confined to only some classes of problems.
Consequently, there exists a large set of approximations and specialized techniques for
dealing with different types of problems, which is at the root of the difficulty remarked
at the outset. The interested reader is referred to the classical texts in fluid dynamics [e.g.
Lamb (1957), Milne-Thomson (1949, 1958), Prandtl (1952), Landau & Lifshitz (1959),
Schlichting (1960)] and more modern texts [e.g. Batchelor (1967), White (1974), Hinze
(1975), Townsend (1976), Telionis (1981)]; a wonderful refresher is Tritton’s (1988) book.

Excluding non-Newtonian, stratified, rarefied, multi-phase and other ‘unusual’ fluid
flows,” the basic fluid mechanics is governed by the continuity (i.e. conservation of mass)
and the Navier-Stokes (i.e. conservation of momentum) equations. For a homogeneous,
isothermal, incompressible fluid flow of constant density and viscosity, with no body
forces, these are given by

V.V =0, (2.62)

v 1 ,
1%

where V is the flow velocity vector, p is the static pressure, p the fluid density and v the
kinematic viscosity. The fluid stress tensor (Batchelor 1967),

gij = —p&,-j + 2[1.6,'j. (2.64)

used in the derivation of (2.63), is also directly useful for the purposes of this book: its
components on the surface of a body in contact with the fluid determine the forces on the
body; u is the dynamic viscosity coefficient, and ¢;; are the components of strain in the
fluid. In cylindrical coordinates, for example, where i, j = (r, 6, x) and V = {V, V,, V)T,
the components of e;;(= ej;) are

v Vv 19Vey W
— —__+_

€xx = €rr = T €op =
ax’ or’ r 08 r’

(2.65)
[0 (Vo) 1V L1 3V Vs 1 [3v. 0%
€rog=Z |r— | — vy K x = 5 |7 74 V> xr = % | 5 |
=2 \r roolt T 2|7 ax =31 T ar

*Non-Newtonian fluids are nevertheless in the majority. in the process industries and biological systems. for
instance. Polymer melts, lubricants, paints, and fluids involved in synthetic-fibre-, plastics- and food-processing
are generally non-Newtonian, rheological fluids (Barnes er al. 1989).
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Equations (2.62) and (2.63) together with appropriate boundary conditions, including
equations matching the motion of a moving boundary (which could be part of the structure
of interest), should in principle be sufficient to solve problems involving incompressible
fluids. Similarly for compressible fluids, but the equations in this case are more complex
and will not be presented here. Possible boundary conditions for a body surface moving
with velocity v,, in the fluid are

Vin=v,n and VXxn=v,xn, (2.66)

the first matching the normal components of fluid and solid-surface velocities, and the
second being a form of the no-slip boundary condition, matching fluid and body velocities
parallel to the surface; n is the unit normal to the surface.

By ‘solution’ of the fluid equations we mean the determination of the velocity and
pressure fields, V and p. For fluid—structure interaction problems in which the forces
induced by the fluid on the structure are the only concern, most of the information on V
and p is ‘thrown away’. This is because the forces on the structure may be determined by
the pressure and viscous stresses on the body surface, cf. equations (2.64) and (2.65). This
allows for approximate treatment of some classes of problems, which will be discussed
in what follows. Indeed, the rest of this preamble will introduce, in general terms, some
of the broad classes of admissible simplifications and hopefully guide the reader towards
other ones.

The topic of turbulent flows [subsection (f)] is treated at considerably greater length
than the other classes of flows. The reasons for this anomaly are that turbulence is more
complex and generally less well remembered than the rest, at least by those not in constant
touch with it. Nevertheless, the concepts and some of the relations to be recalled will be
needed later on, e.g. in treating turbulence-induced vibrations of pipes and cylinders in
axial flow; see Chapters 8 and 9 in Volume 2.

(a) High Reynolds number flows; ideal flow theory

If U is a characteristic flow velocity (¢.g. a mean flow velocity in the system) and D
a characteristic dimension, the Reynolds number is Re = UD/v. If equation (2.63) is
written in dimensionless form, the last term is divided by Re; hence, for sufficiently
high Re this term is negligible, and the Navier-Stokes equations reduce to the so-called
Euler equations, Thus, away from any solid boundaries, the fluid is considered to be
essentially inviscid. Close to a boundary, in the boundary layer, the effects of viscosity
are predominant, but they may be treated separately. In such cases, precluding situations
of large-scale turbulence and separated flow regions, the pressure field is determined as
if the flow were inviscid and then the shear stresses on the body are determined by
boundary layer theory or via empirical information.” This is the treatment adopted for
slender cylindrical structures in axial flow in Chapters 8 and 9. Strictly, this approach
constitutes but a first approximation; in general, the boundary-layer and inviscid-flow
calculations should be maiched iteratively.

For sufficiently high Re, the flow becomes turbulent and, if the effects of turbulence
cannot be ignored, this introduces new complexity [see subsection (f)].

*The key idea making this possible is that of a constant pressure across the boundary layer.
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(b) Potential flow theory

Many interesting inviscid flows (e.g. a uniform flow approaching a body) are initially
irrotational, i.e. the vorticity, e, is everywhere zero: @ = V x V = 0. Hence, by Kelvin’s
theorem, such flows remain irrotational;’ the flow is then referred to as potential flow and
is associated with the velocity potential, ¢, where V = V¢. Euler’s equations in this case
simplify to the well known unsteady Bernoulli, or Bernoulli-Lagrange, equation

d
a_‘f + %VZ +P_ 0, (2.67a)
P

where p is measured relative to the stagnation pressure of the free stream.* This form of
the equation applies if there are no body forces. If there are, for example due to gravity,
the following form may be more useful:

0
3_‘f’ Ly % +gz=0, (2.67b)

where z is the vertical height. There exists a highly developed mathematical treatment of
potential flow — see, e.g. Lamb (1957), Streeter (1948), Milne-Thomson (1949, 1958),
Karamcheti (1966), Batchelor (1967).

{c) Very low Reynolds number flows

In this case, when Re — 0, inertial effects become negligible, and the Navier-Stokes
equations reduce to the equations of creeping tlow,

Vp = uVv. (2.68)

A number of well known solutions exist, e.g. for the plane Couette and Poiseuille
flows, classical lubrication theory (Lamb 1957), Stokes flow past a sphere and constant
pressure-gradient laminar flow through pipes; but, surprisingly perhaps, not for low-Re
two-dimensional cross-flow over a cylinder (Stokes’ paradox).

{d) Linearized flows

In some problems there is one dominant steady flow-velocity component, while all others
are perturbations thereof, say induced by structural motion, e.g. V = Ui + v, where |v|| <
U, i is the unit vector in the x-direction. In such cases, the Navier-Stokes equations may
be linearized and simplified considerably. Thus, if U is steady, i.e. not time-dependent,
and spatially uniform, the Navier-Stokes equations reduce to

ov av 1 2
— 4+ U—=—=Vp+vVi. (2.69)
ot ox p

*Interestingly, this is not so if there is a density gradient to the fluid!
Thus, the integration constant that would otherwise appear on the right-hand side reduces to zero. This
constant, C(¢), is generally a function of time if, unusually, the hydrostatic pressure varies with time.
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In other cases, e.g. when fluid motion is entirely caused by small-amplitude oscillatory
motion of a structure, all components of V may be small, and (2.69) is further simplified to

v__1 Vp +vViv. (2.70)

at P
Because there is no mean flow velocity in this case, the Reynolds number as such does
not exist. Hence, to decide whether viscous effects are important or not, the ‘oscillatory
Reynolds number’ is used instead. For a circular cylinder of diameter D, this may be
defined as 8 = |A|D/v, where |A| is the amplitude of the oscillatory velocity of the body.
Further, denoting the amplitude of motion by €D, ¢ « 1, and the oscillation frequency by
2, one obtains |A| = f2¢D and hence B = R¢D? /v, from which it is obvious that this is
a modified Stokes number. Clearly, if 8 is sufficiently large, then viscous effects become
unimportant, and the approximation

v_ Ly, @.71)

may be used (see, Section 2.2.2 and Chapter 11). This may be combined with the conti-
nuity equation to give
vip =0, (2.72)

the Laplace equation. In terms of the velocity potential, ¢, the continuity equation and
equation (2.71) may be written as

Vi =0 (2.73a)
" __»p (2.73b)
at Jol
(e) Slender-body theory

A particular class of linearized flows pertains to slender bodies, i.e. bodies of small cross-
sectional dimensions as compared to their length [e.g. for a body of revolution of radius
R(x), if R(x) « L] and no abrupt changes of cross-section (dR/dx « 1), with the flow
being irrotational and along the long axis of the body or at a small angle to that axis
[Figure 2.5(a)]. Let the body be defined by

F(r,0,x)=r—R(x)=0. (2.74)
The flow field may be expressed as
V=V,+ Vg, (2.75)

where ¢ is associated with the perturbations to the flow associated with the presence of
the body and satisfies

V2 =0 (2.76)

and the boundary conditions

(Voo +V$)-VF=0 on F(r,,x)=0 (2.77a)
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R(x)

(b)

Figure 2.5 (a) A slender body of revolution in uniform flow at a small angle of attack, a. (b) A
flexible slender body performing lateral oscillations of long wavelength, such that each segment
may be considered to be part of an infinitely long cylinder; & = tan™!(3w/ax).

and
Vo =0 at infinity. (2.77b)

If the angle of attack is «, then in the (r, 6, x)-frame equations (2.77a,b) lead to (Karam-
cheti 1966)

oF oF
(Voo sin « sin 8 + u,); + (Vo cOs a + ux)a— =0 on F(r,8,x)=0 (2.78)
x

and
Ur=ug=u,=0 at infinity, (2.79)

in which u,, us and u, are the components of V¢, and 8F /or = 1, 9F /9x = —dR/dx from
(2.74). Hence, the surface condition (2.78) becomes

| dR . .
— = (Voo €0s ¢ + uy)— — Vo sin « sin 6, 0<x<L. (2.80)
or |, —g dx
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The essence of slender-body theory is to take advantage of the linearity of the problem
and to express it as the superposition of the following two problems: (i) the axisymmetric
flow past the body of revolution with flow velocity Vi cos «, and (ii) the cross-flow
around the body with flow velocity Vi sin « (Ward 1955; Karamcheti 1966). Thus,
defining ¢ = ¢ + ¢, and u, = uy; + uy;, equation (2.80) may be re-written as

o dR dR
= =WU+ug)— =U—, 2.81
or | _ (U+u l)dx I ( a)
0 dR
% _=wag —Wsing, 2.81b)
where
U=V4cosqa, W =V sin «. (2.82)

The solution to (2.81a) is usually obtained by representing the body through a distribution
of singularities (e.g. sources and sinks) along the centreline, while the solution to (2.81b)
may be obtained via standard potential-flow analysis (Streeter 1948; Milne-Thomson 1949;
Karamcheti 1966).

Consider next a very slender cylindrical body for which dR/dx >~ O, or exactly O,
except near the extremities [Figure 2.5(b)]. The body is subjected to an oscillatory lateral
displacement w(x, t) in the 8 = %n plane. Then, according to slender-body theory, the
flow can be regarded as compounded of (a) the steady flow around the stretched-straight
body, which we shall ignore here [and hence (2.81a) also] since dR/dx is nearly or
exactly zero over most of the length of the body, and (b) the flow due to displacements
w(x, 1) (Lighthill 1960). Hence, only the velocity component related to (2.81b) remains,
namely (9¢2/9r)|,—g =~ —W. The lateral velocity of the fluid relative to the moving body
is made up of (i) the component of U normal to the inclined body, equal to ~U sin «,
where o = tan~!(3w/dx), and (ii) the lateral velocity of the body, dw/dr, reversed, if at
that instant the body is moving upwards as in the inset of Figure 2.5(b). Therefore, for
sufficiently small o, one may write

a 5 3
¥ Cyen=2, 0 (2.83)
or|,—r ot ax

on the implicit assumption that, locally, the body shape differs little from that of a long
(infinite) cylinder C, of the same cross-section all the way along. Thus, according to the
slender-body approximation, this lateral flow near any point of the cylinder is identical
with the two-dimensional potential flow that would result from the motion of C, through
fluid at rest, with velocity V(x, ). Lighthill (1960) then goes on to obtain the rate of
change of lateral momentum of the fluid passing over the flexible body,

a a
Lx,t)=—p (5 +U a) AV (x, 0}, (2.84)

where A(x) is the slowly varying (or constant) cross-sectional area along the length of
the body. This equation is further discussed in Chapters 8 and 9, where the slender-body
approach is used extensively.
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(f) Turbulent flows

Due to a three-dimensional instability of laminar flow, the flow field becomes turbulent:
the flow velocity and pressure are no longer steady but contain randomly fluctuating
components. Two-dimensional disturbances in the laminar flow field eventually become
three-dimensional, and this is soon followed by turbulence. The critical Reynolds number
for the onset of turbulence is best stated in terms of the width of the flow™ and depends on
the shape of the laminar velocity profile; it is typically €(10%) for profiles with inflection
points and G(10%) or more for profiles of single curvature. Thus, boundary layers in
falling pressures are a good deal more stable than those that are suffering a pressure rise;
similarly, jets and wakes are also very unstable.

When turbulence appears, as originally observed and described by Reynolds for pipe
flow, the flow field may be expressed as V 4+ v and P + p, where the lower-case quantities
represent the fluctuating components about the mean (with zero average) and V and P are
the mean components; V = (U, Uz, U3}T and v = {u, uz, w3} in an {x|, x2, x3}-frame.
Substitution into the Navier-Stokes equations and averaging yields

al; n oy 1 oP n ] al;
ot / ax T pox ox

vm__ruj)) i)j=172y3v (2-85)
Xj

where the indicial notation is utilized, in which repeated indices imply summation; e.g.
U;(dU;/ox;) = Z;zl [Uj(0U;/0x;)]. The new term —u;u; is the correlation of u; and
uj, obtained by multiplying the two, integrating over a long time (appropriate to the
flow under investigation), and then dividing by the time interval. The quantity — ou;u;
represents additional normal and shear stresses due to additional momentum transfer
associated with the velocity fluctuations,* the so-called Reynolds stresses. Thus, in a
simple two-dimensional shear flow predominantly in the x;-direction, the viscous shearing
stress u(dU)/ox;) is increased by —puy iz, which has the same sign as dU;/dx; and is
sometimes written as u,(0U)/dx;), where the subscript f is for ‘turbulence’; v, = u,/p
is the so-called kinematic eddy viscosity. To differentiate the quantities associated with
viscous stresses from those related to turbulence, or equivalently the quantities associated
with velocity fluctuations at the molecular (Brownian) scale from the turbulent ones, the
subscript m (for ‘molecular’) is introduced, as in v,, in equation (2.85); v,, here is the
same as v in equation (2.63).

The Reynolds stresses are generally much larger than the viscous ones, except near
walls, in the viscous sublayer (Hinze 1975); on the wall itself, all turbulent fluctuations
vanish. One of the central problems of turbulent flows is the derivation of satisfactory
relations for Reynolds stresses in terms of the mean flow field (Townsend 1961).

The spatial structure of a turbulent flow may be described statistically by correlation
functions or by spectra. The general space-time correlation function between, say, u; at
point x and u; at point x + r is defined by

Rij(x,r,7) = w;(x, Duj(x +r,1 4+ 1), (2.86a)

*The width of a jet or a wake, or the thickness of a boundary layer.

+This is an essential characteristic of turbulence. As noted by Townsend (1961), *a sharp increase in friction,
or in heat and mass transfer is frequently used to determine the onset of turbulent motion if direct observation
of the fluctuations is inconvenient’.
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where t is a time delay in the measurement of u; and u;. For homogeneous turbulence,
R;; depends only on the separation between the two points r = ||r||. For a uniform flow
field in a given direction, e.g. for fully developed turbulent flow in a pipe, R;; depends
on the separation r, but also on the direction, hence on r. In this latter case,

Rij(r, v) = ui(0, uj(r, t + 7). (2.86b)
Keeping with this latter form, one distinguishes spatial correlations,
R;j(r,0) = u; (0, hu;(r, 1), (2.86¢)

in which &; and u; are associated with different points in space, but the same time; and
temporal correlations, involving the same point in space and a time delay r,

R,'j(l', 7) = u;(r, I)llj(l', t+ 1), (286d)

autocorrelations for i = j, and cross-correlations for i # j.

The spatial correlation, when plotted versus a particular component of r, indicates the
distance over which motion at one point significantly affects that at another. It may be used
to assign a length scale to the turbulence, defined as Ly = (1/v?) [~ Rij(r«, 0) dry, where
% is a normalizing factor, e.g. v* = u?, and ry is a particular component of r = {ry, rp, r3}7
in the {x,, x, x3}-frame used here." For flow in the x-direction, e.g. for fully developed
pipe flow, the integral (or macro-) scale, associated mainly with the largest, most energetic
eddies, is defined by

o0
/ Ry (r, 0)dn
L, =2 — ) (2.87)

2
i

For points r, apart, in the cross-stream direction, L, may be defined in a similar way,
with r; taking the_place of r; in terms of the normalized form of the correlation function
(the coherence), Ry, Ly is given by

11 (Ouy(r2)
[ ()12 (r2)]'/?

[0 ¢]
L= / Ru(rs, 0)drs,  Ru(rs, 0) = (2.88)
0

The correlation in the streamwise (longitudinal) direction generally decays from 1 at
r =0 to zero at sufficiently large r, smoothly and without change in sign (Figure 2.6);
whereas the cross-stream (lateral) correlation generally has a negative part for intermediate
r, before it too decays to zero for large enough r (Trilton 1988).

The temporal correlations are functions of the time delay t for measurements at the
same point; they give a measure of the time scale of turbulence. For small times, or over
small enough distances, turbulence may be considered to be advected past the point of
observation without change in structure. This is Taylor’s hypothesis, as a result of which a
temporal correlation is equal to the corresponding spatial correlation for T = ry /U ; thus,
according to this hypothesis, the eddies of the turbulence are convected without change
over a sufficiently short distance, r, as further discussed in Chapter 9.

*Alternative definitions, for experimental convenience, are sometimes utilized; e.g. by defining the scale as
the distance to where R;; plotted versus r;, becomes negative, or to where it is reduced to 1/e.
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Figure 2.6 Typical form of correlation functions: R;;(r;,0) for points i/ and j separated by a
variable r) in the streamwise direction; and R; ;(r, 0) for points separated by r; in the cross-stream
direction — following Tritton (1988).

The Fourier transform of the autocorrelation function gives the frequency spectrum of
the turbulence at a given point,

o
Fj(w) = 2L/ Rij(r, 1) e~ d, (2.89)
T J—00

where w is the radian frequency. The F;j(w) give a measure of the energy spectrum of
the turbulence. Hence, a peak in the spectrum denotes a dominant frequency, which could
excite an underlying structure, for instance. The energy spectrum is often described in
terms of the wavenumber k, generally a 3-D vector, k = {k;, k2, k3)T, with each k; =
1/274;, A; being the wavelength of turbulent fluctuations associated with a frequency w;.
Thus, the equivalent of (2.89) in terms of k is

. _ 1 o N —ik-r 43
Fik) = o5 ///_w Rij(r)e " dr. (2.90)

This may be expressed as a function of a scalar variable by averaging it over all directions
of k; thus,

., (k) = / F; (k) dAK), (2.91)

where k = | k||, and the integration is over the surface of a sphere of which dA is an
element, so that @;;(k) is the contribution to the energy tensor w;#; from wavenumbers
whose magnitudes lie between k and & + dk (Batchelor 1960, Chapter III).

Another quantity of interest is the turbulence intensity, which may be defined by

Tu=(2k)"* /U (2.92)

for sensibly one-dimensional flow, where

K = luw =4 [“_%‘l‘“_%"‘“?] (2.93)
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is the turbulence kinetic energy per unit mass. In view of the foregoing, this may also be
written as

K= / E(k)dk = $®;;(k), (2.94)
0

in which E(k) is the energy spectrum function, i.e. the density of contributions to the
kinetic energy on the wavenumber magnitude axis (Batchelor 1960).

Some progress has been made in understanding the changing scales of turbulence,
as measured by its spectra and expressed in terms of the scalar wavenumber k. The
spectra at low k (large eddies) often retain something of the original unsteady laminar
flow; but, with increasing k, there is a continual stretching of the eddies by the medium
scales, which causes a transfer of turbulence energy to large k (small eddies) and also
randomizes the orientation of the eddies so that turbulence becomes locally isotropic. If
the Reynolds number is very large, the intermediate spectrum is inertial (i.e. it sensibly
does not depend on viscosity), and it may be shown by dimensional analysis that the
spectrum is proportional to k=53, For the smallest eddies, where k > £(e/v*)'/%, the
Kolmogoroff wavenumber, viscosity takes over and causes a decay of the cascading energy
with dissipation rate € to heat. This structure, as described in the foregoing, enables a
dramatic assumption to be made, namely that away from walls, the Reynolds stresses are
independent of v,,. In this one respect, turbulent flow may often be easier to analyse than
laminar flow.

In analysing the boundary layer near walls, the so-called law of the wall is often used. In
this discussion, 2-D or axisymmetric boundary layers only are considered. Let U, be the
streamwise flow velocity in the boundary layer and x; = y the distance perpendicularly
away from the wall. Then, near enough to the wall, U, = U,(p, u, U, y), where U, =
(tw/p)"? is the skin-friction velocity and 7, is the shear stress at the wall; thus, U,
is independent of outer parameters, such as the overall boundary-layer thickness, the
free-stream velocity U, and the pressure gradient when not too large. Thus,

Y _g <ﬂ> , (2.95)
U, v

which is the law of the wall. Rotta (1962) predicts the functional form of & by noting that
changes in U; in most of the region outside the viscous sublayer are independent of u,
because the shear stress is almost entirely due to —puju; there. Dimensional analysis then
leads to (y/U,)(0U,/dy) = 1/K >~ 0.41, a universal constant named after von Kdrmén.

After integration, this gives
Uy ! YU,
— =—In{~— ] + B, 2.96
U, K ( v ) ¢ )
where B = 5.5 for a smooth wall. This proof applies to rough walls, ‘fully rough walls’
(where p is unimportant even near the wall), and ribletted walls for which there is a drag
reduction. The only thing that changes is the value of B, which is lower for rough walls,
increasingly with the roughness, and slightly higher for ribletted walls.
The law of the wall has been accepted for the purposes of CFD (Computational Fluid
Dynamics), where it often becomes the inner boundary condition, but it must be noted
that the corresponding law for turbulence intensity is not exactly true when comparing,

say, boundary-layer flow and pipe flow; i.e. \/ﬁ/Ur # F(yU,/v).
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In some of the work to be presented later (e.g. in Chapter 7, Volume 2), particular forms
of the foregoing for pipe flows — containing considerable empirical input — is utilized.
Thus, for pipe flow, a friction factor, f, is sometimes defined via

T 172 1 172
U, = (j“) = (ngz) , (2.97)

where U is the mean flow velocity; f is given empirically, for instance by the Colebrook
equation,

I k/D 251 } (2.98)

77 2 leew {W * Re T

where Re is the Reynolds number based on the diameter, D, and k;/D is the relative
roughness.

Reverting now to equation (2.85) for a more general analysis of turbulent flow, it is
noted that —u;u; is often not measured, but modelled mathematically. For example, by
means of Boussinesq’s eddy viscosity concept, one may write

S aUu,  ay; 2
—Uiu; = v (K =+ —(9_—;’) — 51(8,']', (299)

where K is as given by (2.93); v, is the eddy viscosity which, unlike v, (or v =y,
in laminar flow), it is not a constant but is dependent on the flow field. The chosen
form depends on the turbulence model adopted — see, for instance, Launder & Spalding
(1972), Jones & Launder (1972), Launder & Sharma (1974), Rodi (1980), Lesieur (1990),
So et al. (1991), Wilcox (1993).

Perhaps the simplest model is based on Prandtl’s mixing-length hypothesis for 2-D or
axisymmetric flows, in which
dU

o (2.100)

v, =12

where [ is Prandtl’s mixing length, y = x; is the coordinate measured away from the
wall, and U = U, is the mean flow velocity.” In the case of smooth pipes, for instance,
Nikuradse’s measurements yield the following empirical expression (Schlichting 1960):

%=0.14—0.08 (1—%)2—0.06(1 —%)4, (2.101)

R being the pipe radius.

There are many other models, including so-called two-equation models, for turbulent
flow (Wilcox 1993). One of the first and most popular was pioneered by Launder and
Spalding. It is based on two scalar functions, already defined: K = %F,u_, the average
turbulence (kinetic) energy per unit mass; and ¢, the rate of decay of turbulence energy
per unit mass, which is also the rate of transfer of energy from the large eddies to smaller
ones, and hence, in this latter capacity, it is independent of viscosity. In this so-called,

tIncidentally, this is the equation, with /  y. originally used by Prandtl to prove the law of the wall.
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K-€ model,” v, o« K?/e. Equations may be written for K and €, namely

oK aK aU; d oK , ____ __
=7 — | p— = s pUH; — pu;| , 2.102
P TP, T T, T e, [“ By, PR PG| (2102)
% v ou, 2 = o Lt + o) L 4+ ald
pa + P fi 5; = Ly u,.ku,_k k.itbk, j axj kUi, j 3xk8x,-

d
+ Wt g + Vmui,klui.kl} + 5;[#,"“,'!4:'.1”,'.1 — 2uapattyg),  (2.103)
j

in which p is the fluctuating pressure and 7;; the Reynolds stress tensor,
T = 2meij — 30K8ij, (2.104)

with e;; being the mean strain-rate tensor [cf. relations (2.65)]; u;x = Ou;/0x, pi =
dp/dx; and so on. Since the correlations in (2.102) and (2.103) are effectively impossible
to measure, these very complex equations have been simplified by various approximations.

The ‘standard form’ of the K-¢ model is expressed in terms of the following equations
and relationships (Wilcox 1993):

Eddy viscosity
W = pCuKz/e; (2.105a)
Turbulence kinetic energy
p?g+pUjg§=TijoLf“P€+£; [(um+ai;) gTK,] (2.105b)
Dissipation rate
P pu,-% - cd%r,-,g%f - CapS + a% [(um 4 Z—) 5’—;] . @1050)
Closure coefficients
Ca=14, Co=192, C, =009, ox=10 o =13 (2.105d)
Auxiliary relations
w=¢/(C,K) and [ =C,k**/e, (2.105¢)

o being the so-called specific dissipation rate and / the turbulence length scale. Thus,
the K and € equations contain five empirical constants which have been inferred from
standard measurements.

It has been found necessary to adjust the closure coefficients somewhat to agree with
different classes of measurements, but in the hands of a skilled practitioner this approach is
usually much better than integral methods. [In integral methods, equations for entrainment,
momentum, mechanical energy and so on are written integrated-up across the flow at any

*This is usually written as the k-¢ model, but an upper case K is used here to avoid confusion with the
wavenumber k.
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downstream station, and a selected group of these integral equations is solved, often by
a relatively simple numerical method (White 1974; Schetz 1993).]
Presuming now that v, has been determined, substitution of (2.99) into (2.85) gives

: s 21, . .
aU; oU; 1 09R U 9y (BV, aw>' (2.106)

—tUj—=-——tntv)— +— | —+ =

ot / axj 0 0x; (W ! asz 8x,- axj ax;
where A =P + %pK is the turbulent ‘total pressure’. Equation (2.106) may be written in
the usual, but perhaps less convenient, form

av 1

M + (VeVIV = =—VP 4 (v, + 1)V V + (Vi - V)V + (VV) .V, (2.107)
p

where VV is the so-called dyad, a vector (Wills 1958; Tai 1992). Examples of the use

of these equations and/or the ideas summarized in this subsection are presented in Chap-

ters 7-10.

(g) Empirical formulations

As intimated in the foregoing, mixed analytical-empirical formulations of the fluid-
dynamic forces may be the only convenient way to analyse some fluid-structure interaction
problems (e.g. provided that there is no large-scale flow separation, by analysing the flow
as if it were inviscid, thereby obtaining the pressure-related forces, and adding empir-
ical expressions for the viscous stresses acting on the body surface). Indeed, in many
cases involving complex flows, e.g. cross-flow of heat-exchanger tube arrays, the very
foundation of the theoretical model may be empirical or quasi-empirical.

In analysing the empirical (experimental) data, it is convenient to express the unsteady
fluid loading, F(t), acting on an oscillating structure in terms of components in phase
with acceleration, velocity and displacement of the structure, locally linearized; thus, for
a one-degree-of-freedom system,

FOy=-mi-cz1-kz (2.108)

When this is substituted in the equation of motion of the structure, mz + cz + kz = F(1),
one obtains
(m+m)+(c+c)z+k+k)z=0, (2.109)

hence the appellation of m’, ¢’ and k' as the added mass, added damping and added
stiffness [e.g. Naudascher & Rockwell (1994, Chapter 3)].

For example, for a long cylinder of cross-sectional area A and length L, oscillating in
unconfined dense fluid of density p, the added mass per unit length is m* = m'/L = pA,
if end effects are negligible. If the cylinder is in a conduit of complex geometry, m’ may
be determined analytically, numerically or experimentally, and the added mass per unit
length expressed by

*

m ='—Z— = C,pA. 2.110)

In general, C,, will be a function of geometry, viscosity and frequency (hence of the
oscillatory Reynolds number), amplitude, and other factors as discussed in Sections 2.2.2
and 2.2.3 and by others (Chen 1987; Gibert 1988; Naudascher & Rockwell 1994). In many
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cases the approximation is made that the added mass in quiescent (stagnant) and flowing
fluid is the same, although this is not rigorous. Such an approximation is definitely shaky
if the flow is grossly unsteady or accelerating. Thus, in the extreme case of oscillatory
flow, C,, = 2 instead of 1 [see, e.g. Sarpkaya & Isaacson (1981)], as a result of induced
buoyancy — i.e. because of the presence of a pressure gradient.”

The added damping may similarly be expressed in terms of a damping coefficient Cy,
which may be defined in different ways, e.g.

¢t = CZ = CjwpA or  CpUD, @.111)

for oscillations in quiescent or flowing fluid; other definitions are possible.

Added stiffness may arise due to buoyancy, asymmetry* or proximity to other solid
boundaries. For example, if a body lies close to a wall or a free surface and it is subjected
to flow, there will be a fluid force acting on it, because the flow field is nonuniform. If the
body is displaced towards or away from the aforementioned boundary by Az, this force
will change by AF. The quantity AF/Az is the so-called added stiffness, and it depends
purely on displacement and not on velocity or acceleration. Hence, one may similarly
define a stiffness force coefficient by

’

k
k* = I= Gw’oA  or  CipU (2.112)

In equation (2.109), m, ¢ and k are devoid of fluid effects; i.e. in an experimental system
they should ideally be measured in vacuum. Also, unless there exists a mathematical model
the linearization of which yields (2.108), m’, ¢’ and k" must be determined experimentally,
e.g. by conducting experiments first in vacuum (practically in still air) and then in fluid
(say, in water) or fluid flow; it is noted that although the ¢’ coefficient of the fluid force
determined thereby is easily separable from the rest, since the velocity-dependent compo-
nent is in quadrature (90° out of phase) with displacement, more than one experiment
would be necessary, and in some cases it is virtually impossible, to separate m’ and k'
since they are 180° out of phase with each other (hence, they differ only in sign).

The rest of Section 2.2 is devoted to the presentation of two simple but representative
analyses — in abridged form — which illustrate the use of the foregoing and also intro-
duce some useful nomenclature for the chapters that follow. In both cases, the mean flow
is zero. Problems involving a mean axial flow, the prime concern of this book, are dealt
with in the other chapters.

2.2.2 Loading on coaxial shells filled with quiescent fluid

Consider two long, thin coaxial shells, with the annular space between them filled with
quiescent, inviscid, dense fluid (e.g. water), while within the inner shell and outside the
outer one the fluid is of much smaller density (e.g. air) or a vacuum; see Figure 2.7. The

fOne way of looking at the difference between a cylinder oscillating in quiescent fluid (G, = 1) and a
cylinder in oscillatory flow (C,, = 2) is that in the former case the flow velocity at infinity tends to zero,
whereas in the latter it has the full amplitude of the oscillation: clearly two very different flow fields.

*For example, in the case of an iced conductor in uniform wind, rotation of the noncircular-section conductor
clearly results in a change in the static forces experienced by it; see, e.g. Den Hartog (1956).
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(a)

(b)

Figure 2.7 (a) Cross-sectional view of two coaxial thin shells at rest, with the annulus filled with

a dense fluid; v; and w; are the displacements of the inner shell in the circumferential and radial

direction, respectively. (b) Three-dimensional view of the shell instantaneously deformed in the

n =2 circumferential mode, with little axial variation (either because the shell is long and the

mode of axial deformation is small, or because idealized 2-D deformation has been assumed).
(c) Definition of the n = 1-4 circumferential modes.

shells are free to vibrate in a low axial mode number (e.g. in the first, beam-like mode), so
that gradients of displacements in the longitudinal direction are negligible, as compared
to the transverse directions [i.e. in the plane of Figure 2.7(a)]. Alternatively, one could
assume that the mode of oscillation is purely two-dimensional, as shown in the example
of Figure 2.7(b). Hence, the displacement of the mean surface of the shell, generally of
the form {u, v, w)T, with u, v and w being, respectively, the axial, circumferential and
radial components, in this case simplifies to {v, w}T.
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The vibration of the shells induces oscillatory flow in the fluid, and the task is to
determine the unsteady fluid loading on the shells, resulting thereby. By further assuming
that the amplitude of shell vibrations is small, it follows that all fluid velocities are also
small and hence governed by equations (2.71)-(2.73a,b). Because the shells are very long,
end effects are negligible; also, because the mode of deformation is such that motion is
essentially two-dimensional as outlined in the previous paragraph, motion-induced flow
variations in the direction of the long axis of the shells are negligible. Hence, in this
case, dp/ox =0 and ¢ = ¢(r, 6, t); the analysis is therefore carried out in the plane of
Figure 2.7(a).

The solution to the fluid flow resulting from this motion may be obtained via equations
(2.73a,b), although (2.72) could be used equally well (Gibert 1988). The cigenmodes of
each shell are of the form (v, w}T = {v, sin n6, w, cos n6}T, where the relation between
v, and w, is dependent on the shell equations used [e.g. Fliigge (1960)], which need not
concern us here; n is the circumferential wavenumber. The cross-sectional deformation
for n = 1-4 is shown in Figure 2.7(c).

Consider first the case where the outer shell is replaced by a rigid immobile cylinder
of inner radius R,, and let v; and w; be the displacement components of the inner shell.
Furthermore, consider oscillation in the nth mode, such that

v;(0, 1) = v,;(t) sin nb, w;i(6, 1) = w,; (1) cos nb, 2.113)

in which it is understood that v,; and w,; are harmonic functions, e.g. w,;(t) =
W, exp(if2t). The corresponding velocity potential is

¢ = p(r, ). (2.114)

The boundary conditions for the fluid are

v %9 ow _ dwui 6 (2.1152)
| = —| = — = —— cos né, .
R, Orlg ot dr ; :
3
|~ % _o (2.115b)
Ro or R,

The solution of the Laplace equation for ¢ = $(r, §), after separation of variables, gives

[ee]

o(r,0) = Z {r"[A, cos n@+ B, sin n8] + r~"|C, cos n@+ D, sin n8]};  (2.116)

n=|

application of the boundary conditions yields

-1
] R 2n dw,.:
A= SR [‘ -(z) ] Vi = RVA, B,=D,=0. (17)

The pressure on the inner shell and the outer cylinder in the nth circumferential mode
may be determined through equation (2.73b), yielding

] [1 +(R,,/R,»)2"} d?w,i

Pini = Pni 2 = I; 1 — (RO/R,')Z"

(2.118a)
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(2.118b)

1 [ 2(R,/R)" d?wp;
Po.ni = Pni —_— no

—oR; - .
P T R, R)? ar?

Ry

The subscript notation {, ni indicates the pressure on cylinder i due to nth mode vibration
of cylinder i, whereas o, ni indicates the pressure on cylinder o due to the same vibration
of cylinder i.

Next, the loading on the shell and on the outer cylinder may be obtained from the
principle of virtual work, i.e. via

2
Wi = / {(— pi.niR; d6)(Sv,,; sin nb + dw,; cos nh)},
0 (2.119)

2
BWO,’H' = / {(po,m'Ro de)(avni sin n6 + 5W,”' CcOs n9)}
0

As seen in equations (2.118a,b), p; »; and p, »; are functions of cos n6; hence, in view of
the orthogonality of sin n8 and cos n8, only the éw,; component of the virtual displace-
ment contributes to the virtual work. Therefore, the forces on the inner shell and the outer
cylinder due to motions of the inner shell in the nth mode, denoted by F;,; and F, ,;,
respectively, are given by

I [(Ro/R)™ + 17 d?wy;
Fin = —pnR} — , 2.120
' P [(RO/R,-)2" Z 1] ar (2.1202)
1 [ 2R,/R)" 1 d?wy,
Foni = prRiR, — Ro/R3) id . (2.120b)
n [ (R,JR)™ — 1| dr2

In effect, to obtain these forces, the pressure field was transformed into a surface-force
field and projected onto the modal deformation vector in the eigenspace of this system.
Further., it is noted that if the shell oscillates in more than one mode, F; ,; and F, ,; will
still be the same, because, when projected onto the nth mode eigenvector, the contribution
of the additional modes is zero, as a result of orthogonality of the cos n8 for different n,
as per relationships (2.118a,b) and (2.119).

Similarly, if it is the outer shcll that is flexiblc and oscillating while the inner one is
rigid, proceeding in the same manner one finds

d?w,,/dr?

W, 2.121)

] (Rg Ri 2 + 1 d2“,”0
Fino = Foni 2 |: / ) ]

Fono = —pm 0 ; (Ro/Ri)zn ] dr
There are obvious symmetries in the coefficients of d®w,;/dr? and d*w,,/dr? in (2.120a,b)
and (2.121), which will be discussed later in subsection (d).

In the foregoing, rigid-body transverse motions of the cylinder were considered as
a particular case of shell motions with n = 1 [Figure 2.7(c)]. For transverse rigid-body
motions, however, the eigenvector or eigenfunction of motion becomes trivial, simplitying
to motion along specified directions; thus, one can then think of motions in the Cartesian
directions y and z, and work out the loading associated with oscillatory displacements v,
and w, in these directions, as shown in Figure 2.8. In this case the boundary conditions
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YA

oy

Figure 2.8 Rigid-body motion of the inner cylinder, in the y and z directions within the fluid-filled
annulus (see Figure 2.7).

for the fluid become

%

. dw, 3
_ 4 né+ Ye cos 6, %
ar

Ri ~a Y dr or

=0. (2.122)
Ry

Proceeding as before, the pressure on the surface of the inner and outer cylinders is
determined and it is a function of both d?v./df? and d®w,/dr?; in fact, the coefficients of
these accelerations are identical to those in (2.118a,b), but with n = |, e.g.

I + (R,/Ri)? [ - d?u, dzwc]

= —pR

; ——————— 1sIn + cos 6
R; I — (Ro/R;)?

7 — (2.123)

Diyi = DPii

Then, the forces on the cylinder may be determined (i) either as before, by consid-
ering the virtual work associated with virtual displacements 87, sin 6 4+ éw, cos 6, or (ii)
directly, by integrating the pressure on the rigid cylinder via

2n 2n
F,?:” = / —p,'.l,'R,' sin 9d9, F,z-_“ = / —p,',|,'R,' Ccos 9d9, (2124)
0 0

and similarly for F) |, and FZ ,;; thus, if following (i), the projection of the force field onto
the ‘mode’ concerned, has an immediate physical meaning in this case! It is obvious that
the same results as in equations (2.120a,b) are obtained, as should be, but with d2w,,,-/dt2
replaced by either d%v./dt? or d*w,/dr?.

A number of important conclusions are reached and insights gained from these results
in the following.

(a) The added mass concept

As is clear from (2.120a,b), the fluid loading is associated entirely with accelerations of
the structures, and hence accelerations of the fluid. This is physically reasonable: infinitely
slowly generated displacement of the shell away from its equilibrium position cannot, in
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the absence of flow, result in a force; in an inviscid fluid, neither can a velocity of
the body."

It is customary to define a virtual or added mass, by expressing the fluid loading in the
form of a d’ Alembert (mass) x (acceleration) term. For ease of interpretation, consider first
the case of n = | [see Figure 2.7(c)], so that the shell (only the inner one for simplicity)
oscillates transversely as a whole, without deformation of its cross-section — essentially
as a beam or a rigid cylinder would. Then considering w); cos 9|9:0 =w, and v, =0
(Figure 2.8), the equation of motion of the cylinder in the z-direction may be written as

N2
2 (Ro/Ri) +ll 7. (2.125)

Mz7+Cz4+Kz=— Rf ————«—— L
et bt R == o R R — 1

M, C and K could be the modal mass, damping and stiffness elements in a one axial-mode
Galerkin approximation for the structure, or one can think of a long rigid cylinder of mass
M, flexibly supported by a spring of stiffness K and a dashpot with damping coefficient
C; L is the length of the shell. The quantity in square brackets is defined as the added
mass, and may be denoted by M’, so that equation (2.125) may be written as

M+MHY+Cz+Kz=0, (2.126)

thus making obvious the usefulness of this concept and the appellation of ‘added’ mass.
Dividing this added mass by the fluid mass of the volume occupied by (‘displaced’ by*
the presence) of the shell, gives the so-called added mass coefficient,

il M/ _ (Ro/Ri)2+1
" paRL (R,/R)? -1

(2.127)

For shell-type motions, n > 1, one cannot associate added mass or added mass coef-
ficients with motions in a particular direction as in (2.125) and (2.127), but rather with
motions associated with particular modes of deformation, e.g. the nth circumferential
mode. In any case, for the analysis of shell motions, forces due to the fluid per unit
surface area are more pertinent, as is done in Chapter 7. The added mass coefficient,
however, is defined in the same way as in the foregoing; thus, corresponding to the forces
in (2.120a,b) and (2.121), we have

Ci.ni — Co,no - l (Ro/Ri)zn + |
" " n (R /R =1

: - 1 2(R,/R)"
Cy = —ciye = - ol
n (R,/R)" — 1

(2.128a)

(2.128b)

see also Chen (1987; Chapter 4).8

¥For a body in unbounded fluid this is a consequence of the d' Alembert paradox (stating that an ideal fuid
flow exerts zero net force on any body immersed in it). In the presence of solid boundaries this is generally not
so, and velocity-dependent forces may arise, but they are proportional to the square of the velocity (Duncan
et al. 1970), and so. in the present context, they are negligible.

*‘Displaced’, in the original sense in Archimedes’ ‘experiment’ in Syracuse, when he immersed himself in
his bath, thus displacing an equal volume of the fluid — and evoking the famous eureka!

#Note, however, a typographical error in equation (4.39) therein.
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(b) The added mass from the kinetic energy

The classical way of introducing the added (or ‘virtual’) mass concept is via energy
considerations (Milne-Thomson 1949; Duncan et al. 1970). As this gives new insights, it
is presented here, parenthetically, following the treatment of Duncan er a/. (1970).

Consider a rigid body moving rectilinearly with velocity U at the instant considered
in unconfined fluid, otherwise at rest. The velocity of the fluid thereby generated, at any
point, is proportional to U, and hence the velocity components may be written as u = U/,
v=Uv, w= Uw'. Hence, the total kinetic energy of the fluid (over the whole region
occupied by it) is

T = 3pU? // W* + v+ w?ydvdydz = 1pU%, (2.129)

where « is a constant, for motion in any given direction. Next, suppose that the velocity
of the body is variable, and let F' be the force exerted by the body on the fluid. Then, by
elementary energy considerations, the change in kinetic energy is equal to the work done
by F, say in the z-direction, i.e.

dU
Fdz =dT =prd—tdt,

which gives

F=xp—, 2.130
ko ( )
and the force on the body is the negative of that. In (2.130), dU/dt is the body acceleration
and, hence, by definition, p« is the added mass.
For 2-D oscillations of a circular cylinder in unbounded inviscid fluid, v =
(Ua?/r?) sin 20, and w = (Ua?/r?) cos 20, and v* + w? = Ua?/r?; hence, in this case

1 2r poo
K=—l-j—2-/0 /0 (* +wHrdgdr = na?,

per unit length, and the added mass, also per unit length, is

! M’ 2
m = — = pma‘. (2.131)
L
Thus, the well-known result is obtained that the added mass of a long cylinder oscillating
in unconfined fluid is equal to the displaced mass of fluid. This corresponds exactly to
the result in equation (2.127) for Ry — ©0, as it should.
It is worthwhile taking this one step further, to the case where there is an obstacle or
boundary in the fluid; « is then not a constant but a function of position, i.c. x(z). In this
case, by following the same procedure one finds

F=Kp—+——ZpU2; (2.132)

i.e. there is now a quadratic velocity-dependent component, which for small-amplitude
motion is of second order, as already remarked in the first footnote of subsection 2.2.2(a).
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It should also be noted that in cases of symmetric confinement of the fluid, this term may
entirely vanish.

{c} Magnitude considerations: wide and narrow annuli

By re-writing expressions (2.120a,b) in terms of R;/R, and taking the limit (R;/R,) — O,
i.e. as the outer cylinder radius becomes essentially infinite, one obtains
dzWni

1 1
F:.nl p”R, n dt2 s Cm n (21333)

and
Foni =0, as (Ri/R,) = 0. (2.133b)

Equation (2.133a) for n =1 yields the result just obtained in (2.131) in another way,
that the added mass for R, — oo is equal to the ‘displaced’ mass of fluid. Also, the
physically reasonable result is obtained in equation (2.133b) that, for an infinitely distant
outer cylinder, the effect of accelerations of the inner one is infinitely faint.

In the other limit, writing R, = R; + h and R; >~ R, ~ R, and taking A/ to be small,

Fini = Foni =~ —pnR? iz R L. (2.134)
né h

This expression shows that for thin shells, and also for light, hollow cylinders in narrow
annuli, the added mass can easily exceed and be several times larger than the struc-
tural mass; i.e. M’ > M in (2.126), for instance. Expression (2.134) would suggest that
the added mass becomes infinitely large as # — 0. This is not so, however, because
the Stokes number becomes small before that limit is reached, signalling that the limit
of applicability of inviscid theory has been surpassed; for oscillations of the shell or
cylinder of amplitude e and frequency w, where € is a small number, the Stokes (or
oscillatory Reynolds) number is 8 = ewhR/v = ew(h/R)R?/v. An alternative, and more
general, pertinent Stokes number is 8 = wh?/v. In either case, it is clear that as & — 0, or
h/R — 0 and € < 1, B becomes sufficiently small for viscous effects not to be negligible
(see Section 2.2.3). Furthermore, in addition to the added damping, the forces associ-
ated with shell motions become extremely large, as seen from (2.134), due to the very
large accelerations in the narrow fluid annulus; hence, sustained oscillation under the
circumstances does not occur.

It is finally noted in (2.120a,b), (2.133a) and (2.134) that the added mass becomes
smaller as n is increased, which is reasonable in physical terms: the hills and valleys
associated with deformation of the shell are half a circumference apart for n = 1, while
they are much closer for large n; hence the fluid accelerations are correspondingly smaller
for the larger n, and so is the added mass.

(d) Fluid coupling and the added mass matrix

If both shells are flexible, the only thing that changes in the formulation is that boundary
condition (2.115b) needs to take a form similar to (2.115a). Recalling the meaning of
influence coefficients in solid mechanics, by analogy (and as already done in the foregoing)
one can think of a force on the inner shell due to nth mode motion of the inner shell,
Fini, or of a force on the inner shell due to motion of the outer one, F; ,,, and so on.
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It is easy, therefore, to appreciate that in this case there exists an added mass matrix, of

the form
[’""" Mio ] , (2.135)

Moi  Mpo

which couples hydrodynamically the motions of the two shells; here the subscript n has
been suppressed. The corresponding vector is {d?w,;/df?, d*w,,/dr*}T; m;; and m,; are
the negatives of the coefficients of d?w,;/df? in (2.120a,b), while m;, and m,, are the
corresponding quantities from (2.121). It is obvious that the matrix must be symmetric,
as a consequence of the reciprocity principle in mechanics.

Consider next the situation of rigid-body motion (n = 1) of both the inner and outer
cylinders. In this case

[MIX + [Clx + [K]x = —[M']X, (2.136)

thre X = {)’i, )’o, iy ZO}T and

m;‘,‘ ,)o) 0 0
m> m 0 0
M= o 00 _ 1, 2.137
(M] 0 0 mi mZ ( )
0 0 mE m

in which m;; = m% = pnR*L{(R,/R;)* + 11/[(R,/Ri)* — 1] and so on, as given by
expressions (2.120a,b) and (2.121) for n = 1. Thus, coupling of the motions of the two
cylinders arises. This means that if, for example, the inner cylinder is given some initial
displacement or velocity at ¢ = 0, the outer cylinder would also vibrate for t > 0.

It is noted in (2.137) that, because of symmetry, there is no fluid coupling between y-
and z-motions; i.e. acceleration of one cylinder in one direction generates a symmetric flow
field, with no force resultant in the other direction. Generally, however, for asymmetric
systems, such cross-coupling does exist, and matrix (2.137) would be fully populated, i.e.
m)’ and similar terms would no longer be null; furthermore, mj;’ # m¥, and so on.

(e) Effects of various parameters on added mass

Tables, figures and lists of results for added mass coefficients in a variety of systems are
given by Blevins (1979), Chen (1987), Gibert (1988) and Naudascher & Rockwell (1994).
Hence, we shall confine ourselves here to making some general comments on parameters
affecting the added mass, of which the reader should be aware.

() General effects of geometry. In general, proximity to other structures affects
the added mass of the vibrating one; e.g. proximily to a rigid wall signifies increased
accelerations (for inviscid fluid) and hence larger added mass, as already remarked in
the foregoing, especially in connection with the system of two coaxial cylinders or shells
(Figure 2.7). Of equal interest is the case of eccentrically located cylinders (see also
Chapter 11). A useful result (Gibert 1988) is that the added mass coefficient, C£¢, is
given by

Co _2r=D[r=1-e@r=2-"2
Cn (r—1—¢)? ’

for r<1.1, (2.138)
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where C, is given by equation (2.127), e = (smallest gap between the cylinders)/R;,
r = R,/R;. For larger values of r, the results are given in figure form. Results for a variety
of other systems may be found in the compilations of Chen (1987) and Blevins (1979).

(i) Aspect ratio effects.  As two-dimensionality of the flow is violated, the validity
of the foregoing deteriorates. A particularly simple example illustrating this is a simply-
supported cylindrical beam oscillating in a narrow annulus [so that the approximations
leading to (2.134) are valid], the ends of which are open to large cavities (Gibert 1988).
It is found that

o = ! (2.139)
Cn  2[1+ (R/LYT ‘
where C,, is given by expression (2.134) for n = 1. Clearly, the shorter the beam, the

smaller is C}jf“m, as compared to an infinitely long one. The physical reason is that, near the
ends, the fluid takes the easy way around the beam, partly in the third (axial) direction;
hence, less than the total force that would be obtained by 2-D analysis is realized. A
more general analysis (Paidoussis er al. 1984; Chen 1987), not making the assumption of
a narrow annulus, gives

beam __ I'2nR,/L)K,(2nR; /L) — I, 2nR; /L)X (2nR, /L)

n - v 7 , (2 . l 40)
I,(27R; /L)X 27R,/L) — 1, (2nR,/L)K} (2nR; /L)

where I, and K, are, respectively, the first-order modified Bessel functions of the first
and second kind; the primes denote derivatives with respect to the argument. The effect
of R;/L is strong for 1 < R,/R; < 2, but relatively weak for wider annuli.

(i)  Effects of compressibility and two-phase flow. If the flow is compressible,
the wave equation, V2y + k> = 0, k% = w/c, needs to be solved instead of the Laplace
equation, V2¢ = 0. Hence, the results are found to depend also on an oscillatory Mach
number, My = wR;/c, where ¢ is the speed of sound. The effect of compressibility for
M, < 0.2 is rather weak (Chen 1987).

It has been found (Carlucci 1980; Carlucci & Brown 1983) that in gas-liquid two-phase
flows the measured added mass is generally considerably lower than that predicted by
homogeneous mixture theory [in which average quantities are assumed for the mixture;
e.g. if the void fraction is & and the densities of the liquid and gaseous phases are p; and
Pg, the mixture density is p = (I — a)p; + @p,]. Since the two-phase flow may be consid-
ered as a flow with the density of the liquid phase and the compressibility of the gaseous
one, it was supposed that the discrepancy may have been due to the neglected effects of
compressibility (Paidoussis & Ostoja-Starzewski 1981). Also, the effect of random varia-
tions in the surrounding fluid density, inherent in two-phase flows was investigated (Klein
1981). These effects, although qualitatively working in the right direction (Chapter 8),
proved incapable of accounting fully for the discrepancy quantitatively, and the search
for more elaborate models continues.

{iv) Amplitude effects.  All of the foregoing apply to cases where the amplitude of
oscillation is small enough for separation in the cross-flow not to occur. This brings into
play another dimensionless number, the Keulegan—Carpenter number, KC = 27V, /(wD),
where V; is the amplitude in velocity fluctuations. For a harmonically oscillating cylinder
in quiescent flow, this reduces to KC = 2n(A/D), where A is the amplitude of motion
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of the cylinder. If KC < 4, separation generally does not occur (Sarpkaya & Isaacson
1981; Naudascher & Rockwell 1994). If KC > 8 approximately, the flow field is entirely
different, with the cylinder now oscillating in the remnants of vortices shed from previous
cycles of oscillation; this type of flow, arising also in wave-induced oscillatory flows, has
been studied extensively in conjunction with offshore mechanics applications (Sarpkaya
& Isaacson 1981).

(f) Numerical calculations of added mass

Some early attempts to calculate the added mass by numerical (CFD) methods are due
to Levy & Wilkinson (1975), Paidoussis et al. (1977) and Yang & Moran (1979), for
instance. Nowadays, any CFD package capable of heat transfer calculations, hence of
solving the Laplace equation, would be suitable — based on finite element, finite differ-
ence or other methods. A few examples of finite-element (FEM) based packages are
FIDAP from Fluid Dynamics International, U.S.A., and CASTEM 2000 from Commis-
sariat 2 I'Energie Atomique, France; and finite-volume (FVM) based packages FLOW3D
from Harwell Laboratories, U.K., and PHEONICS from Cham Ltd, U.K.

Other numerical methods also exist, e.g. based on spectral methods (Mateescu,
Paidoussis & Sim 1994a,b), finite difference methods (Mateescu, Paidoussis & Bélanger
1994a,b), or the boundary integral equation method (BIEM) (Groh 1992).

2.2.3 Loading on coaxial shells filled with quiescent viscous fluid

Consider the same system as in Figure 2.7(a), but with only the inner cylinder free to
oscillate, and then only as a beam (n = 1) or as a rigid body in the plane of the paper,
while the outer one is rigid and immobile. The annular space is filled with a quiescent
viscous fluid. Again, the task is to determine the fluid forces generated by harmonic
motion of the inner cylinder.

If the cylinders are sufficiently long, the flow is essentially two-dimensional in cross-
flow. Writing ecquation (2.63) in Cartesian coordinates and eliminating the pressure
between the two equations, or simply taking the curl of (2.63), one obtains a single
equation

8w+ 8w+ ow 82w+82a) 2 141
—tuy—Fuy,—=v|—S+—1, .
or ¥ ay “o TV 9y?  9z2 ¢ )
in terms of the vorticity,
ou,  du,
=— - = 2.142
® 9z ay ¢ )
u; and u, are the flow velocity components in the z and y directions, which may be
expressed in terms of the stream function: u, = 3y/dy, u, = —3y/dz. The continuity
equation (2.62), is satisfied automatically. Moreover, since w = —Vzv,//, equation (2.141)

leads to (Schlichting 1960, chapter IV)

2 2
—(V*Y) + %av_w_a_w% = v V. (2.143)
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For small motions, this reduces to

a
Evzl/,: TAvall/S (2.144)
The boundary conditions match the fluid velocity on the solid surfaces to those of the

two cylinders. In polar coordinates, u, = —(1/r)(3y/36) and up = 3y/or; hence,

u,| =acos e, ug| = —asin 9\, u,

Ri R;

=0, (2.145)

Ry Ry

where a is the velocity amplitude of the inner cylinder in the 6 = O plane.
This problem was solved by Wambsganss et al. (1974) — see also Chen et al. (1976).
It may be verified that if
Vi =0 (2.146a)

is satisfied, so is equation (2.144); similarly if

10
V2 — — W_o (2.146b)
v ot
Hence, a general solution in the form ¥ = y; + ¥, is sought, with y; and v, satisfying
(2.146a) and (2.146b), respectively. The form of the boundary conditions suggests
Y1 = Fi(r) sin 8¢, Yy = Fa(r) sin 9%, (2.147)
and hence F'| and F; must satisfy

d’F, 1 dF, 1
—— - — — —=F, =0,
dr? r dr P!

d’r, 1dF, I, i\
- —L (S +A)F=0, A=(—) .
dr? r dr <r2 ) : (U)

(2.148)

Each of these equations provides two independent solutions, hence four in total, as required
and sufficient for the solution of equation (2.144), namely

V=1 + Y2 = alAr~t + Aur + A1 (M) + AsK (Ar)] sin 6e¥, (2.149)

in which the constants A| to A4 are determined via the boundary conditions. Once ¥ is
determined, the flow field is completely known and hence the stresses on the cylinders may
be evaluated through equations (2.64) and (2.65). The force per unit length is given by

F= —an,-za.Q[QRe(H) sin 2t + $m(H) cos £21] (2.150)
(Chen et al. 1976), where
H = {2a*[Io(e)Ko(B) — Io(B)Ko ()] — 4all; ()Ko(B) + o( AK ()]
+ day(lo(@)Ki (8) + 11 (B)Ko(@)] — 8y(11 (@)K (B) — L (B)K (e)]}
= {?(1 = y)Io(@Ko(B) — Io(B)Ko(a)] + 2y [Ip(e)K (B)
— LI(BKo(B) + 11 (Ko@) — Io(AK1(B)] + 2ay* Iy (B)K (@)
— Io()K (@) + Iy (@)Ko(B) — I1 (Ko ()]} — 1, (2.151)
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in which
o = AR;, B =AR,, y = R;/R,, (2.152)

and I, and K,, are modified Bessel functions of the first and second kind, respectively.
It is noted that, by virtue of the presence of +/i in the argument (in A), H is complex.
To evaluate H, therefore, one can either (i) evaluate J, (@/1) and Y, (@), the ordinary
Bessel functions, utilizing the expressions and tables in Jahnke & Emde (1945), for
instance, for the real and imaginary parts of each of them, and then convert to I, and K,
or (ii) utilize the ber, bei, ker and kei functions,

i"L,(xv/1) = ber, x +ibei,x,  i7"K, (xv/i) = ker, x + ikei, x
and the expressions given by Dwight (1961)."

Expressing the force F of equation (2.150) in terms of added mass and added damping
as in equations (2.110) and (2.111), one can write

2

d°z dz
F=4C,pA— — C;Q2pA —; 2.153
tCnpA g7 — Cal2pd o ( )
hence
C,, = Re(H) and Cy; = —-$m(H). (2.154)

The results for fte(H) and $mi(H) for various Stokes nurnbers S = S?R,-z/v are given in
Figure 2.9. Several observations may be made, as follows:

(i) both C, and C; increase dramatically as R,/R; is reduced towards unity, but C,
rises more rapidly;
(ii) for sufficiently high S, the values of C, approach those obtained by inviscid
theory (S = 00), but increasingly diverge from inviscid theory as S is diminished;
(iii) for sufficiently narrow annuli, the results for C,, sensibly collapse onto a single
curve — in the scale of the figure.

Chen et al. (1976), Yeh & Chen (1978) and Chen (1981, 1987) give a number of useful
approximations for H. These have been rechecked, corrected in some cases, and rewritten
into a congruous set, in terms of the parameters

__Rl _1_—{_&__1 S_'QR"2
y—Rov g—' }/ R, ] - v y 2]
(2.155)
QRN 12 L OR2\ 12
a=AR,=<lv') , ﬂ:,\R,,E<' R”) ,

as follows:

1t may be of interest that difficulties are encountered in trying to obtain solutions by standard software pack-
ages, including some symbolic manipulation systems. Thus, neither Muple nor Matlab could do it; Mathematica
could. but it was painfully slow.
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Figure 2.9 (a) The real and (b) negative of the imaginary part of H, given by equation (2.151),

equal to the added mass and viscous damping coefficient, respectively, for a cylinder of radius R;

oscillating with frequency €2 in a viscous fluid within a coaxial rigid cylinder of radius R,, for a
number of values of the Stokes number, S = 2R?/v. From Chen et al. (1976).
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(a) for large o and B, wide or narrow annuli [i.e. S > 500 and g > 0.005 (or y <
0.995)],

_ [o?(1+¥*) — 8yl sinh(B —a) + 2a(2 — y + ¥) cosh(B — @) — 2y* /B — 2ay. /¥ |

H a(l — y?)sinh(B — @) — 2ay(1 + y) cosh(B — a) + 2y /aB + 2ay. /v
(2.156a)
(b) for very wide annuli and large S [S > 300 and g > 40 (or y < 0.025)],
4K1 (a)
H=14—-, (2.156b)
aKo (@)
(c) for the same range of S and g as in (b), an easier approximation is also valid,
namely
4
H=1+—; (2.156¢)
o
(d) for moderately wide annuli and large S (S > 10¢ and g>01,0orS>2x 10° and
g > 0.2),
2 27— 2
_ fed + ¥+ 2 y+y)]; (2.156d)
a(l —y3) =21 +y)
(e) for fairly narrow annuli (g > 0.05) and S > 104,
_o(+ ¥?) sinh(ga) +2(2 — y + ¥?*) cosh(gar) — 4yﬁ’ 2.1560)

(1 — y2) sinh(ge) — 2(1 + y) cosh(ga) + 4y /Y

although approximation (2.156a) is superior and almost as easy to compute;
(f) for very narrow gap and very large S (g <1, S>» |, g2$ > 1; eg. g <0.05,
S > 107, g%S > 10%),
l+y? N V2 a
=7 Y2 gz\/§

In order to utilize these expressions it is recalled that +/i = %\/5(1 + i), a complex
quantity, arising because of the form of @ and 8 in equations (2.155); hence, sin(A + Bi) =
sin A cosh B +1i cos A sinh B, etc.

Another set of approximations were derived by Sinyavskii et al. (1980), based on the
boundary-layer approximation and valid for S > 1, namely

H —i). (2.156f)

Cl+yr V2 1+

CI”_ +
1 — 2 S 1 — 2)2’
v \/_ ( v 2.157)
c 22 14y
TS =yt

For zero confinement (y =0), C; = 2/2//S corresponds exactly to the expression
derived by Batchelor (1967; section 5.13).
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2.3 LINEAR AND NONLINEAR DYNAMICS

Consider a one-degree-of-freedom linear system subjected to fluid loading, F(¢); the
equation of motion is written as

mx + cx + kx = F(2), (2.158)
and F(r) may be expressed as
F(t)= —m'sx — 'x — k'x, (2.159)

in which m’ is the added or virtual mass of the fluid associated with acceleration of the
body, ¢ is the fluid damping term associated with the velocity of the body, and £’ is the
fluid added stiffness, as discussed in Section 2.2.1(g). Hence, the equation of motion may
be written as

m+m)i+(c+)a+k+kHx=0. (2.160)

It is noted that the form of equation (2.159) implies that there is no external forcing
of the system: all fluid loading is associated with motion. In general, the coefficients
associated with the linearized forces in (2.159) are not constant, but depend on flow
velocity, amplitude and frequency of motion, fluid viscosity, and so on. For the purpose
of this introduction, however, let us neglect most of these effects and take m’ = const.,
¢ =c(U), k' = k'(U), where U is a characteristic flow velocity in the system. Hence,
equation (2.160) may be written as

¥4 28(U)R2, (Ui + 25 (U)x = 0, (2.161)

where, as denoted, the damping factor, &, and the natural frequency, £2,, are functions of
U, which is the only variable parameter of this system.

If ¢'(U) > 0and k'(U) > 0 for all U, then the response of the fluid-loaded system
is qualitatively the same as that of the mechanical system: only damped oscillations
would be observed, with higher or lower frequency, depending on whether added mass or
fluid stiffness effects predominate [i.e. whether (k + k')/(m + m’) > or < k/m], and with
higher or lower damping (&), depending on whether (¢ + ¢')/(m + m') > or < ¢/m.

If, however, k’'(U) can become negative, and |k'(U)| = k for some critical value of
U, U,, then the overall stiffness of the system vanishes — and for U > U, may become
negative — which signifies that the system is then statically unstable. The premier example
of this (albeit for a system with more than one degree of freedom) is the static instability, or
divergence, of an articulated or continuously flexible pipe with supported ends conveying
fluid (see Chapter 3); it is similar to the divergence, or buckling, of a column subjected
to an end load. At that point, i.e. when |k'(U)| =k, x becomes indeterminate: i.e. the
static equilibrium position x4 = 0 is replaced by a condition where an infinite set of static
equilibria are possible (Ziegler 1968) according to linear theory.

Similarly, if &(U.) < 0 [i.e. if ¢/(U,) < 0 and sufficiently large], this implies a negative
damping: instead of the oscillations dying out with time, they are amplified exponentially.
A good example of this is the oscillatory instability (in the linear sense), or flutter, of a
cantilevered pipe conveying fluid (see Chapter 3).

Mathematically, the evolution of a system towards divergence or flutter may be tracked
by plotting the complex eigenvalues or, equivalently, the eigenfrequencies in the complex
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Argand plane, as U is varied. Figure 2.10 shows the development of (a) divergence and
(b) flutter in these two representations. The solution to (2.161) may be expressed as

x = Ae”¥M sin(2,V1 — $ + ¢), (2.162)
or, in terms of the eigenvalues A and eigenfrequencies £2, by

x = Ae® V) sin[FmA) + @] = Ae I sin[Re(2) + ¢, (2.163)

Fut(d) &nll £2)
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Figure 2.10 Typical Argand diagrams showing the evolution of a system with increasing U,

from stability (U < U,), to instability (in the linear sense; U > U,): (a) divergence; (b) flutter. The

diagrams on the left show this evolution in the eigenvalue- or A-plane, and those on the right in
the frequency- or £2-plane.

where Qi = A and i = +/—1, and Re and $m denote the real and imaginary components.
Clearly, JRe(£2) = $n1(A) is proportional to the frequency of oscillation, while $m(£2) =
—%e()) is proportional to damping; in fact, for sufficiently small &, Re($2) >~ £2, and
$m(£2)/Re(£2) ~ ¢. In the A-plane (left-hand panels of Figure 2.10), it is common to show
both of the complex conjugate eigenvalue loci [note that even for a conservative system
with zero damping, the solutions are A ; = (£22)"/2i]. In the frequency-plane, however,
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the branch associated with negative frequency, being more mathematical than physical, is
often suppressed; nevertheless, the bifurcation of the eigenfrequency locus in the upper-right
panel of Figure 2.10 is more easily comprehensible if both branches are shown.

Linear theory can only predict the onset of divergence or flutter; solution (2.163) with
Re(r) > 0 or $mM($2) < 0 would suggest that the motion is amplified indefinitely. This
is normally not so, but it is only through nonlinear theory that we can discover what
happens. We know physically that a column subjected to a compressive load or a pipe with
supported ends conveying fluid will diverge to one side or the other and then display a new,
buckled equilibrium form. In nonlinear theory the linear instability is simply referred to as
a bifurcation. In the case of divergence, where the bifurcation is characterized by one zero
eigenvalue, it is referred to as a pitchfork bifurcation, whereby the original equilibrium,
x = 0, becomes unstable and two new stable equilibria, x = %|xy/|, are generated — which
may evolve with increasing U in the manner shown in Figure 2.11(a).

<y

Attracting limit cycle

|
I

>
1%

(c) (d)

Figure 2.11 Bifurcation diagrams for (a) a supercritical pitchfork bifurcation (static loss of
stability, or static divergence); (b) a supercritical Hopf bifurcation (flutter), shown in 3-D; (c) a
supercritical Hopf bifurcation in the {x, U}-plane; (d) a subcritical Hopf bifurcation. ——, Stable,
attracting fixed points or limit cycles; ———, unstable ones. The small arrows in (c) and (d) reinforce
the ideas of attraction/repulsion of solution trajectories towards or away from the pertinent attractors.
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Physically, flutter is a self-excited oscillation, which grows from sensibly zero to a
steady oscillation of finite amplitude and constant frequency, thus to a closed curve
in the phase plane (x,x), i.e. to a limit cycle. Mathematically, the onset of flutter is
characterized by a pair of eigenvalues crossing from Re(A) < 0 to Re(r) > 0 as U
is increased, such that at U = U, (i) the pair is purely imaginary, i.e. Re(r) =0, and
(ii) $m(r) # O [Figure 2.10(b)]. This is defined as a Hopf bifurcation. In many cases,
the evolution in the phase plane as U is increased is as shown in three-dimensional
form in Figure 2.11(b), in which case the Hopf bifurcation is supercritical. As shown
in Figure 2.11(c), the origin has become unstable and oscillatory solutions of a certain
amplitude are possible for U > U,. If the system is perturbed, it will eventually settle
down on the limit cycle; hence this is a case of a stable limit cycle.

A subcritical Hopf bifurcation is illustrated in Figure 2.11(d), where the limit cycle
generated is unstable or ‘repelling’; as shown by the small arrows, oscillatory solutions
either die out to the stable equilibrium (stable fixed point) or diverge to larger amplitudes.
In real physical systems, the existence of this unstable limit cycle usually implies that
a stable ‘attracting’ one [as shown in Figure 2.11(d)] or another kind of stable solution
exists at larger amplitudes; so that, the trajectories in the phase plane, repelled by the
unstable limit cycle, will gravitate towards the stable fixed (equilibrium) point or the
limit cycle beyond. Thus, the system is then said to be unstable in the small, but stable
in the large. A more formal definition of stability is given in Appendix F.1.1.

The behaviour described in the foregoing may be illustrated by a fictitious nonlinear
one-degree-of-freedom system, the equation of motion of which is

mx + cg(x)+ kf(x) =0, 2.164)

and which may be viewed as a nonlinear version of equation (2.160) for a specific value
of U; g(x) and f(x) are nonlinear functions. As it is not uncommon for these functions to
be odd, let us illustrate the behaviour of such a system by the following particular case:

¥+ 0.02(1 — Dx + (1 — 0.02xH)x = 0. (2.165)

Trajectories in the phase plane are shown in Figure 2.12. Two main features are visible.
First, there exists a repelling, unstable limit cycle of amplitude ~ 1.1 around the origin, in
the clear white oval between the darker patches near the centre of the figure. One trajectory
is shown, slowly spiralling inwards towards the origin (in the dark doughnut-shaped
region, although it is noted that the spiralling motion is difficult to see in the scale of the
figure); the calculation was discontinued before the trajectory could reach the origin {which
would strictly take infinite time). Trajectories with [x| > 1.1 spiral outwards. Physically,
one can see, by referring to equation (2.165), that if the mean value of |xj ~ ©(1) over
a cycle, the mean amount of damping would be zero — i.e. the net dissipation, over
a cycle of oscillation, vanishes — which is one way of interpreting the existence of a
limit cycle; in the ‘absence’ of damping, the system becomes effectively conservative,
and a closed curve would be expected in the phase plane, in this case the unstable limit
cycle. The second notable feature is the saddle point at |x| = (1/0.02)/2 =~ 7.1, which
is an unstable fixed point (or point of equilibrium),* corresponding to points of static
instability (divergence), when the stiffness term vanishes.

*The classi_cal paradigm of a stable fixed poinl (stable equilibcium) is the poinl {6, o) = {0, O} for a simple
pendulum, while {rr, O} represents an unstable fixed point, a saddle. A characteristic of the saddle is that there are
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Figure 2.12 Phase-plane trajectories for the system of equation (2.165). The blank oval around
the origin shows an unstable limit cycle of amplitude ~ 1.1; the dark oval farther in is a trajectory
slowly winding its way towards the stable fixed point at the origin.

For the system of equation (2.165), all solutions, except those within the limit cycle,
spiral outwards, as shown. For a physical system, however, one would expect the trajecto-
ries to diverge not to infinity, but to another finite state. Viewing the second and third terms
of equation (2.165) as particular polynomial approximations to cg(x) and kf (x) in (2.164),
correct to O(e®) for x, x ~ O(¢), one can easily envisage ‘more precise’ approximations,
correct to O(e’), e.g.

¥40.02(1 — 1.1x% 4+ 0.1x5x + (1 — 2.0069 x 107%x? + 6.9444 x 1075x*)x = 0.
(2.166)

Some results in the phase plane are shown in Figure 2.13. It is seen that an attracting
limit cycle now exists (dark oval) beyond the repelling one (dashed line) around the origin.
In this case, setting f (x) = 0 yields five equilibria: the origin, x = +8.00 and x = £15.00.
The origin and x = xy = 15 are stable fixed points; whereas x = +8 are saddle points,
similarly to Figure 2.12. Around the stable fixed points x, = %15, ‘the flow'" is similar

two trajectories in the phase plane leading to it and stopping there; thus, for the pendulum, one can envisage just
the right initial conditions which would result in a final state {x, 0}, i.e. with the pendulum inverted. However,
there are two more trajectories leading away from the saddle point; the slightest disturbance will cause the
pendulum to fall towards the right or the left.

*In nonlinear dynamics jargon, looking at trajectories as streamlines, one talks about flow, sources, sinks, etc.
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Figure 2.13 Phase-plane trajectories for the system of equation (2.166). Here three stable fixed
points are shown, and two unstable ones (saddle points, denoted by A). Each stable fixed point is
encircled by an unstable limit cycle (——-), and farther out by a stable limit cycle (dark oval patch).

to that about the origin: an unstable limit cycle (dashed line) and a stable one farther
out (dark oval). The main difference is that trajectories beyond, e.g. for |x| > 20, cannot
escape to another saddle, as there is none. It could be argued that the structure around
{15, 0} is qualitatively similar to that about {0, 0} because (i) both fixed points are stable
(hence the two points are statically similar) and (ii) g(x) is invariant to the transformation
y =x — 15, y = x; similarly for the dynamics about {—15, 0}. However, such arguments
constitute but prima facie evidence and are not always reliable, as will be demonstrated
for the system of equation (2.167).

For a physical system, the following dynamical behaviour is implied by the results
of Figure 2.13: (i) very small perturbations about the static equilibrium die out, and the
system returns to the origin; (ii) perturbations of amplitude larger than that of the unstable
limit cycle lead the system away from equilibrium and into limit-cycle oscillations (i.e.
to the larger, stable limit cycle); (iii) for still larger perturbations, the system is attracted
by either this same limit cycle or beyond, to the other limit cycles, around xy = £15.

Usually, all the features described in the foregoing do not occur for the same parameter;
as the parameter (U in this case) is varied, some arise, while others disappear. The
apparition of any new feature in the system defines a new bifurcation. Thus, for a certain
U, perhaps the only notable feature may be the stable fixed point along with the saddle
points, which could have arisen earlier via a pitchfork bifurcation. This feature could
remain, or disappear via a merging of these two points. At a higher U, the limit cycle(s)
may emerge via a Hopf bifurcation.
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Figure 2.13, as it stands, serves also to introduce the concept of coexisting attractors
(the stable fixed points and limit cycles), each with its own basin of attraction: i.e. the
part of phase space within which trajectories are attracted, as if by a magnet, to this or
that state or attractor. The trajectories leading to and emanating from the saddle point
(thus tracing an Xx-intersection) are referred to as separatrices. In this case they separate
the basins of attraction of the stable limit cycle around {0, O} from those about {£15, 0}.

A final point in this regard is the evolution and mutual interference of attractors. Let
us say that, as U' is varied, the coefficients in (2.166) are altered accordingly, and the
equation of motion for another U becomes

% +0.02 (1 — 1.06x% + 0.0625x*) x
+ (1 —4.444 x 107%x? + 1.778 x 107*x*) x = 0. (2.167)

As shown in Figure 2.14, the stable limit cycle around the origin no longer exists. Its
disappearance, as a result of proximity to the saddle points on either side, constitutes
another bifurcation for this system as U is varied. However, the dynamics around the
outer fixed points, |xy| 2~ 15, remain unaltered.

This case also illustrates the unreliablility of the condition g(x) = O for determining the
existence of limit cycles. In the case of the system of equation (2.166) this gives |x;| = 1
and |ix;| = 3.16, which are close to the velocity-amplitudes of the limit cycles around the
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Figure 2.14 Phase-plane trajectories for the system of equation (2.167), showing the disappear-
ance of the stable limit cycle around the origin (cf. Figure 2.13), through proximity to the two
saddle points.
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origin in Figure 2.13. In the case of equation (2.167), the corresponding values would be
[%1} = 1, |x2| >~ 4. As seen in Figure 2.14, however, whereas both exist about {£15, 0},
only the smaller one does about {0, 0}, as already remarked.

The results presented here have all been obtained numerically, and hence one can see
not only the existence of fixed points and limit cycles, but also whether they are stable or
not. If fixed points and limit cycles are determined analytically, however, then one must
assess their stability separately; this and other analytical aspects of nonlinear dynamics
are deferred to Chapter 5 and particularly to Appendix F.



3
Pipes Conveying Fluid:
Linear Dynamics |

3.1 INTRODUCTION

The study of dynamics of pipes conveying fluid has a fine pedigree. A series of exper-
iments by Aitken (1878) on travelling chains and elastic cords, illustrating the balance
between motion-induced tensile and centrifugal forces in this momentum transport system,
is perhaps among the earliest work pertinent to the topic at hand. Self-excited oscillations
of a cantilevered pipe conveying fluid had been observed by Brillouin as far back as 1885
(Bourrieres 1939), but remained unpublished “dans une Note de laboratoire”.

The first serious study of the dynamics of pipes conveying fluid is due to Bourriéres
(1939), who derived the correct equations of motion and carried its analysis remarkably
far, reaching admirably accurate conclusions regarding stability, in particular concerning
the cantilevered system. This study, published in the year of the outbreak of the Second
World War, was effectively ‘lost’, and researchers rederived everything in ignorance of
its existence in the 1950s and 1960s. Bourrieres’ work was rediscovered by the author in
1973 in the course of delivering a seminar in France, thanks to a comment by Professor
A. Fortier of the University of Paris who was in attendance (Paidoussis & Issid 1974).

Certainly, some aspects of the problem have been known for a long time and are in
almost everyone’s common experience. Thus, the buckling (divergence) of a pipe with
both ends supported, manifested by the large restraining force that must be exerted by those
holding a fire-hose at high discharge rates, is also experienced, albeit highly diminished,
by one watering the lawn. The flutter of a cantilevered pipe, manifested by the thrashing,
snaking motions of a fire-hose accidentally released or by a garden-hose when dropped
on the wet grass, is well known to firemen and amateur gardeners alike. In fact, these
two phenomena are often, irreverently but graphically, referred to as the fire-hose and
garden-hose instability, respectively.

Nevertheless, the subject is far from being of the ‘garden variety’ sort. Indeed this has
become a new mode! problem in the study of dynamics and stability of structures, on a
par with the classical problems of a column subjected to compressive loading and the
rotating shaft (Paidoussis & Li 1993). Some reasons why this is so are the following:
(1) it is a physically simple system, easily modelled by simple equations, yet capable of
displaying a kaleidoscope of interesting dynamical behaviour, both linear and nonlinear;
(ii) it is a fairly easily realizable system, thus affording the possibility of theoretical
and experimental investigation in concert; (iii) in its many variants, it is a more general
problem, with richer dynamical behaviour, than that of the column and in some ways

59
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of the rotating shaft, and thus complements them both as a tool for the development of
new dynamical theory and methods of analysis (Paidoussis 1987, Paidoussis & Li 1993);
(iv) it belongs to a broader class of dynamical systems involving momentum transport:
that of axially moving continua, such as high speed magnetic and paper tapes, band-saw
blades, transmission chains and belts (Mote 1968, 1972; Wickert & Mote 1990), in paper,
fibre and plastic film winding, as well as in extrusion processes.

In terms of the topics covered in this book, all of which deal with axial flow along
slender structures, the pipe conveying fluid constitutes the main paradigm, on the basis of
which the qualitative dynamics of other systems are explained. This is one of the reasons
why so much emphasis is placed on this topic.

This chapter together with Chapter 4 deal with the linear dynamics of initially straight
pipes conveying fluid. The nonlinear dynamics of the same physical system is the subject
of Chapter 5. The dynamics of curved pipes conveying fluid is presented in Chapter 6,
and that of shells containing flow in Chapter 7 (Volume 2).

The dynamics of pipes with steady mean axial flow is presented first, starting with
a discussion of the fundamentals and the derivation of the equations of motion, in
Sections 3.2 and 3.3. The dynamics of pipes with supported ends, which is an inherently
conservative system (i.e. a conservative system in the absence of dissipative forces), is
treated next (Section 3.4), followed by cantilevered pipes, an inherently nonconservative
system (Section 3.5), and then hybrid and articulated pipe systems. Other, more complex
systems and applications are the subject of Chapter 4.

3.2 THE FUNDAMENTALS
3.2.1 Pipes with supported ends

After Bourrieres (1939), the study of pipes conveying fluid was re-initiated by Ashley &
Haviland (1950) in an attempt to explain the vibrations observed in the Trans-Arabian
Pipeline. Feodos’ev (1951), Housner (1952) and Niordson (1953) were the first to study
the dynamics of pipes supported at both ends, obtaining the correct linear equations of
motion in different ways, and reaching the correct conclusions regarding stability.

If gravity, internal damping, externally imposed tension and pressurization effects are
either absent or neglected, the equation of motion of the pipe in Figure 3.1(a-c) takes the
particularly simple form

*w ) 3w 3*w *w
where ET is the flexural rigidity of the pipe, M is the mass of fluid per unit length, flowing
with a steady flow velocity U, m is the mass of the pipe per unit length, and w is the
lateral deflection of the pipe; x and ¢ are the axial coordinate and time, respectively. The
fluid forces are modelled in terms of a plug flow model, which is the simplest possible
form of the slender body approximation for the problem at hand. This equation will be
derived in various ways and forms in Section 3.3. Suffice it to point out here, however,
that if one uses the slender body approximation (2.83), together with (2.69) and v = 0,

*As will be seen later, the equation of motion is independent of fluid frictional effects, and equation (3.1)
holds true if pressure drop in the pipe is taken into account, i.e. for v # 0.
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Figure 3.1 (a) A pipe with supported (clamped) ends conveying fluid, where longitudinal

movement at the supports is prevented; (b) the same system, but with axial sliding permitted; (c) a

cantilevered, continuously flexible pipe conveying fluid; (d) a two-degree-of-freedom articulated

version of the cantilevered system, in which R, is the position vector of the free end, measured
from its position of equilibrium, and 7, is the unit vector tangent to the free end.

it is clear how the terms related to fluid acceleration,

] 3 [ow aw 3w Pw  Pw
—+U—3 | —=+U—| = |V~ +2U — + — |, 3.2
{8[ * Bx} [31 ax] [ a2 T T T (3.2)

arise in equation (3.1). Here, however, the equation of motion will be considered in purely
physical terms.

The first term in equation (3.1) is the flexural restoring force. Upon recalling that
8*w/dx? ~ 1 /R, where R is the local radius of curvature, it is obvious that the second term
is associated with centrifugal forces as the fluid flows in curved portions of the pipe — see
Figure 3.1(a-c). Similarly, re-writing 8>w/axdr = 39/dt = £2, the local angular velocity, it
is clear that the third term is associated with Coriolis effects: the fluid flows longitudinally
with velocity Ui, while sections of the pipe rotate with —£2j, where j is normal to (into)
the plane of the paper; hence —2£2j x Ui terms arise. The last term represents the inertial
force of the fluid-filled pipe.

Equation (3.1) may be compared to the equation of motion of a beam subjected to a
compressive load, P,

w 9w Fw
Iax“ +P8x2 +m8t2 (3.3)
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i.e. equation (2.47). It is clear that the centrifugal force in (3.1) acts in the same manner
as a compressive load. In this way, it is easy to see and to understand physically that,
with increasing U, the effective stiffness of the pipe is diminished; for sufficiently large
U, the destabilizing centrifugal force may overcome the restoring flexural force, resulting
in divergence, vulgarly known as buckling and, in the nonlinear dynamics milieu, as a
pitchfork bifurcation.

In the foregoing argument, it was implicitly assumed that the Coriolis forces do no
work in the course of free motions of the pipe, which is true. The rate of work done
on the pipe by the fluid-dynamic forces, the only possible source of energy input, in the
course of periodic motions is

dw L aw ] ] ow ow
—_— =~ — — — | =+ U—| dx, 34
dr /0 axM{aerUax}[arJr 8x] G4

and hence the work done by the fluid forces over a cycle of periodic oscillation of period

R g I

Clearly if the ends of the pipe are positively supported, then (dw/dt) = O at both ends, and

dr. (3.5)

AW =0. (3.6)

Nonworking velocity-dependent loads are called gyroscopic by Ziegler (1968) and hence
this system is classified as a gyroscopic conservative system. In Galerkin discretizations
of this system, the Coriolis-related velocity-dependent matrix is purely skew-symmetric
(antisymmetric) [see, e.g. Done & Simpson (1977) and Section 3.4.1 here].

Because divergence is a static rather than dynamic form of instability, the dynamics
of the system may be examined by considering only the time-independent terms in equa-
tion (3.1), so effectively equation (3.3) with the inertia term put to zero; whereby, for a
simply-supported pipe, the particularly simple result is obtained (Section 3.4.1) for the
critical flow velocity U,, namely that the dimensionless critical flow velocity is

U. = m, 3.7

where u is defined as
u=MJED?UL, (3.8)

in which L is the length of the pipe. Similarly, for a simply-supported column (Ziegler
1968),

P =72, ® = PL?/EI, (3.9)

it is clear from equations (3.1) and (3.3) that the equivalent of P is u?, rather than u. As
expected, the dynamical behaviour of pipes with one or both ends clamped, rather than
simply supported, is similar.

The analogy between equations (3.1) and (3.3) and the discussion just made show
also how the natural frequencies of the system should develop with increasing U. It is
physically obvious in the column problem that, as the compressive load is increased, the
effective rigidity (or stiffness) of the system is eroded. to the point where it vanishes;
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similarly for the pipe problem, as U is increased. Hence, it is obvious that the frequen-
cies of the system must decrease with increasing U. At u., the lowest (fundamental)
frequency vanishes as the stiffness in that mode vanishes. In the linear sense, the original
straight configuration becomes unstable, and all adjacent deformed states in that mode
become possible equilibria. In the nonlinear sense, a pitchfork bifurcation takes place,
the original equilibrium is unstable and rnwo stable equilibrium states, one on either side,
emerge — defined by the nonlinear forces acting on the system, as will be demonstrated
in Chapter 5.

However, the analogy of the pipe with supported ends to the column with the same
boundary conditions should not be carried too far, because the latter problem is purely
conservative, while the former is gyroscopic conservative. As will be shown later, despite
the fact that the gyroscopic (Coriolis) forces do no work in the course of free oscillations,
they do exert important influence on the overall dynamical behaviour.”

Finally, it should be mentioned that, according to linear theory, there should be no differ-
ence in the dynamics of systems (a) and (b) of Figure 3.1. In physical terms, however, it
is obvious that buckling implies lateral deflection of the pipe. In system (b), once u > u.,
the pipe may develop large static deflection since it is axially unrestrained. In system (a),
on the other hand, where axial sliding of the lower end is prevented, lateral deflection is
associated with axial extension of the pipe; this implies stretching and hence the gener-
ation of a deflection-related axial tension, a nonlinear effect. In practice, this means that
the zero-frequency state is never achieved, as will be discussed further in Section 3.4.

3.2.2 Cantilevered pipes

As will be shown, a cantilevered pipe conveying fluid is a nonconservative system, which,
for sufficiently high flow velocity, loses stability by flutter of the single-mode type, i.e.
via a Hopf bifurcation — see also Section 3.2.3.

The stability of cantilevered pipes conveying fluid [see Figure 3.1(c)] was first studied
by Bourrigres (1939), who examined the problem of general motions of an infinitely
flexible and inextensible string, and the special case where the string is circulating (travel-
ling) between two fixed supports; he then tackled the problem of one such string within
another, which could have flexural rigidity — this of course being equivalent to the case of
a pipe conveying fluid. He obtained the general nonlinear equations of motion, but did not
develop them fully. Then, he linearized them and proceeded to study such diverse aspects
as the difference between spontaneous and perturbation-induced instabilities (cf. Gregory
& Paidoussis 1966b), and the wave propagation characteristics; he also attempted to
predict the period of self-excited motions, and studied several other aspects of the problem,
as well as conducting experiments. On the other hand, he could not calculate the critical
flow velocity, which, unlike the case of a pipe with supported ends, requires the use of
computers* — of course, then unavailable. Bourritres’ was a truly admirable effort, and
it is a pity that it was lost to posterity, until recently (Section 3.1). His work did not have

*In this respect, as civil servants the world over discovered long ago (and as viewers of BBC's Yes Minister
have witnessed to their delight), it is not necessary to do actual work in order to exert influence; see also Lynn
& Jay (1989).

¥ Although Paidoussis (1963), in order 10 check computer calculations — computers then being a relatively
new device — did do a hand calculation, thereby demonstrating its feasibility.



64 SLENDER STRUCTURES AND AXIAL FLOW

any influence on subsequent research, except in an important way on a set of nonlinear
studies to be discussed in Chapter 5.

The next study, some 20 years later, was Benjamin’s (1961a,b), mainly on the dynamics
of articulated cantilevers conveying fluid [Figures 2.1(b) and 3.1(d)], but with an author-
itative discussion of the continuous system [Figure 3.1(c)]." One of the principal accom-
plishment, among many, of this work was the establishment of the appropriate form of the
Lagrangian equations for-this ‘open’ system (open, in the sense that momentum constantly
flows in one end and out the other), namely

d (9T\ T oV : IR,
(=) - =+ 2 = —MUR, + Us) —=, 3.10
7 (aqk) o + o2 (Re 179 30 (3.10)

in which 7 and V are the total kinetic and potential energies of the system, R; is the
position vector of the free end and 7 the unit vector tangent to the free end [Figure 3.1(d)];
qx are the generalized coordinates, typically the angles made by each of the rigid pipes
of the system with the undeformed line of equilibrium. The corresponding statement
of Hamilton’s principle was also obtained, from which the equations of motion of the
continuous system (and the articulated one, if so desired) may be derived.

The equation of motion of the continuous cantilevered system is the same as that of
a pipe with supported ends, equation (3.1); this will be derived in Section 3.3, and there
are subtle differences in the derivation for these two cases (Section 3.3.3). However,
physically, it seems reasonable that the same equation should hold. Similarly, the same
expression, equation (3.5), holds true for the work done by the fluid on the pipe over a
period T of periodic oscillation, but in this case it is equal to

aw\? aw\ [ow
(a)ﬁ”("&l(aﬂd’“’ e

where (dw/dt), and (dw/ax), are, respectively, the lateral velocity and slope of the free
end. In Ziegler's (1968) classification, since some of the forces associated with AW 3 0
are not velocity-dependent [the M U?(3*w/dx?) follower load leading to the second term
in (3.11)], this is a circulatory system. The dynamics of this system was elucidated by
means of this expression by Benjamin (1961a) and elaborated by Paidoussis (1970).

For U > 0 and sufficiently small for the second term within the square brackets to
be much smaller than the first, it is clear that AW < 0, and free motions of the pipe
are damped — an effect due to the Coriolis forces, which, unlike the case of supported
ends, in this case do do work. If, however, U is sufficiently large, while over most of
the cycle (dw/dx). and (dw/dt). have opposite signs, then AW > 0; i.e. the pipe will
gain energy from the flow, and free motions will be amplified. The requirement that
(dw/ox), (0w/dt);, < O suggests that, in the course of flutter, the pipe must execute a sort
of ‘dragging’, lagging motion that one would obtain when laterally oscillating a long
flexible blade or baton in dense fluid. This, indeed, is what is observed, as remarked by
Bourrieres (1939), Benjamin (1961b) and Gregory & Paidoussis (1966b).

T
AW:—MU/
0

**A continuous system® will henceforth denote the distributed parameler system involving a continuously
flexible pipe.
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The energy transfer mechanism was also demonstrated in terms of rudimentary repre-
sentations of the operation of a pump and a radial-flow turbine by Benjamin (1961a), as
follows.

Suppose first that in the course of some free motion the pipe rotates about A without
bending elsewhere, as shown in Figure 3.2(a). This motion requires transfer of energy
from the pipe to the fluid, since the Coriolis forces on the fluid have reactions on the
pipe in a direction always opposing motion. [For the motion to continue (with the pipe
remaining straight between A and C), work from an external source would have to be
done on the pipe, over and above that for bending it at A.} Thus, this energy transfer
mechanism causes the fluid to gain kinetic energy in passing through the pipe, and the
centripetal acceleration of the fluid results in a suction developing at the inlet, A; on
reflection, this is essentially the action of a centrifugal pump.

4

/ A B C

_.% i

(a)

(b)

Figure 3.2 Rudimentary representation of (a) a pump and (b) a radial-flow turbine, illustrating
the mechanisms of energy transfer in a cantilevered pipe conveying fluid, as proposed by Benjamin
(1961a). From Paidoussis (1973a).

Consider next the pipe momentarily ‘frozen’ in the shape shown in Figure 3.2(b); the
change in direction of the momentum of the fluid stream about B gives rise to a reaction
on the pipe, resulting in a clockwise couple. In this case, energy is transferred from the
fluid to the pipe, causing it to accelerate to a speed at which the rate of energy gain just
balances the work done in bending the pipe at B. The energy-transfer mechanism in this
case corresponds to that of a radial-flow turbine. (It is noted, however, that if the rotation
about A becomes sufficiently rapid, pumping action will again prevail.)

In general, in the course of free motions of the system both mechanisms will be
operative. If the first predominates, oscillatory motions will be damped; but if the second
prevails, they will be amplified continuously, i.e. an oscillatory instability will develop.
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A strange characteristic of this system is that, at high flow velocities but before the onset
of flutter, supporting the downstream end of the cantilever by one’s finger or a pencil
causes it to become unstable by divergence (Benjamin 1961b; Gregory & Paidoussis
1966b). So, here is a case where added support causes instability! If one tries to remove
the finger or pencil slowly, the pipe follows! This shows clearly and physically that the
divergence is a negative stiffness instability. This also gives rise to an interesting paradox,
discovered by Thompson (1982b) and elucidated in terms of the strange black box of
Figure 3.3(a,b). As more weight is placed on the scale, the scale goes up.” What could
be in the box is shown in Figure 3.3(c). The phenomenon is nonlinear and its discussion
properly belongs to Chapter 5 (Section 5.6.1); it has nevertheless been outlined here to
whet the appetite, so to speak, for the many interesting aspects of the nonlinear behaviour
of this system.

U
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Black Black
box box ‘
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Figure 3.3 Illustration of the negative stiffness mechanism of a buckled pipe conveying fluid,
analysed by Thompson (1982b).

The stability of this system was linked to the classical nonconservative problem of a
column subjected to a tangential follower-type load at the free end,* known as Beck’s
problem or Nicolai’s paradox, by Nemat-Nasser et al. (1966), Herrmann (1967) and
Herrmann & Nemat-Nasser (1967). Beck’s problem may be summarized as follows
(Bolotin 1963; Ziegler 1968). As already suggested in Section 3.2.1, the stability of
a conservative system may be assessed statically, i.e. by ignoring the time-dependent
forces; e.g. in the case of a column with supported ends or of a cantilevered one with
a compressive load of fixed orientation. The same may be attempted — as first done by
Nicolai in 1928 — for a cantilevered column with a follower load, i.e. a compressive
load with fixed orientation relative to the column, notably a load always tangential to
the free end (as in Figure 2.2). The paradoxical result is then obtained that the system

fA second, but dynamically trivial paradox is that the black box of Figure 3.3 is in fact white!
By the analogy between equauons (3.1) and (3.3) it may easily be shown that the equivalent of (3.5) is

AW = -P fo [(Bw/al) (Bw/a)r)]0 dr # 0, since neither (8w/dr), nor (8w/dx), are zero for all r € [0, T].
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apparently never loses stability! The resolution of the paradox is that the system never
loses stability statically. The critical compressive load was determined by Beck in 1952
(Bolotin 1963) by solving the full equation of motion, equation (3.3). It is given by
P. = PL?/EI = 20.05," at which point coupled-mode flutter arises, otherwise known as
a Hamiltonian Hopf bifurcation, in contrast to the cantilevered pipe, which loses stability
by single-mode flutter via an ordinary Hopf bifurcation — see Section 3.2.3.

The fact that the cantilever conveying fluid is not only a nonconservative problem
similar to Beck’s (a circulatory dynamical system in Ziegler’s classification), but is also
subject to gyroscopic forces* helps explain the fascination it has exerted, and does so still,
on applied mechanicians and mathematicians for the last 30 years. An additional point
fort of this system is that it can readily be realized and studied experimentally, unlike
the original Beck’s problem which requires a rocket-engine mounted to the free end of
a beam column, or something similar — not an easy task! Indeed, it was implied in a
lecture (Paidoussis 1986a) that such a task was much foo hard to contemplate, which a
team of Japanese researchers promptly disproved (Sugiyama et al. 1990), by doing the
difficult experiment with a solid-fuel rocket, demonstrating the occurrence of flutter and
obtaining good agreement with theory — see also Section 3.6.5.

Finally, a few words on the case when the flow is from the free end towards the clamped
one: by reinterpreting (3.11) for U < 0 it would appear that the system is unstable by
flutter for small U (indeed for infinitesimally small U if dissipation is ignored!) and is
then stabilized for larger |U|, as first pointed out by Paidoussis & Luu (1985) — the
inverse behaviour to that described heretofore. More will be said about this in Chapter 4
(Section 4.3), but in what follows we return to the system with U > 0.

3.2.3 On the various bifurcations

A general discussion of the evolution of the eigenvalues and the corresponding eigenfre-
quencies leading to some of the standard bifurcations or linear instabilities was given in
Section 2.3. This is reinforced and expanded here for the phenomena of interest in this
chapter.

The Argand diagrams for divergence via a pitchfork bifurcation® are shown in
Figure 2.10(a). If the system is conservative (zero dissipation), the diagram for the
eigenfrequencies is modified. The eigenfrequencies are wholly real for u < u., and
then become wholly imaginary (a conjugate pair), as shown in Figure 3.4(a); hence
w = 0 for u = u.. The corresponding eigenvalues are wholly imaginary for u < u., and
then for u > u. become wholly real; the eigenvalue Argand diagram for each of the
cases in Figure 3.4 is obtained via a 90° counterclockwise rotation of the corresponding
eigenfrequency diagram. For the pipe and the column with simply-supported ends, u. = 7
and P. = nr?, respectively — sce equations (3.7) and (3.9).

*This value of @, is about eight times higher than the Euler buckling load for fixed-orientation compression
of the cantilevered column, &, = 1n? (Ziegler 1968).

Unlike the system with supported ends, if this system is discretized, the Coriolis-related matrix is not
skew-symmetric; it can of course be decomposed into symmetric and skew-symmetric parts.

3Strictly speaking. the type of bifurcation involved is defined by the nonlinear terms in the equation of
motion. In this case, the flow-related nonlinearities in the stiffness term are cubic and similar to those in a
softening cubic spring. This is what gives rise to two stable static equilibria for u > 1, — cf. equation (2.165)
and the discussion following it in Section 2.3.
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Figure 3.4 (a) Divergence via a pitchfork bifurcation of a conservative system; (b) single-mode

flutter of a circulatory system via a Hopf bifurcation; (c) coupled-mode flutter via a Hamiltonian

Hopf bifurcation; (d) the ‘Paidoussis coupled-mode flutter’ [see Done & Simpson (1977)]; w is the
dimensionless form of £2 — see equation (3.73).

The case of the ordinary Hopf bifurcation is shown in Figure 3.4(b) for a system with
zero structural damping [$m1(w) = 0 for u = 0]; it is characterized by the crossing of the
eigenfrequency locus from the positive to the negative half-plane in the Argand diagram.
For u < u, the system is damped, while for u > u, it is ncgatively damped in the second
mode, which signifies single-mode amplified oscillations or flutter.

The Argand diagram for coupled-mode flutter of an undamped system via a so-called
Hamiltonian Hopf bifurcation is shown in Figure 3.4(c). It is called Hamiltonian because
(i) for u < u, there is no damping in the system and (ii) for ¥ > u, the coalescence of the
two modes has resulted in two eigenfrequencies, respectively positively and negatively
damped — both characteristics resembling those in a pitchfork bifurcation, generally asso-
ciated with conservative (Hamiltonian) systems. In this case, however, Re(w) # 0 for
u > u;, and hence the negative $ni(w)-branch leads to flutter, similarly to the ordi-
nary Hopf bifurcation, except that here more than one mode is involved. As discussed
by Ziegler (1968), conservative systems lose stability by divergence. If they are gyro-
scopic, however, they may regain stability, according to linear theory at least, and then
be subjected to further linear instabilities as the loading parameter is increased. As will
be seen in Section 3.4, bifurcations such as that of Figure 3.4(c) do occur for u > i, for
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pipes with supported ends. An example of a system that loses stability by a Hamiltonian
Hopf bifurcation is the column subjected to a tangential follower load, a nonconservative
circulatory system, for which u? = ®. = 20.05.

Finally, Figure 3.4(d) shows another form of coupled-mode flutter, for which Done &
Simpson’s (1977) nomenclature of Paidoussis’ (coupled-mode) flutter will be retained, to
distinguish it from the Hamiltonian Hopf bifurcation of Figure 3.4(c). The distinguishing
feature is that in this case the bifurcation originates directly form a divergent state; hence,
at the onset of flutter (u = u.), the frequency of oscillation is zero [Re(w) = 0], and
then Re(w) # 0 for u > u,.. This kind of bifurcation will be found to arise for pipes with
supported ends (Section 3.4), as well as for other systems (e.g.in Chapter 8).

3.3 THE EQUATIONS OF MOTION
3.3.1 Preamble

The linear equation of motion for a pipe conveying fluid will be derived in the next two
sections by the Newtonian and the Hamiltonian approaches. Before embarking on these
derivations, however, it is useful to introduce some basic concepts.

The first is related to the description of the system via either Eulerian or Lagrangian
coordinates, differentiated by the concepts of spatial position and particle individuality,
respectively. In the Eulerian description the coordinates are fixed in space and may not
be populated by the same material particles as time varies; these are the coordinates
commonly used in fluid mechanics (e.g. in Section 2.2). In the Lagrangian description,
coordinates are identified with individual particles (or elemental volumes surrounding
marked points in the continuum).

To fix ideas, let us consider the longitudinal vibration of a bar, i.e. a one-dimensional
continuum. In the Eulerian description, the position x, fixed in space, may be used as
the independent space variable, and the deflection field described as u(x, ¢); as the bar
vibrates, different particles or material points at different times will be located at x. In the
Lagrangian description, a given particle may be identified by its position at a given time
(say, t = 0) or, more usefully, by its position when the bar is undeformed, x = x¢. This
particle will be at a different x as time varies, but will be identified with xy always (Hodge
1970). Clearly, the deflection field may equally be described in terms of u(xo, r). This is
the more ‘mechanical’ description and it is the foundation of Lagrangian dynamics, for
instance.

Similarly, in the case of flexural oscillations of the pipe, treated as a beam, two coor-
dinate systems may be utilized: the Eulerian (x, z) or the Lagrangian (xg, z0) — see
Figure 3.5(a). The equilibrium configuration is along the x-axis, and hence (xy, 79) =
(x0, 0) in this case. The lateral deflection of the pipe may be described as w(x, r) in Eule-
rian coordinates or w(x, f) in the Lagrangian ones; however, as we can see, there is also
change in the axial or x-position of each point, i.e. u(x, ) or u(xp, t). If we consider a
point P, which in the undeformed state is at Py, then its deflection is

u=x—xp and w=z—20=2 (3.12)

In what follows we shall use both sets of coordinates, but the usefulness of this discus-
sion will become most evident when the nonlinear equations of motion are derived in
Chapter 5.
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Figure 3.5 (a) The Eulerian coordinate system (x, z) and the Lagrangian one (xg, 20) = (xp, 0) in

which the xp-axis is superposed on the x-axis, showing the deflection of a point Py = Py(xp, 0)

to P(x, z) and the definition of u and w; (b) diagram used for the derivation of the inextensibility
condition.

Two further points should be made: (i) whenever Lagrangian coordinates are used, they
are used for pipe motions only, not for the fluid; (ii) it is customary to use a curvilinear
coordinate s, along the length of the pipe, as shown in Figure 3.5(a) — especially useful
if the pipe is considered to be inextensible.

The second concept of importance to be discussed in this section is that of inex-
tensibility. For pipes supported as in Figure 3.1(b,c) for instance, where no deflection-
dependent axial forces come into play, one may clearly consider the pipe to be inexten-
sible, i.e. the length of its centreline to remain constant during oscillation. However, in
the case of a pipe with positively supported ends [Figure 3.1(a)], i.e. with no axial sliding
permitted, lateral deflection may occur only if the pipe is extensible.

Consider contiguous points P and Q of the deflected pipe, originally (in the undeflected
state) at Py and Qg, as in Figure 3.5(b). Then,

(852 = (6x)% + (82)%,  (8s0)? = (8x0)? + (820)* = (8%0)?,

from which one may write

2 2
(85)? — (350)* = [(3> +(E> —1] (20" (3.13)
dxg 0xo

If the pipe is inextensible, 8s = 8s¢ by definition, and the condition of inextensibility

may be expressed as
ax \ 2 8z \?
— — ) =1 14
(3xo> " (3x0> G149

The inextensibility condition may also be expressed in terms of the displacements (i, w);
by invoking (3.12),



PIPES CONVEYING FLUID: LINEAR DYNAMICS | 71

u\ aw\?
(1+5) +<5x—o) = 1)

In both (3.14) and (3.15), xp may be replaced by s.
If the pipe cannot be considered to be inextensible, e.g. in Figure 3.1(a), éxy and ds
are no longer equal; they must be related through (3.13) which, with the aid of (3.12),

leads to 2

dxg au\? aw\?|
— =1+ —) +(— 3.16
s [( 3x0) (3x0> G109
The final preliminary point that needs be examined is related to the orders of magni-
tude of the displacements, which define the degree of approximation and simplification
that is admissible in the derivations to follow. First, it is reasonable to assume, partic-
ularly in linear analysis, that the lateral displacement w is small compared to the pipe

length, i.e.
w/L ~ O(e), (3.17a)

where € <« |. By expanding (3.15) and neglecting (Qu/dxp)* as compared to 2(du/dxo).
and also replacing xo by s, it is clear that

5 2
U —/ - (8_w> ds, u/L ~ O(*), (3.17b)
0 2 as

i.e. longitudinal displacements are one order smaller than the lateral ones. It is also
well known that, in the Newtonian approach, if all terms are correct to order ¢, so is
the equation of motion. In the Hamiltonian approach, however, since the energies are
generally quadratic expressions of displacements and velocities, the various terms should
be correct to order €2, Hence, in the Newtonian derivation of Section 3.3.2 one may
take x = xp = s and consider only the lateral deflection of the pipe, w = w(x, r). In the
Hamiltonian derivation of Section 3.3.3, however, one has to take account of u(x, r) as
well, and to take care to differentiate xy or s from x, since then generally x % s for
inextensible pipes and also xy # s for extensible ones.

3.3.2 Newtonian derivation

Consider the system of Figure 3.1(a-c), a uniform pipe of length L, internal perimeter S,
flow-area A, mass per unit length m, and flexural rigidity E/, conveying fluid of mass per
unit length M, with mean axial flow velocity U. The flow in the pipe is fully developed
turbulent. Consider the undisturbed axis of the pipe to be vertical, along the x-axis, and
the effect of gravity to be generally non-negligible. The flow velocity may be subject to
small perturbations, imposed externally, so that dU/dr # 0 generally.

The pipe is considered to be slender, and its lateral motions, w(x, ), to be small and
of long wavelength compared to the diameter; thus, in accordance with the discussion
in Section 3.3.1, the curvilinear coordinate s along the centreline of the pipe and the
coordinate x may be used interchangeably. Consider then elements §s of the fluid and the
pipe, as shown in Figure 3.6.
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Figure 3.6 (a) Forces acting on an element s of the fluid; (b) forces and moments on the
corresponding element of the pipe.

The fluid element of Figure 3.6(a) is subjected to: (i) pressure forces, where the pressure
p = p(s, t) because of frictional losses, and p is measured above the ambient pressure;
(ii) reaction forces of the pipe on the fluid normal to the fluid element, F 3s, and tangential
to it, ¢S &s, associated with the wall-shear stress g; (iii) gravity forces Mgéds in the x-
direction. Applying Newton's second law in the x- and z-directions, while keeping in
mind the small-deflection approximation, yields

A% s Mg+ FY = m (3.18)
PP & ax  afe )
d ow ow
A ox (p 8x> as ox afe (.19

where as, and ay, are the accelerations of the fluid element in the x- and z-direction,
respectively. Similarly, for the pipe element of Figure 3.6(b) one obtains

oT aw
— +g¢S+mg—F — =0, (3.20)
ox 0x
a0 a dw aw ow
S A ks AP .
% + F + ™ (T 3x> +qS o c Py map,, 3.21)
M 0 Pw
== (E+E =) 15Z, :
Q X ( + 8!) ax3 (3.22)

where T is the longitudinal tension, Q the transverse shear force, and A the bending
moment; moreover, the pipe is subjected to internal dissipation of the Kelvin-Voigt type
(e.g. Shames 1964; Meirovitch 1967; Snowdon 1968), thus following a stress—-strain
(o, €) relationship of the form ¢ = E¢ + E*(de/dt), and also to damping due to friction
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with the surrounding fluid, expressed in linear form as c(dw/or).” The subscript f in
equations (3.18) and (3.19) identifies the acceleration of the fluid and subscript p in (3.21)
that of the pipe. Terms of second order of magnitude, for example the pipe acceleration in
the x-direction, have been neglected, as well as transverse shear deformation and rotatory
inertia in accordance with the Euler-Bernoulli beam approximation.

The acceleration of the fluid may be determined in several ways. The simplest is
utilized here, while other derivations will be employed when considering variants of the
basic system. The basic assumption is that the fluid flow may be approximated as a plug
flow, i.e. as if it were an infinitely flexible rod travelling through the pipe, all points of
the fluid having a velocity U relative to the pipe; this is a reasonable approximation for
a fully developed turbulent flow profile. As it has been assumed that pipe deflections are
of long wavelength compared to the diameter, D, and that the pipe is slender, i.e. L/D
is large, unsteady secondary-flow effects may be neglected. Hence, the equivalent of a
slender-body approximation to the flow is being made. The velocity of the pipe is

3
V, =L i+ ik (3.23)
LY

in terms of the unit vectors in the x- and z-directions, defined in Figure 3.5(a), where r
is the position vector to a point measured from the origin; and the velocity of the centre
of the fluid element of Figure 3.6(a) is

V, =V, + Ur, (3.24)

where 7 is the unit vector tangential to the pipe,

8 a
r=2i 4 Zg (3.25)
os
Consequently,
d 0 Dr
Vi = U— i+zk)=—, 3.26
f (ar+ )(x1+z) Dr (3.26)

where D( )/Dr is the material derivative for the fluid element. Recalling that z = w
and that dx/0s ~ 1 and dx/dr ~ 0(€?) ~ 0 in accordance with the assumptions made, this
gives

ow ow
V, =Ui —+U— k. 3.27
F=U1+ [ o + as] ( )
In a similar manner, the acceleration is found to be
D’r dU. [3d 912
_ — —+U— k, 3.28
YEpE T et [az * as] W (3.28)

in which the bracketed quantity squared represents the successive, double application of
the differential operator, and hence

—+U— w——+2U—+U—+——. (3.29)

3 31? Fw , 3w dU 8w
o ds 912 dsar sz dr Bs

*The surrounding fluid is supposed to be sufficiently light (e.g. air) for added-mass effects to be negligible.
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[Parenthetically, a more ‘fluid mechanical’ derivation given by Paidoussis & Issid
(1974) will be outlined here, in which an element of the pipe s is considered containing
fluid of volume V. The rate of change of momentum over 6% may be written as

M _ /// [% o V)v,] pdY, (3.30)
5V ot

where dV' is a small element within §%. Then, by making the plug flow approximation,
the velocity V; may be approximated by (3.27). Therefore,

v, _ dU. Pw N ¥w L
a - dr or? st | dr os

J ow ow Pw Fw
. ~U— |Ui — +U k|~ (U— )k (33
V-V, Uas [Ul+(a + as) ] ( 8x8!+U ax2) (3.31)

Hence, equation (3.30) yields

dM aU 3 312
— M — Ssk, 3.32
9 Md6 i+ [8!+U8x}ws ( )
which corresponds to the acceleration as given by (3.28).]
A derivation in which the radial dimensions of the pipe are not ignored is given in
Section 4.2, but leads to the same form as above. Therefore, recalling that s >~ x, by using
(3.28) or (3.32) one obtains the first two of the following equations:

dU 3 a1? ?w
an=E, ag, = |:_37+Uaj| w, apz=ﬁ; (3.33)

the last equation above is the lateral acceleration of the pipe and requires no explanation.
Hence, combining (3.19), (3.21), (3.22) and (3.33) one obtains

) w9 ow 3 2
oy § ilhid T - pay?
( at ) P [( p )Bx]+M[BI+U8x] W
APLLIN (3.34
ca maiz_ . 3.34)

Also, adding equations (3.18) and (3.20) and using (3.33) yields
0 dU
—(T —pAy=M — — (M + m)g, (3.35)
ax dt

which integrated from x to L becomes

(T - pA)| —(T—pa)= [M (%) — M+ m)g] (L - x). (3.36)
x=L

If the flexible pipe discharges the fluid to atmosphere al x = L — the situation shown in
Figure 3.1(b,c) — T, which is then entirely due to fluid friction, is zero at x = L; unless
there is an externally applied tension, denoted by 7 — as could be the case for the system
of Figure 3.1(a). The pressure, p. at x = L will also be zero, unless the pipe does not
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discharge to atmosphere, in which case there may be a mean pressure p at x = L, over
and above that expended to overcome friction (see also Section 3.4.2). Thus, T and P
would act uniformly over the total length of the pipe. Now, if the downstream end is
completely fixed, i.e. the system of Figure 3.1(a) rather than (b,c), internal pressurization
induces an additional tensile force, which for a thin pipe is equal to 2vpA, where v
is the Poisson ratio, as first introduced by Naguleswaran & Williams (1968); i.e. the
tendency of the pipe to expand radially and hence to become shorter, induces this tensile
force. One may derive this in terms of (i) an axial stress distribution o, = T/A, and
(i) the stress distribution due to p, o, + ow = 2 pA/A,, where A, is the cross-sectional
arca of the pipe material (Sechler 1952); these two are then superposed to give the
axial strain ¢, = [0y — V(o) + 0w)] /E. Now, since no axial movement is allowed at the
ends, fOL &, dx = 0, which yields 7 = 2 v pA. Hence, in general, equation (3.36) may be
written as

T — pA =T —PpA(l —2v8) + [(M+m)g—M(z—(t])] (L — x), (3.37)
where 8 = 0 signifies that there is no constraint to axial motion at x =L, and § =1 if
there is. Of course, it could be argued that, in practice, T and P can only be imposed
if =1, so that one should really write 8[T — pA(1 — 2v)]; still, one can conceive of
ingenious theoretical ways in which T and p may be applied, even for the system of
Figure 3.1(b) — e.g. by strings and pulleys and bellows — and hence the form of equa-
tion (3.37) will be retained. Now, substitution of (3.37) into (3.34) gives the equation of
small lateral motions:

2
<E*2+E)1&+ {MUZ—T+ﬁA(1 —2v8) — [(M+m)g—Mg] (L—x)} oW

at ax dr ax?
Pw ow ow 2w
MU — 4+ M — — 4+ WM —=0. (3.38
+ 8x8t+( +m)g 8x+c P + M+ m) o7 (3.38)

If gravity, dissipation, tensioning and pressurization effects are either absent or
neglected and U is constant, this simplifies to equation (3.1). The derivation given
here follows Paidoussis & Issid’s (1974). Earlier derivations of the simpler form,
equation (3.1), for pipes with supported ends, were made by Feodos’ev (1951), Housner
(1952) and Niordson (1953), and for cantilevered pipes by Benjamin (1961a) and Gregory
& Paidoussis (1966a). The equation derived by Ashley & Haviland (1950) is wrong,
missing the all-important M U%(8%*w/0x?) term. Similarly, an equation derived by Chen
(1971b) for the case of harmonically perturbed flow is partly wrong, in that the first term
of equation (3.28) or (3.32), i.e. the axial acceleration effect, is missing, although the last
term in (3.29) is present; as a result, instead of thc M(dU/d¢)}(L — x)(0%w/dx?), a term
M (dU /dt)(dw/dx) is found in Chen’s equation of motion.

There are some subtleties in this derivation that are not quite obvious. This is partly
the reason for the derivation of Appendix A.

In several calculations in the following, dissipation in the material of the pipe will be
modelled not by the Kelvin-Voigt viscoelastic model as in equation (3.38), but by the so-
called hysteretic or structural damping model. As shown by Bishop & Johnson (1960) for
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instance, for metals and certain types of rubber-like materials, and over frequency ranges
of practical interest, energy dissipation can adequately be accounted for by hysteresis;
then, when a specimen of such a material is subjected to harmonic loading with a (real)
circular frequency £2, the energy dissipation per cycle can be calculated by taking the
Young’s modulus to be complex, in the form E(1 4 ui), where E and u are constants
independent of £2, and u « 1. This implies that the small stresses related to hysteresis
are in quadrature with the principal, linear-elastic stresses. This representation remains a
reasonable approximation for lightly damped oscillation — i.e. provided that $m(£2) «
PRe (£2) when 2 = Re(2) +19m(N2); however, if there is another source of damping
(e.g. flow-induced damping in cantilevered pipes conveying fluid) such that the overall
damping is large, misleading results may be obtained. Nevertheless, within the limits of its
applicability [e.g. close to a flutter boundary or for lightly damped conservative systems
where $m(£2) K Re(£2)], the hysteretic model is very convenient. In that case, the first
term of equation (3.38) may be replaced by

3w
E(V +ud)l{ — | . (3.39)
(=)

Finally, a variant of the equation of motion, first introduced by Gregory & Paidoussis
(1966a) for experimental convenience (Section 3.5.6) will be discussed. For simplicity,
consider the horizontal system with dU/dr = 0 and neglect dissipation. Then suppose
that the downstream end of the pipe is fitted with a convergent nozzle, assumed to be
weightless and very short compared to the total length of the pipe. The discharge velocity
Uj is given by U; = U(A/A;), where A; is the terminal cross-sectional area of the nozzle
flow passage. Equation (3.36) in this case simplifies to

(T — pA) —(T —pA)=0; (3.40)

x=L

consideration of momentum at x = L — cf. the second and third terms of equation
(2.63) — gives

(PA=T)| =MUU;-U), (3.41)

x=L

which, in view of (3.40), applies for all x. Hence, substituting into (3.34), simplified
according to the assumptions made here, yields the modified equation of motion
3w Fw 3w Fw

El — 4+MUU;, — +2MU —— M — =20. 3.42
axd + J ax2 + Axdt T M+ m) or? (3.42)

3.3.3 Hamiltonian derivation

The difficulty in deriving an expression of Hamilton’s principle for this problem lies in the
fact that the system is open, with in-flow and out-flow of mass and momentum. Housner’s
(1952) derivation of the equation of motion for pipes with supported ends by means of

See also Payne & Scott (1960), Snowdon (1968) and the workshop proceedings edited by Snowdon (1975)
and Rogers (1984).
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the kinetic and potential energies of the system entirely ignored this aspect, proceeding as
if the system were closed, yet fortuitously ended up with the correct equation of motion.
Benjamin (1961a,b) was the first to derive a proper statement for Hamilton’s principle,
in his work related to articulated and continuously flexible cantilevered pipes. Benjamin
rightly maintained that Housner’s derivation was erroneous, since the proper statement
of Hamilton’s principle was not used; thus, although the correct equation of motion was
spuriously obtained for pipes with supported ends through a fortuitous error in the kinetic
energy expression (Benjamin 1961a), there is no question that Housner’s derivation would
fail if applied to cantilevered pipes. The controversy was resolved by Mclver (1973) with
the aid of a more general form of Hamilton’s principle for open systems, concluding
that Benjamin’s argument was correct, but Housner’s derivation was also ‘correct’, in a
sense, though for unexpected reasons. Hence, in this section Hamilton’s principle will
be reproduced as per Mclver’s work, and then the form obtained by Benjamin and the
equations of motion will be derived therefrom; finally, Housner’s derivation for pipes
with supported ends will be considered.

Let us first rewrite the principle of virtual work for a system of N particles, each of
mass m; and subjected to a force F;. By d’Alembert’s principle,

N
Y (miti =)« 8r; =0, (3.43)

i=1

where r; is the position vector of each particle and ér; the associated virtual displacement
compatible with the system constraints. It is first noted that

N
Z F . ér; = sW — 8V, (3.44)

i=1

is the virtual work by the applied forces, part of which has been expressed in terms of
the potential energy V. Then, by re-writing

N N d N N d
,'“"8,': ,-—l",-oSr,- — l-,'(Sl.',"l.',' = i—i‘,"(Sl',‘ —(ST,

gmn r Emdr( ) gzm ( ) gm dr( )

(3.45)
where 7 is the kinetic energy of the system, equations (3.43)-(3.45) lead to
Noodg

T —V)+ W — ; —(r; + 8r;) = 0. 3.46
( ) ; mi ) (3.46)

Consider next the closed system of Figure 3.7(a) associated with the closed control
volume V.(r), bounded by the surface ¥, (+), containing a collection of particles of density
p, each with position vector r and velocity u. The principle of virtual work in the form
just derived may be written as

5. 1+ 5w — 2 /// p(u - sr)dV =0, (3.47)
Dt Ve()

where ¥, = T. — V. is the Lagrangian of the closed system, W is the virtual work by
the generalized forces, and D/Dr is the material derivative following a particle; hence,
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Figure 3.7 Definition of the control volume of the open system under consideration, ¥, and

of a fictitious closed system, V. coincident with Y, at time ¢. The control surfaces ¥, and ¥, are

associated with the open and closed parts of the open system. (a) The system at time ¢, and (b) at
time ¢ + dt.

u = Dr/D¢. Then, Hamilton’s principle may be obtained from (3.47) by integrating it
between two instants, f; and f;; in accordance with normal variational procedure, the
system configuration is prescribed at f| and f7, i.e. r = 0 so that the last term vanishes,
and this leads to the familiar form (cf. Section 2.1)

g5) 2
6/ Lo dt +/ W dr = 0. (3.48)
n n

The extension to open systems is effected by considering a portion ¥,(¢) of the surface
of the control volume ,(¢) (Figure 3.7) to be capable of movement with a velocity V - n
normal to the surface, across which mass may be transported; n is the outward normal.
Thus, (1) is associated with the closed part of the system and ,(r) with the open
part. Figure 3.7(a) shows the system at.time ¢, and Figure 3.7(b) at time ¢ + d¢. This
open system does not necessarily have a constant mass or, if it does, the mass does
not necessarily comprise the same particles. On the closed part of the control volume,
bounded by %,(t), V-n=wu.n.

If, at time ¢, V,(¢) coincides with ¥.(sr) as shown in Figure 3.7(a), Reynolds’ general
transport equation [e.g. Shames (1992; Chapter 4)]" reads

%//ﬂt&,(:){ }dV:%//AH”{ }d°lf+//%{ IV —u)-nd, (3.49)
in which 5 5
E///%m{ }(W:E///m{ il (3.50)

may be used since D{ }/D¢ makes it clear that a closed control volurne is to be employed.

TEquation (3.49) simply states that the total rate of change in { } is equal to the rate of change in the
volume plus that due to influx/efflux through the boundaries.
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Hence, utilizing (3.47), (3.49) and (3.50) leads to the following form for the virtual
work equation:

p .
8330+6W+// p(u-Sr)(V—u)-nde——/// o(u-8r)dV =0. (3.51)
%) dr JJ Jv,m

This, integrated over time from r, to r,, at which limits ér = 0 again, gives Hamilton’s
principle for the open system,

5] i}
6/ £F,dt + / SHdr =0, (3.52)
1 {

8H = W + // o 3rV —u) - -nd¥, (3.53)
S SHn

with &£, =T, — V, being the Lagrangian of the open system.

This is next applied to the case of a cantilevered pipe conveying fluid. For simplicity,
the casc of no dissipation and a constant flow velocity U is considered. Moreover, it is
presumed that the only forces involved in §W are associated with the pressure p, measured
above the ambient of the surrounding medium; hence,

SH = — // p@ren)d¥ + // o ér)(V —u) -nd¥, (3.54)
PR NGRS IR AN J S L+ %)

where (1) is the surface covered by the pipe wall, and &; and ¥,(t) are the inlet and
exit open surfaces for the fluid. Next, it is presumed that any virtual displacement of
the pipe does not induce a virtual displacement of the fluid relative to the pipe. Thus,
virtual displacements of the fluid relative to the pipe are independent of those of the pipe.
Hence, since the fluid is incompressible, there can be no virtual change in the volume of
the system, and expression (3.54) simplifies to

SH = —// p(8r-n)d9’+// o 8ér)(V —u) -nd¥. (3.55)
REESAD F (1)

Now, if the fluid entrance conditions are prescribed and constant, the integrals over ; are
zero. Furthermore, the first integral over ,(¢) is zero since at the outlet p = 0. Hence,
the only part remaining is

8H = // pu- )y (V—-uw).-nd¥ =-MU(r, + Ur) - éry, (3.56)
Seny
in obtaining which u =r+ U=t [Figure 3.8(a)], (u—V).-n=U at S,(t) and M = pA

have been utilized, A being the open (flow) area. Hence, Hamilton’s principle for this
system becomes

I 1
5/ &£, dt — / MU, + Urty) - érp dt =0, (3.57)
4] Sy
which is identical to that obtained by Benjamin (1961a)."

“In Benjamin's derivation, as in Figure 3.1(d), R, is measured from the (r,z) = (L. 0) position. whereas
here r;, = Li + R, is measured from the origin: however, as r;, = R, and ér;, = §R;, the two expressions are
fully equivalent.
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Figure 3.8 (a) Definition of the coordinates and unit vectors associated with movements of the

free end of a cantilevered pipe (top), and the relationship between i, k, T and x for any point along

the cantilever (bottom); (b) velocity components for an element of the fluid in a cantilevered pipe;
(c) the same for an element of the fluid in a pipe with clamped ends.

The equation of motion is derived next, for a vertical cantilevered pipe, taking into
account gravity effects. The pipe is assumed to be inextensible, and use is made of the
curvilinear coordinate s. The derivation involves the evaluation of the various terms in
the Hamiltonian statement (3.57), following along similar lines to Benjamin’s (1961a)
and Paidoussis’ (1973a), but making use of the notation and relationships developed in
Section 3.3.1.

Some useful relationships will be obtained first, as follows: (i) recalling from (3.12)
that u = x — xo with xo = s here, then x = i; (i) from (3.14), ax/ds = [1 — (3z/8s)*]"/?
with z = w, and hence ax/ds >~ | — %wa, where () = a( )/ds; (iii) from (3.17b), u; =
— Jy 3w ds. Also, one may write f; = i.i + 2.k = i i + v k; from (3.25), T, = xi +
gk>~[l- %wf]i + w; k; 8r, = éugi+ 8w, k; and the second term of (3.57) may be re-
written as

5]
/ (MU? 8up, + MUGv, + Uw) ) dw, 1 dt, (3.58)
n
correct to €(e?), having made use of the order considerations expressed by (3.17a,b).
Hence, by grouping the terms implicitly involving a double integral into the first term,
Hamilton’s principle is rewritten as

[») )
6/ (Lo —MU?up)dr — / MUGv, + Uw))dw, dt =0, (3.59)
n n

correct to 0(e2).
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The kinetic energy of the pipe and the fluid may be evaluated by making use of (3.23)
and (3.26),

L L
T,=1im / @ +Hds, T = %M/ [G+ Ux'Y + (z+ UZ))ds,  (3.60)
Jo 0
in which m and M have been defined in Section 3.3.2; again, the subscripts p and f
stand for the pipe and fluid, respectively The integrands in 7, and 7y may be simplified

by noting that x ~ O(e?), x' =1 — w , and x? + 72 = 1 from inextensibility condition
(3.14). Hence, recalling also that x = i and z = w, the expressions for 7, and 7; become

L L
T, = %m/ whds, Ty = %M/ [U? +W? + 2Uww + 2Ui] ds. (3.61)
0 0

It is noted that (3.61) could have been obtained directly with the aid of Figure 3.8(b); the
various terms are obtained from Cartesian components of (3.24), which may be expressed
as (w+ U sin x) and (U cos x + &) with sin y = w' and cos y ~ | — %w’z, neglecting
terms smaller than O(¢2).

The potential energy is given by

L L s
V=V, +V = %El/ w?ds + $(m +M)g/ / w2 ds ds. (3.62)
0 0 0

The component of V associated with gravity may be simplified via integration by parts,

as follows:
L L
-~ / sw?ds
0 0

L 5 s
%(m—l—M)g/ / w'zdsdszé(m+M)g{[s/ w’zds]
0 Jo 0

L
= 3(m+ M)g/ (L — 5w ds. (3.63)
0

Finally, substituting (3.61)-(3.63) into (3.59) and making use of the standard vari-
ational techniques and of the boundary conditions for a cantilever, after considerable
manipulation, this reduces to

12 L
- / / (EIW"™ +MU*W — (M + m)g[(L — s)W'] + 2MUW
0
+ M +mw}dwdsdr = 0. (3.64)
Two items should be remarked upon in the derivation of (3.64). Firstly, the terms in

the second integral of (3.59) cancelled out with identical ones originating from the first
integral after integration by parts. For instance,

/MUzuLdt Mus/ / Iw?dsdr = MUZ/ / w' (Sw) ds dt
n 0 0

2
—MUZ/ w Sw dt MUZ/ / w” swds dt,
1 0




82 SLENDER STRUCTURES AND AXIAL FLOW

the first part of which becomes M U? f,’lz w) 8wy, because of the boundary conditions, and
cancels the second term of the second integral of (3.59). The expression above also makes
it clear that the centrifugal term M U?w” does not arise from the kinetic energy, as might
have been supposed, but from the second term in the statement of Hamilton’s principle,
equation (3.57). The second item concerns the term 2Ui in Ty, in equations (3.61). Once

the variation is taken, this leads to fOL 2U Su |;f =0.

For arbitrary variations 8w and with s 22 x, the term within the curly brackets in
equation (3.64) is the desired equation of motion. It is the same as (3.38), but with
E*=0,c=0and dU/dt = 0, in accordance with the assumptions made here.

Consider next a pipe with clamped ends, but allowing sliding at the downstream one
[Figure 3.1(b)]. In this case the second integral of (3.59) is zero, but u; in the first
integral is not, and it is again this term rather than the kinetic energy that is responsible
for the centrifugal force term in the equation of motion. Everything else remains the
same, including the inextensibility condition. After considerable manipulation, the same
equation of motion is obtained — but only if 4;, is not ignored, whereas it was in Housner’s
derivation.

Consider finally the case of fully clamped ends — not allowing any sliding at x = L.
As pointed out by Mclver, in this case there is no motion possible at x = L, i.e. 8x; =
8z, = 0; that is, the ‘contraction’ in the sense used by Benjamin and defined for in-
extensible pipes by u;, = — OL %w/z ds is zero in equation (3.59), and hence so is u at any
location s along the deformed pipe. In fact, for lateral deformation to occur, there will be
some stretching of the pipe as shown in Figure 3.8(c), which results in its cross-sectional
shrinking. Thus, the element of the pipe Js is stretched to és(1 + %w’z) and the flow
velocity relative to the pipe through the narrower flow passage, A(1 — %w’z), is increased
to U(l + %w’z) for continuity at each location s; hence, the x-component of the flow
velocity is [U(1 + 2w?)] (I — w) = U. Therefore, in this case, at least approximately
to O(e?),

L
T = %M/ (oW + Uw)?* + UHdx,
0

as utilized by Housner — correct, but without the benefit of the refined arguments leading
to it. With this expression, i.e. with » = 0, and with u; = 0, Hamilton’s principle (3.59)
yields the very same equation of motion as for the sliding end and the cantilevered
case — at least to the linear limit. In contrast to the previous two cases, here the centrifugal
force term in the equation of motion arises from the kinetic energy.

3.3.4 A comment on frictional forces

A remarkable feature of equations (3.38) and (3.1) is the total absence of fluid-frictional
effects, which at first sight might appear to be an idealization. However, within the
context of the other approximations implicit in this linearized equation, it may rigorously
be demonstrated that fluid-frictional effects play no role in the dynamics of the system,
a fact first shown by Benjamin (1961a,b). Consider once more the balance of forces in
the axial direction of elements of the fluid and the pipe, i.e. equations (3.18) and (3.20)
for the case where dU/dr = 0 and gravity is inoperative (i.e. for motions in a horizontal
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plane) to make the argument simplest:

ap aw aT aw
A ——qgS+F—=0, —+gS—F — =0, (3.65)
ax ox ax ox

which, when added give

i(T - pA)=0. (3.66)
ax

Thus, the frictional force ¢S is replaced by its twin effects: (i) as a tension on the pipe
and (ii) as a pressure drop in the fluid. Equation (3.66), when integrated from x to L gives
(T — pA)y = (T — pA);. the equivalent of equation (3.36). Ignoring externally imposed
tensioning and pressurization, which do not enter the argument (and which are discussed
in Section 3.4.2), and thus considering for simplicity the fluid to discharge to atmosphere,
both p and T vanish at x = L, and hence

T—pA=0 for xel0Ll] (3.67)

It follows that the term related to 7 and p in equation (3.34), the precursor to the final
equation of motion, vanishes, i.e.

a ow
- [(T - pA)—] =0, (3.68)
ox ax

because of (3.66) and (3.67). Therefore, the two effects of friction — tensioning and
pressure drop — cancel each other entirely and vanish from the equation of motion, to
the order of the linear approximation (Benjamin 1961a; Gregory & Paidoussis 1966a).
This has been verified experimentally (see Sections 3.4.4 and 3.5.6), and also numeri-
cally in calculations with shell theory for beam-mode vibrations (n = 1) in Chapter 7.

3.3.5 Nondimensional equation of motion

Consider the most general form of the equation of motion derived so far, equation (3.38).
It will help further discussion if this equation is generalized a little by considering the
possibility that the pipe may be supported all along its length by a Winkler-type elastic
foundation, which involves distributed springs of stiffness K per unit length; thus, a term
Kw is added to the equation of motion.

The resultant equation may be rendered dimensionless through the use of

X w El 12
= — = — = —. 3.69
s=p "o 7 [M +m] [E (369

The dimensionless equation is

an” + 0"+ (® — T+ (1 = 2v8) + (8" — y)(1 — §)}y”



84 SLENDER STRUCTURES AND AXIAL FLOW

where (") =d( )/ovand ( ) = 3( )/d&, in which the following dimensionless system
parameters have arisen:

M\ /2 M M L3 TL?
u=\—- LU, ﬂ = ’ Yy = (+—"l)g1 r= oy
El M+m EI El
I PAL? B KL? 1 12 g cl?
= , = —, = Ee—— —, o= — .
El EI EM+m)| 12 [EI(M + m)]!/?

3.7

In general, the system dynamics will depend on all of these parameters.
If the hysteretic damping model is used, it is clear from expression (3.39) that the first
two terms of (3.70) should be replaced by

(1 + pi)n™. (3.72)

This corresponds to solutions of (3.70) of the type n(&, t) = Y (&) exp(iwt), in which @
is either wholly real or, if complex, such that Re(w) > IM(w); the hysteretic model
may thus be considered as a particular case of the viscoelastic one for which aw = 1 or
aRe(w) = w, respectively. The dimensionless frequency w is related to the dimensional
circular (radian) one, £2, by

M 1/2
w:( E+1m> QL2 (3.73)

In the case of an end-nozzle, as discussed at the end of Section 3.3.2, the definitions of
u and B in (3.71) need to be modified to

M 172 M U
— UU; L, B = - .
* (EI ’) U; (5.74)

M+m

With these, the dimensionless form of equation (3.42) is identical to the appropriately
simplified equation (3.70), namely

0" + uZnN + Zﬂl/zur)’ +#=0. (3.75)

The usefulness of the end-nozzle emerges from the second of equations (3.74): instead of
changing pipes, one may change nozzles to alter 8, at least over a range relatively close
to the initial 8 for the pipe without a nozzle.

3.3.6 Methods of solution

Two methods of solution will be given: the first, due to Gregory & Paidoussis (1966a),
for the simpler, homogeneous equation of motion; the second, used by Paidoussis (1966)
and Paidoussis & Issid (1974), applies to the fuller, nonhomogeneous equation of motion.
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(a) First method

The simplest form of the equation of motion, equation (3.1), will be considered first,

which in dimensionless form becomes
t 9?

an . p2n

ag* 0£2

?n  ¥n
28"7u — + — =0, 3.76
T2 e T a2 (3.76)
subject to the appropriate boundary conditions; e.g. for a pipe with simply-supported
(‘pinned’) ends,

8%n
n=@=o at E=0 and £=1, (3.77)
while for a cantilevered pipe,
0
n = £ =0 a  E=0,
(3.78)
#n _ 9’n
w0 fed

Consider now solutions of the form
(&, T) = Re[Y (§) €], (3.79)

where w is the dimensionless circular frequency defined by (3.73). In general, @ will
be complex, and the system will be stable or unstable accordingly as the imaginary
component of w, $ni(w), is positive or negative; in the case of neutral stability  is
wholly real. Substituting (3.79) into (3.76) leads to

day  ,d¥ | dy

el il 12, 520 2y —

& +u aE + 28 “uwi dE wY = 0. (3.80)

Next, we take a trial solution .
Y (&) = A, (3.81)

where A is a constant. When this is substituted into equation (3.80), the equation deter-
mining the permissible values of the exponent « is obtained, namely

ot — wPa? — 28 uwa — o =0, (3.82)

and since this equation is of fourth degree, the complete solution of (3.76) is given in
general by

n 7 =Re

4
> Ajei“ffei“"] : (3.83)

j=1

in which the four A; must be determined from the boundary conditions. This is illustrated
here for the cantilevered system. Making use of (3.78), we find

4

4 4 4
dA=0, D aa=0 > BAE=0, > oA =0
j=1

j=1 j=1 j=1
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For nontrivial solution, the determinant of the A; must vanish, yielding

1 1 1 1

) (¢4 a3 (¢ 7]

g
il

2 =0. (3.84)

2 ,iup 2 qia 2 iy
aje ase aze ™ age

alel  olel adel  ojel

Since the roots of (3.82) cannot be expressed in simple explicit form in terms of u, w
and B, and in view of the complexity of (3.84), it is not possible to obtain solutions by
direct methods. Three methods of solution were given by Gregory & Paidoussis (1966a):
(i) a rather ingenious method of transforming the original problem into one easier to
solve numerically in 1966;" (ii) a straightforward numerical method; and (iii) a Galerkin
solution. Of these, only (ii) will be outlined here, as follows: (a) starting with a small
value of u, say u = 0.1, and trial values of Re (w) and $m(w), say those for u =0, a
minimizing procedure (e.g. a secant method) finds the appropriate values of Re(w) and
$m(w) which result in Re(A) = $m(A) = 0 to within desired accuracy; (b) the value
of u is increased by du, say by 0.1, and using the Re(w) and $Mm(w) found in (a) as first
approximations, the minimizing procedure determines the complex frequency for u = 0.2;
and so on.

Clearly, this method has to be applied for cach mode separately (for a given value of
B), the locus to be followed depending on the initial trial value for Re(w).

(b) Second method

The fuller equation of motion (3.70) is nonhomogeneous, since the coefficients of deriva-
tives of #n are explicit functions of § and/or implicit ones of 7, because ¥ = u(1); hence,
the foregoing method of solution is inapplicable. A solution for u = const. is, however,
readily possible via the Galerkin method and will be given here; the case for u =
u(7) is considered in Chapter 4. This is approximate, not only in the strict numerical
sense, but also because of the finite number of terms utilized in the Galerkin expansion
(Section 2.1).
Let

nE D=y ¢.(6)qr (), (3.85)

r=1

where ¢,(7) are the generalized coordinates of the discretized system and ¢, (&) are the
dimensionless eigenfunctions of a beam with the same boundary conditions as the pipe
under consideration, and hence they are appropriate comparison functions (Section 2.1.3).
It is presumed that the series (3.85) may be truncated at a suitably high value of r, r = N.
Substitution of (3.85) into (3.70) with u = 0, followed by multiplication by ¢, and

Computers were then new and slow, and # mevia Téxvas katepydletat; ie. poverty (necessity) develops
ingenuity!



Table 3.1 The constants b,,, ¢, and d,,.
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integration over the domain [0,1] yields
N 1
3 {sﬂ'q', + [(ax‘,‘ + )8, + 28" / ¢, ds] ar
r=1 0
1
+ [(Aﬁ + K0y + (2 — I+ 11(1 = 208) — ) / ¢} dE (3.86)
0

1 1
+)’/0 ¢s¢:d§+y‘/0 ¢S§¢:/d§:|qr}=0, s=1,2,...,N,

in which the orthonormality of the eigenfunctions was utilized (i.e. the fact that
fol ¢s ¢, d€ = 8,,, 8, being Kronecker’s delta), as well as the fact that ¢/ = A% ¢,, A,
being the rth dimensionless eigenvalue of the beam. The definite integrals may be
evaluated in closed form, defining the following set of constants:

1 1 1
by = /0 bt ey = /0 bl dE,  dy = /0 b0 de. (3.87)

Their values for some sets of boundary conditions are given in Table 3.1, in which the

o, are the constants associated with the ¢, [Bishop & Johnson 1960; cf. equation (2.28)].

The method for evaluating b, ¢;, and d, analytically is illustrated in Appendix B.
Equation (3.86) may be written in matrix form as follows:

q+ [F +28"%uB]lq + {A + yB + [u* — '+ [1(1 — 2v8) — y|C + yD}q = 0, (3.88)

where q = {q1, 92, ...,qn}T, F and A are diagonal matrices with elements (axA? + o)
and (A% + k), respectively, and B, C and D are matrices with elements b,,, 5, and d,,,
respectively. This equation may be written in standard form,

MIg+[Clq+[Klq=10 (3.89)

cf. equation (2.1), Section 2.1. Its eigenvalues may be found in various ways; e.g. by
transforming it into first-order form by the procedure leading from equation (2.15) to
(2.17), and then to the standard eigenvalue problem of equation (2.18). The eigenvalues
may be obtained numerically, e.g. by the IMSL library subroutines or those given by
Press er al. (1992).

3.4 PIPES WITH SUPPORTED ENDS

3.4.1 Main theoretical results

We first consider the simplest possible system: a simply-supported (or ‘pinned-pinned’)
horizontal pipe (y = 0) with zero dissipation, and with 8 = 0.1, I’ = [T = k = 0 in equa-
tion (3.70). The dynamical behaviour of this system with increasing dimensionless flow
velocity, u, is illustrated by the Argand diagram of Figure 3.9. It is recalled that Re(w) is
the dimensionless oscillation frequency, while $m(w) is related to damping, the damping
ratio being & = $ni(w)/Re(w). The general dynamical features already remarked upon in
Sections 3.2.1 and 3.2.3 are clearly seen: (i) since dissipation is absent in this example, the
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Figure 3.9 Dimensionless complex frequency diagrams for a pinned-pinned pipe; = 0.1 and

I'=1l1=a0a=0=k=y=0]seeequations (3.71) for meaning of symbols]. The loci that actually

lie on the axes have been drawn slightly off the axes but parallel to them for the sake of clarity.

— o — , first mode; — M — , second mode; — A — , third mode; — #l — ¢ — M — | combined
first and second modes (Paidoussis & Issid 1974).

eigenfrequencies are purely real and they are diminished with increasing u, for) < u < m;
(ii) at u = u,y = 7 the system loses stability in its first mode by divergence, via a
pitchfork bifurcation, and thereafter the eigenfrequencies become purely imaginary — cf.
Figure 3.4(a).

The dynamics of the same system but with clamped ends is illustrated in Figure 3.10,
which also shows another way of presenting the results. In this case, u.; = 27, but the
qualitative dynamics is similar to that in Figure 3.9; for u < 1,4 the eigenfrequencies are
all purely real, whilst for u > u,, those associated with the first mode are, initially at
least, purely imaginary.

The values of u.; in Figures 3.9 and 3.10 may readily be found by the method of
Section 3.3.6(a). By setting w = 0 in equation (3.82), one obtains «;, =0, a4 = +u,
and hence n(§) = A| + A2E + A; exp(iué) + A4 exp(—iu&), which is the appropriate form
of (3.83) in this case. Then, application of boundary conditions (3.77) for pipes with
simply-supported (pinned) ends leads to the characteristic equation

sin 4 =0, (3.90a)

with roots « = s, the first nontrivial one of which is u = u., = . The second root,
u = 2m, is associated with divergence of the second mode or restabilization of the first,
as will be seen in the following. Proceeding in a similar way for clamped-clamped pipes,
the characteristic equation is found to be

2(1 —cos u) — u sin u =0, (3.90b)
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Figure 3.10 The real and imaginary components of the dimensionless frequency, w, as functions
of the dimensionless flow velocity, u, for the lowest three modes of a clamped-clamped pipe;
B=0.1TI=1=a=0=k=y =0 (Paidoussis 1975).

with roots u =2n,899,...,4m, ..., so that
clamped-pinned ends, the characteristic equation is

uq =2n as in Figure 3.10. For

u—tan u =0, (3.90c)

which gives u = u.y >~ 4.49. Incidentally, this static analysis for the stability of conser-
vative systems is known as Euler’s method of equilibrium (Ziegler 1968).

The dynamics of a clamped-clamped system with 8 = 0.5 is illustrated in Figure 3.11.
Once again, u,; = 2m. In fact, u.s is independent of 8, as already seen in the results
obtained by Euler’s method; this is so because B is always associated with velocity-
dependent terms in the equation of motion, while divergence represents a static loss
of stability. Once more, the dynamics up to u >~ 8.99 is similar to that in Figures 3.9
and 3.10.

The results presented here are based mainly on Paidoussis & Issid’s (1974) work.
Before embarking on the discussion of post-divergence dynamics, a historical parenthesis
on the early, successful work on the dependence of w on u and on the determination of
u.q is in order, some of it predating the computer era. Feodos’ev (1951) and Housner
(1952) utilize Galerkin’s method, essentially the method of Section 3.3.6(b), to examine
stability and determine @ as a function of u. Li & DiMaggio (1964) use the method
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Figure 3.11 Dimensionless complex frequency diagram for a clamped-clamped pipe; 8 = 0.5
and I’ =1 =a = 0 = k = y = 0. The loci that actually lie on the axes have been drawn slightly
off the axes but parallel to them for the sake of clarity (Paidoussis & Issid 1974).

of Section 3.3.6(a) and obtain the full curve of the first-mode w versus u, up to u.y,
by computer. However, more interesting methods have also been employed: the direct
method of Lyapunov (Appendix F.1.3) by Movchan (1965), and the methods of integral
equations by Jones & Goodwin (1971). Also, utilizing a perturbation method, Handleman
(1955) determines the dependence of w on u in the vicinity of ¥ =0 and u = u.4. In
all cases the simplest form of the equation of motions is considered, equation (3.1), and
in all cases but the last for pinned-pinned pipes only. Finally, Niordson (1953) presents
an elegant wave solution to the more general problem of a thin-walled pipe, modelled
as a shell (Chapter 7); the required results for beam-like motions are then obtained by
considering the n = | mode of the shell — see Figure 2.7(c).

The post-divergence dynamical behaviour of these systems, i.e. for u > u.y, is of consid-
erable interest. It should, however, immediately be remarked that strictly, linear theory is
applicable only up to the first loss of stability. The reason for this is that, in the linear
equation of motion, it is required that motions be small, in the vicinity of the equilib-
rium state, while for v > u.; the system has diverged away from that state.” However,
in some cases (e.g. in Chapter 8), the buckled state is not so far away from the original
stable equilibrium configuration, and then linear theory is capable of predicting the post-
divergence dynamics of the system reasonably well. Hence, it is not pointless to examine
the post-divergence dynamics as predicted by linear theory.

It 1s seen in Figures 3.9 and 3.10 (B8 = 0.1) that the simply-supported and clamped
systems develop divergence in the second mode at ¥ = 27 and 8.99, respectively. Then,
the loci of the two modes coalesce on the $1m(w)-axis and, at slightly higher u (1 >~ 6.38

*Of course, the stability of the original equilibrium as predicted by linear theory is always valid, but other
slates emerge once nonlinear effects are considered.
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in Figure 3.9 and u >~ 9.0% in Figure 3.10), they leave the axis, indicating the onset of
Paidoussis-type coupled-mode flutter” as defined in Section 3.2.3 and by Figure 3.4(d).

The behaviour of Figure 3.11 (8 = 0.5) is different. The @ = 0 solution for u >~ 8.99
does not correspond to a second divergence, but to restabilization of the system. This lasts
to u >~ 9.3, whereupon coupled-mode flutter occurs via a Hamiltonian Hopf bifurcation,
as defined in Figure 3.4(c).

What is particularly interesting about this predicted coupled-mode flutter is its orig-
ination. As discussed in Section 3.2.1 and as shown by equations (3.5) and (3.6), for
periodic motions there is no energy transfer between the fluid and the pipe. Hence, since
the system is conservative, the question arises as to how the instability can be supported
whilst the total energy of the system remains constant. As pointed out by Paidoussis &
Issid(1974), the question is not quite like this, since the critical point for the onset of
flutter, unlike for the nonconservative (cantilevered) system, is nor a point of neutral
stability; rather, it involves the coincidence of two real frequencies, and hence growing
oscillations of the form n(&, t) = Re[ f (£)(a + b7) exp(iwT)], with w real. The source of
energy is of course the flowing fluid, yet how some energy is channelled to generate the
oscillatory state remains the question. A possible answer was provided, via an ingenious
set of arguments, by Done & Simpson (1977) for a pipe with supported ends but with the
downstream end free to slide axially [Figure 3.1(b)].

First, one may consider a two-mode Galerkin approximation of the system, namely

; 2B8Y2ubyy  28'%uby ] | A+ e ulcy;
a+ |1 2 ] [‘2 . 2] =0. 3.91)
2B “ubyy 2B/ “uby; u“cyy Ay +uccy
For clamped and pinned ends, b,, = 0 and b, = —b,; for pinned ends, ¢, = 0 for all

r # s, while the same applies to clamped ends for » + s odd, which is the case here.
Hence, equation (3.91) may be written as

. 0 —Zﬂl/zubﬂ . A? + u2011 0
q q+

=0. 3.92
2ﬁ1/2ub21 0 0 Ag + MZCZZ] 1 ( )

It is of interest to remark that (i) the damping matrix is skew symmetric, which is a
characteristic of the system being gyroscopic conservative, as already remarked, and
(ii) by setting det[K] = 0, [K] being the stiffness matrix, one retrieves the zeros for static
loss of stability u.; = 7w and u = 2, exactly for simply-supported ends and approximately
for clamped ends (since in this case the matrix is not fully diagonal for N > 2).
Then, solutions of the form q = qp exp(At) are considered, leading to the characteristic
equation
par® + par? 4 po =0, (3.93)

with ps =1, py = [A} + A3 — u?(c1) + e22) — 4Bu*b1, po = (A} — vPc1)(AS — ulen).
The condition of coalescence of two eigenfrequencies corresponds to two equal roots
of (3.93), which occurs if p3 — 4 pspo = 0. The results for clamped ends are shown in
Figure 3.12, where it is seen that all the critical points of Figures 3.10 and 3.11 are

TThis flattering appellation, coined by Done & Simpson (1977), has been retained here for this particular
form of coupled-mode flutter. This phenomenon, however, although analytically intriguing, was shown to be
physically doubtful with the appearance of Holmes’ (1977, 1978) work. This would have rendered any claim
to fame by this book’s author rather ephemeral, were it not for the fact that, luckily, the physical reality of the
phenomenon is firmly established for another system (Chapter 8)!
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pipes with a sliding downstream end (§ =0), for varying Band F'=T=a=0=k=y =0,

following Done & Simpson (1977). The first (lower) divergence zone is associated with the first

mode; the second with the second mode. For 8 < 0.139 the coupled-mode flutter is of the Paidoussis
type; for B > 0.139 it is via a Hamiltonian Hopf bifurcation.

reproduced quite well. It is also seen that the two types of coupled-mode flutter are neatly
separated: Paidoussis flutter for 8 < 0.139, and flutter via a Hamiltonian Hopf bifurcation
for higher 8. (The results for pipes with pinned ends are quite similar, but the critical
value of 8 is 8 = 0.26 in that case.)

Next, since the pipe is free to slide axially at &€ = 1, the total dimensionless ‘contraction’
(see Section 3.3.3) as a result of motions is given by

1 1
c=lul/L=1 /0 (w)rde =1 /0 (01D, &) + g2 (D)) (8] e, (3.94)

where u; is the axial contraction, defined by (3.17b), at s = L. The integral gives rise

to quantities of the type fol ¢.¢, d&€ = e, and, for the boundary conditions of interest,
integrating by parts yields e;, = —c,,. Since the cross-terms (r # s, r +s = odd) are
zero as per Table 3.1, one is left with e,, = —c,, = A,0,(A,0, — 2), which shows that
e > 0 for all r, for either clamped or pinned ends. Hence, ¢ may be re-written as

¢ = 3enq + enys), (3.95)

a positive quantity. Consider now the particular case of coupled-mode flutter via a Hamil-
tonian Hopf bifurcation. At the onset of flutter, g; = g0 exp(iwt) and g2 = g20 exp(iwt),
while the ratio of ¢29/q10 may be obtained from either of the two equations in (3.92),
say the first, namely ¢20/q10 = [—w? + AT — u?c1)1/[B"/*u by wi], an imaginary quantity;
hence the displacements in the two modes are in quadrature (90° out of phase), and
one can write g = g, €OS wT, g2 = g, cos(wT + %7{) = g, sin wt. Therefore, the axial
shortening (contraction) over one or several periods of oscillation may be calculated
through (3.95), giving a mean value of the contraction, ¢, and an oscillating component
of frequency 2w [because of the quadratic nature of (3.95) and sinusoidal form of ¢; and
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g2] and amplitude ¢:

c=Heud +engs) and &= i(eng; —engy). (3.96)

Clearly, at no time in the course of the oscillation can the contraction become instanta-
neously zero. A similar argument may be made in the case of Paidoussis flutter; in this
case, gop/q10 is not purely imaginary but complex, and the phase angle is not neatly %n
but an angle ¢. Nevertheless, the same conclusion may be reached with regard to the
overall contraction never becoming zero during oscillation.

The implication of this is that the momentum flux of the fluid issuing from the sliding
end of the pipe does work on the system in achieving a certain oscillation, M U? acting
as a compressive load P as discussed in Section 3.1 and acting over a distance equal to
the mean contraction, ¢. No net work is required thereafter to maintain the oscillation,
but there is an oscillatory flow of energy because of the axial motion of the downstream
end of the pipe, which nevertheless is zero over a cycle of oscillation. This energy
may be thought of as being carried in the form of travelling waves, as will be seen in
Figure 3.13, with a node moving down to the pipe exit in half a cycle of oscillation. It
is in this ingenious way, thanks to Done & Simpson, that the paradox of oscillation with
no net energy expenditure may be explained!

(a)

(b

©

Figure 3.13 Variation of modal forms of the fundamental mode of a simply-supported
pipe of vanishing flexural rigidity during a period of oscillation: (a) u = 0; (b) u/u. =0.25;
(c) u/u. = 0.75; the fractions denote fractions of the period (Chen & Rosenberg 1971).
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It should be pointed out that the term 28'/2uby; played an important role in all of
the foregoing, not accidentally but because it is associated with the Coriolis term in the
equation of motion, which in turn is what makes the system gyroscopic conservative,
rather than just conservative. It is of interest that calculations with 8 = 0 show that, when
the system is purely conservative, the only form of instability is divergence; coupled-mode
flutter does not arise.

Another effect of the Coriolis forces — despite not doing any net work over a cycle
of oscillation — is that they render classical normal modes impossible.” Thus, the modal
displacement patterns contain both stationary and travelling-wave components, as seen in
Figure 3.13(b,c). Physically, this is a consequence of the forward and backward travelling
waves having different phase speeds (Chen & Rosenberg 1971) — see atso Section 3.7.
Contrast this to Figure 3.13(a), where # = 0 and the Coriolis forces vanish; in this case
classical normal modes do exist.

The dynamics of the same system as in Figure 3.11 but with dissipation taken into
account (o = 5 x 107*) is shown in Figure 3.14. It is seen that coupled-mode flutter of

24 1 LI 1 ¥ ¥ T T ”’l 1 T 1 71‘ T
9.125{ 0
— 8.75 8 <4 T
3rd mode
6.5 7]
\6.25 7]
'\f' 125 2nd mode
3 ., |é 2 0
E ‘. 85— —4
= 3
7’/ IIII
1 | yi i | L
rr A
12 36 40 86 88
Re(w)

Figure 3.14 Dimensionless complex frequency diagram of a damped clamped-clamped pipe for
B=05 a=5x 0, r=nm=oc=k= y = 0. The loci that actually lie on the [$n1(w)]-axis
have been drawn off the axis but parallel to it for the sake of clarity (Paidoussis & Issid 1974).

If the various parts of the system vibrate with the same phase and they pass through the equilibrium
configuration at the same instant of time — as would be the case for a string or a beam — the normal modes
(eigenmodes) are called classical. The necessary and sufficient conditions for their existence were investigated
by Caughey & O’Kelley (1965) and others; see also Chen (1987; Appendix A).
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another kind arises, at a slightly lower critical flow velocity, in which the two branches
of the same mode are involved rather than two different modes. We shall continue calling
this a coupled-mode flutter since, strictly speaking, the two branches on the $m(w)-axis
should be considered as being associated with different modes, from the left-hand (not
shown) and right-hand sides of the complex w-plane — see Figure 2.10(a).

The Done & Simpson argumentation for coupled-mode flutter may be extended to
dissipative systems by supposing that, at the threshold of flutter, a sustained correction
in the contraction ¢ may be effected by the discharging axial momentum flux, so as to
maintain a constant-amplitude motion. Thus, effectively, a sustained rate of work occurs
through axial motion, whereas the dissipation occurs through lateral motion; note also
that AW = 0 in equation (3.95) in the undamped system applies to lateral motions.

It is important to stress, yet again, that both the restabilization of the system after
divergence (e.g. in Figure 3.11) and the coupled-mode flutter are due to the gyroscopic
nature of the system, i.e. to the Coriolis terms in the equation of motion. As pointed
out by Shieh (1971) and Huseyin & Plaut (1974), purely conservative systems cannot
be restabilized after divergence ‘on their own’, but gyroscopic forces can restabilize an
otherwise conservative system, a fact known since Thomson & Tait’s (1879) work. The
possibility of coupled-mode flutter is a much newer ‘discovery’ which may be attributed
to Shieh, who illustrated its existence with an example from gyrodynamics involving a
shaft under an axial compression P, rotating with angular velocity £2. The equations of
motion are

EIY" + Py’ + M(y — 20z — £2°y) =0,

(3.97)
EI" + P+ MG + 22y — 2°2) =0,
in which y and z are mutually perpendicular deflections in a plane normal to the long
axis; these equations clearly bear close similarity to that of the problem at hand — cf.
equation (3.1).

Huseyin & Plaut (1974) discuss the dynamics of gyroscopic conservative systems in
general, as well as the rotating shaft and pipe systems as examples. The latter will be
discussed here briefly, partly (i) to introduce the concept of the ‘corresponding nongyro-
scopic system’ and (ii) to demonstrate the use of the so-called ‘characteristic curves’.
Huseyin & Plaut considered a two-degree-of-freedom discretization of the horizontal
system, i.e. of equation (3.1), by using the beam eigenfunctions as suitable comparison
functions. In the case of a clamped-pinned system, the results are shown in Figure 3.15
for three values of B; also plotted are the results for 8 = 0, which is the corresponding
nongyroscopic system, representing a column subjected to a load ? = u?. The results are
plotted in the form of characteristic curves, i.e. curves of loading versus w?, namely u?
versus w?. Clearly, only #?> > 0 is meaningful, but the extension of the curves to u?> < 0
helps to show that the curves (full lines) are conic sections. In (a) it is seen that the system
is initially stable (w? > 0, w3 > 0), but for u?/a% = 2.05 (at point A) corresponding to
uca = 4.49 [cf. equation (3.90c)], the first-mode locus crosses to the w? < 0 half-plane,
indicating divergence in the first mode. The system remains unstable with increasing u?

’

*These curves are not identical to Huseyin & Plaut’s (1974), which are quantitatively in error (Plaut 1995);
thus, the values of B for each of the three distinct types of behaviour are incorrect, and so is the value of u?/r?
for point B; otherwise, the results are qualitatively similar to those in Figure 3.15.
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(a)

Figure 3.15 Stability behaviour of a clamped-pinned pipe (T =T =a=0=k=y=20) in
terms of ‘characteristic curves’ of u®/n? versus w?/m* for (a) B = 0.05, (b) B =0.1and (c) B =0.7:
——, the gyroscopic conservative system; ———, the ‘corresponding nongyroscopic system'’.

but at point B (u?/7? = 6.24)" divergence develops in the second mode also. In this case
the dynamics is similar to that of the equivalent nongyroscopic system. In (b) it is seen
that, after divergence at A and at B [for the same values of u? as in (a)], the @? and &3 loci
coalesce at point C, indicating the onset of Paidoussis-type coupled-mode flutter — i.e.
directly from the divergent state. Thus, there is no post-divergence restabilization of the
first mode for » > u., in this case; coupled-mode flutter arises before it can materialize.
In (¢), after divergence at A, there is gyroscopic restabilization (aul2 > () again, at point B)

*An additional point of interest is that in this case, where the support conditions are asymmetrical, the stiff-
ness matrix is not diagonal, unlike the case of simply-supported ends — refer to discussion on equation (3.92).
Hence, this value differs considerably from that obtained from equation (3.90c).
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at u?/m? ~ 6.2, followed by coupled-mode flutter at point C (#?/7? = 7), in this case via
a Hamiltonian Hopf bifurcation. The value of  for restabilization at point B corresponds
exactly to the point where the nongyroscopic system, or indeed the pipe systems in (a)
and (b), develop divergence in their second mode.

In closing, the following two important points should be made. First, the results of
Figures 3.9-3.11, 3.14 and 3.15 apply equally to pipes with a downstream end either free
to slide axially or not [Figure 3.1(a,b)]: since linear theory cannot distinguish between
the two, the same equation governs both; however, the foregoing explanation of the
existence of coupled-mode flutter applies only to systems with a sliding end. Second, and
as cautioned at the outset, the existence of coupled-mode flutier has to be decided by
nonlinear theory (Chapter 5) and by experiments (Section 3.4.4).

3.4.2 Pressurization, tensioning and gravity effects

If dissipative and gravity effects are neglected and dU/dr = 0, equation (3.38) simpli-
fies to
o*w *w ?w 0w
El — + [MU* + PA(1 —208) - T| — +2MU — + (M — =0, (3.98
g T IMUS T PAG =208 = T) 55 +2MU 20 & M+ m) (398)

in which it is recalled that § = 0 if there is no axial constraint, so that axial sliding of the
downstream end is permitted, and § = | if it is prevented. The case of § = 1 is shown in
Figure 3.16(a), where p; is the pressure expended in overcoming the frictional pressure

-

- 4 -
P=p+prtp, Pa P=P+tpa

(a)

PA (1= 2v) (Fwi &%)

/’f'
Al — =

:@

©)

Figure 3.16 (a) A pipe subject to tensioning 7 and to pressurization p, measured above the atmo-
spheric pressure, p,; (b) divergence due to presurization, represented as if the pipe were pressurized
by floating pistons; (¢) model experiment with bellows, to show pressurization-induced buckling.
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drop and p, is the atmospheric pressure, both of which do not enter the equation of
motion (Section 3.3.4).

It is clear that the pressure term acts in the same way as the MU? term, and hence it
is not surprising that, given a sufficiently high level of pressurization, divergence may be
induced by pressure alone — just as it may do by compression alone, i.e. for T < 0 and
sufficiently large. Physically, one may think of the pressurization as being produced by
floating pistons acting on both sides of a segment of the pipe, as shown in Figure 3.16(b).
An easy experiment to demonstrate pressure-induced divergence consists in joining two
rigid pipes with a straight rubber hose and then connecting the other ends of the rigid
pipes to the same regulated pressure supply. As the pressure is increased, eventually the
rubber hose buckles. The same effect may be obtained if, instead of a rubber pipe, bellows
are used [Figure 3.16(c)].

The effect of pressurization may appear to be obvious and hence trivial. Nevertheless,
consider the following two systems: (i) a pipe with an axially sliding end under pressur-
ization p and tension 7, with zero flow [i.e. as in Figure 3.16(a) but with axial sliding
permitted and U = 0; T being provided by a weight acting through pulleys]. and (ii) a
closed tube pressurized to p. In both cases, the equation of motion is

2 2., 2

E1%+ﬁA%—T%+(m+M)M=O. (3.99)
In case (i), p and T are independent of each other, and T may possibly be zero. In
case (ii), however, in the linear limit, PA = T and the net effect of pressurization is nil.
This, nevertheless, has not stopped an intrepid would-be inventor from obtaining a patent
for stiffening hollow rotors against whirling by ‘pressurization-induced tensioning’, as
shown in Figure 3.17(a,b), while conveniently forgetting about the destabilizing effect
of pressurization illustrated in Figure 3.17(c). Thus, the inventor took into account the

2 /\I =
< T =
(a)
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T — 7
(b)
rm ..................................... [ ; .......... 51 I
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(c)

Figure 3.17 (a) The fallacious patent for delaying the onset of whirling through pressuriza-
tion-induced tensioning; (b) the stabilizing effect of pressurization-induced tension, T; (c) the
destabilizing effect of pressurization, p.
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effect of the third term in (3.99), while ignoring the second, probably reasoning that since
pressurization induces the tensioning, it need not be considered further — thus inventing
the impossible! In reality, the net effect on whirling is zero.

The story of this fallacious patent is charmingly related by Den Hartog (1969), together
with one on an earlier but similarly fallacious patent, this one for preventing buckling
of drill-strings used in oil exploration. It is well known that the very long and slender
drill-rods buckle under the compressive loading required for drilling and they touch the
sidewalls in several places along the length. Then, as the drill-rod rotates and rubs against
the sidewalls, up to 90% of the power is consumed for this non-useful work. The invention
consisted of using a hollow drill-rod and a floating drill-bit, and pumping sludge down
the drill-rod, which would rotate the drill-bit as a turbine, as depicted in Figure 3.18.
Thus, it was thought, the removal of all compressive load from the drill rod would result
in the elimination of all possibility of buckling. However, it should be realized that, to
cause the drill-bit to press hard on the rock and to rotate against it, the pressure pj,
must be substantially larger than p;. Hence, the truth emerges that the drill rod would
buckle just the same due to pressurization, under much the same conditions as the original
system — and perhaps earlier because of the flow effect.

Figure 3.18 The fallacious patent for preventing buckling of drill-strings by the use of a floating
drill-bit, rotating under the action of the flow (Den Hartog 1969).

Returning to a quantitative assessment of pressurization effects, equation (3.98) may
be written in dimensionless terms as

7" + 20"+ 282ui + i =0, v =u? + (1 —2v8) — I, (3.100)



PIPES CONVEYING FLUID: LINEAR DYNAMICS I 101

Hence, it is clear that for pinned ends v,y = 7, while for clamped ends v, = 27, since
the Coriolis term is not involved in the divergence instability.

Gravity effects are considered next. If gravity is taken into account (i.e. if the system
is vertical), but still taking £ = 0 (no elastic foundation) in equation (3.70), the critical
conditions are found to be as in Figure 3.19. Clearly, equations (3.90a,b) still apply, with
v replacing « — with v as in the second of equations (3.100).

8 e e e

Figure 3.19 The critical value of v, for divergence of vertical pipes with supported ends
(I' = IT =k = 0), showing the effect of y. P-P: pinned-pinned (simply-supported) pipes; C-C:
clamped-clamped pipes: v is defined in the second of equations (3.100).

A value of y < O signifies that gravity is in the opposite direction to the flow
vector — i.e. upwards in Figure 3.1(b). Thus, for y < 0 the pipe is under gravity-induced
compression, while for y > 0 it is under gravity-induced tension, which explains why
u.y for y < 0 is smaller than for y > 0; indeed, for y sufficiently large and negative,
the system diverges (buckles) under its own weight. [In the case of Figure 3.1(a), it is
implicitly presumed that the pipe is hung before the downstream end is positively fixed;
thus the pipe is subjected to the same gravity-induced tension/compression as in the case
of Figure 3.1(b).]

It is also noted that, as y increases, the ratio of v,; for clamped and pinned pipes is
diminished: 27w/7 =2 for y =0 and 7.80/5.56 = 1.4 for y = 50. Physically, one may
think of a larger y as representing a longer pipe [equations (3.71)]; in the limit, the pipe
will resemble a string rather than a beam, and hence will be less sensitive to boundary
conditions. This breaks down tor y < 0, since in the case of pinned ends, as the critical y
is approached for divergence due to its own weight, v, is diminished very fast, while this
is not yet true for clamped ends, for the range of y in Figure 3.19. The critical y values
for divergence at u = 0 are y,, = —18.55 for pinned ends and —66.34 for clamped ones.

For other aspects and/or details of the effects of pressurization, the interested reader is
referred to the work of Haringx (1952), Heinrich (1956), Hu & Tsoon (1957), Roth &
Christ (1962), Naguleswaran & Williams (1968), Stein & Tobriner (1970) and Paidoussis
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& Issid (1974), and for the effect of externally applied tension to Bolotin (1956) and Plaut
& Huseyin (1975).

3.4.3 Pipes on an elastic foundation

An elastic foundation represents the distributed support provided to long pipes resting
on a generally elastic medium, e.g. in the case of pipelines laid on the ocean floor.
For pipes with supported ends the additional stiffness supplied by the elastic foundation
simply renders the system stiffer [see equation (3.70)], and hence the qualitative effect
on stability is predictable.

The critical flow velocity for divergence, u.4, or more generally v., as per the second of
equations (3.100), may be obtained by the method of Section 3.3.6(a) in a similar manner
as used to obtain equations (3.90a-c); indeed, as first obtained by Roth (1964),T

k 1/2
Ved =TT <1 + '—4) . (3.101a)
4

However, if k is sufficiently large, e.g. k = 103, vy as given by (3.101a) is overesti-
mated, because divergence can be associated with a higher mode at a lower value of vy,
obtained from

k 1/2
Ved = n (1 + (M)4) , (3.101b)

where the mode number » is identified with the beam eigenfunction /2 sin(nmx/L).}
The mode to become unstable is that leading to the smallest v, and is thus associated
with the smallest n satisfying

k
nf(n+ 1) > —; (3.102)
T

e.g. for k = 300 one obtains n = 1, whereas for k = 500, n = 2. What happens physicalily
is that the support provided by the elastic foundation can be thought of as providing added
supports along the length, making the first divergence with one or more nodes within the
span feasible.

For a clamped-clamped pipe, by Galerkin’s method (Roth 1964), one obtains

3k O\ /2
Ved = 2T (1 + 1—6?> for k < (84/1 l)]‘[4
and (3.103)
n% 4 6n2 + 1 k 172
vm,:n( T ﬂ4(n2+1)> for k> (84/11)x*.

TRoth’s excellent work, written in German, is unfortunately hardly ever cited in the English-language
literature. The interested reader is encouraged to refer to Roth (1965a,b, 1966) also.

It is of interest that for all the solutions given by (3.101b), and also (3.103), the condition vﬁd/k >4 is
satisfied, so that the discriminant of (3.82) is positive (or zero, when k = 7%), and hence real values of the «;
are obtained.
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The first equation is associated with n = 1; the second with n > 2, such that n is the
smallest integer satisfying

n* +2n* +3n” +2n + 6 > k/n?, (3.104)

eg.n=2if84/11 <k/n* <54, n =3if54 <k/n* <174, n =4if 174 < k/n* < 446,
etc. Equations (3.102) and (3.104) differ from the criteria given by Roth, which can lead
to a nonconservative value of v.,. The Galerkin solutions (3.103) were compared to an
exact solution and found always to overestimate the exact v.4, but by less than 2%.

The values of v, versus k are plotted in Figure 3.20, showing the transition of diver-
gence from n = 1 to higher n as k is increased.
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Figure 3.20 The critical values of v 4, where v =u? + I1(1 —2v8) — I, for pinned-pinned (P-P)
and clamped -clamped (C-C) pipes on an elastic foundation of dimensionless modulus k.

Some numerical results for a clamped-pinned pipe for divergence and coupled-mode
flutter with 8 = (.9 may be found in Lottati & Kornecki (1985).

Elastic foundations become particularly important for systems not otherwise supported,
which in practice means that the end supports are very, or infinitely, far apart. They will
be treated in Section 3.7.

3.4.4 Experiments

Experimental work on the dynamics of pipes conveying fluid commenced soon after
Housner showed in 1952 that this system is subject to divergence (buckling) at sufficiently
high flow velocity. The aim of the first set of such studies, implicitly at least, was the vali-
dation of the main theoretical findings: (i) that divergence does arise, (ii) that it occurs near
the theoretical critical flow velocity, u.s, and (iii) that the first-mode frequency, w;, varies
with u parabolically, in the manner shown in Figure 3.10. Hence, for simplicity, in these
studies (Long 1955; Dodds & Runyan 1965: Greenwald & Dugundji 1967; Yoshizawa
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et al. 1985, 1986) pressurization effects were not considered, by making the downstream
end of the pipe free to slide axially [§ = O in equations (3.37) and (3.38)].

Long’s (1955) experiments involved simply-supported and clamped-clamped steel
pipes conveying fluid; the downstream end was mounted on rollers. The simply-supported
pipe had outer diameter D, = 25.4mm (1in), wall thickness A = 0.94 mm (0.037in),
and span L = 3.048 m (120in). Despite the length and hence relatively large flexibility
of this pipe, u.q = m corresponds to Uy =~ 52m/s (172 ft/s) — a high and difficult to
achieve flow-rate, because of the pumping requirements implied: a high flow rate at a
high pressure (to overcome the large pressure drop); indeed, beyond the capabilities of
Long’s apparatus. By means of strain gauges, Long measured the first-mode frequency and
damping, and how they varied with u." It should be recalled that Je($2;) is expected to
decrease parabolically with u; also, since $m($2,) is approximately constant according to
theory, 8, >~ 2n¢&) = 2ndm($2,)/Re(§2)) is expected to increase parabolically. However,
for u < |, both d{Re(£2,)]/du and d&, /du are small, and for the una.x =~ 0.68 achieved in
these experiments the effect, if any, was judged to be within the margin of experimental
error.¥ Hence, these experiments were largely inconclusive.

A more effective experiment was conducted by Dodds & Runyan (1965), also with
simply-supported pipes, as shown in Figure 3.21. The pipes were of aluminium alloy,
with D, = 25.4 mm, h = 1.65 mm, and an effective length L = 3.812m (12.5 ft); the fluid
was water. In this case, the critical flow velocity, U., = 39.5 m/s, was actually attained.
Figure 3.22(a) displays the evolution of Re(£2,) with u for two different pipes, and shows

/— Fluid in

Control valve

Swivel joint

4’

Strain gauge

Orifice plate

10’ pi
0.5 ‘ Plpe )J

Differential pressure transducer

Figure 3.21 Schematic diagram of the experimental apparatus used by Dodds & Runyan (1965).
All dimensions are in feet; 1 ft = 0.3048 m.

*Since various researchers have used different, and in some cases truly curious, schemes of nondimension-
alization, wherever possible these have been converted to those used in this book, for the reader’s convenience.

#Long also reports on some experimental results by E. Ergin of Cal Tech, with a pipe ‘similar to that used
here’, which show a clear quasi-parabolic £2; versus u curve. However, there appears to be some error, at the
very least in the nondimensionalization of u; for, whereas a um,x =~ 6.0 is shown, which greatly exceeds u.4,
the maximum reduction in Re(£2;) is only 3.2%.
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Figure 3.22 (a) The variation of the first-mode frequency Re(£2;) with respect to U in Dodds &

Runyan’s experiments, respectively normalized by the zero-flow frequency Re(82, ) and the flow

velocity for divergence, Uy, for two different pipes; (b) the variation of the first-mode logarithmic

decrement, &;, with U/U_, for the same two pipes; (c) the theoretically constant §, e (§2,)/Re(£2) ).

——, Theory; o, experiment with pipe 1; [J, experiment with pipe 2. Data from Dodds & Runyan
(1965).

near-perfect agreement with theory; Re(£2)g is the value of Re($2)) at U = 0. However,
agreement is likely not to have been as perfect as this figure would suggest, as may be
appreciated from Figure 3.22(b,c), in which the authors’ tabulated measurements of &, as
well as §;Re(£2))/Re(£2)) have been plotted against u. This latter, being proportional to
$1n(£2y), should theoretically be approximately constant with u, but in the experiments
it increases substantially as u.4 is approached, reflecting most probably real effects at the
supports as the pipe begins to bow. It is quite likely that these same effects involve an
attendant stiffening of the pipe which neatly counterbalances any natural tendency of the
pipe to buckle ‘before its time’ due to imperfections (e.g. initial curvature of the pipe,
locked-in stresses, geometric and material nonuniformities), which, as is well known,
would make the pipe diverge at a lower flow velocity than its perfect counterpart. This
discussion is meant to provide physical insight into some of the real eftects and ditficulties
encountered in experiments, and does not take away one iota of Dodds & Runyan'’s
important achievement: to demonstrate convincingly the existence of divergence, as shown
dramatically in Figure 3.23, and to validate items (i) and (ii) of the first paragraph of this
section.

A more wide-ranging experimental and theoretical investigation was undertaken by
Greenwald & Dugundji (1967), motivated by the same concern as Dodds & Runyan:
the possibility of disastrous fluidelastic instabilities in the thin-walled propellant pipelines
of liquid-fuel rocket engines. Experiments were conducted with clamped-pinned and
cantilevered pipes. In contrast to previous studies, however, these were small-scale
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Figure 3.23 Photographs from Dodds & Runyan’s experiments: (a) the pipe slightly curved just

before divergence at U = 36.6 m/s (120 ft/s); (b) the pipe at divergence, with its middle part disap-

pearing from view, at U = 38.86 m/s (127.5 ft/s); (c) curvature of the pipe after completion of the
test, showing plastic deformation.

experiments (e.g. D, =4.75mm, A= 1.5mm, L =241.3mm) with elastomer and
polyethylene pipes conveying water. These pipes have a Young’s modulus more than
two orders of magnitude smaller than metal pipes, and this results in a much simpler,
low-pressure apparatus. However, there are at least three disadvantages in the use of such
materials: (i) the damping characteristics are generally complex viscoelastic, and accurate
representation requires at least a two-constant dissipation model; (ii) the cross-sectional
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area is generally a function of internal pressure; (iii) the pipe has an initial curvature as a
result of being coiled during manufacture while still warm and of plastic set during storage.
Of these, item (i) plays no role in the determination of u.4, (ii) is not too important if the
fluid discharges at x = L so that the pressure is not too high at any point upstream, and
(iii) was solved, according to the authors, by hanging the pipes vertically and pouring hot
water through them.

In the clamped-pinned arrangement, the downstream support was provided quite simply
by a greased steel rod in contact with the downstream end of the pipe. As the flow velocity
was increased, the pipe began to bow slightly. At a certain critical speed the pipe was
observed to statically diverge rapidly and to slide completely off the steel rod. This
means that the measured u.s was slightly higher than the real one. The experimental
U4 = 4.70 nevertheless compares favourably with the theoretical u.y = 4.49 given by
equation (3.90c).

A more recent, successful experiment for a clamped-pinned pipe, again with a sliding
downstream end, was conducted by Yoshizawa et al. (1985, 1986) and is discussed in
Section 5.5.3.

The main purpose of these studies was to validate items (i)-(iii) of the first paragraph
of this section and it was partly achieved. It was also shown, by the way, that large flow
velocities are necessary to induce divergence; hence, it is unlikely to arise in practice,
except in specialized applications. Nevertheless, there is a high degree of idealization in
the systems studied so far; certainly, systems of the type of Figure 3.21 are unlikely to be
found in engineering applications. In more practical systems, the pipe would not discharge
to atmosphere but would be connected to another component at a pressure higher than
atmospheric [Figure 3.16(a)] — except after an accidental break (Section 4.7); moreover,
axial sliding, if any, would not occur freely and destabilizing pressurization effects would
come into play. In the next set of such studies, the dynamics under these more realistic
conditions was considered.

A careful study of the effects of pressurization and tensioning was made by
Naguleswaran & Williams (1968). Unfortunately, in the paper they do not give any of
the dimensions and properties of their apparatus, nor any of their results in dimensional
form. Nevertheless, Naguleswaran (1996) was kind enough to provide the approximate
principal dimensions of the neoprene pipes used: D, = 15mm, # = 2mm, and variable
length, up to 880 mm. The pipe was attached on either side to rigid copper pipes, one of
which was connected to the water mains and the other, after a certain length, discharged
to atmosphere. The mean pressure in the whole system could be regulated, presumably
by valves on the downstream end, so that pressurization was possible. Furthermore, axial
tension could be applied by loading one of the copper pipe connections statically and
then fixing it; thereafter, sliding was prevented (§ = 1). The flow rate was determined by
collecting and weighing the discharged water over a known time interval. Motions of the
pipe were sensed at two locations along the span via capacitance transducers. The Poisson
ratio, v, of the pipe was determined in special tests by measuring the change in volume
resulting from axial extension, and E/ was determined from the natural frequency of a
short cantilevered length of the pipe.

It was found that pressurization affected appreciably the first-mode natural frequency, to
the extent that the pipe could be made to buckle quite readily without flow. For this reason,
preliminary tests were made without flow. The variation of Re($2;) with [1/I" = pA/T
is shown in Figure 3.24; Re(£2))g is the value for the pipe under 7 but for p = 0. Since
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Figure 3.24 The effect of pressurization p on a tensioned pipe (T # 0) for u = 0 according
to Naguleswaran & Williams (1968): , theory with the measured value of v =0.312; o, +,
experimental data.

it was found that A varies appreciably with p, the actual A(p) were used in plotting
the experimental points. The experimental values are compared with simplified theory, in
which the pipe is assumed to be long enough for flexural effects to be less important than
tensile ones; thus, by taking v?n” > n”” — 0 in equations (3.100), as well as u = 0 and
8 =1, it is easy to find Re(w;)/Re(w;)o = Re(2))/Re($2,) = [1 — IT(1 — 2v)/ ']/

It is seen in Figure 3.24 that the agreement is good for low enough [1, but as the
buckling condition is approached (for 77/I" = 2.66 for the experimental v = 0.312), there
is considerable discrepancy, as a result of ‘small irregularities, or kinks in the tube’, i.e.
imperfections, which lead to localized buckling. Furthermore, when /7 is increased beyond
that point, overall buckling (divergence) is never realized, because the axial length of the
pipe is constrained and deflection of the pipe gives rise to increased tension.

Similar results are obtained with flow, as shown in Figure 3.25(a); since dimensional
quantities are not given, the peculiar nondimensionalization of this study is retained. The
experimental data are compared with (i) simple theory in which pressurization and dilata-
tion of the pipe are ignored (/7 =0, A = const.) and (ii) theory in which these effects
are taken into account. As expected, agreement is far better with the latter. Figure 3.25(b)
shows the phase difference in the motion at two locations (§ = 0.175 and 0.815). Because
of the opposite rotation of points with § < 0.5 and > 0.5 approximately, the Coriolis term
is responsible for this phase difference, and it is seen that it increases nearly linearly with
u, so long as the condition of divergence is not close; at u = u.y, of course, ¥ must
be zero.

The condition of zero frequency (and zero phase) was never, indeed can never, be
achieved for systems in which axial sliding is prevented, for the reasons already given:
increased deflection generates an increase in tension and thus w; = O is unattainable.
Thus, in this case there is a component of tension proportional to deflection, and the
equation of motion becomes nonlinear. Hence, the dynamics of the system as the linear
u.q is approached (in this case, as seen in Figure 3.25, for u > 0.5u.4 approximately)
should be studied by means of nonlinear theory.
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Figure 3.25 (a) The ratio of Re($£2))/Re(21)y as a function of the dimensionless

flow velocity U/RL = u/{n[B(I" +72)]Y?} for a tensioned and pressurized pipe with

{[r = 7 = 2v/[T + 7*1)"/? /7 = 0.0636 and B = 0.4338 at u = 0 and v = 0.312; (b) the phase

difference in the displacement at £ = 0.175 and & = 0.815 during vibration as a function of U/ L.

+. Experiment, , theory with pressurization and resulting dilatation of the pipe ignored:
— — — , theory with these effects taken into account (Naguleswaran & Williams 1968).

Another set of experiments was conducted by Liu & Mote (1974), aiming to study
the effects of flow and tensioning on the dynamics of the system. They used small-
diameter vertical aluminium pipes (D, = 6.375mm, & = 0.559 mm), 1.829 m (6 ft) long,
conveying an oil-water emulsion circulated with the aid of a gear pump. The apparatus
involved a shaker to excite the pipe and strain gauges to measure the vibration. The fluid
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was discharged to atmosphere at the downstream end (collected and recirculated), and
axial sliding was permitted. Tension was applied via a pulley-weight mechanism. Typical
results are shown in Figure 3.26 for two values of tension, I" = 0 and 5, and nominally
pinned ends. 1t is noted that the pinning is far from perfect: the first-mode measured
frequency is 5.1 Hz for I" = 0, whilst the theoretical one is 3.8 Hz; this is mostly due to
the flexible coupling connecting the upstream end to the rest of the system, which when
disconnected results in a measured frequency of 4.0 Hz, much closer to the theoretical
one. Nevertheless, the normalized form of Figure 3.26 has the advantage of permitting the
direct comparison of theoretical and experimental trends with increasing « and varying I".

1.0 2 20
0.8 116
Experiment <
S 06 12 8
- S
8 =
é‘ 0.4 — 48 A
-
0.2 -4
0! 1
2.0 0

Figure 3.26 Fundamental resonance obtained from vibration measurements on a shaker-excited
simply-supported pipe under tensioning, as a function of u/m. Theory I is the linear theory
of Naguleswaran & Williams (1968); theory 2 and theory 3 are, respectively, Thurman &
Mote’s (1969b) linear and nonlinear theory. Experimental/theoretical reference frequencies
Re(£2,)o =5.1/3.8Hz for I'=0, and 7.2/59Hz for I"=5. The decflection has been
nondimensionalized with respect to the pipe diameter (Liu & Mote 1974).

The measured frequencies decrease with «, initially as predicted by theory. but later the
curves bottom out and the frequency begins to increase with # — an effect which is even
more pronounced in some other of the authors’ results. This is very perplexing, since for
these conditions of support (with sliding permitted), the zero-frequency condition should
have been attainable. Before proposing an explanation, it should be said that these exper-
iments suffered from a number of weaknesses, as acknowledged by the authors: (a) the
aforementioned nonzero bending moment (imperfect pinning) at £ = 0; (b) a substantial
and undesirable out-of-plane vibration, at times larger than the excited (and plotted) in-
plane one; (c¢) an initial curvature (bow) and/or locked-in stresses in the pipe which gave
a gradual and continuous increase in deflection with increasing u, rather than a precipitous
one as u.; was approached. Also, (d) there is a discrepancy of the theoretical results with
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regard to the I” given in the figures. For instance, for I" =5, u.y/7 = 1.23 should have
been obtained (cf. Section 3.4.2) and not 1.62.7 However, since it is the qualitative nature
of the frequency-versus-u variation that is perplexing, item (d) will be ignored here. On
reflection, neither (a) nor (b) can provide a convincing explanation, but they do point out
how demanding these deceptively simple experiments can be. [tem (c), however, provides
a likely explanation. As will be shown in Chapter 6, initially curved pipes in fact do not
diverge. Thus, for semicircular pipes the reduction in frequency with flow is minimal; in
that sense, strictly according to this hypothesis, this represents an intermediate system,
behaving as a straight pipe for low u and as a curved one for higher u. Another outlook on
this is provided by nonlinear theory. As discussed in Chapter 5, the pitchfork bifurcation
is structurally unstable (in the mathematical sense), and the displacement-versus-i curve
evolves more smoothly* in the presence of a small, or not-so-small, initial asymmetry.
This corresponds physically to a gradual exaggeration of the asymmetry as u« is increased
(as observed), in contrast to the explosive divergence of the imperfection-free system.
Furthermore, since neither the initial (¥ = 0) nor the ‘final’ state (for u larger than the
theoretical u.,) 1s associated with w = 0, the frequency in-between tends to bridge these
two states without passing through zero.

Experiments were also conducted on clamped-clamped pipes by Jendrzejczyk & Chen
(1985), with no sliding permitted. They found that divergence does not occur for the
reasons already given; indeed the r.m.s. vibration amplitude was found to decrease as the
theoretical critical u.4 is exceeded, which was attributed to deflection-induced tensioning.

A final comment is that in all these experimental studies there has been no reported
observation of post-divergence coupled-mode flutter. Although this does not prove that
it cannot exist — especially noting that the violence of the onset of divergence makes
experimentation, at more than twice the critical flow rate, problematical — it would tend
to support Holmes’ finding, via nonlinear analysis, that pipes with supported ends cannot
flutter. as discussed in Chapter 5.

3.5 CANTILEVERED PIPES

3.5.1 Main theoretical results

The essential dynamics of cantilevered pipes conveying fluid has already been outlined in
Sections 3.1 and 3.2. Referring to the dimensionless equation of motion, equation (3.70),
it is noted that, for cantilevered systems, I" = IT = 0 always; furthermore, since the case
of time-varying flow and elastic foundations will not be considered till later, it = k =0
as well. Hence, the only parameters that remain to be considered for the results to be
presented in this section are the damping parameters o and ¢, the mass parameter 3, and
the gravity parameter y.

The simplest system is considered first, in which &« = ¢ = y = 0 additionally, i.e. a
horizontal system with the dissipation ignored, which thus depends only on 8. In this
case. solutions are possible via the First Method of Section 3.3.6(a) and involve no
approximations (due to Galerkin truncation, for instance). Typical results are shown in
Figures 3.27 and 3.28 for g = 0.2 and 0.295, respectively. It is seen that for small i (1 < 4

“The effect of gravity was neglected by the authors (y = 0), but in fact it is very small.
It ts ‘unfolded’, in nonlinear terminology.
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Figure 3.27 The dimensionless complex frequency of the four lowest modes of the cantilevered
system (y = a = 0 = k = 0) as a function of the dimensionless flow velocity, u, for 8 = 0.2:
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Figure 3.28 The dimensionless complex frequency of the four lowest modes of the cantilevered
system (y = a =0 =k = 0) as a function of the dimensionless flow velocity, u, for g = 0.295
(Gregory & Paidoussis 1966a).

approximately), flow induces damping in all modes of the system; i.e. $m(w) > 0, or
Z = $m(w)/Re(w) > 0. This is in line with the energy considerations of Section 3.2.2, in
connection with equation (3.11). For higher u, $m(w) in the second mode of the system
begins to decrease and eventually becomes negative; thus, a Hopf bifurcation occurs
at u = u.r ~ 5.6 and 7.0, for B = 0.2 and 0.295, respectively, and the system becomes
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unstable (in the linear sense) by flutter. For 8 = 0.2, there is also a fourth-mode oscillatory
instability, via another Hopf bifurcation, at u >~ 13.}

In the case of f = 0.295 and for 7 < u < 8.2, the system loses stability, regains it and
loses it again, as the locus meanders along the JRe(w)-axis. This cannot be seen very
clearly in the scale of Figure 3.28, but it is similar to what is easily visible in Figure 3.27
for 13 < u < 15 in the fourth mode.

Flutter does not always occur in the second mode of the system, as may be seen in
Figure 3.29 for 8 = 0.5, where it is in the third mode that the system loses stability. It is
of interest that (i) for 8 = 0.2 and 0.295, the second-mode locus bends downwards and
crosses the axis to instability, while the third-mode locus moves towards higher +$n1(w)
values; (ii) for 8 = 0.5, the opposite takes place. This ‘role reversal’ or ‘mode exchange’
characteristic is a frequently occurring feature of the dynamics of the system. Thus, for
B = 0.2 (Figure 3.27) the fourth mode leads to the higher-mode instability; in contrast,
for g =0.295 (Figure 3.28) the fourth-mode locus makes a loop, while the fifth mode
(not shown) curves down to instability (cf. the third-mode locus of Figure 3.29). Another
aspect of this behaviour is the closeness of the loci for some specific u, in Figure 3.29
for u = 8.8125; near the ‘critical’ 8 for which the mode exchange occurs, the two loci
can be extremely close (Paidoussis 1969; Seyranian 1994).
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Figure 3.29 The dimensionless complex frequency as a function of u for a cantilevered system
(y=a=0=k=0) for 8 =0.5. The diagrams on the left-hand side of the figure display the
behaviour of the loci while on the $ni(w)-axis (Paidoussis 1969).

With regard to the foregoing discussion, a very important point should be stressed. We
have been talking about the ‘second mode’ and ‘third mode’, and so on, simply because
they are part of the thus numbered loci. However, for u # 0, the mode shapes associ-
ated with these modes differ significantly from those at u = 0 (which are the classical
beam modes), as first shown by Gregory & Paidoussis (1966b). Thus, for u =3 or 4

*The caveat concerning the limitations of linear theory for predicting the dynamics beyond the first loss of
stability applies here too.
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the first-mode shape contains appreciable second-mode content, the second-mode shape
third-mode content, and so on. Nevertheless, the present appellation is clearly a reasonable
one. Another important point is that, similarly to the pipe with supported ends, these are
not stationary, classical modes with fixed nodal points, but contain appreciable travelling
wave components, to be discussed with the experiments in Section 3.5.6.

The critical flow velocity, u.s as a function of 8 is shown in Figure 3.30;" there
exists a similar curve for the corresponding frequency at u = u.y, labelled w.; — see
Figure 3.35. It is clear that, u.; depends strongly on B. Furthermore, the u.; and s
curves contain a set of S-shaped segments. By referring to Figure 3.28 it is recognized that
they are associated with the instability-restabilization-instability sequence discussed in
the foregoing; hence, in Figure 3.30, the ncgative-slope portions of the curve correspond
to thresholds of restabilization. If an experiment could be conceived in which the material
damping is zero and S could be varied in very small steps, then around these points there
would be ‘jumps’ in u.s; e.g. for f in the vicinity of 0.69, from u.r >~ 11 to u.y ~ 12.8
for a very small increase in B. The values of B associated with these S-shaped segments
of the stability curve (at 8 ~ 0.30, 0.69, 0.92) will be found to be associated with a large
number of perplexing linear and nonlinear characteristics of the system — in the sense of
acting as separatrices for differing dynamical behaviour. Yet, the origin of their existence
is not fully understood (see Section 3.5.4). As 8 — 1, more and more S-shaped jumps
are encountered. Mukhin has shown that for 8 = 1 no flutter solution may be possible,
i.e. ucy — oo (Mukhin 1965; Lottati & Kornecki 1986).

5

0 0.5 1
B

Figure 3.30 The dimensionless critical flow velocity for flutter, u. s, of a cantilevered pipe
conveying fluid, as a function of B, for y = ¢ = ¢ = k = 0 (Gregory & Paidoussis 1966a).

Nevertheless, it appears that these jumps are related in some way to mode content.
This is made clear by Figure 3.31 in which, in addition to results obtained by the method

*Numerically, such curves are computed by determining 8 for each assumed u, ¢, rather than vice versa.
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Figure 3.31 Comparison between u., and ., obtained by the exact solution (—-), cf.
Figure 3.30, and Galerkin approximations: ¢. N = 2,4+, N =3, 4, N = 4 (Gregory & Paidoussis
1966a).

of Section 3.3.6(a), some obtained by the Galerkin method of Section 3.3.6(b) are also
presented, for N = 2, 3 and 4, N being the number of beam modes utilized. It is obvious
that, although N =3 and 4 may be adequate for predicting u.; (see also Figure 3.27),
the two-beam-mode approximation (N = 2) is not, failing to reproduce the S-shaped
behaviour, as will be discussed further in Section 3.5.4; on the other hand, the N =2
approximation is quite reasonable for 8 < (.2, or even 8 = 0.25. In general, higher-¥
approximations become necessary to adequately represent the dynamics of the system as
u and § are increased. This contrasts sharply to the inherently conservative system [cf.
equation (3.92) of Section 3.4.1 and the attendant discussion], where N =2 and even
N =1 Galerkin approximations can predict u.s very well.

3.5.2 The effect of gravity

The motivation for investigating the effect of gravity (y # 0) on the dynamics of the
system comes from two sources. The first is to obtain theoretical results for comparison
against measurements from experiments with pipes oscillating in a vertical rather than
a horizontal plane, the former being easier to conduct. In this regard, recalling that y =
(M + m)gL?/EI, it turns out that for metal pipes conveying fluid, unless L is very large,
y is small and its effect on the dynamics may well be negligible; for rubber or elastomer
pipes, however, with which the majority of the experiments are conducted, because E is
considerably lower, gravity effects should normally be accounted for. The second source
of impetus was provided by Benjamin’s (1961a,b) findings with articulated cantilevered
pipes conveying fluid: that horizontal systems lose stability exclusively by flutter, whereas
vertical ones can do so by divergence also (Section 3.8). Hence, since the continuously
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flexible system may be considered as the limiting case of an articulated one as the number
of degrees of freedom N — oo, it is of interest to discover if divergence can arise in the
vertical continuous system as well.

Extensive calculations of Argand and stability diagrams for y # 0 were conducted by
Paidoussis (1969, 1970), using the method of Section 3.3.6(b); it was found that N =9
or 10 in the Galerkin series ensured accuracy of the eigenfrequencies to three significant
figures. Similar calculations were done by Bishop & Fawzy (1976).

A summary of the results is presented in the form of a stability diagram in Figure 3.32.
It is seen that the general dynamics of the system with y s 0 is similar to that for y =0,
but for y > 0 the additional restoring force due to gravity causes u.s to be higher. It
is recalled that y < O represents an up-standing system,” with the downstream free end
above the clamped one. As expected, the system is less stable in this case. In contrast
to the articulated system, no flow-induced divergence is possible in this one. It is seen
in Figure 3.32 that each of the curves contains a number of S-shaped segments, indeed
more of them as y is increased.

24 1 T T T T 1 T

0 0.2 0.4 0.6 0.8 1.0

Figure 3.32 The dimensionless critical flow velocity for flutter, u.;, of a vertical cantilevered
pipe conveying fluid, as a function of B for varying y, compared to the horizontal system, y = 0;
a = o = k = 0 (Paidoussis 1970).

More interesting dynamical behaviour is obtained if y is negative and fairly large. In
that case, corresponding to relatively long pipes, y < —7.83 approximately, the cantilever
buckles under its own weight at zero flow. The linear dynamics of the system is illustrated
in Figure 3.33. Consider first a system with y = —10 and B8 = 0.2, which is buckled
under its own weight for u = 0: as u is increased (i.e. progressing vertically up in the

* Although this is hardly a symbol of moral rectitude’
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Figure 3.33 Stability map for a ‘standing’ cantilever (y < 0), with the discharging free end of

the pipe vertically above the clamped end, showing the effects of 8 and ¥ on stability (Paidoussis

1970). The dashed line corresponds to the onset of flutter, superposed on divergence. The dynamics
for y < —55.9 is more complex and is not detailed in the figure.

figure), the system is restabilized at u ~ 1.8 (at point A), and then loses stability by
flutter at » ~ 4.85 (at point B). For y = =20, B = 0.2, restabilization and fiutter occur
at u ~ 3.1 and u = 4.25, respectively. Variants of this behaviour are represented by y =
—20, B =0% orby y = —40, B = 0.2; in such cases, again according to linear theory, the
system develops flutter, while still under divergence. For y < —55.9 approximately, the
system buckles under its own weight in both its first and second modes and apparently
remains unstable with increasing flow: this more complex behaviour is not detailed in
Figure 3.33.

It is noted that the values of ¥ ~ —7.83 and —55.9 agree well with those obtained by
exact analysis of the static stability of an up-standing cantilever, corresponding to the first
two zeros of the equation J_1/3[%(—y)1/2] = 0, where J_,,3 is the Bessel function of the
first kind and order —31. The first and second zeros occur at %(—y)‘/2 ~ 1.87 and 4.99,
respectively. yielding the values of ¥ in question to within 0.5%.

A priori. whether any of this post-buckling behaviour materializes in practice is ques-
tionable, because in this linear theory the stability is considered for small motions about
the straight equilibrium configuration, whereas the buckled system is certainly not in
that state. Nevertheless, as will be seen in Section 3.5.6, the dynamics of the system as
observed in experiments is substantially as just described.
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3.5.3 The effect of dissipation

We next consider the effect of dissipation on stability. As first shown by Ziegler (1952)
for the nonconservative system of a double pendulum subjected to a follower load, weak
damping may actually destabilize the system. The same was found in the study of stability
of a compliant surface over which there exists a flow (Benjamin 1960, 1963). Benjamin
classified the various possible modes of instability into three distinct classes, according
to the mode of energy exchange between fluid and solid. Benjamin shows that ‘class A’
waves are destabilized by damping, and Landahl (1962) has contributed to the discussion
and clarification of this paradox; see also Section 3.5.5. It was in this same period that it
was found that cantilevered pipes conveying fluid can also be destabilized by dissipation
(Paidoussis 1963). Subsequently, a considerable amount of work has been done on this
topic [e.g. by Gregory & Paidoussis (1966b), Nemat-Nasser et al/. (1966), Bolotin &
Zhinzher (1969), Paidoussis (1970), Paidoussis & Issid (1974)].

Figure 3.34(a,b) shows examples of a cantilevered pipe (8 = 0.65, y = 10) subjected
to damping modelled (a) by a Kelvin-Voigt viscoelastic model (with ¢ = 0.0189), and
(b) by a hysteretic or ‘structural” damping model (with 1 = 0.1) — see equations (3.39)
and (3.72). A number of interesting features of the sysiem are displayed in this figure,
as follows. (i) First, this is yet another example where it is not the second mode that
is agsociated with flutter; here, after considerable peregrinations, it is the first, although
the modal form is similar to that of the second mode by the time it crosses to the
—$m(w) half-plane. (ii) By comparing the critical flow velocity for the undamped system
(ucr = 12.88) to that of the damped system [u., = 9.85 in Figure 3.34(a) and u., =
11 in Figure 3.34(b)], it is clear that dissipation destabilizes the system. (iii) For the
hysteretic system, the character of the equation of motion is quite different from that
of the viscoelastically damped one in the following sense. For the viscoelastic system
(a # 0, u = 0), if iw is a root of the equation of motion, so is its complex conjugate, and
the root loci are symmetric about the .91 (w)-axis; hence, only the positive Re(w) half-
plane needs be shown, as in Figure 3.34(a). For the hysteretic system (u # 0, a = 0),
however, this is no longer true, and hence (partly) both sides of the plane have to be
shown. It is of particular interest to note that for u > 4 there would appear to exist
discontinuities in the values of $m(w) as the $m(w)-axis is crossed, if only the positive
Im(w)-plane were considered; in particular, in the vicinity of # >~ 5 in the first mode and
u 2~ 11 in the second. Finally, it must be recalled that, in accordance with the limitations
to the validity of the hysteretic dissipation model referred to in Sections 3.3.2 and 3.3.5,
only the portions of the loci near the R¢(w)-axis have physical significance.

It is noted that, whereas hysteretic damping destabilizes the system for 8 > 0.285
approximately, it exerts a stabilizing influence for smaller values of 8, as may be seen
in Figure 3.35. This dependence of the dynamical behaviour on the mass ratio was also
found by Benjamin (1963) in the stability of a compliant surface subjected to flow.

It should also be remarked that the values of ¢ and u utilized in these calculations are
relatively high and representative of rubber and elastomer pipes (the values of @ = 0.0189
and p = 0.1 give identical logarithmic decrement, § >~ mu, for the first mode at u = 0).

"As shown by Gregory & Paidoussis (1966b), the theoretical and expenimental mode shapes associated
with flutter, although displaying elements of higher beam modes with increasing 8, in their essence retain the
second-beam-mode ‘dragging’ form, despite changes in the numeration of the mode involved (Table 3.2).
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Figure 3.34 (a) Argand diagrams showing the effect of viscoelastic damping on stability of a

cantilevered system: ——, undamped system (o« =0 =0); ——

—, viscoelastically damped system

(¢ =0.0189,0 =0); B=0.65,y = 10, kK = 0. (b) Argand diagram showing the effect of hysteretic
damping (¢ = 0.1, « = o = 0) on stability of otherwise the same system (Paidoussis & Issid 1974).

For metal pipes, typical values of i would be 1 = G(10~?) or less [see, e.g. Snowdon

(1975)).

We next turn our attention to the other source of dissipation in the system, namely to
the damping introduced by friction with the surrounding air, characterized by o [defined
in (3.71)]. Especially for non-metallic pipes, this effect is negligible vis-a-vis damping
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Figure 3.35 The effect of material damping, modelled by the hysteretic model, and of external
viscous damping on stability of a cantilevered pipe conveying fluid (y = k£ = 0): ——, undamped
system; — - — , with hysteretic damping, u = 0.065; ———, with viscous damping, o = 1.42;

— - —, with viscous damping, ¢ = 0.23 (Gregory & Paidoussis 1966b). The black dots mark the
threshold values of 8 beyond which, for each of these three cases, the system is destabilized by
damping.

due to dissipation in the material of the pipe. In this respect, it is useful to adapt the
relationships of Section 2.2.3 to the work at hand. For unconfined fluid, the damping
force is given by

22
“=5

from (2.153) and (2.157), respectively, where S= S?Rg/v, R, being the outer radius of
the pipe. In terms of the dimensionless parameters used here,

dz

E =Ci2pA—,
d dpdt

(3.105)

2/2pR22L2

7T EIM + m)2R2/v]'/2 (3.106)




PIPES CONVEYING FLUID: LINEAR DYNAMICS | 121

For a typical pipe used in the experiments (Paidoussis 1969, 1970) and £ = 107, one
finds ¢ ~ 1072 or less. The effect of this is clearly very small as compared to, say,
hysteretic damping with ¢ ~ G(1072), since in the equation of motion x is multiplied
by A}." Nevertheless, the effect of an artificially large o on stability as investigated by
Paidoussis (1963) and Gregory & Paidoussis (1966b) is of interest; in these calculations
the whole of the observed damping in the first and second mode of one of the pipes used
in the experiments is assumed to be entirely due to ¢ (which, of course, cannot be so0),
yielding 0 = 0.23 and o = 1.42, respectively.? As seen in Figure 3.35, viscous damping
with ¢ = 1.42 destabilizes the system only for g > 0.55. With ¢ = 0.23 this occurs for
B > 0.60, while for 0.3 < 8 < 0.6 the critical flow velocity is less than 1% higher than
for the undamped case. The critical frequency, w,(, is reduced in almost all cases.

The effect of very large values of ¢ is examined by Lottati & Kornecki (1986). Such
large o would arise if the pipe were immersed in water or a more viscous fluid (but in
that case m, the pipe mass, must be presumed to include the fluid added mass). As shown
in Figure 3.36, o is stabilizing for 8 < 0.5 approximately, as in the foregoing, but for
B = 0.8 it is destabilizing. with an interesting ‘negative jump’ in the curve.

T T T T

B =04 i
8+
6 =0.1 R
= e
4 1 1 1 |
0 2 4 6 8 10
o

Figure 3.36 The effect of large values of viscous damping, o, on the critical flow velocity for
flutter, u.,, of a cantilevered pipe for vartous 8 (Lottati & Kornecki 1986).

Another interesting dynamical feature of nonconservative systems is related to the non-
smooth variation in the critical load as damping is varied from vanishingly small to zero,
as first discussed in general terms by Bolotin (1963). This has been studied cxtensively for
two-degree-of-freedom articulated columns [looking like the pipe system of Figure 3.1(d)
but without flow] subjected to compressive follower loads (Herrmann & Bungay 1964;
Herrmann & Jong 1965, 1966).* Such systems lose stability either by divergence or by

See Sections 3.3.5 and 3.3.6. ] , 5 ]
*These values correspond to p = 0.065 and are computed Via 6 = Aju and o = A3p, respectively.

¥See also Section 2.1.5.
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flutter, depending on the angle of the follower load to the last articulation and the ratio
of the viscous damping at the two articulations, and they display several other interesting
dynamical features. The destabilizing effect of vanishingly small damping as opposed to
zero damping can be so large as to reduce the critical load by a factor of more than 6!
The investigation has been extended to cantilevered pipes conveying fluid by Nemat-
Nasser et al. (1966), who examine the effect on stability of all velocity-dependent forces,
as opposed to just damping: i.e. not only internal and external damping (« and o), but
also ‘Coriolis damping’ associated with 8. They consider /8 = v8*, a = va*, o = 2vo*,
where v is small, and then obtain solutions of the characteristic equation, neglecting terms
of G(v?) and higher. More specifically, they are concerned with the discontinuity in u.s
for B = 0% and B = 0 exactly: in the first case, as seen from Figure 3.30, u.s ~ 4.21; in
the second case the problem reduces to Beck’s (Section 3.3.2) for which %. = 20.05 and,
since %, is equivalent to uff, u.r = 4.48. Thus, there is a jump up from u.r = 4.21 to
4.48 if B is reduced from 8 = 0* to O (see insert in Figure 3.56).7 The effect is greatly
exaggerated when internal (material) damping is taken into account (« # 0), as shown

0.5 | | 1 |
0 25 5.0 1.5 10.0 12.5

B¥a* = \Bla

Figure 3.37 The critical flow velocity for small velocity-dependent forces acting on the

cantilevered pipe system as a function of §*/o* = B"%/a and o*, where /B = vB*, o = va*

and o = 2vo*, in which v is a small parameter; ---, uff /7* for Beck’s problem, a = B =0 =0
(Nemat-Nasser et al. 1966).

YOf course, as we have already seen, the bifurcation leading to flutter is different: for B =0% a Hopf
bifurcation; for 8 = 0 a Hamiltonian Hopf, so that, in that sense, the discontinuity is not roo surprising.
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in Figure 3.37: it is seen that whereas u., = 4.48 for « = B = 0 = 0 (corresponding to
u?; = 20.05 or u;;/m* = 2.03, the dashed line in the figure), it can be as low as u.; =
33l forf=0=0,a*=1 (uff/zr2 = 1.107). Furthermore, agreeing with the results of
Figure 3.35 for small B, external damping (o* # 0) stabilizes the system.

3.5.4 The S-shaped discontinuities

As already mentioned, the nature of the S-shaped discontinuities in the stability curves of
u versus f, e.g. in Figures 3.30 and 3.32, is of interest not only per se, but also because the
critical values of B at which these discontinuities occur are frequently associated with, or
are separatrices for, distinctly different dynamical behaviour. The reader is referred to the
discussion of Figures 3.63 and 3.68 in Section 3.6 and Figures 5.19-5.21 of Section 5.7,
as well as to Paidoussis (1997).

An early attempt to reach some understanding of this matter was made in 1969. Specif-
ically, it was attempted to link the occurrence of these S-shaped portions in the stability
curves and the attendant jumps in uc, to changes in the mode leading to flutter. Specif-
ically, the mode in which the system becomes unstable is identified on either side of
the jump, to see if there is a mode change (mode switching) across it. The results
are shown in Table 3.2 (in the conventional ordering of the modes), and it is seen
that this hypothesis fails. Thus, for y =0, there are two mode changes between the
first and second jump (0.4 < B < 0.65), while the B versus u curve remains smooth
(Figure 3.30); for y = 10 there is no mode change across the first jump. The modes
are then reordered, strictly in ascending order of magnitude of Re(w); for instance, in
Figure 3.28 for u = 9-11, the second mode is now called ‘third’, and the third ‘second’;
in some cases [see Figure 3.34(a)] this causes very radical renumbering. The results of
this reordering are also given in Table 3.2. The new scheme is partly successful, in the

Table 3.2 Relation between mode number of the mode becoming unstable and the ‘jumps’ in the
ucr versus B curves (Paidoussis 1969).

Values of 8 Nomenclature for Range of B
y lested mode becoming unstable relative to ‘jumps’
Conventional Reordered
0 0.1, 0.2, 0.295 Second ‘Second’ B < lst jump
04,05 Third “Third’
0.6 Second ‘Third’ Ist jump < B < 2nd jump
0.65 First “Third’
10 0.1,0.2 Second ‘Second’ B < lst jump
0.3 Second ‘Third’ Ist i ond i
04, 0.5 Third “Third" stjump < £ < 2nd jump
0.65 First “Third’ 2nd jump < B < 3rd jump
100 0.075, 0.1 Second *Second’ B < lst jump
0.113,0.2 Third “Third’ Ist jump < B < 2nd jump
04, 0.5, 0.58 Fourth ‘Fourth’ 2nd jump < B < 3rd jump

0.65 First ‘Fourth’ 3rd jump < B < 4th jump
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sense that it imposes a systematic increase in the mode associated with instability as
B is increased. Also, an improvement in the correspondence between jumps and mode
changes is achieved: it works for the first jump in all cases; nevertheless, it fails for the
second jump when y = 10, and for the third jump when y = 100. Clearly something more
profound is involved.

A similar but more mathematical attempt was made more recently by Seyranian (1994),
starting from the same observation that motivated Paidoussis’ (1969) work: the ‘drawing
near’ of two mode loci (e.g. in Figure 3.29 for the second and third modes at « = 8.8125)
with increasing B, prior to switching of the mode leading to flutter, which often occurs as 8
is varied. Seyranian argues convincingly that this ‘drawing near’ of the loci implies actual
frequency coincidence (a repeated root) at some nearby point in the parameter space — a
‘collision of eigenvalues’ in his terminology — if only an additional parameter (in this
case, other than B and u) is varied at the same time. This may well be true, although
Seyranian demonstrates it only for nongyroscopic nonconservative systems (e.g. for an
articulated column with a follower load). As seen in the ‘conventional’ mode-ordering
column of Table 3.2, however, there is not always a mode switch across an S-shaped
jump, nor does mode switching necessarily imply an impending jump (Figure 3.29 vis-a-
vis Table 3.2 being a case in point).

Either of these attempts, even if successful, would have given a mathematical explana-
tion rather than physical insight into the nature of the S-shaped discontinuities. A more
successful interpretation in this respect was provided by Semler et al. (1998), which also
throws some light onto the destabilizing effect of damping.

Semler et al. (1998) consider a double pendulum under zero gravity, subjected to a
follower load, P, as shown in Figure 3.38(a). The two rods are constrained by rotational
springs of equal stiffness, k, and rotational dashpots, ¢, and c¢;. The equations of motion
are rendered dimensionless by introducing t = t+/k/(mL?) for the time and the parameters

Cy ) PL

_ , _ gt (3.107)
n= oml2 "= k

Stability is lost via a Hopf bifurcation and the critical value of % for flutter, &., =
f(y1, y2), may be derived in closed form. Figure 3.38(b) shows some results obtained
for fixed y, while y; is varied. It is shown, for all y|, that increasing y, from zero initially
stabilizes the system (i.e. a higher % is required to cause flutter), but the trend is eventually
reversed and then y; becomes ‘destabilizing’.

To understand the mechanism leading to this behaviour, the net energy gained by the
system over a period of not necessarily neutrally stable oscillation, 7', is considered,

T T
AE=W -D= / P sin xdr — / [Vi¢* + v2x°]dr, (3.108)
0 0

where ¢ = ¢ and x = ¢ — ¢, are an alternative set of generalized coordinates. AE has
the same meaning as £ — %, in (C.6). Once the equations of motion are decoupled via
modal analysis techniques (Section 2.1.2), it is possible to consider AE for each of the
two modes separately. One can thus obtain the diagram of Figure 3.39(a). It is seen that
mode 1, the ‘stable mode’ (i.e. not the one associated with flutter), becomes more and
more stable as y; is increased, being associated with progressively more negative AE.
However, mode 2, the flutter mode, becomes less stable with increasing y»; eventually,
for y, = 0.025 [cf. Figure 3.38(b)] AE > 0 is obtained, and hence amplified oscillations.
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Figure 3.38 (a) Diagram of the ‘double pendulum’ system in zero gravity, subjected to a follower
force, P. (b) The effect of increasing y.. while y, is fixed. on the critical load for flutter, %., (Semler
et al. 1998).

Insight into the dynamics of the system is obtained by looking at the relative amplitudes
of the two generalized coordinates, ¢ and x, when the response is periodic, i.e. at P = &,,..
It is noted that, whereas W is at most linearly dependent on x, D is quadratically affected,
and so a high y-content in one of the modes means that it will be preferentially damped.
The results arc shown in Figure 3.39(b). It is seen that for low y;, the x-content of
mode 2 (which is the flutter mode) is higher, and hence this mode will be damped more
than mode 1 which remains stable; hence, the effect of increasing y» here is stabilizing.
For larger y,, however, it is mode 1 that has the higher y-content and hence it will be
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Figure 3.39 (a) The energy gained (AE > 0) or lost by the double pendulum system in

its two modes of vibration, normalized with respect to the initial energy, as a function of

v2; Y1 = 0.1, @ = 2. (b) The amplitude ratio of the generalized coordinates ¢ and x, as a function
of y,; ¥ = 0.1 but P is varied (Semler et al. 1998).

preferentially damped, while the stable mode 2 is less damped; hence, increasing y» is
now destabilizing. The cross-over point occurs at y, = 0.095, corresponding to the same
point in Figure 3.38(b) where stabilization by y» ceases and destabilization begins.

Moreover, not only the relative amplitude of the two generalized coordinates is impor-
tant, but also the phase between them. On the stability boundary, where # = %., and
AE = 0, the motion must be harmonic; since the amplitude is arbitrary, we can take ¢ =
1 sin wt, x = Bsin{wt — ). Then, assuming ¢ and y to be small and evaluating (3.108)
with AE = 0, one obtains ., sin 8 = w(y, + Bzyz)/B. For B > 0, it is seen that & must
be positive for %, to exist, and the higher it is (but always 8 < ), the lower the value of
P.,. Of course, P, also depends on ¥, y»2, B and w, but the phase angle 6 is of paramount
importance.

Armed with these insights, the modal composition of the mode associated with
instability is now considered in the pipe problem. The system of equation (3.76) is
discretized by the Galerkin method [Section 3.3.6(b)], using the beam eigenfunctions,
¢.(§), as comparison functions and the associated generalized coordinates, ¢,(7).
The system is then reduced to first order and decoupled by modal techniques — cf.
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equations (2.16)-(2.19) — so that each eigenmode may be considered separately. It is
the modal content of the mode leading to flutter, in terms of the amplitudes ¢, and
the phases between them, that is of interest. Here the g, are equivalent to ¢ and y in
the foregoing. The centrifugal term (o u®) plays the role of %, and Coriolis damping
(¢ B'/?u) the role of the dissipative force due to ys.

Figure 3.40 shows the stability diagram constructed with a progressively higher number
of modes in the Galerkin discretization. It is seen that not only does one not get the first
jump’ (at Bsy) with N = 2 and does so with N = 3 or higher (cf. Figure 3.31), but also
N =4 is required to obtain the second jump (at Bs3), N = 5 to obtain the third one, and
so on! Thus, each jump is associated with the addition of another generalized coordinate.
while the approximation prior to the jump is quite reasonable without it.
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Figure 3.40 The stability diagram of u., versus 8 for Galerkin solutions of the undamped hori-
zontal cantilevered pipe with an increasing number of comparison functions, N.

Figure 3.41(a) shows the evolution of the ratio of /G, and §3/¢, with u. It is seen that
around u.; = 7.5, which corresponds to the first jump, the g> content reaches a minimum,
while ¢; begins to increase sharply — in which g, = | was taken arbitrarily. It is noted
that these variations with u are smooth, but when plotted versus g as in Figure 3.41(b),
they become much more violent, generating jumps. Just beyond the jump. g, increascs
once more, together with 3.

To interpret these results, and similar ones associated with fs; ef seq., it must be recalled
that work is done on the system by the centrifugal and the Coriolis forces, equal w0

T T
W cennit = —142/ 7' (1, T)n(1, r)dr, Weor = —u\/B / r')z(l. T)dr, (3.109)
0 J0
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Figure 3.41 The evolution of the normalized generalized coordinate amplitudes, §;/g,, associated
with the Galerkin discretization of the horizontal cantilevered pipe system: (a) as a function of u,;
(b) as a function of ‘the critical 8’ corresponding to u = u.; (Semler e al. 1998).

over a period of neutrally stable oscillation 7.7 For a three-mode Galerkin solution, taking
qgr = A, sin{wt — 6,), one obtains

W cenuif = 142[13.62A1A2 sin(8; —62) + 25.89A, A3 sin(6; —61) + 12.27A,A3 sin(6, —65)],

tThe physical similarity to the follower-force system becomes even clearer if equation (3.108) is rewritten
for neutrally stable oscillations (periodic motions) and small angles, giving

T T .
AE=—QP/0 (bu(bzdr—/o [Y1¢|2+y2(¢1 —¢2)2]d1’=0A

The first term simplifies to the form above since the integral of ¢i¢1 =d ( 1¢?) /dr vanishes for purely

periodic motions — the same conditions leading to (3.109). The similarity of this first term to W enyir and of
the term involving y1 to Wcor now becomes very clear. The term involving y; corresponds to viscoelastic
damping in the pipe (a # 0). Hence, it is obvious that positive work can be done on the system by the lateral
component of the follower force % or, for the pipe problem, by the lateral component of the jet reaction, & (of
the jet emerging from the free end of the pipe); to the linear limit the axial component is conservative, Thus,
the physical parallelism between the two cases of the follower-force system and the pipe system is therefore
very close.
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Weor = —dun/BwlA? + A 4 A3 — 24,4, cos(6) — 62) + 2A4,A3 cos(Br — 6;)
— 2A,A3 cos(6> — G3)].

Broadly, the centrifugal force imparts energy to the system, while the Coriolis force
(involving B) absorbs energy, the balance between the two, in the absence of dissipation,
giving rise to flutter (Section 3.2.2). However, as discussed in Section 3.5.6, the flutter
mode shape remains broadly similar with varying B8, though the mode content is clearly
altered. Hence, as 8 is increased, the amplitude and phase of the g, components have
to be adjusted to provide a composite shape capable of absorbing energy from the fluid.
For low enough B, g and g, are quite sufficient. However, as § >~ Bg, is approached, the
third component, g3, has to come in to achieve the required modal mix; and similarly ¢4
for Bsy, and g5 for fsa.

This leaves unanswered the question of why this adjustment in modal content is not
gradual but rather abrupt. The answer is furnished by the phase information, Figure 3.42.
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Figure 3.42 The evolution of phase differences between the generalized coordinates ¢; associated
with the Galerkin discretization of the horizontal cantilevered pipe system, as a function of 8.
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Even though each ¢; — 6, varies smoothly with 8, as it crosses %n and 7, cus(6; — 6;)
and sin(; — 6;) respectively, change sign — with attendant abrupt changes in the energy
expressions. For example, 6; — 6; > & for low B, it crosses 7 at f 2 0.24, and then
decreases sharply to ~ %JT near fs;; hence, sin(f; — 63) becomes positive for g > 0.24
and then increases precipitously near fs;, while cos(¢; — 83) becomes small. Similarly,
63 — 64 crosses m at B = 0.6 prior to dropping to ~ %JT at Bsp (not shown), and 6 — 65
does the same at 8 ~ 0.83 and fg3, respectively.

Thus, the answer to the existence of the jumps lies in the modal content of the flutter
mode and the phase differences between its component parts. Moreover, at each jump,
there is a transition zone in which three possible mixes of modes are feasible with different
uc 7, one low, one middle (unstable), and the other high (e.g. at s, for 0.65 < B < 0.69
approximately), but as § is increased sufficiently, only the one with the higher u.; survives.

As a cautionary note it should be mentioned that, in the foregoing, the travelling
wave component in the mode shape was ignored, whereas in reality (see Section 3.5.6)
0; = 6,(&) generally. Clearly, this also must play a role.

3.5.5 On destabilization by damping

To those with a structural mechanics background the very statement that dissipation, i.e.
energy loss, may make a stable system unstable might appear paradoxical. In gyrody-
namics, however, this effect has been known for a long time (Den Hartog 1956; Crandall
1995a,b) — certainly since Thomson (Lord Kelvin) and Tait demonstrated in 1879 that
damping in a ‘gyroscopic pendulum’ can be destabilizing. A gyroscopic pendulum is an
‘up-standing’, up-turned pendulum to which spin has been added so as to stabilize the
statically unstable system. Stability can nevertheless be destroyed if damping is added,
no matter what the spin-rate (Crandall 1995a)."

The effect is not surprising to fluid mechanicians either. For instance, they know of
Reynolds’ two hypotheses, formulated in 1883, stating that: (a) in some situations the
inviscid fluid may be unstable, while the viscous one is stable, so that the effect of
viscosity is purely stabilizing; (b) in other situations the inviscid fluid may be stable while
the viscous one unstable, indicating that viscosity is destabilizing (Drazin & Reid 1981;
Chapter 4). Examples may be found in shear flow instability (Tritton 1988; section 17.6),
arising in 2-D velocity profiles with a discontinuity (e.g. a jet or a wake) or in profiles
with no point of inflection (e.g. a pipe flow or a boundary layer with a favourable pres-
sure gradient). In the first type of flow, viscosity is primarily stabilizing, preventing the
Kelvin-Helmholtz* type instability at low Reynolds number (Re). In the second type
of flow this instability does not occur, but viscosity can cause instability of a different
kind. Viscosity now plays a dual role: stabilizing at low Re, but destabilizing at high Re.
In aeronautics the destabilizing effect of damping has been known for a long time, in
relation to aircraft flutter, and has been carefully studied (Broadbent & Williams 1956;
Done 1963; Nissim 1965); also, in satellite dynamics this untoward effect of dissipation is

Crandall shows that, although ordinary damping is always destabilizing, ‘rotating damping’ is not, thus
explaining how in practice such pendula are stabilized at high spin-rates.

*The Kelvin- Helmholtz instability is the premicr example of shear flow instability in profiles with a point of
inflection. It may be demonstrated theoretically by a fiow in which the upper half-plane has a uniform velocity
to the right, and the lower half-plane to the left. If waviness develops in the interface, the pressures generated
(via Bernoulli’s equation for inviscid flow) tend to exaggerate the waviness, leading to instability.
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now textbook material (Hughes 1986; Chapters 5 and 7). Nevertheless, for fluid-structure
interaction phenomena, destabilization by dissipation is sufficiently perplexing to deserve
further attention.

Several attempts have been made to understand the mechanism of destabilization. Of
these, Benjamin’s (1963) work, applying to all fluid-structure interaction systems, will be
discussed first, followed by that of Bolotin & Zhinzher (1969) and Semler et al. (1998).

An attempt to explain the phenomenon in simple terms was made by Benjamin (1963)
in connection with the stability of compliant surfaces in fluid flow. Specifically, consid-
ering a one-degree-of-freedom mechanical system, mg + c¢g + kg = Q, where Q = Mg +
Cg + Kq is associated with the fluid forces, and introducing the concept of an ‘activation
energy’, Benjamin shows that (i) if m > M and & > K, dissipation stabilizes the system
(class B instability), while (ii) if m < M and k < K, dissipation destabilizes it (class A
instability). Since —M is the added mass, M < 0 must hold for a physically meaningful
system, and hence the condition m < M is nonphysical. Benjamin recognized this and
so considered next an infinitely long compliant surface, disturbed by a sinusoidal wave
travelling along it. In this case, physically meaningful conditions are obtained for the exis-
tence of class A and B instabilities, once again with the aid of the activation energy [see
also Yeo & Dawling (1987)]; as before, these conditions are dependent on the fluid/solid
mass and stiffness ratios. This work is discussed in greater detail in Appendix C.

It was initially thought (Paidoussis 1969) that Benjamin’s work could explain both
dissipative destabilization and the stability curve jumps in the pipe problem. Certainly,
for B < Bs;. where B is the value for the first discontinuity, dissipation is stabilizing
(Figure 3.35) and for B > Bs; it is destabilizing. However, as seen in Figure 3.35,
dissipation continues to be destabilizing across the second discontinuity at Bs,. Hence,
Benjamin's work can only explain the destabilizing effect of damping for 8 > fs;. but
cannot explain the jumps themselves.

Another point of view was expressed by Bolotin & Zhinzher (1969), whose thesis
may be summarized as follows: the very statement that ‘damping is destabilizing’ in a
nonconservative system is flawed in that the analysis with zero damping gives a false
indication of the stability region, a portion of which, if the analysis is properly conducted
with some (even infinitesimally small) damping, is really unstable. Thus, the presence
of purely imaginary eigenvalues on the imaginary axis merely indicates ‘quasi-stability’
rather than stability. This work is very important and it can explain the dynamics for
B =0 and B = 0" discussed at the end of Section 3.5.3; see also Section 3.7. However,
it applies to nongyroscopic nonconservative systems and hence cannot help us, since the
instability here is via a classical Hopf rather than a Hamiltonian Hopf bifurcation. For the
pipe system, one not only obtains that nonzero dissipative forces are destabilizing vis-a-vis
the undamped system, but also that in some cases (e.g. Figure 3.35 for o = 0.23 and 1.42
and also Figure 3.43) increased dissipation further destabilizes the system. In this regard
the dynamical behaviour is more closely related to Benjamin’s system. Under conditions
where dissipation-induced destabilization occurs (class A instability), the system must be
allowed to do work against the external forces providing the excitation; i.e. the absolute
energy level of the whole system must be reduced in the process of creating a free
oscillation. The interested reader is also referred to Craik (1985) and Triantafyllou (1992)
for a discussion of ‘negative energy modes’, requiring an energy sink in order to be
excited.
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Figure 3.43 The stability diagram of u.s versus § of the horizontal cantilevered pipe, for progres-
sively higher values of the viscoelastic dissipation constant, & (Semler ef al. 1998).

The question of destabilization by damping according to the Semler et al. (1998) thesis
is considered next. It is recalled that, in viscoelastic or hysteretic damping, each general-
ized coordinate component, g,, is damped proportionately to A; so, the higher the value
of r, the more is the corresponding g, damped. Let us consider the first jump, at Bs;. The
effect of o % 0 is to damp g3 more than g, and g, and to effectively wipe out all the
higher components g, > ¢g3. Now, it is evident from Figure 3.40 that, when it comes into
play, g3 has a stabilizing effect on the system, as manifested by the increase in 4., at figy;
hence, its diminution by o means that the system is effectively destabilized. As a result,
this jump, which has been shown to be related to the emergence of g3, can be entirely
suppressed, as shown in Figure 3.43! One can similarly see how the other jumps can also
be suppressed. Looking again at Figures 3.41 and 3.42 (the dashed lines), it is seen that
both the amplitude ratios and phase differences of the g, are significantly affected. Thus,
it is seen that, with damping present, g3/g, and g,/q, increase more gradually with S
beyond Bs;. Also, some of the ‘saturation characteristics’ of the phase differences disap-
pear (e.g. for 63 — 6;), and both 6, — 6; and 6; — 6, vary more gradually — thus making
the discontinuous changes in u., with 8 unnecessary.

Another, physical way of looking at the problem is to realize that, in some circum-
stances, if the fluid pressure acting on an undamped oscillating body is completely in
phase with its acceleration (out of phase with the displacement), there can be no interac-
tion between fluid and solid. However, the introduction of dissipation in the solid would
produce a phase shift in its oscillation, thereby enabling the fluid to do work on the solid
or vice versa. In a situation where energy transfer occurs in any case, independently of
dissipation, as for the pipe conveying fluid, one can say that the phase shift may either
facilitate or hinder energy exchange, thus destabilizing or stabilizing the system as the
case may be.
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3.5.6 Experiments

The first set of experiments were conducted with horizontal cantilevers conveying air,
water or oil, with rubber pipes. in some cases fitted with end-nozzles, and metal pipes
(Paidoussis 1963; Gregory & Paidoussis 1966b). The apparatus for the experiments with
rubber pipes is shown in Figure 3.44; the same apparatus was used for experiments with
water flow (as shown) and with air flow (in which case a volumetric flow meter was
inserted in the supply line); in the latter case, the air pressure was sufficiently low for
compressibility effects to be neglected. The pipes were horizontal, hung from the ceiling
by thin threads, so that motions were in a horizontal plane. In experiments with metal
pipes, a different apparatus was used in basically the same arrangement, but the fluid was
oil supplied by a suitably modified variable-speed hydraulic pump capable of delivering
66 cm*/s (4in'/s) at up to 9.7 MPa (1400 psig).
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Figure 3.44 Schematic diagram of the apparatus used in Paidoussis’ experiments with horizontal
cantilevered rubber pipes conveying water or air; the apparatus for the metal pipe experiments was
similar (Gregory & Paidoussis 1966b).

The rubber pipes were either pure latex rubber or of the type known as surgical quality
rubber tubing; their inside diameter ranged from D; = 1.59 to 12.70 mm (11—6—% in), the

wall thickness from 4 = 0.79 to 3.18 mm (35~ in) and the length from 0.20 to 0.76 m.
Although the pipes were carefully selected for uniformity and freedom from kinks and
other flaws, all rubber pipes were found to have a permanent bow in one plane (cf.
Section 3.4.4), countered by using pipes which, when supported by the strings with the
bow in the vertical plane, would straighten out under their own weight together with that
of the contained fluid. The two metal pipes were specially manufactured, stress-relieved
and straightened by the suppliers. They were both of outer diameter D, = 1.59 mm and
1.98 m (78in) long; & = 0.152 and 0.193 mm. The supporting threads in this case were

6.1 m (20 ft) long.
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All measurements were straightforward, except perhaps the measurement of £/ for
rubber pipes, required in the determination of the dimensionless flow velocity, u. The
techniques utilized for this are summarized in Appendix D.

Some of the general observations on the dynamical behaviour of this system are worth
giving in some detail; they are similar to those made by other researchers in the experi-
ments to be discussed later.

Small flow velocities increased the damping of the system, and oscillations induced
by light taps close to the free end, which were still of the general shape of the first
cantilever mode, decayed much faster. At somewhat larger flow velocities the system
became overdamped and any displacement of the pipe was followed by a return to rest
without any oscillatory motion. In some cases physical contact of the free end of the
pipe with the hand, momentarily transforming the system to one supported at both ends,
caused the pipe to buckle by bowing out near the middle. When contact was broken
suddenly, the pipe returned rapidly to its position of rest, but when the hand was removed
only slowly, the pipe pressed against and followed the hand with the result that the
timid observer was soon faced with a stream of fluid directed against himself (or nearby
colleagues!) — this, as already remarked, being a demonstration of a negative-stiffness
(divergence) instability.

At still higher flow velocities, light taps resulted in heavily damped oscillation with
a form rather more like that of the second cantilever mode than the first. As the flow
velocity increased further, the system became less heavily damped until at a certain
critical velocity of flow the disturbance produced by lightly tapping the pipe grew into a
self-supporting oscillation. If no outside disturbance was introduced, the system eventually
became unstable spontaneously. This usually occurred at measurably higher flow velocities
than were sufficient for ‘induced’ instability to take place, particularly in the case of
rubber pipes. Further increase of the flow velocity beyond the stability limit resulted in
an increase in both the amplitude and frequency of oscillation.

When decreasing the flow velocity, it was noted that oscillation persisted below the
point where instability, spontaneous or ‘induced’, first occurred. This, and also the fact
that in some cases the onset of instability depended on the amplitude of the applied
disturbance, indicated that the experimental systems behaved in general nonlinearly.

The mode of deformation of the unstable system was recorded with a ciné-camera in
a few selected typical cases and a number of successive frames of the film are shown in
Figures 3.45(a-c). In general, for very small values of 8, the modal form was essentially
that of the first cantilever mode, with a small component of the second. For higher values
of B, the second cantilever mode became more prominent, and for 8 > 0.3 approximately
the third mode became apparent [e.g. sec frame 8 of Figurc 3.45(c)]. In all cases, the
tangent to the free end of the pipe sloped backwards to the direction of motion of the free
end over the greater part of a cycle of oscillation. This ‘dragging’ motion was predicted
to be necessary for flutter, in conjunction with the energy considerations of Section 3.2.2.

Indeed, all observations described are in agreement with the theoretical predictions
of Sections 3.5.1 and 3.5.2. However, two additional comments should be made. First,
the dynamical behaviour of the system is, to some extent, nonlinear — as noted
above — suggesting that the Hopf bifurcation is subcritical. Second, according to linear
theory, once instability is developed, the amplitude should increase without limit; of
course, once the amplitude becomes large, nonlinear forces come into play, and in this
case evidently their net effect is to limit the amplitude, thereby establishing a limit cycle.
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Figure 3.45 Ciné-film sequences showing the limit-cycle motion of cantilevered rubber pipes

conveying fluid: (a) air, L = 457 mm, frequency (f) = 1.56 Hz, 8 = 0.001; (b) water, L = 551 mm,

f =3.25Hz, 8 = 0.479; (c) water, L = 724 mm, f = 1.82Hz, 8 = 0.556. The camera was located

upstream and above the horizontal pipe; the straight black line (drawn on a board just below the
flexible pipe) shows the equilibrium position of the pipe.

The limit-cycle amplitude of the free end at the onset of the flutter could be as large as
%L for the rubber pipes, but less than %L for the metal pipes.

The dimensionless critical flow velocities, u.,, and frequencies, w.y, are shown in
Figure 3.46 for rubber pipes. Two sets of experimental points are presented: those of
spontaneous instability and those of ‘induced instability’ — induced by the light taps on
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Figure 3.45 (continued).

the pipe referred to above. The data points within each set for the same value of § represent
experiments with different lengths of the same pipe; experiments were conducted with a
given initial length, subsequently shortened in steps by cutting off pieces of the pipe. The
internal (material) damping used in the theory is an average for all the experiments, but
nevertheless taking it into account improves agreement between theory and experiment,
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Figure 3.45 (continued).

as compared to theoretical results with zero damping [shown in Gregory & Paidoussis
(1966b)]. In general, agreement is reasonable; it would have been better if the damping
corresponding to each different pipe had been used (Appendix D).

For experiments with nozzles, a latex pipe 12.70 mm inside diameter and approximately
0.508 m long was used. The nozzles were machined in Perspex (Plexiglas) cylinders,
6.35mm long and 12.70 mm in diameter, which were glued to the inside of the free end
of the pipe with soluble glue. The nozzle cross-section converged smoothly over half the
length from the diameter of 12.70 mm to the required exit diameter, which varied from
3.18 to 9.13mm. After each test, the glue was dissolved and a new nozzle was inserted.
The original B (without a nozzle) was B ~ 0.56, and six experiments were conducted
with nozzles in the range of B2~ 0.03-0.30 [cf. equations (3.74)]. Experimental data
are compared with theory in Gregory & Paidoussis (1966b); the degree of agreement is
similar to that in Figure 3.46, but a little worse, possibly as a result of changes in the
pipe cross-section due to pressurization of the pipe because of the constriction introduced
by the end-nozzle.

The experimental data for the two experiments with metal pipes are compared with
theory in Figure 3.47. The experimental values of u.r corresponding to § =0.111 and
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Figure 3.46 Comparison of the experimental values of u., and w., for cantilevered rubber

pipes with the theory taking into account internal (hysteretic) damping in the pipe material:
e, measurements for spontaneous instability; +, measurements for ‘induced’ instability; ,
theoretical curves for hysteretic damping coefficient u = 0.065 (Gregory & Paidoussis 1966b).

0.170 are respectively 9% and 12% below the theoretical values. In this case damping is
ignored, because it is quite small. The discrepancy between theory and experiment is likely
caused by variations in the effective density and viscosity of the oil with pressure and
temperature, as well as cavitation effects, all of which would generate a nonuniform flow
velocity along the pipe. Nevertheless, the most significant point about these experiments
is that they substantiate the theoretical prediction that frictional forces associated with
pressure drop — even when of the order of 8.3 MPa (1200psig) — do not affect the
dynamics in any important way, as predicted in Section 3.3.4.

In Figure 3.46, noting that the values of u.; for induced instability are generally
substantially below those for spontaneous instability, it is tempting to conclude that
the Hopf bifurcation is subcritical in all cases (see Section 2.3). However, as there was
essentially no difference between spontancous and induced instability thresholds in the
case of metal pipes, this was thought to be related perhaps to the difference in material.
Indeed, there is a property of carbon-black-‘filled’ rubbers known as ‘stress softening’,
but latex rubbers should be free of that. As shown in Chapter 5, the difference may be
related to the different ranges of L/D; involved: subcritical Hopf bifurcation for relatively
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Figure 3.47 Comparison of the experimental values of 1., and w., for cantilevered metal pipes:
A, measurements; ——, theory (Paidoussis 1963).

short pipes (L/D; >~ 36-350 for the rubber pipes) and supercritical Hopf bifurcation for
long pipes (L/D; ~ 1545-1650 for the metal pipes).

Chronologically, the second set of experiments was conducted by Greenwald &
Dugundji (1967) — see also Section 3.4.4. They conducted experiments with three
elastomer pipes (D, = 3.00-4.75 mm, 7 = 0.86-1.50 mm). The pipes were hung vertically
and clamped at their upper end. The authors have made similar general observations
to those discussed in the foregoing. A very nice photograph is shown in Figure 3.48,
corresponding to a pipe with 8 = 0.471, which shows more clearly than Figure 3.45(a-c)
the nonstationarity of the modes and the travelling wave component in the mode shapes.
The measured critical flow velocities are compared with theory in Table 3.3. It is seen
that agreement is at least as good as in Figure 3.46 when viscoelastic damping is taken
into account. In the theory the authors neglected gravity; this is reasonable: from their
data one finds y = 1.68-2.89, which results in theoretical values of u., higher than those
in Table 3.3 by less than 2%.

A more extensive set of experiments was conducted by Paidoussis (1970) with vertical
pipes, either hanging or standing. This is the first instance when such pipes were cast
by the researcher, and this allowed the manufacture of truly straight pipes for the first
time, thus facilitating the experiments a great deal — not only for pipes conveying fluid,
but also for experiments with shells and cylinders. The ‘manufacturing techniques’ are
outlined in Appendix D.

The general observations of the dynamical behaviour of hanging pipes are much as
described before and need not be repeated here. However, two additional points are useful
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Figure 3.48 Photograph of a fluttering vertical pipe (pipe #3) from the experiments by Greenwald
& Dugundji (1967). The arrow shows the end of the pipe; what is seen below that point is the free
water jet.

Table 3.3 Comparison between the experimental and theoretical
values of u.; from Greenwald & Dugundji’s (1967) experiments;
the values have been scaled from their figure 13a.

B Values of u.s
Theory Experiment Theory
(no damping) (with damping)
0.342 8.48 6.85 7.50
0.471 9.15 8.30 8.10
0.500 9.32 9.55 8.30

to make. The first is that, before the occurrence of flutter, in some cases, small movements
of the cantilever away from its vertical position of rest were observed with increasing
flow. These movements developed gradually with flow and never exceeded 6 mm (1-2%
of the length); they could be made to vanish by suitable, slight circumferential adjustments
of the tubular cantilever at its upstream support. Clearly, these could not be construed to
be a buckling instability. They must be interpreted as ‘localized’ buckling resulting from
small nonuniformities in the cantilever, or due to release of strains imposed by imperfect
circumferential support at the clamped end. Similar occurrences of localized buckling
were observed in experiments with horizontal cantilevers, and by Benjamin (1961b) in
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his experiments with articulated pipes. It is of interest that, if the tubular cantilever
is initially (i.e. at zero flow) not substantially straight, flow can produce large lateral
movements which are much larger than the initial departures from straightness. This can
be observed by conducting an experiment using as the cantilever a piece of commercial
rubber tubing, which normally has a set bow in it. Flow exaggerates the original bow, the
shape of the tube continually changing with increasing flow velocity. Clearly, this could
be misinterpreted as buckling of a straight pipe.

The second point of interest is that, in some of these experiments, it was possible to
demonstrate the nonlinear dynamical behaviour displayed in Figures 2.12 and 2.13 about
the origin. Over a very small range of flow velocities, it was found that: (i) weak taps to the
pipe caused it to oscillate, but the oscillation decayed and the pipe returned to its equilib-
rium state; (ii) stronger taps induced the system to develop limit-cycle oscillation — thus
demonstrating the existence of a small unstable limit cycle and a larger stable one.

Several experiments were conducted with different lengths (different y) of a number of
pipes with varying B. The pipes were all with D, = 15.5mm and A = 2.79-9.14 mm; the
initial length was ~ 480 mm and experiments were conducted with L = 230-480 mm.
Two different materials were used, Silastic A and Silastic B (Appendix D), the latter
having a larger £ and higher damping. In comparing with theory, the dissipation was
modelled as a hysteretic effect, and average values were used: u = 0.02 for Silastic A
and p = 0.10 for Silastic B.

Typical results for the experimental u.s and w.y for spontaneous flutter of hanging
cantilevers (y > 0) are shown in Figures 3.49 and 3.50 for water flow and Table 3.4
for air flow, where they are compared with theory. It is clear that agreement between
theory and experiment is reasonably good, especially when dissipation is taken into
account. It is interesting that in some cases the measurements provide indirect experi-
mental support to the theoretical prediction that damping may destabilize the system (e.g.
for B =0.241, y >~ 16 and for B = 0.645, y =~ 8.6).

In assessing agreement between theory and experiment, greater weight should be placed
on the critical flow velocity than on the critical frequency, as the latter is measured after the
limit cycle has been established, when nonlinear forces not taken into account in the theory
have already come into play. Accordingly, the fact that taking into account dissipation
seems to worsen agreement in the frequency between theory and experiment. in nearly
all cases, cannot be interpreted as a weakness of the theory; rather, it should be viewed
as being symptomatic of the limitations in the experimental procedure (in identifying the
limit-cycle frequency with w,.r).

As already remarked in Section 3.5.2, the impetus for these experiments was partly
provided by Benjamin's (1961a,b) findings in connection with dynamical behaviour of
articulated pipes conveying fluid. Benjamin found that divergence is sometimes possible
in cases of vertically hanging articulated cantilevers conveying water; yet it does not occur
if the conveyed fluid is air, the only form of instability possible in that case being flutter.
However, in the case of continuous (hanging) cantilevers, it was found that divergence
is not possible ar all whatever the fluid conveyed, only flutter. This matter is clarified in
Section 3.8.

We next consider the experiments with standing cantilevers conveying air only, for
obvious reasons. The dynamical behaviour of the system was of three distinct types,
which for ease of description will be categorized as applying to long. intermediate and
short cantilevers.
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Figure 3.49 Comparison between theoretical and experimental values of u.; and w, s for a number

of vertical (hanging) cantilevered pipes conveying water with different 8 and lengths thereof

(different y): for 0.130 < 8 < 0.241: o, experiment; , theory with no damping; —— -, theory

with damping (¢ = 0.02 for Silastic type A rubber; x = 0.10 for Silastic type B); (Paidoussis
1970).

Long cantilevers were buckled under their own weight at zero flow velocity. The
dynamical behaviour of the system was assessed by supporting the cantilever by hand in
its unflexed shape, while the flow was incremented, and then releasing it. Long cantilevers
(y < —23) were unstable at all flow velocities. At low flows a long cantilever continued
to be unstable by buckling; at higher flow velocities, oscillations were superposed on
buckling, resulting in an erratic, thrashing motion.

Short cantilevers (y > —8 approximately) did not buckle under their own weight at zero
flow. Their behaviour with increasing flow was essentially as for hanging cantilevers; the
system remained stable with increasing flow until, at a sufficiently high flow velocity,
flutter developed spontaneously.
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Figure 3.50 Continuation of the comparison as in Figure 3.49, for pipes with 8 =0.485 and
0.645 (Paidoussis 1970).

Table 3.4 Comparison of experimental results with theory for hanging cantilevers conveying air
(Paidoussis 1970).

B x 10° v Values of i, s Values of o,
Theory Exp’t Theory Theory Exp't Theory
wu=0 w=0.02 =0 w=0.02
0.23 61.1 6.15 6.33 6.33 21.3 18.0 19.7
2.03 424 5.62 6.05 5.79 19.5 19.5 18.1

Cantilevers of intermediate length, while unstable by buckling at zero and small flow
velocities, were stable at a higher flow range. Thus, if the cantilever was supported
and the flow increased to a certain point, upon release the cantilever retained its straight.
undeformed shape. Further increase of flow, nevertheless, eventually resulted in the devel-
opment of oscillatory instability.

Clearly these observations agree with the theoretically predicted behaviour of standing
cantilevers. if one interprets increasing length as increasing negative y.

Experimental results for standing cantilevers are shown. and compared with theory (8 =
1.1 x 1073, ;2 = 0.02), in Figure 3.51. It is noted that measurements with y < —22.8
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Figure 3.51 Comparison between theoretical and experimental values of « for (i) the threshold of
restabilization of pipes buckled under their own weight and (ii) onset of flutter of ‘standing’ vertical
cantilevers conveying air (8 = 1.1 x 107%): o, e, experiment; , theory (Paidoussis 1970).

approximately were not feasible, as the system then remained unstable at all flows; the
transition from instability by divergence to instability involving both divergence and
flutter proved to be very difficult to pin-point. It is also noted that the theoretical results
in Figure 3.51 are quite different, for the given 8 and w, from those in Figure 3.33 for
B = 0%, =0 — for the reasons discussed at the end of Section 3.5.3.

It is seen in Figure 3.51 that agreement between experiment and theory is quite good,
particularly in the case of the dimensionless flow velocities, where in most cases the
discrepancy is < 5%, which is within the margin of experimental error. It is also remarked
that, in this particular case, linear theory can predict the restabilization and second loss
of stability of an initially unstable system quite well,’

TProvided that the system is first supported in more or less its equilibrium configuration and then released.
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A successful experiment with a metal pipe was also conducted by Liu & Mote (1974)
with their apparatus, described in Section 3.4.4. They used an end-nozzle, so as to
reduce the effective B and achieve flutter with the available maximum flow rate (see
Section 3.3.5); o; = A/A;, the ratio of pipe flow area to terminal flow area, was 2.42.
They obtained good agreement between the theoretical and experimental values of w,y:
2.89 and 3.27, respectively, as well as between the theoretical and experimental frequency
versus flow curves, as shown in Figure 3.52. In the absence of the nozzle, the agreement
in frequency was less good, because the pipe was less straight. However, this is the
second instance where the pressure drop in the pipe was very large, ~ 3-10MPa, yet the
dynamics was essentially unaffected by it.

1.07 T
_— 3rd mode
0.8 —
= Theory & —
= 06 experiment 1
= 5 1
$
& 041 -
0.2 -
- -
0 : 1 | | I |
0 0.17 033 0.50 0.66 0.83 1.0 1.47

ulm

Figure 3.52 Variation of the second- and third-mode eigenfrequencies with increasing « for a
metal cantilevered pipe conveying fluid. Experimental/theoretical reference frequencies (at u = 0):
Pre($2)y = 8.0/8.0Hz for the second mode and 25.5/21.7 Hz for the third (Liu & Mote 1974).

An important theoretical and experimental study, mainly on forced vibrations of vertical
cantilevered pipes conveying fluid (see Section 4.6), was conducted by Bishop & Fawzy
(1976). They also examined the free vibration characteristics, and a few words about
that will be said here. The experiments were with surgical quality silicone rubber pipes
conveying water. The authors studied extensively the static distortion from the stretched-
straight state that they observed in their experiments and its evolution with flow. They
concluded that it was due to lack of perfect straightness and residual internal stresses
related to the manufacturing process, and not an instability (divergence) — in agreement
with previous studies — even though some other researchers later misinterpreted this
finding. Their experimental data and degree of agreement with theory were similar to
those reported already. A typical set is shown in Figure 3.53 for experiments without
(aj = A/A; = 1) and with end-nozzles («; = 1.5 and 2.49).

A simple but ingenious experiment was conducted by Becker er al. (1978) using
drinking straws (of unspecified material) as pipes and air flow. The supported end
was attached onto weighing scales and the flow-rate was determined from the reaction
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100 200

Figure 3.53 Theoretical and experimental values of u., for experiments with a vertical

cantilevered rubber pipe conveying water (8 = 0.622), fitted with different ¢nd-nozzles (different

«; = A/A;): curves with data points, experiments; curves without, theory. Dissipation modelled by

viscoelastic model: « = 0.003, 0.0025 and 0.002 for «; = 1, 1.5 and 2.49, respectively (Bishop &
Fawzy 1976).

exerted thereon. The measured dimensionless critical flow velocity was found to be
ucy = 4.45 (U ~ 150 m/s), which is within 6% of the theoretical.

An extensive experimental programme (see Section 3.6) was undertaken by
Jendrzejczyk & Chen (1985) and Chen & Jendrzejczyk (1985). They conducted two
experiments with polyethylene cantilevered pipes (D, = 9.5 and 12.7mm, £ = 1.59 mm
and . = 609.6 mm) mounted vertically and conveying water. They obtained excellent
agreement between theory and experiment, as illustrated by Table 3.5. The r.m.s.

Table 3.5 Jendrzejczyk & Chen’s (1985) results for cantilevered polyethylene
pipes conveying water.

Test no. Uy (mfs) 2.5 /27 (Hz)

Theory Experiment Theory Experiment

1 25.0 249 12.9 12.0
2 30.7 314 16.0 14.5

—
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amplitudes in two perpendicular planes are substantially equal over the whole flow range,
as shown in Figure 3.54(a); this indicates that the plane of oscillation is not far from 45°
to the two measurement planes — although, due to imperfections, the oscillation plane
changed slightly with U. The power spectral densities (PSDs) at U < U, are shown in
Figure 3.54(b). 1t is seen that for low flow velocities the response of the pipe to flow
turbulence is broad-banded; however, as U, is approached, the peak associated in this
case with the second-mode frequency becomes dominant. There is an apparent discrepancy
between the dominant frequency in Figure 3.54(b) for U = 30.24 m/s, a little before the
onset of flutter, and the flutter frequency in Table 3.5, Test 1.2, at U = 31.4m/s. This
however, is explained by the fact that the establishment of the limit cycle (of amplitude
> %L) is in this case accompanied by a drastic increase in frequency (Chen 1995), already
referred to qualitatively in the foregoing.

An important set of experimental results on the onset of flutter and the evolution of
limit-cycle oscillations was generated with a slightly longer sample of the smaller pipe
(B~ 045, L = 685.8mm, L/D, = 720). In Figure 3.55(a), the data correspond to flutter
induced by perturbing the pipe, while in (b) they correspond to spontaneously developed
flutter. It is seen that, if the system is perturbed, the critical flow velocity is U, 2 22.3 and
the initial limit-cycle amplitude is A/D, >~ 0.2;" also, there is essentially no hysteresis (i.e.

U (ftfs)
0 20 40 60 80
4 T T T T
U =18.99m/s
g
X
g U =2420m/s
53
: -
Z
E
b
£
-
U=3024m/s
0 1 ! ] [ . I .
0 5 10 15 20 25 30 0 10 20 30 40
(a) U (m/s) (b) Frequency (Hz)

Figure 3.54 (a) The r.m.s. vibration amplitude of the pipe free end in two mutually perpendicular

directions (o and A) versus flow velocity for a vertical polyethylene pipe conveying water (Test

1.1); (b) PSDs from another pipe (Test 1.2) at three different flow velocities (Jendrzejczyk & Chen
1985).

*in this, A was measured at an unspecified point x < L; hence the apparent discrepancy between A 2 0.2D,
here and the statement in the previous paragraph, pertaining to x = L, that A >~ 0.2L (Chen 1995).
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Figure 3.55 Limit-cycle amplitudes of a cantilevered pipe versus U: (a) for flutter excited by

an external disturbance, (b) for spontaneously excited flutter. Region S corresponds to the stable

region: region D.E.F. to disturbance-excited flutter; Region S.E.F. to spontaneously excited flutter;

region H corresponds to the hysteresis region as U is decreased; e, increasing flow; o, decreasing
flow (Chen & Jendrzejczyk 1985).

no difference between amplitudes for increasing and decreasing U). For spontaneously
excited flutter, however, U,y >~ 23.8 and A/D, ~ 0.6 at the onset; furthermore, there is a
great deal of hysteresis. These results, taken together, suggest that the Hopf bifurcation
in this case is subcritical [Figure 2.11(d)]; this gives quantitative substance to the earlier
observations made by Paidoussis and discussed in conjunction with Figures 3.46 and 3.47.

The overall assessment is that the main features of the linear, free dynamics of this
system have adequately been confirmed by experiment; this successful testing of theory
is reinforced by some of the experiments described in Section 3.6.
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3.5.7 The effect of an elastic foundation

Interest in the subject arises, in part, because of Smith & Herrmann’s (1972) unexpected
finding that for a cantilevered beam with a follower load the critical load (for coupled-
mode flutter) is independent of the foundation modulus. This corresponds to the pipe
system with g = 0.

For the pipe conveying fluid (8 # 0), however, the effect of an elastic foundation is
stabilizing, as shown by Lottati & Kornecki (1986), Figure 3.56. Thus, like gravity, the
foundation provides an additional restoring force, which stabilizes the system.” The effect
of foundation damping may be assessed from Figure 3.36, where the viscous damping may
be considered to be associated with the foundation: thus, for high enough B, foundation
damping is expected to be destabilizing.

26 T T T T

Hey

Approximate -
solution

(%]
T
1

{ i L i
0.0 0.20 0.40 0.60 0.80 1.00
B

Figure 3.56 The effect of an elastic foundation with k = 100 on u,.; for the undamped cantilevered
pipe (Lottati & Kornecki 1986).

Becker ef al. (1978) studied the effect of a so-called Pasternak-type rotary foundation.
in which the additional term —c(8>w/dx?) appears in the equation of motion. where c is
the modulus of the rotary foundation — or the stiffness of distributed rotational springs

tBecker ef al. (1978) obtain some results in which increasing & from zero to 10 is stabilizing, while further
increasing it to 50 is slightly destabilizing, by less than 0.5%. However, these results are for g = 107" and
may be peculiar because of that — see discussion at the end of Section 3.5.3.
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along the length of the pipe; a corresponding term appears in the shear boundary condition
at the clamped end. The new term in the equation of motion opposes the centrifugal term,
U?(2*w/dx?), and this generates a strong stabilizing effect. Adding foundation damping
in this case is destabilizing, although these results were confined to g = 10~ only, and
hence should not be considered as general.

All the foregoing apply to uniform foundations. Unusual behaviour may be expected
for nonuniform ones, however, in view of Hauger & Vetter’s (1976) results for the system
with the follower load (pipe with B = 0) and k = k(&). Thus, if k() is zero at £ = 0 and
1 and triangularly distributed in-between, with a maximum at & = &,, of kn, then the
effect is destabilizing for all 4,,,x. The opposite is true if £k =0 at & =&, and kg, at
E=0and 1.

3.5.8 Effects of tension and refined fluid mechanics modelling

The system shown in Figure 3.57(a) was studied by Guran & Plaut (1994), in which
the compression P is conservative, i.e. it is constant and remains along the undeformed
axis of the pipe. The equation of motion is equation (3.98) with p =0 and T = —P,
or I' = —% in dimensionless form, where ® = P L?/EI. The boundary conditions, in
addition to (0, t) = 0 and (3°n/0£%)|;= = 0 are

Fn L0 Fn o0
0 atE=0 and 8$3+@8£§_0 at £ =1, (3.110)

where k™ = CL/EI. Clearly, in the limit of «* = co the pipe becomes cantilevered.

Typical results for «* = oo are shown in Figure 3.57(b), and it is clear that they are
similar to those of Figure 3.33. Indeed, the physical systems are similar: in the case of
Figure 3.33 the pipe is subjected to conservative gravity-induced distributed compression,
but in this case to conservative uniform compression along the length.

Results for «* 5 oo are similar. The influence of «* on stability is given in graph-
ical form, for both divergence and flutter, in Guran & Plaut (1994). The condition for
divergence is

oer T T

u2+@cosv—(v@//<*)sinv=0. v=Vul+P, 3.111)

As suggested by Figure 3.57(b) and as may be verified numerically with
equation (3.111), if the system is subjected to conservative tension it cannot lose stability
by divergence, but only by flutter.

The effect of the small tension induced by the presence of a terminal nozzle on a
cantilevered pipe — refer to the discussion associated with equations (3.40)-(3.42) — was
taken into account by Bishop & Fawzy (1976), who found

Ty = iMU%a; - 1)° (3.112)

by taking a force balance across the nozzle, where o; = A/A; is the ratio of pipe flow area
to nozzle terminal flow area. This tension was neglected in the theoretical calculations
to which the experiments of Gregory & Paidoussis (1966b) were compared. As seen
in (3.112) this is not necessarily negligible for «; substantially different from 1; it is
properly taken into account in the comparison in Figure 3.53. A more refined treatment,
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Figure 3.57 (a) Schematic of a pipe supported by a rotational spring of stiffness C at one end
and free at the other, conveying fluid and simultaneously subjected to a conservative compression
force, P; (b) stability diagram for the case C = 0o (k* = 00) (Guran & Plaut 1994),

taking into account the vena contracta that may arise beyond the free end, as well as
frictional effects in the nozzle and air resistance, is given by llgamov et al. (1994).

In all of the foregoing it has tacitly been assumed that the jet issuing from the free
end does not play any part in the dynamics of the system. This, despite the fact that the
inverse is obviously untrue: as seen in some of the photographs of Figure 3.45(b) and in
Figure 3.48, the jet continues the sinuous motion of the pipe well downstream of the free
end before it breaks up. However, it may easily be confirmed experimentally that gross
static or dynamic disturbances to the jet by the insertion of obstacles relatively close to
the free end do not appear to have any significant effect on the dynamics of the pipe. It
is partly thanks to this observation that it has implicitly been accepted that there exists
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a ‘point relationship’ between the fluid-dynamic force acting on the pipe at a particular
point and the deflection at that point, resulting in equations (3.32) and (3.28) for instance.
This makes the analysis much easier than if an ‘integral relationship’ were necessary,
requiring, for instance, knowledge of the relationship between the unsteady pressure and
streamwise position all along and beyond the end of the pipe for the force at any point x
to be specified.

However, there is no guarantee in all of this that for sufficiently short pipes the jet
behaviour beyond x = L will not influence the dynamics of the pipe, or that this will
be so in the case of shell motions. Furthermore, in some analyses, notably for short
pipes and shell motions [Section 4.4 and Chapter 7], (i) three-dimensional potential flow
theory is used for the formulation of the fluid-dynamic forces, which means that they are
determined via integration of the unsteady pressure around the pipe circumference, and
(ii) the generalized-fluid-dynamic-force Fourier-transform technique is employed which
does require knowledge of the jet behaviour sufficiently far downstream of the free
end — sufficiently far for the perturbation pressure to vanish; this, in effect, amounts to
the specification of a downstream boundary condition for the fluid. As a result, a number
of so-called outflow models have been proposed, starting with Shayo & Ellen (1978).

In most of these models (Shayo & Ellen 1978; Paidoussis ez al. 1986, 1991b; Nguyen
et al. 1993) the manner in which jet oscillations decay to zero is prescribed, based on
more or less reasonable assumptions. A more physical approach, in which the dynamics
of the free jet issuing from a vertical pipe with a terminal nozzle are coupled into the
overall analysis, is adopted by Ilgamov et al. (1994).

Here some results obtained by Shayo & Ellen (1978) are presented, while other outflow
models are discussed in Section 4.4 and Chapter 7. Shayo & Ellen proposed two such
models. In the first, the so-called ‘collector pipe model’, it is supposed that there exists
a collector pipe which is actuated by a sensor, so that its deflection matches that of the
pipe outlet without touching it; the collector swallows up the fluid and discharges it at its
other end, which is anchored on the undeformed x-axis, some distance downstream. 1n the
analysis, the following extension to the cantilevered beam eigenfunctions ¢;(£), utilized
as comparison functions, is introduced to describe the behaviour of the fluid for & > 1:

e JOeiDU=§/0=1, 1<&<l
8i) = {0, Eoll

where [ is chosen sufficiently large in the numerical calculations such that changes in its
value have no effect on the fluid forces calculated. Thus, in this model it is presumed
that the deflection dies out linearly to zero in a dimensional distance (I — 1)L, L being
the length of the pipe. In the second, so-called ‘free-flow model’, it is supposed that the
sinuous deflections persist in the fluid beyond & = 1, such that

gi(®) = ¢;(1)exp [iwL(E — 1)/U]. (3.114)

Shayo & Ellen were concerned mostly with shell oscillations, but they also conducted
calculations for beam-mode instabilities, albeit via the more complex three-dimensional
potential flow theory (see Section 4.4.3 and Chapter 7) and shell theory for the pipe,
instead of the simpler plug-flow Euler-Bernoulli beam theory. However, as shown by
Paidoussis (1975) and discussed in Chapter 7, the results of the two theories converge
for thin-walled slender pipes. Here, some of Shayo & Ellen’s results are presented in
Table 3.6, in terms of U = U/{E/ps(1 — v?*)}!/2 for the given h/a and T = pa/psh, where

(3.113)
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Table 3.6 Values of the dimensionless critical flow velocity for flutter,

Uy, for various L/a and h/a = 0.0227, 7 = 0.06 and v = 0.5 (Shayo

& Ellen 1978).
L/a ‘Collector pipe’ ‘Free-flow’ ‘Long pipe’
model model model
5 1.70 1.66 1.40
10 1.23 1.25 1.20
15 0.94 0.96 0.93
20 0.75 0.76 0.74

h is the wall thickness, a the internal radius, p, the pipe wall density, v the Poisson ratio,
and the other symbols as before. These parameters are more appropriate for the analysis
of shells than, say, B and u as used in the foregoing. The results for U, obtained with
these two outflow models are compared with those of the ‘long pipe model’. in which
the behaviour of the flow beyond & =1 is ignored and the ‘point relationship’ between
force and displacement {equation (3.28)] is utilized, as in most of the foregoing. It is seen
that the results for length-to-radius ratio L/a > 10 are sensibly the same. Hence it must
be concluded that, unless the pipe is very short, the use of a refined 3-D fluid dynamic
model for the unsteady flow in the pipe, coupled with an outflow model, is not warranted.
On the other hand, for very short pipes, L/a ~ O(5), the Euler-Bernoulli theory ceases
being applicable and Timoshenko beam theory should be used instead. For this reason
further discussion is deferred to Section 4.4.

3.6 SYSTEMS WITH ADDED SPRINGS, SUPPORTS, MASSES
AND OTHER MODIFICATIONS

There has been a truly amazing array of studies of modified forms of the basic system
discussed so far: e.g. cantilevers with one or more added masses at different locations, with
intermediate supports, with different types of spring supports added at various locations,
and so on. Some of these studies have been motivated by the interesting results obtained
in similarly modified structural systems, notably columns subjected to follower loads;
some by similarity to real physical systems; most, however, by pure curiosity: by the
desire to know what the dynamical behaviour might be if this or that modification were
introduced.

Since the analysis and dynamics of the basic systems have been discussed thoroughly in
the foregoing, the treatment here will be more compact, concentrating on the differences
vis-a-vis what has been described in Sections 3.2-3.5.

3.6.1 Pipes supported at £t =1/L <1

The system consists of a cantilevered pipe with an intermediate simple support, i.e. a
support at £ = & =1/L < |, where £ = x/L and L is the overall pipe length, as shown
in Figure 3.58(a). One would expect, therefore, the system tu behave like a simple
cantilevered pipe conveying fluid if //L is sufficiently small, and like one with the two
ends supported as //L — 1. This problem has been thoroughly studied, theoretically
and experimentally, by Chen & Jendrzejczyk (1985), Edelstein & Chen (1985) and
Jendrzejczyk & Chen (1985).
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Figure 3.58 (a) Schematic of a pipe fixed at the upstream end and with a simple support at

& = I/L; (b) qualitative stability diagram, showing the dimensionless flow velocities u versus {/L

and the definition of [./L; u.s and u., are the dimensionless critical flow velocities for divergence
and flutter, respectively (Chen & Jendrzejczyk 1985).

The domain of the problem % = [0, 1] is broken into two, § = {0, &] and &, = [0,
1 — & with & = [/L, wherein the dimensionless displacements of the pipe are 7; and
2, respectively. The equations of motion are then given by

Fni |, Pm 2 ni 0%y
+ ' 2 /2, L) =0, '21’2, 3.11
et e TP e T : (3.113)

cf. equation (3.1); the dimensionless quantities are the same as before, based on the overall
length L. The boundary conditions are

a
m(, 1) = % (0, 7) = (&, 7) =0,
3

02 _m -
8—5%(1 —&, 0= 8—5%(] —&,70=0.

(3.116)
n2(0,7) =
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The system is completed by the compatibility conditions at &, = &; (or & = 0), imposing
the continuity of slope and bending moment at the pinned support:

3 3 ¥

M e y=22 0, 1), 7

m _m
0§ o0& 3&-% G0 = 35% 0, ). 3.117)

Solutions are obtainable via an obvious extension of the method of Section 3.3.6(a).
eventually leading to an 8 x 8 determinant, in place of (3.84), which now is a function
of & also (Chen & Jendrzejczyk 1985).

The qualitative dynamics of the system is illustrated in Figure 3.58(b). For I/L <
I./L, I, being a critical value depending on B, the system loses stability by flutter at a
progressively higher flow velocity as /L is increased, as compared to [/L =0 which
corresponds to the basic cantilevered system; theoretically at least, the system is also
subject to divergence at higher flow velocity. For I/L > [./L, the system loses stability
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Figure 3.59 (a) Time histories of oscillation of a cantilevered pipe (8 = 0.48) with an additional

simple support at I/L = 0.25, at various flow velocities: (i) Om/s; (ii) 6.6 m/s; (iii) 19.0 m/s:

(iv) 24.2m/s; (v) 25.2m/s; (vi) 26.5m/s (Chen & Jendrzejczyk 1985). (b) The precipitously

decreasing modal damping, £, towards zero as U., is approached for a similarly supported

pipe (B =0.45) and different values of [/L:e,[/L=0;A,1/L=0.120: W, /L =0.194; o,
[/L = 0.266 (Jendrzejczyk & Chen 1985).



156 SLENDER STRUCTURES AND AXIAL FLOW

by divergence, much as a clamped-pinned system would, but is also subject to flutter
at higher flow (generally single-mode flutter, not as the conservative system would).
Finally, for //L = 1./L the two critical flow velocities become coincident and Chen &
Jendrzejczyk conjecture that this may lead to chaos (see Chapter 5).

The experiments were conducted with polyethylene pipes (D, = 9.5 and 12.7 mm, wall
thickness £ = 1.59mm, L = 685.8 mm) with a ring-type knife edge support at varying
values of [/L. The corresponding values of 8 were 0.48 and 0.60 approximately, while
y =~ 2 was sufficiently small for gravity effects to be neglected.

A great deal of high-quality data was obtained. Examples are shown in Figures 3.59
and 3.60. Some sample time traces for a pipe with //L = 0.25 ({./L 2~ 0.35 in this case)
are shown in Figure 3.59(a) and display dynamical behaviour similar to that of a simple
cantilevered pipe as U is increased: (i) underdamped, (ii) and (iii) overdamped, (iv) again
underdamped, (v) limit-cycle oscillation and (vi) larger amplitude limit-cycle oscillation.
The oscillation in (i)-(v) was excited by perturbing the pipe, whereas in (vi) it developed
spontaneously. Measurements of the modal damping ratio on a nominally identical pipe
(but with 8 = 0.45) for varying //L, shown in Figure 3.59(b), document its precipitous
reduction as U, is approached.

40

30

>3
(=

Critical flow velocity, u, o uy

)

L

Figure 3.60 The critical flow velocities, u, or u.s, for a pipe clamped at £ =0 and simply

supported at £ = /L. Theoretical boundaries: 1111 for divergence; — -— for flutter. Experimental

data: e, divergence; o, flutter induced by external disturbance; A, spontaneous flutter (Chen &
Jendrzejczyk 1985).
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Finally, //L was varied systematically and the critical flow velocities for flutter or
divergence was obtained and plotted versus //L, as illustrated in Figure 3.60, where they
are compared with theoretical results (apparently with dissipative forces ignored). It is
seen that theory and experiment are in excellent agreement.

It is of interest that if the system lost stability by divergence, then, provided //L was
close to [./L [Figure 3.58(b)], flutter about the buckled state was observed to occur. On
the other hand, if stability was lost by flutter, limit-cycle oscillation persisted at higher
flows, ‘and the tube does not buckle’; but it is not clear whether any asymmetry in the
motion takes place which might be taken as evidence of a coexisting divergence.

3.6.2 Cantilevered pipes with additional spring supports

As we have seen in the foregoing, cantilevered pipes lose stability by flutter, whereas
pipes supported at both ends do so by divergence. It was of interest, therefore, to study
‘intermediate’ support conditions, as initially done by Chen (1971a) [and later, appar-
ently independently, by Becker (1979)], who examined the dynamics of the system of
Figure 3.61(a). Physically, one would expect that for a very weak spring-constant K, the
system would behave essentially as a cantilevered pipe; for sufficiently large K, however,
the system would approach a clamped-pinned one. This, in fact, is what is obtained.
The dynamics of the system (neglecting gravity, dissipative effects, etc.) is governed
by equation (3.1), or in dimensionless form by (3.76), and the same boundary conditions,
except that the fourth, related to the shear at the downstream end, EI (83w/8x3) =0, is
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Figure 3.61 Various types of additional spring supports for cantilevered pipes conveying fluid:
(a) translational spring at the downstream end, x = L; (b) translational spring at x =1 < L;
(c) translational and rotational springs at x = L.
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now replaced by EI(3*w/dx*) — Kw = 0, or in dimensionless form

Fn

=0

K =

KL}
EIl’

(3.118)

Obviously, the method of solution of Section 3.3.6(a) may be utilized, except that the last
line of determinant (3.84) is now replaced by (a? — ix) exp(iee;), j = 1 — 4. Moreover,
working in a similar way as in Section 3.4.1, it is easy to find (Chen 1971a) that the
condition for divergence, u = u.y, is given by solutions of

u® + k(sin u — u cos u) = 0.

(3.119)
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Figure 3.62 The dimensionless critical flow velocities of a cantilevered pipe with a spring support

at £ = 1 versus the dimensionless spring constant x:
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-, flutter boundaries; shaded areas

are zones of divergence (Chen 1971a).
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A typical Argand diagram is given by Chen (1971a) for = 0.6, « = 100. In this case
the system loses stability by divergence at u 22 4.7, is restabilized at ¥ >~ 7.2, and then
loses stability by single-mode flutter at # ~ 8.3 — all in the first mode, but at u >~ 17.7
flutter also occurs in the second mode. Thus, this system shares the characteristics of a
cantilevered and a clamped-pinned pipe conveying fluid, with those of the latter being
dominant. For smaller values of « (e.g. x = 10) the system behaves as a cantilever, and
the only possible form of instability is flutter.

Figure 3.62 is the stability diagram in terms of the spring stiffness parameter «. Several
interesting observations may be made: (i) there is a critical value of «, k. = 34.81, below
which only flutter is possible; (ii) for sufficiently high «, there is more than one divergence
region, although the higher ones are of limited physical significance; (iii) for sufficiently
high « (say ¥ > 200), the values of i, (critical flutter velocities) become significantly less
dependent on 8 than is the case for low « (say & < 30), as if the system tries to behave
like a conservative one, but still loses stability by flutter: e.g. for 8 = 0.4, 0.5 and 0.6,
and following the second S-shaped curve in the u., versus B curve (see Figure 3.30) for
B =10.7,0.8 and 0.9; (iv) the three curves shown for 8 = 0.9 (two of which are dashed)
correspond to loss, recovery and second loss of stability associated with the equivalent
of the third of the S-shaped curves (Figure 3.30).

Another interesting result is shown in Figure 3.63. It is seen that the first S-shaped
curve in the stability diagram marks a point of transition for the effect of « on u.,. Thus,
for B < 0.3 approximately, « stabilizes the system vis-a-vis ¥ = 0; for g > 0.3, however,
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Figure 3.63 The dependence of u.; on B for the system of Figure 3.61(a) with various values of
K k=0, - -~ - - Lk =105 - - -, k = 50; ———, kx = 100 (Chen 1971a).
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k destabilizes the system. This is the first of many unusual occurrences associated with
these S-shaped curves, as we shall see.

Experimental verification of some of the foregoing is provided by Sugiyama er al.
(1985a), whose work is described next. Figure 3.64 shows the theoretical and experimental
critical flow velocities for three pipes (nominally with 8 =0.25, 0.50 and 0.75) with
varying «. It is seen that agreement is reasonably good, in particular with regard to the
critical value of « at which transition from divergence to flutter occurs. It should be
noted that, when comparing flutter velocities, the reader should consider only the curves
for & = 0.02, which corresponds to the average measured damping, whereas o = 107*
represents some arbitrary minimal damping.

T T 1

Exp.
Ay

15 Flu. Diver. B .
L a8 0249

o D 0505

Figure 3.64 Comparison between theoretical stability boundaries (lines) and experimental points

for fiutter (circles) and divergence (squares) of a cantilevered pipe with an additional spring support

at & = 1, as the spring stiffness « is varied for the three values of 8 shown: ---, @ = 0.001; ,

a = 0.02; the theoretical curves are for 8 = 0.25, 0.50 and 0.75, whereas the experimental values
of B are as given in the legend (Sugiyama er al. 1985a).

Sugiyama et al. (1985a) examine the effect of an additional spring support at any
location along the cantilever, as shown in Figure 3.61(b), both theoretically and experi-
mentally. In this case the dimensionless equation of motion is modified by the addition
of the term «né(§ — &), where § is the Dirac delta function and & = I/L. Hence, the
method of Section 3.3.6(b) may be utilized, with the cantilever beam eigenfunctions as
comparison functions. It is found that as many as 14 such functions may be necessary to
achieve convergence to three significant figures when & = 1, but that it is faster when
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there is some viscoelastic damping (even a = 107?). This demonstrates the difficulty
of the method in obtaining convergent results when the actual boundary conditions are
different from those of the comparison functions; the use of the delta function to incor-
porate the spring forces into the equation of motion is a useful artifice, but it does have
repercussions. However, with increasing dissipation (larger ), the higher mode content
is damped out, and this is why convergence is easier to achieve.

In the Sugiyama et al. (1985a) experiments, elastomer pipes were cast by the authors in
the manner described in Appendix C." The pipes were supported by strings and oscillated
in a horizontal plane as in Gregory & Paidoussis’ experiments; water was used as the
fluid. Experiments were conducted for & = 0.25, 0.50, 0.75 and 1.0 and many values
of «x. Typical results are shown in Figures 3.64 and 3.65, wherein they are compared
with theory. It should be stressed that experiments with springs are delicate, and hence
the agreement achieved is quite reasonable. It is noted that in Figure 3.65 there are two
flutter boundaries for 8 = 0.50 and 0.75 when & = 10?; these correspond to the repeated
loss of stability associated with S-shaped curves in the stability diagram, which do not
exist at the higher value of dissipation (cf. Figure 3.35 for u = 0.065 and Figure 3.43).

20 .
B =075 X
0.5 \
N
~ia
5 r Flutter / T
L eeei— / / Divergence
] /._1
0.75 o /

u | /
e .

0.25 Stable

Figure 3.65 Comparison between theoretical and experimental stability thresholds of a
cantilevered pipe with an additional spring support as in Figure 3.64, but now located at & = 0.5
(Sugiyama et al. 1985a).

TThree pipes were cast with slightly different D, ~ €(10mm), L = 0.5m, yielding the values of 8 in
Figure 3.64, shightly different from the nominal ones of 8 = 0.25, 0.5 and 0.75.
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Two interesting features of the theoretical results are that: (i) the effect of x is not
dramatic until the critical value of « for which divergence becomes possible is approached
(k, = 35 for & = 1; x, = 280 for & = 0.5); (ii) as . is approached, u.s can be decreased
with increasing « if & = 1, which is surprising, but generally increases for & = 0.5.
Furthermore, in the experiments for x 2 k. it was found that after the onset of divergence,
if the flow was increased slightly and the pipe was straightened by hand, it would remain
straight upon release, so that the theoretical restabilization was actually observed; at higher
flow, again as predicted, stability was lost once more by flutter.

This work has been extended to the case of several spring supports by Sugiyama
et al. (1991).

Finally, Lin & Chen (1976) and Noah & Hopkins (1980) consider the case where the
downstream end is supported simultaneously by a translational and a rotational spring
[Figure 3.61(c)]. In this case the two boundary conditions at & = 1 are

#n L *n CL KL}

Yy _=07 an: =07 *=_7 =

R g 7 © T E El
where C is the rotational and K the translational spring stiffness. The solution of the
equation of motion, equation (3.76), subject to the boundary conditions n = an/d& =0
at £ =0 and equations (3.120), was obtained by Galerkin’s method. The comparison

functions, however, are obtained by solving the beam equation subject to these boundary
conditions, yielding the following eigenfunctions (Noah & Hopkins 1980):

¢; (&) = cosh (A;8) — cos (X ;) — o;(sinh (A;§) — sin (A ;&)), (3.121a)

(3.120)

with
_ (k*/A;)(sinh A; 4 8in A;) 4+ cosh A; + cos A

o= ,
/ (k*/A;)(cosh A; —cos ;) + sinh A; +sin A;

(3.121b)

which were shown to be orthogonal. The eigenvalues A; are solutions of

K.*

K
E(lan Aj; —tanh A;) 4 o (tan A; 4 tanh ;)
j j

Kic* 1
+ S (cos A; cosh A; l) + <cos Aj cosh A + l) =0 G122
In this way convergence, as the number of comparison functions is increased, is quite
rapid (see Section 2.1).

If only a rotational spring is present and it is sufficiently stiff, then the system
approaches a clamped-sliding system' and loses stability by divergence. However, the
nonconservativeness of the system generates unexpected results when both « and «* are
present. Consider the following set of results obtained by Noah & Hopkins (1980) for
B =0.125, a = 1073, (i) With ¥ = «* = O the system loses stability by flutter, but with
k* = 10 it does so by divergence. (ii) If ¥ = 25 and «* = 10, however, the system loses
stability by flutter once again, the divergence not occurring at all (not even at higher
flow velocities). Thus, the addition of a translational spring, instead of aiding in the

¥Sliding in the transverse direction, corresponding to the standard sliding support condition for a beam, with
boundary conditions w'(L) = 0, EIw" (L) = 0 (Bishop & Johnson 1960); not to be confused to axial sliding at
an otherwise clamped or pinned end, as discussed in the foregoing.
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development of divergence, makes it impossible. Finally, (iii) if « is increased, so that
x = 40 and «* = 10, then the system loses stability by divergence once more. Yet, (iv) if
x = 100, the behaviour with «* =0 and 10 is qualitatively similar: the system loses
stability by divergence and at higher flow by flutter in both cases. Hence, « and «* do not
act synergistically; the dynamics of the system is affected not only by the values of the
individual spring constants, but also by their relative magnitudes. Equivalent dynamical
behaviour is found in aeroelasticity (Dowell et al. 1995; Section 3.6).

The foregoing peculiar stability behaviour follows the same pattern as in Figure 3.66,
obtained by Lin & Chen (1976) for 8 = 0 — thus for a column subjected to a follower
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Figure 3.66 Stability of a cantilevered column subjected to a follower load % (or equivalently a
pipe conveying fluid with 8 = 0, where u> = %), supported at the free end by a translational and a
rotational spring of dimensionless stiffness x and «*, respectively: (a) for «* = 0; (b) for «* = 10;
(c) for x* = 30. At k¥ = «; and «4 the divergence and flutter bounds coincide (Lin & Chen 1976).



164 SLENDER STRUCTURES AND AXIAL FLOW

load, rather than a pipe conveying fluid. It is seen that (i) for selected combinations of
« and «*, only flutter occurs; (ii) for a given «* # 0, if « is small (x < «3 in the figure),
the system loses stability by divergence, and again if « is relatively large (x > «,). The
physical mechanism must be that, for some combinations of (x, k*), the eigenmodal
shapes hinder the development of divergence, while being particularly propitious for
flutter (Section 3.2.2), and so flutter develops rather than divergence.

3.6.3 Pipes with additional point masses

A very interesting study on the effect of lumped masses on the stability of cantilevered
pipes conveying fluid has been made by Hill & Swanson (1970). The system is shown in
Figure 3.67(a), and generally has several point masses at various locations, numbered as
shown. In the equation of motion, equation (3.1), the term m(3?w/3¢?) is now replaced by

8w

T

J
m+ij8(x —Xxj)
j=1

(3.123)

X2

=L

(a)

(b}

Figure 3.67 A cantilevered pipe conveying fluid (a) with three point masses added at x;, x;, x3;
(b) with one mass eccentrically located at x;.
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Thus, the method of Section 3.3.6(a) may be used to solve the problem. As shown in
Section 2.1.4 and the discussion of Table 2.2, the method gives the correct results. In
the dimensionless version of the equation of motion, the location and magnitude of the
additional masses is expressed via

mj

= (m+Mi' (3.124)

g=22  and
L= an l‘l'
J L J
The theoretical results obtained are summarized in Figure 3.68, where they are
compared to those of Gregory & Paidoussis (1966a) for a uniform pipe. It is seen at
a glance that, in most cases, the additional masses destabilize the system. This is contrary
to intuition, but nevertheless the effect is in the same sense as increasing the distributed
mass m [i.e. decreasing f; recall that 8 = M /(M + m)]. However, on closer examination,
a number of interesting and unusual features emerge, as follows.

Critical velocity, i,

T

0 N i N N
01 02 03 04 05 06 07 08 09 10

B

Figure 3.68 The effect of additional point masses, m;, on the stability of a horizontal
undamped cantilevered pipe conveying fluid, where J is the total number of the masses,
w; =m;/[(m+M)L). &; =x;/L. The stability curve marked as G-P represents Gregory &
Paidoussis’ results for J = 0, while the points represent experimental data (Hill & Swanson 1970).
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First, consider the lowest three curves in the figure. Comparing the cases with a single
mass al the downstream end (J = 1, & = 1), it is seen that increasing the magnitude
of the mass from w; = 0.2 to 0.3 destabilizes the system further, which agrees with the
statement made just above. If, however, a second mass is added at mid-point (J = 2;
w1 =02at & =1; uy =02 at & = 0.5), the effect is to stabilize the system slightly,
even though the combined additional mass is now higher than in either of the other two
cases. On the other hand, if one starts with a mass at mid-point (top curve. other than
G-P), then the addition of a second mass at the end (the next, lower curve) severely
destabilizes the system.

Second, based on the foregoing, one might conclude that adding a mass at mid-point
is always stabilizing. If, however, the mid-point mass is the only one added, as in the
uppermost curve (J = 1; u; = 0.2 at & = 0.5), the effect is stabilizing for g8 < 0.27
and destabilizing for larger 8. This is another instance where the qualitative dynamical
behaviour of the system is radically different on either side of the S-shaped bend in
the stability curve — or, as is the case here, close to that bend (note that the transition
at 8 =0.27 is half-way between 8 = 0.295 for the system without an added mass and
Bequiv =M /Im+M 4+ m /L] = 1/(1 4+ p1;) = 0.246 for the system with one.)

Another point of interest in Figure 3.68 is the sharpness of the S-shaped bends, more
like kinks here, in the lower stability curves. This is explained by Hill & Swanson as
being due to sudden switches of the system from losing stability in one mode just below
the B concerned, and in another mode just above it (and for a critical 8 two modes losing
stability at the same #) — instead of the behaviour as in Figures 3.27 and 3.28 involving
destabilization, stabilization and destabilization once more; thus, in this case there are
real discontinuities in the values of w.y, as shown by Hill & Swanson, but not here for
brevity.

Finally, the various data points (o, e, etc.) correspond to experimental points obtained
by Hill & Swanson, utilizing surgical rubber pipes conveying water in an apparatus similar
to that of Gregory & Paidoussis (1966b). The agreement with theory is excellent, although
if dissipation had been taken into account in the theory, it might have been less so.

Further studies on this problem have been made by Chen & Jendrzejczyk (1985)
and Jendrzejczyk & Chen (1985) for a mass at the free end, and by Sugiyama et al.
(1988a), who consider an additional mass together with a spring at some point x < L.
Sugiyama et al. find that the 4 versus « curve displays S-shaped discontinuities for selected
combinations of « and w; = m;/[(m + M)L]. This means that there exists a region of
restabilization between two critical values of u.s for loss of stability (cf. Figure 3.28).
It is of interest that the flutter mode is quite different at these two critical values, as
shown in Figure 3.69: in both cases there are very strong travelling-wave components in
the motion; however, in (a) the presence of the spring and mass at § = 0.25 is hardly
manifest, while in (b) there is a quasi-nodal point not far from &,.

In another study, Silva (1979, 1981) examines the stability of pipes with attached
valves — which can be quite massive relative to the pipe. Masses centred on the pipe or
eccentric [overhanging, as shown in Figure 3.67(b)] are considered for both cantilevered
and simply-supported pipes, but ignoring out-of-plane motions and possible coupling with
torsional modes. As in the foregoing, the dynamical behaviour is affected by the value of
w1 (in this case j = | always) and also h = h/L, where h is the distance of the point mass
from the pipe centreline. As expected, the effect of the additional mass on the stability
of simply-supported pipes is on coupled-mode flutter, rather than divergence which is a
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x =600

(h) J

Figure 3.69 The flutter modes of a cantilevered pipe (8 = 0.50, ¢ = 0.02) with an added mass and

a translational spring at § = 0.25 (u; = 10, x = 600): (a) at first loss of stability (u., = 8.17); (b) at

the second loss of stability (1., = 9.97), after restabilization; obtained theoretically by Sugiyama
et al. (1988a).

static phenomenon; it is found that this effect, both in terms of ., and the range of
over which coupled-mode flutter persists, can be affected a great deal, even if h = 0. For
cantilevered pipes it is found that eccentricity of an additional mass at the free end may
further destabilize the system.

3.6.4 Pipes with additional dashpots

This problem has been studied theoretically and experimentally by Sugiyama et al.
(1988b).7 A dashpot is attached to a cantilevered pipe, located at some point & =/ /L < 1,
and sometimes also a mass, at the same point. The effect of the damper at the downstream
end is generally destabilizing, with or without the mass, while at other locations it can
sometimes be stabilizing (see Section 3.8.3), depending on 8 and u; [equations (3.124)].
In some cases, multiple regions of flutter may exist.

The experiments were conducted in the same basic arrangement as for one or more
additional springs, discussed in the foregoing. The dashpot was provided by attaching a
thin flat plate to the pipe and immersing it in oil, with the motion parallel to the flat-plate
surface. The experiments generally support theory quite well.

*The interested reader is also referred to Sugiyama et al. (1985b).
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3.6.5 Fluid follower forces

This is a special class of problems involving beams subjected to fluid jets issuing tangen-

tially from the beam, either within the span or at the free end. Hence, these are beams
subjected to fluid follower loads, rather than pipes with flow all along.

Wiley & Furkert (1972) considered the system shown in Figure 3.70(a). The equations
of motion may be written as follows:
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Figure 3.70 (a) The beam with an in-span fluid-jet-generated follower load P. (b) Stability
boundary for the pinned-clamped system (C; =0, C; = 00;«] =0, &5 = 00); (c) stability
boundary for the clamped-pinned system («} = 00, % = 0): , with tangential follower load;
———, with horizontal, fixed-direction (conservative) load. Flutter 1/2 stands for coupled-mode
flutter involving the first and second modes; and similarly for Flutter 2/3 (Wiley & Furkert 1972).
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The system, once rendered nondimensional, may be solved by straightforward means (cf.
Section 3.6.1). Its dynamics is governed by the following parameters:

0

& =alL, P = PL?/EI, «t = C\L/EI, iy = CLL/EI. (3.127)

It is noted that here § = 0, and hence there are no Coriolis terms, and P = —I', I" being
the nondimensional tension, while % is a compression. By assigning to «} and «} the
value of zero or infinity, a pinned or clamped end condition may be obtained at either
end, or both, without change in the basic formulation.

Some typical and interesting results are presented in Figure 3.70(b,c). The stability
boundary for a pinned-clamped system (k] = 0, x5 = co) is shown in Figure 3.70(b). It
is seen that the system loses stability by divergence throughout, with no coupled-mode
flutter for higher values of % as would be the case for a pipe. The eigenfrequencies
remain real until %., is reached, when they become imaginary; but they do not coalesce
on either the real- or imaginary-frequency axis. Physically, it is clear that the follower
force, once the beam is flexed as in Figure 3.70(a), cannot resist the moment generated
by % and hence flutter cannot develop. Note also that in the absence of Coriolis forces
there cannot be post-divergence restabilization. Hence, although the system is inherently
nonconservative, it is effectively conservative, as is the case when both ends are pinned.

The behaviour of the clamped-pinned system (k7 = oo, k5 = 0) is quite different, as
seen in Figure 3.70(c); the conservative results (where the force remains parallel to the
undeformed axis) are also shown. For these boundary conditions, for 0.2 < & < 0.45
approximately, the system loses stability by coupled-mode flutter rather than divergence;
this comes about through coalescence of two eigenfrequencies while on the real axis, either
the first and the second or the second and third [cf. Figure 3.4(c)]. For lower &, progres-
sively higher modes would be involved. For & = 1, the system becomes conservative.

Experiments were conducted by using a long aluminium blade (L 2~ 1.2m, 50.8 mm
wide in the vertical plane, and 5 mm thick), clamped at one end, and simply-supported
and free to slide axially at the other, so as to oscillate in the horizontal direction. The
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compression was provided by an air jet, issuing from a pair of nozzles affixed to the
beam at a slight angle, so as to avoid interaction with it; the compressive reaction force
was towards the clamped end. The air was supplied via pairs of light rubber hoses, one
vertically above and the other below the blade. Despite the obvious difficulties associated
with minimizing the effect of the supply hoses, excellent qualitative and to some extent
quantitative agreement with the theory of Figure 3.70(c) was obtained: for & > 0.45
divergence was observed, while for & < 0.45 flutter was observed.

In the case of a cantilevered beam with a tangential end-load at the free end, representing
Beck’s problem (Section 3.2.2), there is no simple way of minimizing the effect of fluid
supply lines. Nevertheless, a successful experiment was conducted by Sugiyama et al.
(1990, 1995) by attaching a solid-fuel rocket to the free end! The aluminium cantilever
(section: 6 x 30 mm, L = 800~ 1400 mm) weighed 0.4-0.7 kg. The motor was much more
massive, ~ 14 kg, and could supply about 390N force for 4s. Hence, special techniques
had to be developed for deciding whether a damped or amplified oscillation occurred
from only a few cycles of oscillation in the period over which the rocket supplied full
thrust. Also, not only the mass but the moment of inertia of the motor had to be taken
into account. Agreement of experiment with theory is excellent, provided dissipation is
ignored; once taken into account, viscoelastic damping in the column (¢ =5 x 107%)
is found to diminish the theoretical critical thrust by a factor of 2 as compared to the
undamped system, thus rendering agreement apparently rather poor. However, once the
criterion ‘for stability in a finite time’ (Leipholz 1970) is used, the two sets of theoret-
ical results come very close to each other, thus leading to very good agreement with
experiment.

3.6.6 Pipes with attached plates

One such system, depicted in Figure 3.71(a), is considered by Herrmann & Nemat-Nasser
(1967) as part of a series of studies on the stability of nonconservative mechanical systems.
It consists of a thin plate or I-section, with two pairs of flexible pipes attached to it and
conveying fluid. This system can execute both flexural transverse motions and torsional
motions [cf. Nemat-Nasser & Herrmann’s (1966) work on the same structural system
subjected to a follower load], and it is in the study of the latter that lies the main contri-
bution of this work.

The equation of motion of the system for flexural transverse motion is the same as
before, equation (3.1), except that 2M replaces M, which now is the mass per unit length
for each pair of pipes. For torsional motions, adapting Benjamin’s statement of Hamilton's
principle to suit, Herrmann & Nemat-Nasser (1967) obtained the following equation of
motion and boundary conditions:

4 32 2 32
EC, af 2MU*r? GJ]—¢ +MUR — ;’ + (mr® + MR a—‘f =0; (3.128)
¢ = 8¢ =0 at x =0,
ax

) , (3.129)

3 3

Y _o,  Ec, ¢+[MU2(2r —%hz)—GJ]—d):O at x=1L;

ox? ox3 ax
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Figure 3.71 (a) The system of a cantilevered thin-plate structure with two pairs of flexible pipes
attached, conveying fluid. (b) Stability diagram of 2u?/n? — | versus @ = h/r for Ir?/C, = 1.5;
the solid lines are obtained with 8 = 0 (Herrmann & Nemat-Nasser 1967).

¢ is the angle of twist about the x-axis, EC,, is the warping rigidity and GJ the torsional
rigidity, £ and G being Young’s and the shearing modulus of elasticity, respectively, r
is the polar radius of gyration of a section of the system, M is as just defined and m the
mass of the structure per unit length. Here it should be recognized that an open section
subjected to torsion also warps (Timoshenko & Gere 1961); e.g. an I-section, if subjected
to torsion, will also sustain bending of the top and bottom flanges."

*For example, for an l-section of height h, flange width b, flange thickness t; and stem thickness 1.
Gy = t7h?b% /24 and J = (2bt} + ht},)/3 (Timoshenko & Gere 1961; appendix).
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Equations (3.128) and (3.129) may be rendered dimensionless by means of the
following:

. 172 5
i [ Ec, ; __GJIL
T T lmestr| T T EG
> (3.130)
h M p (Mrz)
o= -, = -, =, = UL
=0 P e TG

The solution of the equations of motion may be achieved by the method of
Section 3.3.6(a). Typical results are shown in Figure 3.71(b), in terms of the parameter
2u? /n? — 1 for various values of g’ and Ir?/C, = 1.5, for both transverse and torsional
motions. The full lines correspond to results obtained for 8 =0 and hence to a
system without flow subjected to a follower force P = u?; however, since divergence
is independent of B, the stability curve for § = 0 applies equally to cases with flow.

It is seen that three types of instability are possible: (i) torsional divergence for small
enough @; (ii) torsional flutter (dashed curves) for intermediate o; (iii) transverse flutter
(horizontal dashed lines) for high @. Thus, a system with 8’ = 0.2 would lose stability by
divergence if @ = 0.5, by torsional flutter if @ = 1.5, and by transverse flutter if o = 2.5.
Of course, according to linear theory, in the case of @ = 1.5, transverse flutter would arise
at higher flow (the horizontal lines for transverse flutter really extend across the figure),
and so on.

It is of special interest that torsional divergence is possible, whereas transverse diver-
gence is not. Equations (3.128) and (3.129) are similar in structure to those for transverse
motion, with the torsional terms (proportional to GGJ) playing the role of a conservative
tensile load. However, it is known that tension does not induce divergence (Section 3.5.8).
Hence, torsional divergence probably arises via the MU?-related term in the boundary
conditions (largest at small @) — cf. Chapter 8.

Another plate-pipe system, used for marine propulsion, is discussed in Section 4.7.

3.6.7 Concluding remarks

The main purpose of Section 3.6 is (i) to briefly document all these interesting studies
in one place, and (ii) to show the veritable cornucopia of interesting dynamical prob-
lems that may be obtained with simple modifications to the basic system of a pipe
conveying fluid — particularly the nonconservative case of a cantilevered pipe. This,
despite the early scepticism on the practical value in studying the stability of such
systems, as expressed for instance by Timoshenko & Gere (1961; section 2.21), regarding
the critical load for a cantilevered column subjected to a tangential follower load: ‘No
definite conclusion can be made (as yet) regarding the practical value of the result,
since no method has been devised for applying a tangential force to a column during
bending’. Although a method has now been found, this is not really the important point.
What is important in the study of these systems will emerge from the chapters that
follow, and what is practically important from the pertinent sections on applications
therein.
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3.7 LONG PIPES AND WAVE PROPAGATION

If the pipe is very long between supports, or infinitely long, then the question of wave
propagation becomes especially important. The main interest in this is for application to
pipelines resting on the ground or on the ocean floor, or pipelines with many, periodically
spaced supports. These two topics are treated here, after some preliminary discussion on
wave propagation in simple systems.

3.7.1 Wave propagation

Some general characteristics of wave propagation will be reviewed here with the aid of
some work by Chen & Rosenberg (1971) on ‘pipe-strings’ conveying fluid.

Consider first a totally unsupported very long, straight pipe of negligible rigidity, under
tension — a very useful tutorial system. Since £/ = 0 in (3.1), the equation of motion
is rendered dimensionless by defining @ = (M /T)'/2U, v = [T/(m + M)]'/?t/L, together
with n, &£ and B as in (3.69) and (3.71), yielding

(Hz—cz)n"+2ﬁl/zﬂi)’+'f)=0- cc=1. (3.131)

The nondimensionalization gives ¢ = 1; nevertheless, the equation is written like this to
facilitate the physical interpretation of the results. Thus, if % = 0, equation (3.131) is the
wave equation and ¢ is the dimensionless wave velocity.

Consider now a wave of the form n = A explix(§ — v,7)], where « is the wavenumber
and v, the phase velocity; k = 1/, where A is the wavelength. Substituting into (3.131),
it is easy to see that the equation is of the hyperbolic type provided that #*(1 — B) < c?.
In that case, either progressive or standing waves can exist, and the general solution is of
the form (Morse 1948; Meirovitch 1967)

n==0E—uv1)+H(E+ v0). (3.132)

where
v =l =7 () - )+ 84 (3.133)

Considering the two component parts of (3.133), together with the form of (3.132), it
is easy to show that (i) if # < ¢, two waves propagate in the pipe-string, one in the
downstream and the other in the upstream direction, with phase velocities v, and v,
respectively, where v > wvs: (ii) if @ > ¢, then both waves travel downstream; and (iii) if
u = ¢, there is one propagating and one standing wave. A disturbance, e.g. n(&,0) =
exp(—£&?). leads to waves travelling upstream and downstream without alteration in form.
However, whereas for 7 = O the two waves propagate with the same phase velocity and
have the same form, for @ # 0 they do not: the wave with the larger phase velocity has
smaller amplitude — unlike the classical string (Chen & Rosenberg 1971).

The case of a pipe-string of finite length and fixed ends is examined next. In this case,
solutions of the form

n(&, v) = Ay expli(1& + w1)] + Az expli(2€ + w)] (3.134)
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are considered, which satisfy (3.131) provided that

a) —_— —
K2 = 35— {B' P+ [c* - (1~ B)'"?}. (3.135)

Applying the boundary conditions, the frequency equation is obtained, sin(x; — «2) =0,
and the dimensionless frequencies are found to be

nn(c? —@?)

w":[cz—‘z(l—ﬂ)]'ﬂ’ n=1273... (3.136)
The corresponding mode shapes are given by
Y, = sin nn€ coslk, (€ + vpT + 6,)], 3.137)
where the wavenumber and phase velocity are
827 2
“EM e —wa—pe T g

and v, = w,/k,; v, is related to its dimensional counterpart, V,, via v, = [(M +
m)/T]'*V,. A number of useful observations can now be made. Wave propagation in
this system is not frequency-dispersive, since the phase velocity is not a function of
wavenumber (wavelength). Another manifestation of this is that the ratio of the frequency
with flow to that without is independent of n. Finally, when u =0, v, is infinite, and
the system vibrates with the same phase, whereas for % # 0, a finite v, is obtained. This
means that for # # 0, no classical normal modes exist [cf. Section 3.4.1 and Figure 3.13]:
various parts of the system pass through their equilibrium position at different times; i.e.
the modal form contains a travelling wave component.

We next consider wave propagation in a beam (E/ # 0), but taking ¥ = 0 in equa-
tion (3.75), as discussed by Meirovitch (1967). In this case, the phase velocity, v,, is
a function of the wavenumber (wavelength): v, = «; hence, the beam is a frequency-
dispersive medium. A general nonharmonic waveform may be thought of as a super-
position of harmonic waves, n(§, 1) = >, A, cos[k,(§ — v,,7)]; since each component
travels with different phase velocity, the wave form will change as the wave propagates
along the beam, as a result of dispersion. If u # 0, the situation is further complicated.
This is discussed next, for a pipe on an elastic foundation.

3.7.2 Infinitely long pipe on elastic foundation

This problem has been considered by Roth (1964) and Stein & Tobriner (1970), and what
is presented here is a summary of some of their work.

A form of equation (3.70) is used for the pipe on a generally dissipative elastic foun-
dation, but dissipation may also come from other sources, i.e.

W+ @ — T+ " +28"%ui + kn +oi + i = O (3.138)

no Poisson-ratio effects are considered, however, since no pressurization-induced tension
can arise in the absence of end constraints. Since L could be infinite, in the dimensionless
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quantities a unit length could be used for L, or an appropriate length scale associated with
the initial disturbance under consideration. Considering solutions of the form

(g, 7) = Ae™Fel“Te ™, (3.139)
it is found that equation (3.138) is satisfied if it is found that equation (3.138) is satisfied
if

@t =208 Pk — K - P - T + Mk +k— o] =0,

(3.140)
20w + ﬂ”zu/() — wo =0,
which leads to
W)y = —,B'/Zulc F p, Ao = %0 +gq. (3.141a)
p= %\/x +10E +uwo )2, g = % V=x +1(x* + 1262
x=k"—[1 =B —T+Mik* -k - lo (3.141b)

(Roth 1964). The similarity in the structure of w) » in (3.141a) when 0 = 0 to w) > = 1.2k
from (3.133) should be noted. Remarking that the form of equation (3.139) with « replaced
by —« and @ by —w is also a solution, as easily seen from (3.140), one obtains for a
general waveform the general solution

o0
nE T =Y e MT[A, costit + winT) + By sinliyE + w1,7)]
n=0

[o.¢]
+ Z e T[C, cos(kné + wanT) + Dy sin(ku€ + w2, )], (3.142)
n=0

The arbitrary constants A, to D, are delermined from the initial conditions. Thus, if
n(&, 0) = a(§), n(&. 0) = b(§) are periodic functions with «,, = nm, the constants may be
determined by the use of Fourier series, while a solution for a nonperiodic and spatially
more general disturbance may be obtained with the aid of Fourier integrals (Roth 1964).

In solution (3.142) it is noted that the frequencies w,, and w,, are each associated with
the phase velocities vy = —wy, /x, and v» = —w», /x,, for downstream- and upstream-
travelling waves. For an observer travelling downstream with velocity B'/2u, these waves
propagate with wave speeds £p, /x,. where p, is as in (3.141a).

For stability of the pipe, A| and A, in solution (3.139) must be positive. This requires that

ot — (i = T+ I* + k] > 0, (3.143)
which is true for all damping values, . The minimum of the function in square brackets
oceurs at xk = [%(u2 — I+ IN]'/? and is equal 0 A(k) =k — $(u> — I" + IT)*. Hence.
condition (3.143) is satisfied if A(x) > 0, or

=41 < 2k (3.144a)

This result could be obtained also by the work leading to equation (3.101a). It is of interest
that if £ = 0, then v = 0, i.e. the pipe is unstable for all u in the case of I" = IT = 0. This
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simply reflects that, in the absence of any support, a lateral displacement of the pipe is
not opposed by any restraint.

Now, if the analysis is conducted with o = O from the start, it is easy to show that in
this case the condition of neutral stability, A;, = 0, requires

W (1 = B) — I' + T < 2k, (3.144b)

Clearly, since B < 1, this result is nonconservative; in particular, criterion (3.144b) predicts
a system to be stable when, in fact, through (3.144a) it is unstable (Roth 1964)! This is
a good demonstration of Bolotin & Zhinzher’s (1969) thesis (Section 3.5.5).

It is Stein & Tobriner (1970) who consider wave propagation per se. They use the same
equation as Roth, but with " = 0. They obtain a general solution to initial conditions
n(&, 0) = (&) and n(&, 0) = g(§) by means of Laplace transforms in time (denoted by
an overbar) and Fourier transforms in space (denoted by an asterisk), of the form

- — | * , — (&, iaE .
7, w) /0 PE Ve n e = / (6 e dg

The Laplace transform over 7 is applied first, and then the Fourier transform over &, on
the resultant equation. After inversion, the general solution is

l o0
n, ) = «/—2_/ {f*(a)e‘"/z[cos ¢ cos 9; cosh 6, + sin ¢ sin 9 sinh 0;]
T J—00

S (@)
2Jr
+ [28"ua sin(¢p — ) + o cos(¢p — )] sin ) cosh 65]

+ e ""2[28" 2y cos(¢p — ) — o sin(¢ — u) cos 6, sinh 6,
g () —otT/2y s .
+ T e [sin{¢p — u) cos 8; cosh 9, — cos(¢ — ) sin €, cosh 6] ¢ da,
.

(3.145)

where

r={[e(? — (1 — pu? + I + k — Lo + [8"*uoa)?}/?,

4= L an! B uo , (3.146)
2 a?fe? — (1 — P2 + ]+ k — }o?

6, = /7 cos w, 0 = T/7 sin u, ¢ = (B ?ut — &).

Numerical results in the case of o = 0 and n = exp[i(x§ — w7)] are then considered. The
characteristic equation in this case is

w® =28 ukew —k* + (W — M* —k = 0. (3.147)

Thus, for each wavenumber (wavelength) there is an associated frequency and, in the
absence of end constraints, all wavenumbers are permissible. The dominant wavelengths
depend on the spatial distribution of the initial disturbance and the propagation charac-
teristics of each of its Fourier components. Equation (3.147) may be solved for the phase
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velocity, v, = w/k, yielding

1/2

(kK + K2y — 1T u\?
20 D) —(Z>] : (3.148)

Y _gnlu 18
U g Ue B

where u. is obtained from (3.144b) when it is transformed into an equality, while setting
I=0:u? =[2k'? = M]/(1 — B); k = k'/* is a critical wavenumber, which corresponds
to the value of x for which all positive roots of (3.148), whether ¥ > k,, or < x,,, have
phase velocities greater than that for «,,. However, it is possible to obtain some positively
travelling waves with v, < v,(k,,) from the negative roots of (3.148), namely for u/u, >
(1 - ﬂ)'/z. The dependence of v, on u may be assessed from (3.148). For any «, for the
positively travelling wave, v, increases with u; up to u > v,(ky,), whereafter increasing u
causes v, to increase for some wavenumbers and to decrease for others. For the negatively
travelling waves, v, diminishes continuously with u, for all 1 < u..

One may retrieve from equation (3.148) Roth’s result that for an observer travel-
ling with a velocity 8'/%u,’ upstream- and downstream-travelling waves would appear
to have equal velocities; this would imply that the distribution of waves would always
be symmetric about this translating axis for a symmetric disturbance about the origin.
However, Stein & Tobriner show that this is true only asymptotically (in time), because
the solution does not satisfy the boundary conditions in the limit as § — co.

Some typical numerical results are shown in Figures 3.72-3.74 for a steel pipe
conveying water, with zero dissipation (0 = 0); the larger foundation modulus, k =
6.54. is typical of crushed gravel. The initial disturbance is taken to be 7n(§,0) =
no exp —%(x/L)z] = exp(—%éz), with L = 12.5ft (3.81 m); this same L is used in
obtaining u, IT and k from the corresponding dimensional quantities.

Figure 3.72 shows the time evolution of the disturbance at £ = 0 fork = O and k = 6.3,
when u = 0.160 (U = 30.48 m/s or 100ft/s) and {7 = 0. In (a) it is seen that the system
is unstable, as discussed, and the oscillations are amplified with time. In (b), condition
(3.144b) is satisfied and hence the oscillation is stable (u < u.); the amplitude of the
oscillation at & = 0 is diminished with time as the disturbance energy is shared with
progressively larger parts of the pipe, |£] > 0, as shown in Figure 3.73. Stein & Tobriner
(1970) also show a case with J7 =0.0256 and k = 2.43 x 10~*, where u = u, and a
neutrally stable oscillation at £ = 0 is obtained.

In Figure 3.73(a) is shown the development of the initial disturbance when u = 0. It is
seen that up- and downstream propagating waves are symmetric about the origin. It is also
seen that the amplitudes for the lower k values are more severely attenuated than for the
largest k. When u > 0, as in Figure 3.73(b), the symmetry about the origin is destroyed,
and the waveform becomes symmetric with respect to an axis travelling at 8'/2u. In the
figure this is visible only for large k; for the smaller , this symmetry which occurs for
large enough t has not yet developed for the range of T shown in the figure.

In Figure 3.74 we look at a particular point along the pipe, & = 8, versus time. It is seen
that for a stiff enough foundation (k = 6.54), the wave retains its coheston and propagates
downstream as a ‘wave packet’, roughly at 8'/2u; the upstream-propagating component

"It is noted that vp/u = 5"/2(VP/U). where the capital letters are for the dimensional quantities, because
of the different nondimensionalizing factors for vp and u. thus, in dimensional terms, the observer travels with
velocity BU.
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Figure 3.72 The time evolution of disturbance at & = 0 for an infinitely long pipe on an elastic
foundation with (a) k = 0 and (b) k = 6.30, for u = 0.160, ¢ = IT = 0 (Stein & Tobriner 1970).

is much smaller. However, for smaller & (not shown here), neither a well-defined wave
packet nor an axis of symmetry develops.

Finally, it is stressed that the calculations in Figures 3.72-3.74 have all been done with
o = 0. This should be borne in mind when considering wave propagation in real systems,
in which dissipation is always present.

3.7.3 Periodically supported pipes

An excellent treatment of the subject was provided by Chen (1972a), an outline of the
salient features of which is given in what follows.

Suppose that the pipe is simply-supported periodically at N supports, as shown in
Figure 3.75(a), where N may be finite or tend to infinity. The equation of motion is

0"+ W — T+ Mn" +28'%ui + i) = gy(€)e™", (3.149)

a version of (3.70); the term on the right side represents a possible forcing function.

Considering two neighbouring spans of the pipe on either side of the jth support, and
denoting quantities on its left without a bar and those on its right with a bar, the boundary
conditions to be satisfied are

n0)=n1)=0, 1"0)=—-a;-1, 1'(1)=-a
(3.150a)
7(0) =n(1) =0, 7'(0) = —4a;, 7'(1) = —&j41,

n'(1) =7(0), (3.150b)
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Figure 3.73 Displacement profile of the infinitely long pipe on an elastic foundation, for

(a)u=0 and (b)u=0.160; [T=0=0: ,

k=0,

k=275%x10"% — - — , k = 6.54 (Stein & Tobriner 1970).

———, k=243x107% ———,
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Figure 3.74 Propagation of a disturbance for a pipe on an elastic foundation, at (a) & =8
(x = 100ft) and (b) £ = —8; u = 0.320, /T = 2.56 x 1072, k = 6.54 (Stein & Tobriner 1970).

where «; = M;l;/El, a; = M;l;/EI, and derivatives of the barred quantities are with
respect to & M;_, M; and M, are the bending moments at the supports (the same on
either side of each support).

Now consider free vibration, as in Section 3.3.6(a). The general solution may be
expressed as n(&, 1) = Y (§) exp(iwt) = 22:1 C,, exp(ir,§) exp(iwt). Substituting into
(3.149) leads to an equation similar to (3.82), namely

A — @ =+ A2 + 28" uwr, — o = 0; (3.151)

hence, proceeding in the same manner but with two spans, one obtains

4 4 o
Y(§) = Z{anaj—l + bnaj}ei)‘nsy 7(3,:) = Z{E,,Ej + E,,&Hl}ei)‘"s. (3.152)

n=1 n=1
Then, with the aid of the continuity condition (3.150b), the following equation is obtained:

4

Z{(a,,x,,e“" Yotj_i + (byhn€*)et; — (@nhn)aj — (Bukn)js1} = 0. (3.153)

n=1

For an infinite, uniform pipe with equispaced supports, [ =/ and EI = EI, so that the
bars in (3.153) may be removed. Equation (3.153) holds for all supports and may be
viewed as a recurrence relationship between successive support moments. The general
solution may be expressed as

aj =aj_ exp(in), (3.154)



PIPES CONVEYING FLUID: LINEAR DYNAMICS I 181

Ef } El i
J-1 / J / Jj+l
2 s '
(a) f— s )= 7 -
i | T I | T !
4 -
B First Second
3 Stop propagation propagation 7
| band band Stop band band Stop band
2 1 —
1 V\_'
5 0
B \
= 7 ~ —~— — s ~ —— =
E - — S——
> 1 1 [ | 1 1 !

ARe( )

4 L | 1 J I i 1
0 10 20 30 40 50 60 70 80
(b) Dimensionless frequency

Figure 3.75 (a) A portion of a periodically supported infinitely long pipe, showing two spans of
generally different length and flexural rigidity. (b) The propagation characteristics with varying w
for $=0.25,u=2, 1 =17 =0 (Chen 1972a).

where w0 is the propagation constant, which is generally complex; Re(u) represents the
phase shift in the moments from one support to the next, while $m(u) represents the
exponential decay. Clearly, unless $m(u) = 0, the waves will decay to zero eventually,
this being an infinite system. Hence, one may distinguish unattenuated propagation bands,
where $m(u) = 0, and nonpropagation stop bands, where $m(u) # 0. Clearly, p =
wu, o, B, I I).

A typical result is shown in Figure 3.75(b). It is seen that there is a succession of stop
and propagation bands, each one beginning at the value of w corresponding to one of
the natural frequencies of a single span: w = 7%, 4n? et seq. for u = 0, and somewhat
lower values for u = 2; the upper limit of each propagation band is the corresponding
single-span eigenfrequency for a clamped-clamped pipe, w = 22.37, 61.67 et seq. for
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u =0, and a little lower for u = 2, for reasons to become evident two paragraphs hence.
The propagation bands become wider with increasing # and, as the divergence limit is
approached, u = m, the first propagation band reaches w — 0. Also, from the Re(u)
curves it is obvious that positively and negatively travelling waves have different phases
and hence phase velocities, which again shows that the system does not possess classical
normal modes (Section 3.7.1).

The case of a finite N follows the same pattern. One eventually obtains an N x N
matrix equation giving N discrete frequencies for each propagation band, rather than a
continuum. Thus, in the case of a pipe with 8 =025, u=/T=T =0and N = 8§, one
obtains eight eigenfrequencies: 72 < w < 21.67(< 22.37) in the first band, and another
eight 47% < w < 60.52 (< 61.67) in the second band.

To understand these results and those in Figure 3.75(b), it is important to realize that
only modes with half-wavelength equal to or a submultiple of the single-span length
can propagate: eight such modes when N = 8, and an infinite number for N — oc. The
mode shapes can be visualized most easily for a three-span system (N = 3), as shown
in Figure 3.76 for the first propagation band. The first mode obviously has the same
frequency as the eigenfrequency of a pinned-pinned single-span pipe, while the other
two have higher frequencies because of the additional strain at the supports where there
is a change in slope. Clearly, however, the highest frequency in each band has to be
lower than that of a single-span clamped-clamped pipe, approaching it only as N — oo.
In the second propagation band, each mode has a second-mode shape within each span,

and so on.

5 5 x »

Figure 3.76 Schematics of the three modes in the first propagation band for a three-span pipe
(N =3).

If the pipe of the finite system is nonuniform, some new and interesting features develop.
Chen considers the eight-span system with each span the same as all the others (8 =
0.25, u = 1T = 0), except that I" = 0 for all spans but the fourth and fifth where I' = —4.
When the pipe is nonuniform, some eigenfrequencies exist in what would have been stop
bands in the uniform pipe. Thus, the stop band of one portion of the piping system
may be a propagation band in another portion; e.g. for I” = —4, the propagation band is
7.51 < w < 9.91, but for I" = 0 waves are attenuated in that range of w. The modes in that
range are called energy-trapping modes, for obvious reasons: any energy that comes into
the unattenuating part of the system is accumulated there, but dissipated elsewhere. For
this example, two energy-trapping modes are found: w = 9.00 and » = 38.81. In these
modes, the amplitudes of the fourth and fifth spans are much larger than those of the
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rest. This phenomenon is also known as mode localization — see, e.g. Pierre & Dowell
(1987), Bendiksen (1987) and Vakakis (1994).

The response of the system to a convected pressure perturbation is considered next,
of the form g expli(§£2t — «&)], i.e. with (&) = exp(—i«k&) in (3.149). In this case, the
solution is n(&, t) = Zizl[Cn exp(ir, &) + &(&)] exp(iwt), where @(&) is the particular
solution; for a uniform, infinitely long pipe,

D(E) = ge ¥k — (u® — '+ IMi* + 28" *u2c — 217",
The solution follows the same pattern as before, but @(&) comes into the picture; i.e.

4
YE) =D faslaj 1+ D" (0)] +bula; + ()] + dy®@(0) + e, @(1)}e™ + D(E).

n=1

Hence, a more complex form of (3.153) results, involving @(0) and @(1). However, the
form of the solution is the same, and taking o; = a;_1 exp(i«), one eventually obtains

My =qF(u, B. 2,k I, 1), (3.155)

4

4
> lduha(l —e ™) = ahn (1 = €70 = k) + Y [ (s K, €0, by)]e™

n=lI n=1

3 .
{Z[an}\-neio‘”_n + bnA-neikn - anA-n - bnA-neiK]}{K4 - 1)2’(2 + 2ﬂl/2u‘QK - QZ}

n=|

where v = > — I" + I1, and f is the same as the other expression in the numerator but

involving e, and b, instead of d,, and «,, and +« for the last term. The interesting part of
this result is that F' becomes infinite when either of the two bracketed expressions in the
denominator vanishes. Comparing with (3.151), it is seen that the second bracketed quan-
tity vanishes, if £2 coincides with one of the eigenfrequencies of the unsupported system:
£2 = w. This is the ‘normal’ resonance condition. Then, comparing the first bracketed
expression to (3.153) with (3.154) substituted in it, it is clear that this too can vanish for
k = u, i.e. when the convection velocity of the pressure perturbation coincides with the
phase velocity of free waves in the pipe, a ‘new’ type of resonance.

Similar work on wave propagation in periodically supported pipes (with an additional
rotational stiffness present at each support) has been done by Singh & Mallik (1977).
The interested reader should also refer to Mead (1970, 1973).

3.8 ARTICULATED PIPES

It is recalled that, essentially, the incredible saga of the dynamics of cantilevered pipes
conveying fluid, in all its manifestations and variants, began with Benjamin's (1961a.b)
work on articulated cantilevered pipes. Benjamin derived the correct statement of
Hamilton’s principle for an articulated system, equation (3.10), in much the same way as
in Section 3.3.3, and in the process he discussed the incorrectness of previous derivations
of the equations of motion of cantilevered pipes. He also examined the mechanisms of
energy transfer and stability (Section 3.3.2), and illustrated the qualitatively predicted
dynamical behaviour by sample calculations and model experiments. Further work on the
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subject was done by Paidoussis & Deksnis (1970), Bohn & Herrmann (1974a,b), Sugiyama
& Noda (1981), Bajaj & Sethna (1982a), Sugiyama & Paidoussis (1982), Lunn (1982),
Sugiyama (1984) and Sugiyama et al. (1986a,b) on linear aspects; a considerable amount
of work was also done on the nonlinear dynamics of the system, which is discussed in
Chapter 5.

The dynamics of the articulated system mirror those of the continuous one (which is
treated first in this book), with the following difference: the cantilevered articulated system
is not only subject to flutter but also to divergence, unlike the continuous system. The
importance of this discrepancy should be viewed in the context of the popularity of low-
dimensional (low-N) models for studying the dynamics of continuous systems (Herrmann
1967; Herrmann & Bungay 1964; Herrmann & Jong 1965, 1966). For columns subjected
to axial loading, the dynamics is qualitatively the same in the discrete and continuous
systems, and hence low-N models may be used without worry; however, this is not the
case for pipes conveying fluid, as discussed in Section 3.8.2.

3.8.1 The basic dynamics

Consider the articulated system shown in Figure 3.1(d), oscillating in a vertical plane.
The mass of the pipe per unit length is m and that of the fluid M, the length of the upper
pipe /| and of the lower one /,; the corresponding spring constants are k; and k,, while
the generalized coordinates are q; = 6, g, = ¢. The equations of motion can be derived
with the aid of (3.10) from the expressions for the kinetic and potential energies, correct
to second order,

T=1m [ +131) 6 + 111369 + 1 13¢7]
+ {const. + 1M [(113 + 1315) 0% + 1,136 + 1367 + 21,1, U — 6)8] }, (3.156)
V= 1k6% + k(6 — )2 + 2m + M)gl(1? + 21112)6° + 12671},

and R = (1,6 + 1,¢)k — 3(116* +12¢P)i and = ¢k +1i, where k and i are the unit
vectors, respectively in the lateral z-direction and the axial x-direction. The equations
of motion are rendered dimensionless by defining a dimensionless time t = [3k,/(M +
m)I31"/2¢ and the parameters a =1,/1;, B=38=3M/(M +m), k = k; ko, u = [(M +
m)l2/3k]"2U and y = (M + m)gl3/2k,.

For the system defined by a=«=1,8= % and y =0 it is found that (i) the first
mode remains stable, receding to even larger $m(w) as « is increased, @ being the
eigenfrequency; (ii) the system loses stability in its second mode at u = 1.733 by flutter;
(iii) thereafter the second-mode locus reaches the $m(w)-axis and remains thereon,
tending to w — 0 as # — oo. For y # 0, however, stability may be lost by divergence.
No attempt was made by Benjamin to draw the map showing where divergence and
where flutter would occur; this was done later, e.g. by Lunn (1982) — see Figure 5.13.
Nevertheless, in the case where the restoring forces are due to gravity alone (k; = &, = 0),
Benjamin shows that the system loses stability by divergence if 8 > %, and by flutter for
lower B. Hence, in a typical experimental system, if the fluid conveyed is water the
instability first observed will typically be divergence; if it is air, however, it will be
flutter.
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Benjamin (1961b) conducted a set of model experiments with articulated pipes made up
of segments of brass or glass tubes (typically 12.7 mm in diameter, 0.20-0.62 m long),
interconnected by joints made of short lengths of rubber tubing bound to the rigid tubes
securely with wire. Care was taken to relieve stresses at the joints and to ensure a smooth
flow passage from tube to joint and on to the next tube. Some experiments were conducted
with k; = k, >~ O by replacing each rubber joint by the neck of a toy balloon. The fluid
was water (8 = 0.18, 0.31 and 0.32). In some experiments, the pipe was vertical and in
others horizontal (essentially as described in Section 3.5.6). In a few cases, both ends
were supported.

Virtually all of the general qualitative observations made in Section 3.5.6 for flexible
pipes have been noted earlier by Benjamin in his articulated pipc cxperiments: the violence
of the divergence instability (which had to be limited by restricting its unimpeded growth,
otherwise resulting in a broken joint), the destabilization of a cantilevered system by
lightly touching the free end, limit-cycle motion, ‘induced’ versus self-excited flutter and
hysteresis, etc.

Agreement between theoretical and experimental critical flow velocities was impressive:
Ucq = 0.34 versus 0.36 m/s for divergence and U,y = 0.65 versus 0.68 m/s for flutter are
typical of a set of 18 experiments.

The ‘mode exchange’, already discussed in Section 3.5.1, also arises in the case of artic-
ulated systems, as demonstrated by Sugiyama & Noda (1981) and as shown in Figure 3.77,
where it is seen that the mode loci come very close together before the switch actually
takes place. The Argand diagram for 8 = (.50 is identical to one of those originally
obtained by Benjamin (1961a).
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Figure 3.77 The ‘mode exchange’ from second- to first-mode flutter for an articulated cantilever
with varying 8 for y = 0: (a) for B increasing, starting with 8 = 0.50; (b) for 8 decreasing, starting
with 8 = 0.55 (Sugiyama & Noda 1981).
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Lunn (1982) studies the effect of dissipation on two-degree-of-freedom systems, in
particular for 8 — 0, obtaining similar behaviour to that discussed in Section 3.5.6 for
continuous systems: i.e. severe destabilization due to internal damping (Figure 3.37). He
also conducted a number of experiments, some of which are discussed in Chapter 5 (see
Figure 5.14).

3.8.2 N-degree-of-freedom pipes

One major difference between the continuous and articulated cantilevered systems is
that in the latter, if the pipe is vertical, divergence may occur, while for the continuous
system it has been shown theoretically and confirmed experimentally that divergence is
impossible. The resolution of this difference in behaviour was the motivation of the work
Paidoussis & Deksnis (1970), dramatically entitled ‘the study of a paradox’; ‘paradox’
simply because in the limit, as the number of articulations N — 0o, one should expect
the articulated system to approach the continuous one in every respect.

Paidoussis & Deksnis (1970) consider the vertical system of Figure 3.78, involving N
articulations and N rigid tubes, of which N — 1 are of length /, while the last one is
of length ¢l, where ¢ < 1. For reasons to be clarified later, a portion of the upstream
immobile piping, (1 — e)! long, is taken to be part of the system, so that the total length
of the articulated pipe is L = NI. The rigid tubes are interconnected by rotational springs

of equal stiffness, k. Again, the masses per unit length of the pipe and of the fluid are m
and M, respectively.

.
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Figure 3.78 The N-degree-of-freedom articulated system, showing the lengths of the tubes, the
generalized coordinates and the displacements of the free end. At each articulation there is a
rotational spring of stiffness &, not shown (Paidoussis & Deksnis 1970).
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Making allowance for the shorter tube at the free end, the kinetic energy of the pipe is

2
N p—1 p—1
VRS LD IR CYARCH I DT LT DIE-S B S (3.157)
p=1 (1=0 q=0

where

cip=1+(e— 1), c2p =14 (&2 = )3, c3p =1+ = 1 ,w,

(3.158)
and &,y is Kronecker’s delta, while the kinetic energy of the fluid is
N . . p_l - P—] . ’
T= MY des,dl +eopdp | D b | +eip [ 4
p=1 g=0 q=0
N p—]
+IMUIPY " $2e1, | ¢gldp — d9) | ¢ + const, (3.159)
p=1 g=0

both correct up to the quadratic terms. The potential energy of the system is

N p—1 N
V=1mgl?>  Ceip | D) | + 5085 p + 3k D (9p — bpo1) (3.160)
p=1 q=0 p=1
The equations of motion are derived via Hamilton’s principle, equation (3.10). In this
case, R =w;k — ¢;i, Tt = ¢vk + 1, where

N N
wyp = IZ Cipdp and cL = %l Z cl,,qb%). (3.161)
p=1 p=1

The equations of motion, in dimensionless form, are

2e3,¢, + Nycard, + 2N*wPci (dn — ¢,)

N p—1 p—1 p—1 p-1
DS eabp | D | Headpr | D bg | 200, | Db | |3
p=! 9=0 q=0 q=0 9=
p—1
+ 21Vyclp Z ¢qaqr + 2N4(¢p - ¢p~—l)[apr - a(p—l)r]
q=0

p—1 p—1
+ ZNﬂl/zuClp Clrép + ¢p (Z 61]") hael 3,,, (Z ¢q):| } = 0’
q=0 9=0

r=123..... N, (3.162)
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where
3 —1/2
L=Ni, ,=(S"1+_"1)E_N) .op= M
k M+m
L2N MIN\'/?
:W—J”:)g—r and u=<—) u. (3.163)

For ¢ = % one may consider the articulated system to be a physically discretized
version of the continuous one, with the flexibility of the latter lumped at the mid-point
of each /-length segment and equal to k = EI/] — cf. Goldstein (1950; Chapter 11). It
is the transition from the low-N discrete system to the continuous one that is the main
concern of Paidoussis & Deksnis’ work.

The dimensionless eigenfrequencies of the articulated system are compared with those
of the continuous one,’ first at u = 0, for increasing N. As expected, for N =2 or 3,
the two sets are appreciably different; with increasing N, however, they converge quite
rapidly. Thus, for N = 10 the lowest five modes in the two sets are within 2%; for N = 20
within 1%, for y = 0; and only slightly less close for y = 10 [see table and figures in
Paidoussis & Deksnis (1970)].

Then, the dynamical behaviour of the system with flow is investigated for various N.
Figure 3.79(a,b) gives results for y = 10 and 100. It is seen that for y = 10 stability is lost
by flutter, no matter what N is — although the Argand diagrams show that divergence
is possible at u > u.;. An interesting observation (cf. Sections 3.5.4 and 3.5.5) is that
for sufficiently low N, no S-shaped jumps are manifested in the curves. Finally, from
the results for N = 8 it is clear that, for sufficiently high N, the stability curve of the
articulated system approaches that of the continuous one; since convergence in the lower
eigenfrequencies is better than in the higher ones, agreement between the N = 8 discrete
and the continuous system is better for lower 8 (cf. Section 3.5.4).

The situation depicted in Figure 3.79(b) for y = 100 is more complex. It is seen that
(i) for N = 2, the system loses stability by flutter only if 8 < 0.195, and by divergence
for higher 8; (ii) for N = 3 only flutter is possible; (iii) for N = 4 and 8, both divergence
and flutter are possible but u.; > u.s, the difference between the two stability bounds
being much larger for N = 8.

Indeed, observing the trend with increasing N in Figure 3.79(b), it is reasonable to
suppose that u,; — 00 as N — oo. This resolves the paradox that, whereas for the artic-
ulated system divergence is possible (and in some cases stability is lost that way), for the
continuous system no divergence can occur. These same results explain the same paradox
as expressed by Benjamin (1961b): that in some cases, divergence is possible with water-
flow but not with air-flow. From Figure 3.79(b) we see that, for N = 2, stability is lost
by divergence when 8 = 0.2 or higher and by flutter when g~ 1073, these two values
of B being typical for water- and air-flow experiments respectively.

The non-occurrence of divergence for N = 3 is explained, phenomenologically at least,
in Figure 3.80. For even values of N, there generally is a mode (typically the first), which
crosses the origin from positive to negative 91 (w), the classical divergence path. In some

TThe eigenfrequencies of the continuous system have themselves been obtained from a discretized (Galerkin)
model, unless y = 0 — see Section 3.3.6; however, the discretization in this case is analytical rather than
physical.
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cases, however, it is the locus of the mode giving rise to flutter that reaches the negative
Jm(w)-axis and then crosses the origin from instability to stability; these cases are shown
as dashed lines for N =2 and 4 and low y. This appears to be the usual path for N
odd. although for N = 5 and 7. over a range of y, the mode locus recrosses to instability
(the upper curve in each case). However, for N = 5 and large or small enough y, there
are no crossings of the origin at all, thus leading to the finite closed curve shown in the
figure; for N = 3 the area of this closed curve is simply null. Thus, in this respect also,
the transition from N = 3 to higher odd values of N may be considered to be ‘smooth’.
Experiments were also conducted, similar to those of Benjamin's, with metal tubes
(diameter = 9.5-12.7 mm, L =~ 0.6-1.2 m), with connector-springs made of rubber tubing
secured by jubilee clips, N = 2, 3 or 4, and water as the fluid, In some cases, in order to
increase m and hence y, the tubes were sheathed with larger diameter tubes. Typical results
are given in Table 3.7. In all the cases in (a) stability is lost by flutter, while in (b) it
is lost by divergence. The experiments in (b) were conducted with springs of negligible
stiffness, in which case « and y, as defined in (3.163) are meaningless; in that case, a
new dimensionalization was made, in terms of the Froude number, F = U/(gL)"/?. For
N=2e¢= %, it is shown analytically that, for divergence, F = Eq = 1/(28)"/2. As seen
in the table, agreement between theory and experiment is reasonably good in all cases.

20 T T T B E— T 7 T

(@) B

Figure 3.79 The dimensionless critical flow velocity u., for divergence and u., for flutter of the
articulated cantilever for N = 2, 3, 4, 8 and for the continuous system (N = co) as a function of g:
(a) for y = 10; (b) for y = 100; in both cases ¢ = % (Paidoussis & Deksnis 1970).
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Figure 3.79 (continued).

Further theoretical and experimental results may be found in Paidoussis & Deksnis
(1969, 1970). The final conclusions are the following. First, there is, after all, a smooth
transition between the discrete system, as N is increased, and the continuously flexible
one. Second, the low-N discrete system dynamics can be quite different from those of
the continuous system [Figure 3.79(b)], and hence the popular two-degree-of-freedom
articulated ‘models’, which work so well for Coriolis-free follower-force nonconservative
systems, should be used with caution in the case of pipes conveying fluid if the results
are meant to be extrapolated to those of the continuous system.

3.8.3 Modified systems

A very extensive and systematic study of various modified two-degree-of-freedom articu-
lated cantilevered systems has been undertaken by Sugiyama and co-workers — ‘modified’
in a similar way as the continuous systems discussed in Section 3.6, by the addition of
springs, masses, and so on.



PIPES CONVEYING FLUID: LINEAR DYNAMICS I 191

2k /N=8 J
-
18 V=6 4
. —
| N /N=T [ — —
u }
I
L

0 20 40 60 80 100

Figure 3.80 The values of u where the locus of one of the modes of the articulated system crosses
the origin for N = 2-8 and ¢ = % as a function of y; the meaning of the dashed lines is explained

in the text (Paidoussis & Deksnis 1970).

Table 3.7 Conditions of stability: theory compared with experi-
ments; in (a) k varied from one experiment to the next, in the range of
k = 0.33-0.39 N'm, while in (b) & ~~ 0 (Paidoussis & Deksnis 1970).

(a) Flutter

N e B % u.; (theory) U5 (exp.)
2 1 0.231 4.94 4.20 4.25

2 5 0.227 17.2 6.36 5.76

2 ! 0.084 46.4 6.08 6.17

3 3 0.211 18.6 6.20 6.12
4 ! 0.196 20.2 6.65 6.44

(b) Divergence

N e B FE.4 (theory) Fa (exp.)
2 3 0.258 1.39 1.50
2 3 0.258 1.40 1.34
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The effect of some of the system parameters, c.g. the ratio of the stiffnesses and
the associated damping at the joints, and the ratio of masses of the two articulations is
investigated by Sugiyama & Paidoussis (1982), one aim being to find the configuration
leading to the minimum value of u.s.

The effect of an added lumped mass somewhere along the second segment and of
damping at the articulations is examined by Sugiyama & Noda (1981), who find that
the added mass virtually always destabilizes the system, as shown for example in
Figure 3.81(a), both theoretically and experimentally. The notation in the figure is as

Flutter

N X
\,
1.0 |~ Stable AN / P
~ ’
’I

1 | A
0.0t 0.1 1 10 100
(a) B
2 —
Divergence
20 4 AA
Flutter '\
1.5 \
} — a a a \
N s o G e s e \
= — as |
&)
I -
Stable
L 1 - 1
0 1 10 10? 10°
(b s

Figure 3.81 (a) The effect on stability of an added mass in the second segment of a two-segment

horizontal articulated cantilever, for g = 0.578 and varying values of w and &: , theory

with measured damping; ———, theory with no damping; e, A, ¥, o, experiments (Sugiyama &

Noda 1981). (b) The effect of an added mass-spring combination at § = 0.94 for 8 = 0.299 and

dimensionless damping constant o = ¢/[k(m + M)I*]'/? = 0.0074 for varying « : , theoretical

results for 4 = 9.86; — - — , theoretical results for 4 = 18.5;0, A, corresponding experimental
results for flutter; e, A, for divergence (Sugiyama 1984).
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follows: u = m,/[(m + M)I] and & = [,/1, where m, is the added mass and /, its location,
measured from the beginning of the second segment of the system; u = (M1/k)!/?U.

The effect of an added spring-mass combination at a variable location in the second
segment of the system is studied by Sugiyama (1984). Typical results are shown in
Figure 3.81(b); «, u and £ are as just defined, while ¥ = KI?/k, K being the added spring
stiffness, while k is the stiffness of the articulation joints. As seen in the figure, the system
is generally subject to flutter for small « and to divergence for higher « (cf. Figures 3.64
and 3.65).

Finally, Figure 3.82(a) shows flutter of the system with an added dashpot, just before the
second articulation joint, of the type discussed in Section 3.6.4. It is shown theoretically
and experimentally (Sugiyama 1986a,b) that the dashpot is stabilizing if placed on the
first segment of the system, but can be destabilizing if placed sufficiently far along
the second segment, as shown in Figure 3.82(b); & = c,!/[k(m + M)I1'/?, where c, is
the added dashpot constant. The stabilization/destabilization mechanism is also discussed,
and in the second case is shown to be related to a phase shift which facilitates energy
transfer from the fluid to the pipe.

(a)
&

L1 Flutter

08 —
Stable
0.7 —
T | 1 1
0 0.5 1.0

&
(b)

Figure 3.82 (a) The articulated cantilever with an added dashpot in flutter. (b) The effect of loca-
tion of the dashpot on the first (at &) or the second (at &;) segment, for 8 = 0.575,0 = 1.7 x 1072,
and o = 0.59 (Sugiyama et al. 1986a,b).
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In all the experiments, the system was made of metal tubes interconnected by short
rubber-pipe segments as in the foregoing, and it was suspended in a horizontal plane,
much as in Figure 3.44. The design of the joints was much refined, however, and this
is partly responsible for the excellent agreement with theory that has been achieved by
Sugiyama and his colleagues.

A great deal of high-quality, interesting theoretical and experimental results have
been obtained in all of this work, mostly anticipating those of the continuous system
(Section 3.6). For that reason, it has been discussed here extremely briefly, but the inter-
ested reader is encouraged to refer to the original papers.

3.8.4 Spatial systems

A two-degree-of-freedom vertical articulated cantilever, with the lower tube out of plane
by an angle v, is considered by Bohn & Herrmann (1974b), so that motions of the upper
segment are constrained to occur in one plane and those of the lower one in another.
The main advantage in this system is that the type of instability to occur turns out to be
controlled by Yy — a much easier parameter to vary than g or y, especially in experiments.

The equations of motion are again derived via equation (3.10). The linearized dimen-
sionless equations are

(@+ 18+ 12 4 3a)(cos ) + (a + 1)*79 + (1 + 2a)(cos y)ag

+(a+ 10+ x10+ (1 +aw*/B)p =0, (3.164)
L2+ 3a)(cos ) + ¢ + u(cos Y)9 + i + (cos Y)8 + (k2 + 1) = 0,

where, since in most of the cases studied k) =k, =0, the nondimensional
quantities are slightly different from Benjamin’s: a = 1,/15, B=38=3M/(M+m),u=
BU/(Ggl)'?, t = (3g/12)"*1, and k; = k;/[3(M +m)i3g),i =1,2; the dot denotes

d( )/dr.

0 Loy
0 10 20 30 40 S0 60 70

Angle ¢(deg)

Figure 3.83 Theoretical and experimental results of U, (in/s; 1in = 25.4mm) for a ‘spatially
deformed’ articulated system, by an angle v, for 8 = 0.328: theory; e, experiment, divergence;
A, experiment, flutter (Bohn & Herrmann 1974).
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It is found that in the case of 8 > (l’ stability is lost by divergence — as found by

Benjamin for ¢ = 0 — no matter what the value of . In the case of 8 < é, however,
stability can be lost either by divergence of by flutter, depending on ¥. Typical results
are shown in Figure 3.83, together with experiments. It is not clear from the text in Bohn
& Herrmann (1974b) whether the theoretical results have been computed with the full
theoretical model, i.e. taking into account k; and k; and also the damping at the joints
(ignored here).

In the experiments, the joints were made of ball bearings and light brackets, attached as
a ‘backing’ to the pipe system, while the flow was conducted from the upper to the lower
tube by a latex-tubing connector. Great care had to be exercised in eliminating, to the
extent possible, small eccentricities and the effect of a permanent bow in the latex tubing,
as well as controlling and measuring the stiffening of this tubing with increasing internal
pressure. Nevertheless, agreement between theory and experiment in Figure 3.83 is good,
notably demonstrating the existence of a critical value of i, separating the domains of
flutter and divergence. One unusual feature of the results in Figure 3.83 is that, apparently,
divergence at a higher flow velocity than flutter materializes; unfortunately, this is not
discussed by Bohn & Herrmann.



4
Pipes Conveying Fluid:
Linear Dynamics li

4.1 INTRODUCTION

The linear dynamics of the basic system of a pipe conveying fluid has been considered
in detail in Chapter 3, including, in more abbreviated form, the dynamics of some impor-
tant modified systems (Section 3.6). A characteristic of all these systems, if they are
continuously flexible, is that they are all governed by equations (3.38) and (3.70) and the
dimensionless parameters of (3.71), or by simple variants thereof. Furthermore, solution of
these equations may generally be achieved by one of the two methods of Section 3.3.6, or
by straightforward extensions of these methods. The only ‘unusual’ system in this respect
is that of articulated pipes, dealt with in Section 3.8.

The systems considered here, on the other hand, either are governed by substantially
modified forms of the equations of motion or require different methods of solution.
Specifically, the following topics are discussed. Nonuniform pipes are pipes with nonuni-
form cross-section and axially variable flow area. Aspirating or-sucking pipes are pipes
ingesting flow at a free end, rather than expelling it. Short pipes also require special
treatment: from the solid mechanics side the use of Timoshenko beam theory, and from
the fluid mechanics side the use of potential flow theory and the introduction of so-
called ‘outflow models’ for the fluid discharging to atmosphere. Pipes with harmonically
perturbed flow velocity are subject to parametric resonances and require special methods
of solution; so does the treatment of forced vibration of pipes conveying fluid. Finally,
the section on applications presents some expected and unexpected uses of the work
discussed in Chapters 3 and 4.

4.2 NONUNIFORM PIPES

4.2.1 The equation of motion

The equation of motion will be derived for a pipe with a nonuniform flow passage
and, generally, a nonuniform external form also. Variations in the shape of the pipe are
axisymmetric, gradual and smooth with respect to the axial coordinate [see Figure 4.1(a)].
The pipe is immersed in air or water, so that hydrostatic, added-mass and damping effects
associated with the external fluid need generally be taken into account.

In this derivation (Hannoyer & Paidoussis 1979a), the lateral dimensions of the flow
passage will not a priori be considered to be negligible. However, the other assumptions

196
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made in Section 3.3.2 for uniform pipes are also made here, namely that motions are
small, the flow is fully developed turbulent, the curvature of flow trajectories is small,
etc. It is also assumed that (i) the profile of the axial component of the flow velocity, U;,
is uniform, and (ii) there are no significant secondary flows, other than that associated
with changes in the cross-sectional flow area of the tubular beam. For simplicity, the
flow velocity is assumed not to be time-varying. The subscript i, as in U;, is added for
two reasons: (a) since there is also an external fluid, to distinguish internal- and external-
fluid properties, e.g. the densities p; and p,; (b) to facilitate the analysis in Chapter 8
(Volume 2) of the same system but with the outer fluid flowing with mean velocity, U,.

In the following, the rate of change of the momentum of the flow associated with
motions of the pipe will be derived first. This is then used in a Newtonian derivation of
the equation of motion.

In the analysis, an inertial coordinate system {x, y, z} is used, as shown in Figure 4.1(a).
However, for convenience, a non-inertial frame {&, n, {} embedded in a cross-section of
the pipe [Figure 4.1(b,c)] and centered at O in a cross-section of the pipe is also used. The
conduit is assumed to be locally conical, with angle 8; sufficiently small for velocity terms
of order 87 to be negligible. On the centreline, the absolute velocity of the fluid, V;, is equal
to the relative velocity on the centreline, U;, plus the velocity of the centreline, dw/or.
Axial motion of the pipe is negligible (cf. Section 3.3.2); however, the effect of rotation
needs generally to be taken into account. Thus, for a point off the centreline, the flow
velocity relative to the pipe is W; = U, + Q x n [Figure 4.1(c)], where 2 = Bzw/ax ot in
the ¢-direction — obtained by assuming that the fluid essentially slips at the boundary
and by neglecting second-order terms with respect to §;.

The rate of change of the flow momentum is here derived via a control volume approach.
In this case a convenient control volume, AV, is an elemental slice of the fluid in a cross-
section of the pipe. of thickness §&. The rate of change of momentum in AV may be
expressed in terms of the material derivative of V; as in equation (3.30). Alternatively and
more conveniently, the rate of change of the flow momentum relative to the noninertial
control volume attached to the tubular beam may be evaluated, and then the d’Alembert
(apparent) body forces added to it, as follows:

d / / / PV d(AY) = / / pWiIW,- nd(AS)] + / / / Wi d(AY)
dr AY AY
R d
/// p,[d2+2QxW +Qx($2xr)+—xr+a,e|] d(ATV), @)

where the surface integral represents the momentum flux across the surface AS of the
noninertial control volume, the next integral represents the rate of change of momentum
within the control volume, and the last integral the apparent (pseudo) body forces. W; is
the flow velocity of any point within A%, i.e. for any stream tube, not necessarily along
the pipe centreline; n is the unit vector normal to the surface element d(AS). R is the
position vector of the origin O of the noninertial {&, n, ¢} {rame vis-a-vis {x, y, z}, while r
is the position vector of any point within AY in the {§, n, £} frame; here, T is of the order
of the pipe radius and therefore small, the pipe being slender: a,. is the fluid acceleration
vis-a-vis the noninertial frame.

Each of the integrals in (4.1) will now be evaluated in turn. Because of the imperme-
ability of the walls, the net momentum flux across AS is merely the difference between
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External
fluid

Figure 4.1 (a) Schematic of the system under consideration; (b) coordinate systems, a
cross-section of the pipe, and an element of the fluid in a locally conical segment of the pipe;
(c) flow velocities within the fluid element (Hannoyer 1977, Hannoyer & Paidoussis 1979a).

the fluxes across the flat surfaces in the flow direction, and it may be written as

0 oW,
— // p,-W,-(W,--ndAi)dx :p,-dx// —“V,'dA,', (42)
ax A; A; ox

by invoking continuity for each streamtube; A; is the cross-sectional area of the flow
conduit.

Since the control volume remains constant, the second integral on the right-hand side
of (4.1) may be written as

5 oW, .-
s—/// p,-wid(A°V>=p.-dx// dA,-:p,-dx// Wi _omda; @3
ot AV A, Ot A, Ox

in the last step the fact that W; changes because of rotation of the control volume has
been utilized, so that (dW;/dt) = (dW;/3s)(3s/0t) ~ (dW;/dx)(—£27n), where s here is the
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coordinate along a strcamtube off the centreline (and should not be confused with the s
used in Sections 3.3.1 and 3.3.2). Hence, the sum of (4.2) and (4.3) gives

" oW, oW; aU;
Pidx// —("Vi_gn)dAfzpidx//‘_UidAi:piAiUi“,_dx'» (4.4)
A Ox ox ax

the intermediate result is obtained with the aid of Figure 4.1(c), while the last step is
reached through neglect of second-order terms.

Since ||ri| is small and a, is negligible, the last integral of (4.1) may be approximated
as follows:

2w Fw 3w
— +2Q x W;| p; d(AYV) >~ piA; | — +2U; —— | dx, 4.5
.///M[a,2 +20 x ,]p. (AT) ~ p ,(a,2+ axa,) 4.5)

in which it is recalled that w is the vector displacement of the pipe centreline in the
y-direction. The second term in (4.5) is obtained through the following sequence of
operations: 2Q x W; =2Q x U;(1 + 2n/U;) ~ 2Q x U; = 2 [—(3%w/0x d0k] x(U;i) =
2U:(3%w/dx 8t)j = 2U;(3*w/dx dt), where {i, j, k} are unit vectors associated with {£, n, £}.
Throughout, the small inclination of the {&, n}-plane vis-a-vis the {x, y}-plane is utilized,
subject to order-of-magnitude constraints. Hence, combining (4.4) and (4.5), the rate of
change of fluid momentum is

2 32 ;
ow W -E] dr, 4.6)

—3[—2+2U + U

iA; i i
p [ ox or ox

which yields components per unit length in the x- and y-direction, respectively equal to

du; Fw 8w a ow J
AUy — d Ai | =— +2U — + Ui — (U — ]| . 4.7
P gy p"[a;?’L axor T ax('ax> @.7)
The second expression may be written in the compact form p;A;%%w, where % = [(3/3t) +
U;(3/0x)], and

& 3’ 9 3
Dy = D[Dw] = [87‘; +2U a-:? U (U,» a-j)] . (4.8)

It is instructive to note that there are no terms involving dA;/dx in (4.7), as there would
have been if the lateral momentum change had erroneously been evaluated by a simplistic
application of the formula [(3/0t) + U;i(8/9x)1{piA;[(Ow/3t) + U;(dw/ox)]}!

Now, the next steps in the derivation of the equation of motion may be taken. Working
in a similar way as in Section 3.3.2 (cf. Figure 3.6) by considering an element 8§ of the
pipe [Figure 4.2(a)], force balances in the x- and y-direction and a moment balance yield

aT w  d ow

. F; Fy — (F, En)— . o =0, 4.9

o+ Fir + Fa (Fin + ,)ax+ax<an>+mg (4.9a)
a0 ow d aw 92w

-— int+t FEn +(Fu+E)—+—\T—)=m—_—5. 4.9b
ax +Fin & fon (Rt ’)ax+ax< 3x> ™o (4.90)

‘ 2 ? oM
Q+i[<5*—+5>1 w]+_f=o, (4.9¢)
0x ot
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> Yy y
x Aip;
& -7 "Fin
:V'
\:'—
\‘-’__ -Fi,
PiAg

(b)

Figure 4.2 (a) An element of the pipe showing forces and moments acting on it; (b) an element of
the contained fluid showing forces acting on it. Note that Q + (3Q/dx) éx and p;A; + (3/3x)(p;A;) 8x
on the lower surfaces have been omitted in these diagrams (Hannoyer 1977).

in which F; and F;, are the tangential and normal components of the fluid-pipe inter-
action forces associated with the internal flow (equivalent to ¢S and F, respectively, in
Figure 3.6), and F,, and FE, are the corresponding terms associated with the external,
stagnant fluid;t T, Q, E, E*, I, and m are the same as before, for uniform pipes: the
tension, transverse shear force, modulus of elasticity, Kelvin—Voigt dissipation constant,
area-moment of inertia, and mass per unit length, respectively. The term M, is the fluid-
related moment due to both internal flow and external fluid, which for a pipe of nonuniform
cross-section may not tacitly be assumed to be zero.

Similarly, utilizing equations (4.7) and (4.8), x- and y-direction force balances
on an element of the fluid [cf. equations (3.18) and (3.19) of Section 3.3.2 and
Figure 4.2(b)] give

aw d du;

Fy — F o —g(PiAi) + piAig — piAiU; e (4.102)
w 3 ow 2

Fin+ Fu - = —— | piAi = | — piAD"w, (4.10b)
ax ox ox

where A; = A;(x), and p;A; is what was previously called M, and 92w has been defined
in (4.8).

The external fluid, being stagnant, contributes only hydrostatic, inertial (added
mass) and damping terms: respectively equal to the buoyancy force, —p.A,g, and to
—peAe(a2w/az2) and —p.D,U,(3w/0t), where U, = (u.Cp/p.D,) has the dimensions of

"The formal manner in which the external fluid forces are taken into account here is useful for later analysis,
where 7, and F;, will be associated more generally with external flow (Chapter 8).
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velocity, D, is the external diameter of the pipe, . is the dynamic viscosity, and Cp an
empirical coefficient dependent on Stokes’ number — see Section 2.2.1(g) and 2.2.3 and.
for the viscous component, also Paidoussis (1973b) and Hannoyer & Paidoussis (1978).
Hence, a balance of forces due to the external fluid gives

ow 0
Ei—ky—= —PeAeg T —(peAe), (4.11a)
ox ox
aw d aw ?w ow
En+ 8 —=— Ae — | — pAr — — p.DU, —. 4.11b
IR ax(p? 8x> Pefle Tz T Pty (4.11b)

The form of the pressure forces in equations (4.11a) and (4.11b) is clarified in Chapter 8;
here one may simply accept it by similarity to the internal flow terms in equations
(4.10a,b).

The evaluation of the d./My/dx term in (4.9¢) is quite tedious and will not be reproduced
here. Suffice it to say that careful study (Hannoyer 1977) has shown that

3./“4 p,-A,- dA,’ 2 peA(, dAe 82w
—_ = — 9 — . 4.12
ax o2r TV T ax ae (4.12)
Equations (4.9a), (4.10a) and (4.11a) may be combined to give
a
B—r[T + pA. — piAi — pi(A;UN U] = (pA, — piAi — m)g, 4.13)

in which the fact that A;U; is constant has been recognized. Then, by combining (4.9b.c).
(4.10b) and (4.11b) and utilizing (4.13), the equation of lateral motion becomes

" {(E* 2 +E) I B_ZW] _ pidi d_Ai_ i(gﬂzw) _ PAe dA, D (Bzw)

a2 or w2 | 27 dx ox 27 dx ax \ a2
+ pidi [@2 - U 4 3] W+ peA, @ — (peAc — PiA; —m)g i
dx ox o2 ox
—(T+ pA. — p,-A,-)i‘,v +m az:v =0; (4.14)
ox-> ot?

it is important to note that, in the dominant term 0iA[D? — Ui(dU; /dx)](dw/dx), the
U;(dU;/dx)(dw/dx) component cancels out once 92w is expanded — and this is true
irrespective of magnitude considerations.

We next proceed to evaluate the only unspecified quantity in (4.14), namely that related
to T + p.A, — piA;. By integrating (4.13),

L L
T(x) =9I (L) - pi (A UDY;| — / (PeAe — PiA; —m)gdx (4.15)

is obtained, in which
T(x) = (T + peAe — piAi): (4.16)

it is recalled that T, p, A, U and m, unless otherwise denoted, are functions of x. Two
cases will be analysed, separately, as follows.
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(a) Free or free-to-slide-axially downstream end. In this case it is presumed that no
externally imposed tensioning is possible; it is also assumed that the internal fluid
discharges into the external fluid at x = L and that p;(L) >~ p.(L), equal to the hydrostatic
pressure at that point. Thus, (L) = p(L)[A.(L) — A;(L)], which may be rewritten in terms
of a drag coefficient

T (L) = 1A U} Cri; @.17)

it is recognized that, since (A, — A;),. is small, J (L) will be small and may alternatively
be neglected.
(b) Supported end with no axial sliding. In this case,

JL) =T +IT + pAc — piAils, (4.18)

where T represents a possible externally applied tension. The second term is evaluated
by considering the flow-related terms by themselves and imposing the condition that the
axial strain g, satisfy fOL g, dx = 0, as in the derivation of equation (3.37). It is noted that
&, = [0 — V(oy, + 0gg)]/E, in which o, = T(x)/A(x), where A(x) = A (x) — A;(x) =
(A, — Aj):, and v is the Poisson ratio; furthermore, o, + og =~ 2(p;A; — p.A.)/(Ae —
A;), by assuming that the tubular beam area variations are sufficiently gradual for the
stress distribution applicable to a uniform tubular beam subjected to uniform internal and
external pressure to hold true for each cross-section. Hence, one finds

T A A " dx
(T + p.Ae — pi i)L/o m
(Aepe — Aipidx Ui(L) — Ui(x)
—(1—2)/ —A)de+pz(AU)/ —Ai)xdx, (4.19)

from which (T + p,A. — p;A;). may be obtained if the form of A,(x), A;(x) and the
pressure distributions are known. In general, one may write

[T + pA. —~ piAilL = (1 =20 p.A, — piAilLf1+ pi(AiUDU(L) fa, (4.20)

in which f and f, must be obtained via (4.19). It is of interest to note that for a uniform
tubular beam internally pressurized by p; and immersed in a uniform ambient pressure,
the second term in (4.20) vanishes while the first gives —(1 — 2v)p;A;, thus retrieving the
results of Section 3.3.2. It should also be noted that, unless pressurization effects exist,
both f; and f, are very small terms which may be neglected for slightly tapered tubular
beams.

Hence, the equation of small motions of the system, subject to all the assumptions and
approximations made, is

92 3 Fw iA; dA; 9 92w 2 2
[(E*—+E>l ]p { +Ua—w+U?a—W}

a2 a ox? 27 dx ax | o2 oxot boax?
_ pe, dA. D {82w} {32 , Pw Pw

—_— —_— A; 2U; — A
P 2 R aaz+U'a2}+p“’az2

2

0
- {m) + piAiULU; — Uy(D)] — / (PeAe — piAi — m)g } e
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2
+ peDer % - [(pEAE — PiA; — m)g]%% +m E;T;v =0, (421)
in which [dA;/dx](3/3x){(dU;/dx){(dw/dx)} in the second, fluid-moment-related term has
been neglected, as it is of second order for small taper angles; J(L) is given either
by equation (4.17) or by (4.18)-(4.20). It is obvious that the second and third terms
in equation (4.21), which are related to the fluid-related moment [equation (4.12)] are
quitc small as compared to, say, the fourth term; indeed, for sufficiently small dA; /dx and
dA,/dx, they may be neglected, and this is one of the reasons for not giving the derivation
of oM /0x here in detail.
The boundary conditions are the same as for uniform tubular beams, e.g.
equations (3.77) or (3.78).
The equations of motion and boundary conditions may be rendered dimensionless by
the following set of nondimensional parameters:

E=x/L.  n=w/L 1= [El/(m+ pA.+ AL
8 = [Ai/Ade=0, O =AcE)/A0),  0; = AiE)A(0),  €=L/D,0),

va = U/AE(m + p.A, + AN HE* /LY, © = I(LLYEIO), 1T =TLY/EI0),

t/L2,

1/2 1/2

= (DA EINAUOIL, ¢ = [poAe/ETAUL = [peAe/ EN(1.Ci/pDOL, (4.22)
y = [pAc/Elle=0gL’,  ve=1+p./p,  yvi=(pi/p— D&,

where p = m/(A, — A;). The equation of motion in dimensionless terms is then given by

Lo 2 3 (o, — 80 327;} 822 da,-} ¥n
U — —_— —_— - — — —_ —_
Yot ) se2 1 -8t o2 8e2o; di | 98

l 32’]
+ - -0 - 2~ ye)o, + yioilds p —
{a,(l) 5 Y2 — ye)o. + viail é} 52
82+y, 172 do; 8% | @1 an
2~ e)Ue (AL)S § el
{lyﬁ% & 42  or + {2 - ve)o +y0]}3g

N bz+y, /u n _{82+y, 8o; da,+ye—l _UL%} »n
Ve + y. ot ot Ve+yi 862 dE ' ye+y 8¢ dt f ko2
=172 2 i) &

+ [Z____} e, M {Z’M} _'27 —0. (4.23)

Ye * Vi at Ve + Vi at

4.2.2 Analysis and results

Some calculations have been conducted for conically tapered cantilevered tubular beams,
i.e. either conical in outer form or with a conical flow passage. The notation‘cylindrical-
conical’ or ‘conical-conical’ is used here, the first denoting a cylindrical outer shape and
a conical flow passage, while the second denotes conical outer and inner forms, as shown
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in Figure 4.3; the case of a ‘cylindrical-cylindrical’ pipe will simply be referred to as
‘uniform’. In the case of conical passages, instead of o, and o;, it is more convenient
to use the truncation factors «, and «; [see Figure 4.3(c)] or the cone angles 8, and f;,
defined by

0, = (I —a,6)?, B =tan {[D,(0) — D.(L)]/L} ~ e, /e, (42
oi=(1—w&?,  fi=tan"'((Di(0) — Dy(L)}/L} ~ Sey;/e. '
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Figure 4.3 (a) A cylindrical-conical pipe, and (b) a conical-conical one. (¢) Truncated cones
representing possible internal conduit shapes, for the same ¢ (¢ = 5) and different «;.

The method of solution, a modified Galerkin technique (Hannoyer 1972), is outlined in
Chapter 8, where the system subjected concurrently to internal and external flow will be
discussed.

In Figure 4.4(a), the dynamical behaviour with increasing u; is compared for (i) a
wholly uniform pipe and (ii) a cylindrical-conical one (x, = 0, &; = 0.5). It is seen that the
dynamical behaviour is closely similar, but the critical flow velocity for the onset of flutter
is considerably lower for the cylindrical-conical pipe (u;. >~ 2.25) than for the uniform
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Figure 4.4 (a) Argand diagram of the complex eigenfrequencies of a tubular cantilever conveying

fluid for a system with € =20, § = 0.5, y = 20.05, y; = 0.03, y, = 1.9, immersed in quiescent

water, neglecting dissipation (v; = ¢, = 0): — e — @ —, a uniform pipe (o, = ¢; = 0); ¥—¥; cylin-

drical-conical system (&, = 0, o; = 0.5). (b) Argand diagram of a similar cylindrical-conical system

(e =0,0, =0.5), with y, =1 and all other parameters the same: V¥, immersed in water, V.
immersed in air (Hannoyer & Paidoussis 1979a).
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one (u; =~ 5.0). By reconsidering the arguments originally made by Benjamin (1961a)
and discussed in Section 3.2.2, flutter arises when the work done by centrifugal force
MU?(8*w/ax?) = p;A;U*(3*w/3x?) overcomes that done by the Coriolis force. In the
case of the nonuniform pipe, however, this term is equal to [p;A;(x)U; (x)U; (L)) (8%w/ax?),
where p;A;(x)U;(x) = const. Hence, since U;(L) > U;(0), the destabilizing force is higher
at all points x > 0 in the cylindrical-conical system vis-a-vis the uniform one. In this case
the ratio of critical flow velocities is 2.25/5.0 = 0.45, which is close to the diameter ratio
(1 —a;)/1 = D;(L)/D;(0) = 0.5. Similar calculations confirm that ;. indeed decreases
almost linearly with increasing ‘truncation factor’ ¢;. Thus, the destabilizing effect of
conicity of the flow passage is similar to that of mounting a convergent nozzle at the
end of an otherwise uniform pipe {Sections 3.3.5 and 3.5.6 and Gregory & Paidoussis
(1966b)].

Figure 4.4(b) shows the effect of density of the surrounding fluid on the dynamics
of the cylindrical-conical pipe. The dimensionless frequency is defined, in terms of the
dimensional circular frequency §2, by

QL. (4.25)

o [t P+ i)
EI

§=0

Intuitively one would have supposed that when the surrounding fluid is water, the system
would be more stable than when it is air. Yet, the opposite is found to be true. The
increase in the surrounding fluid density acts in two ways: (i) to increase the effective
inertia of the pipe through the added-mass effect and (ii) to decrease the gravity effect
through buoyancy. Both have a destabilizing effect with increasing density of the external
fluid, p.. The latter is physically obvious. The former may be accepted by analogy to the
case of uniform pipes where it was found that, as the mass ratio p;A;/(p;A; + m) becomes
smaller, the system is less stable (Section 3.5); the external stagnant fluid effectively adds
PeA. to m, producing the same effect.

In Figure 4.4(b) the real parts of the dimensionless frequencies %e(w,), j being the
mode number, are lower for the pipe immersed in liquid than in air, which is reason-
able in view of the added-mass effect; this is even more pronounced in dimensional
terms — refer to equation (4.25). However, the $m(w;) are also lower in liquid than
in air, which is contrary to physical intuition, as the added damping in liquid should
be higher than in air. Nevertheless, it is recalled that the true measure of damping is
& = Im(w;)/Re(w;), and this does show the expected behaviour. It may be shown by
a perturbation analysis for small «; that (a) $M(w;) = 2u;[(8 + 1)/ (e + yi)]'/? for all
J, in the absence of dissipative forces, here taken to be zero for simplicity, and (b) the
PRe(w;) are approximately equal to their values at u; = 0. These may be used to obtain
estimates of Z; for small enough u;.

Figure 4.5 shows the eigenfrequencies of some of the lowest modes of a conical-
conical pipe in still water; internal dissipation has been taken into account’ in one case.
It is seen that the behaviour of the system in both cases is considerably different from
that of the previous systems. First, the critical flow velocities are much lower, reflecting

A modified viscoelastic dissipation model is utilized in this case to approximate the experimentally observed
behaviour of silicone rubber, which exhibits hysteretical behaviour at high frequencies but is viscoelastic at low

frequencies. This is achieved by replacing vg by vs[1 + (va/pa)|wj]™", where g4 is the hysteretic damping
coefficient as w — 0.
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Figure 4.5 Argand diagram of the complex eigenfrequencies of a conical-conical cantilever

conveying fluid and immersed in quiescent water, with and without dissipation in the pipe material

taken into account (e =22, §=0.5. 8,= 0.03, 8,= 0.016, y= 16.47, y,= —0.08.y, = 1.7, ¢, = O):

———. g = vy =0 (undamped): ——, uys = 0.20, vy = 0.04 (damped) (Hannoyer & Paidoussis
1979a).

the reduced flexural rigidity of conical-conical pipes and the diminished gravity effect
(p > pe in the case presented). Second, there are two flutter instabilities close to each
other (in terms of ;). Comparing the undamped and damped systems, there is little
evident similarity in the root loci. The differences are more apparent than real, however.
Although different modes become unstable in the two cases, the critical flow velocities
are not too different. It is recalled that this being a nonconservative system, dissipation
can actually destabilize it.

Figure 4.6(a) shows that, for tubular cantilevers of constant cone angle §, (and similarly
for f3;), varying € by cutting pieces off the free end entails variations in 8, (and similarly
in B;) — see equations (4.24). Figure 4.6(b) shows the effect of the slendemess ratio
€ = L/D.(0) on the critical flow velocity ;. for a conical-conical pipe with constant f;
and B.. (It is noted that as ¢ changes, the corresponding «, and «; also change.) It is
seen that with increasing slenderness the system loses stability at a lower flow velocity.
This contrasts with the case of uniform pipes where u;. is almost independent of €. Of
course, the more slender the system, the lower is the dimensional critical flow velocity,
in any case (vide definition of u;: since u; o< U;(0)L, as L increases, U;(0) decreases for
a constant u;); but in conical systems this effect is greatly amplified. Finally, the effect
of the surrounding fluid is seen to be the same as for cylindrical-conical pipes.
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Figure 4.6 (a) Diagram showing that, for a cone of constant angle (here tan B, = 5,

representing a possible exterior shape of the tubular cantilever), as € is changed by truncating
pieces from the free end, «, changes also. (b) The effect of ¢ (and hence of «; and «.) on
the critical flow velocity of a conical-conical cantilever of constant 8; and B, conveying fluid
[B. = 0.03, B; = 0.016,8 = 0.5, y* = (1 — 8*)y/€e* = 0.001 45 which is a version of y independent
of length, y; = —0.08, v, = 1.70, s = 0.2, v; = 0.04, ¢, = 0] (Hannoyer & Paidoussis 1979a).

4.2.3 Experiments

The validity of the theory was tested by experiments (Hannoyer & Paidoussis 1979b)
with nonuniform elastomer tubular cantilevers conveying water. The pipes were centrally
mounted in the vertical test-section of a water tunnel, so that external axial flow could
also be imposed, as described in Chapter 8. Here we confine ourselves to experiments
with internal flow, which was supplied from an external source through the supports of
the upper end of the pipe. In the experiments the test-section was either empty or filled
with stagnant fluid. The ratio of diameters of test-section and pipe was 200/25.4 mm =~ 8,
so that the external fluid may be considered to be effectively unconfined.

Experiments were conducted with uniform, cylindrical-conical and conical-conical
tubular beams (Figure 4.3), which were manufactured and their properties measured by
variants of the methods described in Appendix D.
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Experimentally determined values of the dissipative constants were used in the theory,
using a mixed viscoelastic-hysteretic model, with corresponding coefficients v; and p.

General observations

With increasing flow, externally induced beam motions become more heavily damped:
however, beyond a certain flow the trend is reversed and, at sufficiently high flow, the
stability limit is reached and flutter is precipitated.

Close to, but below, the critical flow for self-excited flutter, the system behaves as if it
has a small unstable limit cycle within a larger stable one, so that external disturbances
of a certain magnitude may precipitate flutter, yet small disturbances are damped. As
the flow gets closer to the stability limit, the inner limit cycle becomes smaller, to the
point where random, turbulence-induced disturbances are sufficient to propel the system
beyond the confines of this limit cycle, precipitating amplified oscillation (flutter). These
are clearly characteristics of a subcritical Hopf bifurcation [Figure 2.11(d)].

Limit cycles could generally be observed in the case of pipes hanging in air rather than
water. The amplitude involved was larger for pipes with a uniform conduit than for those
with a conical conduit. For flow velocities higher than those associated with the onset
of instability, the amplitude of the limit cycle increased further. In contrast, for pipes in
water, presumably because of buoyancy counteracting the stabilizing effect of gravity, the
oscillations continued to grow until, in 10-20 cycles, the amplitude became large enough
(i.e. about 8 pipe diameters) for the pipe to start hitting the walls of the test-section,
whereupon the experiment was discontinued for fear of damage to the apparatus; thus.
established limit-cycle motion could not actually be observed in this case.

Comparison between theory and experiment

The dimensionless critical flow velocities, u;., and the corresponding frequencies, w,, for
flutter of a cylindrical-conical pipe in air and water are shown in Figures 4.7 and 4.8,
respectively. Also shown is one experimental point for a cylindrical pipe, for comparison
purposes.

It is seen that theoretical and experimental critical flow velocities agree very
well — although the experimental values ought to have been a little lower than the
theoretical ones, this being a subcritical Hopf bifurcation. The corresponding frequencies
agree less well. However, this is not surprising, upon realizing that: (i) in the case of
pipes in air, the measured frequencies were those of limit-cycle motion, rather than those
associated with the onset of flutter; these two values could be quite different in the case of
a subcritical Hopf bifurcation, since the initial limit cycle is of non-negligible magnitude;
(i) in the case of experiments in water, the frequency was measured during the first few
cycles of motion, before the pipe started hitting the wall, and precision of measurement
was not high.

The theoretically predicted reduction in dimensionless critical flow velocity with
increasing slenderness (and hence the even more substantial reduction in dimensional
flow velocity) is wholly supported by these experiments, as well as the theoretical finding
that the system is less stable when immersed in water than in air.

Finally, the experimental frequencies for the cylindrical-conical pipes are lower than
those of the uniform cylindrical ones, which is in agreement with theory.
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Figure 4.7 Theoretical and experimental critical flow velocities, u;., for flutter of cylindrical

(B. = B; = 0) and cylindrical-conical (8, = 0, 8; = 0.014) cantilevers conveying fluid, surrounded

by still air; and the corresponding frequencies, w,. Other parameters: § = 0.5, y. = 1.0, y; = —0.03,

y = 0.00251€>. Lines represent theoretical results and symbols are experimental data: —-— , o,

uniform cylindrical pipe; ——, cylindrical-conical pipe, undamped; —~—, V, cylindrical-conical
pipe, damped (14 = 0.08, v; = 0.02); (Hannoyer & Paidoussis 1979b).

Figure 4.9 shows the corresponding case for a conical-conical pipe. In these experiments
the pipe had fixed internal and external cone angles; changes in «;, and hence a,, were
obtained by reducing the length of the pipe by cutting pieces off the free end — large a, or
«; corrcsponding to fuller cones, and smaller values to morc highly truncated ones — see
Figures 4.3 and 4.6(a). As predicted by theory, it is seen that for the longer, more fully
conical system, stability may be lost at very low flow velocity, many times smaller than
for a cylindrical pipe. A change in the character of oscillation was observed at higher
flows, but could not be recorded accurately enough to tell whether it is associated with
the higher flutter instability predicted by theory or whether it corresponds to some other,
secondary bifurcation.
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Figure 4.8 Theoretical and experimental values of u;. and . for the same system as in Figure
4.7, but immersed in stagnant water; all parameters are the same except y, = 1.9 (Hannoyer &
Paidoussis 1979b).

It may be concluded, therefore, that these experiments validate the theoretical model.
Both theory and experiments for nonuniform pipes subjected concurrently to internal and
external axial flow are presented in Chapter 8 (Volume 2).

4.2.4 Other work on submerged pipes

Further work on the dynamics of uniform pipes immersed in fluid has been conducted,
partly motivated by vibration of the inverted U-shaped pipe connecting the reactor vessel
to the intermediate heat exchanger in a liquid-metal fast breeder reactor (LMFBR) [e.g.
Inagaki et al. (1987), Sugiyama et al. (1996a)], and by more general applications in the
marine and power-generating area [e.g. Shilling & Lou (1980), Langthjem (1995)].

The model utilized by Sugiyama et al. (1996a) is a variant of that in the foregoing,
but modified to take into account immersion of only the lower part of the pipe. Similar
results are obtained, but the effects of added mass, buoyancy and damping are studied
more thoroughly through parametric calculations. The effect of partial immersion on
stability is shown in Figure 4.10. The effect of immersion is generally destabilizing. for
the reasons given following equation (4.25). However, partial immersion, as pointed out
by Sugiyama et al. has a selective effect on mode shapes as well, mainly because of the
discontinuous added-mass effect; see theoretical results for small [, in Figure 4.10(c).
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Figure 4.9 Theoretical and experimental critical flow velocities and frequencies for a
conical-conical tubular cantilever conveying water; 8, = 0.03, 8; = 0.016,§ = 0.5, y, = 1.0 (air)
and y, = 1.7 (water), y; = —0.08. y = 0.00155€%, 1124 = 0.2, v; = 0.05 (air) and v; = 0.04 (water);
(Hannoyer & Paidoussis 1979b).
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Figure 4.10 The effect of partial immersion of the lower portion of a cylindrical cantilevered
pipe on stability; [/, = 1 represents total immersion (Sugiyama et al. 1996).
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The same problem is studied by means of potential- rather than plug-flow theory and
Timoshenko beam theory by Langthjem (1995) — see Section 4.4.10.

4.3 ASPIRATING PIPES AND OCEAN MINING
4.3.1 Background

In the discussion of energy transfer mechanisms for cantilevered pipes conveying fluid
(Section 3.2.2) in conjunction with equation (3.11), it has generally been presumed that
the flow velocity is ‘positive’, i.e. directed from the clamped towards the free end.
However. it is obvious that if U/ is replaced by —U, all the arguments on stability and
the predicted behaviour are reversed: for infinitesimally small U, and up to |U,.,.|, the
system would be unstable by flutter; then, for |U| > |U,,|, it would regain stability! If
dissipative forces were added, then perhaps ‘infinitesimally small’ would merely change
to ‘small’.

This intriguing possibility was explored experimentally by the author at the Chalk River
Nuclear Laboratories in the mid-1960s, by immersing the lower end of an elastomer pipe
in a barrel and connecting the upper end to a pump, as shown in Figure 4.11(a). The
expected behaviour did not occur. However, a sort of amplified oscillation did occur, if the
immersion was shallow; but the mechanism was soon discovered to be one of parametric
resonance. involving the slurping of air-slugs into the pipe, sucked in at the extremes
of the cycle of oscillation when the pipe end is closest to the free surface, as shown in
Figure 4.11(b). Thus, the flow in the pipe has periodic density variations, with the optimum
2:1 parametric/natural frequency ratio (Section 4.5). Deeper immersion eliminated this
mechanism of self-excitation. Attributing the non-occurrence of the expected ‘regular’
flutter at infinitesimal flow velocities to increased damping due to the water immersion,
the flow rate was increased further, until a sufficiently large transmural pressure (external

/"/ = To pump
ﬁ Collapse
g location

Collapse
mode

(b)
Figure 4.11 (a) Apparatus for experiments with water-aspirating pipes. (b) Diagram for under-

standing the mechanism of parametric resonance due to density pulsations occurring when the
immersion is shallow.
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ambient minus internal) caused local shell-type collapse of the pipe near the support.
Reinforcing the pipe at that point simply postponed the collapse to a higher flow rate, at
a lower point along the pipe; but there was still no sign of the elusive flutter! At the time,
this was chalked up as due to ‘experimental difficulties’ and forgotten for a while.

Some time later, the author became aware of ocean mining and some aspects of research
into the dynamics of such systems [e.g. Chung et al. (1981), Whitney et al. (1981),
Felippa & Chung (1981), Koehne (1978, 1982), Chung & Whitney (1983), Aso & Kan
(1986)], and work into the problem of sucking pipes received a new impetus. Ocean
mining is basically the ‘vacuuming’ of minerals, notably of manganese nodules, which
lie on the floor of the ocean, e.g. in the Northeast Pacific, at depths of the order of 5 km.
The system involves a very long ‘vacuum hose’, with a massive ‘vacuum head’ which
walks along the ocean floor and scours and sucks up nodule-rich sea-water, as shown in
Figure 4.12(a). It occurred to the author that, the moment the bottom head loses contact
with the sea floor, this becomes a cantilevered pipe with an end-mass, aspirating fluid
and hence subject to flutter, as per equation (3.11). Therefore, it was decided that a more
careful study of the problem was warranted.

4.3.2 Analysis of the ocean mining system

In most of the papers just cited, external flow and wave-related problems, as well as the
dynamics of the long pipe itself, are the main concern. Only Koehne (1982) discusses
briefly the modelling of the pipe with internal flow, but does not present any results.
A systematic analysis of the general system of Figure 4.12(b) has been undertaken by
Paidoussis & Luu (1985), which will be outlined briefly in what follows.

For simplicity, the pipe is assumed to be initially straight. Then, proceeding as in
Section 4.2, the equation of motion is found to be'

e cmou B oy 2V + (M m o M) 2W
— - — m
oxd 7 ox? ax ot
— Ljo? — 02
— (M +m)g(L—x) + Mg —Fy — porA, M =
L ax?
ow
+{M +m)g — poLAo/L} +< Fviln =0, (4.26)
with boundary conditions
ow
w =0, M _o (4.27a)
ax
at x = 0, and
Fw . Pw — W  —  _ w _bw
El — -—-Md—— - Mg—Fp)— - M+M,))— —C— =0,
ox3 ax o2 ox at? ot (4.27b)
L Fyad cma’ +(J+Md)az =0 |
" a2 E 0040 o a?

TThe reader should consult the text in Section 4.3.3.
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Figure 4.12 (a) The ocean mining system, after Chung & Whitney (1983); (b) the system modelled when the bottom mass loses contact with the
ocean floor (Paidoussis & Luu 1985).
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at x = L. All quantities are the same as in Section 3.3.2, but some new ones need be
introduced: M, is the added mass of the pipe per unit length; M is the end-mass, of mass-
moment of inertia J, and centre of mass at a distance d from the pipe end (x = L); F} is
the buoyancy force associated with M;a? = A,/A; = U;/U is the ratio of external pipe
area to inlet jet area, with U; as shown in Figure 4.12(b); p,. is the external, hydrostatic
pressure at x = L; other barred quantities have the same meaning as plain ones, but are
associated with the end-mass. A form of expression (2.157) is used for ¢ — see also
equation (3.106). Furthermore, assuming a spherical form for M, ¢ = 6mwvpd, where v is
the kinematic viscosity of the fluid.

It is stressed that in this formulation, in accordance with Figure 4.12(b), a positive U
corresponds to up-flow, i.e. to what in Section 4.3.1 is called a negative flow velocity.

For very long pipes, a pipe-string approximation is normally used, i.e. the flexural
rigidity is ignored; however, here flexural terms are retained. Because of the fact that the
boundary conditions are frequency-dependent, the usual form of the Galerkin method is
not applicable to this case (see also Section 4.6.2). A special hybrid Fourier-Galerkin
method developed by Hannoyer (1972), outlined in Chapter 8, is used instead.

Some numerical calculations have been conducted for a system with parameters taken
from Chung & Whitney (1983): a steel pipe (E =2 x 108 kN/m?, p, = 7.83 x 10 kg/m?)
and M = 182 x 10°kg, L = 1 km, D; =0.45m, D, = 0.50m, and a = | for simplicity.
Typical results are given in Figure 4.13 and Table 4.1.

The systemn loses stability by flutter at a very low flow velocity, U,y = 1.32 mfs,
corresponding to the dimensionless w., = 1.129 in Figure 4.13. As shown in Table 4.1,

' T T M 1 T 1)
20 | -
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Figure 4.13 Dimensionless complex eigenfrequencies of the aspirating system of Figure 4.12(b)
as functions of the up-flow dimensionless flow velocity, u, for M = 182 x 10* kg (Paidoussis &
Luu 1985).
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Table 4.1 The threshold flow velocity for
flutter, u.; = (M/ED'? U, L, for various values
of M and for zero dissipation (Paidoussis & Luu

1985).
M (kg) Dissipation U,
182 x 10° Taken into account 1.13
1820 Taken into account 0.935
0 Taken into account 0.895
Any value Neglected o+

the magnitude of M does not alter this value dramatically. If, however, the dissipative
forces are taken to be zero, the system loses stability at U = 0.

Therefore, it would appear from these results that ocean mining designers and operators
need to worry about flutter in their systems since, if a small safety factor were added,
U < 1m/s would be too small to live with — especially since, for the more realistic
L. = 5km, one obtains U, < 0.2 m/s! Furthermore, the problem is of fundamental interest
and hence work on experimental validation started anew.

A new apparatus was built at McGill in 1986, shown in Figure 4.14(a). This time the
entire pipe, hung vertically, was immersed in water in a steel tank; water was supplied at
the top of the tank, and was forced up the hanging pipe and out of the vessel. Compressed
air was supplied at the top of the tank to achieve higher flows, but also to conduct exper-
iments entirely with air up-flow. Several experiments were conducted, with thicker pipes
to postpone the buckling collapse of Figure 4.11(a), and some with different-shaped inlet
forms added, but the system remained unnervingly stable. The experiment was discon-
tinued when, with ever-increasing air-pressure to force higher water flow up the pipe,
the rubber hose leading the water to the drain burst free of its clamp, spraying water
all over the laboratory and all over the instrumentation nearby, and giving the author
an unwelcome cold shower! At that point, the author was certain that something was
wrong with the theory; for one thing, the flow into the pipe is not exactly tangential, thus
not replicating in reverse the outpouring jet in the case of down-flow. However, these
negative results were not published,” precisely because they were negative and not fully
understood — which is why the tale is worth telling.

Meanwhile, even without experimental verification, it was taken for granted that the
Paidoussis & Luu flutter at infinitesimally small aspirating flow really does exist, and several
more papers were published giving similar results [e.g. Sillstrom & Akesson (1990)] and
methods for suppressing the unwanted flutter [e.g. Kangaspuoskari et al. (1993)]. The only
reference to absence ‘of any physical evidence of this phenomenon’ came out in the discus-
sion by Dupuis & Rousselet (1991a), to which this author also contributed.

4.3.3 Recent developments

It was in 1995, during a visit by the author to Cambridge and upon recounting this para-
doxial behaviour to Dr D.J. Maull, that the latter recalled reading ‘something similar’
in Richard Feynman’s biography (Gleick 1992). It turns out that in 1939 or 1940,

TAt least not until much later (Paidoussis 1997). when the reason why was much better understood.
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Figure 4.14 (a) New apparatus for forcing the fluid up the pipe in experiments by Paidoussis at

McGill in 1980s; (b) Richard Feynman’s apparatus for resolving the sprinkler problem at Princeton

in late 1939 or 1940; (c) the sprinkler problem: which way does the sprinkler turn when aspirating

fluid (Gleick 1992)? (d) ‘negative pressurization’ and centrifugal forces on one arm of the aspirating
sprinkler.

Feynman’s and most other physicists’ tea-time conversation at Princeton and the Institute
for Advanced Study was dominated by this problem: if a simple S-shaped lawn sprinkler
were made to suck up water instead of spewing it out, Figure 4.14(c), would it rotate
backwards or in the same way as for normal operation? (This problem was tied to the
issue of reversibility of atomic processes!) Feynman could apparently argue convincingly
either way.

Eventually, Feynman decided to do an experiment which, as shown in Figure 4.14(b),
was remarkably similar to the author’s. He immersed the lawn sprinkler into a glass jar
filled with water, with an outlet connected to the sprinkler and a compressed air supply to
force the water into the sprinkler and out. With increasing pressure and flow, the sprinkler
refused to budge, up to the point where the glass jar exploded, spraying water all over.
The result was that Feynman was banished from the laboratory thenceforth.

"The author feels to be in good company with a Nobel prize winner, in retrospect, for even the accident in
his laboratory is similar to Feynman’s. More than that, however, he is thankful for his engineering training, to
know not to do pressurized air experiments in glass jars — even if he did use a rubber hose!
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Clearly the flow field is entirely different in ‘forward’ and ‘reverse’ flow through the
sprinkler. This is the key that finally led the author to the resolution of the conundrum,
for both the sprinkler and the pipe problem. Consider the stationary aspirating sprinkler,
and imagine a flared funnel, not connected to it, channelling the flow in, thus modelling
the sink flow. On reflection, the flow in the funnel is no different from that considered in
Section 4.2 for nonuniform pipes. Hence, neglecting gravity, the axial balance of forces
in the funnel is given by a form of equation (4.13),

% [T + peAe — pidi — pi(A;Up)U;] =0, (4.28)
where x and U; are directed as in Figure 4.12(b), and all quantities except p; are functions
of x. T is taken up by the imaginary funnel supports and may be ignored. Also, this
expression may be simplified by taking A, >~ A; = A, and by writing U; = U and p; —
pe = p, and recalling that p;A;U; = MU = const. Then integrating from x = oo, where
p— 0and U — 0, to x = L, the inlet of the sprinkler, we obtain (pA);, = —(MU?),.
Hence, since M U? is the same for all x < L, one can write

PA = —-MU?, (4.29)

which clearly shows that at the sprinkler inlet, and hence throughout, there is a suction or
negative pressurization, p = —pU? = —MU?/A. Its effect is profound, as may be seen in
Figure 4.14(d). The negative pressurization produces a lateral force pA/R = —MU?/R, R
being the radius of curvature, which totally cancels the centrifugal force M U?/R; hence,
the sprinkler remains inert!” Of course, these arguments do not hold once some rotation
of the sprinkler takes place, but may be considered to be correct to first order.

The same applies to the pipe problem. Unlike the case of discharging fluid where
the pressure at the free end (above the ambient) is zero, for the aspirating pipe there
is a suction at the free end, equal to —pUU;, and hence a negative pressurization
equal to that, throughout the pipe (cf. Section 3.3.4). Therefore, a term PA(d>w/ox?) =
—MUU;(8*w/0x?) must be added to equation (4.26), which is incorrect as it stands. This
cancels out the centrifugal force required for flutter (Section 3.2.2)!

Still, seeing is believing. Accordingly, an experiment was performed at McGill in 1997,
in which two similar elastomer pipes were mounted as vertical cantilevers, immersed in
a transparent water tank; at the free end of each pipe there was a light plastic 90° elbow.
The clamped ends of the two pipes were interconnected via a pump. Once the pump was
started, the pipe discharging fluid deformed in reaction to the emerging jet, as expected.
The aspirating pipe, however, after a starting transient, returned to its original, no-flow
configuration and thereafter remained limply straight.* Therefore, it is now clear that
aspirating pipes cannot aspire to flutter!

Before closing this section, it ought to be mentioned that there is another engineering
application involving pipes aspirating fluid, namely the Ocean Thermal Energy Conversion
(OTEC) plants. Shilling & Lou (1980) initially intended to conduct ‘up-flow’ experiments

 An alternative demonstration of this result may be made by control volume considerations and the fact that
inlet and outlet vorticity is zero; hawever, some colleagues considered this less convincing.

*The experiment was initially done with very flexible coiled Tygon tubing. In this case, there was steady-
state flow-induced deformation, with the aspirating pipe coiling itself tighter. It was discovered, however, that
this was due to the fact that, under suction, the pipe cross-section became oval. and the coiled pipe behaved
like a Bourdon pressure gauge! This shows that there is no such thing as a simple experiment.
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with this in mind but, because of ‘existing equipment, measuring techniques and financial
considerations’, ended up doing regular down-flow experiments with mechanically forced
excitation of the pipe (see Section 4.6).

4.4 SHORT PIPES AND REFINED FLOW MODELLING

In the foregoing (Chapter 3 and Sections 4.1-4.3), it has been assumed that (i) the pipe
is sufficiently slender for Euler-Bernoulli beam theory to be adequate for describing the
dynamics of the pipe, and (ii) that wavelength of deformation is sufficiently long for the
plug-flow model to be acceptable, thus ignoring conditions upstream and downstream
while determining the fluid-dynamic forces at a given point. If the pipe is sufficiently
short, however, both assumptions become questionable, as will be discussed further in
the following, and the use of Timoshenko beam theory and more elaborate fluid dynamics
becomes necessary. In this section the necessary fundamentals are developed, by means
of which (a) the limits of applicability of the Euler-Bernoulli plug-flow (EBPF for short)
analytical model are determined, and (b) a theory for really short pipes conveying fluid
is established.

Since stability is of primary concern, it is noted that short thin-walled pipes lose stability
in their shell modes {r > 2; see Figure 2.7(c)] rather than in their beam modes (n = 1),
as discussed in Chapter 7 (Volume 2). In what follows, however, it is presumed that the
pipe is sufficiently thick-walled for its beam-mode dynamics to be of primary interest.

Timoshenko beam theory, where shear deformation and rotatory inertia are not
neglected, was first applied to the study of dynamics of pipes conveying fluid by Paidoussis
& Laithier (1976). This theory is applicable to articulated pipes in the limit of a very
large number of articulations (Section 3.8), where the articulations permit substantial
shear deformation. It is also applicable to continuously flexible short pipes, as well
as for obtaining the dynamical behaviour of long pipes in their higher modes; in both
these cases the necessity of utilizing Timoshenko, as opposed to Euler-Bernoulli beam
theory, is well established (Meirovitch 1967). The equations of motion in Paidoussis &
Laithier (1976) are derived by Newtonian methods, and solved by finite difference and
variational techniques. They are rederived by Laithier & Paidoussis (1981) via Hamilton’s
principle — a nontrivial exercise. In terms of the fluid mechanics of the problem, however,
the use of the plug-flow model is retained in both cases; this theory will be referred
to as the Timoshenko plug-flow theory (TPF for short). Also, numerous finite element
schemes based on TPF-type theory have been proposed and used for stability and more
general dynamical analysis of piping conveying fluid (Sections 4.6 and 4.7), e.g. by
Chen & Fan (1987), Pramila et al. (1991), Sillstrom & Akesson (1990) and Sillstrdm
(1990, 1993).

It is nevertheless recognized that the applicability of the plug-flow model to short
pipes — or indeed to the study of the high-mode dynamical behaviour of relatively longer
pipes — is questionable, as discussed first by Niordson (1953) and also by others, e.g.
Shayo & Ellen (1974): if the wavelength of deformation is not large, as compared to the
pipe radius, the use of the plug-flow model for obtaining the fluid forces becomes invalid
[Section 4.4.3(b)]. Hence, there is need for improvement of the fluid mechanics of the
problem for studying the dynamics of this class of problem.

The dynamics and stability of short pipes conveying fluid are examined here by means
of Timoshenko beam theory for the pipe and a three-dimensional fluid-mechanical model
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for the fluid flow, following closely the work by Paidoussis er al. (1986). This will be
referred to as the Timoshenko refined-flow theory, or TRF for short. The pipes are either
clamped at both ends or cantilevered; in the latter case, special ‘outflow models’ are
introduced to describe the boundary conditions on the fluid exiting from the free end.

4.4.1 Equations of motion

The system under consideration consists of a tubular beam of length L, flexural rigidity
El,. and shear rigidity GA,, conveying fluid with an axial velocity which in the unde-
formed, straight pipe is equal to U. Here, with no loss of generality, the pipe is supposed
to hang vertically, with the fluid flowing down, so that the x-axis is in the direction of
gravity.

In contrast to the Euler-Bernoulli beam theory, the Timoshenko beam theory takes into
account the deformation due to transverse shear. If Y denotes the slope of the deflection
curve by bending and y the angle of shear at the neutral axis in the same cross-section
(Figure 4.15), then the total slope (dw/dx) is given by

S (4.30)
TS i
with "
d 4
dy _ M (4.312)
A El,
and 0
== 431b
X=¥aGa, (@.31b)

where Al is the bending moment, Q the transverse shearing force, £ Young's modulus and
G the shear modulus; A, is the cross-sectional area of the pipe (i.e. of the pipe material;
as distinct from Ay, the flow area), and /, the area-moment of inertia of the empty pipe
cross-section; k' is the shear coefficient, which depends on the cross-sectional shape of
the beam; for the circular cross-section of the tubular beam here under consideration, it
is approximately given (Cowper 1966) by

) 6(1 + v)(1 + a?)?

T T+ a7+ 20+ 12v)a?’ (4.32)

in which v is Poisson’s ratio and « is the ratio of internal to external radius of the
pipe.

In general, an element dx of the pipe is subjected to a fluid-dynamic force, the compo-
nents of which, for steady flow and to first-order magnitude, are respectively zero and
Faéx in the x and z directions (cf. Section 3.3.2). F,, the lateral inviscid fluid-dynamic
force (per unit length), the main concern of this work, is discussed in Sections 4.4.3 and
4.4.4; the subscript A denotes that it is related to the total acceleration of the fluid.

An element of the pipe and the forces and moments acting on it are considered next
(Figure 4.15). By writing down the equations of dynamic equilibrium and neglecting
terms of second-order magnitude, one can obtain the equations of motion of the system.
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Figure 4.15 An infinitesimal element of the pipe and the enclosed fluid (under bending and shear),
showing the forces and moments acting on it.

Projection of the forces on the x and z axes and consideration of moments, following a
similar procedure to that in Section 3.3.2, gives (Paidoussis & Laithier 1976)

T op
M — —Ar — =0,
(M +mg + ax / o0x
0 0 0 Fw
Fa=Ap () )+ 2 =m 33)

oM N
‘a+Q+X(pAf—T)= Uy +1)—
where p is the internal fluid pressure, above atmospheric, T is the tension in the pipe, Ay
is the cross-sectional area of the enclosed fluid, M and m are the masses per unit length
of the fluid and the empty pipe, respectively, and I, and 1, are mass-moments of inertia
per unit length of the fluid and the empty pipe. respectively.

If pressurization effects are neglected, then, by proceeding as in Section 3.3.2 and
integrating the first of equation (4.33), the equivalent of equation (3.37) in this case is

T—pAr =M +m)g(L —x)+6T(L), (4.34)

where 8§ = 0 if the downstream end is free to slide axially and § =1 if it is not, in
which case T(L) = T, where T is the mean tensioning. In the latter case, if additionally
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there is pressurization p vis-a-vis the outer ambient fluid, then T(L) =T — PA(1 —2v)
approximately — see Section 3.3.2.

Using equations (4.30)-(4.31b), (4.33) and (4.34) and retaining ¥ and w as variables,
the following system of two differential equations may be obtained:

N2

Fa— o (M + m)gy
Pw o 9
+[(M +m)(L —x)g + anu]—‘/’ + K'GA, ( - _‘/’) —0,
ox ox
5 (4.35)
Y aw
Ely = + KGA — (M +m)g(L —x) —6T(L)] ( ™ 1/,)

N &

It should be noted that equations (4.35) are not identical to those derived via Hamilton’s
principle. This is discussed in Appendix E.1. Here suffice it to say that the dynamical
behaviour as obtained by the two sets of equations is sensibly the same for physically
realistic conditions.

The system may be expressed in dimensionless terms by defining the following quan-
tities:

£=x/L, n=w/L, T =[El,/(M +m)]'*t/L?,
w=(M/EI)?UL, B=M/M+m), y=M-+mLg/EI, (4.36)
A =K GA,L*[EI,, o=;+1,)/[(M+mdL?], J. = T(L)L*/EI,,
fa = FAL*JEI, e=1L/2a,

where « is the internal radius of the pipe. It is noted that for a given pipe material (i.e. for
a given Poisson ratio, v), A and ¢ are interrelated:

8k’ e2o”

= 4.37
(1 +a2)(1 +v) ( )

where «, defined earlier, is equal to a/(a + h), h being the wall thickness of the pipe.
Substituting these terms into equations (4.35) gives the dimensionless equations of motion:

A n Y

sz Y =8 48T, — A1 =0

fa—(1 -8 o +
A )3‘[2

(4.38)

Fy

&2

+[A—(l—§)y—5‘7L](a*—¢> alfz

o0& at?

It is noted that the equations of motion are not in their final form, as the fluid-dynamic
force f4 is yet to be derived, in Sections 4.4.3 and 4.4.4. The parameter ¢ does not
appear explicitly in equations (4.38), but it does in the expression for f; in Section 4.4.4.
It should also be noted that in equations (4.35) and (4.38), internal damping within the
material of the pipe is neglected; if it is not, it may be modelled by a hysteretic damping
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model, wherefore Young's modulus £ and the shear modulus G become complex: E* =
E(l +ip) and G* = G(1 +ip), with u being the hysteretic damping constant.

The boundary conditions for a free end are Q = .l = 0; for a clamped end, w = ¥ = 0.
Thus, in dimensionless terms, we have

(i) for a clamped-clamped pipe:
0, ) =v0, ) =nl, )=y, 7)=0; (4.39a)

(i) for a cantilevered pipe:

(0, 7) = ¥(0, 7) = 0, % —uo, Y _o @30)
%|,_, % |,_,

4.4.2 Method of analysis

The modal analysis method is utilized for the solution of the equations of motion. The
motion being free, let

n(E, T =nEEYT,  YE 1) = PEer, (4.40)

where  is a dimensionless {requency, related to the dimensional radian frequency of

motion, §2, by
12
o= (M +m\'"? . (4.41)
El,

Furthermore, the fluid-dynamic force fy is assumed to vary temporally in the same manner,
ie.

fa= faele. (4.42)

As in previous analyses, w is generally complex, and the system is stable or unstable
accordingly as the imaginary part of o is positive or negative.

The modal analysis method proceeds by expressing 7(&) and ¥ (£) as the superposition
of an infinite set of comparison functions (Galerkin’s technique), i.e.

TE =D an¥u®),  TE =D byWu(®), (4.43)
n=1

n=|

where a, and b, are dimensionless generalized coefficients, and Y,(£) and ¥, (§) are
the eigenfunctions of a Timoshenko beam, with the appropriate boundary conditions,
expressed in dimensionless form; this solution then inherently satisfies the boundary condi-
tions. Substitution of equations (4.40), (4.42) and (4.43) into (4.38) and application of the
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Galerkin procedure yields

xX0
> Hau(1 = Bl + anQun + an AL

n=1

—bp(A =y = STD — byl — b,y1®) =0,

) (4.44)
S {bulf)) +an(A =y —8TIE + a1
n=1
— bu(A —y =8I — byl + buow I} =0,
where k=1, 2. ..., 00, and
/ T Yeds = Z ay Q. (4.45)

n=]

The constants 1\, i = 1,2, ..., 11, are defined as follows:

| »] 1 1
1)) = / Y Yids, 12 = / Y. Y de, 1) = / Y'Y dE, 1) = / W'Yy dE,
0 0 (] 0
5 | 1 4 1 3 1
Il(m) / E‘I/,; Yk dE‘ 11(061) = / ll/" Yk ds’ Ii'n) = / q/lll/q/k dg‘ Iin) - / YIII q/k dg‘
0 JO 0 0
9) : 10 : 11 :
I,) = / W, W dE, 1) = / gy, dg, 10V = / £V, dE.
0 0 0

The evaluation of these integrals in terms of the Timoshenko beam eigenfunctions is
discussed in Appendix E.2.

The solution as expressed by equations (4.43) is then truncated at n = N, and equations
(4.44) yield a vanishing determinant of order 2N. This is solved to give the eigenfrequen-
cies w of the system, for different values of the dimensionless flow velocity « and of the
other system parameters, 8, A, y. eftc.

4.4.3 The inviscid fluid-dynamic force

Here the inviscid fluid-dynamic force, F;, will be derived, first according to the plug-flow
approximation and then in a more refined manner.

(a) The inviscid fluid-dynamic force for plug flow

This approximation, which applies to large length-to-diameter ratios, small displacements
and, as we shall see, long wavelengths of deformation of the pipe as compared to its
diameter, is what has been used in all of the foregoing. Thus, by using d’Alembert’s
principle, the force F4 is equal to the mass of the fluid per unit length multiplied by the
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reversed acceleration as given by equation (3.29), here with dU/dr = 0; hence,

8 2
=Ml sl s r T4, 4.46
Fa M{az2+2 axor 8x2}w (4.46)

Expressed nondimensionally and in the form required by the modal analysis method
(Section 4.4.2), the generalized fluid-dynamic force, g, may be written as follows:

1 00
7= [ Tanidt =3 a,0u. (4.47)
n=lI
with
Otn = B* QY — 2B 2wQP — u2Q\Y, (4.48)
where

1 1 1
W= [ vnes o= [rnes o= [rmer  aa)

(b) The inviscid fluid-dynamic force for 3-D potential flow

The fluid is assumed to be inviscid and the flow irrotational, consisting of the mean flow
Ui along the pipe and a small perturbation v(r, 6, x, r) associated with small motions of
the pipe, which may be expressed in terms of a perturbation potential via v = V¢. This
potential must satisfy equation (2.73a), V2¢ = 0, which for this system is

2 2 2
9o 1dp 1 0°¢ 8¢___0‘ (4.50)

a2 ror 2o ox?
as well as the compatibility and boundary conditions

4
or

3
=(%+U—W> sin, O<x<L  0<6<2nm,
rea at ox

=0, x < 0,

(4.51)

where motions are assumed to take place in the 6 = %n plane and a is the internal pipe
radius, and

.r—llgloo ¢ = 0’ ,t—llrzpoo (3¢/3X) =0 (4.52)

The force on the pipe is determined by integrating the pressure p = p(a, 8, x,t) on

the inner pipe boundary, which may be determined by substituting v = V¢ and v = 0 in

equation (2.67a), leading to
2 d
p=-p (i) +U —¢>

ot ax ' (4.33)

r=a

FAlthough these are equal 10 ll{;). J = 1,2, 3, respectively, defined in conjunction with equation (4.44), they
are denoted differently to indicate that they are related to the right-hand side of (4.45) or (4.47).



PIPES CONVEYING FLUID: LINEAR DYNAMICS 11 227
p being the fluid density. Assume now separable solutions of the form
¢(r. 0, x,t) = R(r) sin 0 exp[i(kx + £21)}, (4.54)

where the form of the # component has been suggested by (4.51), and the form of the
x component emerges in the course of separating the variables. Substituting into (4.50)

leads to
&R 1dR 1,
—t-——| = R=0,
dr2+rdr <r2+K)
admitting solutions of the form

R(r) = C1y(kr) + D\K, (kr), (4.55)

where I, and K, are modified Bessel functions of the first and second kind of order 1,
and where D = 0 because ¢ must remain finite within the pipe. C, is determined by
application of (4.51), and one finds

Ii(kr) [ow aw\ .
o(r, 8, x,t) = -Kl’l(xa) (at +U 8x> sin 6, {4.56)

in which I} = dI,/d(xr). Then, utilizing the relation I;(x) = (1/x)[r],(x) + xL, (x)]
(Dwight 1961) for n = 1, one obtains from (4.53)

—ra <3+U8)2 in 9 (4.57)
= — - wil sin . .
P I abay/Likay |\3r T ox
From this, the force F4 is found to be
E /.2,, in 0.do —M (a +ul 2 (4.58)
A = S1 = - - s .
t= ), e |+ cal(ka)/ L (ka) \3r ~ " ax) "

where M = pma’ has been used. Comparing (4.58) to (4.46) it is clear that A is now
replaced by M /[l + kaly(ka)/1i(ka)], where the denominator is generally larger than
unity. Hence, for finite wavenumbers xa (and wavelengths of motion) the effective
fluid-dynamic force is generally smaller than that given by the plug-flow approxima-
tion.

It is instructive to consider the case of xa small, i.e. motions of large wavelength.
Utilizing the series expansion I, (x) = (l/n!)(%x)"[l + 0(2)] (Dwight 1961), one
obtains

M

a0 1 + ka3 (5xa)?/(5ka))

thus retrieving the form of F; given by equation (4.46) and proving that it only holds true
provided that the wavelength of motions is large compared to the pipe diameter.

However, for the analysis of short pipes the full form of (4.58) is retained. The pertinent
forms of g and Q, — cf. equation (4.47) — are presented in the next section.
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4.4.4 The fluid-dynamic force by the integral Fourier-transform
method

It is noted that « in equation (4.58) is not known a priori. Hence, there no longer exists a
‘point relationship’ between Fy and x as in most of the analyses of Chapter 3: F; at any
given x depends on the deformation all along the pipe. A powerful method for the solution
of problems such as this was proposed by Dowell & Widnall (1966) — see also Widnall
& Dowell (1967) and Dowell (1975) — the essence of which will become evident with
its application in what follows.

We start by adapting what has just been obtained in Section 4.4.3(b) to a suitable form.
We first redefine

¢(r, 0, x,1) = Y(r, x) sin 9%, w(x, 1) = w(x)e'?,
, (4.59)
p(r, 8, x,1) = p(r, 6, x)e'”,
and define the Fourier transforms of v (r, x) and W(x) by
Y a) = / Y(r, x)e* dx, W) = / Ww(x)e'™ dx, (4.60)
—00 -0

and similarly for p* [see, e.g. Meirovitch (1967)]; the asterisk denotes the Fourier trans-
form and « is the transform variable. The inverse transforms are

1 [* . 1 [ .
Y(r, x) = E/ ¥* (r, @)e 7 da, w(x) = E/ w*(x)e T da, 4.61)
—00 —00
and similarly for p(r, 6, x). Furthermore, we define

QL
-2

_ 2¢ Li@/2¢)

k - —— y
a I @/2e)

oa=uol, F(o)

(4.62)

where k is the so-called reduced frequency, F(@) is clearly the first part of (4.56) in the
Fourier domain and € = L/2a, as already defined.

Proceeding with the analysis exactly as in Section 4.4.3(b) but in the Fourier domain,
one finds for the perturbation pressure

oU%a

P, b, x) = -5 (@ — k)*F (@)w" sin 6, (4.63)
which inverted gives
1 [ pU? -
Pa,6,8) = — / P72 @ - ky*F @w*e ™ da sin 6, (4.64)
2 J_ oo L3

in terms of £ = x/L. The inviscid fluid-dynamic force F; is then found to be
1 ) 00 00 _ _
Fy, =MU? (——) el / (@ — k)*F (@) / w(&)e'™ dt } e da. (4.65)
27L? —oo o0

The physical domain of the problem is [0, L]; in terms of §, it is [0, 1]. However, this
domain will be expanded, by taking in some additional space beyond the downstream
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end of the pipe, to [0, ], where / > 1. This is necessary, particularly in the case of
cantilevered pipes, as flow perturbations persist beyond the free end of the pipe, as
discussed in Sections 3.5.8 and 4.4.5.7 Accordingly, instead of the first of equations (4.43),
the following form of the Galerkin expansion is adopted:

WE =Y AR, 0<E<]

n=1

=Y AGE), 1<k (4.66)
n=l1

=,

E<0Oand &>,

Y, (&) are the comparison functions associated with 7(£¢) in equations (4.43), and G, (£)
are the so-called ‘outflow-model’ functions which are associated with deflections of the
fluid jet beyond the free end of a cantilevered pipe.

In the modal-analysis solution of the problem, the main interest is in the generalized
fluid-dynamic force g, rather than F;, as defined by equations (4.47) and (4.48) or (4.45).

In this case, Q;(:,’, ﬁ) and Q,((?,) of (4.48) are given by

oG 1 - _ 1 —
o) = 1 / F@) { / Y, ci%dE + / G, e ds} { / Y, e % dg}da,
21 e 0 J1 0
a 1 [e5) -1 _ ! . 1 -
o) = i ) EF(E){/O Y, e d& + /l G, e'% dg} { /0 Yee % dg} da, (4.67)
Y,

—] [ 1 . i _ 1 —
e @’ F (@) { / Y,e® dt + / G, e™ ds} { / e i ds} da,
27 J_ 0 1 0

with F() as given in (4.62)

4.4.5 Refined and plug-flow fluid-dynamic forces and specification
of the outflow model

The lateral inviscid fluid-dynamic force derived by means of refined fluid mechanics
and the integral-transform technique is intended to be used for short pipes. Nevertheless,
in the limit of sufficiently long ones, it should give identical results to those obtained
with the simpler, plug-flow model — for the reasons discussed already. In this section, a
comparison is made of the generalized fluid-dynamic force components, Q,((’n) =123,
obtained by the refined fluid-mechanics model [equations (4.67)] and by the plug-flow
model [equations (4.49)] — for clamped-clamped and cantilevered long pipes.

(a) Clamped-clamped pipes

For a pipe clamped at both ends, there is no need for an outflow model, insofar as
the generalized fluid-dynamic force obtained by the integral (Fourier) transform method

™It is clear from (4.65), nevertheless, that the very pature of the Fourier-transform solution requires the
specification of W(£) beyond [0, 1], even if this means stating that w(§) = 0 for —oo <& <0Oand 1 < ¢ < +o0.
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is concerned, because the fluid discharging from the downstream end is assumed to

enter a rigid pipe which experiences no deflection [Figure 4.16(a)]. Therefore, in expres-
sions (4.67), [ =1 or G,(&§) = 0.

Flexible tube

\ Rigid pipe
l Emerging jet /

4L
(a) (b

Figure 4.16 The physical form of the ‘collector pipe’ for a clamped-clamped pipe and the form
of the free jet emerging from a cantilevered pipe (no collector pipe).

The two inner integrals of the expressions in (4.67) may be evaluated analytically
(Luu 1983) or numerically, but the three outer integrals, which involve an infinite range
of integration over @, have to be evaluated numerically; this is done by a two-point
Gaussian numerical integration method. Based on a check on convergence for a long
clamped-clamped pipe, calculations (throughout this work) of the generalized fluid-
dynamic forces for a clamped-~clamped pipe, either long or short, are done with the
integration range —100 <@ < 100 and the integration step & = 2; they approximate
the result for a larger range of @ (and hence —oc <@ <o0) and a finer é@ very
well.

The next step is to undertake a comparison between the results of the generalized
hydrodynamic forces Q,(('n) i=1,2,3, for a long clamped-clamped pipe conveying fluid
(A = 10'?, corresponding to & = L/2a = 8.5 x 10°)" obtained by (i) simple plug flow
and (ii) refined fluid mechanics, where the Y;(§) used are the eigenfunctions of a
clamped-clamped Timoshenko beam without internal flow, as given in Appendix E. For
the first (lowest) three modes of the system (k,n =1, 2, 3), the results are virtually
identical: the largest discrepancy, associated with the Q§3l) term, is only 0.023%. This,
to some extent, validates the refined fluid mechanics model, which may now fairly
confidently be used for short pipes clamped at both ends.

tThis value of & is clearly nonphysical, but has been dictated by the desire to obtain virtually identical
results to those of the Euler-Bermoulli theory, to many significant figures. Practically identical results may be
obtained for £ ~ €(10%).
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(b) Cantilevered pipes and outflow models

Unlike pipes with fixed ends, a cantilevered pipe discharges the fluid freely from
its downstream end. The emerging jet continues its sinuous path in the ambient air,
[Figure 4.16(b)], as briefly discussed in Section 3.5.8. The motion of the cantilever is
therefore coupled with that of the downstream jet (at least in this kind of formulation) — as
first discussed by Shayo & Ellen (1978). Thus, in a study of the flow-induced instability
of a cantilevered pipe, it becomes necessary to construct an artificial ‘outflow model’
which describes the manner in which W(£) and hence the perturbations in the fluid are
attenuated beyond the free end of the pipe.

For long pipes conveying fluid, the plug-flow model is fully expected to give reasonable
approximations to the fluid-dynamic forces, and hence to predict reasonably well the
dynamical behaviour of the system. Moreover, the results have been found to be in
good agreement with experiments, and the plug-flow model may be considered to be
quite adequate for long cantilevers conveying fluid. Therefore, the following approach
is adopted: different outflow-model functions G, (&) and various values of [/ ([ > 1) are
tried and adjusted, so that the generalized fluid-dynamic forces (4.67) obtained by refined
fluid mechanics agree with those obtained by simple fluid mechanics [plug-flow model
with equations (4.49)] for a long cantilevered pipe. It is then assumed that the same
outflow-model functions G,(&) and value of / would apply for short pipes — indeed to
the very short cantilevered pipes which are the subject of this section. The validity of this
assumption is tested, partially at least, by comparison with experimental measurements
(Section 4.4.8). Following the mathematical formulation suggested by Shayo & Ellen
(1978) for both the beam- and shell-mode dynamical behaviour of a cantilevered shell
conveying fluid, three different downstream flow models are tried for the cantilevered
tubular beam; their characteristics are summarized in Table 4.2, together with the ‘no
model’ situation, in which the deflection of the perturbation in the fluid is supposed to
vanish abruptly at £ =/ = 1; for the “first’, ‘second’ and ‘third’ models, the motion of
the fluid beyond the free end is described by progressively higher-order polynomials
of the fluid-jet deflection. The ‘first model’ is Shayo & Ellen’s ‘collector pipe model’
(Section 3.5.8). The ‘second model’ is described mathematically by

_ (& — 1) , (E—1)7°
Ga(8§) = Y, (1) {1 - ﬁ)—z] + Y, (D) [(E— 1) - =1 for 1 <& <1,
(4.68)
=0 for &£ > 1.

The ‘third model’, which involves a cubic polynomial in &, is given in detail in Luu (1983);
this model transcends physical reality by unjustifiably specifying a zero slope for the free
jet far downstream (Table 4.2). Calculations done for a very long cantilever (A = 10'2)
according to the various models of Table 4.2% show that the second model, equation (4.68),
with [ = 2.8 gives optimum results, as may be seen in Table 4.3. The second and third modes
were also tested, and the second model with / = 2.8 again gives the best results. Hence, it

*In these calculations, the Y;(£) used in (4.67) are the eigenfunctions of clamped-free Timoshenko beam
without flow; the integration range for @ is [—150, 150] and the integration step & = 2. These give convergent
results and have been used throughout in calculations for cantilevered pipes.
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Table 4.2 The characteristics of different outflow-model functions. The schematic presentation of
outflow models is for the first beam mode only.

Type of outflow-model

0 o)) 2 3)
------- ............ ...........
No model ‘First model’ ‘Second model’ ‘Third model’
(1st-order (2nd-order (3rd-order

Characteristics polynomial) polynomial) polynomial)
Zero displacement at Yes Yes Yes Yes
‘infinity’ (§ = 1)
Continuity of displace- No Yes Yes Yes
ment at outlet
Continuity of slope No No Yes Yes
at outlet
Zero slope at Yes No No Yes
‘infinity’ (§ = 1)

Table 4.3 The resulis with different outflow models for the first terms of the generalized
fluid-dynamic force, Q) (k=n=1,i=1,2,3) with [ =28, for a long cantilevered pipe
(A =10"% ¢ =825 x 10%).

Term Plug-flow Refined fluid mechanics model
model
No model st model 2nd model 3rd model
W 1.000 0.9915 1.000 1.000 1.000
oP 2.000 0.9941 1.984 2.000 2.000
o 0.8582 ~1.879 -2.873 0.8510 0.8222

has been adopted throughout this work for calculating the generalized fluid-dynamic forces
for short cantilevered pipes.

4.4.6 Stability of clamped —clamped pipes

The calculations of the eigenfrequencies have been conducted by the methods of
Section 4.4.2. Convergence of the eigenfrequencies by the modal analysis method
is quite fast: for clamped-clamped boundary conditions, N = 7 yields convergent
results.

Most of the calculations have been conducted for metallic pipes with h/(a + h) =
0.10,v=0.3,0 =0 and A = 10'2, 100 and 10, corresponding to & = 8.25 x 10°, 8.25
and 2.61, respectively. A = (k’GA,/El,)L?, which is a measure of shear rigidity of the
system, is very large for realistic systems, unless the pipe is quite short. For A = 10'?
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shear deformation is minimal; it approximates A — 0o very well. The effect of o (rota-
tory inertia) has been shown to be negligible for realistic systems (Paidoussis & Laithier
1976; Laithier 1979), and this is why the calculations have been conducted with o = 0.
The calculations are conducted according to the Timoshenko refined-flow (TRF), Timo-
shenko plug-flow (TPF) and the Euler-Bernoulli plug-flow (EBPF) theories and the results
compared.

For the TRF theory, for each length-to-diameter ratio ¢ (and, correspondingly, for each
A), the work involved consists of: (i) evaluating the generalized inviscid hydrodynamic
forces Ok, from (4.67); (ii) incorporating Oy, into equations (4.44) to obtain the eigenfre-
quencies, and then (iii) constructing the corresponding Argand diagram of the system, to
obtain the critical velocity u. for divergence (the system being conservative; Section 3.4)
and the predicted post-divergence behaviour.

In Figure 4.17 are shown the first- and second-mode Argand diagrams of the system
eigenfrequencies for the longest pipe (A = 10'2), as obtained by the TRF theory. The
results obtained with the TPF and EBPF theories are virtually indistinguishable from
those shown. This is as expected, since (i) as shown in the previous section, for a long
clamped-clamped pipe the simple plug-flow model and the refined-flow model give the
same values for the generalized fluid-dynamic forces, (ii) the dynamics of a very long pipe
(here &€ = 8.25 x 10°) are identical, whether analysed by Timoshenko or Euler-Bernoulli
theory, at least in the low modes.

T I T I T T T T T [
12 -
8 91982
8 9.5 -
) 94
AL 659 Second
- Values of u mode
2 i 1
o 9.1 9.2 9.3 9.29
= 0 < = —— — . =
628 62 [ 6 4ls 3
bk First mode B
6.5 9§
94
8} 9.5 n
5 &l 52 J
12 | i ] ! | ] ] ! 1 ]
4 8 12 16 20

Re (w)

Figure 4.17 Dimensionless complex eigenfrequencies of an extremely long clamped-clamped

pipe (B=05y=pu=0=0,A =102 ¢=825x 10°) as functions of the dimensionless flow

velocity u, according to the Timoshenko refined-flow (TRF) theory: —e—, first mode; —l— .

second mode; —e—M— , combined first and second modes. The loci, which actually lie on the

axes, have been drawn slightly off the axes but parallel to them for the sake of clarity (Paidoussis
et al. 1986).
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In Figure 4.18 is shown an Argand diagram for a shorter pipe (¢ = 8.25, A = 100).
The dynamical behaviour of the system is similar to that of a long pipe (Figure 4.17), but
the eigenfrequencies obtained by TRF and EBPF theories are no longer coincident: the
former are consistently lower than the latter. Moreover, the critical flow velocities, both
for divergence and coupled-mode flutter, according to TRF theory are lower. These obser-
vations are reasonable since TRF theory correctly takes shear deformation into account;
shear deformation renders the system effectively more flexible.
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Figure 4.18 Dimensionless complex eigenfrequencies of a short clamped-clamped pipe

(B=05y=10,u=0=0;A=100,¢=8.25), as functions of the dimensionless flow velocity

u : e, Ist mode TRF (Timoshenko refined-flow theory); M, 2nd mode TRF; 4, st and 2nd mode

EBPF (Euler-Bernoulli plug-flow theory). The loci, which actually lie on the axes, have been drawn
slightly off but paralled to them for clarity (Paidoussis et al. 1986).

Similar observations can also be made for very short pipes (¢ = 2.61). The trends
referred to above are simply more pronounced in this case; hence, even lower dimension-
less critical flow velocities are obtained.

Now, let us turn our attention to the differences in the results obtained by the simple
and the refined fluid mechanics, and Timoshenko beam theory in both cases — i.e. let us
compare the results of the TPF and TRF theories. The dimensionless eigenfrequencies
of the first and second modes for u = 0 are shown in Table 4.4, and the critical flow
velocities for divergence are shown in Figure 4.19.

At u = 0, the refined fluid mechanics model gives slightly higher values for the first-
mode eigenfrequency than the simple, plug-flow one (Table 4.4). The difference is only
noticeable for A < 100 and is larger for higher modes. The observed differences in eigen-
frequencies are believed to arise from differences in the effective virtual mass per unit
length. According to simple fluid mechanics, this mass is simply the enclosed mass of
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Table 4.4 The eigenfrcquencics of a heavy clamped-clamped
short pipe (« = 0) for y = 10, 8 =0.5, p = 0 = 0, by Timo-
shenko plug-flow (TPF) and Timoshenko refined-flow (TRF)

theories.
A Mode by TPF theory @ by TRF theory
100 1 19.552 19.599
2 44.365 44.752
10 | 9.670 9.837
2 19.342 20.493
T T T T T T T T T T T
7 — —
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Figure 4.19 The critical dimensionless flow velocities for divergence, u.4, of a pipe clamped at

both ends, showing the effect of slenderness and related transverse shear [see equation (4.37)], for

B=0.5,y=10,u =0 =0. —e—, Timoshenko refined-flow (TRF) theory; - - 4 --, Timoshenko
plug-flow (TPF) theory (Paidoussis er al. 1986).

fluid per unit length — the ‘slender body’ approximation [cf. Section 2.2.2(e)(ii)] which
in this case reduces to the plug-flow model. According to the refined model, however,
this is smaller because of ‘end effects’ or departures from two-dimensionality [cf. equa-
tion (2.139) and the discussion of (4.58)], which are more important for short than for
long pipes. Hence, the effective total mass per unit length is m + M’, with M’ < M where
M = pAs, and the values of w [generally equal to (generalized stiffness)/(generalized
mass)] are therefore larger.

Considering the critical flow velocities for divergence next (Figure 4.19), it is seen
that the results for the TRF theory are indistinguishable from those obtained by the TPF
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theory for A > 10° approximately. On the other hand, for A < 10°, TPF theory tends to
underestimate u.,. The argument of end effects just discussed may be invoked here also to
explain these differences. The critical flow velocity for divergence depends principally on
the excitation force Q,S,) — which in the plug-flow model is proportional to M U?; this is
smaller for refined fluid mechanics, since M’ < M. Hence, this translates to u;r,}{F > uCT};F.
For the EBPF theory the value of u., is independent of A and equal to kEBPF = 6.66 (cf.
Figure 4.18), which is considerably higher than that obtained by the more appropriate
TRF and TPF theories for A < 1000 or so.

4.4.7 Stability of cantilevered pipes

Calculations for cantilevered pipes are conducted, utilizing the outflow model developed
in Section 4.4.5(b), i.e. the ‘second’ or quadratic model with { = 2.8. In this case N =
7, 8 and 9 terms in the modal expansions (4.43) are necessary for convergence in the
first, second and third modes of the system, respectively. As in the previous section, the
three theories (EBPF, TPF and TRF) are compared to one another for A = 10'2, 100
and 10.

Calculations for long pipes (A = 10'?) show that, similarly to the results of Figure 4.17
for clamped--clamped pipes, the eigenfrequencies obtained by EBPF, TPF and TRF theo-
ries are essentially identical (in the scale of the Argand diagram, not shown for brevity)
in the lowest three modes. For shorter pipes, differences begin to become noticeable, as
shown in Figures 4.20 and 4.2] for A = 100 and 10. The results of the EBPF theory are
not shown, for clarity.

8 —
4 —
3
S L
0
4 ! I ] ! ! 1 ! ] 1 L !
0 4 8 12 16 20

Re (w)

Figure 4.20 Dimensionless complex eigenfrequencies of a cantilevered pipe (8 = 0.3, y = 10,
u=o0=0,A =100, & = 8.25) as functions of the dimensionless fiow velocity u, according to the
two forms of the Timoshenko theory. Key as in Figure 4.19 (Paidoussis et al. 1986).
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Considering Figure 4.20 first, it is noticed that the eigenfrequencies as given by TRF
theory are higher than those obtained by TPF theory; the critical flow velocities for flutter
obtained by refined fluid mechanics (TRF theory) are also higher. These observations
are once again consistent with the concept of a smaller effective fluid mass per unit
length, M’, for the refined fluid mechanics, as compared to simple fluid mechanics. At the
same values of flow velocity and mode number, the absolute value of the eigenfrequency
obtained by the refined theory, |wy|, is always larger than that obtained by the simple
theory, |wsimpl. Moreover, it is clear that M’ becomes increasingly smaller than M for
larger mode numbers (larger discrepancies in Figure 4.20); this is consistent with the fact
that M = pA, applies only if the wavelength of deformation is long, as compared to the
internal diameter of the pipe (Section 3.5.8) — which is not the case here for the second
and third modes. In this connection it is recalled (Section 3.5.1) that the modal shapes
for u > 0 contain components of higher zero-flow beam eigenfunctions, which reinforces
the foregoing argument.

T T T T T T T T i T T

3 3.85 b -
T 345697 Second mode
Z 36 : Values of u Third mode
’ 37
. 35
~
1 4
[¢
3.16 &7
*
-4

Re (w)

Figure 421 Dimensionless complex eigenfrequencies of a very short cantilevered pipe

B=03,y=10.u=0=0,A=10,6 =2.61) as functions of the dimensionless flow velocity

u, according to the two forms of the Timoshenko theory. Key as in Figure 4.19 (Paidoussis et al.
1986).

However, the extension of this argument to the question of stability of cantilevered
pipes should be approached with caution, as loss of stability is not controlled by a single
fluid-dynamic force term (as for clamped-clamped pipes), but by two — namely ,(3,)
and Q,‘j) of equations (4.49) and (4.67); it is a balance between these two forces which
precipitates instability (Section 3.2.2). Indeed, as will be seen later, there are cases where
u.r according to TRF theory is lower than that obtained by TPF theory (plug-flow model).
in contrast to the results of Figure 4.20.

A good deal of the foregoing discussion also applies to Figure 4.21. However, in a
sense. this represents a very special case. since according to Timoshenko plug-flow (TPF)
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theory the system loses stability by divergence, at u.y >~ 3.16 — vide also Paidoussis &
Laithier (1976). On the other hand, according to Timoshenko refined-flow (TRF) theory the
system is shown to lose stability by flutter’ at a higher value of u (ucy = 3.95, w5 = 8.85
for y = 10 ucf = 3.63, w.s = 8.40 for y = 0).

It is recalled that according to Euler-Bemoulli beam theory (and a simple plug-flow
model) a cantilevered pipe conveying fluid can only lose stability by flutter. It is only
in an earlier version of this work, in which the plug-flow model was used (Paidoussis
& Laithier 1976), and here according to TPF theory, that loss of stability by divergence
is predicted. On the other hand, once a more appropriate model for the fluid mechanics
is used, flutter is predicted once again. Now, it cannot be said that the present TRF
theory never predicts divergence for short cantilevered pipes, but simply that in some of
the cases where TPF theory predicted divergence the present theory predicts flutter. In
this connection, it is recalled that when the cantilevered pipe system is subjected to a
second conservative force — other than the flexural restoring force — it sometimes loses
stability by divergence. Examples are (i) the pipe-plate system of Section 3.6.6, subjected
to warping as well as torsion, and (ii) the articulated pipe system of Section 3.8, subjected
to gravity. Hence, there may be areas in the parameter space of the present system, also,
where stability may be lost by divergence — according to TRF theory as well.

4.4.8 Comparison with experiment

The theory is compared with experimental results for cantilevered pipes, obtained by
Laithier (1979). The pipes were made of silicone rubber, 15.60 mm in outside diameter
and 6.35 mm in inside diameter. The fluid conveyed was water.

The pipes were specially moulded, with the upper end cast onto a special adaptor
(Appendix D.2). The adaptor could be screwed directly to the piping supplying steady
water flow. Special care was taken in designing the adaptor to ensure that (a) the upper
support approaches the clamped condition as closely as possible, and (b) the entrance
of the fluid to the supported part of the pipe is effected without disturbance (which in
short pipes could have an important effect on their dynamical behaviour). The measured
Young’s modulus for these pipes was E = 1.49 x 10® N/m?, Poisson ratio v = 0.45, and
the hysteretic damping coefficient ;4 = 0.02. Utilization of equations (4.37) and (4.32) in
this case gives A = 0.538¢2. In the experiments, A was varied by progressively reducing
the length of the pipe (by carefully cutting pieces off the free end), thus reducing ¢; L
was varied between 140 and 51 mm in one case, and 73 and 27 mm in another.

The flow velocity was measured by standard means. Oscillation was sensed by a fibre-
optic sensor, measuring the lateral displacement close to the supported end of the pipe; the
frequency of oscillation was measured from oscillation time-traces, recorded on a storage
oscilloscope.

The critical flow velocities for flutter, 1 s, according to the three theories are compared
with the experimental data in Figure 4.22(a) and the corresponding critical frequencies,
@, in Figure 4.22(b); it is important to mention that the experimental values of w.; were
measured at just the onset of instability and are not the limit-cycle values (which in this
case are quite different), so that they should correspond better to those predicted by linear

tSurprisingly, this is the behaviour predicted by the Euler-Bemoulli theory, but at a very different critical
flow velocity, u.; = 8.7, and in the second mode.
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Figure 4.22 Comparison of dimensionless theoretical and experimental (a) critical flow velocities,

u.; and (b) the corresponding critical frequencies, w.y, for flutter of cantilevered pipes made of

silicone rubber (8 = 0.155, u = 0.02, 0 =~ 0). For A > 50in (a)and A > 125 in (b), approximately.

the results of the TRF theory coincide with those of TPF theory, in the scale of this figure. ——,
TREF theory, ~ - —- —, TPF theory — ——, EBPF theory: e, c experimental data.
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theory. It is seen that both u.r and w.s obtained by the Timoshenko theories agree better
with the experimental data for A < 75 than the results obtained by the Euler-Bernoulli
plug-flow theory; but surprisingly not for u.r when A > 100. This last paradox may be
explained in terms of nonlinear theory (Chapter 5)." Comparing the results obtained by
the TPF and TREF theories, it is seen that they are very close. Nevertheless, for very short
pipes, TRF theory displays superior agreement with the experimental data.

4.4.9 Concluding remarks on short pipes and refined-flow models

In general, for short pipes clamped at both ends the use of Timoshenko rather than
Euler-Bernoulli beam theory results in lower critical flow velocities for divergence,
u.s — substantially lower for A < 1000 (Figure 4.19) — as a consequence of the pipe
being effectively less stiff since it deforms not only by bending but also by transverse
shear. The use of refined versus plug-flow fluid-dynamic modelling, on the other hand,
has a less pronounced effect on the dynamics of the system: the refined model gives
slightly higher values of the eigenfrequencies, as well as for the critical flow velocities
for divergence. This is consistent with the concept of smaller-than-ideal virtual mass of the
enclosed fluid, according to the refined three-dimensional fluid-mechanics model devel-
oped in this theory, as discussed in the foregoing. However, the differences in dynamical
behaviour, both qualitative and quantitative, in terms of the refined and simple (plug-flow)
Timoshenko theories are small; hence, from the practical point of view, down to A = 102,
the simple (plug-flow) Timoshenko theory is good enough for predicting the dynamical
behaviour of short clamped-clamped pipes conveying fluid.

In the case of short cantilevered pipes conveying fluid, the Euler-Bernoulli plug-flow
model is adequate provided A > 1000 approximately. Once again, differences between
refined and plug-flow Timoshenko theory are small, unless A < 25 approximately — an
even lower A than for clamped-clamped pipes.

Finally, by comparison with experiments with cantilevered elastomer pipes, it was
shown that the refined (TRF) theory is necessary for describing adequately the dynamical
behaviour of short pipes (L/D < 5 approximately), although Timoshenko beam theory
together with a plug-flow model (TPF theory) is quite satisfactory for relatively longer
pipes; for ‘long’ pipes (L/D > 15), Euler-Bernoulli beam theory and the plug-fow model
are perfectly adequate.

There is no question, however, that if one is interested in the dynamics of the system
in its higher modes, e.g. for forced vibration analysis rather than stability (usually lost in
one of the lower modes), then the differences between the three theories become larger,
as may be appreciated from Figures 4.18, 4.20 and 4.21. Thus, although the first-mode
behaviour is adequately predicted by EBPF theory down to A = 1000, third- and fourth-
mode behaviour, and more so for higher modes, requires the use of Timoshenko theory
and refined fluid mechanics (TRF theory) even at much larger values of A.

"The Hopf bifurcation for low A (hence low L/a) may be suberitical, while for higher A it is supercritical.
Hence, for low A, the measured thresholds tend to be lower than would otherwise be the case. In this light,
both the degree of excellence of the agreement with TRF theory for A < 75 and the better agreement with
EBPF theory for A > 100 may be wholly fortuitous.

tWith the Timoshenko plug-flow theory, the shortest cantilevered pipe for which calculations have been
conducted corresponds to A = 13.07. In the case of A < 10(8 = 0.155, u = 0.02, y < 0.01), TPF theory, or
at least the computer program utilized, fails to give a convergent solution.
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4.4.10 Long pipes and refined flow theory

Despite what is said in the previous section regarding the superfluity of using Timoshenko
or refined-flow theories except for really short pipes, there is no reason why they should
not be used for longer pipes as well. This is particularly true in the case of general
computational codes applicable to long and short pipes alike. An example is the work of
Sillstrom & Akesson (1990) and Sillstrom (1990, 1993), discussed in Section 4.7, which
is based on Timoshenko beam theory.

Another example is a study by Langthjem (1995) on the dynamics of not necessarily
short cantilevered pipes, partially or totally immersed in stagnant fluid, analysed by
Timoshenko refined-flow (TRF) theory. Both the internal and external fluid dynamics
are analysed by potential flow theory. Furthermore, it is argued that if the internal and
external fluids are the same, e.g. liquid flow discharging into stagnant liquid, a turbu-
lent jet develops and the flow is subjected to a velocity gradient at the free end; hence,
yet another type of ‘outflow model’ is developed. It is found that, as a result of flow
velocity reduction for x > L, the critical flutter speed (u. ;) may be diminished by 5-10%.
Similar conclusions to those summarized in Section 4.4.9 are reached regarding the appli-
cability of simpler theory down to very short pipes, and those in Section 4.2.4 and in
Sugiyama et al. (1996a) regarding immersion effects. In particular, the destabilization
when immersion is shallow, as compared to no immersion, is explained by noting that
this enhances the ‘dragging’ form of the motion and hence optimizes energy transfer
(Section 3.2.2).

Experiments with long elastomer pipes (