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Preface 

A word about la raison d’2tre of this book could be useful, especially since the first 
question to arise in the prospective reader’s mind might be: why another book on pow- 
induced vibration? 

Flow-induced vibrations have been with us since time immemorial, certainly in nature, 
but also in artefacts; an example of the latter is the Aeolian harp, which also makes 
the point that these vibrations are not always a nuisance. However, in most instances 
they are annoying or damaging to equipment and personnel and hence dangerous, e.g. 
leading to the collapse of tall chimneys and bridges, the destruction of heat-exchanger and 
nuclear-reactor intemals, pulmonary insufficiency, or the severing of offshore risers. In 
virtually all such cases, the problem is ‘solved’, and the repaired system remains trouble- 
free thereafter - albeit, sometimes, only after a first and even a second iteration of the 
redesigned and supposedly ‘cured’ system failed also. This gives a hint of the reasons why 
a book emphasizing (i) thefundamentals and (ii) the mechanisnis givitig rise to thepow- 
induced vibration might be useful to researchers, designers, operators and, in the broadest 
sense of the word, students of systems involving fluid-structure interactions. For, in many 
cases, the aforementioned problems were ‘solved’ without truly understanding either the 
cause of the original problem or the reasons why the cure worked, or both. Some of the 
time-worn battery of ‘cures’, e.g. making the structure stiffer via stiffeners or additional 
supports, usually work, but often essentially ‘sweep the problem under thc carpet’, for it 
to re-emerge under different operating conditions or in a different part of the parameter 
space; moreover, as we shall see in this book, for a limited class of systems, such measures 
may actually be counterproductive. 

Another answer to the original question ‘Why yet another book?’ lies in the choice 
of the material and the style of its presentation. Although the discussion and citation of 
work in the area is as complete as practicable, the style is not encyclopaedic; it is sparse, 
aiming to convey the main ideas in a physical and comprehensible manner, and in a way 
that isfun to read. Thus, the objectives of the book are (i) to convey an understanding 
of the undoubtedly fascinating (even for the layman) phenomena discussed, (ii) to give a 
complete bibliography of all important work in the field, and (iii) to provide some tools 
which the reader can use to solve other similar problems. 

A second possible question worth discussing is ‘Why the relatively narrow focus?’ 
By glancing through the contents, it is immediately obvious that the book deals with 
axial-flow-related problems, while vortex-induced motions of bluff bodies, fluidelastic 
instability of cylinder arrays in cross-flow, ovalling oscillations of chimneys, indeed all 
cross-flow-related topics, are excluded. Reasons for this are that (i) some of these topics 
are already well covered in other books and review articles; (ii) in at least some cases, the 
fundamentals are still under development, the mechanisms involved being incompletely 
understood; (iii) the cross-flow literature is so vast, that any attempt to cover it, as well as 
axial-flow problems, would by necessity squeeze the latter into one chapter or two, at most. 

xi 
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After extensive consultations with colleagues around the world, it became clear that there 
was a great need for a monograph dealing exclusively with axial-flow-induced vibrations 
and instabilities. This specialization translates also into a more cohesive treatment of the 
material to be covered. The combination of axial flow and slender structures implies, in 
many cases, the absence or, at most, limited presence of separated flows. This renders 
analytical modelling and interpretation of experimental observation far easier than in 
systems involving bluff bodies and cross-flow; it permits a better understanding of the 
physics and makes a more elegant presentation of the material possible. Furthermore, 
because the understanding of the basics in this area is now well-founded, this book 
should remain useful for some time to come. 

In a real sense, this book is an anthology of much of the author’s research endeavours 
over the past 35 years, at the University of Cambridge, Atomic Energy of Canada in 
Chalk River and, mainly, McGill University - with a brief but important interlude at 
Cornell University. Inevitably and appropriately, however, vastly more than the author’s 
own work is drawn upon. 

The book has been written for engineers and applied mechanicians; the physical systems 
discussed and the manner in which they are treated may also be of interest to applied 
mathematicians. It should appeal especially to researchers, but it has been written for 
practising professionals (e.g. designers and operators) and researchers alike. The material 
presented should be easily comprehensible to those with some graduate-level under- 
standing of dynamics and fluid mechanics. Nevertheless, a real attempt has been made to 
meet the needs of those with a Bachelor’s-level background. In this regard, mathematics 
is treated as a useful tool, but not as an end in itself. 

This book is not an undergraduate text, although it could be one for a graduate-level 
course. However, it is not written in rext-book format, but rather in a style to be enjoyed 
by a wider readership. 

I should like to express my gratitude to my colleagues, Professor. B.G. Newman for 
his help with Section 2.2.1, Professors S.J. Price and A.K. Misra for their input mainly 
on Chapters 3 and 6, respectively, Dr H. Alighanbari for input on several chapters and 
Appendix F, and Professor D.R. Axelrad for his help in translating difficult papers in 
Gernian. 

I am especially grateful and deeply indebted to Dr Christian Semler for some special 
calculations, many suggestions and long discussions, for checking and rechecking every 
part of the book, and particularly for his contributions to Chapter 5 and for Appendix F, 
of which he is the main creator. Also, many thanks go to Bill Mark for his willing help 
with some superb computer graphics and for input on Appendix D, and to David Sumner 
for help with an experiment for Section 4.3. 

I am also grateful to many colleagues outside McGill for their help: Drs D.J. Maul1 and 
A. Dowling of Cambridge, J.M.T. Thompson of University College London, S.S. Chen 
of Argonne, E.H. Dowel1 of Duke, C.D. Mote Jr of Berkeley, F.C. Moon of Cornell, 
J.P. Cusumano of Penn State, A.K. Bajaj of Purdue, N.S. Namachchivaya of the Univer- 
sity of Illinois, S. Hayama and S. Kaneko of the University of Tokyo, Y. Sugiyama of 
Osaka Prefecture, M. Yoshizawa of Keio, the late Y. Nakamura of Kyushu and many 
others, too numerous to name. 

My gratitude to my secretary, Mary Fiorilli, is unbounded, for without her virtuosity 
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1 
Introduction 

1.1 GENERAL OVERVIEW 

This book deals with the dynamics of slender, mainly cylindrical or quasi-cylindrical, 
bodies in contact with axial flow - such that the structure either contains the flow 
or is immersed in it, or both. Dyrzamics is used here in its genetic sense, including 
aspects of srabiliry, thus covering both self-excited and free or forced motions 
associated with fluid-structure interactions in such configurations. Indeed, flow-induced 
instabilities - instabilities in the linear sense, namely, divergence and flutter - are a 
major concern of this book. However, what is rather unusual for books on flow-induced 
vibration, is that considerable attention is devoted to the nonlinear behaviocrr of such 
systems, e.g. on the existence and stability of limit-cycle motions, and the possible 
existence of chaotic oscillations. This necessitates the introduction and utilization of some 
of the tools of modem dynamics theory. 

Engineering examples of slender systems interacting with axial flow are pipes and other 
flexible conduits containing flowing fluid, heat-exchanger tubes in axial flow regions of 
the secondary fluid and containing internal flow of the primary fluid, nuclear reactor 
fuel elements, monitoring and control tubes, thin-shell structures used as heat shields in 
aircraft engines and thermal shields in nuclear reactors, jet pumps, certain types of valves 
and other components in hydraulic machinery, towed slender ships, barges and submarine 
systems, etc. Physiological examples may be found in the pulmonary and urinary systems 
and in haemodynamics. 

However, much of the work in this area has been, and still is, ‘curiosity-driven’,’ 
rather than applications-oriented. Indeed, although some of the early work on stability of 
pipes conveying fluid was inspired by application to pipeline vibrations, it soon became 
obvious that the practical applicability of this work to engineering systems was rather 
limited. Still, the inherent interest of the extremely varied dynamical behaviour which 
this system is capable of displaying has propelled researchers to do more and more 
work - to the point where in a recent review (PaYdoussis & Li 1993) over 200 papers 
were cited in a not-too-exhaustive bibliography.$ In the process, this topic has become 
a new paradigm in dynamics, i.e. a new model dynamical problem, thus serving two 
purposes: (i) to illustrate known dynamical behaviour in a simple and convincing manner; 

‘With the present emphasis on utilitarianism in engineering and even science research, the characterization 
of a piece of work as ‘curiosity-driven’ stigmatizes it and, in the minds of some, brands it as being ‘useless’. 
Yet, some of the highest achievements of the human mind in science (including medical and engineering 
science) have indeed been curiosity-driven; most have ultimately found some direct or indirect, and often very 
important, practical application. 

*See also Becker (1981) and Paidoussis (1986a. 1991). 
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(ii) to serve as a vehicle in the search for new phenomena or new dynamical features, 
and in the development of new mathematical techniques. More of this will be discussed 
in Chapters 3-5. However, the foregoing serves to make the point that the curiosity- 
driven work on the dynamics of pipes conveying fluid has yielded rich rewards, among 
them (i) the development of theory for certain classes of dynamical systems, and of new 
analytical methods for such systems, (ii) the understanding of the dynamics of more 
complex systems (covered in Chapters 6-11 of this book), and (iii) the direct use of 
this work in some a priori unforeseen practical applications, some 10 or 20 years after 
the original work was done (Paidoussis 1993). These points also justify why so much 
attention, and space, is devoted in the book to this topic, indeed Chapters 3-6. 

Other topics covered in the book (e.g. shells containing flow, cylindrical structures 
in axial or annular flow) have more direct application to engineering and physiological 
systems; one will therefore find sections in Chapters 7- 11 entirely devoted to applications. 
In fact, since ‘applications’ and ‘problems’ are often synonymous, it may be of interest to 
note that, in a survey of flow-induced vibration problems in heat exchangers and nuclear 
reactors (Paidoussis 1980), out of the 52 cases tracked down and analysed, 36% were 
associated with axial flow situations. Some of them, notably when related to annular 
configurations, were very serious indeed - in one case the repairs taking three years, at 
a total cost, including ‘replacement power’ costs, in the hundreds of millions of dollars, 
as described in Chapter 11. 

The stress in this book is on the fundamentals as opposed to techniques and on physical 
understanding whenever possible. Thus, the treatment of each sub-topic proceeds from 
the very simple, ‘stripped down’ version of the system, to the more complex or realistic 
systems. The analysis of the latter invariably benefits from a sound understanding of the 
behaviour of the simpler system. There are probably two broad classes of readers of a 
book such as this: those who are interested in the subject matter per se, and those who 
skim through it in the hope of finding here the solution to some specific engineering 
problem. For the benefit of the latter, but also to enliven the book for the former group, 
a few ‘practical experiences’ have been added. 

It must be stressed, however, for those with limited practical experience of flow-induced 
vibrations, that these problems can be very difficult. Some of the reasons for this are: 
(i) the system as a whole may be very complex, involving a multitude of components, 
any one of which could be the real culprit; (ii) the source of the problem may be far 
away from the point of its manifestation; (iii) the information available from the field, 
where the problem has arisen, may not contain what the engineers would really hope to 
know in order to determine its cause. These three aspects of practical difficulties will be 
illustrated briefly by three examples. 

The first case involved a certain type of boiling-water nuclear reactor (BWR) in which 
the so-called ‘poison curtains’, a type of neutron-absorbing device, vibrated excessively, 
impacting on the fuel channels and causing damage (Paidoussis 1980; Case 40). It was 
decided to remove them. However, this did not solve the problem, because it was then 
found that the in-core instrument tubes, used to monitor reactivity and located behind 
thc curtains, vibrated sufficiently to impact on the fuel channels - ‘a problem that was 
“hidden behind the curtains” for the first two years’ ! Although this may sound amusing 
at this point, neither the power-station operator nor the team of engineers engaged in the 
solution of the problem can have found it so at the time. 
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The second case also occurred in a nuclear power station, this time a gas-cooled system 
(PaYdoussis 1980; Case 35). It involved excessive vibration of the piping - so excessive 
that the sound associated with this vibration could be heard 3km away! The excitation 
source was not local; it was a vortex-induced vibration within the steam generator, quite 
some distance away. A similar but less spectacular such case involved the perplexing 
vibration of control piping in the basement of the Macdonald Engineering Building at 
McGill University, which occurred intermittently. The source was eventually, and quite 
by chance, discovered to be a small experiment involving a plunger pump (to study 
parametric oscillations of piping, Chapter 4) three floors up! 

Another case involved a boiler (Pdidoussis 1980; Case 23), and the report from the 
field stated that ‘There is severe vibration on this unit. The forced draft duct, gas duct 
and superheater-economizer sections all vibrate. The frequency I would guess to be 
60-100 cps. It feels about like one of those ‘ease tired feet’ vibration machines’. A 
very colourful description, but lacking in the kind of detail and quantitative information 
one would wish for. The difficulty of instrumenting the troublesome operating system a 
posteriori should also be remarked upon. 

To be able to deal with practical problems involving flow-induced vibration or insta- 
bility, one needs first of all a certain breadth of perspective to be able to recognize in 
what class of phenomena it belongs, or at least in what class it definitely does not belong. 
Here experience is a great asset; reference to books with a broader scope would also 
be recommended [e.g. Naudascher & Rockwell (1994), Blevins (1990)l. Once the field 
has been narrowed, however, to be able to solve and to redesign properly the system, a 
thorough familiarity with the topic is indispensable. If the problem is one of axial flow, 
then here is where this book becomes useful. 

A final point, before embarking on more specific items, should also be made: despite 
what was said at the beginning of the discussion on practical concerns - that applica- 
tions and problems are often synonymous - flow-induced vibrations are not necessarily 
bad. First of all, they are omnipresent; a fact of life, one might say. They occur when- 
ever a structure is in contact with flowing fluid, no matter how small the flow velocity. 
Admittedly, in many cases the amplitudes of vibration are very small and hence the 
vibration may be quite inconsequential. Secondly, even if the vibration is substantial, it 
may have desirable features, e.g. in promoting mixing, dispersing of plant seeds, making 
music by reed-type wind instruments; as well as for wave-generated energy conversion, 
or for the enhancement of marine propulsion (Chapter 4). Recently, attempts have been 
made ‘to harness’ vibration in heat-exchange equipment so as to augment heat transfer, 
so far without spectacular success, however. Even chaotic oscillation, usually a term with 
negative connotations, can be useful, e.g. in enhancing mixing (Aref 1995). 

1.2 CLASSIFICATION OF FLOW-INDUCED VIBRATIONS 

A number of ways of classifying flow-induced vibrations have been proposed. A very 
systematic and logical classification is due to Naudascher & Rockwell (1980, 1994), in 
terms of the sources of excitation of flow-induced vibration, namely, (i) extraneously 
induced excitation, (ii) instability-induced excitation, and (iii) movement-induced excita- 
tion. Naudascher & Rockwell consider flow-induced excitation of both body and fluid 
oscillators, which leads to a 3 x 2 tabular matrix within which any given situation can 
be accommodated; in this book, however, we are mainly concerned with flow-induced 
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structural motions, and hence only half of this matrix is of direct interest. The struc- 
ture, or ‘body oscillator’, is any component with a certain inertia, either elastically 
supported or flexible (e.g. a flexibly supported rigid mass, a beam, or a shell). Thus, 
in a one-degree-of-freedom system, the equation of which may generally be written as 
i + m i x  + g(x ,  i ,  x) = f ( t ) ,  the first two terms must be present, i.e. the structure, if 
appropriately excited, must be able to oscillate! 

Extraneously induced excitation (EIE) is defined as being caused by fluctuations in 
the flow or pressure, independently of any flow instability and any structural motion. An 
example is the turbulence buffeting, or turbulence-induced excitation, of a cylinder in flow, 
due to surface-pressure fluctuations associated with turbulence in the flow. Instability- 
induced excitation (IIE) is associated with a flow instability and involves local flow 
oscillations. An example is the alternate vortex shedding from a cylindrical structure. 
In this case it is important to consider the possible existence of a control mechanism 
governing and perhaps enhancing the strength of the excitation: e.g. a fluid-resonance or 
a fluidelastic feedback. The classical example is that of lock-in, when the vortex-shedding 
frequency is captured by the structural frequency near simple, sub- or superharmonic reso- 
nance; the vibration here further organizes and reinforces the vortex shedding process. 
Finally, in movement-induced excitation (MIE) the fluctuating forces arise from move- 
ments of the body; hence, the vibrations are self-excited. Flutter of an aircraft wing and 
of a cantilevered pipe conveying fluid are examples of this type of excitation. Clearly, 
certain elements of IIE with fluidelastic feedback and MIE are shared; however, what 
distinguishes MIE is that in the absence of motion there is no oscillatory excitation 
whatsoever. 

A similar classification, related more directly to the nature of the vibration in each 
case, was proposed earlier by Weaver (1976): (a) forced vibrations induced by turbulence; 
(b) self-controlled vibrations, in which some periodicity exists in the flow, independent of 
motion, and implying some kind of fluidelastic control via a feedback loop; (c) self-excited 
vibrations. Other classifications tend to be more phenomenological. For example, Blevins 
(1990) distinguishes between vibrations induced by (a) steady flow and (b) unsteady 
flow. The former are then subdivided into ‘instabilities’ (i.e. self-excited vibrations) and 
vortex-induced vibrations. The latter are subdivided into: random, e.g. turbulence-related; 
sinusoidal, e.g. wave-related; and transient oscillations, e.g. water-hammer problems. 

All these classifications, and others besides, have their advantages. Because this book 
is essentially a monograph concerned with a subset of the whole field of flow-induced 
vibrations, adherence to a single classification scheme is not so crucial; nevertheless, the 
phenomenological classification will be used more extensively. In this light, an important 
aim of this section is to sensitize the reader to the various types of phenomena of interest 
and to some of the physical mechanisms causing them. 

1.3 SCOPE AND CONTENTS OF VOLUME 1 

Chapter 2 introduces some of the concepts and methods used throughout the book, both 
from the fluids and the structures side of things. It is more of a refresher than a textbook 
treatment of the subject matter, and much of it is developed with the aid of examples. 
At least some of the material is not too widely known; hence, most readers will find 
something of interest. The last part of the chapter introduces some of the differences in 



INTRODUCTION 5 

dynamical behaviour as obtained via linear and nonlinear analysis, putting the emphasis 
on physical understanding. 

Chapters 3 and 4 deal with the dynamics, mainly the stability, of straight (as opposed 
to curved) pipes conveying fluid: both for the inherently conservative system (both ends 
supported) and for the nonconservative one (e.g. when one end of the pipe is free). 
The fundamentals of system behaviour are presented in Chapter 3 in terms of linear 
theory, together with the pertinent experimental research. Chapter 4 treats some ‘less 
usual’ systems: pipes sucking fluid, nonuniform pipes, parametric resoriances, and so on, 
and also contains a section on applications. The nonlinear dynamics of the system, as 
well as chaotic oscillations, are presented in Chapter 5 ,  wherein may also be found an 
introduction to the methods of modern nonlinear dynamics theory. 

The ideas and methods developed and illustrated in Chapters 3-5 are of importance 
throughout the rest of the book, since the fundamental dynamical behaviour of the systems 
in the other chapters will be explained by analogy or reference to that presented in these 
three chapters; hence, even if the reader has no special interest in the dynamics of pipes 
conveying fluid, reading Chapter 3 is sine qua non for the proper understanding of the 
rest of the book. 

Chapter 6 deals with the dynamics of curved pipes conveying fluid, which, surprisingly 
perhaps, is distinct from and analytically more complex than that of straight pipes. 

1.4 CONTENTS OF VOLUME 2+ 

The pipes considered in Chapters 3-6 are sufficiently thick-walled to suppose that ideally, 
their cross-section remains circular while in motion, so that the dynamics may be treated 
via beam theory. In Chapter 7, thin-walled pipes are considered, which must be treated as 
thin cylindrical shells. Turbulence-induced vibrations, as well as physiological applications 
are discussed at the end of this chapter. 

Chapters 8 and 9 deal with the dynamics of cylinders in axial flow: isolated cylinders 
in unconfined or confined flow in Chapter 8, and cylinders in clusters in Chapter 9. The 
stability and turbulence-induced vibrations of such systems are also discussed. Engineering 
applications are also presented: e.g. submerged towed cylinders, and clustered cylinders 
such as those used in nuclear reactor fuel bundles and tube-in-shell heat exchangers. 
Chapter 10 deals with plates in axial flow. 

Chapter 11 treats a special, technologically important, case of the material in Chapters 7 
and 8: a single cylinder or shell in a rigid or flexible tube, subjected to annular flow in the 
generally narrow passage in-between. This chapter also closes with discussion of some 
engineering applications. 

Chapter 12 presents in outline some topics involving axial flow not treated in  detail in  
this book, and Chapter 13 contains some general conclusions and remarks. 

‘Volume 2 is scheduled to appear later, but soon after Volume 1.  



2 
Concepts, Definitions and 

Methods 

As the title implies, this also is an introductory chapter, where some of the basics of the 
dynamics of structures, fluids and coupled systems are briefly reviewed with the aid of a 
number of examples. The treatment is highly selective and it is meant to be a refresher 
rather than a substitute for a more formal and complete development of either solid or 
fluid mechanics, or of systems dynamics. 

Section 2.1 deals with the basics of discrete and distributed parameter systems, and the 
classical modal techniques, as well as the Galerkin method for transforming a distributed 
parameter system into a discrete one. Some of the definitions used throughout the book 
are given here. A great deal if not all of this material is well known to most readers; 
yet, some unusual features (e.g. those related to nonconservative systems or systems with 
frequency-dependent boundary conditions) may interest even the cognoscenti. 

The structure of Section 2.2, dealing with fluid mechanics, is rather different. Some 
generalities on the various flow regimes of interest (e.g. potential flow, turbulent flow) 
are given first, both physical and in terms of the governing equations. This is then followed 
by two examples, in which the fluid forces exerted on an oscillating structure are calcu- 
lated, for: (a) two-dimensional vibration of coaxial shells coupled by inviscid fluid in 
the annulus; (b) two-dimensional vibration of a cylinder in a coaxial tube filled with 
viscous fluid. 

Finally, in Section 2.3, a brief discussion is presented on the dynamical behaviour of 
fluid-structure-interaction systems, in particular the differences when this is obtained via 
nonlinear as opposed to linear theory. 

2.1 DISCRETE AND DISTRIBUTED PARAMETER SYSTEMS 

Some systems, for example a mathematical simple pendulum, are sui getieris discrete; 
i.e. the elements of inertia and the restoring force are not distributed along the geometric 
extent of the system. However, what distinguishes a discrete system more precisely is that 
its configuration and position in space at any time may be determined from knowledge of 
a numerable set of quantities; i.e. the system has a finite number of degrees of freedom. 
Thus, the simple pendulum has one degree of freedom, even if its mass is distributed 
along its length, and a double (compound) pendulum has two. 

The quantities (variables) required to completely determine the position of the system 
in space are the generalized coordiwates, which are not unique, need not be inertial, but 
must be equal to the number of degrees of freedom and mutually independent (Bishop & 
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Figure 2.1 (a) A mathematical double pendulum involving massless rigid bars of length I ,  and 
1 2  and concentrated masses M I  and Mz;  (b) a three-degree-of-freedom ( N  = 3) articulated pipe 
system conveying fluid, with rigid rods of mass per unit length m and length I ,  interconnected by 
rotational springs of stiffness k ,  and generalized coordinates O i ( t ) ,  i = 1,2,  3; (c) a continuously 
flexible cantilevered pipe conveying fluid, the limiting case of the articulated system as N + 00, 

with EI = kl (see Chapter 3). In most of this chapter U = 0. 

Johnson 1960; Meirovitch 1967, 1970). Thus, for a double pendulum [Figure 2.l(a)], the 
two angles, 81 and 8, may be chosen as the generalized coordinates, each measured from 
the vertical; or, as the second coordinate, the angle ,y between the first and the second 
pendulum may be used. Closer to the concerns of this book, a vertically hung articulated 
system consisting of N rigid pipes interconnected by rotational springs (Chapter 3) has N 
degrees of freedom; the angles, Oi,  of each of the pipes to the vertical may be utilized as 
the generalized coordinates [Figure 2.l(b)]. Contrast this to a flexible pipe [Figure 2.l(c)], 
where the mass arid flexibility (as well as dissipative forces) are distributed along the 
length: it is effectively a beam, and this is a distributedparameter, or ‘continuous’, system; 
in this case, the number of degrees of freedom is infinite. Discrete systems are described 
mathematically by ordinary differential equations (ODES), whereas distributed param- 
eter systems by partial differential equations (PDEs). If a system is linear, or linearized, 
which is admissible if the motions are small (e.g. small-amplitude vibrations about the 
equilibrium configuration), the ODES may generally be written in matrix form. This is 
very convenient, since computers understand matrices very well! In fact, a number of 
generic matrix equations describe most systems (Pestel & Leckie 1963; Bishop et a l .  
1965; Barnett & Storey 1970; Collar & Simpson 1987; Golub & Van Loan, 1989) and 
they may be solved with the aid of a limited number of computer subroutines [see, e.g. 
Press et a l .  (1992)l. Thus, a damped system subjected to a set of external forces may be 
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where [MI,  [ C ]  and [ K ]  are, respectively, the mass, damping and stiffness matrices, { q )  
is the vector of generalized coordinates, and [ Q }  is the vector of the imposed forces; the 
overdot denotes differentiation with time. 

On the other hand, the form of PDEs tends to vary much more widely from one 
system to another. Although helpful classifications (e& into hyperbolic and elliptic types, 
Sturm-Liouville-type problems, and so on) exist, the fact remains that the equations of 
motion of distributed parameter sytems are more varied than those of discrete systems, 
and so are the methods of solution. Also, the solutions are generally considerably more 
difficult, if the equations are tractable at all by other than numerical means. Furthermore, 
the addition of some new feature to a known problem (i.e. to a problem the solution 
of which is known), is not easily accommodated if the system is continuous. Consider, 
for instance the situation of the articulated pipe system which can be described by an 
equation such as (2.1), and the ease with which the addition of a supplemental mass at 
the free end can be accommodated. Then, contrast this to the difficulties associated with 
the addition of such a mass to a continuously flexible pipe: since the boundary conditions 
will now be different, this problem has to be solved from scratch, even if the solution of 
the problem without the mass (Le. the solution of the simple beam equation) is already 
known. Hence, it is often advantageous to transform distributed parameter systems into 
discrete ones by such methods as the Galerkin (or Ritz-Galerkin) or the Rayleigh-Ritz 
schemes (Meirovitch 1967). 

In this section, tirst the standard methods of analysis of discrete systems will be 
reviewed. Then, the Galerkin method will be presented via example problems, as well 
as methods for dealing with the forced response of continuous systems. Along the way, 
a number of important definitions and classifications of systems, e.g. conservative and 
nonconservative, self-adjoint, positive definite, etc., will be introduced. 

2.1.1 The equations of motion 

The equations of motion of discrete systems are generally derived by either Newtonian 
or Lagrangian methods. In the latter case, for a system of N degrees of freedom and 
generalized coordinates qr ,  the Lagrange equations are 

d aT aT av (G) - + ag, = Q r ,  r = 1,2, ..., N ,  

where T is the kinetic energy and V the potential energy of some or all of the conservative 
forces acting on the system, while Qr are the generalized forces associated with the rest 
of the forces (Bishop & Johnson 1960; Meirovitch 1967, 1970). 

For continuous (distributed parameter) systems, the equations of motion may be 
obtained either by Newtonian methods (by taking force and moment balances on an 
element of the system) or by the use of Hamilton's principle and variational techniques, 
i.e. by using 

(2.3) S I" (T - V +  W)dr = 0, 
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where 6 denotes the variational operator and W is the work done by forces not included in 
V .  The use of Hamilton's principle is especially convenient in cases of unusual boundary 
conditions, because the equation(s) of motion and boundary conditions are determined in 
a unified procedure [see, for example, Meirovitch (1967)l. 

Special forms or interpretation of (2.2) and (2.3) may be necessary for 'open systems', 
where the mass is not conserved, e.g. with in-flow and out-flow of mass and momentum, 
as is common in fluidelastic systems. These, however, will be discussed in the chapters 
that follow (e.g. in  Section 3.3.3). 

2.1.2 Brief review of discrete systems 

A system is conservative if all noninertial forces may be derived from a potential function, 
i.e. if they are all functions of position alone; thus, if the system is displaced from a to 
b, the work is not path-dependent (or, equivalently, if the system is returned to a by 
whatever path, the total work done is null). For a conservative system, the equations of 
motion may be written as 

[MlIiil+ IKlIql = {Ql,  (2.4) 

a special form of (2.1); the matrices are of the same order as the number of degrees 
of freedom, N .  Provided that (i) the generalized coordinates are measured from the 
(stable) equilibrium configuration, (ii) the potential energy is zero at equilibrium, and 
(iii) the constraints are scleronomic - conditions that are not difficult to satisfy in many 
cases - the [MI and [K] matrices are symmetric. 

Constraints are auxiliary kinematical conditions; e.g. in Figure 2.l(a) the mass M I  
cannot move freely in the plane but must remain at a fixed distance 1 1  from the point of 
support. The two constraint equations that must implicitly be satisfied for the system of 
Figure 2.l(a) are what makes this system have two and not four degrees of freedom. If 
a constraint equation may be reduced to a form f (x, y ,  z ,  t )  = 0, then the constraint is 
said to be holonomic; a subclass of this is when the constraint equation does not contain 
time explicitly, in which case the constraint is said to be sclerotzoniic (Meirovitch 1970; 
Nelmark & Fufaev 1972). Thus, if 1 1  were a prescribed function of time, the constraint 
would be holonomic but not scleronomic.' 

The homogeneous form of equation (2.4), representing free motions of the system, 

may be re-written as 
I 4  + [WIISI = {Ol ,  

in which [ W ]  = [ M ] - ' [ K ]  - provided that [MI can be inverted, i.e. if it is nonsingular. 
Oscillatory solutions are sought, of the form 

( q }  = [Ale'"', (2.7) 

+These words derive from the Greek 6Aas = whole or total and ubpas = law, hence holonomic means 
totally demarcated or defined; the first component of scleronomic is from UKA&S = hard, hence the word 
denotes a hard and fast rule! 
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where (A] is a column of unknown amplitudes and R the circular frequency. Substi- 
tuting (2.7) into (2.6) and defining A 

(ALII - [Wl){Al = (2.8) 

02, leads to the standard eigenvalue problem, 

where [I] is the unit matrix. Nontrivial solution of (2.8) requires that 

det ([W] - A[Z]) = 0, (2.9) 

which is the characteristic equation, from which the eigenvalues, Ai,  i = 1, 2, . . . , N ,  
and hence the corresponding eigenvectors, {A}i or Ai, may be found. The free-vibration 
characteristics of the system are fully determined by the eigenvalues (and hence the eigen- 
frequencies Qi = and the corresponding eigenvectors. The latter may be viewed as 
shape functions. Thus, for the double pendulum of Figure 2.l(a), if M I  = 2M, M2 = M 
and 11 = 12 = I, one obtains hl = $ ( g / l )  and 12 = 2(g / l ) .  The first- and second-mode 
eigenvectors are, respectively { 1 ,  l)T and { 1 ,  -2)T, which means that, for motions purely 
in the first mode (at Rl), the second pendulum oscillates with the same angular ampli- 
tude as the first, and in the same direction; while in the second mode (at Q2), the second 
pendulum has twice the amplitude of the first, but in the opposite sense. Pure first- 
mode motions could be generated via initial conditions { q ( O ) ]  = ( 1 ,  ($0)) = [O), 
and similarly for second-mode motions. Other initial conditions generate motions which 
involve - can be synthesized from - both eigenvectors and both eigenfrequencies. 

As a consequence of [MI and [ K ]  being symmetric, the eigenvalues are real (as in 
the foregoing example),+ and the following weighted orthogonality holds true for the 
eigenvectors: 

{A}; [K]{A]i = 0, {A); [M]{A]i = 0 for i # j ;  (2.10) 

if [W] is symmetric too - recall that the product of two symmetric matrices is not neces- 
sarily symmetric - then direct orthogonality also applies, i.e. {A}T(A)i = 0 for i # j .  
Relations (2.10) hold true, provided that the eigenvalues are distinct; the case of repeated 
eigenvalues will be treated later. 

Since [MI is, or can be, derived from the kinetic energy, which is a positive definite 
function, [MI is a positive definite matrix (Meirovitch 1967; Pipes 1963).$ If [K] is also 
positive definite, then so is the system, and the eigenvalues are all positive. If [ K ]  is only 
positive, the system is said to be semidejnite, and it may have zero eigenvalues - e.g. 
if the system as a whole is unrestrained. 

For the forced response, equation (2.4) has to be solved. This may be done in many 
ways, e.g. by the use of Laplace transforms or by modal analysis. This latter will be 
reviewed briefly in what follows. First, the modal matrix is defined, 

(2.11) 

then, the so-called expansion theorem is invoked, stating that any vector, including {q),  
in the vector space spanned by [A] may be expressed (‘synthesized’) in terms of the 

[AI = [{A)IIA)z.  . . (AINI; 

+This is physically reasonable - see equation (2.7). 
*If the determinant of successive submatrices, each containing the left-hand corner element are all positive, 

then the matrix is positive definite. That is, for a 3 x 3 matrix [MI : 1n11 > 0, nqlrn22 - n ~ 1 n 1 1 2  > 0 and 
det[M] > 0 and similarly for higher order matrices. If any of the determinants is zero, then [MI is said to be 
only positive rather than positive definite. 
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eigenvectors making up [A]. Hence, the coordinate transformation 

(41 = [Al(Yl (2.12) 

is introduced, in which yi, i = 1 ,  . . . , N, are the normal or principal coordinates. Substi- 
tuting (2.12) into (2.4), and pre-multiplying by [AIT leads to 

[PIIYI + [SIIy) = [AITIQl = (FI, (2.13) 

in which 
[PI = [AITW1[Al1 [SI = [AITIKl[Al (2.14) 

are diagonal, in view of the relations (2.10). 
The system (2.13) has therefore been decoupled. Each row reads p;y;  + s; y; = F, ( t ) ,  

which is easily solvable, subject to the initial conditions (y(0)J = [A]-' {q(O)] and 
(y(0)) = [A]-'{q(O)). The response in terms of the original coordinates may then be 
obtained by application of (2.12). 

In case of repeated eigenvalues, or if [MI or [K] are not symmetric but the eigenvalues 
are still real, provided that linearly independent eigenvectors may be found,' one may 
proceed as follows: (i) equation (2.4) is pre-multiplied by [MI-', (ii) transformation (2.12) 
is introduced, and (iii) the equation is decoupled by pre-multiplication by [AI-'; this 
leads to 

IY} + [AIIYI  = [ A l - ' [ ~ l - ' ( Q l ~  (2.15) 

where [A]-'[W][A] = [A] has been utilized, and [A] is the diagonal matrix of the eigen- 
values. 

If damping is present, then the full form of equation (2.1) applies - provided, of 
course, that the damping is viscous or that it may be approximated as such. In this case, 
eigenvalues and eigenvectors are no longer real. The procedure that follows applies to 
cases where [MI,  [K] and [C] are symmetric - the latter being so if [C] is derived from 
a dissipation function, for instance (Bishop & Johnson 1960). The following partitioned 
matrices and vectors of order 2N are defined: 

and equation (2.1) may now be reduced into the first-order form 

[Bl(iJ + [El(z) = (@I. (2.17) 

The procedure henceforth parallels that of the conservative system. Assuming solutions of 
the form {z] = (A} exp(At) (A} exp(iQr), the reduced equation (2.17) eventually leads 
to the eigenvalue problem 

(Nil - [YI)(Al = to19 (2.18) 

where [Y] = -[B]-'[E]. The eigenvalues, A;, and eigenvectors (A];, i = 1 , 2 , .  . . ,2N, 
may now be determined. The A; occur in complex conjugate pairs,' and the eigenvectors 

'Hence, in principle and if desired, a set of orthogonal eigenvectors may be determined via the Gram-Schmidt 

'Note that, even for a conservative mass-spring one-degree-of-freedom system, one obtains R = fm, 
procedure. 

where the negative value is usually ignored (see Section 2.3); here f2i A, so A1.2 = Oi f (k/ni)''*. 
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for i = 1 ,  . . . , N are those for i = N + 1 , .  . . ,2N, multiplied by A;. Since the A; are 
complex, so are the f2; - the real part of R being associated with the frequency of 
oscillation and the imaginary part with damping (see Section 2.3); recall that A; = in; .  

A modal matrix, [A], is then constructed, and the transformation { z )  = [A]{y) intro- 
duced. In view of the weighted orthogonality of the [A);, for a set of distinct eigenvalues, 
one obtains 

[f'lIyl+ [SIIy) = [AIT[@) = {*I), (2.19) 

where [PI = [AIT[B][A] and [SI = [AIT[E][A] are diagonal. Hence, each row reads y; - 
A;y; = ai*;, i = 1, 2, . . . , 2N, which is easily solvable. As before, the solution in terms 
of [q), and redundantly in terms of [ q } ,  is obtained by ( z )  = [A][y). 

In fluidelastic systems [C] and [K] are often nonsymmetric, and the foregoing decou- 
pling procedure then needs to be modified (Meirovitch 1967). To that end, the adjoint of 
eigenvalue problem (2.18) is defined, 

(WI - WIT) {A) = IO), (2.20) 

the eigenvalues of which are the same as those of (2.18), but the eigenvectors, [A];, 
are different. Then, the original system may be decoupled by introducing in (2.17) the 
transformation [ z )  = [AIIy), and (ii) making use of the biorthogonality properties 

{A]T{A)j = 0, {A)T[Y]{A), = [0), for i # j ,  (2.21) 

which lead to a decoupled equation, similar, in form at least, to (2.19). 

2.1.3 The Galerkin method via a simple example 

As already mentioned, it is advantageous to analyse distributed parameter (or continuous) 
systems by transforming them into discrete ones by the Galerkin method (or, for that 
matter, by collocation or finite element techniques), and then utilizing the methods outlined 
in Section 2.1.2. The Galerkin method will be reviewed here by means of an example. 

Consider a uniform cantilevered pipe of length L, mass per unit length m, and flexural 
rigidity EZ. The simplest equation describing its flexural motion is 

a4w a2w 

ax4 a t 2  
EZ- + m- = 0, (2.22) 

where w(x, t )  is the lateral deflection - according to the Euler-Bernoulli beam theory, 
as opposed to the Timoshenko or other higher order theories. The boundary conditions 
are 

The solution of this problem is well known [e.g. Bishop & Johnson (1960)l. After sepa- 
ration of variables, with separation constant A:, the spatial equation admits a solution 
consiting of exponentials of &A,. and &A,.i. Substitution into (2.23) gives a system of 
four homogeneous equations, the condition for nontrivial solution of which leads to the 
characteristic equation, 

COS A,.L cosh A,.L + 1 = 0. (2.24) 
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This transcedental equation yields an infinite set of eigenvalues, the first three of which are 

AIL = 1.875 10, A2L = 4.69409, A3L = 7.85476; (2.25) 

the corresponding natural- or eigenfrequencies are 

(2.26) 

The modal shapes or eigenfunctions are 

Cbr(x> = cosh Arx - cos A,x - a, (sinh Arx - sin h,x) , (2.27) 

where 
sinh ArL - sin A r L  
cosh A,L + cos h,L’ 

a, = (2.28) 

Before proceeding further, an iniportarzt note should be made. It is customary in vibra- 
tion theory and in classical mathematics to define the eigenvalue as being essentially the 
square or, as in equation (2.26), the square-root of the frequency, except possibly for a 
dimensional factor as in (2.26); the main point is that a positive eigenvalue here is associ- 
ated with a positive eigenfequency. In dynamics and stability theory, however, solutions 
are expressed as being proportional to exp(iRt) or exp(Ar), so that f2 and A are 90” 
out of phase; a positive eigenvalue in this case would represent divergent motion, i.e. an 
unstable system! This can lead to confusion, no doubt. However, these different meanings 
and notations are so deeply embedded in these fields [cf. equations (2.26) and (2.36)] that, 
in the author’s opinion, trying to unify the notation and meanings would create even more 
confusion. Instead, the context and occasional reminders will be preferable, to make the 
reader aware of which of the two notations for eigenvalue is being used. 

When a concentrated mass Me is added at the free end of the pipe,’ the equation of 
motion is the same, but the boundary conditions are 

(2.29) 

hence there is a shear force at the free end, associated with the inertia of the supplemental 
mass. Of course, for a simple problem like this, it is possible to proceed in the normal 
way and determine the eigenvalues and eigenfunctions of the modified problem. It will 
nevertheless be found convenient to transform such systems into discrete ones by the 
Galerkin method. To this end, for the problem at hand, the end-shear is transferred from 
the boundary conditions into the equation of motion, which may be re-written as 

(2.30) 

‘The main purpose here is purely tutorial; nevertheless, the dynamics of a pipe conveying fluid with an 
added mass at x = L is considered in Chapter 5 (Section 5.8.3), and it is shown to add a lot of zest to the 
dynamics of the system. 
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where 6(x  - L )  is the Dirac delta function; boundary conditions (2.29) then reduce to 
(2.23). According to Galerkin's method, the solution of (2.30) may be expressed as 

N 

(2.31) 

where the +, (x) are appropriate comparison fiinctions, i.e. functions in the same domain, 
9 = [0, L ] ,  satisfying all the boundary conditions (both geometrical and naturalt), and 
qj ( t )  are the generalized coordinates of the discretized system which will eventually 
emerge by application of this method (Meirovitch 1967). It is now clear why it is advan- 
tageous to recast this problem into the form of equations (2.30) and (2.23), for it is then 
possible to use $ j ( x )  4 , (x ) ,  i.e. to use the eigenfunctions given by (2.27) as suitable 
comparison functions: suitable, since they satisfy the boundary conditions associated with 
(2.30), and also convenient, since they are already known. 

When approximation (2.31) is substituted into the left-hand side of (2.30), the result 
will generally not be zero, but equal to an error function, which may be denoted by % [ W N ] .  

Galerkin's method requires that 

(2.32) 

i.e. over the domain, the integrated error, weighted by +r(x),t should be zero (Finlayson 
8t Scriven 1966). 

Thus, in this example, substituting approximation (2.31) with +,(x) = 4,(x) into equa- 
tion (2.30), multiplying by &(x) and integrating over 9 = [0, L ] ,  leads to 

N 

[EZA')#2irj + [mLGrj + Me&(L)4 j (L) ]q j ]  = 0, r = 1,2,  . . . , N ,  (2.33) 
j=l 

in view of the orthogonality of eigenfunctions (2.27), i.e. 

r L  

where 6,j is the Kronecker delta (0 for r # j and 1 for r = j ) .  Clearly the system is now 
discretized. Thus, if a two-mode approximation ( N  = 2) is utilized, equation (2.33) may 
be written in the following matrix form: 

The eigenvalues and eigenfrequencies of this matrix system are approximations 
of the lowest two of the continuous system; thus, if Me = imL,  then 521 = 
2.018(EZ/n~L~)'/~, 522 = 17. 165(EI/mL4)1/2 .  The corresponding eigenvectors give, in a 

+Geometrical boundary conditions are of the type w = 0, while riarural ones involve forces or moments, 
Ir=O 

e.g. ~ l ( a 3 ~ / a ~ 3 ) (  = 0. 
.r=L 

tThe weighting function comes in 'naturally' if Galerkin's method is derived via variational techniques. 



CONCERTS, DEFINITIONS AND METHODS 15 

sense, the ‘mix’ of first- and second-mode eigenfunctions of the original system, necessary 
to approximate the eigenfunctions of the modified one; thus, for this example, 

In general, N must be sufficiently large to assure convergence. Table 2.1 shows that 
convergence can be very rapid. The exact values, by solving (2.22) with boundary condi- 
tions (2.29), are f2r(EZ/mL4)-’/2 = 2.0163, 16.901,51.701 for r = 1,2,  3. 

Galerkin’s method will now be expressed formally in a generalized form, useful for 
further developrncnt. The eigenvalue problem associated with equations (2.22) and (2.30) 
may be expressed as 

Y [ w ]  = AA[w], (2.36) 

subject to the appropriate boundary conditions. Generally, 2 and A are linear differential 
operators, although A in many cases is a scalar, and A ( =  Q2) is the eigenvalue. In the 
case of equation (2.30), 3 = EI(a4/8x4) and A = m + M,S(x - L) .  The equivalent to 
statement (2.31) now is 

N 

wN(x) = aj+j(x>. (2.37) 
j =  1 

The elements of the mass and stiffness matrices [cf. equation (2.1)], the two matrices in 
(2.35), may be obtained by 

(2.38) 

In the case where Me is incorporated in A and the boundary conditions are (2.23), this 
is a standard problem. If, however, M, is left out of the equations of motion, boundary 
conditions (2.29) may be re-written as 

w(0)  = 0, w’(0) = 0, w”(L) = 0, EZw”’(L) = -hM,w(L), (2.39) 

in which ( )’ = ?I/&, and the problem is unusual in that the eigenvalue appears in 
the boundary conditions. Hence, strictly (Friedman 1956), the domain 9 depends upon 
A. In this example, for the calculations with equation (2.22) and boundary conditions 
(2.29) leading to the ‘exact results’ to which those of Table 2.1 were compared, we have 
proceeded by blithely ignoring this subtlety (by retaining 9 = [0, l]), yet still obtained 
the correct results. However, this is not always true, as will be seen in Section 2.1.4. 

Table 2.1 Approximations to the lowest three eigenfrequencies of the modified 
cantilevered pipe for various N in the case of M, = i m L .  

N 2 4 6 8 I O  

RI ( E l l m  L4)-’I2 2.0 184 2.0166 2.0164 2.0163 2.0163 
R2(El/m L4)-’I2 17.166 16.936 16.912 16.906 16.904 
R 3 ( E l / m  L4)-‘I2 - 52. I25 5 1.826 5 1.754 5 1.738 
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2.1.4 Galerkin's method for a nonconservative system 

Consider next that a fluid of constant velocity U and mass per unit length M is flowing 
through the pipe in the example of Section 2.1.3, i.e. the pipe with the extra mass Me at 
the free end. As shown in Chapter 3, the equation of motion in this case is 

a4,v a2w a2w a2w 
ax4 ax2 axat at2 

E I -  + M U 2  - +2MU - + (m + M )  - = 0, (2.40) 

with boundary conditions (2.23) or (2.29) for Me = 0 and Me # 0, respectively. 
For Me # 0, the problem is solved by the same two methods as before: (a) with Me 

included in the equation of motion, with a Dirac delta function, and boundary conditions 
(2.23); (b) with equation (2.40) as it stands and boundary conditions (2.29). Table 2.2 
gives the results for r = M,/[(rn + M ) L ]  = 0.3 and B M / ( m  + M )  = 0.1 for two 
values of the dimensionless flow velocity u = ( M / I Y I ) ' / ~ L U .  Two interesting observa- 
tions may be made from the results of Table 2.2. First, for u = 2, the eigenfrequencies 
are no longer real; in fact, for all u # 0 they need not be real because the system is noncon- 
servative. Second, the eigenfrequencies for u = 2 (again, for all u # 0) as obtained by 
the two methods are not identical as they should have been. 

That the system is nonconservative may be assessed by calculating the rate of work 
done by all the forces acting on the pipe. If it is zero, then there is no net energy flow 
in and out of the system, which must therefore be conservative; otherwise, the system is 
nonconservative. In this case, 

dW 
dt 

(2.41) 

is found not to be zero by virtue of the forces represented by the second and third terms in 
(2.40)+ - see Chapter 3. Viewed another way, this means that it is not possible to derive 
these forces from a potential; like dissipative forces, for instance, they are nonconservative, 
at least for this set of boundary conditions. 

The second observation suggests that, for u # 0, the results from either method (a) or 
(b) must be wrong. Indeed, those of method (b), utilizing equations (2.40) and (2.29) as 
they stand, are wrong because of the remark made at the end of Section 2.1.3. There is 

Table 2.2 The lowest two eigenfrequencies calculated by two different methods for different 
u;  r = 0.3, /3 = 0.1. In method (a) the extra mass, Me, is included in the equation of motion via a 

Dirac delta function, while in (b) i t  is accounted for in the boundary conditions. 

u = o  I1 = 2 

Method (a) Method (b) Method (a) Method (b) 

R1 [ E I / ( m  + M) L4]-'l2 2.36 2.36 2.7 1 + 0.660i 2.18+ 1.16i 
Rz [EI / (m + M ) L 4 ] - 1 / 2  17.58 17.58 16.48 + 0.084i 16.34 + 1.56i 

+In this problem, the definition of Y is not clear-cut, because of the mixed derivative. However, by 
taking ~ [ w I  = [E1(#/ax4)  + M U 2 ( a 2 / a x 2 )  + 2MU(a2/ax ar)]w, one obtains (dW/dt) = -MU[(aw/a t )2  + 
u(aw/ax)(wat)l /  X = L  # 0. 
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a way of solving the problem correctly while utilizing boundary conditions (2.29), but 
the meaning of the domain 9 has to be expanded (Friedman 1956; Meirovitch 1967); an 
example is given in Chapter 4 (Section 4.6.2). 

2.1.5 Self-adjoint and positive definite continuous systems 

The eigenvalue problem of equation (2.36), and thereby the system, is said to be se@- 
adjointt if for any two comparison functions, u and u, 

u&[u] d 9  = v&[u] d 9 ,  (2.42) I s, s, u2?[u] d 9  = vZ[u] d 9 ,  

are satisfied. A consequence of self-adjointness is that the eigenvalues are real. Another 
consequence is that a generalized or weighted orthogonality of the eigenfunctions then 
holds true for nonrepeated eigenvalues; thus, 

Furthermore, if 

r r 1% uZ[u]d9 > 0 and J’, uA[u] d 9  > 0 

for all nonzero u, the operators are positive definite, and hence so is the system. The 
consequence of this is that the eigenvalues of such a system are positive - refer to 
Section 2.3 for the significance of this and back to Section 2.1.3 for further clarification 
of the different usage of the word ‘eigenvalue’. In cases where 2 is only positive, rather 
than positive definite, i.e. when the first integral (2.44) can be zero for some nonzero u, 
while A remains positive definite, the system is called positive seniide$wite, and admits 
solutions with A = 0. 

Clearly, for the system of equations (2.22) and (2.23), the problem is self-adjoint. To 
illustrate the case of a non-self-adjoint system in as simple a manner as possible while 
still keeping in the framework of the examples already discussed, consider the system 

Z[W] = EI(d4/dr4) + P(d2/dr2), A[w] = m; (2.45) 

~ ( 0 )  = 0, ~ ’ ( 0 )  = 0, EItv”(L) = 0, EZw”’(L) = 0. (2.46) 

This could represent a cantilevered beam, subjected to a compressive tangential ‘follower’ 
force P ,  such that the boundary conditions remain unaffected. A follower force is one 
retaining the same orientation to the structure in the course of motions of the system, in 
this case remaining tangential to the free end.$ By applying the integrals (2.43) it is found 
that the integrated out parts do not vanish [since Pu(l)v‘( 1) and Pu’(l)u(  1) are not zero 
for the boundary conditions given]. 

‘If Y and A are complex operators, the equivalent property is for the eigenvalue problem to be Hennirion. 
*In fact, such a compressive follower force could be generated by a light rocket engine [M,/(nzL) z 01 

mounted on the free end of the cantilever, so that the force of reaction is always tangential to the free end. 
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2.1.6 Diagonalization, and forced vibrations of continuous systems 

The equation of motion associated with the problem defined by (2.45) is 

a4w a2w a2w 
a f i  ax2 at2 

E I -  + P -  + m -  =0 ,  (2.47) 

with the boundary conditions as given in (2.46). This clearly represents free motions of the 
system; hence, of interest are the eigenfrequencies and the corresponding eigenfunctions 
and how they vary with P (or its nondimensional counterpart, PL2/EI ) .  This can be 
done by direct application of the Galerkin method with WN = Cj 4,(x)q, ( t ) ,  in which 
the cantilever-beam eigenfunctions (2.27) are used as comparison functions, since they 
satisfy boundary conditions (2.46), which are identical to (2.23). In this way, one obtains 
an equation similar to (2.35), i.e. 

[MHii)  + [ K I M  = IO)? (2.48) 

but with only [MI being diagonal, while [ K ]  is nondiagonal. In fact, the elements of 
[ K ]  are 

k,, = EIk:LS,, + P I  $,$;dx, 
L 

the prime denoting differentiation with respect to x. 

the equation of motion is 
Suppose now that this system is subjected also to a distributed force, F(x, f ) ,  so that 

a4w a2w a2w 
ax4 ax2 at2 

E I - + P - + m -  = F(x,t); (2.49) 

see Figure 2.2. After discretization by the Galerkin procedure, we obtain 

[MIIii) + [KIkJ = {e). (2.50) 

If this had been a self-adjoint conservative system, matrices [MI and [ K ]  in equation (2.50) 
would both be symmetric. For the problem at hand, however, the system is non-self- 
adjoint, as remarked earlier, and hence [ K ]  is asymmetric, by virtue of the fact that 

@,# dx # 4,&! dx. Hence, the decoupling procedure leading to equation (2.15) 
should be adopted. 

Before proceeding further, however, it is useful to transform equation (2.49) into dimen- 
sionless form, which serves to introduce the kind of dimensionless terms appearing 
frequently in the following chapters. Hence, defining 

= x/L, q = w/L, t = (EI /mL4)’ /2 t ,  
(2.5 1 ) 

8 = PL2/EI ,  f = FL3/EI ,  o = (EI /mL4)- ’ f2f2  

and taking, as a concrete example, f = fo  6 sin (oft) - representing a triangularly 
distributed load along the beam, as shown in Figure 2.2 - substitution into (2.49) yields 

q”” + 9,’’ + ;i = fo 6 sin(wft), (2.52) 
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Figure 2.2 A cantilevered beam subjected to a tangential, follower compressive load, P ,  and to 
a time-dependent distributed force, Fox sin aft. 

in which primes and overdots denote, respectively, partial differentiation with respect to 
6 and r. The discretized form of (2.52) is 

and the elements of [K] and {Q] are 

(2.54) 

in which the $i E $;(e), the dimensionless version of (2.27). The decoupled equation, 
corresponding to equation (2.15), is 

(y] + [Al{y} = [A]-’(Q] sin(wft) = (!PI sin(wfr), (2.55) 

in which [A] is the diagonal matrix of the eigenvalues; the solution therefore is 

yk = (Ilk COS A:”t + p k  Sin AL’2t + [!Pk/(Ak - W;)] Sin(wf t), k = 1, 2, . . . , N .  

(2.56) 

Numerical results for the case of 8 = 1, fo = 7, Wf = 0.6 are shown in Figure 2.3: 
(a) for (Ilk = p k  = 0, i.e. showing only the particular solution, and (b,c) for q(1,O) = 
0.15, li(l, 0) = 1.5. The dimensionless natural frequencies, obtained with N = 4, are 
found to be w1 = 3.64, w;! = 21.73,03 = 61.32 and 04 = 120.5;wf is chosen to be far 
below all of them. 

In Figure 2.3(a), where the homogeneous part of the solution is totally absent, it is 
seen that the response is a pure sinusoid with period T = 21r/of = 10.47. The effect 
of the homogeneous part of the solution, however, complicates the response, as shown 
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Figure 2.3 Solutions to equation (2.52) showing q ( 1 , ~ )  versus r ,  for 9 = 1, fo = 7 and 
w f  = 0.6: (a) the particular solution alone [Le. ffk = @k = 0 in equation (2.56)], which would 
correspond to the steady-state solution if damping were included; (b) full solution for N = I ;  

(c) full solution for N = 2 (-) and N = 4 (. . .) on an expanded scale of r. 



CONCEPTS, DEFINITIONS AND METHODS 21 

in Figure 2.3(b), obtained with N = 1. A higher frequency component, at 01, is now 
superposed on the solution. Two observations should be made: (i) since, unrealistically, 
there is no damping in the system, the effect of initial conditions persists in perpetuity, 
whereas, with even a small amount of damping, the steady-state response would be like 
that in Figure 2.3(a); (ii) since q / w f  is not rational, the response is not periodic but 
quasiperiodic, although the effect of ‘unsteadiness’ in the response time-trace is just 
barely visible. This is more pronounced in Figure 2.3(c), plotted on an expanded time- 
scale, showing calculations with N = 2 and N = 4; in the latter case, the contribution of 
all four eigenmodes is visible. On the other hand, the period associated with the forcing 
frequency is hardly discernible in the time-scale used in Figure 2.3(c). 

The fact that the response in Figure 2.3(b,c) is quasiperiodic is most apparent in the 
phase plane, as shown for example in Figure 2.4. It is seen that the response evolves by 
winding itself around a torus, the projection of which is shown in the figure, instead of 
tracing a planar curve, as would be the case for periodic motion. 

Figure 2.4 The response of Figure 2.3(b) plotted in the phase plane: the dimensionless tip velocity, 
rj( 1, t), versus displacement, q( 1, t). 

There is another, more general method for obtaining the response of such a system, 
specific to non-self-adjoint problems (Washizu 1966, 1968; Anderson 1972). This begins 
with the determination of the adjoint problem.+ If the eigenfunctions of the homogeneous 
form of equation (2.47), Le. of the compressively loaded beam, are xi(t) and those of the 
adjoint problem +;(e), the adjoint problem is defined through the new operators e* and 
Y*, such that 

(2.57) 

in which it is required that the so-called concomitant, C, vanish. A similar expression for 
M should be satisfied, but since for the problem at hand Y is a scalar, we immediately 

‘Sometimes referred to as the adjugate problem (Collar & Simpson 1987). 
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have A* = A. In the nondimensional notation used here, 9 = [0, 11 and t = x / L .  This 
problem has in fact been solved by Chen (1987), but it is not difficult to reproduce the 
results. One finds 2* = 2, but a new set of boundary conditions for the adjoint problem, 
namely 

@(o) = @'(o) = 0, $"(I) + 9$(1) = 0, @"'(l) + p$'(l) = 0. (2.58) 

Solving the two eigenvalue problems, one obtains 

x0) = A I  sin p t  + A2 cos p t  + A3 sinh q t  + A4 cosh &, 
$(t> = B1 sin p t  + B2 cos pt + B3 sinh q t  + B4 cosh qt ,  

A I  = 1, 

A3 = - p / q ,  

A2 = - ( p 2  sin p + p q  sinh q)/(p2 cos p + q2 cosh q),  (2.59) 

A4 = -A2, 

[(9 - p 2 )  sin p - (p /q) (B + q2> sinh 91 
[(9 - p 2 )  cos p - (9 + q 2 )  cosh q] B1 = 1, B2 = - ' 

B3 = - p / q ,  8 4  = -B2. 

The characteristic equation is 

P2 + 2h(l + cos pcosh q )  + 9 f i  sin p sinh q = 0, 

and it is the same for both problems; hence, so are the eigenvalues. 

motion via the so-called biorthogoriality of the initial and adjoint eigenfunctions, viz. 
The essence of this method is that it achieves direct decoupling of the equations of 

(2.60) 

By introducing I ] N  = xx,(t)q,(t)  into equation (2.52), then muItiplying by $r(t) and 
integrating over 9, the system is decoupled in a single operation, by virtue of relations 
(2.60). yielding 

m, q, + k,q, = J sin Wft, j = 1,2, .  . . , N .  (2.61) 

Calculations with the same set of parameters produce virtually identical results as those 
shown in Figure 2.3 for N = 4.z What is more surprising is that the rate of convergence 
with N is not better with this method than with the previous one. Clearly, therefore, in this 
particular case, there is no advantage in utilizing this second, more general but more labori- 
ous, procedure rather than the first. Similar conclusions are reached by Anderson (1972), 
who tested a very similar problem, essentially by the same two methods - although very 
small differences are found in that case in the results obtained by the two methods. 

t A  typographical error in p and q is noted in Chen (1987, Appendix C). 
T h e  results obtained by integrating the equations numerically are also identical, although in that case it 

took about one order of magnitude longer in time to obtain them. 
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2.2 THE FLUID MECHANICS OF FLUID-STRUCTURE 
INTERACTIONS 

2.2.1 

Trying to give a selective encapsulation of the ‘fluids’ side of fluid-structure interactions 
is more challenging than the equivalent effort on the ‘structures’ side, as attempted in 
Section 2.1. Solution of the equations of motion of the fluid is much more difficult. 
The equations are in most cases inherently nonlinear, for one thing; moreover, unlike 
the situation in solid mechanics, linearization is not physically justifiable in many cases, 
and solution of even the linearized equations is not trivial. Thus, complete analytical and, 
despite the vast advances in computational fluid dynamic (CFD) techniques and computing 
power, complefe numerical solutions are confined to only some classes of problems. 
Consequently, there exists a large set of approximations and specialized techniques for 
dealing with different types of problems, which is at the root of the difficulty remarked 
at the outset. The interested reader is referred to the classical texts in fluid dynamics [e.g. 
Lamb (1957), Milne-Thomson (1949, 1958), Prandtl (1952), Landau & Lifshitz (1959), 
Schlichting (1960)] and more modem texts [e.g. Batchelor (1967), White (1  974), Hinze 
(1975), Townsend (1976), Telionis (1981)l; a wonderful refresher is Tritton’s (1988) book. 

Excluding non-Newtonian, stratified, rarefied, multi-phase and other ‘unusual’ fluid 
flows,+ the basic fluid mechanics is governed by the continuity (i.e. conservation of mass) 
and the Navier-Stokes (Le. conservation of momentum) equations. For a homogeneous, 
isothermal, incompressible fluid flow of constant density and viscosity, with no body 
forces, these are given by 

General character and equations of fluid flow 

v . v = o ,  (2.62) 
av 1 
at P 
- + ( V .  V)V = -- vp+ vv*v, (2.63) 

where V is the flow velocity vector, p is the static pressure, p the fluid density and w the 
kinematic viscosity. The fluid stress tensor (Batchelor 1967), 

a;; = -pa ; ,  + 2pe;j, (2.64) 

used in the derivation of (2.63), is also directly useful for the purposes of this book: its 
components on the surface of a body in contact with the fluid determine the forces on the 
body; p is the dynamic viscosity coefficient, and e;; are the components of strain in the 
fluid. In cylindrical coordinates, for example, where i, j = (r, 8, x )  and V = {V,  Vo, V,}T, 
the components of e; j (= e;;)  are 

1 avo v 
em = -- + 2, ar! err = - 

av, e, = - 
ax ’ ar ’ r a&’ r 

(2.65) 

1 av av, 
e,, = 2 [a, + -4. e r H = T [ r s ( T ) + ; z ] ,  1 a v8 1 av, 

‘Non-Newtonian fluids are nevertheless in the majority, in the process industries and biological systems, for 
instance. Polymer melts, lubricants, paints, and fluids involved in synthetic-fibre-, plastics- and food-processing 
are generally non-Newtonian, rheological fluids (Barnes et a l .  1989). 
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Equations (2.62) and (2.63) together with appropriate boundary conditions, including 
equations matching the motion of a moving boundary (which could be part of the structure 
of interest), should in principle be sufficient to solve problems involving incompressible 
fluids. Similarly for compressible fluids, but the equations in this case are more complex 
and will not be presented here. Possible boundary conditions for a body surface moving 
with velocity v, in the fluid are 

V - n = v,,,. n and V x n = v,, x n, (2.66) 

the first matching the normal components of fluid and solid-surface velocities, and the 
second being a form of the no-slip boundary condition, matching fluid and body velocities 
parallel to the surface; n is the unit normal to the surface. 

By ‘solution’ of the fluid equations we mean the determination of the velocity and 
pressure fields, V and p .  For fluid-structure interaction problems in which the forces 
induced by the fluid on the structure are the only concern, most of the information on V 
and p is ‘thrown away’. This is because the forces on the structure may be determined by 
the pressure and viscous stresses on the body surjuce, cf. equations (2.64) and (2.65). This 
allows for approximate treatment of some classes of problems, which will be discussed 
in what follows. Indeed, the rest of this preamble will introduce, in general terms, some 
of the broad classes of admissible simplifications and hopefully guide the reader towards 
other ones. 

The topic of tcrrbiifent fIows [subsection (f)] is treated at considerably greater length 
than the other classes of flows. The reasons for this anomaly are that turbulence is more 
complex and generally less well remembered than the rest, at least by those not in constant 
touch with it. Nevertheless, the concepts and some of the relations to be recalled will be 
needed later on, e.g. in treating turbulence-induced vibrations of pipes and cylinders in 
axial flow; see Chapters 8 and 9 in Volume 2 .  

fa) High Reynolds number flows; ideal flow theory 

If U is a characteristic flow velocity (e.g. a mean flow velocity in the system) and D 
a characteristic dimension, the Reynolds number is Re = UD/u .  If equation (2.63) is 
written in dimensionless form, the last term is divided by Re; hence, for sufficiently 
high Re this term is negligible, and the Navier-Stokes equations reduce to the so-called 
Euler equations. Thus, away from any solid boundaries, the fluid is considered to be 
essentially inviscid. Close to a boundary, in the boundary layer, the effects of viscosity 
are predominant, but, they may be treated separately. In such cases, precluding situations 
of large-scale turbulence and separated flow regions, the pressure field is determined as 
if the flow were inviscid and then the shear stresses on the body are determined by 
boundary layer theory or via empirical information.’ This is the treatment adopted for 
slender cylindrical structures in axial flow in Chapters 8 and 9. Strictly, this approach 
constitutes but a first approximation; in general, the boundary-layer and inviscid-flow 
calculations should be matched iteratively. 

For sufficiently high Re, the flow becomes turbulent and, if the effects of turbulence 
cannot be ignored, this introduces new complexity [see subsection (01. 

‘The key idea making this possible is that of a constant pressure across the boundary layer. 
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(b) Potential flow theory 

Many interesting inviscid flows (e.g. a uniform flow approaching a body) are initially 
irrotational, i.e. the vorticity, w, is everywhere zero: o = V x V = 0. Hence, by Kelvin’s 
theorem, such flows remain irrotational;’ the flow is then referred to as potential flow and 
is associated with the velocity potential, 4, where V = V4. Euler’s equations in this case 
simplify to the well known unsteady Bernoulli, or Bernoulli-Lagrange, equation 

a4 P 
at P 
- + $2 + - = 0, (2.67a) 

where p is measured relative to the stagnation pressure of the free stream.$ This form of 
the equation applies if there are no body forces. If there are, for example due to gravity, 
the following form may be more useful: 

a4 P 
at P 
- + ;v2+ - +gz = o ,  (2.67b) 

where z is the vertical height. There exists a highly developed mathematical treatment of 
potential flow - see, e.g. Lamb (1957), Streeter (1948), Milne-Thomson (1949, 1958), 
Karamcheti (1966), Batchelor (1 967). 

(el Very low Reynolds number flows 

In this case, when Re + 0, inertial effects become negligible, and the Navier-Stokes 
equations reduce to the equations of creeping flow, 

v p  = pv2v. (2.68) 

A number of well known solutions exist, e.g. for the plane Couette and Poiseuille 
flows, classical lubrication theory (Lamb 1957), Stokes flow past a sphere and constant 
pressure-gradient laminar flow through pipes; but, surprisingly perhaps, not for low-Re 
two-dimensional cross-flow over a cylinder (Stokes’ paradox). 

Id) Linearized flows 

In some problems there is one dominant steady flow-velocity component, while all others 
are perturbations thereof, say induced by structural motion, e.g. V = Ui + v, where llvll << 
U; i is the unit vector in the x-direction. In such cases, the Navier-Stokes equations may 
be linearized and simplified considerably. Thus, if U is steady, i.e. not time-dependent, 
and spatially uniform, the Navier-Stokes equations reduce to 

av av 1 
- + u- = -- v p + v v2v. 
at ax P 

(2.69) 

‘Interestingly, this is not so if there is a density gradient to the fluid! 
iThus, the integration constant that would otherwise appear on the right-hand side reduces to zero. This 

constant, C( t ) ,  is generally a function of time if, unusually, the hydrostatic pressure varies with time. 
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In other cases, e.g. when fluid motion is entirely caused by small-amplitude oscillatory 
motion of a structure, all components of V may be small, and (2.69) is further simplified to 

a V  1 - - - -- vp+vv2v.  
at P 

(2.70) 

Because there is no mean flow velocity in this case, the Reynolds number as such does 
not exist. Hence, to decide whether viscous effects are important or not, the ‘oscillatory 
Reynolds number’ is used instead. For a circular cylinder of diameter D,  this may be 
defined as B = lAJD/v, where lAl is the amplitude of the oscillatory velocity of the body. 
Further, denoting the amplitude of motion by ED, E << 1, and the oscillation frequency by 
Q, one obtains [AI = QeD and hence /3 = QeD2/v ,  from which it is obvious that this is 
a modified Stokes number. Clearly, if B is sufficiently large, then viscous effects become 
unimportant, and the approximation 

(2.71) 

may be used (see, Section 2.2.2 and Chapter 11). This may be combined with the conti- 
nuity equation to give 

v2p = 0, (2.72) 

the Laplace equation. In terms of the velocity potential, 4, the continuity equation and 
equation (2.71) may be written as 

v%#J = 0 (2.73a) 

and 

(2.73b) 

(e) Slender-body theory 

A particular class of linearized flows pertains to slender bodies, i.e. bodies of small cross- 
sectional dimensions as compared to their length [e.g. for a body of revolution of radius 
R(x) ,  if R ( x )  << L]  and no abrupt changes of cross-section (dR/dr << l ) ,  with the flow 
being irrotational and along the long axis of the body or at a small angle to that axis 
[Figure 2.5(a)]. Let the body be defined by 

F(r, 8, x) = r - R ( x )  = 0. (2.74) 

The flow field may be expressed as 

v = v, + v4, (2.75) 

where 4 is associated with the perturbations to the flow associated with the presence of 
the body and satisfies 

024 = 0 (2.76) 

and the boundary conditions 

(V, + V 4 ) .  VF = 0 on F ( r ,  8, x) = 0 (2.77a) 
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Figure 2.5 (a) A slender body of revolution in uniform flow at a small angle of attack, a. (b) A 
flexible slender body performing lateral oscillations of long wavelength, such that each segment 

may be considered to be part of an infinitely long cylinder; a = tan-'(&/&). 

and 
V4 = 0 at infinity. (2.77b) 

If the angle of attack is a, then in the (r, 8, x)-frame equations (2.77a,b) lead to (Karam- 
cheti 1966) 

aF aF 
( V ,  sin a sin 8 + ur)- + (V, cos a + ux)- = 0 on F(r ,  6, x )  = 0 (2.78) 

ar ax 

and 
ur = ue = u, = 0 at infinity, (2.79) 

in which ur, ug and u, are the components of V4, and aF/ar  = 1 ,  aF/ax = -dR/dx from 
(2.74). Hence, the surface condition (2.78) becomes 

dR 
= ( V ,  cos a + ux)- - V ,  sin a sin 8, 0 I x I L. (2.80) 

r=R dx 
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The essence of slender-body theory is to take advantage of the linearity of the problem 
and to express it as the superposition of the following two problems: (i) the axisymmetric 
flow past the body of revolution with flow velocity V,  cos a, and (ii) the cross-flow 
around the body with flow velocity V ,  sin a (Ward 1955; Karamcheti 1966). Thus, 
defining $ = $1 + 42 and u, = u,l + u,2, equation (2.80) may be re-written as 

dR dR 
- (U + u,.)- 2 u -, dx dx 

= uX2 - - W sin 8, 
dR 
dx 

where 
U = V ,  cos a, W = V ,  sin a. 

(2.8 1 a) 

(2.81b) 

(2.82) 

The solution to (2.81a) is usually obtained by representing the body through a distribution 
of singularities (e.g. sources and sinks) along the centreline, while the solution to (2.81b) 
may be obtained via standard potential-flow analysis (Streeter 1948; Milne-Thomson 1949; 
Karamcheti 1966). 

Consider next a very slender cylindrical body for which dR/dx 2: 0, or exactly 0, 
except near the extremities [Figure 2.5(b)]. The body is subjected to an oscillatory lateral 
displacement w(x, r )  in the 8 = in plane. Then, according to slender-body theory, the 
flow can be regarded as compounded of (a) the steady flow around the stretched-straight 
body, which we shall ignore here [and hence (2.81a) also] since dR/dx is nearly or 
exactly zero over most of the length of the body, and (b) the flow due to displacements 
w(x, t )  (Lighthill 1960). Hence, only the velocity component related to (2.81b) remains, 
namely (a$2/ar)lr=R 2: - W .  The lateral velocity of the fluid relative to the moving body 
is made up of (i) the component of U normal to the inclined body, equal to -U sin a, 
where a = tan-'(aw/ax), and (ii) the lateral velocity of the body, awlat, reversed, if at 
that instant the body is moving upwards as in the inset of Figure 2.5(b). Therefore, for 
sufficiently small a, one may write 

aw aw 
V ( x , r )  = - + U - - ,  

at ax 
(2.83) 

on the implicit assumption that, locally, the body shape differs little from that of a long 
(infinite) cylinder C, of the same cross-section all the way along. Thus, according to the 
slender-body approximation, this lateral flow near any point of the cylinder is identical 
with the two-dimensional potential flow that would result from the motion of C, through 
fluid at rest, with velocity V ( x ,  r ) .  Lighthill (1960) then goes on to obtain the rate of 
change of lateral momentum of the fluid passing over the flexible body, 

(2.84) 

where A(x)  is the slowly varying (or constant) cross-sectional area along the length of 
the body. This equation is further discussed in Chapters 8 and 9, where the slender-body 
approach is used extensively. 
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(f) Turbulent flows 

Due to a three-dimensional instability of laminar flow, the flow field becomes turbulent: 
the flow velocity and pressure are no longer steady but contain randomly fluctuating 
components. Two-dimensional disturbances in the laminar flow field eventually become 
three-dimensional, and this is soon followed by turbulence. The critical Reynolds number 
for the onset of turbulence is best stated in terms of the width of the flow’ and depends on 
the shape of the laminar velocity profile; it is typically O( lo2) for profiles with inflection 
points and 6(103) or more for profiles of single curvature. Thus, boundary layers in 
falling pressures are a good deal more stable than those that are suffering a pressure rise; 
similarly, jets and wakes are also very unstable. 

When turbulence appears, as originally observed and described by Reynolds for pipe 
flow, the flow field may be expressed as V + v and P + p ,  where the lower-case quantities 
represent the fluctuating components about the mean (with zero average) and V and P are 
the mean components; V = ( V I ,  U2, U3}T and v = (u1, u2, ~ 3 ) ~  in an (XI, x2, x3)-frame. 
Substitution into the Navier-Stokes equations and averaging yields 

- + u  +-  a v --E ,,), i , j = l , 2 , 3 ,  (2.85) 
au; 1 ap au; 

at ax, p ax; ax, ax j  
where the indicia1 notation is utilized, in which repeated indices imply summation; e.g. 
Uj(aUj /ax j )  = E&, [Uj(aUj/axj)] .  The new term -q is the correlation of ui and 
ii,, obtained by multiplying the two, integrating over a long time (appropriate to the 
flow under investigation), and then dividing by the time interval. The quantity - - p W  
represents additional normal and shear stresses due to additional momentum transfer 
associated with the velocity fluctuations,f the so-called Reynolds stresses. Thus, in a 
simple two-dimensional shear flow predominantly in the XI -direction, the viscous shearing 
stress p(aUl/axz)  is increased by - p m ,  which has the same sign as aUl/ax2 and is 
sometimes written as p,(aUl/axz),  where the subscript t is for ‘turbulence’; ut = p r / p  
is the so-called kinematic eddy viscosity. To differentiate the quantities associated with 
viscous stresses from those related to turbulence, or equivalently the quantities associated 
with velocity fluctuations at the molecular (Brownian) scale from the turbulent ones, the 
subscript m (for ‘molecular’) is introduced, as in u, in equation (2.85); v, here is the 
same as u in equation (2.63). 

The Reynolds stresses are generally much larger than the viscous ones, except near 
walls, in the viscous sublayer (Hinze 1975); on the wall itself, all turbulent fluctuations 
vanish. One of the central problems of turbulent flows is the derivation of satisfactory 
relations for Reynolds stresses in terms of the mean flow field (Townsend 1961). 

The spatial structure of a turbulent flow may be described statistically by correlation 
functions or by spectra. The general space-time correlation function between, say, u; at 
point x and u j  at point x + r is defined by 

‘The width of a jet or a wake, or the thickness of a boundary layer. 
*This is an essential characteristic of turbulence. As noted by Townsend (1961). ‘a sharp increase in friction, 

or in heat and mass transfer is frequently used to determine the onset of turbulent motion if direct observation 
of the fluctuations is inconvenient’. 



30 SLENDER STRUCTURES AND AXIAL FLOW 

where t is a time delay in the measurement of u; and u,. For homogeneous turbulence, 
Rj j  depends only on the separation between the two points r = Ilrll. For a uniform flow 
field in a given direction, e.g. for fully developed turbulent flow in a pipe, R;j depends 
on the separation I, but also on the direction, hence on r. In this latter case, 

Rij(r ,  t) = u;(O, t)u,(r, t + r). (2.86b) 

Keeping with this latter form, one distinguishes sparial correlations, 

(2 .86~)  

in which u; and u j  are associated with different points in space, but the same time; and 
temporal correlations, involving the same point in space and a time delay 5, 

Ri,(r, t) = ui(r, t)u,(r, t + t), 
autocorrelations for i = j ,  and cross-correlations for i # j .  

The spatial correlation, when plotted versus a particular component of r, indicates the 
distance over which motion at one point significantly affects that at another. It may be used 
to assign a length scale to the turbulence, defined as Lk = ( l/v2) R;j(rk, 0) drk, where 
v2 is a normalizing factor, e.g. v2 = u!, and rk is a particular component of r = ( r l ,  r2, r3)T 
in the (XI, x2, x3}-frame used here.' For flow in the x-direction, e.g. for fully developed 
pipe flow, the integral (or macro-) scale, associated mainly with the largest, most energetic 
eddies, is defined by 

(2.86d) 

- 

Lrn Rll(r1,O)drl 
LI = - (2.87) 

For points r;! apart, in the cross-stream direction, L2 may be defined in a similar way, 
with r2 taking the place of rl; in terms of the normalized form of the correlation function 
(the coherence), R11, L2 is given by 

u: 

The correlation in the streamwise (longitudinal) 
r = 0 to zero at sufficiently large r ,  smoothly and 

(2.88) 

direction generally decays from 1 at 
without change in sign (Figure 2.6); 

whereas the cross-stream (lateral) correlation generally has a negative part for intermediate 
r ,  before it too decays to zero for large enough r (Tritton 1988). 

The temporal correlations are functions of the time delay t for measurements at the 
same point; they give a measure of the rime scale of turbulence. For small times, or over 
small enough distances, turbulence may be considered to be advected past the point of 
observation without change in structure. This is Taylor's hypothesis, as a result of which a 
temporal correlation is equal to the corresponding spatial correlation for t = rl/Ul; thus, 
according to this hypothesis, the eddies of the turbulence are convected without change 
over a sufficiently short distance, r ,  as further discussed in Chapter 9. 

+Alternative definitions, for experimental convenience, are sometimes utilized; e.g. by defining the scale as 
the distance to where Ri, plotted versus rk becomes negative, or to where it is reduced to l/e. 
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Figure 2.6 Typical form of correlation functions: R , ] ( r I ,  0) for points i and j separated by a 
variable rl in the streamwise direction; and R,,(r2,  0) for points separated by rz in the cross-stream 

direction - following Tritton (1988). 

The Fourier transform of the autocorrelation function gives the frequency spectrum of 
the turbulence at a given point, 

to 

fi,(u) = / R;,(r, r)ePiwr dr, 
2rc --w 

(2.89) 

where w is the radian frequency. The f i j ( w )  give a measure of the energy spectrum of 
the turbulence. Hence, a peak in the spectrum denotes a dominant frequency, which could 
excite an underlying structure, for instance. The energy spectrum is often described in 
terms of the wavenumber k, generally a 3-D vector, k = ( k l ,  k2, k3IT, with each k; = 
1/2rcA;, A; being the wavelength of turbulent fluctuations associated with a frequency w;.  
Thus, the equivalent of (2.89) in terms of k is 

(2.90) 

This may be expressed as a function of a scalar variable by averaging it over all directions 
of k; thus, 

@ ; j ( k )  = 4j (k) dA(k) ,  (2.9 1 ) 

where k = llkll, and the integration is over the surface of a sphere of which dA is an 
element, so that @;,(k) is the contribution to the energy tensor uiuj from wavenumbers 
whose magnitudes lie between k and k + dk (Batchelor 1960, Chapter 111). 

s 
Another quantity of interest is the turbulence intensity, which may be defined by 

(2.92) 112 T U =  ( $ K )  / U  

for sensibly one-dimensional flow, where 
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is the turbulence kinetic energy per unit mass. In view of the foregoing, this may also be 
written as 

K = E(k)dk = i@ii(k), (2.94) 

in which E(k) is the energy spectrim function, i.e. the density of contributions to the 
kinetic energy on the wavenumber magnitude axis (Batchelor 1960). 

Some progress has been made in understanding the changing scales of turbulence, 
as measured by its spectra and expressed in terms of the scalar wavenumber k. The 
spectra at low k (large eddies) often retain something of the original unsteady laminar 
flow; but, with increasing k, there is a continual stretching of the eddies by the medium 
scales, which causes a transfer of turbulence energy to large k (small eddies) and also 
randomizes the orientation of the eddies so that turbulence becomes locally isotropic. If 
the Reynolds number is very large, the intermediate spectrum is inertial (Le. it sensibly 
does not depend on viscosity), and it may be shown by dimensional analysis that the 
spectrum is proportional to k-5/3. For the smallest eddies, where k > ~ ( E / V ~ ) ' / ~ ,  the 
Kolmogoroff wavenumber, viscosity takes over and causes a decay of the cascading energy 
with dissipation rate E to heat. This structure, as described in the foregoing, enables a 
dramatic assumption to be made, namely that away from walls, the Reynolds stresses are 
independent of urn. In this one respect, turbulent flow may often be easier to analyse than 
laminar flow. 

In analysing the boundary layer near walls, the so-called law ofthe wall is often used. In 
this discussion, 2-D or axisymmetric boundary layers only are considered. Let UI be the 
streamwise flow velocity in the boundary layer and x2 = y the distance perpendicularly 
away from the wall. Then, near enough to the wall, U I  = Ul(p ,  p,  U,,  y ) ,  where U ,  = 
( ~ , , , / p ) l / ~  is the skin-friction velocity and r,, is the shear stress at the wall; thus, U1 
is independent of outer parameters, such as the overall boundary-layer thickness, the 
free-stream velocity U ,  and the pressure gradient when not too large. Thus, 

co 

(2.95) 

which is the law of the wall. Rotta (1962) predicts the functional form of B by noting that 
changes in U1 in most of the region outside the viscous sublayer are independent of p, 
because the shear stress is almost entirely due to - p w  there. Dimensional analysis then 
leads to ( y / U , ) ( a U l / a y )  = 1/K 2: 0.41, a universal constant named after von KBrmBn. 
After integration, this gives 

(2.96) 

where B = 5.5 for a smooth wall. This proof applies to rough walls, 'fully rough walls' 
(where p is unimportant even near the wall), and ribletted walls for which there is a drag 
reduction. The only thing that changes is the value of B ,  which is lower for rough walls, 
increasingly with the roughness, and slightly higher for ribletted walls. 

The law of the wall has been accepted for the purposes of CFD (Computational Fluid 
Dynamics), where it often becomes the inner boundary condition, but it must be noted 
that the corresponding law for turbulence intensity is not exactly true when comparing, 
say, boundary-layer flow and pipe flow; i.e. O / U r  # %(yUr /u) .  
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In some of the work to be presented later (e.g. in Chapter 7, Volume 2), particular forms 
of the foregoing for pipe flows - containing considerable empirical input - is utilized. 
Thus, for pipe flow, a friction factor, f ,  is sometimes defined via 

(2.97) 

where U is the mean flow velocity; f is given empirically, for instance by the Colebrook 
equation, 

2.51 
-- 1 - -2 log,o { = + -} , a 3.7 R e a  

(2.98) 

where Re is the Reynolds number based on the diameter, D, and k, /D is the relative 
roughness. 

Reverting now to equation (2.85) for a more general analysis of turbulent flow, it is 
noted that -w is often not measured, but modelled mathematically. For example, by 
means of Boussinesq’s eddy viscosity concept, one may write 

(2.99) 

where K is as given by (2.93); v, is the eddy viscosity which, unlike v,, (or v = v,, 
in laminar flow), it is not a constant but is dependent on the flow field. The chosen 
form depends on the turbulence model adopted - see, for instance, Launder & Spalding 
(1972), Jones & Launder (1972), Launder & Sharma (1974), Rodi (1980), Lesieur (1990), 
So et a l .  (1991), Wilcox (1993). 

Perhaps the simplest model is based on Prandtl’s mixing-length hypothesis for 2-D or 
axisymmetric flows, in which 

v, = l 2  (2.100) 

where 1 is Prandtl’s mixing length, y = x2 is the coordinate measured away from the 
wall, and U = U1 is the mean flow velocity.+ In the case of smooth pipes, for instance, 
Nikuradse’s measurements yield the following empirical expression (Schlichting 1960): 

1 
- = 0.14-0.08 
R 

(2.101) 

R being the pipe radius. 
There are many other models, including so-called two-equation models, for turbulent 

flow (Wilcox 1993). One of the first and most popular was pioneered by Launder and 
Spalding. It is based on two scalar functions, already defined: K = i-, the average 
turbulence (kinetic) energy per unit mass; and E ,  the rate of decay of turbulence energy 
per unit mass, which is also the rate of transfer of energy from the large eddies to smaller 
ones, and hence, in this latter capacity, it is independent of viscosity. In this so-called, 

tIncidentally, this is the equation, with 1 c( y. originally used by Prandtl to prove the law of the wall. 
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K-E model,’ ut cx K2 / E .  Equations may be written for K and E, namely 

ax, a ax, aK 
aK aK a vi 

axj ax , pat + p u j -  = 7;j- - pc + - pm- - ; p m q  - 4 , 
a -  + Ui.kUi.lUk,l + V m G Z G i }  + aX,[PmUjUi,/Ui,l - 2UmP,lUj,l], 

in which p is the fluctuating pressure and 9, the Reynolds stress tensor, 

7 i j  = 2pte;, - $ p ~ & ; , ,  

(2.102) 

(2.103) 

(2.104) 

with e;j being the mean strain-rate tensor [cf. relations (2.65)]; ui,k = au;/axk, p,l = 
ap / axl and so on. Since the correlations in (2.102) and (2.103) are effectively impossible 
to measure, these very complex equations have been simplified by various approximations. 

The ‘standard form’ of the K-E model is expressed in terms of the following equations 
and relationships (Wilcox 1993): 
Eddy viscosity 

pt = pC,K2/e; (2.105a) 

Turbulence kinetic energy 

a 
P- + p u j -  = tij- - pE + - ax ax, ax 

aK aK au. 
at [(.-+E) 51; 

Dissipation rate 

Closure coeflcients 

c,, = 1.44, 

Auxiliary relations 

(2.105 b) 

Ct2 = 1.92, C ,  = 0.09, OK = 1.0, O, = 1.3; (2.105d) 

o = E /  (C,K) and 1 = C,k3I2/c, (2.105e) 

w being the so-called specific dissipation rate and 1 the turbulence length scale. Thus, 
the K and E equations contain five empirical constants which have been inferred from 
standard measurements. 

It has been found necessary to adjust the closure coefficients somewhat to agree with 
different classes of measurements, but in the hands of a skilled practitioner this approach is 
usually much better than integral methods. [In integral methods, equations for entrainment, 
momentum, mechanical energy and so on are written integrated-up across the flow at any 

~~ 

+This is usually written as the k - e  model, but an upper case K is used here to avoid confusion with the 
wavenumber k .  
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downstream station, and a selected group of these integral equations is solved, often by 
a relatively simple numerical method (White 1974; Schetz 1993).] 

Presuming now that v, has been determined, substitution of (2.99) into (2.85) gives 

- -+u  au, 1 ap, + ( v , , + v , ) - + -  a2u, av, (av, -+ -  2) , (2.106) au, 
at ax, axi ax; ax, ax, 

where pr = P + $pK is the turbulent ‘total pressure’. Equation (2.106) may be written in 
the usual, but perhaps less convenient, form 

av 1 
- + ( V * V ) V =  - - V ~ ~ + ( V , , + V ~ ) V ~ V + ( V L J , . V ) V + ( W ) . V V ~ ,  (2.107) 
at P 

where W is the so-called dyad, a vector (Wills 1958; Tai 1992). Examples of the use 
of these equations andor the ideas summarized in this subsection are presented in Chap- 
ters 7- 10. 

(g) Empirical formulations 

As intimated in the foregoing, mixed analytical-empirical formulations of the fluid- 
dynamic forces may be the only convenient way to analyse some fluid-structure interaction 
problems (e.g. provided that there is no large-scale flow separation, by analysing the flow 
as if it were inviscid, thereby obtaining the pressure-related forces, and adding empir- 
ical expressions for the viscous stresses acting on the body surface). Indeed, in many 
cases involving complex flows, e.g. cross-flow of heat-exchanger tube arrays, the very 
foundation of the theoretical model may be empirical or quasi-empirical. 

In analysing the empirical (experimental) data, it is convenient to express the unsteady 
fluid loading, F ( t ) ,  acting on an oscillating structure in terms of components in phase 
with acceleration, velocity and displacement of the structure, locally linearized; thus, for 
a one-degree-of-freedom system, 

F ( t )  = -m’z - c’i - k ’ z .  (2.108) 

When this is substituted in the equation of motion of the structure, mz + cz + kz = F ( t ) ,  
one obtains 

(rn + m’)z + (c + c’)z + (k  + k’)z = 0, (2.109) 

hence the appellation of m’,c’ and k’ as the added mass, added damping and added 
stiffness [e.g. Naudascher & Rockwell (1994, Chapter 3)]. 

For example, for a long cylinder of cross-sectional area A and length L,  oscillating in 
unconfined dense fluid of density p, the added mass per unit length is m* = m’/L = PA, 
if end effects are negligible. If the cylinder is in a conduit of complex geometry, m’ may 
be determined analytically, numerically or experimentally, and the added mass per unit 
length expressed by 

m’ 
L 

m* = - = C,pA. (2.110) 

In general, C, will be a function of geometry, viscosity and frequency (hence of the 
oscillatory Reynolds number), amplitude, and other factors as discussed in Sections 2.2.2 
and 2.2.3 and by others (Chen 1987; Gibert 1988; Naudascher & Rockwell 1994). In many 
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cases the approximation is made that the added mass in quiescent (stagnant) and flowing 
fluid is the same, although this is not rigorous. Such an approximation is definitely shaky 
if the flow is grossly unsteady or accelerating. Thus, in the extreme case of oscillatory 
flow, C,,, = 2 instead of 1 [see, e.g. Sarpkaya & Isaacson (1981)], as a result of induced 
buoyancy - i.e. because of the presence of a pressure gradient.' 

The added damping may similarly be expressed in terms of a damping coefficient c d ,  
which may be defined in different ways, e.g. 

for oscillations in quiescent or flowing fluid; other definitions are possible. 
Added stiffness may arise due to buoyancy, asymmetry$ or proximity to other solid 

boundaries. For example, if a body lies close to a wall or a free surface and it is subjected 
to flow, there will be a fluid force acting on it, because the flow field is nonuniform. If the 
body is displaced towards or away from the aforementioned boundary by Az, this force 
will change by A F .  The quantity AF/Az is the so-called added stiffness, and it depends 
purely on displacement and not on velocity or acceleration. Hence, one may similarly 
define a stiffness force coefficient by 

(2.1 12) 

In equation (2.109), m, c and k are devoid of fluid effects; i.e. in an experimental system 
they should ideally be measured in vacuum. Also, unless there exists a mathematical model 
the linearization of which yields (2.108), m', c' and k' must be determined experimentally, 
e.g. by conducting experiments first in vacuum (practically in still air) and then in fluid 
(say, in water) or fluid flow; it is noted that although the c' coefficient of the fluid force 
determined thereby is easily separable from the rest, since the velocity-dependent compo- 
nent is in quadrature (900 out of phase) with displacement, more than one experiment 
would be necessary, and in some cases it is virtually impossible, to separate rn' and k' 
since they are 180" out of phase with each other (hence, they differ only in sign). 

The rest of Section 2.2 is devoted to the presentation of two simple but representative 
analyses - in abridged form - which illustrate the use of the foregoing and also intro- 
duce some useful nomenclature for the chapters that follow. In both cases, the mean flow 
is zero. Problems involving a mean axial flow, the prime concern of this book, are dealt 
with in the other chapters. 

2.2.2 Loading on coaxial shells filled with quiescent fluid 

Consider two long, thin coaxial shells, with the annular space between them filled with 
quiescent, inviscid, dense fluid (e.g. water), while within the inner shell and outside the 
outer one the fluid is of much smaller density (e.g. air) or a vacuum; see Figure 2.7. The 

+One way of looking at the difference between a cylinder oscillating in quiescent fluid (C,, = 1 )  and a 
cylinder in oscillatory Row (C," = 2) is that in the former case the flow velocity at infinity tends to zero, 
whereas in the latter it has the full amplitude of the oscillation: clearly two very different flow fields. 

*For example, in the case of an iced conductor in uniform wind, rotation of the noncircular-section conductor 
clearly results in a change in the static forces experienced by it; see, e.g. Den Hartog (1956). 
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Figure 2.7 (a) Cross-sectional view of two coaxial thin shells at rest, with the annulus filled with 
a dense fluid; vi and wi are the displacements of the inner shell in the circumferential and radial 
direction, respectively. (b) Three-dimensional view of the shell instantaneously deformed in the 
n = 2 circumferential mode, with little axial variation (either because the shell is long and the 
mode of axial deformation is small, or because idealized 2-D deformation has been assumed). 

(c) Definition of the n = 1-4 circumferential modes. 

shells are free to vibrate in a low axial mode number (e.g. in the first, beam-like mode), so 
that gradients of displacements in the longitudinal direction are negligible, as compared 
to the transverse directions [Le. in the plane of Figure 2.7(a)]. Alternatively, one could 
assume that the mode of oscillation is purely two-dimensional, as shown in the example 
of Figure 2.7(b). Hence, the displacement of the mean surface of the shell, generally of 
the form {u, v, wJT, with u, v and w being, respectively, the axial, circumferential and 
radial components, in this case simplifies to {w, wIT. 
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The vibration of the shells induces oscillatory flow in the fluid, and the task is to 
determine the unsteady fluid loading on the shells, resulting thereby. By further assuming 
that the amplitude of shell vibrations is small, it follows that all fluid velocities are also 
small and hence governed by equations (2.71)-(2.73a,b). Because the shells are very long, 
end effects are negligible; also, because the mode of deformation is such that motion is 
essentially two-dimensional as outlined in the previous paragraph, motion-induced flow 
variations in the direction of the long axis of the shells are negligible. Hence, in this 
case, ap/ax  = 0 and 4 = 4(r ,  8, t ) ;  the analysis is therefore carried out in the plane of 
Figure 2.7(a). 

The solution to the fluid flow resulting from this motion may be obtained via equations 
(2.73a,b), although (2.72) could be used equally well (Gibert 1988). The eigenmodes of 
each shell are of the form (v, w ) ~  = {v, sin ne,  w, cos where the relation between 
v, and w, is dependent on the shell equations used [e.g. Fliigge (1960)], which need not 
concern us here; n is the circumferential wavenumber. The cross-sectional deformation 
for n = 1-4 is shown in Figure 2.7(c). 

Consider first the case where the outer shell is replaced by a rigid immobile cylinder 
of inner radius R,, and let v; and wi be the displacement components of the inner shell. 
Furthermore, consider oscillation in the nth mode, such that 

vi(& t )  = vni(r) sin ne,  roi(8, t )  = w,,;(t) cos ne,  (2.1 13) 

in which it is understood that v,,; and W,Ii are harmonic functions, e.g. w, ; ( t )  = 
w,; exp(if2t). The corresponding velocity potential is - 

4 = $(r, e) eiRf. (2.114) 

The boundary conditions for the fluid are 

(2.1 15a) 

(2.115b) 

The solution of the Laplace equation for 5 = $(r, e), after separation of variables, gives 

4(r ,  6 )  = (2.1 16) 
00 - 

{r"[A,, cos n e  + B, sin n e ]  + r-"[C,, cos n e  + D, sin ne]}; 
n=l 

application of the boundary conditions yields 

The pressure on the inner shell and the outer cylinder in the nth circumferential mode 
may be determined through equation (2.73b), yielding 
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d2Wn; 
= -pRi 1 [ 2(Ro/Ri)n ] cos ne __ 

IZ 1 - (Ro/Ri)2n dt2 ' 

(2.1 18b) Po.ni E Pni I RO 
The subscript notation i, ni indicates the pressure on cylinder i due to nth mode vibration 
of cylinder i, whereas 0, ni indicates the pressure on cylinder o due to the same vibration 
of cylinder i. 

Next, the loading on the shell and on the outer cylinder may be obtained from the 
principle of virtual work, i.e. via 

r2n 

SWi,ni = lo {(-P;,~;R; de)(6wfIi sin ne + 8wni cos ne)) ,  
(2.1 19) 

r 2n 
6Wu,ni = J', ((po,niRod~)(6v,,i sin ne + 8wni COS ne)) .  

As seen in equations (2.1 18a,b), pi,ni and po,ni are functions of cos n e ;  hence, in view of 
the orthogonality of sin ne and cos ne, only the 8wni component of the virtual displace- 
ment contributes to the virtual work. Therefore, the forces on the inner shell and the outer 
cylinder due to motions of the inner shell in the nth mode, denoted by F;,fli and Fo.,,i, 

respectively, are given by 

(2.120~1) 

(2.120b) 

In effect, to obtain these forces, the pressure field was transformed into a surface-force 
field and projected onto the modal deformation vector in the eigenspace of this system. 
Further, it is noted that if the shell oscillates in more than one mode, Fi,,i and Fo,nj will 
still be the same, because, when projected onto the nth mode eigenvector, the contribution 
of the additional modes is.zero, as a result of orthogonality of the cos ne for different n ,  
as per relationships (2.1 18a,b) and (2.1 19). 

Similarly, if it is the outer shell that is flexible and oscillating while the inner one is 
rigid, proceeding in the same manner one finds 

(Ro/R;)2J' + 1 d2w,,o 
(2.121) 

(Ru/R;)2n - 1 1 -  dt2 ' 

d2wno/dt2 
Fovno = -pnR: - 

d2Wn;/dt2 ' F i , n o  = F o , n i  

There are obvious symmetries in the coefficients of d2wn;/dt2 and d2wno/dt2 in (2.120a,b) 
and (2.121), which will be discussed later in subsection (d). 

In the foregoing, rigid-body transverse motions of the cylinder were considered as 
a particular case of shell motions with n = 1 [Figure 2.7(c)]. For transverse rigid-body 
motions, however, the eigenvector or eigenfunction of motion becomes trivial, simplifying 
to motion along specified directions; thus, one can then think of motions in the Cartesian 
directions y and z ,  and work out the loading associated with oscillatory displacements w, 
and w, in these directions, as shown in Figure 2.8. In this case the boundary conditions 
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Figure 2.8 Rigid-body motion of the inner cylinder, in the y and z directions within the fluid-filled 
annulus (see Figure 2.7). 

for the fluid become 

91 =-s ino+-coso ,  dv, dw, 91 =o.  
ar Ri dt dt ar Ro 

(2.122) 

Proceeding as before, the pressure on the surface of the inner and outer cylinders is 
determined and it is a function of both d2v,/dt2 and d2w,/dt2; in fact, the coefficients of 
these accelerations are identical to those in (2.1 18a,b), but with n = 1; e.g. 

P ; , I ;  E p i ;  = -PR; (2.123) 
1Ri 

Then, the forces on the cylinder may be determined (i) either as before, by consid- 
ering the virtual work associated with virtual displacements f i e  sin 0 + E, cos 0, or (ii) 
directly, by integrating the pressure on the rigid cylinder via 

F?’ 1 . 1 1  . = I’” -p i ,&  sin OdO, -p;,liR; COS Ode, (2.124) 

and similarly for FZ,,i and F:, , ; ;  thus, if following (i), the projection of the force field onto 
the ‘mode’ concerned, has an immediate physical meaning in this case! It is obvious that 
the same results as in equations (2.120a,b) are obtained, as should be, but with d2w,;/dt2 
replaced by either d2v,/dt2 or d2wc/dt2. 

A number of important conclusions are reached and insights gained from these results 
in the following. 

(a) The added mass concept 

As is clear from (2.120a,b), the fluid loading is associated entirely with accelerations of 
the structures, and hence accelerations of the fluid. This is physically reasonable: infinitely 
slowly generated displacement of the shell away from its equilibrium position cannot, in 
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the absence of flow, result in a force; in an inviscid fluid, neither can a velocity of 
the body.+ 

It is customary to define a virtual or added mass, by expressing the fluid loading in the 
form of a d'Alembert (mass) x (acceleration) term. For ease of interpretation, consider first 
the case of n = 1 [see Figure 2.7(c)], so that the shell (only the inner one for simplicity) 
oscillates transversely as a whole, without deformation of its cross-section - essentially 
as a beam or a rigid cylinder would. Then considering WI; cos = w, and v, = 0 
(Figure 2.8), the equation of motion of the cylinder in the z-direction may be written as 

(2.125) 

M, C and K could be the modal mass, damping and stiffness elements in a one axial-mode 
Galerkin approximation for the structure, or one can think of a long rigid cylinder of mass 
M, flexibly supported by a spring of stiffness K and a dashpot with damping coefficient 
C; L is the length of the shell. The quantity in square brackets is defined as the added 
mass, and may be denoted by M', so that equation (2.125) may be written as 

(M + M ' ) i  + Ci+ K Z  = 0, (2.126) 

thus making obvious the usefulness of this concept and the appellation of 'added' mass. 
Dividing this added mass by the fluid mass of the volume occupied by ('displaced' by? 
the presence) of the shell, gives the so-called added mass coefficient, 

(2.127) 

For shell-type motions, n > 1, one cannot associate added mass or added mass coef- 
ficients with motions in a particular direction as in (2.125) and (2.127), but rather with 
motions associated with particular modes of deformation, e.g. the n th circumferential 
mode. In any case, for the analysis of shell motions, forces due to the fluid per unit 
surface area are more pertinent, as is done in Chapter 7. The added mass coefficient, 
however, is defined in the same way as in the foregoing; thus, corresponding to the forces 
in (2.120a,b) and (2.121), we have 

see also Chen (1987; Chapter 4).§ 

(2.128a) 

(2.128b) 

+For a body in unbounded fluid this is a consequence of the d' Alembert paradox (stating that an ideal fluid 
flow exerts zero net force on any body immersed in it). In the presence of solid boundaries this is generally not 
so, and velocity-dependent forces may arise, but they are proportional to the square of the velocity (Duncan 
et al .  1970), and so, in the present context, they are negligible. 

*'Displaced', in the original sense in Archimedes' 'experiment' in Syracuse, when he immersed himself in 
his bath, thus displacing an equal volume of the fluid - and evoking the famous eureku! 

$Note, however, a typographical error in equation (4.39) therein. 
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(b) The added mass from the kinetic energy 

The classical way of introducing the added (or ‘virtual’) mass concept is via energy 
considerations (Milne-Thomson 1949; Duncan et al. 1970). As this gives new insights, it 
is presented here, parenthetically, following the treatment of Duncan et af . (1970). 

Consider a rigid body moving rectilinearly with velocity U at the instant considered 
in unconfined fluid, otherwise at rest. The velocity of the fluid thereby generated, at any 
point, is proportional to U ,  and hence the velocity components may be written as u = Uu’, 
v = Uv’, w = Uw’. Hence, the total kinetic energy of the fluid (over the whole region 
occupied by it) is 

T = $pU2 / / / ( u f 2  + vr2 + wf2)drdydz = { p U 2 ~ ,  (2.129) 

where K is a constant, for motion in any given direction. Next, suppose that the velocity 
of the body is variable, and let F be the force exerted by the body on the fluid. Then, by 
elementary energy considerations, the change in kinetic energy is equal to the work done 
by F ,  say in the z-direction, i.e. 

dU 
dt 

F dz = dT = KPU - dt, 

which gives 
dU 
dt 

F = K P - ,  (2.130) 

and the force on the body is the negative of that. In (2.130), dU/dt is the body acceleration 
and, hence, by definition, PK is the added mass. 

For 2-D oscillations of a circular cylinder in unbounded inviscid fluid, v = 
(Ua2/r2)  sin 20, and w = (Ua2/r2) cos 20, and v2 + w2 = Ua2/r2; hence, in this case 

1 2n 00 

K = 3 A  A (v2+w2)rd0dr=xa2,  

per unit length, and the added mass, also per unit length, is 

(2.131) m = - = p n a .  

Thus, the well-known result is obtained that the added mass of a long cylinder oscillating 
in unconfined fluid is equal to the displaced mass of fluid. This corresponds exactly to 
the result in equation (2.127) for Ro +. co, as it should. 

It is worthwhile taking this one step further, to the case where there is an obstacle or 
boundary in the fluid; K is then not a constant but a function of position, Le. K(z). In this 
case, by following the same procedure one finds 

I Mf 2 
L 

dU 1 dK 2.  F = KP-  + - - pU , 
dt 2 dz 

(2.132) 

i.e. there is now a quadratic velocity-dependent component, which for small-amplitude 
motion is of second order, as already remarked in the first footnote of subsection 2.2.2(a). 
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It should also be noted that in cases of symmetric confinement of the fluid, this term may 
entirely vanish. 

IC) Magnitude considerations: wide and narrow annuli 

By re-writing expressions (2.120a,b) in terms of R;/R,, and taking the limit (R;/R,) -+ 0, 
i.e. as the outer cylinder radius becomes essentially infinite, one obtains 

(2.133a) 

and 
F,,,,; = 0, as ( R ; / R , )  -+ 0. (2.133b) 

Equation (2.133a) for n = 1 yields the result just obtained in (2.131) in another way, 
that the added mass for R, +. 00 is equal to the ‘displaced’ mass of fluid. Also, the 
physically reasonable result is obtained in equation (2.133b) that, for an infinitely distant 
outer cylinder, the effect of accelerations of the inner one is infinitely faint. 

In the other limit, writing R, = R; + h and R; Y R, 2: R,  and taking h to be small, 

(2.134) 

This expression shows that for thin shells, and also for light, hollow cylinders in narrow 
annuli, the added mass can easily exceed and be several times larger than the struc- 
tural mass; i.e. M’ >> M in (2.126), for instance. Expression (2.134) would suggest that 
the added mass becomes infinitely large as h -+ 0. This is not so, however, because 
the Stokes number becomes small before that limit is reached, signalling that the limit 
of applicability of inviscid theory has been surpassed; for oscillations of the shell or 
cylinder of amplitude Eh and frequency w, where E is a small number, the Stokes (or 
oscillatory Reynolds) number is B = cwhR/u ew(h/R)R2/v .  An alternative, and more 
general, pertinent Stokes number is B = wlt2/u. In either case, it is clear that as h + 0, or 
h/R -+ 0 and E < 1, B becomes sufficiently small for viscous effects not to be negligible 
(see Section 2.2.3). Furthermore, in addition to the added damping, the forces associ- 
ated with shell motions become extremely large, as seen from (2.134), due to the very 
large accelerations in the narrow fluid annulus; hence, sustained oscillation under the 
circumstances does not occur. 

It is finally noted in (2.120a,b), (2.133a) and (2.134) that the added mass becomes 
smaller as n is increased, which is reasonable in physical terms: the hills and valleys 
associated with deformation of the shell are half a circumference apart for n = 1, while 
they are much closer for large n; hence the fluid accelerations are correspondingly smaller 
for the larger n, and so is the added mass. 

(dl Fluid coupling and the added mass matrix 

If both shells are flexible, the only thing that changes in the formulation is that boundary 
condition (2.1 15b) needs to take a form similar to (2.1 15a). Recalling the meaning of 
influence coefficients in solid mechanics, by analogy (and as already done in the foregoing) 
one can think of a force on the inner shell due to nth mode motion of the inner shell, 
F;,n; ,  or of a force on the inner shell due to motion of the outer one, F;,,,, and so on. 
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It is easy, therefore, to appreciate that in this case there exists an added mass matrix, of 
the form [:I, mio ] (2.135) 

which couples hydrodynamically the motions of the two shells; here the subscript n has 
been suppressed. The corresponding vector is (d2w,;/dr2, d2w,,/dt2)T; nz;; and m,; are 
the negatives of the coefficients of d2w,;/dt2 in (2.120a,b), while m;, and moo are the 
corresponding quantities from (2.121). It is obvious that the matrix must be symmetric, 
as a consequence of the reciprocity principle in mechanics. 

Consider next the situation of rigid-body motion ( n  = 1) of both the inner and outer 
cylinders. In this case 

(2.136) 

where x = {y ; ,  yo, z;, z , ) ~  and 

nz0, 

[MIX + [CIX + [K]x = -[M’]X, 

(2.137) 

in which m!;.?’ = mf = ,OITR?L[(R,/R~)~ + l]/[(Ro/Ri)2 - 11 and so on, as given by 
expressions (2.120a,b) and (2.121) for n = 1. Thus, coupling ofthe motions of the two 
cylinders arises. This means that if, for example, the inner cylinder is given some initial 
displacement or velocity at r = 0, the outer cylinder would also vibrate for r > 0. 

It is noted in (2.137) that, because of symmetry, there is no fluid coupling between y-  
and z-motions; i.e. acceleration of one cylinder in one direction generates a symmetric flow 
field, with no force resultant in the other direction. Generally, however, for asymmetric 
systems, such cross-coupling does exist, and matrix (2.137) would be fully populated, ;.e. 
rn;: and similar terms would no longer be null; furthermore, m? # in;, and SO on. 

(e) Effects of various parameters on added mass 

Tables, figures and lists of results for added mass coefficients in a variety of systems are 
given by Blevins (1979), Chen (1987), Gibert (1988) and Naudascher & Rockwell (1994). 
Hence, we shall confine ourselves here to making some general comments on parameters 
affecting the added mass, of which the reader should be aware. 

( i )  General effects of geometry. In general, proximity to other structures affects 
the added mass of the vibrating one; e.g. proximity to a rigid wall signifies increased 
accelerations (for inviscid fluid) and hence larger added mass, as already remarked in 
the foregoing, especially in connection with the system of two coaxial cylinders or shells 
(Figure 2.7). Of equal interest is the case of eccentrically located cylinders (see also 
Chapter 11). A useful result (Gibert 1988) is that the added mass coefficient, C;:, is 
given by 

2(r - 1) [r - 1 - Je(2r - 2 - e ) ]  
( r  - 1 - e)2 

-- - , for r <  1.1, (2.138) 
cnl 
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where C,,, is given by equation (2.127), e = (smallest gap between the cylinders)/R;, 
r = R,/R;.  For larger values of r ,  the results are given in figure form. Results for a variety 
of other systems may be found in the compilations of Chen (1987) and Blevins (1979). 

(ii) Aspect ratio effects. As two-dimensionality of the flow is violated, the validity 
of the foregoing deteriorates. A particularly simple example illustrating this is a simply- 
supported cylindrical beam oscillating in a narrow annulus [so that the approximations 
leading to (2.134) are valid], the ends of which are open to large cavities (Gibert 1988). 
It is found that 

(2.139) 

where C,,, is given by expression (2.134) for n = 1 .  Clearly, the shorter the beam, the 
smaller is C:am, as compared to an infinitely long one. The physical reason is that, near the 
ends, the fluid takes the easy way around the beam, partly in the third (axial) direction; 
hence, less than the total force that would be obtained by 2-D analysis is realized. A 
more general analysis (PaYdoussis et al.  1984; Chen 1987), not making the assumption of 
a narrow annulus, gives 

(2.140) 

where I1 and K1 are, respectively, the first-order modified Bessel functions of the first 
and second kind; the primes denote derivatives with respect to the argument. The effect 
of R;/L is strong for 1 < R,/R;  < 2, but relatively weak for wider annuli. 

(iii) If the flow is compressible, 
the wave equation, V2+ + k2+ = 0, k2 = o/c, needs to be solved instead of the Laplace 
equation, V2@ = 0. Hence, the results are found to depend also on an oscillatory Mach 
number, h f k  = wR;/c, where c is the speed of sound. The effect of compressibility for 
Mk 5 0.2 is rather weak (Chen 1987). 

It has been found (Carlucci 1980; Carlucci & Brown 1983) that in gas-liquid two-phase 
flows the measured added mass is generally considerably lower than that predicted by 
homogeneous mixture theory [in which average quantities are assumed for the mixture; 
e.g. if the void fraction is cr and the densities of the liquid and gaseous phases are p/ and 
pg, the mixture density is p = (1 - cr)p, + upg]. Since the two-phase flow may be consid- 
ered as a flow with the density of the liquid phase and the compressibility of the gaseous 
one, it was supposed that the discrepancy may have been due to the neglected effects of 
compressibility (PaYdoussis & Ostoja-Starzewski 198 I ) .  Also, the effect of random varia- 
tions in the surrounding fluid density, inherent in  two-phase flows was investigated (Klein 
1981). These effects, although qualitatively working in the right direction (Chapter 8), 
proved incapable of accounting fully for the discrepancy quantitatively, and the search 
for more elaborate models continues. 

(iv) Amplitude effects. All of the foregoing apply to cases where the amplitude of 
oscillation is small enough for separation in the cross-flow not to occur. This brings into 
play another dimensionless number, the Keulegan-Carpenter number, KC = 2nV,/(oD), 
where V, is the amplitude in velocity fluctuations. For a harmonically oscillating cylinder 
in quiescent flow, this reduces to KC = 2n(A/D), where A is the amplitude of motion 

Effects of compressibility and two-phase flow. 



46 SLENDER STRUCTURES AND AXIAL FLOW 

of the cylinder. If KC < 4, separation generally does not occur (Sarpkaya & Isaacson 
1981; Naudascher & Rockwell 1994). If KC > 8 approximately, the flow field is entirely 
different, with the cylinder now oscillating in the remnants of vortices shed from previous 
cycles of oscillation; this type of flow, arising also in wave-induced oscillatory flows, has 
been studied extensively in conjunction with offshore mechanics applications (Sarpkaya 
& Isaacson 1981). 

(f) Numerical calculations of added mass 

Some early attempts to calculate the added mass by numerical (CFD) methods are due 
to Levy & Wilkinson (1975), PaTdoussis et af. (1977) and Yang & Moran (1979), for 
instance. Nowadays, any CFD package capable of heat transfer calculations, hence of 
solving the Laplace equation, would be suitable - based on finite element, finite differ- 
ence or other methods. A few examples of finite-element (FEM) based packages are 
FIDAP from Fluid Dynamics International, U.S.A., and CASTEM 2000 from Commis- 
sariat B 1’Energie Atomique, France; and finite-volume (FVM) based packages FLOW3D 
from Hanvell Laboratories, U.K., and PHEONICS from Cham Ltd, U.K. 

Other numerical methods also exist, e.g. based on spectral methods (Mateescu, 
Paidoussis & Sim 1994a,b), finite difference methods (Mateescu, Paidoussis & BClanger 
1994a,b), or the boundary integral equation method (BIEM) (Groh 1992). 

2.2.3 Loading on coaxial shells filled with quiescent viscous fluid 

Consider the same system as in Figure 2.7(a), but with only the inner cylinder free to 
oscillate, and then only as a beam (n  = 1 )  or as a rigid body in the plane of the paper, 
while the outer one is rigid and immobile. The annular space is filled with a quiescent 
viscous fluid. Again, the task is to determine the fluid forces generated by harmonic 
motion of the inner cylinder. 

If the cylinders are sufficiently long, the flow is essentially two-dimensional in cross- 
flow. Writing equation (2.63) in Cartesian coordinates and eliminating the pressure 
between the two equations, or simply taking the curl of (2.63), one obtains a single 
equation 

in terms of the vorticity, 

(2.141) 

(2.142) 

uz and uy are the flow velocity components in the z and y directions, which may be 
expressed in terms of the stream function: u, = a+/ay, u,, = -a+/az. The continuity 
equation (2.62), is satisfied automatically. Moreover, since o = -V2@, equation (2.141) 
leads to (Schlichting 1960, chapter IV) 

(2.143) 
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For small motions, this reduces to 

a 
- v2+ = vv+. 
at 

(2.144) 

The boundary conditions match the fluid velocity on the solid surfaces to those of the 
two cylinders. In polar coordinates, u, = -(I/r)(a+/aO) and ue = a+/ar; hence, 

uil = a  cos 8eia', ~ 0 1  = -a sin ,eia', ~ ~ 1 %  = us1 = 0, (2.145) 

This problem was solved by Wambsganss et al .  (1974) - see also Chen et a1. (1976). 

v2+ = 0 (2.146a) 

R, R, R" 

where a is the velocity amplitude of the inner cylinder in the 8 = 0 plane. 

It may be verified that if 

is satisfied, so is equation (2.144); similarly if 

2 1 a+ v + - - - = o .  
v at 

(2.146b) 

Hence, a general solution in the form + = 
(2.146a) and (2.146b), respectively. The form of the boundary conditions suggests 

+ +2 is sought, with 

$2 = F2(r) sin 8e'a', 

and $2 satisfying 

$1 = Fl(r)  sin dein', (2.147) 

and hence F I  and F2 must satisfy 

d2FI 1 dF1 1 
-++---F I = o ,  

-+ - - -  F2=0 ,  d2F2 1 dF2 
dr2 r dr 

dr2 r dr r2 
(2.148) 

Each of these equations provides two independent solutions, hence four in total, as required 
and sufficient for the solution of equation (2.144), namely 

9 = + I  + +2 = a[Alr-' + A 2 1  +A3Il(hr) +A4Kl(Ar)] sin 8ein', (2.149) 

in which the constants A I  to A4 are determined via the boundary conditions. Once + is 
determined, the flow field is completely known and hence the stresses on the cylinders may 
be evaluated through equations (2.64) and (2.65). The force per unit length is given by 

F = - p & a ~ [ R r ( ~ )  sin at + Sitir(H) COS at] (2.150) 

(Chen et al .  1976), where 

H = {2a2[Io(a>Ko(B) - Io(B>Ko(a)l - 4a[Ii(a)Ko(B) + Io(B)Ki(a)l 

+ ' W I O ( ~ ) K I  ( B )  + 11 (B)Ko(a)I - WI1 (a)Ki ( B )  - 11 (B)KI (a>l) 
+ (a2(1 - ~~>[b(a)Ko(B> - Io(B)Ko(a)l + 2ay[Io(a)Ki(B) 

- 11 (B)Ko(B) + 11 (B)Ko(a)  - IO(B>KI (/%I+ 2a~~[Io(B)Ki (a) 

- b(a)KI (a> + 11 (a)Ko(B) - 11 (a)Ko(a)lI - 1 .  (2.151) 
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(2.152) 

and I, and K, are modified Bessel functions of the first and second kind, respectively. 
It is noted that, by virtue of the presence of 4 in the argument (in A), H is complex. 
To evaluate H ,  therefore, one can either (i) evaluate J,, (??A) and Y,, (Zd), the ordinary 
Bessel functions, utilizing the expressions and tables in Jahnke & Emde (1945), for 
instance, for the real and imaginary parts of each of them, and then convert to I,, and K,, , 
or (ii) utilize the ber, bei, ker and kei functions, 

i”1, ( x d )  = ber, x + i bei, x, i-”K,, (xd) = kern x + i kei, x 

and the expressions given by Dwight ( 1961).i 

as in equations (2.1 10) and (2.1 1 l), one can write 
Expressing the force F of equation (2.150) in terms of added mass and added damping 

d 2 t  dz 
dt2 dt 

F = +C,pA- - CdJ2pA-i (2.153) 

hence 
C, = % e ( H )  and Cd = -Sini(H). (2.154) 

The results for % e ( H )  and .$nr(H) for various Stokes numbers S = DZ??/v are given in 
Figure 2.9. Several observations may be made, as follows: 

(i) both C,,, and Cd increase dramatically as R,/Ri is reduced towards unity, but 
rises more rapidly; 

(ii) for sufficiently high S, the values of C,, approach those obtained by inviscid 
theory (S = oo), but increasingly diverge from inviscid theory as S is diminished; 

(iii) for sufficiently narrow annuli, the results for C,,, sensibly collapse onto a single 
curve - in the scale of the figure. 

Chen et a l .  (1976), Yeh & Chen (1978) and Chen (1981, 1987) give a number of useful 
approximations for H .  These have been rechecked, corrected in some cases, and rewritten 
into a congruous set, in terms of the parameters 

as follows: 

+It may be of interest that difficulties are encountered in trying to obtain solutions by standard software pack- 
ages, including some symbolic mnnipulation systems. Thus, neither 1z4qde nor Marlab could do it; Marbemarica 
could. but it was painfully slow. 
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Figure 2.9 (a) The real and (b) negative of the imaginary part of H ,  given by equation (2.151), 
equal to the added mass and viscous damping coefficient, respectively, for a cylinder of radius Ri 
oscillating with frequency G? in a viscous fluid within a coaxial rigid cylinder of radius Ro, for a 

number of values of the Stokes number, S = ORf/u.  From Chen et af . ( 1976). 
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(a) for large a! and B, wide or narrow annuli [Le. S > 500 and g 2 0.005 (or y 5 
0.9931, 

[a2(1 + y 2 )  - 8yl sinh(b - a) + 2 4 2  - y + y 2 )  cosh(b -a) - 2y2@ - 2 a y f i .  
a2( 1 - y 2 )  sinh(/? - a) - 2aAl + y )  cosh(p - a) + 2 y 2 m  + 2 a y a  

(2.156a) 

H =  

(b) for very wide annuli and large S [S > 300 and g > 40 (or y < 0.025)], 

(2.156b) 

(c) for the same range of S and g as in (b), an easier approximation is also valid, 
namely 

4 
H = l + - ;  

a! 
(2.156~) 

(d) for moderately wide annuli and large S (S > lo4 and g > 0.1, or S > 2 x IO3 and 
g > 0.21, 

(2.156d) 

(e) for fairly narrow annuli (g > 0.05) and S > lo4, 

a(1 + y2 )  sinh(ga!) + 2(2 - y + y 2 )  cosh(ga!) - 4 y f i  
4 1  - y 2 )  sinh(ga) - 2y(l + y)  cosh(gcy) + 4 y f i  

H =  , (2.156e) 

although approximation (2.156a) is superior and almost as easy to compute; 
for very narrow gap and very large S (g << 1, S >> 1, g2S  >> 1; e.g. g < 0.05, (f) 
s > io7, g2s > I@), 

(2.156f) 

In order to utilize these expressions it is recalled that = 1 + i), a complex 
quantity, arising because of the form of a! and B in equations (2.155); hence, sin(A + Bi) = 
sin A cosh B + i cos A sinh B, etc. 

Another set of approximations were derived by Sinyavskii et a l .  (1980), based on the 
boundary-layer approximation and valid for S >> 1, namely 

(2.157) 

For zero confinement ( y  = 0), Cd = 2 2 / 2 / 6  corresponds exactly to the expression 
derived by Batchelor (1967; section 5.1 3). 
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2.3 LINEAR AND NONLINEAR DYNAMICS 

Consider a one-degree-of-freedom linear system subjected to fluid loading, F ( t ) ;  the 
equation of motion is written as 

m i  + cx + kx = F ( t ) ,  (2.158) 

and F ( t )  may be expressed as 

F ( t )  = -m’x - c’x - k’x, (2.159) 

in which m’ is the added or virtual mass of the fluid associated with acceleration of the 
body, c’ is the fluid damping term associated with the velocity of the body, and k’ is the 
fluid added stiffness, as discussed in Section 2.2.l(g). Hence, the equation of motion may 
be written as 

(m + m’)i + (c + c’)x + ( k  + k’)x = 0. (2.160) 

It is noted that the form of equation (2.159) implies that there is no external forcing 
of the system: all fluid loading is associated with motion. In general, the coefficients 
associated with the linearized forces in (2.159) are not constant, but depend on flow 
velocity, amplitude and frequency of motion, fluid viscosity, and so on. For the purpose 
of this introduction, however, let us neglect most of these effects and take m’ = const., 
c’ = c’(U), k’ = k’(U) ,  where U is a characteristic flow velocity in the system. Hence, 
equation (2.160) may be written as 

x + 2<(U)L?,, ( U ) i  + L?;(u)x = 0, (2.161) 

where, as denoted, the damping factor, <, and the natural frequency, L?,, , are functions of 
U ,  which is the only variable parameter of this system. 

If c’(U) > 0 and k’ (U)  > 0 for all U ,  then the response of the fluid-loaded system 
is qualitatively the same as that of the mechanical system: only damped oscillations 
would be observed, with higher or lower frequency, depending on whether added mass or 
fluid stiffness effects predominate [Le. whether ( k  + k ’ ) / ( m  + m’) > or < k / m ] ,  and with 
higher or lower damping (<), depending on whether (c + c’)/(m + m’) > or < c/m. 

If, however, k’(U)  can become negative, and Ik’(U)l = k for some critical value of 
U ,  U,, then the overall stiffness of the system vanishes - and for U > U, may become 
negative - which signifies that the system is then statically unstable. The premier example 
of this (albeit for a system with more than one degree of freedom) is the static instability, or 
divergence, of an articulated or continuously flexible pipe with supported ends conveying 
fluid (see Chapter 3); it is similar to the divergence, or buckling, of a column subjected 
to an end load. At that point, Le. when Ik’(Cr)l = k ,  x becomes indeterminate: i.e. the 
static equilibrium position xSt = 0 is replaced by a condition where an infinite set of static 
equilibria are possible (Ziegler 1968) according to linear theory. 

Similarly, if <(U,) < 0 [Le. if c’(U,) < 0 and sufficiently large], this implies a negative 
damping: instead of the oscillations dying out with time, they are amplified exponentially. 
A good example of this is the oscillatory instability (in the linear sense), orjutter, of a 
cantilevered pipe conveying fluid (see Chapter 3). 

Mathematically, the evolution of a system towards divergence or flutter may be tracked 
by plotting the complex eigenvalues or, equivalently, the eigenfrequencies in the complex 
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Argand plane, as U is vaned. Figure 2.10 shows the development of (a) divergence and 
(b) flutter in these two representations. The solution to (2.161) may be expressed as 

x = Ae-mll' sin(Q,, d p r  + 4), 
or, in terms of the eigenvalues A and eigenfrequencies Q, by 

(2.162) 

x = Ae'"(A)r sin[9ni(A) + 41 = Ae-4m(02)' sin[%e(Q) + 41, (2.163) 

9nt (A) 4111 (0) 

Valu 

0 

9rn (A) 

Figure 2.10 Typical Argand diagrams showing the evolution of a system with increasing U ,  
from stability (U i Uc), to instability (in the linear sense; U 2 Uc): (a) divergence; (b) flutter. The 
diagrams on the left show this evolution in the eigenvalue- or A-plane, and those on the right in 

the frequency- or SZ-plane. 

where Qi = h and i = a, and %e and 9im denote the real and imaginary components. 
Clearly, %e(Q) = 9ni(A) is proportional to the frequency of oscillation, while 4m(Q) = 
-%e@) is proportional to damping; in fact, for sufficiently small {, %e(R) zz R, and 
9tn(R)/%e(Q) = <. In the A-plane (left-hand panels of Figure 2.10), it is common to show 
both of the complex conjugate eigenvalue loci [note that even for a conservative system 
with zero damping, the solutions are A l , 2  = ~ t ( R i ) ' / ~ i ] .  In the frequency-plane, however, 
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the branch associated with negative frequency, being more mathematical than physical, is 
often suppressed; nevertheless, the bifurcation of the eigenfrequency locus in the upper-right 
panel of Figure 2.10 is more easily comprehensible if both branches are shown. 

Linear theory can only predict the onset of divergence or flutter; solution (2.163) with 
% n e @ )  > 0 or 4m(Q) < 0 would suggest that the motion is amplified indefinitely. This 
is normally not so, but it is only through nonlinear theory that we can discover what 
happens. We know physically that a column subjected to a compressive load or a pipe with 
supported ends conveying fluid will diverge to one side or the other and then display a new, 
buckled equilibrium form. In nonlinear theory the linear instability is simply referred to as 
a bifurcation. In the case of divergence, where the bifurcation is characterized by one zero 
eigenvalue, it is referred to as a pitchfork bifurcation, whereby the original equilibrium, 
x = 0, becomes unstable and two new stable equilibria, x = f IxSt I, are generated - which 
may evolve with increasing U in the manner shown in Figure 2.1 l(a>. 

--& 
U 

X Attracting limit cycle 

Figure 2.11 Bifurcation diagrams for (a) a supercritical pitchfork bifurcafion (static loss of 
stability, or static divergence); (b) a supercritical Hopf bificrcation (flutter), shown in 3-D; (c) a 
supercritical Hopf bifurcation in the (x, (I)-plane; (d) a subcritical Hopf bifurcation. -, Stable, 
attracting fixed points or limit cycles; ---, unstable ones. The small arrows in (c) and (d) reinforce 
the ideas of attractiodrepulsion of solution trajectories towards or away from the pertinent attractors. 
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Physically, flutter is a self-excited oscillation, which grows from sensibly zero to a 
steady oscillation of finite amplitude and constant frequency, thus to a closed curve 
in the phase plane (x,X), i.e. to a limit cycle. Mathematically, the onset of flutter is 
characterized by a pair of eigenvalues crossing from %e(A) < 0 to %e(A) > 0 as U 
is increased, such that at U = U, (i) the pair is purely imaginary, i.e. %e(a) = 0, and 
(ii) 9 a m ( A )  # 0 [Figure 2.10(b)]. This is defined as a Hopf bifurcation. In many cases, 
the evolution in the phase plane as U is increased is as shown in three-dimensional 
form in Figure 2.11(b), in  which case the Hopf bifurcation is supercritical. As shown 
in Figure 2.1 l(c), the origin has become unstable and oscillatory solutions of a certain 
amplitude are possible for U > U,. If the system is perturbed, it will eventually settle 
down on the limit cycle; hence this is a case of a stable limit cycle. 

A subcritical Hopf bifurcation is illustrated in Figure 2.1 1 (d), where the limit cycle 
generated is unstable or ‘repelling’; as shown by the small arrows, oscillatory solutions 
either die out to the stable equilibrium (stable fixed point) or diverge to larger amplitudes. 
In real physical systems, the existence of this unstable limit cycle usually implies that 
a stable ‘attracting’ one [as shown in Figure 2.11(d)] or another kind of stable solution 
exists at larger amplitudes; so that, the trajectories in the phase plane, repelled by the 
unstable limit cycle, will gravitate towards the stable fixed (equilibrium) point or the 
limit cycle beyond. Thus, the system is then said to be unstable in the small, but stable 
in the large. A more formal definition of stability is given in Appendix F.l . l .  

The behaviour described in the foregoing may be illustrated by a fictitious nonlinear 
one-degree-of-freedom system, the equation of motion of which is 

mx + cg(X) + k f ( x )  = 0, (2.164) 

and which may be viewed as a nonlinear version of equation (2.160) for a specific value 
of U ;  g ( i )  and f(x) are nonlinear functions. As it is not uncommon for these functions to 
be odd, let us illustrate the behaviour of such a system by the following particular case: 

2 + 0.02( 1 - X2)i + (1 - 0.02x2)x = 0. (2.165) 

Trajectories in the phase plane are shown in Figure 2.12. Two main features are visible. 
First, there exists a repelling, unstable limit cycle of amplitude - 1.1 around the origin, in  
the clear white oval between the darker patches near the centre of the figure. One trajectory 
is shown, slowly spiralling inwards towards the origin (in the dark doughnut-shaped 
region, although it is noted that the spiralling motion is difficult to see in the scale of the 
figure); the calculation was discontinued before the trajectory could reach the origin (which 
would strictly take infinite time). Trajectories with 1x1 > 1.1 spiral outwards. Physically, 
one can see, by referring to equation (2.165), that if the mean value of 1i-l - O(1) over 
a cycle, the mean amount of damping would be zero - i.e. the net dissipation, over 
a cycle of oscillation, vanishes - which is one way of interpreting the existence of a 
limit cycle; in the ‘absence’ of damping, the system becomes efectively conservative, 
and a closed curve would be expected in the phase plane, in this case the unstable limit 
cycle. The second notable feature is the saddle point at 1x1 = (1/0.02)1/2 2 7.1, which 
is an unstable f i e d  point (or point of equilibrium),’ corresponding to points of static 
instability (divergence), when the stiffness term vanishes. 

t The classical paradigm of a stable fixed point (stable equilibrium) is the point (0, 6) = (0,O) for a simple 
pendulum. while (IT, 0) represents an unstable fixed point, a saddle. A characteristic of the saddle is that there are 
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Figure 2.12 Phase-plane trajectories for the system of equation (2.165). The blank oval around 
the origin shows an unstable limit cycle of amplitude - 1.1; the dark oval farther in is a trajectory 

slowly winding its way towards the stable fixed point at the origin. 

For the system of equation (2.165), all solutions, except those within the limit cycle, 
spiral outwards, as shown. For a physical system, however, one would expect the trajecto- 
ries to diverge not to infinity, but to another finite state. Viewing the second and third terms 
of equation (2.165) as particular polynomial approximations to cg(x) and k f ( x )  in (2.164), 
correct to O(e3) for x ,  .i - 6 ( r ) ,  one can easily envisage 'more precise' approximations, 
correct to S(e5), e.g. 

i + 0 . 0 2 ~  - i . i i2 + 0.1i4)i + (1 - 2.0069 io-2x2 + 6.9444 1 0 - % ~ ) ~  = 0. 
(2.166) 

Some results in the phase plane are shown in Figure 2.13. It is seen that an attracting 
limit cycle now exists (dark oval) beyond the repelling one (dashed line) around the origin. 
In this case, setting f ( x )  = 0 yields five equilibria: the origin, x = f8.00 and x = f15.00. 
The origin and x = xst = f 1 5  are stable fixed points; whereas x = f 8  are saddle points, 
similarly to Figure 2.12. Around the stable fixed points xst = f15, 'the flow" is similar 

two trajectories in the phase plane leading to it and stopping there; thus, for the pendulum, one can envisage just 
the right initial conditions which would result in a final state (n. 01, Le. with the pendulum inverted. However, 
there are two more trajectories leading away from the saddle point; the slightest disturbance will cause the 
pendulum to fall towards the right or the left. 

'In nonlinear dynamics jargon, looking at trajectories as streamlines, one talks about flow, sources, sinks, etc. 
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Figure 2.13 Phase-plane trajectories for the system of equation (2.166). Here three stable fixed 
points are shown, and two unstable ones (saddle points, denoted by A). Each stable fixed point is 
encircled by an unstable limit cycle (---), and farther out by a stable limit cycle (dark oval patch). 

to that about the origin: an unstable limit cycle (dashed line) and a stable one farther 
out (dark oval). The main difference is that trajectories beyond, e.g. for 1x1 =- 20, cannot 
escape to another saddle, as there is none. It could be argued that the structure around 
[ 15,O) is qualitatively similar to that about {0, 0} because (i) both fixed points are stable 
(hence the two points are statically similar) and (ii) g ( i )  is invariant to the transformation 
y = x - 15, y = i;  similarly for the dynamics about {-15, O}. However, such arguments 
constitute but pn'nta facie evidence and are not always reliable, as will be demonstrated 
for the system of equation (2.167). 

For a physical system, the following dynamical behaviour is implied by the results 
of Figure 2.13: (i) very small perturbations about the static equilibrium die out, and the 
system returns to the origin; (ii) perturbations of amplitude larger than that of the unstable 
limit cycle lead the system away from equilibrium and into limit-cycle oscillations (i.e. 
to the larger, stable limit cycle); (iii) for still larger perturbations, the system is attracted 
by either this same limit cycle or beyond, to the other limit cycles, around xst = f15 .  

Usually, all the features described in the foregoing do not occur for the same parameter; 
as the parameter (U in this case) is varied, some arise, while others disappear. The 
apparition of any new feature in the system defines a new bifurcation. Thus, for a certain 
U, perhaps the only notable feature may be the stable fixed point along with the saddle 
points, which could have arisen earlier via a pitchfork bifurcation. This feature could 
remain, or disappear via a merging of these two points. At a higher U, the limit cycle(s) 
may emerge via a Hopf bifurcation. 
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L 

Figure 2.13, as it stands, serves also to introduce the concept of coexisting amactors 
(the stable fixed points and limit cycles), each with its own basin ofattraction: i.e. the 
part of phase space within which trajectories are attracted, as if by a magnet, to this or 
that state or attractor. The trajectories leading to and emanating from the saddle point 
(thus tracing an x-intersection) are referred to as separatrices. In this case they separate 
the basins of attraction of the stable limit cycle around {0, O} from those about {&15, O}. 

A final point in this regard is the evolution and mutual interference of attractors. Let 
us say that, as v' is varied, the coefficients in (2.166) are altered accordingly, and the 
equation of motion for another U becomes 

j i  + 0.02 (1 - 1 Mi2 + 0.0625X4) X 
+ (1 - 4.444 10-2~2 + 1.778 i o - 4 ~ )  = 0. (2.167) 

As shown in Figure 2.14, the stable limit cycle around the origin no longer exists. Its 
disappearance, as a result of proximity to the saddle points on either side, constitutes 
another bifurcation for this system as U is varied. However, the dynamics around the 
outer fixed points, lxstl E 15, remain unaltered. 

This case also illustrates the unreliablility of the condition g(X) = 0 for determining the 
existence of limit cycles. In the case of the system of equation (2.166) this gives 1x1 I = 1 
and 1x21 = 3.16, which are close to the velocity-amplitudes of the limit cycles around the 

I 

-10 0 10 

t 

Figure 2.14 Phase-plane trajectories for the system of equation (2.167), showing the disappear- 
ance of the stable limit cycle around the origin (cf. Figure 2.13), through proximity to the two 

saddle points. 
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origin in Figure 2.13. In the case of equation (2.167), the corresponding values would be 
I i l l  = 1, Ixzl 2 4. As seen in Figure 2.14, however, whereas both exist about (*15,0), 
only the smaller one does about (0, 0}, as already remarked. 

The results presented here have all been obtained numerically, and hence one can see 
not only the existence of fixed points and limit cycles, but also whether they are stable or 
not. If fixed points and limit cycles are determined analytically, however, then one must 
assess their stability separately; .this and other analytical aspects of nonlinear dynamics 
are deferred to Chapter 5 and particularly to Appendix F. 



3 
Pipes Conveying Fluid: 

Linear Dynamics I 

3.1 INTRODUCTION 

The study of dynamics of pipes conveying fluid has a fine pedigree. A series of exper- 
iments by Aitken (1 878) on travelling chains and elastic cords, illustrating the balance 
between motion-induced tensile and centrifugal forces in this momentum transport system, 
is perhaps among the earliest work pertinent to the topic at hand. Self-excited oscillations 
of a cantilevered pipe conveying fluid had been observed by Brillouin as far back as 1885 
(Bourri2res 1939), but remained unpublished “duns m e  Note de luborutoire ”. 

The first serious study of the dynamics of pipes conveying fluid is due to Bourrikres 
(1939), who derived the correct equations of motion and carried its analysis remarkably 
far, reaching admirably accurate conclusions regarding stability, in particular concerning 
the cantilevered system. This study, published in the year of the outbreak of the Second 
World War, was effectively ‘lost’, and researchers rederived everything in ignorance of 
its existence in the 1950s and 1960s. Bourrikres’ work was rediscovered by the author in 
1973 in the course of delivering a seminar in France, thanks to a comment by Professor 
A. Fortier of the University of Paris who was in attendance (PaYdoussis & Issid 1974). 

Certainly, some aspects of the problem have been known for a long time and are in 
almost everyone’s common experience. Thus, the buckling (divergence) of a pipe with 
both ends supported, manifested by the large restraining force that must be exerted by those 
holding a fire-hose at high discharge rates, is also experienced, albeit highly diminished, 
by one watering the lawn. Thejutter of a cantilevered pipe, manifested by the thrashing, 
snaking motions of a fire-hose accidentally released or by a garden-hose when dropped 
on the wet grass, is well known to firemen and amateur gardeners alike. In fact, these 
two phenomena are often, irreverently but graphically, referred to as the $re-hose and 
garden-hose instability, respectively. 

Nevertheless, the subject is far from being of the ‘garden variety’ sort. Indeed this has 
become a new model problem in the study of dynamics and stability of structures, on a 
par with the classical problems of a column subjected to compressive loading and the 
rotating shaft (Paidoussis & Li 1993). Some reasons why this is so are the following: 
(i) it is a physically simple system, easily modelled by simple equations, yet capable of 
displaying a kaleidoscope of interesting dynamical behaviour, both linear and nonlinear; 
(ii) it is a fairly easily realizable system, thus affording the possibility of theoretical 
and experimental investigation in concert; (iii) in its many variants, it is a more general 
problem, with richer dynamical behaviour, than that of the column and in some ways 
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of the rotating shaft, and thus complements them both as a tool for the development of 
new dynamical theory and methods of analysis (Pa’idoussis 1987; PaTdoussis & Li 1993); 
(iv) it belongs to a broader class of dynamical systems involving momentum transport: 
that of axially moving continua, such as high speed magnetic and paper tapes, band-saw 
blades, transmission chains and belts (Mote 1968, 1972; Wickert & Mote 1990), in paper, 
fibre and plastic film winding, as well as in extrusion processes. 

In terms of the topics covered in this book, all of which deal with axial flow along 
slender structures, the pipe conveying fluid constitutes the main paradigm, on the basis of 
which the qualitative dynamics of other systems are explained. This is one of the reasons 
why so much emphasis is placed on this topic. 

This chapter together with Chapter 4 deal with the linear dynamics of initially straight 
pipes conveying fluid. The nonlinear dynamics of the same physical system is the subject 
of Chapter 5. The dynamics of curved pipes conveying fluid is presented in Chapter 6, 
and that of shells containing flow in Chapter 7 (Volume 2). 

The dynamics of pipes with steady mean axialflow is presented first, starting with 
a discussion of the fundamentals and the derivation of the equations of motion, in 
Sections 3.2 and 3.3. The dynamics of pipes with supported ends, which is an inherently 
conservative system (Le. a conservative system in the absence of dissipative forces), is 
treated next (Section 3.4), followed by cantilevered pipes, an inherently nonconservative 
system (Section 3.3,  and then hybrid and articulated pipe systems. Other, more complex 
systems and applications are the subject of Chapter 4. 

3.2 THE FUNDAMENTALS 

3.2.1 Pipes with supported ends 

After Bounikres (1939), the study of pipes conveying fluid was re-initiated by Ashley & 
Haviland (1950) in an attempt to explain the vibrations observed in the Trans-Arabian 
Pipeline. Feodos’ev (1951), Housner (1952) and Niordson (1953) were the first to study 
the dynamics of pipes supported at both ends, obtaining the correct linear equations of 
motion in different ways, and reaching the correct conclusions regarding stability. 

If gravity, internal damping, externally imposed tension and pressurization effects are 
either absent or neglected, the equation of motion of the pipe in Figure 3.l(a-c) takes the 
particularly simple form 

where EZ is the flexural rigidity of the pipe, M is the mass of fluid per unit length, flowing 
with a steady flow velocity U ,  rn is the mass of the pipe per unit length, and w is the 
lateral deflection of the pipe; x and t are the axial coordinate and time, respectively. The 
fluid forces are modelled in terms of a plug flow model, which is the simplest possible 
form of the slender body approximation for the problem at hand. This equation will be 
derived in various ways and forms in Section 3.3. Suffice it to point out here, however, 
that if one uses the slender body approximation (2.83), together with (2.69) and u = O,$ 

‘As will be seen later, the equation of motion is independent of fluid frictional effects, and equation (3.1) 
holds true if pressure drop in the pipe i s  taken into account, i.e. for u # 0. 
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1. 

Figure 3.1 (a) A pipe with supported (clamped) ends conveying fluid, where longitudinal 
movement at the supports is prevented; (b) the same system, but with axial sliding permitted; (c) a 
cantilevered, continuously flexible pipe conveying fluid; (d) a two-degree-of-freedom articulated 
version of the cantilevered system, in which RL is the position vector of the free end, measured 

from its position of equilibrium, and IL is the unit vector tangent to the free end. 

it is clear how the terms related to fluid acceleration, 

(3.2) 
axat a2w at2 ’ 

( ; + U ~ } [ $ + U g ]  = [U ,,+ZU-+- a2w 

arise in equation (3.1). Here, however, the equation of motion will be considered in purely 
physical terms. 

The first term in equation (3.1) is the flexural restoring force. Upon recalling that 
a2w/ax2 - l/%, where 3 is the local radius of curvature, it is obvious that the second term 
is associated with centrifugal forces as the fluid flows in curved portions of the pipe - see 
Figure 3.l(a-c). Similarly, re-writing a2w/axat = %/at = a, the local angular velocity, it 
is clear that the third term is associated with Coriolis effects: the fluid flows longitudinally 
with velocity Ui, while sections of the pipe rotate with -Qj, where j is normal to (into) 
the plane of the paper; hence -2Qj x Ui terms arise. The last term represents the inertial 
force of the fluid-filled pipe. 

Equation (3.1) may be compared to the equation of motion of a beam subjected to a 
compressive load, P ,  

a4pv a2w a2w 

a.r4 ax2 at2 
E I -  + P -  +m-- = 0, (3.3) 
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i.e. equation (2.47). It is clear that the centrifugal force in (3.1) acts in the same manner 
as a compressive load. In this way, it is easy to see and to understand physically that, 
with increasing U, the effective stiffness of the pipe is diminished; for sufficiently large 
U, the destabilizing centrifugal force may overcome the restoring flexural force, resulting 
in divergence, vulgarly known as buckling and, in the nonlinear dynamics milieu, as a 
pitchfork bifurcation. 

In the foregoing argument, it was implicitly assumed that the Coriolis forces do no 
work in the course of free motions of the pipe, which is true. The rate of work done 
on the pipe by the fluid-dynamic forces, the only possible source of energy input, in the 
course of periodic motions is 

dW aw 
dt (3.4) 

and hence the work done by the fluid forces over a cycle of periodic oscillation of period 
T is 

A W = - M U L T  [ ( $ ) 2 + U ( g )  (;)]I 0 dt. 
L 

(3.5) 

Clearly if the ends of the pipe are positively supported, then (awlat) = 0 at both ends, and 

AW=O. (3.6) 

Nonworking velocity-dependent loads are called gyroscopic by Ziegler (1 968) and hence 
this system is classified as a gyroscopic conservative system. In Galerkin discretizations 
of this system, the Coriolis-related velocity-dependent matrix is purely skew-symmetric 
(antisymmetric) [see, e.g. Done & Simpson (1977) and Section 3.4.1 here]. 

Because divergence is a static rather than dynamic form of instability, the dynamics 
of the system may be examined by considering only the time-independent terms in equa- 
tion (3.1), so effectively equation (3.3) with the inertia term put to zero; whereby, for a 
simply-supported pipe, the particularly simple result is obtained (Section 3.4.1) for the 
critical flow velocity U,, namely that the dimensionless critical flow velocity is 

u, = IT, (3.7) 

where u is defined as 
u = ( M / E t ) " 2 U L ,  (3.8) 

in which L is the length of the pipe. Similarly, for a simply-supported column (Ziegler 
1968), 

Yc = n2, 9 = P L 2 / E t ;  (3.9) 

it is clear from equations (3.1) and (3.3) that the equivalent of is u2, rather than u. As 
expected, the dynamical behaviour of pipes with one or both ends clamped, rather than 
simply supported, is similar. 

The analogy between equations (3.1) and (3.3) and the discussion just made show 
also how the natural frequencies of the system should develop with increasing U .  It is 
physically obvious in the column problem that, as the compressive load is increased, the 
effective rigidity (or stiffness) of the system is eroded, to the point where it vanishes; 
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similarly for the pipe problem, as U is increased. Hence, it is obvious that the frequen- 
cies of the system must decrease with increasing U .  At u,, the lowest (fundamental) 
frequency vanishes as the stiffness in that mode vanishes. In the linear sense, the original 
straight configuration becomes unstable, and all adjacent deformed states in that mode 
become possible equilibria. In the nonlinear sense, a pitchfork bifurcation takes place, 
the original equilibrium is unstable and two stable equilibrium states, one on either side, 
emerge - defined by the nonlinear forces acting on the system, as will be demonstrated 
in Chapter 5 .  

However, the analogy of the pipe with supported ends to the column with the same 
boundary conditions should not be carried too far, because the latter problem is purely 
conservative, while the former is gyroscopic conservative. As will be shown later, despite 
the fact that the gyroscopic (Coriolis) forces do no work in the course of free oscillations, 
they do exert important influence on the overall dynamical behaviour.’ 

Finally, it should be mentioned that, according to linear theory, there should be no differ- 
ence in the dynamics of systems (a) and (b) of Figure 3.1. In physical terms, however, it 
is obvious that buckling implies lateral deflection of the pipe. In system (b), once u 2 u,, 
the pipe may develop large static deflection since it is axially unrestrained. In system (a), 
on the other hand, where axial sliding of the lower end is prevented, lateral deflection is 
associated with axial extension of the pipe; this implies stretching and hence the gener- 
ation of a deflection-related axial tension, a nonlinear effect. In practice, this means that 
the zero-frequency state is never achieved, as will be discussed further in Section 3.4. 

3.2.2 Cantilevered pipes 

As will be shown, a cantilevered pipe conveying fluid is a nonconservative system, which, 
for sufficiently high flow velocity, loses stability by flutter of the single-mode type, i.e. 
via a Hopf bihrcation - see also Section 3.2.3. 

The stability of cantilevered pipes conveying fluid [see Figure 3.l(c)] was first studied 
by Bourrihres (1939), who examined the problem of general motions of an infinitely 
flexible and inextensible string, and the special case where the string is circulating (travel- 
ling) between two fixed supports; he then tackled the problem of one such string within 
another, which could have flexural rigidity - this of course being equivalent to the case of 
a pipe conveying fluid. He obtained the general nonlinear equations of motion, but did not 
develop them fully. Then, he linearized them and proceeded to study such diverse aspects 
as the difference between spontaneous and perturbation-induced instabilities (cf. Gregory 
& Paidoussis 1966b), and the wave propagation characteristics; he also attempted to 
predict the period of self-excited motions, and studied several other aspects of the problem, 
as well as conducting experiments. On the other hand, he could not calculate the critical 
flow velocity, which, unlike the case of a pipe with supported ends, requires the use of 
computersi - of course, then unavailable. Bourrikes’ was a truly admirable effort, and 
it is a pity that it was lost to posterity, until recently (Section 3.1). His work did not have 

+In this respect, as civil servants the world over discovered long ago (and as viewers of BBC’s Yes Minisrer 
have witnessed to their delight), it is not necessary to do actual work in order to exert influence; see also Lynn 
& Jay (1989). 

*Although Padoussis (1963). in order to check computer calculations - computers then being a relatively 
new device - did do a hand calculation, thereby demonstrating its feasibility. 
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any influence on subsequent research, except in an important way on a set of nonlinear 
studies to be discussed in Chapter 5 .  

The next study, some 20 years later, was Benjamin’s (1961a,b), mainly on the dynamics 
of articulated cantilevers conveying fluid [Figures 2.l(b) and 3.1(d)], but with an author- 
itative discussion of the continuous system [Figure 3.l(c)].’ One of the principal accom- 
plishment, among many, of this work was the establishment of the appropriate form of the 
Lagrangian equations for-this ‘open’ system (open, in the sense that momentum constantly 
flows in one end and out the other), namely 

(3.10) 

in which T and V are the total kinetic and potential energies of the system, RL is the 
position vector of the free end and t~ the unit vector tangent to the free end [Figure 3.1 (d)]; 
q k  are the generalized coordinates, typically the angles made by each of the rigid pipes 
of the system with the undeformed line of equilibrium. The corresponding statement 
of Hamilton’s principle was also obtained, from which the equations of motion of the 
continuous system (and the articulated one, if so desired) may be derived. 

The equation of motion of the continuous cantilevered system is the same as that of 
a pipe with supported ends, equation (3.1); this will be derived in Section 3.3, and there 
are subtle differences in the derivation for these two cases (Section 3.3.3). However, 
physically, it seems reasonable that the same equation should hold. Similarly, the same 
expression, equation (3.3, holds true for the work done by the fluid on the pipe over a 
period T of periodic oscillation, but in this case it is equal to 

where (&/at), and (aW/ax)L are, respectively, the lateral velocity and slope of the free 
end. In Ziegler’s (1968) classification, since some of the forces associated with A W  # 0 
are not velocity-dependent [the MU2(a2w/ax2)  follower load leading to the second term 
in (3.11)], this is a circulatory system. The dynamics of this system was elucidated by 
means of this expression by Benjamin (1961a) and elaborated by PaYdoussis (1970). 

For U > 0 and sufficiently small for the second term within the square brackets to 
be much smaller than the first, it is clear that A W  < 0, and free motions of the pipe 
are damped - an effect due to the Coriolis forces, which, unlike the case of supported 
ends, in this case do do work. If, however, U is sufficiently large, while over most of 
the cycle (aW/ax)L and (awlat), have opposite signs, then A W  > 0; i.e. the pipe will 
gain energy from the flow, and free motions will be amplified. The requirement that 
( a W / a x ) ~  (&/at), < 0 suggests that, in the course of flutter, the pipe must execute a sort 
of ‘dragging’, lagging motion that one would obtain when laterally oscillating a long 
flexible blade or baton in dense fluid. This, indeed, is what is observed, as remarked by 
Bounihres (19391, Benjamin (1961b) and Gregory & Pai‘doussis (1966b). 

+‘A continuous system’ will henceforth denote the distributed parameter system involving a continuously 
flexible pipe. 



PIPES CONVEYING FLUID: LINEAR DYNAMICS I 65 

The energy transfer mechanism was also demonstrated in terms of rudimentary repre- 
sentations of the operation of a pump and a radial-flow turbine by Benjamin (1961a), as 
follows. 

Suppose first that in the course of some free motion the pipe rotates about A without 
bending elsewhere, as shown in Figure 3.2(a), This motion requires transfer of energy 
from the pipe to the fluid, since the Coriolis forces on the fluid have reactions on the 
pipe in a direction always opposing motion. [For the motion to continue (with the pipe 
remaining straight between A and C), work from an external source would have to be 
done on the pipe, over and above that for bending it at A.] Thus, this energy transfer 
mechanism causes the fluid to gain kinetic energy in passing through the pipe, and the 
centripetal acceleration of the fluid results in a suction developing at the inlet, A; on 
reflection, this is essentially the action of a centrificgal pump. 

A \ B \ c  

Figure 3.2 Rudimentary representation of (a) a pump and (b) a radial-flow turbine, illustrating 
the mechanisms of energy transfer in a cantilevered pipe conveying fluid, as proposed by Benjamin 

(1961a). From Paldoussis (1973a). 

Consider next the pipe momentarily ‘frozen’ in the shape shown in Figure 3.2(b); the 
change in direction of the momentum of the fluid stream about B gives rise to a reaction 
on the pipe, resulting in a clockwise couple. In this case, energy is transferred from the 
fluid to the pipe, causing it to accelerate to a speed at which the rate of energy gain just 
balances the work done in bending the pipe at B. The energy-transfer mechanism in this 
case corresponds to that of a radial-$ow turbine. (It is noted, however, that if the rotation 
about A becomes sufficiently rapid, pumping action will again prevail.) 

In general, in the course of free motions of the system both mechanisms will be 
operative. If the first predominates, oscillatory motions will be damped; but if the second 
prevails, they will be amplified continuously, i.e. an oscillatory instability will develop. 
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A strange characteristic of this system is that, at high flow velocities but before the onset 
of flutter, supporting the downstream end of the cantilever by one's finger or a pencil 
causes it to become unstable by divergence (Benjamin 1961b; Gregory & Pdidoussis 
1966b). So, here is a case where added support causes instability! If one tries to remove 
the finger or pencil slowly, the pipe follows! This shows clearly and physically that the 
divergence is a negative stiffness instability. This also gives rise to an interesting paradox, 
discovered by Thompson (1982b) and elucidated in terms of the strange black box of 
Figure 3.3(a,b). As more weight is placed on the scale, the scale goes up.+ What could 
be in the box is shown in Figure 3.3(c). The phenomenon is nonlinear and its discussion 
properly belongs to Chapter 5 (Section 5.6.1); it has nevertheless been outlined here to 
whet the appetite, so to speak, for the many interesting aspects of the nonlinear behaviour 
of this system. 

r Black 
box 

A- Black 

4 +" 

Figure 3.3 Illustration of the negative stiffness mechanism of a buckled pipe conveying fluid, 
analysed by Thompson (1982b). 

The stability of this system was linked to the classical nonconservative problem of a 
column subjected to a tangential follower-type load at the free end,: known as Beck's 
problem or Nicolai's paradox, by Nemat-Nasser ef af . (1966), Henmann (1967) and 
Herrmann & Nemat-Nasser (1967). Beck's problem may be summarized as follows 
(Bolotin 1963; Ziegler 1968). As already suggested in Section 3.2.1, the stability of 
a conservative system may be assessed statically, i.e. by ignoring the time-dependent 
forces; e.g. in the case of a column with supported ends or of a cantilevered one with 
a compressive load of fixed orientation. The same may be attempted - as first done by 
Nicolai in 1928 - for a cantilevered column with a follower load, i.e. a compressive 
load with fixed orientation relafive to the column, notably a load always tangential to 
the free end (as in Figure 2.2). The paradoxical result is then obtained that the system 

~ 

'A second, but dynamically trivial paradox is that the black box of Figure 3.3 is in fact white! 
*By the analogy between equations (3.1) and (3.3) it may easily be shown that the equivalent of (3.5) is 

AW = -Ps$  [ (aw/ar )  ( a w / a x ) ] k  dt # 0, since neither (aw/at )L  nor (awlax) ,  are zero for all t E [O.  TI. 
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apparently never loses stability! The resolution of the paradox is that the system never 
loses stability statically. The critical compressive load was determined by Beck in 1952 
(Bolotin 1963) by solving the full equation of motion, equation (3.3). It is given by 
9, = eL2 /EI  = 20.05,* at which point coupled-modejutter arises, otherwise known as 
a Hamiltonian Hopf bifurcation, in contrast to the cantilevered pipe, which loses stability 
by single-mode flutter via an ordinary Hopf bifurcation - see Section 3.2.3. 

The fact that the cantilever conveying fluid is not only a nonconservative problem 
similar to Beck’s (a circulatory dynamical system in Ziegler’s classification), but is also 
subject to gyroscopic forcesS helps explain the fascination it has exerted, and does so still, 
on applied mechanicians and mathematicians for the last 30 years. An additional point 
fort of this system is that it can readily be realized and studied experimentally, unlike 
the original Beck’s problem which requires a rocket-engine mounted to the free end of 
a beam column, or something similar - not an easy task! Indeed, it was implied in a 
lecture (Paidoussis 1986a) that such a task was much too hard to contemplate, which a 
team of Japanese researchers promptly disproved (Sugiyama et al. 1990), by doing the 
difficult experiment with a solid-fuel rocket, demonstrating the occurrence of flutter and 
obtaining good agreement with theory - see also Section 3.6.5. 

Finally, a few words on the case when the flow is from the free end towards the clamped 
one: by reinterpreting (3.11) for U < 0 it would appear that the system is unstable by 
flutter for small U (indeed for infinitesimally small U if dissipation is ignored!) and is 
then stabilized for larger IUI, as first pointed out by PaYdoussis & Luu (1985) - the 
inverse behaviour to that described heretofore. More will be said about this in Chapter 4 
(Section 4.3), but in what follows we return to the system with U > 0. 

3.2.3 On the various bifurcations 

A general discussion of the evolution of the eigenvalues and the corresponding eigenfre- 
quencies leading to some of the standard bifurcations or linear instabilities was given in 
Section 2.3. This is reinforced and expanded here for the phenomena of interest in this 
chapter. 

The Argand diagrams for divergence via a pitchfork bifurcations are shown in 
Figure 2.10(a). If the system is conservative (zero dissipation), the diagram for the 
eigenfrequencies is modified. The eigenfrequencies are wholly real for u < u,, and 
then become wholly imaginary (a conjugate pair), as shown in Figure 3.4(a); hence 
w = 0 for u = u,. The corresponding eigenvalues are wholly imaginary for u < u,, and 
then for u > u, become wholly real; the eigenvalue Argand diagram for each of the 
cases in Figure 3.4 is obtained via a 90” counterclockwise rotation of the corresponding 
eigenfrequency diagram. For the pipe and the column with simply-supported ends, u, = 75 
and 9, = n2, respectively - see equations (3.7) and (3.9). 

‘This value of PC is about eight times higher than the Euler buckling load for fixed-orientation compression 
of the cantilevered column, gC = 4.’ (Ziegler 1968). 

tunlike the system with supported ends, if this system is discretized, the Coriolis-related matrix is not 
skew-symmetric; it can of course be decomposed into symmetric and skew-symmetric parts. 

%rktly speaking, the type of bifurcation involved is defined by the nonlinear terms in the equation of 
motion. In this case, the flow-related nonlinearities in the stiffness term are cubic and similar to those in a 
softening cubic spring. This is what gives rise to two stable static equilibria for u > uc - cf. equation (2.165) 
and the discussion following it in Section 2.3. 
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Figure 3.4 (a) Divergence via a pitchfork bifurcation of a conservative system; (b) single-mode 
flutter of a circulatory system via a Hopf bifurcation; (c) coupled-mode flutter via a Hamiltonian 
Hopf bifurcation; (d) the 'Pai'doussis coupled-mode flutter' [see Done & Simpson (1977)l; w is the 

dimensionless form of 52 - see equation (3.73). 

The case of the ordinary Hopfbifurcation is shown in Figure 3.4(b) for a system with 
zero structural damping [Sint(o) = 0 for u = 01; it is characterized by the crossing of the 
eigenfrequency locus from the positive to the negative half-plane in the Argand diagram. 
For u < u, the system is damped, while for u u, it is negatively damped in the second 
mode, which signifies single-mode amplijied oscillations or flutrer. 

The Argand diagram for coupled-modeflutter of an undamped system via a so-called 
Hamiltonian Hopf bifurcation is shown in Figure 3.4(c). It is called Hamiltonian because 
(i) for u < u, there is no damping in the system and (ii) for u > u, the coalescence of the 
two modes has resulted in two eigenfrequencies, respectively positively and negatively 
damped - both characteristics resembling those in a pitchfork bifurcation, generally asso- 
ciated with conservative (Hamiltonian) systems. In this case, however, %e(o) # 0 for 
u > u,, and hence the negative Snt(w)-branch leads to flutter, similarly to the ordi- 
nary Hopf bifurcation, except that here more than one mode is involved. As discussed 
by Ziegler (1968). conservative systems lose stability by divergence. If they are gyro- 
scopic, however, they may regain stability, according to linear theory at least, and then 
be subjected to further linear instabilities as the loading parameter is increased. As will 
be seen in Section 3.4, bifurcations such as that of Figure 3.4(c) do occur for u > u, for 
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pipes with supported ends. An example of a system that loses stability by a Hamiltonian 
Hopf bifurcation is the column subjected to a tangential follower load, a nonconservative 
circulatory system, for which u,’ = gC = 20.05. 

Finally, Figure 3.4(d) shows another form of coupled-mode flutter, for which Done & 
Simpson’s (1977) nomenclature of Pai;doussis ’ (coupled-mode)Jlutter will be retained, to 
distinguish it from the Hamiltonian Hopf bifurcation of Figure 3.4(c). The distinguishing 
feature is that in this case the bifurcation originates directly form a divergent state; hence, 
at the onset of flutter (u  = u,), the frequency of oscillation is zero [Rr(w) = 01, and 
then %e(w) # 0 for u > u,. This kind of bifurcation will be found to arise for pipes with 
supported ends (Section 3.4), as well as for other systems (e.g.in Chapter 8). 

3.3 THE EQUATIONS OF MOTION 

3.3.1 Preamble 

The linear equation of motion for a pipe conveying fluid will be derived in the next two 
sections by the Newtonian and the Hamiltonian approaches. Before embarking on these 
derivations, however, it is useful to introduce some basic concepts. 

The first is related to the description of the system via either Eulerian or Lagrangian 
coordinates, differentiated by the concepts of spatial position and particle individuality, 
respectively. In the Eulerian description the coordinates are fixed in space and may not 
be populated by the same material particles as time varies; these are the coordinates 
commonly used in fluid mechanics (e.g. in Section 2.2). In the Lagrangian description, 
coordinates are identified with individual particles (or elemental volumes surrounding 
marked points in the continuum). 

To fix ideas, let us consider the longitudinal vibration of a bar, i.e. a one-dimensional 
continuum. In the Eulerian description, the position x, fixed in space, may be used as 
the independent space variable, and the deflection field described as u(x, t ) ;  as the bar 
vibrates, different particles or material points at different times will be located at x. In the 
Lagrangian description, a given particle may be identified by its position at a given time 
(say, r = 0) or, more usefully, by its position when the bar is undeformed, x = XO. This 
particle will be at a different x as time varies, but will be identified with xo always (Hodge 
1970). Clearly, the deflection field may equally be described in terms of u(x0, t ) .  This is 
the more ‘mechanical’ description and it is the foundation of Lagrangian dynamics, for 
instance. 

Similarly, in the case of flexural oscillations of the pipe, treated as a beam, two coor- 
dinate systems may be utilized: the Eulerian (x, z )  or the Lagrangian (xg, ZO)  - see 
Figure 3.5(a). The equilibrium configuration is along the x-axis, and hence (XO, a) 
(XO, 0) in this case. The lateral deflection of the pipe may be described as w(x, t )  in Eule- 
rian coordinates or W(Q, r )  in the Lagrangian ones; however, as we can see, there is also 
change in the axial or x-position of each point, i.e. u(x, t )  or u(x0, t ) .  If we consider a 
point P, which in the undeformed state is at PO, then its deflection is 

U = X - X O  and W = Z - Z O = Z .  (3.12) 

In what follows we shall use both sets of coordinates, but the usefulness of this discus- 
sion will become most evident when the nonlinear equations of motion are derived in 
Chapter 5. 
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Figure 3.5 (a) The Eulerian coordinate system (x, z )  and the Lagrangian one (XO, ZO) = (XO, 0) in 
which the xo-axis is superposed on the x-axis, showing the deflection of a point Po = Po(&, 0) 
to P(x, z )  and the definition of u and w; (b) diagram used for the derivation of the inextensibility 

condition. 

Two further points should be made: (i) whenever Lagrangian coordinates are used, they 
are used for pipe motions only, not for the fluid; (ii) it is customary to use a curvilinear 
coordinate s, along the length of the pipe, as shown in Figure 3.5(a) - especially useful 
if the pipe is considered to be inextensible. 

The second concept of importance to be discussed in this section is that of inex- 
tensibility. For pipes supported as in Figure 3.1(b,c) for instance, where no deflection- 
dependent axial forces come into play, one may clearly consider the pipe to be inexten- 
sible, i.e. the length of its centreline to remain constant during oscillation. However, in 
the case of a pipe with positively supported ends [Figure 3.l(a)], i.e. with no axial sliding 
permitted, lateral deflection may occur only i f  the pipe is extensible. 

Consider contiguous points P and Q of the deflected pipe, originally (in the undeflected 
state) at PO and Qo, as in Figure 3.5(b). Then, 

(W2 = (sx)2 + (sz>2, (8s0l2 = (6xo)2 + (6zo)2 = (sxo)2, 

from which one may write 

(3.13) 

If the pipe is inextensible, 6s = 6s0 by definition, and the condition of inextensibility 
may be expressed as (g)2+(g) 2 = I .  

(3.14) 

The inextensibility condition may also be expressed in terms of the displacements (u, w); 
by invoking (3.12), 
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(3.15) 

In both (3.14) and (3.13, xo may be replaced by s. 
If the pipe cannot be considered to be inextensible, e.g. in Figure 3.l(a), 6x0 and 6s 

are no longer equal; they must be related through (3.13) which, with the aid of (3.12), 
leads to 

- I  12 

ax,= as [(l+-g)2+(e)2] (3.16) 

The final preliminary point that needs be examined is related to the orders of magni- 
tude of the displacements, which define the degree of approximation and simplification 
that is admissible in the derivations to follow. First, it is reasonable to assume, partic- 
ularly in linear analysis, that the lateral displacement w is small compared to the pipe 
length, i.e. 

w/L - f%E), (3.17a) 

as compared to 2(au/axo), where E << 1. By expanding (3.15) and neglecting 
and also replacing xo by s, i t  is clear that 

I aw 
u 2: - 1’ - (%) ds, u / L  - O ( E * ) ;  

0 2  
(3.17b) 

i.e. longitudinal displacements are one order smaller than the lateral ones. It is also 
well known that, in the Newtonian approach, if all terms are correct to order E ,  so is 
the equation of motion. In the Hamiltonian approach, however, since the energies are 
generally quadratic expressions of displacements and velocities, the various terms should 
be correct to order c2. Hence, in the Newtonian derivation of Section 3.3.2 one may 
take x = xo = s and consider only the lateral deflection of the pipe, w = w(x, t ) .  In the 
Hamiltonian derivation of Section 3.3.3, however, one has to take account of u(x, t )  as 
well, and to take care to differentiate xo or s from x, since then generally x $ s for 
inextensible pipes and also xo # s for extensible ones. 

3.3.2 Newtonian derivation 

Consider the system of Figure 3.1 (a-c), a uniform pipe of length L,  internal perimeter S ,  
flow-area A ,  mass per unit length m, and flexural rigidity EZ, conveying fluid of mass per 
unit length M, with mean axial flow velocity U .  The flow in the pipe is fully developed 
turbulent. Consider the undisturbed axis of the pipe to be vertical, along the x-axis, and 
the effect of gravity to be generally non-negligible. The flow velocity may be subject to 
small perturbations, imposed externally, so that dU/dt # 0 generally. 

The pipe is considered to be slender, and its lateral motions, w(x, t ) ,  to be small and 
of long wavelength compared to the diameter; thus, in accordance with the discussion 
in Section 3.3.1, the curvilinear coordinate s along the centreline of the pipe and the 
coordinate x may be used interchangeably. Consider then elements 6s of the fluid and the 
pipe, as shown in Figure 3.6. 



72 SLENDER STRUCTURES AND AXIAL FLOW 

- 4 8.) 
dS 

(a) (b) 

Figure 3.6 (a) Forces acting on an element 6s of the fluid; (b) forces and moments on the 
corresponding element of the pipe. 

The fluid element of Figure 3.6(a) is subjected to: (i) pressure forces, where the pressure 
p = p(s ,  t )  because of frictional losses, and p is measured above the ambient pressure; 
(ii) reaction forces of the pipe on the fluid normal to the fluid element, F as, and tangential 
to it, qS as, associated with the wall-shear stress q; (iii) gravity forces Mg 6s in the x-  
direction. Applying Newton’s second law in the x-  and z-directions, while keeping in 
mind the small-deflection approximation, yields 

(3.18) 

(3.19) 

where afx and a f z  are the accelerations of the fluid element in the x- and z-direction, 
respectively. Similarly, for the pipe element of Figure 3.6(b) one obtains 

aT aw 
- + q q S + m g - F -  = 0 ,  ax ax 
aQ aw aw 
ax :x ( Z )  ax at 
- + F + -  T -  + ~ S - - C - = ~ L Z , , , ,  

(3.20) 

(3.21) 

(3.22) 

where T is the longitudinal tension, Q the transverse shear force, and A the bending 
moment; moreover, the pipe is subjected to internal dissipation of the Kelvin-Voigt type 
(e.g. Shames 1964; Meirovitch 1967; Snowdon 1968), thus following a stress-strain 
(a, E) relationship of the form a = EE + E*(ds/dt), and also to damping due to friction 
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with the surrounding fluid, expressed in linear form as c(&/at).' The subscript f in 
equations (3.18) and (3.19) identifies the acceleration of thefluid and subscript p in (3.21) 
that of the pipe. Terms of second order of magnitude, for example the pipe acceleration in 
the x-direction, have been neglected, as well as transverse shear deformation and rotatory 
inertia in accordance with the Euler-Bernoulli beam approximation. 

The acceleration of the fluid may be determined in several ways. The simplest is 
utilized here, while other derivations will be employed when considering variants of the 
basic system. The basic assumption is that the fluid flow may be approximated as a plug 
flow, i.e. as if it were an infinitely flexible rod travelling through the pipe, all points of 
the fluid having a velocity U relative to the pipe; this is a reasonable approximation for 
a fully developed turbulent flow profile. As it has been assumed that pipe deflections are 
of long wavelength compared to the diameter, D, and that the pipe is slender, i.e. LID 
is large, unsteady secondary-flow effects may be neglected. Hence, the equivalent of a 
slender-body approximation to the flow is being made. The velocity of the pipe is 

ar 
'' - at 

V - - = x i + i k  (3.23) 

in terms of the unit vectors in the x- and z-directions, defined in Figure 3.5(a), where r 
is the position vector to a point measured from the origin; and the velocity of the centre 
of the fluid element of Figure 3.6(a) is 

v, = v, + ut, (3.24) 

where t is the unit vector tangential to the pipe, 

ax az 
as as 

t = - i i - k .  (3.25) 

(3.26) 

where D( )/Dt is the material derivative for the fluid element. Recalling that z = w 
and that ax/& 21 1 and ax/& - 6(c2) 2: 0 in accordance with the assumptions made, this 
gives 

(3.27) 

In a similar manner, the acceleration is found to be 
2 af = D2r = -i+ dU [: + U L ]  wk, 

Dt dt (3.28) 

in which the bracketed quantity squared represents the successive, double application of 
the differential operator, and hence 

a% a2 a2w d u  aw + 2u - + u2-  + - -. 
asat as2 dt as [$ + u 4 w = 

(3.29) 

'The surrounding fluid is supposed to be sufficiently light (e.g. air) for added-mass effects to be negligible. 
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[Parenthetically, a more 'fluid mechanical' derivation given by Pa'idoussis & Issid 
(1974) will be outlined here, in which an element of the pipe 6s is considered containing 
fluid of volume W. The rate of change of momentum over W may be written as 

(3.30) 

where d@V is a small element within 6"lr. Then, by making the plug flow approximation, 
the velocity V, may be approximated by (3.27). Therefore, 

at dt 

k. (3.31) 

Hence, equation (3.30) yields 

dM dU 
- = M - & i + M  
dt dt 

(3.32) 

which corresponds to the acceleration as given by (3.28).] 
A derivation in which the radial dimensions of the pipe are not ignored is given in 

Section 4.2, but leads to the same form as above. Therefore, recalling that s 2: x ,  by using 
(3.28) or (3.32) one obtains the first two of the following equations: 

the last equation above is the lateral acceleration of the pipe and requires no explanation. 
Hence, combining (3.19), (3.21), (3.22) and (3.33) one obtains 

a 
E - + E  I - - -  ( * i t  ) a# ax 

aw a2w 
+ c - + + - = o .  

at at* 

Also, adding equations (3.18) and (3.20) and using (3.33) yields 

which integrated from x to L becomes 

(T - pA)l 
x=L 1 - (T - PA)  = - ( M  + m ) g  (L  - x ) .  

(3.34) 

(3.35) 

(3.36) 

If the flexible pipe discharges the fluid to atmosphere at x = L - the situation shown in 
Figure 3.l(b,c) - T, which is then entirely due to fluid friction, is zero at x = L; unless 
there is an externally applied tension, denoted by T - as could be the case for the system 
of Figure 3.l(a). The pressure, p. at x = L will also be zero, unless the pipe does not 
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discharge to atmosphere, in which case there may be a mean pressure F at x = L, over 
and above that expended to overcome friction (see also Section 3.4.2). Thus, T and p 
would act uniformly over the total length of the pipe. Now, if the downstream end is 
completely fixed, i.e. the system of Figure 3.l(a) rather than (b,c), internal pressurization 
induces an additional tensile force, which for a thin pipe is equal to 2u7A, where u 
is the Poisson ratio, as first introduced by Naguleswaran & Williams (1968); i.e. the 
tendency of the pipe to expand radially and hence to become shorter, induces this tensile 
force. One may derive this in terms of (i) an axial stress distribution a, = T/A, and 
(ii) the stress distribution due to 7, a,.,. + am = 27A/A,,, where A,, is the cross-sectional 
area of the pipe material (Sechler 1952); these two are then superposed to give the 
axial strain = [a, - ~(a,.,. + a@)] / E .  Now, since no axial movement is allowed at the 
ends, s,” dx = 0, which yields T = 2 UTA. Hence, in general, equation (3.36) may be 
written as 

(3.37) 

where S = 0 signifies that there is no constraint to axial motion at x = L,  and 6 = 1 if 
there is. Of course, it could be argued that, in practice, 7 and p can only be imposed 
if S = 1, so that one should really write A[?= - pA(1 - 2u)l; still, one can conceive of 
ingenious theoretical ways in which T and p may be applied, even for the system of 
Figure 3.l(b) - e.g. by strings and pulleys and bellows - and hence the form of equa- 
tion (3.37) will be retained. Now, substitution of (3.37) into (3.34) gives the equation of 
small lateral motions: 

M U 2 - T + F A ( l  - 2 4 -  ( M + m ) g - M % ]  ( L - x ) } $  dt 

If gravity, dissipation, tensioning and pressurization effects are either absent or 
neglected and U is constant, this simplifies to equation (3.1). The derivation given 
here follows Paldoussis & Issid’s (1974). Earlier derivations of the simpler form, 
equation (3.1), for pipes with supported ends, were made by Feodos’ev (195 1), Housner 
(1952) and Niordson (1953), and for cantilevered pipes by Benjamin (1961a) and Gregory 
& Pa’idoussis (1966a). The equation derived by Ashley & Haviland (1950) is wrong, 
missing the all-important MU2(a2w/ax2) term. Similarly, an equation derived by Chen 
(1971 b) for the case of harmonically perturbed flow is partly wrong, in that the first term 
of equation (3.28) or (3.321, i.e. the axial acceleration effect, is missing, although the last 
term in (3.29) is present; as a result, instead of the M(dU/dt)(L - x)(a2w/ax2), a term 
M(dU/dr)(aw/ax) is found in Chen’s equation of motion. 

There are some subtleties in this derivation that are not quite obvious. This is partly 
the reason for the derivation of Appendix A. 

In several calculations in the following, dissipation in the material of the pipe will be 
modelled not by the Kelvin-Voigt viscoelastic model as in equation (3.38), but by the so- 
called hysteretic or striictiiruf damping model. As shown by Bishop & Johnson (1960) for 
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instance,+ for metals and certain types of rubber-like materials, and over frequency ranges 
of practical interest, energy dissipation can adequately be accounted for by hysteresis; 
then, when a specimen of such a material is subjected to harmonic loading with a (real) 
circular frequency 52, the energy dissipation per cycle can be calculated by taking the 
Young’s modulus to be complex, in the form E(l  + pi), where E and p are constants 
independent of 52, and p << 1. This implies that the small stresses related to hysteresis 
are in quadrature with the principal, linear-elastic stresses. This representation remains a 
reasonable approximation for lightly damped oscillation - i.e. provided that sm(52) << 
%e (52) when 52 = %e(52) + i9m(52); however, if there is another source of damping 
(e.g. flow-induced damping in cantilevered pipes conveying fluid) such that the overall 
damping is large, misleading results may be obtained. Nevertheless, within the limits of its 
applicability [e.g. close to a flutter boundary or for lightly damped conservative systems 
where sm(f.2) << %e(52)], the hysteretic model is very convenient. In that case, the first 
term of equation (3.38) may be replaced by 

(3.39) 

Finally, a variant of the equation of motion, first introduced by Gregory & Paidoussis 
(1966a) for experimental convenience (Section 3.5.6) will be discussed. For simplicity, 
consider the horizontal system with dU/dt = 0 and neglect dissipation. Then suppose 
that the downstream end of the pipe is fitted with a convergent nozzle, assumed to be 
weightless and very short compared to the total length of the pipe. The discharge velocity 
Uj is given by Uj = U(A/Aj ) ,  where A, is the terminal cross-sectional area of the nozzle 
flow passage. Equation (3.36) in this case simplifies to 

(T - pA)l - (T - p A )  = 0; 
x=L 

(3.40) 

consideration of momentum at x = L - cf. the second and third terms of equation 
(2.63) - gives 

I 
( P A  - T ) /  = MU(Uj - U ) ,  

x=L 
(3.41) 

which, in view of (3.40), applies for all x. Hence, substituting into (3.34), simplified 
according to the assumptions made here, yields the modified equation of motion 

a4 a2 a2w a2 
ax4 ax2 axat at2 

EI - +-MUU.  - + 2MU - + (M + m ) -  = 0. (3.42) 

3.3.3 Hamiltonian derivation 

The difficulty in deriving an expression of Hamilton’s principle for this problem lies in the 
fact that the system is open, with in-flow and out-flow of mass and momentum. Housner’s 
(1952) derivation of the equation of motion for pipes with supported ends by means of 

+See also Payne & Scott (1960), Snowdon (1968) and the workshop proceedings edited by Snowdon (1975) 
and Rogers (1984). 
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the kinetic and potential energies of the system entirely ignored this aspect, proceeding as 
if the system were closed, yet fortuitously ended up with the correct equation of motion. 
Benjamin (1961a,b) was the first to derive a proper statement for Hamilton’s principle, 
in his work related to articulated and continuously flexible cantilevered pipes. Benjamin 
rightly maintained that Housner’s derivation was erroneous, since the proper statement 
of Hamilton’s principle was not used; thus, although the correct equation of motion was 
spuriously obtained for pipes with supported ends through a fortuitous error in the kinetic 
energy expression (Benjamin 1961a), there is no question that Housner’s derivation would 
fail if applied to cantilevered pipes. The controversy was resolved by McIver (1973) with 
the aid of a more general form of Hamilton’s principle for open systems, concluding 
that Benjamin’s argument was correct, but Housner’s derivation was also ‘correct’, in a 
sense, though for unexpected reasons. Hence, in this section Hamilton’s principle will 
be reproduced as per McIver’s work, and then the form obtained by Benjamin and the 
equations of motion will be derived therefrom: finally, Housner’s derivation for pipes 
with supported ends will be considered. 

Let us first rewrite the principle of virtual work for a system of N particles, each of 
mass mi and subjected to a force Fi. By d’Alembert’s principle, 

(3.43) 

where ri is the position vector of each particle and Sri the associated virtual displacement 
compatible with the system constraints. It is first noted that 

5 6 6ri = 6w - 6v, (3.44) 
i= 1 

is the virtual work by the applied forces, part of which has been expressed in terms of 
the potential energy V. Then, by re-writing 

where T is the kinetic energy of the system, equations (3.43)-(3.45) lead to 

(3.46) 

Consider next the closed system of Figure 3.7(a) associated with the closed control 
volume y(t), bounded by the surface Yc(t), containing a collection of particles of density 
p,  each with position vector r and velocity u. The principle of virtual work in the form 
just derived may be written as 

(3.47) 

where Zc = T, - 1! is the Lagrangian of the closed system, 6W is the virtual work by 
the generalized forces, and D/Dt is the material derivative following a particle; hence, 
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Figure 3.7 Definition of the control volume of the open system under consideration, T, and 
of a fictitious closed system, coincident with rS, at time t .  The control surfaces Yo and Yc are 
associated with the open and closed parts of the open system. (a) The system at time t ,  and (b) at 

time t + dt. 

u = Dr/Dt. Then, Hamilton's principle may be obtained from (3.47) by integrating it 
between two instants, tl and t 2 ;  in accordance with normal variational procedure, the 
system configuration is prescribed at tl  and t 2 ,  i.e. 6r = 0 so that the last term vanishes, 
and this leads to the familiar form (cf. Section 2.1) 

6 1  ZCdt+[ 6Wdt=0 .  (3.48) 

The extension to open systems is effected by considering a portion Yo(t) of the surface 
of the control volume %(t) (Figure 3.7) to be capable of movement with a velocity V . n 
normal to the surface, across which mass may be transported; n is the outward normal. 
Thus, Yc(t) is associated with the closed part of the system and Yo(t) with the open 
part. Figure 3.7(a) shows the system at. time t, and Figure 3.7(b) at time t + d t .  This 
open system does not necessarily have a constant mass or, if it does, the mass does 
not necessarily comprise the same particles. On the closed part of the control volume, 
bounded by Yc(t), V n = u - n. 

If, at time t, x ( t )  coincides with %(t) as shown in Figure 3.7(a), Reynolds' general 
transport equation [e.g. Shames (1992; Chapter 4)]+ reads 

(3.50) 

may be used since D{ } / D t  makes it clear that a closed control volume is to be employed. 

+Equation (3.49) simply states that the total rate of change in [ ) is equal to the rate of change in the 
volume plus that due to infludefflux through the boundaries. 
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Hence, utilizing (3.47), (3.49) and (3.50) leads to the following form for the virtual 
work equation: 

p(u - 6r)d'V = 0. (3.51) 

This, integrated over time from tl to t2, at which limits 6r = 0 again, gives Hamilton's 
principle for the open system, 

(3.52) 

(3.53) 

with Z0 = 7;, - K, being the Lagrangian of the open system. 
This is next applied to the case of a cantilevered pipe conveying fluid. For simplicity, 

the case of no dissipation and a constant flow velocity U is considered. Moreover, it is 
presumed that the only forces involved in 6W are associated with the pressure p ,  measured 
above the ambient of the surrounding medium; hence, 

p(u - Sr)(V - u) . ndY, (3.54) 

where Yc(t) is the surface covered by the pipe wall, and Y, and $ ( t )  are the inlet and 
exit open surfaces for the fluid. Next, it is presumed that any virtual displacement of 
the pipe does not induce a virtual displacement of the fluid relative to the pipe. Thus, 
virtual displacements of the fluid relative to the pipe are independent of those of the pipe. 
Hence, since the fluid is incompressible, there can be no virtual change in the volume of 
the system, and expression (3.54) simplifies to 

p(6r * + /L,+ye(tl J H = -  JJ 
:fc ( r  )+Yl +4 (11 

p(u 6r)(V - u) e n dY. (3.55) 
6~ = - / /X+$(r ,  '(6' * n)dY + //x+z(tl 

Now, if the fluid entrance conditions are prescribed and constant, the integrals over are 
zero. Furthermore, the first integral over Ye(t) is zero since at the outlet p = 0. Hence, 
the only part remaining is 

(3.56) 

in obtaining which u = r + U t  [Figure 3.8(a)], (u - V) n = U at $(t) and M = pA 
have been utilized, A being the open (flow) area. Hence, Hamilton's principle for this 
system becomes 

which is identical to that obtained by Benjamin (1961a).+ 

'In Benjamin's derivation, as in Figure 3.l(d), RL is measured from the ( x ,  z )  = (L,  0) position, whereas 
here r L  = Li + RL is measured from the origin; however, as i~ = RL and SrL = SRL, the two expressions are 
fully equivalent. 
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Figure 3.8 (a) Definition of the coordinates and unit vectors associated with movements of the 
free end of a cantilevered pipe (top), and the relationship between i, k, t and x for any point along 
the cantilever (bottom); (b) velocity components for an element of the fluid in a cantilevered pipe; 

(c) the same for an element of the fluid in a pipe with clamped ends. 

The equation of motion is derived next, for a vertical cantilevered pipe, taking into 
account gravity effects. The pipe is assumed to be inextensible, and use is made of the 
curvilinear coordinate s. The derivation involves the evaluation of the various terms in 
the Hamiltonian statement (3.57), following along similar lines to Benjamin's (1961a) 
and Paldoussis' (1973a), but making use of the notation and relationships developed in 
Section 3.3.1. 

Some useful relationships will be obtained first, as follows: (i) recalling from (3.12) 
that u = x - xo with xo = s here, then ,i = U ;  (ii) from (3.14), ax/as = [1 - (a~/as)~]'/~ 
with z = w, and hence ax/& 2 1 - i d2 ,  where ( )/as; (iii) from (3.17b), uL = 
- so zw ds. Also, one may write r~ = i L i  + iLk = ULi + WLk; from (3.25), tL = xii + 
z ik  2: [I  - iwf ] i  + wik; 6rL = BuLi + 6wLk; and the second term of (3.57) may be re- 
written as 6" [ M U 2  8uL + MU(WL + Uw;) 6wL] dt, (3.58) 

1' = a( 
L 1 / 2  

correct to S(c2), having made use of the order considerations expressed by (3.17a,b). 
Hence, by grouping the terms implicitly involving a double integral into the first term, 
Hamilton's principle is rewritten as 

correct to (!?(e2). 
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The kinetic energy of the pipe and the fluid may be evaluated by making use of (3.23) 
and (3.26), 

L 

Tp = i m  1 0 (x2 + i2) ds, q = &M .IL [(i + Ux’I2 + (i + U Z ’ ) ~ ]  ds, (3.60) 

in which m and M have been defined in Section 3.3.2; again, the subscripts p and f 
stand for the pipe and fluid, respectively. The integrands in $ and Tf may be simplified 
by noting that X - 6(e2), x’ 2: 1 - ; w ’ ~ ,  and x ’ ~  + z ’ ~  = 1 from inextensibility condition 
(3.14). Hence, recalling also that X = U and z = w, the expressions for $ and Tf become 

L L 
$ =  l m l  W 2 d s ,  Tf = i M l  [U2+W2+2Uww’+2UU]ds. (3.61) 

It is noted that (3.61) could have been obtained directly with the aid of Figure 3.8(b); the 
various terms are obtained from Cartesian components of (3.24), which may be expressed 
as (W + U sin x) and (U  cos x + U )  with sin x 2 w’ and cos x 2: 1 - ; w ’ ~ ,  neglecting 
terms smaller than 6(e2). 

The potential energy is given by 

v = vp + v, = ;EI lL w”’ ds + &(m + M ) g  lL I’ w ’ ~  ds ds. (3.62) 

The component of V associated with gravity may be simplified via integration by parts, 
as follows: 

i ( m  + M)g/‘  1’ w ’ ~  dsds = ; (m + M ) g  { [s 1’ wI2 ds] 1: - 1‘ ~ w ’ ~  ds} 
0 0  

L 
= T ( m  I + M ) g  / (L  - s ) ~ ’ ~  ds. 

0 

Finally, substituting (3.61)-(3.63) into (3.59) and making use of 
ational techniques and of the boundary conditions for a cantilever, 
manipulation, this reduces to 

(3.63) 

the standard vari- 
after considerable 

+ ( M  + m ) h )  Swds dt = 0. (3.64) 

Two items should be remarked upon in the derivation of (3.64). Firstly, the terms in 
the second integral of (3.59) cancelled out with identical ones originating from the first 
integral after integration by parts. For instance, 

6 1  MU2uLdt = MU26 6’ lL $ d 2 d s d t  = M U 2  h” w’(6w)’ ds dt 

= M U 2 [  w‘Sw1 L dt -MU2 1” .IL W” 6w ds dt, 

0 
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the first part of which becomes MU2 Jy w; B W L ,  because of the boundary conditions, and 
cancels the second term of the second integral of (3.59). The expression above also makes 
it clear that the centrifugal term M U2wl1 does not arise from the hnetic energy, as might 
have been supposed, but from the second term in the statement of Hamilton’s principle, 
equation (3.57). The second item concerns the term 2Uu in T f ,  in equations (3.61). Once 
the variation is taken, this leads to Jt 2U 6u 1: = 0. 

For arbitrary variations Sw and with s 2: x, the term within the curly brackets in 
equation (3.64) is the desired equation of motion. It is the same as (3.38), but with 
E* = 0, c = 0 and dU/dt = 0, in accordance with the assumptions made here. 

Consider next a pipe with clamped ends, but allowing sliding at the downstream one 
[Figure 3.l(b)]. In this case the second integral of (3.59) is zero, but U L  in the first 
integral is not, and it is again this term rather than the kinetic energy that is responsible 
for the centrifugal force term in the equation of motion. Everything else remains the 
same, including the inextensibility condition. After considerable manipulation, the same 
equation of motion is obtained - but only if U L  is not ignored, whereas it was in Housner’s 
derivation. 

Consider finally the case of fully clamped ends - not allowing any sliding at x = L. 
As pointed out by McIver, in this case there is no motion possible at x = L, Le. 6 x ~  = 
SZL = 0; that is, the ‘contraction’ in the sense used by Benjamin and defined for in- 
extensible pipes by U L  = - so ?w ds is zero in equation (3.59), and hence so is u at any 
location s along the deformed pipe. In fact, for lateral deformation to occur, there will be 
some stretching of the pipe as shown in Figure 3.8(c), which results in its cross-sectional 
shrinking. Thus, the element of the pipe 6s is stretched to 6s(l + ;wf2)  and the flow 
velocity relative to the pipe through the narrower flow passage, A(l  - ; w ’ ~ ) ,  is increased 
to U(l + i d2 )  for continuity at each location s; hence, the x-component of the flow 
velocity is [U(1 + $wf2) ]  (1 - ;wf2)  2: U .  Therefore, in this case, at least approximately 

L 1 12 

to S ( 2 ) ,  
L 

Tf = [(W + uw’)2 + U2] dx, 

as utilized by Housner - correct, but without the benefit of the refined arguments leading 
to it. With this expression, i.e. with iC = 0, and with U L  = 0, Hamilton’s principle (3.59) 
yields the very same equation of motion as for the sliding end and the cantilevered 
case - at least to the linear limit. In contrast to the previous two cases, here the centrifugal 
force term in the equation of motion arises from the kinetic energy. 

3.3.4 A comment on frictional forces 

A remarkable feature of equations (3.38) and (3.1) is the total absence of fluid-frictional 
effects, which at first sight might appear to be an idealization. However, within the 
context of the other approximations implicit in this linearized equation, it may rigorously 
be demonstrated that fluid-frictional effects play no role in the dynamics of the system, 
a fact first shown by Benjamin (1961a,b). Consider once more the balance of forces in 
the axial direction of elements of the fluid and the pipe, i.e. equations (3.18) and (3.20) 
for the case where dU/dt = 0 and gravity is inoperative (Le. for motions in a horizontal 
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plane) to make the argument simplest: 

a P  aw aT aw 
ax ax ax ax -A - - q S +  F - = 0, - + q S  - F - = 0, (3.65) 

which, when added give 
a 

- (T  - P A )  = 0. (3.66) 
ax 

Thus, the frictional force qS is replaced by its twin effects: (i) as a tension on the pipe 
and (ii) as a pressure drop in the fluid. Equation (3.66), when integrated from x to L gives 
( T  - PA), = (T  - ~ A ) L ,  the equivalent of equation (3.36). Ignoring externally imposed 
tensioning and pressurization, which do not enter the argument (and which are discussed 
in Section 3.4.2), and thus considering for simplicity the fluid to discharge to atmosphere, 
both p and T vanish at x = L,  and hence 

T - PA = 0 for x E [O. L ] .  (3.67) 

It follows that the term related to T and p in equation (3.34), the precursor to the final 
equation of motion, vanishes, i.e. 

- a [ (T  - PA):] = 0, 
ax (3.68) 

because of (3.66) and (3.67). Therefore, the two effects of friction - tensioning and 
pressure drop - cancel each other entirely and vanish from the equation of motion, to 
the order of the linear approximation (Benjamin 1961a; Gregory & Pdidoussis 1966a). 

This has been verified experimentally (see Sections 3.4.4 and 3.5.6), and also numeri- 
cally in calculations with shell theory for beam-mode vibrations ( n  = 1) in Chapter 7. 

3.3.5 Nondimensional equation of motion 

Consider the most general form of the equation of motion derived so far, equation (3.38). 
It will help further discussion if this equation is generalized a little by considering the 
possibility that the pipe may be supported all along its length by a Winkler-type elastic 
foundation, which involves distributed springs of stiffness K per unit length: thus, a term 
Kw is added to the equation of motion. 

The resultant equation may be rendered dimensionless through the use of 

The dimensionless equation is 

(3.69) 
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where ( ‘ ) = a( 
parameters have arisen: 

)/at and ( )’ = a( )/at, in which the following dimensionless system 

- 
M (M + m ) ~ ~  T L ~  

g, r=-, E l  ’= E l  

I E* cL2 
c =  

KL4 
E I ’  . = [ E ( M + m ) ]  s’ [EI(M +rn)]1/2’ 

k = -  ~ A L ~  n=- 
E l  ’ 

(3.71) 

In general, the system dynamics will depend on all of these parameters. 

two terms of (3.70) should be replaced by 
If the hysteretic damping model is used, it is clear from expression (3.39) that the first 

(1 + pi)Q””. (3.72) 

This corresponds to solutions of (3.70) of the type ~(4, t) = Y(t)exp(iws), in which w 
is either wholly real or, if complex, such that %e(w) >> 9,m(w); the hysteretic model 
may thus be considered as a particular case of the viscoelastic one for which (YO = p or 
a%e(W)  = p, respectively. The dimensionless frequency w is related to the dimensional 
circular (radian) one, f2, by 

(3.73) 

In the case of an end-nozzle, as discussed at the end of Section 3.3.2, the definitions of 
u and /3 in (3.71) need to be modified to 

M U  
(3.74) 

With these, the dimensionless form of equation (3.42) is identical to the appropriately 
simplified equation (3.70), namely 

q”” + U*Q” + 2/3’/2ulj’ + = 0. (3.75) 

The usefulness of the end-nozzle emerges from the second of equations (3.74): instead of 
changing pipes, one may change nozzles to alter j3, at least over a range relatively close 
to the initial B for the pipe without a nozzle. 

3.3.6 Methods of solution 

Two methods of solution will be given: the first, due to Gregory & Paidoussis (1966a), 
for the simpler, homogeneous equation of motion; the second, used by Pafdoussis (1966) 
and Pafdoussis & Issid (1974), applies to the fuller, nonhomogeneous equation of motion. 
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(a) First method 

The simplest form of the equation of motion, equation (3.1), will be considered first, 
which in dimensionless form becomes 

a417 a2q a2r a 2 r  
- + u - + 2 p u  ~ +- -0 ,  at4 a p  acat a t 2  

(3.76) 

subject to the appropriate boundary conditions; e.g. for a pipe with simply-supported 
('pinned') ends, 

(3.77) 

while for a cantilevered pipe, 

(3.78) 

Consider now solutions of the form 

r ~ ,  r )  = ~ W O ) ~ ' " ' I ,  (3.79) 

where w is the dimensionless circular frequency defined by (3.73). In general, w will 
be complex, and the system will be stable or unstable accordingly as the imaginary 
component of w ,  9m(w), is positive or negative; in the case of neutral stability w is 
wholly real. Substituting (3.79) into (3.76) leads to 

Next, we take a trial solution 
Y ( 6 )  = A&, 

(3.80) 

(3.81) 

where A is a constant. When this is substituted into equation (3.80), the equation deter- 
mining the permissible values of the exponent a is obtained, namely 

a4 - u2,2 - 2 p u m  - 0 2  = 0, (3.82) 

and since this equation is of fourth degree, the complete solution of (3.76) is given in 
general by 

(3.83) 

in which the four A, must be determined from the boundary conditions. This is illustrated 
here for the cantilevered system. Making use of (3.78), we find 
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For nontrivial solution, the determinant of the Aj must vanish, yielding 

1 1 

(3.84) 

Since the roots of (3.82) cannot be expressed in simple explicit form in terms of u, w 
and j3, and in view of the complexity of (3.84), it is not possible to obtain solutions by 
direct methods, Three methods of solution were given by Gregory & Paidoussis (1966a): 
(i) a rather ingenious method of transforming the original problem into one easier to 
solve numerically in 1966;+ (ii) a straightforward numerical method; and (iii) a Galerkin 
solution. Of these, only (ii) will be outlined here, as follows: (a) starting with a small 
value of u, say u = 0.1, and trial values of %e (w)  and 9m(w), say those for u = 0, a 
minimizing procedure (e.g. a secant method) finds the appropriate values of %e(@) and 
$m(w) which result in %e(A) = 9nr (A)  = 0 to within desired accuracy; (b) the value 
of u is increased by 6u, say by 0.1, and using the %e(w) and 9m(w) found in (a) as first 
approximations, the minimizing procedure determines the complex frequency for u = 0.2; 
and so on. 

Clearly, this method has to be applied for each mode separately (for a given value of 
#?), the locus to be followed depending on the initial trial value for %e(w). 

fbl Second method 

The fuller equation of motion (3.70) is nonhomogeneous, since the coefficients of deriva- 
tives of are explicit functions of 6 and/or implicit ones of T, because u = u(r); hence, 
the foregoing method of solution is inapplicable. A solution for u = const. is, however, 
readily possible via the Galerkin method and will be given here; the case for u = 
u(r)  is considered in Chapter 4. This is approximate, not only in the strict numerical 
sense, but also because of the finite number of terms utilized in the Galerkin expansion 
(Section 2.1). 

Let 
00 

rl(6, = 4 r O )  41- (TI, (3.85) 
r= 1 

where q r ( t )  are the generalized coordinates of the discretized system and &(c) are the 
dimensionless eigenfunctions of a beam with the same boundary conditions as the pipe 
under consideration, and hence they are appropriate comparison functions (Section 2.1.3). 
It is presumed that the series (3.85) may be truncated at a suitably high value of r, r = N .  
Substitution of (3.85) into (3.70) with iC = 0, followed by multiplication by and 

+Computers were then new and slow, and 6 n t v h  tixvcrs Kampy&<6mi; i.e. poverty (necessity) develops 
ingenuity! 



Table 3.1 The constants b,, , c,, and d,, . 

Pinned-pinned pipes Clamped-clamped pipes Cantilevered pipes 

4 

b,, 0 0 2 
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integration over the domain [0,1] yields 

(3.86) 

in which the orthonormality of the eigenfunctions was utilized (Le. the fact that 
JJ @,@, d t  = S,,, S,, being Kronecker’s delta), as well as the fact that @r = h:@,, A, 
being the rth dimensionless eigenvalue of the beam. The definite integrals may be 
evaluated in closed form, defining the following set of constants: 

Their values for some sets of boundary conditions are given in Table 3.1, in which the 
a, are the constants associated with the 4, [Bishop & Johnson 1960; cf. equation (2.28)]. 
The method for evaluating h,,, c,, and d,, analytically is illustrated in Appendix B. 

Equation (3.86) may be written in matrix form as follows: 

q + [F + 2/3”2uB]Q + {A + yB + [u2 - r + n(l - 214 - y]C + yD}q = 0, (3.88) 

where q = (41, q 2 ,  . . . , q ~ ) ~ ,  F and A are diagonal matrices with elements (ah: + a) 
and (A: + k), respectively, and B, C and D are matrices with elements b,,, c,, and d,,, 
respectively. This equation may be written in standard form, 

[Mlq + [CIQ + [Klq = 0 (3.89) 

cf. equation (2.1), Section 2.1. Its eigenvalues may be found in various ways; e.g. by 
transforming it into first-order form by the procedure leading from equation (2.15) to 
(2.17), and then to the standard eigenvalue problem of equation (2.18). The eigenvalues 
may be obtained numerically, e.g. by the IMSL library subroutines or those given by 
Press et aE. (1992). 

3.4 PIPES WITH SUPPORTED ENDS 

3.4.1 Main theoretical results 

We first consider the simplest possible system: a simply-supported (or ‘pinned-pinned’) 
horizontal pipe ( y  = 0) with zero dissipation, and with /? = 0.1, r = I7 = k = 0 in equa- 
tion (3.70). The dynamical behaviour of this system with increasing dimensionless flow 
velocity, u, is illustrated by the Argand diagram of Figure 3.9. It is recalled that %e(w) is 
the dimensionless oscillation frequency, while 9am(w) is related to damping, the damping 
ratio being ( = 9am(w)/%e(w). The general dynamical features already remarked upon in 
Sections 3.2.1 and 3.2.3 are clearly seen: (i) since dissipation is absent in this example, the 
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1st and 2nd modes - - f 8  

1 I I I I I I 

Figure 3.9 Dimensionless complex frequency diagrams for a pinned-pinned pipe; ,9 = 0.1 and 
r = 17 = (II = cr = k = y = 0 [ see equations (3.71) for meaning of symbols]. The loci that actually 
lie on the axes have been drawn slightly off the axes but parallel to them for the sake of clarity. 
- 0 - , first mode; - W - , second mode; - A - , third mode; - W - - W - , combined 

first and second modes (Paldoussis & Issid 1974). 

eigenfrequencies are purely real and they are diminished with increasing u, for 0 5 u < n; 
(ii) at u = U,d = n the system loses stability in its first mode by divergence, via a 
pitchfork bifurcation, and thereafter the eigenfrequencies become purely imaginary - cf. 
Figure 3.4(a). 

The dynamics of the same system but with clamped ends is illustrated in Figure 3.10, 
which also shows another way of presenting the results. In this case, U,d = 217, but the 
qualitative dynamics is similar to that in Figure 3.9; for u < U,d the eigenfrequencies are 
all purely real, whilst for u > U,d those associated with the first mode are, initially at 
least, purely imaginary. 

The values of U,d in Figures 3.9 and 3.10 may readily be found by the method of 
Section 3.3.6(a). By setting w = 0 in equation (3.82), one obtains a1,2 = 0, a3,4 = *tu, 
and hence q(c )  = A I  + A26 + A3 exp(iuc) + A4 exp(-iuc), which is the appropriate form 
of (3.83) in this case. Then, application of boundary conditions (3.77) for pipes with 
simply-supported (pinned) ends leads to the characteristic equation 

sin u = 0, (3.90a) 

with roots u = nn,  the first nontrivial one of which is u = u,d = n. The second root, 
u = 275, is associated with divergence of the second mode or restabilization of the first, 
as will be seen in the following. Proceeding in a similar way for clamped-clamped pipes, 
the characteristic equation is found to be 

2(1 - cos u )  - u sin u = 0, (3.90b) 
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Figure 3.10 The real and imaginary components of the dimensionless frequency, w,  as functions 
of the dimensionless flow velocity, u, for the lowest three modes of a clamped-clamped pipe; 

#? = 0.1, r = l7 = a = u = k = y = 0 (Pai’doussis 1975). 

with roots u = 2n, 8.99, . . . , 4 n ,  . . ., so that Ucd = 2n as in Figure 3.10. For 
clamped-pinned ends, the characteristic equation is 

u - tan u = 0, (3.90~)  

which gives u = u,d 2 4.49. Incidentally, this static analysis for the stability of conser- 
vative systems is known as Euler’s method of equilibrium (Ziegler 1968). 

The dynamics of a clamped-clamped system with 6 = 0.5 is illustrated in Figure 3.1 1. 
Once again, u,d = 2n. In fact, u,d is independent of 6, as already seen in the results 
obtained by Euler’s method; this is so because j3 is always associated with velocity- 
dependent terms in the equation of motion, while divergence represents a static loss 
of stability. Once more, the dynamics up to u 2: 8.99 is similar to that in Figures 3.9 
and 3.10. 

The results presented here are based mainly on Pdidoussis & Issid’s (1974) work. 
Before embarking on the discussion of post-divergence dynamics, a historical parenthesis 
on the early, successful work on the dependence of w on u and on the determination of 
Ucd is in order, some of it predating the computer era. Feodos’ev (1951) and Housner 
(1952) utilize Galerkin’s method, essentially the method of Section 3.3.6(b), to examine 
stability and determine w as a function of u. Li & DiMaggio (1964) use the method 
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Figure 3.11 Dimensionless complex frequency diagram for a clamped-clamped pipe; = 0.5 
and r = l7 = a! = (r = k = y = 0. The loci that actually lie on the axes have been drawn slightly 

off the axes but parallel to them for the sake of clarity (Pai'doussis & Issid 1974). 
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of Section 3.3.6(a) and obtain the full curve of the first-mode o versus u, up to uCd, 
by computer. However, more interesting methods have also been employed: the direct 
method of Lyapunov (Appendix F.1.3) by Movchan (1965), and the methods of integral 
equations by Jones & Goodwin (1 97 1). Also, utilizing a perturbation method, Handleman 
(1955) determines the dependence of w on u in the vicinity of u = 0 and u = ucd. In 
all cases the simplest form of the equation of motions is considered, equation (3.1), and 
in all cases but the last for pinned-pinned pipes only. Finally, Niordson (1953) presents 
an elegant wave solution to the more general problem of a thin-walled pipe, modelled 
as a shell (Chapter 7); the required results for beam-like motions are then obtained by 
considering the n = 1 mode of the shell - see Figure 2.7(c). 

The post-divergence dynamical behaviour of these systems, i.e. for u > U,d,  is of consid- 
erable interest. It should, however, immediately be remarked that strictly, linear theory is 
applicable only up to the first loss of stability. The reason for this is that, in the linear 
equation of motion, it is required that motions be small, in the vicinity of the equilib- 
rium state, while for u > u,d the system has diverged away from that state.' However, 
in some cases (e.g. in Chapter S), the buckled state is not so far away from the original 
stable equilibrium configuration, and then linear theory is capable of predicting the post- 
divergence dynamics of the system reasonably well. Hence, it is not pointless to examine 
the post-divergence dynamics as predicted by linear theory. 

It is seen in Figures 3.9 and 3.10 (,!? = 0.1) that the simply-supported and clamped 
systems develop divergence in the second mode at u = 2n and 8.99, respectively. Then, 
the loci of the two modes coalesce on the Sm(w)-axis and, at slightly higher u (u 2 6.38 

T-- 
19.5 - 

6.5f: \ - 
\ 10 

- 
I I -/ ' J 

, \ &  , ,  
4 16 20 

'Of course, the stability of the original equilibrium as predicted by linear theory is always valid, but other 
states emerge once nonlinear effects are considered. 
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in Figure 3.9 and u 2: 9.0+ in Figure 3.10), they leave the axis, indicating the onset of 
Pafdoussis-type coupled-mode fluttert as defined in Section 3.2.3 and by Figure 3.4(d). 

The behaviour of Figure 3.11 (j3 = 0.5) is different. The w = 0 solution for u 2: 8.99 
does not correspond to a second divergence, but to restabilization of the system. This lasts 
to u 2: 9.3, whereupon coupled-mode flutter occurs via a Hamiltonian Hopf bifurcation, 
as defined in Figure 3.4(c). 

What is particularly interesting about this predicted coupled-mode flutter is its orig- 
ination. As discussed in Section 3.2.1 and as shown by equations (3.5) and (3.6), for 
periodic motions there is no energy transfer between the fluid and the pipe. Hence, since 
the system is conservative, the question arises as to how the instability can be supported 
whilst the total energy of the system remains constant. As pointed out by PaYdoussis & 
Issid(1974), the question is not quite like this, since the critical point for the onset of 
flutter, unlike for the nonconservative (cantilevered) system, is not a point of neutral 
stability; rather, it involves the coincidence of two real frequencies, and hence growing 
oscillations of the form q(c,  t) = % e [ f ( c ) ( a  + bt) exp(iwt)], with w real. The source of 
energy is of course the flowing fluid, yet how some energy is channelled to generate the 
oscillatory state remains the question. A possible answer was provided, via an ingenious 
set of arguments, by Done & Simpson (1977) for a pipe with supported ends but with the 
downstream end free to slide axially [Figure 3.1(b)]. 

First, one may consider a two-mode Galerkin approximation of the system, namely 

For clamped and pinned ends, b,, = 0 and b,, = -brs; for pinned ends, csr = 0 for all 
r # s, while the same applies to clamped ends for r + s odd, which is the case here. 
Hence, equation (3.91) may be written as 

q = 0. (3.92) 
A; + O I  u2c22 

0 -2/3112~b21] ir+ [A;' +;'cI~ 

q + [ 2/3'/2~b21 0 

It is of interest to remark that (i) the damping matrix is skew symmetric, which is a 
characteristic of the system being gyroscopic conservative, as already remarked, and 
(ii) by setting det[K] = 0, [K] being the stiffness matrix, one retrieves the zeros for static 
loss of stability Ucd = 7t and u = 237, exactly for simply-supported ends and approximately 
for clamped ends (since in this case the matrix is not fully diagonal for N > 2). 

Then, solutions of the form q = qo exp(At) are considered, leading to the characteristic 
equation 

(3.93) 

with p4 = 1, p2 = [A;' +A; - u2(cll + c22) - 4Bu2b&], po = (A: - u2cll)(h; - u2c22). 
The condition of coalescence of two eigenfrequencies corresponds to two equal roots 
of (3.93), which occurs if p i  - 4p4po = 0. The results for clamped ends are shown in 
Figure 3.12, where it is seen that all the critical points of Figures 3.10 and 3.11 are 

p4h4 + p2h2 + po = 0, 

?This flattering appellation, coined by Done & Simpson (1977), has been retained here for this particular 
form of coupled-mode flutter. This phenomenon, however, although analytically intriguing, was shown to be 
physically doubtful with h e  appearance of Holmes' (1977, 1978) work. This would have rendered any claim 
to fame by this book's author rather ephemeral, were it not for the fact that, luckily, the physical reality of the 
phenomenon is firmly established for another system (Chapter 8)! 
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Figure 3.12 Map of different kinds of instabilities predicted by linear theory for clamped-clamped 
pipes with a sliding downstream end (6 = O), for varying p and r = 17 = CY = o = k = y = 0, 
following Done & Simpson (1977). The first (lower) divergence zone is associated with the first 
mode; the second with the second mode. For p < 0.139 the coupled-mode flutter is of the Pai'doussis 

type; for p > 0.139 it is via a Hamiltonian Hopf bifurcation. 

reproduced quite well. It is also seen that the two types of coupled-mode flutter are neatly 
separated: PaTdoussis flutter for 6 < 0.139, and flutter via a Hamiltonian Hopf bifurcation 
for higher 6. (The results for pipes with pinned ends are quite similar, but the critical 
value of is = 0.26 in that case.) 

Next, since the pipe is free to slide axially at 6 = 1, the total dimensionless 'contraction' 
(see Section 3.3.3) as a result of motions is given by 

c = IuLI/L = 3 (W'l2d6 = 3 [qi(t)4;(6> + 42(t)41(t)I2 dt7 (3.94) I '  I' 
where UL is the axial contraction, defined by (3.17b), at s = L. The integral gives rise 
to quantities of the type IO @#; d6 esr and, for the boundary conditions of interest, 
integrating by parts yields esr = -csr. Since the cross-terns ( r  # s, r + s = odd) are 
zero as per Table 3.1, one is left with err = -crr = hror(krcr - 2), which shows that 
err > 0 for all r ,  for either clamped or pinned ends. Hence, c may be re-written as 

1 

(3.95) 

a positive quantity. Consider now the particular case of coupled-mode flutter via a Hamil- 
tonian Hopf bifurcation. At the onset of flutter, q1 = 410 exp(iwt) and q 2  = q20 exp(iwt), 
while the ratio of q 2 0 / q l 0  may be obtained from either of the two equations in (3.92), 
say the first, namely q20/q10 = [-w2 + h;' - ~ ~ q l ] / [ ~ ' / ~ ~ b 2 1 w i ] ,  an imaginary quantity; 
hence the displacements in the two modes are in quadrature (90" out of phase), and 
one can write ql = q1 cos wr, q 2  = q2 c o s ( o t  + i x )  = q2 sin or. Therefore, the axial 
shortening (contraction) over one or several periods of oscillation may be calculated 
through (3.95), giving a mean value of the contraction, C, and an oscillating component 
of frequency 2w [because of the quadratic nature of (3.95) and sinusoidal form of ql and 

2 2 c = ;(ellql +e22q2), 
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q 2 ]  and amplitude C: 

Clearly, at no time in the course of the oscillation can the contraction become instanta- 
neously zero. A similar argument may be made in the case of PaYdoussis flutter; in this 
case, q20/q10 is not purely imaginary but complex, and the phase angle is not neatly in 
but an angle 4. Nevertheless, the same conclusion may be reached with regard to the 
overall contraction never becoming zero during oscillation. 

The implication of this is that the momentum flux of the fluid issuing from the sliding 
end of the pipe does work on the system in achieving a certain oscillation, M U 2  acting 
as a compressive load P as discussed in Section 3.1 and acting over a distance equal to 
the mean contraction, C. No net work is required thereafter to maintain the oscillation, 
but there is an oscillatory flow of energy because of the axial motion of the downstream 
end of the pipe, which nevertheless is zero over a cycle of oscillation. This energy 
may be thought of as being carried in the form of travelling waves, as will be seen in 
Figure 3.13, with a node moving down to the pipe exit in half a cycle of oscillation. It 
is in this ingenious way, thanks to Done & Simpson, that the paradox of oscillation with 
no net energy expenditure may be explained! 

1 1  0 - 3 -  

, 
3 5  

d 8 8 
- 9 -  

- .  
4 

8 2 

2 4 

Figure 3.13 Variation of modal forms of the fundamental mode of a simply-supported 
pipe of vanishing flexural rigidity during a period of oscillation: (a) u = 0; (b) u/u, = 0.25; 

(c) u/u, = 0.75; the fractions denote fractions of the period (Chen & Rosenberg 1971). 
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It should be pointed out that the term 2B1/2ub21 played an important role in all of 
the foregoing, not accidentally but because it is associated with the Coriolis term in the 
equation of motion, which in turn is what makes the system gyroscopic conservative, 
rather than just conservative. It is of interest that calculations with /3 = 0 show that, when 
the system is purely conservative, the only form of instability is divergence; coupled-mode 
flutter does not arise. 

Another effect of the Coriolis forces - despite not doing any net work over a cycle 
of oscillation - is that they render classical normal modes impossible.' Thus, the modal 
displacement patterns contain both stationary and travelling-wave components, as seen in 
Figure 3.13(b,c). Physically, this is a consequence of the forward and backward travelling 
waves having different phase speeds (Chen & Rosenberg 1971) - see also Section 3.7. 
Contrast this to Figure 3.13(a), where u = 0 and the Coriolis forces vanish; in this case 
classical normal modes do exist. 

The dynamics of the same system as in Figure 3.1 1 but with dissipation taken into 
account (a = 5 x lop3) is shown in Figure 3.14. It is seen that coupled-mode flutter of 

24 

16 

8 

0 

-8 

-16 
40 86 88 0 4 8 12 36 
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Figure 3.14 Dimensionless complex frequency diagram of a damped clamped-clamped pipe for 
j? = 0.5, a = 5 x IO-', r = I7 = o = k = y = 0. The loci that actually lie on the [9m(w)]-axis 
have been drawn off the axis but parallel to it for the sake of clarity (Pai'doussis & Issid 1974). 

'If the various parts of the system vibrate with the same phase and they pass through the equilibrium 
configuration at the same instant of time - as would be the case for a string or a beam - the normal modes 
(eigenmodes) are called classical. The necessary and sufficient conditions for their existence were investigated 
by Caughey & O'Kelley (1965) and others: see also Chen (1987; Appendix A). 
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another kind arises, at a slightly lower critical flow velocity, in which the two branches 
of the same mode are involved rather than two different modes. We shall continue calling 
this a coupled-mode flutter since, strictly speaking, the two branches on the 9m(w)-axis 
should be considered as being associated with different modes, from the left-hand (not 
shown) and right-hand sides of the complex o-plane - see Figure 2.10(a). 

The Done & Simpson argumentation for coupled-mode flutter may be extended to 
dissipative systems by supposing that, at the threshold of flutter, a sustained correction 
in the contraction c may be effected by the discharging axial momentum flux, so as to 
maintain a constant-amplitude motion. Thus, effectively, a sustained rate of work occurs 
through axial motion, whereas the dissipation occurs through lateral motion; note also 
that AW = 0 in equation (3.95) in the undamped system applies to lateral motions. 

It is important to stress, yet again, that both the restabilization of the system after 
divergence (e.g. in Figure 3.11) and the coupled-mode flutter are due to the gyroscopic 
nature of the system, i.e. to the Coriolis terms in the equation of motion. As pointed 
out by Shieh (1971) and Huseyin & Plaut (1974), purely conservative systems cannot 
be restabilized after divergence ‘on their own’, but gyroscopic forces can restabilize an 
otherwise conservative system, a fact known since Thomson & Tait’s (1879) work. The 
possibility of coupled-mode flutter is a much newer ‘discovery’ which may be attributed 
to Shieh, who illustrated its existence with an example from gyrodynamics involving a 
shaft under an axial compression P ,  rotating with angular velocity R .  The equations of 
motion are 

Ely”” + Py” + M ( y  - 2 n i  - L P y )  = 0,  

EZZ’”’ + Pz” + M ( i  + 2 n y  - D2Z) = 0,  
(3.97) 

in which y and z are mutually perpendicular deflections in a plane normal to the long 
axis; these equations clearly bear close similarity to that of the problem at hand - cf. 
equation (3.1). 

Huseyin & Plaut (1974) discuss the dynamics of gyroscopic conservative systems in 
general, as well as the rotating shaft and pipe systems as examples. The latter will be 
discussed here briefly, partly (i) to introduce the concept of the ‘corresponding nongyro- 
scopic system’ and (ii) to demonstrate the use of the so-called ‘characteristic curves’. 
Huseyin & Plaut considered a two-degree-of-freedom discretization of the horizontal 
system, i.e. of equation (3.1), by using the beam eigenfunctions as suitable comparison 
functions. In the case of a clamped-pinned system, the results are shown in Figure 3.15 
for three values of B;+ also plotted are the results for B = 0, which is the corresponding 
nongyroscopic system, representing a column subjected to a load 9 = u2. The results are 
plotted in the form of characteristic curves, i.e. curves of loading versus 02, namely u2 
versus w2. Clearly, only u2 > 0 is meaningful, but the extension of the curves to u2 < 0 
helps to show that the curves (full lines) are conic sections. In (a) it is seen that the system 
is initially stable (0; > 0, o; > 0), but for u2/n2 = 2.05 (at point A) corresponding to 
u,d = 4.49 [cf. equation (3.9Oc)], the first-mode locus crosses to the w2 0 half-plane, 
indicating divergence in the first mode. The system remains unstable with increasing u2, 

+These curves are not identical to Huseyin & Plaut’s (1974), which are quantitatively in error (Plaut 1995); 
for each of the three distinct types of behaviour are incorrect, and so is the value of u2/n2  thus, the values of 

for point B; otherwise, the results are qualitatively similar to those in Figure 3.15. 
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Figure 3.15 Stability behaviour of a clamped-pinned pipe (r = 17 = a = n = k = y = 0) in 
terms of ‘characteristic curves’ of u2/n2 versus w2/n4 for (a) p = 0.05, (b) p = 0.1 and (c) p = 0.7: 

-, the gyroscopic conservative system; - - -, the ‘corresponding nongyroscopic system’. 

but at point B (u2/n2  = 6.24)’ divergence develops in the second mode also. In this case 
the dynamics is similar to that of the equivalent nongyroscopic system. In (b) it is seen 
that, after divergence at A and at B [for the same values of u2 as in (a)], the w: and w i  loci 
coalesce at point C ,  indicating the onset of Paldoussis-type coupled-mode flutter - i.e. 
directly from the divergent state. Thus, there is no post-divergence restabilization of the 
first mode for u > u,d in this case; coupled-mode flutter arises before it can materialize. 
In (c), after divergence at A, there i s  gyroscopic restabilization (w: > 0 again, at point B) 

‘An additional point of interest is that in this case, where the support conditions are asymmetrical, the stiff- 
ness matrix is not diagonal, unlike the case of simply-supported ends - refer to discussion on equation (3.92). 
Hence, this value differs considerably from that obtained from equation (3 .90~) .  
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at u2/n2 2: 6.2, followed by coupled-mode flutter at point C (u2/n2  2: 7), in this case via 
a Hamiltonian Hopf bifurcation. The value of u for restabilization at point I3 corresponds 
exactly to the point where the nongyroscopic system, or indeed the pipe systems in (a) 
and (b), develop divergence in their second mode. 

In closing, the following two important points should be made. First, the results of 
Figures 3.9-3.11, 3.14 and 3.15 apply equally to pipes with a downstream end either free 
to slide axially or not [Figure 3.l(a,b)]: since linear theory cannot distinguish between 
the two, the same equation governs both; however, the foregoing explanation of the 
existence of coupled-mode flutter applies only to systems with a sliding end. Second, and 
as cautioned at the outset, the existence of coupled-mode flutter has to be decided by 
nonlinear theory (Chapter 5) and by experiments (Section 3.4.4). 

3.4.2 Pressurization, tensioning and gravity effects 

If dissipative and gravity effects are neglected and dU/dt = 0, equation (3.38) simpli- 
fies to 

a4w a2w a2w a2w 
ax4 ax2 axat at2 

EZ - + [MU2 + pA(1- 2 ~ 6 )  - TI ~ + 2MU - f (M + M)- = 0, (3.98) 

in which it is recalled that 6 = 0 if there is no axial constraint, so that axial sliding of the 
downstream end is permitted, and 6 = 1 if it is prevented. The case of S = 1 is shown in 
Figure 3.16(a), where p f  is the pressure expended in overcoming the frictional pressure 

- 
T u PO 

P =  P + P f  + P O  J= 

Figure 3.16 (a) A pipe subject to tensioning T and to pressurization p ,  measured above the atmo- 
spheric pressure, p a ;  (b) divergence due to presurization, represented as if the pipe were pressurized 
by floating pistons; ( c )  model experiment with bellows, to show pressurization-induced buckling. 
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w 

drop and pa  is the atmospheric pressure, both of which do not enter the equation of 
motion (Section 3.3.4). 

It is clear that the pressure term acts in the same way as the M U 2  term, and hence it 
is not surprising that, given a sufficiently high level of pressurization, divergence may be 
induced by pressure alone -just as it may do by compression alone, i.e. for T < 0 and 
sufficiently large. Physically, one may think of the pressurization as being produced by 
floating pistons acting on both sides of a segment of the pipe, as shown in Figure 3.16(b). 
An easy experiment to demonstrate pressure-induced divergence consists in joining two 
rigid pipes with a straight rubber hose and then connecting the other ends of the rigid 
pipes to the same regulated pressure supply. As the pressure is increased, eventually the 
rubber hose buckles. The same effect may be obtained if, instead of a rubber pipe, bellows 
are used [Figure 3.16(c)]. 

The effect of pressurization may appear to be obvious and hence trivial. Nevertheless, 
consider the following two systems: (i) a pipe with an axially sliding end under pressur- 
ization p and tension T ,  with zero flow [i.e. as in Figure 3.16(a) but with axial sliding 
permitted and U = 0; 7; being provided by a weight acting through pulleys], and (ii) a 
closed tube pressurized to p .  In both cases, the equation of motion is 

w 

a4w a2w - a2w a2 w 
ax4 ax2 ax2 at2 

EI - + FA - - T - + ( m  + M ) -  = 0. (3.99) 

In case (i), p and T are independent of each other, and 7 may possibly be zero. In 
case (ii), however, in the linear limit, PA = T and the net effect of pressurization is nil. 
This, nevertheless, has not stopped an intrepid would-be inventor from obtaining a patent 
for stiffening hollow rotors against whirling by 'pressurization-induced tensioning', as 
shown in Figure 3.17(a,b), while conveniently forgetting about the destabilizing effect 
of pressurization illustrated in Figure 3.17(c). Thus, the inventor took into account the 

...................................... ............. .._. 
............ .............. ..... .%. ! .................. 
DsI Y rm' 

Figure 3.17 (a) The fallacious patent for delaying the onset of whirling through pressuriza- 
tion-induced tensioning; (b) the stabilizing effect of pressurization-induced tension, T ;  (c) the 

destabilizing effect of pressurization, 7. 
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effect of the third term in (3.99), while ignoring the second, probably reasoning that since 
pressurization induces the tensioning, it need not be considered further - thus inventing 
the impossible! In reality, the net effect on whirling is zero. 

The story of this fallacious patent is charmingly related by Den Hartog (1969), together 
with one on an earlier but similarly fallacious patent, this one for preventing buckling 
of drill-strings used in oil exploration. It is well known that the very long and slender 
drill-rods buckle under the compressive loading required for drilling and they touch the 
sidewalls in several places along the length. Then, as the drill-rod rotates and rubs against 
the sidewalls, up to 90% of the power is consumed for this non-useful work. The invention 
consisted of using a hollow drill-rod and a floating drill-bit, and pumping sludge down 
the drill-rod, which would rotate the drill-bit as a turbine, as depicted in Figure 3.18. 
Thus, it was thought, the removal of all compressive load from the drill rod would result 
in the elimination of all possibility of buckling. However, it should be realized that, to 
cause the drill-bit to press hard on the rock and to rotate against it, the pressure p1, 
must be substantially larger than p2. Hence, the truth emerges that the drill rod would 
buckle just the same due to pressurization, under much the same conditions as the original 
system - and perhaps earlier because of the flow effect. 

Figure 3.18 The fallacious patent for preventing buckling of drill-strings by the use of a floating 
drill-bit, rotating under the action of the flow (Den Hartog 1969). 

Returning to a quantitative assessment of pressurization effects, equation (3.98) may 
be written in dimensionless terms as 
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Hence, it is clear that for pinned ends I&.d = n, while for clamped ends = 2n, since 
the Coriolis term is not involved in the divergence instability. 

Gravity effects are considered next. If gravity is taken into account (i.e. if the system 
is vertical), but still taking k = 0 (no elastic foundation) in equation (3.70), the critical 
conditions are found to be as in Figure 3.19. Clearly, equations (3.90a,b) still apply, with 
'u replacing u - with u as in the second of equations (3.100). 
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Figure 3.19 The critical value of v,d for divergence of vertical pipes with supported ends 
(f = l7 = k = 0), showing the effect of y. P-P: pinned-pinned (simply-supported) pipes; C-C: 

clamped-clamped pipes; v is defined in the second of equations (3.100). 

A value of y < 0 signifies that gravity is in the opposite direction to the flow 
vector - i.e. upwards in Figure 3.1(b). Thus, for y -= 0 the pipe is under gravity-induced 
compression, while for y > 0 it is under gravity-induced tension, which explains why 
u,d for y < 0 is smaller than for y > 0; indeed, for y sufficiently large and negative, 
the system diverges (buckles) under its own weight. [In the case of Figure 3.l(a), it is 
implicitly presumed that the pipe is hung before the downstream end is positively fixed; 
thus the pipe is subjected to the same gravity-induced tensiodcompression as in the case 
of Figure 3.l(b).] 

It is also noted that, as y increases, the ratio of Vcd for clamped and pinned pipes is 
diminished: 2n/n = 2 for y = 0 and 7.80/5.56 = 1.4 for y = 50. Physically, one may 
think of a larger y as representing a longer pipe [equations (3.71)]; in the limit, the pipe 
will resemble a string rather than a beam, and hence will be less sensitive to boundary 
conditions. This breaks down for y < 0, since in the case of pinned ends, as the critical y 
is approached for divergence due to its own weight, v,d is diminished very fast, while this 
is not yet true for clamped ends, for the range of y in Figure 3.19. The critical y values 
for divergence at u = 0 are ycr = -18.55 for pinned ends and -66.34 for clamped ones. 

For other aspects and/or details of the effects of pressurization, the interested reader is 
referred to the work of Haringx (1952), Heinrich (1956), Hu & Tsoon (1957), Roth & 
Christ (1962), Naguleswaran & Williams (1968), Stein & Tobriner (1970) and PaYdoussis 
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& Issid (1974), and for the effect of externally applied tension to Bolotin (1956) and Plaut 
& Huseyin (1975). 

3.4.3 Pipes on an elastic foundation 

An elastic foundation represents the distributed support provided to long pipes resting 
on a generally elastic medium, e.g. in the case of pipelines laid on the ocean floor. 
For pipes with supported ends the additional stiffness supplied by the elastic foundation 
simply renders the system stiffer [see equation (3.70)], and hence the qualitative effect 
on stability is predictable. 

The critical flow velocity for divergence, ucd, or more generally Vcd as per the second of 
equations (3.100), may be obtained by the method of Section 3.3.6(a) in a similar manner 
as used to obtain equations (3.90a-c); indeed, as first obtained by Roth (1964),+ 

(3.10 1 a) 

However, if k is sufficiently large, e.g. k = lo3, Vcd as given by (3.101a) is overesti- 
mated, because divergence can be associated with a higher mode at a lower value of Vcd,  

obtained from 

(3.101b) 

where the mode number n is identified with the beam eigenfunction z/z sin(nrrx/l).* 
The mode to become unstable is that leading to the smallest Vcd ,  and is thus associated 
with the smallest n satisfying 

k 
n2(n + 112 2 -; 

IT4 
(3.102) 

e.g. fork = 300 one obtains n = 1, whereas for k = 500, n = 2. What happens physically 
is that the support provided by the elastic foundation can be thought of as providing added 
supports along the length, making the first divergence with one or more nodes within the 
span feasible. 

For a clamped-clamped pipe, by Gderkin’s method (Roth 1964), one obtains 

and 
1/2 ) for k 2 (84/11)n4 

n4(n2 + 1) 
V c d = n  n 2 +  + r4 + 6n2 + 

(3.103) 

?Roth’s excellent work, written in German, is unfortunately hardly ever cited in the English-language 
literature. The interested reader is encouraged to refer to Roth (1965a,b, 1966) also. 

$It is of interest that for all the solutions given by (3.101b), and also (3.103), the condition & / k  z 4 is 
satisfied, so that the discriminant of (3.82) is positive (or zero, when k = n4), and hence real values of the ai 
are obtained. 
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The first equation is associated with n = 1; the second with n 2 2, such that n is the 
smallest integer satisfying 

n4 + 2n3 + 3n2 + 2n + 6 1 k/n4, (3.104) 

e.g. n = 2 if 8411 1 5 k/n4 5 54, n = 3 if 54 5 k/n4 5 174, n = 4 if 174 5 k/n4 5 446, 
etc. Equations (3.102) and (3.104) differ from the criteria given by Roth, which can lead 
to a nonconservative value of Vcd.  The Galerkin solutions (3.103) were compared to an 
exact solution and found always to overestimate the exact v c d ,  but by less than 2%. 

The values of 2& versus k are plotted in Figure 3.20, showing the transition of diver- 
gence from n = 1 to higher n as k is increased. 

20 

15 
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k 

Figure 3.20 The critical values of ucdr where u2 = u2 + n(1 - 2uS) - r, for pinned-pinned (P-P) 
and clamped-clamped (C-C) pipes on an elastic foundation of dimensionless modulus k .  

Some numerical results for a clamped-pinned pipe for divergence and coupled-mode 
flutter with /3 = 0.9 may be found in Lottati & Kornecki (1985). 

Elastic foundations become particularly important for systems not otherwise supported, 
which in practice means that the end supports are very, or infinitely, far apart. They will 
be treated in Section 3.7. 

3.4.4 Experiments 

Experimental work on the dynamics of pipes conveying fluid commenced soon after 
Housner showed in 1952 that this system is subject to divergence (buckling) at sufficiently 
high flow velocity. The aim of the first set of such studies, implicitly at least, was the vali- 
dation of the main theoretical findings: (i) that divergence does arise, (ii) that it occurs near 
the theoretical critical flow velocity, ucd, and (iii) that the first-mode frequency, w1, varies 
with u parabolically, in the manner shown in Figure 3.10. Hence, for simplicity, in these 
studies (Long 1955; Dodds & Runyan 1965; Greenwald & Dugundji 1967; Yoshizawa 
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et al. 1985, 1986) pressurization effects were not considered, by making the downstream 
end of the pipe free to slide axially [6 = 0 in equations (3.37) and (3.38)]. 

Long’s (1955) experiments involved simply-supported and clamped-clamped steel 
pipes conveying fluid; the downstream end was mounted on rollers. The simply-supported 
pipe had outer diameter Do = 25.4mm (1 in), wall thickness h = 0.94mm (0.037 in), 
and span L = 3.048m (120in). Despite the length and hence relatively large flexibility 
of this pipe, Ucd = n corresponds to Ucd 2: 52 m / s  (172ft/s) - a high and difficult to 
achieve flow-rate, because of the pumping requirements implied: a high flow rate at a 
high pressure (to overcome the large pressure drop); indeed, beyond the capabilities of 
Long’s apparatus. By means of strain gauges, Long measured the first-mode frequency and 
damping, and how they varied with u.+ It should be recalled that %e(Ql) is expected to 
decrease parabolically with u;  also, since 9nt(s21) is approximately constant according to 
theory, 61 2 2nC1 = 2n9m(Q1)/%e(O1) is expected to increase parabolically. However, 
for u < 1, both d[%e(Ql)]/du and d&/du are small, and for the urnax 2: 0.68 achieved in 
these experiments the effect, if any, was judged to be within the margin of experimental 
error.* Hence, these experiments were largely inconclusive. 

A more effective experiment was conducted by Dodds & Runyan (1965), also with 
simply-supported pipes, as shown in Figure 3.21. The pipes were of aluminium alloy, 
with 0, = 25.4mm, h = 1.65 mm, and an effective length L = 3.812m (12.5ft); the fluid 
was water. In this case, the critical flow velocity, U,, = 39.5m/s, was actually attained. 
Figure 3.22(a) displays the evolution of %e(Q1) with u for two different pipes, and shows 

Differential pressure transducer 

Figure 3.21 Schematic diagram of the experimental apparatus used by Dodds & Runyan (1965). 
All dimensions are in feet; 1 ft = 0.3048 m. 

+Since various researchers have used different, and in some cases truly curious, schemes of nondimension- 
alization, wherever possible these have been converted to those used in this book, for the reader’s convenience. 

*Long also reports on some experimental results by E. Ergin of Cal Tech, with a pipe ‘similar to that used 
here’, which show a clear quasi-parabolic Q1 versus u curve. However, there appears to be some error, at the 
very least in the nondimensionalization of u; for, whereas a urnax E 6.0 is shown, which greatly exceeds U,d, 
the maximum reduction in % e ( Q )  is only 3.2%. 
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Figure 3.22 (a) The variation of the first-mode frequency %e(SZ1) with respect to U in Dodds & 
Runyan’s experiments, respectively normalized by the zero-flow frequency %e(SZ, )o and the flow 
velocity for divergence, U,, for two different pipes; (b) the variation of the first-mode logarithmic 
decrement, 61, with U/Ucd for the same two pipes; (c) the theoretically constant 61%e(SZ,)/Re(L’nl )o. 
-, Theory; 0, experiment with pipe 1; 0, experiment with pipe 2. Data from Dodds & Runyan 

(1965). 

near-perfect agreement with theory; %e(f21)o is the value of %e(fl1) at U = 0. However, 
agreement is likely not to have been as perfect as this figure would suggest, as may be 
appreciated from Figure 3.22(b,c), in which the authors’ tabulated measurements of 61 as 
well as 6,%e(f21)/%e(f21)o have been plotted against u. This latter, being proportional to 
.9m(D1), should theoretically be approximately constant with u, but in the experiments 
it increases substantially as U,d is approached, reflecting most probably real effects at the 
supports as the pipe begins to bow. It is quite likely that these same effects involve an 
attendant stiffening of the pipe which neatly counterbalances any natural tendency of the 
pipe to buckle ‘before its time’ due to imperfections (e.g. initial curvature of the pipe, 
locked-in stresses, geometric and material nonunifonnities), which, as is well known, 
would make the pipe diverge at a lower flow velocity than its perfect counterpart. This 
discussion is meant to provide physical insight into some of the real effects and difficulties 
encountered in experiments, and does not take away one iota of Dodds & Runyan’s 
important achievement: to demonstrate convincingly the existence of divergence, as shown 
dramatically in Figure 3.23, and to validate items (i) and (ii) of the first paragraph of this 
section. 

A more wide-ranging experimental and theoretical investigation was undertaken by 
Greenwald & Dugundji (1967), motivated by the same concern as Dodds & Runyan: 
the possibility of disastrous fluidelastic instabilities in the thin-walled propellant pipelines 
of liquid-fuel rocket engines. Experiments were conducted with clamped-pinned and 
cantilevered pipes. In contrast to previous studies, however, these were small-scale 
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area is generally a function of internal pressure; (iii) the pipe has an initial curvature as a 
result of being coiled during manufacture while still warm and of plastic set during storage. 
Of these, item (i) plays no role in the determination of ucd, (ii) is not too important if the 
fluid discharges at x = L so that the pressure is not too high at any point upstream, and 
(iii) was solved, according to the authors, by hanging the pipes vertically and pouring hot 
water through them. 

In the clamped-pinned arrangement, the downstream support was provided quite simply 
by a greased steel rod in contact with the downstream end of the pipe. As the flow velocity 
was increased, the pipe began to bow slightly. At a certain critical speed the pipe was 
observed to statically diverge rapidly and to slide completely off the steel rod. This 
means that the measured ucd was slightly higher than the real one. The experimental 
ucd = 4.70 nevertheless compares favourably with the theoretical ucd = 4.49 given by 
equation (3.90~).  

A more recent, successful experiment for a clamped-pinned pipe, again with a sliding 
downstream end, was conducted by Yoshizawa et al. (1985, 1986) and is discussed in 
Section 5.5.3. 

The main purpose of these studies was to validate items (i)-(iii) of the first paragraph 
of this section and it was partly achieved. It was also shown, by the way, that large flow 
velocities are necessary to induce divergence; hence, it is unlikely to arise in practice, 
except in specialized applications. Nevertheless, there is a high degree of idealization in 
the systems studied so far; certainly, systems of the type of Figure 3.21 are unlikely to be 
found in engineering applications. In more practical systems, the pipe would not discharge 
to atmosphere but would be connected to another component at a pressure higher than 
atmospheric [Figure 3.16(a)] - except after an accidental break (Section 4.7); moreover, 
axial sliding, if any, would not occur freely and destabilizing pressurization effects would 
come into play. In the next set of such studies, the dynamics under these more realistic 
conditions was considered. 

A careful study of the effects of pressurization and tensioning was made by 
Naguleswaran & Williams (1968). Unfortunately, in the paper they do not give any of 
the dimensions and properties of their apparatus, nor any of their results in dimensional 
form. Nevertheless, Naguleswaran ( 1996) was kind enough to provide the approximate 
principal dimensions of the neoprene pipes used: Do = 15 mm, h = 2mm, and variable 
length, up to 880mm. The pipe was attached on either side to rigid copper pipes, one of 
which was connected to the water mains and the other, after a certain length, discharged 
to atmosphere. The mean pressure in the whole system could be regulated, presumably 
by valves on the downstream end, so that pressurization was possible. Furthermore, axial 
tension could be applied by loading one of the copper pipe connections statically and 
then fixing it; thereafter, sliding was prevented ( 8  = 1). The flow rate was determined by 
collecting and weighing the discharged water over a known time interval. Motions of the 
pipe were sensed at two locations along the span via capacitance transducers. The Poisson 
ratio, v, of the pipe was determined in special tests by measuring the change in volume 
resulting from axial extension, and EZ was determined from the natural frequency of a 
short cantilevered length of the pipe. 

It was found that pressurization affected appreciably the first-mode natural frequency, to 
the extent that the pipe could be made to buckle quite readily without flow. For this reason, 
preliminary tests were made without flow. The variation of %e(Q1) with l7/r = FA/T 
is shown in Figure 3.24; % e ( Q l ) ~  is the value for the pipe under T but for p = 0. Since 
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Figure 3.24 The effect of pressurization p on a tensioned pipe (T # 0) for u = 0 according 
to Naguleswaran & Williams (1968): -, theory with the measured value of u = 0.312; 0, +, 

experimental data. 

it was found that A varies appreciably with 7, the actual A(g) were used in plotting 
the experimental points. The experimental values are compared with simplified theory, in 
which the pipe is assumed to be long enough for flexural effects to be less important than 
tensile ones; thus, by taking v2q” >> q’”’ +. 0 in equations (3.100), as well as u = 0 and 
6 = 1, it is easy to find %e(wl)/%e(wl)o = % e ( f 2 ~ ) / % e ( ~ ~ ) ~  = [ I  - n(l - 2 ~ ) / r ] ’ / ~ .  

It is seen in Figure 3.24 that the agreement is good for low enough L’, but as the 
buckling condition is approached (for L’/r = 2.66 for the experimental u = 0.312), there 
is considerable discrepancy, as a result of ‘small irregularities, or kinks in the tube’, i.e. 
imperfections, which lead to localized buckling. Furthermore, when I7 is increased beyond 
that point, overall buckling (divergence) is never realized, because the axial length of the 
pipe is constrained and deflection of the pipe gives rise to increased tension. 

Similar results are obtained with flow, as shown in Figure 3.25(a); since dimensional 
quantities are not given, the peculiar nondimensionalization of this study is retained. The 
experimental data are compared with (i) simple theory in which pressurization and dilata- 
tion of the pipe are ignored (I7 = 0, A = const.) and (ii) theory in which these effects 
are taken into account. As expected, agreement is far better with the latter. Figure 3.25(b) 
shows the phase difference in the motion at two locations (6 = 0.175 and 0.815). Because 
of the opposite rotation of points with < 0.5 and > 0.5 approximately, the Coriolis term 
is responsible for this phase difference, and it is seen that it increases nearly linearly with 
u, so long as the condition of divergence is not close; at u = U,.d, of course, y? must 
be zero. 

The condition of zero frequency (and zero phase) was never, indeed can never, be 
achieved for systems in which axial sliding is prevented, for the reasons already given: 
increased deflection generates an increase in tension and thus w1 = 0 is unattainable. 
Thus, in this case there is a component of tension proportional to deflection, and the 
equation of motion becomes nonlinear. Hence, the dynamics of the system as the linear 
Ucd is approached (in this case, as seen in Figure 3.25, for u > 0.5uCd approximately) 
should be studied by means of nonlinear theory. 
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Figure 3.25 (a) The ratio of %e(S2,)/%e(S21)o as a function of the dimensionless 
flow velocity U / B L  = u/(n[j3(f  + 7r2)]1/2] for a tensioned and pressurized pipe with 
([f - li’(1 - 2u)]/[f + 7r2])’’2/n = 0.0636 and j3 = 0.4338 at u = 0 and IJ = 0.312; (b) the phase 
difference in the displacement at 6 = 0.175 and 6 = 0.815 during vibration as a function of U / a L .  
+, Experiment; -, theory with pressurization and resulting dilatation of the pipe ignored: 

_ _ -  . theory with these effects taken into account (Naguleswaran & Williams 1968). 

Another set of experiments was conducted by Liu & Mote (1974), aiming to study 
the effects of flow and tensioning on the dynamics of the system. They used small- 
diameter vertical aluminium pipes (0, = 6.375 mm, h = 0.559 mm), 1.829 m (6 ft) long, 
conveying an oil-water emulsion circulated with the aid of a gear pump. The apparatus 
involved a shaker to excite the pipe and strain gauges to measure the vibration. The fluid 
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was discharged to atmosphere at the downstream end (collected and recirculated), and 
axial sliding was permitted. Tension was applied via a pulley- weight mechanism. Typical 
results are shown in Figure 3.26 for two values of tension, r = 0 and 5, and nominally 
pinned ends. It is noted that the pinning is far from perfect: the first-mode measured 
frequency is 5.1 Hz for r = 0, whilst the theoretical one is 3.8 Hz; this is mostly due to 
the flexible coupling connecting the upstream end to the rest of the system, which when 
disconnected results in a measured frequency of 4.0 Hz, much closer to the theoretical 
one. Nevertheless, the normalized form of Figure 3.26 has the advantage of permitting the 
direct comparison of theoretical and experimental trends with increasing u and varying r. 

Figure 3.26 Fundamental resonance obtained from vibration measurements on a shaker-excited 
simply-supported pipe under tensioning, as a function of u/n .  Theory 1 is the linear theory 
of Naguleswaran & Williams (1968); theory 2 and theory 3 are, respectively, Thurman & 
Mote’s ( 1969b) linear and nonlinear theory. Experimentalltheoretical reference frequencies 
Be(Ol)O = 5.1/3.8Hz for r = 0, and 7.215.9Hz for r = 5. The deflection has been 

nondimensionalized with respect to the pipe diameter (Liu & Mote 1974). 

The measured frequencies decrease with u, initially as predicted by theory, but later the 
curves bottom out and the frequency begins to increase with u - an effect which is even 
more pronounced in some other of the authors’ results. This is very perplexing, since for 
these conditions of support (with sliding permitted), the zero-frequency condition should 
have been attainable. Before proposing an explanation, it should be said that these exper- 
iments suffered from a number of weaknesses, as acknowledged by the authors: (a) the 
aforementioned nonzero bending moment (imperfect pinning) at e = 0; (b) a substantial 
and undesirable out-of-plane vibration, at times larger than the excited (and plotted) in- 
plane one; (c) an initial curvature (bow) and/or locked-in stresses in the pipe which gave 
a gradual and continuous increase in deflection with increasing u, rather than a precipitous 
one as u,d was approached. Also, (d) there is a discrepancy of the theoretical results with 
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regard to the F given in the figures. For instance, for r = 5, u,d/n = 1.23 should have 
been obtained (cf. Section 3.4.2) and not 1.62.+ However, since it is the qualitative nature 
of the frequency-versus-u variation that is perplexing, item (d) will be ignored here. On 
reflection, neither (a) nor (b) can provide a convincing explanation, but they do point out 
how demanding these deceptively simple experiments can be. Item (c), however, provides 
a likely explanation. As will be shown in Chapter 6, initially curved pipes in fact do not 
diverge. Thus, for semicircular pipes the reduction in frequency with flow is minimal; in 
that sense, strictly according to this hypothesis, this represents an intermediate system, 
behaving as a straight pipe for low u and as a curved one for higher u. Another outlook on 
this is provided by nonlinear theory. As discussed in Chapter 5, the pitchfork bifurcation 
is structurally unstable (in the mathematical sense), and the displacement-versus-u curve 
evolves more smoothly$ in the presence of a small, or not-so-small, initial asymmetry. 
This corresponds physically to a gradual exaggeration of the asymmetry as u is increased 
(as observed), in contrast to the explosive divergence of the imperfection-free system. 
Furthermore, since neither the initial (u  = 0) nor the ‘final’ state (for u larger than the 
theoretical u,d )  is associated with w = 0, the frequency in-between tends to bridge these 
two states without passing through zero. 

Experiments were also conducted on clamped-clamped pipes by Jendrzejczyk & Chen 
(1985), with no sliding permitted. They found that divergence does not occur for the 
reasons already given; indeed the r.m.s. vibration amplitude was found to decrease as the 
theoretical critical &d is exceeded, which was attributed to deflection-induced tensioning. 

A final comment is that in all these experimental studies there has been no reported 
observation of post-divergence coupled-mode flutter. Although this does not prove that 
it cannot exist - especially noting that the violence of the onset of divergence makes 
experimentation, at more than twice the critical flow rate, problematical - it would tend 
to support Holmes’ finding, via nonlinear analysis, that pipes with supported ends cannot 
flutter. as discussed in Chapter 5.  

3.5 CANTILEVERED PIPES 

3.5.1 Main theoretical results 

The essential dynamics of cantilevered pipes conveying fluid has already been outlined in 
Sections 3.1 and 3.2. Referring to the dimensionless equation of motion, equation (3.70), 
it is noted that, for cantilevered systems, F = l7 = 0 always; furthermore, since the case 
of time-varying flow and elastic foundations will not be considered till later, ii = k = 0 
as well. Hence, the only parameters that remain to be considered for the results to be 
presented in this section are the damping parameters a! and o, the mass parameter ,B. and 
the gravity parameter y. 

The simplest system is considered first, in which a! = o = y = 0 additionally, Le. a 
horizontal system with the dissipation ignored, which thus depends only on /3. In this 
case, solutions are possible via the First Method of Section 3.3.6(a) and involve no 
approximations (due to Galerkin truncation, for instance). Typical results are shown in 
Figures 3.27 and 3.28 for = 0.2 and 0.295, respectively. It is seen that for small ii (u < 4 

‘The effect of gravity was neglected by the authors ( y  = 0), but in fact it is very small 
*It is ‘unfolded’, in nonlinear terminology. 
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Figure 3.27 The dimensionless complex frequency of the four lowest modes of the cantilevered 
system ( y  = ct = o = k = 0) as a function of the dimensionless flow velocity, u, for ,!? = 0.2: -, 

exact analysis; - - -, four-mode Galerkin approximation (Gregory & Pafdoussis 1966a). 

Figure 3.28 The dimensionless complex frequency of the four lowest modes of the cantilevered 
system ( y  = ct = o = k = 0) as a function of the dimensionless flow velocity, u, for ,!? = 0.295 

(Gregory & PaYdoussis 1966a). 

approximately), flow induces damping in all modes of the system; i.e. $am(@) > 0, or 
< = $m(w)/%e(o) > 0. This is in line with the energy considerations of Section 3.2.2, in 
connection with equation (3.11). For higher u, 9m(w) in the second mode of the system 
begins to decrease and eventually becomes negative; thus, a Hopf bifurcation occurs 
at u = ucf 2: 5.6 and 7.0, for B = 0.2 and 0.295, respectively, and the system becomes 
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unstable (in the linear sense) by flutter. For /I = 0.2, there is also a fourth-mode oscillatory 
instability, via another Hopf bifurcation, at u 2 13.? 

In the case of /l = 0.295 and for 7 < u < 8.2, the system loses stability, regains it and 
loses it again, as the locus meanders along the %e(w)-axis. This cannot be seen very 
clearly in the scale of Figure 3.28, but it is similar to what is easily visible in Figure 3.27 
for 13 < u < 15 in the fourth mode. 

Flutter does not always occur in the second mode of the system, as may be seen in 
Figure 3.29 for /l = 0.5, where it is in the third mode that the system loses stability. It is 
of interest that (i) for B = 0.2 and 0.295, the second-mode locus bends downwards and 
crosses the axis to instability, while the third-mode locus moves towards higher +4m(w) 
values; (ii) for /I = 0.5, the opposite takes place. This ‘role reversal’ or ‘mode exchange’ 
characteristic is a frequently occurring feature of the dynamics of the system. Thus, for 
/l = 0.2 (Figure 3.27) the fourth mode leads to the higher-mode instability; in contrast, 
for = 0.295 (Figure 3.28) the fourth-mode locus makes a loop, while the fifth mode 
(not shown) curves down to instability (cf. the third-mode locus of Figure 3.29). Another 
aspect of this behaviour is the closeness of the loci for some specific u, in Figure 3.29 
for u = 8.8125; near the ‘critical’ /I for which the mode exchange occurs, the two loci 
can be extremely close (Paidoussis 1969; Seyranian 1994). 
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Figure 3.29 The dimensionless complex frequency as a function of u for a cantilevered system 
( y = a = cr = k = 0) for B = 0.5. The diagrams on the left-hand side of the figure display the 

behaviour of the loci while on the Sm(o)-axis (Paidoussis 1969). 

With regard to the foregoing discussion, a very important point should be stressed. We 
have been talking about the ‘second mode’ and ‘third mode’, and so on, simply because 
they are part of the thus numbered loci. However, for u # 0, the mode shapes associ- 
ated with these modes differ significantly from those at u = 0 (which are the classical 
beam modes), as first shown by Gregory & Paidoussis (1966b). Thus, for u = 3 or 4 

‘The caveaf concerning the limitations of linear theory for predicting the dynamics beyond the first loss of 
stability applies here too. 
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the first-mode shape contains appreciable second-mode content, the second-mode shape 
third-mode content, and so on. Nevertheless, the present appellation is clearly a reasonable 
one. Another important point is that, similarly to the pipe with supported ends, these are 
not stationary, classical modes with fixed nodal points, but contain appreciable travelling 
wave components, to be discussed with the experiments in Section 3.5.6. 

The critical flow velocity, ucf as a function of #? is shown in Figure 3.30;+ there 
exists a similar curve for the corresponding frequency at u = u,f, labelled wcf - see 
Figure 3.35. It is clear that, ucf depends strongly on 6. Furthermore, the ucf and wcf 
curves contain a set of S-shaped segments. By referring to Figure 3.28 it is recognized that 
they are associated with the instability -restabilization-instability sequence discussed in 
the foregoing; hence, in Figure 3.30, the negative-slope portions of the curve correspond 
to thresholds of restabilization. If an experiment could be conceived in which the material 
damping is zero and #? could be varied in very small steps, then around these points there 
would be ‘jumps’ in u,f;  e.g. for #? in the vicinity of 0.69, from u,.. 2: 1 1  to ucf 2: 12.8 
for a very small increase in #?. The values of #? associated with these S-shaped segments 
of the stability curve (at #? 2: 0.30, 0.69, 0.92) will be found to be associated with a large 
number of perplexing linear and nonlinear characteristics of the system - in the sense of 
acting as separatrices for differing dynamical behaviour. Yet, the origin of their existence 
is not fully understood (see Section 3.5.4). As #I -+ 1, more and more S-shaped jumps 
are encountered. Mukhin has shown that for #? = 1 no flutter solution may be possible, 
i.e. ucf 4 00 (Mukhin 1965; Lottati & Kornecki 1986). 

Figure 3.30 The dimensionless critical flow velocity for flutter, u r j ,  of a cantilevered pipe 
conveying fluid, as a function of B, for y = 01 = (T = k = 0 (Gregory & Paldoussis 1966a). 

Nevertheless, it appears that these jumps are related in some way to mode content. 
This is made clear by Figure 3.31 in which, in addition to results obtained by the method 

+Numerically, such curves are computed by determining f i  for each assumed u c j ,  rather than vice versa 
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B 

Figure 3.31 Comparison between urf and wCf obtained by the exact solution (-), cf. 
Figure 3.30. and Galerkin approximations: 0 ,  N = 2; +, N = 3 ,  A, N = 4 (Gregory & Paidoussis 

1966a). 

of Section 3.3.6(a), some obtained by the Galerkin method of Section 3.3.6(b) are also 
presented, for N = 2, 3 and 4, N being the number of beam modes utilized. It is obvious 
that, although N = 3 and 4 may be adequate for predicting ucf (see also Figure 3.27), 
the two-beam-mode approximation ( N  = 2) is not, failing to reproduce the S-shaped 
behaviour, as will be discussed further in Section 3.5.4; on the other hand, the N = 2 
approximation is quite reasonable for B 5 0.2, or even B = 0.25. In general, higher-N 
approximations become necessary to adequately represent the dynamics of the system as 
u and B are increased. This contrasts sharply to the inherently conservative system [cf. 
equation (3.92) of Section 3.4.1 and the attendant discussion], where N = 2 and even 
N = 1 Galerkin approximations can predict u,d very well. 

3.5.2 The effect of gravity 

The motivation for investigating the effect of gravity ( y  # 0) on the dynamics of the 
system comes from two sources. The first is to obtain theoretical results for comparison 
against measurements from experiments with pipes oscillating in a vertical rather than 
a horizontal plane, the former being easier to conduct. In this regard, recalling that y = 
(M + m)gL3/EZ, it turns out that for metal pipes conveying fluid, unless L is very large, 
y is small and its effect on the dynamics may well be negligible; for rubber or elastomer 
pipes, however, with which the majority of the experiments are conducted, because E is 
considerably lower, gravity effects should normally be accounted for. The second source 
of impetus was provided by Benjamin’s (1961a,b) findings with articulated cantilevered 
pipes conveying fluid: that horizontal systems lose stability exclusively by flutter, whereas 
vertical ones can do so by divergence also (Section 3.8). Hence, since the continuously 
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flexible system may be considered as the limiting case of an articulated one as the number 
of degrees of freedom N + 00, it is of interest to discover if divergence can arise in the 
vertical continuous system as well. 

Extensive calculations of Argand and stability diagrams for y # 0 were conducted by 
Pdidoussis (1969, 1970), using the method of Section 3.3.6(b); it was found that N = 9 
or 10 in the Galerkin series ensured accuracy of the eigenfrequencies to three significant 
figures. Similar calculations were done by Bishop & Fawzy (1976). 

A summary of the results is presented in the form of a stability diagram in Figure 3.32. 
It is seen that the general dynamics of the system with y # 0 is similar to that for y = 0, 
but for y > 0 the additional restoring force due to gravity causes ucf to be higher. It 
is recalled that y < 0 represents an up-standing system,+ with the downstream free end 
above the clamped one. As expected, the system is less stable in this case. In contrast 
to the articulated system, no flow-induced divergence is possible in this one. It is seen 
in Figure 3.32 that each of the curves contains a number of S-shaped segments, indeed 
more of them as y is increased. 

0 
0 0.2 0.4 0.6 0.8 1 .o 

4 

Figure 3.32 The dimensionless critical flow velocity for flutter, u,f, of a vertical cantilevered 
pipe conveying fluid, as a function of fi for varying y,  compared to the horizontal system, y = 0; 

a = CJ = k = 0 (Pdidoussis 1970). 

More interesting dynamical behaviour is obtained if y is negative and fairly large. In 
that case, corresponding to relatively long pipes, y < -7.83 approximately, the cantilever 
buckles under its own weight at zero flow. The linear dynamics of the system is illustrated 
in Figure 3.33. Consider first a system with y = -10 and = 0.2, which is buckled 
under its own weight for u = 0: as u is increased (Le. progressing vertically up in the 

'Although this is hardly a symbol of moral rectitude! 
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Figure 3.33 Stability map for a 'standing' cantilever ( y  < 0). with the discharging free end of 
the pipe vertically above the clamped end, showing the effects of B and y on stability (Paidoussis 
1970). The dashed line corresponds to the onset of flutter, superposed on divergence. The dynamics 

for y < -55.9 is more complex and is not detailed in the figure. 

figure), the system is restabilized at u E 1.8 (at point A), and then loses stability by 
flutter at u 2 4.85 (at point B). For y = -20, = 0.2, restabilization and flutter occur 
at u N 3.1 and u = 4.25, respectively. Variants of this behaviour are represented by y = 
-20, p = O+ or by y = -40, = 0.2; in such cases, again according to linear theory, the 
system develops flutter, while still under divergence. For y < -55.9 approximately, the 
system buckles under its own weight in both its first and second modes and apparently 
remains unstable with increasing flow: this more complex behaviour is not detailed in 
Figure 3.33. 

It is noted that the values of y 2 -7.83 and -55.9 agree well with those obtained by 
exact analysis of the static stability of an up-standing cantilever, corresponding to the first 
two zeros of the equation JL1/3[~(-y)1/2] = 0, where J-113 is the Bessel function of the 
first kind and order -$. The first and second zeros occur at $(-y) ' / *  2 1.87 and 4.99, 
respectively. yielding the values of y in question to within 0.5%. 

A priori. whether any of this post-buckling behaviour materializes in practice is ques- 
tionable, because in this linear theory the stability is considered for small motions about 
the straight equilibrium configuration, whereas the buckled system is certainly not in 
that state. Nevertheless, as will be seen in Section 3.5.6, the dynamics of the system as 
observed in experiments is substantially as just described. 
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3.5.3 The effect of dissipation 

We next consider the effect of dissipation on stability. As first shown by Ziegler (1952) 
for the nonconservative system of a double pendulum subjected to a follower load, weak 
damping may actually destabilize the system. The same was found in the study of stability 
of a compliant surface over which there exists a flow (Benjamin 1960, 1963). Benjamin 
classified the various possible modes of instability into three distinct classes, according 
to the mode of energy exchange between fluid and solid. Benjamin shows that ‘class A’ 
waves are destabilized by damping, and Landahl (1962) has contributed to the discussion 
and clarification of this paradox; see also Section 3.5.5. It was in this same period that it 
was found that cantilevered pipes conveying fluid can also be destabilized by dissipation 
(Pafdoussis 1963). Subsequently, a considerable amount of work has been done on this 
topic [e.g. by Gregory & Paidoussis (1966b), Nemat-Nasser et a l .  (1966), Bolotin & 
Zhinzher (1969), PaIdoussis (1970), Paidoussis & Issid (1974)l. 

Figure 3.34(a,b) shows examples of a cantilevered pipe (’ = 0.65, y = 10) subjected 
to damping modelled (a) by a Kelvin-Voigt viscoelastic model (with a = 0.0189), and 
(b) by a hysteretic or ‘structural’ damping model (with p = 0.1) - see equations (3.39) 
and (3.72). A number of interesting features of the system are displayed in this figure, 
as follows. (i) First, this is yet another example where it is not the second mode that 
is associated with flutter; here, after considerable peregrinations, it is the first, although 
the modal form is similar to that of the second mode by the time it crosses to the 
-9m(w) half-plane.t (ii) By comparing the critical flow velocity for the undamped system 
(u,f = 12.88) to that of the damped system [ u , ~  = 9.85 in Figure 3.34(a) and ucf 2: 

11 in Figure 3.34(b)], it is clear that dissipation destabilizes the system. (iii) For the 
hysteretic system, the character of the equation of motion is quite different from that 
of the viscoelastically damped one in the following sense. For the viscoelastic system 
(a # 0, p = 0), if iw is a root of the equation of motion, so is its complex conjugate, and 
the root loci are symmetric about the 9m(w)-axis; hence, only the positive %e(w) half- 
plane needs be shown, as in Figure 3.34(a). For the hysteretic system (@ # 0, 01 = 0), 
however, this is no longer true, and hence (partly) both sides of the plane have to be 
shown. It is of particular interest to note that for u > 4 there would appear to exist 
discontinuities in the values of 9m(w) as the 9m(o)-axis is crossed, if only the positive 
9m(w)-plane were considered; in particular, in the vicinity of u 2: 5 in the first mode and 
u 11 in the second. Finally, it must be recalled that, in accordance with the limitations 
to the validity of the hysteretic dissipation model referred to in Sections 3.3.2 and 3.3.5, 
only the portions of the loci near the %e(w)-axis have physical significance. 

It is noted that, whereas hysteretic damping destabilizes the system for f i  > 0.285 
approximately, it exerts a stabilizing influence for smaller values of P, as may be seen 
in Figure 3.35. This dependence of the dynamical behaviour on the mass ratio was also 
found by Benjamin (1963) in the stability of a compliant surface subjected to flow. 

It should also be remarked that the values of a and p utilized in these calculations are 
relatively high and representative of rubber and elastomer pipes (the values of 01 = 0.0189 
and p = 0.1 give identical logarithmic decrement, 6 2 np, for the first mode at u = 0). 

‘As shown by Gregory & Pai’doussis (1966b). the theoretical and experimental mode shapes associated 
with flutter, although displaying elements of higher beam modes with increasing ,fJ, in their essence retain the 
second-beam-mode ‘dragging’ form, despite changes in the numeration of the mode involved (Table 3.2). 
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(b) Qc (0) 

Figure 3.34 (a) Argand diagrams showing the effect of viscoelastic damping on stability of a 
cantilevered system: -, undamped system (a = o = 0) ;  - - -, viscoelastically damped system 
(a! = 0.0189, cr = 0); /? = 0.65, y = 10, k = 0. (b) Argand diagram showing the effect of hysteretic 
damping ( p  = 0.1, a = c = 0) on stability of otherwise the same system (PaTdoussis & Issid 1974). 

For metal pipes, typical values of /.L would be /.L = 6(10d3) or less [see, e.g. Snowdon 
( 19731. 

We next turn our attention to the other source of dissipation in the system, namely to 
the damping introduced by friction with the surrounding air, characterized by 0 [defined 
in (3.7 l)]. Especially for non-metallic pipes, this effect is negligible vis-&-vis damping 
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Figure 3.35 The effect of material damping, modelled by the hysteretic model, and of external 
viscous damping on stability of a cantilevered pipe conveying fluid ( y  = k = 0): -, undamped 
system; - - - , with hysteretic damping, p = 0.065; ---, with viscous damping, (T = 1.42; 
- . -  , with viscous damping, o = 0.23 (Gregory & PaYdoussis 1966b). The black dots mark the 

threshold values of B beyond which, for each of these three cases, the system is destabilized by 
damping. 

due to dissipation in the material of the pipe. In this respect, it is useful to adapt the 
relationships of Section 2.2.3 to the work at hand. For unconfined fluid, the damping 
force is given by 

(3.105) 

from (2.153) and (2.157), respectively, where S= DR?/u, R, being the outer radius of 
the pipe. In terms of the dimensionless parameters used here, 

(3.106) 
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For a typical pipe used in the experiments (Pai’doussis 1969, 1970) and Q = Ion, one 
finds (T 2 lo-’ or less. The effect of this is clearly very small as compared to, say, 
hysteretic damping with p - 6(10-2), since in the equation of motion ,u is multiplied 
by Nevertheless, the effect of an artificially large (T on stability as investigated by 
Pai’doussis (1963) and Gregory & Pai’doussis (1966b) is of interest; in these calculations 
the whole of the observed damping in the first and second mode of one of the pipes used 
in the experiments is assumed to be entirely due to (T (which, of course, cannot be so), 
yielding (T = 0.23 and (T = 1.42, respectively.* As seen in Figure 3.35, viscous damping 
with (T = 1.42 destabilizes the system only for B > 0.55. With (T = 0.23 this occurs for 
#I > 0.60, while for 0.3 < /3 < 0.6 the critical flow velocity is less than 1% higher than 
for the undamped case. The critical frequency, wCf ,  is reduced in almost all cases. 

The effect of very large values of (T is examined by Lottati & Kornecki (1986). Such 
large cr would arise if the pipe were immersed in water or a more viscous fluid (but in 
that case m, the pipe mass, must be presumed to include the fluid added mass). As shown 
in Figure 3.36, cr is stabilizing for /3 5 0.5 approximately, as in the foregoing, but for 
B = 0.8 it is destabilizing. with an interesting ‘negative jump’ in the curve. 

-I 14 - 

12 - 

2 I O  p = o s  - 

p = O . l  6k& 1 
4 

0 2 4 6 8 I O  
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Figure 3.36 The effect of large values of viscous damping, 0, on the critical flow velocity for 
flutter, uc f .  of a cantilevered pipe for various ,!l (Lottati & Kornecki 1986). 

Another interesting dynamical feature of nonconservative systems is related to the non- 
smooth variation in the critical load as damping is varied from vanishingly small to zero, 
as first discussed in general terms by Bolotin (1963). This has been studicd cxtcnsively for 
two-degree-of-freedom articulated columns [looking like the pipe system of Figure 3.1 (d) 
but without flow] subjected to compressive follower loads (Hsmann  & Bungay 1964; 
Henmann & Jong 1965, 1966).S Such systems lose stability either by divergence or by 

‘See Sections 3.3.5 and 3.3.6. 
tThese values correspond to p = 0.065 and are computed via m = Afp and u = A z p ,  respectively. 
“See also Section 2.1.5. 
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flutter, depending on the angle of the follower load to the last articulation and the ratio 
of the viscous damping at the two articulations, and they display several other interesting 
dynamical features. The destabilizing effect of vanishingly small damping as opposed to 
zero damping can be so large as to reduce the critical load by a factor of more than 6! 

The investigation has been extended to cantilevered pipes conveying fluid by Nemat- 
Nasser et al .  (1966), who examine the effect on stability of all velocity-dependentforces, 
as opposed to just damping: i.e. not only internal and external damping (a and a), but 
also 'Coriolis damping' associated with #?. They consider z/B = u p ,  a = ua*, a = 2uo*, 
where u is small, and then obtain solutions of the characteristic equation, neglecting terms 
of O(u2)  and higher. More specifically, they are concerned with the discontinuity in ucf 
for #? = O+ and #? = 0 exactly: in the first case, as seen from Figure 3.30, ucf 2: 4.21; in 
the second case the problem reduces to Beck's (Section 3.3.2) for which '?Pc = 20.05 and, 
since PC is equivalent to ucf = 4.48. Thus, there is a jump up from ucf = 4.21 to 
4.48 if #? is reduced from #? = O+ to 0 (see insert in Figure 3.56).+ The effect is greatly 
exaggerated when internal (material) damping is taken into account (a # 0), as shown 
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Figure 3.37 The critical flow velocity for small velocity-dependent forces acting on the 
cantilevered pipe system as a function of /F/a!* = B'I2/cr and u*, where f l=  u p ,  a! = w* 
and o = 2uo*,  in which u is a small parameter; ---, u$ /$  for Beck's problem, a! = B = o = 0 

(Nemat-Nasser et al .  1966). 

+Of course, as we have already seen, the bifurcation leading to flutter is different: for B = O+ a Hopf 
bifurcation; for B = 0 a Hamiltonian Hopf, so that, in that sense, the discontinuity is not too surprising. 
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in Figure 3.37: it is seen that whereas ucf = 4.48 for a! = /3 = (T = 0 (corresponding to 
U$ = 20.05 or u:f /n2 = 2.03, the dashed line in the figure), it can be as low as ucf = 
3.31 for j 3 =  (T = 0, a!* = 1 (u2 /n2 = 1.107). Furthermore, agreeing with the results of 
Figure 3.35 for small /3, external damping ((T* # 0) stabilizes the system. 

cf 

3.5.4 The S-shaped discontinuities 

As already mentioned, the nature of the S-shaped discontinuities in the stability curves of 
u versus /3, e.g. in Figures 3.30 and 3.32, is of interest not only per se, but also because the 
critical values of B at which these discontinuities occur are frequently associated with, or 
are separatrices for, distinctly different dynamical behaviour. The reader is referred to the 
discussion of Figures 3.63 and 3.68 in Section 3.6 and Figures 5.19-5.21 of Section 5.7, 
as well as to Paidoussis (1997). 

An early attempt to reach some understanding of this matter was made in 1969. Specif- 
ically, it was attempted to link the occurrence of these S-shaped portions in the stability 
curves and the attendant jumps in uc- to changes in the mode leading to flutter. Specif- 
ically, the mode in which the system becomes unstable is identified on either side of 
the jump, to see if there is a mode change (mode switching) across it. The results 
are shown in Table 3.2 (in the conventional ordering of the modes), and it is seen 
that this hypothesis fails. Thus, for y = 0, there are two mode changes between the 
first and second jump (0.4 5 B 5 0.65), while the j3 versus u curve remains smooth 
(Figure 3.30); for y = 10 there is no mode change across the first jump. The modes 
are then reordered, strictly in ascending order of magnitude of %e(@); for instance, in 
Figure 3.28 for u = 9- 11, the second mode is now called ‘third’, and the third ‘second’; 
in some cases [see Figure 3.34(a)] this causes very radical renumbering. The results of 
this reordering are also given in Table 3.2. The new scheme is partly successful, in the 

Table 3.2 Relation between mode number of the mode becoming unstable and the ‘jumps’ in the 
ucf versus p curves (PaYdoussis 1969). 

~ 

Values of p Nomenclature for Range of p 
Y tested mode becoming unstable relative to ‘jumps’ 

Conventional Reordered 

0 0.1, 0.2, 0.295 Second ‘Second’ B < 1st jump 

1st jump < B < 2nd jump 

B < 1st jump 
0.3 Second ‘Third’ } 1st jump < p < 2nd jump 

0.65 First ‘Third’ 2nd jump < < 3rd jump 

0.4, 0.5 Third ‘Third’ 
0.6 Second ‘Third’ 
0.65 First ‘Third’ 

10 0.1, 0.2 Second ‘Second’ 

0.4, 0.5 Third 

100 0.075, 0.1 Second ‘Second’ p < 1st jump 
0.1 13, 0.2 Third ‘Third’ 1st jump < B < 2nd jump 

0.4, 0.5, 0.58 Fourth ‘Fourth’ 2nd jump < p < 3rd jump 
0.65 First ‘Fourth’ 3rd jump < p < 4th jump 
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sense that it imposes a systematic increase in the mode associated with instability as 
j3 is increased. Also, an improvement in the correspondence between jumps and mode 
changes is achieved: it works for the first jump in all cases; nevertheless, it fails for the 
second jump when y = 10, and for the third jump when y = 100. Clearly something more 
profound is involved. 

A similar but more mathematical attempt was made more recently by Seyranian (1994), 
starting from the same observation that motivated Paldoussis’ (1969) work: the ‘drawing 
near’ of two mode loci (e.g. in Figure 3.29 for the second and third modes at u = 8.8125) 
with increasing j3, prior to switching of the mode leading to flutter, which often occurs as j3 
is varied. Seyranian argues convincingly that this ‘drawing near’ of the loci implies actual 
frequency coincidence (a repeated root) at some nearby point in the parameter space - a 
‘collision of eigenvalues’ in his terminology - if only an additional parameter (in this 
case, other than j3 and u)  is varied at the same time. This may well be true, although 
Seyranian demonstrates it only for nongyroscopic nonconservative systems (e.g. for an 
articulated column with a follower load). As seen in the ‘conventional’ mode-ordering 
column of Table 3.2, however, there is not always a mode switch across an S-shaped 
jump, nor does mode switching necessarily imply an impending jump (Figure 3.29 vis-u- 
vis Table 3.2 being a case in point). 

Either of these attempts, even if successful, would have given a mathematical explana- 
tion rather than physical insight into the nature of the S-shaped discontinuities. A more 
successful interpretation in this respect was provided by Semler et al. (1998), which also 
throws some light onto the destabilizing effect of damping. 

Semler et al. (1998) consider a double pendulum under zero gravity, subjected to a 
follower load, P ,  as shown in Figure 3.38(a). The two rods are constrained by rotational 
springs of equal stiffness, k ,  and rotational dashpots, c1 and c2. The equations of motion 
are rendered dimensionless by introducing t = t d m  for the time and the parameters 

(3.107) 

Stability is lost via a Hopf bifurcation and the critical value of 8 for flutter, Ycr = 
f ( y 1 ,  y2), may be derived in closed form. Figure 3.38(b) shows some results obtained 
for fixed y1 while y2 is varied. It is shown, for all y1, that increasing y2 from zero initially 
stabilizes the system (i.e. a higher 9 is required to cause flutter), but the trend is eventually 
reversed and then y2 becomes ‘destabilizing’. 

To understand the mechanism leading to this behaviour, the net energy gained by the 
system over a period of not necessarily neutrally stable oscillation, T ,  is considered, 

8$ sin x d t  - [ y ~ $ ~  + y2x2] dt ,  I’ (3.108) 

where 4 41 and x = 41 - 4 2  are an alternative set of generalized coordinates. AE has 
the same meaning as E - z0 in (C.6). Once the equations of motion are decoupled via 
modal analysis techniques (Section 2.1.2), it is possible to consider AE for each of the 
two modes separately. One can thus obtain the diagram of Figure 3.39(a). It is seen that 
mode 1, the ‘stable mode’ (Le. not the one associated with flutter), becomes more and 
more stable as y2 is increased, being associated with progressively more negative AE. 
However, mode 2, the flutter mode, becomes less stable with increasing y2; eventually, 
for y2 = 0.025 [cf. Figure 3.38(b)] AE > 0 is obtained, and hence amplified oscillations. 
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Figure 3.38 (a) Diagram of the 'double pendulum' system in zero gravity, subjected to a follower 
force, P .  (b) The effect of increasing M, while y~ is fixed, on the critical load for flutter. Y?,. (Semler 

er n l .  1998). 

Insight into the dynamics of the system is obtained by looking at the relative amplitudes 
of the two generalized coordinates, 4 and x, when the response is periodic, i.e. at 9' = Per. 
It is noted that, whereas W is at most linearly dependent on ,Y, D is quadratically affected, 
and so a high X-content in one of the modes means that it will be preferentially damped. 
The results are shown in Figure 3.39(b). It is seen that for low y2, the X-content of 
mode 2 (which is the flutter mode) is higher, and hence this mode will be damped more 
than mode 1 which remains stable: hence, the effect of increasing y2 here is stabilizing. 
For larger y2, however, it is mode 1 that has the higher X-content and hence it will be 
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Figure 3.39 (a) The energy gained ( A E  > 0) or lost by the double pendulum system in 
its two modes of vibration, normalized with respect to the initial energy, as a function of 
y2; y1 = 0.1, 9 = 2. (b) The amplitude ratio of the generalized coordinates $ and x, as a function 

of y2; yl = 0.1 but 9 is varied (Semler er al. 1998). 

preferentially damped, while the stable mode 2 is less damped; hence, increasing y2 is 
now destabilizing. The cross-over point occurs at y2 = 0.095, corresponding to the same 
point in Figure 3.38(b) where stabilization by y2 ceases and destabilization begins. 

Moreover, not only the relative amplitude of the two generalized coordinates is impor- 
tant, but also the phase between them. On the stability boundary, where 9' = gCr and 
A E  = 0, the motion must be harmonic; since the amplitude is arbitrary, we can take q~ = 
1 sin w t ,  x = Bsin(wt - 6). Then, assuming r$ and x to be small and evaluating (3.108) 
with AE = 0, one obtains PCr sin 6 = w(yl + B2y2)/B. For B > 0, it is seen that 6 must 
be positive for PCr to exist, and the higher it is (but always 6 < n), the lower the value of 
Per. Of course, Pcr also depends on y1, y2, B and w, but the phase angle 6 is of paramount 
importance. 

Armed with these insights, the modal composition of the mode associated with 
instability is now considered in the pipe problem. The system of equation (3.76) is 
discretized by the Galerkin method [Section 3.3.6(b)], using the beam eigenfunctions, 
4,. (Q, as comparison functions and the associated generalized coordinates, qr(r) .  
The system is then reduced to first order and decoupled by modal techniques - cf. 
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equations (2.16)-(2.19) - so that each eigenmode may be considered separately. It is 
the modal content of the mode leading to flutter, in terms of the amplitudes G I  and 
the phases between them, that is of interest. Here the q,- are equivalent to and ,y in 
the foregoing. The centrifugal term (a u' )  plays the role of 9, and Coriolis damping 
(cx B' l 'u )  the role of the dissipative force due to y2. 

Figure 3.40 shows the stability diagram constructed with a progressively higher number 
of modes in the Galerkin discretization. It is seen that not only does one not get the first 
'jump' (at P S I )  with N = 2 and does so with N = 3 or higher (cf. Figure 3.31), but also 
N = 4 is required to obtain the second jump (at B s ~ ) ,  N = 5 to obtain the third one, and 
so on! Thus, each jump is associated with the addition of another generalized coordinate, 
while the approximation prior to the jump is quite reasonable without it. 

P 

Figure 3.40 The stability diagram of u,.f versus /3 for Galerkin solutions of the undamped hori- 
zontal cantilevered pipe with an increasing number of comparison functions, N .  

Figure 3.41(a) shows the evolution of the ratio of &/GI  and 43/41 with u.  It is seen that 
around i i , f  2 7.5, which corresponds to the first jump, the 4 2  content reaches a minimum, 
while @j begins to increase sharply - in which 41 = 1 was taken arbitrarily. It is noted 
that these variations with u are smooth, but when plotted versus ,!3 as in Figure 3.41(b), 
they become much more violent, generating jumps. Just beyond the jump. 4 2  increases 
once more, together with 43 .  

To interpret these results, and similar ones associated with B s ~  et seq., it must be recalled 
that work is done on the system by the centrifugal and the Coriolis forces, equal lo 
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Figure 3.41 The evolution of the normalized generalized coordinate amplitudes, G i / G , ,  associated 
with the Galerkin discretization of the horizontal cantilevered pipe system: (a) as a function of uti; 

(b) as a function of 'the critical p' corresponding to u = uCf (Semler et al. 1998). 

over a period of neutrally stable oscillation T.+ For a three-mode Galerkin solution, taking 
q, = A, sintot - &), one obtains 
Wcentrif = u2[13.62A1A2 sin(81-02) + 25.89AlA3 sin(& -0,) + 12.27A2A3 ~ in (0~-&)] ,  

?The physical similarity to the follower-force system becomes even clearer if equation (3.108) is rewritten 
for neutrally stable oscillations (periodic motions) and small angles, giving 

The first term simplifies to the form above since the integral of &q$ 3 d (i4:) /dt  vanishes for purely 
periodic motions - the same conditions leading to (3.109). The similarity of this first term to Wcentrif and of 
the term involving yi to Wcor now becomes very clear. The term involving yz corresponds to viscoelastic 
damping in the pipe (a # 0). Hence, it is obvious that positive work can be done on the system by the lateral 
component of the follower force 9 or, for the pipe problem, by the lateral component of the jet reaction, u2 (of 
the jet emerging from the free end of the pipe); to the linear limit the axial component is conservative. Thus, 
the physical parallelism between the two cases of the follower-force system and the pipe system is therefore 
very close. 
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- 2AlA3 COS(& - &)I. 
Broadly, the centrifugal force imparts energy to the system, while the Coriolis force 
(involving B)  absorbs energy, the balance between the two, in the absence of dissipation, 
giving rise to flutter (Section 3.2.2). However, as discussed in Section 3.5.6, the flutter 
mode shape remains broadly similar with varying p, though the mode content is clearly 
altered. Hence, as B is increased, the amplitude and phase of the qr components have 
to be adjusted to provide a composite shape capable of absorbing energy from the fluid. 
For low enough B, 41 and q2 are quite sufficient. However, as B 2 is approached, the 
third component, q 3 ,  has to come in to achieve the required modal mix; and similarly q 4  

for B s ~ ,  and q5 for B s ~ .  
This leaves unanswered the question of why this adjustment in modal content is not 

gradual but rather abrupt. The answer is furnished by the phase information, Figure 3.42. 

0. I 0.2 0.3 0.4 0.5 0.6 

- - (I = 0.01 

0.1 0.2 0.3 0.4 0.5 0.6 

0. I 0.2 0.3 0.4 0.5 0.6 
B 

Figure 3.42 The evolution of phase differences between the generalized coordinates qr associated 
with the Galerkin discretization of the horizontal cantilevered pipe system, as a function of B. 
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Even though each Bi - 6, varies smoothly with ,9, as it crosses ~ T C  and x,  cos(6i - 6,) 
and sin(@ - 6,) respectively, change sign - with attendant abrupt changes in the energy 
expressions. For example, 02 - 0, > n for low j3, it crosses n at j3 2: 0.24, and then 
decreases sharply to - ;IT near PSI; hence, sin(& - Q 3 )  becomes positive for j3 2 0.24 
and then increases precipitously near PSI, while cos(& - 03) becomes small. Similarly, 
03 - 04 crosses n at j3 2: 0.6 prior to dropping to - :IT at ,9s2 (not shown), and 0, - Qs 
does the same at j3 2: 0.83 and Bs3, respectively. 

Thus, the answer to the existence of the jumps lies in the modal content of the flutter 
mode and the phase differences between its component parts. Moreover, at each jump, 
there is a transition zone in which three possible mixes of modes are feasible with different 
uCfr one low, one middle (unstable), and the other high (e.g. at j3s2, for 0.65 < j3 -= 0.69 
approximately), but as j3 is increased sufficiently, only the one with the higher ucf survives. 

As a cautionary note it should be mentioned that, in the foregoing, the travelling 
wave component in the mode shape was ignored, whereas in reality (see Section 3.5.6) 
8; E 6;(4) generally. Clearly, this also must play a role. 

3.5.5 On destabilization by damping 

To those with a structural mechanics background the very statement that dissipation, i.e. 
energy loss, may make a stable system unstable might appear paradoxical. In gyrody- 
namics, however, this effect has been known for a long time (Den Hartog 1956; Crandall 
1995a,b) - certainly since Thomson (Lord Kelvin) and Tait demonstrated in 1879 that 
damping in a ‘gyroscopic pendulum’ can be destabilizing. A gyroscopic pendulum is an 
‘up-standing’, up-turned pendulum to which spin has been added so as to stabilize the 
statically unstable system. Stability can nevertheless be destroyed if damping is added, 
no matter what the spin-rate (Crandall 1995a).+ 

The effect is not surprising to fluid mechanicians either. For instance, they know of 
Reynolds’ two hypotheses, formulated in 1883, stating that: (a) in some situations the 
inviscid fluid may be unstable, while the viscous one is stable, so that the effect of 
viscosity is purely stabilizing; (b) in other situations the inviscid fluid may be stable while 
the viscous one unstable, indicating that viscosity is destabilizing (Drazin & Reid 1981; 
Chapter 4). Examples may be found in shear flow instability (Tritton 1988; section 17.6), 
arising in 2-D velocity profiles with a discontinuity (e.g. a jet or a wake) or in profiles 
with no point of inflection (e.g. a pipe flow or a boundary layer with a favourable pres- 
sure gradient). In the first type of flow, viscosity is primarily stabilizing, preventing the 
Kelvin-Helmholtz$ type instability at low Reynolds number (%e). In the second type 
of flow this instability does not occur, but viscosity can cause instability of a different 
kind. Viscosity now plays a dual role: stabilizing at low Re, but destabilizing at high Re. 
In aeronautics the destabilizing effect of damping has been known for a long time, in 
relation to aircraft flutter, and has been carefully studied (Broadbent & Williams 1956; 
Done 1963; Nissim 1965); also, in satellite dynamics this untoward effect of dissipation is 

?Crandall shows that, although ordinary damping is always destabilizing, ‘rotating damping’ is not, thus 
explaining how in practice such pendula are stabilized at high spin-rates. 

*The Kelvin-Helmholtz instability is the premier example of shear flow instability in profiles with a point of 
inflection. It may be demonstrated theoretically by a flow in which the upper half-plane has a uniform velocity 
to the right, and the lower half-plane to the left. If waviness develops in the interface, the pressures generated 
(via Bernoulli’s equation for inviscid flow) tend to exaggerate the waviness, leading to instability. 
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now textbook material (Hughes 1986; Chapters 5 and 7). Nevertheless, for fluid-structure 
interaction phenomena, destabilization by dissipation is sufficiently perplexing to deserve 
further attention. 

Several attempts have been made to understand the mechanism of destabilization. Of 
these, Benjamin’s (1963) work, applying to all fluid-structure interaction systems, will be 
discussed first, followed by that of Bolotin & Zhinzher (1969) and Semler et nl. (1998). 

An attempt to explain the phenomenon in simple terms was made by Benjamin (1963) 
in connection with the stability of compliant surfaces in fluid flow. Specifically, consid- 
ering a one-degree-of-freedom mechanical system, rnq + cq + kq = Q, where Q = M q  + 
CG + Kq is associated with the fluid forces, and introducing the concept of an ‘activation 
energy’, Benjamin shows that (i) if rn > M and k > K ,  dissipation stabilizes the system 
(class B instability), while (ii) if m < M and k < K ,  dissipation destabilizes it (class A 
instability). Since -M is the added mass, M < 0 must hold for a physically meaningful 
system, and hence the condition rn < M is nonphysical. Benjamin recognized this and 
so considered next an infinitely long compliant surface, disturbed by a sinusoidal wave 
travelling along it. In this case, physically meaningful conditions are obtained for the exis- 
tence of class A and B instabilities, once again with the aid of the activation energy [see 
also Ye0 & Dawling (1987)l; as before, these conditions are dependent on the fluidsolid 
mass and stiffness ratios. This work is discussed in greater detail in Appendix C. 

It was initially thought (Paidoussis 1969) that Benjamin’s work could explain both 
dissipative destabilization and the stability curve jumps in the pipe problem. Certainly, 
for B < Bsl. where is the value for the first discontinuity, dissipation is stabilizing 
(Figure 3.35) and for j3 > it is destabilizing. However, as seen in Figure 3.35, 
dissipation continues to be destabilizing across the second discontinuity at &. Hence, 
Benjamin’s work can only explain the destabilizing effect of damping for j3 > PSI, but 
cannot explain the jumps themselves. 

Another point of view was expressed by Bolotin & Zhinzher (1969), whose thesis 
may be summarized as follows: the very statement that ‘damping is destabilizing’ in a 
nonconservative system is flawed in that the analysis with zero damping gives a false 
indication of the stability region, a portion of which, if the analysis is properly conducted 
with some (even infinitesimally small) damping, is really unstable. Thus, the presence 
of purely imaginary eigenvalues on the imaginary axis merely indicates ‘quasi-stability’ 
rather than stability. This work is very important and it can explain the dynamics for 

= 0 and j3 = O+ discussed at the end of Section 3.5.3; see also Section 3.7. However, 
it applies to nongyroscopic nonconservative systems and hence cannot help us, since the 
instability here is via a classical Hopf rather than a Hamiltonian Hopf bifurcation. For the 
pipe system, one not only obtains that nonzero dissipative forces are destabilizing vis-&vis 
the undamped system, but also that in some cases (e.g. Figure 3.35 for o = 0.23 and 1.42 
and also Figure 3.43) increased dissipation further destabilizes the system. In this regard 
the dynamical behaviour is more closely related to Benjamin’s system. Under conditions 
where dissipation-induced destabilization occurs (class A instability), the system must be 
allowed to do work against the external forces providing the excitation; i.e. the absolute 
energy level of the whole system must be reduced in the process of creating a free 
oscillation. The interested reader is also referred to Craik (1985) and Triantafyllou (1992) 
for a discussion of ‘negative energy modes’, requiring an energy sink in order to be 
excited. 
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Figure 3.43 The stability diagram of ucf versus ,9 of the horizontal cantilevered pipe, for progres- 
sively higher values of the viscoelastic dissipation constant, a! (Semler et al.  1998). 

The question of destabilization by damping according to the Semler et al.  (1998) thesis 
is considered next. It is recalled that, in viscoelastic or hysteretic damping, each general- 
ized coordinate component, qr,  is damped proportionately to A:; so, the higher the value 
of r ,  the more is the corresponding qr damped. Let us consider the first jump, at PSI. The 
effect of (11 # 0 is to damp q 3  more than q1 and q 2 ,  and to effectively wipe out all the 
higher components qr > q3 .  Now, it is evident from Figure 3.40 that, when it comes into 
play, q3  has a stabilizing effect on the system, as manifested by the increase in ucf at PSI; 
hence, its diminution by a! means that the system is effectively destabilized. As a result, 
this jump, which has been shown to be related to the emergence of 43, can be entirely 
suppressed, as shown in Figure 3.43! One can similarly see how the other jumps can also 
be suppressed. Looking again at Figures 3.41 and 3.42 (the dashed lines), it is seen that 
both the amplitude ratios and phase differences of the qr are significantly affected. Thus, 
it is seen that, with damping present, 43/41 and 4 2 / 4 1  increase more gradually with P 
beyond PSI. Also, some of the ‘saturation characteristics’ of the phase differences disap- 
pear (e.g. for 0, - el), and both 02 - 03 and 0, - 01 vary more gradually - thus making 
the discontinuous changes in ucf with 

Another, physical way of looking at the problem is to realize that, in some circum- 
stances, if the fluid pressure acting on an undamped oscillating body is completely in 
phase with its acceleration (out of phase with the displacement), there can be no interac- 
tion between fluid and solid. However, the introduction of dissipation in the solid would 
produce a phase shift in its oscillation, thereby enabling the fluid to do work on the solid 
or vice versa. In a situation where energy transfer occurs in any case, independently of 
dissipation, as for the pipe conveying fluid, one can say that the phase shift may either 
facilitate or hinder energy exchange, thus destabilizing or stabilizing the system as the 
case may be. 

unnecessary. 
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3.5.6 Experiments 

The first set of experiments were conducted with horizontal cantilevers conveying air, 
water or oil, with rubber pipes, in some cases fitted with end-nozzles, and metal pipes 
(Pai‘doussis 1963; Gregory & PaYdoussis 1966b). The apparatus for the experiments with 
rubber pipes is shown in Figure 3.44; the same apparatus was used for experiments with 
water flow (as shown) and with air flow (in which case a volumetric flow meter was 
inserted in the supply line): in the latter case, the air pressure was sufficiently low for 
compressibility effects to be neglected. The pipes were horizontal, hung from the ceiling 
by thin threads, so that motions were in a horizontal plane. In experiments with metal 
pipes, a different apparatus was used in basically the same arrangement, but the fluid was 
oil supplied by a suitably modified variable-speed hydraulic pump capable of delivering 
66cm’/s (4in’/s) at up to 9.7MPa (1400 psig). 
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Figure 3.44 Schematic diagram of the apparatus used in Paldoussis’ experiments with horizontal 
cantilevered rubber pipes conveying water or air; the apparatus for the metal pipe experiments was 

similar (Gregory & Pai’doussis 1966b). 

The rubber pipes were either pure latex rubber or of the type known as surgical quality 
rubber tubing; their inside diameter ranged from Di = 1.59 to 12.70mm (k- in), the 
wall thickness from h = 0.79 to 3.18 mm (& - $ in) and the length from 0.20 to 0.76 m. 
Although the pipes were carefully selected for uniformity and freedom from kinks and 
other flaws, all rubber pipes were found to have a permanent bow in one plane (cf. 
Section 3.4.4), countered by using pipes which, when supported by the strings with the 
bow in the vertical plane, would straighten out under their own weight together with that 
of the contained fluid. The two metal pipes were specially manufactured, stress-relieved 
and straightened by the suppliers. They were both of outer diameter Do = 1.59 mm and 
1.98 m (78 in) long; h = 0.152 and 0.193 mm. The supporting threads in this case were 
6.1 m (20 ft) long. 
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All measurements were straightforward, except perhaps the measurement of EZ for 
rubber pipes, required in the determination of the dimensionless flow velocity, u. The 
techniques utilized for this are summarized in Appendix D. 

Some of the general observations on the dynamical behaviour of this system are worth 
giving in some detail; they are similar to those made by other researchers in the experi- 
ments to be discussed later. 

Small flow velocities increased the damping of the system, and oscillations induced 
by light taps close to the free end, which were still of the general shape of the first 
cantilever mode, decayed much faster. At somewhat larger flow velocities the system 
became overdamped and any displacement of the pipe was followed by a return to rest 
without any oscillatory motion. In some cases physical contact of the free end of the 
pipe with the hand, momentarily transforming the system to one supported at both ends, 
caused the pipe to buckle by bowing out near the middle. When contact was broken 
suddenly, the pipe returned rapidly to its position of rest, but when the hand was removed 
only slowly, the pipe pressed against and followed the hand with the result that the 
timid observer was soon faced with a stream of fluid directed against himself (or nearby 
colleagues!) - this, as already remarked, being a demonstration of a negative-stiffness 
(divergence) instability. 

At still higher flow velocities, light taps resulted in heavily damped oscillation with 
a form rather more like that of the second cantilever mode than the first. As the flow 
velocity increased further, the system became less heavily damped until at a certain 
critical velocity of flow the disturbance produced by lightly tapping the pipe grew into a 
self-supporting oscillation. If no outside disturbance was introduced, the system eventually 
became unstable spontaneously. This usually occurred at measurably higher flow velocities 
than were sufficient for ‘induced’ instability to take place, particularly in the case of 
rubber pipes. Further increase of the flow velocity beyond the stability limit resulted in 
an increase in both the amplitude and frequency of oscillation. 

When decreasing the flow velocity, it was noted that oscillation persisted below the 
point where instability, spontaneous or ‘induced’, first occurred. This, and also the fact 
that in some cases the onset of instability depended on the amplitude of the applied 
disturbance, indicated that the experimental systems behaved in general nonlinearly. 

The mode of deformation of the unstable system was recorded with a cinC-camera in 
a few selected typical cases and a number of successive frames of the film are shown in 
Figures 3.45(a-c). In general, for very small values of ,% the modal form was essentially 
that of the first cantilever mode, with a small component of the second. For higher values 
of p, the second cantilever mode became more prominent, and for f i  > 0.3 approximately 
the third mode became apparent [e.g. see frame 8 of Figurc 3.45(c)]. In all cases, the 
tangent to the free end of the pipe sloped backwards to the direction of motion of the free 
end over the greater part of a cycle of oscillation. This ‘dragging’ motion was predicted 
to be necessary for flutter, in conjunction with the energy considerations of Section 3.2.2. 

Indeed, all observations described are in agreement with the theoretical predictions 
of Sections 3.5.1 and 3.5.2. However, two additional comments should be made. First, 
the dynamical behaviour of the system is, to some extent, nonlinear - as noted 
above - suggesting that the Hopf bifurcation is subcritical. Second, according to linear 
theory, once instability is developed, the amplitude should increase without limit; of 
course, once the amplitude becomes large, nonlinear forces come into play, and in this 
case evidently their net effect is to limit the amplitude, thereby establishing a limit cycle. 
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I5 

Figure 3.45 Cin6-film sequences showing the limit-cycle motion of cantilevered rubber pipes 
conveying fluid (a) air, L = 457 mm, frequency (f) = 1.56 Hz, /3 = 0.001; (b) water, L = 551 mm, 
f = 3.25 Hz, p =  0.479; (c) water, L = 724 mm, f = 1.82 Hz, /3 = 0.556. The camera was located 
upstream and above the horizontal pipe; the straight black line (drawn on a board just below the 

flexible pipe) shows the equilibrium position of the pipe. 

The limit-cycle amplitude of the free end at the onset of the flutter could be as large as 
$L for the rubber pipes, but less than &L for the metal pipes. 

The dimensionless critical flow velocities, uCf, and frequencies, wCf,  are shown in 
Figure 3.46 for rubber pipes. Two sets of experimental points are presented: those of 
spontaneous instability and those of ‘induced instability’ - induced by the light taps on 
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Figure 3.45 (continued). 

the pipe referred to above. The data points within each set for the same value of /3 represent 
experiments with different lengths of the same pipe; experiments were conducted with a 
given initial length, subsequently shortened in steps by cutting off pieces of the pipe. The 
internal (material) damping used in the theory is an average for all the experiments, but 
nevertheless taking it into account improves agreement between theory and experiment, 
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Figure 3.45 (continued). 

as compared to theoretical results with zero damping [shown in Gregory & Paldoussis 
(1966b)l. In general, agreement is reasonable; it would have been better if the damping 
corresponding to each different pipe had been used (Appendix D). 

For experiments with nozzles, a latex pipe 12.70 mm inside diameter and approximately 
0.508 m long was used. The nozzles were machined in Perspex (Plexiglas) cylinders, 
6.35 mm long and 12.70 mm in diameter, which were glued to the inside of the free end 
of the pipe with soluble glue. The nozzle cross-section converged smoothly over half the 
length from the diameter of 12.70mm to the required exit diameter, which varied from 
3.18 to 9.13 mm. After each test, the glue was dissolved and a new nozzle was inserted. 
The original /3 (without a nozzle) was p = 0.56, and six experiments were conducted 
with nozzles in the range of p 0.03-0.30 [cf. equations (3.74)]. Experimental data 
are compared with theory in Gregory & Paldoussis (1966b); the degree of agreement is 
similar to that in Figure 3.46, but a little worse, possibly as a result of changes in the 
pipe cross-section due to pressurization of the pipe because of the constriction introduced 
by the end-nozzle. 

The experimental data for the two experiments with metal pipes are compared with 
theory in Figure 3.47. The experimental values of ucf corresponding to /3 = 0.11 1 and 
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Figure 3.46 Comparison of the experimental values of ucf and wrf for cantilevered rubber 
pipes with the theory taking into account internal (hysteretic) damping in the pipe material: 
0, measurements for spontaneous instability; +, measurements for ‘induced’ instability; -, 

theoretical curves for hysteretic damping coefficient p = 0.065 (Gregory & Pdidoussis 1966b). 

0.170 are respectively 9% and 12% below the theoretical values. In this case damping is 
ignored, because it is quite small. The discrepancy between theory and experiment is likely 
caused by variations in the effective density and viscosity of the oil with pressure and 
temperature, as well as cavitation effects, all of which would generate a nonuniform flow 
velocity along the pipe. Nevertheless, the most significant point about these experiments 
is that they substantiate the theoretical prediction that frictional forces associated with 
pressure drop - even when of the order of 8.3 MPa (12OOpsig) - do not affect the 
dynamics in any important way, as predicted in Section 3.3.4. 

In Figure 3.46, noting that the values of ucf for induced instability are generally 
substantially below those for spontaneous instability, it is tempting to conclude that 
the Hopf bifurcation is subcritical in all cases (see Section 2.3). However, as there was 
essentially no difference between spontaneous and induced instability thresholds in the 
case of metal pipes, this was thought to be related perhaps to the difference in material. 
Indeed, there is a property of carbon-black-‘filled‘ rubbers known as ‘stress softening’, 
but latex rubbers should be free of that. As shown in Chapter 5,  the difference may be 
related to the different ranges of L/Di involved subcritical Hopf bifurcation for relatively 
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Figure 3.47 Comparison of the experimental values of ucf and wcf for cantilevered metal pipes: 
A, measurements; -, theory (Pai’doussis 1963). 

short pipes (L/Di 2 36-350 for the rubber pipes) and supercritical Hopf bifurcation for 
long pipes (LID; 2 1545-1650 for the metal pipes). 

Chronologically, the second set of experiments was conducted by Greenwald & 
Dugundji (1967) - see also Section 3.4.4. They conducted experiments with three 
elastomer pipes (Do = 3.00-4.75 mm, h = 0.86- 1 S O  mm). The pipes were hung vertically 
and clamped at their upper end. The authors have made similar general observations 
to those discussed in the foregoing. A very nice photograph is shown in Figure 3.48, 
corresponding to a pipe with /3 = 0.471, which shows more clearly than Figure 3.45(a-c) 
the nonstationarity of the modes and the travelling wave component in the mode shapes. 
The measured critical flow velocities are compared with theory in Table 3.3. It is seen 
that agreement is at least as good as in Figure 3.46 when viscoelastic damping is taken 
into account. In the theory the authors neglected gravity; this is reasonable: from their 
data one finds y = 1.68-2.89, which results in theoretical values of ucf higher than those 
in Table 3.3 by less than 2%. 

A more extensive set of experiments was conducted by Pdidoussis (1970) with vertical 
pipes, either hanging or standing. This is the first instance when such pipes were cast 
by the researcher, and this allowed the manufacture of truly straight pipes for the first 
time, thus facilitating the experiments a great deal - not only for pipes conveying fluid, 
but also for experiments with shells and cylinders. The ‘manufacturing techniques’ are 
outlined in Appendix D. 

The general observations of the dynamical behaviour of hanging pipes are much as 
described before and need not be repeated here. However, two additional points are useful 
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Figure 3.48 Photograph of a fluttering vertical pipe (pipe #3) from the experiments by Greenwald 
& Dugundji (1967). The arrow shows the end of the pipe; what is seen below that point is the free 

water jet. 

Table 3.3 Comparison between the experimental and theoretical 
values of ucf from Greenwald & Dugundji’s (1967) experiments; 

the values have been scaled from their figure 13a. 

B Values of ucf 
Theory Experiment Theory 

(no damping) (with damping) 

0.342 8.48 6.85 7.50 
0.47 1 9.15 8.30 8.10 
0.500 9.32 9.55 8.30 

to make. The first is that, before the occurrence of flutter, in some cases, small movements 
of the cantilever away from its vertical position of rest were observed with increasing 
flow. These movements developed gradually with flow and never exceeded 6 mm (1 -2% 
of the length); they could be made to vanish by suitable, slight circumferential adjustments 
of the tubular cantilever at its upstream support. Clearly, these could not be construed to 
be a buckling instability. They must be interpreted as ‘localized’ buckling resulting from 
small nonuniformities in the cantilever, or due to release of strains imposed by imperfect 
circumferential support at the clamped end. Similar occurrences of localized buckling 
were observed in experiments with horizontal cantilevers, and by Benjamin (1961b) in 
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his experiments with articulated pipes. It is of interest that, if the tubular cantilever 
is initially (i.e. at zero flow) not substantially straight, flow can produce large lateral 
movements which are much larger than the initial departures from straightness. This can 
be observed by conducting an experiment using as the cantilever a piece of commercial 
rubber tubing, which normally has a set bow in it. Flow exaggerates the original bow, the 
shape of the tube continually changing with increasing flow velocity. Clearly, this could 
be misinterpreted as buckling of a straight pipe. 

The second point of interest is that, in some of these experiments, it was possible to 
demonstrate the nonlinear dynamical behaviour displayed in Figures 2.12 and 2.13 about 
the origin. Over a very small range of flow velocities, it was found that: (i) weak taps to the 
pipe caused it to oscillate, but the oscillation decayed and the pipe returned to its equilib- 
rium state; (ii) stronger taps induced the system to develop limit-cycle oscillation - thus 
demonstrating the existence of a small unstable limit cycle and a larger stable one. 

Several experiments were conducted with different lengths (different y )  of a number of 
pipes with varying #?. The pipes were all with Do = 15.5 mm and h = 2.79-9.14 mm; the 
initial length was - 480 mm and experiments were conducted with L = 230-480 mm. 
Two different materials were used, Silastic A and Silastic B (Appendix D), the latter 
having a larger E and higher damping. In comparing with theory, the dissipation was 
modelled as a hysteretic effect, and average values were used: p = 0.02 for Silastic A 
and p = 0.10 for Silastic B. 

Typical results for the experimental uL.f and wL.f for spontaneous flutter of hanging 
cantilevers ( y  > 0) are shown in Figures 3.49 and 3.50 for water flow and Table 3.4 
for air flow, where they are compared with theory. It is clear that agreement between 
theory and experiment is reasonably good, especially when dissipation is taken into 
account. It is interesting that in some cases the measurements provide indirect experi- 
mental support to the theoretical prediction that damping may destabilize the system (e.g. 
for #? = 0.241, y 2: 16 and for B = 0.645, y 2: 8.6). 

In assessing agreement between theory and experiment, greater weight should be placed 
on the critical flow velocity than on the critical frequency, as the latter is measured after the 
limit cycle has been established, when nonlinear forces not taken into account in the theory 
have already come into play. Accordingly, the fact that taking into account dissipation 
seems to worsen agreement in the frequency between theory and experiment- in nearly 
all cases, cannot be interpreted as a weakness of the theory; rather, it should be viewed 
as being symptomatic of the limitations in the experimental procedure (in identifying the 
limit-cycle frequency with w,f) .  

As already remarked in Section 3.5.2, the impetus for these experiments was partly 
provided by Benjamin’s ( 1  96 1 a,b) findings in connection with dynamical behaviour of 
articulated pipes conveying fluid. Benjamin found that divergence is sometimes possible 
in cases of vertically hanging articulated cantilevers conveying water; yet it does not occur 
if the conveyed fluid is air, the only form of instability possible in that case being flutter. 
However, in the case of continuous (hanging) cantilevers, it was found that divergence 
is not possible at all whatever the fluid conveyed, only flutter. This matter is clarified in 
Section 3.8. 

We next consider the experiments with standing cantilevers conveying air only, for 
obvious reasons. The dynamical behaviour of the system was of three distinct types, 
which for ease of description will be categorized as applying to long, intermediate and 
short cantilevers. 
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Figure 3.49 Comparison between theoretical and experimental values of ucf and wCf for a number 
of vertical (hanging) cantilevered pipes conveying water with different B and lengths thereof 
(different y): for 0.130 5 5 0.241: 0, experiment; -, theory with no damping; ---, theory 
with damping ( p  = 0.02 for Silastic type A rubber; p = 0.10 for Silastic type B); (Pai’doussis 

1970). 

Long cantilevers were buckled under their own weight at zero flow velocity. The 
dynamical behaviour of the system was assessed by supporting the cantilever by hand in 
its unflexed shape, while the flow was incremented, and then releasing it. Long cantilevers 
( y  < - 2 3 )  were unstable at all flow velocities. At low flows a long cantilever continued 
to be unstable by buckling; at higher flow velocities, oscillations were superposed on 
buckling, resulting in an erratic, thrashing motion. 

Short cantilevers ( y  > -8 approximately) did not buckle under their own weight at zero 
flow. Their behaviour with increasing flow was essentially as for hanging cantilevers; the 
system remained stable with increasing flow until, at a sufficiently high flow velocity, 
flutter developed spontaneously. 
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Figure 3.50 Continuation of the comparison as in Figure 3.49, for pipes with B = 0.485 and 
0.645 (Paidoussis 1970). 

Table 3.4 Comparison of experimental results with theory for hanging cantilevers conveying air 
(Pa'idoussis 1970). 

B x 103 Y Values of uCf  Values of w ~ ,  

Theory Exp't Theory Theory Exp't Theory 
p = o  p =0.02 p = o  = 0.02 

0.23 61.1 6.15 6.33 6.33 21.3 18.0 19.7 
2.03 42.4 5.62 6.05 5.79 19.5 19.5 18.1 

Cantilevers of intermediate length, while unstable by buckling at zero and small flow 
velocities, were stable at a higher flow range. Thus, if the cantilever was supported 
and the flow increased to a certain point, upon release the cantilever retained its straight. 
undeformed shape. Further increase of flow, nevertheless, eventually resulted in the devel- 
opment of oscillatory instability. 

Clearly these observations agree with the theoretically predicted behaviour of standing 
cantilevers, if one interprets increasing length as increasing negative y. 

Experimental results for standing cantilevers are shown, and compared with theory ( B  = 
1.1 x = 0.02), in Figure 3.51. It is noted that measurements with y < -22.8 
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Figure 3.51 Comparison between theoretical and experimental values of u for (i) the threshold of 
restabilization of pipes buckled under their own weight and (ii) onset of flutter of ‘standing’ vertical 

cantilevers conveying air ( p  = 1.1 x lop3): 0, e, experiment; -, theory (PaYdoussis 1970). 

approximately were not feasible, as the system then remained unstable at all flows; the 
transition from instability by divergence to instability involving both divergence and 
flutter proved to be very difficult to pin-point. It is also noted that the theoretical results 
in Figure 3.51 are quite different, for the given B and p, from those in Figure 3.33 for 

= O+, p = 0 - for the reasons discussed at the end of Section 3.5.3. 
It is seen in Figure 3.51 that agreement between experiment and theory is quite good, 

particularly in the case of the dimensionless flow velocities, where in most cases the 
discrepancy is < 5%, which is within the margin of experimental error. It is also remarked 
that, in this particular case, linear theory can predict the restabilization and second loss 
of stability of an initially unstable system quite well.+ 

~~ 

+Provided that the system is first supported in more or less its equilibrium configuration and then released. 
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A successful experiment with a metal pipe was also conducted by Liu & Mote (1974) 
with their apparatus, described in Section 3.4.4. They used an end-nozzle, so as to 
reduce the effective B and achieve flutter with the available maximum flow rate (see 
Section 3.3.5); ai = A / A j ,  the ratio of pipe flow area to terminal flow area, was 2.42. 
They obtained good agreement between the theoretical and experimental values of ucf : 
2.89 and 3.27, respectively, as well as between the theoretical and experimental frequency 
versus flow curves, as shown in Figure 3.52. In the absence of the nozzle, the agreement 
in frequency was less good, because the pipe was less straight. However, this is the 
second instance where the pressure drop in the pipe was very large, - 3 - 10 MPa, yet the 
dynamics was essentially unaffected by it. 

Figure 3.52 Variation of the second- and third-mode eigenfrequencies with increasing u for a 
metal cantilevered pipe conveying fluid. Experimentalltheoretical reference frequencies (at u = 0): 

%e(Q), = 8.0/8.0Hz for the second mode and 25321.7Hz for the third (Liu & Mote 1974). 

An important theoretical and experimental study, mainly on forced vibrations of vertical 
cantilevered pipes conveying fluid (see Section 4.6), was conducted by Bishop & Fawzy 
(1976). They also examined the free vibration characteristics, and a few words about 
that will be said here. The experiments were with surgical quality silicone rubber pipes 
conveying water. The authors studied extensively the static distortion from the stretched- 
straight state that they observed in their experiments and its evolution with flow. They 
concluded that it was due to lack of perfect straightness and residual internal stresses 
related to the manufacturing process, and not an instability (divergence) - in agreement 
with previous studies - even though some other researchers later misinterpreted this 
finding. Their experimental data and degree of agreement with theory were similar to 
those reported already. A typical set is shown in Figure 3.53 for experiments without 
(a j  = A/Aj  = 1) and with end-nozzles (a,  = 1.5 and 2.49). 

A simple but ingenious experiment was conducted by Becker et a l .  (1978) using 
drinking straws (of unspecified material) as pipes and air flow. The supported end 
was attached onto weighing scales and the flow-rate was determined from the reaction 
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Figure 3.53 Theoretical and experimental values of urf for experiments with a vertical 
cantilevered rubber pipe conveying water (j3 = 0.622), fitted with different end-nozzles (different 
ai = A/A-)- curves with data points, experiments; curves without, theory. Dissipation modelled by 
viscoelastic model: a = 0.003, 0.0025 and 0.002 for aj = 1, 1.5 and 2.49, respectively (Bishop & 

Fawzy 1976). 

: .  

exerted thereon. The measured dimensionless critical flow velocity was found to be 
ucf = 4.45 (Ucf 2 150m/s), which is within 6% of the theoretical. 

An extensive experimental programme (see Section 3.6) was undertaken by 
Jendrzejczyk & Chen (1985) and Chen & Jendrzejczyk (1985). They conducted two 
experiments with polyethylene cantilevered pipes (0, = 9.5 and 12.7mm, h = 1.59mm 
and L = 609.6 mm) mounted vertically and conveying water. They obtained excellent 
agreement between theory and experiment, as illustrated by Table 3.5. The r.m.s. 

Table 3.5 Jendrzejczyk & Chen’s (1985) results for cantilevered polyethylene 
pipes conveying water. 

~~ ~~ 

Test no. v c  f ( d s )  Qcf/2n (Hz) 
Theory Experiment Theory Experiment 

1.1  25.0 24.9 12.9 12.0 
1.2 30.7 31.4 16.0 14.5 
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amplitudes in two perpendicular planes are substantially equal over the whole flow range, 
as shown in Figure 3.54(a); this indicates that the plane of oscillation is not far from 45" 
to the two measurement planes - although, due to imperfections, the oscillation plane 
changed slightly with U .  The power spectral densities (PSDs) at U < U,f are shown in 
Figure 3.54(b). It is seen that for low flow velocities the response of the pipe to flow 
turbulence is broad-banded; however, as Uc. is approached, the peak associated in this 
case with the second-mode frequency becomes dominant. There is an apparent discrepancy 
between the dominant frequency in Figure 3.54(b) for U = 30.24m/s, a little before the 
onset of flutter, and the flutter frequency in Table 3.5, Test 1.2, at U = 31.4ds .  This 
however, is explained by the fact that the establishment of the limit cycle (of amplitude 
> i L )  is in this case accompanied by a drastic increase in frequency (Chen 1995), already 
referred to qualitatively in the foregoing. 

An important set of experimental results on the onset of flutter and the evolution of 
limit-cycle oscillations was generated with a slightly longer sample of the smaller pipe 
(j3 2 0.45, L = 685.8 mm, LID, = 720). In Figure 3.55(a), the data correspond to flutter 
induced by perturbing the pipe, while in (b) they correspond to spontaneously developed 
flutter. It is seen that, if the system is perturbed, the critical flow velocity is U, 2 22.3 and 
the initial limit-cycle amplitude is A/D,  = 0.2;+ also, there is essentially no hysteresis (i.e. 

4 
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X 
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1 I I I 
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0 10 20 30 40 
(b) Frequency (Hz) 

Figure 3.54 (a) The r.m.s. vibration amplitude of the pipe free end in two mutually perpendicular 
directions (0 and A) versus flow velocity for a vertical polyethylene pipe conveying water (Test 
1.1); (b) PSDs from another pipe (Test 1.2) at three different flow velocities (Jendrzejczyk & Chen 

1985). 

+In this, A was measured at an unspecified point x < L;  hence the apparent discrepancy between A = 0.2~9,~ 
here and the statement in the previous paragraph, pertaining to x = L, that A 2 0.2L (Chen 1995). 
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Figure 3.55 Limit-cycle amplitudes of a cantilevered pipe versus U :  (a) for flutter excited by 
an external disturbance, (b) for spontaneously excited flutter. Region S corresponds to the stable 
region: region D.E.F. to disturbance-excited flutter; Region S.E.F. to spontaneously excited flutter; 
region H corresponds to the hysteresis region as U is decreased; 0 ,  increasing flow; 0, decreasing 

flow (Chen & Jendrzejczyk 1985). 

no difference between amplitudes for increasing and decreasing U ) .  For spontaneously 
excited flutter, however, Ucf 'v 23.8 and AID, 2 0.6 at the onset; furthermore, there is a 
great deal of hysteresis. These results, taken together, suggest that the Hopf bifurcation 
in this case is subcritical [Figure 2.11(d)]; this gives quantitative substance to the earlier 
observations made by Pdidoussis and discussed in conjunction with Figures 3.46 and 3.47. 

The overall assessment is that the main features of the linear, free dynamics of this 
system have adequately been confirmed by experiment; this successful testing of theory 
is reinforced by some of the experiments described in Section 3.6. 
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3.5.7 The effect of an elastic foundation 

Interest in the subject arises, in part, because of Smith & Henmann’s (1972) unexpected 
finding that for a cantilevered beam with a follower load the critical load (for coupled- 
mode flutter) is independent of the foundation modulus. This corresponds to the pipe 
system with /3 = 0. 

For the pipe conveying fluid (#I # 0), however, the effect of an elastic foundation is 
stabilizing, as shown by Lottati & Kornecki (1986), Figure 3.56. Thus, like gravity, the 
foundation provides an additional restoring force, which stabilizes the system.+ The effect 
of foundation damping may be assessed from Figure 3.36, where the viscous damping may 
be considered to be associated with the foundation; thus, for high enough /3, foundation 
damping is expected to be destabilizing. 
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Figure 3.56 The effect of an elastic foundation with k = 100 on ucf for the undamped cantilevered 
pipe (Lottati & Kornecki 1986). 

Becker et al.  (1978) studied the effect of a so-called Pasternak-type rotary foundation. 
in which the additional term -c(a’w/&*) appears in the equation of motion, where c is 
the modulus of the rotary foundation - or the stiffness of distributed rotational springs 

TBecker et nl.  (1978) obtain some results in which increasing k from zero to 10 is stabilizing, while further 
increasing it to 50 is slightly destabilizing, by less than 0.5%. However, these results are for B = IO-’ and 
may be peculiar because of that - see discussion at the end of Section 3.5.3. 
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along the length of the pipe; a corresponding term appears in the shear boundary condition 
at the clamped end. The new term in the equation of motion opposes the centrifugal term, 
U2(a2w/ax2), and this generates a strong stabilizing effect. Adding foundation damping 
in this case is destabilizing, although these results were confined to B = only, and 
hence should not be considered as general. 

All the foregoing apply to uniform foundations. Unusual behaviour may be expected 
for nonuniform ones, however, in view of Hauger & Vetter’s (1976) results for the system 
with the follower load (pipe with j? = 0) and k = k ( t ) .  Thus, if k ( t )  is zero at = 0 and 
1 and triangularly distributed in-between, with a maximum at 4 = ern of k,,, then the 
effect is destabilizing for all k,,,. The opposite is true if k = 0 at 6 = tm, and kmaX at 
[ = O a n d  1. 

3.5.8 Effects of tension and refined fluid mechanics modelling 

The system shown in Figure 3.57(a) was studied by Guran & Plaut (1994), in which 
the compression P is conservative, i.e. it is constant and remains along the undeformed 
axis of the pipe. The equation of motion is equation (3.98) with T j  = 0 and T = -P, 
or r = -9 in dimensionless form, where 9 = PL2/EI .  The boundary conditions, in 
addition to ~ ( 0 ,  t) = 0 and (a2q/at2)1+, = 0 are 

where K* = CL/EI.  Clearly, in the limit of K* = 00 the pipe becomes cantilevered. 
Typical results for K* = co are shown in Figure 3.57(b), and it is clear that they are 

similar to those of Figure 3.33. Indeed, the physical systems are similar: in the case of 
Figure 3.33 the pipe is subjected to conservative gravity-induced distributed compression, 
but in this case to conservative uniform compression along the length. 

Results for K* # 00 are similar. The influence of K* on stability is given in graph- 
ical form, for both divergence and flutter, in Guran & Plaut (1994). The condition for 
divergence is 

u2 + 9 cos v - ( V p ) / K * )  sin u = 0, v = v’2TiF. (3.111) 

As suggested by Figure 3.57(b) and as may be verified numerically with 
equation (3.1 I l), if the system is subjected to conservative fension it cannot lose stability 
by divergence, but only by flutter. 

The effect of the small tension induced by the presence of a terminal nozzle on a 
cantilevered pipe - refer to the discussion associated with equations (3.40)-(3.42) - was 
taken into account by Bishop & Fawzy (1976), who found 

(3.1 12) 

by taking a force balance across the nozzle, where a, = A/Aj is the ratio of pipe flow area 
to nozzle terminal flow area. This tension was neglected in the theoretical calculations 
to which the experiments of Gregory & Paldoussis (1966b) were compared. As seen 
in (3.112) this is not necessarily negligible for c r j  substantially different from 1; it is 
properly taken into account in the comparison in Figure 3.53. A more refined treatment, 

TL = i M U 2 ( ~ j  - 1) 2 
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Figure 3.57 (a) Schematic of a pipe supported by a rotational spring of stiffness C at one end 
and free at the other, conveying fluid and simultaneously subjected to a conservative compression 

force, P; (b) stability diagram for the case C = 00 (K* = 00) (Guran & Plaut 1994). 

taking into account the vena contractu that may arise beyond the free end, as well as 
frictional effects in the nozzle and air resistance, is given by Ilgamov et al. (1994). 

In all of the foregoing it has tacitly been assumed that the jet issuing from the free 
end does not play any part in the dynamics of the system. This, despite the fact that the 
inverse is obviously untrue: as seen in some of the photographs of Figure 3.45(b) and in 
Figure 3.48, the jet continues the sinuous motion of the pipe well downstream of the free 
end before it breaks up. However, it may easily be confirmed experimentally that gross 
static or dynamic disturbances to the jet by the insertion of obstacles relatively close to 
the free end do not appear to have any significant effect on the dynamics of the pipe. It 
is partly thanks to this observation that it has implicitly been accepted that there exists 
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a ‘point relationship’ between the fluid-dynamic force acting on the pipe at a particular 
point and the deflection at that point, resulting in equations (3.32) and (3.28) for instance. 
This makes the analysis much easier than if an ‘integral relationship’ were necessary, 
requiring, for instance, knowledge of the relationship between the unsteady pressure and 
streamwise position all along and beyond the end of the pipe for the force at any point x 
to be specified. 

However, there is no guarantee in all of this that for sufficiently short pipes the jet 
behaviour beyond x = L will not influence the dynamics of the pipe, or that this will 
be so in the case of shell motions. Furthermore, in some analyses, notably for short 
pipes and shell motions [Section 4.4 and Chapter 71, (i) three-dimensional potential flow 
theory is used for the formulation of the fluid-dynamic forces, which means that they are 
determined via integration of the unsteady pressure around the pipe circumference, and 
(ii) the generalized-fluid-dynamic-force Fourier-transform technique is employed which 
does require knowledge of the jet behaviour sufficiently far downstream of the free 
end - sufficiently far for the perturbation pressure to vanish; this, in effect, amounts to 
the specification of a downstream boundary condition for the fluid. As a result, a number 
of so-called outflow models have been proposed, starting with Shayo & Ellen (1978). 

In most of these models (Shayo & Ellen 1978; Paidoussis et al .  1986, 1991b; Nguyen 
et al. 1993) the manner in which jet oscillations decay to zero is prescribed, based on 
more or less reasonable assumptions. A more physical approach, in which the dynamics 
of the free jet issuing from a vertical pipe with a terminal nozzle are coupled into the 
overall analysis, is adopted by Ilgamov et al.  (1994). 

Here some results obtained by Shayo & Ellen (1978) are presented, while other outflow 
models are discussed in Section 4.4 and Chapter 7. Shayo & Ellen proposed two such 
models. In the first, the so-called ‘collector pipe model’, it is supposed that there exists 
a collector pipe which is actuated by a sensor, so that its deflection matches that of the 
pipe outlet without touching it; the collector swallows up the fluid and discharges it at its 
other end, which is anchored on the undeformed x-axis, some distance downstream. In the 
analysis, the following extension to the cantilevered beam eigenfunctions @; (0, utilized 
as comparison functions, is introduced to describe the behaviour of the fluid for 6 > 1: 

(3.1 13) 

where 2 is chosen sufficiently large in the numerical calculations such that changes in its 
value have no effect on the fluid forces calculated. Thus, in this model it is presumed 
that the deflection dies out linearly to zero in a dimensional distance (1 - 1)L, L being 
the length of the pipe. In the second, so-called ‘free-flow model’, it is supposed that the 
sinuous deflections persist in the fluid beyond = 1, such that 

(3.114) 

Shayo & Ellen were concerned mostly with shell oscillations, but they also conducted 
calculations for beam-mode instabilities, albeit via the more complex three-dimensional 
potential flow theory (see Section 4.4.3 and Chapter 7) and shell theory for the pipe, 
instead of the simpler plug-flow Euler-Bernoulli beam theory. However, as shown by 
Pafdoussis (1975) and discussed in Chapter 7, the results of the two theories converge 
for thin-walled slender pipes. Here, some of Shayo & Ellen’s results are presented in 
Table 3.6, in terms of u = U/(E/p,(l - v2)}’/* for the given h/a and p = pa/p,h, where 



PIPES CONVEYING FLUID: LINEAR DYNAMICS I 153 

Table 3.6 Values of the dimensionless critical flow velocity for flutter, 
U,,, for various Lla and hla = 0.0227, I*. = 0.06 and v = 0.5 (Shayo 

& Ellen 1978). 

- 

L l n  ‘Collector pipe’ ‘Free-flow ’ ‘Long pipe’ 
model model model 

5 1.70 1.66 1.40 
10 1.23 1.25 1.20 
15 0.94 0.96 0.93 
20 0.75 0.76 0.74 

h is the wall thickness, a the internal radius, ps the pipe wall density, u the Poisson ratio, 
and the other symbols as before. These parameters are more appropriate for the analysis 
of shells than, say, and u as used in the foregoing. The results for uc, obtained with 
these two outflow models are compared with those of the ‘long pipe model’, in which 
the behaviour of the flow beyond 6 = 1 is ignored and the ‘point relationship’ between 
force and displacement [equation (3.28)] is utilized, as in most of the foregoing. It is seen 
that the results for length-to-radius ratio L / a  > 10 are sensibly the same. Hence it must 
be concluded that, unless the pipe is very short, the use of a refined 3-D fluid dynamic 
model for the unsteady flow in the pipe, coupled with an outflow model, is not warranted. 
On the other hand, for very short pipes, L / a  - 6(5), the Euler-Bernoulli theory ceases 
being applicable and Timoshenko beam theory should be used instead. For this reason 
further discussion is deferred to Section 4.4. 

3.6 SYSTEMS WITH ADDED SPRINGS, SUPPORTS, MASSES 
AND OTHER MODIFICATIONS 

There has been a truly amazing array of studies of modified forms of the basic system 
discussed so far: e.g. cantilevers with one or more added masses at different locations, with 
intermediate supports, with different types of spring supports added at various locations, 
and so on. Some of these studies have been motivated by the interesting results obtained 
in similarly modified structural systems, notably columns subjected to follower loads; 
some by similarity to real physical systems; most, however, by pure curiosity: by the 
desire to know what the dynamical behaviour might be if this or that modification were 
introduced. 

Since the analysis and dynamics of the basic systems have been discussed thoroughly in 
the foregoing, the treatment here will be more compact, concentrating on the differences 
vis-&vis what has been described in Sections 3.2-3.5. 

3.6.1 

The system consists of a cantilevered pipe with an intermediate simple support, i.e. a 
support at 6 = ts = l / L  < 1, where 6 = x / L  and L is the overall pipe length, as shown 
in Figure 3.58(a). One would expect, therefore, the system to Sehave like a simple 
cantilevered pipe conveying fluid if E/L is sufficiently small, and like one with the two 
ends supported as 1 / L  + 1. This problem has been thoroughly studied, theoretically 
and experimentally, by Chen & Jendrzejczyk (1983, Edelstein & Chen (1985) and 
Jendrzejczyk & Chen (1985). 

Pipes supported at e = / / L  < 1 
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Figure 3.58 (a) Schematic of a pipe fixed at the upstream end and with a simple support at 
& = 1/L;  (b) qualitative stability diagram, showing the dimensionless flow velocities u versus 1/L 
and the definition of l c /L;  &d and urf are the dimensionless critical flow velocities for divergence 

and flutter, respectively (Chen & Jendrzejczyk 1985). 

The domain of the problem 9 = [0, 13 is broken into two, e1  = [0, &] and $2 = [0, 
with Cs = 1/L, wherein the dimensionless displacements of the pipe are ~1 and 1 - 

~ 7 2 ,  respectively. The equations of motion are then given by 

(3.1 15) 

cf. equation (3.1); the dimensionless quantities are the same as before, based on the overall 
length L. The boundary conditions are 
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The system is completed by the compatibility conditions at 61 = 
the continuity of slope and bending moment at the pinned support: 

(or 6 2  = 0), imposing 

Solutions are obtainable via an obvious extension of the method of Section 3.3.6(a), 
eventually leading to an 8 x 8 determinant, in place of (3.84), which now is a function 
of ts also (Chen & Jendrzejczyk 1985). 

The qualitative dynamics of the system is illustrated in Figure 3.58(b). For l / L  < 
l,/L, 1, being a critical value depending on j?, the system loses stability by flutter at a 
progressively higher flow velocity as l / L  is increased, as compared to l / L  = 0 which 
corresponds to the basic cantilevered system; theoretically at least, the system is also 
subject to divergence at higher flow velocity. For 1/L > Zc/L, the system loses stability 

(ii) 

\,--- 
(iii) 

0 0.5 - 
Time (s) 

Figure 3.59 (a) Time histones of oscillation of a cantilevered pipe ( p  = 0.48) with an additional 
simple support at l / L  = 0.25, at various flow velocities: (i) O m / s ;  (ii) 6.6m/s; (iii) 19.Ods; 
(iv) 24.2 m/s ;  (v) 25.2 m / s ;  (vi) 26.5 m / s  (Chen & Jendrzejczyk 1985). (b) The precipitously 
decreasing modal damping, <, towards zero as Ucf is approached for a similarly supported 
pipe ( p  = 0.45) and different values of 1/L : q l / L  = 0; A, l / L  = 0.120; ., l / L  = 0.194; 0, 

I / L  = 0.266 (Jendrzejczyk & Chen 1985). 
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by divergence, much as a clamped-pinned system would, but is also subject to flutter 
at higher flow (generally single-mode flutter, not as the conservative system would). 
Finally, for Z/L = Z,/L the two critical flow velocities become coincident and Chen & 
Jendrzejczyk conjecture that this may lead to chaos (see Chapter 5). 

The experiments were conducted with polyethylene pipes (0, = 9.5 and 12.7 mm, wall 
thickness h = 1.59mm, L = 685.8mm) with a ring-type knife edge support at varying 
values of 1/L. The corresponding values of B were 0.48 and 0.60 approximately, while 
y 2: 2 was sufficiently small for gravity effects to be neglected. 

A great deal of high-quality data was obtained. Examples are shown in Figures 3.59 
and 3.60. Some sample time traces for a pipe with Z/L = 0.25 (Zc/L E 0.35 in this case) 
are shown in Figure 3.59(a) and display dynamical behaviour similar to that of a simple 
cantilevered pipe as U is increased: (i) underdamped, (ii) and (iii) overdamped, (iv) again 
underdamped, (v) limit-cycle oscillation and (vi) larger amplitude limit-cycle oscillation. 
The oscillation in (i)-(v) was excited by perturbing the pipe, whereas in (vi) it developed 
spontaneously. Measurements of the modal damping ratio on a nominally identical pipe 
(but with B = 0.45) for varying Z/L, shown in Figure 3.59(b), document its precipitous 
reduction as Ucf is approached. 

1IL 

Figure 3.60 The critical flow velocities, uCd or ucf, for a pipe clamped at t = 0 and simply 
supported at 6 = l / L .  Theoretical boundaries: UV for divergence; - - for flutter. Experimental 
data: 0, divergence; 0, flutter induced by external disturbance; A, spontaneous flutter (Chen & 

Jendrzejczyk 1985). 
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Finally, I / L  was varied systematically and the critical flow velocities for flutter or 
divergence was obtained and plotted versus l / L ,  as illustrated in Figure 3.60, where they 
are compared with theoretical results (apparently with dissipative forces ignored). It is 
seen that theory and experiment are in excellent agreement. 

It is of interest that if the system lost stability by divergence, then, provided 1/L was 
close to 1,/L [Figure 3.58(b)], flutter about the buckled state was observed to occur. On 
the other hand, if stability was lost by flutter, limit-cycle oscillation persisted at higher 
flows, ‘and the tube does not buckle’; but it is not clear whether any asymmetry in the 
motion takes place which might be taken as evidence of a coexisting divergence. 

3.6.2 Cantilevered pipes with additional spring supports 

As we have seen in the foregoing, cantilevered pipes lose stability by flutter, whereas 
pipes supported at both ends do so by divergence. It was of interest, therefore, to study 
‘intermediate’ support conditions, as initially done by Chen (1971a) [and later, appar- 
ently independently, by Becker (1979)], who examined the dynamics of the system of 
Figure 3.61(a). Physically, one would expect that for a very weak spring-constant K ,  the 
system would behave essentially as a cantilevered pipe; for sufficiently large K ,  however, 
the system would approach a clamped-pinned one. This, in fact, is what is obtained. 

The dynamics of the system (neglecting gravity, dissipative effects, etc.) is governed 
by equation (3.1), or in dimensionless form by (3.76), and the same boundary conditions, 
except that the fourth, related to the shear at the downstream end, EZ(a3w/ax3) = 0, is 

... _______............. ... ........ .____... ..... ..... .................................................... ......... --. .......... 
ir 

(a) 

.L. 

(C) 

Figure 3.61 Various types of additional spring supports for cantilevered pipes conveying fluid: 
(a) translational spring at the downstream end, x = L; (b) translational spring at x = 1 < L; 

(c) translational and rotational springs at x = L. 
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now replaced by EZ(a3w/ax3) - Kw = 0, or in dimensionless form 

a3 rl KL3 
at3 EI 
- - q = O ,  K = - .  (3.118) 

Obviously, the method of solution of Section 3.3.6(a) may be utilized, except that the last 
line of determinant (3.84) is now replaced by (a; - iK) exp(iaj), j = 1 - 4. Moreover, 
working in a similar way as in Section 3.4.1, it is easy to find (Chen 1971a) that the 
condition for divergence, u = ucd, is given by solutions of 

(3.1 19) 3 u + K(sin u - u cos u )  = 0. 

20 

18 

16 

14 

6 

4 

t 

p = 0.6 

p = 0.5 

1 p=o+ L p = o  

I , I 1 1 1 1 1 1 ~  , , , , , , , , I  , , , , I  ,J 
0.1 1 .o 10 100 loo0 

K 

Figure 3.62 The dimensionless critical flow velocities of a cantilevered pipe with a spring support 
at 6 = 1 versus the dimensionless spring constant K :  -, - - - , flutter boundaries; shaded areas 

are zones of divergence (Chen 1971a). 
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A typical Argand diagram is given by Chen (1971a) for ,9 = 0.6, K = 100. In this case 
the system loses stability by divergence at u N 4.7, is restabilized at u 2: 7.2, and then 
loses stability by single-mode flutter at u N 8.3 - all in the first mode, but at u 2: 17.7 
flutter also occurs in the second mode. Thus, this system shares the characteristics of a 
cantilevered and a clamped-pinned pipe conveying fluid, with those of the latter being 
dominant. For smaller values of K (e.g. K = 10) the system behaves as a cantilever, and 
the only possible form of instability is flutter. 

Figure 3.62 is the stability diagram in terms of the spring stiffness parameter K .  Several 
interesting observations may be made: (i) there is a critical value of K ,  K, = 34.81, below 
which only flutter is possible; (ii) for sufficiently high K,  there is more than one divergence 
region, although the higher ones are of limited physical significance; (iii) for sufficiently 
high K (say K > 200), the values of ucf (critical flutter velocities) become significantly less 
dependent on ,9 than is the case for low K (say K < 30), as if the system tries to behave 
like a conservative one, but still loses stability by flutter: e.g. for ,B = 0.4, 0.5 and 0.6, 
and following the second S-shaped curve in the ucf versus ,9 curve (see Figure 3.30) for 
,B = 0.7, 0.8 and 0.9; (iv) the three curves shown for B = 0.9 (two of which are dashed) 
correspond to loss, recovery and second loss of stability associated with the equivalent 
of the third of the S-shaped curves (Figure 3.30). 

Another interesting result is shown in Figure 3.63. It is seen that the first S-shaped 
curve in the stability diagram marks a point of transition for the effect of K on u c f .  Thus, 
for ,9 < 0.3 approximately, K stabilizes the system vis-&vis K = 0; for ,B > 0.3, however, 

16 

14 

8 

6 

4 
0 0.2 0.4 0.6 0.8 I .0 

P 

Figure 3.63 The dependence of ucf on #J for the system of Figure 3.61(a) with various values of 
K :  -, K = 0; - .  - .  -, K = 10; - - -, K = 50; ---, K = 100 (Chen 1971a). 
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15 

K destabilizes the system. This is the first of many unusual occurrences associated with 
these S-shaped curves, as we shall see. 

Experimental verification of some of the foregoing is provided by Sugiyama et al. 
(1985a), whose work is described next. Figure 3.64 shows the theoretical and experimental 
critical flow velocities for three pipes (nominally with ,9 = 0.25, 0.50 and 0.75) with 
varying K .  It is seen that agreement is reasonably good, in particular with regard to the 
critical value of K at which transition from divergence to flutter occurs. It should be 
noted that, when comparing flutter velocities, the reader should consider only the curves 
for a = 0.02, which corresponds to the average measured damping, whereas a = 
represents some arbitrary minimal damping. 

Exp. 
P A  * 

- Flu. Diver. /3 - 
d 0 0.249 
0 D 0.505 
0 13 0.780 -. ---. 

\. 

U 

1 10 1 O2 1 o3 I o4 
K 

Figure 3.64 Comparison between theoretical stability boundaries (lines) and experimental points 
for flutter (circles) and divergence (squares) of a cantilevered pipe with an additional spring support 
at & = 1, as the spring stiffness K is varied for the three values of B shown: -.-, a! = 0.001; -, 
a! = 0.02; the theoretical curves are for B = 0.25, 0.50 and 0.75, whereas the expenmental values 

of B are as given in the legend (Sugiyama et a l .  1985a). 

Sugiyama et al. (1985a) examine the effect of an additional spring support at any 
location along the cantilever, as shown in Figure 3.61(b), both theoretically and experi- 
mentally. In this case the dimensionless equation of motion is modified by the addition 
of the term ~ $ ( t  - e$), where 6 is the Dirac delta function and ts = Z/L. Hence, the 
method of Section 3.3.6(b) may be utilized, with the cantilever beam eigenfunctions as 
comparison functions. It is found that as many as 14 such functions may be necessary to 
achieve convergence to three significant figures when .$ = 1, but that it is faster when 
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there is some viscoelastic damping (even a = This demonstrates the difficulty 
of the method in obtaining convergent results when the actual boundary conditions are 
different from those of the comparison functions; the use of the delta function to incor- 
porate the spring forces into the equation of motion is a useful artifice, but it does have 
repercussions. However, with increasing dissipation (larger a), the higher mode content 
is damped out, and this is why convergence is easier to achieve. 

In the Sugiyama et al .  (1985a) experiments, elastomer pipes were cast by the authors in 
the manner described in Appendix C.+ The pipes were supported by strings and oscillated 
in a horizontal plane as in Gregory & Paidoussis’ experiments; water was used as the 
fluid. Experiments were conducted for tS = 0.25, 0.50, 0.75 and 1.0 and many values 
of K .  Typical results are shown in Figures 3.64 and 3.65, wherein they are compared 
with theory. It should be stressed that experiments with springs are delicate, and hence 
the agreement achieved is quite reasonable. It is noted that in Figure 3.65 there are two 
flutter boundaries for ,8 = 0.50 and 0.75 when a = IO-’; these correspond to the repeated 
loss of stability associated with S-shaped curves in the stability diagram, which do not 
exist at the higher value of dissipation (cf. Figure 3.35 for /A = 0.065 and Figure 3.43). 

15 

U 

10 

V 
Stable 

1 10 IO2 1 o3 I o4 
K 

Figure 3.65 Comparison between theoretical and experimental stability thresholds of a 
cantilevered pipe with an additional spring support as in Figure 3.64, but now located at = 0.5 

(Sugiyama et a t .  1985a). 

+Three pipes were cast with slightly different Do - B(lOrnrn), L 2 0.5 rn, yielding the values of in 
Figure 3.64, slightly different from the nominal ones of = 0.25, 0.5 and 0.75. 
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Two interesting features of the theoretical results are that: (i) the effect of K is not 
dramatic until the critical value of K for which divergence becomes possible is approached 
(K, = 35 for c3 = 1; K, = 280 for ts = 0.5); (ii) as K, is approached, ucf can be decreased 
with increasing K if .$ = 1, which is surprising, but generally increases for tS = 0.5. 
Furthermore, in the experiments for K E K= it was found that after the onset of divergence, 
if the flow was increased slightly and the pipe was straightened by hand, it would remain 
straight upon release, so that the theoretical restabilization was actually observed; at higher 
flow, again as predicted, stability was lost once more by flutter. 

This work has been extended to the case of several spring supports by Sugiyama 
er al. (1991). 

Finally, Lin & Chen (1976) and Noah & Hopkins (1980) consider the case where the 
downstream end is supported simultaneously by a translational and a rotational spring 
[Figure 3.61(c)]. In this case the two boundary conditions at 6 = 1 are 

where C is the rotational and K the translational spring stiffness. The solution of the 
equation of motion, equation (3.76), subject to the boundary conditions 11 = ar/ac = 0 
at 6 = 0 and equations (3.120), was obtained by Galerkin’s method. The comparison 
functions, however, are obtained by solving the beam equation subject to these boundary 
conditions, yielding the following eigenfunctions (Noah 62 Hopkins 1980): 

(3.121a) $ j ( t )  = cash (hjc) - COS (h j t )  - aj(sinh (hi t )  - sin (hi t ) ) ,  

with 
(K*/h,)(sinh hi + sin h,) + cosh hj +cos h j  

0 -  - (3.121 b) ’ - (K*/hj)(cosh h, - cos h j )  + sinh hj  + sin hi ’ 

which were shown to be orthogonal. The eigenvalues h, are solutions of 

K K* 
-(tan hj - tanh h j )  + - (tan h, + tanh h j )  
1; hj 

1 1 

- I) (COS hj cosh h, 

In this way convergence, as the number of comparison functions is increased, is quite 
rapid (see Section 2.1). 

If only a rotational spring is present and it is sufficiently stiff, then the system 
approaches a clamped-sliding systemt and loses stability by divergence. However, the 
nonconservativeness of the system generates unexpected results when both K and K* are 
present. Consider the following set of results obtained by Noah & Hopkins (1980) for 
,8 = 0.125, a = lop3. (i) With K = K* = 0 the system loses stability by flutter, but with 
K* = 10 it does so by divergence. (ii) If K = 25 and K* = 10, however, the system loses 
stability by flutter once again, the divergence not occurring at all (not even at higher 
flow velocities). Thus, the addition of a translational spring, instead of aiding in the 

+Sliding in the transverse direction, corresponding to the standard sliding support condition for a beam, with 
boundary conditions w’(L) = 0, Elw”’(L) = 0 (Bishop & Johnson 1960); not to be confused to axial sliding at 
an otherwise clamped or pinned end, as discussed in the foregoing. 
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development of divergence, makes it impossible. Finally, (iii) if K is increased, so that 
K = 40 and K* = 10, then the system loses stability by divergence once more. Yet, (iv) if 
K = 100, the behaviour with K* = 0 and 10 is qualitatively similar: the system loses 
stability by divergence and at higher flow by flutter in both cases. Hence, K and K* do not 
act synergistically; the dynamics of the system is affected not only by the values of the 
individual spring constants, but also by their relative magnitudes. Equivalent dynamical 
behaviour is found in aeroelasticity (Dowel1 et al. 1995; Section 3.6). 

The foregoing peculiar stability behaviour follows the same pattern as in Figure 3.66, 
obtained by Lin & Chen (1976) for = 0 - thus for a column subjected to a follower 

K 

Figure 3.66 Stability of a cantilevered column subjected to a follower load 9 (or equivalently a 
pipe conveying fluid with j3 = 0, where u2 = 8), supported at the free end by a translational and a 
rotational spring of dimensionless stiffness K and K * ,  respectively: (a) for K* = 0; (b) for K* = 10; 
(c) for K* = 30. At K = K ,  and ~4 the divergence and flutter bounds coincide (Lin & Chen 1976). 
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load, rather than a pipe conveying fluid. It is seen that (i) for selected combinations of 
K and K * ,  only flutter occurs; (ii) for a given K* # 0, if K is small ( K  < ~3 in the figure), 
the system loses stability by divergence, and again if K is relatively large ( K  > K Z ) .  The 
physical mechanism must be that, for some combinations of ( K ,  K * ) ,  the eigenmodal 
shapes hinder the development of divergence, while being particularly propitious for 
flutter (Section 3.2.2), and so flutter develops rather than divergence. 

3.6.3 Pipes with additional point masses 

A very interesting study on the effect of lumped masses on the stability of cantilevered 
pipes conveying fluid has been made by Hill & Swanson (1970). The system is shown in 
Figure 3.67(a), and generally has several point masses at various locations, numbered as 
shown. In the equation of motion, equation (3.1), the term rn(a2w/at2) is now replaced by 

i Z  

m 

.. . . . .. ... .. 

(3.123) 

Figure 3.67 A cantilevered pipe conveying fluid (a) with three point masses added at x , ,  xz, n3; 
(b) with one mass eccentrically located at x j .  
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Thus, the method of Section 3.3.6(a) may be used to solve the problem. As shown in 
Section 2.1.4 and the discussion of Table 2.2, the method gives the correct results. In 
the dimensionless version of the equation of motion, the location and magnitude of the 
additional masses is expressed via 

(3.124) 

The theoretical results obtained are summarized in Figure 3.68, where they are 
compared to those of Gregory & Paidoussis (1966a) for a uniform pipe. It is seen at 
a glance that, in most cases, the additional masses destabilize the system. This is contrary 
to intuition, but nevertheless the effect is in the same sense as increasing the distributed 
mass m @e. decreasing B; recall that = M / ( M  + m)]. However, on closer examination, 
a number of interesting and unusual features emerge, as follows. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
P 

Figure 3.68 The effect of additional point masses, mi, on the stability of a horizontal 
undamped cantilevered pipe conveying fluid, where J is the total number of the masses, 
w j  = m j / [ ( m  + M ) L ] ,  ti = x j / L .  The stability curve marked as G-P represents Gregory & 
Pdidoussis’ results for J = 0, while the points represent experimental data (Hill & Swanson 1970). 
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First, consider the lowest three curves in the figure. Comparing the cases with a single 
mass at the downstream end (J  = 1, ,$I = l), it is seen that increasing the magnitude 
of the mass from p l  = 0.2 to 0.3 destabilizes the system further, which agrees with the 
statement made just above. If, however, a second mass is added at mid-point ( J  = 2; 
p1 = 0.2 at ( I  = 1; p2 = 0.2 at ,$z = O S ) ,  the effect is to stabilize the system slightly, 
even though the combined additional mass is now higher than in either of the other two 
cases. On the other hand, if one starts with a mass at mid-point (top curve, other than 
G-P), then the addition of a second mass at the end (the next, lower curve) severely 
destabilizes the system. 

Second, based on the foregoing, one might conclude that adding a mass at mid-point 
is always stabilizing. If, however, the mid-point mass is the only one added, as in the 
uppermost curve (J = 1; p1 = 0.2 at = O S ) ,  the effect is stabilizing for p I 0.27 
and destabilizing for larger p. This is another instance where the qualitative dynamical 
behaviour of the system is radically different on either side of the S-shaped bend in 
the stability curve - or, as is the case here, close to that bend (note that the transition 
at = 0.27 is half-way between B = 0.295 for the system without an added mass and 
Bequiv = M / [ m  + M + rnl/L] = 1/(1 + p1) = 0.246 for the system with one.) 

Another point of interest in Figure 3.68 is the sharpness of the S-shaped bends, more 
like kinks here, in the lower stability curves. This is explained by Hill & Swanson as 
being due to sudden switches of the system from losing stability in one mode just below 
the B concerned, and in another mode just above it (and for a critical B two modes losing 
stability at the same u)  - instead of the behaviour as in Figures 3.27 and 3.28 involving 
destabilization, stabilization and destabilization once more; thus, in this case there are 
real discontinuities in the values of w,f, as shown by Hill & Swanson, but not here for 
brevity. 

Finally, the various data points (0, 0 ,  etc.) correspond to experimental points obtained 
by Hill & Swanson, utilizing surgical rubber pipes conveying water in an apparatus similar 
to that of Gregory & Paidoussis (1966b). The agreement with theory is excellent, although 
if dissipation had been taken into account in the theory, it might have been less so. 

Further studies on this problem have been made by Chen & Jendrzejczyk (1985) 
and Jendrzejczyk & Chen (1985) for a mass at the free end, and by Sugiyama et al .  
(1988a), who consider an additional mass together with a spring at some point x < L. 
Sugiyama et al .  find that the u versus K curve displays S-shaped discontinuities for selected 
combinations of K and p1 = r n l / [ ( r n  + M ) L ] .  This means that there exists a region of 
restabilization between two critical values of ucf for loss of stability (cf. Figure 3.28). 
It is of interest that the flutter mode is quite different at these two critical values, as 
shown in Figure 3.69: in both cases there are very strong travelling-wave components in 
the motion; however, in (a) the presence of the spring and mass at = 0.25 is hardly 
manifest, while in (b) there is a quasi-nodal point not far from cl. 

In another study, Silva (1979, 1981) examines the stability of pipes with attached 
valves - which can be quite massive relative to the pipe. Masses centred on the pipe or 
eccentric [overhanging, as shown in Figure 3.67(b)] are considered for both cantilevered 
and simply-supported pipes, but ignoring out-of-plane motions and possible coupling with 
torsional modes. As in the foregoing, the dynamical behaviour is affected by the value of 
p, (in this case j = 1 always) and also h = h/L,  where h is the distance of the point mass 
from the pipe centreline. As expected, the effect of the additional mass on the stability 
of simply-supported pipes is on coupled-mode flutter, rather than divergence which is a 
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Figure 3.69 The flutter modes of a cantilevered pipe (/3 = 0.50, a = 0.02) with an added mass and 
a translational spring at 6 = 0.25 (pl = 10, K = 600): (a) at first loss of stability (ucf = 8.17); (b) at 
the second loss of stability (ucf = 9.97), after restabilization; obtained theoretically by Sugiyama 

et al .  (1988a). 

static phenomenon; it is found that this effect, both in terms of ucf and the range of u 
over which coupled-mode flutter persists, can be affected a great deal, even if h = 0. For 
cantilevered pipes it is found that eccentricity of an additional mass at the free end may 
further destabilize the system. 

3.6.4 Pipes with additional dashpots 

This problem has been studied theoretically and experimentally by Sugiyama et al.  
(1988b).+ A dashpot is attached to a cantilevered pipe, located at some point .& = I /L  5 1, 
and sometimes also a mass, at the same point. The effect of the damper at the downstream 
end is generally destabilizing, with or without the mass, while at other locations it can 
sometimes be stabilizing (see Section 3.8.3), depending on /3 and ~1 [equations (3.124)]. 
In some cases, multiple regions of flutter may exist. 

The experiments were conducted in the same basic arrangement as for one or more 
additional springs, discussed in the foregoing. The dashpot was provided by attaching a 
thin flat plate to the pipe and immersing it in oil, with the motion parallel to the flat-plate 
surface. The experiments generally support theory quite well. 

+The interested reader is also referred to Sugiyama et al. (1985b). 
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3.6.5 Fluid follower forces 

This is a special class of problems involving beams subjected to fluid jets issuing tangen- 
tially from the beam, either within the span or at the free end. Hence, these are beams 
subjected to fluid follower loads, rather than pipes with flow all along. 

Wiley & Furkert (1972) considered the system shown in Figure 3.70(a). The equations 
of motion may be written as follows: 

L 
2.046 

-- 
u 0.2 0.4 0.6 0.8 1.0 

(b) d L  

7 1  

Divergence 

0 

Figure 3.70 (a) The beam with an in-span fluid-jet-generated follower load P .  (b) Stability 
boundary for the pinned-clamped system (Cl = 0, Cz = CQ;K;  = 0, K; = CQ); (c) stability 
boundary for the clamped-pinned system ( K ;  = CQ, K; = 0): -, with tangential follower load; 
- _ -  , with horizontal, fixed-direction (conservative) load. Flutter 1/2 stands for coupled-mode 
flutter involving the first and second modes; and similarly for Flutter 2/3 (Wiley & Furkert 1972). 
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subject to the boundary and compatibility conditions 

(3.126) 

w2 = 0, E I ( = ) + C 2 ( 2 ) = 0  a2w2 at x 2 = b ,  

a2w2 a3w2 (S) I n  = (z) 10. (S) I n  = (q) lo. 
The system, once rendered nondimensional, may be solved by straightforward means (cf. 
Section 3.6.1). Its dynamics is governed by the following parameters: 

tS = a/L,  9 = P L 2 / E I ,  K; = ClL/EI ,  K; = C2L/EI .  (3.127) 

It is noted that here @ = 0, and hence there are no Coriolis terms, and 9 = -r, f '  being 
the nondimensional tension, while 9 is a compression. By assigning to KT and K; the 
value of zero or infinity, a pinned or clamped end condition may be obtained at either 
end, or both, without change in the basic formulation. 

Some typical and interesting results are presented in Figure 3.70(b,c). The stability 
boundary for a pinned-clamped system (KT = 0, K; = 00) is shown in Figure 3.70(b). It 
is seen that the system loses stability by divergence throughout, with no coupled-mode 
flutter for higher values of 9 as would be the case for a pipe. The eigenfrequencies 
remain real until Ycr is reached, when they become imaginary; but they do not coalesce 
on either the real- or imaginary-frequency axis. Physically, it is clear that the follower 
force, once the beam is flexed as in Figure 3.70(a), cannot resist the moment generated 
by 9 and hence flutter cannot develop. Note also that in the absence of Coriolis forces 
there cannot be post-divergence restabilization. Hence, although the system is inherently 
nonconservative, it is effectively conservative, as is the case when both ends are pinned. 

The behaviour of the clamped-pinned system (K;  = 00, K; = 0) is quite different, as 
seen in Figure 3.70(c); the conservative results (where the force remains parallel to the 
undeformed axis) are also shown. For these boundary conditions, for 0.2 < tS < 0.45 
approximately, the system loses stability by coupled-mode flutter rather than divergence; 
this comes about through coalescence of two eigenfrequencies while on the real axis, either 
the first and the second or the second and third [cf. Figure 3.4(c)]. For lower tS, progres- 
sively higher modes would be involved. For eS = 1, the system becomes conservative. 

Experiments were conducted by using a long aluminium blade ( L  2: 1.2m, 50.8 mm 
wide in the vertical plane, and 5mm thick), clamped at one end, and simply-supported 
and free to slide axially at the other, so as to oscillate in the horizontal direction. The 
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compression was provided by an air jet, issuing from a pair of nozzles affixed to the 
beam at a slight angle, so as to avoid interaction with it; the compressive reaction force 
was towards the clamped end. The air was supplied via pairs of light rubber hoses, one 
vertically above and the other below the blade. Despite the obvious difficulties associated 
with minimizing the effect of the supply hoses, excellent qualitative and to some extent 
quantitative agreement with the theory of Figure 3.70(c) was obtained: for tS > 0.45 
divergence was observed, while for tS < 0.45 flutter was observed. 

In the case of a cantilevered beam with a tangential end-load at the free end, representing 
Beck’s problem (Section 3.2.2), there is no simple way of minimizing the effect of fluid 
supply lines. Nevertheless, a successful experiment was conducted by Sugiyama et al.  
(1990, 1995) by attaching a solid-fuel rocket to the free end! The aluminium cantilever 
(section: 6 x 30 mm, L = 800- 1400 mm) weighed 0.4-0.7 kg. The motor was much more 
massive, - 14 kg, and could supply about 390 N force for 4 s. Hence, special techniques 
had to be developed for deciding whether a damped or amplified oscillation occurred 
from only a few cycles of oscillation in the period over which the rocket supplied full 
thrust. Also, not only the mass but the moment of inertia of the motor had to be taken 
into account. Agreement of experiment with theory is excellent, provided dissipation is 
ignored; once taken into account, viscoelastic damping in the column (a = 5 x low4) 
is found to diminish the theoretical critical thrust by a factor of 2 as compared to the 
undamped system, thus rendering agreement apparently rather poor. However, once the 
criterion ‘for stability in a finite time’ (Leipholz 1970) is used, the two sets of theoret- 
ical results come very close to each other, thus leading to very good agreement with 
experiment. 

3.6.6 Pipes with attached plates 

One such system, depicted in Figure 3.71(a), is considered by Herrmann & Nemat-Nasser 
(1967) as part of a series of studies on the stability of nonconservative mechanical systems. 
It consists of a thin plate or I-section, with two pairs of flexible pipes attached to it and 
conveying fluid. This system can execute both flexural transverse motions and torsional 
motions [cf. Nemat-Nasser & Henmann’s (1966) work on the same structural system 
subjected to a follower load], and it is in the study of the latter that lies the main contri- 
bution of this work. 

The equation of motion of the system for flexural transverse motion is the same as 
before, equation (3.1), except that 2M replaces M ,  which now is the mass per unit length 
for eachpair of pipes. For torsional motions, adapting Benjamin’s statement of Hamilton’s 
principle to suit, Henmann & Nemat-Nasser (1967) obtained the following equation of 
motion and boundary conditions: 

EC, - a49 + [2MU2r2 - GJ]-  a29 +MUh2 - a29 + (mr2 + iMh2) -  a29 = 0; (3.128) 
ax4 ax2 axat at2 

(3.129) 
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divergence flutter 
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(b) 

Figure 3.71 (a) The system of a cantilevered thin-plate structure with two pairs of flexible pipes 
attached, conveying fluid. (b) Stability diagram of 2u2/rr2 - 1 versus (Y = h / r  for Zr2/Cw = 1.5; 

the solid lines are obtained with B = 0 (Henmann & Nemat-Nasser 1967). 

4 is the angle of twist about the x-axis, EC, is the warping rigidity and GJ the torsional 
rigidity, E and G being Young’s and the shearing modulus of elasticity, respectively, r 
is the polar radius of gyration of a section of the system, M is as just defined and rn the 
mass of the structure per unit length. Here it should be recognized that an open section 
subjected to torsion also warps (Timoshenko & Gere 1961); e.g. an I-section, if subjected 
to torsion, will also sustain bending of the top and bottom flanges.+ 

‘For example, for an I-section of height h, flange width b, flange thickness t f  and stem thickness f w , ,  

C,v = r fh2b3/24  and J = (2br: + ht:)/3 (Timoshenko & Gere 1961; appendix). 
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Equations (3.128) and (3.129) may be rendered dimensionless by means of the 
following: 

(3.130) 

The solution of the equations of motion may be achieved by the method of 
Section 3.3.6(a). Typical results are shown in Figure 3.71(b), in terms of the parameter 
2u2/n2 - 1 for various values of B’ and Zr2/Cw = 1.5, for both transverse and torsional 
motions. The full lines correspond to results obtained for B = 0 and hence to a 
system without flow subjected to a follower force 9 = u2; however, since divergence 
is independent of #?, the stability curve for B = 0 applies equally to cases with flow. 

It is seen that three types of instability are possible: (i) torsional divergence for small 
enough E; (ii) torsional flutter (dashed curves) for intermediate Z; (iii) transverse flutter 
(horizontal dashed lines) for high E. Thus, a system with #?’ = 0.2 would lose stability by 
divergence if a! = 0.5, by torsional flutter if a! = 1.5, and by transverse flutter if E = 2.5. 
Of course, according to linear theory, in the case of E = 1.5, transverse flutter would arise 
at higher flow (the horizontal lines for transverse flutter really extend across the figure), 
and so on. 

It is of special interest that torsional divergence is possible, whereas transverse diver- 
gence is not. Equations (3.128) and (3.129) are similar in structure to those for transverse 
motion, with the torsional terms (proportional to G J )  playing the role of a conservative 
tensile load. However, it is known that tension does not induce divergence (Section 3.5.8). 
Hence, torsional divergence probably arises via the M U2-related term in the boundary 
conditions (largest at small E )  - cf. Chapter 8. 

Another plate-pipe system, used for marine propulsion, is discussed in Section 4.7. 

3.6.7 Concluding remarks 

The main purpose of Section 3.6 is (i) to briefly document all these interesting studies 
in one place, and (ii) to show the veritable cornucopia of interesting dynamical prob- 
lems that may be obtained with simple modifications to the basic system of a pipe 
conveying fluid - particularly the nonconservative case of a cantilevered pipe. This, 
despite the early scepticism on the practical value in studying the stability of such 
systems, as expressed for instance by Timoshenko & Gere (1961; section 2.21), regarding 
the critical load for a cantilevered column subjected to a tangential follower load: ‘No 
definite conclusion can be made (as yet) regarding the practical value of the result, 
since no method has been devised for applying a tangential force to a column during 
bending’. Although a method has now been found, this is not really the important point. 
What is important in the study of these systems will emerge from the chapters that 
follow, and what is practically important from the pertinent sections on applications 
therein. 
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3.7 LONG PIPES AND WAVE PROPAGATION 

If the pipe is very long between supports, or infinitely long, then the question of wave 
propagation becomes especially important. The main interest in this is for application to 
pipelines resting on the ground or on the ocean floor, or pipelines with many, periodically 
spaced supports. These two topics are treated here, after some preliminary discussion on 
wave propagation in simple systems. 

3.7.1 Wave propagation 

Some general characteristics of wave propagation will be reviewed here with the aid of 
some work by Chen & Rosenberg (1971) on ‘pipe-strings’ conveying fluid. 

Consider first a totally unsupported very long, straight pipe of negligible rigidity, under 
tension - a very useful tutorial system. Since EZ = 0 in (3.1), the equation of motion 
is rendered dimensionless by defining ii = ( M / T ) ’ / *  U ,  r = [T/(rn + M ) ]  ‘ / 2 t / L ,  together 
with q,  < and B as in (3.69) and (3.71), yielding 

The nondimensionalization gives c = 1 ; nevertheless, the equation is written like this to 
facilitate the physical interpretation of the results. Thus, if ii = 0, equation (3.131) is the 
wave equation and c is the dimensionless wave velocity. 

Consider now a wave of the form q = A exp[iK(c - v,t)], where K is the wavenumber 
and u p  the phase velocity; K = l / h ,  where h is the wavelength. Substituting into (3.131), 
it is easy to see that the equation is of the hyperbolic type provided that U2(1 - B )  < c2. 
In that case, either progressive or standing waves can exist, and the general solution is of 
the form (Morse 1948; Meirovitch 1967) 

(3.133) 

Considering the two component parts of (3.133), together with the form of (3.132), it 
is easy to show that (i) if U < c,  two waves propagate in the pipe-string, one in the 
downstream and the other in the upstream direction, with phase velocities 111 and el?, 

respectively, where q > uz; (ii) if ii > c,  then both waves travel downstream; and (iii) if 
u = e,  there is one propagating and one standing wave. A disturbance, e.g. q ( < , O )  = 
exp( -C2), leads to waves travelling upstream and downstream without alteration in form. 
However. whereas for U = 0 the two waves propagate with the same phase velocity and 
have the same form, for ii # 0 they do not: the wave with the larger phase velocity has 
smaller amplitude - unlike the classical string (Chen & Rosenberg 1971). 

The case of a pipe-string of finite length and fixed ends is examined next. In this case, 
solutions of the form 

- 

v(<,  r )  = A I  exp[i(KiC + or)] +A2 e x p [ i ( ~ ~ <  + or ) ]  (3.134) 
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are considered, which satisfy (3.13 1) provided that 

(3.135) 

Applying the boundary conditions, the frequency equation is obtained, sin(K1 - ~ 2 )  = 0, 
and the dimensionless frequencies are found to be 

nn(c2 -E*) 
[c2 - E2(1 - 8)]1/2’ 

o n  = n = 1 , 2 , 3 . .  (3.136) 

The corresponding mode shapes are given by 

where the wavenumber and phase velocity are 

and up = w,/K,; up is related to its dimensional counterpart, V,, via w p  = [ ( M  + 
m)/T]1/2V,. A number of useful observations can now be made. Wave propagation in 
this system is not frequency-dispersive, since the phase velocity is not a function of 
wavenumber (wavelength). Another manifestation of this is that the ratio of the frequency 
with flow to that without is independent of n. Finally, when U = 0, up is infinite, and 
the system vibrates with the same phase, whereas for E # 0, a finite up is obtained. This 
means that for U # 0, no classical normal modes exist [cf. Section 3.4.1 and Figure 3.131: 
various parts of the system pass through their equilibrium position at different times; i.e. 
the modal form contains a travelling wave component. 

We next consider wave propagation in a beam (EZ # 0), but taking u = 0 in equa- 
tion (3.75), as discussed by Meirovitch (1967). In this case, the phase velocity, up, is 
a function of the wavenumber (wavelength): up = K; hence, the beam is a frequency- 
dispersive medium. A general nonharmonic waveform may be thought of as a super- 
position of harmonic waves, q(& t) = E, A, COS[K, ([ - v,,t)]; since each component 
travels with different phase velocity, the wave form will change as the wave propagates 
along the beam, as a result of dispersion. If u # 0, the situation is further complicated. 
This is discussed next, for a pipe on an elastic foundation. 

3.7.2 

This problem has been considered by Roth (1964) and Stein & Tobriner (1970), and what 
is presented here is a summary of some of their work. 

A form of equation (3.70) is used for the pipe on a generally dissipative elastic foun- 
dation, but dissipation may also come from other sources, i.e. 

Infinitely long pipe on elastic foundation 

q”” + (u2 - r + n)~” + 2pZul j ’  + k~ + ~ l i  + ij = 0; (3.138) 

no Poisson-ratio effects are considered, however, since no pressurization-induced tension 
can arise in the absence of end constraints. Since L could be infinite. in the dimensionless 
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quantities a unit length could be used for L,  or an appropriate length scale associated with 
the initial disturbance under consideration. Considering solutions of the form 

q(<, 5) = AeiK~eiU'e-*', (3.139) 

it is found that equation (3.138) is satisfied if it is found that equation (3.138) is satisfied 
if 

w2 - h2 + ~ w B I / ~ u K  - [ K ~  - (u' - f + f l ) ~ ~  + k - ho] = 0, 
(3.140) 

2h(w + B '12UK)  - WCJ = 0, 

which leads to 

(3.141 a) 1 w1 .- 7 = -B1''UK p ,  h1.2 = 2 0  f q, 

(3.14 1 b) X = K4 - [U'(l - p )  - f + n ] K 2  - k - 7CJ 

(Roth 1964). The similarity in the structure of w1.2 in (3.141a) when CJ = 0 to w1.2 = 2 1 1 . 2 ~  

from (3.133) should be noted. Remarking that the form of equation (3.139) with K replaced 
by -K and w by -w is also a solution, as easily seen from (3.140). one obtains for a 
general waveform the general solution 

I 

co 

q(<, t) = ~ e - i l l l T I A ,  cos(K,,C + writ) +B, ,  sin(K,,t + wnr)I  
11 =o 

n=o 

The arbitrary constants A,, to D ,  are determined from the initial conditions. Thus, if 
q(<, 0) = a(<). li(t, 0) = b(<) are periodic functions with K,, = n r ,  the constants may be 
determined by the use of Fourier series, while a solution for a nonperiodic and spatially 
more general disturbance may be obtained with the aid of Fourier integrals (Roth 1964). 

In solution (3.142) it is noted that the frequencies wln and wzn are each associated with 
the phase velocities u1 = - -w1,? /~ ,~  and 212 = -w ?,*/K,, , for downstream- and upstream- 
travelling waves. For an observer travelling downstream with velocity p 1 / 2 ~ .  these waves 
propagate with wave speeds * P ~ / K , ~ .  where p n  is as in (3.141a). 

For stability of the pipe, hl and h2 in solution (3.139) must be positive. This requires that 

&2 - ( U 2  - r + mK2 + k ]  > 0, (3.143) 

which is true for all damping values, CJ. The minimum of the function in square brackets 
occurs at K = [ i ( u 2  - r + n)]'I2 and is equal to A ( K )  = k - i(u2 - r + n)'. Hence. 
condition (3.143) is satisfied if A ( K )  > 0, or 

2 = 2 - r + n < 2 f i .  (3.144a) 

This result could be obtained also by the work leading to equation (3.101a). It is of interest 
that if k = 0, then 'u = 0, Le. the pipe is unstable for all u in the case of f = = 0. This 
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simply reflects that, in the absence of any support, a lateral displacement of the pipe is 
not opposed by any restraint. 

Now, if the analysis is conducted with (T = 0 from the start, it is easy to show that in 
this case the condition of neutral stability, A1,2 = 0, requires 

u2(1 - p )  - f + n < 2 h .  (3.144b) 

Clearly, since /3 < 1, this result is nonconservative; in particular, criterion (3.144b) predicts 
a system to be stable when, in fact, through (3.144a) it is unstable (Roth 1964)! This is 
a good demonstration of Bolotin & Zhinzher's (1969) thesis (Section 3.5.5). 

It is Stein & Tobriner (1970) who consider wave propagation per se. They use the same 
equation as Roth, but with r = 0. They obtain a general solution to initial conditions 
q(c, 0) = f(6) and c(c, 0) = g(6) by means of Laplace transforms in time (denoted by 
an overbar) and Fourier transforms in space (denoted by an asterisk), of the form 

The Laplace transform over t is applied first, and then the Fourier transform over c, on 
the resultant equation. After inversion, the general solution is 

+- e-ur/2[2B1/2~a cos(4 - p )  - (T sin(@ - p )  cos 81 sinh 62 
2 4 -  

+ [2/3%a sin(@ - p )  + CT cos(@ - p ) ]  sin 81 cosh 621 

+- e-ur/2[sin(q5 - p )  cos O1 cosh O2 - cos(@ - p)  sin 81 cosh 1921 da, 

(3.145) 
1 4- 

where 

r = {[a2(a2 - (1 - B)u2 + n) + k - $72]2 + [ B 1 / 2 u ~ a ] 2 } 1 / 2 ,  

/3'/2UCT 

a2[a2 - (1 - B)u2 + n] + k - io2 p = - tan 
2 

(3.146) 

01 = z f i  cos p,  02 = r,h sin p, 4 = w ( ~ ' / ~ u r  - c). 
Numerical results in the case of (T = 0 and q = exp[i(Kc - w t ) ]  are then considered. The 
characteristic equation in this case is 

w2 - 2B1'2UKW - K4 f (u2 - n ) K 2  - k = 0. (3.147) 

Thus, for each wavenumber (wavelength) there is an associated frequency and, in the 
absence of end constraints, all wavenumbers are permissible. The dominant wavelengths 
depend on the spatial distribution of the initial disturbance and the propagation charac- 
teristics of each of its Fourier components. Equation (3.147) may be solved for the phase 
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velocity, up = W/K, yielding 

(3.148) 

where u, is obtained from (3.144b) when it is transformed into an equality, while setting 
r = 0: uz = [2k1/2 - n]/( 1 - B);  K, = k'l4 is a critical wavenumber, which corresponds 
to the value of K for which all positive roots of (3.148, whether K > K, or < K,, have 
phase velocities greater than that for K,. However, it is possible to obtain some positively 
travelling waves with u p  < ~JK, , )  from the negative roots of (3.148), namely for u / u ,  > 
(1 - p) ' / ' .  The dependence of u p  on u may be assessed from (3.148). For any K, for the 
positively travelling wave, wp increases with u; up to u > u,,(K,), whereafter increasing u 
causes up to increase for some wavenumbers and to decrease for others. For the negatively 
travelling waves, wp diminishes continuously with u, for all u < u,. 

One may retrieve from equation (3.148) Roth's result that for an observer travel- 
ling with a velocity B1/2~,t  upstream- and downstream-travelling waves would appear 
to have equal velocities; this would imply that the distribution of waves would always 
be symmetric about this translating axis for a symmetric disturbance about the origin. 
However, Stein & Tobriner show that this is true only asymptotically (in time), because 
the solution does not satisfy the boundary conditions in the limit as 6 -+ 00. 

Some typical numerical results are shown in Figures 3.72-3.74 for a steel pipe 
conveying water, with zero dissipation (c = 0); the larger foundation modulus, k = 
6.54, is typical of crushed gravel. The initial disturbance is taken to be q(6 ,O)  = 

obtaining u, I7 and k from the corresponding dimensional quantities. 
Figure 3.72 shows the time evolution of the disturbance at 6 = 0 fork = 0 and k = 6.3, 

when u = 0.160 (U = 30 .48ds  or lOOft/s) and I7 = 0. In (a) it is seen that the system 
is unstable, as discussed, and the oscillations are amplified with time. In (b), condition 
(3.14413) is satisfied and hence the oscillation is stable (u < u,); the amplitude of the 
oscillation at 6 = 0 is diminished with time as the disturbance energy is shared with 
progressively larger parts of the pipe, 161 > 0, as shown in Figure 3.73. Stein & Tobriner 
(1970) also show a case with li' = 0.0256 and k = 2.43 x lop4, where u = u, and a 
neutrally stable oscillation at 6 = 0 is obtained. 

In Figure 3.73(a) is shown the development of the initial disturbance when 14 = 0. It is 
seen that up- and downstream propagating waves are symmetric about the origin. It is also 
seen that the amplitudes for the lower k values are more severely attenuated than for the 
largest k. When u > 0, as in Figure 3.73(b), the symmetry about the origin is destroyed, 
and the waveform becomes symmetric with respect to an axis travelling at #?3/2u. In the 
figure this is visible only for large k; for the smaller k ,  this symmetry which occurs for 
large enough t has not yet developed for the range of t shown in the figure. 

In Figure 3.74 we look at a particular point along the pipe, 6 = 8, versus time. It is seen 
that for a stiff enough foundation (k = 6.54), the wave retains its cohesion and propagates 
downstream as a 'wave packet', roughly at B'I2u; the upstream-propagating component 

~0 e ~ p [ - ~ ( x / L ) ~ ]  1 = 70 exp(-;c2), with L = 12.5ft (3.81 m); this same L is used in 

.'It is noted that v,/u = p- ' /2(Vp/U),  where the capital letters are for the dimensional quantities, because 
of the different nondimensionalizing factors for v p  and u; thus, in dimensional terms, the observer travels with 
velocity p U .  
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-1.0 

Figure 3.72 The time evolution of disturbance at 6 = 0 for an infinitely long pipe on an elastic 
foundation with (a) k = 0 and (b) k = 6.30, for u = 0.160, CT = l7 = 0 (Stein & Tobriner 1970). 

is much smaller. However, for smaller k (not shown here), neither a well-defined wave 
packet nor an axis of symmetry develops. 

Finally, it is stressed that the calculations in Figures 3.72-3.74 have all been done with 
cr = 0. This should be borne in mind when considering wave propagation in real systems, 
in which dissipation is always present. 

3.7.3 Periodically supported pipes 

An excellent treatment of the subject was provided by Chen (1972a), an outline of the 
salient features of which is given in what follows. 

Suppose that the pipe is simply-supported periodically at N supports, as shown in 
Figure 3.75(a), where N may be finite or tend to infinity. The equation of motion is 

(3.149) Q”’’ + (u2 - r + WQ” + 2p’/2ui7’ + ij = q+(6)eiur, 

a version of (3.70); the term on the right side represents a possible forcing function. 
Considering two neighbouring spans of the pipe on either side of the jth support, and 

denoting quantities on its left without a bar and those on its right with a bar, the boundary 
conditions to be satisfied are 

~ ( 0 )  = ~ ( 1 )  = 0, ~ ” ( 0 )  = -aj-1, ~ ” ( 1 )  = -aj, 
(3.150a) 

Q’U) = 77’(0), (3.150b) 

- -1’ Q(O> = ~ ( 1 )  = 0, Q (0) = -Zj ,  $’(I) = -Zj+1, 
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Figure 3.73 Displacement profile of the infinitely long pipe on an elastic foundation, for 
(a) u = O  and (b) u = 0.160; 17 = o  =0:  -, k = O ;  --- , k = 2.43 x ---, 

k = 2.75 x - - - , k = 6.54 (Stein & Tobnner 1970). 
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Figure 3.74 Propagation of a disturbance for a pipe on an elastic foundation, at (a) e = 8 
(x = lOOft) and (b) 6 = -8; u = 0.320, Ij' = 2.56 x lo-', k = 6.54 (Stein & Tobriner 1970). 

where aj  7 &,lj/EI, iij = Ajlj/a, and derivatives of the barred quantities are with 
respect to 6;  Aj-1, A, and .&,+I are the bending moments at the supports (the same on 
either side of each support). 

Now consider free vibration, as in Section 3.3.6(a). The general solution may be 
expressed as 110, t) = Y ( 6 )  exp(iwt) = C, exp(ihn6) exp(iot). Substituting into 
(3.149) leads to an equation similar to (3.82), namely 

4 

- (u2 - r + np2, + 2,9'f2uwhn - w2 = 0; (3.151) 

hence, proceeding in the same manner but with two spans, one obtains 

4 - 4 

Y ( 6 )  = C[ana j - l  + bnaj]eih"', Y ( 6 )  = C [ Z n i i j  +bn5'!j+l}eii;nS. (3.152) 

Then, with the aid of the continuity condition (3.150b), the following equation is obtained: 

n = l  n=l  

4 

C{(anineihn)aj-I  + (bnhneiA")aj - ( Z ~ X , , ) ~ ,  - (bnZn)iij+I} = 0. (3.153) 

For an infinite, uniform pipe with equispaced supports, 1 = I and EI = EI, so that the 
bars in (3.153) may be removed. Equation (3.153) holds for all supports and may be 
viewed as a recurrence relationship between successive support moments. The general 
solution may be expressed as 

a, = aj-1 exp(ik), (3.154) 

n=l  
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where p is the propagation constant, which is generally complex; %e(p) represents the 
phase shift in the moments from one support to the next, while 9rn(p) represents the 
exponential decay. Clearly, unless 4im(p) = 0, the waves will decay to zero eventually, 
this being an infinite system. Hence, one may distinguish unattenuated propagation bands, 
where .9m(p) = 0, and nonpropagation stop bands, where Sm(p)  # 0. Clearly, p = 

A typical result is shown in Figure 3.75(b). It is seen that there is a succession of stop 
and propagation bands, each one beginning at the value of o corresponding to one of 
the natural frequencies of a single span: o = n2, 4n2 et seq. for u = 0, and somewhat 
lower values for u = 2; the upper limit of each propagation band is the corresponding 
single-span eigenfrequency for a clamped-clamped pipe, w = 22.37, 61.67 et seq. for 

F ( K  w, P, r. m. 
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u = 0, and a little lower for u = 2, for reasons to become evident two paragraphs hence. 
The propagation bands become wider with increasing u and, as the divergence limit is 
approached, u = n, the first propagation band reaches w + 0. Also, from the %e(p) 
curves it is obvious that positively and negatively travelling waves have different phases 
and hence phase velocities, which again shows that the system does not possess classical 
normal modes (Section 3.7.1). 

The case of a finite N follows the same pattern. One eventually obtains an N x N 
matrix equation giving N discrete frequencies for each propagation band, rather than a 
continuum. Thus, in the case of a pipe with p = 0.25, u = I7 = r = 0 and N = 8, one 
obtains eight eigenfrequencies: n2 5 w 5 21.67 (< 22.37) in the first band, and another 
eight 4n2 I o 5 60.52 (< 61.67) in the second band. 

To understand these results and those in Figure 3.75(b), it is important to realize that 
only modes with half-wavelength equal to or a submultiple of the single-span length 
can propagate: eight such modes when N = 8, and an infinite number for N + 00. The 
mode shapes can be visualized most easily for a three-span system ( N  = 3) ,  as shown 
in Figure 3.76 for the first propagation band. The first mode obviously has the same 
frequency as the eigenfrequency of a pinned-pinned single-span pipe, while the other 
two have higher frequencies because of the additional strain at the supports where there 
is a change in slope. Clearly, however, the highest frequency in each band has to be 
lower than that of a single-span clamped-clamped pipe, approaching it only as N + 00. 
In the second propagation band, each mode has a second-mode shape within each span, 
and so on. 

Figure 3.76 Schematics of the three modes in the first propagation band for a three-span pipe 
( N  = 3).  

If the pipe of the finite system is nonuniform, some new and interesting features develop. 
Chen considers the eight-span system with each span the same as all the others ( p  = 
0.25, u = I7 = 0), except that f = 0 for all spans but the fourth and fifth where r = -4. 
When the pipe is nonuniform, some eigenfrequencies exist in what would have been stop 
bands in the uniform pipe. Thus, the stop band of one portion of the piping system 
may be a propagation band in another portion; e.g. for f = -4, the propagation band is 
7.51 5 w 5 9.91, but for f = 0 waves are attenuated in that range of w. The modes in that 
range are called energy-trapping modes, for obvious reasons: any energy that comes into 
the unattenuating part of the system is accumulated there, but dissipated elsewhere. For 
this example, two energy-trapping modes are found: w = 9.00 and w = 38.81. In these 
modes, the amplitudes of the fourth and fifth spans are much larger than those of the 
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rest. This phenomenon is also known as mode localization ~ see, e.g. Pierre & Dowel1 
(1987), Bendiksen (1987) and Vakakis (1994). 

The response of the system to a convected pressure perturbation is considered next, 
of the form q exp[i(Rt - ~ t ) ] ,  i.e. with @(c) = exp(-iKc) in (3.149). In this case, the 
solution is ~ ( t ,  t) = E",=, [C, exp(ih,() + @(()I exp(iwt), where @(() is the particular 
solution; for a uniform, infinitely long pipe, 

@(() = qeplKC[K4 - (U2 - f + n ) K 2  + 281'2URK - R2]-'. 

The solution follows the same pattern as before, but @(<) comes into the picture; i.e. 

Y ( 4 )  = C{an[a,-l  + @"(O)] + b,[a, + @'(1)] + d,@(O) + en@(l))el*flt + @((). 

Hence, a more complex form of (3.153) results, involving @(O) and Q(1). However, the 
form of the solution is the same, and taking a, = alp] exp(iK), one eventually obtains 

-"$ = qF(U, 8, Q, K ,  r, n), 

4 

n=l 

(3.155) 
4 4 

x [ d n h n ( l  - e-'*,) - U , L , ( I  - e-l*n)K2 - KI + C [ f ( h n ,  K, e , ,  bn)]e-lK 
n=l 

I' + bnh,elhn - anh, - b,h,elK] K4 - U2K2 + 2B1/2UfiK - Q2 I{ ={ ~ ~ ~ ~ n e l ~ * n - K ~  

n = l  

where u2 = u2 - f + n, and f is the same as the other expression in the numerator but 
involving e,* and 6, instead of d, and a,, and +K for the last term. The interesting part of 
this result is that F becomes infinite when either of the two bracketed expressions in the 
denominator vanishes. Comparing with (3.151), it is seen that the second bracketed quan- 
tity vanishes, if R coincides with one of the eigenfrequencies of the unsupported system: 
Q = w.  This is the 'normal' resonance condition. Then, comparing the first bracketed 
expression to (3.153) with (3.154) substituted in it, it is clear that this too can vanish for 
K = p ,  i.e. when the convection velocity of the pressure perturbation coincides with the 
phase velocity of free waves in the pipe, a 'new' type of resonance. 

Similar work on wave propagation in periodically supported pipes (with an additional 
rotational stiffness present at each support) has been done by Singh & Mallik (1977). 
The interested reader should also refer to Mead (1970, 1973). 

3.8 ARTICULATED PIPES 

It is recalled that, essentially, the incredible saga of the dynamics of cantilevered pipes 
conveying fluid, in all its manifestations and variants, began with Benjamin's (1961 a,b) 
work on articulated cantilevered pipes. Benjamin derived the correct statement of 
Hamilton's principle for an articulated system, equation (3.10), in much the same way as 
in Section 3.3.3, and in the process he discussed the incorrectness of previous derivations 
of the equations of motion of cantilevered pipes. He also examined the mechanisms of 
energy transfer and stability (Section 3.3.2), and illustrated the qualitatively predicted 
dynamical behaviour by sample calculations and model experiments. Further work on the 
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subject was done by Paidoussis & Deksnis (1970), Bohn & Herrmann (1974a,b), Sugiyama 
& Noda (1981), Bajaj & Sethna (1982a), Sugiyama & Pafdoussis (1982), Lunn (1982), 
Sugiyama (1984) and Sugiyama et al.  (1986a,b) on linear aspects; a considerable amount 
of work was also done on the nonlinear dynamics of the system, which is discussed in 
Chapter 5.  

The dynamics of the articulated system mirror those of the continuous one (which is 
treated first in this book), with the following difference: the cantilevered articulated system 
is not only subject to flutter but also to divergence, unlike the continuous system. The 
importance of this discrepancy should be viewed in the context of the popularity of low- 
dimensional (low-N) models for studying the dynamics of continuous systems (Henmann 
1967; Herrmann & Bungay 1964; Herrmann & Jong 1965, 1966). For columns subjected 
to axial loading, the dynamics is qualitatively the same in the discrete and continuous 
systems, and hence l o w 4  models may be used without worry; however, this is not the 
case for pipes conveying fluid, as discussed in Section 3.8.2. 

3.8.1 The basic dynamics 

Consider the articulated system shown in Figure 3.l(d), oscillating in a vertical plane. 
The mass of the pipe per unit length is rn and that of the fluid M ,  the length of the upper 
pipe 11 and of the lower one 12; the corresponding spring constants are kl and k2, while 
the generalized coordinates are q1 = 8, q 2  = 4. The equations of motion can be derived 
with the aid of (3.10) from the expressions for the kinetic and potential energies, correct 
to second order, 

+ {const. + i M  [($Zi + Q2 + llZ:6$ + $Z:$’ + 211Z2U(+ - 8)8]}, (3.156) 

V = ;{k1O2 + k2(8 - 4)2 + $(m +M)g[(l: + 21112)8’ + Z;qj2]], 

and R = (l,O+l2+)k- i(Z102 +12+2)i and r = @k+i ,  where k and i are the unit 
vectors, respectively in the lateral z-direction and the axial x-direction. The equations 
of motion are rendered dimensionless by defining a dimensionless time t = [3k2/(M + 
rn)Z;]’/*t and the parameters a = Zl/lz, = 38 = 3M/(M + m),  K = kl/k2, u = [(M + 
m)12/3k~]”’CJ and y = (M + rn)g1$/2k2. 

and y = 0 it is found that (i) the first 
mode remains stable, receding to even larger 9m(w) as u is increased, w being the 
eigenfrequency; (ii) the system loses stability in its second mode at u = 1.733 by flutter; 
(iii) thereafter the second-mode locus reaches the 9 m  (w)-axis and remains thereon, 
tending to o + 0 as u + 00. For y # 0, however, stability may be lost by divergence. 
No attempt was made by Benjamin to draw the map showing where divergence and 
where flutter would occur; this was done later, e.g. by Lunn (1982) - see Figure 5.13. 
Nevertheless, in the case where the restoring forces are due to gravity alone (kl = k2 = 0), 
Benjamin shows that the system loses stability by divergence if p > i ,  and by flutter for 
lower p .  Hence, in a typical experimental system, if the fluid conveyed is water the 
instability first observed will typically be divergence; if it is air, however, it will be 
flutter. 

For the system defined by a = K = 1, 8 = 
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Benjamin (1961b) conducted a set of model experiments with articulated pipes made up 
of segments of brass or glass tubes (typically 12.7 mm in diameter, 0.20-0.62 m long), 
interconnected by joints made of short lengths of rubber tubing bound to the rigid tubes 
securely with wire. Care was taken to relieve stresses at the joints and to ensure a smooth 
flow passage from tube to joint and on to the next tube. Some experiments were conducted 
with kl = k2 2 0 by replacing each rubber joint by the neck of a toy balloon. The fluid 
was water ( B  = 0.18,0.31 and 0.32). In some experiments, the pipe was vertical and in 
others horizontal (essentially as described in Section 3.5.6). In a few cases, both ends 
were supported. 

Virtually all of the general qualitative observations made in Section 3.5.6 for flexible 
pipes have been noted earlier by Benjamin in his articulated pipe experiments: the violence 
of the divergence instability (which had to be limited by restricting its unimpeded growth, 
otherwise resulting in a broken joint), the destabilization of a cantilevered system by 
lightly touching the free end, limit-cycle motion, ‘induced’ versus self-excited flutter and 
hysteresis, etc. 

Agreement between theoretical and experimental critical flow velocities was impressive: 
l& = 0.34 versus 0 . 3 6 d s  for divergence and U,f = 0.65 versus 0.68 d s  for flutter are 
typical of a set of 18 experiments. 

The ‘mode exchange’, already discussed in Section 3.5.1, also arises in the case of artic- 
ulated systems, as demonstrated by Sugiyama & Noda (1981) and as shown in Figure 3.77, 
where it is seen that the mode loci come very close together before the switch actually 
takes place. The Argand diagram for B = 0.50 is identical to one of those originally 
obtained by Benjamin (1961a). 
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Figure 3.77 
with varying j3 for y = 0: (a) for B increasing, starting with j3 = 0.50; (b) for 

The ‘mode exchange’ from second- to first-mode flutter for an articulated cantilever 
decreasing, starting 

with j3 = 0.55 (Sugiyama & Noda 1981). 
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Lunn (1982) studies the effect of dissipation on two-degree-of-freedom systems, in 
particular for B + 0, obtaining similar behaviour to that discussed in Section 3.5.6 for 
continuous systems: i.e. severe destabilization due to internal damping (Figure 3.37). He 
also conducted a number of experiments, some of which are discussed in Chapter 5 (see 
Figure 5.14). 

3.8.2 N-degree-of-freedom pipes 

One major difference between the continuous and articulated cantilevered systems is 
that in the latter, if the pipe is vertical, divergence may occur, while for the continuous 
system it has been shown theoretically and confirmed experimentally that divergence is 
impossible. The resolution of this difference in behaviour was the motivation of the work 
Paidoussis & Deksnis (1970), dramatically entitled ‘the study of a paradox’; ‘paradox’ 
simply because in the limit, as the number of articulations N -+ 03, one should expect 
the articulated system to approach the continuous one in every respect. 

Paidoussis & Deksnis (1970) consider the vertical system of Figure 3.78, involving N 
articulations and N rigid tubes, of which N - 1 are of length 2 ,  while the last one is 
of length el ,  where e 5 1. For reasons to be clarified later, a portion of the upstream 
immobile piping, (1 - e)Z long, is taken to be part of the system, so that the total length 
of the articulated pipe is L = NL. The rigid tubes are interconnected by rotational springs 
of equal stiffness, k. Again, the masses per unit length of the pipe and of the fluid are rn 
and M, respectively. 

Figure 3.78 The N-degree-of-freedom articulated system, showing the lengths of the tubes, the 
generalized coordinates and the displacements of the free end. At each articulation there is a 

rotational spring of stiffness k ,  not shown (PaYdoussis & Deksnis 1970). 
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Making allowance for the shorter tube at the free end, the kinetic energy of the pipe is 

T - L  - ,ml3 { I  3 ~ 3 ~ 4 ~  ' 2  + ~ 2 ~ 4 ~  ' (" 4q ' ) + c l p  [2 4)1), 
p= 1 q=o q=o 

(3.157) 

where 

2 3 c l p  = 1 + (e - 1)6,~. ~2~ = 1 + (e  - 1)6,~, ~3~ = 1 + ( e  - 1 ) 6 p N ,  

(3.158) 

and S P ~  is Kronecker's delta, while the kinetic energy of the fluid is 

(3.159) 

both correct up to the quadratic terms. The potential energy of the system is 

The equations of motion are derived via Hamilton's principle, equation (3.10). In this 
case, R = wLk - c L i ,  t = @Nk + i ,  where 

N N 

(3.161) 
p= 1 p =  1 

The equations of motion, in dimensionless form, are 

2 " 

~ C 3 r 4 r  + N y c 2 r 4 r  + 2 N 2 U 2 C 1 r ( @ ~  - 4 r )  

r =  1 ,2 ,3  . . . . .  N ,  (3.162) 
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M 
L = N1, = ( ( M  + ; ) L 3 N ) - ' I 2  t ,  p = -  M + m '  

For e = k, one may consider the articulated system to be a physicalZy discretized 
version of the continuous one, with the flexibility of the latter lumped at the mid-point 
of each I-length segment and equal to k = EZ/1 - cf. Goldstein (1950; Chapter 11). It 
is the transition from the low-N discrete system to the continuous one that is the main 
concern of Paldoussis & Deksnis' work. 

The dimensionless eigenfrequencies of the articulated system are compared with those 
of the continuous one,t first at u = 0, for increasing N .  As expected, for N = 2 or 3, 
the two sets are appreciably different; with increasing N ,  however, they converge quite 
rapidly. Thus, for N = 10 the lowest five modes in the two sets are within 2%; for N = 20 
within 1%, for y = 0; and only slightly less close for y = 10 [see table and figures in 
Pai'doussis & Deksnis (1970)l. 

Then, the dynamical behaviour of the system with flow is investigated for various N .  
Figure 3.79(a,b) gives results for y = 10 and 100. It is seen that for y = 10 stability is lost 
by flutter, no matter what N is - although the Argand diagrams show that divergence 
is possible at u =. u c f .  An interesting observation (cf. Sections 3.5.4 and 3.5.5) is that 
for sufficiently low N ,  no S-shaped jumps are manifested in the curves, Finally, from 
the results for N = 8 it is clear that, for sufficiently high N ,  the stability curve of the 
articulated system approaches that of the continuous one; since convergence in the lower 
eigenfrequencies is better than in the higher ones, agreement between the N = 8 discrete 
and the continuous system is better for lower 0 (cf. Section 3.5.4). 

The situation depicted in Figure 3.79(b) for y = 100 is more complex. It is seen that 
(i) for N = 2, the system loses stability by flutter only if p < 0.195, and by divergence 
for higher f?; (ii) for N = 3 only flutter is possible; (iii) for N = 4 and 8, both divergence 
and flutter are possible but ucd > u c f ,  the difference between the two stability bounds 
being much larger for N = 8. 

Indeed, observing the trend with increasing N in Figure 3.79(b), it is reasonable to 
suppose that u,d -+ 00 as N + 00. This resolves the paradox that, whereas for the artic- 
ulated system divergence is possible (and in some cases stability is lost that way), for the 
continuous system no divergence can occur. These same results explain the same paradox 
as expressed by Benjamin (1961b): that in some cases, divergence is possible with water- 
flow but not with air-flow. From Figure 3.79(b) we see that, for N = 2, stability is lost 
by divergence when f? = 0.2 or higher and by flutter when f? 2 these two values 
o f f ?  being typical for water- and air-flow experiments respectively. 

The non-occurrence of divergence for N = 3 is explained, phenomenologically at least, 
in Figure 3.80. For even values of N ,  there generally is a mode (typically the first), which 
crosses the origin from positive to negative 9m(w), the classical divergence path. In some 

+The eigenfrequencies of the continuous system have themselves been obtained from a discretized (Galerkin) 
model, unless y = 0 - see Section 3.3.6; however, the discretization in this case is malyrical rather than 
physical. 
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cases, however, it is the locus of the mode giving rise to flutter that reaches the negative 
4m(w)-axis and then crosses the origin from instability to stability; these cases are shown 
as dashed lines for N = 2 and 4 and low y. This appears to be the usual path for N 
odd. although for N = 5 and 7, over a range of y ,  the mode locus recrosses to instability 
(the upper curve in each case). However, for N = 5 and large or small enough y, there 
are no crossings of the origin at all, thus leading to the finite closed curve shown in the 
figure; for N = 3 the area of this closed curve is simply null. Thus, in this respect also, 
the transition from N = 3 to higher odd values of N may be considered to be ‘smooth’. 

Experiments were also conducted, similar to those of Benjamin’s, with metal tubes 
(diameter = 9.5- 12.7 mm, L 2: 0.6- 1.2 m), with connector-springs made of rubber tubing 
secured by jubilee clips, N = 2, 3 or 4, and water as the fluid. In some cases, in order to 
increase m and hence y ,  the tubes were sheathed with larger diameter tubes. Typical results 
are given in Table 3.7. In all the cases in (a) stability is lost by flutter, while in (b) it 
is lost by divergence. The experiments in (b) were conducted with springs of negligible 
stiffness, in which case u and y, as defined in (3.163) are meaningless; in that case, a 
new dimensionalization was made, in terms of the Froude number, F = U/(gL) ’ /2 .  For 
N = 2, e = i, it is shown analytically that, for divergence, F = &d = 1/(28)’/2. As seen 
in the table, agreement between theory and experiment is reasonably good in all cases. 

2o 

Figure 3.79 The dimensionless critical flow velocity Ucd for divergence and ucf for flutter of the 
articulated cantilever for N = 2, 3 , 4 , 8  and for the continuous system ( N  = 00) as a function of B: 

(a) for y = 10; (b) for y = 100; in both cases e = (Pafdoussis & Deksnis 1970). 
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Figure 3.79 (continued). 

Further theoretical and experimental results may be found in Paldoussis & Deksnis 
(1969, 1970). The final conclusions are the following. First, there is, after all, a smooth 
transition between the discrete system, as N is increased, and the continuously flexible 
one. Second, the low-N discrete system dynamics can be quite different from those of 
the continuous system [Figure 3.79(b)], and hence the popular two-degree-of-freedom 
articulated ‘models’, which work so well for Coriolis-free follower-force nonconservative 
systems, should be used with caution in the case of pipes conveying fluid if the results 
are meant to be extrapolated to those of the continuous system. 

3.8.3 Modified systems 

A very extensive and systematic study of various modified two-degree-of-freedom articu- 
lated cantilevered systems has been undertaken by Sugiyama and co-workers - ‘modified’ 
in a similar way as the continuous systems discussed in Section 3.6, by the addition of 
springs, masses, and so on. 
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Figure 3.80 The values of u where the locus of one of the modes of the articulated system crosses 
the origin for N = 2-8 and e = as a function of y ;  the meaning of the dashed lines is explained 

in the text (Pafdoussis & Deksnis 1970). 

Table 3.7 Conditions of stability: theory compared with experi- 
ments; in (a) k varied from one experiment to the next, in the range of 
k = 0.33-0.39Nm, while in (b) k 2 0 (Pai’doussis & Deksnis 1970). 
(a) Flutter 

2 1 0.23 1 4.94 4.20 4.25 
I 

I 
2 

- 2 7 0.227 17.2 6.36 5.76 
- 0.084 46.4 6.08 6.17 2 

3 ; 0.211 18.6 6.20 6.12 
4 f 0.196 20.2 6.65 6.44 

(b) Divergence 

I 
2 
I 

2 
2 

0.258 1.39 1 .so 
0.258 1.40 1.34 
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The effect of some of the system parameters, e.g. the ratio of the stiffnesses and 
the associated damping at the joints, and the ratio of masses of the two articulations is 
investigated by Sugiyama & Paldoussis (1982), one aim being to find the configuration 
leading to the minimum value of ucf. 

The effect of an added lumped mass somewhere along the second segment and of 
damping at the articulations is examined by Sugiyama & Noda (1981), who find that 
the added mass virtually always destabilizes the system, as shown for example in 
Figure 3.81(a), both theoretically and experimentally. The notation in the figure is as 

2.0 

1.5 

1 .o 

I I I I 
0.01 0.1 1 10 100 

(a) CI 

Figure 3.81 (a) The effect on stability of an added mass in the second segment of a two-segment 
horizontal articulated cantilever, for B = 0.578 and varying values of p and 6: -, theory 
with measured damping; ---, theory with no damping; e, A, 0, 0, experiments (Sugiyama & 
Noda 1981). (b) The effect of an added mass-spring combination at e = 0.94 for fl = 0.299 and 
dimensionless damping constant (T = c/[k(rn + M)13] ' /2  = 0.0074 for varying K : -, theoretical 
results for /1 = 9.86; - - - , theoretical results for p = 18.5; 0, A, corresponding experimental 

results for flutter; 0 ,  A, for divergence (Sugiyama 1984). 
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follows: p = m, / [ (m + M)1]  and 6 = l a / l ,  where ma is the added mass and 1, its location, 
measured from the beginning of the second segment of the system; u = (Ml/k) ' l2U.  

The effect of an added spring-mass combination at a variable location in the second 
segment of the system is studied by Sugiyama (1984). Typical results are shown in 
Figure 3.81(b); u, p and 6 are as just defined, while K = K12/k, K being the added spring 
stiffness, while k is the stiffness of the articulation joints. As seen in the figure, the system 
is generally subject to flutter for small K and to divergence for higher K (cf. Figures 3.64 
and 3.65). 

Finally, Figure 3.82(a) shows flutter of the system with an added dashpot, just before the 
second articulation joint, of the type discussed in Section 3.6.4. It is shown theoretically 
and experimentally (Sugiyama 1986a,b) that the dashpot is stabilizing if placed on the 
first segment of the system, but can be destabilizing if placed sufficiently far along 
the second segment, as shown in Figure 3.82(b); = c, l / [k(m +M)Z] ' /2 ,  where c, is 
the added dashpot constant. The stabilizatioddestabilization mechanism is also discussed, 
and in the second case is shown to be related to a phase shift which facilitates energy 
transfer from the fluid to the pipe. 

0 0.5 1 .o 
51 

(b) 

Figure 3.82 (a) The articulated cantilever with an added dashpot in flutter. (b) The effect of loca- 
tion of the dashpot on the first (at cl) or the second (at (2) segment, for /3 = 0.575, c = 1.7 x 

and = 0.59 (Sugiyama et al. 1986a,b). 
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In all the experiments, the system was made of metal tubes interconnected by short 
rubber-pipe segments as in the foregoing, and it was suspended in a horizontal plane, 
much as in Figure 3.44. The design of the joints was much refined, however, and this 
is partly responsible for the excellent agreement with theory that has been achieved by 
Sugiyama and his colleagues. 

A great deal of high-quality, interesting theoretical and experimental results have 
been obtained in all of this work, mostly anticipating those of the continuous system 
(Section 3.6). For that reason, it has been discussed here extremely briefly, but the inter- 
ested reader is encouraged to refer to the original papers. 

3.8.4 Spatial systems 

A two-degree-of-freedom vertical articulated cantilever, with the lower tube out of plane 
by an angle +, is considered by Bohn & Henmann (1974b), so that motions of the upper 
segment are constrained to occur in one plane and those of the lower one in another. 
The main advantage in this system is that the type of instability to occur turns out to be 
controlled by + - a much easier parameter to vary than #l or y ,  especially in experiments. 

The equations of motion are again derived via equation (3.10). The linearized dimen- 
sionless equations are 

where, since in most of the cases studied kl = k2 = 0, the nondimensional 
quantities - are slightly different from Benjamin’s: a = Z 1 / 1 ~ ,  = 38 = 3M/(M + m), ii = 
BU/(ig12)1’2, 5 = ( i g / 1 2 ) 1 / 2 t ,  and ~i = k i / [ i ( M  + rn)l;g],  i = 1,2;  the dot denotes 
d( )/dt. 
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Figure 3.83 Theoretical and experimental results of U,, (ids; 1 in = 25.4 mm) for a ‘spatially 
deformed’ articulated system, by an angle y!r, for 3 = 0.328: - theory; 0, experiment, divergence; 

A, experiment, flutter (Bohn & Hemnann 1974). 
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It is found that in the case of > stability is lost by divergence - as found by 
Benjamin for + = 0 - no matter what the value of +. In the case of B < i, however, 
stability can be lost either by divergence of by flutter, depending on +. Typical results 
are shown in Figure 3.83, together with experiments. It is not clear from the text in Bohn 
& Herrmann (1974b) whether the theoretical results have been computed with the full 
theoretical model, i.e. taking into account kl and kz and also the damping at the joints 
(ignored here). 

In the experiments, the joints were made of ball bearings and light brackets, attached as 
a ‘backing’ to the pipe system, while the flow was conducted from the upper to the lower 
tube by a latex-tubing connector. Great care had to be exercised in eliminating, to the 
extent possible, small eccentricities and the effect of a permanent bow in the latex tubing, 
as well as controlling and measuring the stiffening of this tubing with increasing internal 
pressure. Nevertheless, agreement between theory and experiment in Figure 3.83 is good, 
notably demonstrating the existence of a critical value of ~, separating the domains of 
flutter and divergence. One unusual feature of the results in Figure 3.83 is that, apparently, 
divergence at a higher flow velocity than flutter materializes; unfortunately, this is not 
discussed by Bohn & Herrmann. 



4 
Pipes Conveying Fluid: 

Linear Dynamics II 

4.1 INTRODUCTION 

The linear dynamics of the basic system of a pipe conveying fluid has been considered 
in detail in Chapter 3, including, in more abbreviated form, the dynamics of some impor- 
tant modified systems (Section 3.6). A characteristic of all these systems, if they are 
continuously flexible, is that they are all governed by equations (3.38) and (3.70) and the 
dimensionless parameters of (3.7 l), or by simple variants thereof. Furthermore, solution of 
these equations may generally be achieved by one of the two methods of Section 3.3.6, or 
by straightforward extensions of these methods. The only ‘unusual’ system in this respect 
is that of articulated pipes, dealt with in Section 3.8. 

The systems considered here, on the other hand, either are governed by substantially 
modified forms of the equations of motion or require different methods of solution. 
Specifically, the following topics are discussed. Nonuniform pipes are pipes with nonuni- 
form cross-section and axially variable flow area. Aspirating or.sucking pipes are pipes 
ingesting flow at a free end, rather than expelling it. Short pipes also require special 
treatment: from the solid mechanics side the use of Timoshenko beam theory, and from 
the fluid mechanics side the use of potential flow theory and the introduction of so- 
called ‘outflow models’ for the fluid discharging to atmosphere. Pipes with harmonically 
perturbed flow velocity are subject to parametric resonances and require special methods 
of solution; so does the treatment of forced vibration of pipes conveying fluid. Finally, 
the section on applications presents some expected and unexpected uses of the work 
discussed in Chapters 3 and 4. 

4.2 NONUNIFORM PIPES 

4.2.1 The equation of motion 

The equation of motion will be derived for a pipe with a nonuniform flow passage 
and, generally, a nonuniform external form also. Variations in the shape of the pipe are 
axisymmetric, gradual and smooth with respect to the axial coordinate [see Figure 4.1(a)]. 
The pipe is immersed in air or water, so that hydrostatic, added-mass and damping effects 
associated with the external fluid need generally be taken into account. 

In this derivation (Hannoyer & Paidoussis 1979a), the lateral dimensions of the flow 
passage will not a priori be considered to be negligible. However, the other assumptions 

196 
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made in Section 3.3.2 for uniform pipes are also made here, namely that motions are 
small, the flow is fully developed turbulent, the curvature of flow trajectories is small, 
etc. It is also assumed that (i) the profile of the axial component of the flow velocity, Uj ,  
is uniform, and (ii) there are no significant secondary flows, other than that associated 
with changes in the cross-sectional flow area of the tubular beam. For simplicity, the 
flow velocity is assumed not to be time-varying. The subscript i ,  as in U;,  is added for 
two reasons: (a) since there is also an external fluid, to distinguish internal- and external- 
fluid properties, e.g. the densities pi and pe; (b) to facilitate the analysis in Chapter 8 
(Volume 2) of the same system but with the outer fluidflowing with mean velocity, Up. 

In the following, the rate of change of the momentum of the flow associated with 
motions of the pipe will be derived first. This is then used in a Newtonian derivation of 
the equation of motion. 

In the analysis, an inertial coordinate system (x, y ,  z )  is used, as shown in Figure 4.l(a). 
However, for convenience, a non-inertial frame {c, q ,  {} embedded in a cross-section of 
the pipe [Figure 4.l(b,c)] and centered at 0 in a cross-section of the pipe is also used. The 
conduit is assumed to be locally conical, with angle pi sufficiently small for velocity terms 
of order 6’ to be negligible. On the centreline, the absolute velocity of the fluid, Y ,  is equal 
to the relative velocity on the centreline, Ui, plus the velocity of the centreline, aw/at. 
Axial motion of the pipe is negligible (cf. Section 3.3.2); however, the effect of rotation 
needs generally to be taken into account. Thus, for a point off the centreline, the flow 
velocity relative to the pipe is Wi = U, + 52 x fl [Figure 4.l(c)], where L? = at in 
the <-direction - obtained by assuming that the fluid essentially slips at the boundary 
and by neglecting second-order terms with respect to pi. 

The rate of change of the flow momentum is here derived via a control volume approach. 
In this case a convenient control volume, AQ, is an elemental slice of the fluid in a cross- 
section of the pipe, of thickness a$. The rate of change of momentum in A T  may be 
expressed in terms of the material derivative of l$ as in equation (3.30). Alternatively and 
more conveniently, the rate of change of the flow momentum relative to the noninertial 
control volume attached to the tubular beam may be evaluated, and then the d’Alembert 
(apparent) body forces added to it, as follows: 

where the surface integral represents the momentum flux across the surface AS of the 
noninertial control volume, the next integral represents the rate of change of momentum 
within the control volume, and the last integral the apparent (pseudo) body forces. W; is 
the flow velocity of any point within AT, Le. for any stream tube, not necessarily along 
the pipe centreline; n is the unit vector normal to the surface element d(AS). R is the 
position vector of the origin 0 of the noninertial {t, q,  {) frame vis-u-vis (x, y ,  z ) ,  while r 
is the position vector of any point within AQ in the [c, q,  {) frame; here, r is of the order 
of the pipe radius and therefore small, the pipe being slender; arel is the fluid acceleration 
visd-vis the noninertial frame. 

Each of the integrals in (4.1) will now be evaluated in turn. Because of the imperme- 
ability of the walls, the net momentum flux across AS is merely the difference between 
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Figure 4.1 (a) Schematic of the system under consideration: (b) coordinate systems, a 
cross-section of the pipe, and an element of the fluid in a locally conical segment of the pipe; 

(c) flow velocities within the fluid element (Hannoyer 1977; Hannoyer & Pai'doussis 1979a). 

the fluxes across the flat surfaces in the flow direction, and it may be written as 

(4.2) 

by invoking continuity for each streamtube; Ai is the cross-sectional area of the flow 
conduit. 

Since the control volume remains constant, the second integral on the right-hand side 
of (4.1) may be written as 

in the last step the fact that Wi changes because of rotation of the control volume has 
been utilized, so that (8WJat) = (aWj/as)(~~/ar)  = (aWi/ax)(-S2q), where s here is the 
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coordinate along a strcamtube off the centreline (and should not be confused with the s 
used in Sections 3.3.1 and 3.3.2). Hence, the sum of (4.2) and (4.3) gives 

the intermediate result is obtained with the aid of Figure 4.l(c), while the last step is 
reached through neglect of second-order terms. 

Since llrll is small and arel is negligible, the last integral of (4.1) may be approximated 
as follows: 

in which it is recalled that w is the vector displacement of the pipe centreline in the 
y-direction. The second term in (4.5) is obtained through the following sequence of 
operations: 2 3  x W; = 2 3  x Ui(l  + Q / U i )  2: 2 3  x Ui = 2 [-(a2w/axat)k] x(U,i) = 
2Ui(a2w/ax at)j = 2Ui(a2w/ax at), where {i, j, k) are unit vectors associated with {t, q,  0. 
Throughout, the small inclination of the ( 6 ,  q}-plane vis-&vis the (x, y}-plane is utilized, 
subject to order-of-magnitude constraints. Hence, combining (4.4) and (4.5), the rate of 
change of fluid momentum is 

(4.6) 

which yields components per unit length in the x- and y-direction, respectively equal to 

(4.7) 
a2w 
ax at 

d Ui 
dx 

piAiUi ~ and piAi +2Ui - + ui 

The second expression may be written in the compact form piAi%’w, where 9 = [(a/%) + 
u,(a/ax)], and 

92w = 9[%w] = 
ax at (4.8) 

It is instructive to note that there are no terms involving dAi/dx in (4.7), as there would 
have been if the lateral momentum change had erroneously been evaluated by a simplistic 
application of the formula [(slat) + u,(a/ax)]{piAi[(aw/at) + Vi(aW/ax)l)! 

Now, the next steps in the derivation of the equation of motion may be taken. Working 
in a similar way as in Section 3.3.2 (cf. Figure 3.6) by considering an element 8c of the 
pipe [Figure 4.2(a)], force balances in the x- and y-direction and a moment balance yield 

(4.9b) 

(4.9c) 
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l T  
Figure 4.2 (a) An element of the pipe showing forces and moments acting on it; (b) an element of 
the contained fluid showing forces acting on it. Note that Q + (aQ/ax) Sx and piAi + (a /ax) (p ,Ai )  Sx 

on the lower surfaces have been omitted in these diagrams (Hannoyer 1977). 

in which F,, and En are the tangential and normal components of the fluid-pipe inter- 
action forces associated with the internal flow (equivalent to qS and F ,  respectively, in 
Figure 3.6), and F,, and En are the corresponding terms associated with the external, 
stagnant fluid;+ T ,  Q, E ,  E*, I ,  and in are the same as before, for uniform pipes: the 
tension, transverse shear force, modulus of elasticity, Kelvin-Voigt dissipation constant, 
area-moment of inertia, and mass per unit length, respectively. The term is the fluid- 
related moment due to both internal flow and external fluid, which for a pipe of nonuniform 
cross-section may not tacitly be assumed to be zero. 

Similarly, utilizing equations (4.7) and (4.8), x- and y-direction force balances 
on an element of the fluid [cf. equations (3.18) and (3.19) of Section 3.3.2 and 
Figure 4.2(b)] give 

(4. loa) 

(4. lob) 

where Ai = Ai(x), and piAi is what was previously called M ,  and 9'w has been defined 
in (4.8). 

The external fluid, being stagnant, contributes only hydrostatic, inertial (added 
mass) and damping terms: respectively equal to the buoyancy force, -peA,g, and to 
-ppA,(a2w/at2) and -p,D,U,(aw/at), where Vu = (p,CD/p,D,) has the dimensions of 

+The formal manner in which the external fluid forces are taken into account here is useful for later analysis, 
where F,, and &, will be associated more generally with external Jlow (Chapter 8). 
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velocity, De is the external diameter of the pipe, pc is the dynamic viscosity, and CD an 
empirical coefficient dependent on Stokes' number - see Section 2.2.l(g) and 2.2.3 and, 
for the viscous component, also Pa'idoussis (1973b) and Hannoyer & Pa'idoussis (1978). 
Hence, a balance of forces due to the external fluid gives 

(4.1 la) 

(4.11b) 

The form of the pressure forces in equations (4.1 la) and (4.1 lb) is clarified in Chapter 8; 
here one may simply accept it by similarity to the internal flow terms in equations 
(4.1Oa,b). 

The evaluation of the aMf/ax term in (4 .9~)  is quite tedious and will not be reproduced 
here. Suffice it to say that careful study (Hannoyer 1977) has shown that 

(4.12) -~ aMf - PIA, dA, --c&w+--- PeAe d A e  a2w - 
ax 2~ dx 2~ dx at2 ' 

Equations (4.9a). (4.10a) and (4.1 la) may be combined to give 

(4.13) 

in which the fact that A, U, is constant has been recognized. Then, by combining (4.9b,c L 
(4.1 Ob) and (4.1 1 b) and utilizing (4.13), the equation of lateral motion becomes 

a 
-[T + p e A e  - piAi - p,(AiUi)uiI = ( P e A e  - PIA, - m ) g .  
ax 

(4.14) 

it is important to note that, in the dominant term plA,[912 - Ul(dU,/dx)](aw/ax), the 
U , ( d U l / d x ) ( ~ / ~ x )  component cancels out once 9'w is expanded - and this is true 
irrespective of magnitude considerations. 

We next proceed to evaluate the only unspecified quantity in (4.14), namely that related 
to T + p,A, - p l A l .  By integrating (4.13), 

T(x) = T(L) - (Ai G )ui 1: - JI' (peAe - piA, - m ) g h  (4.15) 

is obtained, in which 
T(x) = (T + peAe - pjAi);  (4.16) 

it is recalled that T ,  p . A ,  U and m, unless otherwise denoted, are functions of x. TWO 
cases will be analysed, separately, as follows. 
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(a) Free or free-to-slide-axially downstream end. In this case it is presumed that no 
externally imposed tensioning is possible; it is also assumed that the internal fluid 
discharges into the external fluid at x = L and that p; (L)  2: p, (L) ,  equal to the hydrostatic 
pressure at that point. Thus, T(L) = p(L)[A,(L) - A ; @ ) ] ,  which may be rewritten in terms 
of a drag coefficient 

T(L) = ipiAiU:Cj-;; (4.17) 

it is recognized that, since (A, - A ~ ) L  is small, T(L) will be small and may alternatively 
be neglected. 

(b) Supported end with no axial sliding. In this case, 

T(L) = T + [T + peAe - p ; A i l ~ ,  (4.18) 

where T represents a possible externally applied tension. The second term is evaluated 
by considering the flow-related terms by themselves and imposing the condition that the 
axial strain E, satisfy s," E, dx = 0, as in the derivation of equation (3.37). It is noted that 
E, = [a, - u(arr + am)] /E ,  in which a, = T(x) /A(x) ,  where A(x)  = A,(x) - A;(x)  
(A, - A;)x ,  and u is the Poisson ratio; furthermore, a,, + am E 2(p;Ai - p,A,)/(A, - 
Ai), by assuming that the tubular beam area variations are sufficiently gradual for the 
stress distribution applicable to a uniform tubular beam subjected to uniform internal and 
external pressure to hold true for each cross-section. Hence, one finds 

from which (T + p,A, - p i A ; ) ~  may be obtained if the form of A,(x),  A , (x )  and the 
pressure distributions are known. In general, one may write 

[T + PeAe - PAIL = (1 - 2v)[PeAe - ~ i A i l ~ f 1  + ~ i ( A i u i > u i ( L ) f  2, (4.20) 

in which f l  and f 2 must be obtained via (4.19). It is of interest to note that for a uniform 
tubular beam internally pressurized by pi and immersed in a uniform ambient pressure, 
the second term in (4.20) vanishes while the first gives -(1 - 2u)piA;, thus retrieving the 
results of Section 3.3.2. It should also be noted that, unless pressurization effects exist, 
both f l  and f 2  are very small terms which may be neglected for slightly tapered tubular 
beams. 

Hence, the equation of small motions of the system, subject to all the assumptions and 
approximations made, is 

- { T(L) + p;AiUi[U; - 
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(4.21) 

in which [dA;/dx](a/ax){ (dUi/&)(aw/ax)) in the second, fluid-moment-related term has 
been neglected, as it is of second order for small taper angles; T(L) is given either 
by equation (4.17) or by (4.18)-(4.20). It is obvious that the second and third terms 
in equation (4.21), which are related to the fluid-related moment [equation (4.12)] are 
quite small as compared to, say, the fourth term; indeed, for sufficiently small &I;/& and 
dA,/dx, they may be neglected, and this is one of the reasons for not giving the derivation 
of aAf/ax here in detail. 

The boundary conditions are the same as for uniform tubular beams, e.g. 
equations (3.77) or (3.78). 

The equations of motion and boundary conditions may be rendered dimensionless by 
the following set of nondimensional parameters: 

4 = x/L, q = w / L ,  t = [EZ/(m + PeAe + ~iAi)]iL;f/L’, 

6‘ = [Ai/Ae1{=09 0, = Ae(t)/Ae(O)> 0; = Ai(t>/Ai(O)- E = L/De(O), 

vd = [Z / {E(m + PeAe + pjA;)]i!$Y*/L2, O = T(L)L2/EZ(0), IZ = FL2/EZ(0),  

Ui = [piAi/EZI~$Ui(O)L, cu = [pe&/ErI~f~UvL = [peAe/ErI,,,(~.,c~/p,L>,)L, 1 /2 (4.22) 

Y = [PA~/EII{=ML~, ye 1 + P ~ / P ,  yi = (Pi/P - 1)s2, 

where p = rn/(A, - A ; ) .  The equation of motion in dimensionless terms is then given by 

4.2.2 Analysis and results 

(4.23) 

Some calculations have been conducted for conically tapered cantilevered tubular beams, 
i.e. either conical in outer form or with a conical flow passage. The notation‘cylindrical- 
conical’ or ‘conical-conical’ is used here, the first denoting a cylindrical outer shape and 
a conical flow passage, while the second denotes conical outer and inner forms, as shown 
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\ 

in Figure 4.3; the case of a ‘cylindrical-cylindrical’ pipe will simply be referred to as 
‘uniform’. In the case of conical passages, instead of 0, and oi, it is more convenient 
to use the truncation factors (Ye and ai [see Figure 4.3(c)] or the cone angles Be and Pi, 

a; = 0 

\ 

ff, =; 

I 

Figure 4.3 (a) A cylindrical-conical pipe, and (b) a conical-conical one. (c) Truncated cones 
representing possible internal conduit shapes, for the same E (6 = 5) and different a;. 

The method of solution, a modified Galerkin technique (Hannoyer 1972), is outlined in 
Chapter 8, where the system subjected concurrently to internal and external flow will be 
discussed. 

In Figure 4.4(a), the dynamical behaviour with increasing u; is compared for (i) a 
wholly uniform pipe and (ii) a cylindrical-conical one (a, = 0, a; = 0.5). It is seen that the 
dynamical behaviour is closely similar, but the critical flow velocity for the onset of flutter 
is considerably lower for the cylindrical-conical pipe (uic 2: 2.25) than for the uniform 
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Figure 4.4 (a) Argand diagram of the complex eigenfrequencies of a tubular cantilever conveying 
fluid for a system with 6 = 20, S = 0.5, y = 20.05, yi = 0.03, ye = 1.9, immersed in quiescent 
water, neglecting dissipation (ud = c ,  = 0): - 0 - 0 -, a uniform pipe (a, = CY, = 0); cylin- 
drical-conical system (CY, = 0, ai = 0.5). (b) Argand diagram of a similar cylindrical-conical system 
(a, = 0, ai = O S ) ,  with ye = 1 and all other parameters the same: 7 ,  immersed in water, V, 

immersed in air (Hannoyer & PaYdoussis 1979a). 



206 SLENDER STRUCTURES AND AXIAL FLOW 

one (uic 2: 5.0). By reconsidering the arguments originally made by Benjamin (1961a) 
and discussed in Section 3.2.2, flutter arises when the work done by centrifugal force 
MU2($’w/ax2) s piAiU;(a2w/ax2) overcomes that done by the Coriolis force. In the 
case of the nonuniform pipe, however, this term is equal to [piAi(x)Ui(x)Ui(L)](d2w/ax2), 
where piAi(x)Ui(x) = const. Hence, since Ui(L) > Ui(O), the destabilizing force is higher 
at all points x > 0 in the cylindrical-conical system vis-&vis the uniform one. In this case 
the ratio of critical flow velocities is 2.25/5.0 = 0.45, which is close to the diameter ratio 
(1 - ai) / l  = Di(L)/Di(O) = 0.5. Similar calculations confirm that uic indeed decreases 
almost linearly with increasing ‘truncation factor’ ai. Thus, the destabilizing effect of 
conicity of the flow passage is similar to that of mounting a convergent nozzle at the 
end of an otherwise uniform pipe [Sections 3.3.5 and 3.5.6 and Gregory & PaYdoussis 
(1966b)l. 

Figure 4.4(b) shows the effect of density of the surrounding fluid on the dynamics 
of the cylindrical-conical pipe. The dimensionless frequency is defined, in terms of the 
dimensional circular frequency f2, by 

(4.25) 

Intuitively one would have supposed that when the surrounding fluid is water, the system 
would be more stable than when it is air. Yet, the opposite is found to be true. The 
increase in the surrounding fluid density acts in two ways: (i) to increase the effective 
inertia of the pipe through the added-mass effect and (ii) to decrease the gravity effect 
through buoyancy. Both have a destabilizing effect with increasing density of the external 
fluid, pe.  The latter is physically obvious. The former may be accepted by analogy to the 
case of uniform pipes where it was found that, as the mass ratio piAi/(piAi + m )  becomes 
smaller, the system is less stable (Section 3.5); the external stagnant fluid effectively adds 
peA, to m, producing the same effect. 

In Figure 4.4(b) the real parts of the dimensionless frequencies %e(wj) ,  j being the 
mode number, are lower for the pipe immersed in liquid than in air, which is reason- 
able in view of the added-mass effect; this is even more pronounced in dimensional 
terms - refer to equation (4.25). However, the .9rn(wj) are also lower in liquid than 
in air, which is contrary to physical intuition, as the added damping in liquid should 
be higher than in air. Nevertheless, it is recalled that the true measure of damping is 
C j  = .9m(wj) /%e(wj) ,  and this does show the expected behaviour. It may be shown by 
a perturbation analysis for small ui that (a) 4m(wj)  = 2ui[(S2 + y i ) / (y ,  + yi)]*/* for all 
j ,  in the absence of dissipative forces, here taken to be zero for simplicity, and (b) the 
%e(wj) are approximately equal to their values at ui = 0. These may be used to obtain 
estimates of 

Figure 4.5 shows the eigenfrequencies of some of the lowest modes of a conical- 
conical pipe in still water; internal dissipation has been taken into accountt in one case. 
It is seen that the behaviour of the system in both cases is considerably different from 
that of the previous systems. First, the critical flow velocities are much lower, reflecting 

for small enough ui. 

+ A  modified viscoelastic dissipation model is utilized in this case to approximate the expenmentally observed 
behaviour of silicone rubber, which exhibits hysteretical behaviour at high frequencies but is viscoelastic at low 
frequencies. This is achieved by replacing Vd by Ud[l + ( U d / & ) l W l ] - ’ ,  where f i d  is the hysteretic damping 
coefficient as w + 00. 
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Figure 4.5 Argand diagram of the complex eigenfrequencies of a conical-conical cantilever 
conveying fluid and immersed in quiescent water, with and without dissipation in the pipe material 
taken into account (t= 22. S= 0.5, Be= 0.03, B, = 0.016, y= 16.47, y, = -0.08. ye = 1.7, c, ,  = 0): 
~ _ -  . pd = ud = 0 (undamped); -, p,, = 0.20, ud = 0.04 (damped) (Hannoyer & Pai'doussis 

1979a). 

the reduced flexural rigidity of conical-conical pipes and the diminished gravity effect 
( p  > pe in the case presented). Second, there are two flutter instabilities close to each 
other (in terms of ul ) .  Comparing the undamped and damped systems, there is little 
evident similarity in the root loci. The differences are more apparent than real, however. 
Although different modes become unstable in the two cases, the critical flow velocities 
are not too different. It is recalled that this being a nonconservative system. dissipation 
can actually destabilize it. 

Figure 4.6(a) shows that, for tubular cantilevers of constant cone angle Be (and similarly 
for P I ) ,  varying E by cutting pieces off the free end entails variations in Be (and similarly 
in B , )  - see equations (4.24). Figure 4.6(b) shows the effect of the slenderness ratio 
E = L/D,(O) on the critical flow velocity u,, for a conical-conical pipe with constant j3, 
and De.  (It is noted that as 6 changes, the corresponding ae and a, also change.) It is 
seen that with increasing slenderness the system loses stability at a lower flow velocity. 
This contrasts with the case of uniform pipes where u,, is almost independent of e .  Of 
course, the more slender the system, the lower is the diinensional critical flow velocity, 
in any case (vide definition of u,: since u, cx U,(O)L, as L increases, U,(O) decreases for 
a constant u,) ;  but in conical systems this effect is greatly amplified. Finally, the effect 
of the surrounding fluid is seen to be the same as for cylindrical-conical pipes. 
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Figure 4.6 (a) Diagram showing that, for a cone of constant angle (here tan ;Be =,A, 
representing a possible exterior shape of the tubular cantilever), as E is changed by truncating 
pieces from the free end, a, changes also. (b) The effect of E (and hence of ai and a,) on 
the critical flow velocity of a conical-conical cantilever of constant Bi and Be conveying fluid 
[Be = 0.03, Pi = 0.016, S = 0.5, y* = ( 1  - S4)y/c3 = 0.001 45 which is a version of y independent 
of length, yi = -0.08, ye = 1.70, ,%d = 0.2, ud = 0.04, c, = 01 (Hannoyer & Paidoussis 1979a). 

4.2.3 Experiments 

The validity of the theory was tested by experiments (Hannoyer & PaYdoussis 1979b) 
with nonuniform elastomer tubular cantilevers conveying water. The pipes were centrally 
mounted in the vertical test-section of a water tunnel, so that external axial flow could 
also be imposed, as described in Chapter 8. Here we confine ourselves to experiments 
with internal flow, which was supplied from an external source through the supports of 
the upper end of the pipe. In the experiments the test-section was either empty or filled 
with stagnant fluid. The ratio of diameters of test-section and pipe was 200125.4 mm 2 8, 
so that the external fluid may be considered to be effectively unconfined. 

Experiments were conducted with uniform, cylindrical-conical and conical-conical 
tubular beams (Figure 4.3), which were manufactured and their properties measured by 
variants of the methods described in Appendix D. 
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Experimentally determined values of the dissipative constants were used in the theory, 
using a mixed viscoelastic-hysteretic model, with corresponding coefficients Vd and p. 

General observations 

With increasing flow, externally induced beam motions become more heavily damped; 
however, beyond a certain flow the trend is reversed and, at sufficiently high flow, the 
stability limit is reached and flutter is precipitated. 

Close to, but below, the critical flow for self-excited flutter, the system behaves as if it 
has a small unstable limit cycle within a larger stable one, so that external disturbances 
of a certain magnitude may precipitate flutter, yet small disturbances are damped. As 
the flow gets closer to the stability limit, the inner limit cycle becomes smaller, to the 
point where random, turbulence-induced disturbances are sufficient to propel the system 
beyond the confines of this limit cycle, precipitating amplified oscillation (flutter). These 
are clearly characteristics of a subcritical Hopf bifurcation [Figure 2.1 l(d)]. 

Limit cycles could generally be observed in the case of pipes hanging in air rather than 
water. The amplitude involved was larger for pipes with a uniform conduit than for those 
with a conical conduit. For flow velocities higher than those associated with the onset 
of instability, the amplitude of the limit cycle increased further. In contrast, for pipes in 
water, presumably because of buoyancy counteracting the stabilizing effect of gravity, the 
oscillations continued to grow until, in 10-20 cycles, the amplitude became large enough 
(i.e. about 8 pipe diameters) for the pipe to start hitting the walls of the test-section, 
whereupon the experiment was discontinued for fear of damage to the apparatus; thus, 
established limit-cycle motion could not actually be observed in this case. 

Comparison between theory and experiment 

The dimensionless critical flow velocities, uic, and the corresponding frequencies, w,., for 
flutter of a cylindrical-conical pipe in air and water are shown in Figures 4.7 and 4.8, 
respectively. Also shown is one experimental point for a cylindrical pipe, for comparison 
purposes. 

It is seen that theoretical and experimental critical flow velocities agree very 
well - although the experimental values ought to have been a little lower than the 
theoretical ones, this being a subcritical Hopf bifurcation. The corresponding frequencies 
agree less well. However, this is not surprising, upon realizing that: (i) in the case of 
pipes in air, the measured frequencies were those of limit-cycle motion, rather than those 
associated with the onset of flutter; these two values could be quite different in the case of 
a subcritical Hopf bifurcation, since the initial limit cycle is of non-negligible magnitude; 
(ii) in the case of experiments in water, the frequency was measured during the first few 
cycles of motion, before the pipe started hitting the wall, and precision of measurement 
was not high. 

The theoretically predicted reduction in dimensionless critical flow velocity with 
increasing slenderness (and hence the even more substantial reduction in dimensional 
flow velocity) is wholly supported by these experiments, as well as the theoretical finding 
that the system is less stable when immersed in water than in air. 

Finally, the experimental frequencies for the cylindrical-conical pipes are lower than 
those of the uniform cylindrical ones, which is in agreement with theory. 
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Figure 4.7 Theoretical and experimental critical flow velocities, uicr for flutter of cylindrical 
(Be = /?i = 0) and cylindrical-conical (Be = 0, = 0.014) cantilevers conveying fluid, surrounded 
by still air; and the corresponding frequencies, w,. Other parameters: S = 0.5, ye = 1.0, yj = -0.03, 
y = 0.00251~~.  Lines represent theoretical results and symbols are experimental data: -.- , 0, 
uniform cylindrical pipe; -, cylindrical-conical pipe, undamped; - - -, V, cylindrical-conical 

pipe, damped (pd = 0.08, vd  = 0.02); (Hannoyer & Paidoussis 1979b). 

Figure 4.9 shows the corresponding case for a conical-conical pipe. In these experiments 
the pipe had fixed internal and external cone angles; changes in ai, and hence a,, were 
obtained by reducing the length of the pipe by cutting pieces off the free end - large u, or 
a; corresponding to fuller cones, and smaller values to more highly truncated ones - see 
Figures 4.3 and 4.6(a). As predicted by theory, it is seen that for the longer, more fully 
conical system, stability may be lost at very low flow velocity, many times smaller than 
for a cylindrical pipe. A change in the character of oscillation was observed at higher 
flows, but could not be recorded accurately enough to tell whether it is associated with 
the higher flutter instability predicted by theory or whether it corresponds to some other, 
secondary bifurcation. 
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Figure 4.8 Theoretical and experimental values of uiC and mc for the same system as in Figure 
4.7, but immersed in stagnant water; all parameters are the same except ye = 1.9 (Hannoyer & 

Pdidoussis 1979b). 

It may be concluded, therefore, that these experiments validate the theoretical model. 
Both theory and experiments for nonuniform pipes subjected concurrently to internal and 
external axial flow are presented in Chapter 8 (Volume 2). 

4.2.4 Other work on submerged pipes 

Further work on the dynamics of uniform pipes immersed in fluid has been conducted, 
partly motivated by vibration of the inverted U-shaped pipe connecting the reactor vessel 
to the intermediate heat exchanger in a liquid-metal fast breeder reactor (LMFBR) [e.g. 
Inagaki et al.  (1987), Sugiyama et al .  (1996a)], and by more general applications in the 
marine and power-generating area [e.g. Shilling & Lou (1980), Langthjem (19931. 

The model utilized by Sugiyama et al. (1996a) is a variant of that in the foregoing, 
but modified to take into account immersion of only the lower part of the pipe. Similar 
results are obtained, but the effects of added mass, buoyancy and damping are studied 
more thoroughly through parametric calculations. The effect of partial immersion on 
stability is shown in Figure 4.10. The effect of immersion is generally destabilizing, for 
the reasons given following equation (4.25). However, partial immersion, as pointed out 
by Sugiyama et al. has a selective effect on mode shapes as well, mainly because of the 
discontinuous added-mass effect; see theoretical results for small I, in Figure 4.10(c). 
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Figure 4.9 Theoretical and experimental critical flow velocities and frequencies for a 
conical-conical tubular cantilever conveying water; Be = 0.03, Bi = 0.016,6 = 0.5, ye = 1.0 (air) 
and ye = 1.7 (water), yj = -0.08, y = 0.001 55c3, w d  = 0.2, ud = 0.05 (air) and vd = 0.04 (water); 

(Hannoyer & PaTdoussis 1979b). 
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Figure 4.10 The effect of partial immersion of the lower portion of a cylindrical cantilevered 
pipe on stability; 1, = 1 represents total immersion (Sugiyama ef al. 1996). 
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E’  . . . . .  

The same problem is studied by means of potential- rather than plug-flow theory and 
Timoshenko beam theory by Langthjem (1995) - see Section 4.4.10. 

,, :a 
... . .  

4.3 ASPIRATING PIPES AND OCEAN MINING 

4.3.1 Background 

In the discussion of energy transfer mechanisms for cantilevered pipes conveying fluid 
(Section 3.2.2) in conjunction with equation (3.1 l), it has generally been presumed that 
the flow velocity is ‘positive’, i.e. directed from the clamped towards the free end. 
However, it is obvious that if U is replaced by - U ,  all the arguments on stability and 
the predicted behaviour are reversed: for infinitesimally small U ,  and up to lUcrl, the 
system would be unstable by flutter; then, for IUI > IUcrl, it would regain stability! If 
dissipative forces were added, then perhaps ‘infinitesimally small’ would merely change 
to ‘small’. 

This intriguing possibility was explored experimentally by the author at the Chalk River 
Nuclear Laboratories in the mid- 1960s, by immersing the lower end of an elastomer pipe 
in a barrel and connecting the upper end to a pump, as shown in Figure 4.1 l(a). The 
expected behaviour did not occur. However, a sort of amplified oscillation did occur, if the 
immersion was shallow; but the mechanism was soon discovered to be one of parametric 
resonance, involving the slurping of air-slugs into the pipe, sucked in at the extremes 
of the cycle of oscillation when the pipe end is closest to the free surface, as shown in 
Figure 4.1 1 (b). Thus, the flow in the pipe has periodic density variations, with the optimum 
2: 1 parametrichatural frequency ratio (Section 4.5). Deeper immersion eliminated this 
mechanism of self-excitation. Attributing the non-occurrence of the expected ‘regular’ 
flutter at infinitesimal flow velocities to increased damping due to the water immersion, 
the flow rate was increased further, until a sufficiently large transmural pressure (external 

/z+ TO pump F, . .  .:I . .  . .  

. .  . .  _ .  

.. . .  . .  .. 1 :.:/ .. 
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Figure 4.11 (a)  Apparatus for experiments with water-aspirating pipes. (b) Diagram for under- 
standing the mechanism of parametric resonance due to density pulsations occurring when the 

immersion is shallow. 
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ambient minus internal) caused local shell-type collapse of the pipe near the support. 
Reinforcing the pipe at that point simply postponed the collapse to a higher flow rate, at 
a lower point along the pipe; but there was still no sign of the elusive flutter! At the time, 
this was chalked up as due to ‘experimental difficulties’ and forgotten for a while. 

Some time later, the author became aware of ocean mining and some aspects of research 
into the dynamics of such systems [e.g. Chung et al .  (1981), Whitney et al .  (1981), 
Felippa & Chung (1981), Koehne (1978, 1982), Chung & Whitney (1983), Aso & Kan 
(1986)], and work into the problem of sucking pipes received a new impetus. Ocean 
mining is basically the ‘vacuuming’ of minerals, notably of manganese nodules, which 
lie on the floor of the ocean, e.g. in the Northeast Pacific, at depths of the order of 5 km. 
The system involves a very long ‘vacuum hose’, with a massive ‘vacuum head’ which 
walks along the ocean floor and scours and sucks up nodule-rich sea-water, as shown in 
Figure 4.12(a). It occurred to the author that, the moment the bottom head loses contact 
with the sea floor, this becomes a cantilevered pipe with an end-mass, aspirating fluid 
and hence subject to flutter, as per equation (3.1 1). Therefore, it was decided that a more 
careful study of the problem was warranted. 

4.3.2 Analysis of the ocean mining system 

In most of the papers just cited, external flow and wave-related problems, as well as the 
dynamics of the long pipe itself, are the main concern. Only Koehne (1982) discusses 
briefly the modelling of the pipe with internal flow, but does not present any results. 
A systematic analysis of the general system of Figure 4.12(b) has been undertaken by 
Paidoussis & Luu (1985), which will be outlined briefly in what follows. 

For simplicity, the pipe is assumed to be initially straight. Then, proceeding as in 
Section 4.2, the equation of motion is found to bet 

a4w a2w a2 w a2w 
ax4 ax2 ax at a t 2  

E l -  + MUUj ~ - 2MU ~ + ( M  + m + Mu)- 

with boundary conditions 
aw 
ax 

w = 0,  - = o  

(4.26) 

(4.27a) 

at x = 0, and 

a’w -- a3w - - h - - aw 
ax3 ax a t 2  ax a t 2  at 

a2 -aw --a2w --2 a3w EZ - + (Mg - Fb) d - + M d  - + ( J + M d  )- = 0, 
ax2 ax a t2  ax a t2  

EI - - M d  - - ( M g  - F b ) -  - (M + M u ) -  - C - = 0, 
(4.27b) 

‘The reader should consult the text in Section 4.3.3. 
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Figure 4.12 (a) The ocean mining system, after Chung & Whitney (1983); (b) the system modelled when the bottom mass loses contact with the 
ocean floor (Paidoussis & Luu 1985). 
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at x = L.  All quantities are the same as in Section 3.3.2, but some new ones need be 
introduced: Ma is the added mass of the pipe per unit length; % is the end-mass, of mass- 
moment of inertia 7, and centre of mass at a distance 2 from the pipe end (x = L);  F b  is 
the buoyancy force associated with %; cy2 = A,/Aj = U,/U is the ratio of external pipe 
area to inlet jet area, with Uj as shown in Figure 4.12(b); p o ~  is the external, hydrostatic 
pressure at x = L;  other barred quantities have the same meaning as plain ones, but are 
associated with the end-mass. A form of expression (2.157) is used for c - see also 
equation (3.106). Furthermore, assuming a spherical form for z, C = 6nvpd, where v is 
the kinematic viscosity of the fluid. 

It is stressed that in this formulation, in accordance with Figure 4.12(b), a positive U 
corresponds to up--ow,  i.e. to what in Section 4.3.1 is called a negative flow velocity. 

For very long pipes, a pipe-string approximation is normally used, i.e. the flexural 
rigidity is ignored; however, here flexural terms are retained. Because of the fact that the 
boundary conditions are frequency-dependent, the usual form of the Galerkin method is 
not applicable to this case (see also Section 4.6.2). A special hybrid Fourier-Galerkin 
method developed by Hannoyer (1972), outlined in Chapter 8, is used instead. 

Some numerical calculations have been conducted for a system with parameters taken 
from Chung & Whitney (1983): a steel pipe ( E  = 2 x IOs kNm2, pr = 7.83 x IO3 kg/m3) 
and a = 182 x lo3 kg, L = 1 km, Di = 0.45 m, Do = 0.50m, and cy = 1 for simplicity. 
Typical results are given in Figure 4.13 and Table 4.1. 

The system loses stability by flutter at a very low flow velocity, U,, = 1.32 m/s, 
corresponding to the dimensionless u,.f = 1.129 in Figure 4.13. As shown in Table 4.1, 

I .o 

0.0 

-1.0 1 1 1 1 I 1 1 
0 200 400 600 800 loo0 

( w )  

Figure 4.13 Dimensionless complex eigenfrequencies of the aspirating system of Figure 4.12(b) 
as functions of the up-flow dimensionless flow velocity, u, for = 182 x lo3 kg (Pai'doussis & 

Luu 1985). 
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Table 4.1 The threshold flow velocity for 
flutter, ucf = ( M / E I ) ’ / ’  U,jL, for various values 
of and for zero dissipation (Pai‘doussis & Luu 

1985). 

(kg) Dissipation 4 

182 x lo3 Taken into account 1.13 
1820 Taken into account 0.935 

0 Taken into account 0.895 
Any value Neglected Of 

the magnitude of E does not alter this value dramatically. If, however, the dissipative 
forces are taken to be zero, the system loses stability at U = O+. 

Therefore, it would appear from these results that ocean mining designers and operators 
need to worry about flutter in their systems since, if a small safety factor were added, 
U < 1 m / s  would be too small to live with - especially since, for the more realistic 
L = 5 km, one obtains U,f 5 0.2 m / s !  Furthermore, the problem is of fundamental interest 
and hence work on experimental validation started anew. 

A new apparatus was built at McGill in 1986, shown in Figure 4.14(a). This time the 
entire pipe, hung vertically, was immersed in water in a steel tank; water was supplied at 
the top of the tank, and was forced up the hanging pipe and out of the vessel. Compressed 
air was supplied at the top of the tank to achieve higher flows, but also to conduct exper- 
iments entirely with air up-flow. Several experiments were conducted, with thicker pipes 
to postpone the buckling collapse of Figure 4.1 l(a), and some with different-shaped inlet 
forms added, but the system remained unnervingly stable. The experiment was discon- 
tinued when, with ever-increasing air-pressure to force higher water flow up the pipe, 
the rubber hose leading the water to the drain burst free of its clamp, spraying water 
all over the laboratory and all over the instrumentation nearby, and giving the author 
an unwelcome cold shower! At that point, the author was certain that something was 
wrong with the theory; for one thing, the flow into the pipe is not exactly tangential, thus 
not replicating in reverse the outpouring jet in the case of down-flow. However, these 
negative results were not published,+ precisely because they were negative and not fully 
understood - which is why the tale is worth telling. 

Meanwhile, even without experimental verification, it was taken for granted that the 
Pai‘doussis & Luu flutter at infinitesimally small aspirating flow really does exist, and several 
more papers were published giving similar results [e.g. Sallstrom & Akesson (1 990)] and 
methods for suppressing the unwanted flutter [e.g. Kangaspuoskari et al.  (1993)l. The only 
reference to absence ‘of any physical evidence of this phenomenon’ came out in the discus- 
sion by Dupuis & Rousselet (1991a), to which this author also contributed. 

4.3.3 Recent developments 

It was in 1995, during a visit by the author to Cambridge and upon recounting this para- 
doxial behaviour to Dr D.J. Maull, that the latter recalled reading ‘something similar’ 
in Richard Feynman’s biography (Gleick 1992). It turns out that in 1939 or 1940, 

+At least not until much later (Pa;idoussis 1997). when the reason why was much better understood. 
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Figure 4.14 (a) New apparatus for forcing the fluid up the pipe in experiments by PaYdoussis at 
McGill in 1980s; (b) Richard Feynman’s apparatus for resolving the sprinkler problem at Princeton 
in late 1939 or 1940; (c) the sprinkler problem: which way does the sprinkler turn when aspirating 
fluid (Gleick 1992)? (d) ‘negative pressurization’ and centrifugal forces on one arm of the aspirating 

sprinkler. 

Feynman’s and most other physicists’ tea-time conversation at Princeton and the Institute 
for Advanced Study was dominated by this problem: if a simple S-shaped lawn sprinkler 
were made to suck up water instead of spewing it out, Figure 4.14(c), would it rotate 
backwards or in the same way as for normal operation? (This problem was tied to the 
issue of reversibility of atomic processes!) Feynman could apparently argue convincingly 
either way. 

Eventually, Feynman decided to do an experiment which, as shown in Figure 4.14(b), 
was remarkably similar to the author’s. He immersed the lawn sprinkler into a glass jar 
filled with water, with an outlet connected to the sprinkler and a compressed air supply to 
force the water into the sprinkler and out. With increasing pressure and flow, the sprinkler 
refused to budge, up to the point where the glass jar exploded, spraying water all over. 
The result was that Feynman was banished from the laboratory thenceforth.? 

?The author feels to be in good company with a Nobel prize winner, in retrospect, for even the accident in 
his laboratory is similar to Feynman’s. More than that, however, he is thankful for his engineering training, to 
know not to do pressurized air experiments in glass jars - even if he did use a rubber hose! 
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Clearly the flow field is entirely different in ‘forward’ and ‘reverse’ flow through the 
sprinkler. This is the key that finally led the author to the resolution of the conundrum, 
for both the sprinkler and the pipe problem. Consider the stationary aspirating sprinkler, 
and imagine a flared funnel, not connected to it, channelling the flow in, thus modelling 
the sink flow. On reflection, the flow in the funnel is no different from that considered in 
Section 4.2 for nonuniform pipes. Hence, neglecting gravity, the axial balance of forces 
in the funnel is given by a form of equation (4.13), 

(4.28) 

where x and U; are directed as in Figure 4.12(b), and all quantities except pi are functions 
of x. T is taken up by the imaginary funnel supports and may be ignored. Also, this 
expression may be simplified by taking A, -Ai  = A ,  and by writing Q = U and p i  - 
p e  = p.  and recalling that piAiUi = M U  = const. Then integrating from x = 00, where 
p + 0 and U + 0, to x = L, the inlet of the sprinkler, we obtain (pA>r. = - (MU2jL.  
Hence, since M U 2  is the same for all x < L, one can write 

(4.29) 

which clearly shows that at the sprinkler inlet, and hence throughout, there is a suction or 
negative pressurization, 7 = -pU2 = -MU2/A .  Its effect is profound, as may be seen in 
Figure 4.14(d). The negative pressurization produces a lateral force FAIR = -MU2/R ,  R 
being the radius of curvature, which totally cancels the centrifugal force M U 2 / R ;  hence, 
the sprinkler remains inert!? Of course, these arguments do not hold once some rotation 
of the sprinkler takes place, but may be considered to be correct to first order. 

The same applies to the pipe problem. Unlike the case of discharging fluid where 
the pressure at the free end (above the ambient) is zero, for the aspirating pipe there 
is a suction at the free end, equal to -pUUj, and hence a negative pressurization 
equal to that, throughout the pipe (cf. Section 3.3.4). Therefore, a term 7A(a2w/ax2)  = 
-MUUj(a2w/ax’) must be added to equation (4.26), which is incorrect as it stands. This 
cancels out the centrifugal force required for flutter (Section 3.2.2)! 

Still, seeing is believing. Accordingly, an experiment was performed at McGill in 1997, 
in which two similar elastomer pipes were mounted as vertical cantilevers, immersed in 
a transparent water tank; at the free end of each pipe there was a light plastic 90” elbow. 
The clamped ends of the two pipes were interconnected via a pump. Once the pump was 
started, the pipe discharging fluid deformed in reaction to the emerging jet, as expected. 
The aspirating pipe, however, after a starting transient, returned to its original, no-flow 
configuration and thereafter remained limply straight.* Therefore, it is now clear that 
aspirating pipes cannot aspire to flutter! 

Before closing this section, it ought to be mentioned that there is another engineering 
application involving pipes aspirating fluid, namely the Ocean Thermal Energy Conversion 
(OTEC) plants. Shilling & Lou (1980) initially intended to conduct ‘up-flow’ experiments 

2 FA - M U ,  

+An alternative demonstration of this result may be made by control volume considerations and the fact that 
inlet and outlet vorticity is zero; however, some colleagues considered this less convincing. 

‘The experiment was initially done with very flexible coiled Tygon tubing. In this case, there was steady- 
state flow-induced deformation, with the aspirating pipe coiling itself tighter. It was discovered, however, that 
this was due to the fact that, under suction, the pipe cross-section became oval, and the coiled pipe behaved 
like a Bourdon pressure gauge! This shows that there is no such thing as a simple experiment. 
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with this in mind but, because of ‘existing equipment, measuring techniques and financial 
considerations’, ended up doing regular down-flow experiments with mechanically forced 
excitation of the pipe (see Section 4.6). 

4.4 SHORT PIPES AND REFINED FLOW MODELLING 

In the foregoing (Chapter 3 and Sections 4.1 -4.3), it has been assumed that (i) the pipe 
is sufficiently slender for Euler-Bernoulli beam theory to be adequate for describing the 
dynamics of the pipe, and (ii) that wavelength of deformation is sufficiently long for the 
plug-flow model to be acceptable, thus ignoring conditions upstream and downstream 
while determining the fluid-dynamic forces at a given point. If the pipe is sufficiently 
short, however, both assumptions become questionable, as will be discussed further in 
the following, and the use of Timoshenko beam theory and more elaborate fluid dynamics 
becomes necessary. In this section the necessary fundamentals are developed, by means 
of which (a) the limits of applicability of the Euler-Bernoulli plug-flow (EBPF for short) 
analytical model are determined, and (b) a theory for really short pipes conveying fluid 
is established. 

Since stability is of primary concern, it is noted that short thin-walled pipes lose stability 
in their shell modes [n > 2; see Figure 2.7(c)] rather than in their beam modes (n  = l), 
as discussed in Chapter 7 (Volume 2). In what follows, however, it is presumed that the 
pipe is sufficiently thick-walled for its beam-mode dynamics to be of primary interest. 

Timoshenko beam theory, where shear deformation and rotatory inertia are not 
neglected, was first applied to the study of dynamics of pipes conveying fluid by Paldoussis 
& Laithier (1976). This theory is applicable to articulated pipes in the limit of a very 
large number of articulations (Section 3.8), where the articulations permit substantial 
shear deformation. It is also applicable to continuously flexible short pipes, as well 
as for obtaining the dynamical behaviour of long pipes in their higher modes; in both 
these cases the necessity of utilizing Timoshenko, as opposed to Euler-Bernoulli beam 
theory, is well established (Meirovitch 1967). The equations of motion in Pafdoussis & 
Laithier (1976) are derived by Newtonian methods, and solved by finite difference and 
variational techniques. They are rederived by Laithier & Paldoussis (198 1) via Hamilton’s 
principle - a nontrivial exercise. In terms of the fluid mechanics of the problem, however, 
the use of the plug-flow model is retained in both cases; this theory will be referred 
to as the Timoshenko plug-flow theory (TPF for short). Also, numerous finite element 
schemes based on TPF-type theory have been proposed and used for stability and more 
general dynamical analysis of piping conveying fluid (Sections 4.6 and 4.7), e.g. by 
Chen & Fan (1987), Pramila et al. (1991), Sdlstrom & Akesson (1990) and Sallstrom 
(1990, 1993). 

It is nevertheless recognized that the applicability of the plug-flow model to short 
pipes - or indeed to the study of the high-mode dynamical behaviour of relatively longer 
pipes - is questionable, as discussed first by Niordson (1953) and also by others, e.g. 
Shayo & Ellen (1974): if the wavelength of deformation is not large, as compared to the 
pipe radius, the use of the plug-flow model for obtaining the fluid forces becomes invalid 
[Section 4.4.3(b)]. Hence, there is need for improvement of the fluid mechanics of the 
problem for studying the dynamics of this class of problem. 

The dynamics and stability of short pipes conveying fluid are examined here by means 
of Timoshenko beam theory for the pipe and a three-dimensional fluid-mechanical model 
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for the fluid flow, following closely the work by Pa’idoussis et al. (1986). This will be 
referred to as the Timoshenko refined-flow theory, or TRF for short. The pipes are either 
clamped at both ends or cantilevered; in the latter case, special ‘outflow models’ are 
introduced to describe the boundary conditions on the fluid exiting from the free end. 

4.4.1 Equations of motion 

The system under consideration consists of a tubular beam of length L, flexural rigidity 
EI,, and shear rigidity GAP, conveying fluid with an axial velocity which in the unde- 
formed, straight pipe is equal to U .  Here, with no loss of generality, the pipe is supposed 
to hang vertically, with the fluid flowing down, so that the x-axis is in the direction of 
gravity. 

In contrast to the Euler-Bernoulli beam theory, the Timoshenko beam theory takes into 
account the deformation due to transverse shear. If + denotes the slope of the deflection 
curve by bending and x the angle of shear at the neutral axis in the same cross-section 
(Figure 4.151, then the total slope (dw/dx) is given by 

with 

and 

dw -=++x, dx 
(4.30) 

(4.3 1 b) 

where .ht is the bending moment, Q the transverse shearing force, E Young’s modulus and 
G the shear modulus; Ap is the cross-sectional area of the pipe (i.e. of the pipe material; 
as distinct from A f ,  the flow area), and Zp the area-moment of inertia of the empty pipe 
cross-section; k’ is the shear coefficient, which depends on the cross-sectional shape of 
the beam; for the circular cross-section of the tubular beam here under consideration, it 
is approximately given (Cowper 1966) by 

6(1 + u)(l + c x 2 ) 2  
(7 + 6v)(  1 + cx2)2  + (20 + 12u)a2 ’ 

k‘ = (4.32) 

in which u is Poisson’s ratio and cx is the ratio of internal to external radius of the 
pipe. 

In general, an element 6x of the pipe is subjected to a fluid-dynamic force, the compo- 
nents of which, for steady flow and to first-order magnitude, are respectively zero and 
FA 6x in the x and z directions (cf. Section 3.3.2). F A ,  the lateral inviscid fluid-dynamic 
force (per unit length), the main concern of this work, is discussed in Sections 4.4.3 and 
4.4.4; the subscript A denotes that it is related to the total acceleration of the fluid. 

An element of the pipe and the forces and moments acting on it are considered next 
(Figure 4.15). By writing down the equations of dynamic equilibrium and neglecting 
terms of second-order magnitude, one can obtain the equations of motion of the system. 
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Figure 4.15 An infinitesimal element of the pipe and the enclosed fluid (under bending and shear), 
showing the forces and moments acting on it. 

Projection of the forces on the x and z axes and consideration of moments, following a 
similar procedure to that in Section 3.3.2, gives (Paidoussis & Laithier 1976) 

a a aQ a2w 
ax ax ax at2 

FA -Af -(p11,) + -($T) + - = m -, (4.33) 

where p is the internal fluid pressure, above atmospheric, T is the tension in the pipe, AJ 
is the cross-sectional area of the enclosed fluid, M and rn are the masses per unit length 
of the fluid and the empty pipe, respectively, and ?J and T p  are mass-moments of inertia 
per unit length of the fluid and the empty pipe, respectively. 

If pressurization effects are neglected, then, by proceeding as in Section 3.3.2 and 
integrating the first of equation (4.33), the equivalent of equation (3.37) in this case is 

T - PAJ = ( M  f rn)g(L - x) + 6T(L),  (4.34) 

where 6 = 0 if the downstream end is free to slide axially and 6 = 1 if it is not, in 
which case T(L)  = T ,  where T is the mean tensioning. In the latter case, if additionally 
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there is pressurization p vis-&vis the outer ambient fluid, then T ( L )  = T - pA( 1 - 2v) 
approximately - see Section 3.3.2. 

Using equations (4.30)-(4.31b), (4.33) and (4.34) and retaining p9 and w as variables, 
the following system of two differential equations may be obtaincd: 

+ [(M + m ) ( L  - x)g + ST(L)]- + k‘GA, ax 
a2 + 
as? EI,, ~ + [k’GA, - (M + m)g(L - x) - ST(L)I 

(4.35) 

- - a2p9 
- (If +I,)- at2 = 0. 

It should be noted that equations (4.35) are not identical to those derived via Hamilton’s 
principle. This is discussed in Appendix E.1. Here suffice it to say that the dynamical 
behaviour as obtained by the two sets of equations is sensibly the same for physically 
realistic conditions. 

The system may be expressed in dimensionless terms by defining the following quan- 
tities: 

= x /L ,  q = w/L, r = [El,/(M + m)]’/2t /L3,  

u = (M/EI,)‘/’UL, p = M / ( M  + m ) ,  y = (M + m)L3g/EI,, (4.36) 

A = k’GA,L’/EI,, CJ = (7, + I ,) /[(M + m)L’], 

f A  = FAL3/EIp, E = L/2a, 

where a is the internal radius of the pipe. It is noted that for a 
a given Poisson ratio, u). A and E are interrelated: 

8 k ’ ~ ’ a ’  
A =  

(1 +a2)(1 + v)’ 
where a, defined earlier, is equal to a / (a  + h) ,  h being the 

TL = T(L)L2/El,, 

given pipe material (i.e. for 

(4.37) 

wall thickness of the pipe. 
Substituting these terms into equations (4.35) gives the dimensionless equations of motion: 

It is noted that the equations of motion are not in their final form, as the fluid-dynamic 
force f~ is yet to be derived, in Sections 4.4.3 and 4.4.4. The parameter E does not 
appear explicitly in equations (4.38), but it does in the expression for f~ in Section 4.4.4. 
It should also be noted that in equations (4.35) and (4.38), internal damping within the 
material of the pipe is neglected; if it is not, it may be modelled by a hysteretic damping 
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model, wherefore Young's modulus E and the shear modulus G become complex: E* = 
E (  1 + i p )  and G" = G( 1 + ip), with p being the hysteretic damping constant. 

The boundary conditions for a free end are Q = A =  0; for a clamped end, w = @ = 0. 
Thus, in dimensionless terms, we have 

(i) for a clamped-clamped pipe: 

(ii) for a cantilevered pipe: 

4.4.2 Method of analysis 

(4.39a) 

= 0. (4.39b 
E= 1 

The modal analysis method is utilized for the solution of the equations of motion. The 
motion being free, let 

where w is a dimensionless frequency, related to the dimensional radian frequency of 
motion, Q, by 

M + m  ' I2 
w =  L2Q. (4.41) 

Furthermore, the fluid-dynamic force fA is assumed to vary temporally in the same manner, 
i.e. 

f~ = fAeior. (4.42) 

As in previous analyses, w is generally complex, and the system is stable or unstable 
accordingly as the imaginary part of w is positive or negative. 

The modal analysis method proceeds by expressing V ( t )  and $(e) as the superposition 
of an infinite set of comparison functions (Galerkin's technique), i.e. 

(4.43) 

where a, and h, are dimensionless generalized coefficients, and Y n ( t )  and Pn(t) are 
the eigenfunctions of a Timoshenko beam, with the appropriate boundary conditions, 
expressed in dimensionless form; this solution then inherently satisfies the boundary condi- 
tions. Substitution of equations (4.40), (4.42) and (4.43) into (4.38) and application of the 
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Galerkin procedure yields 

where k = 1,2.  ..., 00, and 

(4.44) 

(4.45) 

The constants 1;;. i = 1, 2 .  ..., 11, are defined as follows: 

The evaluation of these integrals in terms of the Timoshenko beam eigenfunctions is 
discussed in Appendix E.2. 

The solution as expressed by equations (4.43) is then truncated at n = N ,  and equations 
(4.44) yield a vanishing determinant of order 2N.  This is solved to give the eigenfrequen- 
cies w of the system, for different values of the dimensionless flow velocity u and of the 
other system parameters, p, A ,  y,  etc. 

4.4.3 The inviscid fluid-dynamic force 

Here the inviscid fluid-dynamic force, f i ,  will be derived, first according to the plug-flow 
approximation and then in a more refined manner. 

(a) The inviscid fluid-dynamic force for plug flow 

This approximation, which applies to large length-to-diameter ratios, small displacements 
and, as we shall see, long wavelengths of deformation of the pipe as compared to its 
diameter, is what has been used in all of the foregoing. Thus, by using d’Alembert’s 
principle, the force f i  is equal to the mass of the fluid per unit length multiplied by the 
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reversed acceleration as given by equation (3.29), here with dUldt = 0; hence, 
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ax at 

Expressed nondimensionally and in the form required by 
(Section 4.4.2), the generalized fluid-dynamic force, q, may 

(4.46) 

the modal analysis method 
be written as follows: 

(4.47) 

where 

(b) The inviscid fluid-dynamic force for 3-0 potential flow 

The fluid is assumed to be inviscid and the flow irrotational, consisting of the mean flow 
Ui along the pipe and a small perturbation v(r, 8, x ,  t )  associated with small motions of 
the pipe, which may be expressed in terms of a perturbation potential via v = V@. This 
potential must satisfy equation (2.73a), V2@ = 0, which for this system is 

a2@ 1 a@ 1 a2@ a2@ - + - - + - -  +--0, 
ar2 r ar r2 ao2 ax2 

as well as the compatibility and boundary conditions 

(4.50) 

aw aw 
- + U -  sin@, O i x z L ,  O i 0 < 2 n ,  a@ $I,.=, = ( at ax) (4.5 1 ) 

= 0, x < 0, 

where motions are assumed to take place in the 0 = in plane and a is the internal pipe 
radius, and 

lim @ = 0, lim (a@/ax> = 0. (4.52) 

p(a ,  0, x, t )  on 
the inner pipe boundary, which may be determined by substituting v = V@ and v = 0 in 
equation (2.67a), leading to 

X'iZ.60 X'lk.60 

The force on the pipe is determined by integrating the pressure p 

(4.53) 

+Although these are equal to l g ) ,  j = 1,2 ,3 ,  respectively, defined in conjunction with equation (4.44), they 
are denoted differently to indicate that they are related to the right-hand side of (4.45) or (4.47). 
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p being the fluid density. Assume now separable solutions of the form 

$(r, 8, x, t )  = R(r) sin 8 exp[i(Kx + Qt) ] ,  (4.54) 

where the form of the 8 component has been suggested by (4.51), and the form of the 
x component emerges in the course of separating the variables. Substituting into (4.50) 
leads to 

d2R 1 dR - + - - -  -++' R=O,  
dr2 r dr (:2 ) 

admitting solutions of the form 

where 11 and K1 are modified Bessel functions of the first and second kind of order 1, 
and where D1 = 0 because 4 must remain finite within the pipe. C ,  is determined by 
application of (4.51), and one finds 

(4.56) 

in which I', = dIl/d(Kr). Then, utilizing the relation Ik(x) = (l/x)[nI,(x) +xI,+~(x)]  
(Dwight 1961) for n = 1, one obtains from (4.53) 

(4.57) 

From this, the force FA is found to be 

-M 2rr 
f i  = 1 pa sin Ode = (4.58) 

1 + K d z ( K U ) / I l  ( K U )  

where M = pna2 has been used. Comparing (4.58) to (4.46) it is clear that M is now 
replaced by M / [  1 + ~ a I z ( ~ a ) / I 1  (KU) ] ,  where the denominator is generally larger than 
unity. Hence, for finite wavenumbers KU (and wavelengths of motion) the effective 
fluid-dynamic force is generally smaller than that given by the plug-flow approxima- 
tion. 

It is instructive to consider the case of KU small, i.e. motions of large wavelength. 
Utilizing the series expansion I,(x) = (l/n!)($x)"[l + 6(x2)] (Dwight 1961), one 
obtains 

A4 lim = M ,  
K-a-tO 1 + K U [ i ( i K U ) 2 / ( ! j K U ) ]  

thus retrieving the form of FA given by equation (4.46) and proving that it only holds true 
provided that the wavelength of motions is large compared to the pipe diameter. 

However, for the analysis of short pipes the full form of (4.58) is retained. The pertinent 
forms of 4 and Q k ,  - cf. equation (4.47) - are presented in the next section. 
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4.4.4 The fluid-dynamic force by the integral Fourier-transform 
method 

It is noted that K in equation (4.58) is not known a priori. Hence, there no longer exists a 
‘point relationship’ between f i  and x as in most of the analyses of Chapter 3: f i  at any 
given x depends on the deformation all along the pipe. A powerful method for the solution 
of problems such as this was proposed by Dowell & Widnall (1966) - see also Widnall 
& Dowell (1967) and Dowell (1975) - the essence of which will become evident with 
its application in what follows. 

We start by adapting what has just been obtained in Section 4.4.3(b) to a suitable form. 
We first redefine 

and define the Fourier transforms of +(r, x )  and W ( x )  by 
00 

(4.60) 

and similarly for Ti* [see, e.g. Meirovitch (1967)l; the asterisk denotes the Fourier trans- 
form and a is the transform variable. The inverse transforms are 

+*(r,  a )  = S_, ~ ( r ,  x)eiax dx, -* w (a) = 

- +(r, X I  = - ’ /0° +* (r ,  a)epicux da, w(x) = @*(x)e-iax da,  (4.61) 
2n -‘-& 

and similarly for p(r,  8, x) .  Furthermore, we define 

(4.62) 

where k is the so-called reduced frequency, F ( Z )  is clearly the first part of (4.56) in the 
Fourier domain and E = L/2a, as already defined. 

Proceeding with the analysis exactly as in Section 4.4.3(b) but in the Fourier domain, 
one finds for the perturbation pressure 

pu2a 
L3 

(4.63) -* p (a ,  e, x )  = -(E - / c )~F(cY)z*  sin 8, 

which inverted gives 

(4.64) 

in terms of ( = x/L. The inviscid fluid-dynamic force FA is then found to be 

f i  = M U 2 ( & ) e i n i ~ ~ ( a ! - k ) 2 F ( a ! ) { / ~  epizt da!. (4.65) 

The physical domain of the problem is [0, L]; in terms of (, it is [0, 13. However, this 
domain will be expanded, by taking in some additional space beyond the downstream 
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end of the pipe, to [0, 11, where I > 1. This is necessary, particularly in the case of 
cantilevered pipes, as flow perturbations persist beyond the free end of the pipe, as 
discussed in Sections 3.5.8 and 4.4.5.' Accordingly, instead of the first of equations (4.43), 
the following form of the Galerkin expansion is adopted: 

00 

W ( 0  = An Yn (t), 0 5 6 5 1 
n = l  

IX 

AnGn(t), 1 < 5 1 (4.66) 
n = l  

= 0, 6 < 0 and < > 1; 

Y,(c)  are the comparison functions associated with q(4) in equations (4.43), and G,(C) 
are the so-called 'outflow-model' functions which are associated with deflections of the 
fluid jet beyond the free end of a cantilevered pipe. 

In the modal-analysis solution of the problem, the main interest is in the generalized 
fluid-dynamic force q, rather than f i ,  as defined by equations (4.47) and (4.48) or (4.45). 
In this case, QLL), Qkn (2) and Qt: of (4.48) are given by 

with F ( E )  as given in (4.62) 

4.4.5 Refined and plug-flow fluid-dynamic forces and specification 
of the outflow model 

The lateral inviscid fluid-dynamic force derived by means of refined fluid mechanics 
and the integral-transform technique is intended to be used for short pipes. Nevertheless, 
in the limit of sufficiently long ones, it should give identical results to those obtained 
with the simpler, plug-flow model - for the reasons discussed already. In this section, a 
comparison is made of the generalized fluid-dynamic force components, Qt:, i = 1,2 ,  3, 
obtained by the refined fluid-mechanics model [equations (4.67)] and by the plug-flow 
model [equations (4.49)] - for clamped-clamped and cantilevered long pipes. 

(a) Clamped- clamped pipes 

For a pipe clamped at both ends, there is no need for an outflow model, insofar as 
the generalized fluid-dynamic force obtained by the integral (Fourier) transform method 

+It is clear from (4.65), nevertheless, that the very nature of the Fourier-transform solution requires the 
5 +w. specification of %(e) beyond [O, 11, even if this means stating that W ( 6 )  = 0 for -cm 5 6 < 0 and 1 < 
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is concerned, because the fluid discharging from the downstream end is assumed to 
enter a rigid pipe which experiences no deflection [Figure 4.16(a)]. Therefore, in expres- 
sions (4.67), I = 1 or Gn(.$) = 0. 

Flexible tube 

Rigid pipe 

Figure 4.16 The physical form of the ‘collector pipe’ for a clamped-clamped pipe and the form 
of the free jet emerging from a cantilevered pipe (no collector pipe). 

The two inner integrals of the expressions in (4.67) may be evaluated analytically 
(Luu 1983) or numerically, but the three outer integrals, which involve an infinite range 
of integration over Z, have to be evaluated numerically; this is done by a two-point 
Gaussian numerical integration method. Based on a check on convergence for a long 
clamped-clamped pipe, calculations (throughout this work) of the generalized fluid- 
dynamic forces for a clamped-clamped pipe, either long or short, are done with the 
integration range -100 5 a! 5 100 and the integration step SZ = 2; they approximate 
the result for a larger range of 5 (and hence -m 5 a! 5 m) and a finer 8 3  very 
well. 

The next step is to undertake a comparison between the results of the generalized 
hydrodynamic forces Qfi, i = 1,2,3,  for a long clamped-clamped pipe conveying fluid 
(A = 1012, corresponding to E = L/2a = 8.5 x lo5)+ obtained by (i) simple plug flow 
and (ii) refined fluid mechanics, where the $(t) used are the eigenfunctions of a 
clamped-clamped Timoshenko beam without internal flow, as given in Appendix E. For 
the first (lowest) three modes of the system (k, n = 1, 2,3),  the results are virtually 
identical: the largest discrepancy, associated with the Q:;) term, is only 0.023%. This, 
to some extent, validates the refined fluid mechanics model, which may now fairly 
confidently be used for short pipes clamped at both ends. 

+This value of E is clearly nonphysical, but has been dictated by the desire to obtain virtually identical 
results to those of the Euler-Bernoulli theory, to many significant figures. Pmctically identical results may be 
obtained for E - S(l@). 
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(b) Cantilevered pipes and outflow models 

Unlike pipes with fixed ends, a cantilevered pipe discharges the fluid freely from 
its downstream end. The emerging jet continues its sinuous path in the ambient air, 
[Figure 4.16(b)], as briefly discussed in Section 3.5.8. The motion of the cantilever is 
therefore coupled with that of the downstream jet (at least in this kind of formulation) - as 
first discussed by Shayo & Ellen (1978). Thus, in a study of the flow-induced instability 
of a cantilevered pipe, it becomes necessary to construct an artificial ‘outflow model’ 
which describes the manner in which W ( 6 )  and hence the perturbations in the fluid are 
attenuated beyond the free end of the pipe. 

For long pipes conveying fluid, the plug-flow model is fully expected to give reasonable 
approximations to the fluid-dynamic forces, and hence to predict reasonably well the 
dynamical behaviour of the system. Moreover, the results have been found to be in 
good agreement with experiments, and the plug-flow model may be considered to be 
quite adequate for long cantilevers conveying fluid. Therefore, the following approach 
is adopted: different outflow-model functions Gn(6) and various values of Z ( 1  > 1) are 
tried and adjusted, so that the generalized fluid-dynamic forces (4.67) obtained by refined 
fluid mechanics agree with those obtained by simple fluid mechanics [plug-flow model 
with equations (4.49)] for a long cantihered pipe. It is then assumed that the same 
outflow-model functions G,(e) and value of 1 would apply for short pipes - indeed to 
the very short cantilevered pipes which are the subject of this section. The validity of this 
assumption is tested, partially at least, by comparison with experimental measurements 
(Section 4.4.8). Following the mathematical formulation suggested by Shayo & Ellen 
(1978) for both the beam- and shell-mode dynamical behaviour of a cantilevered shell 
conveying fluid, three different downstream flow models are tried for the cantilevered 
tubular beam; their characteristics are summarized in Table 4.2, together with the ‘no 
model’ situation, in which the deflection of the perturbation in the fluid is supposed to 
vanish abruptly at 6 = I = 1; for the ‘first’, ‘second’ and ‘third’ models, the motion of 
the fluid beyond the free end is described by progressively higher-order polynomials 
of the fluid-jet deflection. The ‘first model’ is Shayo & Ellen’s ‘collector pipe model’ 
(Section 3.5.8). The ‘second model’ is described mathematically by 

Gn(<) = Y,(1) [I - -1 + YA(1) [(c - 1) - -1 f o r l < C ( / ,  
( I  - 1)* (1 - 1) 

(4.68) 

The ‘third model’, which involves a cubic polynomial in 6, is given in detail in Luu (1983); 
this model transcends physical reality by unjustifiably specifying a zero slope for the free 
jet far downstream (Table 4.2). Calculations done for a very long cantilever ( A  = lo’*) 
according to the various models of Table 4.2* show that the second model, equation (4.68), 
with 1 = 2.8 gives optimum results, as may be seen in Table 4.3. The second and third modes 
were also tested, and the second model with I = 2.8 again gives the best results. Hence, it 

+In these calculations, the ?((I used in (4.67) are the eigenfunctions of clamped-free Timoshenko beam 
without flow; the integration range for ?i is [-150, 1501 and the integration step fi = 2. These give convergent 
results and have been used thruughout in calculations for cantilevered pipes. 
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Table 4.2 The characteristics of different outflow-model functions. The schematic presentation of 
outflow models is for the first beam mode only. 

Type of outflow-model 

Characteristics 

No model ‘First model’ ‘Second model’ ‘Third model’ 

( 1 st-order (2nd-order (3rd-order 
polynomial) polynomial) polynomial) 

Zero displacement at Yes Yes Yes Yes 
‘infinity’ (t = I )  
Continuity of displace- No Yes Yes Yes 
ment at outlet 
Continuity of slope No No Yes Yes 
at outlet 
Zero slope at Yes No No Yes 
‘infinity’ (6 = I )  

Table 4.3 The results with different outflow models for the first terms of the generalized 
fluid-dynamic force, Qfi (k  = n = 1, i = 1,2,3) with 1 = 2.8, for a long cantilevered pipe 

( A  = lo”, E = 8.25 x lo5). 

Term Plug-flow Refined fluid mechanics model 
model 

No model 1st model 2nd model 3rd model 

1 .ooo 0.99 15 1 .ooo 1.000 1 .000 

2.000 0.9941 1.984 2.000 2.000 
0.8582 -1.879 -2.873 0.8510 0.8222 

Q ( 2 )  

Q ( 3 )  
11 

11 

has been adopted throughout this work for calculating the generalized fluid-dynamic forces 
for short cantilevered pipes. 

4.4.6 Stability of clamped -clamped pipes 

The calculations of the eigenfrequencies have been conducted by the methods of 
Section 4.4.2. Convergence of the eigenfrequencies by the modal analysis method 
is quite fast: for clamped-clamped boundary conditions, N = 7 yields convergent 
results. 

Most of the calculations have been conducted for metallic pipes with h/ (a  + h )  = 
0.10, u = 0.3, a = 0 and A = 10l2, 100 and 10, corresponding to E = 8.25 x lo5, 8.25 
and 2.61, respectively. A = (k’GAp/EZp)L2, which is a measure of shear rigidity of the 
system, is very large for realistic systems, unless the pipe is quite short. For A = lo’* 
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shear deformation is minimal; it approximates A + 00 very well. The effect of (T (rota- 
tory inertia) has been shown to be negligible for realistic systems (Pdidoussis & Laithier 
1976; Laithier 1979), and this is why the calculations have been conducted with o = 0. 
The calculations are conducted according to the Timoshenko refined-flow (TRF), Timo- 
shenko plug-flow (TPF) and the Euler-Bernoulli plug-flow (EBPF) theories and the results 
compared. 

For the TRF theory, for each length-to-diameter ratio E (and, correspondingly, for each 
A),  the work involved consists of (i) evaluating the generalized inviscid hydrodynamic 
forces Q k n  from (4.67); (ii) incorporating Qh into equations (4.44) to obtain the eigenfre- 
quencies, and then (iii) constructing the corresponding Argand diagram of the system, to 
obtain the critical velocity U& for divergence (the system being conservative; Section 3.4) 
and the predicted post-divergence behaviour. 

In Figure 4.17 are shown the first- and second-mode Argand diagrams of the system 
eigenfrequencies for the longest pipe ( A  = 1OI2), as obtained by the TRF theory. The 
results obtained with the TPF and EBPF theories are virtually indistinguishable from 
those shown. This is as expected, since (i) as shown in the previous section, for a long 
clamped-clamped pipe the simple plug-flow model and the refined-flow model give the 
same values for the generalized fluid-dynamic forces, (ii) the dynamics of a very long pipe 
(here E = 8.25 x lo5) are identical, whether analysed by Timoshenko or Euler-Bernoulli 
theory, at least in the low modes. 

Figure 4.17 Dimensionless complex eigenfrequencies of an extremely long clamped-clamped 
pipe ( p  = 0.5, y = = CJ = 0, A = 10l2, E = 8.25 x lo5) as functions of the dimensionless flow 
velocity u, according to the Timoshenko refined-flow (TRF) theory: e, first mode; -, 
second mode; 4 , combined first and second modes. The loci, which actually lie on the 
axes, have been drawn slightly off the axes but parallel to them for the sake of clarity (Pdidoussis 

et al. 1986). 
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12 

8 -  

In Figure 4.18 is shown an Argand diagram for a shorter pipe ( E  = 8.25, A = 100). 
The dynamical behaviour of the system is similar to that of a long pipe (Figure 4.17), but 
the eigenfrequencies obtained by TRF and EBPF theories are no longer coincident: the 
former are consistently lower than the latter. Moreover, the critical flow velocities, both 
for divergence and coupled-mode flutter, according to TRF theory are lower. These obser- 
vations are reasonable since TRF theory correctly takes shear deformation into account; 
shear deformation renders the system effectively more flexible. 
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Figure 4.18 Dimensionless complex eigenfrequencies of a short clamped-clamped pipe 
(B = 0.5, y = 10, p = u = 0; A = 100, E = 8.25), as functions of the dimensionless flow velocity 
u : 0, 1st mode TRF (Timoshenko refined-flow theory); W, 2nd mode TRF; A, 1st and 2nd mode 
EBPF (Euler-Bernoulli plug-flow theory). The loci, which actually lie on the axes, have been drawn 

slightly off but paralled to them for clarity (Pafdoussis et al .  1986). 

Similar observations can also be made for very short pipes ( E  = 2.61). The trends 
referred to above are simply more pronounced in this case; hence, even lower dimension- 
less critical flow velocities are obtained. 

Now, let us turn our attention to the differences in the results obtained by the simple 
and the refined fluid mechanics, and Timoshenko beam theory in both cases - i.e. let us 
compare the results of the TPF and TRF theories. The dimensionless eigenfrequencies 
of the first and second modes for u = 0 are shown in Table 4.4, and the critical flow 
velocities for divergence are shown in Figure 4.19. 

At u = 0, the refined fluid mechanics model gives slightly higher values for the first- 
mode eigenfrequency than the simple, plug-flow one (Table 4.4). The difference is only 
noticeable for A 5 100 and is larger for higher modes. The observed differences in eigen- 
frequencies are believed to arise from differences in the effective virtual mass per unit 
length. According to simple fluid mechanics, this mass is simply the enclosed mass of 
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Table 4.4 The eigenfrequencies of a heavy clamped-clamped 
short pipe (u = 0) for y = 10, #3 = 0.5, p = 0 = 0, by Timo- 
shenko plug-flow (TPF) and Timoshenko refined-flow (TRF) 

theories. 

A Mode w by TPF theory w by TRF theory 

1 19.552 19.599 
2 44.365 44.752 

1 9.670 9.837 
2 19.342 20.493 
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Figure 4.19 The critical dimensionless flow velocities for divergence, u,d, of a pipe clamped at 
both ends, showing the effect of slenderness and related transverse shear [see equation (4.37)], for 

= 0.5, y = 10, p = 0 = 0. + , Timoshenko refined-flow (TRF) theory; --A--, Timoshenko 
plug-flow (TPF) theory (PaYdoussis et al. 1986). 

fluid per unit length - the ‘slender body’ approximation [cf. Section 2.2.2(e)(ii)] which 
in this case reduces to the plug-flow model. According to the refined model, however, 
this is smaller because of ‘end effects’ or departures from two-dimensionality [cf. equa- 
tion (2.139) and the discussion of (4.58)], which are more important for short than for 
long pipes. Hence, the effective total mass per unit length is m + M’, with M’ < M where 
M = p A f ,  and the values of o [generally equal to (generalized stiffness)/(generalized 
mass)] are therefore larger. 

Considering the critical flow velocities for divergence next (Figure 4.19), it is seen 
that the results for the TRF theory are indistinguishable from those obtained by the TPF 
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theory for A > lo3 approximately. On the other hand, for A < lo3, TPF theory tends to 
underestimate u,d. The argument of end effects just discussed may be invoked here also to 
explain these differences. The critical flow velocity for divergence depends principally on 
the excitation force QE) - which in the plug-flow model is proportional to M U 2 ;  this is 
smaller for refined fluid mechanics, since M' < M .  Hence, this translates to uTy > uT;p". 
For the EBPF theory the value of U,d is independent of A and equal to u:fpF = 6.66 (cf. 
Figure 4.1 8), which is considerably higher than that obtained by the more appropriate 
TRF and TPF theories for A < 1000 or so. 

4.4.7 Stability of cantilevered pipes 

Calculations for cantilevered pipes are conducted, utiiizing the outflow model developed 
in Section 4.4.5(b), i.e. the 'second' or quadratic model with E = 2.8. In this case N = 
7, 8 and 9 terms in the modal expansions (4.43) are necessary for convergence in the 
first, second and third modes of the system, respectively. As in the previous section, the 
three theories (EBPF, TPF and TRF) are compared to one another for A = 100 
and 10. 

Calculations for long pipes ( A  = 10l2) show that, similarly to the results of Figure 4.17 
for clamped-clamped pipes, the eigenfrequencies obtained by EBPF, TPF and TRF theo- 
ries are essentially identical (in the scale of the Argand diagram, not shown for brevity) 
in the lowest three modes. For shorter pipes, differences begin to become noticeable, as 
shown in Figures 4.20 and 4.21 for A = 100 and 10. The results of the EBPF theory are 
not shown, for clarity. 
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Figure 4.20 Dimensionless complex eigenfrequencies of a cantilevered pipe (j3 = 0.3, y = 10, 
p = 0 = 0, A = 100, E = 8.25) as functions of the dimensionless flow velocity u, according to the 

two forms of the Timoshenko theory. Key as in Figure 4.19 (Pai'doussis et al .  1986). 
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Considering Figure 4.20 first, it is noticed that the eigenfrequencies as given by TRF 
theory are higher than those obtained by TPF theory; the critical flow velocities for flutter 
obtained by refined fluid mechanics (TRF theory) are also higher. These observations 
are once again consistent with the concept of a smaller effective fluid mass per unit 
length, M’, for the refined fluid mechanics, as compared to simple fluid mechanics. At the 
same values of flow velocity and mode number, the absolute value of the eigenfrequency 
obtained by the refined theory, Iurefl, is always larger than that obtained by the simple 
theory, JwsimpI. Moreover, it is clear that M’ becomes increasingly smaller than M for 
larger mode numbers (larger discrepancies in Figure 4.20); this is consistent with the fact 
that M = pAf applies only if the wavelength of deformation is long, as compared to the 
internal diameter of the pipe (Section 3.5.8) - which is not the case here for the second 
and third modes. In this connection it is recalled (Section 3.5.1) that the modal shapes 
for u > 0 contain components of higher zero-flow beam eigenfunctions, which reinforces 
the foregoing argument. 
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Figure 4.21 Dimensionlcss complex eigenfrequencies of a very short cantilevered pipe 
( B  = 0.3, y = 10. p = o = 0, A = 10, E = 2.61) as functions of the dimensionless flow velocity 
11, according to the two forms of the Timoshenko theory. Key as in Figure 4.19 (Pai’doussis et nl .  

1986). 

However, the extension of this argument to the question of stability of cantilevered 
pipes should be approached with caution, as loss of stability is not controlled by a single 
fluid-dynamic force term (as for clamped-clamped pipes), but by two - namely QE,’ 
and QLi’ of equations (4.49) and (4.67); it is a balance between these two forces which 
precipitates instability (Section 3.2.2). Indeed, as will be seen later, there are cases where 
ucf according to TRF theory is lower than that obtained by TPF theory (plug-flow model). 
in contrast to the results of Figure 4.20. 

A good deal of the foregoing discussion also applies to Figure 4.21. However, in a 
sense. this represents a very special case, since according to Timoshenko plug-flow (TPF) 
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theory the system loses stability by divergence, at Ucd 2: 3.16 - vide also Paldoussis & 
Laithier (1976). On the other hand, according to Timoshenko refined-flow (TRF) theory the 
system is shown to lose stability by fluttert at a higher value of u (u,f = 3.95, wcf = 8.85 
for y = 10;~~. = 3.63, w,.. = 8.40 for y = 0). 

It is recalled that according to Euler-Bernoulli beam theory (and a simple plug-flow 
model) a cantilevered pipe conveying fluid can only lose stability by flutter. It is only 
in an earlier version of this work, in which the plug-flow model was used (Paldoussis 
& Laithier 1976), and here according to TPF theory, that loss of stability by divergence 
is predicted. On the other hand, once a more appropriate model for the fluid mechanics 
is used, flutter is predicted once again. Now, it cannot be said that the present TRF 
theory never predicts divergence for short cantilevered pipes, but simply that in some of 
the cases where TPF theory predicted divergence the present theory predicts flutter. In 
this connection, it is recalled that when the cantilevered pipe system is subjected to a 
second conservative force - other than the flexural restoring force - it sometimes loses 
stability by divergence. Examples are (i) the pipe-plate system of Section 3.6.6, subjected 
to warping as well as torsion, and (ii) the articulated pipe system of Section 3.8, subjected 
to gravity. Hence, there may be areas in the parameter space of the present system, also, 
where stability may be lost by divergence ~ according to TRF theory as well. 

4.4.8 Comparison with experiment 

The theory is compared with experimental results for cantilevered pipes, obtained by 
Laithier (1979). The pipes were made of silicone rubber, 15.60mm in outside diameter 
and 6.35 mm in inside diameter. The fluid conveyed was water. 

The pipes were specially moulded, with the upper end cast onto a special adaptor 
(Appendix D.2). The adaptor could be screwed directly to the piping supplying steady 
water flow. Special care was taken in designing the adaptor to ensure that (a) the upper 
support approaches the clamped condition as closely as possible, and (b) the entrance 
of the fluid to the supported part of the pipe is effected without disturbance (which in 
short pipes could have an important effect on their dynamical behaviour). The measured 
Young’s modulus for these pipes was E = 1.49 x lo6 N/m2, Poisson ratio u = 0.45, and 
the hysteretic damping coefficient p = 0.02. Utilization of equations (4.37) and (4.32) in 
this case gives A = 0 . 5 3 8 ~ ~ .  In the experiments, A was varied by progressively reducing 
the length of the pipe (by carefully cutting pieces off the free end), thus reducing E ;  L 
was varied between 140 and 51 mm in one case, and 73 and 27 mm in another. 

The flow velocity was measured by standard means. Oscillation was sensed by a fibre- 
optic sensor, measuring the lateral displacement close to the supported end of the pipe; the 
frequency of oscillation was measured from oscillation time-traces, recorded on a storage 
oscilloscope. 

The critical flow velocities for flutter, u C j ,  according to the three theories are compared 
with the experimental data in Figure 4.22(a) and the corresponding critical frequencies, 
w,j, in Figure 4.22(b); it is important to mention that the experimental values of ucf were 
measured at just the onset of instability and are not the limit-cycle values (which in this 
case are quite different), so that they should correspond better to those predicted by linear 

?Surprisingly, this is the behaviour predicted by the Euler-Bernoulli theory, but at a very different critical 
flow velocity, ucf = 8.7, and in the second mode. 
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Figure 4.22 Comparison of dimensionless theoretical and experimental (a) critical flow velocities. 
ucJ and (b) the corresponding critical frequencies, w r f ,  for flutter of cantilevered pipes made of 
silicone rubber ( p  = 0.155, p = 0.02, c 2 0). For A > 50 in (a) and A > 125 in (b), approximately. 
the results of the TRF theory coincide with those of TPF theory, in the scale of this figure. -, 

TRF theory, - . - . -, TPF theory - - -, EBPF theory; 0, o experimental data. 
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theory. It is seen that both ucf and mcf obtained by the Timoshenko theories agree better 
with the experimental data for A < 75 than the results obtained by the Euler-Bernoulli 
plug-flow theory; but surprisingly not for ucf when A > 100. This last paradox may be 
explained in terms of nonlinear theory (Chapter 5).+ Comparing the results obtained by 
the TPF and TRF theories, it is seen that they are very close. Nevertheless, for very short 
pipes, TRF theory displays superior agreement with the experimental data.$ 

4.4.9 Concluding remarks on short pipes and refined-flow models 

In general, for short pipes clamped at both ends the use of Timoshenko rather than 
Euler-Bernoulli beam theory results in lower critical flow velocities for divergence, 
u,d - substantially lower for A < 1000 (Figure 4.19) - as a consequence of the pipe 
being effectively less stiff since it deforms not only by bending but also by transverse 
shear. The use of refined versus plug-flow fluid-dynamic modelling, on the other hand, 
has a less pronounced effect on the dynamics of the system: the refined model gives 
slightly higher values of the eigenfrequencies, as well as for the critical flow velocities 
for divergence. This is consistent with the concept of smaller-than-ideal virtual mass of the 
enclosed fluid, according to the refined three-dimensional fluid-mechanics model devel- 
oped in this theory, as discussed in the foregoing. However, the differences in dynamical 
behaviour, both qualitative and quantitative, in terms of the refined and simple (plug-flow) 
Timoshenko theories are small; hence, from the practical point of view, down to A = IO2, 
the simple (plug-flow) Timoshenko theory is good enough for predicting the dynamical 
behaviour of short clamped-clamped pipes conveying fluid. 

In the case of short cantilevered pipes conveying fluid, the Euler-Bernoulli plug-flow 
model is adequate provided A > 1000 approximately. Once again, differences between 
refined and plug-flow Timoshenko theory are small, unless A < 25 approximately - an 
even lower A than for clamped-clamped pipes. 

Finally, by comparison with experiments with cantilevered elastomer pipes, it was 
shown that the refined (TRF) theory is necessary for describing adequately the dynamical 
behaviour of short pipes (LID < 5 approximately), although Timoshenko beam theory 
together with a plug-flow model (TPF theory) is quite satisfactory for relatively longer 
pipes; for ‘long’ pipes (LID > 15), Euler-Bernoulli beam theory and the plug-flow model 
are perfectly adequate. 

There is no question, however, that if one is interested in the dynamics of the system 
in its higher modes, e.g. for forced vibration analysis rather than stability (usually lost in 
one of the lower modes), then the differences between the three theories become larger, 
as may be appreciated from Figures 4.18, 4.20 and 4.21. Thus, although the first-mode 
behaviour is adequately predicted by EBPF theory down to A = 1000, third- and fourth- 
mode behaviour, and more so for higher modes, requires the use of Timoshenko theory 
and refined fluid mechanics (TRF theory) even at much larger values of A .  

+The Hopf bifurcation for low A (hence low L/a)  may be subcritical, while for higher A i t  is supercritical. 
Hence, for low A, the measured thresholds tend to be lower than would otherwise be the case. In this light, 
both the degree of excellence of the agreement with TRF theory for A < 75 and the better agreement with 
EBPF theory for A > 100 may be wholly fortuitous. 

*With the Timoshenko plug-flow theory, the shortest cantilevered pipe for which calculations have been 
conducted corresponds to A = 13.07. In the case of A 5 lO(p = 0.155, p = 0.02, y 5 0.01), TPF theory, or 
at least the computer program utilized, fails to give a convergent solution. 
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4.4.10 Long pipes and refined flow theory 

Despite what is said in the previous section regarding the superfluity of using Timoshenko 
or refined-flow theories except for really short pipes, there is no reason why they should 
not be used for longer pipes as well. This is particularly true in the case of general 
computational codes applicable to long and short pipes alike. An example is the work of 
Sallstrom & Akesson (1990) and Sallstrom (1990, 1993), discussed in Section 4.7, which 
is based on Timoshenko beam theory. 

Another example is a study by Langthjem (1995) on the dynamics of not necessarily 
short cantilevered pipes, partially or totally immersed in stagnant fluid, analysed by 
Timoshenko refined-flow (TRF) theory. Both the internal and external fluid dynamics 
are analysed by potential flow theory. Furthermore, it is argued that if the internal and 
external fluids are the same, e.g. liquid flow discharging into stagnant liquid, a turbu- 
lent jet develops and the flow is subjected to a velocity gradient at the free end; hence, 
yet another type of ‘outflow model’ is developed. It is found that, as a result of flow 
velocity reduction for x > L, the critical flutter speed (u,f) may be diminished by 5-  10%. 
Similar conclusions to those summarized in Section 4.4.9 are reached regarding the appli- 
cability of simpler theory down to very short pipes, and those in Section 4.2.4 and in 
Sugiyama et al .  (1996a) regarding immersion effects. In particular, the destabilization 
when immersion is shallow, as compared to no immersion, is explained by noting that 
this enhances the ‘dragging’ form of the motion and hence optimizes energy transfer 
(Section 3.2.2). 

Experiments with long elastomer pipes ( E  = 38-60) conveying water support the theo- 
retical findings, and agreement with theory in ucf is within 10- 15% - but not sufficiently 
close to validate the outflow model. It is of interest that, in one case, flutter was found 
to switch between planar and rotary motions in an unpredictable manner, suggesting that 
the oscillation may be chaotic. This should be compared to the physically similar case of 
a pipe with an additional end-mass (rather than immersion-related added mass) analysed 
by Copeland & Moon (1992) - see Section 5.8.3(b). 

4.4.1 1 

The dynamics of pipes conveying compressible fluid has been considered by Johnson 
et al. (1987), developing the theory initially formulated by Niordson (1953). Timoshenko 
beam theory is used for the pipe and a compressible potential flow for the fluid - in 
which V2$ = c-2[(a2$/at2)  + 2U(a2$/ax at )  + U2(a2$/ax2)] is used instead of (4.50), 
c being the sonic speed. Results are given for the critical velocity for divergence, ucd ,  

in the first mode of a pinned-pinned pipe, obtained by Euler’s method of equilibrium 
(Section 3.4.1). 

The results are presented in a different and less physical manner than in 
Sections 4.4.1-4.4.9: the parameters E and A ,  which are physically linked by 
equation (4.37), are varied independently; this, despite the fact that the only way of 
varying E while keeping A constant is by changing the material constants and wall- 
thickness - which in practice cannot be varied widely. On the other hand, this allows 
the convenient separation of fluid-mechanical effects from structural ones (i.e. whether 
Timoshenko or Euler-Bernoulli theory is used). For example, some results are presented 

Pipes conveying compressible fluid 
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of u,d versus E,+ while keeping A constant and infinite - what might be termed a 
Euler-Bernoulli refined-flow theory, which of course is physically impossible since the 
refined-flow effects come into play for small E ,  when Euler-Bernoulli theory is not 
applicable. These results for incompressible flow (Mach number = 0) show that, as E 

is decreased, u,d is raised, because of the reduced effective virtual mass - contrary to 
the results in Figure 4.19, where both A and E are varied together. 

The above discussion is essential in understanding the results presented by Johnson 
etal. ,  the most notable of which are the following: decreasing the slenderness E while 
keeping A constant (i) raises u,d for subsonic flows, and (ii) lowers it for supersonic 
flows: also, reducing the sonic speed always diminishes u,d. 

Whereas the results obtained for low Mach numbers are probably sound, this is ques- 
tionable in the case of near-sonic and supersonic, indeed hypersonic, flows because, as 
admitted by the authors, there are fundamental weaknesses in the model used, which 
supposes the fluid flow to be wholly isentropic. In the case of compressible flow, there 
are ‘secondary effects’ of fluid friction which generally cannot be ignored, e.g. causing 
choking: also, for the oscillating pipe, shock waves are generally inevitable. These real 
effects, which are difficult to model in a simple way, are not accounted for and their 
influence on the dynamics is unknown. 

4.5 

In all of the foregoing, except in the derivation of the equations of motion in Section 3.3, 
the mean flow has been taken to be steady ( z i  = 0). Here, the case of a harmonically 
perturbed flow is considered; i.e. it is supposed that a time-dependent harmonic component 
is superposed on the steady flow, such that 

PIPES WITH HARMONICALLY PERTURBED FLOW 

u = uo(1 + /1. cos wt) ,  (4.69) 

where p is generally small. This form of u may induce another type of instability, 
namely oscillations due to parametric resonances. These are akin to the parametric reso- 
nances experienced by, say, a pinned-pinned column subjected to a compressive end-load, 
F = Fo(1 + p cos wt ) .  Especially in the case of W / W I  = 2, where w1 is the first-mode 
natural frequency of the column, it is easy to appreciate physically that F pushes down 
most when the column end moves in the same direction ‘naturally’, at the two extremes 
of the oscillation cycle; hence, work is done on the column, resulting in amplification of 
the motion, i.e. in a parametric resonance (Bolotin 1964: Evan-Iwanowski 1976; Schmidt 
& Tondl 1986). Clearly, w/w1 = 1 also leads to parametric resonance, although, as will 
be seen, other frequency ratios can also give rise to resonances. What renders the pipe 
conveying fluid particularly interesting and worth studying are the differences in dynam- 
ical behaviour vis-&vis the column problem, because of the presence of gyroscopic terms 
and the fact that, in the case of a cantilevered pipe, the system is nonconservative. 

The first to consider the problem, in terms of pressure pulsations arising from a pump, 
for example, was Roth (1964) and, in terms of a pulsating flow velocity, Chen (1971b) 
and Chen & Rosenberg (1971). However, as discussed in Section 3.3.2 in conjunction 
with equation (3.38), one of the terms in Chen’s equations of motion is in error. 

+In fact the results are presented in terms of the ‘aspect ratio’ a/L,  the inverse of the slenderness E .  
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Theoretical studies with the correct equations of motion were conducted by Gins- 
berg (1973) for pinned-pinned pipes and by Paldoussis & Issid (1974) and Pafdoussis 
& Sundararajan (1975) for cantilevered and clamped-clamped pipes. Experiments were 
conducted by Paldoussis & Issid (1976). The work to be presented here is based mainly 
on these studies. 

Further work was done by Ariaratnam & Namachchivaya (1986a) on pipes with 
supported ends, Bohn & Henmann (1974a) on the articulated system, and Noah & 
Hopkins (1980) on an elastically supported cantilever [Figure 3.61(c)], to be discussed 
in Sections 4.5.4 and 4.5.5. Also, a great deal of work on the nonlinear dynamics of the 
system has been done in recent years, to be discussed in Section 5.9. 

In what follows, we shall distinguish between simple parametric and combination 
resonances, which will be defined in due course. 

4.5.1 Simple parametric resonances 

For conservative systems, simple parametric resonances occur over specific ranges of o in 
the vicinity of 2w,/k. k = 1, 2, 3, . . _, where w, is one of the real eigenfrequencies of the 
system. (‘Simple’ is used in this book to differentiate parametric resonances associated 
with one eigenfrequency from combination resonances, defined in Section 4.5.2, involving 
two; however, they are often just referred to as ‘parametric resonances’ for simplicity.) 
As p + 0, the resonances occur at w/w, = 2/k, and for larger p over a range of w in the 
neighbourhood of these values. For nonconservative systems, there is a minimum value 
of p below which parametric resonances are impossible, and for higher p they occur in 
the vicinity of w/%e(w,) = 2/k, %e(w,) being the frequency of oscillation associated 
with the n th complex eigenfrequency, w,. 

One may distinguish primary resonances, corresponding to odd values of k ,  of which 
the principal one ( k  = 1 so that w/w,, = 2), a subharmonic resonance, is of particular 
importance, and secondary resonances, corresponding to even values of k .  For the pipe 
problem, as the w,, vary with u, it is expected that the ranges of w necessary to induce 
parametric resonances will vary accordingly. 

The easiest way of determining the regions of existence of parametric resonance is via 
a Fourier series solution approach, usually known as Bolotin’s method (Bolotin 1964). 
To this end, the equation of motion, equation (3.70), is discretized by Galerkin’s method, 
~ ( 6 ,  t) = 4r ( 6 )  qr(t). where the 4, are the beam eigenfunctions with the appropriate 
boundary conditions, leading to an equation similar to (3.86) but with the U terms retained; 
with (4.69) substituted therein, one obtains 

N 

ij + {F + 2j3”2~o(l + p COS wt)B]q 

+ {A + [u~(I + p COS ~ t ) ~  - y - j 3 1 / 2 u o p ~  sin w t  - r 
+ n(l - 2vS)lC + [ y  + /3%0pw sin w t ] D  + yB)q = 0, (4.70) 

in which q = (41, q 2 ,  . . . , q ~ ] ~ ,  A is the diagonal matrix with elements A:, h, being the 
rth dimensionless beam eigenvalue associated with @,, F is a diagonal matrix with 
elements ah: + cr, and B, C and D are square matrices with elements b,,, c,, and d,, 
defined in equation (3.87). 
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It is now presumed that there are regions in the {w, p}-plane where, for any given on, 
there exist amplified oscillations or parametric resonances, and hence on the boundaries 
of these regions the oscillation is purely periodic. Since a periodic solution may be repre- 
sented by a Fourier series, to obtain the primary resonances, q ( t )  may be expressed as 

q = {ak sin(ikwt) + bk cos(ikwt)}. (4.71) 

Substitution of equation (4.71) into (4.70) yields an infinite set of algebraic equations 
which, because of the presence of sin ut, cos w t  and cos2 w t  terms in (4.70) 
already, involves terms in sin( imwt )  and cos(imot), m = k - 4, k - 2,  k, k + 2,  k + 4 
(Paidoussis & Issid 1974). Upon expanding this equation for k = 1 ,3 ,5 , .  . ., and 
collecting terms in cos i w s ,  sin $in, cos iws ,  etc., the coefficients of which must vanish 
independently, one obtains a matrix equation of the form 

k=1,3,5, ... 

I bj I 
or more explicitly 

. . . . . . . . . . . . . . . . . . . . . . . . . .  I... G 3 3  G31 G 3 2  G 3 4  . .  

G- . .  
. . . . . . . . . . . . . . . . . . . . . . . . . .  

(4.72) 

= {O}, (4.73) 

generally of infinite order. The Gjk are coefficients of ak or b k  in the equations for 
sin(ijwt) or cos(~jwt) .  The odd j are associated with sin(ijwt) and the even j with 
cos[ i ( j  - l ) w t ] ;  while the odd k are associated with ak and the even k with bk-1. 

The equation for the boundary of the instability regions is obtained by setting the 
determinant of the matrix of the Gjk equal to zero. Of course the determinant is of infi- 
nite order, but it belongs to the class of normal determinants and is therefore absolutely 
convergent (Bolotin 1964). Hence, the boundaries of instability may be obtained approx- 
imately by equating to zero the determinant of the boxed matrix in (4.73); this is called 
the k = 1 approximation, which necessarily yields only the principal region of instability. 
A better approximation, as well as higher regions, would be obtained if the determinant 
involving all the terms shown explicitly in equation (4.73) is used; this is called the k = 3 
approximation; and so on. Of course, the Galerkin series leading to equation (4.70) must 
be truncated at an adequately high N ,  which defines the order of the Gjk. 

Now, the secondary resonances may be obtained by expressing 

q = {ak sin(ikwt) + b k  cos(ikwt)}, 
k=O. 2.4. ... 

(4.74) 
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which substituted into equation (4.70) leads once again to a matrix equation equivalent 
to equation (4.73) but with a vector {. . . u4, u2, bo, b2, 64 .  . . .}T, and thence to a vanishing 
determinant which yields the boundaries of secondary resonances. 

It has been found that, typically, the resonance boundaries associated with the first 
mode of pinned-pinned and clamped-clamped pipes can be determined with adequate 
precision by using the k = 1 approximation for the principal primary region and the k = 2 
approximation for the main secondary one, and truncating the Galerkin series at N = 2. 
For cantilevered pipes, on the other hand, it was found necessary to use typically k = 3 
and k = 2, respectively, and N = 5.  Generally, the higher the flow velocity, or p, or the 
mode number, the higher N and k have to be. Most of the calculations presented here 
have been performed with k = 3 or 2 and N = 5.  

Typical results for a clamped-clamped pipe are shown in Figure 4.23, showing the 
effect of uo and damping (a) on the principal resonance (w 2 2 w l )  and the main secondary 
or ‘fundamental’ resonance (w 2 w l ) ,  where w1 is the first-mode eigenfrequency or the 
real part thereof for any given U O .  Resonance oscillations exist within the quasi-triangular 
regions, while the system is in its trivial equilibrium state outside. It is noted that, as the 
flow velocity is increased, the regions of parametric resonance are displaced downwards, 
which reflects the decrease in the first-mode eigenfrequency 01 with increasing U O .  Had 
w/w1 been plotted in the figure instead of w/wol - where 001 is the zero-flow-velocity 
value of w1 - then all the curves would have been centred about w/w1 = 2 and 1. For 
a = 0, the parametric resonance regions exist even for p = 0, but at that point have zero 
width; for 0 > 0, there is a minimum p for each case, below which no resonance is 
possible. 

It is also noticed that the resonance regions become broader with increasing flow, and 
that the effect of damping is correspondingly attenuated. Thus, at uo = 3, the primary 
resonance region is very little affected by fairly large dissipation (a = O S ) ,  and the 
system is subject to parametric resonance even when p < 0.1. 

Figure 4.24 shows the effect of ,6 on parametric resonances. It is seen that with 
increasing B the resonance regions become broader; it is perhaps worth mentioning that 
with the equation of motion used by Chen the width of the unstable regions appears to be 
independent of B. The unstable regions are also displaced downwards with increasing p, 
which reflects the lowering of the natural frequencies as ,6 is increased for this particular 
flow velocity; this is because w1 for B1l2 = 0.8 is lower than for = 0.2’ at uo = 2 
(to the scale of this figure the difference is more clearly seen in the principal resonance 
regions). 

It is noticed that the lower boundary of the principal primary resonance associated 
with pl/* = 0.8 in Figure 4.24 is not straight; this is a characteristic of cases where the 
resonance boundary concerned is close to another resonance region (which is not shown 
here for the sake of simplicity). This also applies to the primary region for uo = 3 in 
Figure 4.23. 

As seen in the foregoing, the dynamics of pipes with supported ends subjected to 
pulsating flow is, after all, not too dissimilar to that of columns with a harmonically 
perturbed conservative end-load. Nevertheless, a significant difference is that gyroscopic 
effects, operative in the case of pipes, and hence B, affect the location and particularly 
the extent of the resonance regions in the {p ,  wbplane. 

+Some of Paidoussis & Issid’s (1974) calculations were conducted with specific values of rather than 
,S, for direct comparison with Chen’s (1971b). 
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Figure 4.23 The effect of flow velocity, UO, and viscous damping on the principal and fundamental 
parametric resonances associated with the first mode of a clamped-clamped pipe, centred 
respectively at w E 2wl and w 2: w1, for f = I7 = (Y = 0, = 0.2, y = 10 and three values 
of uo; -, CJ = 0; - - - , CJ = 0.2; ---, CJ = 0.5; wol is the first-mode eigenfrequency for 

uo = (T = 0 (Pai'doussis & Issid 1974). 

Considering cantilevered pipes next, it is recalled that in this case free motions are 
damped by steady flow below the critical value for flutter; consequently, parametric reso- 
nances are not possible for all flow velocities. Moreover, the resonances are selectively 
associated with only some of the modes of the system, for reasons to become clear in 
what follows; thus, in all the calculations performed, at least for relatively low flow 
velocities, no resonances associated with the first mode have ever been found. To fully 
appreciate the results, it is necessary to give Argand diagrams for the particular systems 
considered, with steady flow, in Figure 4.25. Attention is drawn to the fact that for uo not 
too small (when the parametric excitation itself would be weak), 9m(w) and hence the 
flow-induced damping is smallest in the second mode for uo not too far from uo = 6.0 
when /3 = 0.2, and from uo = 6.0-8.7 when /3 = 0.3. It is for these ranges of uo that 
parametric resonances should be most easily induced. 

Figure 4.26 shows the parametric resonance regions for a cantilevered pipe with p = 
0.2, y = 10, a = (T = 0 for uo = 4.5,5.5 and 6.0 in the range w/wo2 c 2.4. For uo 5 4, 
no parametric resonances can occur, at least for the range of j~ considered. The large 
resonance regions in the middle of the figure are the principal primary resonance regions 
associated with the second mode (w 2 2w2), while at the bottom is the main secondary 
region (fundamental resonance, w 2: w2) which occurs for uo = 6 only. The small regions 
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Figure 4.24 The effect of /3 on the principal and fundamental parametric resonances associated 
with the first mode of a clamped-clamped pipe ( y  = 10, r = rl = a = o = 0, ug = 2): -. 

/3'/? = 0.2; ---, = 0.5; 0 - 0 ,  /3"' = 0.8 (Pai'doussis & Issid 1974). 

e - 

1 / I  I I I 
0 I O  20 30 40" 50 60 

'%ne ( w )  

Figure 4.25 Argand diagrams for a cantilevered pipe with y = 10, a = o = 0; ---, /3 = 0.2: 
-, /3 = 0.3 (Pai'doussis & Issid 1974). 



248 SLENDER STRUCTURES AND AXIAL FLOW 

L 

I 1 1 I I 
0 0.1 0.2 0.3 0.4 0.5 

P 

Figure 4.26 Parametric resonance boundaries for a cantilevered pipe (8=0.2, y = 10, a = CT = 0); 
- - _  , u0 = 4.5; - - - , uo = 5.5; -, uo = 6.0 (PaYdoussis & Issid 1974). 

at the top are the main secondary regions associated with the third mode. It is noted that 
(i) a finite and quite substantial value of p is generally necessary to induce parametric 
oscillations, (ii) this value of p decreases with increasing flow velocity, and (iii) the 
resonance regions are more extensive at the higher flow velocities. These results are 
somewhat similar to those of Figure 4.23 for the damped clamped-clamped pipe with 
CT = 0.5. In contrast to the clamped-clamped pipe, however, damping in this case (arising 
by the action of the Coriolis forces) is intimately connected with the dynamics of the 
system; consequently, its effect on the parametric resonances is not uniform, nor easily 
predictable, as will be seen further below. 

Figure 4.27(a,b) shows, respectively, the primary and secondary resonance regions, for 
the range of frequencies shown, of a system with B = 0.3, y = 10, a = CT = 0. The three 
uppermost resonance regions in Figure 4.27(a), for uo = 6.0, 7.5 and 8.0, are principal 
primary regions associated with the third mode, while the two large regions in the middle, 
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Figure 4.27 Parametric resonance boundaries for a cantilevered pipe ( p  = 0.3, y = 10, a = G = 0). 
(a) Primary resonance regions; (b) secondary resonance regions. 0 ,  uo = 6.0; - - - , z40 = 7.5; 

A, U O  = 8.0; ., uo = 8.5; -, uo = 8.6875 (Pai'doussis & Issid 1974). 

for uo = 8.5 and 8.6875, are a mixture (i.e. a fusion) of principal primary regions asso- 
ciated with the second and third modes. By reference to Figure 4.25 it is noted that for 
uo = 8.5 and 8.6875 the real frequencies of oscillation of the second and third modes are 
relatively close. 

Finally, the smaller regions at the bottom of Figure 4.27(a) may similarly be divided 
into the following two groups: (i) the regions for uo = 6.0,7.5 and 8.0 are mixtures of 
principal primary regions associated with the second mode and of second primary regions 
associated with the third mode; (ii) the regions for uo = 8.5 and 8.6875 are mixtures of 
second primary regions associated with the second and third modes. This fusion of the 
regions of resonance is shown particularly well in the cases of uo = 8.0, 8.5 and 8.6875. 
where each of the regions is formed of two interlinked distinct zones, the upper of which 
is related to the second mode and the lower to the third mode. 

In Figure 4.27(b) the upper region ( U O  = 6.0) is the fundamental secondary resonance 
region associated with the third mode, while the remaining regions are all mixtures of the 
fundamental resonance regions associated with the second and third modes. The upper 
areas of the latter are associated with the third mode and the lower a-eas with the second, 
except for uo = 8.6875 where no such distinction may be made; this is attributed to the 
proximity of %e(W2)  and %e(03) for uo = 8.6875 as shown in Figure 4.25. 

One interesting aspect of the results of this section is that no parametric resonances 
occur at low values of U g ,  where the damping effect of the mean flow is small. It is 
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recalled, however, that both damping due to Coriolis forces and parametric excitation are 
proportional to uo for a constant p; hence, for a given uo the magnitudes of the parametric 
excitation and of damping are predetermined, and as uo is decreased they both decrease 
proportionally.+ Thus one cannot say a priori for what range of uo parametric resonances 
may occur, if at all, for a given range of p. 

Hence, the dynamics of cantilevered pipes with pulsating flow is quite different from 
that of columns with harmonically perturbed end-load. The combined effects of the 
nonconservative follower and Coriolis forces fundamentally affect both the existence and 
the extent of the parametric resonance regions. 

4.5.2 Combination resonances 

Another type of parametric oscillation is due to combination resonances, which occur in 
the neighbourhood of w = (0, f w,)/k,  k = 1,2,  . . ., where in this case n # m. They are 
not obtainable by Bolotin’s method, because the oscillation is not periodic but quasiperi- 
odic, but they may be obtained semi-analytically by Floquet analysis - see Meirovitch 
(1970) and Appendix F. 1.2. 

For the analysis, equations (4.70) are rewritten into first-order form, u = {q, q}T, and then 
integrated numerically with 2N different initial conditions: { 1, 0, 0, . . . )T ,  {0, 1, 0, . . .}T, etc. 
The solutions thus obtained after one period, u1 ( T ) ,  u*(T), . . . , u * ~ ( T )  are used to construct 
the so-called fundamental or ‘monodromy’ matrix of the system, 

[ Y ]  = [u’(T) ,  U * ( T ) ,  . . . , U 2 N ( T ) ] .  (4.75) 

The characteristic or Floquet multipliers of the system are given by the eigenvalues of [ Y ] .  
If at least one of them has an absolute value greater than unity, the system is unstable (in 
the linear sense), giving rise to (i) a parametric resonance if this Floquet multiplier is real, 
and (ii) a combination resonance if it is complex. In this sense, combination resonances 
correspond to quasiperiodic motions - see Section 5.9. 

A typical set of results for a clamped-clamped pipe are shown in Figure 4.28. A small 
amount of damping has been added (a = lop3), so as to eliminate the profusion of very 
narrow resonance regions that would otherwise clutter up the figure. Regions of both 
simple and combination parametric resonance are seen to exist. The various resonances 
are well ordered and easily identifiable, as would for instance be the case for a column 
subjected to a harmonically perturbed end-load. Indeed, the analogy applies to the extent 
that combination resonances of the difference types do not materialize for these boundary 
conditions (Iwatsubo et a l .  1974; Ariaratnam & Namachchivaya 1986a). In this figure, 
001, the zero-flow first-mode undamped eigenfrequency, is used simply as a normalization 
factor throughout. As a result of this, however, the upper resonance regions in the figure 
appear to be more extensive than the lower ones; had w / q 2  been used instead of w/wol 
for the second mode, the same width as for the principal resonance of the first mode 
would have been obtained. The minimum value of p below which resonance does not 

+A different behaviour is obtained if the excitation force can be varied independently of damping. Calcu- 
lations in which an external axial load Fo cos OT is imposed and u is kept constant show that parametric 
resonances may then occur even for small u. 
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Figure 4.28 
pipe clamped at both ends (j3 = 0.2, y = c = r = l7 = 0, a = 1 x 

Regions of simple parametric (hatched) and combination (shaded) resonances for a 
uo = 4); 001 = 22.3733 

(Pdidoussis & Sundararajan 1975). 

arise would not be affected, however; it is a function of the dissipation model used, and 
the minimum p is higher for the higher modes. 

It is noted that, as uo is reduced, all resonance regions become less extensive, and some 
are completely eliminated. In this respect, the regions of combination resonance suffer 
proportionately much more than those of simple parametric resonance. 

Typical results for a cantilevered pipe are shown in Figure 4.29(a,b) for uo just below 
and just above the critical value for flutter when p = 0 (UO = 6.34); N = 3 and 4 represent 
the Galerkin-Floquet approximations with which the results have been computed. The 
results have been normalized by w02 = 23.912, and to fully understand them Table 4.5 is 
necessary. 
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Figure 4.29 Regions of simple parametric (hatched) and combination (shaded) resonances for a 
cantilevered pipe conveying fluid ( p  = 0.2, y = 10, a = (T = O;w02 = 23.912): (a) for uo = 6.25, 

with N = 3 and 4; (b) for uo = 6.5, with N = 4 (Pdidoussis & Sundararajan 1975). 

Table 4.5 Complex eigenfrequencies of the system of Figure 4.29. 

uo W wz w3 

6.25 3.42 + 11.79i 15.02 + 0.17i 48.59 + 5.15 
6.50 3.36 + 12.82i 15.04 - 0.29i 47.15 + 5.29i 

The large region of parametric resonance in the centre of the figures is the principal 
primary region (k = 1) associated with the second mode; significantly, near the ‘nose’ 
of the curve (small p), the ratio of pulsation frequency to natural frequency is 2:l; 
see Table 4.5 (O/WO~ rx 1.25 rx 2 ~ / ~ 2 ) .  The lower bulge associated with this region 
corresponds to a higher-k primary region associated with the third mode. The lower 
simple resonance region is associated mainly with secondary resonance in the second 
mode (k = 2), while the uppermost region is also secondary, but associated with the third 
mode. The combination resonances at the bottom of Figure 4.29(a) involve the first and 
second (and perhaps other) modes of the system, while the upper region is associated with 
the second and third modes. In both cases the combination resonances appear to involve 
the differences, rather than the sums, of the natural frequencies; this is in agreement 
with some results obtained for columns subjected to periodic follower loads (Iwatsubo 
e ta l .  1974). 

Calculations for uo = 6.0 show similar parametric resonances as in Figure 4.29(a), but 
smaller. Furthermore, the upper combination region disappears altogether. Calculations 
for uo = 5.5 show that only simple parametric resonances survive, and for uo 5 4 all 
resonances vanish. 
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Following the trend just described in reverse, it is clear that one might expect the 
simple and combination parametric resonance regions to go on increasing in extent with 
increasing u g  beyond u c f .  Nevertheless, the results in Figure 4.29(b) for u > ucf are both 
startling and interesting: the ‘combination resonance region’ corresponding to quasiperi- 
odic motions has increased quite dramatically,+ virtually covering all the previously stable 
area; nevertheless, it is of interest that a small region remains where the system is stable 
in pulsating flow, whereas in the absence of pulsation it would not be! 

4.5.3 Experiments 

Experiments were conducted with an apparatus and elastomer pipes similar to those in 
Paldoussis’ (1970) steady-flow experiments, described in Section 3.5.6. However, the 
apparatus was modified to enable the addition of a harmonic perturbation component to 
the mean flow via a ‘plunger pump’ driven by a variable-stroke reciprocating mechanism, 
connected to a variable-speed drive, as shown in Figure 4.30. Thus both the amplitude 
and the frequency of the imposed harmonic perturbation could be varied; the frequency 
range was 1 to 16 Hz. Flexible bellows were inserted to isolate, as much as possible, the 
test pipe from vibration arising from the reciprocating mechanism and drive. 

The flow velocity was measured just upstream of the elastic pipe by a hot-film 
anemometer. Traces of the periodically perturbed flow showed that the plunger pump 
gave almost truly sinusoidal perturbations to the flow, so that the flow velocity 
could be represented by U = UO( 1 + p cos at). Both p and the mean flow velocity, 
UO,  were determined by the hot-film anemometer. Experiments were performed with 
clamped-clamped and cantilevered pipes. The lower clamped end in the former case was 
such as to permit axial sliding. The apparatus and the experiments are described in greater 
detail in Paidoussis & Issid (1976). 

In general, the dynamical behaviour of clamped-clamped pipes is similar to that of 
columns subjected to periodic end-loading. The dominant resonances are associated with 
the first mode. The secondary parametric resonance was difficult to pin-point, particularly 
for small p and for U far removed from ucd ;  the main reason being that there was always 
a small-amplitude vibration of the pipe at the pulsation frequency, transmitted either 
mechanically or through the fluid, which proved impossible to eliminate completely. A 
stable region usually separated the secondary from the primary resonance, except for 
high p and UO close to Ucd, where it was observed that the frequency of pipe oscillation 
changed directly from a to +a. When the pulsation frequency was increased beyond the 
first-mode primary region, resonances associated with the second mode were observed. 
In some cases combination resonances or mixed resonance regions were encountered. In 
general, the observations are in qualitative agreement with theory. 

A quantitative comparison between theory and experiment is made in Figure 4.31. It is 
evident that if the theoretical curves were shifted downwards, agreement with experiment 
would improve substantially; this would indicate that the theoretical frequencies may be 
incorrect and leads one to suspect that the lower sliding clamped support was not perfect; 
in fact, it was slightly loose to permit unimpeded axial movement. It is also noted that 

‘The notation of ‘combination resonance’ for t i  > tic! is inappropriate. ‘Quasiperiodic’ is much better to 
denote the presence of two incommensurate frequencies in the response. 
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Figure 4.30 Schematic diagram of the apparatus used for parametric oscillations of pipes 
conveying fluid (Paldoussis & Issid 1976). 

agreement between theory and experiment is particularly poor in the case of the secondary 
resonance. This is probably due to interference by forced vibration, transmitted through 
the apparatus, which resulted in effectively widening the region of resonance. 

The dynamical behaviour in the case of cantilevered pipes is described next. It was 
found that unless the flow velocity was fairly close to the critical value, U,f, at which 
the system loses stability by flutter in steady flow, the system remained stable, at least 
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Figure 4.31 Experimental boundaries of the first-mode principal and fundamental parametric 
resonances compared with theory, for a clamped-clamped pipe with B = 0.202, y = 14.8, 
cr = 4.57 x (T = 0 and uo = 4.55. For primary resonance: -, theory; -A-, experiment. 

For secondary resonance: . . . . . ., theory; -v-, experiment (Pai‘doussis & Issid 1976). 

for 0 < p < 0.5 and a frequency range usually spanning the first three eigenfrequencies 
of the system. 

If the flow velocity was close to the critical value mentioned in the foregoing, the 
following observations were made. At low frequencies, a secondary parametric reso- 
nance in the second mode of the system was observed, which was difficult to pin-point 
for the reasons already given. With increasing frequency, the amplitude of oscillation 
increased, to a maximum of typically five diameters, then decreased and finally ceased. 
The system remained stable with increasing frequency up to a certain value, where the 
principal primary instability was encountered, also in the second mode of the system, with 
the pulsation frequency equal to twice the oscillation frequency; the onset of this reso- 
nance was as easily pin-pointed as it was violent. With increasing frequency, a maximum 
amplitude of 20 pipe diameters was reached, then subsided and ceased. 

Certain variations to the foregoing behaviour should be noted. In some cases, at 
low frequencies and high amplitudes of pulsation, quasiperiodic motion in a combina- 
tion resonance region was encountered, involving the first and higher modes. In some 
cases, following the principal primary instability, either a combination resonance region 
or a region involving the superposition of more than one parametric resonance was 
observed, where the pipe seemed to be oscillating about a quasi-stationary deflected 
shape, thus displaying clearly nonlinear behaviour; these regions were difficult to deci- 
pher, and the mode shape transitions seemed to be gradual and difficult to pin-point. In yet 
other cases, the stable region between second-mode secondary and primary instabilities 
disappeared. In some cases, parametric resonances associated with the third mode were 
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encountered, which were no different in character from those associated with the second 
mode. However, no simple parametric (as opposed to combination) resonances associated 
with the first mode were ever observed. 

In one case, the flow velocity was increased sufficiently to cause flutter in steady flow. 
Interestingly, by adding a pulsatile component to the flow at certain frequencies and 
amplitudes, it was found possible to eliminate the flutter. 

Once more, these general observations are in qualitative agreement with theory. Quan- 
titative agreement may be assessed from Figures 4.32 and 4.33. In Figure 4.32 only the 
principal primary resonance region is shown, while in Figure 4.33(a) also the fundamental 
secondary one. In the latter case it is noted that no experimental points are shown for large 
k ;  in that range, the resonance boundary was very difficult to define, as there was super- 
position of at least two resonance regions as shown in the theoretical results. Similarly, no 
experimental points are shown corresponding to the lower parts of the theoretical curves, 
which relate to lower subharmonics; in this case the experimentally observed resonance 
was of such small amplitude as to make it virtually impossible to define its boundaries. 
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Figure 4.32 Experimental boundaries of the second-mode principal parametric resonance 
compared with theory, for a cantilevered pipe with /? = 0.205, y = 8.22, a! = 3.75 x 0 = 0 

and uo = 5.54 (Paidoussis & Issid 1976). 

It appears that theory generally underestimates the extent of the regions of resonance; 
moreover, it overestimates the value of wcr, the minimum value of k necessary to cause 
parametric resonance. Agreement of experiment with theory is reasonable but not very 
good; plausible reasons for this are discussed by Pdidoussis & Issid (1976), among them 
that certain assumptions in the theory are not quite true: e.g. that the flow-area of the pipe 
does not change with changing internal pressure and that the wave speed in the elastic 
pipe is essentially infinite. 
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Figure 4.33 (a) Experimental boundaries of the second-mode parametric resonances compared 
with theory, for a cantilevered pipe with /3 = 0.307, y = 16.1, CY = 3.65 x u = 0 and 
uo = 7.86. For primary resonances: -, theory; -A-, experiment. For secondary resonances: 
f . . . . .  , theory; -v-, experiment. (b) Experimental boundaries of combination resonance and 
the lower boundary of simple secondary parametric resonance for a cantilevered pipe 
with /3 = 0.203, y = 13.3, (Y = 4.54 x (J = 0 and uo = 6.20: 0, 0 ,  combination resonance 
boundary; 0, W, combination-mixing transition; A, A, secondary parametric resonance threshold; 

-, theory (Pafdoussis & Issid 1976). 

Theoretical and experimental combination resonance regions are compared in 
Figure 4.33(b) - some with p =- 0.5, which is clearly beyond the theoretical assumption 
that p is small. It is noted that theory underestimates the extent of combination resonance, 
but the shape of the left-hand boundary of the region is similar to that given by the 
experimental points. 

Following a line of constant p and increasing frequency (say, for p = O S ) ,  theory 
predicts that there should be a narrow region of stability separating the regions of combina- 
tion and secondary parametric resonance. This was not observed experimentally; instead, 
the two regions were found to be separated by a 'mixing region', where, one might say, 
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parametric resonance was trying to establish itself, but was confused by the presence of 
components of combination resonance. 

4.5.4 Parametric resonances by analytical methods 

The linear parametric resonance regions are frequently determined as special cases in 
nonlinear analyses of the system (Section 5.9). This is done for two reasons: to validate 
the more general nonlinear analysis in the linear limit, and to compare directly the linear 
and nonlinear dynamics of the system. 

The first such analysis, unusually published as a paper wholly devoted to linear 
dynamics, is due to Ariaratnam & Namachchivaya (1986a) who study the principal 
(subharmonic) resonances associated with the first and second modes of pipes with 
supported ends (w 2: 2w,, r = 1,2)  and the corresponding combination resonances (w 2 

0 2  f w l )  by means of nonlinear analytical methods. These methods are in fact the same as 
those utilized to analyse the nonlinear dynamics of the system by Namachchivaya (1989) 
and Namachchivaya & Tien (1989a,b) and are described briefly in Section 5.9. Basically, 
the system is discretized into a two-degree-of-freedom one and transformed into first-order 
form while using an elegant Hamiltonian formulation; then the method of averaging is 
applied, via which the boundaries of the resonance regions are determined. The procedure 
is mathematically complex but very powerful: it yields analytical expressions for the 
resonance bounds, the minimum value of p below which resonance does not occur, and 
so on. Also, by considering the stability of the solutions, it is shown which exist and which 
do not; specifically, it is shown that for pipes with both ends supported the difference 
combination resonance (w 2: 0 2  - w l )  does not exist (cf. Figure 4.28). 

The analytical results are compared to numerical ones obtained by the authors and 
Paldoussis & Sundararajan (1975) - see the middle three regions of Figure 4.28. Agree- 
ment is quite good, despite the fact that the analytical method is meant to be valid only in 
the neighbourhood of the resonances, e.g. for w = 2wl + O ( E ) ;  the discrepancy between 
analytical and numerical results becomes important for p 3 0.4. 

4.5.5 Articulated and modified systems 

A two-segment articulated system hanging as a cantilever and conveying harmonically 
perturbed flow as in (4.69) has been examined thoroughly for parametric resonances by 
Bohn & Herrmann (1974a). The two pipe segments are of equal length, I ,  and no intercon- 
necting springs are present, so that gravity is the only restoring force. Hence the following 
dimensionless parameters are used: p = 38, U = U /  ( i g l ) ’ ”  and 0 = [I/ ($g)] 52. The 
resonance regions are determined by Bolotin’s method and Floquet multipliers. 

Basically, the dynamical behaviour of this system is similar to that described in 
Sections 4.5.1 and 4.5.2, for both simple and combination resonances. Of particular 
importance is the dynamical behaviour just above the critical flow velocity for instability 
in steadyjow, as shown in Figure 4.34: (a) for = 0.25, when stability is lost by flutter, at 
uc. = 2.632; and (b) for p = 1.0, when stability is lost by divergence, at ccd = 1.732. The 
dynamical behaviour in Figure 4.34(a) is similar to that in Figure 4.29(b), showing that 
what is a region of stability for U < ti,. is essentially transformed into one of combination 
resonances (quasiperiodic oscillation) for U > si,.; however, in this case also, there exists 

- 
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a region (albeit a very thin one) where the steady-flow flutter may be suppressed by flow 
pulsation. In Figure 4.34(b), whereas the parametric resonances almost fill the plane, there 
is quite a wide region where divergence is eliminated by pulsation. 

0 0.2 0.4 0.6 0.8 1 .o 
(a) P 

” 
0 0.2 0.4 0.6 0.8 1.0 

(b) P 

Figure 4.34 Regions of simple parametric (hatched) and combination (dotted) resonances for an 
articulated system with (a) 3 = 0.25 at U = 1.O5Ucf, and (b) B = 1, U = 1.05& (Bohn & Henmann 

19744. 

A continuously flexible cantilevered system, modified by translational and rotational 
spring supports at the downstream end [Figure 3.61(c)], is analysed for parametric reso- 
nances by Noah & Hopkins (1980) - see Section 3.6.2 for the steady-flow dynamics. 
Typical results in Figure 4.35 show that, as for steady flow, the dynamics is interme- 
diate between those for a cantilevered pipe and one with both ends supported, but more 
complex than either, and depends in an a priori unpredictable manner on the stiffness 
of the translational spring ( K )  and the rotational one ( K * ) .  Of particular importance are 
that (a) parametric resonances related to the first mode can relatively easily be excited 
for some combinations of K and K* ,  and (b) both sum- and difference-type combination 
resonances can arise in this case - both explainable in terms of the hybrid free but not 
totally free downstream end. 

Finally, the analysis has also been extended to deal with periodically supported pipes 
by Singh & Mallik (1979), both by Bolotin’s method and by a ‘wave approach’, which 
is particularly useful for pipes with a large number of spans and which is based on their 
earlier work with such pipes in steady flow (Singh & Mallik 1977). Unfortunately, their 
equations contain the same error as in Chen’s work, referred to in the foregoing, and 
hence the results are quantitatively flawed, as are some of their conclusions - e.g. their 
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Figure 4.35 Regions of simple parametric (unshaded) and combination resonances (shaded) for 
cantilevered pipes with elastically supported downstream end, for and 
uo = 4.5: -, K = K* = 0; - + - , K = 25, K* = 0; - - -, K = 100, K* = 0; - 0 - , K = 100, 
K* = 10. (a) For range of high forcing frequency, w ;  (b) for lower range of w (Noah & Hopkins 

1980). 

= 0.125, y = 0, a = 
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contention that parametric resonance regions calculated with 
cases with effectively any value of B. 

= 0 are representative of 

4.5.6 Two-phase and stochastically perturbed flows 

As already mentioned, practical interest in this work has been associated with possible 
excitation of piping by pump-generated pulsations. A different and interesting applica- 
tion was studied by Hara (1977, 1980) in connection with two-phase flow in piping, in 
the 'slug-flow' regime, where the flow is essentially composed of alternating liquid and 
gaseous slugs. 

Clearly, in this case it is not the velocity that is varying with time but the mass per unit 
length; moreover, the time variation is more like a square wave than a harmonic function. 
This is the phenomenon accidentally discovered in the experiments with piping aspirating 
flow, as shown in Figure 4.1 l(b). Hara's experiments, involving a 2.2 m long horizontal 
simply-supported pipe were in fact conducted with air-water mixtures simulating true two- 
phase flow. Parametric resonances were found for w/w, E 0.65, 0.95 and 1.94, where 
w is the frequency associated with 'slug arrival times'; these ratios are remarkably close 
to the theoretically expected $, 1 and 2. The strongest excitation in this case was for 
w/w, = 1 rather than 2; this is explained as being due to additional two-phase forced 
excitation when w = wn . 

Finally, the case of a pipe conveying stochastically perturbed flow was studied 
by Narayanan (1983), Ariaratnam & Namachchivaya (1986b) and Namachchivaya & 
Ariaratnam (1987). By assuming the intensity and correlation time of the stochastic 
perturbations to be small (broad-band spectrum), the problem is transformed into a Markov 
process, and solutions are obtained by stochastic averaging. It is found that the amount 
of damping necessary to ensure stability depends only on those values of the excitation 
PSD near twice the eigenfrequencies and near their sums and differences. 

4.6 FORCED VIBRATION 

There are two aspects of forced vibration of pipes conveying fluid worthy of discussion. 
The first is the physical aspect, which sheds further light onto the dynamics of the system, 
and the second is related to the analytical techniques which can be used to obtain the 
forced response of such systems. These will be dealt with separately in what follows. 

4.6.1 The dynamics of forced vibration 

Let us consider a pipe subjected to an arbitrary harmonic force field, such that it is 
governed by an equation of the form 

(4.76) 

in which % ( v )  is given by equation (3.70). By means of Galerkin's method, this may be 
discretized into 

(4.77) Mq + C(u)q + K(u) q = F eior, 
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where the matrices C and K are functions of u. The steady response of the system is 
written as q = Qexp(iwt) and hence equation (4.77) leads to 

[K(u) + iwC(u) - w2M]Q = S(u,  iw)Q = F. (4.78) 

Hence, we may define the direct receptance (Bishop & Johnson 1960; Bishop & Fawzy 
1976) at any generalized coordinate qj as the generalized displacement at that coordi- 
nate due to a generalized force of unit amplitude and frequency w applied at the same 
coordinate; then, application of Cramer’s rule to equation (4.78) shows that the direct 
receptance ajj is given by 

2N-2 

(4.79) 

e= 1 

where the A, are the 2N complex eigenvalues of S associated with resonances of the 
system. The A, are eigenvalues of S when coordinate qj is locked and are associated with 
antiresonances. The treatment and the results to be presented are taken from Bishop & 
Fawzy (1976), in terms of plots of receptance and its inverse, the inverse receptance,? a 
form of mechanical impedance involving displacement rather than velocity. The motiva- 
tion behind this study is to gain understanding useful in the dynamical testing of aircraft 
near the flutter boundary. 

Typical results for a vertical cantilevered pipe fitted with an end-nozzle are shown in 
Figure 4.36, for the direct receptance at the free end, all, which relates the response 
at 6 = 1 to the excitation at the same point. The system is discretized by a Galerkin 
scheme with N = 4, and so four modes are involved; the critical flow velocity for flutter 
is ucf = 2.749. 

The four circular loops in Figure 4.36(a) correspond to the four degrees of freedom 
of the discretized system, which are traced by the solution as the forcing frequency w is 
increased from zero (point P). The real parts of the eigenvalues of the system, (-2.28 f 
5.46i), (-1.41 f 19.19i), (-1.77 f 58.22i), (-1.74 f 117.5%) are close to the minima 
of Sim(a,). Every point of a receptance diagram represents the sum of the responses in 
all the modes. This sum may be such that the curve intersects the positive real axis, as 
in Figure 4.36(a,b); at the frequency corresponding to such an intersection, no work is 
done by the driving force. Intersection with the negative real axis is also possible, again 
signifying no work done by the driving force, but for a different reason: this intersection 
occurs only for u > u,f, at w = wcf - see Figure 4.36(b), where the intersection for 
u = 3.0 occurs at w = 15, beyond the confines of the figure. 

It is also noted, in Figure 4.36(b), that as u -+ ucf the diameter of the first loop of 
the receptance curve diminishes, while that of the second one, associated with the flutter 
mode tends to infinity; thus, as w is increased, the receptance shoots off to infinity through 
the first quadrant, which seems reasonable on physical grounds. At uCfr the pipe tends to 

+Bishop developed the concept of receptance into a powerful tool for the analysis of all conceivable aspects 
of vibration of mechanical systems (Bishop & Johnson 1960). An anecdote making the rounds, in the U.K. at 
least, in the early 1960s is that one day the following sign was affixed (by a frustrated student, probably) on 
the door to this office: No admittance without receptance! 
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21 u = 2.0 
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Figure 4.36 (a) Variation of the direct receptance a l l  for a theoretical harmonically forced 
system with u = 2 and varying values of w (nozzle area parameter a, = A/Aj = 3, j3 = 0.203, 
y = 5 ,  zero dissipation, and N = 4). (b) Same as in (a), but u = 2.2,  2.4, 2.6, 2.8 and 3.0. 
(c) Inverse direct receptance at 6 = 0.15, close to the instability boundary of the experimental 
system (a, = 1.27, ,8 = 0.387, y = 250) for a number of values of the flow parameter, R, and 

varying frequency parameter, f, defined in the text (Bishop & Fawzy 1976). 

oscillate at its critical frequency, wcf = 15. When w < w,f, energy flows from the pipe to 
the driving mechanism, and the displacement leads the excitation - which is not possible 
for passive systems. The phase lead continues until w = w,f, when no energy flows to or 
from the driving mechanism, since all the energy required to achieve an infinite amplitude 
is supplied solely by the fluid. For w > mcf, the pipe is forced to oscillate more rapidly, 
and the displacement lags behind the force; hence the receptance curve is now below the 
real axis. 

A number of other, special and interesting features of these receptance curves are 
discussed by Bishop & Fawzy, among them: (i) the vanishing of the receptance at a 
finite w;  (ii) the migration of the starting point of the receptance curve along the real 
axis towards the origin. The first point suggests that the system may have some purely 
imaginary antiresonance eigenvalues - which means that these are the resonances of 
a system with the excitation point (at the downstream end of the pipe) constrained to 
zero, i.e. those of a clamped-pinned pipe. Indeed, it is known that the eigenvalues of 
the clamped-pinned system are purely imaginary up to a critical value (in this case 
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u = u,d = 2.7). It is confirmed that the frequencies at which the receptance vanishes 
correspond to these clamped-pinned pipe eigenvalues - so that at those frequencies the 
pipe oscillates like a clamped-pinned one. 

The second point, the migration with u of point P towards the origin, is at 
first sight paradoxical, since generally the eigenfrequencies decrease with increasing 
u (see Figures 3.27-3-29), implying a softening of the system, while the migration 
in Figure 4.36(a,b) indicates hardening! Recalling that the exciter is attached to the 
downstream end of the cantilevered pipe, the explanation is once more related to the 
characteristics of the clamped-pinned pipe, which is subject to divergence at u,d = 2.7. 
Hence, at u,d an infinite force is required to hold the free end in position. At u > u,d, 
the tendency to buckle will cause the pipe to press against the support, and hence the 
displacement to be out of phase with the applied force; therefore, point P shifts to the 
negative %e(cr,, ) axis.+ 

Bishop & Fawzy tested the theory by conducting forced vibration experiments, using 
surgical quality silicone rubber tubes conveying water (cf. Section 3.5.6), excited sinu- 
soidally via a carefully designed cross-head mechanism, based on the Scotch-yoke 
principle. The force was measured by a force transducer and the displacement by a 
displacement transducer, at the same point or elsewhere along the pipe. These experi- 
ments illustrate the difficulties in undertaking such experiments, especially near the flutter 
boundary.$ Near u,f, since ucf > u,d for a clamped-pinned pipe in all cases when the 
system is excited at its lower end, experiments were practically impossible since ‘it was 
extremely difficult to arrest the tube, let alone to oscillate it sinusoidally’. Hence, the pipe 
was excited at a point x = 0.15L-0.4L. A number of difficulties persisted, however. For 
example, for large force amplitudes, the system sometimes behaved as if composed of 
two subsystems joined together at the excitation point: a clamped-pinned beam and a 
pinned-free one - specifically for the forcing frequency close to that of the lower part 
of the pipe; this led to ‘dynamic interference’, beating and so on. 

In the end, however, some successful experiments were performed, leading to several 
results of the type shown in Figure 4.36(c) - probably the first ever for an active system 
so close to the flutter boundary. Here the inverse direct receptance is plotted, so that 
at resonance the curve goes through zero. These curves are in terms of raw measure- 
ment quantities: a rotameter reading R, related to the flow velocity by U = 1.185R x 
10-6/A ( m l s ) ,  where A (m2) is the internal cross-flow area of the pipe; and a frequency 
factor, f, equal to 480 times the oscillation frequency in Hz. Unfortunately, the cross- 
sectional dimensions of the pipes are not given; hence, u and w cannot be computed, and 
these results cannot be compared with the theory. The reason given for not presenting a 
comparison with theory is that dissipation, always present in the experiments, has been 
ignored in the theory.§ 

Nevertheless, for the experimental system, Figure 4.36(c) shows that for flutter, 104 < 
R,f < 106 and 1340 < f c f  < 1390 approximately. This demonstrates that it is feasible 

+The value of Ucd in this case is too close to the uc,= = 2.749 for the clamped-free system. Bishop & 
Fawzy present another calculation with CY. - 1, = 0.203 and y = 5, for which ucj = 6.07, while UCd = 4.74. 
The receptance curve passes through the ongin for u between 4.6 and 4.8, in agreement with the explanation 
given. 

*As expressed by the authors with exquisite British understatement: ‘it has to be said that the study of a 
resonance test on an active system near an instability boundary is not easy’. 

§One may nevertheless suspect, since some comparison, even with this limitation, would have been useful, 
that quantitative agreement cannot have been flattering. 

J - .  
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to bracket the flutter conditions sufficiently closely, if this type of testing were used for 
the system motivating this study: the determination of the flutter boundary of aircraft via 
forced vibration testing. 

Another set of forced vibration experiments was conducted by Shilling & Lou (1980) 
with a vertical cantilever (made of PVC and of Di = 17.6mm) with several masses 
attached along the length [see Figure 3.67(a)]. The upstream support together with a 
suction pipe and a motor-pump unit were mounted on a horizontal track and oscillated by 
an exciter; the test pipe was partially or totally immersed in water, or totally surrounded 
by air. It was found that, with internal flow, the response is richer in higher harmonics. 
Also, immersion appears to greatly enhance the modal content of the vibration, but this 
clearly depends on the forcing frequency; see also Sections 4.2.4, 4.3.2 and 4.4.10. 

4.6.2 Analytical methods for forced vibration 

Consider a simplified form of equation (3.70) for a cantilever conveying fluid, subject to 
a forcing function, 

qrn’ + u y  + zp”’u?j‘ +a$ + ij = f(& t), (4.80) 

with boundary conditions (3.78). By means of the Galerkin method (Section 2.1.6), this 
equation may be discretized into 

1 
[MI($) + [C1(4}+ [KI(q) = {el, Q j < t >  = 4j(t>f(t* (4.81) 

@ j  being the jth eigenfunction of a cantilever beam, and Qj the corresponding element of 
[e}. Here both [C] and [ K ]  are nondiagonal, nonsymmetric matrices, functions of u. To 
decouple the system, the methods described in equations (2.16)-(2.19) may be utilized, 
in which the system is first transformed into one of first order, 

[Bl[il+ [EIIzJ = {FI. (4.82) 

The asymmetry of [C] and [K] means that [B] and [E] are also nonsymmetric. Hence, to 
decouple this system, one proceeds (PaTdoussis 1973b; Section 4) to solve the eigenvalue 
problem (p[B] + [ E J ) ( u }  = (0) and its adjoint @[BIT + [E]T)[~} = (O}, from which the 
same set of eigenvalues pj are obtained, but two different sets of eigenvectors, x, and 
$,, leading to modal matrices [A] and [N]. Because of the weighted biorthogonality of 
the x, and $,, [NIT[B][A] and [NIT[E][A] are diagonal, an easily proved result. Hence, 
introducing the transformation 

(7.1 = [AI{O (4.83) 

into (4.82) and pre-multiplying by [NIT, one obtains an equation of the form 

[Jlt41+ [LIIO = [NIT{F} = {@I? (4.84) 

in which [J] and [L] are diagonal; thus the system has been decoupled and hence is easily 
solvable. A particular example of excitation f ( ( ,  t) due to a random pressure field (e.g. 
turbulence-induced excitation) is given in Paidoussis (1973b) for external axial flow which 
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is very similar to the case of internal flow; as this is discussed in Chapter 8 (Volume 2), 
it will not be duplicated here. 

An alternative method is to obtain the eigenvalues and eigenfunctions {A;, x;(()} of the 
conservative part of (4.80), q”” + u2q” + i j  = 0, as well as those of its adjoint, [A;, +;($)}; 
these are in fact the same as for problem (2.52), and are given by equations (2.59). Then, 
introducing xj(()q; (t) into equation (4.80) and using the biorthogonality relation 
(2.57), another form of equation (4.81) is obtained, in which [MI and [ K ]  are diagonal. 
The presence of the Coriolis term in (4.80), however, means that [ C ]  is not diagonal. 
Hence, even more than for the problem in Section 2.1.6, this method offers no special 
advantage, since it cannot diagonalize the nonhomogeneous problem ‘in one step’ as it 
would if this were an ordinary mechanical system. 

Let us now turn our attention to the forced response of a cantilevered pipe with a tip 
point muss, A, subjected to an arbitrary force field, f(e, t). The dimensionless equations 
of motion and boundary conditions in this case are 

q”” + u2q” + 2 p u r j ’  + a?j + ij = f((, t); 

q(0) = q’(0) = 0, 

(4.85a) 

(4.85b) q”(1) = q”’(1) - pij(1) = 0, 

where p = A / [ ( M  + m)L]. An alternative way of formulating the problem leads to 

q”” + u2q” + 2/9’/*U?j’ + a?j + [ l  + WUs(6 - 1)lij = f((, t). 

q(0) = q’(0) = 0, 

(4.86a) 

(4.86b) 

in which Us(( - 1) is the Dirac delta function. As hinted in Section 2.1.4, the decoupling 
of the equations in this case poses some interesting problems, because the boundary 
conditions in (4.85a,b) are time-dependent. Three possible procedures immediately spring 
to mind, as follows: 

q”(1) = q”’(1) = 0, 

Method (a): to utilize the eigenfunctions +;(e) of the problem q’”’ + ij = 0 subject to 
boundary conditions (4.85b) to discretize the system; 

Method (b): to utilize these same eigenfunctions +;(() but apply them to an ‘expanded 
domain’ of the problem (Friedman 1956), which effectively means that the time-dependent 
boundary conditions are added to the equation of motion, so that one obtains 

Method (c):  to utilize the cantilever beam eigenfunctions, 4; (e), directly to decouple 

In principle, one can show directly which of these methods are correct or otherwise, 
but here we shall do so by means of sample computations. To simplify matters and 
since the main point of interest is the decoupling procedure, we consider the homoge- 
neous undamped version of this system: f((, t) = 0, a = 0. The results are presented in 
Table 4.6, for two-mode discretization in all cases. For the same value of p, the values 
of W I  and w2 for u = 0 are the same whether B = 0 or = 0.1, and hence they are not 

equation (4.86a). 
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Table 4.6 The applicability of three possible decoupling schemes for a 
cantilevered pipe with an end-mass. 

System U Method (a) Method (b) Method (c) 

W I  = 3.516 
W? = 22.03 

U H  = 4.485 
WH = 11.6 

UH = 4.706 
WH = 14.49 

~1 = 2.36 
W? = 17.60 
U H  = 4.05 
WH = 8.0 

~1 = 3.516 
~2 = 22.03 

U H  = 4.485 
WH = 11.6 

U H  = 4.706 
WH = 14.49 

W I  = 2.36 
~2 = 17.79 
U H  = 4.13 
WH = 7.9 

given in the second case. The values of u and w at the Hopf bifurcation are denoted by 
UH and W H .  

It is clear from Table 4.6 that, in the absence of time-dependent boundary conditions 
(p  = 0), any one of the three methods may be used. Any of the three methods may also 
be used provided that the system is nongyroscopic, e.g. for p = 0.3 when /3 = 0; the 
small differences in the results by method (c) are due to different rates of convergence 
(all results here are with N = 2). When, however, the system is nonconservative gyro- 
scopic ( B  # 0) and has time-dependent boundary conditions, which is the last entry in 
the table, it is clearly seen that method (a) is incorrect. It is for this reason that the ana- 
lysis in Section 5.8.3(a,c) is carried out with method (c), but that in Section 5.8.3(b) with 
method (b). The interested reader is also referred to Chen (1970) and Lin & Chen (1976). 

Before closing this section, it should be mentioned that there now exist powerful general 
computational methods for solving free, transient and forced vibrations of this type of 
system, which are presented in Section 4.7. 

4.7 APPLICATIONS 
Virtually all of the research on the dynamics of pipes conveying fluid has been curiosity- 
driven, even though it sometimes was inspired by practical applications. Some attempts 
have been made to justify the effort by linking it, generally unconvincingly, to applications 
in oil pipelines, heat exchanger tubes, etc.; unconvincingly, because it has been known, 
certainly since the early 1950s, that the effect of internal flow on the dynamics of pipes 
conveying fluid begins to become interesting, let alone worrisome, at flow vclocities a t  
least ten times those found in typical engineering systems. That is the reason why most 
experiments have been done with elastomer rather than metal pipes, thus achieving the 
necessary dimensionless u with modest values of dimensional flow velocity, U .  

Nevertheless, some applications do exist, as will be described in what follows. Most 
of them have emerged unexpectedly ten, twenty or thirty years after the basic work 
was done (Paldoussis 1993). Some have already been mentioned, sprinkled throughout 
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the text, e.g. in connection with the stability of long pipelines on elastic foundations in 
Section 3.7. 

The most enduring benefit of this research, however, is in developing the fundamentals 
and methods which are used in related topics involving axial-flow -structure interactions, 
which do have engineering applications. For example, the dynamics of cylindrical bodies 
in axial or annular flow and the dynamics of shells containing or immersed in axial flow, 
covered in Volume 2, can be understood in simple terns, modelled mathematically and 
solved by means of the work presented throughout Volume 1. 

4.7.1 The Coriolis mass-flow meter 

The principle of the Coriolis/gyroscopic mass-flow meter is familiar to most (Plache 1979; 
Smith & Ruesch 1991): the whole flow goes through a U- or Q-shaped pipe which is 
attached to a T-shaped leaf-spring, as shown in Figure 4.37. Together they form a tuning 
fork which is excited electromagnetically close to its resonant frequency in the plane 
perpendicular to the paper. The resultant vibration (rotation vector S2) subjects the fluid in 
the two legs of the U to Coriolis acceleration of opposing sign, generating a torque which 
periodically twists the pipe at the right-hand end in and out of the paper as shown. The 
twist angle 0 is linearly related to the mass flow rate MU; it is usually measured optically, 
since deflections are generally very small. Alternatively, the phase of the vibration in the 
two legs of the U, which is 180" out of phase, may be measured instead. Many variants of 
the system described are now available, manufactured by different companies. A thorough 
analysis of the operation of the Coriolis mass-flow meter is provided by Raszillier & Durst 
(1991) and Raszillier et al. (1993); see also Sultan & Hemp (1989). 

. . . . . . . 

End view 

Figure 4.37 The operating principle of the Coriolis mass-flow meter. A, U-shaped pipe; 
B, T-shaped leaf spring; C, electromagnetic exciter; D, optical sensors; see Plache (1979). 

It is not known to what extent the original invention was influenced by the fundamental 
work described in this book, but probably not much.? Nevertheless, when improve- 
ments to the original designs were contemplated, the manufacturers turned to the very 
researchers who contributed to the work in Chapters 3 , 4  and 6 for consultation and further 

+The first U.S. patent for a Coriolis-effect meter was issued in 1947. 
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research; alas, commercial confidentiality of products and methods precludes reporting 
much on this. 

The work, however, continues. For instance, Tsutsui & Tomikawa (1993) propose a new 
straight-pipe mass-flow meter, on which is mounted an additional I-shaped oscillator. As 
described in conjunction with Figure 3.25(b), there is a phase difference in the two halves 
of the pipe when vibrating in its first mode; second-mode vibration actually produces a 
moment, and the operation of the new design is related to this effect and to the associated 
motion of the attached I-oscillator. 

4.7.2 Hydroelastic ichthyoid propulsion 

Noticing the similarity between the mode shapes of a fluttering cantilevered pipe 
(Figures 3.45 and 3.48) and a swimming slender fish, e.g. an eel as shown in 
Figure 4.38(a), a novel method of aquatic propulsion for watercraft was devised 
(PaYdoussis 1976) and patented. It is recalled that for the cantilevered system, no classical 
modes exist: the limit-cycle motion envelope comprises standing and travelling wave 
components, the latter propagating from the clamped towards the free end, similarly to the 
anguiliform swimming motions of slender fish (Lighthill 1969; Triantafyllou et al .  1993). 

By mounting a pair of Tygon pipes on either side of a straight thin brass plate as 
shown at the bottom of Figure 4.38(b), one can generate undulating motions of the plate 
(perpendicular to the plane of the paper) at sufficiently high flow rates in the pipe, beyond 
the flutter boundary. The system was tested by mounting this arrangement beneath a small 
vessel. The flow was generated by a motor-pump unit on board, powered in tram- or 
trolley-fashion by an overhead electrical conductor. 

‘Sea trials’ were conducted in a long flume, approximately 0.9 m by 0.9 m in section 
and 15 m long. Propulsion of course occurs even without undulation of the plate, simply 
by the jet issuing from the twin pipes. Hence, two arrangements were tested: (i) one in 
which the plate was allowed to undulate, and (ii) another in which it was immobilized 
by attaching thin wooden stiffeners, shaped so as not to increase the drag. Typically, the 
forward speed was V 2: 1 d s ,  the wavelength of the motion h 2: 0.6L and the frequency 
o 2 15 rad/s, so that the reduced frequency oh/V 2 10. Allowing about 4 m for a constant 
speed to be reached, the motion of the vessel was timed over the next 8.5 m, establishing 
an average value of V .  

It was found that 30% higher speeds, i.e. approximately 60% higher thrust, could be 
achieved with undulation as compared to without, provided that the downstream propa- 
gating wave velocity was faster than the forward speed of the vessel - alas, however, at 
considerably inferior efficiency to a propeller. Because of its similarity to fish motions, 
the name of ichthyoid propulsion was coined. 

The experiments just described were, in effect, proving tests, with no attempt to optimize 
the system: in an optimized design, both the momentum flux and mass would be axially 
distributed in such a way as to give the most desirable wave-propagation characteristics, 
and hence propulsion efficiency.+ This method of propulsion was put forward as a possible 
propulsion scheme for special purposes, e.g. where propellers are undesirable because of 
sealing (in great depths) or noise problems. 
~ 

‘See also Sugiyama & PaYdoussis (1982). 
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Figure 4.38 (a) Swimming motions of the common eel, Anguilla vulgaris, from photographs by 
Gray (1968), as given in Lighthill (1969). (b) Schematic elevation of the catamaran used to demon- 
strate ichthyoid propulsion, showing: A, overhead electrical conductor; B, ‘trolley-type’ conductor; 
C, motor-pump unit; D, catamaran; E, pump inlet; F, pump outlet; G, thin brass plate; H, Tygon 

pipes; I, flow adaptor; J, clips for attachment (PaYdoussis 1976). 

4.7.3 Vibration attenuation 

Another application (Sugiyama et ul. 1992, 1996b) involves one or more cantilevered 
pipes conveying fluid attached to a vibrating structure for the purposes of dumping its 
vibration. 

Looking at Figure 3.27, for instance, it is clear that for u = 4 there exists optimum 
damping of the pipe in all its modes. Hence, if this pipe were attached to a vibrating 
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structure, the vibrations of the structure-cum-pipe system would be damped. An 
experiment with the set-up shown in Figure 4.39(a) demonstrates how the system can 
work when the ‘structure’ is the pipe itself. When the pipe is disturbed, it vibrates, 
and this is detected by a displacement sensor. If the vibration is above a predetermined 
threshold, the valve opens, admitting a fluid flow such as to give optimum damping. 
When the vibration level is reduced to below a given threshold, the valve closes, the pipe 
having accomplished its task. The vibration of the pipe without flow (the controller totally 
inoperative) and with control flow is shown in Figure 4.39(b,c). 

The idea of such a vibration damper was also proposed by Lu et al .  (1993).+ 
Of course, if the pipe is attached to a massive structure, the effective damping ratio 

will then be = kcp/ [ (ms + rn,)(k, + kp)]’’*,  where m, and mp are the modal masses 
of the structure and the pipe, respectively, in the mode concerned, k, and k ,  are the 
corresponding modal stiffnesses, while c, is the modal damping of the pipe - neglecting 
c, since presumably c, << cp.  Hence, will generally be considerably smaller than ( 
for the pipe alone. This renders the application useful only for special cases, but no less 
interesting. 

4.7.4 Stability of deep-water risers 

Offshore risers are long pipes used in the exploration and production of oil and gas, 
connecting the sea-floor to an offshore floating or fixed platform or to a ship. With 
these activities moving to ever deeper waters, rigid-pipe risers have given way to flexible 
ones, such as shown in Figure 4.40. Sessions on riser dynamics are regular features 
of the annual Offshore Technology Conference (OTC), the ASME Ofshore Mechanics 
and Arctic Engineering Conference (OMAE), ISOPE Offshore and Polar Engineering 
Conference, and other specialist conferences in the field, to the proceedings of which 
the interested reader is referred. All kinds of fluid-structure interactions are of concern, 
involving currents, waves and internal flow. Sample papers of interest here are by Sparks 
(1983). Vogel & Natvig (1987), Moe & Chucheepsakul (1988) and Moe et al.  (1994). 

Because of their great length, measured in kilometres, flexible risers may generally be 
considered to be hoses or pipe-strings, thus neglecting flexural restoring forces. As such, 
they are like any other string: effectively a limp strand of spaghetti, the configuration of 
which is solely determined by the imposed tension (applied by special tensioning devices 
and buoys), internal and external pressure, gravity and internal flow effects. The concept of 
an ‘effective tension’, incorporating tension and pressure effects, T,ff = T + peA,  - p,A,  
as in equation (4.13) is widely used; cf. the ‘combined force’ I7 in Chapter 6, defined in 
equations (6.46), and also refer to Section 3.4.2. 

Elaborate computer codes exist for the calculation of the shape of, and stresses in, 
risers subject to given Teff and to internal and external flow loading. Changes in pres- 
sure and flow, operational or accidental, give rise to transient motions andor changes 
in configuration. Also, if the tensioning devices fail, loss of tension may give rise to 
‘instabilities’ in the sense of large and sudden changes in configuration. The effects of 

‘In the oral presentation, when questioned as to possible applications, one of the authors proposed the 
‘damping of space structures’. An interesting idea, but the cost of transporting fluid into space and then 
sprinkling it all over the universe must be astronomical! The idea of damping wind-induced bridge vibrations 
is also a bit far-fetched. Nevertheless. the usefulness of the concept for special applications still stands. 



272 SLENDER STRUCTURES AND AXIAL FLOW 

Reference - Fluid supply 

I I  
input 

I I 
Dip 

switch 

I 
8 bit D/A convertex 

8 bit one-chip 
microcomputer 

8 bit D/A convertet 

Amplifier 

I Flow meter 

(a) 

Disturbance 
\ 

U 

DisturbanceNalve opened 

\ SettlingNalve closed 

Figure 4.39 (a) Schematic diagram of the experimental vibration-suppression system. The 
response of the system to an impulse, (b) without fluid flow and (c) with controlled flow (Sugiyama 

et al. 1996b). 
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Figure 4.40 Diagrams of two possible deep-water flexible risers. 

all such occurrences must be known at the design stage, predicted by the same computer 
codes. Therefore, understanding and modelling the effects of pressure and internal flow 
are essential building blocks in the development of these codes. 

4.7.5 High-precision piping vibration codes 

As has already been remarked, for most industrial applications the effect of steady internal 
flow in piping is not crucial. However, in specific applications, the piping is sufficiently 
flexible and failure sufficiently undesirable to make it important to develop high-precision 
computer codes for free, forced and transient vibration of pipes, talung internal flow effects 
into account. Such applications are those just discussed in offshore risers, ocean mining 
systems (Section 4.3), and special designs such as that discussed in Section 5.5.4, where 
long unsupported spans make the pipes effectively very flexible. Another example is 
a special low-cost condenser involving plastic tubes, designed by the French concern 
Ecopol, to be discussed in Chapter 9 (Volume 2).  Other applications are in aircraft and 
rocket fuel lines, where the piping is very flexible because of weight considerations. 

Computational tools for piping vibration have been developed, for example, by Ting & 
Hosseinipour (1983), Nakra & Kohli (1984), Dang et al. (1989), Piet-Lahanier & Ohayon 
(1990), Sallstrom (1990, 1993) and Sallstrom & BLkesson (1990). An example of the 
type of complex piping structures that can be handled is shown in Figure 4.41, analysed 
via an exact finite element formulation based on Timoshenko beam theory - Le. using 
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Figure 4.41 Example of a harmonically loaded piecewise uniform fluid-conveying piping struc- 
ture in transverse vibration with angular frequency w ,  showing how complex the structures analysed 

can be (Siillstrom & Akesson 1990). 

exact solutions of the equations for a uniform pipe rather than polynomial interpolation 
functions, thereby enabling the analysis of a complex system with very few finite elements 
(see also Chapter 7, Volume 2). The method has been found to be in excellent agreement 
with previous results and to be versatile, e.g. in handling systems such as that in 
Figure 4.41. 

In contrast to steady flows, however, unsteady j o w ,  e.g. due to pump-induced pulsa- 
tion or acoustical effects, can and commonly does cause serious vibration problems (see 
Section 1. l), especially when light-gauge, low-damping piping is used, or in conjunc- 
tion with flexible supports. Here the tools developed in Section 4.5 are of direct appli- 
cability. 

The reader is also referred to the very extensive literature on the mainly unsteady 
fluid-structure interaction phenomena involving compressibility of the fluid and acoustical 
effects, including waterhammer, and more generally the effects of near-field and far-field 
noise which are not covered in this book (Wylie & Streeter 1978; Wiggert 1986, 1996; 
Moody 1990; Tijsseling 1996). 

4.7.6 Vibration conveyance and vibration-induced flow 

An unsigned ‘focus’ paper published in Chemical Engineering (March 1995, pp. 123- 124) 
is entitled ‘Pipes can’t have “good vibrations”.’ Yet, as they say in Greek pqSi‘v K U K ~ Y  

a ~ i  yks K ~ A o G ,  i.e. nothing is bad without some good. An example of this is the turning 
of the tables on flow-induced vibration by vibration-inducedflow. 

Pipe vibration can be used to insert a long optical fibre into a long spatially curved, 
e.g. helical, steel pipe (Long et al. 1993, 1994). The optical fibre may be viewed as a 
‘plug-flow’ model of a flowing fluid as in Bourrikre’s work (Sections 3.1 and 5.2.8). 
However, Jensen (1 997) discovered recently that real vibration-induced flow is possible 
by nonlinear effects, as discussed in Section 5.10. 
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4.7.7 Miscellaneous applications 

(a) Educational rn odels 

Some very interesting models for demonstrating the dynamics of nonconservative mechan- 
ical systems have been proposed by Herrmann et al. (1966), the central item in which 
is a cantilevered pipe conveying fluid. Every educator in the mechanics area should be 
awarc of this publication. 

(b) Buckling flow, turbulence and solar wind 

In this case fluid-conveying pipes are used simply as conceptual devices in developing 
models for much more complex phenomena. 

In a paper entitled ‘Buckling flows: a new frontier in fluid mechanics’, Bejan (1987) 
has assembled evidence to support the thesis that the buckling of flows is a generic 
phenomenon which may explain, among other things, the origins and structure of turbu- 
lence (Bejan 1989). 

Bejan developed and systematized Taylor’s (1969) and others’ ideas and observations 
(e.g. Cruickshank & Munson 1981; Suleiman & Munson 1981), suggesting that there 
exists a characteristic wavelengthhtream-thickness ratio to the undulations that may be 
seen in such diverse phenomena as the coiling of a honey (or maple syrup!) filament 
or the folding of a sheet of batter under gravity upon a solid surface, the sinuous shape 
taken by a jet of glycerine in quiescent water, the buckling of a falling sheet of toilet 
paper, a water jet hitting a free water surface, hot-air plumes, meandering rivers, etc. The 
interesting thing is that these phenomena are not confined to low-Reynolds-number flows. 
Although this wavelength-to-thickness ratio is different for each case, it remains in the 
range 1 - 10. The contention is that the large-scale structures in turbulent streams can be 
regarded as the ‘fingerprint’ of buckling. 

Of interest here is that one of the examples cited by Bejan to support this thesis is the 
‘static buckling of a latex rubber hose’ hanging vertically and conveying water - from 
his own experiments and those of Bishop & Fawzy (1976) and Lundgrcn et al. (1979). 
Of course, as discussed in Section 3.5.6, this is due to residual internal stresses; hence, 
in this context, the word ‘imperfect’ is required. However, this in itself is not dele- 
terious to the thesis put forth by Bejan. Hence, this represents an unexpected use of 
the simple garden-hose problem towards modelling such a complex subject as turbu- 
lence! 

Even more unexpected is the ‘application’ to an even more rarefied subject: solar wind 
modelling. Solar wind refers to the fast movements of plasma from the surface of the sun 
into space (all the way to earth), which, were it atmospheric air, would resemble wind. One 
of the early theories of the origin of solar wind (Axisa 1988) was that electromagnetically 
constricted ‘tubes’ of plasma develop, which are governed by fluid-dynamic equations 
(Dessler 1967; Parker 1963; Montgomery & Tidman 1964), and which move spirally into 
space. Bundles of such tubes of plasma could become unstable, similarly to fluttering 
cantilevered pipes, and then become intertwined, something like the snakes on Medusa’s 
head, thus giving rise to turbulent mixing of the plasma. Alas, the real phenomenon is 
much more complex and such theories, though useful at the time, have long since been 
abandoned. 
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(c) Travelling bands and MAGLEV systems 

The close similarity in the dynamics of travelling bands (band-saws, chains, magnetic tape, 
deploying antennas in space, etc.) have already been remarked upon on several occasions 
in this book; see, e.g. Mote (1968, 1972), Tabarrok et al. (1974), Wickert & Mote (1990). 
This is a case where cross-fertilization of ideas and swapping of techniques has been and is 
constantly taking place; a good example is given in Section 5.5.1. Another, among many 
areas benefitting from such cross-fertilization is magnetic levitation (MAGLEV) vehicle- 
guideway systems (Cai et al .  1992, 1996), where divergence and flutter instabilities can 
arise (Cai & Chen 1995). 

(d) Severed pipes and pipe-whip 

In many cases, a pipe may be acceptably ‘stable’ when connected the way it is meant 
to be, at both ends. If one end is accidentally disconnected or severed, however, which 
may sometimes mean the loss of tension which rendered it stable, the cantilevered pipe 
or pipe-string may well be unstable by flutter. Examples of such occurrences relate to 
fire-hoses and to life-lines used in space and underwater. 

In the same family of accidents is the rupture in a pipe conveying high-pressure 
fluid, which causes the fluid to ‘blow down’ through the unevenly ruptured pipe into 
the surrounding fluid medium. As a result, the pipe may ‘whip about’, causing damage to 
surrounding structures. It is required practice for designers of power plants ‘to postulate 
pipe ruptures and then perform analysis to determine what restraints or armor is required 
to prevent secondary failures’ (Blevins 1990). A sample calculation of the motion of a 
pipe after rupture may be found in Blevins (1990, Chapter 10). 

(e) Sprinkler system 

A garden-variety type of application is the author’s invention of a novel sprinkler for 
a McGill Open House circa 1976. It consists of an elastomer up-standing cantilevered 
pipe, mounted on a simple base and connected to the water mains. At the free end, a 
coarsely perforated stopper may be used. The hose performs a circular motion and waters 
a circular patch of lawn. Although it is not more effective than any other sprinkler, it is 
more aesthetically attractive than many, something like kinetic art! 

4.8 CONCLUDING REMARKS 

Even in an extensive treatment of the subject of the dynamics of straight pipes conveying 
fluid such as is given here in Chapters 3, 4 and 5, it is impossible to cite all the work, 
let alone discuss it. Hence, a great deal has been left out. Among that is the burgeoning 
effort on control of cantilevered pipes in flutter. 

Control of the linear system has been studied by Takahashi et al .  (1990), Kangaspu- 
oskari et a l .  (1993), Cui et al .  (1994, 1995), Tani & Sudani (1995), Lin & Chu (1996), 
Tsai & Lin (1997), Doki et al. (1998) and of the nonlinear chaotic system by Yau et al .  
(1993, utilizing a wide variety of control schemes. Some of the work, e.g. Tani & Sudani’s 
(1995) and by Doki et al .  (1998), is supported by experiments. 

Some new work has began appearing also on shape optimization to maximize the 
critical flow velocity for flutter (Tanaka er al. 1993). 



5 
Pipes Conveying Fluid: 

Nonlinear and Chaotic Dynamics 

5.1 INTRODUCTORY COMMENTS 

One of the main reasons why the dynamics of pipes conveying fluid has remained 
of intense interest to dynamicists well into the 1980s and 1990s is the fact that (i) it 
displays interesting and sometimes perplexing nonlinear dynamical behaviour and (ii) it 
has become a handy tool in developing or testing modern dynamics theory. 

In Chapters 3 and 4 we have mainly dealt with the stability of systems from the linear 
point of view, thus predicting loss of stability by divergence or flutter and, in some cases, a 
sequence of instabilities as the flow is increased beyond the onset of the first. As discussed 
in Section 2.3 with the aid of a one-degree-of-freedom model, divergence may arise via a 
pitchfork bifurcation, whereby the original equilibrium point becomes statically unstable, 
while two new equilibria are generated; on the other hand, flutter is often generated via a 
Hopfbijkation and implies the generation of a limit cycle (Figures 2.10, 2.11 and 3.4). 
Additional bifurcations, e.g. a saddle-node and a period-doubling one, will be discussed 
in this chapter in due course. 

Some key questions associated with these physical phenomena cannot be answered 
except by nonlinear theory, among them: (i) for the static instability, where are the 
new fixed points located for any value of the parameter being vaned and are they 
foci (sinks) or saddles, and hence is the pitchfork bifurcation giving rise to the insta- 
bility supercritical or subcritical? (ii) for the dynamic instability, is there an unstable 
‘inner’ limit cycle in addition to a stable outer one (Figures 2.12 and 2.13), and hence 
is the Hopf bifurcation supercritical or subcritical (Figure 2.1 1); also, what is the ampli- 
tude of the limit cycle, and hence the amplitude of oscillation associated with flutter, 
and how does the frequency of oscillation vary with amplitude? Many of these ques- 
tions are answered via the construction of appropriate bifurcation diagrams which, in 
compact form, display both (a) qualitative changes in the character of motion (bifur- 
cations) and (b) the evolution in between some characteristic of the motion (typically 
the amplitude) with U .  Also, the existence and nature of successive instabilities can be 
tackled by nonlinear theory, e.g. the question of post-divergence coupled-mode flutter, 
extensively discussed in linear terms in Chapters 3 and 4 by assuming implicitly that 
post-divergence oscillatory motions occur about the original equilibrium state; however, 
because the original equilibrium has become unstable after divergence, motions actually 
take place about the new equilibrium points, and hence stability has to be reassessed in 
this light. 
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Unfortunately, the methods required for the study of nonlinear dynamics (and for 
answering questions such as those in the previous paragraph) are much more complex than 
those for linear dynamics, and they are not in everyone’s repertoire. Furthermore, they 
cannot easily be ‘covered’ in a book such as this, properly requiring one or more books 
of their own to do the job properly. One may distinguish ‘classical’ methods of nonlinear 
dynamics exemplified by the treatment in Minorsky (1962), Hayashi (1964) and Andronov 
et al.  (1966), and ‘modern’ methods as exemplified by Guckenheimer & Holmes (1983), 
Sanders & Verhulst (1985) and Glendinning (1994). Other useful general references are 
Hirsh & Smale (1974), Nayfeh & Mook (1979), Hagedorn (1981), Rand & Armbruster 
(1987), Arnold (1988), Anosov et al .  (1988), Arrowsmith & Place (1990) and Nayfeh 
(1981, 1993). An abbreviated treatment of some of the methods utilized extensively in 
this chapter and elsewhere in the book is given in Appendix F. This appendix, along with 
the specialized references cited therein, should be sufficient to guide the serious reader. 
The more casual reader may skip over the mathematics and concentrate on the physical 
interpretation of the results obtained in each case. 

Most of the methods in Appendix F are concerned with local analysis, i.e. nonlinear 
behaviour in the vicinity of a fixed point or limit cycle; this is a requirement for the 
methods to work. More difficult is consideration of global dynamics aspects, e.g. the 
possibility of a large-amplitude limit cycle circumscribing two fixed points, which has 
not emanated from either. Although some aspects of global behaviour may sometimes be 
discerned from local analysis, the complete dynamical picture can only be provided by 
global analysis. The methods required for the latter will be discussed in ad hoc fashion 
and without too much detail. 

The possibility of chaos in nonlinear systems has been known ever since Henri PoincarC 
at the turn of century, but it is fair to say that, for applied scientists, its existence lay 
dormant until the 1960s and the advent of Lorenz’s work on thermal convection in the 
atmosphere. A good layman’s introduction is given by Gleick (1987), and an excellent 
engineering treatment by Moon ( 1992). More sophisticated mathematical treatments are 
given by, among others, Thompson & Stewart (1986) and Wiggins (1988, 1990). Other 
useful references are Berg6 et al.  (1984), Devaney (1989), Parker & Chua (1989), Hao 
(1990) and Tsonis (1992), among others. 

Basically, chaos arises when, over some ranges of parameters, the system ceases being 
predictable, in the sense that small changes in initial conditions may generate dispropor- 
tionately large differences in the state of the system at any given time sufficiently long 
afterwards. The system is deterministic, but it behaves as if it were random - but with a 
most significant difference: its states are within specific regions of state-space, rather than 
all over, as would be the case for a truly random system. Thus, the trajectories of system 
response visit certain parts of the phase space, apparently randomly, but never others. A 
fractal nature in such plots is often revealed, whereby a small such region, when blown 
up, displays a similar character at a more microscopic scale. 

Inevitably, specialized methods have been developed for the study of chaotic dynamics. 
These will be described in abbreviated form as necessary in the sections that follow. 

5.2 THE NONLINEAR EQUATIONS OF MOTION 
In many of the early papers on nonlinear dynamics of pipes conveying fluid (Holmes 1977; 
Ch’ng & Dowel1 1979; Lundgren et al. 1979; Bajaj et al.  1980; Rousselet & Herrmann 
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1981), the equations of motion were derived ab initio, and hence several sets of different 
and certainly different-looking equations have come into existence. How different, and 
how complete and correct? The answering of these questions is not a trivial task, because 
of the different notations, approaches and assumptions involved in each of the derivations, 
and the relative obscurity of some. Hence, a definitive comparison was not undertaken 
until recently (Semler et al .  1994), but not before a number of de facto ‘schools’ had 
developed, followers of each utilizing the same basic assumptions and similar final forms 
of the equations. 

In this section, following closely Semler et al .  (1994), the equations of motion 
are derived via a Hamiltonian approach (while a Newtonian derivation is outlined 
in Appendix G) and, then, those of others’ are discussed and their completeness and 
correctness assessed. 

The system under consideration consists of a tubular beam of length L, internal cross- 
sectional area A, mass per unit length m and flexural rigidity Ef, conveying a fluid of 
mass M per unit length with an axial velocity U ,  which may vary with time (Figure 5.1). 
The pipe is assumed to be initially lying along the xo-axis (in the direction of gravity) 
and to oscillate in the (xg, Z O )  plane. 

Figure 5.1 (a) The Eulerian (x, z )  and Lagrangian (xo, zo) coordinate system and the coordinate s 
used when the centreline is considered to be inextensible; (b) diagram for the derivation of the 

inextensibility condition; (c) diagram defining terms for the statement of Hamilton’s principle. 

The basic assumptions made for the pipe and the fluid are as follows: (i) the fluid is 
incompressible; (ii) the velocity profile of the fluid is uniform (plug-flow approximation 
for a turbulent-flow profile); (iii) the diameter of the pipe is small compared to its length, 
so that the pipe behaves like an Euler-Bernoulli beam; (iv) the motion is planar; (v) the 
deflections of the pipe are large, but the strains are small; (vi) rotatory inertia and shear 
deformation are neglected; (vii) in the case o f a  cantilevered pipe only, the pipe centreline 
is inextensible. 

5.2.1 Preliminaries 

As in the derivation of the linear equations of motion (Section 3.3.1), two coordinate 
systems are utilized: the Eulerian (x ,  y ,  z )  and the Lagrangian (xg, yo, Z O )  - refer to 
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Figure 5.l(a,b). Then, as a material point of the pipe moves, its displacement may be 
defined by u = x - xo and w = z - zo for planar motions, where (u, w) may be expressed 
fully in either set of coordinates. Similarly, other quantities, such as the deformation gradi- 
ents and strain tensors, can also be expressed in either set of coordinates. In infinitesimal 
deformation theory, which is the basis of the linear derivation, the distinction between 
Lagrangian and Eulerian strains disappears (Eringen 1987); however, this distinction must 
absolutely be made when nonlinear relationships are sought. 

For a slender pipe with its initially undeformed state along the xo-axis, undergoing 
motions in the (XO, ZO)  plane, we have zo = 0, so that w E z .  Here the Lagrangian repre- 
sentation is chosen, so that the position and deformation of any point of the pipe is 
expressed in terms of xu, i.e. the position of that point in the undeformed state. 

However, an exception is made in the case of a cantilevered pipe, the centreline of 
which may be assumed to be inextensible, in which case the coordinate s, measured 
along the centreline, is introduced (Figure 5.1), and all physical quantities, including the 
equations of motion, may be expressed in terms of (s, t ) .  

The condition of inextensibility has already been defined in Section 3.3.1. Briefly, it 
states that the distance 6s between two contiguous points P and Q, originally located at PO 
and Qo and 6s0 apart, satisfy 6s = 6s0 = 6x0; whereupon two forms of the inextensibility 
condition may be obtained, equations (3.14) and (3. lS), repeated here for convenience: 

(”) + (2) = 1, (1 + 2) + (E) = 1. 
ax0 8x0 ax0 

For pipes fixed at both ends, 6x0 and 6s are not identically equal, but they are related 
via equation (3.16), which may be expressed as 

where E is the axial strain along the centreline. If E = 0, the second of (5.1) is retrieved. 
An exact expression for the curvature, K ,  is useful in the derivations that follow, and is 

hence derived next. Depending on the choice of the coordinate system and the assumptions 
concerning the inextensibility of the pipe, the expression for K differs. Let 8 be the angle 
between the position of the pipe and the xo-axis, and s the curvilinear coordinate along 
the pipe [Figure S.l(b)]. For a pipe undergoing planar motion, extensible or inextensible, 
the curvature is given by 

ae 
as 

K =  -. (5.3) 

For simply-supported pipes, 8 is defined by 

In terms of the xo-coordinate, equation (5.3) becomes 

ae ax, 1 a8 
axo as 1 + E  ax; 

/(=--=-- (5.5) 
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The derivative in this expression may be obtained from (5.4), 

a0 aw a2u 
- 8x0 = [ $ (1 + E) - ax, $1 /( 1 + 4 2 ,  

thus yielding the curvature (5 .5)  for pipes whose centreline may be extensible. 
On the other hand, for cantilevered pipes whose centreline is assumed inextensible, 

expressions (5.3) and (5.4) still hold, except that E = 0. In this case, s = XO, and hence 
ae/axo becomes 

(5.7) 

Application of the inextensibility condition (5.1) leads to the following expression of the 
curvature: 

Alternatively, the curvature may also be defined as a vector: 

where n is the normal unit vector which is always perpendicular to the tangent direction 
of the pipe and r = (x, z )  is the position vector along the pipe. Hence, 

2 2 

K = l Z l = / ( $ )  +($). 
If the inextensibility condition is applied to the expression above, one obtains again 
equation (5.8). 

Note that for a curve defined by ~ ( x )  (Eulerian description) rather than ~ ( s ) ,  one has 
the familiar expression of curvature [e.g. Timoshenko (1955)], 

Care must be taken as to which expression of K is used, depending on the physical 
problem. 

5.2.2 Hamilton's principle and energy expressions 

A Hamiltonian derivation of the equations of motion is given here. It is based on the 
same statement of Hamilton's principle as in Section 3.3.3, namely 

(5.10) 

where 2 is the Lagrangian of the system (2 = + % - y - q, % and Vp being the 
kinetic and potential energies associated with the pipe, and ?$ and @l$ the corresponding 



282 SLENDER STRUCTURES AND AXIAL FLOW 

quantities for the enclosed fluid), and where rL and t ~ .  represent, respectively, the position 
vector and the tangential unit vector at the end of the pipe [Figure 5.1(c)]. 

However, before proceeding with the derivation of the equations of motion, some order- 
of-magnitude considerations are necessary. The lateral displacement of the pipe may be 
considered to be small relative to the length of the pipe, i.e. 

z = w - 6 ( E ) ,  E << 1. (5.1 1) 

Large motions imply that terms of higher order than the linear ones have to be kept in the 
equation of motions. Because of the symmetry of the system, the nonlinear equations will 
necessarily be of odd order, and the derivation here will give a set of equations correct 
to 6'(c3). However, the variational technique always requires a formulation correct to one 
order higher than that of the equation sought, so that all expressions under the integrand 
in statement (S.10) have to be at least of 0(c4). Finally, by considering the inextensibility 
condition, one can easily see that the longitudinal displacement u is 

u - S(€2>, (5.12) 

i.e. one order higher than w. 

and the kinetic energy of the fluid, q, defined by 
The total kinetic energy of the system is the sum of the kinetic energy of the pipe, 9, 

(5.13) 

V, and V, being the corresponding velocities. 
The potential energy comprises gravitational and strain energy components. In general, 

the gravitational energy depends on the distribution of mass (Fung 1969), and is written 
as % = J p#(()dQ, where r$ is the gravitational potential per unit mass; in a uniform 
gravitational field it becomes Yi = J pgcdQ, where g is the gravitational acceleration, 6 
is a distance measured from a reference plane in a direction opposite to the gravitational 
field, and d"lr is an elemental volume. Consequently, with the notation used here, 

(5.14) 

It is very important to define an exact form of the strain energy in the case of large 
deflections, correct to 0(c4). This problem is solved by Stoker (1968), with only one 
major (but not drastic) assumption: the strain is small even though the deflection can be 
large. His analysis finally leads to 

L 

.(r = + EZ(1 + E ) ~ K ~ ]  dr0, (5.15) 

where no represents the Lagrangian coordinate, A the cross-sectional area, I the moment 
of inertia and E the axial strain. 



PIPES CONVEYING FLUID: NONLINEAR AND CHAOTIC DYNAMICS 283 

5.2.3 The equation of motion of a cantilevered pipe 

Consider a small segment of the pipe and the fluid. By definition, the velocity of the pipe 
element is 

V - -  =xi+Zk ,  (5.16) 

and the velocity of the fluid element is Vf = Vp + Ut, where Ut is the relative velocity 
of the fluid element with respect to the pipe element, t being the unit vector along s. For 
the cantilevered pipe, where the inextensibility condition is assumed to hold true, t has 
the form t = (ax/as) i + (az/as)k. Consequently, 

ar 
p -  at 

(5.17) 

where D/Dt is the material derivative of the fluid element (Section 3.3.3). By analogy, 
the accelerations of the pipe and of the fluid (used in Appendix G )  are, respectively, 

a2 r D2 r 
af = 2. 

Dt aP = - at2 ’ 
(5.18) 

Hence, the total kinetic energy, 9, may be written as 

T = irn (i2 + z 2 )  ds + M [(x + Ux’I2 + (Z + UZ’)~] ds, (5.19) I” I” 
where the dots and primes denote a( ) /a t  and a( )/as, respectively. 

One important remark that ought to be made is that no variable term proportional 
to U’ arises from expression (5.19) since, by expanding the integrand and by virtue of 
the inextensibility condition, one obtains only a constant term, U2xf2 + U2zl2 = U 2 .  This 
illustrates the importance of the right-hand side of statement (5.10), which will provide 
both linear and nonlinear components of the centrifugal force proportional to M U 2 .  

The variational operations on 9 lead to 

+ ( z  + Uz’)(SZ + U Sz’)] ds dt. 

Integrating by parts and noting that x’Sx’ + 2’62’ = 0, one obtains 

(5.20) 

where XL = x(L)  and ZL = z(L) are the longitudinal and lateral displacements of the free 
end of the pipe. 



284 SLENDER STRUCTURES AND AXIAL FLOW 

The two components of the potential energy are derived next. Considering first the 
strain energy expression (5.15) with E = 0, one can write 

6 Lt2 “Irdt = ; E l  6(K2)dsdt. 11 
Utilization of the curvature expression (5.8) leads to 

= E1 6’ LL[z”” + 42’ z”z”’ + z’’~ + z”” z’~] 6z ds dt + S(c5). (5.21) 

The gravitational potential (5.10) may be dealt with in a similar manner. However, 
since it will involve ax, a relationship between 6x and Sz needs to be found. This is done 
by taking variations of the first of (5.1), the inextensibility condition, yielding 

ax’ = - z’ 62‘ = -z’ (1 + i Z ’ 2 )  6z’ + S(c4); 
d m  

hence, 

6x = - [z’ 6z’ + iz’3 SZ’] ds. (5.22) 

After integrating the right-hand side of (5.22) by parts and noting that 6z = 0 at s = 0, 
one obtains 

I’ 
Sx = - (z’ + iz’3) Sz + (z” + p z ” )  6z ds + S(c4). I’ 

One can also prove quite easily (Semler 1991) that 

(5.23) 

(5.24) 

Equation (5.24) is important, since terms of that form will arise from (5.23) in the process 
of relating Sx to Sz. 

Now, using (5.23) and (5.24), the variation of the gravitational energy (5.14) is obtained: 

6 L t 2 % d t  = - ( r n + M ) g  [ I’ [- (z’ + ;2’3) 6z 

+ (L  - S )  (z” + ;z” z ’ ~ )  6z] ds dt + O ( 2 ) .  (5.25) 

Applying next the variational procedure to the right-hand side (rhs) of Hamilton’s 
principle, equation (5.10), leads to 
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= A + B .  (5.26) 

The first term, A ,  cancels the last term in equation (5.20), while with the use of equa- 
tions (5.1) and (5.23) B is found to be 

B =  MU^/" [ t” + z ’ ~  z” - z” l‘ (z’ z”) ds] Sz ds dt, (5.27) 

and hence contributes all the centrifugal-force terms. 

equation (5.1 l), the general equation of motion is found to be 
Finally, after many transformations and manipulations, and recalling that z = w as per 

(rn + M ) i b  + 2MUW‘(l  + w”) + (rn + M ) g w ’  (1 + ; wJ2) 

+W”[MU2(1 + w ’ 2 ) + ( M i i - ( r n + M ) g ) ( L - s ) ( 1  + T W  3 ‘2 )] 
+ ~ z [ ~ ” ” ( i  + w’2) + 4 w’ w” w’ii + w”3] 

- W” [ lL .I’ (rn + + W’ W’) & ds 

(;Mow‘’ + 2MU w’w’ + M U 2  w‘w‘‘) ds 
+ 1‘ 

+ W’ is(rn + M)(w’* + di?) ds = 0. (5.28) 

The Newtonian derivation of this equation is given in Appendix G .  1. 

5.2.4 The equation of motion for a pipe fixed at both ends 

Here, as the inextensibility condition can no longer be applied, two equations are necessary: 
one in the x- and the other in the z-direction. Moreover, since both ends of the pipe are 
fixed, the right-hand side of expression (5.10) is now zero. Consequently, it is obvious that 
the contribution of the fluid forces is not the same as in the case of the cantilevered pipe. 

When a bar is subjected to tension, the axial elongation is accompanied by a lateral 
contraction. Within the elastic range, the Poisson ratio u is constant (Timoshenko & 
Gere 1961) and, for rubber-like materials, v 0.5. In the case where only a uniaxial 
load is applied to an elastic body, the change of unit volume is proportional to 1 - 2 u. 
Consequently, for rubber-like materials, the volume change due to uniaxial stress can 
be considered zero, i.e. they are incompressible. In the case of a pipe, for any initial 
volume of length dxo, this conservation of volume leads to dxo So = dxo( 1 + E )  SI, where 
SI represents the cross-sectional area of the pipe after elongation. For the incompressible 
fluid inside the pipe, one also has Uo So = U1 SI, with Uo and U1 being the flow velocities 
before and after elongation. Thus, 

U l ( X 0 )  = uo (SO/Sl) = uo (1 + E ) .  (5.29) 



286 SLENDER STRUCTURES AND AXIAL FLOW 

This shows that the velocity of the fluid with respect to the pipe is no longer constant. 
Hence, the absolute velocity is 

where the prime denotes the derivative with respect to XO. Consequently, 

(5.30) 

Relationship (5.17) derived for a cantilevered pipe still holds, with the difference that 
the inextensibility condition is not valid here, so that U 2  terms in this case survive in the 
kinetic energy and are therefore not associated with the right-hand side of (5.10), which 
is zero! The total kinetic energy is given by 

% =  Lrn ( U 2 + W 2 ) d x 0 +  $A4 [ ( u + U ( l  + ~ ' ) ) ~ + ( W + + w ' ) ~ ] d x ~ .  (5.31) 

For the case of non-rubber-like materials (u  # O S ) ,  some additional words are neces- 
sary. The change of volume is no longer equal to zero, and &/SI = 1/(1 - ~ u E ) .  The 
fluid being incompressible, one obtains 

1" I' 

U(X0) = uo (1 + 2 u E )  = Uo(1 + E )  + uo E (2 u - 1) = u1 (xo) + uo E (2 u - l), 

i.e. 

(5.32) 

To fourth order, the strain E is given by 

E = u' + $ w'2 + 0(€4), (5.33) 

so that for a pipe of length L = 1, with ( u I  - 0.01, and IwI - 0.1, one obtains I E ~  - 
1.5 x lop2. For u = 0.4 and 0.3, the error in the flow velocity associated with taking 
u 2: 0.5 is 0.3% and 0.6%, respectively, which is of same order of magnitude as the error 
made by assuming the velocity profile to be uniform. Hence, equation (5.31) may still be 
considered valid. 

The potential energy is considered next. To derive the strain energy, the axial strain is 
itself decomposed into two components: a steady-state strain due to an externally applied 
tension To and pressurization P ,  and an oscillatory strain due to pipe oscillation. By 
reference to equation (5.13, this strain energy may be expressed as 

By using ( 5 . 3 ,  this is simplified to 

(5.34) 
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Recalling that u - CY(€*), w - O’(E), and using (5.6), 

is obtained. Moreover, E is given by equation (5.33). 

pipe, i.e. 
The expression for gravitational energy is the same as in the case of the cantilevered 

% =  - ( m + M ) g  (xo+u)dxo. I” (5.35) 

The final equations of motions are obtained once again via application of variational 
techniques, this time with two independent variants, 6u and 6w. After many integrations 
by parts, one finally obtains 

(m + M )  u + M U  + 2 M U  U’ + M U 2  u“ + M U  u’ - EAu” 

- EI(w’”’ w’ + w” w”’) + (To - P - EA)w’ w” - (m + M ) g  = 0, (5.36a) 

(WZ + M ) W + M 0 W’ + 2 M U W’ + M U 2  W” - (To - P )  W” + EZ w”” 

- EZ(3 u/f l  ,,,’I + 4 ur! w’!/ + 2 u/ ,,,,!/!( + 
u/// !  + 2 ,,,,!2 ,+,//// + 8 ,,,I! ,,,l/’ + 2 ,,,!/3) 

+ (To - P - EA) (u” W’ + U’ W” + 5 d2 w”) = 0, (5.36b) 

where one now has two independent equations, instead of the one for a cantilevered pipe. 
A Newtonian derivation is outlined in Appendix G.2. 

5.2.5 Boundary conditions 

Using variational methods, it is straightforward to derive boundary conditions for the 
different cases considered. For the cantilevered pipe, the boundary conditions are the same 
as for the linear case: w(0)  = w’(0) = 0 and w”(L) = w”’(L) = 0. For the pipe fixed at 
both ends, it is obvious that u(0) = w(0)  = u(L)  = w(L) = 0; in addition, if the pipe is 
simply-supported, one obtains w”(0) = w”(L) = 0, while for the clamped-clamped pipe, 
w’(0) = w’(L) = 0. Only two boundary conditions are necessary for u. 

5.2.6 Dissipative terms 

Dissipative terms have to be added to complete the equations. This can be done by 
assuming that the internal dissipation of the pipe material is viscoelastic and of the 
Kelvin-Voigt type (Snowdon 1968), i.e. that it is represented by CJ = E E + E* F ,  where 
CT is the stress and E the strain. Following then the approach used by Stoker (1968), the 
strain energy is modified, providing additional terms that can be written as 

(5.37) 

where a is the coefficient of Kelvin-Voigt damping in the material. Therefore, in equa- 
tions (5.28) and (5.36a,b), EZ may be replaced by EZ(1 + a  a/&) and EA by EA(l  + 



V 
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where L(q)  represents the linear terms, N1 ( q )  the nonlinear terms not involving integrals, 
and N ~ ( v )  those that do and wherein all nonlinear inertial terms lie. The terms involving 
a are omitted for simplicity in the derivation. 

It is noted that L(v )  - O ( E )  and N l ( q )  and N 2 ( q )  - O(c3) .  After some manipulation 
of L(q),  starting with 

one obtains 

which transforms one of the nonlinear inertial terms in N 2 ( q ) .  Integration of (5.41) from 
6 to 1 yields the other nonlinear inertial term. These two terms are replaced in N 2 ( q )  to 
obtain, after some long but straightforward algebra, 

Hence, the transformed equation is correct to 6(c3), as is equation (5.39). However, in 
view of the additional approximations introduced, this is a more approximate equation, 
albeit of the same order as the original. 

(el Equations for pipes with fixed ends 

For pipes with both ends fixed, some additional nondimensional quantities need be intro- 
duced, as follows: 

PL2 n=-, EA L2 & = -  
EI ’ EI ’ EI 

T ~ L ~  r = -  (5.44) 
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together with the dimensionless displacements 

(5.45) 

where W = q ,  but the barred quantity is used here for ‘symmetry’ with E. Hence, equa- 
tions (5.36a,b) may be written as follows: 

- (,”” ,’ + ,” E”’) + (r - &IJ - n)w’ w” - y = 0 ,  (5.46a) 

ct +% JBW‘ + 2% fig + Q2 w” - (r - n),” + w”” 
- [ 3 El” wl’ + 4 E” w”’ + 2 E’ ,’’I’ + ,r E”/’ + 2 ,I2 w”” + w’ ,u ,,” + 3 3  ] 

+ (r - s& - n) (a”w’ +a”w” + ; w”2w”) = 0. (5.46b) 

Note that the dissipative terms have been omitted for clarity, and that the nonlinear 
inertial terms are not present in the current form of the equations. In fact, the only real 
penalty incurred for the absence of nonlinear inertial terms is that one has to deal with 
two equations, instead of just one. 

5.2.8 Comparison with other equations for cantilevers 

The nonlinear equations of motion obtained by different researchers are described and 
compared in some detail, here for cantilevered pipes and in Section 5.2.9 for pipes with 
fixed ends. In order to get a more ‘comparable’ set of equations, a standardization of the 
notation has been imposed. 

la) Bourrieres‘ work 

This work is very original, all the more so since it was written in 1939. Bourribres (1939) 
studied the case of planar motion of two interacting strings, one of them moving with 
respect to the other. The pipe and the fluid represented by the strings are assumed to be 
inextensible, and the string representing the fluid is supposed to be infinitely flexible. The 
equations of motion of the pipe and the fluid are derived via the force-balance method. 
The relationship between the shearing force Q and the bending moment A, together with 
the condition of inextensibility, provides the nonlinear terms. Seven equations with nine 
parameters are obtained, two of which are independent, with coordinate s and time t as 
the two independent variables. After some algebraic manipulations, the fluid friction force 
is eliminated, yielding the following five equations: 

[ (T + O)X’]’ - (Qz’)’ - (m + M)X - 2 M  UX’ - M U2x“  = 0, 

[(T+@)z’]’- (ex’)’-  ( m + M ) i ” 2 M U Z ’ - M U 2 ~ ” = 0 ,  (5.47) 

d2 + z ’ ~  = 1, Q = -At’,  At = EZ(x’z’’ - z’x’’), 

where T and 0 represent the tension in the pipe and the negative of the pressure force 
in the fluid, respectively, and ( )’ = a( )/as. 
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In his study, Bourri2res considers only the linear case. However, his approach, if 
pursued far enough, would have led him eventually to expressions similar to those 
derived in Section 5.2.3. In fact, the only difference between equations (5.47) and those 
of Section 5.2.3 lies in the absence of gravity and time-varying flow terms, not considered 
by Bourribres; this makes his work irreproachable. 

The remaining task would be to combine all the five equations of (5.47) into one, and 
to compare it with equation (5.39). This is not done here since it has effectively already 
been done by Rousselet & Herrmann (1981), to be discussed next. 

(b) Rousselet and Herrmann‘s work 

Rousselet & Herrmann (1981) derived the equations of motion in two different ways: 
by the force-balance method and the energy method. They obtain a set of equations, 
fairly close to the one found in Section 5.2.3, but with some minor differences. Their first 
method follows closely Bourrikres’ work. Two differences are simply due to the addition 
of gravity forces and the assumption that unsteady flow velocity effects may be present. 

Considering an element of the system (see Figure G.l), the application of Newton’s 
law leads to 

a a 
as as 
-[(T - P )  cos 01 - -(Q sin 0) + (m + M ) g  

d6 
sin0 - 2 M  U - sin@, 

a2x M u2 
= (m + M )  - + M  U cos0 - - 

at2 R dt 
a a 
as as 
- [ ( T  - P)sin0] + - (Q cos@ 

(5.48) 

cos0 + M  U sine, = (m + M )  - + 2 M  U - cos0 + - a2z d0 M u2 
at2 d t  R 

where R is the local radius of curvature. In these equations, (T - P )  represents the tangen- 
tial forces and Q the shear force, and sin8 and cos6 are related to x and z by 

az ax 
as as 

sin 0 = -, cos8 = -. (5.49) 

By means of the inextensibility condition and the definition of the curvature K ,  one can 
also prove that 

- (5.50) 
1 az a2x 1 ax aZ2 

R as a$’ R as a$’ - 

Substituting (5.49) and (5.50) into (5.48), one obtains 

(5.51) 

~ ( ( T - P ) : )  as - : ( a : ) + ( m + M ) g  

a Z x  a2 x a2x ax 
at2 asat as2 as ’ 

= (m + M )  - + 2 M  U ~ + M  U 2  - + M  U - 

as ( ( T - P $ )  +; ( e ; )  
a2z a2 z a2z az 
at2 asat as2 as = ( m + M ) -  + 2 M U -  + M U 2  - + M U - .  
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In this form, the similarity with BourriCres’ equations is self-evident. Note that K and the 
condition of inextensibility have already been used implicitly. At this point, Rousselet & 
Herrmann proceed to reduce this set of equations into one. With the different relationships 
defined in Rousselet (1975), and after some manipulation, the nondimensional equation 
is obtained, which differs from (5.39) only in two nonlinear terms involving the unsteady 
velocity; they arise from an error in the use of the following relationship: 

This relationship is exact, but in the order analysis, if F is of order 0, then tan 8 must be 
approximated to the third order; this is not done by Rousselet & Herrmann. As explained 
in Section 5.2.1, this relationship [derived in Section 5.2.3, equation (5.24)] has to be 
rigorous to order 0(c4). 

Rousselet & Herrmann also consider the effects of fluid friction or of the related pressure 
drop, and derive a flow equation, 

L 
Po - a M U 2  + 1 ( M  g x‘ - M U )  ds - I‘ M(X x’ + 2 2‘) ds = 0, (5.53) 

where PO is the compressive force acting on the fluid cross-section at s = 0, and a M U 2  
is the sum of the friction forces between the fluid and the pipe (a is a constant which 
depends on the roughness of the pipe). The two partial differential equations are coupled 
through the nonlinear terms. Thus, instead of considering the flow velocity as constant, 
the upstream pressure (in a large reservoir) is assumed constant instead, as first proposed 
by Roth (1964). 

(cl Sethna, Bajaj and Lundgren’s work 

Lundgren, Sethna & Bajaj (1979) and Bajaj et al .  (1980) derived equations of motion by 
the Newtonian (force balance) method. The assumptions made are the same as in other 
work, but, from a mathematical point of view, every effort has been made to be as rigorous 
as possible. Their equations appear to be exact. They use the condition of inextensibility 
and the exact expression for curvature; in their derivation, all the nonlinearities come 
from the terms (To - P )  and EZ K’. 

Lundgren et al. stopped their derivation at an early stage, without taking further advan- 
tage of the inextensibility condition. In their subsequent paper (Bajaj et al. 1980), some 
nonlinear terms are apparently missing, especially nonlinear velocity-dependent terms. In 
the form of an integrodifferential set of equations and neglecting, for the moment, the 
unsteady flow velocity, one may read [equation (5 )  in Bajaj et at. (1980)l 

EZZ”” + 2M UZ’ + M U 2  z’’ + (rn + M ) z  = NL, (5)’ + (2)’ = 1, (5.54) 

where 

L a a 
as as NL = - 4 EZ - [ ~ ’ ( x ’ ’ ~  + z’I2)] - (rn + M) - (z’ 1 (x’ X + Z’ i) ds) . 
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At first glance these equations seem wrong (as no nonlinear velocity-dependent terms are 
present); however, if further simplification is carried out, equation (5.54) yields the correct 
form of governing equation in terms of z .  The U and U 2  terms are actually ‘hidden’ in 
the nonlinear inertial term. Indeed, eliminating x through the condition of inextensibility 
leads to 

(rn + M )  Z(  1 - 1”) + 2 M U i’ + M U 2  z” + EZ (z”” + 3 z’ z” z’” + z ” ~ )  

+z’~’( rn+M”i’ ’+z’ i ’ )ds  

L 

- i” ( lL (rn + M)(i” + z’i’) ds ds - 1 (m + M )  Z Z’ ds) = 0. (5.55) 

By multiplying by (1 + z ’ ~ )  throughout, keeping cubic nonlinear terms and replacing 
nonlinear inertial terms [cf. Section 5.2.7(b)], one may bring equation (5 .55)  with z = w 
into the same form as (5.28). 

Hence, this equation of motion is irreproachable. No nonlinear terms are missing, except 
for the gravity terms, since gravity has been neglected. However, the different steps from 
one equation to another are not very clear in the original derivation; also, Bajaj et al.  
(1980) use some implicit relationships of the curvature (Semler 1991), and the procedure 
for eliminating nonlinear inertial terms is not fully explained. Hence, verification is not 
easy. 

Finally, similarly to Rousselet & Herrmann, Bajaj et al .  also establish an equation for 
the flow, by considering a force balance on a fluid element, yielding 

(5.56) 

where UO is the constant flow velocity when the pipe is not in motion, a! represents the 
resistance to the fluid motion (proportional to a friction factor) and a M U i  represents 
the constant pressure force at the fixed end s = 0 of the tube. It is found that a! plays an 
important role in the dynamics, as discussed in Section 5.7.1. 

(d) Ch ‘ng and Dowell‘s work 

Ch’ng & Dowell (1979) obtained nonlinear equations of motion of a pipe conveying fluid 
by the energy method based on Hamilton’s principle. An Eulerian approach is used to 
describe the dynamics of the system, and the flow is assumed to be steady. Using first 
only linear relationships, the well-known linear equation is found: 

(5.57) EZ z”” + 2 M U i’ + M U 2  z” - (M + m)g[(L - x)~’] ’  + (m + M )  Z = 0. 

Ch’ng and Dowell then consider the nonlinear effects due to tension associated with 
the axial elongation of the pipe, 

(5.58) 

This relationship implies that the cantilevered pipe is extensible, which is an unusual 
but by no means erroneous assumption. By assuming the tube to be Hookean, an axial 
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nonlinear force T is added to (5.57), giving rise to 

- [g I” z”dx] z” (5.59) 

Because of the extensibility assumption, this equation cannot be compared with any of the 
previous ones. However, it should be mentioned that the strain is approximated to second 
order only, which does not fulfill the order considerations discussed in Section 5.2.1. 

Additionally, Ch’ng and Dowel1 also consider a nonlinear relationship for the curvature. 
They use expression (5.9) for the curvature K and the elastic strain energy 

and obtain additional terms, -E l  (3 z” z”” + 12z’z”z”’ + 3 ~ ’ ’ ~ ) .  It is seen that expres- 
sion (5.60) is not fully consistent with the strain energy derived by Stoker (1968), because 
the pipe is implicitly assumed to be extensible ( E  # 0). Moreover, it is not obvious how 
the Eulerian description can be used with the energy method to derive nonlinear equations. 
Therefore, comparison cannot be made with other versions of the governing equations. 

5.2.9 Comparison with other equations for pipes with fixed ends 

In this section, two papers are discussed, representative of all the derivations for pipes 
fixed at both ends. Again, a standardization of the notation has been undertaken. 

(a) Thurman and Mote‘s work 

Thurman & Mote (1969b) were mainly concerned with the oscillations of bands of moving 
materials. They consider an axially-moving strip, simply-supported at its ends, in order to 
show how the axial motion could significantly reduce the applicability of linear analysis. 
This work is then extended to deal with pipes conveying fluid. The centreline being exten- 
sible, nonlinearities are associated with the axial elongation and the extension-induced 
tension in the tube. Therefore, the strain and the tension become 

(1 + u ’ ) ~  + w ’ ~  - 1, T = To + E A  (J(1 + u ’ ) ~  + w ’ ~  - 1 ) .  (5.61) 

Since a linear moment-curvature relationship and a linear approximation for the velocities 
are considered, the equations of motion obtained are 

To J 
E = - +  

EA 

EZ w”” - (To - M U2)w’’ + 2 M U W’ + (m + M ) G  

= (EA - To) ( ;w” W” + U’ W” + u’’ w’) , (5.62) 

M U - EA U” = (EA - To) W’ w”. 

These are actually a simplified set of equations (5.36a,b). The differences come 
from the assumptions made: (i) no gravity forces, (ii) steady flow velocity, (iii) linear 
moment-curvature relationship, (iv) simple approximation of the fluid velocity; on the 
basis of these assumptions, the equations derived are correct. 
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(bl Holmes‘ work 

Holmes (1977) was one of the first to develop the new tools of modem dynamics, and to 
introduce them into the study of fluid-structure dynamical systems; he was therefore less 
concerned with the derivation of the equations so much as he was with their srructure. In 
that spirit, he considered only the major nonlinear terms associated with the deflection- 
induced tension in the pipe. 

Starting from the linear equation obtained by Paldoussis & Issid (1974), Holmes adds 
the effect of the axial extension. To a first order approximation, the axial tension induced 
by lateral motions is 

T = a A =  ( E & + E * & ) A ,  

in which a Kelvin-Voigt viscoelastic material has been considered and where E is the 
averaged axial strain defined by 

l L  
E = 2L ( .~)’~ds.+ 

Thus, an axial force T is added to the linear equation, where 

EA E*A T = - -  ( z ’ ~ )  ds + ~ I (z’ 2’)  ds. 
L 

(5.63) 

The addition of this extra deflection-dependent axial force leads to one equation with 
two cubic nonlinear terms. This same axial force T (with 9 = 0) has also been obtained by 
Ch’ng & Dowel1 (1979) and by Namachchivaya (1989) through the energy method. In this 
case, however, attention must be paid to the order approximation, as already mentioned 
in Section 5.2.1. 

It is noted that Holmes’ version of the nonlinear equation is a single scalar one, as 
compared to the two equations derived in Section 5.2.7 and also by others. The implication 
is that, in Holmes’ work, axial motion of the pipe is considered to be negligibly small 
and also that it is symmetric vis-&-vis the undeformed pipe shape. 

5.2.1 0 Concluding remarks 

The nonlinear equations of motion of a pipe conveying fluid have been derived in a simple 
manner, by both the energy and, in Appendix G, by the Newtonian method, following 
Semler et a l .  (1994). It is shown that the equations of motion of a cantilevered pipe and 
of a pipe fixed at both ends are fundamentally different. In the first case the pipe may 
be considered to be inextensible and nonlinearities are mainly geometric, related to the 
large curvature in the course of arbitrary motions. In the case of a pipe fixed at the ends, 
nonlinearities are mainly associated with stretching of the pipe and the nonlinear forces 
generated thereby. 

Of the other derivations, some have been found to be absolutely correct, some correct for 
the purposes for which they are used, and some to contain errors or inconsistencies. Of the 

‘There are some errors in sign in a few intermediate steps in Holmes’ derivation (1977); the final equation, 
however. is correct. 
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equations derived for cantilevered pipes, those by Lundgren et al .  (1979) and Bajaj et al .  
(1980) are found to be absolutely correct, while those by Rousselet & Herrmann (1981) 
are found to be correct except for a small order-of-magnitude inconsistency. Furthermore, 
both sets contain a distinct refinement vis-&vis those derived here: the flow velocity is 
not assumed to be constant; instead, the upstream pressure is taken to be constant, while 
the flow velocity generally varies with deformation. Of the equations derived for pipes 
withJixed ends, the set derived here is considered to be the only one available, correct to 
the same order as that for the cantilevered pipes. On the other hand, the simple equation 
derived originally by Holmes (1977) is correct as far as it goes and may be preferred in 
some cases because of its simplicity. It is of interest that the origin of the terms in the 
equations - even some of the linear terms - as well as the structure of the equations are 
distinctly different for pipes with both ends fixed as compared to cantilevered ones. 

5.3 EQUATIONS FOR ARTICULATED SYSTEMS 
Traditionally, articulated models of columns subjected to axial loading have been widely 
used as an aid in the study of their continuous, distributed parameter counterparts 
(Herrmann 1967). The same has occurred with pipes conveying fluid. For nonlinear 
dynamics this is particularly attractive, since many of the methods of nonlinear dynamics 
are best suited to low-dimensional discrete systems; with articulated systems, no questions 
need arise as to the adequacy of the Galerkin discretization of a continuous system: the 
physical system is discrete and may be low-dimensional to start with. 

Most of the interesting dynamics is associated with cantilevered systems, and hence 
most of the research has been devoted to such systems. Furthermore, virtually all of that 
work has been confined to two-degree-of-freedom ( N  = 2) systems (Figure 5.2), and this 
despite the caveat (Section 3.8) that the dynamical behaviour of the N = 2 system is not 
generic with respect to N (Paidoussis & Deksnis 1970). 

Two representative sets of equations are given here, both for cantilevered two-degree- 
of-freedom systems. The first set was derived by Rousselet & Herrmann (1977) by 
straightforward Newtonian methods via free-body diagrams and moment balances on 
the two segments of the pipe, yielding 

(5.64) 

where M and m are the mass of the fluid and of the pipe per unit length, and U the 
flow velocity; ZI and 12 are the lengths of the upper and lower segments of the pipe 
(Figure 5.2), and kl and kz are the stiffnesses of the interconnecting springs. The flow 
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f 
i 

Figure 5.2 (a) A two-degree-of-freedom articulated pipe system conveying fluid, supplied by a 
constant-head tank and executing planar motions, as in Rousselet & Henmann (1977); (b) an 
articulated system conveying fluid at a constant flow velocity U and executing three-dimensional 

motions, as in Bajaj & Sethna (1982a,b). 

velocity is not assumed to be constant; rather, similarly to Roth (1964), the pressure 
is taken to be constant, at an upstream constant-head reservoir [Figure 5.2(a)]. Thus, a 
flow equation is also required, obtained by taking a force balance in the longitudinal 
(tangential) direction on a fluid element and subsequently integrating over the length of 
the pipe. This gives 

p d f  - Tu2 + Mg(zl COS el + z 2  COS 0,) - M U ( Z ~  + z2) 
+Mi): [iZ: + Z1Z2 cos(Q2 - el)] - MB1Z1Z2 sin(& - 0,) + $14Zgb2 = 0, (5.66) 

where p d f  is the force due to pressure acting on the fluid at x = 0, Af being the 
fluid area, and T U 2  represents the force due to frictional losses along the pipe; in more 
conventional form, this term may be written as (4fL/Di)Af(ipU2), where f is a friction 
factor - see equation (2.98) and Massey (1979), for instance - which generally depends 
on wall roughness and Reynolds number, Di is the internal diameter and L the total length. 
Equation (5.66) states that the pressure, as affected by the frictional losses and changing 
overall gravity head (the outlet pressure is always zero vis-&vis the atmospheric), is 
equal to the mass x acceleration of the fluid (Massey 1979), this latter being equal to 
the longitudinal components of transverse and centrifugal accelerations of the pipe, plus 
the acceleration of the fluid relative to the pipe. The pressure po is in turn related to the 
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pressure in the reservoir p* via 

PO + i p U i  = pgh* + p*,  (5.67) 

where the subscript 0 refers to quantities at the entrance to the pipe; p* and h* are defined 
in Figure 5.2(a). 

The same equations were derived by integration of the equations of motion of a continu- 
ously flexible pipe conveying fluid by Rousselet (1975). These equations may be rendered 
dimensionless through the following set of nondimensional parameters: 

and it is also noted that pAf = M .  These are more or less standard now [cf. Bajaj & 
Sethna (1982a,b)], but they are different from Rousselet & Herrmann's. 

The second set of equations given here are Bajaj & Sethna's (1982a,b), who considered 
three-dimensional motions of the same system, Le. motions in both the y- and z-directions, 
and a constant flow velocity [Figure 5.2(b)]. The Lagrangian procedure is utilized and 
hence Benjamin's equation (3.10). The generalized coordinates are the end-displacements 
of the two segments of the pipe, v1 and v1 + v2 in the y-direction and w1 and w1 + w2 
in the z-direction. Hence, the kinetic and potential energies are given by 

9 = i ( m  M)(l1  + 312)(w: + WT + b:) + t ( m  + M ) / 2 ( 4  + w; + b;) 
+ ~ M U ~ ( L ~  + 1 2 )  + i ( m  + ~ ) 1 2 ( i i l i 1 2  + ~ 1 ~ 2  + i c l i 2 )  

+MU(VIV2 + WlW2 + i ( l U 2 )  (5.69) 

and 

v = ( m + W g [ ( i l 1 + 1 2 ) ( 1 1  - ~ i ) + $ l 2 ( 1 2 - ~ 2 ) ]  + ~ ( k l $ ~ + k 2 & ) ,  (5.70) 

where U: = 1: - (4 + w:) and ui = 1; - (v; + w i ) ;  $ 1  is the acute angle between the 
upper pipe and the x-axis, while 4 2  that between the two pipes, 

Furthermore, the position vector RL and the tangent vector r ~ ,  defined in Figure 3.l(d) 
are given by 

RL = (u1 + u2)i + (211 + w 2 ) j  + ( W I  + w d k ,  
(5.72) 

ZL = (u2i + v d  + w2k)/Z2, 

where i, j, and k are the unit vectors along the x-, y- and z-axes, respectively. 
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These equations are rendered dimensionless with the aid of relations (5.68) and the 
following additional ones: 

(5.73) 

5.4 

With a few rare exceptions,S no general analytical solutions of the nonlinear equations 
of motion are possible. Therefore, recourse has to be taken to specialized analytical, 
semi-analytical and numerical techniques. Here, the classification proposed by Nayfeh 

METHODS OF SOLUTION AND ANALYSIS 

+With some corrections vis-&vis Bajaj & Sethna (1982a) - Bajaj (1998). 
*For example, for the nonlinear equation of a simple pendulum, via elliptic integrals. 
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(1985) will be described in abbreviated form. However, before doing so, let us first 
distinguish between implicit and explicit forms of the equations to be solved. 

Presuming that the equations to be solved are either discrete or discretized, they can 
be expressed as a set of second-order implicit nonlinear equations of the type 

MX + CX + Kx = F(x, X ,  X, t ) ,  (5.78) 

with appropriate initial conditions, x(0) and x(0); M, C and K are N x N matrices and 
all nonlinearities are included in F. This equation is said to be implicit because of the 
presence in F of nonlinear inertial terms, Le. terms involving x, which cannot be removed 
or transformed. 

In many cases, it is possible to express (5.78) as an explicit relation 

Y = F(y, t ) ,  Y(0) = yo, (5.79) 

which renders solution easier. However, when nonlinear inertial terms are present in F, 
this transformation into (5.79) may not be possible, and means for the direct solution of 
(5.78) must be sought. 

With this in mind, the various methods available for solving equations (5.78) or (5.79) 
will now be described. 

Irrational analytical methods entail the simplification of the equations to be solved by 
neglecting or approximating various terms, e.g. by the use of small-deflection or small- 
angle approximations. Hence, such solutions are valid over a small range of parameters 
or for small deviations from the state of equilibrium. 

Rational analytic methods, such as perturbation methods (Hagedorn 198 1; Nayfeh & 
Mook 1979), the method of averaging (Hagedorn 1981; Nayfeh 1981) and its precursor 
the Krylov & Bololiubov method (Minorsky 1962; Nayfeh 1973), and the method of 
multiple scales (Nayfeh & Mook 1979; Nayfeh 1985), achieve solution by an asymptotic 
expansion or perturbation of the original set of equations, in terms of a small parameter 
E ( E  << 1) which is either present in the equations ab  initio or artificially introduced. 
Hence these methods are also known as ‘small-parameter techniques’, and they involve 
the sequential solution of simplified sets of equations, in which terms of order em+’ 
are disregarded while constructing the mth approximation. The method of averaging is 
described in Appendix F.4. 

Numerical time-difference methods (Gear 1971; Lambert 1973; Press et a l .  1992) are 
based on approximating the solution by its value at a sequence of discrete times. These 
methods have been developed mostly on the assumption that equation (5.78) may be 
rewritten as (5.79).+ If this can be done, one can distinguish single-step and multistep 
methods of solution. The Runge-Kutta method is an example of the former; it requires 
the values of x and X at time t , ,  in order to compute the solution at t,+l. Multistep or 
‘k-step’ methods, e.g. that of Adams-Bashford-Moulton, accumulate information for the 
values of x and X at t , ,  tn - l ,  . . . , tn-k to proceed to the next step. 

Combined analytical-numerical methods, such as the Rayleigh-Ritz, Galerkin 
(Meirovitch 1967) or harmonic balance methods (Hagedorn 1981; Nayfeh 1981) require 
an initial assumption as to the form of the approximate solution. The solution is typically 
expressed in the form of series, e.g. power, Taylor, Chebyshev, Fourier or Legendre series. 

+The slightly more approximate form of the equation of motion of Section 5.2.7(b) has specifically been 
obtained to take advantage of this. 
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The assumed form involves coefficients determined by imposing minimizing conditions 
(Ritz-Galerkin method) or orthogonality conditions (Galerkin and harmonic balance 
methods), which effectively converts the nonlinear differential equation into a set of 
nonlinear algebraic equations, solved iteratively. The incremental harmonic balance (IHB) 
method (Lau et al. 1982; Ferri 1986), which has been found useful for the analysis of 
the cantilevered pipe system when the assumption of smallness of inertial nonlinearities 
is not made, is also of this class. 

A few more words may be in order here regarding the difficulties encountered in solving 
equations with large inertial nonlinearities, e.g. equation (5.39). Several of the well known 
numerical and combined analytical-numerical methods for solving nonlinear differential 
equations fail, even though they work with large stiffness nonlinearities.+ On the other 
hand, two finite difference methods (Houbolt’s 4th order and an 8th order scheme) yield 
accurate results, but both introduce a phase shift and the 4th order scheme also some 
numerical damping. Only the IHB method (Lau et al. 1982, 1983; Lau & Yuen 1993; 
Semler et al. 1996) has proved to be totally satisfactory. 

All of these methods of solution, despite some of them having been developed only 
recently, may be regarded as ‘classical’, at least in their outlook. Also considered classical 
is the use of the Lyapunov second method (Hagedorn 1981; Hahn 1963) to establish local, 
global or a symptotic stabilityS - see Appendix F.l. Finally, also classical is the use of 
Floquet theory for assessing stability of limit cycles or the type of bifurcation emanating 
therefrom (Appendix F. 1.2). 

Another set of methods have come into prominence over the past 20 years or so, 
collectively referred to as the modern methods of nonlinear dynamics, which are at once 
more limited in scope and more powerful than the classical methods (Guckenheimer & 
Holmes 1983). Typically one starts from knowledge of the eigenvalues of the linearized 
system - which specify the linear behaviour - as well as their evolution as a given 
parameter (say, the dimensionless flow velocity, u)  is varied, and one concentrates 
the investigation to the case where one of the eigenvalues has a zero real part. The 
centre manifold method then drastically reduces a nonlinear multidimensional system 
into a simpler low-dimensional subsystem, which nevertheless retains all the pertinent 
information on the bifurcating mode, and hence on the dynamics of the system, in the 
vicinity of u = u,, (Appendices F.2 and H.l). However, the equations on the centre 
manifold may still be too complex, and further simplification may be desirable. To this 
end, the method of normal forms (Appendices F.3 and H.2) provides a systematic way 
of simplifying a complex nonlinear system, by retaining only the essential nonlinear 
terms which decide its dynamical behaviour. Therefore, these two methods together (or 
alternatively the combination of the centre manifold and averaging methods) constitute 
a powerful tool for obtaining the simplest possible subsystem, capable of predicting the 
nonlinear dynamical behaviour for u not too far away from a particular u,-. The use of 
symbolic manipulation computational software (e.g. MACSYMA, MAPLE, REDUCE 

+For example, the Picard iteration scheme with Chebyshev polynomials fails for large inertial nonlinearities, 
not only for the pipe problem, but for the van der Pol type of equation x + cx + x = - x 2 ( i  + X) when c = -0.3 
but not when c = -0.1 (Semler et al. 1996). 

*While local stability applies to a solution for motions in some prescribed domain, global stability means 
that the solution is stable for all amplitudes. Similarly, asymptotic stability implies that the solution returns the 
system to its unperturbed state as t + 00, while mere stability means that it is returned to the neighbourhood 
of that state [see, e.g. Hagedorn (1981) and Appendix F.l for more precise definitions]. 
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and MATHEMATICA) renders these tools even more potent (Rand 1984; Rand & 
Armbruster 1987). 

Another powerful set of numerical tools, developed relatively recently, after the 
concepts of bifurcation theory were established, are continuation or homotopy methods, 
nowadays available in computer packages. These methods, exemplified by AUTO (Doedel 
1981; Doedel & KernCves 1986), ‘follow’ a particular type of solution as it evolves in 
phase space as a result of varying a particular set of system parameters, and can detect 
the birth of a new type of solution via stability considerations. They are an invaluable 
tool in constructing bifurcation diagrams, which at a glance summarize the changes in 
dynamical behaviour occurring as the parameter in question is varied (Appendix F.5). 

As noted in the foregoing, some of these methods are outlined in Appendix F. In what 
follows, similarly to the approach in Chapters 3 and 4, the methods used in each case 
are mentioned without much detail, and then the results are presented and discussed. In a 
few cases, however, e.g. in Sections 5.5.2 and 5.7.3(a,b), the analysis is outlined in fair 
detail, to give an appreciation of the power of these methods. 

5.5 PIPES WITH SUPPORTED ENDS 

5.5.1 The effect of amplitude on frequency 

Perhaps the earliest study on nonlinear aspects of the dynamics of pipes with supported 
ends conveying fluid was conducted by Thurman & Mote (1969b), paralleling closely 
another on the nonlinear oscillation of axially moving strips (Thurman & Mote 1969a). 
In this study, motions in both the lateral and axial directions are taken into account, via 
equations (5.62). When these equations are rendered dimensionless, the additional nondi- 
mensional quantity d = AL2/Z emerges, which plays an important role in the dynamics 
of the system: all nonlinear terms are multiplied by (d - I‘ >. 

The equations of motion are analysed by means of a hybrid method incorporating 
elements of Lindstedt’s perturbation method and the Krylov-Bogoliubov method. The 
main finding is that the nonlinear natural frequencies prior to divergence are higher than 
the linear ones (i.e. the period of oscillation is lower). The discrepancy becomes progres- 
sively larger with increasing flow velocity, u,+ as shown in Figure 5.3. To understand 
why, it is recalled that linear theory shows a very precipitous reduction in frequency with 
u close to the point of divergence (Figure 3.10), meaning that the effective stiffness of 
the pipe is diminished very rapidly; on the other hand, the nonlinear tension effects are 
not diminished. Hence, the relative discrepancy between linear and nonlinear analysis for 
a given tension increase is dramatically magnified with u. Finally, the flattening of the 
curves for each value of u / n  in Figure 5.3 corresponds to a ‘saturation’ of the method of 
solution - carried to the second perturbation; beyond each local minimum, the accuracy 
of the result becomes doubtful. The important question of how these nonlinearities affect 
the transition to divergence was not addressed. 

It should be remarked that in Thurman & Mote’s work both axial motion and vari- 
able incremental tension associated with large deformations are taken into account - see 
equations (5.62). In contrast, the nonlinearity considered in Holmes’ work (1977, 1978), 

+It is recalled that the dimensionless flow velocity, % in Section 5.2, is now denoted by u throughout the 
rest of this chapter, for conformity with Chapters 3 and 4. 
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Figure 5.3 The variation of the fundamental period of oscillation versus motion (amplitude) 
related tension variation for a pinned-pinned pipe with = i, f = 1 (Thurman & Mote 1969b). 

to be discussed next, is related to the increase in mean tension due to moderate lateral 
deformations. 

5.5.2 The post-divergence dynamics 

The question of post-divergence coupled-mode flutter has already been discussed from the 
linear viewpoint in Section 3.4.1, where the paradox of how its existence may be recon- 
ciled with the fact of zero energy input was elucidated via the work of Done & Simpson 
( 1977). However, there is no question that the existence or nonexistence of coupled-mode 
flutter has to be decided via nonlinear theory. This was done in two remarkable, authori- 
tative studies by Holmes (1977, 1978), the latter of which is categorically entitled ‘Pipes 
supported at both ends cannot flutter’.’ Holmes was the first to use the modern tools of 
nonlinear dynamics for the analysis of two fluidelastic systems: the pipe conveying fluid 
and a panel in axial flow (Holmes 1977, 1978; Holmes & Marsden 1978). Some further 
work was done by Ch’ng (1977, 1978), Ch’ng & Dowel1 (1979) and Lunn (1982). 
As discussed in Section 5.2.9(b), Holmes considered pipes with positively supported 

(non-sliding) ends, and obtained a nonlinear equation of motion by adding to Pa1doussis & 
Issid’s (1974) linear equation a nonlinear term representing the mean, deformation-induced 
tensioning - the principal nonlinearity. Thus, taking a component of 7; in equation (3.38) 
to be as in (5.63), the dimensionless form of the equation used, with Q = u and U = I7 = 

+This is the ultimate in an executive summary: the main conclusion can be read in the title. In these busy 
times, this practice ought to be strongly encouraged! 
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0, is 

afi”” + q”” + u - f - y(1 - 6 )  - id (v ’ )~  dt} q” 
{ 2  

with 
d = AL2/I ,  

(5.80) 

(5.81) 

all other quantities being as in (3.71), (5.38) and (5.44). Most of the detailed work is 
done with a simplified form of (5.80) by taking r = y = 0 and neglecting the nonlinear 
dissipative term, namely 

+ $”’ + { *2 - I’ (q’)’ d:} q” + 2p1I2ulj’ + (TG + ij = 0, (5 .82)  

for a simply-supported (pinned-pinned) pipe - thus satisfying q = q” = 0 at 6 = 0, 1. 
Holmes considers the dynamics of the system in two ways, via (a)$nite dimensional 

analysis and (b) in$nite dimensional analysis, to be outlined in what follows. Then, some 
interesting work by Lunn (1982) is discussed in (c), leading to (d) the final conclusion. 

(a) Finite dimensional analysis 

For equation (5.82), a two-mode Galerkin discretization of the simply-supported pipe 
system is obtained via ~ ( 6 ,  t) = E[& sin(rn()]q,(t), r = I ,  2. Converting this to first- 
order form, leads to the following simple four-dimensional system: 

41 = Ply 4 2  = P2> 

2 2  2 16 112 = -X (n - U )SI - (an4 + a)pl + ~p up2 - ;dn2(q: + 4q;)q1, (5.83) 

It is seen that the nonlinearities are of the stiffening cubic type (of the same sign as the 
linear stiffness), which helps explain the global stability of the system. 

It is useful here to refresh the reader’s mind as to the linear dynamics of the system. 
Since damping is present (a, o # 0), the eigenvalues for u = 0 are complex conjugate 
pairs with negative real parts (Figure 2.10). Here the notation introduced by Holmes is 
utilized, in which such eigenvalues are denoted by the quartet h = I-. -, -, -}, the 
signs being those of the real parts of the eigenvalues; a + means that one of the eigen- 
values has positive real part, while 0 denotes a zero real part. As u is increased, the 
first bifurcation occurs at u = n (Section 3.4.1); it is a pitchfork bifurcation, leading 
to divergence, as shown in Figure 5.4 (cf. Figures 3.9 and 3.14). Hence, for u > n we 
have h = [+, -, -, -). The solution of equations (5.83) shows that two new fixed points 
are generated for u > n, located increasingly farther away from the origin. The numer- 
ical solutions for a = (T = 0.01, = 0.2, are shown in Figure 5.5, together with centre 
manifold predictions, which will be discussed next. 

At the critical point where the bifurcation occurs, the four-dimensional system (5.83) 
is projected onto the centre manifold (Appendices F.2 and H.l), which in this case is 
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Figure 5.4 Argand diagram of the eigenvalues of the pinned-pinned pipe system (a = (T = 0.01, 
j3 = 0.2, y = r = 0). 

Figure 5.5 The location of the new stable fixed points (sinks), q”, generated at u = j~ + p, and 
the unstable fixed points (saddles), @, at u = 2n + p, for the pinned-pinned system: -, by 
numerical integration; 0, A, by centre manifold theory. System parameters: a = (T = 0.01, j3 = 0.2, 

~4 = 1, y = r = 0. 
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simply the centre eigenspace. The stable manifold is ignored, and attention is focused 
on the centre manifold; then the evolution of the system in this subspace, wherein the 
interesting aspects of the dynamics is happening, is examined. In the vicinity of u = 
uCr = n, we have h = (0, -, -, -}; re-writing u = u,, + p, where p << 1, one eventually 
obtains (Appendix H.2.2): 

(5.84) 

in transformed coordinates, where c1 = 63.015 and c2 = 24.746; this shows that this is 
a pitchfork bifurcation. Thus, putting X = 0, it is obvious that there exist fixed points at 
xst = & [ ( c 1 / ~ 2 ) ( p / d ) ] ~ / ~  and it is easy to show that they are stable;+ i.e. the new fixed 
points are sinks (attractors in phase space). Transforming back to the original coordinates, 
one finds that these are located at 

qst = 1.596(p/d)1/2, (5.85) 

i.e. there is a parabolic relationship between qst and p. As may be seen in Figure 5.5, 
agreement with numerical results is excellent, almost to p = 0.4, despite having specified 
p << 1.  

This form of dependence of the post-divergence fixed points on u is also predicted in 
another way by Thompson & Lunn (1981), who develop an elegant ‘static elastica’ formu- 
lation of the nonlinear deformation of a pipe under equivalent static loading, effectively 
the equation of motion with all time-dependent effects ignored. Then, by similarity to the 
nonlinear behaviour of struts (columns) subjected to compressive loading (Thompson & 
Hunt 1973), they obtain a ‘rising post-buckling path’, the same as shown in Figure 5.5. 

The question now is what happens for higher u, in particular for u 3 2n. In this respect, 
it is instructive to look at the evolution of the linear system for the specific parameters in 
this example. As shown in Figure 5.4, because of the presence of dissipation, the mode 
loci evolve similarly to Figure 3.14 rather than to those typified by Figures 3.9-3.1 1. 
Dissipation renders restabilization of the first mode followed by a Hamiltonian Hopf 
bifurcation (cf. Figure 3.11) impossible, and it also prevents the pitchfork bifurcation 
associated with the second mode from happening (cf. Figure 3.9). Thus, at u = 27r it 
is the second branch of the first mode that crosses to the unstable part of the complex 
frequency or the complex eigenvalue plane, rather than a branch of the second mode. At 
that point, one has h = (+, 0, -, -1. However, the new fixed points originating at u = 277 
are saddles. The flow on the centre manifold in this case is governed by 

X = 3 1 . 8 1 ~ ~  - 24.99dx3; (5.86) 

the origin in this case is unstable prior to the bifurcation, and so are the new fixed 
points. These fixed points, transformed back to the original coordinates, are also shown 
in Figure 5.5, where it is seen that, because the amplitude is smaller, they agree with 
numerically computed results even better than those for the stable fixed points. 

Furthermore, it is shown that no further bifurcations occur; in particular, the only stable 
fixed points, those given by equation (5.85), do not give rise to Hopf or other bifurcations 
as u is increased. 

3 x = c,px - c2dx , p = u - IT, 

tBasically, one perturbs (5.84) such that x = xsI + i ,  where xsl is given by (5.85) - or takes the Jacobian 
at x = xst - and eventually obtains X = -2c1w.f; from the solution i = i o  exp(-2clyr) it is clear that this 
solution branch is stable for y > 0 and unstable for ,u c: 0. 
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Region I1 Region I11 Region I 

( a )  

42 
Invariant subsystem ( M  x (P - E ,  7r + E ) ) ,  dim. = 2 

------ 
u -  

Centre manifold M ;  dim M = 1 

Eigendirection of A=O 

Figure 5.6 A qualitative picture of the bifurcations of the two-mode pinned-pinned pipe 
system (5.83) for a = CJ = 0.01, = 0.1, y = r = 0. (a) Vector fields projected on the [SI, q 2 ]  
plane; (b) evolution of the attractors in the [ q l ,  q 2 ,  u) space: ~ , sink; ---, saddle, 
h = [+, -, -, -1; - - - , saddle, h = [+, +, -, -1. After Holmes (1977), but the diagrams in 
(a) here are based on computed trajectories and are slightly different from Holmes’ qualitative 

diagrams. 

The dynamics may be summarized as in Figure 5.6. The four-dimensional, R4 vector field 
of (5.83) may be visualized by projecting solution curves onto the two-dimensional subspace 
{ql ,  q 2 ;  p i  = p2 = 0); the resultant projection is shown diagrammatically in Figure 5.6(a), 
while the evolution with u is shown in Figure 5.6(b). For n < u < 2n (region II), the flow 
along q 2  is stable, whereas for u = 2n or just higher (region 111) it is unstable - two new 
saddles having been generated along the qz-axis; but the two sinks on q1 still exist. Hence, in 
the flow range where coupled-mode flutter would exist according to linear theory (region 111). 
Holmes concludes that (i) local amplified oscillatory motion can occur near the origin, but 
(ii) the system is eventually attracted by the sinks on the q1 -axis, since there exist no other 
attractors, as shown qualitatively in Figure 5.7(a). In fact, this diagram is typical of relatively 
high B and low a! and (T ( e g  B = 0.8, a! = (T = lop3); for lower B and higher a!, (T (e.g. 
B = 0.1 or 0.2 and a! = o = lo-*, as in the foregoing), the dynamical behaviour is much 
more like that in Figure 5.7(b). In any case, however, it is clear that with finite dimensional 
analysis of the problem, no limit-cycle oscillation is found to exist in this system. This, 
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42 

41 

Figure 5.7 Schematics of the two-mode (R4) model projected onto the (q l ,  q 2 )  plane for 
u > 2n: (a) Holmes’ (1978) original diagram, typical of high ,¶ and very low a and u (e.g. 
B = 0.8, a = u = 0.001), showing that local oscillatory motion (coupled-mode flutter according 
to linear theory) about the origin does not lead to limit-cycle motion but eventually to the fixed 
points on the 41-axis; (b) diagram based on computed solutions for small ,¶ and not very low a 
and u, showing that trajectories are attracted by the stable fixed points with hardly any oscillation 

about the origin. 

however, does not prove that a limit cycle cannot exist; the proof of that is given in subsection 
(b), via an infinite dimensional analysis of the system. 

Before closing this section, a few words on the effect of symmetry on the pitchfork 
bifurcation are in order. The system here is symmetric. The mathematical manifestation 
of this is that the nonlinearities in (5.83) are cubic, so that if qsol is a solution, so is -qsoI. 
Hence, as is obvious from (5.85), there is another, mirror branch to the solution shown in 
Figure 5.5; the full ‘picture’ of the pitchfork bifurcation is as shown in Figure 5.8(a) - cf. 
Figures 2.11(a) and 5.6(b). 

If, however, an imperfection (an initial deflection) is added to the system, so as to 
break the symmetry [e.g. by adding +EO or -EO to equation (5.84) or to the original 
system], then the bifurcation occurs as in Figure 5.8(b). This is an example of the 
generic form of the bifurcation (Holmes 1977), known also as the canonical cusp or 
Riemann-Hugoniot catastrophe of Thom (1972). This clearly is what happens in all 
experiments (Figures 3.22-3.26), since imperfections are always present: the deflection 
is not zero up to the bifurcation point, growing thereafter, initially with infinite slope, 
to a large value within a small interval Au; rather, it is merely small before, and then 
grows to larger values, effectively more gradually. The fact that EO = E O ( U )  is a weakly 
increasing function as the threshold of divergence is approached makes the transition even 
more gradual. 

(b) Infinite dimensional analysis 

In this subsection, the stability of the system is reconsidered, this time by means of 
infinite dimensional analysis (Holmes 1978). Specifically, first the stability of the trivial 
equilibrium and then that of the nontrivial equilibria for u > n is considered, and finally 
the possible existence of a limit cycle, independently of how it might emerge. The analysis 
is intricate and is here presented in greater detail than in Holmes’ published work; hence, 
the casual reader may wish to skip over the details and go straight to the result. 
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Saddle u + ‘ Sinks 

7 

Figure 5.8 A qualitative picture of the occurrence of divergence via a pitchfork bifurcation (a) for 
a system with symmetry ( E O  = 0), and (b) when the symmetry is broken ( E ~  # 0). Adapted from 

Holmes (1 977). 

In this case the system is not discretized. As known from linear analysis of equa- 
tion (5.82), Section 3.4.1 and equation (3.90a) in particular, nontrivial equilibria for the 
pinned-pinned pipe arise for u; = jx. Hence, from (5.82) it is seen that any nontrivial 
equilibrium point, u; # 0, is an eigenfunction satisfying 

TJy + hJTJ’jl = 0, (5.87) 

where lv>l denotes the norm; from this, it is clear that u, = 7t, as found before. It is clear 
that no nontrivial equilibria exist for u2 5 k1 = n2, where hl is the first eigenvalue. lf  u2 > 
hl , however, there are 2r distinct nontrivial equilibria occurring in pairs, corresponding to 
the r eigenvalues h, < u2, the stability of which was examined by Holmes (1977, 1978). 

To study the stability of a particular equilibrium position u, [where it is understood that 
normally there exist a uj’ and a uJ because of (5.87)], consider a perturbation w about 
u; 5;. substitute 5; + w in (5.82) and then subtract the equation in Z;, thus obtaining 
the equation for w: 

w’//’ + (U* - ;,,,;,2)w” - .e(V>, w’),; + 2 p u W ’  

+ ow + w - $4{2(E>,  w/)w’/ + , w y q  + ,w’(2w/’} = 0, (5.88) 

1 where (a, b)  = so a(c)b(c) de is the inner product, and where a = 0 is assumed without 
loss of generality. 

The stability of 5j is studied via a generalization of the Lyapunov second (direct) 
method to partial differential equations (Movchan 1959; Parks 1967; Holmes & Marsden 
1978) - see also Appendix F. 1 .  
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Consider first the trivial equilibrium position, wo = 0, i.e. the origin { q ,  i )  = (0, 01, in 
which case we can use (5.82) rather than (5.88). The function 

H, = ; 1 , 1 2  + ;{lw1/12 - ~ ~ 1 ~ ’ 1 ~ )  + ;4w’14 + u { + (w, w)} (5.89) 

is a suitable Lyapunov function (Movchan 1965; Parks 1967), in which u is to be chosen 
subsequently. It is noted that, essentially, (5.89) has the form of kinetic plus potential 
energy (the Hamiltonian), as related to (5.82); however, the extraneous last bracketed 
term is essential in rendering Ha a Lyapunov function. To prove that Ha is positive 
definite, we start with the inequality 

Ha 2 ;1WI2 + ;{n41wl2 - u2n2lwI2} + iw{alw12 + (w, W)), (5.90) 

in which (a) the first of equations (5.87) is used to show that Iw”I2 = n21w’I2, and (b) the 
fact that I # I 2  2 n219l2 for any continuous function with $(O) = +(l)  = 0 - as easily 
ascertained for trigonometric functions. Then, re-writing lWI2 + 2u(w, W) = I(uw + W)I2  - 
w21wI2, inequality (5.90) may be written as 

Ha p i[u(a - u )  + n2(n2 ~ u2)]1w12 + il(ww + W ) I 2 ,  

which is globally positive definite provided that u < n and 0 5 w 5 a. Therefore, for 
given u and u, as (lw’I2 + lW12}1/2 increases, so does Ha, monotonically. 

Differentiating Ha with t and using (5.82) with q = w, and then applying the boundary 
conditions in the resulting integrations by parts, 

-- m a  - -(a - u)lWI2 + 2wB’/*u(w’, 6) - ~lw’’1~ + - ;~.dlw’1~ (5.91) 
dt 

is obtained. Then, making use of the inequality ? n21@I2 again, this may be written as 

(5.92) 

Provided that u < n and v < a this may be made negative definite if u is chosen positive 
and sufficiently small. For example, letting u = a/k/3u2, equation (5.92) is re-written as 

m a  
~ 5 -{(a - u)(WI2 - 2~B’/~u(w’,  W) + u(n2 - u2)1w’I2} - ; ~ d l w ’ 1 ~ .  
d t  

{(kBu2 - l)lWI2 - 2B’/2u(w’, W) + (n2 - ~~)1w’1~) .  (5.93) 

BY utilizing the expansion of I ( B ’ / ~ u w / & T P  - w ’ & ? T P ) ~ ~  in a similar way as in 
the foregoing, inequality (5.93) may be re-written as 

The bracketed quantity is clearly positive definite if (kBu2 - l)(n2 - u2)  2 Bu2; hence, if 
k is large enough (i.e. u small enough), we have the required behaviour: dHa/dt < 0 for 
all w’ or W # 0, i.e. dHa/dt is globally negative definite. Hence, the trivial equilibrium 
point wo = 0 is globally asymptotically stable if u < n. It is of interest that if a = 0, u 
must be set to zero also, and then it can only be proved that dHa/dt I 0; hence only 
stability, but not asymptotic stability may be proved. 
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On the other hand, as u2 > n2 the system can no longer be proved to be stable; indeed, 
from linear theory and the finite dimensional analysis, we know that it is not. 

The stability of the first pair of nontrivial equilibria, v: and v; = -w: is assessed in 
the same way. A Lyapunov function related to equation (5.88) i s  now chosen, say for 
position TJ:, namely 

Hb = il+b12 + ; { lw”I2 - n 2 I W  I 2  I } + $d(t~:’, w ’ ) ~  + ;&!(UT’, w’)lw’I2 

+ $dlw’14 + u { &Jlw12 + (w, W)} . (5.94) 

Proceeding in a similar way, it is possible to prove that Hb > 0 and dHb/dt 5 0 in some 
neighbourhood of v: (Holmes 1978); thus, this equilibrium point (and similarly 21;) is 
locally asymptotically stable for all u2 > n2. 

Similar forms as H b  but with h; = j2n2, j L 2, instead of hl = n2 as in the foregoing, 
are appropriate Lyapunov functions for the other points of equilibrium; but in this case 
the term -{ lw”I2 - h;lw’12} appearing in the expression for dHb/dt cannot be proved to 
be negative definite. These points are unstable; in fact, they are saddle points. 

The foregoing considerations, though important in the overall dynamical analysis, do not 
in themselves prove the existence or nonexistence of a limit cycle for u > 2n;  indeed, a 
limit cycle could exist around UT (or more likely around both UT and v;), but sufficiently far 
removed from it, since stability has only been proved in some neighbourhood of UT; beyond 
that, it is conceivable that trajectories, also repelled by vo, could be attracted by a stable 
limit cycle. The proof of nonexistence is provided by Holmes (1978) following a method 
developed by Ball (1973a,b) for the dynamic buckling of beams. This proof, outlined in 
what follows, makes use of the concept of a ‘weak solution’, which is introduced next. 

A weak solution is a mathematical concept in functional analysis and topology [see, 
e.g. Oden (1979; Chapter 5 )  or, for a more accessible treatment, Curtain & Pritchard 
( 1977)l. It signifies a generalized, nonclassical solution, e.g. one not satisfying the usual 
differentiability conditions. This concept allows the transformation of the problem from 
one involving differential operators, such as equation (5.82), to an equivalent problem 
involving continuous linear functionals, as in (5.95). For our purposes here, this enables 
us to reach some useful conclusions without first having to obtain a classical solution to 
equation (5.82). 

A weak solution to equation (5.82) is a solution Q($, t) which satisfies the equation 

(V”,  4”) + (u2 - ; d l V ” ( V ” ,  4) + 2B”2u(li’, 4) + o(li, 4) + ( i i ,  4) = 0, (5.95) 

where the inner product is taken with a sufficiently differentiable function 4 (Ball 1973a; 
Holmes & Marsden 1978). In (5.95), one can replace 4 by li and integrate, thus obtaining 
an ‘energy equation’, 

(5.96) 

in which (G’, l i )  = 0 has been utilized and CO is a constant. The similarity of (5.96) to 
(5.89) is obvious. This may be re-written as 

E ( t )  i l i )12 + v ( ~ )  = CO - I r j ( t )12  ds, (5.97) 
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where E ( t ) ,  comprising the first four terms of (5.96), is the Hamiltonian (conservative) 
energy, i.e. the kinetic plus the potential energy 

V17) = ;{I17 1 1 2 -  I u 2 117 I 2  I + :sQlr’141; (5.98) 

thus, the integration constant, CO, is equal to the initial energy supplied to the pipe. For 
17 = vf ,  with the aid of the first of equations (5.87), it is shown that 1v”l2 = n21$I2, and 
hence, by utilizing the second of (5.87), it is found that 

(5.99) 

The integral term in (5.97) is strictly increasing with time and, since Co is constant, 
E ( r )  must decrease unless t = 0. However, rj = 0 only at the equilibrium points; i.e. for 
u > n, at the saddle points where the minima of T(q) given by (5.99) occur. Therefore, 
these are also the minima of E(+ Thus, the pipe will always approach an equilibrium 
point as t + 03. Consequently, by infinite dimensional analysis it has definitively been 
shown that no limit-cycle oscillation can exist in this system. 

This completes the presentation of Holmes’ work on this system, proving that ‘pipes 
supported at both ends cannot flutter’. Or does it? The question of whether even this 
unequivocal statement has to be qualified is discussed next. 

IC) Flutter in the Hamiltonian system 

min”Ir(q) = -k(u2 - n 2 ) 2 / ~ .  

Lunn (1982) examined the equivalent problem to Holmes’: a pin-ended pipe with one end 
free to slide, but constrained by an axially-disposed spring, so yielding equation (5.82) 
directly, with no approximation. On the other hand, the system was generalized by intro- 
ducing an elastic foundation; hence, a term kq appears in the equation of motion, where 
k is the dimensionless foundation stiffness - cf. equations (3.70) and (3.71). A two- 
mode Galerkin discretization is considered and, with the aid of centre manifold theory, 
similar conclusions to Holmes’ are reached; but, in the process, a number of important 
contributions are made, as follows. 

It is first observed that the region of gyroscopic stabilization, occurring for high enough 
j3 (Section 3.4; Figures 3.1 1 and 3.12) between the first and second critical flow velocities, 
is ‘of purely “academic” concern’ since, on first buckling, the deflections of the pipe would 
grow sufficiently to make the study of higher stability regions ‘inapt’. Therefore, a system 
is sought which would remain stable up to the point of onset of linear coupled-mode 
flutter. This is achieved by a judicious choice of the elastic foundation (Section 3.4.3). For 
k = 4n4, it is found that with zero dissipation the two eigenvalues reach zero in the Argand 
diagram at the same value of u, namely u = f i n  - cf. Figure 3.20; however, diver- 
gence does not develop thereafter, because of gyroscopic stabilization, and the eigenvalues 
remain purely imaginary up to ucf = 7.66, where the system loses stability by Hamilto- 
nian coupled-mode flutter. However, if even infinitesimally small dissipative forces are 
included, the gyroscopic stabilization is destroyed and hence coupled-mode flutter ceases 
to be the first instability to occur, divergence developing instead at u = A n ;  which 
leads to qualitatively the same dynamics as discussed heretofore. This, however, raises 
the following question: Is it possible that the nonexistence of coupled-mode flutter in the 
nonlinear analysis is primarily due not to nonlinear effects but to dissipation? 

To answer this question, Lunn reconsiders the nonlinear system, without any founda- 
tion but also without any dissipation. The startling result is illustrated in Figure 5.9(a), 
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showing 'limit-cycle' motion of small amplitude about the origin! For u > 2n the origin 
has become a higher-order saddle, resembling a potential energy 'hill'. The peculiar ornate 
character of Figure 5.9(a) derives from the nature of gyroscopic stabilization. The trajec- 
tory 'falls', moving away from the origin; gyroscopic forces then drive it at right angles to 
the instantaneous direction of motion, and eventually 'uphill'; when enough kinetic energy 
has been lost that way, the process begins anew. It is noted, however, that large-amplitude 
limit cycles are not, possible, because of the attracting sinks. 

q2 t 
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Figure 5.9 (a) 'Limit cycle' in the ( q l ,  q2) plane for u = 2 . 0 2 5 ~  for a pipe system with supported 
ends and /3 = 0.694, d = 0.4 and k = a, = = 0 (Lunn 1982). (b) Time trace and (c) phase-plane 
plot of flutter of the Hamiltonian system ( B  = 0.5, (Y = (T = k = 0, d = 1, u = 6.35), as obtained 

numerically. 

This result has been recalculated for p = 0.5 at u = 6.35, and is displayed as a time 
trace and a phase plane diagram in Figure 5.9(b,c). It is clear now that the motion is 
quasiperiodic (cf. Figure 2.4) and it involves two incommensurate frequencies. Hence, 
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more strictly it is a motion on a torus, rather than a limit cycle which would imply a 
single frequency. 

Thaefore, coupzed-mode flutter does exist, even in the nonlinear context. However, 
it is pathologically nonrobust: the slightest amount of damping destroys it utterly. On 
reflection, this is as unremarkable as ‘finding’ that periodic solutions can exist for a 
conservative system, but not when damping is included; what is remarkable, nevertheless, 
is that such periodic solutions are academically possible, even after divergence. 

(d) Concluding remarks 

The same conclusion as Holmes’ with regard to the nonexistence of coupled-mode flutter 
for dissipative systems was reached by Ch’ng (1978) and Ch’ng & Dowel1 (1979), who 
utilize the same equation as Holmes, equation (5.82), discretize it and then integrate it 
numerically. [It is of interest that an error in an earlier attempt by Ch’ng (1977) led 
to the opposite conclusion. Holmes (1977) also admits that, in an earlier version of his 
work, a mistake led him too to the opposite conclusion. All this shows how sensitive this 
type of analysis can be.] On the other hand, Lunn’s (1982) work shows that sustained 
oscillation, i.e. flutter, about the unstable initial equilibrium is possible, theoretically at 
least, provided that there exists no dissipation whatsoever. This, of course, is impossible 
in any real physical system. 

In fact, as discussed in Section 3.4.4, no experimental evidence exists that pipes 
supported at both ends do flutter, whether axial sliding at the supports is permitted or 
not; in the former case violent divergence (buckling) develops and the w = 0 condition 
is obtained, while in the latter case this is not so. The main point here is that, for realistic 
systems, predictions of linear theory, beyond the onset of the first instability (divergence), 
do not materialize. This is not general, and in fact Holmes (1977) discusses another case, 
involving panel flutter, where post-divergence flutter does indeed materialize. This is also 
known to occur in cylindrical structures subjected to external axial flow (Chapter 8). 

5.5.3 Pipes with an axially sliding downstream end 

When a pipe has a laterally supported but axially free-to-slide downstream end, its equa- 
tions of motion are essentially those of a cantilevered pipe (see end of Appendix G.2): 
the centreline may be taken to be inextensible, and the nonlinearities are mainly due 
to curvature effects, while the mean deformation-induced tension is zero. The nonlinear 
dynamics of such a system has been studied analytically, numerically and experimentally 
by Yoshizawa et al. (1985, 1986) up to and beyond the point of divergence. 

The system considered is a clamped-pinned pipe, supplied by a constant-head tank, 
while the flow velocity is generally deformation-dependent. The equations derived are 
similar to Rousselet & Herrmann’s [Section 5.2.8(b)]: (i) a ‘flow equation’ similar to equa- 
tion (5.53), with a friction parameter a; (ii) an equation for the pipe motion involving both 
axial and transverse displacements, u and w, and the angle of deformation, 8 - interrelated 
via sin B = aw/as, cos B = 1 + (&/as) as per equations (5.4) for an inextensible pipe. 

The eigenfunctions of the subsystem 8”” - y [ ( l  - c ) ~ ”  - 41 + u2f + ij = 0 are deter- 
mined and then the deflection of the pipe is approximated by a one-mode Galerkin scheme, 
~ ( 4 ,  t) = 41 (t)q1 (t). Analytical solutions are obtained with this approximation, adequate 
for relatively modest deflections, as well as more accurate solutions for the post-divergence 



PIPES CONVEYING FLUID: NONLINEAR AND CHAOTIC DYNAMICS 3 15 

state by integrating numerically the time-independent version of the full equations of 
motion. 

Experiments have also been conducted by Yoshizawa et a l .  (1985, 1986), utilizing 
vertical silicone rubber pipes (Do = 5 mm, Di = 3 mm, L = 600mm) conveying water. 
Two stainless steel wires were attached to the pipe in one plane, to ensure that motions 
occur normal to that plane. The pinned, axially-sliding lower end was achieved by a short 
bar perpendicular to the pipe axis, in contact with the pipe. 

Typical results are shown in Figure 5.10(a) for the variation of the first-mode eigen- 
frequency up to divergence, when theoretically w1 = 0. The experimental frequencies are 
in excellent agreement with theory. Nevertheless, for obvious reasons, the experimental 
frequencies could not be measured all the way to divergence, the precise onset of which 
was difficult to pin-point. 

Figure 5.10 (a) Variation of the first-mode eigenfrequency with u2 for a clamped-pinned pipe 
with an axially sliding downstream end ( B  = 0.273, y = 34.4, a! = 4.68): -, theory; 0, exper- 
iments. (b) The post-divergence maximum static pipe deflection, qmax versus u2 (a! = 5.56): - - -, 

approximate analytical; -, numerical; 0, experimental (Yoshizawa et al .  1985, 1986). 

The variation of the maximum, steady post-divergence amplitude with u2 is given in 
Figure 5.10(b). It is seen that (i) the approximate analytical and the numerical solutions 
agree for qmax i 0.1 approximately, and (ii) agreement with experimental values is very 
good overall, particularly for the more accurate numerical results. 

5.5.4 Impulsively excited 3-D motions 

An interesting, application-related study, examines the dynamics of inhibited flow/porous 
tubes (INPORTs) used to protect the inner wall of inertial confinement fusion (ICF) 
reactors? from X-rays, neutron bombardment and dCbris (Engelstad & Love11 1985, 1995; 
Engelstad 1988). The porous, braided silicon-carbide-fibre tubes convey Li-Pb (molten 
lithium-lead), the fluid acting both as a coolant and a breeder; the tubes are porous, to 
ooze out a liquid film for protection from the same hazards. These very slender tubes 

+The ICF is a precursor concept to the LIBRA fusion reaction chamber. 
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( D  = 30 mm, L = 10 m) are subjected to periodic blast waves transmitted through the gas 
in the reaction chamber. 

The equations of motion are similar to Ch’ng & Dowell’s and Thurman & Mote’s 
(Sections 5.2.8 and 5.2.9) but more complete: three equations of motion are obtained for 
motion in two mutually perpendicular planes, and the flow velocity is generally harmon- 
ically perturbed as in equation (4.69) to account for pump-induced pulsations. Before 
analysis, however, the tension-gravity term is considerably simplified and the axial equa- 
tion of motion is eliminated, so that each of the remaining equations becomes similar to 
Holmes’ (Section 5.5.2); these two equations are coupled via the nonlinear tension terms. 
Furthermore, because tension-gravity effects are so large, flexural terms are neglected, 
so that the system becomes a pipe-string [cf. Copeland’s work in Section 5.8.3(b)]. In the 
calculations presented, the flow velocity is steady and dissipation is taken into account. 
The equations of motion are discretized and then integrated numerically. 

In the calculations, the pipe is excited by periodic impulses, introduced as initial condi- 
tions all along the length in the plane of the blast wave, and motion is monitored in both 
planes. With increasing frequency of impulses, the classical jump (down) phenomenon in 
the frequency response curve is obtained, characteristic of hardening nonlinear systems, 
and the associated jump (up) when the frequency is decreased. 

If the pipe is perturbed in the plane perpendicular to that being excited, the oscillation 
either dies out or builds up to a steady limit-cycle motion, depending on the periodic 
impulse frequency; in the latter case, a generally oval whirling motion ensues with slow 
precession, which would be unacceptable in actual ICF operation. 

5.6 ARTICULATED CANTILEVERED PIPES 

Many of the methods for analysing nonlinear systems apply to ordinary differential equa- 
tions, so that continuous systems must be discretized first before these methods can 
be applied. Furthermore, since most of these methods are practicable only for low- 
dimensional (low-D) systems (Le. systems of only a few degrees of freedom), there 
is a natural tendency to study low-D discretizations of the continuous systems. This then 
opens the question, often left unanswered, of whether the low-D discretized model really 
captures adequately the essential dynamical features of the continuous system. This in 
turn provides the main impetus in the study of articulated systems: the very physical 
system is discrete and it can be chosen a priori to be low-D. 

Most of the work on the nonlinear dynamics of articulated pipes conveying fluid has 
been done on the nonconservative cantilevered system (Figure 5.2). In many cases this 
serves as a preamble to the study of the same aspects of the continuous cantilevered 
system, discussed in Section 5.7; this is the reason for this section being where it is. 

Before discussing cantilevered articulated pipes in Section 5.6.2, the case of a pipe 
with a constrained downstream end is treated first. 

5.6.1 Cantilever with constrained end 

No systematic study has been published on the nonlinear dynamics of the conserva- 
tive system of articulated pipes with supported ends - perhaps because the work in 
Section 5.5 is considered to have settled all important issues. 
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Here, Thompson’s (1982b) magic black box (Section 3.2.2, Figure 3.3) is discussed 
in detail. The system in the black box in Figure 5.11(a) is generally nonconservative. It 
consists of an articulated pipe, the downstream end of which is constrained by a string, 
supporting a weight Eg. Assuming equal spring stiffnesses, k ,  and lengths, I, neglecting 
gravity effects in the pipe system, and assuming small angular deflections, 61 and 02, 
Thompson (1982b) conducted an interesting static analysis of the system. In terms of 
statics, the fluid acts as a follower compressive load of magnitude M U 2  (Section 3.2.1). 
Talung moments about the joints, one obtains 

?fig1 + k(O2 - 61 1 = 0, 2Egl + k61 + MU21(02 - 61) = 0. (5.100) 

The deflection at the end of the pipe system is x = -1 (01 + 02), which, from the solution 
of (5.100), may be re-written as 

x = -5igl’ (T 2MU21 - 5 )  l k .  
(5.101) 

The flexibility may be defined as x/E (more usually x / E g ) ;  its inverse, E/x ,  is the 
stiffness of the system. It is clear that the stiffness is positive for small values of U ,  
becomes infinite at the point of divergence (2MU21 = 5k) ,  and then negative for larger 
values of U .  This dynamical behaviour is illustrated in Figure 5.1 l(b) from experiments 
with Lunn’s (1982) articulated pipes, involving Perspex or copper tubing and rubber 
joints, as described in Section 5.6.2. The observed behaviour is a little more complex 
than the linear relation between x and M U 2  in (5.101), but essentially the dynamics is as 
predicted. In particular, in the region of negative stiffness, when the weight ?fi is doubled, 
x is halved, approximately; i.e. as the weight is increased, it goes up (Figure 3.3) - a 
graphic demonstration of ‘paradoxial’ mechanics due to negative stiffness. 

The other interesting observation made by Thompson is this. For conventional structural 
systems (e.g. the inverted pendulum, loaded arches), the equilibrium path in the negative 
stiffness region is unstable under ‘dead’ load and, hence, can only be studied experimen- 
tally by using a suitable ‘rigid’ load, e.g. via a screw loading device (Thompson 1979). 
Here, however, we have a system in which the complete, stable load-deflection curve 
can be obtained, covering also the region of negative stiffness, by using dead weight 
loading - precisely because the system is nonconservative. 

5.6.2 Unconstrained cantilevers 

The main objective of virtually all nonlinear studies in this area is related to the character- 
ization of the nature of the Hopf bifurcations leading to flutter. In the case of 2-D motions, 
this distinguishes subcritical from supercritical bifurcations in the parameter space. In the 
case of 3-D motions, however, the nonlinear analysis also defines whether the resulting 
flutter is planar or rotary. Of special interest is another set of studies, concerned with the 
dynamics of systems in the vicinity of a double degeneracy, characterized by two coinci- 
dent bifurcations via which a rich variety of dynamical states may emerge, as discussed 
in part (c) of this section. 
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Figure 5.11 (a) The 'black box' containing Thompson's constrained articulated pipe system; (b) the experimental data showing the flexibility (inverse 

of stiffness) versus the square of the volumetric flow-rate, Q2, where Q = M U / p ,  p being the fluid density (Thompson 1982b). 
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(a) 2-D motions 

The first nonlinear study is due to Rousselet & Henmann (1977), dealing with a system of 
two rigid pipes ( N  = 2) hanging vertically, with ideal articulations of zero stiffness and 
damping. The equations of motion are (5.64) and (5.65), but with kl = k2 = 0. Hence, 
in the nondimensionalized equations, different parameters from (5.68) are utilized, e.g. 
u = lJ/m and so on. Fluctuations in the flow velocity due to varying acceleration and 
gravity head are taken into account, as per equations (5.66) and (5.67); they are taken to 
be small, so that if uo is the mean flow velocity, 

u = uo + Au, AU << 1. (5.102) 

The main objective is to obtain information on the dynamics in the vicinity of the Hopf 
bifurcation which leads to flutter; in particular, whether the predicted limit cycle is stable 
or unstable (supercritical or subcritical Hopf bifurcation), and what is its amplitude. With 
(5.102), (5.64) and (5.65), the equations of motion may be written in the form 

[MI141 + [m) + [me1 = IF), (5.103) 

where {e)  = {el, O2IT; { F }  = I F 1 ,  F2JT contains all the nonlinear terms, Le. 

( F ~ ,  ~ 2 ) ~  = f(el, 0 1 , & ,  & , e l ,  42, A U ,  AL; system parameters), (5.104) 

where the ‘system parameters’ are a, B, y, no, h and h* - see equations (5.68). Similarly, 
(5.102), (5.66) and (5.67) lead to a ‘flow equation’, 

A i  = g(Au, el,€$, e:, 6;; system parameters). (5.105) 

The ingenious procedure adopted to solve equations (5.103)-(5.105) (Rousselet 1975; 
Rousselet & Henmann 1977) is outlined in what follows. 

(i) The linear part of (5.103) is solved first, yielding the eigenvalues and eigenvectors, 
and hence also the critical value for flutter uo = uo f ,  if it exists; it is noted that for 
f i  > 0.51 it does not, and only divergence is then possible. 
- 

(ii) The equation of motion is then transformed into first-order form, 

[Blk} + [EIIz) = {@I> (5.106) 

( z }  = { { e } ,  ( e ) }  - cf. equations (2.16) and (2.17). Then, the homogeneous form of 
(5.106) and its adjoint [see equation (2.20)] are solved simultaneously for uo = u c j ,  
yielding the same eigenvalues but different eigenvectors from those of the original system. 
The use of the biorthogonality property [equation (2.21)] then allows the decoupling of 
the system. Attention is thenceforth devoted exclusively to the mode associated with the 
Hopf bifurcation, ignoring the other (stable one), thus reducing the fourth-order system 
in (5.106) to one of order 2. Nowadays, the same would have been accomplished via the 
centre manifold method (Appendices F and H). The resulting equation has the form 

T 

j i  + (a2 + w2)x = 2ai + f ( F 1 ,  F z ,  U O ,  a, w ;  system parameters, modal form), (5.107) 

where h = a + iw, la1 << 1, it being understood that uo is close to u , ~ ;  ‘modal form’ 
signifies the eigenvector information for the mode undergoing the Hopf bifurcation. 
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(iii) In equation (5.107), F1 and F2 contain the still unknown Au and A i .  These are 
determined by solving the differential equation in Au, equation (5.109, after the ‘modal 
form’ of interest has been substituted in its right-hand side. 

(iv) Now that all terms on the right-hand side of the reduced form of (5.103), equation 
(5.106), are known, the nonlinear equation is solved by the Krylov-Bogoliubov method, a 
form of averaging (Appendix F.4), keeping only the first term in the asymptotic expansion, 
x = 0 sin 1c/ = i0 sin(wt + #), eventually leading to 

(5.108) 

where K1 and K2 are lengthy algebraic expressions involving the parameters in (5.107). 
For a limit cycle, Oavg = 0; hence one obtains the limit-cycle amplitude 

(5.109) 

It is clear from (5.108) that the origin becomes unstable for a! > 0; furthermore, if K1 0 
the emerging limit cycle is stable. On the other hand, if a! < 0 and K1 > 0, the limit cycle 
is unstable. 

< 0.30 the limit cycle is 
unstable, which suggests a subcritical Hopf bifurcation. However, the upper, stable branch 
of the solution cannot be predicted, since polynomial expansions to only fourth order are 
included in the analysis (cf. Section 2.3, Figures 2.12 and 2.13). For p > 0.30, the limit 
cycle is stable and the Hopf bifurcation supercritical. For p = 0.30, an infinite amplitude 
is obtained, but this should be interpreted as meaning that the effect of nonlinearities 
(to the order to which the Krylov-Bogoliubov analysis and the polynomial expansions 
have been carried out) is null - a higher order degeneracy. 

Typical results are shown in Figure 5.12. It is seen that for 
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Figure 5.12 Limit-cycle amplitude, OLc, versus the mass ratio p, for an articulated cantilevered 

system with c1 = c2 = 0, a = 1, h = 0.5, )Au,I = 0.1 (z 3%); (Rousselet & Herrmann 1977). 
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An important result obtained by Rousselet & Henmdnn, with repercussions to most 
other analyses, is that an amplitude of angular motion of at least 10" is required to 
perturb the flow velocity by a few per cent. This justifies the assumption made in most 
other analyses that the flow velocity is independent of motion. 

Finally, in a qualitative experiment involving a system with 3 = 0.216, Rousselet & 
Henmann found that the Hopf bifurcation is indeed subcritical: (i) for small disturbances, 
the oscillations die out and the system returns to equilibrium, and (ii) for larger distur- 
bances, the oscillations grow, until the motion reaches a steady state (stable limit cycle). 

The same problem, but with joints of nonzero stiffness and simplified by considering 
that the flow velocity is motion-independent, has been studied by Lunn (1982). In the 
nonlinear equations, only cubic nonlinearities are retained. The dynamics in the vicinity 
of the critical points is studied with the aid of centre manifold theory for both pitchfork 
and Hopf bifurcations, in the latter case also making use of the multiple scales perturbation 
technique (Nayfeh & Mook 1979; Nayfeh 1981). 

Figure 5.13 shows a stability map in the [j3, y}-plane for the occurrence of divergence 
or flutter for a system with a = K = 1 [i.e. kl = k2 and 2 1  = 12; equations (5.68)j. It is seen 
that, for small enough j3, the system loses stability by flutter: for very small B via a subcrit- 
ical, and for larger /l by a supercritical Hopf bifurcation (cf. Figure 5.12 and Rousselet & 
Hernnann's findings for y = 0). For low enough y ,  divergence is impossible. For higher 
y and not too small 6, stability is lost via a subcritical pitchfork bifurcation, indicating a 
'falling post-buckling path' (Figure 5.14), and is therefore unstable. One can presume that 
there may be a stable solution branch at larger amplitude - which nevertheless cannot 
be determined except by a higher-order analysis or by numerical integration. 

Lunn also conducted experiments with Perspex or copper tubing for the pipes and 
short pieces of rubber tubing for the spring-like joints (Section 3.8) conveying water. 
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Figure 5.13 Stability map for an articulated cantilevered pipe (N = 2, kl  = k 2 , l  L = 1 2 )  in terms 
of B and y ,  showing regions of loss of stability by a sub- or supercritical Hopf bifurcation or by a 

subcritical pitchfork bifurcation (Lunn 1982). 
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Figure 5.14 The development of divergence for a pipe with N = 2, kl = k2 = k, 11 = 12 = 1; 
B = 0.549 and y = 7.384, showing the development of the lateral departure from equilibrium, 
6 = (deflection)/l versus M U 2 1 / k :  ----, theory; e, experiment (Lunn 1982). The inset 
diagram shows what the development beyond ‘snap’ might be: -, stable solution; - - -, unstable 

solution. 

Light caliper-type hinges at the joints ensured planar motions. The pipes were of hfferent 
diameters, of 0 ( l o r n ) ,  and 0.2-1.0 m long, thus varying both B and y. Typical results 
for a pipe losing stability by divergence are shown in Figure 5.14. ‘Snap’ indicates the 
point where any further increase in the flow would ‘cause deflections to grow so large 
that something would probably break - this was not attempted!’ Hence, it can only be 
theorized that ‘snap’ corresponds to the point where the system would snap to the larger, 
stable solution branch, as sketched in the inset diagram. If that is so, then theoretical 
and experimental paths towards divergence agree remarkably well. Agreement between 
theory and experiment is less good for pipes theoretically losing stability by a supercritical 
Hopf bifurcation: in one case the experimental observations indicate that the bifurcation is 
subcritical (though the critical flow velocities agree very well); and in another, stability is 
lost by divergence in the experiment. These discrepancies are attributed to imperfections 
and peculiarities of the rubber joints. 

An important recent study is due to Champneys (1991), in which a two-degree-of- 
freedom system is considered, modified as follows: (i) the interconnecting springs are 
nonlinear and (ii) the straight configuration does not correspond to the unstrained-spring 
case, the two articulations being at an angle @. Hence, this is a case where, as the flow 
velocity u is increased, the equilibrium configuration is altered continuously. The bifur- 
cational behaviour beyond the Hopf bifurcation is tracked, and two kinds of homoclinic 
orbits are found to exist: so-called E-homoclinic orbits involving tangency to a stationary 
(equilibrium) point, and P-homoclinic orbits, bi-asymptotic to periodic orbits. Because 
the system is autonomous, AUTO (Doedel & KernCves 1986) could be used to trace all 
the bifurcations as parameters are varied. The system dynamics is investigated by varying 
u and @. The system loses stability through a Hopf bifurcation for sufficiently high u. 
Thereafter, depending on the values of @, further increase in u could lead to period- 
doubling, reverse period-doubling, as well as homoclinic bifurcations (both of E- and 
P-type). Among the interesting and unusual dynamical features obtained are isolus in the 
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global branches of some of the orbits, and towers, which are sequences of period-doubling 
and saddle-node bifurcations. Champneys goes on to show the existence of chaotic regions 
in this and in a subsequent paper (Champneys 1993) where the system asymmetry was 
removed - as discussed in Section 5.8.5. 

fb) 3-0 motions 

A very sophisticated analysis of three-dimensional motions of the N = 2 system - effect- 
ively generalizing to 3-D the foregoing analysis, but utilizing entirely different 
techniques - has been conducted by Bajaj & Sethna (1982a,b). The equations of motion 
used are equations (5.74)-(5.77); hence the flow velocity is motion-independent. The 
springs are considered to be so designed as to allow both planar motions in two directions 
and rotational motion with zero torsional stiffness - a challenging design problem if 
attempted experimentally. 

The particular problem investigated is the loss of stability by flutter. Because of the 
rotational symmetry of the system, a double pair of complex eigenvalues crosses simul- 
taneously the imaginary axis from negative to positive. The nonlinear phenomena in 
this case are more complicated than those associated with simple Hopf bifurcations 
(Figure 2.1 1); e.g. supercritical bifurcations do not necessarily imply a stable system 
in this case (Iooss & Joseph 1980). 

After considering the linear dynamics, the problem is transformed into Jordan canonical 
form. Then, periodic solutions of the nonlinear equations are analysed by the method 
of alternate problems (Hale 1969; Bajaj 1981, 1982), which is similar in spirit to the 
Lyapunov-Schmidt method (Appendix F, Sections F.6.2 and F.6.3). Two independent sets 
of periodic solutions are found to exist: clockwise or counterclockwise rotary motions 
about the x-axis and planar transverse motions. Their stability is determined by the Floquet 
exponents of the corresponding variational equations, leading finally to the following set 
of interesting results: 

(i) both supercritical and subcritical solutions of both the rotary and planar kinds are 
generally possible for 0 < 3 < 3 (0 < #I < 1) and for given ranges of a,  K and 
y, as defined by (5.68); as already mentioned, these are associated with double 
pairs of eigenvalues crossing the imaginary axis; 
if both planar and rotary motions are supercritical, then the one with the larger 
amplitude is stable and the other unstable, whereas normally one would expect 
all supercritical solutions to be stable; 
for a given p, if either of the solutions (rotary or planar) is subcritical, both 
solutions are unstable. 

(ii) 

(iii) 

Typical results are shown in Figure 5.15, where l / l p 2 0 1 ' / ~  is a measure of the ampli- 
tude. In Figure 5.15(a) it is seen that both rotary and planar supercritical solutions exist. 
For 8 < 0.5 1, the latter being larger, the planar oscillations are stable and hence should 
physically materialize; for B > 0.51, it is the rotary motions that are stable. When gravity 
is present, as in Figure 5.15(b), the situation is more complex. Thus, for p < 0.45, we 
once again have stable planar motions, while for 0.45 < B < 1.19 we have stable rotary 
motions. For p > 1.19, however, there also exist subcritical solutions, not present in 
Figure 5.15(a); since one of the solutions is subcritical, both are unstable. This does 
not imply that there are no stable periodic solutions for > 1.19; it merely reflects the 
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Figure 5.15 Amplitude of periodic solutions in the vicinity of u E f r  for 3-D motions of a 
two-degree-of-freedom articulated cantilevered system with a = 2, K = 1 and (a) y = 0 and 
(b) y = 0.25: -, rotary supercritical; - - - - , rotary subcritical; ---, planar supercritical; 

, planar subcritical (Bajaj & Sethna 1982b). 

analysis having been carried out to only the first approximation level. The same applies 
to the ‘infinite’ amplitude at 

Finally, Bajaj & Sethna (1982b) discuss the effect of a small asymmetry in the system, 
by making the spring stiffness in one plane slightly larger than in the other. It is found 
that the circular rotary motions become elliptical, but the dynamics in the foregoing are 
otherwise robust. 

The foregoing analysis is restricted to solutions in the neighbourhood of the straight, 
vertical equilibrium. The situation when this restriction is removed has been studied 
by Sethna & Gu (1985), where the ‘limiting configurations’ as u -P ca are examined: 
(i) does the system perform a rotary motion in a horizontal plane with the two pipe 
segments at right angles to each other, or (ii) does it take on an S-shape in a vertical 
plane, or (iii) some other configuration? The authors examine five such generic shapes, 
all of the type in which the equations are invariant under rotation about the vertical 
axis. The stability of these generic shapes is studied by either a linear approach or by 
utilizing centre manifold theory (in the case of global circular motions). It is found that 
apart from shapes (i) and (ii) above, all other shapes eventually become unstable via 
a (secondary) Hopf bifurcation. The analytical results are complemented by numerical 
simulations. 

= 1.19. 

(e) Double degeneracy 

Two studies into the dynamics of articulated cantilevers near a point of double degeneracy 
are discussed here. 

In the first such study, by Sethna & Shaw (1987), codimension-three bifurcations are 
considered of a two-segment articulated system vibrating in a plane; the double degeneracy 
in this case is associated with a pitchfork and a Hopf bifurcation occurring simultaneously 
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for a special set of parameter values. It has already been mentioned previously that for 
different values of y and p (or B) the system may lose stability by divergence (pitchfork 
bifurcation) or flutter (Hopf bifurcation); for the right combinations of (y ,  p),  these two 
bifurcations may occur simultaneously, i.e. at the same u. Codimension-three refers to 
three parameters being used to ‘unfold’ the bifurcations in the vicinity of this double 
degeneracy - i.e. to develop the evolution of the bifurcations gradually as one or more 
parameters are varied. This is normally a codimension-two problem (Guckenheimer & 
Holmes 1983), but here a third parameter corresponding to imperfection-related asymme- 
tries is added. 

The system is first transformed into Jordan canonical form, and then through centre 
manifold reduction and averaging reduced to the deceptively simple set of equations 

I- = pl r + r(-r2 - bz2), i = p4 + p2 z + z(--cr2 + 2’1, (5.110) 

where pi, i = I ,  2 and 4, are the unfolding parameters which are related to variations 
of the original system parameters from the critical point. By comparing these to the 
original nonlinear equations [cf. the planar version of equations (5.74)-(5.77)] involving 
more than 10-15 terms each, it is clear that a very dramatic simplification has been 
achieved. Yet, equations (5.110) are capable of capturing the essential dynamics of the 
system, as is illustrated, for instance, by comparison with simulations from the full form 
of the equations. The r equation is similar to the averaged equation for the classical 
van der Pol oscillator, with r representing the amplitude of oscillatory response, in this 
case due to the Hopf bifurcation, while the z equation represents pipe response due to 
the pitchfork bifurcation. The results are illustrated in Figure 5.16 for the case of no 
asymmetries (p4 = 0), which in fact corresponds to codimension-two bifurcations - cf. 
Section 5.7.3(d) where, for a similar system, the analysis is outlined in greater detail. The 
parameter p ~ ,  for p1 > 0, gives rise to a pitchfork bifurcation (only one side of which is 
shown) and to a new equilibrium point q1 (on the r-axis) for the averaged system (5.1 10); 
in the original system this corresponds to the amplitude of periodic motions. For p2 < 0, 
we additionally have a static subcritical pitchfork bifurcation, and the point q2 (on the 
z-axis) is unstable. Of particular importance is line 2, on which there exists a heteroclinic 
cycle, across which the character of the solutions and the stability of the new fixed point 
q3 change. According to Smale’s horseshoe theory (Guckenheimer & Holmes 1983; Moon 
1992), it is known that homoclinic and heteroclinic tangles may lead to complex dynamics 
and chaos. 

The three-parameter, codimension-three case is very much more complex and will not 
be discussed here, even in outline. In addition to periodic motions, amplitude-modulated 
oscillations, i.e. motions on a ‘two-torus’ in four-dimensional space, are generally also 
possible. These manifest themselves as periodic orbits in r - only on line 2 for the system 
of Figure 5.16, but more widely for the asymmetric system - cf. Section 5.7.3(d). In 
total, in this remarkable study, 23 distinct open sets are found in the three-dimensional 
(p 1,  p 2 ,  p4) parameter space, each corresponding to qualitatively different dynamics! 

Yet another type of double degeneracy in articulated pipes was studied by Langthjem 
(1995): the case of two Hopf bifurcations occurring simultaneously. This, though impos- 
sible for N = 2 and 3 systems, can occur for the N = 4 system. Hence, to study this 
system, Langthjem derives the nonlinear equations for the four-degree-of-freedom system, 
considering planar motions and a deflection-independent flow velocity; the connecting 
springs are taken to be nonlinear, with a linear and a cubic component. 
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Figure 5.16 Two-parameter unfolding of bifurcations for the symmetric case (p4 = 0) of an 
N = 2 vertical articulated cantilever near a point of double degeneracy (Sethna & Shaw 1987). 

Analysis of the linear system yields the double-degeneracy conditions, corresponding 
to simultaneous Hopf bifurcations in the second and fourth modes, for instance. The 
system is transformed to Jordan canonical form, and then centre manifold and normal 
form theory are employed to study the dynamics in the neighbourhood of the double 
degeneracy. The reduced subsystem on the centre manifold is found to be governed by 
the amplitude equations 

i-1 = r1(& + r: + bri) + O(lr15), i-2 = ~ ( 8 2  + cr: + dr;) + O(lrI5), (5.111) 

and similar equations for the phase angles 81 and 82. In (5.111), 61 and 82 are the incre- 
ments in the real parts of the eigenvalues (equal to zero at the critical points), which 
can be related to the bifurcation parameters and x, associated with u and y,  respec- 
tively (Appendix F.5). Thus, this is a codimension-two analysis. System (5.1 11) has been 
analysed by Guckenheimer & Holmes (1983), and nine topologically different classes of 
solutions are found to be possible. 

Langthjem found several of these solutions, involving different kinds of periodic and 
quasiperiodic motions. Sample results are shown in Figure 5.17: (a,c) in the {q, r2)- 
plane and (b,d) in the {&, $1) phase plane, where #1 is the angular deflection of 
the first articulation. In Figure 5.17(a) we see a fixed point on the rl-axis, ( r I ,  r2)  = (a, 0); in the physical system it corresponds to periodic oscillations at frequency 
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Figure 5.17 (a) A fixed point in the [ r l ,  rz] plane and (b) corresponding physical-coordinate 
phase-plane plot; (c) a fixed point on the invariant line r2 = 1.2599r1 and (d) the corresponding 
phase-plane plot; for the N = 4 articulated system near a point of double degeneracy involving two 

Hopf bifurcations (Langthjem 1995). 

&. In Figure 5.17(c) the fixed point lies on the invariant line r2 = 1.2599r-l; physically 
this corresponds to quasiperiodic oscillations with two incommensurate frequencies. 
The phase-plane diagrams of Figure 5.17(b,d), obtained numerically by integrating the 
full equations verify the centre manifold predictions. This verification, by the way, is 
something that is rarely done but should be done, wherever possible. 

5.6.3 Concluding comment 

The paradoxical dynamics in Thompson’s magic box, the prediction and confirmation of 
both subcritical and supercritical Hopf bifurcations in addition to divergence (Figures 5.13 
and 5.14), the discovery of rotary as well as planar limit-cycle motions (Figure 5.19, and 
the existence of quasiperiodic motions, heteroclinic cycles and chaos in the vicinity of 
double-degeneracy conditions, all this shows that the nonlinear system is dynamically 
very rich and even more interesting than the linear one. This realization has added to 
the impetus for nonlinear analysis of the continuous counterpart of this system, to be 
discussed next. 
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5.7 CANTILEVERED PIPES 

A rapid scan of publication dates will convince the reader that most of the activity on 
the dynamics of pipes conveying fluid has in recent years concentrated on the nonlinear 
dynamics of continuous cantilevered pipes, to be discussed here, or articulated cantilevers, 
covered in Section 5.6; this is more striking if one includes the work on chaotic dynamics, 
presented in Section 5.8. The reason is that these systems display as varied and fascinating 
nonlinear dynamical behaviour as the cornucopia in the linear dynamics domain already 
discussed in Chapters 3 and 4. 

In keeping with the rest of this chapter, most important findings are discussed to a 
greater or lesser extent, but the mathematical methods and analytical details are only 
skimmed; only in one case, in Section 5.7.3, are they presented in fair detail. 

As for articulated cantilevers, the character of the Hopf bifurcations leading to flutter is 
a question of considerable interest. For 2-D motions, this defines whether the bifurcation 
is sub- or supercritical, as discussed in Section 5.7.1. For 3-D motions, this additionally 
decides whether the flutter is planar or three-dimensional, as discussed in Section 5.7.2. 
Again as for articulated cantilevers, it is of interest to examine the dynamics near different 
types of double degeneracy conditions; this is done in Section 5.7.3. 

5.7.1 2-D limit-cycle motions 

Planar limit-cycle motions of a vertical cantilever in the vicinity of the critical flow 
velocity where the Hopf bifurcation arises were studied by Rousselet & Herrmann (1981). 
A constant-pressure tank is assumed to feed the flow into the pipe [see Figure 5.2(a)], 
while the flow velocity is pipe-deformation dependent, as discussed in Section 5.6.2 for the 
articulated counterpart of this system. Hence, there are two coupled governing equations, 
which are solved iteratively, in a manner similar to that described in Section 5.6.2: (i) the 
homogeneous, linear solution to the equation of motions is obtained first; (ii) the solution 
is substituted into the ‘flow equation’ which yields Au and AM, the flow velocity and 
acceleration due to pipe deforniation; (iii) the homogeneous solution together with Au 
and AU are substituted into the full nonlinear equation of motion, which is solved by the 
Krylov -Bogoliubov averaging method, to first order, yielding the averaged amplitude, 2, 
and the corresponding phase. Of course, at the very threshold of the Hopf bifurcation 
there is zero damping. A small amount of positive or negative external viscous damping, 
h ~ ~ ,  is added as a control parameter, used to achieve purely real eigenfrequencies for 
u = u, f Au,, where u, is the critical value; an equal and opposite amount of ‘damping’, 
h i ,  is added to the nonlinear part of the equation, thus cancelling the total added 
damping. Also added to the nonlinear part of the equation are the gravity terms, which 
are small. These addenda to the nonlinear part of the equation are significant in the 
discussion of the results. 

Unfortunately, not all parameters are defined in the results obtained. It is mentioned 
that, ‘for a steel or plastic pipe in. in diameter and 2 ft in length’ and j3 = 0.5, the 
gravity parameter is y = 0.01 and 0.3, respectively; so, presumably y is in that range for 
the calculations in Figure 5.18. The dimensions also give a clue as to the likely value for 
the fluid friction constant a in equation (5.53), which can play an important role in the 
dynamics (Bajaj et al. 1980). 
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Figure 5.18 Limit cycle amplitude of free end of a cantilevered pipe, AID, versus B for 
IAu,l = 0.1; curves 1, 2, 3 represent solutions with IAu,l = 1 and unusually small amplitude 

(Rousselet & Herrmann 1981). 

The main result obtained, Figure 5.18, shows the amplitude of the limit cycle as a 
function of B for lAu,l = 0.1 or 1. Also indicated (as S or D) is whether the effect of 
nonlinearities is stabilizing or destabilizing. It is here, however, that it must be recognized 
that the ‘nonlinearities’ include the linear gravity and reversed damping terms; as a result, 
the regions in which ‘nonlinearities’ are destabilizing is not necessarily associated with 
a subcritical Hopf bifurcation, since the damping which has been added artificially (the 
ktarj term) can also lead to destabilization (Section 3.5.3). 

It is observed in Figure 5.18 that AID > 0.15 in most cases, where A is the limit-cycle 
amplitude, indicating that a relatively large amplitude of motion is required to compensate 
for the small amount of positive or negative damping associated with I A u , ~ . ~  This shows 
that the ‘nonlinearities’, as expected, do not have a strong effect on the system, except in 
the vicinity of the ‘jumps’ or S-shaped curves in the stability diagram, at B E 0.295 and 
0.67 (see Figures 3.30 and 3.32).* IAu,l = 0.1 corresponds to approximately only 1% of 
u,, IAu,l = 1 to about 10%. The infinite amplitudes correspond to effectively zero effect 
of the ‘nonlinearities’, at least in terms of the first-order averaging approximation. 

A variant of the system was considered by Lundgren et al.  (1979): a horizontal pipe, 
fitted with an inclined nozzle at the free end (at angle 0, and terminal flow velocity Uj),  
as shown in Figure 5.19(a), and subjected to a deformation-independent flow velocity. As 
a result of the sideways load by the exiting fluid jet, the shape of the pipe in the plane of 
the nozzle is changed continually as u is increased. The static equilibrium of the pipe is 

+To a certain extent, ‘small’ and ‘large’ are dependent on the nondimensionalization. 
$The dynamics in the vicinity of @ = 0.295 is much more complex, and several solution curves are deter- 

mined by Rousselet & Henmann (1981). 
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Figure 5.19 (a) The pipe fitted with a nozzle at the free end, inclined at an angle 0, in the plane of 
the paper; planar motions, both in this plane (‘in-plane’) and perpendicular to it (‘out-of-plane’), are 
considered. (b) Stability of the system for small 0,; AuC stands for the change in uc vis-a-vis linear 
theory: -, stability boundary for in-plane motions; - - -, stability boundary for out-of-plane 

motions (Lundgren et aE. 1979). 

determined for any given u = (MUt.Jj/EI)1/2L - cf. equations (3.74) - by solving the 
time-independent form of the nonlinear equations via elliptic functions. For small e,, the 
equations are linearized and the solution becomes 

(5.112) 

where w(() is the lateral deflection along the length. This solution has a constant and a 
linear term in 4, causing a tilt of the pipe from the axial (-axis, while the trigonometric part 
indicates a wavy shape. The number of periods of the waves increases with u and ‘often 
this number becomes surprisingly large before the system develops a dynamic instability 
by flutter’. The equations are then linearized about the static equilibrium configuration, the 
stability of which is examined by obtaining perturbation solutions for small e,, for motions 
both in the plane of the nozzle (‘in-plane’) and perpendicular to it (‘out-of-plane’). The 
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results are shown in Figure 5.19(b). It is interesting that the zones where the system loses 
stability out-of-plane (zones I, I11 and V), correspond nearly exactly to the regions where 
Rousselet & Herrmann (1981) predict that the system is stabilized by ‘nonlinearities’ ! 
Suppressing the small region around B = 0.295 in Figure 5.18 (where dissipation is known 
to have a destabilizing effect - Section 3.5.3),  the comparison is made in Table 5.1. 
Evidently, the nozzle affects stability in a similar way as ‘nonlinearities’: when the nozzle 
has a stabilizing effect in its own plane, the pipe loses stability out-of-plane; and when 
the effect is destabilizing, then in-plane flutter is obtained. 

The results were tested experimentally for varying values of B, and accord between 
theory and experiment, as to whether in-plane or out-of-plane limit cycles arise, is quite 
good, considering especially that the experiments were with vertical pipes, whereas in the 
theory gravity effects are neglected. 

The definitive study into the nature of the Hopf bifurcations leading to flutter, for 
the same system as that examined by Rousselet & Herrmann, is due to Bajaj et al .  
(1980), who conducted a sophisticated analysis, utilizing the tools of modern dynamics 
theory. The equation of motion analysed involves a constant upstream pressure and a 
deformation-dependent flow velocity. The partial differential equation is transformed to 
vector form, and then the linear problem and its adjoint are solved. The solution procedure 
is nonstandard, but is based on the ideas of centre manifold theory and averaging [refer 
also to the discussion of Bajaj’s (1987b) work in Section 5.9.21. A periodic solution with 
undetermined amplitude and phase is assumed, and the equations are eventually reduced 
to the following normal form: 

r = H(/L + ar2)  + S(&, lj = w, + E [ / L C  + br2] + 0(t2). (5.113) 

Depending on the sign of a ,  the emerging limit cycle is stable (a  < 0, supercritical Hopf) 
or unstable (a  > 0, subcritical Hopf). The results are shown in Figure 5.20, and depend 
on the parameter a! = f L/&, f being the friction factor and A = the flow area; 
thus, a! c( L/Di, represents the slenderness of the pipe. It is seen that for sufficiently 
long (slender) pipes, hence large a!, the bifurcation is always supercritical, whereas for 
short enough pipes’ it can be subcritical. Significantly, for any given a!, the regions of 
sub- and supercritical Hopf bifurcations in Figure 5.20 do not correspond to those of 
destabilization and stabilization due to ‘nonlinearities’ in Table 5.1, and hence contradict 
the results of Rousselet & Herrmann (1981); the reason for this is likely the fact that 
‘artificial damping’ is included among the ‘nonlinearities’ in Rousselet & Herrmann’s 

Table 5.1 Effect of ‘nonlinearities’ (Rousselet & Herrmann 1981) 
and plane of flutter for a pipe fitted with an inclined end-nozzle 
(Lundgren et al .  1979) for different ranges of /?; in-plane means in 
the plane of the nozzle, and out-of-plane perpendicular to the plane 

of the nozzle. 
_____ ~ ~ 

B Effect of B Plane of flutter 
‘nonlinearities’ 

0.02-0.21 Stabilizing 0.00-0.23 Out-of-plane 
0.21 -0.42 Destabilizing 0.23-0.42 In-plane 
0.42-0.66 Stabilizing 0.42-0.63 Out-of-plane 

+Still presuming that they are long enough for Euler-Bernoulli theory to hold. 
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Figure 5.20 The different types of Hopf bifurcation of a cantilevered pipe depending on #? and 
a, where a is a friction factor multiplied by (4/rr)’/*L/Di, LIDi being the pipe slenderness (Bajaj 

et al. 1980). 

work, as discussed in the foregoing. One experiment by Bajaj et al .  with three lengths of 
the same pipe (B  = 0.342) showed supercritical loss of stability for the longer pipes and 
a subcritical one for the shorter pipe, in full agreement with theory. 

The same topic was studied via simulation by Ch’ng & Dowell (1979), using two 
variants of their nonstandard equations of motion [Section 5.2.8(d)]. It is of interest that 
a subcritical Hopf bifurcation is found in a case with B = 0.5: for small initial conditions 
the oscillation dies out, while for large enough initial conditions the solution converges 
to a limit-cycle motion (implying the existence of an unstable limit cycle in-between, 
cf. Figure 2.11(d)), as found experimentally by Pdidoussis (Section 3.5.6). This result by 
Ch’ng & Dowell is cited mainly to make the following point. In the semi-analytical studies, 
nonlinearities of only up to 0(c3)  are generally retained, since to go to 0 ( c 5 )  would make 
the analysis unwieldy. As a result, in all the foregoing, the existence of the outer, stable 
limit cycle in the case of a subcritical Hopf bifurcation could only be surmised - cf. 
equations (2.165) and (2.166) and Figures 2.12 and 2.13. In the simulations, however, 
this problem does not arise. 

Another numerical study is due to Edelstein et al.  (1986), utilizing the Lundgren et al.  
(1979) equations of motion (with no end-nozzle) and solving them by means of a finite 
element method and a ‘penalty function’ technique.+ In the calculations, for a pipe studied 

+In Lundgren’s et al .  equations one obtains two equations of motion involving T - PA, which should 
be eliminated to obtain just one equation. In the penalty function approach, e = (T - pA)L2/EZ is defined 
and equated to h . [ ( a x / a x ~ ) ~  + (&/&GO)~ - I],  in which the penalty parameter h is generally a large number - 0(105) and the last bracketed expression is zero because of the inextensibility condition, equation (5.1). 
Thus, by allowing a small amount of ‘mathematical extensibility’ one can both eliminate e from the equations 
of motion and satisfy the inextensibility condition. 
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experimentally by Chen (see Section 3.5.6), the limit cycle appears to be supercritical, but 
this is not made absolutely clear, although in the experiments it is definitely subcritical. 
Nevertheless, agreement with the experimental stable limit-cycle amplitude and flutter 
frequency is reasonably good. 

Before ending this section, the singular behaviour of the system in the vicinity of 
B = 0.3 and 0.69 in Figures 5.18-5.20 should be remarked upon; i.e. at the same values 
of fl where S-shaped discontinuities in the u, versus B plot occur (Figure 3.30), and with 
which so many interesting features of linear dynamics are associated (Sections 3.5 and 
3.6). Furthermore, the ‘stabilizing/destabilizing’ and in-plane/out-of-plane ranges of /3 in 
Table 5.1 straddle these same S-shaped discontinuities. Referring to the work presented 
in Section 35.4, this is hardly surprising: the modal content of the flutter mode and the 
energy transfer mechanism both experience radical alterations about these critical values 
of B. Hence, it is reasonable that the nature of limit-cycle motions should also be modified 
across these same values of B. 

5.7.2 3-D limit-cycle motions 

As already mentioned, the main objective in the case of 3-D motions of the pipe is the 
prediction of whether the flutter motions are planar or three-dimensional (orbital). The 
necessary analysis, using a simplified set of equations with a deflection-independent flow 
velocity, was done by Bajaj & Sethna (1984). As in Bajaj & Sethna’s (1982a.b) similar 
analysis of articulated pipes (Section 5.6.2), stability in this system is lost via two pairs 
of complex eigenvalues crossing the imaginary axis simultaneously, i.e. via a generalized 
Hopf bifurcation. This system is said to have O(2) symmetry, possessing both rotational 
(about the x-axis) and ‘reflective’ symmetry across that axis. 

The original governing PDE is reduced directly to a set of ODES on the centre manifold 
without introducing Galerkin expansion, similarly to Bajaj et al .  (1980). The discretized 
equations are then projected onto the centre manifold, and periodic solutions close to the 
critical flow velocity are sought. The resulting equations are then brought into normal 
form by the method of averaging. Eventually, equations similar to (5.113) are obtained, 
but in this case two different amplitude parameters, al and 122, are involved; for rotary 
motions a1 = a?. The final results are shown in Figure 5.21. Similarly to the articulated 
system (Section 5.6.2(b)), whenever two supercritical bifurcations occur for the same 
system, that with the larger amplitude is the stable one, while the other is unstable. 
Once more, the singularities in this figure, namely the values of /3 where the limit-cycle 
amplitude can be zero, correspond to the location of the S-shaped curves in the linear 
stability diagram (Figure 3.30). However, the points where limit-cycle motions switch 
from planar to circular (rotary) and vice versa do not correspond to any of the ranges in 
Table 5.1. 

The dynamics of the same system was also studied (Bajaj & Sethna 1991) in the 
presence of small imperfections, representing different bending stiffnesses and additional 
viscous damping in two mutually perpendicular directions, imposed to break the rotational 
symmetry. Thus, the linear flexural rigidity term in one equation is multiplied by (1 + ~ 6 )  
and in the other by (1 - ea), while the damping coefficients are E C ~  and ~ 2 ,  respectively. 
E being a small parameter. The rotational symmetry is therefore broken by the parameters 
6 and ( C I  - c?) .  Similar analytical techniques as in Bajaj & Sethna (1984) are used. At 
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Figure 5.21 The amplitude of periodic solutions of a cantilevered pipe versus j3 for planar and 
circular (rotary) supercritical Hopf bifurcations, of which that with the larger amplitude is stable: 

_ _ _  , planar motions; -, circular motions (Bajaj & Sethna 1984). 

flow rates past a critical value, two primary branches of ‘standing waves’, i.e. motions 
restricted to a plane, are found. Depending on B, the standing wave may undergo a 
pitchfork bifurcation into a ‘travelling wave’ (Le. rotary pipe motions, which in this 
asymmetric case are elliptic), or it may coexist with travelling waves arising from a saddle- 
node bifurcation. Secondary bifurcations and codimension-two bifurcations to modulated 
waves are also considered. A very rich dynamical behaviour is displayed, a sample being 
shown in Figure 5.22. 

It may be seen in that figure that, as a result of the breach of symmetry, the system 
now loses stability by planar (‘standing wave’, SW) motions at different flow rates in 
the two mutually perpendicular planes, differing by a phase angle (0 = 0 or n); the 
critical values of the flow parameter are h = -0.5211 and h = +0.5211.+ The SW, 
solution, emerging via a supercritical Hopf bifurcation is associated with the weaker of 
the two planes and is stable, while the SWO solution is subcritical and unstable. Rotary 
(‘travelling wave’, TW) motions do not arise until a higher flow rate is reached (h > 
Amin = 2.5113), whereupon two such solutions emerge, one stable and the other unstable. 
The SW, solution becomes unstable by a secondary Hopf bifurcation at h = h h  = 4.600, 
signifying possible modulated oscillations. However, this solution branch is unstable (the 

+The ‘flow parameter’ A is defined as A = pplr  + ie l i (c l  + CZ), where is the flow bifurcation parameter, 
and E C I  and ECZ represent the damping in the two mutually perpendicular planes of motion. c << 1; j31r  and eli 
are constants dependent on the flow velocity and frequency at the critical point, on B. and on the deformation 
(Bajaj & Sethna 1991; equation (21)). 
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Figure 5.22 Bifurcation diagram of the perturbed cantilevered pipe system with a small stiffness 
asymmetry, showing the amplitude, A ,  of planar motions (‘standing waves’, SW), rotary motions 
(‘travelling waves’, TW) and modulated waves (MW), as a function of the flow parameter h for 

#I = 0.25 and S = 0.1 (Bajaj & Sethna 1991). 

bifurcation is subcritical): for small perturbations the solution converges to SW,, and for 
larger ones to T W  - the two coexisting for Amin < h < A/,. For h > A/,, only rotary (TW) 
motions are possible. 

These theoretical predictions are qualitatively supported by experiment, involving 
slender, vertical cellulose acetate butyrate pipes ( L  = 1.83 m, D, = 6.48 mm, D,, = 
7.95mm). The pipes were fitted with straight nozzles at the free end, with area 
ratios of A,/A = 0.3 and 0.4, resulting in /3 = 0.173 and 0.231 [cf. Section 3.5.6 and 
equations (3.74)] - the latter case being close to /3 = 0.25, as in Figure 5.22. Experiments 
were conducted with a round pipe and then with flats machined on diametrally opposite 
sides of its outer surface, resulting in 6 2 0.05 (cf. 6 = 0.1 in Figure 5.22). The following 
remarkable set of observations are made. 

(i) For the round, nearly perfectly symmetric pipe with /3 = 0.173, the initial limit-cycle 
motion is confined to one plane - as determined by whatever imperfections are present. 
With further increase in the flow rate, the amplitude of motion increases but it remains 
planar, in the same plane. This is as predicted in Figure 5.21, where the planar motion is 
stable, while the circular one is unstable. 

(ii) For the same configuration but /3 = 0.231, the initial limit-cycle motion is again 
planar. For a slightly larger flow rate, however, the motion becomes circular (rotary), 
which is the situation predicted by theory (Figure 5.21). 
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(iii) The B = 0.173 pipe with flats behaves essentially as in (i); this, also agrees with 
Bajaj & Sethna’s theoretical predictions. 

(iv) The most interesting case is the j3 = 0.231 pipe with flats. The initial limit-cycle 
motion is again planar (SW). This motion persists to a certain flow rate, U h ,  qualita- 
tively corresponding to h h  in Figure 5.22, whereupon the pipe motion suddenly develops 
‘complex spatial transients’ and then settles down to a large elliptical limit cycle (TW). As 
the flow rate is increased, the ellipse becomes more nearly a circle. Changes in the initial 
conditions result in circular motion in the opposite direction. On reducing the flow rate, 
circular motion (TW) persists to below u ~ ,  with reduced amplitudes and a more sharply 
elliptical shape (large ratio of major to minor axis). At a lower flow still, corresponding 
to Amin in Figure 5.22, spatial transients develop again, and then motion settles down to 
a planar limit cycle (SW). These observations agree qualitatively remarkably well with 
theory (Figure 5.22). In particular, for flow rates between Amin and h h ,  both planar (SW) 
and rotary (TW) stable motions are found to exist and, by carefully controlling the initial 
conditions, either can be achieved. 

5.7.3 Dynamics under double degeneracy conditions 

The main reason for studying doubly or multiply degenerate systems lies in the fact that, 
in the presence of ‘competing attractors’, the dynamics becomes particularly interesting. 
In ‘unfolding the bifurcations’ a variety of different dynamical behaviour is found, and 
regions where chaos may arise can be identified. 

Some double degeneracies, e.g. those associated with 3-D motions and generalized Hopf 
bifurcations (which are discussed in Section 5.7.2, but which could equally well have been 
covered here), are inherent in the system - whatever the system parameters - provided 
that it is perfectly symmetric. Some others, such as those treated here, involving different 
types of coincident bifurcations (pitchfork and Hopf) arise for particular sets of system 
parameters, irrespective of symmetry. Studies of this type were conducted by PaYdoussis & 
Semler (1993b), Li & PaYdoussis (1994) and Steindl & Troger (1988, 1995). In all cases, 
these studies build upon Sethna & Shaw’s (1987) pioneering work on articulated pipes. 

Specifically, three particular studies into the dynamics of cantilevered pipes near a 
point of double degeneracy are presented in this section: (a, b) the 2-D and (c) the 3-D 
dynamics of a pipe with an intermediate spring support, and (d) the 2-D dynamics of an 
‘up-standing’ cantilever in a gravity field. The case of 2-D dynamics of the pipe-spring 
system is the only one in this book where the analysis is presented in reasonable detail, 
starting with the nonlinear equations of Section 5.2.7; hence, the presentation is broken 
into two: (a) the general analysis, and (b) the analysis under double degeneracy conditions. 

fa) 2-0 motions of pipe-spring system; general analysis 

The planar dynamics of a vertical cantilever with an intermediate, linear spring support 
(Figure 5.23) has been studied by Pai’doussis & Semler (1993b). Equations (5.42) and 
(5.43) constitute the equation of motion used, but with the linear spring term 

K V W  - t . 7 )  (5.1 14) 

added, where K = kL3/EI is the dimensionless spring constant and es = x , / L  is the 
location of the spring. The linear dynamics of the system has been discussed in 
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Figure 5.23 Schematic of the vertical cantilevered pipe with an intermediate linear spring support, 
capable of double degeneracy conditions (Paldoussis & Semler 1993b). 

Section 3.6.2 (Figures 3.64 and 3.65), where it is shown that both divergence and flutter 
are generally possible. 

The nonlinear equation of motion is discretized by Galerkin's method, yielding 

where C i j  and K ; ,  are defined as 

and 
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where the A; are the dimensionless eigenvalues associated with the beam eigenfunctions 
$ i ,  used here as comparison functions in the discretization. The coefficients b j j ,  q j  and 
dij are computed from the integrals of the eigenfunctions (Section 3.3.6, Table 3.1) while 
a i j k / ,  bijk-, Cijk[ and dijkr are computed numerically (Semler 1991; Li & Paidoussis 1994). 

The repeated indices in (5.115) implicitly follow the summation convention. The 
nonlinear terms have been multiplied by E ,  used here as a book-keeping device to indicate 
that they are small. Equation (5.115) may be re-written in first-order form: 

in which p = ;I; or 
Y = [AIY + e f ( y ) ,  (5.117) 

where I ,  K ,  C are the identity, stiffness and damping matrices, and q,  p and y are under- 
stood to be vectors. Although all this is applicable to any order of discretization, all 
numerical results (and the centre manifold calculations in subsection (b)) are confined to 
a two-term Galerkin discretization, N = 2. 

In the remainder of this subsection, a linear and then a nonlinear stability analysis is 
undertaken, in the latter case supplemented by simulation. A typical Argand diagram of 
the eigenvalues of [A] as u is increased is shown in Figure 5.24(a). The system loses 
stability by divergence at u = 11.47 in its first mode. Then, according to linear analysis, 
it is subject to flutter at u = 12.48 in its second mode. The two branches of the divergent 
mode merge, and that mode regains stability, at u = 15.07. 

A nonlinear analysis of the dynamics in the vicinity of the fixed points is conducted 
next. The fixed points are given by 

(5.1 18) 

where the superscript 0 denotes the fixed point. Then, considering perturbations about a 

and (5.1 17): 

Kijq j  0 + a i j k l  qyqiqe = 0, 

fixed point, qi = qi 0 + u;,  pi = v;, the perturbation equations are obtained from (5.1 15) 
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(b) diagram of the tip displacement of the nonlinear system, for j3 = 0.18, y = 60, (Y = 5 x 

(a) Argand diagram of the eigenvalues of the linearized system of Figure 5.23 and 

K = 100, & = 0.8 (Pa'idoussis & Semler 1993b). 

Hence, stability is assessed from the eigenvalues of the matrix in (5.1 19). The results are 
shown in Figure 5.24(b). The same notation for the eigenvalues as in Section 5.5.2(a) is 
used here. It is seen that the origin (0) becomes unstable through a pitchfork bifurcation, 
h{o~ = (0, -, -, -) at u = 11.47, which corresponds to what is seen in Figure 5.24(a). 
Two stable equilibria appear: the fixed points ( f l }  with eigenvalues A,*l) = (-, -, -, -), 
where {kl} simply denotes theJirst set of fixed points. They remain stable until u = 12.43, 
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when Hopf bifurcations occur and A{*,) = (+, +, -, -). This probably leads to stable 
limit-cycle motion, since there is no other stable equilibrium state. At u = 12.48, it is the 
origin {0} that undergoes a Hopf bifurcation. The three fixed points (0) and (411) coalesce 
at u = 15.07 = h{o) = (+, +, 0, -)I. A numerical investigation confirms the results 
found: limit-cycle oscillations are found to exist before the first Hopf bifurcation occurring 
at u = 12.43, showing that these oscillations are due to the subcritical bifurcation of the 
( f l }  fixed points. For u a little less than 12.43, e.g. at u = 12.35, the orbit can be attracted 
either by one of the stable fixed points or by the attracting periodic limit-set. 

It is of particular interest that, in this case, post-divergence flutter does materialize, 
although not in the manner predicted by linear theory: i.e. it emerges from the new stable 
fixed points associated with first-mode destabilization, rather than from the second mode. 
From this and other similar calculations, it is clear that the nonlinear dynamics of the 
system can be substantially different from linear predictions. Thus, the stability map in 
Figure 5.25(a), obtained by linear analysis, can only be relied upon for the jirst loss of 
stability: by divergence for -56 < y < 71.9 and by flutter for y > 71.9 approximately 
for the particular set of parameters given in the caption; the other predicted instabilities, 
beyond the first, do not necessarily materialize. 

The region of ‘global oscillations’ in Figure 5.25(a) cannot be obtained by linear or 
even local nonlinear analysis, but was found numerically. ‘Global’ is used here to indicate 
that the oscillations circumnavigate more than one, in this case three, fixed points. For 
u = 7.5, it is seen in Figure 5.25(b) that the origin has become a saddle, but two new stable 
equilibria exist. For u = 13.1, however, the dynamics is more complicated, as shown in 
Figure 5.25(c). The origin (0) is a saddle, as well as the second pair of fixed points, ( f 2 ) ;  
for clarity, not all the stable and unstable manifolds have been drawn in this figure, and the 
existence of only one fixed point of the second pair at - 0.1 is revealed by the trajectories 
shown. The first pair ( f l }  at f0 .2 ,  is ‘weakly’ attracting. Flows with initial conditions 
close to the equilibrium are attracted by one of the fixed points {&l}. However, other 
attracting sets also exist: one may observe either limit-cycle oscillations around one of the 
equilibria or global limit-cycle oscillations around the five equilibria. Those oscillations 
do not come from local bifurcations. For Duffing’s equation, for example, solutions lie 
on level curves of the Hamiltonian energy of the system, and these solutions are closed 
orbits representing a global stability state (Guckenheimer & Holmes 1983). 

(b) 2-0 motions of pipe- spring system; double degeneracy conditions 

Here the dynamics of the system is discussed in the vicinity of the double degeneracy, 
in this case due to coincidence of a pitchfork and a Hopf bifurcation. Figure 5.26 shows 
appropriate combinations of ,4, y and K for which such a double degeneracy is obtained. 

Appendix H shows how the nonlinear dynamics in the vicinity of a Hopf or a pitchfork 
bifurcation may be analysed by means of centre manifold theory and either normal form 
or averaging analysis. Here the same type of analysis is done under conditions of double 
degeneracy. 

In this case, introducing an appropriate modal matrix [PI and the transformation y = 
[PIX, equation (5.117) can be put into ‘standard form’, defined by 
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Static restabilization 

Divrrgeriw. 1st mode 

Gravity parameter. y 

- 0  

-0.2 0 0.2 0.4 

Displacement, H’( 1 .  71 ( C )  

Figure 5.25 (a) Stability boundaries for the system of Figure 5.23 obtained by direct eigenvalue 
analysis, except for the ‘global oscillations’ region obtained numerically from the equations of the 
nonlinear system: (b) phase portrait of the system showing the saddle node at (0) and the two stable 
equilibria ( f l )  for y = -60, and u = 7.5; (c) three saddles (0) and (f2}, two stable equlibria ( f l ]  
and global oscillations for y = -60 and u = 13.1. In all cases B = 0.18, LY = 5 x K = 100. 

& = 0.8 (Pai’doussis & Semler 199313). 

where 

(5.121) 

[MI is the matrix of the eigenvalues with negative real parts; for this 4-D system the last 
row of [ A ]  involves a scalar. 
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Gravity parameter, y 

Figure 5.26 Double degeneracy conditions for the system of Figure 5.23 for different values of 
K .  The control parameter varied is B. It is noted that for K = 0 essentially the same curve is retraced 
backwards as #3 is incremented past = 0.03; this is not the case for higher K ,  e.g. K = 50. where 

the curve continues on to positive values of y (Pai’doussis & Semler 1993b). 

Ignoring the stable eigendirection associated with [MI, see Appendix H, the flow in 
the vicinity of the double degeneracy on the centre manifold may be described by the 
subsystem 

where f is a third-order polynomial in x, different from f in (5.120). In the dynamics 
vocabulary, pi and ,u2 are called unfolding parameters, and they represent the deviations 
of the real parameters from their critical values (see Appendix F). In the case of a double 
degeneracy, two such parameters are necessary to unfold the dynamics of the problem 
(codimension-two bifurcation). 

The next step is to follow the strategy of normal forms, in which all the nonessential 
nonlinear terms of f are eliminated (‘nonessential’ meaning that they do not affect the 
qualitative dynamics), as described in Appendix F.3. In the case of the double degeneracy 
with certain symmetry properties, the normal form is shown to be 

where r2 = x: + x; (Takens 1974; Guckenheimer & Holmes 1983). In physical terms, 
Y represents the amplitude of oscillatory motions of the pipe, z represents the buckled 
positions of the pipe, and d4/ dt the frequency of oscillations. It is interesting to note that 
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the first two of equations (5.123) and the third one are decoupled, providing immediately 

4 = mot + &I + G(c). 

A rescaling procedure can transform the first two equations to their usual form (Gucken- 
heimer & Holmes 1983; pp. 396-411), 

& I  + r 2  + k2), Z = ~ ( p 2  + CT’ + dZ2), d = & I .  (5.124) 

This system has been studied by Takens (1974) who found nine topologically distinct 
equivalence classes. Results obtained from three different sets of parameters are presented 
for comparison: 

Case 1: u = 2.245 y = -46.001 B = 0.20 K = 0, 

Case 2: L( = 12.598 y = 71.941 j3 = 0.18 K = 100, (5.125) 

Case 3: 11 = 15.111 y = 46.88 j3 = 0.25 K = 100. 

The location of the linear spring is constant, 6,  = 0.8, and in all three cases d - 
bc # 0. Table 5.2 shows the coefficients found and the corresponding equivalence class 
(last column) defined in Guckenheimer & Holmes (1983; p. 399). Starting from system 
(5.124) and referring to Figure 5.27, the classification of the different unfoldings can 
be undertaken. For example, one can easily show that pitchfork bifurcations occur from 
(0) on the lines pl = 0 and p2 = 0, and also that pitchfork bifurcations occur from 
( r  = m, z = 0) on the line p2 = cp1, and from ( r  = 0, z = a) on the line pz = 
-p , /b .  The behaviour of the system remains simple, as long as Hopf bifurcations do not 
occur from the new fixed point. This is the case when d - bc < 0. Hence, in case 2, no 
Hopf bifurcation can occur, while it is possible in cases 1 and 3. The bifurcation sets, and 
the associated phase portraits can be constructed for the different unfoldings; it is evident 
that in case 2 [Figure 5.27(b)] no global bifurcations are involved, while in the other two 
cases a heteroclinic loop (or ‘saddle loop’) emerges [Figure 5.27(a)]. 

To get a physical understanding of the motions of the pipe from the phase portraits of 
Figure 5.27, it may be useful to recall that (a) a fixed point on the z-axis represents a static 
equilibrium position: (b) a fixed point with r # 0 represents a periodic solution because 
of the angular variable 4: (c) a closed orbit represents amplitude-modulated oscillatory 
motions. By integrating numerically the equations of motion, some of the results obtained 
here analytically can be verified. For example, it is possible to find (i) the stable fixed point 
(0); (ii) the stable fixed point ( f l }  corresponding to the buckled state; (iii) oscillatory 
motions around the origin (0). However, attempts to obtain some of the more unusual 
features of the system shown in Figure 5.27(a), such as amplitude-modulated motions, 

Table 5.2 Normal form coefficients and equivalence class for the three cases 
defined in (5.125). 

d C b d - bc Class 

Case 1 - 1  ( 0  -1.52 < 0 3.954 > 0 + VIa 
Case 2 - 1  < o  -0.07 < 0 -24.3 < 0 - VI11 
Case 3 -1 t o  -3.39 i 0 1.656 > 0 + VIa 
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Y 

P2 = 

Figure 5.27 Codimension-2 bifurcation diagrams for the doubly degenerate system of Figure 5.23: 
(a) for cases 1 and 3, defined in (5.125), from Guckenheimer & Holmes (1983); (b) for case 2 

(Pa’idoussis & Semler 1993b). 

have not been successful. In Figure 5.27 it is seen that most of the limit sets are unstable. 
On the other hand, by numerical integration of the equations it is possible to find only 
the stable hyperbolic sets. 

The heteroclinic orbit on the line 1 2  = +1(c - l ) /b  + 1 is of special interest. It is 
known that if perturbed, it may give rise to heteroclinic tangles and chaos (Guckenheimer 
& Holmes 1983; Moon 1992). This is discussed in more detail in Section 5.8. 

fc) 3-0 motions of the doubly degenerate pipe-spring system 

Two studies on the three-dimensional motions of the system were conducted by Steindl 
& Troger (1988, 1994, 1995), utilizing the equations of motion of Lundgren er al. (1979). 
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Gravity in this case is neglected (or inoperative) and the spring is positively fixed (not as 
in Figure 5.23), so that associated geometric nonlinearities have to be taken into account. 
In a way, these studies represent an extension to Bajaj & Sethna's (1984, 1991) work to 
the case when there is an additional, intermediate spring support. This is a very complex 
problem, and unfolding the various bifurcations is an arduous task. 

The wholly symmetric system is considered first. To achieve this, so far as the spring 
force is concerned, it is found that either the springs in the two planes should be very 
long or an array of many springs radiating from the support should be used. Although not 
much information is given on the method of discretization, centre manifold and normal 
form theory are used as in the foregoing to simplify the system in the vicinity of the 
principal bifurcation associated with loss of stability: (i) by a zero root, (ii) a zero and a 
purely imaginary pair, (iii) two purely imaginary pairs, in all cases with multiplicity two, 
because of the symmetry. Two unfolding parameters are used: p, associated with u - u,, 
and u, associated with K - K, .  A typical case of a system with a double pair of zero roots 
and K slightly above K, is shown in Figure 5.28(a). The system starts from the trivial 
stable state (TS), then becomes subject to divergence (static buckling, SB) and, after a 
secondary bifurcation, develops planar oscillation about the buckled state (SW3) - cf. 
Figure 5.24(b). With increasing flow, the amplitude grows so that the oscillation crosses 
the origin and changes into planar oscillation about the origin (SW2). All solution branches 
associated with a positive real part of an eigenvalue of the locally linearized system, 
marked with a + and drawn as dashed lines, are unstable. In this case, TW solutions, 
corresponding to rotary pipe motions, and MW solutions, corresponding to rotary pipe 
motions with a superposed radial oscillation, are unstable. 

Another case of a system with a zero root and a purely imaginary pair with multiplicity 
of two is shown in Figure 5.28(b) - cf. Golubitsky & Stewart (1986). As seen in the 
figure, there are eight solution branches associated with: (i) the trivial equilibrium state, 
TS; (ii) the statically buckled state, SB; (iii) planar oscillations, SW2, about TS; (iv) planar 
oscillations, SW3, about SB in the plane of SB; (v) the same, but SW = SW4, perpendicular 
to SB; (vi) rotary pipe oscillations, TW; (vii) modulated motion, MW; (viii) SB with 
superposed TW (SB/TW). As shown in the figure, most of these solution branches are 
unstable. The system, after buckling, develops planar oscillatory motions (SW4) about the 
buckled state, in a plane perpendicular to that of buckling. More complicated motions are 
possible in the case of two pairs of purely imaginary roots. 

The case of broken symmetry is considered next, in three ways: (i) via a small 
geometric imperfection, yielding a constant term in the bifurcation equations - cf. 
Figure 5.8(b); (ii) imperfect springs breaking rotational symmetry; (iii) imperfect loading 
breaking reflectional symmetry (e.g. by immersing the end of the pipe in a swirling fluid). 
Dynamical behaviour similar to that of Figure 5.22, but richer, is predicted. 

(d) Planar motions of doubly degenerate up-standing cantilever 

The planar dynamics of another type of system, that of the 'up-standing cantilever' 
(Section 3.5.2) where the free end is located above the clamped one, without any 
intermediate support, is considered next; this was studied under double degeneracy 
conditions by Li & Pa'idoussis (1 994).+ It is recalled that, generally, this system buckles 

'This study though published later, was actually conducted prior to that by PaTdoussis & Semler (1993b), 
which owes a great deal to the Li & Pa'idoussis study. 
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Figure 5.28 Amplitudes of solutions, A, versus u - u, for 3-D motions of the cantilevered 
pipe-spring system, with K slightly higher than K,: (a) for a system with a double set of zero 
roots, which starts from a trivial stable state (TS), then develops buckling (SB), and then planar 
oscillations about the buckled state (SW3) and about the origin (SW2); (b) for a system with a 
double set of one zero root and one purely imaginary pair, which starts from the trivial state (TS), 
develops buckling (SB), and then planar oscillations perpendicular to the buckling plane (SW4). 

Solution branches drawn as dashed lines are unstable (Steindl & Troger 1995). 

under its own weight; as the flow velocity is increased, the system is restabilized 
via a reverse pitchfork bifurcation, and then loses stability by flutter via a Hopf 
bifurcation at higher flow. For the special sets of parameters shown in Figure 5.26 for 
K = 0, these two bifurcations become coincident. The system is studied analytically 
and numerically, starting again with equation (5.42) and a two-degree-of-freedom 
discretization thereof. The system is first projected on the centre manifold and then the 
unfolding parameters P I ,  ,LL~ and p3 are computed, as shown explicitly in Appendix F.5, 
equations (F.58)-(F.62). For B = 0.2, for which u, = 2.246, yc = -46.001, computing 
the derivatives in (F.61) numerically and eliminating p3, the following relationships are 
obtained: 
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The system is then further simplified by the method of normal forms, following Gucken- 
heimer & Holmes (1983; exercise 7.4.1) and Sethna & Shaw (1987) - see Appendices F 
and H. Suffice it to say that the final form of the perturbation equations on the centre 
manifold is given by 

(5.127) 2 i. = p i r  - (r2 + bz2)r + h.o.t., i = pzz + (cr2 + z )z + h.0.t.; 

h.0.t. stands for higher order terms. For 6 = 0.2, b = 1.518 and c = 3.954. 
A local bifurcation analysis shows that, generally, there are four equilibrium points: 

(5.128) 

for the values of b and c just given, the third equilibrium exists only for p1 + bp2 < 0 and 
cpl + p:! > 0. Topological features of the system near these equilibria can be determined 
by the eigenvalues of the matrix of the linearized autonomous version of (5.127). For an 
equilibrium point (ro, zo),  this matrix is 

(5.129) 

Figure 5.29 shows phase flows emanating from the equilibria in the fourth quadrant of 
the parameter plane. Within the segment defined by the dashed lines, the equilibrium of 
the third equation (5.128) emerges, and it may be a spiral sink or a source; all other 
equilibria are saddles. A bifurcation curve exists, where the sink and the source collapse 

Figure 5.29 Bifurcation diagram for the doubly degenerate up-standing cantilevered pipe on the 
centre manifold, showing typical phase flows in the fourth quadrant (Li & Paidoussis 1994). 
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into a centre, when tr([AJ) = 0, where tr stands for trace, which gives 

(1 + c)p1 + (1 + b)p2 = 0. (5.130) 

Along this line, a heteroclinic loop emerges. This in turn may give rise to the possibility 
of heteroclinic tangles and chaos, as discussed in Section 5.8. 

5.7.4 Concluding comment 

The work presented in this section is representative of a larger set, not fully discussed 
for the sake of brevity. The reader is also referred to the next section, primarily devoted 
to chaotic dynamics, but also containing work of interest here (e.g. on the dynamics of 
pipes fitted with an additional mass at the free end). 

It is hoped that the work in Section 5.7 has shown that, similarly to the linear dynamics 
of cantilevers conveying fluid (Chapters 3 and 4), the nonlinear dynamics is equally 
fascinating. Of special interest are the results in Figures 5.19-5.22, where the regions of 
sub- and supercritical Hopf bifurcations are defined, as well as whether motions are three- 
dimensional or planar and, in the case of an inclined nozzle, in which plane. Once more, 
the special importance of the ‘critical values of p’, associated with S-shaped discontinuities 
in the u, versus /3 plot, emerges; thus, it is seen that, for nonlinear dynamics also, these 
values of are either separatrices or backbones of peculiar behaviour. Also of importance 
are the codimension-2 and -3 bifurcation sets emanating from the vicinity of double 
degeneracies, samples of which are given in Figures 5.27-5.29. Of special interest in 
this regard is the existence of conditions leading to heteroclinic loops which are often 
associated with chaotic behaviour (Section 5.8). 

Finally, it is also hoped that the material in Sections 5.5, 5.6 and 5.7 has made 
abundantly clear - not only by the substance of the work, but also by the authors’ 
names - that this system has served both as an example of a physical system on which 
the various modem methods of nonlinear dynamics could be demonstrated and as a system 
through which these methods could be further developed. 

5:8 CHAOTIC DYNAMICS 

With the rapidly developing, and deserved, fascination with chaos in engineering systems, 
it was inevitable that its possible existence in fluidelastic systems would be explored. As is 
well known, however, chaos is usually associated with strong nonlinearities (Moon 1992); 
hence, the first set of studies into chaotic dynamics involved modifications to the system 
so as to introduce strong nonlinear effects. Three such systems are discussed: (i) the pipe 
with loose lateral constraints (Section 5.8.1); (ii) with magnets added; (iii) with an added 
mass at the free end. Then, the existence of chaos under more particular conditions, e.g. 
near double degeneracies, is discussed in Sections 5.8.4 and 5.8.5. 

5.8.1 Loosely constrained pipes 

In contrast to other parts of this chapter, the presentation here is chronological as well 
as paedagogical in tone. The reason for this is that, in addition to showing how chaos 
can arise in loosely constrained pipes conveying fluid, there is another objective also: to 
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show that the interpretation of the dynamics is very sensitive, in a way that nonchaotic 
dynamics can never be, particularly when judging the success or otherwise of analytical 
modelling. This will become evident in the course of the presentation, and is discussed 
in the two paragraphs preceding the last two of this section. 

The system, first studied experimentally (Paidoussis & Moon 1988), is shown in 
Figure 5.30. It consists of an elastomer vertical pipe conveying fluid. As already discussed 
in Chapter 3 and Section 5.7, at sufficiently high flow velocity, a Hopf bifurcation leads 
to a stable limit cycle. As the amplitude of motion increases with flow, for appropriately 
positioned motion constraints (typically metal bars), the pipe bangs on one constraint, 
rebounds from it, and then generally on the other, back and forth, without making 
permanent contact. Thus, at location Xb,  a very large restraining force is operative on 
impact, while during ‘free flight’ between restraints there is none. It should be remarked 
that, even when the constraints are rigid, the impact involves local deformation of the 
pipe, and hence the constraint may be modelled by a strongly nonlinear spring, involving 
a spring constant which varies discontinuously with displacement (see Figure 5.33). 

Experiments were conducted with several pipes, e.g. those listed in Table 5.3, mostly 
conveying water, but in a few cases conveying air. For these pipes the limit-cycle motions 
are planar - in a plane defined by minute imperfections in the pipe. At impact, however, 
the motion tends to deteriorate into a three-dimensional one. In order to keep the dynamics 
as simple as possible for analytical modelling, the oscillation was restricted to a plane, 

Figure 5.30 (a) Schematic 

Motion sensor 
light beam 

Embedded 
steel strip 

Constraining 
bars 

of the experimental system of a loosely constrained vertical 
c a h e v e r e d  pipe; (b) scheme of achieving planar motions by guide-bars;-(c) refined scheme for 

planar motions, with steel strip embedded in the pipe, also showing motion-constraining bars. 
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Table 5.3 Pipe parameters for Pdidoussis & Moon’s (1988) experimenls. Do, D; 
are the outer and inner pipe diameters, L and m are the pipe length and mass per unit 
length, respectively, E1 the flexural rigidity, and 6, the modal logarithmic decrement 
of damping in the j t h  beam mode. Note: for pipe 9, S2 = 0.081 and 63 = 0.144 were 

also measured. 

Pipe Do D, L m EI  x 103 61 
number (mm) (mm) (mm) (kg/m) (N m2) (-1 

8 15.5 7.94 350 0.190 21.7 0.17 
1 15.2 6.35 234 0.174 5.05 0.090 
9 15.88 7.94 44 1 0.182 7.28 0.028 

either by guiding bars [in early experiments, Figure 5.30(b)] or by embedding a thin metal 
plate all along the length of the pipe in the process of casting it [in later experiments, 
Figure 5.30(c); see also Appendix D]. 

The flow velocity was made to be as uniform and steady as possible by using a large 
accumulator tank to remove pump pulsations, and a long straight pipe upstream of the test- 
pipe, fitted with screens and honeycombs; a 36:l smooth area-contraction in the piping 
just upstream of the test-pipe reduced incident turbulence. The flow rate was determined 
by measuring the time taken to collect a certain weight of water in the collecting tank 
beneath the test-pipe, or via standard rotameters in the airflow tests. 

Experiments were conducted with fairly rigid motion constraints [Figure 5.30(b,c), with 
bars made of metal], or with more pliable ones, which deformed appreciably under impact 
[Figure 5.30(c), with polycarbonate plastic bars, or with leaf-type springs on metal bars]. 
The constraint location and the gap were varied: tS = n, /L  = 0.62 - 0.65 and wb/L = 
0.025 - 0.055 for the water experiments, and & = 0.84 and wb/L = 0.130 for the air-flow 
experiments. 

The vibration of the pipe was monitored by non-contacting sensors: either a Fotonic 
fibre-optic sensor or an optical tracking system. In both cases, it was ensured that the 
measuring system operated in its linear range. The optical tracking probe was trained at 
a point x,/L = 0.22 typically (Figure 5.30); the fibre-optic sensor, when it was used, was 
considerably closer to the fixed end, x,/L < 0.1 typically. 

The signal was processed in various ways: (i) it could be fed into an FFT signal 
analyser, to provide auto- or power spectra (PS), autocorrelations, or probability density 
functions (PDFs) of the system, andor (ii) into a digital storage oscilloscope to generate 
phase-plane portraits and Poincark maps; the signal could also be recorded by an instru- 
mentation tape recorder for later processing. 

The Poincare map is a collection of points obtained by collecting and storing a single 
point of the trajectory of the system in phase space for each cycle of motion, with 
consistent timing (Moon 1992). In the present experiment, a circuit was triggered at 
impact with one of the two constraint bars, which was instrumented with strain gauges 
[Le. when displacement ~ ( q , ,  t )  = W b ,  see Figure 5.30, and W(xb,  t )  > 01, which caused 
the displacement and velocity to be stored for that value of t. Thus, if the motion is 
periodic (period-I), the Poincark map consists of but a single point in a (W, w)-plot; it 
consists of two points for period-2 motion. A cloud of points in some defined pattern 
would suggest chaotic motion. 

It is also recalled that the PDF of a periodic signal (period-1) displays two promi- 
nent peaks at the extremes of the displacement, where motion is slow, and hence the 
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probability of finding the vibrating system there is high. Departures from this double- 
masted, suspension-bridge shape indicate departures from regularity in the motion: a 
Gaussian-like distribution corresponds to random or random-like (chaotic) motion. The 
autocorrelation of a periodic signal is periodic with time, whereas an aperiodic signal has a 
‘damped-response versus time’ characteristic, showing loss of memory after a few cycles 
of motion - which is characteristic of random or more generally stochastic signals. 

Typical results with pipe 9 (Table 5.3), water flow and the polycarbonate impact 
bars at wb/L = 0.055 are presented in Figures 5.31 and 5.32: power spectra (PS). 
phase plots, probability density functions (PDF), autocorrelations and PoincarC maps. 
In Figure 5.3 l(a), the limit-cycle amplitude is sufficiently large to allow impacting, 
preferentially on one of the two bars. Therefore, the motion at this stage is asymmetric, 
biased towards one of the bars.+ The profusion of harmonics of the main oscillation 
frequency ( f  2 2.6Hz) is due to the impacting. The double-masted shape of the PDF, 
the essentially constant-amplitude autocorrelation and the single-loop phase-plane plot 
all indicate periodic (period-1) motion. In Figure 5.31(b) it is seen that the motion is 
still periodic, but the strong subharmonic at if in the PS plot and the double-loop 
phase-plane plot indicate period-2 motion; physically, a typical sequence of motions is 
this: the pipe impacts on the bar, then executes a complete ‘free’ cycle of oscillation, 
before impacting again. The corresponding Poincark map, Figure 5.32(a) shows two fuzzy 
‘points’, indicating that a small chaotic component may be in existence already, but 
indicating a predominantly period-2 motion. 

The motion is considerably more erratic for U = 7.48 m/s (not shown), but still periodic 
(period-2): there is a slight reduction of the autocorrelation with time and the trough of 
the PDF is considerably more filled out, with a clear double peak on the right side, 
corresponding to the period-2 trajectory. This perhaps is the limit of periodic or almost 
periodic motion. In Figure 5.31(c), the two subharmonics of the main frequency are at $ 
and $, signifying a period-3 motion (found in a few other instances also); however, the 
low-frequency content of the signal is wide-banded and erratic and hence the oscillation 
should be considered chaotic. Significantly, the PDF has become less concave in the 
centre region, almost convex, and the autocorrelation decays fairly rapidly with time, with 
beating (more easily visible if displayed over a longer time period). Finally, the motion 
is quite chaotic in Figure 5.31(d), as shown by the PS, the PDF and the autocorrelation 
equally. The phase portraits in Figure 5.31(a,b) correspond to the pipe impacting on one 
motion-constraint bar, whereas in Figure 5.3 l(c,d) it is impacting on both. 

The PoincarC maps of Figure 5.32 correspond to (a) conditions just after the period- 
doubling bifurcation, with two attractors, as already remarked; (b) more erratic motion, 
with a suggestion of more complex attractors; (c) where the motion is more wide-band 
chaotic. In the last case, although the PoincarC map does not display the artistic merit of 
that in (b) and even less of the ‘fleur de PoincarC’ and some other remarkable examples 
(Moon 1992), still it does seem to have some structure. In this connection, the point should 
be made that these PoincarC maps represent two-dimensional sections of a multidimen- 
sional attractor, which may indeed have a great deal of structure that cannot be discerned 
in the planar sections taken; the construction of double-Poincar6 maps (Moon 1992) might 
have been more successful in rendering any such structure more conspicuous. It is also 

+This occurs soon after - in terms of increasing u - impacting begins to take place 
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Figure 5.31 Experimental vibration spectra (PS), probability density functions (PDF), autocorrelations, and phase-plane plots for pipe #9 with the 
polycarbonate constraining bars [Figure 5.30; ( b  = 0.65, wb/L = 0.055 (Wb/Do = 1.52)]: (a) u = 6.95 m/s (u = 8.03); (b) u = 7.33 m / S  (u = 8.47). 
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Figure 5.32 Experimental Poincar6 maps for the system of Figure 5.30 at (a) U = 7.33 d s ,  (b) 
U = 7 .59ds ,  and (c) U = 7.72ds, corresponding to (b), (c) and (d) in Figure 5.31 (Pdidoussis 

& Moon 1988). 

noted that noise (due to random unsteadiness in the flow, for instance) tends to smudge 
some of the finer structure. 

One significant conclusion that emerges from the results of Figures 5.31 and 5.32 is 
the importance of utilizing more than one measure in deciding on the existence of a 
strange attractor and chaos, especially in experimental systems, where some unsteadiness 
in one or more of the system parameters and random noise, no matter how small, are 
nevertheless ubiquitous. Thus, the PS and PDF'in Figure 5.31(c) and the corresponding 
Poincark map, Figure 5.32(b), suggest chaotic motions, whereas the autocorrelation is 
inconclusive; similarly, the Poincark map of Figure 5.32(a) may be thought to indicate 
chaos, whereas all the other corresponding measures in Figure 5.31(b) show the motion to 
be periodic. Other cases of 'conflicting' conclusions by some of the measures of vibration 
are presented in Pdidoussis & Moon (1988).+ The wise experimenter would therefore do 

+These difficulties are partly associated with the inevitable presence of random noise in the signal, associ- 
ated with ubiquitous if minute unsteadiness in various experimental quantities, e.g. the flow velocity; also in 
'extraneous' vibration transmission through supports, the ambient air, etc. A more quantitative measure of the 
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well not to rely on just one measure in deciding that motions are chaotic or otherwise. 
Professor F.C. Moon made the point eloquently in a course he gave at Cornell, through 
a parable, paraphrased here from memory. ‘If you see something that Zooks like a duck, 
it does not necessarily mean that it is a duck. If, however, it also walks like a duck, it 
swims like a duck, and it quacks like a duck, then it is much more likely to be one!’+ 

The experimental system was also studied analytically, initially by the simplest possible 
model (PaYdoussis & Moon 1988; Paldoussis et aZ. 1989). As motions are relatively small 
because of the constraining bars, the linear version of equation (5.39) is used as a first 
approximation - i.e. equation (3.70) - apart from the forces associated with impacting. 
A good model for the latter is a trilinear spring: zero stiffness when no contact is made, and 
a large stiffness once it is. For analytical convenience, this can be approximated by a cubic 
spring (Figure 5.33); hence, the following term is added to the dimensionless equation of 
motion: K Q ~ S ( $  - &,), where &, is the dimensionless axial location of the constraints, K 

the dimensionless cubic-spring stiffness, K = kL5/EI ,  k being the dimensional value, and 
S is Dirac’s delta function. Thus, the equation of motion is 

The system is discretized by Galerkin’s method into a two-degree-of-freedom ( N  = 2), 
four-dimensional (4-D) model. Solutions are obtained by numerical integration via a 
fourth-order Runge- Kutta integration algorithm. 

Figure 5.33 Diagrammatic view of the idealization of the trilinear (or ‘bilinear’) motion constraint 
(-) by a cubic spring (---) (Pdidoussis & Moon 1988). 

threshold of chaos is provided by the calculation of the Lyapunov exponents, discussed later. For this problem, 
however, such calculations were confined to the analytical model, although they are also possible, but not at 
all easy, for experimental data (Moon 1992). 

+The author, having recently discovered the excellent Belgian beer Kwak, feels that this argument is further 
reinforced, since thirsty humans may just as plausibly emit ‘Kwak, Kwak’ as itinerant ducks. 
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This model gives reasonable qualitative agreement with experimental observations, 
as exemplified by the bifurcation diagram of Figure 5.34 and the phase-plane plots of 
Figure 5.35. Beyond the Hopf bifurcation (at u = UH), the maximum and minimum ampli- 
tudes of the ensuing limit cycle are shown. At u p f ,  a pitchfork bifurcation takes place, 
destroying the symmetry of the limit cycle [see also Figure 5.35(a)], which in the exper- 
iments corresponds to the motion biased towards one of the bars; this is followed at 
up2 by period-2 [cf. Figure 5.35(b)], period-4 [Figure 5.35(c)], period-8, etc. bifurcations, 
leading to chaos [Figure 5.35(d)]. Thus Figures 5.34 and 5.35 clearly establish that the 
period-doubling route to chaos is followed in this case (Moon 1992): a theoretically infi- 
nite sequence of successive period-doubling bifurcations leading to an ever-increasing 
period of oscillation, aperiodicity and chaos. An outstanding feature of this scenario is 
that it can be represented by a very simple map (Feigenbaum 1978) and that successive 
values of these bifurcations, u j ,  obey the following rule: 

(5.132) 

where Fe is the Feigenbaum number. In practice, this value of Fe is approached by the 
third or fourth period doubling (Moon 1992). Indeed, in this case, taking the first three 
period-doubling bifurcations into account and then the second-to-fourth sequence, we 
obtain Fe = 4.124 and 4.613, the latter being quite close to the value in (5.132). 

The quantitative agreement with experiment for the critical values of u associated with 
key bifurcations in Figure 5.34 is quite reasonable (within - 20%). However, this agree- 
ment is achieved by grossly straining (relaxing) the values of some parameters, as follows: 

1 .o 

0.5 

-0.5 

-1.0 

-1.5 
6.0 6.5 7.0 7.5 8.0 8.5 

Flow velocity, u 

Figure 5.34 Analytical bifurcation diagram of the tip-displacement of the loosely constrained 
cantilevered pipe (N = 2, a! = 5 x B = 0.2, y = 10, t b  = 0.82, K = loo), showing the onset 

of chaos through a cascade of period-doubling bifurcations (Paldoussis et al .  1989). 
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Figure 5.35 Phase-plane plots corresponding to selected u in Figure 5.34: (a) u = 7.9; 
(b) u = 8.00; (c) u = 8.025; (d) u = 8.100 (PaYdoussis et al. 1989). 

(i) the constraining bars are located at <b xb/L = 0.82 and (ii) the cubic spring stiffness 
is K = 102-103 in the model, while <b = 0.65 and K - 6 (lo5) in the experiments; without 
such straining, the numerical solutions diverge. Furthermore, the predicted amplitudes 
of motion are unrealistically large (Figure 5.35). Hence, improvements to the analytical 
model are necessary, and they are discussed farther on. 

A few explanatory words may be appropriate on how bifurcation diagrams 
are constructed. The amplitude of the free-end displacement, ~ ( 1 ,  t) = $l(l)ql(t) + 
&(l)q2(t) is recorded and plotted when rj(1, t) = 0, &(l)  being the beam eigenfunctions 
at 6 = 1 and qi(t) the corresponding generalized coordinates; thus, both positive and 
negative amplitudes are recorded in Figure 5.34. Once the symmetry of the solutions is 
broken, at upf, only one branch of the solution shown in the figure is normally obtained. 
However, by conducting simulations with two 'opposite' sets of initial conditions, 
41 (0) = q2(0) = fO. 1 and ql(0) = &(O) = 0, the two different solution branches (four, 
in effect: two positive and two negative, as explained above) are obtained. 

The bifurcation diagram in Figure 5.34 and the phase portrait of Figure 5.35(d) may be 
considered to be sufficient evidence of the existence of chaotic regions in the parameter 
space of the system. However, even more definitive discriminators are the Lyapunov 
exponents (Guckenheimer & Holmes 1983; Moon 1992), discussed next. 

Here also, an explanatory paragraph may be useful to the reader. Consider the n- 
dimensional system y = f (y )  with a solution $(t) corresponding to a set of initial 
conditions 4(t0) = $0. Of concern here is the stability of $(t). Suppose that $l(t) is 
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another trajectory corresponding to different initial conditions. Then, defining the vari- 
ational vector function u(t) = &(t) - @(t) such that IIu(I << 1, the stability of @(t) is 
governed by the equation 

u = Df(@)u ,  (5.133) 

where Df(@) is the Jacobian matrix function for the vector field f ( y )  along @(t). Clearly, 
if &(t) approaches @(t), then u ( t )  will tend to zero; while if it diverges away from it, 
then u(s)  will tend to grow. This may be expressed as 

Ilu(t)ll - eUT. (5.134) 

As the system is bounded, however, the exponential behaviour indicated by (5.134) cannot 
continue indefinitely. Hence, in the computations the vector function u(t) is renormalized 
from time to time and the calculation process reinitialized in that sense. The so-called 
Lyapunov exponent may be defined as 

(5.135) 

Hence, the two trajectories in question, @ I  (t) and #(t), may be considered to converge 
or diverge exponentially on the average, according as CJ is negative or positive, with 
CJ = 0 corresponding to neutral orbital stability (the case of a stable periodic orbit). Note 
that in an n-dimensional space there exist n Lyapunov exponents. However, the largest 
one dominates the dynamics of the system. Given an arbitrary initial condition u(O), the 
solution u ( t )  will converge to the direction of most rapid growth, which is associated 
with the largest Lyapunov exponent. A chaotic trajectory is defined as one with at least 
one positive Lyapunov exponent (Parker & Chua 1989; Moon 1992). 

The problem at hand being represented by a fourth-order system, there will be four 
Lyapunov exponents, only the largest of which is computed for the purposes of defining 
the dynamical behaviour of the system. The largest one for the case corresponding 
to Figures 5.34 and 5.35 is shown in Figure 5.36. It is seen that, for u i 8.027, 
CJ,, 2: 0, indicating stable periodic orbits, while for u > 8.027, a,, > 0, indicating 
chaotic behaviour. (For u < u ~ ,  i.e. below the Hopf bifurcation, amax < 0 is obtained.) 
It is also noted that there are so-called ‘periodic windows’ at u 2r: 8.18 and 8.19, where 
periodic motion is once more obtained over small ranges of u. 

Simultaneously to all of the foregoing, the fractal dimension of the experimental 
system was determined (Paldoussis et al. 1992). This will help answer whether the N = 2 
discretization is adequate or not. There are several measures of the fractal dimension 
(Moon 1992), of which the correlation dimension, as developed by Grassberger & Proc- 
cacia (1983a,b) is used here. The method is outlined in Appendix I, with experimental 
data from another run of the same system as in Figures 5.30-5.32. 

The final results for three flow velocities, showing the correlation dimension, d,, as 
a function of the embedding dimension, m, are shown in Figure 5.37, while the prelim- 
inary work leading to these figures is given in Figures 1.1-1.3. In Figure 5.37(a,b,c), 
corresponding to Figures 1.1, 1.2 and 1.3, the oscillation is periodic, ‘fuzzy period-2’ and 
chaotic, whereby ‘fuzzy’ is signified a periodic oscillation with a small chaotic compo- 
nent. The value of d ,  = 1.03 in Figure 5.37(a) is sufficiently close to the ideal d, = 1 
for periodic oscillation; d ,  = 1.53 in Figure 5.37(b) is substantially different from d ,  = 1 
because of the fuzzy nature of the oscillation. Finally, Figure 5.32(c) gives the most 
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Figure 5.36 The largest Lyapunov exponent of the system of Figure 5.34 versus u (Paidoussis & 
Moon 1988). 

significant result: that the correlation dimension in the chaotic regime is d, = 3.20. Here, 
it is recalled that noninteger values for dimension are perfectly normal for, and indicative 
of, chaotic systems. 

As shown by MaiiC (198 l), if d, is the correlation dimension of the system, the minimum 
number of state variables, M ,  required for modelling the system is given by d, 5 M I 
2d, + 2, where M corresponds to the dimension of the system, i.e. to twice the number 
of degrees of freedom N ;  therefore, this may be written as 

d ,  5 2N 5 2d, + 2. (5.136) 

Both M and N have to be integers and M must be even for an autonomous system. 
Therefore, for d, = 3.20, the important result is obtained that the number of degrees 
of freedom required to capture the essential dynamics is 2 5 N 5 4 or 5 ,  depending on 
exactly how the inequality is interpreted. Hence, it is not surprising that the analytical 
results of Figures 5.33-5.36 obtained with N = 2 are in qualitative agreement with the 
experimental observations. On the other hand, it is clear that, to capture the quantitative 
aspects of the dynamics adequately, an N = 4 or N = 5 model may be necessary. 

The first attempt to improve the analytical model aimed at (i) studying the dynamics 
of the system for N > 2 and (ii) conducting calculations with a more realistic model of 
impacting with the constraining bars, by using their true stiffness and location - rather 
than the strained ('relaxed') values used in the foregoing, resorted to solely to obtain 
convergent solutions. The measured stiffness of the constraining bars is very close to 
the trilinear model, as shown in Figure 5.38. With this model, the cubic spring term in 
equation (5.131) is replaced by 

f(q>s($ - ( b ) ,  f ( q )  = K { q  - $(lq + qbl - Ir - q b l ) } .  (5.137) 
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Figure 5.37 Correlation dimension, d,, versus embedding dimension, m, defined in Appendix I, 
for the system of Figure 5.30 at (a) U = 6 . 7 7 d s ;  (b) U = 7 . 2 7 d s ;  (c) U = 7.47ds.  The 
measurement error (68% confidence limit - see Appendix I) for convergent m (i.e. m 2 4) was 

0.004 (Paidoussis, Cusumano & Copeland 1992). Note that u = l . l5[U(ds)] .  
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Displacement 

Figure 5.38 The static force-displacement measurements to determine the stiffness of the 
constraining bars (Figure 5.30) and the fitted smoothened-trilinear model for n = 2 and 3 in 

equation (5.138), labelled ‘quadratic’ and ‘cubic’ (PaYdoussis, Li & Rand 1991a). 

This model may be improved further, to account for the pipe itself being deformable at 
impact (Hunt & Crossley 1975), suggesting that a more gradual application of the full 
force following impact is closer to reality.? Hence, ‘smoothened‘ versions of this model 
are used, as follows: 

f ( V )  = K n { V  - ;(I17 + VbnI - 1’1 - qbnl )}n ,  with Iz = 2,  3 or 5 ;  (5.138) 

least-squares fitting gives the following set of values: for n = 2,  KZ = 2.7 x io5, Vb2 = 

These models will henceforth be referred to as ‘quadratic’, ‘cubic’, and ‘quintic’, for short; 
in the quadratic, clearly ( q  - qb)’ = (q - Ijlb)lq - qbj to preserve functional oddness. The 
resulting approximations to the dynamical restraint stiffness are shown in Figure 5.38 for 
IZ = 2 and 3; the curve for n = 5 is very close to those shown and is therefore omitted 
to preserve clarity. 

It is found that with this impact model and N 2 3 it is now possible to obtain convergent 
results, while using the correct stiffness K, and the impact location ct, = 0.65 as in the 
experiments. In all cases [n = 2, 3 ,  5 in equation (5.138)], the bifurcation diagrams, phase 
portraits, PSDs and so on are qualitatively similar to those already shown, confirming 
that the route to chaos is via a cascade of period-doubling bifurcations (Paldoussis et al. 
1991a). Of special interest is the convergence of the various bifurcations with increasing 
N .  As shown in Figure 5.39(a,b), the critical values of u for the Hopf and first period- 
doubling bifurcations have essentially converged when N = 4 or 5;  for N > 5, the values 
of U p d  differ by less than 3.5%. 

Furthermore, the degree of agreement with experiment for some of the key bifurcations, 
as shown in Table 5.4 (left side) is now excellent - discrepancies being of 0(5%) ,  which 

0.050; for Iz = 3 ,  K j  = 5.6 X lo6, qb3 = 0.044; for n = 5 ,  K5 = 1.0 X lo9, qb5 = 0.031. 

~~ 

‘Besides, numerical convergence problems continue to arise with the experimentally determined K - O(105). 
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Figure 5.39 Convergence of the critical flow velocities for (a) the Hopf and (b) the first 
period-doubling bifurcations with the number of modes, N ,  in the Galerkin discretization of the 
system of Figure 5.30. In (b): 0, ‘quadratic’ (Le. quadratically smoothed; n = 2) model; A, ‘cubic’ 

(n = 3); 0, quintic (n = 5 )  (Paidoussis, Li & Rand 1991a). 

Table 5.4 Theoretical values from (a) Paidoussis et al. (1991a) for N = 5 and 
various n (hence the range) and (b) from Paidoussis & Semler (1993a) for N = 4 
and n = 3 compared with experiment, in terms of the main bifurcations of the 

fluttering cantilevered pipe impacting on motion-limiting restraints. 

Bifurcation U Theory (a) Experiment Theory (b) 

Hopf UH 8.40 8.04 8.40 
1st period doubling upd 8.63-8.94 8.43 9.05 
Chaos uch 8.68-8.97 8.72 9.20 
‘Restabilization’ u rs -9.0 9.65 - 

is better than expected for a system such as this. However, the amplitude of motion is 
still much larger than in the experiments. 

This final weakness of the model was overcome using the full nonlinear equation of 
motion, equation (5.42), by PaYdoussis & Semler (1993a). Typical results are shown in 
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Figure 5.40 (a) Bifurcation diagram and (b-d) some corresponding phase portraits for the N = 4 
model and the trilinear, smoothed 'cubic' representation of the constraints, with all parameters 
corresponding to the experimental system of Figure 5.30; (b) u = 9.3, (c) u = 9.57, (d) u = 9.6 

(Pafdoussis & Semler 1993a). 

Figure 5.40; the pipe-tip displacements are now q(1, t) - 0(0.10), i.e. they are of similar 
magnitude as those in the experiments (contrast with those in Figure 5.35). Again excellent 
agreement is achieved for some of the key bifurcations, as seen in Table 5.4 (right side); 
moreover, the final 'restabilization' or 'sticking', where the pipe adheres to the support 
without further oscillation, is also predicted by theory. Up to this point it was supposed that 
the inability of the early, N = 2 model to converge, when the correct system parameters 
are used, was due to its low-dimensionality - since the problem disappeared for N > 2. 
However, the real reason is the neglect of the nonlinear terms in the equation of motion, 
which is also responsible for over-predicting the oscillation amplitudes (Paidoussis & 
Semler 1993a). 

The series of studies into this problem, starting with PaYdoussis & Moon's (1988) 
and ending with Paidoussis & Semler (1993a), serve also as a case study into some of 
the pitfalls of analytical modelling of nonlinear systems when trying to match experi- 
mentally observed behaviour. By 'straining' two physical parameters (K  and ( b )  so as 
to circumvent numerical difficulties, the N = 2 model with a cubic-spring representation 
of the constraints could give qualitatively similar behaviour to that observed, as well as 
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reasonable quantitative agreement for the key bifurcations - though with unrealistically 
large pipe displacements. As a result of fractal dimension calculations, higher-N models 
were then employed, and convergent solutions were obtained with the correct K and (b  

and a better impacting model. Inevitably, this was interpreted to mean that the use of 
N = 2 was the main factor responsible for the original numerical difficulties. However, 
this was disproved, when it was found that, if the nonlinear equation of motion is used, 
then N = 2 with the proper K ,  &, and impact model gives perfectly reasonable results 
(albeit not as accurate as N = 4); and, moreover it gives the correct order of magni- 
tude of displacements and retrieves forgotten features of physical behaviour, such as the 
‘sticking’ to the constraints. 

These studies, therefore, may be looked upon as providing particular views of the 
dynamics through different ‘sections’ of the multidimensional parameter space of this 
system. Thus, the N = 2 model of Paldoussis & Moon (1988) must be judged as so fragile 
(nonrobust), as to make one wonder if the agreement with experiment were not fortuitous. 
The Paldoussis et al. (199 1 a) model with N > 2 was decidedly more successful and more 
robust; yet, it too failed for N = 2. Finally, the most successful model (Pa‘idoussis & 
Semler 1993a) is also the most robust: small excursions in the parameter subspace of this 
model have little effect on the dynamics. It is at this stage only that it can be concluded 
that the excellent agreement with experiment cannot be fortuitous. 

Another of the experimental cases of Pai’doussis & Moon - pipe 9 (Table 5.3), but 
with softer, leaf-spring-supported bars, closer to the pipe (wb/L = 0.025) - was studied 
numerically by Makrides & Edelstein (1992), with the Lundgren et al .  (1979) nonlinear 
equations of motion and a finite element and penalty function solution approach - see 
Section 5.7.1. It is found that the onset of chaos is dependent on the stiffness of the motion 
constraints (modelled as trilinear springs), in agreement with observations. Furthermore, 
in this case, the route to chaos is via quasiperiodicity (see Section 5.8.3), although in the 
experiments a period-doubling route appears to be followed. Still, the predicted threshold 
to chaos, u,/~ 2: 8.05 for an assumed K = IO3, is not too far from the experimental one, 
u,h 2: 9.1. One weakness here is that in the theoretical model, as per the original form 
of the Lundgren et al .  equations, gravity effects are neglected, whereas in this particular 
experiment they are not negligible ( y  = 26.8); a nonzero y would nevertheless raise uH 
and hence u,h. One observation that ought to be made here, in view of the foregoing 
discussion, is that through the use of the nonlinear equations of motion, similarly to 
Pai‘doussis & Semler (1993a), no difficulties are reported in obtaining convergent solutions 
with amplitudes of the correct order of magnitude. In conclusion, Makrides & Edelstein’s 
work shows that, with different motion constraints (and perhaps other parameters), it is 
possible that a different route to chaos may be followed - cf. Paldoussis & Botez (1995) 
for a system discussed in Volume 2 - which adds to the interest in this system. 

The interested reader is also referred to Miles et al. (1992), who demonstrate the power 
of bispectral analysis techniques to isolate nonlinear phase coupling and energy exchange 
of the various Fourier components of motion, using this particular system as an example. 

5.8.2 Magnetically buckled pipes 

Chaotic oscillations of a conservative system with passive damping added, such as a 
buckled beam subjected to deterministic forced excitations, have been studied by Moon 
(1980), Holmes & Moon (1983) and Dowel1 & Pezeshki (1986), among others; rarer 
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are studies of inherently nonconservative such systems, exemplified by Dowell’s (1982) 
work on flutter of a buckled plate, and that described here on a magnetically buckled 
cantilevered pipe conveying fluid (Tang & Dowell 1988).+ 

The experimental system, shown in Figure 5.41, consists of a Tygon pipe ( L  = 545 mm, 
Do = 12.7 mm) conveying water, fitted with a ferromagnetic metal strip, similar to that in 
Section 5.8.1, and fitted with an end-nozzle. Two permanent magnets on either side of the 
straight equilibrium position provide two potential wells, into one of which the system 
buckles statically. The system would ordinarily stay buckled unless excited, either by 
flow-induced flutter in the case of the autonomous version of the system, or mechanically 
by a force Fo 6(e - 6 ~ )  sin wt. In the experiments this force is provided by a shaker at 
e~ = 0.11, while pipe motion is sensed at es = 0.92. In the absence of flow, this system, 

Magnet I Magnet 4 wb 4 
Figure 5.41 Diagram of the magnetically buckled, mechanically excited pipe conveying fluid 

(Tang & Dowell 1988). 

+Apart from the work on the motion-constrained pipe described in Section 5.8.1; PaYdoussis & Moon’s 
(1988) paper was published six months after Tang & Dowell’s. 
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if excited sufficiently so that it crosses the vertical (unstable) equilibrium position, may 
develop chaotic oscillation, as a result of ‘hesitation’ as to which of the two potential wells 
it will next gravitate towards. Conceptually, the same may be achieved if the excitation 
is provided via flow-induced flutter. 

The equation of motion is given by the linear equation (3.70), with k = r = I7 = U = 0 
and a!, 0 # 0, as modified by (3.74) to account for the end-nozzle, and the presence of 
the magnetic forces represented by ~ l r ( 1 ,  t) + K ~ v ~ ( I ,  t). In the experiments, ~1 and ~2 
are determined by measuring the first buckled natural frequency in the post-buckling state 
of the system, and the location of the statically buckled pipe end. The equations are 
first discretized by Galerkin’s method and then studied by simulation via a fourth-order 
Runge-Kutta integration scheme, both for the autonomous and the forced system. Useful 
experimental data, however, could only be obtained for the forced system; flutter of the 
buckled autonomous system could not be achieved because of experimental limitations 
(Tang 1997). 

Numerical phase-plane plots for an autonomous system similar to the experimental 
one but with zero damping (a! = 0 = 0), discretized to fourth order (N = 4), show (a) a 
stable limit cycle for u = 3.30, just beyond the flutter threshold, (b) period-4 motion for 
u = 3.89, and (c) chaotic oscillation for u = 3.96 and 4.29. Interestingly, for a model 
with N = 2, periodic rather than chaotic oscillation is displayed for u = 4.29. For N = 4 
it is shown that the dynamics evolves about both potential wells: a small orbit about one 
of them, followed by a larger orbit leading to the other one. 

Additional work on the effect of damping shows that, with increased damping in the 
pipe material (a), the chaotic attractor is progressively weakened, so that eventually, for 
a! - 6( lop2), the oscillation becomes periodic. 

Typical numerical results for the case of forced oscillation of the system are shown 
in Figure 5.42 for N = 2 (cf. the early work in Section 5.8.1) and a low value of u. It 
is shown that with increasing Fo and constant w, there is an alternation of periodic and 
chaotic regions, which is mapped in (e) for varying w. A similar map for N = 1 (not 
shown) is completely different from that of Figure 5.42(e), but another for N = 3 is not 
too radically different from that for N = 2, showing the beginnings of convergence. 

The phase-plane plots of Figure 5.42(a-d) show clearly that for low f = FoL2/EI the 
vibration is in the vicinity of the potential we11 in which the system is buckled. For higher 
f, it is about both wells, and the motion is essentially as follows: one or more orbits 
around one of the potential wells, followed by a trajectory over to the other potential 
well, and so on. 

The theoretical ( N  = 3) thresholds for chaos with forced vibration are reasonably close 
to the experimental ones for a case with u = 0.35. However, this does not represent the 
best test for the theory since, at such low u, the main effect of flow is to contribute some 
additional damping vis-&vis u = 0. Of more interest would have been an experiment 
at u close to the flutter boundary; however, this was precluded by the apparatus used 
(Tang 1997). 

5.8.3 Pipe with added mass at the free end 

As discussed in Section 3.6.3, the linear dynamics of a cantilevered pipe conveying fluid 
is modified in interesting ways by the addition of a point mass, notably at the free end. 
The nonlinear dynamics is equally interesting, as will be seen in what follows. 
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Figure 5.42 The numerically computed forced response of the system of Figure 5.41 
for u = 0.35, N = 2, w/2n = 4Hz, pipelnozzle area-ratio ai = 1, and variable f = FoL2/EI: 
(a) f = 3.0; (b) f = 9.0; (c) f = 18.1; (d) f = 33.1. (e) The map of chaotic regions (the hatching 
points into the regions) in terms of the excitation force Fo in kg, where f = 60.2Fo, and the 

frequency of forcing, w/2n (Tang & Dowel1 1988). 
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Copeland (1992) and Copeland & Moon (1992) studied the 3-D dynamics of the system 
shown in Figure 5.43(a) and showed that chaotic motions routinely arise, whereas they do 
not if the additional mass is absent. The 2-D version of the same system was subsequently 
examined by Pdidoussis & Semler (1998), partly to see if chaotic planar motions are 
possible and partly to shed light on the dynamics of the system in general; the 2-D 
version in the case of a negative addition of mass (mass deficit) was studied by Semler 
& Pdidoussis (1995). All this work is discussed here, starting with 2-D motions. 

essure transducer 

Elastomer End-mass Metal ring 
ring 

Figure 5.43 (a) Schematic of the system with added end-mass. (b) Schematic of the experimental 
apparatus, and (c) the two methods used for mounting the end-mass; the ‘elastomer ring’ in the 

method on the left is moulded integrally to the pipe (Pdidoussis & Semler 1998). 

(a) 2-D motions of a pipe with an added end-mass 

The work presented in this subsection, unless otherwise attributed, is based on Paidoussis 
& Semler’s (1998). The system studied is shown in Figure 5.43(a), and the experimental 
set-up and manner of mounting the end-mass in Figure 5.43(b,c). The apparatus, including 
the noncontacting optical sensor, is similar to that used in Section 5.8.1. The added mass 
is in two halves, screwed together tightly at the end of the pipe. The rather elaborate 
alternative schemes for mounting it are necessary (i) to avoid it becoming loose on the 
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pipe in the course of oscillation and (ii) to ensure that it is not overtightened onto thc 
pipe, thus deforming its free end. 

Several elastomer pipes were used (typically, Di = 6.3 mm, Do = 15.7mm, L = 
470mm), giving f i  = 0.125-0.150 and y 2: 20, and eight different end-masses, made 
of plastic or metal, JM. = 2.4-37.8 g; this corresponds to values of the dimensionless 
added mass, 

(5.139) 

ranging from p = 0.023 to 0.380. 
Typical results related to the flutter threshold, which exhibits the characteristics of a 

Hopf bifurcation, are given in Figure 5.44(a). It is remarked that (i) the additional mass 
destabilizes the system, in agreement with Hill & Swanson's findings (Figure 3.68), and 
(ii) there is considerable hysteresis in the critical u obtained with increasing and decreasing 
flow, suggesting that the Hopf bifurcation is subcritical. 

0.4 

0.3 

0.0 

(a) Flow velocity, if,, 

4 ,  I t 

3 -  

I 

1.5 2 2.5 3 3.5 4 

(b) Flow velocity, ( u & ~  

Figure 5.44 (a) Experimental critical flow velocity for the onset of flutter as a function of p [equa- 
tion (5.1391 for the system of Figure 5.43(a): ---, linear theory; +, experiment for increasing 
u, the error bar indicating maximum repeatability variations; 0, experiment for decreasing u, 
(mean value) (PaYdoussis & Semler 1998). (b) Similar observations over a larger range of p, 

with ( u ~ ) ~ ~  = V,,/(gL)'/*, by Copeland & Moon (1992). 

Similar results from Copeland & Moon (1992) are shown in Figure 5-44(b) for a much 
wider range of p. Motions in this case too were mostly planar at the onset of flutter 
[see Section 5.8.3(b)]. It is seen that, contrary to the effect of smaller p, the presence 
of end-masses with p > 0.5 approximately stabilizes the system vis-&vis /* = 0. These 
results also display hysteresis and suggest a subcritical Hopf bifurcation. The pipes in this 
case were very long and slender ( L  - 1 m, LIDi 2: 125); according to theory (for p = 0) 
such slender pipes should lose stability by a supercritical Hopf bifurcation [Figure 5.20 
and Bajaj et al.  (1980)l. 
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Returning to Paydoussis & Semler’s experiments, as the flow is increased the system 
undergoes a secondary bifurcation, shown at the right side of Figure 5.45(a).+ For the 
higher values of p, approximately p > 0.1, this secondary bifurcation involves a sudden 
increase in the frequency of oscillation, as seen in Figure 5.45(b). If u is increased further, 
the motion becomes chaotic, as confirmed by phase-plane and PSD plots constructed from 
the experimental signal. At this point the oscillation is three-dimensional and violent, and 
the pipe impacts on the collecting tank if not restrained. 

4 5 6 I 8 9 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

(a) Flow velocity, u (b) Frequency (Hz) 

Figure 5.45 (a) Experimental critical flow velocities for the Hopf ( -*- ), on the left of the 
figure, and secondary bifurcation ( - ), on the right, for a pipe with = 0.142, y = 18.9 
[Figure 5.43(a)]; - , first theoretical Hopf bifurcation; - - -, - . -, onset and cessation of a 
higher theoretical Hopf bifurcation. (b) 0, Dominant experimental frequencies ‘before’ and ‘after’ 
the second bifurcation for the pipe system in (a); A, for another pipe system ( B  = 0.150, y = 20.5); 

(PaTdoussis & Semler 1998). 

For p < 0.1 approximately, the dynamics is rather different. The secondary bifurcation 
in this case is associated with a change in the character of the oscillation rather than a 
jump in frequency. The oscillating mode becomes distinctly nonlinear: a point along the 
pipe, at x 2: i L ,  becomes a node,$ and the upper part oscillates with a smaller amplitude 
and about half the frequency of the lower part. Two distinct peaks appear in the PSD with 
a frequency ratio of 2: 1; but, with increasing u, the main, higher frequency increases while 
the lower one decreases slightly, so that the ratio becomes incommensurate. Eventually, 
in this case also, the motion becomes three-dimensional and chaotic. 

Because one of the motives behind this work was to discover whether chaotic oscillation 
can arise in purely 2-D motions, attempts were made to confine the motion to a plane, 
even after the onset of chaos. To this end, experiments were done with pipes fitted with 
a metal strip (as in Section 5.8.1), which in this case were unsuccessful. In the presence 
of the end-mass, the violence of the chaotic oscillations was such as to quickly destroy 

+The dashed and chain-dotted lines are associated with another Hopf bifurcation, in a higher mode, predicted 
by linear theory. This may have something to do with the secondary bifurcation, but it is unlikely (see also 
Figure 5.48). 

*It is recalled (Section 3.5.6) that there are normally no nodes in the motion, because of travelling-wave 
components in the oscillation. 
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the pipe-strip bond and even the pipe as a whole. More successful was the use of plate 
guides confining the motion to a plane. Under these circumstances the motion did become 
chaotic in any case. 

The route to chaos is not clear from the experimental data. It could be via 
quasiperiodicity - see Section 5.8.3(b); however, in at least one case, a sequence of 
two period doublings was observed to precede chaos. 

Finally, the case of p = 0 does appear to be singular, in that no secondary bifurcation 
arises. The motion remains periodic to the maximum flow available - a conclusion also 
reached by Copeland & Moon (1992). 

In the theoretical study of the system, equation (5.28) or (5.39) is used, rather than 
(5.42) and (5.43), so that inertial nonlinearities are left intact and no restriction on their 
magnitude needs be imposed. Of course, equation (5.28) needs be modified to include 
the effect of the end-mass, which is twofold: (i) the inertial terms now involve m + M + 
A h ( x  - L) ,  where A is the end-mass; (ii) the gravity-induced tension terms are similarly 
modified. Hence, with U = 0, the dimensionless equations are 

f y [ l  + ph(6 - l)]ql + 2ufili’ + q”ll + N ( q )  = 0 (5.140) 

where 

1111 12 
q + rl + 4q’q’’q’’’ + q”3 + q’[l + pS(6 - l)] 

(5.141) 

p is defined by (5.139). Thus, via the use of the Dirac delta function, the effect of p is 
incorporated in the equation of motion, while the boundary conditions remain the same 
as for p = 0.’ This facilitates the discretization of the system, via Galerkin’s method. 
As discussed in Section 5.4, care has to be exercised in selecting appropriate numerical 
methods for the solution of the resultant N second-order ordinary differential equations, 
because of the presence of the nonlinear inertial terms - methods which should give 
accurate, convergent solutions. The finite difference (FDM) and the incremental harmonic 
balance (IHB) methods have been found to be particularly efficient and complementary 
(Semler et al .  1996). 

Typical results are shown in Figure 5.46; they are seen to be sensibly the same whether 
computed with N = 3 or 4 in the Galerkin discretization. In (a) it is seen that, for p = 0, 
the theory also finds no bifurcation beyond the Hopf bifurcation at u 2 6.2. The Hopf 
bifurcation is clearly supercritical, in contrast to the experimental results. 

‘The appropriateness of this formulation and method of solution is demonstrated at the end of Section 4.6.2. 
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Figure 5.46 Bifurcation diagrams of the dimensionless pipe-end displacement versus u for 
the system of Figure 5.43(a) by the FDM method for (a) p = 0 and (b) p = 0.06; -, 
N = 3 in the Galerkin discretization; A, N = 4. (c) Time trace and (d) PSD in terms of 
f = w/2n for p = 0.06, N = 3 and u = 8.5. In all calculations the parameters are as in the 
experimental system: B = 0.142, y = 18.9, and the measured logarithmic decrements of damping: 

6, = 0.037, SZ = 0.108,63 = 0.161 and extrapolated 64 = 0.220 (Pdidoussis & Semler 1998). 

For p = 0.06, the dynamical behaviour is initially similar, as shown in Figure 5.46(b). 
For 8.2 < u < 8.625, however, there is a band of quasiperiodicity, involving two frequen- 
cies, as made clear in the time trace and PSD in (c) and (d) of the figure. The two 
dimensionless frequencies are f l  1: 0.5 and f 2  1: 3, while the third peak in the PSD is at 
2f2 + f l ,  and so on; f = w/2n,  while w is as defined in equation (3.73). For u > 8.625, 
periodic oscillations resume, but at a smaller amplitude. This theoretical evolution bears 
some resemblance to the experimental behaviour, but there are some obvious discrepancies 
as well. Comparing the results of Figure 5.45 for p = 0.06 with those of Figure 5.46(b), 
it is seen that theory and experiment agree in the following aspects: (a) the values of 
UH for the first Hopf bifurcation are similar ( u ~  1: 5.3 in the experiments, compared to 
UH = 5.35 in theory); (b) the nonlinear model and the experiments both predict a qual- 
itative change in the behaviour of the pipe at a higher flow; and (c) the values of u for 
the second bifurcation are relatively close (uheory 1: 8.2 versus uexp 1: 7.8). On the other 
hand, only periodic solutions are predicted in the experiment (before the onset of chaos), 
while the motion is also found to be quasiperiodic in theory, prior to becoming periodic 
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again. Furthermore, there is a frequency jump in the periodic oscillations in the theoret- 
ical results before and after the quasiperiodic band: f = w/2n = 3.1 for u = 8.0 versus 
f = 6.5 for u = 8.8. This corresponds to the jump observed across the second bifurcation 
in the experiments, Figure 5.45(b), but only at higher values of p. 

The maximum tip displacement and frequency of oscillation are shown in 
Figure 5.47(a,b) for p = 0-0.10, computed by the IHB method which ‘follows’ periodic 
solutions and determines their stability along the way. The following observations may 
be made. 

(i) For p > 0, the original stable limit cycle loses stability at the points marked with 
a bullet (o), a pair of complex conjugate Floquet multipliers crossing the unit circle (the 
modulus becomes greater than l), which means that quasiperiodic solutions are possible 
after the bifurcation point (Berg6 et al. -1984), in agreement with FDM results. 

(ii) Following the unstable solutions, two additional saddle-node bifurcations are 
detected: the first corresponding to a limit or turning point, and the second, represented by 

5 6 I 8 9 10 

(a) Velocity, u Velocity, u 
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(C) Velocity, u ld) Displacement 

Figure 5.47 Bifurcation diagrams for the system of Figure 5.43(a) via the IHB method: (a) the 
dimensionless tip displacement and (b) the dimensionless frequency, w, versus u, for p = 0-0.10 
(curves 1, 2, 3, 4: p = 0,0.03,0.06 and 0.10, respectively). Point B is an arbitrary point on the 
stable high-frequency solution. (c) Bifurcation diagram for p = 0.15: -, stable periodic solution 
(IHB); - - -, unstable periodic solution (IHB); o , stable periodic solution (FDM). (d) Phase-plane 
plot for p = 0.15, u = 8.8. All parameters as in the experimental system and N = 3 (Pdidoussis & 

Semler 1998). 
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the triangles (A) at lower values of u, corresponding at the same time to a turning point 
and a restabilization, for which stable periodic oscillations of small amplitude and high 
frequency appear. The appearance of the second stable periodic solution explains clearly 
how the smaller amplitude oscillations at u > 8.625 detected by FDM (Figure 5.46) come 
into being. 

(iii) The value of u of the bifurcation point leading to the appearance of stable periodic 
solutions decreases dramatically with increasing p, which means that the range where 
quasiperiodic oscillations can be detected decreases with p, to a point where they no 
longer exist. This is confirmed by FDM calculations; for p = 0.1 there exists only a very 
narrow range of quasiperiodic solutions. 

(iv) The case of p = 0.1 may be considered as a limiting case for two distinct reasons: 
firstly because of the previous remark, and secondly because of the small amplitude ‘jump’ 
observed in Figure 5.47(a) for u 2 6.1 or the corresponding small frequency ‘hump’ in 
Figure 5.47(b); the evolution of the stable periodic solutions emerging from the Hopf 
bifurcations is no longer smooth for p > 0.1, and new phenomena start to occur. 

A bifurcation diagram for p = 0.15 is shown in Figure 5.47(c). It is recalled that for 
such ‘high’ p, there is a very clear frequency jump across the secondary bifurcation in the 
experiments, succeeded by chaos. The results shown indicate excellent agreement between 
FDM and IHB - although the former cannot compute unstable solutions, while the latter 
cannot compute nonperiodic (chaotic) ones. Nevertheless, the two in synergism are a 
potent tool. Thus, the IHB results reveal that the amplitude jump at u 2 6 for p = 0.10 
in Figure 5.47(a) is associated with a loop, as shown for p = 0.15 in Figure 5.47(c). 

Unstable solutions emerging at u = 7.54 in Figure 5.47(c) exist up to u = 11.69, which 
is beyond the scale of the figure. Furthermore, although the system is always unstable 
in this big loop, the number of Floquet multipliers inside the unit circle varies several 
times (4 + 5 + 3 + 5 + 6). These bifurcations are of no great importance because the 
system is unstable in any case. Of more interest is the bifurcation occurring in the small- 
amplitude stable periodic solution at u = 8.76: increasing u further, the stable solution 
becomes unstable, again because two complex conjugate multipliers cross the unit circle, 
but the solution thereafter is not quasiperiodic but chaotic, as shown in Figure 5.47(d). 

Consequently, from a physical viewpoint, four distinct types of solution may be 
observed for p = 0.15: (i) solutions converging to the stable equilibrium for u 5 4.66; 
(ii) periodic solutions whose frequency increases with u for 4.66 -= u < 7.54; (iii) periodic 
solutions of higher frequency and smaller amplitude for 7.26 < u < 8.76 (implying a 
jump in the response); and (iv) chaotic oscillations for u > 8.76. This is exactly what 
is observed in the experiment. As shown in Table 5.5, agreement between theory and 
experiment is relatively good in terms of the critical flow velocities and the frequency 
before the ‘jump’ but not after. 

If the value of p is increased further, the results obtained numerically are qualitatively 
similar to those for p = 0.15, except that the number of ‘humps’ increases, which means 
that the number of bifurcations in the system increases as well. Alas, the quantitative agree- 
ment between theory and experiment deteriorates, since the values of u for the second 
bifurcation (followed almost immediately by chaotic oscillations) increase in the experi- 
ment, while they decrease in theory (Table 5.6). Before giving reasons for this, the effects 
of the nonlinear inertial terms on the dynamics are investigated; these terms have been 
included in the analysis so far. The idea here is to compare the results with and without 
the nonlinear inertial terms. If it is found that these terms do not significantly affect the 
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Table 5.5 Comparison between theory and experiment of the flow velocity 
and the frequency of the pipe corresponding to the three bifurcations, for 

p = 0.15; the arrow represents the jump in frequency. 

Values of u Values of f 
Expt Theory Expt Theory 

Hopf bifurcation 4.8 4.66 2.3 2.6 
Second bifurcation 7.6 7.26 2.8 + 4.5 3.0 + 6.3 
Chaos - 8  8.76 - - 

Table 5.6 Flow velocity corresponding 
to the appearance of chaotic oscillation: 
comparison between theory and experiment. 

Uexp Utheory 

N = 3  N = 4  

p = 0.2 8.0 6.9 6.5 
p = 0.3 8.2 6.0 5.9 
p = 0.4 8.6 6.0 5.9 

results, at least qualitatively, this would free the way to using AUTO to compute bifurca- 
tion diagrams; AUTO cannot handle second-order equations directly, but it is extremely 
versatile in ‘following up’ stable and unstable solution branches and their offshoots if these 
equations can be transformed into first-order form. 

Results in the absence of inertial nonlinear terms are given in Figure 5.48 in (a) by 
AUTO and in (b) both by AUTO and FDM. From (a) it is seen that the original periodic 
solution loses stability through a subcritical pitchfork bifurcation at u = 8.6 (marked by 0 )  

prior to the saddle-node bifurcation occurring at u = 8.7 (A). This means that the solution 
after u = 8.6 becomes unstable and that two unstable periodic solutions emerge at the 
bifurcation point. Following the original solution after the saddle-node bifurcation, three 
additional limit points are encountered (represented again by filled triangles), the first 
one at u = 7.96, the second at u = 10.11 and the third at u = 8.3. This last bifurcation 
point, as in previous cases, corresponds to a restabilization of the periodic solution and 
the appearance of stable limit cycles of small amplitude and high frequency. This means 
that the same qualitative results are obtained, whether the nonlinear inertial terms are 
accounted for or ignored. 

On the other hand, the results obtained by FDM in Figure 5.48(b) indicate that not only 
periodic solutions exist but also chaotic ones, for 8.6 5 u 5 9.3. Consequently, although 
stable periodic solutions exist for all flow velocities, as demonstrated in Figure 5.48(a), 
there is a large range of velocity for which these stable periodic solutions are not able 
to attract the trajectory. This is due to the fact that in the same range, many unstable 
or repelling periodic solutions are present, on which the trajectory may ‘bounce’. Some 
of those unstable attractors emerging from the subcritical pitchfork bifurcation have been 
computed with AUTO [dash-dotted line in Figure 5.48(a)], but there may in fact exist 
an infinite number of them (indeed, more branch points and period-doubling bifurcation 
points were detected in this range, but no attempt was made to ‘switch’ to other solution 
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Figure 5.48 (a) Bifurcation diagram for the system of Figure 5.43(a), for p = 0.2 and N = 3, 
obtained while ignoring the nonlinear inertial terms, showing the maximum generalized coordinate, 
91, versus u obtained with AUTO: -, stable periodic solution; - . -, main branch of the unstable 
solution; - - -, unstable branch emerging from the bifurcation point marked by a; . . ., unstable 
branch connecting the two Hopf bifurcation points, amplified 20 times; A, limit points on the main 
branch. (b) The main branch of (a), together with results computed by FDM (+) (Pdidoussis & 

Semler 1998). 

branches). To give additional proof that the presumed chaotic solutions computed by 
FDM are really chaotic, the numerical scheme developed by Hairer et al. (1993) was 
used, since it is known to be particularly accurate in chaotic regimes, in the sense that it 
does not induce artificial chaos numerically. The results obtained confirm that the motion 
is indeed chaotic. 

In conclusion, it may be said that the addition of a small mass at the end of the fluid- 
conveying pipe enriches the dynamics considerably, in fact revealing the existence of 
a completely new dynamical system. Not only are different types of periodic solutions 
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detected, but also jump phenomena, quasiperiodic and chaotic oscillations. This conclusion 
is reinforced by the findings of Sections 5.8.3(b) and (c). 

fbl3-0 motions of a pipe with an added end-mass 

As discussed in Section 5.8.3(a), there is a natural tendency for motions to be three- 
dimensional once they become chaotic, even if at the onset of flutter they are planar. 
Copeland (1992) and Copeland & Moon (1992), whose work is discussed here, observed 
that for larger end-masses this tendency to three-dimensionality exists even before the 
onset of chaos. Hence, they studied 3-D motions of the system from the outset, both 
experimentally and theoretically. 

In the experiments, the apparatus is very similar to that of Figure 5.43. The pipes used 
are also similar to those in Section 5.8.3(a), but very long and slender ( L  - lm, L/Di 2 

125, B = 0.219, y = 292), while the end-masses are much larger (.nil = 83.8-816.9 g); for 
the largest, p = 3.81. 

The experimental critical flow velocities for the onset of flutter have already been 
discussed [Figure 5.44(b)]. For higher flows, there exist a series of increasingly compli- 
cated periodic and quasiperiodic motions, eventually leading to chaos; their sequence 
and range are shown in Figure 5.49 (top), with the motions sketched below - definitely 
among the most captivating of experimental results with pipes conveying fluid. 

As seen in Figure 5.49, rotational motions do not arise for p = 0 and 0.367, the 
smallest experimental value of p. However, they are increasingly evident for higher p. For 
p = 3.55, the response is predominantly circular. It is seen that, in addition to planar and 
rotational motions, there are three periodic states of greater complexity: rotating planar, 
planar and pendular, and nutating oscillations. As evidence of circular symmetry, clock- 
wise and counterclockwise motions may both occur; likewise, the planar oscillations are 
not biased towards particular vertical planes. 

There are three kinds of rotating planar motion. The rotation is either backwards and 
forwards through a finite angle [PL(R)], as shown in Figure 5.49(c), or more commonly 
continuous rotation in either the clockwise (PL,CW) or counterclockwise (PL,CCW) 
sense. Generally, the period of rotation is ten or more times the period of planar oscillation. 

For p = 1.24, there exists a state of motion that appears to be coupled planar oscillation 
with the pendular mode (PL,P) [Figure 5.49(d)]. The period of pendular oscillation is 
approximately four times the period of planar oscillation. Finally, the motion described 
as nutating [Figure 5.49(e)}, for its resemblance to the nutation of a spinning rigid body 
with axial symmetry, is perhaps the most interesting; it occurs for p = 3.81,3.55 and 
2.30. The motion can be characterized in terms of how many small nutations (the small 
loops) are made in a single precession (the motion about the vertical axis) and in terms of 
the relative amplitude of the nutation, Rl/RZ.  The number of nutations per precession is 
generally an irrational number between 4 and 12. The loops are not stationary, but occur 
at different points for each cycle of precession, suggesting a nonresonant response. 

With decreasing flow, the sequence and type of oscillatory states are generally different; 
e.g. for p = 0.746, chaos is succeeded by PL, P(R) and PL oscillations, before the pipe 
regains static equilibrium. 

In at least some of the cases, a clear quasiperiodic route to chaos is followed, as put 
forward by Ruelle, Takens and Newhouse (Newhouse et a l .  1978; Berg6 et a l .  1984; 
Moon 1992), observed for example in Taylor-Couette flow. In this scenario, a secondary 
Hopf bifurcation transforms periodic motions into quasiperiodic ones, involving two 
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Figure 5.49 Transition from equilibrium to chaos for 3-D motions of the system of Figure 5.43(a), 
for various end-masses. Top: the ranges of various oscillatory states in terms of increasing ug. S, 
stationary pipe; PL, planar oscillation; CW, clockwise rotating motion; CCW, counterclockwise 
rotation: PL,CW and PL,CCW, clockwise and counterclockwise rotating planar oscillation; PL,P, 
coupled planar and pendular oscillation; N, nutation; PL(R), planar oscillation rotating through a 
finite angle; PL, P(R), coupled planar and pendular oscillation rotating through a finite angle; CH, 
chaos. Bottom: sketches of various periodic motions. (a) PL; (b) CCW; (c) PL(R); (d) PL,P; (e) N 

(Copeland & Moon 1992). 

incommensurate frequencies, so that motions evolve on a ‘two-torus, T2’. Then, a third 
Hopf bifurcation gives rise to quasiperiodicity involving three frequencies and a ‘three- 
torus, T3’. This last torus, however, is nonrobust and it can be destroyed by a certain 
type of perturbation, transforming it into a strange attractor. Thus, the appearance of a 
third frequency, if it can be captured at all, signals the possible onset of chaos. Therefore, 



PIPES CONVEYING FLUID: NONLINEAR AND CHAOTIC DYNAMICS 381 

0.8 

0.6 

0.4 

0.0 
v1 h 

h 

vl m 

0 2 
2 0.2 

R 
-0.1 

0.0 

-0.2 
-0.2 

unlike the period-doubling route, this route to chaos involves a finite and small number 
of bifurcations. 

For a system with p = 2.60t at ug = U/(gL)1 /2  = 3.048 and in the CCW regime, 
the motion is periodic and thus involves but one frequency - as found by delay recon- 
structions of the experimental attractor and associated Poincare maps and PSD plots, 
similar to those in Appendix I. For ug = 3.080, however, the motion is in the PL,CW 
regime, with the pipe oscillating in a plane that is continuously rotating counterclockwise, 
and hence is associated with two incommensurate frequencies. As seen in Figure 5.50, 
(a) the pseudo-phase-plane plot, (b) the 'closed curve' in the Poincark section and (c) the 
power spectrum with a multitude of combination frequency peaks are all indicative of 
quasiperiodicity involving two frequencies. 
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Figure 5.50 Pipe motion in the PL,CCW regime for 3-D motions of the system of Figure 5.43(a), 
for p = 2.60, ug = 3.080; scale is arbitrary. (a) Delay reconstruction of attractor, delay = 0.1 17 s (30 
sampling periods), correlation dimension d,  = 2.105 for 33 0oO data points (b) Poincan5 section, at 

x( t )  = 0.2; (c) power spectrum (Copeland & Moon 1992). 

+End-masses of different aspect ratios and moments of inertia were used, so that p alone is insufficient to 
differentiate two experiments. This distinction is not made in this book for simplicity, but it explains why the 
values of up in Figures 5.49 and 5.50 do not correspond. 
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For ug = 3.164 (Copeland & Moon 1992; Figure 9), the phase-plane plot becomes 
completely irregular, the Poincark section shows an unstructured cloud of points, while 
in the power spectrum the low-frequency background level has risen to almost drown the 
subharmonic combination peaks, all indicating that the motion is chaotic. 

In the analysis (Copeland 1992), motions in both the (x, y )  and (x ,  z )  planes are 
considered - cf. Figure 5.2(b). To simplify things, because the pipes used in the exper- 
iments are so slender and flexible, the flexural restoring forces are much smaller than 
the gravity-induced tensile forces and they are neglected. Thus, the equation of motion 
is reduced to that of a pipe-string with an end-mass. This is the reason for defining 
ug = U/(gL) ' /*  such that it does not involve EZ. Furthermore, the effect of the end-mass 
is not incorporated in the equation of motion but is left in the boundary conditions. Thus, 
the system is discretized using specially determined comparison functions for a heavy 
string with an end-mass, involving Bessel functions, to proceed with the analysis. 

The linearized system is found to lose stability in its third and fourth modes succes- 
sively by Hopf bifurcations - of multiplicity two, for each of the two lateral directions. 
Two reduced forms of the discretized nonlinear system are then analysed: (i) an eight- 
dimensional invariant manifold, consisting of four centre eigendirections (associated with 
the two symmetric modes, the third and fourth, first undergoing a Hopf bifurcation) and 
four stable eigendirections, is obtained and solved numerically; (ii) the further reduced, 
four-dimensional centre manifold involving but the centre space of the eight-dimensional 
one, which is analysed further. Then, proceeding essentially as in Appendices F and H via 
the method of averaging, and assessing stability in the same manner as in Section 5.7.2, 
the nature of the Hopf bifurcation may be determined (whether sub- or supercritical) 
and whether the motion is planar or circular. The results are compared in Table 5.7 with 
those obtained numerically and experimentally. In all cases, the limit cycle is supercrit- 
ical, in agreement with Bajaj & Sethna's results (Figure 5.20) for p = 0 and those of 
Section 5.8.3(a) but in apparent disagreement with the experiments. There is fair agree- 
ment between the three sets of results, but some inexplicable differences also. In general, 
for small p the motion is planar [which agrees with the results of Section 5.8.3(a)], and 
interspersed rotational and planar for higher p. However, the bistable behaviour in some 
of the numerical results does not exist in the analytical ones. 

Table 5.7 Stable limit cycles following the initial 
instability. C, rotating orbit (CW or CCW); PL, 
planar orbit; CPL, bistable orbit, depending on initial 
conditions; PL-2 C and C+ PL indicate a change in the 
motion as the flow is increased; PL(R) is defined in 
Figure 5.49. The numerical results have been computed 
for E = [ue - ( U ~ ) ~ ] / ( U ~ ) ~  = 0.01, ( u R ) ~  being the value 

for the Hopf bifurcation (Copeland 1992). 

P Analytical Numerical Experimental 

0.367 PL CIPL PL 
0.746 PL PL(R) PL 
1.24 PL PL PL 
1.89 PL PL c + PL 
2.30 C CPL PL -2 c 
2.67 PL PL PL + c 
3.55 C CPL PL + c 
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The numerical simulations were pursued to higher ug by means of the eight-dimensional 
reduced subsystem. The results for p = 2.30 indicate that the motion remains basically 
period-] for E = [ug - ( u X ) ~ ] / ( u L T ) ~  = 0.1 1, which is not in agreement with experiment. 
Those for p = 3.55, however, show a clear path to chaos via the quasiperiodic route, 
which agrees with experiment, as illustrated in Figure 5.51. For E = 0.04 the motion 
is periodic; for t = 0.0485 it is quasiperiodic with two fundamental frequencies, and 
for E = 0.05, shown in Figure 5.51(b), with three frequencies; finally, for E = 0.065 
the motion is predominantly quasiperiodic, but with a chaotic component. Again, there- 
fore, in view of the results for p = 2.30, only partial agreement with experiment is 
obtained. 

However, more perplexing is the less than good agreement between the numerical 
and the analytical results, which must exist at least in some neighbourhood of t = 0: in 
addition to the bistable behaviour (both rotational and planar oscillations) which occurs 
only in the former, the variation of frequency with E does not agree. Of course, this has 
also perplexed Copeland and this author, but no error has been found, though this remains 
a possibility. 

Further experiments on the same system were conducted by Muntean & Moon ( 1  995), 
in which the system is additionally excited at the support via a shaker, and the 'end- 
mass' may be a little higher up than the end of the pipe. The objective of this work is 
to investigate the transition from quasiperiodicity to chaos and this is done by means of 
multifractal dimensions, or spectra of fractal dimensions, in a similar manner as in Jensen 
et a l .  (1985) for the forced Rayleigh-BCnard convection experiment. It is shown that the 
dynamics of the system can be captured by simple maps, and hence the transition to chaos 
displays remarkable universality irrespective of the physical system. 

(c) 2-0 motions of a pipe with an end-mass defect 

Partly to further explore just how singular the case of A = 0 is, the situation when the 
additional mass at the free end is negative (p  < 0), i.e. when there exists an end-mass 
defect, was investigated by Semler & Paidoussis (1995) and some interesting results were 
obtained. 

Utilizing equation (5.39) and applying a Galerkin discretization scheme as in 
equations (5.115) and (5.116a,b), the inertial term is found to have the form [Si;  + 
p@i(l)@;(l) + yilk;qkql]q;. Then, making the assumption that p and the inertial 
nonlinearities are small, one can write 

16;; + ~ @ ; ( l ) @ j ( l )  + ~ r l k j q k q l l - '  2 ~ i j  - p@i(lMj(l)  - Y i l k j q k q l ?  

and so thc nonlinear equation of motion can be recast into first-order form, which may 
be integrated via a standard Runge-Kutta scheme. 

Typical results are shown in Figure 5.52 for a case with N = 4 in the discretized system 
with parameters as for one of the pipes used by Paidoussis & Moon [Section 5.8.11, 
namely B = 0.216, y = 26.75, p = -0.3,' and experimentally determined damping 
values. The Hopf bifurcation occurs at u = uH = 8.7, so that it is immediately obvious 
from the figure that subsequent bifurcations begin to occur at much higher values of u. At 
u = 19.82, one of the Floquet multipliers crosses the unit circle at h = +1, indicating a 

'This is a relatively large value of I@/, but qualitatively similar results are obtained for smaller, more realistic 
= -0.085, although the bifurcations shown in Figure 5.52 then occur at even higher values of u. values, e.g. 
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Figure 5.51 Numerical simulations for 3-D motions of the system of Figure 5.43(a): (a) the bifurcation diagram for the system with p = 3.55 in 
terms of E = [up - (ug)~]/(ug)~; (b) the power spectrum for E = 0.05, showing quasiperiodic motion with three fundamental frequencies (Copeland 

1992). 
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Figure 5.52 Bifurcation diagram of the dimensionless free-end displacement, q( 1, r),  when 
i(1, r )  = 0, versus u for the system with an end-mass defect, p = -0.3; the Hopf bifurcation 

occurs at uH = 8.7 (Semler & Pdidoussis 1995). 

pitchfork bifurcation, which destroys the symmetry of the limit cycle. At u = 24.37, this 
is followed by another Floquet multiplier crossing the unit circle at h = -1, signifying 
a period-doubling bifurcation. However, this is not followed by another period-doubling. 
Instead, at u = 28.56, a Floquet multiplier crosses the unit circle at h = +1 through a 
saddle-node bifurcation, at which point the oscillation becomes chaotic - as confirmed 
by a bifurcation diagram of the period of oscillation versus u obtained with AUTO, 
phase-plane plots, PoincarC maps and Lyapunov exponent calculations. This sequence is 
characteristic of yet another of the classical routes to chaos, namely that of intermittency, 
in this case of ‘type I intermittency’ (Berg6 et al .  1984). A famous system that follows 
the same route to chaos is the Lorenz model for Rayleigh-BCnard convection. 

The best way of understanding the dynamics in this case is by looking at a Lorenz 
map, otherwise known as a PoincarC return map, consisting of successive maxima of 
the oscillation. Such a map is shown in Figure 5.53(a) for a simple system, to clarify the 
behaviour, and in Figure 5.53(b) for the problem at hand. In Figure 5.53(a), we have the 
solution curve for a fictitious problem, nearly tangent to the 45” ‘identity line’ [whereon 
q(n + 1) = q(n) ] ,  which returns the solution on to the next iteration of the map. If the 
solution curve intersects the identity line at two points, there exist two fixed points on 
the map, i.e. two limit cycles of the oscillatory system: one stable (the lower one) and 
the other unstable. The route to chaos involves the gradual lifting of the solution curve 
away from the identity line; when no intersection exists, then there is no stable oscillatory 
state. In the figure, it is clear from the iterations that, while ‘in the channel’ between the 
solution curve and the identity line, the system performs almost ‘regular’ oscillations, the 
amplitude of which varies gradually; this is the so-called laminar phase of the oscillation. 
Once the system ‘bursts out’ of the channel, it performs an excursion of high irregularity 
which is called the turbulent phase, before it bounces off another part of the solution and 
is reinjected in the channel, a process known as relaminarization. 
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Figure 5.53 (a) One-dimensional Lorenz (return) map of successive maxima of the solution of a 
system, showing some iterations in ‘the channel’ wherein the motion is ‘laminar’. (b) Lorenz map 
for the system with an end-mass defect, p = -0.3, u = 28.6,20 5 t i lo00 (about 8200 cycles of 

oscillation); (Semler & Pdidoussis 1995). 

In the map of Figure 5.53(b), we see four channels. The resulting behaviour is nearly 
period-2. The system visits two “steady states”, but the dynamics is interspersed with 
bursts of aperiodic motion. According to Manneville & Pomeau (1980), the time between 
turbulent bursts should scale as T = [u - uint]-”* for type I intermittency, where Uint is 
the threshold of intermittency; similarly, the largest Lyapunov exponent, 0, should scale 
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as u = [u  - uint]'/*. Plots of T and u versus u for this problem show excellent agreement 
with this scaling (Semler & Pdidoussis 1995). 

One worry concerning this work with p < 0 is that the robustness of the results for 
N > 4 has not been checked. In view of the high values of u necessary for the post-Hopf 
bifurcations, especially for very small Ipl, N = 4 may well be insufficient. 

To conclude, it is clear that the system with p = 0 is truly singular and relatively 
dull, capable of limit-cycle oscillations 'only'! In contrast, both for p < 0 and p > 0, a 
succession of interesting dynamical states and chaos generally follow the emergence of 
limit-cycle oscillations. 

5.8.4 Chaos near double degeneracies 

As discussed in Section 5.7.3, a number of systems have been studied in the neigh- 
bourhood of double degeneracies, in the process determining conditions, e.g. heteroclinic 
orbits, which when perturbed could lead to chaos; indeed, in several cases, finding chaos 
was the principal aim. 

The first case to be discussed here is that of the so-called up-standing cantilever, in 
which the double degeneracy involves coincident Hopf and pitchfork bifurcations in the 
(u ,  p, y}-space, see Section 5.7.3(d). Keeping p fixed at 0.2, this double degeneracy occurs 
at u, = 2.2458 and y, = -46.0014 for N = 2; the work that follows is for this particular 
set of parameters. Furthermore, it is recalled that heterociinic orbits for this system arise 
on a line in Figure 5.29 defined by equation (5.130), in which the constants are b = 1.518 
and c = 3.954 for f i  = 0.2. Thus, the system is studied at 

u = u, + p and y = y, +x, (5.142) 

where p and x are determined via (5.126) for the system to both be doubly degenerate 
and to have heteroclinic orbits: u = 2.2466, y = -46.0200. 

The system is perturbed by varying the nonlinear coefficient aijk/ in equation (5.1 16a), 
a;,kt = (u, + ~ ) ~ a i , k /  + ( y  + x)bijkt + c i j k l ,  and then varying p or x. It is stressed that 
to keep the characteristics of heteroclinic cycles in the unperturbed system, u and y in 
the linear part of the system are kept constant at the values given in the last paragraph. 

Simulations have been conducted by using the full nonlinear equations of motion. 
Variations in u do not lead to chaos, contrary to expectations, but variations in y do. Results 
for x E (13, 14) are summarized in the bifurcation diagram of Figure 5.54(a). Note that, 
although y is significantly far from yc for x = 14, still y/yc 2 0.3 only. It is clear from 
Figure 5.54 and other calculations given in Li & Pdidoussis (1994) that a period-doubling 
bifurcation occurs for x 2 13.4, and then chaos develops for x 2 13.55. The phase- 
plane diagram of Figure 5.54(c) is reminiscent of some depicting chaotic oscillation of 
a two-well-potential oscillator (Moon 1992), which is associated with a homoclinic orbit 
(two loops connected by a saddle), whereas the analytical subsystem in this case exhibits 
a heteroclinic orbit. Nevertheless, physically, the existence of homoclinic orbits of the 
doubly degenerate up-standing cantilever does make sense. Thus, decreasing y means 
that two attractors (buckled states) on either side of the straight equilibrium are created, 
and the oscillator jumps back and forth between the two attracting domains in a stochastic 
manner. 
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Figure 5.54 (a) Bifurcation diagram for the doubly degenerate up-standing cantilevered system with heteroclinic orbits ( p  = 0.2, u = 2.2466, 
y = -46.020), perturbed in y by an amount x ;  (b) the corresponding largest Lyapunov exponents; (c) a phase-plane plot in the chaotic regime 

(Li & Pdidoussis 1994). 
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The system can also be perturbed by adding a small oscillatory component to the flow, 
so that u = u, + u sin wt - cf. Sections 4.5 and 5.9. Prior to doing this, Li & Paldoussis 
(1994) conducted a Melnikov analysis on a reduced subsystem, the details of which are 
not given here; for nonautonomous systems, this can give an indication of the parameters 
near which chaos can arise. The central idea is to construct a scalar function which gives a 
measure of the distance between the stable and unstable manifolds when the unperturbed 
heteroclinic (or homoclinic) orbit is broken by perturbations. If and when this distance 
vanishes as a system parameter varies, the two manifolds intersect transversally; one 
such intersection implies infinitely many, yielding horsehoes and chaos (Guckenheimer 
& Holmes 1983). The analysis in this case gives u > d ( w )  for this to occur, where 
(T = 0.1 is the viscous damping coefficient [equation (3.71)], viscous damping being the 
only dissipation included, and R(w) is a function of the forcing frequency of the system, 
which has a minimum at w = wo = 2.45, 00 being the frequency of oscillation at the Hopf 
point. Simulations for a forcing frequency of o = 2.50 while varying v show that chaotic 
oscillations arise for v > 1.22; this value of u is very much higher than the minimum 
required according to the Melnikov calculation. The sequence of oscillatory states for 
increasing u is (a) quasiperiodic, (b) periodic and (c) chaotic motions. The results are 
similar to those discussed next, and hence no further details are given here. 

The next case to be considered is that of the pipe-spring system, discussed in relatively 
great detail in Section 5.7.3(a). In this case, heteroclinic orbits arise along one of the lines 
shown in Figure 5.27(a). Here, simulations are conducted exclusively with a periodic 
flow-velocity perturbation of the system, with parameters as given in Figure 5.55, where 
a bifurcation diagram and a few phase-plane plots are shown; a fuller set, consisting of 
several power spectra, time traces, phase-plane plots and Lyapunov exponent calculations 
are given in Paldoussis & Sender (1993b). The sequence of oscillatory states for increasing 
u is (i) periodic oscillations around one or the other of the two buckled states (both are 
shown, obtained via different initial conditions), (ii) quasiperiodic oscillations around both 
buckled states, (iii) periodic motions with sub-, combination, and super-harmonic content 
( 3  < u < 8 approximately), and (iv) chaotic oscillations. It is of interest that quasiperiodic 
and chaotic oscillations in Figure 5.55(a) look not too dissimilar, but the difference in the 
Lyapunov exponents is quite clear: zero in the former case and positive in the latter. 

Three-dimensional motions of the same system are considered by Steindl & Troger 
(1996), who determine in a map of j3 versus the location of the spring support, tS, the 
regions of existence and stability of heteroclinic cycles. Physically, the heteroclinic cycle 
involves the following set of transitions, as shown in Figure 5.56(a): (i) the system is 
buckled in one of the two mutually perpendicular planes; (ii) oscillations develop in that 
plane about the buckled state; (iii) the amplitude of these oscillations increases, while the 
static deformation due to buckling diminishes, eventually leading to oscillations about the 
straight equilibrium state (about the origin); (iv) oscillations develop in the perpendicular 
plane, with decreasing amplitude as the amplitude of buckling increases in that plane; 
(v) eventually buckling in that plane results, with no oscillation. By symmetry, this state is 
fundamentally identical to the initial one, and so the sequence just described begins anew. 

Steindl (1996) considers another type of heteroclinic cycles for the same system, this 
time associated with Hopf-Hopf bifurcations, rather than Hopf-pitchfork ones as in the 
foregoing, again obtaining a map of stable heteroclinic cycles in the {B, &} plane, as shown 
in Figure 5.56(b). In this case, the oscillations in one plane develop a secondary bifurcation 
at the TB boundary (corresponding to a simultaneous occurrence of a Hopf bifurcation and 
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a ‘Takens-Bogdanov’ point, where one of the frequencies in the Hopf-Hopf interaction 
becomes zero); the other lines shown in the figure correspond to features of the dynamics 
not discussed here. The solution then generally involves two frequencies and the secondary 
oscillations are in-plane or out-of-plane. As shown in Figure S.S6(c), heteroclinic cycles 
can occur in the narrow range bounded by the solutions for oscillation in one or the other 
plane (SW1 and SW2) and the secondary branches marked by and I in the figure. 
The same lund of heteroclinic cycles may exist if flutter is rotary rather than planar. 
These results offer a reasonable qualitative explanation of Copeland & Moon’s (1992) 
experimental observations (Figure 5.49). 

5.8.5 Chaos in the articulated system 

An extremely complicated bifurcation picture is involved in the nonlinear dynamics of a 
horizontal two-segment articulated pipe with an asymmetric spring, so that the two pipe 
segments at equilibrium are at an angle I+? to each other, as shown by Champneys (1991, 
1993) and as discussed briefly in Section 5.6.2(a). Because the dynamical theory required 
to understand the dynamics is beyond the scope of this book, only some selected results 
are presented and the reader is encouraged to refer to the primary sources. 

A typical sequence of dynamical behaviour with increasing u is given in Table 5.8. 
The ‘primary orbit’ in the table is a limit cycle due to a supercritical Hopf bifurcation. It 
is followed by a period-doubling bifurcation (at point 4) and gains amplitude by a tower, 
as shown in Figure 5.57(a); a tower consists of a number of saddle-node bifurcations (the 
first of which occurs at point 5) .  (Similar towers show how the period can increase with u . )  
Eventually, that branch of the curve regains stability at u = 5.5667 via a reverse period- 
doubling bifurcation (at point 6) and remains stable thereafter. It is noted in Figure 5.57(a) 
that neither the primary nor the period-doubling branches are stable for u > 5.0865, and it 
is for that range of u that interesting dynamics occurs. In fact, the bifurcations at points 4 
and 8 are the beginnings of a period-doubling cascade leading for u E (5.0865-5.1321) to 
‘small-scale’ chaos with periodic windows. This is succeeded for u E (5.1321-5.5667) by 
‘large-scale’ chaos involving mixed-mode period-(m, n ) orbits; these have m large-scale 
oscillations and n small-scale ones per period, as exemplified in Figure 5.57(b) - see 
Glendinning (1994). Eventually, the map shown in Figure 5.57(c) is obtained, with the 
regions I-VI as defined in Table 5.8. 

The vertical articulated system when I+? = 0 has also been studied by Champneys (1993) 
close to the pitchfork-Hopf double-degeneracy point. Once more, a very complex and 
interesting bifurcation structure is revealed. An example of a period-( 1,8) figure-of-eight 

Table 5.8 The dynamics of the articulated system with @ = 0.6 (Champ- 
neys 1991). 

Region u Behaviour 

I 0-4.7072 Stable stationary point 
I1 4.7072-5.041 1 Small-scale primary orbit 
111 5.041 1-5.0865 Period-doubling cascade 
IV 5.0865-5.1321 Small-scale chaos with periodic windows 
V 5.1321-5.5667 Large-scale chaos and period-(1, n) orbits 
VI 5.5667-00 Large-scale (1 ,O)-orbit 
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homoclinic orbit, along with the corresponding time trace is shown in Figure 5.58. For 
low enough y (e.g. for y = 1 .O), chaos is observed between the stable mixed-mode orbits. 
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Figure 5.58 (a) A phase portrait of a period-(1, 8) orbit and (b) the corresponding time trace for 
a vertical articulated system near the point of double degeneracy (Champneys 1993). 

5.9 NONLINEAR PARAMETRIC RESONANCES 
As shown in Section 4.5 both by linear theory and by experiments conducted in the 
1970s, the dynamics of pipes conveying harmonically perturbed flow is quite interesting, 
especially in the case of cantilevered pipes. It was reasonable to expect, therefore, that 
nonlinear study of the same system would soon follow - especially in view of the work in 
Sections 5.5-5.8 conducted in the late 1970s and 1980s, showing that nonlinear dynamics 
analysis can (i) provide results closer to reality, (ii) elucidate the dynamical behaviour 
beyond the onset of instability, (iii) give new insight into the dynamics even before 
the instability threshold, (iv) reveal more interesting fine structure in the dynamics, and 
(v) yield entirely new results (e.g. the amplitude of the motion). The nonlinear studies 
of parametric resonances of pipes conveying fluid, which began appearing in the second 
half of the 1980s, demonstrate to the full one of the tenets justifying the space allocated 
to dynamics of pipes conveying fluid in this two-volume book: that this system serves as 
a crucible for the development, illustration and testing of new dynamical theory. Thus, 
more or less at the same time and by the same authors, in parallel to the work on the 
pipe problem to be discussed in what follows, a number of papers have appeared on 
the general theory of parametrically perturbed generic nonlinear systems subject to Hopf 
bifurcations, e.g. by Bajaj (1986, 1987a) and Namachchivaya & Ariaratnam (1987). 

Most of the work done in this area is analytical, and most of that makes use of the 
modem methods of nonlinear dynamics theory, but some numerical calculations have also 
been done, as well as some new experiments. 

5.9.1 Pipes with supported ends 

Parametric resonances in this inherently conservative system have been studied by 
Yoshizawa et al .  (1986), Namachchivaya (1989) and Namachchivaya & Tien (1989a,b), 
Chang & Chen (1994), and Jayaraman & Narayanan (1996). 
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In all cases but the first, the pipe is considered to have absolutely fixed ends, i.e. no 
axial sliding is permitted, and hence the nonlinear equation of motion used is similar to 
Holmes’ and relatively simple, as discussed in what follows. In the case of Yoshizawa 
et al .  (1986), however, the downstream end of the clamped-pinned pipe considered is free 
to slide axially. The equations of motion, similar to Rousselet & Henmann’s (1981), are 
much more complex: one ‘flow equation’, similar to those discussed in Section 5.2.8(b,c), 
in which the pressure itself is pulsatile, p = pg(1 + p sin wt),+ and an equation for the 
pipe coupled to the first, in which nonlinearities are associated with curvature rather 
than induced-tension effects, similar to equation (5.43) for cantilevered pipes. This work, 
being the first to be published and the simplest in terms of methods used, is discussed 
first. The eigenfunctions +,(c) of the subsystem ij + q”” - y[(l - 6)q” - q’] + uiq” = 0 
are obtained first, and then the system is discretized via a one-mode Galerkin scheme, 
so that ~ ( 6 ,  t) = &(t)q( t ) ,  leading to two fairly simple nonlinear coupled ODES in u(t) 
and q( t ) ,  involving ug, p, PO, j3 and y. Solution of these equations is obtained by the 
method of multiple scales (Nayfeh & Mook 1979), and the deflection of the pipe is 
finally expressed as q(6, t) = pl/’h cos[;(wt + @)]+,(s) + S(p3/’), in which it has been 
assumed that w is close to 2w1, 01 being the first-mode eigenfrequency associated with 
+I({). Hence, the first-mode principal parametric resonance is considered (Section 4 .3 ,  
involving the ‘detuning parameter’ 3, such that w/wl = 2(1 + pL?).$ 

A number of interesting findings are reported, as follows. (i) Considering no pulsation, 
the mean-flow nonlinear first-mode eigenfrequency plotted in a ui versus y plot shows 
both softening and hardening spring characteristics, the former for low ui when inertial 
nonlinearities are predominant, the latter for larger ui when nonlinear centrifugal effects 
are dominant. (ii) The steady-state amplitude, h,, associated with p1I2h in the foregoing, is 
determined and its stability examined, eventually producing the classical plot of h, versus 
0 = p13 shown in Figure 5.59(a). It is clear that as p becomes larger, since p < 1, both h, 
and 0 increase - i.e. the frequency range and amplitude increase with p. (iii) The extent 
of the parametric resonance region is larger in terms of 0 than the linear range, because of 
the subcritical onset of the oscillation with decreasing 6, leading to hysteresis (hardening 
behaviour) as seen in Figure 5.59(a). (iv) The maximum amplitude increases with ug. 

Experiments have also been done by Yoshizawa e ta l .  (1985, 1986) using silicone 
rubber pipes (0, = 5 mm, L = 600 mm) stiffened in one plane by wires, to confine the 
oscillation in the other plane - see also Section 5.5.3. The pulsation was introduced 
by periodic opening and shutting of a pressure-control valve at the exit of a by-pass 
line connected to the constant-head tank feeding water into the pipe. The experimental 
results are in good qualitative agreement with theory. Figure 5.59(b-d) shows the pipe 
in parametric resonance as 0 is increased, i.e. as the pulsation frequency is increased, 
showing that the amplitude increases. For 0 = 0.183 (not shown), the amplitude begins 
to decrease and soon thereafter the oscillation ceases. The oscillation if excited at or 

tThroughout Section 5.9, p denotes the amplitude of harmonic perturbations, usually of the flow velocity. 
as in Section 4.5 - see equation (5.144). It should not be confused with the dimensionless end-mass parameter 
in equation (5.139) used in Section 5.8.3. 

$It is recalled that, in order to achieve a modicum of uniformity in the book, the notation is sometimes 
quite different from that in the original papers - though this may be bewildering to their authors! Especially in 
the case of the detuning parameter, since different definitions are given in virtually every study, the following 
convention has been used: (i) if the detuning parameter is multiplied by a small parameter, it is denoted by 6. 
as in Yoshizawa et al. (1986) where W / W I  = 2(1 + ~ 6 )  and Bajaj (1987b) where w = OAJ - €6; (ii) otherwise. 
it is denoted by 5, as in equation (5.148) where w/wg = 1 - 5, and in Bajaj (1984) where w = wg - 0. 
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Figure 5.59 (a) The frequency-response curve for the principal parametric resonance of a 
clamped-pinned system, in terms of the steady-state amplitude h, and the detuning parameter 
5, for uo = 4.54, B = 0.273, y = 34.4, friction parameter (Y = 4.68: -, stable; ---, unstable. 
Experimental results for the same parameters and (b) 5 = -0.09, qmax = 0.06, (c) 6 = 0, 

qmax = 0.10, (d) 5 = 0.179, qmax = 0.11 (Yoshizawa e ta l .  1986). 

below 6 = 0.17 persists to 0 = 0.18, but with decreasing o cannot be excited except at 
6 = 0.17 or less - thus displaying the hardening behaviour found in theory. 

A more complete and sophisticated analysis of the problem was conducted by 
Namachchivaya (1989) and Namachchivaya & Tien (1989a,b), utilizing the same basic 
tools as in Ariaratnam & Namachchivaya (1986a). Chang & Chen (1994) presented 
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an analysis of more limited scope, essentially redoing some of the same work as by 
Namachchivaya and co-workers, but via more standard and easily accessible terms, in fact 
following Namachchivaya & Ariaratnam (1987). What is presented below is a melange of 
all of this, but differentiating according to authors as appropriate; the results are discussed 
separately. 

In all these studies the nonlinear equation used is similar to Holmes’ (Sections 5.2.9(b) 
and 5.5.2), the only nonlinearity taken into account being due to the deformation-induced 
tension between laterally and axially fixed supports; the rest of the equation, including the 
terms associated with the flow pulsation (Le. the iC terms), is linear and as in Section 4.5 
and Pai‘doussis & Issid (1974). Thus, the nonlinear dimensionless equation of motion is 
given by variants of equation (5.80): 

in which the parameters are defined in (3.71) and (5.81), subject to 

u = UO(1 + p cos or). (5.144) 

Assuming y = a d  = a = 0 and taking u as in (5.144), Namachchivaya (1989) discretizes 
equation (5.143) into one of two degrees of freedom, 

= [p,91/2u~w(C - D) sin w t  - p(2u;C + 2,9’/’uoB) cos wtlq - aAq, (5.145) 

in which @ = $dcijcklqiqjqkqi, the ckl being terms of the type making up C, A is a 
diagonal matrix with elements h;, where h j  are the dimensionless beam eigenvalues - cf. 
equation (4.70); p and a are assumed to be small (<< 1).+ To accentuate its structure, this 
equation may be written in simplified notation as 

4 + Gq + Kq = p(EI cos ot + E2 sin os)q - i- f(q). (5.146) 

This equation is transformed into standard form by an elegant Hamiltonian symplectic 
transformation (Namachchivaya 1989), a more standard technique via the solutions of the 
unperturbed system (Namachchivaya & Tien 1986b), and a standard method by Chang & 
Chen (1 994), all leading to variants of the following equation: 

u = (Bo + aBl)u + ,u(Kl cos (or + sin on)u + f(u), (5.147) 

+The notation here differs from that in many of this group of papers where, to put in evidence the smallness 
of and a, they are scaled by E ,  E << 1; thus, IL = EW* and a = <a*. 
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in which 

The quantities wi, wj, S i ,  i = 1, 2, are related to the eigenvalues of the unperturbed system, 
p1,2 = a6; f i(w1 + awl) and p3.4 = as; z t  i(w2 +am;).  

The next step is to introduce the new time t = wt and the detuning parameter 6 
through w = wo(1 - 6), and to further transform the problem into polar coordinates: 
u1 = a1 sin @,, u2 = a1 cos @ I ,  @I = ( q / W g ) t  + 41; u3 = a2 sin @2, u4 = a2 cos @2, 

@2 = (w2/wo)t + $2, leading to first-order ODES in a l ,  a2, $1 and 42. These are then 
reduced by the method of averaging to a set of simpler equations in the averaged Lii and 
$i (Appendix F) of the type 

d& 1 
- = -[iiias’ + p ( ~ i  sin 24  + vi COS 24);i + f i ? ~ i l ,  
dt wo 

d$i 1 
(5.148) 

& - = + -[ i i iwia + p(ui cos 2 4  - vi sin 24)ii + ii?si], 
dt 0 0  

in which Ui, V,, Ri and Si are simply constants. This equation is very important, since 
it represents a parametrically perturbed one-degree-of-freedom oscillator. Most of the 
nonlinear studies of parametrically excited pipes conveying fluid, whether supported 
at both ends or cantilevered (but near the Hopf bifurcation point), end up with equa- 
tion (5.148) or a variant thereof. Therefore, the methodology followed thereafter in most 
studies is the same: (i) the stability of the origin (trivial solution) is investigated using the 
linearized version of (5.148) around the origin; (ii) nontrivial solutions or fixed points are 
sought, determined via (5.148), and their stability is examined. From a physical point of 
view, a stable (or unstable) nontrivial fixed point in the reduced system (5.148) represents 
a stable (or, respectively, unstable) periodic solution of the original system; the loss of 
stability of a fixed point via a Hopf bifurcation signifies the possibility of quasiperiodic 
motions. The complete study of a periodically perturbed Hopf bifurcation may be found 
in Bajaj (1986) and Namachchivaya & Ariaratnam (1987). 

Namachchivaya (1989) and Namachchivaya & Tien (1989a,b) analyse the averaged 
equations in the case of the principal primary resonance, wo = 2w,, Y = 1,2, and combi- 
nation resonance wo = 01 + w2. 

Typical results are shown in Figure 5.60(a,b) for the principal first-mode resonance of a 
clamped-clamped pipe. As w is increased from the left at a fixed p, the stable trivial equi- 
librium point of the averaged system becomes unstable through one eigenvalue crossing 
the origin in the complex plane at point S if dissipation is not zero, or through a double 
crossing of the origin at SD if dissipation is zero (see Figures 2.10 and 3.4). At this point 
the trivial solution bifurcates into a stable nonzero fixed point, the bifurcation diagram for 
which is traced in Figure 5.60(b); therefore, the solutions of the original system (5.145) 
are periodic, of period 2n/w,. It is recalled that averaging provides a solution valid only 
in the vicinity of w/w, = 2 and, since the whole bifurcation diagram cannot be traced 
with high accuracy, its upper part is not given. On the other hand, if w is reduced from the 
right, the trivial solution loses stability subcritically, the bifurcating solutions in this case 
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Figure 5.60 (a) Stability boundaries and (b) amplitude-frequency relationships for the principal 
(subharmonic) resonance of a clamped-clamped pipe (w 2 2wl), for uo = 4, ,!I = 0.2, a = 5 x lo-': 
wI = 16.98, wol = 22.37, and 6 is a measure of the dimensionless amplitude. (c,d) Similar 
diagrams for the combination resonance w 2 wl + w2, where w2 = 46.77 (Namachchivaya 1989; 

Namachchivaya & Tien 1989a,b). 

being unstable. Thus, by implication, these results suggest the same type of behaviour as 
in Figure 5.59(a), but the top of the diagram is missing. Similar results are obtained for 
the second mode of the system and for pinned-pinned boundary conditions. 

Typical results for the combination resonance are shown in Figure 5.60(c,d). In this 
case, as u is increased at a constant p, the averaged system loses stability by a Hopf bifur- 
cation (at H) or a Hamiltonian Hopf bifurcation (at DH), for dissipation present and absent, 
respectively. Hence, the motion of the original system becomes amplitude-modulated peri- 
odic (quasiperiodic), and the associated bifurcation paths are shown in Figure 5.60(d). On 
the other hand, as w is reduced from the right, the system becomes unstable by a subcrit- 
ical Hopf bifurcation. In the case of subharmonic resonance, the results are supplemented 
by numerical Floquet analysis of the averaged equations, showing excellent agreement. 

In a very interesting and well-presented study of the system, Jayaraman & Narayanan 
(1996) reveal new facets of the nonlinear behaviour of the system and also find chaotic 
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regimes. Equation (5.143) with u = ug( 1 + p sin or) is discretized into one- and two- 
mode Galerkin approximations for a pinned-pinned pipe, the former of which is simply 

;il + (an4 + o)ql + {n4 + n2[r - ui + i y  - 2 4 p  sin w t  

- i , 9 / 2 ~ o p ~  COS wt1}ql + $n4q? + +in4q:ql = 0, (5.149) 

which, because no sliding of the ends is permitted and hence (5.143) used, is much 
simpler than that analysed by Yoshizawa et al. (1986).+ This equation and its two-mode 
counterpart are studied numerically, while (5.149) is also studied analytically by the 
multiple time-scale method, in both cases for the fundamental resonance (w 2 w l )  only. 
The solution of (5.149) is approximated by 

qi(r, p)  = qio(To, T i ,  T2)  + p~~qli(T0, Ti,  T2) + p2q12(To, Ti, T2) +.  . . , (5.150) 

where To = t is the fast time-scale associated with frequencies w and 00, and T I  = 
p r ,  T2 = p2r ,  etc. are slow time-scales associated with modulations in amplitude 
and phase resulting from the nonlinearities and parametric excitation. Assuming q10 = 
A(T1, T2) exp(iwoT0)   TI, T2)  exp(-iwoTo), where is the complex conjugate of A ,  
equations of like powers of p are solved sequentially while eliminating secular terms, so 
that equations similar to (5.148) are obtained. 

Typical numerical results with the one-mode approximation for wo = 8.875 and uo < 
U,-dr i.e. before the loss of stability with steady flow, show the following. (i) For 0 5 
p 5 0.259, the trivial solution converges to zero, while for p > 0.295 it loses stability. 
(ii) For 0.229 < p < 0.610, a nontrivial stable periodic solution exists. This implies that 
for 0.229 < w -= 0.259, two solutions coexist: the trivial one and a finite-amplitude peri- 
odic one, as confirmed by analytical results by the multiple time-scale method for wo = 8.8 
shown in Figure 5.61(a). (iii) For p > 0.61, a period-doubling sequence ensues, a period- 
8 phase-plane diagram being shown in Figure 5.61(c), leading to chaos at p = 0.7123. 
The associated bifurcation diagram is shown in Figure 5.61(b). The extent of the chaotic 
region is very limited, 0.7123 5 p 5 0.7162. For higher k ,  transient chaos is observed 
(Moon 1992): initially, the motion is chaotic with two separate patches in the PoincarC 
map of the motion; but, as time progresses, these two patches grow and eventually come 
into contact, whereupon chaotic motion is destroyed and is succeeded by period-1 motion. 
(iv) As p is decreased from 0.7164, period-1 motion is found to coexist with the period- 
8, period-4, and so on, motions found in the foregoing, down to / L  = 0.66, as seen in 
Figure 5.61(b). It should be remarked that values of p larger than 0.5 ought to be judged 
as being too large, from both the physical and mathematical viewpoints. 

The dynamics obtained with the two-mode approximation is qualitatively similar to 
that just described. Here it ought to be said that the one-mode approximation is rather 
hazardous since, as seen in equation (5.149), no Coriolis terms are present because the 
gyroscopic matrix is skew-symmetric. 

For u g  > u,d = 4.196, the system in steady flow becomes a ‘buckled beam’. It is not 
too surprising, therefore, that its dynamical behaviour with pulsating flow is qualita- 
tively similar to a harmonically excited buckled beam, represented by Duffing’s equation 
(Dowel1 & Pezeshki 1986). For uo = 4.7077 and w = 0, the trivial equilibrium is a saddle, 

+The unusual factor in some of the terms, e.g. y, is due to suppressing the f i  in the beam eigenfunctions 
dr = &! sin(rn<) used in the Galerkin scheme. 
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Figure 5.61 One-degree-of-freedom approximation of the dynamics of a pinned-pinned pipe 
(/3 = 0.78, y = 15.48, a = 0, o = 0.883, SA = 1.81 x IO4, Ug = 3.1385) subjected to pulsating 
flow: (a) the amplitude versus p diagram for wg = 8.8 via the multiple scales method; (b,c) numer- 
ical results for wo = 8.875 showing the bifurcation diagram and period-8 motion in the phase plane 

for ,u = 0.7123 (Jayaraman & Narayanan 1996). 
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while two potential wells now exist, centred at [ltO.Ol, 0)  in the phase plane. With 
p # 0, period-1 motions exist only for 0 < p < 0.0255, as shown in Figure 5.62(a). For 
p > 0.0256, a period-doubling sequence leads to transient chaos (near p = 0.0283); then 
to stable period-2 motion, followed by another period-doubling cascade and chaos for 
p = 0.04, as seen in Figure 5.62(b). The extremely low values of p in this case are noted. 

-0.016 0.016 -0.02 0.02 

(a) 41 (b) 41 

Figure 5.62 Post-divergence phase-plane diagrams for the system of Figure 5.61 for uo = 4.7077; 
(a) global view for p = 0.02, (b) p = 0.04 (Jayaraman & Narayanan 1996). 

Although the results presented in this work are very interesting, it should be remarked 
that, at least for the parameters chosen, the ranges of uo for chaos are extremely narrow, 
in fact so narrow that their experimental realization could well be problematical. 

To conclude, the nonlinear analysis of parametric resonances in pipes with supported 
ends has brought to light a number of interesting features, e.g. the possible ‘subcritical’ 
onset of resonance and the subcritical (hardening) behaviour for its cessation as p is 
increased. Furthermore, the amplitude of oscillations can be computed, at least close to 
the resonance boundaries. Finally, chaotic oscillations have been found to exist in narrow 
uo -ranges. 

5.9.2 Cantilevered pipes 

Two main studies have been conducted in this case: a complete bifurcation analysis of 
the principal primary resonance in the vicinity of the flutter boundary by Bajaj (1987b) 
and a combined analytical, numerical and experimental study by Semler & PaIdoussis 
(1996), both for planar motions. The problem in this case is more complex than that of 
pipes with supported ends, since several modes are required for accuracy in the Galerkin 
expansion (a one-mode approximation being totally meaningless), and nonlinear inertial 
terms create additional difficulties in numerical solutions. 

The Bajaj (1987b) analysis is at once very powerful, nonstandard and difficult to 
condense; hence, only an outline of the methods used will be given here. The Lund- 
gren et al. (1979) form of the equation of motion is used for motions in a horizontal 
plane; therefore, apart from harmonic perturbations associated with flow pulsations, the 
mean flow velocity is steady. Proceeding as in Bajaj et al. (1980), the system is re-written 
in the vector form 

au 
a t  - = Lu + e p [ L ~  cos 2wt + L2 sin 2wtJu + EN(u, UO) + S(c2) ,  (5.151) 
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in which u = ((4 + 2~j? ' /~q ' ) ,  v)*, L, L1 and L2 are linear differential operators involving 
UO, /3 and w, and N contains all nonlinear terms; u = uo + E,U cos 2wt, reflecting that the 
main interest is in the principal resonance, and it is clear that, in contrast with the 
foregoing, ,U here need not be small - cf. equation (5.144). It has already been shown in 
Section 4.5.1 that, for the cantilevered system, resonances arise only when uo is reasonably 
close to uCf, where the system loses stability by flutter in steady flow. Hence, solutions 
are sought close to this flutter boundary, namely for uo = ucf + q, w = 00 - €8, where 
q denotes the mean-flow velocity variations, and 8 is a detuning parameter. Then, defining 
ut = t, equation (5.151) is re-written as 

au €8 aL0 
at w0 au0 

00 - = Lou + - Lou + rq - + ~ ~ ( L I o  cos 2t + L ~ o  sin 2t) u + rN(u, ucf) + S(r2) ,  

(5.152) 

in which L = LO + q(aLo/auo) + S(r2) ,  LI = LIO + O ( E ) ,  LZ = L20 + S ( r ) ,  N(u, UO) = 
N(u, u,f) + O(E) .  For E = 0, equation (5.152) reduces to q (au /a t )  = LOU. The operator 
LO (at u = u,f) has two pure imaginary eigenvalues, while the others are in the left-hand 
plane. Hence, the steady-state solutions corresponding to these two eigenvalues may be 
written as uo = A{w(') exp[i(t + 4)] + W(l)  exp[-i(t +@)I}, where A and 4 correspond 
to amplitude and phase, relative to the parametric excitation of the periodic solutions w(') 
and W(') associated with the two critical eigenmodes. For E # 0, the solution is expanded 
in powers of E as 

u = UO(A 4, t) + GUi(A, 4, t ,  + ~ ~ ~ 2 6 4 , 4 ,  t ,  q )  + 6(c2), (5.153) 

where A and 4 satisfy 

(5.154) 

Then, substituting (5.153) into (5.152) and collecting coefficients of equal power of 6,  

a set of new equations with terms which are functions of t and the spatial variable 6 is 
obtained. They are expanded by Fourier series in time and pertinent comparison functions 
in 6. These equations are then averaged, leading to equations of similar form to (5.148). 

The results are discussed in terms of modijied flow-variation, detuning and harmonic 
flow-perturbation parameters: 7 j ,  Z and ii. Eventually, the master bifurcation diagram of 
Figure 5.63(a) is obtained showing, in the (5, r}-plane, curves across which the trivial 
equilibrium of the averaged system undergoes a pitchfork or Hopf bifurcation, or the 
nontrivial fixed points undergo a saddle-node or Hopf bifurcation. 

The dynamics is illustrated in three cases by the amplitude(A)-flow(?j) bifurcation 
diagrams in Figure 5.63(b-d), each for a constant value of p. In (b), as the mean flow, i.e. 
q,  is increased, at some flow less than ucf (7j < 0) the trivial position of the pipe becomes 
unstable and the pipe performs periodic oscillation at half the excitation frequency. As 7 is 
increased, the amplitude of the oscillation increases, reaches a maximum and then begins 
to decrease. For 7 j  = 17; the periodic solution becomes unstable, and for 17 > 7j: there is 
no stable limit cycle; it is shown that the motion thereafter is amplitude-modulated. The 
Hopf solution of the unperturbed system is also shown, starting at 17 = 0, but in this case, 
since the trivial solution has already become unstable prior to 17 = 0, this is not a realizable 
solution. In (c), there is a small region on the left of the figure where both the trivial 

- 
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Figure 5.63 (a) Local bifurcation curves in the (11, a) plane for a parametrically excited cantileve- 
red pipe. The averaged system undergoes: a pitchfork bifurcation of the trivial solution across B,I, 
Bs2; a saddle-node bifurcation of the nontrivial solution across Bs3,, Bs32; a Hopf bifurcation of the 
trivial solution across Bhl, Bh2, and of the nontrivial one across Bh3; si ,  so and Sa denote ‘sink’, 
‘source’, and ‘saddle’, respectively. (b-d) three possible amplitude-flow diagrams for = 0.65 

(Bajaj 1987b). 

and the periodic solutions coexist and are stable, thus implying a subcritical onset of the 
principal parametric (subharmonic) resonance similar to that found for pipes with supported 
ends; the dynamics thereafter is similar to that in (b), except that the hysteresis zone is 
larger. Finally, in (d) we see that for 7 < 0 the origin is stable, and at ?j = 0 it becomes 
unstable by a Hopf bifurcation of the averaged system; hence, for 11 > 0, we expect the 
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pipe to perform an almost-periodic or amplitude-modulated motion with small amplitude. 
For f i 1  < 7 < f i2 ,  however, these motions coexist with larger-amplitude periodic motions 
associated with subharmonic resonance which appear as an isolated solution branch. Which 
one materializes, in that range, depends on the initial conditions. 

Points A-F in Figure 5.63(a) are special in that they are intersections of two bifurcation 
curves. Bajaj undertakes the unfolding of these bifurcations by local analysis. An example 
is shown in Figure 5.64 for point F. Across Bh2 a supercritical Hopf bifurcation takes place 
in the averaged system, leading to the limit cycle in region IIa; the physical system then 
performs a subharmonic amplitude-modulated motion. However, beyond this limit cycle, 
other fixed points may exist, and hence periodic solutions of the physical system, as 
shown in the lower part of this figure. 

Figure 5.64 The qualitative types of phase portraits of the averaged system around point F of 
Figure 5.63 (Bajaj 1987b). 

To summarize, it is shown that, when the mean flow is below u,f, the pipe can only have 
periodic solutions which are at half the excitation frequency. Even when the straight position 
is stable, there are flow fluctuations for which nonzero stable solutions also exist. Thus, a 
large enough disturbance can force the pipe to perform large steady-state periodic motions. 

For mean flow above the critical value, the zero solution is always unstable and the 
pipe can perform small modulated motions, large periodic motions or large-amplitude 
modulated motions, depending on the values of flow rate and excitation frequency. Some 
of these motions coexist for the same values of parameters and then the initial conditions 
and disturbances determine the motions performed. 

A similar study of the articulated system was conducted earlier by Bajaj (1984). Planar 
motions of a two-segment cantilevered pipe are considered, and hence the 2-D versions of 
equations (5.74) and (5.76) are used. The periodic solutions for the principal parametric 
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resonance, in the vicinity of the Hopf bifurcation in steady flow (at u,f) ,  are determined 
by the method of alternate problems (Appendix F.6.3) and their stability assessed from the 
Floquet exponents of the associated variational equations. The results, in this case also, 
are discussed in terms of (i) the mean-flow velocity perturbation Q = u0 - u,f, (ii) the 
detuning parameter 3, and (iii) the harmonic flow-perturbation amplitude p, where u = 

The results are presented in diagrams of (i) p versus 5 for a given q,  (ii) amplitude A 
versus q,  and (iii) A versus 6,  for a = K = 1, y = 0.25, and f i  = f and x lop2, some 
of which are given here in Figure 5.65. 

In the A versus q diagrams of Figure 5.65(a-c) the Hopf bifurcation in steady flow 
(for B = :) is supercritical. For a large negative 3, e.g. 6 = -0.31 as in (a), there is 

u0 + cos 2wt. 

5 

- 0 . 2 - 0 . 1  0 0.1 - 0 . 3 - 0 . 2 - 0 . 1  0 0.1 0.2 0 0.1 0.2 0.3 
(a) D 17 17 
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4 . 0  -2.0 0 2.0 -4.0 -2.0 0 2.0 4 . 0  -2.0 0 2.0 

(g) 17 (h) 17 6) 17 

Figure 5.65 Response diagrams for the parametrically excited articulated system. Top: A versus 
q diagrams for p = and (a) 0 = -0.31, (b) 0 = -0.1, (c) 0 = 0.4. Middle: A versus 5 diagrams 
for /I = 2 and (d) r] = -0.075, (e) q = 0.188, (f) r] = 0.30. Bottom: A versus r]  diagrams for 

p = 5 x lop2 and (g) 0 = -0.3, (h) 0 = 0, (i) 0 = 1.7 (Bajaj 1984). 
3 

3 
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only one nontrivial solution and it is stable. Beyond q = 0, the trivial solution is unstable 
and there are no nontrivial periodic solutions. On physical grounds, however, the response 
should remain bounded; although the methods used preclude finding the solutions existing 
in this area, by analogy to the results obtained for the continuous cantilevered system, 
they are expected to be amplitude-modulated motions. As q is increased to 6 = -0.1 
in (b), a portion of the nontrivial response for q > 0 becomes unstable, similarly to the 
behaviour displayed in Figure 5.63(b). For 6 = 0.4, we see in (c) that the nontrivial 
periodic solutions ‘pinch-off‘ the trivial one, giving rise to an isolated solution. 

Similar results are shown in Figure 5.65(d-f) in the A versus 6 plane. For q = -0.075 
we see in (d) the usual jump phenomenon and the associated hysteresis for high enough 
6. In (e) and (0 we see that the trivial solution is unstable and there are segments of (7 

over which the nontrivial solution also is unstable. In (f) we again see an isolated solution. 
x where the Hopf bifurcation is subcrit- 

ical. In (g) and (h) it is seen that for large enough negative detuning one or two nontrivial 
solutions generally exist, depending on 6 and q ;  the lower branch is unstable, while 
for high enough q a portion of the upper branch becomes unstable also. In (i) the solu- 
tion is isolated, and both branches are unstable. The remarks already made regarding 
amplitude-modulated motions apply here too. 

It is therefore seen that the dynamics of the system, articulated or continuous, for para- 
meters such that self- and parametrically excited oscillations are close, is very interesting. 
In most cases the Hopf bifurcation is suppressed and the dynamics is dominated by the 
parametric resonance. Jump phenomena, subcritical onset of resonance, isolated resonance 
branches, and amplitude-modulated motions are all possible for given combinations of b, 
q,  6 and p. 

Semler & Paidoussis’ (1996) contribution is an extension of Bajaj’s (1987b) analytical 
work, but numerical solutions of the full nonlinear equations are also presented, as well 
as some experiments. Equation (5.39) is utilized, thus retaining the inertial nonlinearities 
intact, and is discretized by Galerkin’s method into 

Figure 5.65(g-i) shows plots for B = 

where u = uo(1 + p sin ut) and 

c;j = a ~ g ~ ; j  + 2 ~ ” ~ u 0 ( 1  + p sin w t ) b j j ,  
(5.156) 

~ i ;  = A:S;~ + ui (1  + p sin ut) 2 c;; + B 112 puOw cos u t ( d i j  - c i j )  + y(bij - c l j  + d i j ) ,  

the A; being the dimensionless cantilevered beam eigenvalues and bi j ,  cij  and d; j  are 
as given in Table 3.1, while aijkl, B ; j k l  and yijkl are similar to the aijkl-dijkl given in 
Section 5.7.3(a), but different since the inertial nonlinearities here are intact. 

For thc analytical solution of the problem, we confine ourselves to the vicinity of the 
Hopf bifurcation in steady flow, i.e. to u 2: u,f, as in Bajaj (1987b), but proceed in a 
more standard manner, as follows. The system is transformed to first order, such that 
y = (q, q}T, and then into standard form via y = PX, where P is a modified modal matrix 
evaluated at uCf,  thus yielding an equation of the form 

X = Ax + p ( w  cos cot B1 + sin ut B2)x + p2 sin2 w t  B ~ x  + F ( x ,  x), (5.157) 
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where A is a matrix, with J and M nonzero submatrices on its diagonal and zero elsewhere; 
J corresponds to the purely imaginary pair of eigenvalues, and M to the 2N - 2 eigen- 
values with negative real parts, so having sub-elements R,, given as follows: 

(5.158) 

The system is then projected onto a centre manifold, where special care must be exer- 
cised because the system is nonautonomous. To transform the system to an equivalent 
autonomous one, p sin w t  and @ cos WT are replaced by two new variables, 

(5.159) 

and I*. is included in the system of equations as a trivial dependent variable, 
J in (5.158) is replaced by 

= 0. Thus, 

0 0 0 0  0 
0 p2 --o 0 0 

0 0  o w 0  

".Is P2 0 0 0 + j j  (5.160) 

the associated vector being y = {p ,  v l ,  712, XI, ~ 2 ) ~ .  The system is then transformed 
by defining x' = E X ,  p' = ep ,  uo - ucf = eq, and the method of normal forms 
(Appendix F.3) is applied: (a) to find all possible parametric resonances to O ( E )  and 
O(e2), and (b) to determine the simplest set of equations defining these resonances. Three 
separate sets of normal forms are determined: (i) for w away from both 2w0 and WO, 

(ii) for w near 00, and (iii) for w near 2 ~ 0 .  In case (ii) one obtains the fundamental 
secondary resonance, where the harmonic perturbation in u appears only at the second 
order, p2; in the last case, the principal resonance is obtained, where these terms appear 
to first order, p. The results for the principal resonance are identical to those obtained by 
Bajaj (1986b). 

Before presenting any results, the second major component of this study is briefly 
discussed, namely the solution of the full equations by numerical techniques. In this case 
no restrictions apply as to u0 being close to u c f .  Three such methods are used - see 
Section 5.4. (a) The nonlinear inertial terms are transformed into equivalent stiffness 
and velocity-dependent terms [Section 5.2.7(b)], and the resulting equation can then 
be integrated by a Runge-Kutta method; AUTO may also be used in this scheme, 
once the equations are transformed into those of an equivalent autonomous system, 
as in equation (5.160). Solutions are also obtained by (b) the Jinite difference method 
(FDM) based on Houbolt's fourth-order scheme and (c) the incremental harmonic balance 
(IHB) method, in both cases with nonlinear inertial terms intact; a complete expos6 of 
the application of the IHB method to the problem at hand may be found in Semler 
et a l .  (1996). 

Typical results for the principal resonance are shown in Figures 5.66 and 5.67. Several 
observations may be made, as follows: (i) it is seen that there is good agreement between 
the normal-form and numerical solutions for the resonance boundary in Figure 5.66, but 
less so for the amplitude in Figure 5.67(b), especially away from the resonance boundaries; 
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Figure 5.66 Boundaries of the principal parametric resonance of a cantilevered pipe for uo = 6, 
= 0.2, y = 10 and a = 0; -, IHB and AUTO; . . ., normal form theory; ucf = 6.34 (Semler 

& Paldoussis 1996). 

(ii) when the nonlinear inertial terms are either transformed or eliminated, the amplitudes 
are underestimated; furthermore, in the former case, a spurious bulge on the right-hand 
side of the diagram in Figure 5.67(a) is generated; (iii) the agreement between FDM and 
the IHB results in Figure 5.67(b) is excellent throughout, although it is noted that FDM 
can give stable solutions only. 

The primary [principal (w/% 21 2) and w/w2 2 t ]  and secondary (fundamental, 
13/04 2 1) parametric resonance regions for another system - corresponding to that 
in Figure 4.33(a) - are shown in Figure 5.68(a), calculated by the same numerical 
methods as in the foregoing. Agreement with the results obtained by Bolotin's method 
in Figure 4.33(a) is generally good, although the lower secondary region in that case 
(w/w:! 2 i) could not be reproduced unless a = 0 is taken, for unknown reasons. 
Figure 5.68(b) shows clearly that the largest amplitudes are associated with the principal 
resonance, as observed in the experiments (Section 4.5.3), followed by those of the 
fundamental resonance. 

Some results for u > u,.. are given in Figure 5.69 for the same parameters as in 
Figure 4.29(b). Linear and nonlinear analyses agree for the principal and fundamental 
resonance boundaries, but of course the nonlinear analysis also gives amplitudes. Of 
more interest is to compare the regions of combination resonance (quasiperiodic motions), 
which in the linear results of Figure 4.29(b) almost entirely fill the plane. For = 0.3, 
there are two ranges where the system should execute quasiperiodic motions according 
to linear theory: for w < 6 and for w > 38; there are also two ranges of w (6 < w < 14.5 
and 18 -= w -= 24.5) where the system should be stable. These latter are also seen in 
Figure 5.69. However, the quasiperiodic solutions for w < 6 are found to be only tran- 
sient; so are those for w > 38 if the simulation is allowed to run !ong enough, although in 
Figure 5.69 the response is still quasiperiodic. One reason for this might be that ug = 6.50 
is too close to the critical, ucf = 6.34. A simulation run for uo = 6.80 shows stable 
quasiperiodic oscillations for w = 2 and w = 40, so that this at least agrees with the 
previous linear results. Normal-form theory has been applied in this case also and good 
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Figure 5.67 (a) Amplitude of periodic solutions for ,u = 0.1,0.2 and 0.3 (corresponding to points 
1, 2 and 3 in Figure 5.66): -, by IHB method with nonlinear inertial terms intact; --.--, by 
AUTO with these terms transformed; . . ., by AUTO with these terms wholly eliminated; in all 
cases dashed lines (---) correspond to unstable solutions: (b) Results for ,u = 0.3: -, by IHB 
method with nonlinear inertial terms intact; by normal form method with nonlinear terms 
intact; . . ., by AUTO and IHB with these terms eliminated; -.-, by normal form method, with all 

such terms eliminated; 0, solutions by FDM (Semler & Pdidoussis 1996). 

agreement with the numerical results obtained, for both the parametric resonances and 
the quasiperiodic regions ('combination resonances'). 

Experiments were conducted with elastomer pipes similar to those used in 
Section 5.8.3(a), but without the added end-mass, and a modified form of the apparatus 
shown in Figure 5.43(b) to allow the addition of a pulsating component to the mean 
flow; this was provided by the plunger pump shown in Figure 4.30, via a T-junction 
in the piping. Similar results to those in Section 4.5.3 were obtained, but the main 
observations are reiterated here with a different emphasis, as follows. (a) The main, most 
easily excited and pin-pointed resonance region was the principal one associated with the 
second mode. (b) In contrast, the fundamental resonance, although observed, was difficult 
to pin-point because of the small but omnipresent forcing component in the response at 
the pulsation frequency. (c) Quasiperiodic motions were mainly observed for u > u,f, 
with two frequencies in the power spectrum of the response. (d) For sufficiently large 
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Figure 5.68 (a) Linear stability boundaries for a cantilevered system with uo = 7.68, B = 0.307, 
y = 16.1 and CY = 3.65 x (b) Amplitude versus w diagram for p = 0.37: -, primary reso- 
nances (w/% 2 2 and $) associated with the second mode; . . ., secondary fundamental resonance 

for the second mode (Semler & Paidoussis 1996). 
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Figure 5.69 Bifurcation diagram for the principal and fundamental resonances for the system of 
Figure 5.66 but with uo = 6.5, obtained with the FDM (Semler & Pdidoussis 1996). 
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p ( p  > 0.6) the pipe oscillates about a quasi-stationary deflected shape. (e) Again for 
p > 0.6, the oscillation ceases being planar and becomes chaotic. 

Quantitative comparisons with theory are undertaken for the principal resonance bound- 
aries for a system at u = 0.9Oucf and 0.95~~- (Semler & Pdidoussis 1996; Figure 12). 
The experimental boundaries are larger than the theoretical ones, similarly to the results 
in Figure 4.32, and agreement with theory is similar. In the theoretical results no 'subcrit- 
ical onset' of the resonance (a behaviour shown in Figure 5.63(c), for instance, but with 
varying q )  has been found; hence, the early appearance of resonance with increasing w 
remains unexplainable. 

Some experiments were done with varying uo around ucf (i.e. varying q) and p, while 
keeping the forcing frequency constant, such that 6 = w/og - 1 = -0.14. The results are 
shown in Figure 5.70, showing the system to be stable for ug < u,f, unless p is large 
enough to give rise to parametric resonance. If u > u,~(Q > 0), however, the system 
executes quasiperiodic motions for low p, and periodic parametric oscillations for higher 
p. Agreement between theory and experiment is reasonably good. 

Figure 5.70 Comparison between theory and experiment for the principal parametric resonance of 
the cantilevered pipe system in the (q ,  p)  parameter space for 6 = -0.14, B = 0.131 and y = 26. 
Experimental data points: A, the system is stable; 0, the response is periodic; +, the response is 
quasiperiodic. -, Theoretical boundaries, via normal form theory and N = 3, separating these 

three dynamical states (Semler & Pai'doussis 1996). 

5.1 0 OSCILLATION-INDUCED FLOW 

Jensen (1 997) discovered yet another new phenomenon, namely that lateral oscillations 
of the fixed end of a pipe filled with quiescent fluid may induce a mean flow in the pipe. 
This effectively represents the inverse problem to all of the foregoing: not flow-induced 
ocillations, but oscillation-induced $ow! 

The equations of motion used are: (i) an equation very similar to (5.39), but with a 
term pwz cos WT added on the right-hand side (in which p = w f ( L ) / L  and wr(L) is the 
amplitude of motion of the fixed end), as well as q - p cos WT replacing Q, and y = 0; 
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(ii) a ‘flow equation’, similar to those given in Section 5.2.8(b,c), namely 

413 

d t  

(5.161) 

where j = 1 for laminar and j = 2 for turbulent flow. The left-hand side of this equation 
contains the inertial and frictional terms, while the right-hand side gives the vibratory 
forcing due to lateral pipe motion; however, unlike in Bajaj et al.  (1980) and Rousselet 
& Henmann (1981), there is no upstream pressurization, so that fluid motion can be 
induced only because of the mechanical vibration of the pipe. 

The system is discretized and then integrated numerically. Appropriate analytical solu- 
tions are obtained by the multiple-scales method for near-resonance conditions, i.e. when 
the forcing frequency is close to one of the natural frequencies of the system. 

It is found that, by means of nonlinear interaction, energy is transferred from the 
vibration exciter to the fluid, resulting in nonzero mean flow velocity from the fixed 
towards the free end, as well as a small oscillatory component. Typical results are shown 
in Figure 5.71 for resonant excitation in the first and second modes of two different 
pipes, showing that a substantial flow may be generated. These results are compared with 
experiment in the figure, and agreement is exceptionally good. 

Fluid flow damps the oscillation of the pipe. This effect is largest for the fundamental 
mode, due to larger energy transfer to the fluid. Thus, the efficiency, measured as the 
ratio of the kinetic energy imparted to the fluid compared to the energy supplied by the 
shaker, decreases as the mode number increases. 

Obvious uses of this discovery are for fluid transport or pumping, as well as transport of 
granular materials - especially in cases where the fact that there are no internal moving 
parts is important, e.g. in medicine or for corrosive or highly toxic substances. 

5.1 1 CONCLUDING REMARKS 

Further work on various aspects of the nonlinear dynamics of the system has been and 
continues to be done, an attribute of this being a model system, of interest not only for 
its own sake but also for developing theory or exemplifying dynamical behaviour in the 
broad classes of nonconservative gyroscopic systems and fluidelastic systems. 

Thus, in addition to linear studies on control of oscillations in pipes cited in Section 4.8, 
Yau et a1 . (1 995) devise a successful and sophisticated control system for suppressing 
chaotic oscillation of the constrained system of Figure 5.30, by means of so-called quan- 
titative feedback theory (QFT). 

Yoshizawa et al.  (1997) study theoretically and experimentally the effect of lateral 
harmonic excitation of a cantilevered pipe with an end-mass performing circular motion. 
The state-of-the-art experimental set-up involves a laser displacement meter coupled to 
an FFT analyser, two CCD video cameras and an on-line computer. Both theory and 
experiments demonstrate a form of quenching. This phenomenon occurs when a self- 
excited system performing limit-cycle oscillations is simultaneously subjected to forced 
excitation; for sufficiently high amplitude of forcing, the character of the damping changes 
completely (from ‘normally’ negative to positive) and the self-excited (free) oscillation is 
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Figure 5.71 Experimental and theoretical results for oscillation-induced volumetric flow-rate, V ,  
versus the dimensionless vibration amplitude of the fixed end for two different pipes: -, perturba- 
tion solution: 0, experimental data; (a) first-mode resonance, w = wl ,  ,9 = 0.39, al = 0.1, a2 = 2.6, 
modal viscous damping ratio {I = 0.04; (b) w = ~ 2 ,  B = 0.39, a1 = 0.22, a2 = 3.9, {z = 0.03 

(Jensen 1997). 

damped out, while only the forced oscillation remains (Nayfeh & Mook 1979). In this case, 
with increasing near-resonant forcing, the circular oscillation becomes elliptical and then 
finally planar, in the direction of forcing. For off-resonant forcing, however, whereas the 
oscillation in that direction displays only the forced vibration, both forced and self-excited 
frequencies exist in the other direction, and the self-excited oscillation is not quenched. 

The work and the list of contributions go on, but we must stop somewhere; in fact, 
here! This is the last of the dynamics of straight pipes conveying fluid in this book, which 
lays the groundwork for the dynamics of shells and slender bodies in axial flow, which 
are the subjects of Volume 2. 



6 
Curved Pipes Conveying Fluid 

6.1 INTRODUCTION 

As may be appreciated from the contents of Chapters 3-5, a great deal of work has been 
done on the dynamics of straight pipes conveying fluid over the past 45 years or so. 
Relatively less effort has been directed towards the investigation of the dynamics and 
stability of fluid-conveying curved pipes. In general, piping may be curved and twisted 
into complex spatial forms. In this book, however, reflecting the state of the art, mostly 
curved pipes which initially lie within a given plane are considered. In this case, one 
may distinguish motions in the plane of curvature and perpendicular to it, which will be 
referred to as in-plane and out-of-plane motions for short; as will be seen, depending 
on the assumptions made, these two sets of motions are sometimes uncoupled from 
each other. 

Among the first to study the hydroelastic vibration of curved pipes was Svetlitskii 
(1966). He investigated the out-of-plane motion of a fluid-conveying perfectly flexible 
hose, treating it as a string, and therefore neglecting the bending rigidity. The ends of 
the hose were fixed and its initial shape was a catenary. Unny et a l .  (1970) considered the 
in-plane divergence of initially circular tubular beams with fixed ends. The equations of 
motion were derived using Hamilton’s principle, and critical flow velocities for instability 
were obtained for pinned and clamped ends; the equations of motion, however, were 
subsequently shown to be incorrect (Chen 1972b). 

The dynamics and stability of curved pipes in the form of circular arcs were 
studied extensively by Chen (1972b,c, 1973). He derived the equations governing in- 
plane motions using both the Newtonian (Chen 1972b) and Hamiltonian (Chen 1972c) 
formulations, and equations governing out-of-plane motions from the Hamiltonian 
viewpoint (Chen 1972c, 1973). In all cases, it was assumed that the centreline of the pipe 
is inextensible. It was found that in the case of clamped-clamped and pinned-pinned 
boundary conditions, the pipe loses stability by divergence when the flow velocity or the 
fluid pressure exceeds a certain critical value. This behaviour is qualitatively similar to 
that of a straight pipe. Chen also studied the stability of cantilevered curved pipes. He 
found that for in-plane motions such pipes are generally subject to both divergence and 
flutter instabilities, with divergence occurring first, except in cases where the subtended 
angle is very small (so that the system comes closer to a straight pipe), when only flutter 
was found to arise (Chen 1972~).  In the case of out-of-plane motions, only flutter was 
predicted, with stability characteristics similar to those of a straight pipe (Chen 1973). 

Hill & Davis (1974) studied the dynamics and stability of clamped-clamped pipes 
conveying fluid, shaped as circular arcs, as well as S-shaped, L-shaped and spiral 
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configurations, Their equations of motion have a significant difference from those of 
most of the previous studies: they include the effect of the initial forces arising from the 
centrifugal effect and the pressure of the fluid. They obtained the unexpected result that, if 
the initial forces are taken into account, then pipes with both ends supported do not lose 
stability, no matter how high the flow velocity may be! Similar observations had been 
made by Svetlitsky (Svetlitskii) in an earlier paper published in Russian (Svetlitskii 1969) 
and subsequently in English (Svetlitsky 1977); see also Svetlitskii (1982). Svetlitsky 
considered cantilevered pipes as well and noted that this system loses stability by flutter 
at sufficiently high flow velocities, even when initial forces are taken into account. 

Doll & Mote (1974, 1976) studied a more general case, where the fluid-conveying 
pipe is both curved and twisted. The equations of motion were derived via Hamilton’s 
principle and solutions were obtained using the finite element method. They considered 
two cases: (i) the ‘constant curvature’ case, in which the curvature does not change 
with flow velocity, and (ii) the ‘variable curvature’ case in which variations in curvature 
with changes in flow velocity are accounted for. The first case corresponds to the analyses 
of Unny et a l .  and Chen, while the second is similar to Hill & Davis. Both Doll & Mote 
and Hill & Davis take into account the extensibility of the centreline of the curved 
pipe. An important difference between the two studies is that in the latter the equilibrium 
configuration and forces are calculated via a linearized set of equations, on the assumption 
that the initial and the flow-deformed equilibrium configurations are close; in the Doll 
& Mote study, on the other hand, a cumulative application of linearization is utilized 
for small flow velocity increments, which is more general. The main conclusions of 
both studies, however, are the same: the eigenfrequencies of pipes supported at both 
ends are not sensitive to flow velocity, and hence no instabilities should arise. Doll 
& Mote also compared their curved-pipe theory to Liu & Mote’s (1974) experimental 
data for nominally straight but actually slightly curved pipes, supported at both ends 
(see Section 3.4.4). This comparison is discussed in Sections 6.4.5 and 6.6.2. 

More recently, Dupuis & Rousselet (1985) have carried out a study on the dynamics 
of fluid-conveying planar curved pipes modelled as Timoshenko beams. The extension of 
the centreline was taken into account. This study used the transfer matrix method (Pestel 
& Leche 1963), in preference to either analytical or finite element methods. Once 
more, flutter instabilities are predicted for cantilevered curved pipes, but results for pipes 
supported at both ends are not presented. 

Misra et al .  (1988a,b,c) re-examined the dynamics and stability of fluid-conveying 
curved pipes ab initio. The main objective was to shed light onto the underlying reasons 
for the fundamentally different dynamical behaviour for pipes with supported ends as 
predicted by the extensible theories of Hill & Davis, Doll & Mote and Svetlitsky, on the 
one hand, and the inextensible theories of Chen and Unny et a1 ., on the other: the former 
predicting no loss of stability, while the latter predict divergence at high enough flow. 
For this purpose, three theories were formulated and their results were compared: 

(i) the conventional inextensible theory, in which the centreline of the pipe is 
assumed to be unstretched, and the steady (initial) flow-induced forces introduced 
by the pressure and centrifugal forces are entirely neglected; 

(ii) the extensible theory, in which the shape of the pipe changes with flow velocity 
under the action of the steady flow-induced forces; 

(iii) the mod$ed inextensible theory, in which the assumption of inextensibility of the 
centreline is retained, but the steady flow-related forces are taken into account. 
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In (ii) and (iii), the steady forces depend on fluid friction. Accordingly, variants of the 
theory considering the fluid to be inviscid or viscous are formulated. 

Of course, theories (i) and (ii) are variants of then already available theories. The 
strength of the Misra et a l .  work lies in deriving both inextensible and extensible theories 
from the same basic trunk, and thus having control over the assumptions and parameter 
differences between them; and hence being able to make meaningful comparisons between 
their predictions. It should also be mentioned that little cross-comparison between the 
various theories was done theretofore, and even less systematic analysis of the reasons 
for the differences between their predictions. 

Therefore, since theoretical models (i) and (ii) substantially incorporate the salient 
features of all the aforementioned inextensible and extensible theories, and since, as will 
be shown, model (iii) succeeds in isolating the important physical differences between 
them, this work (Misra et al .  1988a,b,c) provides the backbone of the material to be 
presented in this chapter. 

Other work on this topic was undertaken by Fan & Chen (1987), who studied three- 
dimensionally curved helical pipes (the only such study), and Aithal & Gipson (1990), 
who studied the effect of dissipative forces on stability, both making the inextensibility 
assumption. KO & Bert (1984, 1986) undertook a nonlinear study of the system, and 
Steindl & Troger (1994) looked into the possibility of chaotic motions of cantilevered 
curved pipes. More will be said about these studies in the following sections. 

Finally, a thorough study of the equations of motion was undertaken by Dupuis 
& Rousselet (1992), who concluded that ‘the stressed-by-flow configuration . . . is the 
only equilibrium state adequate for the study of the linear stability of such pipe-fluid 
systems’ - as Misra et al.  had concluded and as we, in due course, shall do here. 

6.2 FORMULATION OF THE PROBLEM 

6.2.1 Kinematics of the system 

The system under consideration is shown in Figure 6.1. It consists of a curved pipe of 
length L,  with a uniform cross-sectional area Ap, mass per unit length m, flexural rigidity 
EZ and shear modulus G.  The pipe is initially in a plane, having an arbitrary centreline 
shape, i.e. the radius of curvature is not necessarily constant along its length. It conveys 
a stream of fluid, of mass M per unit length. The flow is assumed to be a plug flow 
with constant velocity, U .  Furthermore, the pipe is assumed to be fully submerged in a 
quiescent fluid. 

The kinematics of the pipe is developed by the same approach as that used by Love 
(1927) for a curved rod. This implies an assumption that the pipe diameter is small 
compared to both the radius of curvature of the centreline and the overall length of 
the pipe. 

To describe the kinematics of the system, it is convenient to use two reference frames 
(Figure 6.1) - cf. Section 3.3.1. The Lagrangian reference frame (XO, yo, ZO)  with its 
origin PO is located on the initial, undeformed centreline in such a way that the ZO- 

axis is tangential to the undeformed centreline, while the axes xo and yo are directed 
along the principal normal and binormal directions.+ At any instant t during the motion 

+Unusually, vis-&vis most of the foregoing, the long axis along which the fluid flows is here the zo-axis. 
This being an intricate analysis, conversion was not attempted, as it might have introduced unwanted errors. 
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The initial (unstrained) centreline 

centreline 

Figure 6.1 Kinematics of the curved pipe system; definition of coordinate systems and of coor- 
dinates used. 

of the pipe, a particle on the pipe that was initially at PO, occupies a new position P. 
The second, moving reference frame (x, y,  z )  has its origin at P and is attached to the 
deformed centreline in a manner analogous to the (XO, yo, zo) system. The orientation of 
the (x, y ,  z )  system is completely determined by the three Eulerian angles $, 8 and $. 
The orientation of the (x, y ,  z )  system is completely defined by the sequence of small 
Eulerian rotations: $ about the zo-axis, 8 about the new x-axis, and finally $ about the 
new z-axis. The components of P g ,  referred to the (XO, yo, zo )  system, are denoted by 
u, w and w. Thus u and w are the transverse displacements, while w is the longitudinal 
displacement. Furthermore, during the motion of the pipe, a plane section at PO rotates 
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around the centreline; the angle of rotation is denoted here by @ and, since 8 is here 
assumed to be small (small deformation assumption), $ = + 7. Hence, the deformed 
state of the pipe is determined by the generalized coordinates u, v, w and $. 

The relative orientation of the two systems (x, y, z )  and (xo, yo, 20) is given by the 
following transformation (see Appendix J. 1): 

where s is the curvilinear coordinate along the deformed centreline. 

zo-axis) in the undeformed state are given by 
The components of curvature (around the XO- and yo-axes) and the twist (around the 

(6.2) 

while those in the deformed state, assuming small deformations of the pipe, may be 
expressed in terms of the generalized coordinates as follows (see Appendix J.2): 

To complete the kinematic development, the velocity and acceleration of the internal 
fluid is derived next. The fluid flow is assumed to be a plug flow (Chapter 3), the fluid 
being essentially an infinitely flexible rod travelling through the pipe. The radius of 
curvature is assumed to be very large compared with the pipe radius, and hence the 
effects of secondary flow are neglected. 

The displacement vector of the deformed centreline, expressed in the inertial reference 
system that coincides with the system (xg, yo, ZO), is given by 

(6.4) r = ue,, +we, + w e , , .  

By differentiating equation (6.4), the velocity and acceleration of the pipe may be 
written as 

au av aw 
V - -e,, + - ey0 + -e , ,  

aZu aZv a2w 
at2 at2 yo at2 

y -  at at at 

ap = - ex0 + - e  + -e,. 

The absolute velocity of the internal fluid is 
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where e, is the unit vector along the z-axis, which is tangential to the strained centreline. 
From equation (6.1), one can obtain 

Combining equations (6.5), (6.7) and (6.8) yields 

To obtain the acceleration of the fluid, we differentiate Vf, yielding 

(6.10) 

cf. equations (2.63) and (3.30). Substituting equation (6.7) into (6.10), the acceleration of 
the fluid may be rewritten as follows: 

Now the last term on the right-hand side of this equation may be written as 

+--+--  v f ;  (vp 47)Vf  = - - 
at axo at ay0 aw at azo a )  (” a av a (6.12) 

by combining equations (6.9) and (6.12) we can see that this term is of higher order and 
can be neglected. In addition, it is noted that 

a a  and - _ -  - a 
az az as’ 

e , . V = -  

the latter because of the assumption of small motions. Hence, we obtain 

avf avf 
at as 

a f = - + u - - .  

(6.13) 

(6.14) 

Substituting equation (6.9) into (6.14), we can write the fluid acceleration in the XO-, 
yo-, and zo-directions (see Appendix J.3), as follows: 

Ufxo = - a2u +2u ( - ;;s + $ $) + u2 (e + - - aw + - l ) ,  

Ufzo = 2 + u (2 - R, - - a t ) - E  (%+E). 

at2 as2 R, as R, 

a2u a2v a2U 
+ 2 u -  + u2 - 

at as ax2 ’ 
a2w 1 au u2 au 

Ufyo  = (6.15) 
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6.2.2 The equations of motion 

Consider an infinitesimal element of the pipe, contained between two cross-sections 
normal to the deformed centreline, and the forces and moments acting on it, as shown in 
Figure 6.2. As shown in Appendix 5.4, balance of forces and moments along the XO-, yo- 
and zo-directions yields 

(6.16) 

Y O  

Figure 6.2 Forces and moments acting on a curved pipe element, expressed in the (xo, yo,  Z O )  
reference frame. 

Here Qxo, Qyo, Q,, are components, along the axes (XO, yo, zo)  of the resultant of the 
transverse shear forces Qx, Qy, and of the 'combined force' Q: arising from the axial 
force Q, and the external pressure force A,p,,  A, being the outer cross-sectional area of 
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the pipe and pe  the external pressure;t Aw, Aye, A, are components around the axes 
(xo, yo, zo) of the resultant of the bending moments Ax and Ay and the twisting couple 
&;Mu is the added mass per unit length, and c the coefficient of viscous damping due 
to the surrounding fluid, associated with transverse motions; MA and c' play similar roles 
for longitudinal motion; R,,, R,, R,, are the components of the reaction force per unit 
length arising from the internal flow, and Gxo, G,, G ,  are the components of the effective 
gravity force, including buoyancy effects. 

From the relation between the systems (xo, yo, ZO)  and (x, y ,  z )  given by equation (6.1), 
one can obtain 

where 
Q,* = Qz +Aope .  (6.18) 

Substituting equations (6.17) and the values of K,, K: and to from (6.2) into (6.16), the 
equations of motion for the pipe may be written in the form 

av 2 [ eY + $ex + e; - c - + R ,  + Gyo - as ] at 

av au (g + $) Qx - Qy] - c a t  

(6.19) 

+The pipe is assumed to be immersed in a fluid of generally nonuniform pressure (e.g. in a hydrostatic 
environment). Hence, pe is not absorbed within the internal fluid pressure pi simply by defining the latter as 
'measured above the ambient pressure' as in Chapter 3. 
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Consider now an infinitesimal element of the fluid and forces acting on it, as shown 
in Figure 6.3. Let the internal cross-sectional area of the pipe be Ai, and the internal 
pressure pi(s). Components of the pressure force -A;pi in the directions (XO, yo, Z O )  can 
be written in terms of the components of the unit vector e,, referred to the reference frame 
(XO, yo, ZO), as follows - cf. equation (6.1): 

YO 

Figure 6.3 Forces acting on an element of the enclosed fluid, expressed in the reference system 
(xo, Y O ?  zo) .  

By comparing Figure 6.2 with 6.3, and the forces (Pw, P,, PlO) with (exO, QyO, Q z O ) ,  
and then using the first three of equations (6.16), the equations of motion of the fluid can 
be written in the form 

apX, 
-- as 

as 
apzo 

as 

@yo + KLP," - Rxo + Gjxo = Majxo, 

- K , P ~  + toPxO - R, + GjyO = M a f Y o ,  (6.26) 

Kip,, + KoPyo - Rzo + GfYO = Mafzo, ~- 

where Gjxo, GfuO, Gjz0 are components of the gravity force per unit length on the fluid. 
Combination of equations (6.25) and (6.26) yields 

(6.28) a 
as 

as 

- RyO + GfyO - M a fyO = 0, 

(6.29) 
a 1 
- [ -Ai.;] + %A;pi  (E + E) - R, + GfzO - M a f z o  = 0. 
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According to the generalization of the Euler-Bernoulli beam theory, the stress couples 
Ax, A,, Az in the beam when bent and twisted from the state expressed by K,, K:, to to 
that expressed by K ,  K’, t* are given by 

(6.30) 

In the discretization to be introduced later, the pipe is divided into a series of constant 

Ax = EZ(K - K,), dy = H(K’ - K: ) ,  dZ = GJ(t* - to). 

curvature elements; i.e. within a given element, 

- = 0, as (6.31) 

where the number of elements required will depend on the shape of the pipe centreline 
and the accuracy desired. 

Combining equations (6.2), (6.3) and (6.30) yields 

(6.32) 

Then, substituting equations (6.32) into (6.22) and (6.23), and neglecting the higher- 
order terms, one obtains 

Q x = - E l  (6.33) 

(6.34) 

By adding equations (6.19), (6.20) and (6.21) to (6.27), (6.28) and (6.29), respectively, 
one may obtain the equations of motion of the system, which no longer depend on the 
reaction forces R,, R ,  and Rzo between the pipe and the fluid. Then, utilizing equa- 
tions (6.6), (6.15) and (6.32)-(6.34) and neglecting higher order terms, the governing 
equations of motion for the dynamical system may be obtained, namely: 

a2u 
at2 

+ ( m + M + M , ) -  =o,  (6.35) 

a2v a2v av a2v 
as2 atas at at2 

- (GYO + Gfyo) + M U  - + 2MU - + c - + (WZ + M + M a ) -  = 0, 

(6.36) 
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at2 

The gravity terms in equations (6.35)-(6.38) are given by 

(6.37) 

(6.38) 

(6.39) 

and similar ones for the yo and zo components; axe, ay0 and azo are the direction cosines 
of the gravity vector with respect to ( X O ,  yo, ZO), and pe is the density of the external fluid. 

These equations are, of course, coupled but, similarly to the shell equations (Chapter 7), 
may each be identified as being principally related to motion in one particular direction; 
thus, the first is related to in-plane deformations, the second to out-of-plane deformations, 
the third to deformations along the pipe, and the last to twist of the pipe. Hence, in- 
plane motions are governed by equations (6.35) and (6.37), and out-of-plane motions by 
equations (6.36) and (6.38). Note that, if the radius of curvature R, is made equal to 
infinity, the curved pipe becomes a straight pipe. Moreover, if the pipe is vertical and the 
axial motion is ignored, equations (6.35)-(6.38) reduce to 

(6.40) 

(6.41) 

(6.42) 

which, as may be verified, are identical to those in Sections 4.2 and 4.3 for the motions 
of a uniform straight pipe conveying fluid and fully submerged in a quiescent fluid. 
Equation (6.40) is identical to (6.41) because, for a straight pipe, motions in the XO- and 
yo-directions are uncoupled and identical. Finally, if the surrounding fluid has negligible 
effect on the dynamics of the system, setting Ma = 0, c = 0, and pe  = 0 vis-&vis the 
atmospheric pressure, these equations reduce to a version of equation (3.34). 
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6.2.3 The boundary conditions 

The boundary conditions are as follows. 

(i) Ifan end is clamped, 

au 
as 

u = 0, - = 0, w = 0, for in-plane motion; (6.43a) 

2, = 0, - = 0, $ = 0, for out-of-plane motion. (6.43b) 
av 
as 

(ii) If an end is pinned, 

for in-plane motion; 

for out-of-plane motion. 

(6.44a) 

(6.44b) 

(6.45a) 

(iii) l fan end is free, 

0, for in-plane motion; 

(6.45b) 

6.2.4 Nondimensional equations 

It is convenient to analyse the equations of motion in dimensionless form by defining the 
following quantities: 

U V W S s = t (  EI ) ’I2 
L’ 9 2 = - ,  q 3 = - ,  < = -  

L L L’  (M + m)L4 ’ 
91 = - 
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(6.46) I, d=- APL2 t M GJ 
M + m ’  EI 

/ g -  A = - - ,  CT= 
(M + m)L2 ’ I ’  

L 8’ L2 
O = - - ,  ~ = ( M + r n - A , p , ) - ,  n , = ( A i p j - A  )-, 

R O  EI O p e  EI 

L2 cL2 - Ac’ 
A = - .  I7 = (Aipi - A o p ,  - Q z ) - ,  A = 

E l  [EI(M + m ) ] 1 / 2  ’ C 

Substitution of equations (6.46) into (6.35)-(6.38) yields the following dimensionless 
equations of motion: 

[($ + Org) + {nh; + Oq3)Y + on - pq + U2($  + or?; + O)]  

(6.47) 112- . I  +[28 u ( r l l f O i 3 ) + A i l + ( l + j 3 a ) i j l ]  =o ,  
-2 I t  [(& - O$”) - A@($” + Or];’) + {n&}’ - p, + u ~ z ]  

+ [2j3112Uik + Ai2 + (1 + B a ) i 2 ]  = 0, (6.48) 

[ - n‘ + @($’ + 077;) + @(Q; + @v3)n + pz0 + u20(a; + @q3)]  

- [j3’/*U(i; - Oi l )  + 2 6 3  + (1 + B a ) j j 3 ]  = 0, 

[@(@I) - Q;’) - A($” + Or;’)] + [a$] = 0, 

(6.49) 

(6.50) 

)iv where prime and dot denote differentiation with respect to < and 7, respectively, ( 
( 

parts: a steady (static) part, and a perturbation about the steady part, i.e. 

) ’ I ” ,  and ax0 etc. have been defined in connection with (6.39). 
Each of the displacements and twist 171,172, q 3  and $ can be imagined to consist of two 

V I  = ~7 + v: ,  172 = V $  + v; ,  ~3 = 17; + v; ,  $ = $O + $*, (6.51) 

the superscripts o and * denoting the steady and perturbed parts, respectively. The 
equations governing the static equilibrium are obtained by deleting the time-dependent 
terms, i.e. terms contained within the second set of square brackets in each of equations 
(6.47)-(6.50). If q’j’ and are eliminated from the first and third of the resulting set of 
equations, one obtains 

no” + o2n0 = Opxo + pl0 - O2U2, (6.52) 

which governs the steady (static) value, no, of the so-called ‘combined force’ n. The 
nomenclature of ‘combined force’ conveys that it involves both axial tension and pressure 
forces. It is noted that no depends on the dimensionless fluid flow velocity U, in addition 
to the gravity loading and the orientation of the pipe. 

Similarly, the dimensionless boundary conditions are given as follows: 

‘Ap arising via J ,  the torsional area-moment of inertia, is the ring-shaped pipe material cross-sectional area, 
equal to A,, - A,.  
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(i) at a clamped end, 

q1 = q{ = q 3  = 0, 

q 2  = q; = + = 0, 

for in-plane motion; 

for out-of-plane motion; 

(ii) at a pinned end, 

q1 = q 3  = r‘r + 017; = 0, 

q2 = @+ - q; = +’ + @q; = 0, 

for in-plane motion; 

for out-of-plane motion; 

(iii) at a free end, 

q‘l“ + @q’f - n - n - - q;’ + Oqj = 0, for in-plane motion; 3 -  

@+’ - ~7 + A@(+’ + Or;) = O+ - q$ = 0, 

+’ + oq; = 0, for out-of-plane motion. 

(6.53) 

(6.54) 

(6.55) 

(6.56) 

(6.57) 

(6.58) 

6.2.5 Equations of motion of an inextensible pipe 

The formulation carried out so far is valid for both extensible and inextensible pipes. 
Here, the equations will be simplified by considering the centreline of the pipe to be 
inextensible - leaving aside for now the question of whether this is justified. The centre- 
line strain is given by equation (J.2), in which K: = l/Ro as in equations (6.2), or in 
dimensionless terms, 

E = q; - @q1 = 0, (6.59a) 

and hence, in accordance with (6.51), 

7;’ - 017;) = 0, qf’ - @?lT = 0. (6.59b) 

Subtracting the steady-state part from equations (6.47) and (6.49) and utilizing (6.59b), 
one obtains a single sixth-order partial differential equation for q; that governs in-plane 
motion, namely, 

+ 2@2q5v’ + @4$”) + 3 ($i” + 2@2$” + 0“;) + 2/9’/2u (4;”’ + 024;’) 

+ (1 + Ba>ij;” - 0 2 (  1 + pu)ij; + Atj;’’ - O2Z4; 

+ [nqq;’’ + @2q;)]” + @2nqr/;” + 02q;) = 0, (6.60) 

where the superscript vi denotes six primes, and so on. It is of interest to note that when the 
combined force is ignored and external fluid effects are absent (Bu = 3, = A = 2 = 0), 
equation (6.60) reduces to that obtained by Chen (1972~). 

Similarly, the equations governing the out-of-plane motion are obtained from equa- 
tions (6.48) and (6.50) as 

( Q ; ~ ”  - @+*”) - A @  (+*” + @$”) + [n’q;’]’ + U2$” + (1 + bU)ijl 

+ 2/91/2Urj;’ + A$ = 0, (6.61) 

(6.62) 0 (@+* - qz”) - A (+*” + 0 ~ ; ” )  + = 0. 
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Once again, if the combined force no is suppressed and external fluid effects are absent, 
the equations of motion are identical to Chen’s (1973). It may also be noted that, 
once the steady combined force li” is obtained from equation (6.52), the in-plane and 
out-of-plane motions can be studied separately by analysing equation (6.60) and equa- 
tions (6.61)-(6.62), respectively. 

The equations obtained here apply to both the conventional and the modified inexten- 
sible theories, items (i) and (iii) of the classification in the latter part of Section 6.1. The 
difference is that, in the conventional inextensible theory, the steady force no is taken to 
be zero, while in the modified theory, no is fully taken into account. 

6.2.6 Equations of motion of an extensible pipe 

Unlike the inextensible case, here the longitudinal strain E # 0. Thus, u and w, or equiv- 
alently ql and q 3 ,  are not directly related to each other in the present case. Furthermore, 
the axial force Qz is given by 

hence, using equations (6.18) and (6.46), the dimensionless 
force l7 may be expressed as 

n = np - d(q\ - 0111) 

(6.63) 

pressure-tension combined 

(6.64) 

Once q l  and 773 are known, l7 can be determined from equation (6.64). It may be noted 
that this procedure can be used only for the extensible case, since the last term vanishes 
if the pipe is inextensible. 

As in the inextensible case, each of the displacements and twist q l ,  q 2 ,  q 3 ,  and 
$ consists of a steady (or static) part and a perturbation about the static part, 
as per equations (6.51). The equations governing the steady part are obtained from 
equations (6.47)-(6.50) by deleting the time-dependent terms and are given by 

(qY’”+ Oqz”’)+ [17”(qY1+ 04)]’+ @no - p,+Zi*(qy”+ Oqzl+ 0) = 0, (6.65) 

(6.66) 

(6.67) 

(6.68) 

It is noted that equations (6.65) and (6.67) governing the static in-plane displacements 
are decoupled from the equations of out-of-plane static equilibrium (6.66) and (6.68). 
Furthermore, if the gravity effect is negligible (i.e. y = 0), or if the pipe initially lies in a 
vertical plane (i.e. ay0 = 0), then the static out-of-plane deformations $ and vanish. All 
the cases considered here satisfy this requirement and qg and $“ are therefore always zero. 

Using equation (6.64), the in-plane static equilibrium equations (6.65) and (6.67) may 
be rewritten after linearization as 

-2 011 (qy” - @+””) - A@($*” + @ $ ’ I )  + ( Z 7 * q ~ 1 ) 1  - p, + u q 2  = 0, 

- I””‘ + O(q:”l + Oqil’) + 0n“q:’ + 017;) + pzo +do($ + Or;) = 0, 

@(@$” - q*ff ) - A($”” + Oq;”) = 0. 

(6.69) 
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- d(q;ff - Oqy) - O ( q y  + O q y )  - on,(qTl+ Oq;) - Oa*(q;, + Or];) 

+ l7; - p,” = 0. (6.70) 

Once the in-plane static displacements have been evaluated from equations (6.69) and 
(6.70), the steady combined force l7” can be determined from equation (6.64). In the 
derivation of equations (6.69) and (6.70), it has been assumed that the static displacements 
are small. This assumption is validated later by examining the results. 

Substituting equations (6.5 1)  into the equations of motion (6.47)-(6.50), subtracting the 
static equilibrium equations (6.65)-(6.68), using equation (6.64) and neglecting second- 
and higher-order perturbation terms, one obtains 

(qTi” + Oq;”’) + [no (q;! + Oqj)]’ - d (117’ + Oq!) (q;’ - oqy 
- O d  

+ AGT + ( 1  + pa)fi; = 0, 

- oy;) + u2 ( $ ’ I  + oqy) + 2j3% ($’ + 
(6.71) 

(v;~” - @+*”) - @A(+*’’ + Oq;”) + [““q;’]’ - d [qg’(q;’ - Oq?)]’ 

+ G2$” + 2j?’/2Urj;’ + A$ + (1  + Pa)$ = 0, (6.72) 

O(qT’” + Oq3*’!) + on”(q;’ + Oqj) - @d(qT1 + Oq;)(q;‘ - Or:) 

+ d($” - OqT’) + @U2($ + Or;)  - j31’2u(rj;’ - Orif) 
- 

- Ali; - (1 + pa)$  = 0, (6.73) 

(6.74) 

where equations (6.7 1)  and (6.73) govern in-plane motion, while equations (6.72) and 
(6.74) govern out-of-plane motion. Similarly to the case of the static equilibrium equations, 
the in-plane and out-of-plane perturbation equations may be solved separately; however, 
the out-of-plane perturbations depend on the in-plane static displacements through no. 

It may be noticed that the out-of-plane perturbation equations (6.72) and (6.74) in 
the extensible case are identical to those for an inextensible pipe, equations (6.61) and 
(6.62), provided that qz = 0 and that the steady pressure-tension effects are taken into 
account. As established earlier in this section, the former condition is satisfied if the pipe 
initially lies in a vertical plane or if the gravity effects are negligible. Since all the cascs 
considered here satisfy these conditions, out-of-plane motion need not be analysed anew,+ 
and from here on only the analysis of in-plane motion of an extensible pipe needs be 
considered further. 

0 (O+* - q;”) - A (@* I ’  + e$”) + a$* = 0, 

6.3 FINITE ELEMENT ANALYSIS 

Solutions of the equations of motion are obtained by the finite element method. For this 
problem, this method is preferable to Galerkin’s which has been used in most of the 
foregoing, because of its versatility: once formulated, it can just as easily be applied to 

+Although the perturbation equations are identical for inextensible and extensible pipes, the steady combined 
force no is slightly different in the two cases. This, however, does not change the dynamical behaviour 
significantly. 
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pipes of uniform curvature as to S- or a-shaped pipes - without having to determine 
the equivalent of new comparison functions for each case. According to this method, the 
continuum is subdivided into a number of elements, at the edges of which there are one 
or more nodes (one for a structure such as this, in which spatial variations involve only 
one coordinate, 0. The equations of motion are satisfied at the nodes rigorously and 
elsewhere approximately via interpolation functions. A variational formulation ensures 
a systematic minimization of the error for the number of elements utilized. The use of 
the finite element method has now become routine, and hence the uninitiated reader is 
referred to one of several texts on the subject, e.g. Zienkiewicz & Cheung (1968), Desai 
& Abel (1972), Becker et al. (1984) or Zienkiewicz & Taylor (1989). 

The details of the particular form of finite element analysis employed here may be 
found in Van (1986). However, different forms may be employed, and this is partly the 
reason for not presenting the minutiae of the analysis. 

6.3.1 Analysis for inextensible pipes 

(a) In-plane motion 

The pipe is discretized into n elements. The initial curvature of a particular element is 
constant, although it can vary from element to element. The variational statement used 
for the finite element discretization is 

(6.75) 

where 87; is an arbitrary variational displacement, Ai(q;) represents the left-hand side of 
equation (6.60) and is the length of the jth element. The subscript i in Ai stands for 
‘in-plane’ . 

The longitudinal displacement q; may be expressed in the form 

11; = [N31{qiIe, (6.76) 

where [ N 3 ]  is a matrix of interpolation functions at the space coordinate {, and {si)“ 
is the element displacement vector, of appropriate dimension and dependent only on 
time; the superscript e stands for ‘element’. Hence, by using (6.75) and (6.76), integrating 
by parts, and applying the boundary conditions - thereby eliminating the integrated-out 
components - one obtains the discretized equation 

[M,Ie{ijile + [DiIe{4iI“ + [KiIe(qiJe = (01, (6.77) 

where 
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(6.78) 

4- E2 ([N3]1T([N3]”’ + 02[N3]’) - @2[N3]T([N3]’r + O2[N3])}  

+ [N31’T -[n0([N31” + 02[N31)1 - @2n0[N31T([N31” + O2[N3]) I a 
a t  d<; 

<e is the length of the element under consideration. The highest order derivative of [N3] 
appearing in these expressions is the third. Hence, it is necessary to ensure that q:, q;’ 
and ,I$” be continuous between elements, which is achieved if the nodal displacements 
at each node are taken as values of qj,  r;’ and $’I. Thus, for an element of the pipe 
(Figure 6.4) with a node j at one end and a node j + 1 at the other, 

(6.79) * I  * I /  T (qiJj = { $ , j ,  q3.j 9 r 3 , j  1 

and 

(6.80) 

Figure 6.4 Diagram of an element of the pipe with nodes j and j + 1 at its extremities. For 
in-plane motion, for example, the nodal displacement vectors are ( q j j  and (q i j j+] ,  and the element 

displacement vector is {q,)j+l)T - see equations (6.79) and (6.80). 

As each element has six degrees of freedom corresponding to the six elements of the 
vector in (6.80), one can express the deflection by a fifth-order polynomial, 

r; = a1 + azt + a3t2 + ad3 + ad4 + agt5, (6.81) 

where the ai are a set of generalized coordinates. Equation (6.81) may be rewritten as 

where [&I = 11, <, c2, t3, q4, c5I is a row-vector, and (a}  = (al ,  . . . , 
of equations (6.80)-(6.82), one can write 

Now, in view 
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where 

I I: 

after substituting < = 0 for the jth node and < = <e for the j + 1 node. 
From equations (6.76), (6.82) and (6.83), one obtains 

Substituting equation (6.85) into (6.78) yields the final form of the element mass, damping 
and stiffness matrices: 

The coefficients a l ,  bl, a2, b2 are associated with no and its derivative no‘. These are 
generally nonlinear functions of <, but within each element they are approximated by the 
linear expressions 

(6.87) l7’ = a1 + a2<, l7“ = bl + b2<; 

hence, a1 = Dolj,  a2 = (l7’l,+l - Z7°1;)/<e, and similarly for 61 and b2. 
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All the foregoing applies to a single element. The next step is to assemble the global 
equation of motion, which is similar to (6.77) but the associated vector now covers all 
the nodes, j = 1,2, . . . , n ;  in the corresponding global matrices [Mi], [Ci] and [Ki] there 
is partial superposition of the element matrices (6.86), since any node, except those at the 
two ends of the pipe, is shared by two elements. This global equation is then converted 
to a standard eigenvalue problem, from which the eigenfrequencies may be determined 
and stability assessed. 

(b) Out-of-plane motion 

The variational statement used for the finite element model of out-of-plane motion is 

(6.88) 

where Sr$ and S$* are the variations in the out-of-plane transverse displacement and 
twist, respectively, while Ao1($, +*) and Ao2(r$, +*) represent the left-hand sides of 
equations (6.61) and (6.62). The subscript o stands for out-of-plane. 

The solutions for r$ and $* are sought in the form 

where [N2] and [N4] are two matrices of interpolation functions of the space coordinates 
<, and {q0}" is the element-displacement vector for the out-of-plane motion. In this case, 
a cubic interpolation model for q; and a linear one for $* can guarantee convergence. 
Hence, proceeding as for in-plane motion, one eventually obtains 

where 

in which 

(6.92) 
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and [11]-[1111 are given by 

435 

while a l ,  bl, etc. are defined in equations (6.87). 

(cl Calculation of no 
In the discretization procedure described earlier, the pipe is divided into a series of 
constant-curvature elements, each of which may be treated as an incomplete circular pipe. 
Here, the steady combined force no acting on an incomplete circular pipe subtending an 
angle 0 and conveying fluid at a constant nondimensional velocity U is determined. 

If the gravity effect is neglected, the solution to equation (6.52) may be written as 

no(<) = C, sin(<@ + ~ 2 )  - ii2, (6.94) 

where CI  and C2 are two constants of integration which can be determined from the 
boundary conditions. The boundary conditions, in turn, are determined from equilibrium 
considerations and the application of Castigliano’s theorem. They can be shown to be 

(6.95) 

for a clamped-free incomplete circular pipe, and 

n”(1) = -2, n”’(1) = 0 (6.96) 

for a clamped-clamped, clamped-pinned or pinned-pinned incomplete circular pipe. In 
equations (6.95), nP = (Aipi - A,p,)L2/EI and represents the steady-state nondimen- 
sional force due to the pressures of the internal and external fluids. 

Using the boundary values (6.95) and (6.96) in equation (6.94) one obtains 

where 

for a clamped-free pipe and 
n o  = -$ 

(6.97) 

(6.98) 

(6.99) 

if both ends of the pipe are supported (clamped or pinned). 
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6.3.2 Analysis for extensible pipes 

Because the static displacements appear explicitly in the equations of motion, the static 
equilibrium is determined first, and then the stability of motions about this position. 

(a) Determination of the static equilibrium 

In order to discretize the equations governing the static deformations, the following vari- 
ational statement is utilized 

(6.100) 
j =  1 

where Sqp and 6q; are the variations in the steady-state displacements q: and q:, while 
Afl(g:, q;) and q z )  represent the left-hand sides of equations (6.69) and (6.70), 
respectively; n and <, are as in the foregoing. 

and qi  are sought in the form The solutions for 

where [Nle] and [N3e] are two matrices of interpolation functions of the space coordinate 
<, and is the element in-plane displacement vector. It may be shown that a cubic 
interpolation model for qy and linear interpolation for qi  can guarantee convergence of 
the finite element scheme. Thus, one can proceed in the same manner as for the out- 
of-plane motion in the inextensible case to obtain a matrix equation governing the static 
equilibrium of an element as follows:t 

[Kp]"(q;)" = ( F p j e ,  (6.102) 

where 

[qe = ([Aol-')T [{[M + @([1151 + [1l5lT> + 02[1*1) 

+ de([I81 - @([[I21 + [112JT) + @2[111) 

+ ( n p o  -I- z2)([191 4- @([I221 - [In]) - 02[141) (6.103) 
- 

- hE2{[151 + [I101 + @([116l + [I141 - [1171) - @2[1i,l)] [&I-', 
- 

(FpJe = [ @ ( n p o  + z2){F1} - hZ2(@{F2) + {F3)) + (F4)] . 

For the integrals [ZI], (Fl}, etc. and [A,,], see Appendix K. 

is constant, while the internal pressure varies linearly along the centreline. Thus 
In deriving equation (6.102) it has been assumed that the pressure in the external fluid 

np = nplo - ZE2(, (6.104) 

+It is recalled that, for an inextensible pipe, in-plane motion involves sixth-order derivatives in <, and hence 
the corresponding shape functions are not useful here. However, the shape functions for out-of-plune motions 
of the inextensible pipe may be used for this analysis, since the maximum orders of partial derivatives match; 
hence the appearance of [A,] in equations (6.103). 
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- 
where 

h = h(L/2Di),  (6.105) 

L and Di being the length and internal diameter of the curved pipe, while h is the frictional 
resistance coefficient for turbulent flow in a curved pipe. The resistance coefficient h for 
a curved pipe is somewhat larger than that for a straight pipe ( L o ) ,  and according to 
Schlichting (1960) is given by 

h = h,[l + 0.075 Re0.25(Di/2Ro)0.5], (6.106) 

where Re = UDi /v  is the Reynolds number, and R, is the radius of curvature of the pipe 
segment. 

Equation (6.103) corresponds to a single finite element. Such equations for all the 
elements are assembled to form the global equation of static equilibrium, which is then 
solved numerically. 

(b) Analysis of motion around the static equilibrium 

Similarly to the analysis of the static equilibrium equations, the variational statement used 
for the finite element model of the in-plane perturbations is 

(6.107) 

where Sylr and S$ are the variations in the dimensionless in-plane displacement pertur- 
bations, while A:l (q? ,  r ; )  and At(v; ,  $) represent the left-hand sides of equations (6.71) 
and (6.73), respectively; n and <j  have the same meaning as in the foregoing. 

Proceeding as before, one obtains the matrix differential equation governing the motion 
of a typical element; the associated matrices are given in Appendix K. Again, the equations 
for all the finite elements are assembled to form the global equation of motion, which is 
then converted into an eigenvalue problem that is solved numerically. 

6.4 CURVED PIPES WITH SUPPORTED ENDS 
Solutions of the global equation of motion yields the system eigenfrequencies, on the basis 
of which stability also is decided. For convenience of comparison with other results, two 
forms of nondimensionalization are used for the circular frequency Q: 

(6.108a) 

Similarly, either U, defined in equations (6.46), or 

(6.108b) 

is uscd for thc dimensionless flow velocity. In the results to be presented, unless otherwise 
specified, the values of y,  Ba, pa,  A and 2 are zero. Dissipation in the material of the 
pipe is ignored for simplicity; hence, by the same reasoning as for straight pipes with 
supported ends, the system is conservative (Section 3.2). Therefore, the eigenfrequencies 
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are wholly real so long as the system remains stable, unless dissipation is taken into 
account (or the fluid conveyed is viscous). 

The dynamics of the system as predicted by inextensible, extensible and modified 
inextensible theory will be discussed in this section; the same is done in Sections 6.5 
and 6.6 for other boundary conditions. It is recalled that in the conventional inextensible 
theory not only is extensibility of the centreline neglected, but also the effect of the steady 
forces arising from the centrifugal and pressure forces generated by the internal fluid as it 
moves along the pipe; i.e. no which comprises the axial force Q, and the pressure force 
nP is neglected. In the modiJed inextensible theory these forces are taken into account. 
In the extensible theory, the extension of the centreline is also taken into account. 

6.4.1 Conventional inextensible theory 

Typical results for in-plane motion of a clamped-clamped semi-circular pipe conveying 
fluid are presented in Figure 6.5, showing the evolution of the lowest eigenfrequencies of 

Figure 6.5 Dimensionless eigenfrequencies W* by conventional inextensible theory for in-plane 
motion of a clamped- clamped semicircular pipe conveying fluid as functions of the dimensionless 
flow velocity E*, for I7 = 0 and (a) B = 0; (b) B = 0.5. --- Chen (1972a); -, Misra et a l .  

(1988a). 
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the system with increasing U. Eight elements are adequate to obtain convergence in the 
finite element scheme. At U = 0 the pipe behaves as a semi-circular ring (cf. Archer 1960; 
Ojalvo 1962; Ojalvo & Newman 1965; Blevins 1979). As the flow velocity increases, 
the eigenfrequencies become smaller according to this theory, and if the flow velocity 
exceeds a certain value, the pipe becomes unstable by divergence in the first mode. With 
further increase in the flow velocity, instability may occur in the higher modes, as well 
as coupled-mode flutter (not shown). The results are qualitatively similar to those for a 
straight pipe. It is noted that the finite element results obtained with the present analysis 
agree very well with those obtained analytically by Chen (1972b). The same is also true 
for clamped-pinned and pinned-pinned semi-circular pipes (Van 1986). 

Similarly to the case of in-plane motion, Figure 6.6 shows the eigenfrequencies for 
our-of-plane motion of a clamped-clamped semi-circular pipe conveying fluid. To obtain 
convergence, 11 or more finite elements are required, as opposed to eight in the in- 
plane case; this is because the displacement model is cubic for the out-of-plane motion, 
whereas it is quintic for the in-plane motion. According to this theory, as the flow velocity 
increases, the frequencies become smaller for out-of-plane motions as well, and the pipe 
becomes unstable by divergence in the first mode when a critical flow velocity is exceeded. 
One may note that the out-of-plane eigenfrequencies are lower than the in-plane ones and 

Dimensionless flow velocity, E* = i i / ~  

Figure 6.6 Dimensionless eigenfrequencies w* versus U* by conventional inextensible theory 
for out -o f -phe  motion of a clamped-clamped semi-circular pipe conveying fluid, for fl = 0, 

A = 0.769 and (a) B = 0; (b) j5 = 0.5. ---, Chen (1973); -, Misra et n l .  (19884. 
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that the critical flow velocity is also lower, reflecting the relative stiffness in the two 
directions. These results are also very close to Chen’s (1973), except for the second mode 
in one caset. 

Before closing this discussion, it is remarked that, throughout this chapter, the modes are 
numbered sequentially, strictly in ascending order of frequency, irrespective of whether 
they are asymmetric or symmetric. For in-plane motions of a semi-circular pipe, modes 
1-4 in Figure 6.5 correspond respectively to the modes in Figure 6.7(a-d), i.e. the 
modes are numbered in ascending order of the number of nodes. Similarly, for out-of- 
plane motions: the first mode would have no nodes, the second mode a node at mid-point, 
and so on. 

Figure 6.7 Schematics of (a,c) the asymmetric and (b,d) symmetric modes for in-plane motions 
of an inextensible semi-circular pipe at ii = 0, and approximately for an extensible one. 

6.4.2 Extensible theory 

As in the previous case, a study of convergence was conducted, to determine what a 
reasonable number of finite elements would be for accurate computation of the eigenfre- 
quencies. Some results are presented in Figure 6.8 for U = 0 and various values of d. 
It may be seen that convergence is very slow, and that it is affected by the slenderness 
parameter d (i.e. ApL2/Z); convergence for the third mode is even slower (Misra et aE. 
1988b). For a small number of elements (10 or so), the results for different values of 
d are very different. For a larger number of elements (40 or so), the results are compa- 
rable. In the curved beam theory used in this work, it has been assumed that the length 
of the pipe is large in comparison with its radius. This implies that d must be large; 
however, calculations with large d result in high computational cost. Therefore, a value 
of d that provides a reasonable trade-off between cost and accuracy has been used in the 
calculations to be presented, namely d = lo4. 

+In this regard, it is noted that the value of ii* at which w* = 0 should be independent of ,9, as is the case 
in Chen’s results but not in those of Misra et al. - either due to a plotting error in the latter or, more likely, 
because of the use of an insufficient number of finite elements to ensure adequate accuracy. 
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Figure 6.8 Convergence of the in-plane eigenfrequencies of a clamped-clamped semi-circular pipe for different values of sd and ii = I7 = 0 : 
(a) first (lowest) eigenfrequency; (b) second eigenfrequency (Misra et a l .  1988b). 
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It is of interest to recall that for the inextensible case, 10 or so elements lead to 
convergence of the results (Section 6.4.1), as opposed to more than 30 elements required 
for the extensible case. Thus, the extensible analysis is computationally more demanding. 

The steady-state configurations of the system are considered next. Typical results are 
shown in Figure 6.9, both for inviscid and viscous flow. As indicated in the figure caption, 
the deformations are exaggerated for clarity. The forms in Figure 6.9(a,b) are for inviscid 
flow (Z = 0). It may be noted that the stressed shape is symmetric; this is because 
the steady (static) fluid force acting on the pipe is only the centrifugal force, which is 
symmetric. When the flow velocity increases, this symmetric deformation away from the 
initial unstressed shape increases gradually. In the case of viscous flow of Figure 6.9(c), 
on the other hand, the stressed shape is not symmetric, since the frictional pressure loss 
causes the pressure to vary along the pipe. 

It may be noted that the deformations for both inviscid and viscous flows are fairly small 
(less than 5%), even for very large flow velocities (up to U = 6n). It is also interesting 
to note that, beyond a certain U ,  the stressed configuration changes to another zero-flow 
mode shapet (see the case of U = 4n for inviscid flow and U = 3n for viscous flow). 

c 

Figure 6.9 Static in-plane equilibrium configurations of a clamped-clamped semi-circular 
pipe conveying fluid, for Se = lo4 and (a) inviscid fluid, ti = 2n, 2Sx, 371; (b) inviscid fluid, 
u = 3.2n, 3.671, 4n; (c) viscous fluid, U = 27r, 2Sn, 3n. In (a), (b) and (c) the deformation is 

magnified by a factor of 28, 30 and 25, respectively (Misra et al. 1988b). 

- 

+Note that for an extensible pipe, in addition to the shapes in Figure 6.7, there is a zero-node modal shape 
for in-plane motions: the shape associated with the deflection in Figure 6.9 at small U. 
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Nevertheless, divergence according to this theory does not occur (as will be shown in 
what follows); the global stiffness matrix remains positive definite. 

For an inextensible pipe, there is no difference between the values of no for inviscid 
and viscous flows; in both cases, it is equal to -ii*. For an extensible pipe, however, 
there is a difference between viscous and inviscid results: small for low flow velocities, 
but more significant at higher flows. 

The dynamics of in-plane motion according to extensible theory is presented next. 
Several variants of the theory are considered: in one, the steady-state combined force 
no is neglected; in the second variant, no is taken into account, but the initial (steady) 
deformations are assumed to be negligible, i.e. the terms involving d($’ + Oq;) in 
equations (6.69) and (6.70) and (6.71) and (6.73) are set to zero;+ in the third variant both 
no and d(rf + Oqi) are nonzero and it is considered to be the complete theory. The first 
variant is recognized as physically not realizable, but is considered for comparison. The 
calculations are conducted for a system with B = 0.5, dl = lo4 [see equations (6.46)J. 

Figure 6.10 shows the results obtained when the internal fluid is inviscid. It is noted 
that, generally, the effect of the d($’ + Or$) term is not very important. This is so 

20 

Dimensionless flow velocity. a* = ii/ P 

Figure 6.10 Dimensionless eigenfrequencies w* versus P* for in-plane motion of a clamped- 
clamped semi-circular pipe conveying inviscidfiuid, for fi  = 0.5 and d = lo4: - . - , no = 0. 
d(q:’ i- Oqt;) = 0; ---. IT” # 0. d(ie(rl7’ + @a;) = 0; --, l7“ # 0, d(rf + 0 ~ ; )  # 0 (Misra 

ef al. 1988b). 

‘It is recognized that the first variant corresponds to the conveenfiond inextensible rheory, whereas the 
second corresponds to the modified inextensible theory, but the calculations were conducted with the equations 
for extensible theory. 
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because the static deformations are not very large, as was observed earlier (Figure 6.9). 
However, for U > 3n, static deformation effects become slightly more pronounced, in 
the second and third modes particularly, reflecting relatively greater departures from the 
unstressed state of the pipe. 

The most important feature of Figure 6.10 is the fact that extensible theory, properly 
taking into account the steady-state combined force no, predicts that no instability occurs 
for a clamped-clamped curved pipe. The frequencies of the system change very slightly 
with flow, unlike the case of no = 0 when the system is predicted to lose stability by 
divergence. This leads to the conclusion that it is the steady flow-related forces, rather 
than the steady deformations, which are primarily responsible for the inherent stability of 
fluid-conveying clamped-clamped curved pipes, and this supports the basic tenet for the 
modified inextensible theory, results for which are presented in Section 6.4.3. 

Hill & Davis (1974) and Doll & Mote (1974, 1976) have also presented extensible 
theories and reached the same general conclusion, namely that curved pipes with clamped 
or otherwise supported ends do not lose stability when subjected to internal flow. In 
Figure 6.11 the results obtained by these two sets of investigators are compared with 
those obtained by the present theory [including no and d(~p’ + 0 ~ ; )  terms] for in-plane 
motion, with the assumption that the fluid is inviscid. It is seen that the general character 
of the solutions is similar in all three cases, although the results are not identical. 

h 
x 
3 

I I I I 
0 1 2 3 4 

ii* = EIP 

Figure 6.11 Comparison of the fundamental eigenfrequency for in-plane motion of a clamped- 
clamped semi-circular pipe conveying fluid as a function of 2 according to extensible theory: 
_ - _  , Doll & Mote (1974, 1976) for = 0.5, d = 1.58 x lo4; - . - , Hill & Davis (1974) for 
j3 = 0.43, d = 1.4 x lo5; - , Misra et al. (1988b) for B = 0.5, d = lo4 (Misra et al. 1988b). 
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Hill & Davis’ equations of motion are perhaps the closest to those utilized here, and 
the results from these two theories are close, despite some parameters being different: 
B = 0.43 and SQ = 1.4 x lo5 in Hill & Davis, as compared to 0.5 and lo4, respectively, 
in the present case. Hill & Davis, similarly to the present theory, considered motions 
about the deformed initial state calculated in a linearized fashion. On the other hand, 
Doll & Mote calculated the deformed state by a more sophisticated approach, involving 
a cumulative application of the linearized equations; their B is the same as in the present 
calculations [note that this is so, despite what appears in their published work (#l = l) ,  
due to a typographical error (Pdidoussis 1986b)l and d was 1.579 x lo4. 

It should be noted that Doll & Mote and Hill & Davis effectively consider inviscid flow. 
However, since the steady-state initial forces depend on real flow effects and these forces 
do work in this case (unlike for straight pipes), this is not necessarily justified. Some 
calculations with viscous flow are shown in Figure 6.12. It may be seen that frictional 
effects are not very pronounced for the first mode, but they are more important for the 
higher modes. The important point is that even for viscous flow, clamped-clamped curved 
pipes do not lose stability according to the more realistic extensible theory. 

We now turn our attention to out-ofplane motions. As mentioned in Section 6.2.6, the 
equations of motion of the extensible theory and the modified inextensible theory (in 

2oL 1 

I I I \  I I 
0 1 2 3 4 5 0 

a* 

Figure 6.12 The real part of the dimensionless eigenfrequencies as functions of E* for 
in-plane motion of a clamped-clamped semi-circular pipe conveying viscous Jluid, for B = 0.5, 

d(rf + e$) # 0 (Misra et al. 1988b). 
se = 104; - . - , n o  = 0, se(vy ’  + ev;) = 0; ---, n o  # 0, se (v~ ’  + ovp) = 0; -, n o  # 0, 
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which the steady fluid loads are not neglected) are identical. Hence, the main body of the 
results will be presented in Section 6.4.3. However, a comparison with Hill & Davis’ and 
Doll & Mote’s extensible theories for out-of-plane motions is presented in Figure 6.13. 
It is clear that the results from the three theories are even closer in this case than for 
in-plane motion. It is also clear that no divergence occurs for out-of-plane motions either. 

I I I 

- 

- 

-- - - - - - - -<- 
- - 
- 

1 .o 0.0 0.5 
ii* = iiln 

Figure 6.13 Dimensionless eigenfrequencies w* versus Us for out-ofplane motion of a 
clamped-clamped semi-circular pipe conveying fluid according to extensible theory: - - -, Hill & 
Davis (1974); - . - , Doll & Mote (1974, 1976); -, Misra et aE. (1988b), for the parameters 

as in Figure 6.11 (Van 1986). 

6.4.3 Modified inextensible theory 

Figures 6.14 and 6.15 show the in-plane eigenfrequencies of clamped-clamped, 
pinned-pinned and clamped-pinned semi-circular pipes conveying fluid, as functions 
of the flow velocity, obtained by both the modified and the conventional inextensible 
theories. It is obvious that, according to the modijied inextensible theory, the effect of fluid 
flow on the eigenfrequencies is not very pronounced. Flow tends to reduce the first-mode 
eigenfrequency, but does not cause divergence in the flow range investigated (as high as 
u = 6n). It is also interesting to observe that the eigenfrequencies of some of the higher 
modes actually increase with flow velocity. Thus, whether the axial force Q, (or combined 
force n) is taken into account or not is very important. In the conventional inextensible 
theory, where I7 is neglected, the effect of internal flow on the eigenfrequencies manifests 
itself via the centrifugal and Coriolis forces, whereas in the modified inextensible theory, 
where I7 is taken into account, the internal flow exerts only a Coriolis force. This is 
because when both ends are supported, no is a constant equal to -Z2 [equation (6.99)], 
and thus in equations (6.47) and (6.49) governing in-plane motion the terms associated 
with the initial forces cancel out those arising from the centrifugal force. It is recalled 
that it is the centrifugal forces that are responsible for the divergence instability obtained 
in the case of pipes with both ends supported (Section 3.2.1). 

- 
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Figure 6.14 Dimensionless eigenfrequencies w* for in-plune motion of a clamped-clamped 
semi-circular pipe conveying fluid as functions of the dimensionless flow velocity ii*, for = 0.5: 
_ _ -  , Chen (19724; -, conventional inextensible theory (Misra et al. 1988a); - * ~- , modified 

inextensible theory (Misra et a l .  1988a). 

Now, as shown in Figures 6.10 and 6.12, the differences between the full extensible 
theory and the version in which the extension of the centreline [ S e ( r f  + Oq;)] is ignored 
are small, especially in the first mode; and this is the mode in which the system, according 
to the conventional inextensible theory, would lose stability. Hence, insofar as in-plane 
motions are concerned, the effect of neglecting extensibility of the centreline is small, 
and the modified inextensible theory provides a reasonable approximation to the results 
obtained by the full extensible theory, at considerably smaller computational cost. 
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Figure 6.15 Dimensionless eigenfrequencies w* for in-plane motion of (a) a pinned-pinned and 
(b) a clamped-pinned semi-circular pipe conveying fluid as functions of the dimensionless flow 
velocity E*, for B = 0.5: - - -, Chen (1972a); -, conventional inextensible theory (Misra et al. 

1988a); - * - , modified inextensible theory (Misra et al. 1988a). 

In the case of out-of-plane motion these two theories become identical. A sample result 
is shown in Figure 6.16. Similarly to in-plane motion, the out-of-plane eigenfrequencies 
change very little if the combined steady force l7 is properly taken into account, and the 
system does not lose stability by divergence, in contrast to predictions of the conventional 
inextensible theory. 

6.4.4 More intricate pipe shapes and other work 

All of the foregoing calculations were for semi-circular pipes, although the theory, as 
developed, could be applied to any initially planar pipe form. Some calculations for curved 
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- Figure 6.16 Dimensionless eigenfrequencies versus u* for out-of-plane motion of a 
clamped-clamped semi-circular pipe conveying fluid for B = 0.5, A = 0.769: - --, Chen (1973); 
-, conventional inextensible theory Misra et al. (1988a); -0-  modified inextensible theory 

(Misra et al. 1988a). 

pipes with other arc-angles were conducted by Van (1986) and Misra e ta l .  (1988b). 
However, here a more interesting set of results is presented, obtained by Hill & Davis 
(1974), who, since they obtained solutions via a finite element method also, could analyse 
pipes of any shape. 

Figure 6.17 shows the evolution of first-mode eigenfrequencies of S-, L- and spiral- 
shaped pipes with increasing U, comparing the results of their full extensible theory and 
those with the initial stresses (the equivalent of I7 here) neglected. It is clear that the 
dynamical behaviour of curved pipes with more complex initial shape is essentially the 
same as that of semi-circular pipes. The most important result, in view of the results 
already reported in the foregoing sections, is that if the initial stresses are properly 
accounted for, (i) there is only small variation of w with U, and (ii) there is no loss 
of stability, even for very large E. 

Fan & Chen (1987) undertook an ambitious study of the dynamics and stability of 
helical pipes, which may be found in some newer heat-exchanger designs. They obtain the 
equations of motion in a helical coordinate system via Hamilton’s principle and solutions 
via the finite element method. Unfortunately, however, they make the inextensibility 
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Figure 6.17 First-mode eigenfrequencies w1, as functions of U for an (a) S-shaped, (b) L-shaped 
and (c )  spiral pipe conveying fluid with = 0.231 and d = 1.4 x lo5, for various values of nP: 
-, extensible theory (steady-state forces accounted for); - - -, conventional inextensible theory 

(steady-state forces other than 17, neglected); (Hill & Davis 1974). 

assumption and neglect the steady fluid loading, so that their results are of limited practical 
interest. 

Aithal & Gipson's (1990) main aim was to examine the effect of dissipation on the in- 
plane dynamics of planar curved pipes with various boundary conditions. Unfortunately, 
they too neglect the steady fluid forces and obtain equations similar to Chen's. However, 
their results are additionally questionable since it is predicted that dissipation (modelled 
as a Kelvin-Voigt viscoelastic and a viscous model) causes the system to lose stability 
by flutter rather than divergence at critical flow velocities 35-90% higher than that for 
divergence of the conservative system. Yet, both physically and mathematically, the effect 
of dissipation should vanish as w -+ 0. 

Al-Jumaily & Al-Saffar (1990) studied an interesting practical problem of a hook- 
shaped pipe, modelling part of an aircraft fuel line which was prone to failure - but, 
alas, this too was done while ignoring the effect of steady fluid forces. 
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Finally, KO & Bert (1984, 1986) derived a nonlinear equation, under a set of reasonable 
assumptions, for in-plane motion of a circular-arc pipe conveying fluid,+ which they solved 
for the case of clamped ends by the method of multiple scales. They use the inextensibility 
assumption but take into account the steady fluid forces - similarly to the Misra et al.  
modified inextensible theory. In a sample calculation, KO & Bert (1986) find that the 
frequency of the first asymmetric mode [Figure 6.7(a)] increases with the flow velocity. 
Furthermore, the frequency displays a strong softening behaviour (Le. it decreases with 
increasing amplitude). 

6.4.5 Concluding remarks 

As shown by the results of Figures 6.11 and 6.12 for in-plane motions and Figures 6.13 
and 6.16 for out-of-plane motions, differences in the dynamical behaviour as predicted 
by the modified inextensible and extensible theories are either small or virtually zero, 
whereas this behaviour is dramatically different from that predicted by the conventional 
inextensible theory. 

It is clear that the main difference between the extensible theories and the ‘traditional 
inextensible’ theory is not the extensibility of the centreline at all, but rather whether the 
combined steady axial force no is taken into account or not. This resolves the apparent 
paradox that, although it is physically obvious that the actual extension of the centre- 
line cannot be very large, the differences in predicted behaviour between (conventional) 
inextensible and extensible theory are so profound: the first predicts loss of stability by 
divergence and pronounced eigenfrequency-flow effects, whereas the second predicts no 
loss of stability and weak frequency-flow effects. It has now been clarified that the use of 
the ‘inextensible’ and ‘extensible’ labels is rather misleading, as are those of ‘constant’ 
and ‘variable curvature’ utilized by Doll & Mote; the real source of the discrepancy lies 
in the fact that conventional inextensible theory also neglects all steady stress effects (Le. 
all steady flow-induced forces). 

Unfortunately, there are no experimental data for curved pipes, apart from those of Liu 
& Mote (1974) already discussed in Section 3.5.6. In these experiments, however, the 
curvature was relatively small and inadvertent. The variation of the fundamental eigen- 
frequency with flow was nevertheless compared with various versions of their theory 
by Doll & Mote (1976); it was found that, if anything, the experimental results up 
to a certain maximum U* agreed better with those of Doll & Mote’s ‘constant curva- 
ture’ analysis (which corresponds to inextensible theory) than with extensible theory. 
As seen in Figure 3.26, the frequency varies with U essentially as predicted by the 
conventional inextensible theory! This paradox, which has ever since cast doubt on 
the validity of the extensible, and hence also the modified inextensible, theory is resolved 
at the end of Section 6.6. However, proper experiments with curved pipes remain to be 
done - recognizing, nevertheless, that this is not a simple task. 

Until then, since there is no reason why the effect of steady fluid forces on the dynamics 
of the system should be neglected, and as convincingly argued by Dupuis & Rousselet 

‘According to Dupuis & Rousselet (1992), their equations of motion ‘are free of the Coriolis force and 
with some linear terms that are neither accounted for in their analysis, nor found in any other analysis’. The 
Conolis terms were in fact omitted intentionally (Bert 1996), presumably because the theory was to be applied 
exclusively to conservative pipe systems (pipes with clamped ends). 
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(1992), it is concluded that the dynamics of pipes with supported ends is as predicted by 
extensible or modified inextensible theory (Doll & Mote’s, Hill & Davis’, Misra er al.’s 
and Dupuis & Rousselet’s). 

6.5 CURVED CANTILEVERED PIPES 

It would be tempting to assume in this case that the pipe is inextensible, as for straight 
pipes conveying fluid, yet to take into account the steady-state initial loads; by this 
thinking, the use of the modified inextensible theory would at first sight appear to be 
ideal. It should be realized, however, that under the action of the flow, the shape of the 
curved pipe varies continuously and substantially (not as shown in Figure 6.9, because 
here one end of the pipe is unrestrained); thus, an initially semi-circular pipe will become 
considerably shallower as the critical flow velocity is approached. Hence, properly, the 
shape and the loads for any given U should be determined first, and then the stability 
of the deformed pipe assessed. Furthermore, since deformed and initial shapes are likely 
not close, a nonlinear analysis is called for in determining the deformed shape and the 
steady-state stresses in that state,+ which is not a trivial task; as a result, this type of 
analysis has virtually never been done in its entirety. 

In this light, the analysis of stability of a semi-circular pipe by means of inextensible 
theory amounts to saying that it is the study of stability of a family of pipes, each of 
a different and unspeciJied initial shape, which, under the action of flow, all become 
semi-circular at the appropriate set of values of U. With this artifice, one could consider 
the dynamical behaviour as predicted by the modified inextensible theory developed in the 
foregoing. The weakness in this, however, is that the steady-state loads would be deter- 
mined on the assumption of small deformations away from a semi-circular shape, initially 
unstressed at U = 0, which is at variance with the assumption made regarding shape, 
increasingly as U is augmented. 

On the other hand, the use of the conventional inextensible theory is wholly inappro- 
priate because, in addition to the question of shape of the pipe, one would have to imagine 
that the system is magically annealed or otherwise massaged at each U concerned so as 
to eliminate the steady stresses in the deformed pipe. For this reason, no results obtained 
by the conventional inextensible theory are presented, except by way of comparison with 
those of the modified theory. Otherwise, suffice it to say that Argand diagrams obtained by 
Misra et al. and Chen (1973) via the conventional inextensible theory of a semi-circular 
pipe are in qualitative but not quantitative agreement [e.g. Misra et al.  (1988a; Figure 5 ) ] .  

6.5.1 Modified inextensible and extensible theories 

Some results are presented, obtained via the modified inextensible theory and the exten- 
sible theory. Before doing so, however, it is of interest to show one typical Argand diagram 
for a straight pipe, obtained by the methods developed by Misra et al. for R, +. 00, shown 
in Figure 6.18. These results (i) lend further support to the validation of the finite element 
scheme, by showing near-perfect agreement with analytical results for a cantilevered pipe, 
and (ii) demonstrate the power of this finite element scheme, in the following sense: with 
only 6 finite elements, the eigenfrequencies of the lowest three modes could be predicted 

+These comments agree with the careful analysis of the problem by Dupuis & Rousselet (1992). 
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to within 2.5%. Calculations were done with both in-plane and out-of-plane versions of 
the theory, which for straight pipes should give identical results. The in-plane version was 
nevertheless found to give superior agreement with analytical results for the same number 
of elements, presumably because of the use of quintic as opposed to cubic interpolation 
functions. 

Sample Argand diagrams for in-plane and out-of-plane motions of a semi-circular pipe 
obtained by the modified inextensible theory are shown in Figures 6.19 and 6.20, where 
they are compared with those obtained by the conventional inextensible theory. Both 
theories predict divergence followed by flutter at higher P for in-plane motions, and only 
flutter for out-of-plane motions (although divergence in the first mode almost occurs). 
The critical flow velocity for in-plane divergence is approximately the same (Figure 6.19) 
according to the two theories, ii$ 2: 0.7, in contrast to the results for clamped-clamped 
pipes. However, the critical flow velocities for flutter are much lower according to the 
modified inextensible theory: 2:f cx 1.3 for in-plane motions and Z:f E 0.8 for out- 
of-plane motions, versus 4.2 and 3.5, respectively. The differences are large but not 
surprising, in view of the dramatic effect that accounting for the steady fluid forces has 
been found to have on the dynamics of pipes with both ends supported (Section 6.4). 

0 2 4 6 8 10 
Re (a*) 

Figure 6.19 Argand diagram for the lowest four eigenfrequencies for in-plane motion of a 
cantilevered semi-circular pipe conveying fluid for /? = 0.75: -0-,  conventional inextensible theory 
(l7 = 0); - 0 - , modified inextensible theory (I7 # 0). The two sets of results sensibly coincide 

for the first mode, so only one is shown (Misra et al. 1988a). 
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Figure 6.20 Argand diagram 
cantilevered semi-circular pipe 

inextensible theory; - 

for the lowest four eigenfrequencies for out-of-plane motion of a 
conveying fluid for = 0.75 and A = 0.769: -0-, conventional 

- 0 - , modified inextensible theory (Misra et al .  1988a). 

These results, together with others obtained by the modified inextensible theory, are 
summarized in Table 6.1. It is seen that a smaller subtended angle 0 has a strong stabi- 
lizing influence. On the other hand, ETf appears to be a weak function of p, in contrast 
to straight pipes. The results obtained are likely qualitatively sound (cf. those obtained 
by extensible theory, to be discussed next), except for the prediction of loss of stability 
by divergence for in-plane motions. This may well be a by-product of the limitations of 
the theoretical model; it appears more physically reasonable that, if the pipe can deform 
freely under the action of the steady flow, the predicted divergence will devolve into a 
gradual and continuous change of shape with increasing flow. 

One case of in-plane motions of a semi-circular pipe was analysed by Doll & Mote 
(1974) by means of their extensible theory, for p = 0.5 and R/a  = 40, where a is the 
radius of gyration of the pipe about its centreline. It is predicted that the system loses 
stability by flutter in its second mode at UTf = 0.6, as well as by divergence in its first 



456 SLENDER STRUCTURES AND AXIAL FLOW 

Table 6.1 Critical flow velocities for divergence, ZY;,, and flutter, E:,., of a 
cantilevered pipe according to the modified inextensible theory for A = 0.769 
and varying B and the angle 0 subtended by the curved pipe (Van 1986; Barbeau 

1987; Misra et al. 1988a); the asterisk denotes that the result is unavailable. 

In-plane motion Out-of-plane motion 
1; -* - 

0 B 
4 d  ‘ r f  U c f  

;IT 0.25 1.5 2.2 1.7 
n 0.25 0.7 1.2 
n 0.50 0.7 1.3 
n 0.75 0.7 1.3 0.8 
;n 0.50 0.4 1.5 

1.9n 0.50 0.3 1.9 

* 
* 

* 
* 

mode at ii:f 2 0.9; these values are of the same order of magnitude as those in Table 6.1, 
although the sequence of the instabilities is reversed. However, these results are ques- 
tionable, as pointed out by Dupuis & Rousselet (1985, 1986): (i) there appears to be an 
error in the nondimensionalization, so that the values of w* (even for U* = 0) are quite 
different from those of Dupuis & Rousselet (1985) and Misra et al. (1988a,b,c), which 
agree; (ii) more seriously, even the ratio w;/w;  at U* = 0, which should be 2: 3, is 2: 5.7 
in Doll & Mote’s results. This is why the figure in question is not presented here. 

Dupuis & Rousselet (1985) attempted to reproduce Doll & Mote’s results, using their 
own extensible theory, without success. This was partly because of the aforementioned 
discrepancy in the values of w, but also because they were unaware of (a) a typographical 
error in Doll & Mote (1974) which made it appear that p = 1 instead of j3 = 0.5, and 
(b) the fact that, despite using ;ij = (M/EZ)’/2Ua as the dimensionless flow velocity in 
their analysis, a being the radius of gyration of the pipe about its centreline, Doll & 
Mote used ii* as defined in equation (6.108b) in the presentation of their results. The 
latter can easily be fixed, since U* = (R/a)V. The former, however, meant that Dupuis & 
Rousselet’s Argand diagram was for B = 1. 

Once the typographical error was pointed out in discussion by Paidoussis (1986b), a 
new eigenvalue Argand diagram (cf. Figure 2.10) was generated in Dupuis & Rousselet’s 
response, given here as Figure 6.21. Once converted, the critical flow velocities are ii:f = 
0.44 and, possibly, ii:d 2: 0.64; thus the dynamical behaviour is qualitatively similar to 
Doll & Mote’s, but the critical values of ii* are considerably lower. In this regard it should 
be mentioned that in Dupuis & Rousselet’s original calculation for B = 1 a lop2 factor 
was forgotten in the Argand diagram presented (Dupuis 1997).+ 

Finally, Aithal & Gipson (1990) looked into the effect of dissipation on the dynamics 
of cantilevered systems. Although they use conventional inextensible theory, their results 
are nevertheless discussed here because they are so bizarre; so much so, that the authors 
themselves characterize them as ‘highly intuitive’ and ‘anomalous’. For instance, for 
0 = $IT and ~ T C ,  they find that some modes ‘fail’, so that in these modes ‘it is not 
possible to sustain flow’ and ‘the pipe will experience a flutter type oscillation under 
arbitrarily small values of fluid velocity’; the authors, however, insist that these results 
are correct (Dupuis & Rousselet 1991b). 

+As presented, the critical flutter flow velocity of Gcf E 6.5, when converted, results in the enormous value 
of iP 2 280! 
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, 

Figure 6.21 Argand diagram of the lowest two eigenvalues hj = wji ,  j = 1, 2, for in-plane motion 
of a semi-circular cantilevered pipe conveying fluid, as functions of V defined in the text, for 

= 0.5, R / a  = 40, according to extensible theory (Dupuis & Rousselet 1986). 

The purpose of this rather tedious discussion is to show that most of the results for 
cantilevered pipes conveying fluid are tinged with uncertainty: those obtained by the 
modified inextensible theory (Misra et al. 1988a) because of the limitations of that theory, 
those by the extensible theory (Doll & Mote 1974; Dupuis & Rousselet 1985, 1986) by 
other worrisome features, and those on the effect of dissipation (Aithal & Gipson 1990) 
for several reasons. 

However, taking all the results together, a number of common features emerge which 
lead to the following consensual, reasonably well-founded conclusions: (i) unlike for 
curved pipes with supported ends, the eigenfrequencies of cantilevered pipes are strongly 
dependent on E*, just as they are for straight cantilevered pipes conveying fluid; (ii) for 
sufficiently high E*, the system loses stability by divergence or flutter depending on 
the theory used for in-plane motions, and by flutter for out-of-plane motions; (iii) for 
reasonable values of /?, the critical flow velocities for loss of stability are in the range of 
- U F  2: 0.4-0.8. 

6.5.2 Nonlinear and chaotic dynamics 

Steindl & Troger (1994) studied the nonlinear in-plane dynamics of curved pipes as an 
extension of Champneys’ (1991) work discussed in Sections 5.6.2 and 5.8.5. Instead of 
an articulated system they use a continuously flexible one, and instead of the initial angle 
between the two articulations as the secondary bifurcation parameter (the primary being 
the flow) they use the pipe initial curvature, K: = L/Ro = 0,. The equations of motion are 
derived by means of director rod theory (Buzano et al.  1985; Simo 1985). The pipe centreline 
is assumed to be inextensible, but changes in shape with increasing flow (i.e. the effects 
of steady fluid forces on the dynamics) are taken into account, as shown in Figure 6.22. 
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Figure 6.22 Planar states of the initially curved pipe, showing (1) the initial, unstrained shape 
(0, = 6) under zero gravity and ii = 0; (2) the shape under gravity and U = 0; (3) the shape at 
the Hopf bifurcation, U = U, = 5.9; (4) the shape where the homoclinic orbit occurs, E = i i h  8.5 

(Steindl & Troger 1994). 

Figure 6.23 (a) The stability boundary in the (u, @,)-plane; at ii = Ucl a supercritical Hopf 
bifurcation occurs; the system is stable for [Ec,, iic2], and then loses stability again, in the same 
way, at ti = Ecj; (b) the corresponding equilibrium pipe shapes. (c) The phase-plane diagram of 
the tangent to the end of the pipe B(L) at E = i i h  rx 8.5, corresponding to the small region 

u = 8.5,  0, 2: 6 in (a), where a homoclinic orbit occurs (Steindl & Troger 1994). - 
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The derivation of the equations of motion is very compact, in six short steps, 
and so are the calculations of the equilibrium state leading to Figure 6.22 and of 
the stability boundary for motions about the equilibrium. It is shown that stability is 
lost by a supercritical Hopf bifurcation, which in the (2, @,)-plane of Figure 6.23(a) 
displays interesting behaviour for 0, 2 4.5. The initial Hopf bifurcation is at 2,l; the 
system regains stability between Uc2 and Uc3 and then loses it again at 2,3 via another 
supercritical Hopf bifurcation. 

The infinite dimensional system is then discretized into a 10-degree-of-freedom one 
by a finite difference scheme and reduced to a four-dimensional inertial manifold (Foias 
et al .  (1988); Brown et al.  1990; Dubussche & Marion 1992; Foale et al.  1998). Then, 
making use of the similarity in shape between curve 4 in Figure 6.22 and that at Uc3 
in Figure 6.23(b), it is shown that a homoclinic orbit exists in the small isolated curve 
on the upper part of Figure 6.23(a) near U = 8.5, 0, = 6, signalling the possibility of 
chaotic motions in that neighbourhood. In Figure 6.23(c) is shown a phase-plane diagram 
characteristic of homoclinic behaviour: the pipe oscillates about the focus with increasing 
amplitude at one frequency, then makes a large amplitude excursion and returns back to 
the focus, oscillating now with decreasing amplitude at another frequency. 

Steindl & Troger’s is an important contribution, for not only does it demonstrate the 
possibility of interesting nonlinear dynamical behaviour, but it also reinforces the view 
expressed elsewhere in Section 6.5: the shape of the pipe is a strong function of the 
flow velocity and, hence, linear analysis on its own cannot hope to capture the essential 
dynamics of cantilevered curved pipes conveying fluid. 

6.6 CURVED PIPES WITH AN AXIALLY SLIDING END 

Since fully clamped pipes are always stable if steady forces are properly accounted for, 
whereas cantilevered ones are not, the question arises as to the dynamical behaviour of 
the intermediate case of a pipe with a transversely or axially sliding end. This question is 
also of some practical interest; for example, U- or Q-shaped thermal expansion joints are 
by design not fully clamped. Some such cases were considered by Barbeau (1987) and 
Misra et a1. (1988b). 

Four different types of sliding ends were studied, shown in Figure 6.24: a transversely 
sliding end, and three slightly different types of axial sliding; they were analysed either 
by the modified inextensible theory or by the fully extensible form of the theory, essen- 
tially as in the foregoing. The equations are the same as in Section 6.2 and only the 
boundary conditions for in-plane motion differ. For example, the boundary conditions 
for the system of Figure 6.24(a) are aql/a( = ar /2 /a< = 0, while those for (b) are zero 
rotation (aql/a( + 0 1 1 3  = 0) and moment (A, = 0); after physical interpretation and use 
of the inextensibility condition, these lead to 

at < = 1; the corresponding values of the combined force l7 are also generally different. 
Out-of-plane sliding has not been considered: the boundary conditions for out-of-plane 
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Figure 6.24 Curved pipes with one end clamped and the other sliding: (a) transverse sliding; 
(b)-(d) three variants of axial sliding. 

motion are the same as for clamped-clamped pipes; hence, out-of-plane motions will not 
be discussed here further. 

6.6.1 Transversely sliding downstream end 

The dynamics of this system is very similar to that of clamped-clamped pipes, showing: 
(a) very slight variation of the eigenfrequencies with flow, and (b) no loss of stability as 
u is increased. This is surprising at first sight. However, on reflection this is not quite so, 
since (i) the steady forces prevent loss of stability by divergence in a similar way as for 
clamped-clamped pipes, and (ii) the slope at the sliding end remains zero and hence, by 
similarity to straight cantilevered pipes, the system cannot develop flutter. 

- 

6.6.2 Axially sliding downstream end 

A typical Argand diagram obtained by the modified inextensible theory for in-plane 
motions of a quarter-circular pipe conveying fluid and supported as in Figure 6.24(b) is 
shown in Figure 6.25. It is seen that the system loses stability by divergence at E$ 2 3.7 
and by flutter at ETf 2: 6.0. The dynamics of a semi-circular pipe is qualitatively similar, 
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Figure 6.25 Argand diagram of the four lowest eigenfrequencies for in-plane motion of a 
clamped-axially-sliding quarter-circular pipe of the type of the type of Figure 6.24(b) conveying 

fluid, as functions of E*, for /3 = 0.5 (Barbeau 1987). 

but in this case ii:d 2 1.5 and iicf 2 5.5. The behaviour of pipes with a sliding downstream 
support of the type shown in Figure 6.24(c,d) is similar, but quantitatively a little different. 
However, a disturbing aspect of these results is that they have been found to depend 
(quantitatively only) on the method of calculation of l7* - two methods having been 
considered, apparently both correct (Misra et al. 1988b); this casts some doubt as to the 
quantitative aspects of the results. 

Calculations with the full extensible theory [no # 0, d(r$’ + Or!) # 01 show only 
flutter: for the quarter-circular pipe at Z:f E 2.9; for the semi-circular pipe at Zzf 2 0.99, 
as shown in Figure 6.26 (Misra et al .  1988b). Thus, the predicted dynamical behaviour 
is quite different. 

In conclusion, it may be said that, despite several questions remaining unresolved, it is 
clear that, if axial sliding is permitted, the system behaves in a manner reminiscent of a 
curved cantilevered pipe: its eigenfrequencies are strongly dependent on the flow velocity 
and the system eventually loses stability at high enough flow. 

Incidentally, it is also observed that the variation of the first-mode frequency with flow 
in Figure 6.25 (and similar ones for other 0) as predicted by the modified inextensible 
theory and for ii* 5 2.8 in Figure 6.26 is qualitatively similar to that of the conventional 
inextensible theory for clamped-clamped pipes. This offers a plausible explanation as to 
why the dynamics of slightly curved pipes in the experiments by Liu & Mote (1974) 
paradoxically appears to be in better agreement with conventional inextensible than with 
extensible theory [see Figure 3.26 and Doll & Mote (1976)l: in both theories axial sliding 
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Figure 6.26 Argand diagram for the lowest three eigenfrequencies w for in-plane motion of a 
quarter-circular clamped-axially-sliding pipe conveying viscous fluid as functions of E* for /3 = 0.5, 
d = lo4, according to extensible theory [no # 0, d(rf + @$) # 01, (Misra et al .  1988b). 

was prevented, while the experiments were designed to permit it (Section 3.4.4). In view of 
the foregoing, it is now clear that, once axial sliding is permitted in the theory also (while 
still accounting for steady forces), the theoretical variation of frequency with flow will 
be much more like the experimental one:+ experimental observations no longer disagree 
with extensible and modified inextensible theory. 

+Note that li* in Figures 6.25 and 6.26 corresponds to u / x  in Figure 3.26. 



Appendix A 
First-principles Derivation of the 

Equation of Motion of a Pipe 
Conveying Fluid 

Consider the system of Figure A.l(a), free to oscillate in the horizontal ( X ,  ZJ-plane, so 
that gravity is inoperative. Externally imposed tension and pressurization effects are not 
present and, for simplicity, dissipative effects are neglected. Elements of the fluid and the 
pipe of length 6x are shown in Figure A. 1 (c,d), with the forces and moments at the ends 
apportioned slightly differently from Figure 3.6. 

The acceleration of the fluid element (still making the plug-flow approximation) is 
derived by the standard dynamics approach, following Ginsberg (1973). An inertial refer- 
ence frame ( X ,  Y ,  2)  with Y into the plane of the paper and unit vectors I, J, K, 
and an (x, y ,  :) frame embedded in the pipe element with unit axes i, j, k are utilized 
[Figure A. 1 (b)], together with the expression 

af = a0 + I, x r + 2 0  x v,,1 + o x (o x r) + arel. (A. 1 )  

which may be found in any book on dynamics [e.g. Meriam (1980)l; o is the angular 
velocity of the pipe (and of the (x, y ,  2 )  frame) with respect to the inertial frame, and the 
subscript ‘rel’ denotes quantities relative to the (x, y ,  z }  frame. The various components 
of (A. 1 ) may be expressed and then approximated according to the assumptions made in 
Section 3.3.1 as follows: 

a’u azw a’ U’ aw 
at’ a t2  at’ as 

a0 = - I +  - K  2: -K,  v ,~  = Ui = U cos @ I +  U sin @ K z  U I +  U - K ,  

(A.3) 

dU U 2  dU dU aw , a2w a@ 
as dt vn dt dt as 8s’ :t ($) J, arel = - i  + - k 2 - I +  - - K + U -  ~ K, _- J z  _ _  

assuming a positive (counterclockwise) rotation, a@/& it is also noted that r, the distance 
from the origin of {x, y ,  z )  to other points within the element is of second order smallness, 
so that the second and fourth terms of (A. 1) are negligible. Hence, (A. 1) may be written as 

correct to O ( E )  - which is the same as equation (3.28). 
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Figure A.1 (a) Diagram of the pipe under consideration oscillating in a horizontal plane; 
(b) definition of coordinate systems and displacements; (c,d) an element of the fluid and of the 

pipe, respectively, with the forces and moments acting thereon. 

Force and moment balances in the z- and x-directions, as in Section 3.3.2, after simpli- 
fication and substitution of s 2: x, give 

+M 

a dU 
ax dt 
-((PA - T )  + M  - = 0. 

Integration of (AS) from x to L and substitution in (A.4) gives 

a2 a2w 
axat at2 

+ 2MU __ + ( M  + m )  - = 0, 

which is the same as equation (3.38) once terms involving T ,  7, g, c and E* have been 
deleted. 

The same equation was obtained by Ginsberg (1973). His derivation, however, is flawed 
in two ways. (i) Having approximated i 2 I, irrespective of order-of-magnitude consid- 
erations, the second terms of v,~ and arel in (A.2) are absent, and hence so is the last 
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term in (A.3); this missing term leads to one equal to M(dU/dt)(aw/ax) in the equation 
of motion. (ii) The third term in the equivalent to (A.4) in Ginsberg’s derivation is also 
missing, which, after substitution of (AS) in it, leads to a term -M(dU/dt)(&v/ax) in the 
equation of motion. These two missing terms cancel each other out and hence, fortuitously 
but fundamentally erroneously, the correct equation of motion was obtained! 



Appendix B 
Analytical Evaluation of bsr, csr 

and dsr 

The method - or at least a method - for the analytical evaluation of the constants defined 
by equation (3.87) is illustrated here, first for bsr. 

Let us re-write 

which, after successive integration by parts, yields 

the last integrand may be written as @;A:& which leads to 

(B.2) 

This can be evaluated for any particular set of the standard boundary conditions. Thus, for 
acantileveredpipe, &(l)  = 2(-1)r, 4:(1) = 4:(1) = 0, and@,(O) = &(O) = 0, @:(O) = 
2h:, and similarly for 4s (Bishop & Johnson 1960; Blevins 1979). Hence, after some 
manipulation, equation (B.2) gives 

1 - P s r  = [ l ; + r 4 s  - 4;4: + 4:4: - ~ ~ ~ Y I I O .  

For r = s, this clearly gives 
brr = 2. (B.4) 

Working in a similar manner, the other entries of Table 3.1 may be determined - at 
least for r # s. For r = s, however, some of the expressions obtained with r # s become 
singular and have to be determined in another way. An example is cSr which is zero for 
pinned (simply-supported) ends and 
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for clamped ends - clearly indeterminate for r = s. Hence, here a method will be 
presented for the evaluation of err, which may be written as 

(BSc) 

(B.5d) 

Multiplying each of these by h: and adding them together gives 

I 
4 I 2  4h4ci-r = [h:4:4r + 4:4;11: + 1 [2h:4:4r - Ar(4,) - (@:")'I dt.  (B.6) 

0 

Now, for any 4r = A cos(h&) + B sin(A,.() + C cosh(A&) + D sinh(h,(), it is easy to 
verify that the integrand in (B.6) is equal to 2h:[-A2 - B2 + C 2  - 0'1. Hence, 

4h4crr = [A:&$,. + 4:&!']1: + 2h:[-A2 - B2 + C2 - D2] .  03.7) 

For a clamped-clamped pipe, 4,. and 4; are zero at both limits, while 4:(1) = 2h;( -1)r+1,  
q ( 1 )  = 2h)cJr(-1)r+', 4:(0) = 2h:, &"(O) = -2h)ar,  A = -1, B = CJ,, C = 1, D = 
-ur, leading to 

err = h,a,(2 - h,a,). (B.8) 

For a pipe with pinned ends, @r = 1/2 sin Art, with A, = m, the 1/2 factor ensuring 
orthonormality. In this case, it follows easily from (B.7) that 

(B.9) 2 c, = - A r .  



Appendix C 
Destabilization by Damping: 
T. Brooke Benjamin’s Work 

An attempt to explain the phenomenon in simple terms was made by Benjamin (1963). 
A one-degree-of-freedom mechanical system subject to fluid flow is considered, 

m q + c q + k q = Q ,  Q = M i j + C q + K q ,  (C. 1) 

where the generalized force Q is associated with fluid forces. Consider then an impulsive 
disturbance applied to the solid at t = 0; the work done on the solid by the fluid forces is 

(C.2) 

This is also the energy lost by the fluid, from the unbounded store of kinetic energy 
possessed by the flow, so that 

.=I’ Qq dt = i M q 2  + iKq’ + C I‘ q2 dt. 

% = T +  V - W = i (m-M)q2 + i (k-K)q  2 - C L  q’dt (C.3) 

is the total energy of the whole system relative to the original quiescent state. 

d%/dt 5 0 or 
Assuming that the fluid is inviscid, energy can only be dissipated by the solid, and so 

where ‘eo is the energy level immediately after the initial disturbance. As compared to 
the total energy 73,  which is not directly changed by the irreversible energy transfer 
proportional to C, a more useful measure of the degree of excitation is what may suitably 
be termed as ‘the activation energy’ E ,  which is the sum of % and the energy transferred 
to the solid by the nonconservative hydrodynamic forces, i.e. 

( C . 3  

This is also the energy, relative to the quiescent state, involved in conservative energy 
exchanges between the kinetic and potential energies during oscillation. Combining (C.4) 
and (C.3,  

(C.6) 

E = % + C  q 2 d t = i ( m - M ) q 2 + i ( k - K ) g .  2 I t  

E - = (C - c ) L ‘  q’dt, 
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which is the difference between the nonconservative energy transfer to the solid and 
dissipation within it. Hence, this represents the balance of energy converted irreversibly 
by the disturbance (not the actual gain in energy by the solid, since the conservative forces 
may also contribute to this). 

Benjamin (1963) then considered three cases, corresponding to his three classes, A, B 
and C, of instability of compliant surfaces subjected to fluid flow. 

(i) Case of rn > M ,  k > K .  If c = C = 0, a simple harmonic solution with w = [ ( k  - 
K)/(rn - M)]’”  is obtained, and % = E = i ( k  - K)G2, where 4 is the amplitude. The 
total energy level is positive. For finite but small c and C, on the other hand, the 
frequency is little changed, but the oscillation is amplified for c < C, which means that 
the rate of irreversible energy transfer from the fluid to the solid exceeds the mean rate 
of dissipation - by reference to (C.6). The activation energy, E 2: i ( k  - K)G2, must 
be positive to begin with (i.e. a positive %O must be added in generating the distur- 
bance) and if C > c it steadily increases, even though 8 steadily decreases in view of 
(C.4). The energy of the initial excitation %O is eventually lost and 8 becomes nega- 
tive, but the disturbance continues to grow, because this is more than compensated by 
the transfer to the disturbance of energy by the infinite store in the fluid. This mech- 
anism exemplifies Benjamin’s (1960, 1963) class B instability, in which dissipation is 
stabilizing. 

The case of class C, or Kelvin-Helmholtz, instability will not be considered here and 
we go directly to a situation exemplifying class A instability. 

(ii) Case of m < M and k < K .  For c = C = 0 we once more have simple harmonic 
motion with frequency w, but now the energy level of the disturbance is % = -; ( K  - k)G2 
and so is negative. This means that the absolute energy level of the whole sistem must 
be reduced in the process of creating a free oscillation: i.e. the system must be allowed 
to do work against the external forces providing the excitation. For small and finite c and 
C ,  oscillations are now amplified if c > C and damped if c < C. Thus dissipation and 
energy transfer in this case have opposite effects as compared to (i). In particular, the 
effect of dissipation is always destabilizing. A physical interpretation is again provided by 
(C.6). The activation energy E 2 - i ( K  - k)G2 is negative when the disturbance is first 
created (i.e. %O < 0) and the amplitude of oscillation grows progressively by increases in 
the negative magnitude of E for c > C .  The significance of E is perhaps made clearest 
as follows. Suppose that the irreversible processes were suddenly stopped, so that the 
oscillation continued at constant amplitude 4. Then E is the absolute energy level of 
the system if the same oscillation had been excited by external forces, and we know 
from the discussion above that E is essentially negative, increasing in magnitude with q. 
Hence it is readily appreciated that dissipation is destabilizing since it lowers the absolute 
energy level. 

The preceding theoretical model provides the simplest possible demonstration of how 
the removal of energy by dissipation may destabilize a system. However, the system of 
equations (C. 1 )  for case (ii) is more mathematical than physical since, for destabilization, 
rn < M is required; but M is the negative of the added mass [Section 2.2.l(a)], and so 
for a physical system M < 0 always, while m > 0, rendering rn < M impossible. Hence. 
an ‘ordinary’ one-degree-of-freedom system cannot be destabilized by dissipation; two 
modes and a travelling wave component in the motion are necessary (cf. Sections 3.2.2 
and 3.5.6). 
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Benjamin (1963) recognized this and so considered next a system which is unbounded 
in the flow direction, x ,  and which is disturbed by a sinusoidal wave travelling in that 
direction - see also Ye0 & Dowling (1987). The motion within an interval of x may 
be considered to comprise two modes q = qI(t)  sin ax and q = q2(t) cos ax, in which 
q1 and q2 are oscillations in quadrature. Through the action of the flow there may be 
coupling between these two modes, and so q is generally taken to be complex, on the 
understanding that %e(q exp(iax)) describes the physical disturbance. The equation of 
motion is still of the form of (C.l), but now we insist that M < 0, so that m - M > 0 
always; k and K are real, but C can now be complex, C = C,. + ici (cf. the Coriolis term 
in the pipe problem). 

Corresponding to (C.2), the energy transfer W averaged over x is given by the real 
part of the integral of kpq, where p is the complex conjugate of Q. The term i c q  in 
Q makes no contribution to W ,  and so the expressions for % and E in (C.4)-(C.6) are as 
before, except that C is now replaced by C,. Thus, dE/dt takes the sign of C,. - c. 

Representing the solutions of (C.l) by q exp(-ivt), where v is complex, we get 

((2.7) 
2i(c - Cr) 

V =  
2(m - M )  c, 

where R = [4(m - M ) ( k  - K )  + (c  - Cr)’]/G2. It is recognized that instability is indi- 
cated by 4m(v) > 0, where 

r 1 I ? -  

Since m - M > 0, R may be positive or negative, depending on whether k > K or other- 
wise. The following three cases may be distinguished. (a) When R > 0, 4m(v) > 0 for 
both solutions if C,. > c, which from (C.6) corresponds to dE/dt > 0 and hence to class 
B instability, i.e. to case (i) in the foregoing. (b) When -1 < R < 0, one solution is again 
of class B, but the other one is of class A, being unstable for c > C,.. (c) The case of 
R < -1 corresponds to class C instability, not considered here. Therefore, it is clear that 
for -1 < R < 0 and c > C,. the physical system obeys the arguments given in (ii) in the 
foregoing and is thus destabilized by damping. 



Appendix D 
Experimental Methods for 

Elastomer Pipes 

The purpose of this appendix is to present some of the techniques, developed over the 
past 30 years in the author’s laboratories, for manufacturing elastomer pipes, shells or 
cylinders, as well as for determining some of their key physical properties. It is recalled 
that experimentation with elastomer flexible structures translates into low-pressure test- 
rigs, and hence easier experiments than with stiffer bodies, e.g. made of metal. In the 
case of pipes, the home-made ones are far superior to those commercially available, as 
explained for example in Section 3.5.6. 

D.l  MATERIALS, EQUIPMENT AND PROCEDURES 

In most cases, the material used for making the flexible bodies is a room-temperature 
vulcanizing (RTV) silicone rubber (e.g. ‘Silastic E RTV’ made by Dow Corning). It is 
supplied in a two-component kit, and the two fluids, one of which is the catalyst, are 
mixed in the prescribed ratio (typically 1O:l) just before manufacture. The mixture is 
poured into a mould, cured, and then extracted, as described in what follows. Another 
essential item is a liquid agent supplied by the manufacturer for coating surfaces to which 
the silicone rubber should adhere; e.g. the edges of the metal strip sometimes embedded 
in pipes (Figure D.l), which are thus constrained to oscillate in 2-D. A ‘releasing agent’ 
is also available, for coating surfaces on which the silicone rubber should not adhere at 
all, e.g. the inner surface of the mould and the middle length of the metal strip. In what 
follows, we shall continue using the moulding of a pipe as an example; a few words on 
other structures are given in Section D.2. 

Five basic pieces of equipment are required: (i) the mould; (ii) a large injector syringe; 
(iii) a vacuum pump; (iv) a supply of compressed air; (v) a temperature-controlled oven 
(optional). 

A schematic of a mould for a pipe with an embedded metal strip is shown in 
Figure D.2(a). It is basically composed of (a) a split outer mould and (b) a split cylindrical 
core (or, when no metal strip exists, a whole cylinder). The outer mould is made of two 
solid-block halves; after the interfaces are ground flat, semicircular grooves are carefully 
milled in each with a ball end-mill, so as to produce a fine finish. Similar care should be 
taken to make sure that the split core when sandwiching the metal strip is cylindrical and 
of the required diameter. The mould can be made of Plexiglas to allow viewing while 
casting or, for better dimensional tolerances and robustness, of brass. The alignment of 
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Embedded 
metal strip 

Figure D.l Cut-away view of a pipe with an embedded metal strip - typically of 0.005in 
(0.127mm) feeler gauge. The holes are for equalizing the pressure in the two channels during 

flow testing, in case of small asymmetries. 

E?\ 

F- _4: 
G 

H 

I 

Figure D.2 (a) Schematic of the mould; (b) schematic of the injection syringe. A, lower 
end-support for connection with injector outlet; B, split cylinder core; C, split outer 
mould; D, reinforcing plate; E, upper end-support for holding overilow; F, injector outlet; 

G, transparent-wall injector; H, injector piston with O-rings; I, threaded rod; J, injector handle. 

the two halves of the mould and of the components of the core is crucial, since it controls 
the quality of the final product: axial symmetry, straightness, central positioning of the 
metal strip, and so on. Hence, tight tolerances should be imposed, and dowel pins used to 
ensure correct assemblage every time. Long Plexiglas moulds should be reinforced with 
metal reinforcing plates. The end-supports serve (a) to support the central core and (b) to 
connect to the injector or collect some overflow (since the silicone rubber contracts a 
little during curing). All surfaces must be thoroughly cleaned and then treated with a thin 
film of either adhering or releasing agent, just before manufacture of the pipe. 

The injector, Figure D.2(b), is an elephant-size syringe - typically IOcm in diameter 
and 30cm long. The two components of the silicone rubber are mixed in a beaker with 
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the aid of an electric drill, and then poured into the syringe, typically filling &-; of 
its volume. Then the top of the injector is connected to a vacuum pump, capable of 
generating a pressure of 0.1 atm approximately, ‘to boil off trapped air in the viscous 
mixture (of the consistency of bread dough), but not low enough to reach the boiling 
point of the silicone rubber itself; hence the piston in the injector must be leak-proof. Air 
is trapped not only by the folding of the mixture during pouring, but also in the form 
of small bubbles trapped during mixing, which cannot rise to the surface fast enough. 
The vacuum is applied and held long enough for the mixture to expand, filling half or 
two-thirds of the injector volume, allowing the larger bubbles to burst and the mixture to 
collapse. This cycle of (a) application of the vacuum, (b) holding it, and (c) releasing it 
gradually has to be repeated - perhaps up to 50 times - until application of the vacuum 
results in no noticeable change in volume. 

The ‘working time’ available before the mixture begins to set varies from one silicone 
rubber to another, but it is typically 1-2 hours. Room-temperature curing takes about 
72 hours, but in a temperature-controlled oven at 160°C this can be accelerated to 1 hour. 

Once the mixture is de-aerated, it is injected into the lower end of the mould slowly, 
so as to rise in it at no more than 0 .5mds .  The mould and injector are arranged in a 
vertical configuration and, usually, remain so connected during curing. 

Extracting the casting from the mould is perhaps the most challenging aspect of the 
manufacturing process. Even with the mould-release agent, the casting does not simply 
slide off the central core, because of the vacuum that needs to be broken between the 
surfaces. An effective way is to put the pipe, with the core in it, on a long V-block and 
then apply compressed air (at no more than - 140psi or 1 MPa) at one end, to slightly 
expand and lift the pipe off the core; a little water lubrication helps to then draw the core 
out from the other end. In the case of a split core, the first half is removed in this way, 
but the second one has to be painstahngly eased out mechanically, by tapping it with a 
smaller rod carefully, so as not to damage the bond between the metal strip and the pipe. 

Lower-quality, but easier to manufacture pipes and cylinders may be cast in glass tubes 
which, after curing, are broken and the core removed in the manner just described. The 
weakness here is the imperfect uniformity and straightness of the glass tubes. 

For cantilevered pipe experiments, it is best to make the free end ‘square’ to the long 
pipe-axis at manufacture. If cutting a piece of the free end becomes necessary, however, it 
should be done with great care. A good way is to sandwich the pipe between a close-fitting 
rod inside and a shorter pipe outside with a square-cut end, then to slice the elastomer 
pipe with a sharp razor, slowly and with minimum local deformation. 

D.2 

For short pipes and shells it is more important than for other pipes that, in the experiments 
with flow, the transition from the metal supporting structure upstream to the flexible pipe 
be smooth and as disturbance-free as possible. Hence, in such cases an upstream adapter 
is actually cast integral to the elastomer pipe; in the experiments, the adapter is then 
screwed directly into the fluid-supply piping. 

For obvious reasons, cylinders are the easiest to cast, unless they are instrumented; 
instrumented cylinders will be discussed separately in Volume 2. Finally, conical cylinders 
and pipes (such as those in Section 4.1) present no special difficulties. 

SHORT PIPES, SHELLS AND CYLINDERS 
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D.3 FLEXURAL RIGIDITY AND DAMPING CONSTANTS 

A very important thing to know is that boxes or drums of a given type of silicone rubber 
(e.g. Silastic E) have virtually the same physical properties, only so long as they have the 
same ‘Zot number’; otherwise, the properties of items cast from different boxes vary a 
great deal. 

For pipes and cylinders, the two essential quantities to know are (i) the flexural rigidity, 
EZ, and (b) the damping constants: a! for viscoelastic Kelvin-Voigt damping and/or p for 
hysteretic damping (Sections 3.3.2 and 3.3.5). In some cases, and for shells in all cases, 
the Poisson ratio, u, is also needed. 

The most convenient method for determining EZ and the damping constants is from 
planar free-vibration tests on empty cantilevered vertical pipes - vertical because of 
inevitable sagging otherwiset - in which, typically, the first-mode natural frequency, 
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Figure D.3 Real and imaginary components of the first-mode frequency, wl , and the correspon- 
ding logarithmic decrement, 61 : -, ‘exact’ Galerkin solution; - - -, approximate Rayleigh method 

solution (Pai’doussis & Des Trois Maisons 1971). 

+If using very short horizontal pipes to avoid sagging, they may not fulfil the slenderness requirements for 
Euler-Bernoulli theory to apply. 
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Q,, and the logarithmic decrement, 61, are measured. These are then compared with 
the theoretical values, to determine EZ and the damping constants; this is done in an 
indirect manner, as described in what follows, since i21 and 61 are functions of the 
gravity parameter, y. In the experiments the decaying pipe vibration can be sensed by a 
fibre-optic sensor or an optical tracking system (Section 5.8. l), both noncontacting, the 
signal from which can be processed electronically; see also Section D.4. 

The equation of motion of the vertical empty pipe is a simplified form of (3.70), namely 

the complex eigenfrequencies of which, wi = %e(wi) + i.Yjam(oi), and hence the 
logarithmic decrement Ai = 2n9m(wi)/%e(wi), may be found for any y by the method 
of Section 3.3.6(b). In this way, Figure D.3 is constructed, for the first mode, i = 1. 
The dashed line in this figure is from a Rayleigh method approximation, yielding 

However, Figure D.3 is not convenient for determining EZ, since both the abscissa 
and ordinate, i.e. both w1 and y ,  are functions of EZ - cf. equations (3.71) and (3.73). 
Figure D.4 is therefore needed, where it is noted that 

[%e(w)I2/y = (81/52) + (162/13y). 

Y 

Figure D.4 Special diagram for determining the flexural rigidity of heavy, lightly damped 
cantilevers; note split scale for three different ranges of y (Paidoussis & Des Trois Maisons 1971). 



476 SLENDER STRUCTURES AND AXIAL FLOW 

L?1 being the dimensional first-mode radian frequency. Hence, from the measured 521 and 
equation (D.2), the ordinate in Figure D.4 is known, and hence y may be determined; 
then, from the definition of y, here mgL3/EZ, so can EZ. Similarly, from the measured 81 
and Figure D.3, p + &e(wl) may be found. Thus, p may be determined if the damping 
is supposed to be purely hysteretic (a = 0); and so can a, if p = 0 is taken. If both 
are required for a more realistic representation of the damping, then two experiments are 
necessary with different pipes, e.g. pipes of different length. 

The robustness of a particular damping model may be assessed by determining p andor 
a for second- and third-mode vibration also, and then utilizing another figure for these 
higher modes, similar to Figure D.4 and given in Pdidoussis & Des Trois Maisons (1971). 

In some cases, rather than commit oneself to a particular damping model, 81, 82 ,  83 
and so on are determined separately and used directly when comparing with theory - see 
Section D.4. 

Finally, to determine the Poisson ratio, u, a sufficiently large cube of silicone rubber 
is cast, and is then weighed down with progressively heavier blocks, while its vertical 
compression and lateral expansion are measured with dial gauges and fibre-optic sensors. 

D.4 MEASUREMENT OF FREQUENCIES AND DAMPING 

Many different ways for measuring the damping are possible, but the methods described 
here are both simple and efficient. The following pieces of equipment are required: (i) a 
sensor, (ii) a signal recording device; also, optional but very useful are (iii) a small shaker, 
(iv) a band-pass filter, and (v) a digital signal analyser. 

Exciting the pipe by flexing it and then releasing it generally works well for the first 
mode only. Trying to excite the second and third modes in this way is difficult if not 

0 8 
Time (s) 

Figure D.5 The recorded signal for vibration of a pipe in its second mode (in dB) versus time, 
after filtering, from which 82 = [(ln 10)/20](slope)/f2 may be found, where ‘slope’ is the linear 

slope of the decaying peaks. 
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impossible. The optional shaker (which can simply be a small DC motor with a cam and 
a slider) is used to excite the pipe at precisely the frequency of the mode of interest. This 
way, when the shaker is abruptly removed, the pipe oscillates in only the mode concerned. 

The sensor is calibrated to provide a linear response in the range of pipe motion, but 
calibration to real units is not necessary. As mentioned before, a noncontacting fibre-optic 
(‘Fotonic’) or optical-tracking (‘Optron’) system is ideal. The band-pass filter is used to 
remove from the recorded vibration signal components from modes other than that being 
measured. 

A digital signal analyser with FIT capabilities is useful for (i) determining the modal 
frequency from PSD plots and (ii) providing log-amplitude versus time plots, such as 
that shown in Figure D.5, for the determination of Si. In cases where only a few cycles 
of free oscillation are possible, a Hilbert-transform of the signal can be helpful in the 
determination of the decay-envelope slope. In cases where adulteration from other modes 
is strong, the Fl;T of the signal can be edited to remove the unwanted components, and 
then an inverse FFT used to rebuild a clean wave form.+ 

Free-vibration tests are usually sufficiently accurate, but more sophisticated transfer- 
function Nyquist-type analysis can be done to find the logarithmic decrement in the lowest 
few modes with forced vibration tests, using a small shaker and a force transducer (Ewins 
1975, 1985). 

‘The operation is given mathematically by ‘envelope’ = la + i(FF-’[FFT(a) * (-i)]]l, where a is the real 
amplitude. 



Appendix E 
The Timoshenko Equations of 

Motion and Associated Analysis 

E.l THE EQUATIONS OF MOTION 

It is of interest to compare the equations of motion obtained by means of the Newtonian 
approach, equations (4.35) [see also Paidoussis & Laithier (1976) and Pdidoussis et al.  
(1986)l with those developed from Hamilton’s principle by Laithier & Paidoussis (1981). 
These two sets of equations are not identical. 

The derivation of the equations of motion by Hamilton’s principle is not a trivial task; 
indeed it is much more complex and laborious than the derivation relying on Newtonian 
mechanics. From Laithier & Paidoussis (1981), these equations are as follows: 

a2 
at2 

F A  - m -  - ( M + m ) g +  

(E. 1) 
a+ a2w 
ax 8x2 

+(M + m ) ( L  - x)g  - + 6 T(L) -  + k‘GA, 

where T ( L )  may also be expressed as T ( L )  = a,A,, a, being the stress induced by exter- 
nally imposed tension at x = L.  

Comparing equations (4.35) and (E.l), one can see that (i) all the terms associated 
with fluid flow and gravity are identical, and (ii) the principal differences are associated 
with the tension term, T(L) .  The differing terms may be summarized as in Table E.l (for 
S = 1). Here it should be noted that in the dimensionless form of equations (E.l), the 
term To o,/E is introduced - and it appears in the last line of terms of Table E.l; of 
course, since both a, and 3~ are functions of T(L) ,  To and 3~ are not independent, but 
are related through 

TL = T,(E/k’G)A. (E.2) 

The differences in the tension terms appear to be inherently associated with the method 
of derivation of the equations: whether by the Newtonian or by the Hamiltonian approach, 
as discussed by Laithier & Paidoussis (1981). Since it has been impossible to recon- 
cile these differences, a sensitivity analysis was undertaken to quantify their importance, 
insofar as the dynamical behaviour of a pipe conveying fluid is concerned, as discussed 
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Table E.l Terms with differences in equations (4.35) and (E.1). 
~ 

Equations First equation Second equation 

below. Katsikadelis & Kounadis (1983) have conducted a similar exercise in the case of 
a Timoshenko column subjected to a follower force and reached similar conclusions. 

In the calculations (conducted with the TRF theory) a tensile force is imposed on 
a clamped-clamped short pipe and then the eigenfrequencies of the lowest few modes 
are calculated, first with equations (4.35) and then with equations (E.l), to assess the 
importance of the differences in the two sets of equations, as shown in Table E.2. 
The calculations have been conducted for A = 10.6 = 0.5, y = 10, p = o = 0 and T, = 
a , / E  = this corresponds to 9~ 2: 4.88 x lop2. It is noted that To = lop3 is an 
extremely high value; for ordinary steel, for instance, this tensile load is of the order of 
the yield strength of the material. 

The first-mode eigenfrequencies obtained by the two sets of equations are compared 
in Table E.2. It is noted that the absolute values of the discrepancies remain of the same 
order as u is increased (they do not exceed 0.122 for u 5 3.4); however, because the 
frequencies themselves tend to zero, the percentage discrepancies increase with flow, 
reaching 22% just prior to divergence. However, in terms of the critical flow velocity, 
the two sets of equations give virtually the same answer: Urd  = 3.42 by the Newtonian 
equations and u,d = 3.43 by the Hamiltonian ones. Bearing in mind the extremely high 
value of tension utilized in these calculations, it may be said that the differences in the 
results for clamped-clamped pipes - at least from a practical viewpoint - are negligible. 

Similar calculations have been conducted for cantilevered pipes, for the same set of 
parameters, except 6 = 0.3. For the third (critical) mode of the system, the absolute differ- 
ence in the eigenfrequencies is less than 0.20 for u I 4; however, because the absolute 
values of the frequencies in this case do not tend to zero, the percentage differences do 
not increase dramatically with flow, and they remain less than 1%. The differences in 
the critical conditions are also quite small: ucf  = 3.96 by the Newtonian equations and 
u r j  = 3.97 by the Hamiltonian ones. 

Table E.2 Comparison of the first-mode eigenfrequencies of a short clamped-clamped pipe under 
an initial tension obtained by Newtonian and Hamiltonian approaches. 

Flow Newtonian Hamiltonian Absolute difference 
velocity u approach approach (Relative difference, %) 

0.01 w = 9.8414 w = 9.8629 0.02 15 
(0.22) 

2.5 w = 5.7465 w = 5.7788 0.0323 
(0.56) 

3.4 w = 0.5565 w = 0.6778 0.1214 
(21.8) 
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Therefore, the overall conclusion is that, except for extreme conditions, either set 
of equations may be used - leaving aside the thorny question as to which set is the 
correct one. 

E.2 THE EIGENFUNCTIONS OF A TIMOSHENKO BEAM 

Neglecting rotatory inertia and flow effects, equations (4.38) reduce to 

Eliminating q or + from one of these equations, one obtains 

a4+ 1 a4+ a2+ a4q 1 a4q a2q 
a p  A a p a t 2  at* a t 4  A a p a t 2  a t 2  

+--0, (E.4) 

and hence the eigenvalue problem associated with just one of them needs to be considered. 
Letting q = Y (6)  exp(iwt), 1c. = W(4)  exp(iwt), this is associated with 

_ _ - _ _ _ _  +--0,  

d4Y w2 d2Y 
dt4 A dC2 
- + - - - w2Y = 0, 

and the same for W. Proceeding as for an Euler-Bernoulli beam (cf. Section 2.1.3), the 
solution of ( E 3  is of the form 

Y = cosh q$ + B sinh q5 + C cos p4: + D sin p t ,  (E.6) 

where 

and similarly for ly. After some manipulation, malung use of (E.3), it is easy to obtaint 
‘separated forms’ of boundary conditions (4.39a,b) as follows: 

(i) displacement zero: 
Y = 0 and @’” = 0; 

(ii) slope zero: 

W = 0  and ( ~ ) Y ” ’ + [ I + ( ~ ) 2 ] y ’ = o ;  

(E.8a) 

(E.8b) 

(iii) bending moment zero: 

W’= 0 and Y ” +  (E&) 

+For example, if P = 0, differentiating the first of (E.3) with respect to 6 and then substituting the second 
one (with P = 0) into it leads to the second of (E.8a). 
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(iv) shear zero: 

(E.8d) 

where ( )’ = d/d(. It is evident that the boundary conditions in P are simpler and, 
hence, for convenience, we proceed to determine the eigenfunctions associated with P 
first. 

For a clamped-clamped beam, after application of boundary conditions (E&) and 
(E.8b) one obtains the characteristic function 

+ 2 cash q COS p = 0, (E.9) 

from which the eigenfrequencies w;, j = 1,2,  . . ., may be obtained. The corresponding 
eigenfunctions are 

qj([) = -q;(cosh q; - cos p;)  cosh (q; t )  + (q; sinh q; - p: sin p;) sinh (q;{) 

where p ;  and q; are as in (E.7), but with w; replacing 0; these eigenfunctions are not 
normalized. P; and 5 are related via 

Similarly, for a cantilevered beam one obtains 

w2 sinh q sin p 
-2 + - - - - ($ + 2 )  cosh q cos p = 0, 

A 4  P 
(E. 12) 

E.3 THE INTEGRALS S, 
These integrals, appearing in equation (4.43, have been evaluated analytically by Luu 
(1983). A sample is given here 
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However, some are much more complex and this is why they are not all given here. In 
any case, they may all be determined numerically. 



Appendix F 
Some of the Basic Methods of 

Nonlinear Dynamics 

The purpose of this appendix is to outline some of the methods utilized in modern 
nonlinear dynamics. It is intended to help those not already familiar with them. 

A common feature of analytical methods in nonlinear dynamics is the transformation of 
complicated dynamical systems into simpler ones. Another aspect is that nonlinear analysis 
often emphasizes qualitative features of system dynamics, frequently in the neighbourhood 
of critical parameter values. After introducing the concept of stability, we briefly go over 
several of the most commonly used methods. 

F. 1 LYAPUNOV METHOD 

F. l . l  

Consider a system of differential equations of the form 

The concept of Lyapunov stability 

x = f(x, t ) ,  x E R”. (F. 1 ) 

It is assumed that there exists a unique solution X(t) of (F.l) that is determined by the 
initial condition xo at to. This solution is said to be stable if, starting close to X( t )  at a 
given time, it remains close to X(t) for all later times. More precisely, %(t)  is stable if 
for any other solution y(t) of (F.l) and for every (arbitrarily small) E > 0 there exists a 
S(E) > 0, such that 

The norm here may refer to the Euclidian or any other norm. Within this definition it 
makes no sense to use terms such as ‘stable system’ or ‘stable differential equation’, since 
one and the same differential equation may have stable as well as unstable solutions. 

Unfortunately, with this definition of stability, periodic solutions of equation (F. 1) are 
not stable! This is because a small change in the initial conditions may produce a slight 
change in the period of oscillations and for a reasonably large time, two solutions starting 
from nearby points will not remain nearby. It is therefore necessary to enlarge the concept 
of stability to cover also the case in which the phase trajectories remain close to each 
other. This is the purpose of the concept of a stable trajectory or of orbital stability. 

483 
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The solution f ( t )  has a stable trajectory, or is orbitally stable, if for every (arbitrarily 
small) E > 0 there exists a & E )  > 0 and a function t l ( r )  such that 

In other words, if for every E > 0 there exists a 6-sphere about xo such that all solutions 
which begin in this sphere at t = to never leave the €-tube about %(t), then X ( t )  is orbitally 
stable. 

A solution X ( t )  is attractive if there exists a 6 > 0 such that 

A solution which is both stable and attractive is called asymptotically stable. It may very 
well be that a solution is attractive without being stable. 

The stability of any given solution of (F.l) may be determined, without difficulty, 
if the general solution is known. However, for nonlinear systems this is almost never 
the case. One generally knows only certain particular solutions, usually stationary or 
periodic, whose stability is of interest. It has thus become necessary to search for means 
of determining stability without actually solving the differential equation. 

Before proceeding further, it is noted that, by a simple coordinate transformation y = 
x - K(t), it is easy to transform the original equation (F.l) into 

so that the solution R(t) of (F.l) now corresponds to the trivial solution y = 0 of (F.5); 
the stability of this solution corresponds to that of f(t). 

There are at least two different methods for determining the stability of a solution 
without actually solving the differential equations, both developed by Lyapunov. 

F.1.2 Linearization 

In Lyapunov’s first method the right-hand side of equation (F.5) may be developed in a 
Taylor series with respect to y, 

where h(y, t) includes all the nonlinear terms in equation (F.5). It is much easier to 
investigate the stability of the trivial solution of the linearized differential equation 

rather than the solution y = 0 of (F.5). 
The method of first approximation is used to obtain results concerning the stability 

of the trivial solution of (F.6) by making use of the linearized equation (F.7). It can be 
applied differently in the following three cases: (i) A is not time-dependent (autonomous 
case); (ii) A( t )  is periodic; (iii) A(t) is nonperiodic. 
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Autonomous case 

If A is a constant real-valued matrix, then the solution of (F.7) is asymptotically stable 
if all the eigenvalues of A have negative real parts. On the other hand, if at least one 
eigenvalue of A has a positive real part, then the solution is unstable. 

If there exist real numbers B > 1, a ? 0, such that the condition 

M Y ,  t)l 5 4 Y l B  F.8 )  

is satisfied in a neighbourhood of y = 0, then the stability of trivial solutions of the 
nonlinear system (F.6) can be obtained from the eigenvalues of A in the following form: 

if all of the eigenvalues of A have negative real parts, then the equilibrium solution 
of (F.6) is asymptotically stable; 
if at least one eigenvalue of A has a positive real part, then the trivial solution of 
(F.6) is unstable. 

(i) 

(ii) 

These statements are valid, independently of the higher order terms; h(y, t )  need only 
satisfy the inequality (F.8). In cases where A has at least one eigenvalue with vanishing 
real part, then the effect of nonlinear terms must be taken into account in the stability 
analysis. 

Periodic case 

In the case where A ( t )  is a periodic function of time, A(t + T )  = A(t),  the stability of the 
trivial solution of (F.7) is obtained using Floquet theory: for the system (F.71, it can be 
shown that a&ndamental solution matrix can be found, in the form 

Y ( t )  = Z( t )  exp(tR), (F.9) 

where Z ( t )  is also periodic of period T ,  Z(t  + T )  = Z( t ) ,  and R is a (nonunique) constant 
matrix (Nayfeh & Mook 1979). Furthermore, if Z(0) is equal to the identity matrix, then 
Y ( T )  = eTR. It thus becomes obvious that the stability of the trivial solution is related to 
the eigenvalues of the matrix eTR, since after n periods the trivial solution will be related to 
en T R  . These eigenvalues are called the characteristic or Floquet multipliers. Consequently, 
the trivial solution of (F.7) is asymptotically stable if and only if all of the eigenvalues 
of the matrix eTR have absolute values (modulus) less than unity, while it is unstable if 
one of the eigenvalues has a modulus greater than 1. In the case where one or several 
eigenvalues have modulus equal to 1, then the trivial solution of (F.7) may be stable or 
unstable, depending on the structure of the Jordan normal form' corresponding to eTR. 
Furthermore, linearization theorems as in the case of systems with constant coefficients 
can be proved, which means that it is possible to relate the stability of the nonlinear 
system to the stability of the linearized one. 

In practice, an analytical determination of the fundamental matrix is very difficult, 
except in some special cases. Nevertheless, it can be found using perturbation methods, 
or using numerical schemes. 

+The Jordan form is the simplest form a matrix can take, when transformed in the appropriate vector space 
(Hirsch & Smale 1974). 



486 SLENDER STRUCTURES AND AXIAL FLOW 

It should be mentioned that the Floquet theory presented here may be used equally well 
to determine the stability of periodic solutions. Indeed, let us consider again the original 
system of equation (F.l) when a periodic solution %(t) = X ( t  + 7') exists. To study the 
stability of this periodic orbit, we again linearize or perturbe the differential equation 
about X, x ( t )  = X ( t )  + ~ ( t ) ,  to obtain 

U = DfX(t)u, (F. IO) 

where Df%(t) is the Jacobian matrix function of the vector field f evaluated along X(t). 
Since X ( t )  is periodic, the linear system (F. 10) has exactly the same form as before, which 
means that the perturbation u(t) will grow or decay depending on the Floquet multipliers. 

As an example, consider the case discussed in the early part of Section 5.8.1. The 
system is of fourth-order, so that, to determine the stability of the periodic solution, four 
independent initial conditions are chosen corresponding to the identity matrix, 

U: = [l,O,O,O}T, U; = [O, u i  = (O,O,  l ,O}T,  U: = [O,O,O,  l}T, (F.l l)  

and a numerical solution is obtained for each of them, after one period T :  u'(T),  i = 
1, . . . , 4 .  The fundamental matrix u'(T)  is then constructed, 

and the eigenvalues of [ Y ]  determine the stability of the periodic trajectory. It should 
be mentioned that in the case of a periodic orbit, one multiplier associated with the 
periodicity of the orbit X(t)  is always unity, so that the stability is determined by the 
remaining eigenvalues. In the case of a cubic nonlinearity, as in the case of the pipe 
conveying fluid, if a second multiplier crosses the unit circle in the complex plane at + l ,  
either a transcritical or a pitchfork bifurcation occurs, and the original orbit X ( t )  becomes 
unstable while a new periodic orbit is created. If a multiplier crosses the unit circle at 
- 1, then a period-doubling bifurcation is indicated, i.e. a new periodic orbit with twice 
the original period T emerges (Guckenheimer & Holmes 1983; Kubicek & Marek 1983). 

Aperiodic case - L yapunov exponents 

In the iast two sections, it was shown that the asymptotic stability of the linear autonomous 
or periodic system implied the asymptotic stability of the trivial solution of the complete 
nonlinear system, but this is no longer the case when the coefficients of the linear system 
are arbitrary functions of time (Hagedorn 1981). However, the notions of 'local stability' 
or sensitivity to initial conditions may still be important. They are both related to the 
Lyapunov exponents that are discussed in Section 5.8.1. 

F.1.3 Lyapunov direct method 

This method of Lyapunov can often be used to determine the stability of the trivial solution 
of equation (F.5) when the information obtained from the linearization is inconclusive. 
Lyapunov theory covers a large area (Lasalle & Lefschetz 1961; Hagedorn 1981), and 
we shall examine only a very small part of it. In the following, and in the rest of this 
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appendix, we consider only autonomous systems of the type 

x = f(x), x E R". (F. 13) 

The basic idea of the method is as follows. Suppose that we wish to determine the 
stability of a fixed point X of the vector field (F.13). Roughly speaking, according to the 
previous definitions of stability it would be sufficient to find a neighbourhood U of X, 
for which orbits starting in U remain in U for all positive time. This condition would be 
satisfied if it could be shown that the vector field is either tangent to the boundary of U or 
pointing inwards towards X. This situation should remain true even as U is shrunk down 
into J E .  Lyapunov's method provides a way of making this precise. Let V(x) be a scalar 
function with V(X) = 0, such that V(x) = constant is a hypersurface encircling X, with 
V(x) > 0 in a neighbourhood of X. Now recall that the gradient of V, VV, is a vector 
perpendicular to the surface in the direction of increasing V. So, if the vector field were 
always to be either tangent or pointing inwards for each of these surfaces surrounding X, 
one would have 

vv.x 5 0. (F. 14) 

The following theorem makes these ideas more precise. 

Theorem. Consider the vector field (F.13). Let X be a fixed point and let I/: U -+ R be 
a C' function' defined on some neighbourhood U of X. If 
(i) V(X) = 0, and V(x) > 0 for x # X, 
(ii) V ( x )  5 o in u - {XI, 
then X is stable. Moreover, if 
(iii) V(x) < 0 in u - (531, 
then X is asymptotically stable. We remark that if U can be chosen to be all of R", then 
X is said to be globally asymptotically stable if (i) and (iii) hold. 

Functions which satisfy the theorem above are called Lyapunov functions. The theorem, 
however, contains no hint as to how a function V(x) may be found in any given case. 
For differential equations which describe the behaviour of a physical system, it is often 
possible to deduce a suitable Lyapunov function by using general physical principles. It 
can be proved (Krasovskii 1963) that for every differential equation with trivial solution 
x = 0, there indeed exists a Lyapunov function which may determine the stability or 
instability of the solution. In many cases, however, it just cannot be found. There are 
a multitude of procedures which have been proposed for the systematic construction of 
these functions (Hagedorn 1981), but they are either too complicated or suited only for 
certain classes of differential equations. 

F.2 CENTRE MANIFOLD REDUCTION 

Centre manifold reduction is basically a process of reducing the dimension of a system of 
ordinary differential equations in the neighbourhood of an equilibrium point (Can 198 1 ; 
Guckenheimer & Holmes 1983). The method involves restricting attention to an invariant 

+That is, let V be a real continuous function defined in an open subset II of R" that includes E. 
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subspace, the centre manifoZd, which contains all of the essential behaviour of the system 
in this neighbourhood as t +. 00. 

This method is applicable to systems which, when linearized about an equilibrium 
point, have some eigenvalues with zero real parts, and others with negative real parts (if 
an eigenvalue has a positive real part, the centre manifold will not be attractive as t -+ 00 

and therefore becomes useless); the general framework is the following: 

X = AX + f(x, y), x E R"', 

Y = BY + g(x, Y), Y E R"', 
(F.15) 

where n ,  is the dimension of A which has eigenvalues with zero real part, and n ,  is the 
dimension of B which has eigenvalues with negative real part. Furthermore, it is assumed 
that f(0,O) = g(0,O) = Df(0,O) = Dg(0,O) = 0. 

It is obvious that the components of the solution of the linearized equations corre- 
sponding to y will decay as t -+ 00 and hence the motion of the linearized system will 
asymptotically approach the space EC spanned by the eigenvectors of A. Centre manifold 
theory ensures that this picture (based so far on the linearized equations) extends to the 
full nonlinear equations, as follows. 

There exists a subspace W'(O), the centre manifold, which is tangent to the subspace EC 
at the equilibrium point and which is invariant under the flow generated by the nonlinear 
equations. All solutions which start sufficiently close to the equilibrium point will tend 
asymptotically to the centre manifold. Furthermore, the stability of the equilibrium point 
in the full nonlinear equations is the same as its stability when restricted to the flow on the 
centre manifold. Also, any additional equilibrium points or limit cycles which emerge in 
the neighbourhood of the given equilibrium point on the centre manifold are guaranteed 
to exist in the full nonlinear equations (Can 1981). 

The next question now is: how to find the centre manifold? To answer this question, 
we introduce the function h: 

Y = h(x), (F. 16) 

with 
h(0) = 0, Dh(0) = 0, (F.17) 

such that it defines an invariant centre manifold for (F.15). Differentiating (F.16) with 
respect to time implies that 

Y = Dh(x)X, (F.18) 

with 
X = AX + f(X, h(x)), j l  = Bh(x) + g(X, h(x)). (F. 19) 

Substituting (F.18) and the first of equations (F.19) into the second gives 

Dh(x)[Ax + f(x, h(x))l = Bh(x) + g(x, h(x)). (F.20) 

The first of equations (F.19) captures the essential dynamics of (F.15), and other tech- 
niques are necessary to investigate the flow on the centre manifold; on the other hand, 
(F.20) represents a partial differential equation that h(x) must satisfy. Consequently, to 
find a centre manifold it is necessary to solve (F.20), which can be a more difficult 
problem than the original one! Fortunately, only an approximate solution of (F.20) needs 
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be computed, usually in terms of power series of x to any desired degree of accuracy. 
Examples of how the centre manifold is determined can be found in Rand & Armbruster 
(1987) and Wiggins (1990), and one specific example is given in Appendix H. 

F.3 NORMAL FORMS 

The central idea of the method of normal forms is to use a coordinate transformation to 
simplify or eliminate nonlinear terms in a dynamical system (Arnold 1983; Guckenheimer 
& Holmes 1983; Wiggins 1990). To demonstrate how the method works, we consider a 
differential equation of the form of the first of (F.19), with the nonlinear terms representing 
homogeneous polynomials of order k ,  

X = AX + cfk(X), (F.21) 

where E << 1 is a real number used as a book-keeping device. In other words, fk(x) belongs 
to the space Hk which is spanned by the vector-valued mononomials 

(F.22) 

where k = kl + k:! + . . . + k,, is the order of the polynomial fk(x) and ei are unit ortho- 
gonal vectors in [w“ (for example, H2 is spanned by the three ‘vectors’ e1,2 = x 2 e l ,  e2,2 = 
xye2, e3.2 = y2e3). 

The aim of the method is to find a coordinate transformation, 

x = y + chi (y), (F.23) 

such that (F.21) takes the ‘simplest possible form’, the so-called normal form, 

Y = AY + %l (Y). (F.24) 

Substituting (F.23) into (F.21) yields 

Y + ~ D h i  (YIY = AY + (y> + cfk(~  + chi (Y>>,  (F.25) 

where Dhl is the Jacobian of hl .  Using (F.24) to eliminate y and equating coefficients of 
like powers in c leads to 

gl(Y> + Dhl(Y)AY - Ahl(Y) = M Y )  (F.26) 

or 
%~[hi(J’)l = Dhi(Y)Ay - Ahi(Y) = f k ( Y >  - gl(Y); (F.27) 

%A is known as the Lie or Poisson bracket of the vector fields Ay and hl (y) (Arnold 1988). 
Ideally, one would like to remove all nonlinear terms using successive transformations, 

in order to reduce the vector field to its linear part, i.e. to transform (F.21) into y = Ay. 
This condition means that gl(y) in equation (F.27) is zero, i.e. 

fk(y> = zA[hl(y)l. (F.28) 

It can be shown easily that %’A is a linear map from Hk -+ Hk (ie. it can be represented 
by a matrix), and that the eigenvalues Ak,i of this linear map are related to the eigenvalues 
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(F.29) 

Consequently, the inverse operator zil exists if and only if Ak.i # 0. Introducing the 
subset x k  of Hk representing the eigenvectors of Y A  with nonzero eigenvalue, it can be 
said that the components of fk(y) lying in X k  can be eliminated by a proper choice of 
hl(y), while the components of f k ( y )  not lying in Xk cannot be eliminated. In other words, 
the terms of fk (y )  lying in the range of 2~ can be eliminated, while those lying in the 
kernel of YA have to stay. 

From the analysis, three important characteristics become apparent: (i) the normal form 
method is local, since the coordinate transformation is generated in the neighbourhood of a 
known solution (usually a fixed point for vector fields); (ii) the coordinate transformation 
is a nonlinear function of the dependent variables, but it is found by solving a linear 
problem; (iii) the structure of the normal form is determined entirely by A, since the 
transformation depends only on the eigenvalues of A - see equation (F.29). 

Examples of how to find normal forms may be found in many books, e.g. Guckenheimer 
& Holmes (1983), Wiggins (1990), Arrowsmith & Place (1990). Because of its importance, 
here we consider the case of a two-dimensional system with purely imaginary eigenvalues: 

(F.30) 

and, because of its simplicity, we follow the methodology developed by Nayfeh (1993). 
Equation (F.30) is first transformed into a single complex-valued equation using the trans- 
formation 

(F.31) x1 = c - 4, x2 = i(C - f ) ,  

to obtain 

4 = i t  + i c  [(a,  - ia5)(< + 5)’ + i (a2  - ia6>(< + f ) ’ ( ~  - 5) 
-(a3 - i a 7 ) ( ~  + - 5)’ - i(a4 - ia8)(< - 513] . (F.32) 

Using the methodology described previously, we assume 

2‘ = 9 + ~ h ( q ,  3) and q = ir] + cg(q, 7). (F.33) 

Substituting (F.33) into (F.32) and equating the coefficients of E on both sides yields 

Next, the function h must be chosen so as to eliminate the nonresonance terms, Le. all 
nonlinear terms that do not produce secular terms (which implies that resonance terms 
are those producing secular terms). The form of equation (F.34) suggests choosing h in 
the form 

h = r,q3 + r2q27 + r3qij2 + r4ij3. (F.35) 



SOME OF THE BASIC METHODS OF NONLINEAR DYNAMICS 49 1 

Substituting (F.35) into (F.34) leads to 

where fi(c) represent functions of C ,  i = 1, 3 ,4  (not given here for brevity) and of the 
coefficients cyj, and 

cz = (3a1 f a3 + + 3a8)/8, b = (a2 + 3a4 - 3a5 - a7)/8. (F.37) 

Equation (F.36) is independent of r2, indicating that v27j is a resonance term. This can be 
explained by using a ‘multiple scales’ approach: carrying out a straighforward expansion 
to order E in (F.32) by putting < = A exp(it), one finds that the term proportional to q2C 
produces a secular term proportional to A2A t exp(it), whereas the remaining ones do not. 

It is therefore possible to choose r1, r3 and r4 in (F.36) to eliminate the nonresonance 
terms, thereby reducing g to the form 

g = 4(a + ib)q2q, (F.38) 

and the normal form, to first order, is 

rj = iq + 4c(a + ib)q2q. (F.39) 

The normal form (F.39) can now be expressed in polar coordinates, using 

(F.40) I q = ? r  exp(iB). 

Substituting (F.40) into (F.39) and separating real and imaginary parts yields 

i- = car 3 , B = 1 +cbr2. (F.41) 

The analysis in which equation (F.30) is treated with real rather than complex variables 
can be found in Nayfeh (1993). The final result is of course the same, but the algebra 
involved is much more complicated. 

F.4 THE METHOD OF AVERAGING 

The method of averaging, originally due to Krylov & Bogoliubov (1947) is particu- 
larly useful for determining periodic solutions of weakly nonlinear problems or small 
perturbations of a linear oscillator. In contrast to the treatment of normal forms presented 
previously, the method of averaging can be extended easily to the case of nonautonomous 
systems, i.e. systems in which time appears explicitly [see, e.g. Semler & Paidoussis 
(1996), for the treatment of a nonautonomous system with normal form theory]. To begin 
with, let us consider the nonlinear harmonic oscillator 

i + mix = E f ( X ,  i). (F.42) 

When E = 0, the solution of (F.42) can be written as 

X ( l )  = r cos(w0t + ,B), (F.43) 
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where r and B are constants. When E # 0, the solution of (F.42) can still be expressed 
in the form of (F.43) provided that r and B are considered to be functions of t rather 
than constants. Since (F.42) and (F.43) constitute two equations for the three variables 
x, r and B, we have to find an additional equation or impose a constraint condition. For 
example, it is convenient to assume that the velocity has the same form as for the case 
when E = 0, i.e. 

(F.44) i ( t )  = -r(t)wo sin(w0t + B(t)). 

Differentiating (F.43) with respect to time t and comparing the result with (F.44) 

(F.45) 
leads to 

i-(t) cos(wot + ~ ( r ) )  - rB(t> sin(Wt + ~ ( t ) )  = 0. 

Equation (F.42) is now written in terms of r( t )  and P( t )  by finding x through differentiation 
of (F.44) with respect to t. By using the resulting equation together with the constraint 
relation (F.45) and solving for i- and b, after some algebra we obtain 

i- = -(E/wO)f (r,  B) sin $, rB = -(c/wO)f (r,  B )  cos $, (F.46) 

where $ = mot + ,t?. For small E ,  i. and b are small; this means that r and B vary much 
more slowly with t than $r. In other words, r and #? hardly change during the period of 
oscillation 2x/wo of sin l(r and cos $. This enables us to ‘average out’ the variations of 
$ in (F.46). Averaging these equations over the period 2n/wo and considering r ,  p, i- and 

to be constants while performing the integrations, one obtains 

(F.47) 

The full description of the method may be found in, e.g. Nayfeh & Mook (1979), Gucken- 
heimer & Holmes (1983) or Sanders & Verhulst (1985). One advantage of the averaging 
method over the normal form method is that it is based on several basic comparison theo- 
rems which compare solutions of the original equation (F.42) to those of the averaged 
equations (F.47). For solutions valid for time of o(t-’), any solution of (F.47) can be 
shown to be close to those of (F.42) for sufficiently small E .  Also, all the qualitative local 
behaviour of the dynamics of the averaged equations (F.47) corresponds to the same qual- 
itative and local behaviour of periodic orbits of (F.42). In particular, a stable (unstable) 
fixed point of (F.47) corresponds to a stable (unstable) limit cycle in (F.42), and a Hopf 
bifurcation giving rise to an attracting (repelling) limit cycle in (F.47) corresponds to a 
bifurcation to a stable (unstable) invariant torus in (F.42), and so on. 

To see in practice how the method works, let us consider again equation (F.30). The 
solution when E = 0 is simply XI = r cos(t + B)  = rC, x2 = r sin(t + /3) = rS, where C 
stands for cos(t + B)  and S for sin(t + B). Following the methodology described in the 
foregoing leads to 
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in which f l  and f2 represent the cubic nonlinearities in (F.30). The algebra involved 
may be carried out easily using, for example, MATHEMATICA. This leads finally to the 
same results as obtained by the normal form, equation (F.41). 

A derivation of the averaging method, more adapted to the case of PDEs is given in 
Section F.6.1; but, before this, bifurcation theory is discussed briefly, together with the 
calculation of the unfolding parameters. 

F.5 BIFURCATION THEORY AND UNFOLDING PARAMETERS 

As mentioned already, systems of physical interest typically have parameters which appear 
in their defining equations; in fluid-structure interaction systems, for example, one of the 
major concerns is the study of the effect of increasing flow velocity on the dynamics. The 
original problem (F. 13) may therefore be rewritten as 

x = f(x, p), x E R", p E Rk, (F.49) 

where ,LL represents all the parameters. As these parameters are varied, changes may 
occur in the qualitative structure of the solutions for certain parameter values po (Chow 
& Hale 1982). These changes are called bifurcations and the parameter values are called 
bi&rcution values. 

In light of the stability theory that was introduced in Section F.l, it is clear that in 
the case of a fixed point X of (F.49), a necessary condition for a bifurcation to occur 
is that the Jacobian D,f(Si, K O )  have at least one eigenvalue with a zero real part, in 
which case E is referred to as being nonhyperbolic. This of course is the interesting 
case from the nonlinear dynamics point of view. In the simplest cases, these bifurcations 
have been classified and are now well known. For example, if the linearized system 
contains a pair of purely imaginary eigenvalues at the critical parameter, uc, it is called 
a Hopf bifurcation; if it contains a single zero eigenvalue, it may be a saddle-node, a 
transcritical or a pitchfork bifurcation, depending on the nonlinear terms, or there might 
not even exist a bifurcation (e.g. for the system defined by X = p -x3, x E R, p E [w). 
In the case of higher degeneracy (e.g. when zero and purely imaginary eigenvalues occur 
simultaneously, as discussed in Section 5.7.3), the situation is even more complicated. 

Here, we show how to take into account the variation of system parameters in the 
neighbourhood of critical values for cases where the linearized system has a single pair 
of imaginary eigenvalues or a single zero eigenvalue. To this end, the ordinary differential 
equation (F.49) is replaced by 

x = L(u)x + f(x, u) ,  x E R", (F.50) 

where u E [w represents the system parameter in question (the dimensionless flow 
velocity), L is an n x n matrix, and f contains all the nonlinear terms. At u = uc, suppose 
that L(u,) contains a pair of purely imaginary eigenvalues, h = Aiwo. Then, when u is 
varied by a small amount, u = u, + p, p << I ,  and the new eigenvalues corresponding to 
f i w o  can be expressed as h = u f iw, with cr = yl and o = wo + 11.2. Here, p~ and , L L ~  are 
called the unfolding parameters and can be determined from the following characteristic 
equation: 

(F.51) det[L(u) - AI] = 0 %(a, w ,  u )  + i9(a,  w ,  u )  = 0. 
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Performing variational calculations in the neighbourhood of u,, a relationship between 
PI,  ~2 and p can be found as 

(F.52) 
a 3  a 3  a 3  as, as, as, 
an --PI + -p2 am + --p au = 0, -p1 aa + -p2 aw + -p  au = 0, 

where all the partial derivatives are evaluated at the critical point: u = uc, (T = 0, w = wo. 
If one constructs a modal matrix by using eigenvectors determined from (FSl),  then at 
u = u, + p, the original dynamical system of (F.50) may be transformed into the form 

where 

A =  

j r  = Ay + g(y) + h.o.t., (F.53) 

with B, the remaining matrix, having eigenvalues with negative real part; h.0.t. stands for 
‘higher-order terms’, and g represents nonlinear terms. With proper order analysis, the 
final reduced form of (F.53), in the case of cubic nonlinearities, may be shown to be 

i = (11 + ar2)r + h.o.t., 4 = wo + p2 + br2 + h.o.t., (F.54) 

in polar coordinates, which may be compared to equation (F.41). 

meter can be calculated in a similar fashion. Letting 
For the case with a single zero eigenvalue at u = uc + p, p << I ,  the unfolding para- 

%(a, u )  = det[L(u) - AI] = 0, (F.55) 

one obtains 

(F.56) 

where (T = p1 was used. The final reduced form in the case of cubic nonlinearities 
becomes 

i = ~ ( p 1  + ax2) + h.0.t. (F.57) 

Finally, for the doubly degenerate system, two unfolding parameters need be introduced, 
since two parameters need be varied to ‘unfold’ the doubk degeneracy. Here, let us take 
these two parameters to be the velocity u and the gravity parameter y. The critical values 
are denoted by u, and y,, so that the bifurcation parameters p and x are defined by 

u = u c + p ,  y = y c + x .  (F.58) 

At the critical point (ucr yc), the three critical eigenvalues may be expressed as 
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hence, the matrix A in equation (F.53) becomes 

Following the methodology developed previously, the bifurcation parameters can be 
related to the unfolding parameters pl, p2 and p3, by requiring that 

(F.61) 

Computing the derivatives in equation (F.61) numerically and eliminating p3 leads to a 
linear relationship of the form 

where a,, i = 1,. . . , 4, are real constants. 

F.6 PARTIAL DIFFERENTIAL EQUATIONS 

F.6.1 

In order to adapt the averaging method to PDEs, an alternative form of averaging for a 
system of ODES is first given. Thus, consider the ODE of the form 

The method of averaging revisited 

X = AOX + EAIX + Ef(X) ,  x E R2, (F.63) 

where 
w1 -w2 

A o =  yo -3 2 AI = [ p 2  

When E = 0, the solution to the above system has the form 

cos(w0t + B> } = r {  cos @ } - f r {  ' .}ei*+;r{ (F.64) 
sin(oot + B> sin @ -1 

XO = r 
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where r and f i  are integration constants; xo is 2n-periodic in +. When E # 0, but E << 1, 
it is expected that both r and f i  are slowly varying with time, such that 

i- = EA and $r = o o + E B .  (F.65) 

The purpose here is to find A and B in terms of other system parameters. 

with the use of the following chain rule: 
Recall that system (F.63) is autonomous. Therefore, the time variable may be eliminated 

dx ax ax 
= EA - + (00 + EB)- .  

dt ar allr 
- (F.66) 

Let x = xo + 6x1; then, expanding and collecting coefficients of equal powers of E ,  

(F.67a) 

(F.67b) 

are obtained. Obviously, expression (F.64) is the solution of (F.67a). In order to get a 
periodic solution of X I ,  secular terms on the right-hand side of (F.67b) must be eliminated. 
This requirement is guaranteed if 

2n ] { f}e&"d@=O. (F.68) 

Substituting xo and AI into the above and integrating, yields 

(F.69) 

A and B are obtained by separating the real and imaginary parts of (F.69). Thus, (F.65) 
becomes 

[ iEr(fl cos l l r + f 2  sin +Id+ , 
(F.70) 1 r = c  rp1+-  

1 ( f 2 c o s + -  f l  sin+)d+ . 

Revisiting system (F.42), it is noted that it can be transformed into two first-order equa- 
tions: X = --ooy, y = wox - E f  /q, where it is seen that f 1 = 0, f 2 = - f /ma and 
p1 = p2 = 0. Thus, the result in (F.70) is identical to (F.47). Note also the similarity 
to equation (F.48). 

We now consider the method of averaging for PDEs of the form 

(F.71) 

where both L and f are differential operators of x E (0, 1); u once again represents the 
varied system parameter. It is further assumed that at u = u, the linear system contains a 
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pair of purely imaginary eigenvalues, 

*iwov = L(u,)v, (F.72) 

and the other eigenvalues (infinitely many!) have negative real parts. At uc, the steady-state 
solution, which lies in the centre manifold, may be expressed as 

yo = r(vei@ + Vepi@), (F.73) 

with r and ,9 = $ - mot being arbitrary, and V being the complex conjugate of v. Similarly 
to the case of ordinary differential equations, both r and j3 will be slowly varying in time 
as ~i is adjusted slightly away from u,. At u = u, + E P ,  expressing y(x, t )  = y ~ ( x ,  t )  + 
EYI  (x, 0 ,  and 

dr 
- = CA and - dlCI = wo + EB, 
dt dt 

and equating coefficients of equal powers of E ,  we obtain 

aY0 

allr 
wo - - 

Expression (F.73) is the solution for (F.74a). Unlike equations (F.67a,b), the left-hand 
side of the above equations involves both the cyclic variable $ and the spatial variable 
x. Introducing a linear operator E defined by 

and its adjoint 
E*y* = 0, 

(F.75) 

(F.76) 

then the necessary and sufficient condition for the existence of a solution for (F.75) is 

1' F(y)y* d$dw = 0. 
27r 

(F.77) 

Comparing (F.74b) with (F.75), the necessary and sufficient condition for finding a peri- 
odic solution of u1 can be derived from (F.77). By substituting uo of (F.73) into (F.74b) 
and applying condition (F.77), one obtains 

A + Bri = pbr  + cr3, (F.78) 

where f(y0, u,) has been assumed to be homogeneous and cubic, and 

b = L 2n 12= 1' (u,)(vei@ + Ve-'@). v*ei@ d+ dw, 
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Thus the slowly varying variables r and 1c/ are governed by 

i- = +br + crr2)r + 6(c2), $J = wo + E ( &  + cir2) + 6(e2), (F.79) 

where 6, and c, are the real parts of b and c, and bi and ci the corresponding imaginary 
parts. 

F.6.2 The Lyapunov -Schmidt reduction 

Similarly to centre manifold reduction, the Lyapunov-Schmidt reduction is a method 
which replaces a large and complicated set of equations by a simpler and smaller one 
which contains all the essential information concerning a bifurcation. The method is 
applicable to the system of equation (F.49), but here the nonlinear functional f(x, p)  may 
be either finite dimensional (ordinary differential equations) or infinite dimensional (partial 
differential or integro-differential equations). However, we shall restrict the analysis to 
the case of nondegenerate bifurcations from a stationary solution to another stationary 
solution, which excludes the important case of Hopf bifurcations; in principle, this case 
can be treated with similar methods (Golubitsky & Schaeffer 1985) - see also the next 
section. Thus, we shall be interested in determining steady-state solutions 7 of the system 
defined by 

f(Y, u )  = 0, (F.80) 

when the linearized system in the neighbourhood of 7 has a single zero eigenvalue at 
the critical parameter, uc, while the other eigenvalues (infinitely many for a PDE) have 
negative real parts. Without loss of generality, we shall also assume that the equilibrium 
is zero, 7 = 0, since this can be accomplished by a simple coordinate transformation. 

As mentioned in Section F.5 for the bifurcation analysis, we would like to find an 
equilibrium solution when the parameter u is varied. From the implicit function theorem 
(Sattinger 1980), we know that there is no unique solution of (F.80) in the form of 
y = y(u) in a small neighbourhood of (0, uc), since we are exactly in the situation where 
the linear operator L = D,f(O, u,) is singular, because the Jacobian matrix has a zero 
eigenvalue. The basic idea in the Lyapunov-Schmidt method is to decompose the space 
in which the solution lies into two subspaces, in order to ‘remove’ this singularity. 

Formally, this may be expressed as follows. First, we define vo as the eigenfunction of 
L corresponding to the zero eigenvalue, i.e. 

L ( ~ , ) V ~  = avo = 0, (F.81) 

and v;i the eigenfunction of the adjoint system 

L*(U,)V;, = 0, (F.82) 

where L* is the adjoint operator of L. Furthermore, we assume that the original Banach 
space, 72, in which the solution of (F.80) lies, can be decomposed into two subspaces: 
72 = kerL + A, where kerL is the kernel of L, and M is a subspace perpendicular to 
ker L; in practice, A = range L* [see Kolmogorov & Fomin (1970) for details]. Then, it 
is possible to express the solution y as 

Y = Yc + YS? (F.83) 
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where yc E ker L and ys E range L*, and to define two orthogonal operators, P onto the 
range of L, and the complementary operator I - P, where I is the identity operator, such 
that (Golubitsky & Schaeffer 1985) 

(F. 84a) 

(F.84b) 

in which y is replaced by (F.83). We can then apply the implicit function theorem to find 
ys in (F.84a) as a function of y, and u, since the mapping Pf(y, + ys, u,) acting onto the 
range of L is regular. This means that it is possible to express ys as 

Ys = h(Y,, 4). (F.85) 

Equation (F.85) is valid only locally, in a neighbourhood of (0, u,) with tangency prop- 
erties similar to (F.17), i.e. 

hfy,, 4) = 0, hdy,, u,) = 0, (F.86) 

which means that h is at least second order in yc, h = 6 1 ~ ~ ) ~ .  To obtain the bifurcation 
equations, we introduce (F.83) into (F.84b) and use (F.85) to find 

(1 - P)f(Yc + W e ,  uc), ue) = 0. (F.87) 

Usually, h(y,, u,) cannot be found analytically in closed form, but it can be obtained using 
Taylor series in terms of y, and p = u - u,, to any desired order. Note that to determine 
(F.87) to a certain order n, we need to find h(y,, u,) only to order n - 1, since h is a 
nonlinear function of y,. In fact, in many cases, e.g. under certain symmetry conditions, 
it is not necessary to solve (F.84a) to find the bifurcation equation to order n. 

To show the reader how such an operation can be carried out, the following simple 
nondimensional system is considered (Troger & Steindl 1991): 

(F.88) 

It corresponds to the buckling of a rod under a compressive load u = P/EZ. We assume 
that the rod is simply supported at both ends, i.e. $'(O) = @'(l) = 0, and we want to 
find the bifurcation equation for the solution $ = 0. The linear operator L is defined by 
taking the (FrCchet) derivative of (F.88) at $ = 0: 

(F.89) 

with boundary conditions ~'(0) = ~ ' ( 1 )  = 0. Solving the eigenvalue problem L x  = 0 
leads to the well-known critical parameter u, = n2, with the corresponding eigenfunction 
B cos(n6). Consequently, kerL = span{cos nt} and since L* = L, dimkerL = 
dimkerL* = 1. The range of L is given by the function g(x) orthogonal to the range 
of L*, i.e. Jd g(6) cos(nt)d( = 0. 

We can now decompose the image space: to find the projection P onto the range of 
L, we recall that for any function f ( c ) ,  the projection (I - P)f((-) must be in kerL*, 
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i.e. (I - P > f ( C )  = C cos(n.$), where C is a constant to be determined. Therefore, the 
projection P is defined by 

The constant C 
L is orthogonal 

P f ( 8  = f ( C >  - c cos(n0. (F.90) 

may be calculated from the condition that each element in the range of 
to ker L* , 

(F.9 1 ) 

which leads to C = 2 Jd f(() cos(?rc) de. Thus, the projection of any function f(4) onto 
kerL* is given by 

(F.92) 

Now we decompose the solution according to (F.83), $ = $c + qS, where 

qC = q cos(7tC) E ker L and $s = h(q, u, 6 )  E range L'. (F.93) 

In (F.93), q is the amplitude of the buckling mode. The bifurcation equation is obtained 
by projecting the original equation (F.88) onto the kernel of L* through (F.92), which 
leads to 

(F.94) 

Equation (F.94) is solved by making use of (F.93), and by introducing the unfolding 
parameter ,u = u - u,. From the symmetry of the problem, it can be seen that it is not 
necessary to find h explicitly if one wants to find a bifurcation equation to the third-order 
only. After some manipulations, this leads to 

I '  [$" + u($ - + . . .)] cos(rC)dt = 0. 

(F.95) 

The unfolding parameter p represents the small deviation from the bifurcation point, 
and from equation (F.95), it is obvious that p = O(q2).  Therefore the term pq3 can be 
neglected in comparison to u,q3, so that the final bifurcation equation then becomes 

(8p/n2>q - q3 = 0. (F.96) 

F.6.3 The method of alternate problems 

Although the method of alternate problems is usually applied to finite dimensional 
problems, it is introduced very briefly here because of its similarity with the 
Lyapunov-Schmidt method presented in Section F.6.2. A detailed presentation may be 
found in Hale (1969) and Bajaj (1982). The method is particularly useful if the scaling 
relationship between the small parameters and the amplitude is a priori unknown, this 
scaling being suggested ultimately by the bifurcation equation, as in the example of 
the previous section. In spirit, the method of alternate problems is very similar to the 
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Lyapunov-Schmidt method, since projection operators as defined in (F.84a) and (F.84b) 
are also introduced in this case. The purpose of the method is to find a periodic solution 
of a nonlinear system in the neighbourhood of a Hopf bifurcation, which is defined by 
the occurrence of one or several pairs of complex eigenvalues with zero real parts, *iwO. 
Introducing a new time scale, t = %t, the original equation (F.49) takes the form 

(F.97) 

where @ is a small parameter. The idea is to transform the original differential equation 
into two algebraic ones, of the form 

y = UY + WI - V)Fty, p), (F.98a) 

(F.98b) 

where U, V and 3C are some projection operators, and I is the identity operator [see 
Bajaj (1982) for their definition]. Note the similarity with equations (F.84a) and (F.84b). 
The solution y is split into two components, y = yl + y2, so that the y1 component is 
made up of the solutions of the homogeneous part of equation (F.97), whereas the y~ 
component contains the higher harmonics. It is then possible to solve for y2 explicitly in 
equation (F.98a) using the implicit function theorem and, assuming y = y1 + y2(y1, p), 
equation (F.98b) becomes the bifurcation equation. 



Appendix G 
Newtonian Derivation of the 

Nonlinear Equations of Motion of 
a Pipe Conveying Fluid 

G.l CANTILEVERED PIPE 

This derivation is based on the work of Lundgren et al. (1979) but here it is developed 
further to lead to a single equation of motion, better suited for later analysis. 

Figure G.1 Free-body diagram of an element of the pipe; gravity and flow-velocity-dependent 
forces are not included for clarity. 

Consider an element of the pipe of length 6s (Figure G.l). Let Q and M represent the 
resultant force and bending moment on the left cross-section, and Q + 6Q and M + 6M 
on the right cross-section. A force balance leads to 

aQ a2 r DZr - + (rn +M)gi  = rn - + M  -, as a t2  Dt2 

where t is the unit vector tangential to the pipe centreline. 

502 
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As the effect of rotatory motion i s  neglected, and due to the assumptions associated 
with Euler-Bernoulli beam theory, the following moment-curvature relation holds: 

a t  
as 

M = E I r x  - - E E l t x ~ .  (G.3) 

We next decompose Q along the tangential and normal directions, 

where (To - P )  is the axial force due to tension and fluid pressure. By combining (G.3) 
with (G.4) one obtains 

Q = (To - P ) t  + EZt x 

= (To - P ) t  + EZ [ (t . $) t - $1 . 

After some further manipulation involving the use of properties o f t  and its derivatives 
(Semler 1991), and projecting along x and z ,  one obtains the following equations: 

(G.6a) 

a2Z D2z 
as at2 Dt2 

(To - P - EZK )- = m - + M  -. (G.6b) 

These two equations are coupled through the curvature K and the axial force (To - P) .  In 
order to derive a single equation of motion in terms of z = w, the first equation is integrated 
from s to L,  divided by &/as to yield (To ~ P - E I K ~ ) ,  and x is eliminated through 
the inextensibility condition. After many straightforward but tedious manipulations, one 
finally finds the same equation as that obtained by the energy method, equation (5.28). 
Note that, in this derivation, the terms need to be correct to 0(e3) only, and higher order 
terms have been neglected. 

6.2 PIPE FIXED AT BOTH ENDS 

Recalling that the forces and moments can also be defined in terms of the original coor- 
dinate XO,  equation (G.l) becomes 

aQ a2 r D2r 
- + ( M  + m)gi = m - + M -, 
axo at2 Dt2 (G.7) 
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where the material derivative is defined as in (5.30). By taking into account the force due 
to (To - P) and the extensibility of the pipe, the force Q may be expressed as 

From expression (5.34), the axial force Q1 is 

while the shear force Q 2 ,  perpendicular to Q1 (see Figure G.l), is given by 

(G. 10) 

where n is the unit vector normal to t. As the effect of rotatory motion is neglected, the 
moment due to bending has a contribution only in the n direction. Moreover, the moment 
in its scalar form simply becomes 

Therefore, decomposing Q along t and n, one obtains 

EZ 3% Q = Q 1 +  Q2 = (To - P +EA&)t - - - n. 
1 + E  ax; 

(G. 11) 

(G.12) 

By decomposing these two components along the x- and z-directions, recalling the expres- 
sions of the accelerations obtained in (5.18), extending the results of (5.30), and intro- 
ducing again the angle 8, one obtains 

8% D2(xo + u )  a a 
axo ax0 at2 Dt2 h + M ) g +  -@I cos 6 )  - - (Q2 sin Q) = rn - + M  , (G.13a) 

a a a2w D2 w 
-(Ql sin Q) + -((e2 cos Q) = rn - + M  - 
8x0 8x0 at2 Dt2 ’ (G.13b) 

where sin8 and cos Q are defined by equations (5.4). 
Here, an order of magnitude analysis is useful, so as to simplify the algebra as much 

as possible. The first equation (in the xo-direction) is of second order, and the second (in 
the z-direction) of third order. Hence, all the terms have to be exact up to third order. For 
example, 

sin Q = w’ (1 - u’ - iw”) + 0(t4), 

cos 6 = 1 - +W’2 + 0(€4), E = u’ + iW’2 + O(E4). 
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After some further manipulations, the governing equations obtained are found to be the 
same as those derived by the energy method, equations (5.36a,b). 

Finally, it can be shown easily that equations (G.l3a,b) are equivalent to 
equations (G.6a,b) simply by letting E = 0 and replacing xo by s. In other words, the 
equations of the cantilevered pipe can be obtained from those of a pipe fixed at both ends 
by imposing the inextensibility condition. 



Appendix H 
Nonlinear Dynamics Theory 

Applied to a Pipe Conveying Fluid 

The purpose of this appendix is to show how the methods utilized in modem nonlinear 
dynamics can be applied to the problem of a pipe conveying fluid. More particularly, how 
the centre manifold and the normal form theories can be used to characterize the dynamical 
behaviour of a physical system in the neighbourhood of two types of instabilities. In the 
first section, the centre manifold theory is used to show how to reduce the dimension of 
the original system; in the second part, the flow on the centre manifold is found for both 
the static and the dynamic case. 

H.1 CENTRE MANIFOLD 

In this section, we shall show how to find the centre manifold for the ‘static’ instability, 
Le. when the linearized system has a zero eigenvalue. The case of dynamic instability can 
be treated very similarly. Let us consider equation (F.15) with the nonlinear functions f 
and g being cubic, 

(H. 1) k k  
X = AX + f i,kXkyk, j’ = B y  + gj,kx y . 

where k + k = 3. We want to find the centre manifold in the neighbourhood of the origin, 
so that we can assume x = &u, y = &u, where E is a small parameter. Furthermore, 
we assume that we are close to the static instability, so that the main parameter, the 
dimensionless flow velocity Q, is such that % - Qc = ep.+ Consequently, as shown in 
Appendix F, equation (H.l) can be replaced by 

where (Y is a real constant. As can be seen, the parameter p in equation (H.2) has been 
converted into a state variable. Hence, the first two equations linearized around the origin 
represent the 2-D centre eigenspace (zero eigenvalue), while the last one represents the 

+The dimensionless flow velocity is denoted here by OU. to avoid confusion with u, as in [u. v). In any case, 
in what follows in this section, only fi appears explicitly. 
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;-dimensional stable one. Following (F.16), the centre manifold is found in the form 

with boundary conditions similar to (F.17): h(0,O) = Dh/Du(O, 0) = Dh/Dp(O, 0) = 0. 
Consequently, to keep the nonlinear terms cubic in the second of equations (H.2), and to 
satisfy the boundary conditions, we must have h be a linear function of u, with e p  as a 
coefficient, or 'u = ~ p [ C ] u ,  where [C] here is a j x 1 matrix that has to be determined. 
To find [C], an equation similar to (F.20) must be sought, so that the flow on the centre 
manifold can be found: 

- 
u = Eapu + EfI,kuk(EpcU)k 

= eapu + € f , . 3 U 3  + O ( E 2 ) .  (H.4) 

This means that, to order E ,  the centre manifold can be approximated as h(u)  = 0, and 
hence, the flow on the centre manifold can be approximated by 

X = AX + f(x, 0). (H.5) 

This, of course, is a straighforward operation since one simply has to ignore the stable 
component in the equation on the centre, once the original system of equations has been 
put in standard form. 

H.2 NORMAL FORM 

H.2.1 Dynamic instability 

In this section, the different manipulations leading to the equation of motion on the 
centre manifold are given for the pipe conveying fluid. As will be seen, most of them 
are straighfonvard. The different parameters are the same as in Paldoussis & Semler 
(1993): the gravity parameter y = 25, the mass parameter f l  = 0.2, and the viscoelastic 
damping 1y = 0.005. The number of modes is equal to N = 2. It can be shown easily that 
for these parameters, a dynamic instability occurs for Qc = 7.093; this, in fact, is also 
shown in the computer program, written in MATHEMATICA, which follows. Once the 
nonlinear equation of motion is set up, the approximation for the centre manifold is made, 
TJ = 0, which corresponds in the program to xg = x4 = 0. Then, the method of averaging 
is applied, as outlined in Appendix F. Once the normal form is found, 

r = 2.27b.r - 0.31r3, (H.6) 

corresponding to equation Out [ 1211 in the listing, the limit-cycle amplitude is computed 
and, converting to the original coordinates, the phase-plane plot for p = Q - Qc = 0.3 
(shown at the end of the program) is obtained. 

The amplitude of the first generalized coordinate, 91, and the frequency of the motion are 
given versus p in Figure H . l  for another set of parameters: f l  = 0.2, y = 10. Agreement 
with numerically computed results, especially for p < 0.2, is remarkably good. 
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(Local B) Zn[44]:= 
( *  NORMAL FORM OF THE HOPF BIFURCATION using Mathematics *) 

amode = 2; ( *  Number of modes *) 
ar = 0.005; ( *  D a m p i n g  coefficient alpha *) 
uhb = 7.093; ( *  Critical flow velocity *) 
beta = 0.2; ( *  Maas parameter beta *) 
gama = 2 5 ;  ( *  Gravity parameter *) 

u = uhb + eps mu; 

rlC11 = 1.875104043341462; 
rlC21 = 4.694091054370627; 

xb = 1.0; 
DO [ {  

si[i l  = (Sinh[rl[il l-Sin[rl[iIl)/ 

ph[iI = Cosh[rl [il *xbI -Cos [rl [il *&I - (CoshCrl [ill +Cos [rl [ill ) , 

ai [il *(Sinh[rl [il *&I -Sink1 [il *xbI 
I ,  {i,nmodell 

DO I Do [ (  
tauti,jl = (rl[il/rl[jl)A2, 
one[i,jl = (-1lA(i+j), 
If [j==i, 

If [j==i, 

bb[i,jl = 2 . 0 ,  
bb[i,jl = Q.O/(tau[i,~l+one[i,~l)l, 

ccIi,jI = rl Ijl *si [jI*(a.O-rl Ijl*si[jl), 
cc[i, j1 = 4.0*~r1[j1*si~j1-rl[i1*si[il)/ 

ee[i,jI = 2 . 0  - 0.5*cc[i,j], 
ee[i, j 1  = (4.0*(rl [jI*si[jl -rl[il*si[i]+2.O)* 

(one Ii, j 1 -tau [i, j 1 1 1 , 
If j==i, 

0- ci , j 1 - 
+2.0*(l.0+tau~i,jIA2)*bb[i,jl)/ 
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D o [ D o E C  
If [i==j, 
rc [ i , j ] = - ( ar*rl[ j 1 "4 + 2.0 *Sqrt [beta 1 *u*bb 1 i , j 1 1 , 
rc [ i , j ] = - ( 2 . 0 Sqrt [beta 1 *u *bb 1 i , j 1 1 1 , 

If [i== j, 
rk[i, j] = -(rl[j1*4 +uA2*cc[i, j1 + gama*ee[i,jl), 
rk[i, j] = -(uA2*cc[i, j1 + oams*ee[i,jl)l), 

{j,nmode)I,{i,nmode~l; 

{lam, vecs ) I ~igensyetem[al; 
Clear [mu] ; 
DO [print [lam[ Cilll, {i,2*nmoBe)l 
ptp[ll = Re[vecs[[llll; 
~tpC21 = 1m~vecs[[2111; 
ptp[31 = Re[VeCS[[3111; 
ptpI41 = ~m[vecs 1141 1 1  ; 
ptem = ~able[ptp[il,{i,2*ne~l; 
p = TranBpOSe Ipteml ; 
aa = InverseCpl .a.p; 

-0.000373452 + 16.1603 I 
-0.000373452 - 16.1603 I 
-13.9327 + 3.25323 I 
-13.9327 - 3.25323 I 
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ff = ~rrayCf,{411; 
xx = ArrayCx.{411; 

( *  linear part *) 

XI31 = 0; 
XI41 = 0; 

c = CosIkap t + phi]; 
s = Sinlkap t + phi]; 
w0 = ImClamIIllll; 
w = nu; 
nu = wO/kap; 

equnl = gxpandIInverseCp1 .ff 1 ; 

toto = ChoptExpandCequnl + equ1,0.0011; 
xld = toto [ Ill 1 ; 
x2d = tot01 121 I ;  
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TrigSimpRules = { 
Sin[x-+y-l : > Sin[xl Cos [yl + Sintyl Cos [XI, 
Cos[x-+y,l :> CosCxl Cos[yl - Sinixl Sin[yl3 

Trigsimpsign = { 
( *  Sin is an odd function *) 
Sintn-?Negative x-.I :> -Sin[-n XI, 
Sin[n-?Negative x- + y-I :> -Sin[-n x - yl /; 

OrderIx, y1 == 1 && Number~tnl, 

( *  Cos is an even function *) 
Cos[n-?Negative x-.I :> Cos[-n XI, 
Cos[n-?Negative x- + y-I :> Cos[-n x - yl /; 
Order Ex, y1 == 1 && MrmberQ[nl3 

kap = l/2; 

rdavIt-I = Integrate[rd,tl /. Trigsimpsign 
rdavf = Expand[rBav[2 Pi] - rdav[Oll /. TrigSimpRules 
rdavf= Simplify[l/Z?/Pi/nu rdavf]; 

(Local B)  ln[lI7]: = 
rthlt-I = Integrate[rtheta,tl ; 
rthf = Expand[rth[3 Pi1 - rth[Oll /. TrigSimpRUle8 
rthf = Chop [Simplify[ 

l/nu*(l/2/Pi*rthf - r w0 (1-eps sig))1,0.00011 

(Lacal B)  In[l221:= 
*) ( *  ..................................................... 

( *  This corresponds to the equation (43) of the article 
by Paidoussis and Semler; as can be Been, the nonlinear 
terms are not the same, but the relative magnitude is 
exactly the same * I  

*) ( *  ..................................................... 
Simplify [rdavf nul 

Simplifyfrthf nul 
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(LOCd B )  Out[121]= 
3 2.27738 eps mu r + 0.273127 eps2 mu2 r - 0.312835 r 

-0.90322 eps mu r - 0.0823938 eps2 mu2 r + 0.371685 r3 + 
(Local B)  oUt[122]= 

16.1603 eps r sig 

(Local B)  In[124]:= 
epe = 1; 
rl2 = Simplify[rdavf /r] 

0.0704619 mu + 0.00845055 mu2 - 0.00967909 r 
( k d  B )  Out[124]= 

2 

(Local B )  In[I28]:= 

*) ( *  ..................................................... 
( *  Compute the limit cycle amplitude * )  

* )  ( *  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

rlc = Sqrt[- CoefficientIrl2,mul mu / CoefficientCr12,rA211 

2.69811 Sqr t  [mu] 

x[l] = rlc Cos[wO tl; 
xl21 = rlc Sin[wO tl; 

*) ( *  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
( *  Transform back into original coordinates *I 

* I  ( *  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

( L o c ~  B )  Out[128]= 

(Local B)  In[130]:= 

(Local B)  In[134]:= 

disp = Simplify[y[[lll phIl1 + yC[2ll ph[211; 
vel0 = SimplifyCy[C311 phlll + yCC411 phC2ll; 
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*) (*  ..................................................... 
( *  Plot the phase plane plot for mu = 0.3; corresponds *) 
( *  to Figure 10(a) of the article by PaidOuSBiS and *) 
( *  Semler (1993) * I  

*) ( *  ..................................................... 
mu = 0.3; 
ParametricPlot[~diap,velol,~t,O,2 Pi/wOl, 

Frame->True, 
FrameLabel -> {Displacement, Velocity), 
PlotRange -> (~-0.3,0.31,C-4,41)1 

-4 '  I I 
-0.2 -0.1 0 0.1 0.2 

Displacement 

(Local B )  Out[146]= 
-Graphics- 

0.12 , , I I , , / I , , I , , / ~ I , , , ~ , , I ,  

0.10 - 

- 

- 

- 

0.00 " " " " " " " ~ " " " " '  
0.0 0.1 0.2 0.3 0.4 0.5 

(a) Perturbation, p 

Figure H.l (a) The amplitude of the first generalized coordinate, 91. and (b) the frequency, o, 
for limit-cycle motion as a function of p = % - QC, for a system with /3 = 0.2 and y = 10, for 

which %c = 6.2708. ---, by centre manifold theory; -, by AUTO. 
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(b) Perturbation, p 

Figure H.l (continued). 

H.2.2 Static instability 

The procedure to characterize the static instability is very similar to the one presented 
for the dynamic instability. It is even simpler, since no integration is needed: once the 
equation of motion is found and the centre manifold approximation applied (by setting 
x:! = x3 = x4 = 0), the normal form arises 'naturally'. This is applied to the case of 
a standing pipe conveying fluid which is represented by a negative gravity parameter, 
y < 0. For y = -25 and B = 0.2, for example (in fact, for any B), it can be shown that 
there is a zero eigenvalue at QC = 3.05. After some manipulation, the flow on the centre 
manifold is found to be 

(H.7) 

which shows clearly that the static instability corresponds to a supercritical pitchfork 
bifurcation: when p < 0 ("11 < QC), the pipe diverges to one or the other stable equi- 
librium, depending on the initial conditions; when p > 0 ("11 > QC), the origin becomes 
stable and the two symmetric equilibrium positions disappear, thus the system regains its 
undeformed equilibrium state. 

X = ( -4 .44~ - 1O.85x2)x, 



Appendix I 
The Fractal Dimension from the 

Experimental Pipe-vibration Signal 

The delay-embedding method and the computation of what are generically called fractal 
dimensions are relatively recent developments in dynamical systems theory. They are 
briefly reviewed here, following Pdidoussis, Cusumano & Copeland (1992). A full intro- 
duction may be found in Moon (1992), while a more theoretical review is given by 
Eckmann & Ruelle (1985). 

The basic assumption is that the dynamical steady state being analysed is evolving on 
a low-dimensional manifold in the full phase space (which itself can have many, possibly 
infinite dimensions). Knowledge of the dimensions of attractors over the operating range 
of a system yields a firm estimate of the number of degrees of freedom needed to model 
observed dynamics. 

Here we shall use the correlation dimension developed by Grassberger & Proccacia 
(1983a,b), which is the most widely applied dimension measure - largely because of 
the ease with which it can be computed - see, e.g. Malraison et al .  (1983), Brandstater 
et al .  (1983) and Cusumano & Moon (1995a,b). 

To define the correlation dimension, let x(t)  denote the steady-state solution under 
consideration. It is assumed that x(t)  is a finite dimensional state vector. We sample the 
data at a fixed time-step At and obtain a data record 

where xi 
this set, Grassberger & Proccacia define the correzation integral C ( r )  as 

x(iAt)  and the time origin is taken to be zero. To measure the dimension of 

where H is the Heaviside step function, r is a scalar length scale and N,,, = $(N2 - N ) .  
Note that in the limit, as N + 00, the two expressions (1.1) become equal. C(r )  is the 
cumulative distribution of length scales on the attractor; this statistical interpretation is 
important for efficient computation. Grassberger & Proccacia define the correlation dimen- 
sion d, by 

In C(r)  
lim - = d, .  
r+o In Y 
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The main problem that must be addressed in applying equations (1.1) and (1.2) to 
experimental data is that the data record (e.g. the sampled output from the optical tracking 
system in Figure 5.30) is of the form 

where the xi are now simply scalar quantities. Using the delay embedding procedure, 
however, one can reconstruct the phase space of the underlying system. This technique 
was first used by Packard et al.  (1980) and put on a sound mathematical foundation by 
Takens ( 1  980). To construct vectors xi E R" from the scalar series [xi& for some fixed 
m, one simply forms m-tuples from the scalar series by defining 

x, {x(iAt), x((i + d)Af), . . . , x ( ( i  + (m - l)d)At)} 

= {xi, xi+d. . . * I Xi+(m-l)dJ, (1.4) 

where d E N and (At)d is called the delay. The set of all vectors so constructed are 
called pseudovectors, and the dimension m used in their construction is called the 
embedding dimension. For m sufficiently large, this procedure leaves the topological type 
and dimension of the underlying attractor invariant. Thus, one can use the collection of 
pseudovectors to obtain an estimate for d,. Note, however, that one must pick m and 
d to implement the method. 

Selection of a delay is a subtle issue and the reader is referred to papers by Broomhead & 
King (1986) and Fraser & Swinney (1986) for examples of how the idea of 'optimality' 
in d might be approached. Here, suitable delays are found by plotting ( x i , x i + d )  and 
choosing values for d that expand the pseudo-orbit as much as possible with respect 
to the noise amplitude in the system while maintaining a deterministic orbit structure. 
Nearby values for d are then used to check that consistent results are obtained, following 
a simple trial-and-error approach for finding delays, as originally used by Malraison 
et al .  (1983). 

The overall strategy for finding the dimension of the attractor is to pick m, construct 
the m-dimensional pseudovectors, and compute d, = d,(m); m is then incremented and 
the procedure is repeated. For a deterministic signal, d, will level out at some critical 
value of m; whereas for a random signal it will grow indefinitely, and in the limit of an 
infinite number of data points, d,(m) = m. 

The statistical nature of C(r)  may be used to efficiently compute d,. For a given 
embedding dimension, all pseudovectors are constructed and stored; then, a random 
subset thereof (with Nsubs elements) is selected from the total population of approxi- 
mately N pseudovectors ( N  >> Nsubs). All distances in the subset are computed, sorted, 
normalized so that the largest distance is equal to 1, and stored in a one-dimensional 
array with Npairs elements, where Npirs = i(N:ubs - Nsubs). This array is used to obtain 
an approximate cumulative distribution C,(ri) evaluated at 500 values of ri which are 
equally spaced on a logarithmic scale. Another subset is chosen and the procedure is 
repeated Nav, times for the same embedding dimension. Then the average Cj(ri)  is 
obtained: 
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This algorithm is repeated for each embedding dimension, giving an entire family of 
Inc(r) versus In r curves. The scaling regions in the lnC(r) versus lnr curves are identified, 
and a least-squares fit is used to obtain an estimate of d,(m) for each m. Error estimates 
for d, are obtained using standard methods (Bevington 1969). We utilize the expression 
for the variance of the mean, 

then, from the least-squares fit for the slope, 

(7.7) 

where Nscde is the number of points in the scaling region, ui = lnri and wi = lnci. Then, 
the measurement error in d, is given by 

For all the results presented here, 68% confidence limits are used for all error estimates. 
For the work of Section 5.8.1, the data from the noncontacting optical probe were 

recorded, and 32 000-point records sampled at 50 Hz were used in the analysis in each 
case. In all cases, the data were low-pass filtered by a Buttenvorth filter with a knee 
frequency of 25 Hz. The results for another run with the same system as in Figures 5.31 
and 5.32 (pipe #I9 of Table 5.3, water flow) are shown in Figures 1.1-1.3. In each case, 
(a) and (b) are the power spectrum and autocorrelation, respectively; (c) shows a pseudo- 
phase portrait of the reconstructed orbit and a Poincark map; (d) is a plot of the correlation 
integral C ( r )  versus the length scale r ,  for various embedding dimensions m. It is 
clear that in Figure 1.1 the system executes periodic (period-1) motion. In Figure 1.2, 
the oscillation is of period-2 but, as shown from components (b) and (c) of the figure, 
there is already a small but nonnegligible chaotic component to the motion; we call 
this ‘fuzzy period-2’ oscillation. The oscillation in Figure 1.3 is clearly chaotic. It is of 
interest to note that the ‘knee’ at Inr  2: -3.8 in Figure I.l(d), and at less well-defined 
points in the other figures, corresponds to the point below which random noise is impor- 
tant. For ln r  > -3.8, however, the curves for the higher m converge and their slopes 
may be used to provide an estimate of d, via equation (1.2). The results are shown in 
Figure 5.37. 

The techniques for analysing observed chaotic data have developed rapidly in the last 
few years - since the work just described was done. The interested reader is referred 
to, for instance, Parker & Chua (1989), Ott (1993) and Abarbanel (1994, 1996). A useful 
classification has been provided by Cusumano (1997), summarized in this appendix as 
follows. 

Improvements in the dimension estimation, or more specifically the delay-reconstruction 
part of it, relate to more reliable methods for selecting the embedding dimension, d, (m 
in the foregoing), and the delay, t. ‘Singular systems analysis’, which is essentially 
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Figure 1.1 (a) Power spectrum; (b) normalized autocorrelation; (c) delay reconstruction of the 
orbit and corresponding PoincarC section; (d) correlation integral C ( r )  versus length scale r for 
embedding dimensions rn = 1 - 10; for pipe #9 (Table 5.3) and water flow with U = 6.77 d s .  The 
vertical line cutting the orbit in (c), marks ( x ( n )  = O;x(n + 5 )  > 0}, used for the construction of 

the PoincarC section. In (d), d = 5 ,  Nsubs = 300, N,, = 50. 

the application of the Karhunen-Lo&ve (KL) decomposition to the delay-reconstructed 
vectors, fixes both de  and t by finding the maximum number of singular values above 
the noise floor in the covariance matrix of the delay vectors (Broomhead & King 1986; 
Cusumano & Sharkady 1995). 

Another approach centres around a combination of the mutual information (MI) algo- 
rithm and the method of ‘false nearest neighbours’ (FNN) (Fraser & Swinney 1986; 
Kennel et al .  1992). MI is used to select a t large enough to make the delay coordi- 
nates independent (in an information theoretical sense), but not so large that sensitive 
dependence on initial conditions (positive Lyapunov exponents) hides the deterministic 
relationship between successive coordinates. FNN finds the minimum global embedding 
dimension by checking to make sure that parts of the attractor are not folded over on 
themselves: when the embedding dimension is sufficiently large, the delay reconstruc- 
tions will generically not do this; thus, the method will not create ‘false neighbours’ in 
the delay-reconstructed space. 

Since one is primarily concerned with using dimensionality for the purpose of 
constructing low-dimensional models of continua, the fractal dimension estimates are 
not as important as the embedding dimension estimate. Thus, reliable techniques, such 
as singular systems analysis or FNN are of more than theoretical interest, since they 
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estimate the phase space dimension of the required model. The KL decomposition method 
addresses the problem of dimensionality from the perspective of ‘modes’ or ‘shape 
functions’ needed to describe a given motion (Lokve 1963) - specifically by obtaining 
shape functions, or ‘KL modes’, from experimental data. This method is more generally 
applicable than conventional modal analysis, since it does not require that the system be 
linear. The interested reader is referred to Cusumano et al. (1994) and Cusumano (1996). 



Appendix J 
Detailed Analysis for the 

Derivation of the Equations of 
Motion of Chapter 6 

J.1 

The derivation of this relationship is given by Love (1927; Chapter XXI) for the analysis 
of the ‘Small deformation of naturally curved rods’. The detailed derivation, specifically 
for the curved pipe problem, may be found in Van (1  986; Appendix A). Here, only some 
definitions and the final result are given. 

Let us define a so-called Frenet-Serret reference frame (XO, yo, ZO) centered at Po, 
consisting of the principal axes of the undeformed cross-section of the pipe, zo being 
tangent to the centreline (Figure 6.1); also, a so-called flexure-torsion reference frame 
(x, y ,  z )  associated with the deformed centreline. Further, let the unit vectors associated 
with the (XO, yo, zo )  and (x, y, z )  systems be (ex,,, eye, e,,) and (ex, ey .  e,), respectively. 

The initial curvature is defined by K, and K; and the initial twist by to; for the initially 
planar [in the (XO, ZO) plane], untwisted pipe, these are 

RELATIONSHIP BETWEEN (XO, yo, 10) AND (x ,  y ,  Z )  

K, = 0, K: = l / R o ,  7, = 0. (J.1) 

After deformation, point PO moves to P through displacements ti, v and w, referred to the 
(XO, yo, zo) system, as shown in Figure 6.1. The angle between xo and x is ~, which is 
the angle of rotation about the z-axis of a plane section at Po due to deformation. 

The centreline strain is given by 

where s is the curvilinear coordinate along e, referred to the (XO, yo, ZO) system. Since 
K, = 0, if the centreline is inextensible, then clearly 
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For small deformations, the relationship between the unit axes is found to be 
(Love 1927) 

The same transformation matrix relates (x, y, z )  to (xo, yo, zo).  In (J.4) it is noted that 
-aulas, aulas + w/Ro and @ are simply the angles of rotation about the x, y and z axes, 
respectively; hence (J.4) could have been obtained by a sequence of small rotations via 
the corresponding transformation (rotation) matrices. 

Equation (5.4) has been obtained assuming no centreline extension; but, for small defor- 
mations, the two frames obey the same relationship, even for the extensible case. 

5.2 THE EXPRESSIONS FOR CURVATURE AND W I S T  
In this case, three coordinate systems are utilized: the Frenet-Serret and flexure-torsion 
reference frames used in Section J. l ,  as well as an inertial system coincident with the 
former. Then, after introducing the direction cosines relating these reference frames and 
considering the derivatives of (e,, ey, e,) with respect to s, which are related to curvature 
and twist, after very lengthy but straightforward manipulation (Love 1927, Chapter XXI; 
Van 1986, Appendix B) one finds the curvature and twist of the deformed pipe in terms 
of the deformation: 

The axes associated with K ,  K’ and r* are defined in Figure 6.1. 

J.3 DERIVATION OF THE FLUID-ACCELERATION VECTOR 
Recall equation (6.14) in the main text, 

avf avf 
at as 

af = - + U -, (5.6) 

where Vf is given by equation (6.9). By differentiating Vf with respect to t and s yields 

(J.8) 
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The derivatives &,,/as, &,/as, aezo/as may be found by the same principle as those of 
a rotating vector. Thus, &,,/as = S2 x e, = +,ezo + toeyo, where G? = Koe,  + .;eyo + 
toe,,; and similarly for the others. Then, using (J.l), one obtains 

Combining equations (J.6)-(J.8) with (J.9), the components of the fluid acceleration 
vector given in equations (6.15) may be obtained. 

J.4 
Consider an infinitesimal element of the pipe contained between the cross-section through 
PI and Pi on the strained centreline, and the forces and moments acting on it, as shown 
in Figure J. l .  Qxo, Qyo and Qzo are components, referred to the (x0, yo, zo)  frame, of the 
resultant of the transverse shear forces Q,, Qy and Q: = Q, + A , p ,  [see equation (6.18)]; 
Axe, hyo and A,, are the components of the resultant of the bending moments Ax, Ay 
and the twist couple A, in the XO, yo and zo directions; F,, F ,  and F ,  are the compo- 
nents, referred to the (& y& ,&) frame [defined in Figure J.l(b)] of the force resultant at 
Pc per unit Iength of the centreline, which includes the inertial and gravity forces, the 
viscous damping and pressure forces associated with the surrounding fluid and the reac- 
tion force associated with the internal flow; Oxo, 0, and O,, are components, referred 
to the (xb, y;,  zb) frame of the moment resultant at Pt per unit length, which include the 
moments of rotatory inertia and external moments, if any. 

We next consider an inertial coordinate frame ( X O ,  Y O ,  ZO),  relative to which the 
(xo, yo, zo)  and (x& y& 26) frames have direction cosines I t  and Z T j ' ,  such that, for instance, 
Qyo along YO is given by lr2Qx0 + E i t 2 Q y O  + 1;2Qz0. In the limit of 6s -+ 0, l:j = I t ' .  After 
projecting all forces and moments in Figure J.l(b) on the inertial frame (XO, Y o ,  Z o )  with 
the aid of diagrams such as Figure 5.2, and balancing forces and moments along X u ,  Y o  
and ZO, one obtains 

THE EQUATIONS OF MOTION FOR THE PIPE 

a 

a 

a 

[ZTiQxo + l ; i Q y o  + l ; ~ Q z o ]  + l i l F x o  + E;lFyo + /;IFzo = 0, 

- as [ G Q x o  + G 2 Q y o  + l3*2Qzo] + 1 ; 2 F q  + l & F y o  + l3*2FZO = 0, 

- as ['?3QXo + '&QYO + %Qz0] + ly3Fxo + l;3Fy0 + 13*3Fz0 = 0, 

(J. 10: 

a - as [l;i&xo + l & J G o  + GiAzO] + 1 2  (173Q,W + Z&Qm + l&Q,> 

- 13 (%Qq + l&.7Qy0 + Z&Q,) + (lyl@,, + Z$lOyo + I* 31 O ) = 0, 
a 
- as [ l L d h ~  + G 2 A y o  +K&Azo] + 13 ( l ; lQxo + l; iQN + l;lQzo) 

- ' 1  (';3 QxO + Z;3Qyo + Z 3 * 3 Q Z O )  + (1;2@xo + 1 z 2 O y o  + / 3 * 2 0 7 4 )  = 0, (J.11) 

a 
- as [G'/uxg + 1$3 &yo + 1 3 * 3 d z o ]  + !I (&Qq + l&QyO + l&Qz0) 

- 12 (ZTiQxo + I&Qyo + l;lQQ) + ( l ; 3 0 x 0  + Z&OyO + Z;30zo) = 0, 
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Figure J.l Forces and moments acting on a pipe element expressed (a) in the reference frame 
(x, y ,  z )  and (b) in the reference frame (no, yo, 20) .  

where 
(5.12) 

Now, in conjunction with the derivation of (J.9), we have obtained (a) aexo/as = 
-.bezo + toe, and similar expressions for ae,/as and ae,,/as; but, writing exo = lTli + 
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Figure 5.2 Forces in Figure J.l(b) projected onto the Zo and Y O  axes. 

1y2j + lF3k, ey0 = l;,i + 1;2j + 1z3k, e,, = l;,i + 1T2j + 13*3k, we also have (b) ae,,/as = 
(aZ;,/as)i + (aly,/as)j + (i31f3/i3s)k, etc. Then, combining the two different forms (a) and 
(b) of the expressions for the derivatives in each case, one can obtain the derivatives of 
l;j,  as follows: 

The ( X O ,  Y O ,  Z O )  frame is now set to coincide with (XO, yo, ZO), so that 17j = 6ij; also, 
li = L3i, i = 1, 2, 3, in (5.12) become the direction cosines of the z-axis referred to the 
(xo, yo, LO) frame as given by 

au av & I  

L32 = - - K,W + sou, as as as = - - tov + K ~ W ,  ~ 3 3  = - - K,U + K,W + 1 .  
(J. 14) 

Then, substituting relations (5.13) into equations (5.10) and (J.l l),  the equations of motion 
of the pipe along the xo-, yo- and Lo-axes may be written as 

(J. 15) 
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We now consider the force per unit length of the centreline due to gravity and the 
pressure due to the surrounding fluid. For convenience, the pressure distribution of the 
surrounding fluid acting on the external lateral surface per unit length of the pipe may 
be replaced by the buoyancy force B (i.e. B = A,p,g) and the tensions A,p, and A,pL 
applied on the top and bottom faces, where pe  and p: are the pressures at levels PI and 
Pi. The buoyancy R and gravity forces can be combined into a single force, called the 
effective gravity force G, and the pressure force A,p ,  and the tension Q, can also be 
combined into a single term QT. Let (Gxo, G,, GZo) denote components, referred to the 
system (KO, yo, zo) ,  of the effeciive gravity force G; then, we can write 

G q  = ( m  - &pe )Sax,, Gy, = h - A,p,)ga,,, 

Qf = Q: +Aop,t 
(J.16) 

G:o = O n  - Aupe)gazo, 

where m is the mass per unit length of the pipe, A ,  is the external cross-sectional area of 
the pipe, pe is the density of the surrounding fluid, g is the acceleration due to gravity and 

avo, a;,, are the direction cosines, referred to the system (XO, yo, ZO) of the gravitational 
acceleration. 

For the pipe vibrating in a quiescent fluid, fluid damping arises due to viscous effects 
and due to the energy carried away by acoustic waves. The damping force arising from 
these effects may be considered to be proportional to the pipe velocity. The components 
of this force. referred to the system ( X O ,  yo, ZO), may be written as 

(J.17) 

where c and c' are the coefficients of viscous damping due to the surrounding fluid, 
associated with the lateral and axial motion of the pipe, respectively, and u, v, w are the 
displacements of the pipe along the XO-, yo-, zo-axes. 

Finally, components of the force resultant per unit length of the pipe centreline can be 
written as follows: 

(J. 18) 

where upio, upyo, upzo are components of the pipe acceleration, M, and ML represent the 
added mass per unit length, and R,,, R,, Ri, are components of the reaction force arising 
from the internal flow. 

Subject to the limitation that the cross-sectional dimensions of the pipe are small as 
compared with the overall length of the pipe, the rotatory inertia about axes x and y can 
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be neglected. Therefore, if external moments are absent one obtains 

(J. 19) 

where I, is the moment of inertia of the pipe about the z-axis. 

for the pipe, i.e. equations (6.16), may be obtained. 
Substituting (J.18), (J.19), (J. 14) and (J.l) into equations (J.15), the equations of motion 



Appendix K 
Matrices for the Analysis of an 

Extensible Curved Pipe Conveying 
Fluid 

The equation governing the in-plane motion of a typical element is 

where [A,] is given by equation (6.92), the same as for out-of-plane motions of an inex- 
tensible pipe. The coefficients a], 4, etc. are associated with linear interpolation of the 
following static parameters: 

hence, in terms of the values of no at nodes j and j + 1, 

where is the length of the element in question. Similar expressions hold good for bl, b 2  

and el, c2. The integrals [11]-[111] are the same as in equations (6.93), while [112]-[1~3] 
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Argand diagrams 

cantilevered pipes 112-13, 119, 247, 453 
curved pipes 454-55, 457,461 -62 
generic 68 
non-slender pipes 233-34, 236-37 
nonuniform pipes 205, 207 
pipes with supported ends 89, 91, 95, 305, 

one-degree-of-freedom system 52 
Articulated pipes 183-95, 296-9, 316-27 

added dashpots 193 
added spring-mass combination 193 

339 

basic dynamics 184-6 
chaotic dynamics 392-4 
equations of motion 187, 296-9 
experiments 

added dashpot 192 
added point-mass, mass-spring 192 
divergence and flutter 185, 191 
nonlinear 321 -2 
parametric resonances 258-61 
spatially non-planar system 194 

articulated-continuous transition 188 
basic dynamics 184 
destabilization by damping 186 
effect of added dashpot 193 
effect of added point-mass 192 
effect of added spring-mass 192 
effect of gravity 188 
mode exchange, mode veering 185 
N-degree of freedom systems 186 
spatially non-planar system 194 

linear dynamics 

modified systems 190-4 
N-degree-of-freedom 186-90 
nonlinear dynamics 

cantilevered pipes, 2-D motions 317 
cantilevered pipes, 3-D motions 323 
cantilevered pipes, double degeneracy 324 
constrained cantilevered pipes 3 16 
parametrically excited 405 -7 

simple parametric and combination 
resonances 258-9 

spatial systems 194-5 
stability conditions 185, 189-95 
two-degree-of-freedom 184, 297 

double degeneracy studies 324 
homoclinic orbits 322 
limit-cycle amplitude 320 
stablehnstable limit cycles 321 
with constrained end 316-7 
2-D motions 184-6, 319-23 
3-D motions 323 

Aspirating pipes 2 13 -20 
experiment to verify original theory 21 3 , 2  17 
experiment to verify revised theory 219 
Feynman’s sprinkler dilemma 217 
instability predictions 216 

558 



INDEX 559 

ocean mining 2 13 
original theory 214 
revised theory 219 
stability 219 

Asymptotic stability 487 
Attached plates on cantilevered pipes 170-2, 

269 
Attractors 57 

Autocorrelation 350-2 
Autocorrelation function 3 1 
Averaging method 300, 319, 325, 491 

AUTO 302, 322, 377-78, 385, 408, 410 

ODES 491, 495 
PDEs 496 

Axial contraction 7 1 
Axial extension 63, 82, 285-6, 416, 429, 442 
Axial strain 75, 202, 280, 293, 295 
Axial tension 63, 286, 290-5, 302 
Axially sliding downstream end 61, 75, 104-7, 

110, 314-5, 460-2 

Basin of attraction 57 
Beck’s problem 66-7, 122 
Benjamin’s form of Hamilton’s principle 79, 

Benjamin’s work on destabilization by 

Bernoulli (Bernoulli-Lagrange) beam equation 

Bessel functions 45, 48, 227 
Bifurcation 67 - 9 

Hamiltonian Hopf 67-8 
Hopf 63, 68 
period-doubling 486 
pitchfork 62, 67, 486 
theory 493 
transcritical 486 

Bifurcation diagrams 
articulated pipes 185, 393 
cantilevered pipes 335, 339, 344, 347 

298 

damping 468 

25 

with end-mass 374-5, 378, 380, 384 
with end-mass defect 385 
with spring support 339, 344, 390-91 

generic, definitions 53, 277, 302 
loosely constrained pipes 358, 365 
parametrically excited systems 401, 404-5, 

pipe with supported ends 307 
up-standing cantilever 347, 388 

41 1 

Bifurcation equations 306, 320, 325-6, 331, 

Bifurcation point 500 
Bifurcation theory 302, 493-5 
Bifurcation values. See Instability; Critical 

Biorthogonality 12, 22 
Black box 66, 317 

342-3, 347, 499-501 

flow velocities 

Bolotin’s method 243, 258 
Boundary conditions 

beam systems 12-22, 169 
curved pipes 426-8 
fluid systems 24, 26, 38-40, 47 
periodically supported system 178 
pipes conveying fluid 81, 82, 85, 150, 287 

supported at intermediate points 154-5 
with added point-masses 214, 266 
with added springs 158, 162 
with attached plate 170 

Timoshenko beam theory 224 

table 87 

of a rod 499 
see also Divergence 

b,,, c,~, ,  d,,, analytical evaluation 466-7 

Buckling 51, 59, 100, 140-1, 275, 499-500 

Buckling (divergence) of columns, critical load 

Buckling flows 275 

Canonical cusp 308 
Cantilever-beam eigenfunctions 18 
Cantilevered curved pipes. See Curved 

Cantilevered pipes 

62 

cantilevered pipes; Curved pipes 

chaotic dynamics 348-92, 402-12 
comparison of theoretical and experimental 

stability thresholds 138-46, 160- 1, 
165,210-13,238-40, 248-9, 253-8, 
364, 377, 382-3, 412 

experiments 133-48, 184-95, 348-57 
articulated pipes 184, 189 
aspirating pipe 213, 219 
chaotic dynamics 348, 367, 370, 379 
eigenform of fluttering pipe 134-7, 140 
experiments with nozzles 137, 146, 331 
fabrication and testing methods 47 1 
forced vibration 264 
“hanging” vertical cantilevers 139 
limit-cycle amplitudes 148 
nonlinear effects 134, 147, 321, 331-32, 

nonuniform pipes 208 
parametric resonances 254 
PSDs 147 
r.m.s. vibration amplitude 147 
short pipes 238 
“standing” cantilevers 14 1 
subcritical Hopf bifurcation 148 
with added point-masses 166 
with added springs 160 
with added supports 155 
with metal pipes 137 

335, 348, 367, 370, 412 

linear dynamics 63-7, 11 1-32, 149-53 
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Cantilevered pipes, linear dynamics (cont.) 
Argand diagrams 112-3, 119, 205, 207, 

articulated pipes 184 
aspirating pipes 213 
basic dynamics 63-7, 11 1 
Coriolis-damping 112, 122 
destabilization by damping 118, 130 
critical flow velocities, theoretical 

216, 236-7, 247 

11 1-23, 149-53, 164-6, 171, 
209- 11, 236-40, 328-36 

dimensionless equations 83 -4, 203, 223, 

effect of dissipation 118-23, 130-2 
effect of elastic foundation 149 
effect of free jet 128, 152 
effect of gravity 115 
effect of material damping 119-121 
effect of refined fluid-mechanics 151 
effect of slenderness 239 
effect of tensioning 150 
elastic foundation 149-50 
equation of motion 74-5, 201-3, 214, 

forced vibration 261, 265 
mode exchange, veering 113 
nonuniform pipes 196 
outflow models 152 
short (non-slender) pipes 220, 236 
S-shaped discontinuities 114, 123-30 
u versus stability diagram 114, 116, 

u versus y stability diagram 117 
with harmonically perturbed flow 246 
zero versus vanishing damping 122, 149 

articulated cantilevered pipes. See 

comparison of nonlinear equations of 

doubly-degenerate systems 324, 340, 345, 

limit-cycle motion 135, 148, 329, 333-6 
method of solution 299-302,487-501 
modified, approximate nonlinear equation 

nonlinear equations of motion 283-5, 

oscillation-induced flow 41 2 
parametric resonance 402 
pipes with a nozzle 329 
theoretical results 328-48 
up-standing cantilever 345 
with a linear spring support 336, 389 
2-D limit-cycle motions 328 
3-D limit-cycle motions 333 
see also Chaotic dynamics 

288-90 

223, 283-5 

120, 159, 165 

nonlinear dynamics 

Articulated pipes 

motion 290-4 

387 

288 

502-3 

parametric resonance 
combination resonances 25 1-2, 257, 260 
parametric resonance boundaries 248-50, 

principal parametric resonance 243, 4 12 
simple parametric resonances 246-50, 260 

stability. See theoretical results; experiments 
stability diagrams 114, 116- 17, 120, 132, 

theoretical results 11 I - 15, 206-9, 236-8, 

with additional dashpots 167 
with additional point-masses 164-7 
with additional spring supports 157-64 
with attached plates 170-2, 269-70 
with intermediate simple support 153-7 
see also Curved cantilevered pipes; Curved 

253-8, 260,404-6, 409-12 

165, 208, 210 

246-50, 251-3, 328-48 

pipes 
Cantilevered semi-circular pipes 452-7 

Cantilevered thin-plate structure 17 1 
Cantilevered two-degree-of-freedom systems. 

Cavitation effects 138 
Centre manifold method 301, 306, 321, 325-7, 

see also Curved pipes 

See Articulated pipes 

333, 340, 346,408,487-9 
applied to pipe problem 506-7 

Centreline strain 428, 522 
see also Axial extension 

Centrifugal force 62, 127-9, 218, 283, 285 
Centrifugal pump analogy 65 
Chaotic dynamics 348 

articulated pipe system 392-4 
buckled pipes 366-8 
constrained pipes 348-66 
control 413 
curved pipes 457-9 
near double degeneracies 387-92 
pipes with a spring 389 
pipes with added mass 368, 385 
pipes with magnets 366 
straight pipes 348-92 
up-standing pipes 387 
see also Route to chaos 

Chaotic oscillations. See Chaotic dynamics 
Characteristic curves 96 
Characteristic equation 10, 12 
Characteristic multipliers 258, 485 
Circulatory system 64, 67 
Clamped-clamped curved pipes 415, 437-52 

see also Curved pipes 
Clamped-clamped semi-circular pipes 438, 

439, 441-52 
see also Curved pipes 

Clamped-clamped straight pipes 90-5, 102, 
224, 229-36, 245-7,253-4, 398-9 

see also Pipes with supported ends 
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Clamped-pinned pipes 90, 96-8, 103, 107, 
169, 263, 314, 396 

315 
with axially sliding downstream end 107, 

see also Pipes with supported ends 
Clamped-pinned semi-circular pipes 448 

see also Curved pipes 
Classification of flow-induced vibrations 3 -4 
Closure coefficients 34 
Coalescence of two eigenfrequencies 92 

Coaxial cylinders/shells 
see also Coupled-mode flutter 

cylinders with inviscid fluid 39 
cylinders with viscous fluid 46 
filled with quiescent fluid 36-46 
filled with quiescent viscous fluid 46-50 
shells with inviscid fluid 38 

Codimension-2 analysis 326, 340 
Codimension-3 analysis 325 
Colebrook equation 33 
Column with tangential load 66 

Combination resonances 250-3, 257, 399 
Comparison functions 14, 18 
Complex frequencies. See Eigenfrequencies: 

Argand diagrams 
Compressibility 45 
Compressible fluid flow in pipes 241 
Compressive load 61-2, 124 
Computational fluid dynamics (CFD) 23, 32 
Conical-conical pipes 204, 207-8, 21 1 
Conical pipes 203 
Conically tapered cantilevered tubular beams 

Conservative system 9, 11, 54, 62 
Constrained pipes 316, 348 

see also pipe-spring systems 
Constraints 9 
Continuation methods 302 
Continuity equation 23 
Continuous cantilevered pipes 3 16, 328 

Continuous systems 7, 12 

Control of flutter in pipes 270, 276, 413 
Conventional inextensible theory for curved 

pipes 416, 438-40. 461 
Coordinate transformation 1 I ,  489 
Coordinates 

pendulum under zero gravity 124 

203 

see also Cantilevered pipes 

forced vibrations of 18, 265 

Eulerian 69 
generalized 6 
Lagrangian 69 
normal 11 
principal 11  

Coriolis effects 61, 94-5 
Coriolis forces 62-3, 95, 128-9, 248, 250 
Coriolis mass-flow meter 268 -9 

Correlation dimension 360, 5 16 
versus embedding dimension 362 

Correlation functions 3 1 
autocorrelation, cross-correlation 29- 30 
spatial correlations 30 
temporal correlations 30 

Correlation integral 5 16 
Coupled-mode flutter 67-9, 92-3, 95-6, 98, 

303, 307, 314 
in experiments 11 1, 314 
in Hamiltonian systems 68, 312 
Pai'doussis coupled-mode flutter 69 
supported pipes - nonlinear theory 303. 3 12 

Coupling of motions 44 
Critical flow velocities 

articulated systems 185, 189-94 
beam with fluid follower force 168 
cantilevered pipes 112-23, 142-6, 149, 151, 

curved pipes 438-9,454-8, 461-2 
definitions 68 
non-slender pipes 233-7, 239 
nonuniform pipes 210-2 
pipes on elastic fundations 102 
pipes supported at intermediate points 154. 

pipes with additional point-masses 165 
pipes with additional spring supports 

pipes with attached plate 171 
pipes with supported ends 62, 88-91, 101, 

up-standing cantilever 117, 144 
Curvature 280-1, 523 
Curved cantilevered pipes 415, 452-9 

Curved pipes 415-62 

153, 364 

156 

158-64, 341-2 

103-11, 305, 321 

see also Curved pipes 

analysis for extensible theory 
motion about equilibrium 436. 522 
static equilibrium 437 

in-plane motion 43 1 
out-of-plane motion 434 

Argand diagrams 454-5, 457. 461 -2 
boundary conditions 426,459 
chaotic dynamics 457-9 
combined force l7 427, 435 
conventional inextensible theory 4 16, 428. 

curvature 419, 523, 552 
dynamics and stability 415-6, 451, 457, 460 

cantilevered pipes 452 
in-plane motion 438, 442-5, 447, 454, 

intricate pipe shapes 448, 450 
out-of-plane motion 439, 445, 448, 455 
pipes with axially sliding ends 459 

analysis for inextensible theory 

438 

455-9,460-2 
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Curved pipes, dynamics and stability (coni.) 
pipes with supported ends 438 
possible instabilities 460 

derivation 417-27, 522-3 
extensible theory 429-30 
inextensible theory 428-9 
modified inextensible theory 429 
nondimensional 426 - 8 

equations of motion 

equilibrium shapes 442 
extensible theory 416, 429, 440, 452 
finite element analysis 430-5, 529-30 

extensible pipes 436-7, 529-30 
inextensible pipes 43 1 -5 

formulation of the problem 417-30 
historical perspective 415 
inextensibility condition 428, 522 
kinematics 417, 417-20, 522 
L-shaped 415, 449-51 
modified inextensible theory 416, 429, 446, 

nondimensional parameters 426-7, 437 
nonlinear dynamics 451, 457-9 
resistance coefficient 437 
S-shaped 415, 449-51 
spiral-shaped 415, 449-51 
symmetridasymmetric modes 440 

Cylinders, casting methods 473 
Cylindrical-conical pipe 204, 206, 210- 1 
Cylindrical-cylindrical pipe 204 

d’Alembert paradox 41 
d’ Alembert principle 77 
Damping 11 -2, 21, 41, 54, 72, 192, 223, 246, 

250 
destabilization by 118-22, 130-2, 468-70 
measurement 476-7 
viscous, viscoelastic, hysteretic 75-6 

452 

Damping coefficient 36, 41, 84, 118-23, 132, 

Damping constants 474-6 
Damping factor (ratio) 51, 88 
Decoupling 11, 19, 22, 265 
Deep-water risers, stability 27 1 -3 
Deformation-induced tension 108, 110, 294, 

Delay-embedding method 5 16 
Delay reconstruction 

of attractor 381 
phase-plane orbit 5 18 
Poincare map 5 18 

by added masses 165-6 
by added springs 159-63 
by added support 66, 134, 153 
by damping 130-2,468-70 

287 - 8 

303, 314 

Destabilization 

Benjamin’s work 131, 469 
explanation 132 

by immersion in dense fluid 206, 241 
Destabilizing effect of nonlinearities 331 
Detuning parameter 395, 403, 406 
Diagonalization 11, 18-22, 265 
Dimensionless. See also Nondimensional 
Dimensionless complex frequency 84, 206, 

224, 437 
see also Argand diagrams 

Dimensionless complex frequency diagrams. 
See Argand diagrams 

Dimenqionless critical flow velocities. See 
Critical flow velocities 

Dimensionless flow velocity 62, 84, 188, 203, 
223, 288, 298,427 

Dimensionless frequency. See Dimensionless 
complex frequency 

Dimensionless parameters 
articulated pipes 188, 298-9 
curved pipes 426-7, 437 
nonuniform pipes 203 
short pipes 223 
straight pipes, linear 83-4, 165. 169, 172, 

188. 203, 223. 288-90, 298-9, 
426-7, 437 

straight pipes, nonlinear 288-90 

see also S-shaped discontinuities 

equations of motion 8-9 
review 9- 12 

effect on cantilevered pipes 118-23, 130-2 

Discontinuities 123-30, 166 

Discrete systems 6-22 

Dissipation. See Damping 

Dissipation rate 34 
Distributed parameter systems, review 6-22 
Divergence 

articulated systems 185, 189-94, 318, 321-2 
curved pipes 438-9, 443-51,456 
experiments 104- 110, 144, 160- 1 
general, definitions 51 -3, 62, 67-8 
non-slender pipes 233 -5 
pipes on elastic foundation 102-3 
pipes with added springs, supports, masses, 

pipes with supported ends 62, 89-91, 95, 

up-standing cantilever 117, 144 
See Pitchfork bifurcation; Critical flow 

etc. 154-63, 168, 171 

97-101, 305-7, 311-2, 315 

velocities 
Divergent motion 13 

Double degeneracy 317, 324-8, 336-48, 493, 
see also Divergence; Flutter 

494 
and chaos 387 
chaotic dynamics near 387-92 

Double pendulum 7, IO, 125 
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Dragging motion-form 64, 134, 140 
Dyad 35 
Dynamic instability. See Flutter 
Dynamic interference 264 

Eddy viscosity 29, 33-4 
Educational models 275 
Effective tension 271 
Eigenfrequencies 

cantilevered pipes 112, 145, 205, 235-7. 

curved pipes 438-9, 443-50, 454-5, 461-2 
general 10. 13-4, 16, 52 
pipes with supported ends 89, 233, 251, 315 
see also Argand diagrams 

orthogonality 14 
Timoshenko beam 480- I 

335-7 

Eigenfunctions 13, 21, 309, 314, 395 

Eigenvalues 10-14, 22, 52, 67, 88, 305, 312, 
339, 341, 457 

convention in this book 13 
Eigenvectors 10- 11 
Elastic foundation 83, 102-3 

cantilevered pipes 149-50 
infinitely long pipes 174-8 
pipes with supported ends 102-3 

materials, equipment and methods 47 1 
short pipes, shells, cylinders 473 

Elastomer pipe fabrication 

Elastomer pipe properties 474 
Embedding dimension 5 17 - 18 
Empirical formulations 35-6 
End-mass defect 383 
End-nozzle 76, 84. 137, 145. 329-30 
Energy dissipation. See Damping 
Energy method. See Hamilton’s principle 
Energy spectrum of turbulence 31 
Energy transfer mechanisms 65, 126-9, 

Equations of motion 
468 -70 

articulated pipes 184, 187, 296-9 
aspirating pipes 214, 218-9 
cantilevered pipes 75, 283, 502 
curved pipes 421 -430, 524-28 
discrete systems 8-9 
extensible pipe 75, 280, 285 
first-principles derivation for pipes 463-5 
Hamiltonian derivation for pipes 76-82 
inextensible pipe 74, 280, 283 
Housner- Benjamin -McIver controversy 77, 

methods of solution 84-8, 243-5, 250, 

Newtonian derivation for pipes 71 -6, 463 
non-slender pipes 223, 478 
nondimensional 83-4, 178, 187, 203, 223, 

82 

299-302,487-501, 506-14 

288-90, 357, 426-30 

nonlinear for pipes 281-95, 502-5 
nonuniform pipes 196-203 
one-degree-of-freedom systems 5 1 -8 
periodically supported pipes 178 
pipes with attached plates 170 
pipes with supported ends 75, 285, 503 
simple straight pipes 16, 69-88, 463-465 
Timoshenko 478-82 

Euler-Bernoulli beam theory 12, 73, 220-1, 

Euler-Bernoulli plug-flow (EBPF) theory 220. 

Euler equations 24-5 
Eulerian coordinates 69, 279 
Euler’s method of equilibrium 90 
Expansion theorem 10 
Experiments 

234, 236, 238-40,424, 503 

233-40 

articulated cantilevered pipes 189-95, 32 1 
cantilevered pipes 133-48, 165-6, 208-1 I ,  

213, 218-20, 238-9, 255, 264, 
270-1, 328, 335 

chaotic dynamics 348-57, 366. 370, 377. 

inhibited flow/porous tubes (INPORTs) 3 15 
parametric resonances 253-8, 395, 410 
pipes with a nozzle 137, 145, 263, 331 
supported pipes 104-11, 155-6, 160-1, 253, 

379, 382 

314-5, 322, 367 
Explicit form of equations of motions 300 
Extensible curved pipes. See Curved pipes 
Extensible theory for curved pipes 416, 440, 

452 
see also Curved pipes 

Extraneously induced excitation (EIE) 4 

False nearest neighbours method 519 
Feigenbaum number 358 
Finite difference method (FDM) 373, 375-8, 

Finite dimensional analysis 304-8 
Finite element method 332, 430-5 
Fire-hose instability 59 
Fixed point 54 
Flexibility versus flow-rate 3 18 
Flexural restoring force 61, 282, 503 
Flexural rigidity measurement 474-6 
Flexure-torsion reference frame 522 
Floquet multipliers 258, 485 
Floquet theory 301, 486 
Flow equation 292-3, 297, 413 
Flow induced by oscillation 412-4 
Flow-induced structural motions 3-4 
Flow-induced vibrations 

classifications 3-4 
sources of excitation 3 
see also Research 

408,410-11 

Fluid acceleration 73, 75, 199, 420, 463, 523-4 
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Fluid coupling 43-4 
Fluid-dynamic force 228-9 
Fluidelastic systems 12 
Fluid flow typeltheory 

computational fluid dynamics 32 
empirical formulations 35 
high Reynolds number 24 
ideal flow theory 24 
linearized flows 25 
potential flow theory 25 
slender-body theory 26 
turbulent flow 29 
very low Reynolds number 25 

Fluid follower forces 18-9, 61-3, 168-70 
Fluid friction 72-3, 82-3, 292-3, 297 

wall-shear stress 72, 199-200 
Fluid-jet-generated follower load 168 
Fluid mechanics, review 23 -50 
Fluid stress tensor 23 
Fluid-structure interaction systems 3, 13 1, 

Flutter 
493-5 

articulated systems 185, 188-95, 319-27 
beam with fluid follower force 168 
cantilevered pipes 112-23, 127, 132, 

curved pipes 454-9,461-2 
experiments 134-48, 155-6, 160-1, 165, 

134-53, 216-9, 246-7, 328-36, 364 

185, 191-5,208-12, 219, 238-40, 
364, 376-7, 379-80, 382 

forced vibration 262-5 
general, columns, definitions 5 1-4, 59, 63, 

non-slender pipes 236-40 
nonuniform pipes 205 - 12 
pipes with added springs, supports, masses, 

67-9, 124 

etc. 154-67, 171, 339-41, 371, 
374-9 

312-4 
pipes with supported ends 92-8, 303-7, 

upstanding cantilevers 117, 144 
see also Hopf bifurcation; Coupled-mode 

flutter; Critical flow velocities 
Flutter of pipes conveying fluid 

Benjamin’s elucidation 65 
coupled-mode flutter 67, 68, 92-8 
energy considerations 64 

Flutter suppression 256, 259, 276 
Force balance method 71-6, 196-201, 221-3, 

Forced response. See Forced vibration 
Forced vibration 

291-2,421-5, 502-5, 524-8 

analytical methods 265-7 
continuous systems 18 
decoupling schemes, validinvalid 266 
discrete systems 10 
dynamics 261 -5 

experiments 264 
general dynamics 261 
pipes with end-mass 266 
receptance method 262 
resonance in active systems 262 

Fourier transform 31, 228 
Fractal dimension 360, 316-21 

correlation dimension method 5 16 
false nearest neighbour method 519 
K-L decomposition 5 19 

Fractal dimensiodcorrelation dimension 360, 

Frkchet derivative 499 
Frenet- Serret reference frame 522 
Frequency of oscillation, dimensionless 84, 88, 

see also Dimensionless complex frequency; 

516-21 

135, 474 

Argand diagrams; Eigenfrequencies 
Frequency-dispersive medium 174 
Frequency measurement 476-7 
Frequency-response curve 396, 399,406, 

Frequency spectrum of turbulence 3 1 
Friction factor 33, 292-3, 297 
Friction loss 33, 292-3, 297 
Frictional forces 72, 82-3, 120, 138, 145, 

410- 1 

199-201,292-3, 297 
see also Damping coefficient 

Fundamental parametric resonance 245 
Fundamental solution matrix 485-6 

Galerkin discretization. See Galerkin method 
Galerkin-Floquet approximation 25 1 
Galerkin method 

applied to linear systems 127-9, 229, 304, 

applied to nonlinear systems 337-8, 357, 

general 8, 204, 261 
the method 12-5, 16-7, 86-8 

Garden-hose instability 59 
Gas-liquid two-phase flows 45, 213 
Generalized coordinates 6 
Global asymptotic stability 487 
Global dynamics/oscillations 278, 340- 1 
Gravitational energylpotential 81, 187, 282, 

Gravity effects 

312 

364, 373, 383, 407 

284, 287, 298 

cantilevered pipes 115-7, 139-44 
supported pipes 98 - 102 

effect on dynamics 115-7, 139-44, 317-8 
in equations of motion. See Equations of 

Gravity forces 

motion 
Gravity-induced divergence 116-7, 143-4 
Gravity-induced tensiodcompression 101 
Gyroscopic conservative systems 62-3, 92, 96 
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Gyroscopic loads 62, 96-7 
Gyroscopic pendulum 130 
Gyroscopic restabilization 97 
Gyroscopic stabilization 130, 3 12 

Hamiltonian derivations of equations of motion 

Hamiltonian energy 3 12 
Hamiltonian Hopf bifurcation 67-8, 92-3, 98 
Hamiltonian symplectic transformation 397 
Hamiltonian system, flutter 312-4 
Hamilton’s principle 8-9, 64, 79, 183, 281 -5, 

76-82, 281 -7 

293, 415-6, 478-9 
open system 79 

Harmonic balance method 300- 1, 373 
Harmonically perturbed flow 242-61, 394-412 
Harmonically perturbed flow in articulated 

pipes 
linear 258-9 
flutter suppression 259 
nonlinear 405 -7 

Harmonically perturbed flow in pipes. See 
Parametric resonances 

Hermitian system 17 
Heteroclinic cycles, orbits 348, 388, 391 
Heteroclinic tangles 325, 348 
High precision piping vibration codes 273-4 
Holonomic constraints 9 
Homoclinicheteroclinic orbits 322, 344-8, 

Homoclinic orbits 387, 394, 458 
Homoclinic tangles 325 
Homogeneous turbulence 30 
Homotopy methods 302 
Hopf bifurcation 

387-92 

cantilevered articulated systems 189-90, 

cantilevered systems, linear 63, 113, 124, 

cantilevered systems, nonlinear 277, 3 17, 

192-4, 319-27, 395 

138, 148, 209, 267 

319, 321, 324-5, 331-2, 334-5 
336-40, 343-8, 358 

cantilevered systems with added end-mass, 
spring 371, 373, 377-82, 383, 387, 
391 

curved pipes 458-9, 493, 498 
general 53, 56, 63, 68 
in parametrically excited systems 398, 404, 

secondary bifurcation 334 
suhcritical/supercritical 54, 134, 148, 320, 

through averaging 492 
through bifurcation theory and unfolding 

parameters 494 
through normal form method 490 

406 - 7 

331 -4, 340 

up-standing cantilever 345-8 
see also Flutter 

Hopf-Hopf bifurcation 389 
Hopf-Hopf heteroclinic cycles 39 1 
Hopf-Hopf interaction 392 
Hopf-pitchfork bifurcation 324, 389 
Hopf-pitchfork heteroclinic cycles 39 1 
Horseshoe theory 325 
Houholt’s method 301 
Hyperbolic/nonhyperbolic fixed point 493 
Hysteresis 76, 148 
Hysteretic damping 75, 84, 119-20, 138, 

142-3, 238,474 

Ichthyoid propulsion 269 
Ideal flow theory 24 
Ik,, integrals 481-2 
Impact 361 

in loosely constrained pipes 348-66 
Implicit form of equations of motion 300 
Implicit function theorem 498 
Impulsively excited 3-D motions 3 15 
Incompressible fluid 279, 285 
Incremental harmonic balance (IHB) method 

Induced (disturbance-excited) instability 135, 

Inertial confinement fusion (ICF) reactor 315 
Inertial coordinate frame 524 
Inertial manifold 459 
Inextensibility condition 70- 1, 280, 283 -4, 

Inextensible pipe 428, 443 

301, 373, 375-6, 408, 410 

138, 147-8, 156 

291-3, 428, 522 

see also Inextensibility condition; Curved 
pipes 

ConventionallModified inextensihle 
theory for curved pipes 

Infinite dimensional analysis 304, 308- 12 
Inhibited flow/porous tubes (INPORTs) 3 15 
In-plane motion of curved pipes 415, 426, 

asymmetric and symmetric modes 440 
cantilevered semi-circular pipe 454, 457 
clamped-axially-sliding pipe 460 
clamped-clamped semi-circular pipe 438 -40, 

clamped-pinned semi-circular pipe 448 
equilibrium configurations 442 
pinned-pinned semi-circular pipe 448 

Inextensible theory for curved pipes. See 

428-34, 436-8, 443, 529 

443-5,447 

In-plane oscillation, pipes with slanted 

Instability 68, 93 
end-nozzle 330 

by added support 66, 134 
coupled-mode flutter 68 
divergence 52, 62 
flutter 52, 63 
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Instability (conf. ) 
Pai’doussis coupled-mode flutter 69 
single-mode flutter 68 
see also Divergence; Flutter; Hopf 

bifurcation; Coupled-mode flutter 
Instability-induced excitation (IIE) 4 
Integral Fourier-transform method 228 -9 
Intermittency 385-6 
Inverse receptance 262 
Inviscid flow 24, 442 
Inviscid fluid-dynamic force 225 -8 

see also Fluid acceleration 
Irrational analytical methods 300 
Irreversible energy conversion 469 
Isolated solution 407 

Jacobian matrix. 360 
Jacobian matrix function 360, 486 
Jordan canonical form 325 
Jump phenomenodhysteresis 407 

see also S-shaped discontinuities 

K-E model 34 
Karhunen-Lohe decomposition 5 19 
Kelvin-Helmholtz instability 130, 469 
Kelvin-Voigt damping 

definition 72 
effect on dynamics 118, 122, 132, 146, 160, 

in equations of motion 75, 200, 287, 295, 

measurement 474 

251, 255-7 

304, 357, 397 

Keulegan-Carpenter number 45 
Kinetic energy 42-3, 81, 187, 281-6, 312, 468 
Kolmogoroff wavenumber 32 
Kronecker delta, definition 14 
Krylov-Bogoliubov method 302, 320 
k-step methods 300 

Lagrange equations 8, 64, 298 
open system 64 

Lagrangian 77, 281 
Lagrangian coordinates 69, 279 
Laminar flow 29 
Laminar phase of intermittent oscillation 385 
Laplace equation 26, 38,45 
Laplace transforms 10, 176 
Law of the wall 32 
Length scale of turbulence 30 
Lie bracket 489 
Limit cycle, limit-cycle motion 

attracting, stable 53-8 
experimental 135, 147, 209, 238 
repelling, unstable 53-8 
stability of 359, 485-6 
theoretical 312-3, 320-1, 323, 327-8, 

333-6, 358, 382, 385, 391 

Limit-cycle amplitude 135, 147-8, 238, 312-3, 
320-1, 324, 329, 333-5, 507-14 

computation 507- 14 
Lindstedt’s perturbation method 302 
Linear dynamics 51-8, 59-195, 196-276, 

Linear spring support 157-64, 166-7, 168, 

Linearization 484 - 8 
Linearized flows 25-6 
Liquid-metal fast breeder reactor (LMFBR) 

212 
Local analysis 278 
Local bifurcation analysis 347, 493-5 
Local stability 486 
Long pipes 173-83 

415-57,459-62 

259-60, 337 

on elastic foundation 174-78 
periodically supported 178 - 83 
TimoshenkoEuler-Bernoulli 23 1 
with refined flow theory 241 

Longitudinal displacements 71, 280, 293, 295 
Loosely constrained pipes, chaotic dynamics 

Lorenz (return) map 386 
Lyapunov direct method 301, 309, 486-7 
Lyapunov exponents 359-61, 385-6, 388-9, 

Lyapunov function 3 10- 1 1, 487 
Lyapunov method, theory 301, 309-12, 483-7 
Lyapunov-Schmidt reduction 498-501 
Lyapunov stability 483-6 

Magic black box 66, 317 
MAGLEV systems 276 
Magnetically buckled pipes, chaotic dynamics 

Material derivative 73, 283 
MATHEMATICA 302,493, 507 
Melnikov analysis 389 
Method of alternate problems 323, 500- 1 
Method of averaging 300, 319, 325, 338, 398, 

Method of false nearest neighbours (FNN) 519 
Method of multiple scales 300, 395, 400 
Method of normal forms 301, 342-3,408, 

Methods of solution 

348-66 

486 

366-8 

491-3,495-8 

489-91 

curved pipes 430-7 
harmonically perturbed flow 243-5, 250, 

nonlinear systems 299-302,483-501 
straight pipes with steady flow, linear 

“first” method 85 
“second” (Galerkin) method 86 

258, 486 

Modal analysis 10, 224 

Modal mass 41 
see also Galerkin method 
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Mode exchange, switching, veering 11 3, 123, 

185 
Mode localization 183 
Mode shapes 94, 113, 135-7, 140, 167 
Model dynamical problem 1, 59 
Modem methods of nonlinear dynamics 301, 

Modified inextensible theory for curved pipes 

~ 

487-501 

416 
curved cantilevered pipes 452-7 
curved supported pipes 446-52 

Modulated waves (MW) 335 
see also Quasiperiodic motions 

Moment-curvature relation 503 
Momentum, rate of change 74, 197 
Movement-induced excitation (MIE) 4 
Multiple scales method 300, 395, 400 
Multistep methods 300 

Navier-Stokes equations 23, 25 
Negative pressurization 219 
Negative stiffness 66, 134, 317 
Newtonian derivation 

linear equations of motion 71-6, 197-203, 

nonlinear equations of motion 502-5 
221-4, 417-25 

Newtonian methods 8 
Newton’s second law 72 
Non-autonomous systems 491 
Nonconservative hydrodynamic forces 468 
Nonconservative systems 64-5, 67, 118, 121, 

124 
educational models 275 
Galerkin’s method 16-7, 265-7 
see also Destabilization; Cantilevered pipes 

Nondegenerate hi furcations 498 
Nondimensional. See also Dimensionless 
Nondimensional equations of motion 

articulated pipes 187, 299 
curved pipes 426-8 
linear for pipes 83-4, 85, 162, 174, 203, 223 
nonlinear for pipes 288-90, 299 

Nongyroscopic conservative system 96 
Nongyroscopic nonconservative system 124 
Nonhomogeneous equation of motion 84, 86, 

Nonhyperbolic fixed point 493 
Nonlinear control 4 13 
Nonlinear dynamics 51 -8, 277-348 

261, 265 

applications to pipe problem 506- 15 
basic methods 483-501 
curved pipes 457-9 
modem methods of 301, 487-501 

Nonlinear equations of motion 278-96, 296-9, 
317, 357, 373, 397, 407 

Hamiltonian derivation 278-87 

methods of solution and analysis 299-302, 

Newtonian derivation 502-5 
Nonlinear harmonic oscillator 491 
Nonlinear inertial terms 288-90, 293, 300, 373 
Nonlinear motions 

483-501 

three-dimensional (3-D) 
articulated cantilevered pipes 323 -4 
impulsively excited 3 15-6 
limit-cycle motion, cantilevered pipe 

pipe with added end-mass 379-83 
pipe-spring system 344-5, 389-92 

articulated cantilevered pipes 319-23, 

limit-cycle motion, cantilevered pipe 

pipe with added end-mass 370-9 
pipe with end-mass defect 383-7 
pipe-spring system 336-44 
up-standing cantilever 345-8 

333-6 

two-dimensional (2-D) 

324-7 

328-33 

Nonlinear parametric resonance 394-412 
Nonlinear restoring and damping functions 54, 

Nonlinear spring 357-63 
Nonlinear tension effects 293-5, 302 
Non-Newtonian fluids 23 
Nonself-adjoint system 17 
Non-slender pipes 220-40 

289 

applicabilitykomparison of various versions 
of theory 232-8, 240 

cantilevered pipe stability 236 
clamped-clamped pipe stability 232 
effect of slenderness 234-5, 239 
equations of motion 223, 478 
experiments 238 
general analysis 224 
integral Fourier-transform method 228 
nondimensional parameters 223 
outflow models 229 
plug-flow models for EBPF and TPF 

theories 225 
refined flow modelling for TRF theory 220, 

226, 229 
Timoshenko theory 220-1, 478 

differences in equations of motion 478 
eigenfunctions of Timoshenko beam 480 

Nontrivial equilibria 309 
Nonuniform pipes 

comparison of theory to experiment 209 
effect of immersion in liquid 206 
effect of internavexternal tapering 204, 206 
effect of slenderness 207 
equation of motion 196-203 
experimental observations 209 
nondimensional equation 203 
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applied to pipe problem 507, 5 15 
examples 490 
for Hopf bifurcation 301, 325, 342 
for parametrically perturbed Hopf 

bifurcation 398, 408 
Numerical time-difference methods 300 
Numerical tools 302 
Nutating oscillations 379 

Ocean mining 213-20 

Ocean Thermal Energy Conversion (OTEC) 

One-degree-of-freedom linear system 5 1 
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Open systems 9, 79 
Orbital stability 483 
Ordinary differential equations (ODES) 7, 333, 

Orthogonality 10, 14 

system analysis 214-7, 219 
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398, 495 

biorthogonality 12, 22 
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Oscillation-induced flow 274, 412- 13 
Oscillatory instability. See Flutter 
Oscillatory Reynolds number 26, 35 
Outflow models 152-3,230-2 
Out-of-plane motion of curved pipes 415, 426, 

428-30,434-6,439,451,529 
cantilevered semi-circular pipe 455 -6 
clamped-clamped semi-circular pipe 439, 

Out-of-plane oscillation, pipes with slanted 
445-6,449 

end-nozzle 330 

Pdidoussis flutter 69, 92-4, 97 
Parametric excitation 213, 242, 250 
Parametric resonances 213, 242-61, 394-412 

analytical methods 258, 395, 397-8, 402-3, 

articulated pipes 258, 406 
Bolotin’s method 243 
cantilevered pipes 246, 402 
combination resonances 250 
comparison theorylexperiment 255 -7 
experiments 253-8, 395-6, 410-2 
Floquet analysis 250 
nonlinear 

407 - 8 

articulated systems 406 
conservative systems 394 
nonconservative systems 402 

periodically supported pipes 259 
pipes with spring supports 259 
pipes with supported ends 245, 394 
primary resonance 243 -4 
principal resonance 243 

secondary resonance 243-4 
simple parametric resonances 243 
suppression of flutter 256 
theoretical resonance maps, cantilevered 

pipes 248-9, 252, 256-7 
theoretical resonance maps, 

clamped-clamped pipes 246-7, 25 1, 
255 

up-standing cantilever 389 
with two-phase flow 261 

Partial differential equations (PDEs) 7-8, 333, 

Penalty function technique 332 
Pendular oscillations 379 
Period doubling 

495-501 

articulated cantilevered pipes 322, 392 
bifurcation 35 1, 486 
constrained pipes 348 -66 
experimental 35 1 
parametrically perturbed systems 400, 402 
pipes with end-mass defect 385 
pipes with supported ends 400, 402 
route to chaos 358, 387 
up-standing pipes 387 

Periodic excitation. See Parametric excitation; 

Periodic motions 62, 326, 360, 375 

Periodic solution 486, 501 
Periodically supported pipes 178-83 
Perturbation equations 338, 347 
Perturbation method 300 
Phase angle 126, 491 
Phase difference 109, 129, 132 
Phase-plane diagrams, plots 

Parametric resonances 

see also Flutter 

articulated systems 327, 393-4 
cantilevered, chaotic systems 353, 358-9, 

curved pipes 458 
general 54-7 
parametrically excited systems 401 -2 
pipes with supported ends 313 

Phase-plane trajectories. See Phase-plane 
diagrams 

Phase portrait of averaged system 405 
Phase velocity 173 
Pinned-pinned curved pipes 415, 448 
Pinned-pinned pipes 62, 89, 94, 101, 104, 110, 

245, 305, 307, 401 

365, 369, 375, 382, 388-90, 393-4 

see also Pipes with supported ends 

See Articulated pipes; Aspirating pipes; 
Pipe conveying fluid 

Cantilevered pipes; Curved pipes; 
Harmonically perturbed flow in 
pipes; Pipes with supported ends. 

Pipe flows 33 
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Pipe-spring systems 157-64, 357, 336-45, 

Pipe strings 271, 316. 382 
Pipe-whip 276 
Pipes supported at intermediate points 153 

Pipes with added point-masses 164-7. 368-87 

389-91 

see also Pipes with added springs 

chaotic dynamics 368-87 
stabilizatioddestabilization 166 

at intermediate points 160 
at one end 157 
chaotic dynamics 389-92 
nonlinear dynamics 

Pipes with added springs 

three-dimensional (3-D) motion 344-5 
two-dimensional (2-D) motion 336-44 

rotational and translational 162 
stabilizatioddestabilization 158-60 

Pipes with additional dashpots 167 
Pipes with attached plates 170 

ichthyoid propulsion 269 
Pipes with axially sliding downstream end 75, 

Pipes with fixed ends. See Pipes with 
supported ends; Curved pipes 

Pipes with follower-jet attachments 168 
Pipes with supported ends 

92, 314-5 

experiments 
buckling (divergence) 103 
deflection-induced tensioning 108, 110 
effects of tensioning, pressurization 107 
frequency-flow relation 105, 110 
nonlinear effects 315, 317 
parametric resonances 253-4 
zero-frequency condition 108, 110, 315 

Argand diagrams 89, 91, 95 
basic dynamics 60. 88 
characteristic curves 97 
coupled-mode flutter 92 
critical flow velocities 89-90 
effect of Coriolis forces 95 
effect of damping 95 
effect of slenderness 235 
‘effective’ critical flow velocity 102 
gravity effects 101 
gyroscopic restabilization 97 
Hamiltonian Hopf bifurcation 93 
impossible inventions 99 
non-classical normal modes 95 
Paidoussis-type flutter 92-93 
parametric resonances 245-7, 250 
periodically supported pipes 178 
pipes on elastic foundation 102 
post-divergence dynamics 91 
pressurization effects 98 
refined-flow modelling 226, 229 

linear dynamics 

short pipes 229-30, 232 
tensioning effects 98 

axially sliding downstream end 3 14 
chaotic dynamics 394-402 
comparison of nonlinear equations of 

coupled-mode flutter nonexistence 303 - 16 
effect of amplitude on frequency 302 
equations of motion 289 
flutter of the Hamiltonian system 312 
Holmes’ finite dimensional analysis 304 
Holmes’ infinite dimensional analysis 308 
impulsively excited 3-D motions 315 
parametric resonances 245, 250, 394 
post-divergence dynamics 303 

see also Pipes with added springs; 

nonlinear dynamics 

motion 294 

Parametric resonances; Curved pipes 
Pitchfork bifurcations 53-7, 62, 67 

and parametric resonances 403 
articulated cantilevered pipes 321 -7 
cantilevered pipes with a spring 339, 346 
constrained pipes 358 
pipes with added end-mass 377 
supported pipes 277, 304, 306, 308-9, 515 
symmetry breaking 308-9 
through bifurcation theory and unfolding 

transcritical 486 
up-standing cantilever 345 

parameters 494 

Planar oscillations 328-33. 336-44, 348-79, 

See also Curved pipes; In-plane motion of 
curved pipes; In-plane oscillation, 
pipes with slanted end-nozzle 

Euler-Bernoulli theory (EBPF) 220, 233, 239 
fluid-dynamic forces 229-32 
nonlinear equations of motion 279 
short pipes 220, 225 
Timoshenko theory (TPF) 220, 233, 235-40 

383-90 

Plug-flow approximation 74, 225 -6, 274, 279 

Plunger pump 253 
PoincarC maps 350-1, 356, 381-2, 385 
PoincarC return map 385-6 
Point end-mass 368-87 
Poisson bracket 489 
Poisson ratio 75, 202, 221, 285 
Polyethylene cantilevered pipes 146-7 
Positive definite continuous systems 17 
Positive definite matrix 10 
Positive definite system 10, 17, 310-1, 486 
Positive semi-definite system 17 
Post-divergence amplitude 315, 317 
Post-divergence dynamics 91 -5, 303-14 
Post-divergence dynamics in pulsating flow 

Post-divergence flutter 91 -4, 340 
400 - 2 
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Post-divergence restabilization 97 
Potential energy 81, 281 -6, 312 
Potential flow theory 25 
Potential well 368, 387 
Power spectral densities (PSDs) 147, 363 
Power spectrum (PS) 350-2, 356, 381 -4, 389 
Prandtl’s mixing-length hypothesis 33 
Pressure drop, effect on dynamics 138, 145 
Pressurization 75, 98-102 
Primary resonances 243-4, 398 
Principal coordinates 11 
Principal parametric resonance 243,256 
Principal primary resonance 245-6 
Probability density functions (PDFs) 350-6 
Pseudovectors 517 
Pump-induced pulsations 316 
Pump analogy 65 

Quantitative feedback theory (QFT) 41 3 
Quarter-circular clamped-axially-sliding pipe 

Quasiperiodic motions 250, 326-7, 384, 410 
462 

articulated cantilevered pipe 325 -7 
constrained pipes 366 
due to parametric resonances 405 
pipes with added end-mass 374-83 
pipes with a spring 383-92 
pipes with supported ends 313-4 
see also Combination resonance 

Quasiperiodicity 366, 374, 379 
Quenching 41 3 

Radial-flow turbine analogy 65 
Rate of change of momentum 74, 197 
Rational analytic methods 300 
Rayleigh-Ritz method 8, 301 
Receptance 262-4 
Refined-flow modelling for pipes 220-42 

application to long pipes 241 
application to short pipes 232-40 

Refined fluid-mechanics model 226-32 
Relaminarization 385 
Research 

applications-oriented 1 
curiosity-driven 1 
flow-induced vibrations 

classifications 3 -4 
practical experiences 2 
slender systems 1 

Resonance boundary. See Parametric 

Resonance oscillations. See Parametric 

Restabilization 92, 3 13 
Return map 385 
Reynolds general transport equation 78 
Reynolds number (Re) 24-6, 32-3, 130 

resonances 

resonances 

Reynolds stress tensor 34 
Reynolds stresses 29, 32 
Riemann-Hugoniot catastrophe 308 
Rigid-body motion 40, 44 
Ritz-Galerkin method 8, 301 
Room-temperature vulcanizing (RTV) silicone 

rubber 471 
Rotary pipe motions. 334 
Rotating planar oscillations 379 
Rotatory inertia 222, 233, 478 
Route to chaos 

intermittency 385 
parametric resonance 400,402, 41 1-12 
period-doubling 358, 387, 400, 402 
quasiperiodicity 366, 374, 379 

Runge-Kutta method 300, 357,408 

Saddle 54, 307, 347 
Saddle-node bifurcation 404 
Scleronomic constraints 9 
Secondary bifurcation 372-8 
Secondary parametric resonance 243-4, 249, 

253 
Secular term, resonancehonresonance term 490 
Self-adjoint system 17 
Self-excited oscillations 59 
Semi-definite matrix 10 
Separatrices 57 
Severed pipes 276 
Shape optimization 276 
Shells, manufacturing methods 473 
Short pipes 

equations of motion 221-4, 478-9 
experimental methods 473 
linear dynamics 220-42 
method of analysis 224-5 
see also Non-slender pipes 

see also Flutter 
Single-mode amplified oscillations 68 

Singular systems analysis 518-9 
Simple parametric resonances 243-50 
Simply-supported pipes. See Pinned-pinned 

Slender body approximation 26, 60, 73 
Slender-body theory 26-8 
Slender systems 1 
Small-deflection approximation 72 
Solar wind 275 
Spatial correlations 30 
Spatial systems, articulated pipes 194-5 
Spring, nonlinear 357-63 
Sprinkler system 

Feynman’s riddle 217 
fluttering sprinkler 276 

S-shaped discontinuities 
cantilevered pipes 123 -30 
early attempts to understanding 123 

pipes; Pipes with supported ends 
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peculiar dynamics, associated with 159, 165, 

recent work 126 
Stability 1, 66, 68, 97, 339 

articulated pipes 188-95, 321 
aspirating pipes 2 13 -20 
cantilevered pipes 11 1-22, 133-53, 204- 12, 

concept 483-4 
curved pipes 438-57, 459-62 
deep-water risers 271 -3 
nonuniform pipes 204- 12 
pipes with added springs, masses, etc 

167, 329-33, 334 

236 - 8 

153-72 
pipes with supported ends 88-102, 103-111, 

short pipes 232-40 
see also Asymptotic stability; 

232-6 

BifurcatiodBifurcation theory; 
Lyapunov stability; Critical flow 
velocities 

Stability boundaries 341 
Stability diagram. See Critical flow velocities 
Stable in the large 54 
Stable trajectory 483 
Standing waves (SW) 334-6 
Static equilibrium of curved pipes 436-7 
Static instability 51, 515 

Steady-state configurations of curved pipes 442 
Stiffness 41, 62, 66 
Stiffness coefficient 36 
Stochastically perturbed flows 261 
Stokes number 26, 43 
Straight cantilevered pipes. See Cantilevered 

Straight pipes with supported ends. See Pipes 

Strain energy 282, 284, 286 
Stress couples 424 
Stress softening 138 
Structural damping model. See Hysteretic 

Submerged pipes 196, 211, 213, 241 

Symbolic manipulation computational software 

Symmetry breaking 308, 325, 333, 345 
Syblenls 

see also Buckling; Divergence 

pipes 

with supported ends 

damping 

partial immersion 212 

301 -2 

circulatory 64, 67 
continuous 7, 12, 18 
decoupled 11, 22 
discrete 6-22 
distributed parameter 6, 22 
first-order 1 1  
gyroscopic conservative 62-3, 92, 96 

nonconservative 16-7, 64-5, 118, 121, 124, 

positive definite 10, 17, 310- 1 
positive semi-definite 10, 17 
self-adjoint 17 

275 

Takens-Bogdanov point 392 
Taylor’s hypothesis. 30 
Temporal correlations 30 
Tension effects, cantilevered pipes 150-3 
Tension-gravity effects, pipes with supported 

Tensioning 75, 98- 102 
Three-dimensional (3-D) nonlinear motions. 

See Nonlinear motions 
Three-dimensional (3-D) potential flow 226-7 
Time scale of turbulence 30 
Timoshenko beam 225, 416, 478 

eigenfunctions. 480- 1 
theory 220- 1,478 

ends 98, 101, 316 

Timoshenko equations of motion 478-82 
Timoshenko plug-flow theory (TPF) 220, 233, 

Timoshenko refined-flow (TRF) theory 221, 

Topological features 347 
Torsional divergencehtter 17 1 
Tower 392 
Transcritical bifurcation 486 
Transversely sliding downstream end 460 
Travelling bands 276 
Travelling waves (TW) 334-6 
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Truncated cones 204 
Truncation factor 206 
Turbulence 275 

energy 32-3 
energy spectrum 3 1 
frequency spectrum 3 1 
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K-E model 34 
kinetic energy 32, 34 
length scale 30 
modelling 33-5 
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235-40 

233-5, 237, 239-41 

Turbulent flow 24, 29-35, 73 
Turbulent phase of intermittent oscillation 385 
Twist 419, 523 
Twisted pipes 416 
Two-dimensional (2-D) nonlinear motions. See 

Nonlinear motions 
Two-equation models for turbulence 33 
Two-phase flow 45, 213, 261 

Unfolding parameters 325-6, 342-5, 493-5, 
500 

double degeneracy 494 
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Hopf bifurcation 493 
pitchfork bifurcation 494 

Unstable fixed point 54 
Unstable in the small 54 
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linear dynamics 116-7, 143-4 
nonlinear dynamics 345-8, 387-9 

van der Pol oscillator 325 
Variational techniques 8 
Variational vector function 360 
Velocity potential 38, 226 
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Vibration attenuation by flow 270-2 
Vibration codes for piping 273 
Vibration conveyance 274 
Vibration-induced flow 274, 412 
Vibration-suppression system 272 
Virtual displacements 40 
Virtual mass. See Added mass 
Virtual work 40 
Viscoelastic damping 161, 287 

see also Kelvin-Voigt damping 
Viscoelastic-hysteretic model 209 
Viscosity 

Boussinesq eddy viscosity concept 33 
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Viscous damping, effect of 120-3, 312-4 
Viscous damping coefficient 72, 527 

dimensionless viscous damping coefficient 
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Viscous flow 442 
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Wave propagation 173-83 
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frequency dispersion 174 
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mode localization 183 
phase velocity 173 
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