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To the memory of my son Romain
(1984–2008) who lived the impossible dream



Preface

There are men whose head is full
Of nothing, if not their science;
There are the learned of all trades.
I tell you without pretension:
Rather than learning too much,
Go and learn what really matters.

Hernández, J., 1872, Martı́n Fierro,
Editorial de la Pampa, Buenos Aires (current text
in the original Spanish taken from the 1982 edition
by Bruguera Publishers, Barcelona).1

The need to provide instructors and students with a textbook on the classical prin-
ciples and the modern methods of analysis, modeling and simulation of mechanical
systems gave rise to The Dynamic Response of Linear Mechanical Systems. I came
across this need myself when I was assigned, in the late eighties, the teaching of the
undergraduate Dynamics of Vibrations course at McGill University’s Department of
Mechanical Engineering, while one of the instructors was on sabbatical. This was
an interesting challenge, as I had never taken an undergraduate vibrations course
as such. In fact, I came from the 5-year Electromechanical Engineering Program
at the National Autonomous University of Mexico (abbreviated UNAM, from its
name in Spanish), where the teaching of vibrations was included in the 1-year
course on Applied Mechanics; this course comprised both kinematics and dynamics
of machines. Vibrations being the last topic in the syllabus, the instructor usually
rushed through it, the final examination hardly including a question on vibration
dynamics. In my senior year the curriculum underwent a radical updating, with
courses offered in semesters. This change gave me the opportunity to take a one-
semester course on Electromechanical Energy Conversion, which was about my first
and only exposure to the discipline of dynamics of systems as an undergraduate.

1Verses 6923–6928, translated by the author.
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viii Preface

My first task as a designated instructor of undergraduate vibrations was to search
for the right textbook. I was overwhelmed by the vast bibliography on the subject.
To my surprise, with rare exceptions, all textbooks I consulted observed the same
pattern, which was originally set by Thomson’s classical book, first published in
1948.2 As I was familiar with system theory, given that this was the minor I
took in my graduate studies of Mechanical Engineering (M.Eng., UNAM) and
Applied Mechanics (Ph.D., Stanford), I tried to make the connection between these
two closely related disciplines. I knew Cannon’s book [2], which makes such a
connection, this book thus appearing as the right choice. Given the size of the book
and its unusually broad scope, however, the students were intimidated, which forced
me to look for an alternative, more focused textbook, as I continued teaching that
course for several years afterwards. I found other books that somehow integrated
system theory with the dynamics of vibration,3 but I thought that there was more
to it that was not as yet in the textbooks. For one thing, I did not like the idea of
having to solve a generalized eigenvalue problem to find the natural frequencies and
the natural modes of a multi-degree-of-freedom system, as the generalized problem
does not necessarily lead to real, non-negative eigenvalues. Inman’s book had an
interesting idea along these lines that I decided to pursue.

I thus undertook an in-depth research on a more intuitive, yet rigorous approach
to the teaching of vibration and, for that matter, mechanical-system analysis, that
would (a) exploit the mathematical knowledge required from the students, as
spelled out in the prerequisites (linear algebra and basic engineering mechanics);
(b) connect the theory of vibrations with the more general theory of systems; and
(c) resort to well-known graphical techniques of solving engineering problems. This
is how I decided to take a departure from traditional approaches to the teaching of
vibration dynamics. Features of the book along these lines are listed below:

• Modeling is given due attention—most books appear to take modeling for
granted. In doing this, a seven-step procedure is introduced that is aimed at
structuring the rather unstructured process of formulating mathematical models
of mechanical systems. I always insist in the need for a creative approach to
modeling, as no two engineers will always come up with the same model of the
same situation. Modeling, while based on sound science, is also an art, that can
only be developed by practice.

• A system-theoretic approach is adopted in deriving the time response of the linear
mathematical models of the systems under study. In this regard, first what is
known in system-theoretic terminology as the zero-input response—dubbed the
free response in vibration analysis—is obtained; next, the zero-state response is
derived by relying on the impulse response of the system under analysis. The
time response of a system to arbitrary excitations is then naturally derived in
convolution form upon resorting to a black-box approach that is applicable to all

2The book has gone through many revisions, e.g., [1], but it keeps its original basic contents.
3These were Meirovitch [3] and Inman [4].
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linear, time-invariant dynamical systems. The fundamental concept of linearity,
which entails superposition and additivity, is stressed throughout the book.

• The modal analysis and the time response of two-degree-of-freedom (two-dof)
systems is eased by invoking the standard, symmetric eigenvalue problem. Of
the many authors of books on vibrations, only Inman seems to have made a point
on the benefits of a symmetric eigenvalue problem, as opposed to its generalized
counterpart, in which the matrix in question is not symmetric. My approach
requires obtaining the positive-definite square root of the 2× 2 mass matrix,
which is eased by resorting to (a) facts from linear algebra pertaining to the
analytic functions of matrices and (b) a graphical method that relies on the Mohr
circle, an analysis tool that is learned in elementary courses on solid mechanics.
The concept of frequency matrix, first found in Inman’s book, although not
by this name, is introduced here, which helps the student use the Mohr circle
in conducting the modal analysis of the systems at hand. This concept was
published in a tutorial paper [5].

• The time response of first- and second-order mechanical systems is derived in a
synthetic, i.e., constructive manner. What this means is that I do not follow the
classical math-book approach, under which the general response is derived as
the sum of a general solution, with undetermined coefficients, and a particular
solution. The downside of this approach is that it does not take into account the
causality of dynamical systems. I exploit causality by deriving the general time
response as a sum of the zero-input and the zero-state responses. The former is
derived, for first- and second-order systems, by means of an infinite series; this is
obtained in turn by successively differentiating the mathematical model at hand,
and reducing every higher-order derivative to a multiple of the first derivative of
the variable of interest for first-order systems; for second-order systems, every
higher-order derivative is reduced to a linear combination of this variable and
its first derivative. By evaluating these derivatives at the initial time, numerical
values for the coefficients of the series expansion are derived in terms of the
initial values of the problem at hand.

• The time response of n-dof systems with a positive-definite stiffness matrix
is introduced rather informally, by resorting to the intuitive notion that the
response of these systems should be formally analogous to that of single-degree-
of-freedom systems. The analogy is achieved by means, again, of the concept
of frequency matrix. The time response of n-dof undamped systems is then
informally derived by replacing the natural frequency of single-dof systems
with the frequency matrix of n-dof systems. The underlying informality is then
justified by proving that the time response thus obtained is indeed the integral of
the system of governing ordinary differential equations (ODEs). The foregoing
proof is conducted by resorting to a basic concept of system theory: the response
thus obtained verifies both the ODEs and the initial conditions.
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• The time response of n-dof damped systems, unfortunately, does not allow
for a straightforward derivation similar to that applicable to their undamped
counterparts. In this light, the time response of these systems is done first by
simulation, then by means of the Laplace transform and the concept of impulse
response.

• Examples and exercises rely on modern computational toolboxes for both numer-
ical and symbolic computations; the powerful capabilities of readily available
commercial software for plotting are fully exploited.

• Great care has been taken in producing drawings of mechanical systems, so
as to convey the most accurate information graphically. This feature should be
appreciated by students and instructors, as inaccurate information in a technical
document invariably leads to delays in the completion of a task.

• Emphasis is placed on the logic of computations, and so, wherever needed,
procedures that can be implemented with commercial software are included.

While novel techniques are introduced throughout the book, classical approaches
are given due attention, as these are needed as a part of the learning process.

A common trend in the literature on the field is to be highlighted: with the aim of
bringing computers into the teaching of vibration analysis, many a textbook includes
code to calculate the time response of the systems of interest. The problem here
is that this code is, more often that not, nothing but the verbatim casting of the
time response formulas in computer language, thereby doing away with the actual
possibilities offered by computing hardware and software. An alternative approach
found in the literature is the numerical integration of the underlying systems of
linear ordinary differential equations (ODEs) using a Runge–Kutta algorithm. While
there is nothing essentially wrong with this approach, the use of such algorithms is
an unnecessary complication. Indeed, Runge–Kutta methods are suitable for the
integration of nonlinear ODEs; they do not exploit the linearity of the systems
encountered in a first course on dynamics modeling, analysis, and simulation,
thereby complicating the issue unnecessarily. We depart from these practices by
resorting to the concept of zero-order hold and by casting the numerical integration
of the underlying mathematical models in the context of discrete-time systems.
The outcome is that the problem is reduced to simple operations—additions and
multiplications—of arrays of numbers, i.e., vectors and matrices.

The book is accompanied by some MapleTM worksheets that illustrate: (a) the
discrete-time response of single-, two-, and three-degree-of-freedom systems; and
(b) the use of the Mohr circle in the derivation of the time response of undamped
two-dof systems. The worksheets are available at the Springer Extras website: http://
extras.springer.com/.

A Solutions Manual that includes solutions to selected problems accompanies
this book; it is made available to instructors.

Before closing, I would like to stress the philosiphy behind this book: knowledge
being such a complex, experiential phenomenon [6]—it cannot be downloaded,
contrary to popular belief—it cannot be reduced to a set of ad-hoc rules; it can be

http://extras.springer.com/
http://extras.springer.com/
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transmitted, though, via its underlying principles. This is probably what the gaucho
Martı́n Fierro had in mind when giving wise advice to his son in the verses quoted
above.

For the completion of this manuscript and its supporting materials, many
people are to be acknowledged, from undergraduate interns to graduate assistants,
postdoctoral fellows and colleagues. In the first versions of the manuscript, as a set
of Lecture Notes, Robert Lucyshyn, Meyer Nahon, Abbas Fattah and Eric Martin,
then Ph.D. students, made valuable contributions both with rigorous criticism and
suggestions to improve the pedagogical value of the material. Svetlana Ostrovskaya
played a key role, first as a Ph.D. student and then as a Postdoctoral Fellow, as editor
and contributor to the material in general. In the last stages of the editing, Vikram
Chopra, an undergraduate intern at the time—now a Ph.D. student—diligently
edited the whole manuscript and assembled the Solutions Manual. The version
out of which this manuscript was produced is due to the diligent work of Danial
Alizadeh, a Ph.D. student in my research group. The professional work behind
the figures is credited to Max A. González-Palacios, who set the standards. These
individuals, and many others that unavoidably escape my memory, are given due
recognition in making this book a reality.

Montreal Jorge Angeles
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How to Use this Book

The book is intended for a variety of courses, first and foremost for a course
on vibration analysis. The material is thus suitable to both an introductory and
an intermediate course, at the junior and senior levels, respectively. A typical
introductory course on vibration analysis would cover most of Chaps. 1, 2, 4 and
5, as the material in the last two does not depend on Chap. 3, which can be
used to allow for a project on simulation of single-degree-of-freedom systems.
At McGill University, I have taught a 13-week course on vibration analysis to
junior undergraduates using Chaps. 1 through 5 plus 8, including a quick review
of Appendix A. The latter aims to help the student understand Chaps. 2, 3, 5 and
beyond.

A senior course on vibration analysis would comprise a review of Chap. 4,
followed by Chaps. 6 and 7. This course should be complemented with a simulation
term project, similar to the examples in Chap. 7. The instructor could also include
vibration analysis of advanced structural elements like plates and shells, which,
upon discretization, can be simulated using the material in Chap. 7, even if the
students have not been exposed to finite element analysis. Discretization tools here
can be simple finite-difference approximations of the partial differential equations
involved. If the course includes finite elements, not a part of the book, then this
technique can be used to derive the mass and stiffness matrices, that can then be
ported into a Matlab program written by the students themselves, to implement
the algorithms of Chap. 7 for simulation. This kind of training would give the
students more confidence in the use of finite element software, than using this kind
of software simply as a black box.

Otherwise, the book can be used to teach a sequence of two junior/senior courses
on linear mechanical analysis. In this case the instructor can simply follow the order
of the chapters, and include in each of the courses a simulation term project, based
on the material covered in Chaps. 3 for the junior course, 7 for its senior counterpart.

All chapters include a set of exercises to be used as a complement of the lectures,
in tutorials, as homework sets or, in the case of Chaps. 3 and 7, as term projects.
Solutions to selected problems for all chapters, except for the two foregoing
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chapters—term projects are intended to lead to a variety of results, not to a single
one—are included. These solutions are provided to instructors upon request.

Material that is not essential for an introductory course on vibration analysis
is that pertaining to first-order systems in full detail; however, a cursory look
at Sects. 2.2, 2.5.1, 2.6.1 and 2.7.2, is highly advisable to better understand the
response of second-order systems.

Finally, a word on notation is in order: consistently throughout the book, vector
and matrix arrays are referred to by their variable names in boldface font, lower-case
for the former, upper-case for the latter.
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Chapter 1
The Modeling of Single-dof Mechanical Systems

By these seven steps you have taken with me, you have become
my best friend.
. . . If you are the lyrics, I am the music. If you are the music I am
the lyrics.
If I am the heavenly body, you are the earthly world. . . .

A hindi rite of wedding known by its sanskrit name, saptapadi,
meaning the seven steps.1

1.1 Introduction

In this chapter, we will cover the items listed below:

• The need of dynamics models in engineering, objectives, scope, and limitations
of mechanical analysis in general and of elements of systems (masses, springs,
dashpots, energy sources and energy sinks); system; mechanical system; viscous,
hysteretic and Coulomb friction.

• Abstraction and idealization of mechanical systems leading to mechanical and
iconic models thereof. Physical laws leading to the underlying mathematical
models: Newton’s and Euler’s laws; Newton-Euler governing equations. Con-
stitutive equations of mechanical components. Equivalent spring and equivalent
dashpot of parallel and series arrays.

• The Lagrange equations of motion.
• Linear and nonlinear systems; material and geometric nonlinearities; equilibrium

configurations of nonlinear systems and linearization about these configurations.
An outline of the stability of equilibrium configurations. Natural frequency and
damping ratio of linear, stable systems.

The objectives of the book are best summarized in Fig. 1.1, which illustrates the role
of modeling within the engineering analysis process. This is done with the aid of an

1http://varan bhaath.tripod.com/Pages/Saptapadi.htm.

J. Angeles, Dynamic Response of Linear Mechanical Systems: Modeling, Analysis
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2 1 The Modeling of Single-dof Mechanical Systems

Fig. 1.1 Modeling and analysis of the vertical vibration of subway cars

example pertaining to the analysis of the vertical vibration of the subway car shown
in the top box of that figure. Here, we are not interested in the lateral vibrations or
the vibrations involving rotations of the car. For this reason, the two halves of the car
can be thought of as moving vertically in synchronism, which allows us to study the
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vibration at hand with one single half-car. We thus ‘split’ the car into two symmetric
parts, the fore and the aft halves. The mass of the car body is then assumed to be
2m3, each half m3 being supported by each of the fore and aft ‘bogies’ carrying the
wheels. Note that each bogie carries four wheels with rubber tires, two on each side,
the whole car then being supported by eight wheels. Below the physical system on
the top of that figure, we have a box with the mechanical model of one of the two
bogie-half-car systems; the iconic model of the same system is shown at the right
of the same box.

After the two foregoing models, which have two different levels of abstraction,
come the physical laws used to derive the corresponding mathematical model,
namely, the Newton-Euler and the Lagrange equations. The mathematical model,
in turn, is one of a three-degree-of-freedom linear mechanical system, and hence,
represents a three-dimensional vector ordinary differential equation that is, more-
over, linear. As a result of the analysis, we have a plot of one of the generalized
coordinates, xi(t), vs. time, as well as a sketch of the three associated normal modes
of the system.

The foregoing description pertains to systems with a finite degree of freedom.
Other class of systems that we will study in this book pertains to continuous systems,
i.e., systems with an infinite degree of freedom. Paradigms of such systems are
bars under longitudinal and torsional vibration, strings, and beams under flexural
vibration. More complex structural elements, with more than one spatial dimension,
such as plates, shells, and structures with arbitrary geometries, lie beyond the scope
of this book.

1.2 Basic Definitions

The objects of our study are mechanical systems. Hence, we first have to have an
idea of what a system at large is. The Concise Oxford Dictionary defines a system
as a “complex whole, set of connected things or parts, organized body of material
or immaterial things,” whereas The Random House College Dictionary defines the
same as an “assemblage or combination of things or parts forming a complex or
unitary whole.” Le Petit Robert, in turn, defines a system as “Ensemble possédant
une structure, constituant un tout organique,” which can be loosely translated as “A
structured assemblage constituting an organic whole.” In the foregoing definitions
we can note that the underlying idea behind the concept of system is that of a set of
elements interacting as a whole.

A system responds to excitations, a.k.a. inputs. The response of the system, in
turn, is often likened with its output. However, there is an important difference
between response and output: The response refers to the behavior of a system
regardless of the observer, i.e., regardless of the instruments used to monitor its
behavior; the output of the system is the set of variables available to the observer by
means of instruments such as encoders to monitor angular displacement, tachome-
ters to monitor angular velocity, or accelerometers to measure point acceleration.
Thus, the output of a system may not reveal its whole behavior.
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The different kinds of systems are characterized by their different forms of
responding to the excitations to which they are subjected.

A dynamical system is a special type of system whose response depends not only
on the current value, but on the whole past history of the input, dynamical systems
thus being said to possess memory. Such systems are described mathematically by
either partial or ordinary differential equations.2 Associated with dynamical systems
is the notion of state of the system. The state of a dynamical system at a certain time
t0 is the information pertaining to the system that completely describes the effect of
the whole past input history up to and including time t0. The output of a dynamical
system at some time t > t0 is then uniquely specified if two items are given, namely,
(1) the time history of the input between t0 and t, and (2) the state of the system
at t0. The state of a system at a time t0 often turns out to be the familiar initial
conditions of elementary differential equations courses. As we will see later in the
book, the notion of state of a system is much deeper and often plays a central role
in the analysis of dynamical systems.

In addition to dynamical systems, or systems with memory, we also have
memoryless systems, i.e., those whose output depends only upon the present value of
the input.3 Such systems can be described mathematically by algebraic equations,
i.e., equations of the form f (x,y)=0, where x is the input and y is the output.
The nature of the response of memoryless systems is then dramatically different
from that of dynamical systems. Memoryless systems often occur as subsystems
of larger mechanical systems. If we can solve for y explicitly in terms of x
in the above equation, then that subsystem can be readily “removed” from the
overall system by taking into account the relation between y and x. Transducers,
potentiometers, and mechanical transmissions—gears, linkages, cams, etc.—are
examples of memoryless systems when the inertia of their elements is negligible.

Obviously, a mechanical system is a system composed of mechanical elements.
The elements constituting a mechanical system are rigid and deformable solids,
as well as compressible and incompressible, inviscid and viscous fluids. These
elements can be accurately modeled as continua, thereby leading to what is known
as distributed-parameter models. The discipline of continuum mechanics is the
natural tool to generate such models.

The role of continuum mechanics is to provide a model consisting of a system
of partial differential equations (PDEs) describing the behavior of the mechanical
system at hand. Such a behavior is determined as the response of the system under
given initial conditions, boundary conditions, and applied loads, which calls for
an integration in both the time and the space domains of the underlying PDEs.
However, the integration of such equations, even if linear, is a highly demanding
task that is not suitable for computers, let alone the human brain, even if aided
with paper and pencil. As an alternative, engineers have found that, if the response

2Sometimes, dynamical systems are described by difference equations (case of discrete-time
systems), integral equations and even by integro-differential equations.
3These systems “forget” the history of their excitation.
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Fig. 1.2 Some lumped-parameter elements of mechanical systems

is approximated in a prescribed form, e.g., as a set of multivariate polynomials
with a finite set of time-varying coefficients, then, the response can be found by
simply determining how these coefficients evolve in time. These coefficients are
determined, in turn, by application of a variational principle that leads to a system
of ordinary differential equations (ODEs), which are more easily handled with the
aid of computers than PDEs. However, integrating a system of ODEs can also
be a tremendous task, for these equations often exhibit certain features that make
them quite challenging: they are usually many, i.e., various hundreds; they are
nonlinear, i.e., unhandleable with general procedures, for nonlinearity often leads
to chaotic behavior that is difficult, if not impossible, to predict; often, they are not
sufficient to determine the motion of the system at hand and must be complemented
with additional algebraic equations, which leads to what is known as differential-
algebraic systems. The modeling of a continuous system with a system of ODEs is
accomplished by resorting to discretization methods, such as the Finite Element
Method (FEM), which is by far the most broadly accepted, and the Boundary
Element Method (BEM). Nowadays, the FEM is the standard approach to solving
the most complex engineering and scientific problems, with the BEM gaining some
acceptance. We will not be concerned with discretization methods, but will lay the
foundations for further study that will ease the grasping of these methods either by
self-study or otherwise.

In contrast to distributed-parameter models, we have lumped-parameter models.
Here, the distributed mass, elasticity, and damping of the various components are
divided into separate “lumped” components, the overall system thus being reduced
to a system of interconnected particles; rigid bodies; massless, conservative springs;
and massless, non-conservative dashpots. Common icons used to represent these
elements are illustrated in Fig. 1.2, where we can identify a spring of stiffness k, a
dashpot of damping coefficient c, a mass m and a rotor of moment of inertia J about
its axis of rotation.

The modeling of lumped-parameter systems leads directly to a set of ordinary
differential equations, which are usually analyzed and integrated with the aid of
numerical techniques. We will focus on lumped-parameter mechanical systems in
this book, but distributed-parameter systems are outlined in the last chapter.

Furthermore, when we discuss the time response of systems in Chap. 2, we will
be concerned mostly with linear mechanical systems, which are much easier to
analyze; moreover, as we will see later in the book, linear systems lend themselves
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to analysis by means of a powerful technique known as superposition, which allows
one to find the response of the system to a complicated input as the sum of a number
of known responses to simpler inputs. During the modeling stage, we will find that
the equations derived will often be nonlinear. Now, integrating nonlinear differential
equations is still a task that is far from trivial. However, the behavior of nonlinear
systems is beyond the scope of this book, and hence, the integration of nonlinear
ODEs will be left aside. Additionally, the detailed behavior of a nonlinear system, to
be of any use, requires a highly accurate knowledge of the parameters of the system,
but these parameters are most frequently elusive to reliable measurements. On the
other hand, in many engineering applications, rather than the global, nonlinear
behavior of a system, what is of interest is how the system will respond under
‘small’ perturbations of the system from a nominal behavior, which, often, is simply
an equilibrium state. Hence, if we know the behavior of the system under nominal
conditions, a small-perturbation analysis is all we need. This analysis is undertaken
in this book by a simple linearization of the nonlinear mathematical model of the
system about its equilibrium states.

Thus, although we will likely come across nonlinear systems during modeling,
we will focus on linear systems during analysis. For completeness, the analysis
of simple nonlinear systems that occur in the presence of Coulomb friction will
be outlined in Chap. 2. Apart from these cases, we will study mechanical systems
that lead to systems of linear ordinary differential equations, while outlining tech-
niques to set up the partial differential equations governing distributed-parameter
systems. Moreover, the mathematical models that we will derive in this book are
naturally cast in the form of second-order ODEs. Occasionally, when some material
properties are neglected, first-order ODEs can also occur, as we will show with
some examples. In addition, we will be restricting our attention to time-invariant
or constant-coefficient mechanical systems. These are systems whose material
properties, e.g., mass, elasticity, and damping, do not vary with time, and whose
configuration changes do not affect the constancy of the coefficients appearing in
their mathematical model. Such systems lead to constant-coefficient differential
equations, whose integrals can be found in closed form.

Mechanical systems usually contain moving elements that induce vibration in
the structural components of these systems because of the applied loads. Such loads
can take a wide variety of forms. They can be abrupt, impulsive loads, or they can
be fast-varying, periodic loads. Moreover, these loads can be the result of external
effects acting upon the system, or they can be generated from the moving parts
of the system itself. In the preceding cases, vibration is usually an undesirable
effect; here, the techniques of vibration analysis aid the engineer in predicting and
possibly reducing, or even eliminating the vibratory behavior of the system. In some
instances, however, vibratory behavior is a required feature of a system; e.g.,in
inertial measurement units (IMU), the techniques of vibration analysis become a
useful tool in their design.

This and the ensuing chapter focus on single-degree-of-freedom systems.
Although these systems may be composed of several elements, their configuration
at any time can be described by one single variable, or generalized coordinate.
The mathematical models of these systems thus consist of one single ODE of the
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second order, although first-order ODEs are possible in some instances. When the
system is described by a set of n independent variables, or independent generalized
coordinates, we speak of a mechanical system with n degrees of freedom (dof), its
mathematical model consisting of n ODEs, usually of the second order. Systems
with n dof will be studied in Chaps. 4–7.

1.3 The Modeling Process

The modeling of mechanical systems, or that of systems at large for that matter, is a
rather complex process that consists of various steps. Moreover, each of these steps
may involve various tasks; sometimes, additionally, the steps are not sequential, but
form iterative loops. A procedure to organize these steps is proposed below:

1. Mechanical modeling
First and foremost, a simplified version of the system is proposed that captures
the salient features of the system but is more amenable to analysis. This version
is known as a mechanical model of the system of interest, the process leading to
this model being based on abstraction and idealization.

Abstraction refers to identifying the relevant mechanical features of the
system with regard to the need that motivated the modeling. Such features
pertain to:

(a) The number of bodies of the system4

(b) The nature of these bodies, whether rigid or deformable
(c) The constitutive equations of the deformable bodies of the system, which

characterize each body as linearly or nonlinearly elastic, viscoelastic, or
elastoplastic and

(d) The couplings between bodies

Here, we distinguish between particles and rigid bodies in that the former have
position but no orientation. As a consequence, one speaks of angular velocities
only when referring to bodies. Particles, by definition, cannot undergo angular
displacement, and hence, cannot have angular velocities. In talking of particles
or mass points in this book, care should be taken in that the particles we handle
are not the same as those of interest to physicists. For example, in studying
the orbital motion of a satellite, we may not be interested in its attitude, and
hence, can regard the satellite as a mass point rather than a body, even if the
satellite has a mass of various hundreds of kilograms, and a size comparable to
a truck. However, when studying the maneuvers that this satellite can perform,
such as deploying an antenna or a solar panel, we must regard the satellite as a

4Engineering systems are invariably multibody systems, i.e., systems of rigid and deformable
bodies. When a rigid body is constrained to move in one single direction, it can be modeled
as a particle, but modern software for mechanical analysis regards all elements as bodies, their
constraints being included explicitly in the form of algebraic relations in the mathematical model.
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multibody system, whose elements are, moreover, deformable. Nevertheless, if
the maneuver at hand is performed at a speed that is unlikely to produce inertia
forces that will induce structural vibrations, a rigid-body model may be sufficient.

Abstraction comprises what is known as idealization, in which various
engineering approximations are introduced in order to simplify the analysis.
For example, a body of a system may be ideally regarded as a continuum,
even though it is not, for it is constituted of molecules; the latter, in turn, are
constituted of atoms that do not fill the space continuously. Idealization can also
pertain to the excitation of the system. For example, if a system is subjected to
impact, we may idealize the forces involved as impulses of infinitesimal duration
but of infinite amplitude.

The mechanical model of the bogie-half-car system of Fig. 1.1 consists of
four rigid bodies that are modeled as particles, for we are interested only in their
vertical motions. Moreover, the two symmetric bodies of mass m2/2 are assumed
to move as one single body, and hence, can be regarded as a single body of mass
m2. Note that the rotations of the various bodies of this system are irrelevant
to the intended analysis in this case. For this reason, the corresponding inertial
properties, i.e., moments of inertia, are not needed. Furthermore, these bodies
are all coupled by massless, conservative springs.

2. Iconic modeling
From the mechanical model, we derive next an iconic model, i.e., a sketch of the
system, consisting of the basic elements that we assumed at the outset, some of
which are sketched in Fig. 1.2. Such elements are particles, rigid bodies, massless
springs and massless dashpots. Henceforth, we assume that an iconic model of
the physical system under modeling is available, our task then being to derive the
mathematical model of the system at hand. In most engineering science courses,
all problems solved in class, tests and assignments assume an iconic model at the
outset, which is supposed to represent an actual system. The iconic model of
the mechanical model of the system of Fig. 1.1 is shown at the right-hand side of
the second block of that figure. This model is composed of three masses coupled
to an inertial frame and among themselves by means of springs.

3. Mathematical modeling
In this book, we resort to both the Newton-Euler and the Lagrange formulations
of the mathematical models of the systems under study, while emphasizing the
latter. These models are also known as the governing equations. In the case of
single-dof systems, the mathematical model sought is a single first- or second-
order ODE. Moreover, this equation is most likely nonlinear.

1.4 The Newton-Euler Equations

Consider a rigid body together with an inertial reference frame and a body-fixed
frame having its origin either (1) at the center of mass C, or (2) at a point O of the
body that is permanently fixed in the inertial frame, whenever such a point exists.
The motion of this body is governed by the Newton-Euler equations, namely,
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• If moments are taken with respect to the center of mass C,

f = mc̈ (1.1a)

nC = ICω̇+ω× ICω (1.1b)

• Now, if moments are taken with respect to a fixed point O, then

f = mc̈ (1.2a)

nO = IOω̇+ω× IOω (1.2b)

where

m is the mass of the rigid body,
c̈ is the acceleration of the center of mass of the rigid body with respect to an

inertial frame,
f is the resultant of all external forces acting on the rigid body,
ω is the angular velocity of the body-fixed frame with respect to the inertial frame,
IC is the 3× 3 inertia matrix of the rigid body with respect to C,
nC is the resultant of all external couples and moments of external forces taken

about the center of mass C,
IO is the 3× 3 inertia matrix of the rigid body with respect to O, and
nO is the resultant of all external couples and moments of external forces taken

about the fixed point O.

Now, we recall Steiner’s Theorem5 below, which relates the inertia matrix IO of
a rigid body about some point O on the body to the inertia matrix IC about the center
of mass C namely,

IO = IC +m
[
(ρTρ)1−ρρT] (1.3)

where ρ denotes the vector directed from point O to point C, and 1 is the 3× 3
identity matrix, i.e.,

1≡
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

Moreover, if x, y, and z denote the components of ρ, then

ρTρ= x2 + y2 + z2, ρρT =

⎡

⎣
x2 xy xz
xy y2 yz
xz yz z2

⎤

⎦

5a.k.a parallel-axis theorem.
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Since we will be concerned with systems comprising bodies undergoing planar
motion only, we will not need the three-dimensional Newton-Euler equations
displayed above. Their planar counterparts take one of the two forms indicated
below:

• If moments are taken with respect to the center of mass C,

f = mc̈ (1.4a)

nC = ICω̇ (1.4b)

• If moments are taken with respect to a fixed point O,

f = mc̈ (1.5a)

nO = IOω̇ (1.5b)

where variables in boldfaces are now two-dimensional vectors, and

m is the mass of the body,
c̈ is the acceleration of the center of mass of the rigid body with respect to an

inertial frame,
f is the resultant of all external forces acting on the rigid body,
ω is the scalar angular velocity of the rigid body with respect to an inertial frame,
IC is the scalar moment of inertia of the rigid body about an axis perpendicular to

the plane of motion and passing through the center of mass C,
nC is the scalar resultant of all external couples and moments of external forces

taken about the center of mass C,
IO is the scalar moment of inertia of the rigid body about an axis perpendicular to

the plane of motion and passing through the fixed point O, and
nO is the scalar resultant of all external couples and moments of external forces

taken about the fixed point O.

We note that Eqs. 1.4a and 1.5a are two-dimensional vector equations, while
Eqs. 1.4b and 1.5b are scalar. Moreover, the planar version of Steiner’s theorem
is given below:

IO = IC +md2 (1.6)

where d is the distance from O to C.
Some important remarks pertaining to the Newton-Euler equations are in

order:

• An inertial frame is a coordinate system that remains at rest or translates with a
constant velocity with respect to the stars. For most engineering problems, and
for all problems we will consider in this book, a frame fixed to the Earth can be
regarded as a reasonable approximation to an inertial frame.

• The angular velocity ω of a rigid-body with respect to an inertial frame, for planar
motion, can be regarded as the time-rate of change of the angle between any line
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Fig. 1.3 Illustration of the
attitude and the angular
velocity of a rigid body with
respect to an inertial frame
for planar motion

attached to the rigid body and lying in the plane, and a line or a direction, fixed to
the inertial frame. For example, if we consider the rack-and-pinion transmission
of Fig. 1.3, then

ω = θ̇

• The second time-derivative of c is taken with respect to an inertial frame, that is,
c̈ is the absolute acceleration of the center of mass C.

The mathematical model of a mechanical system can be derived by a simple
application of the Newton-Euler equations for each body of the system. The
bodies of the systems we will study in this book may be subjected to both elastic
and dissipative forces. We discuss below linear springs and linear dashpots that,
when arrayed in certain layouts, give rise to nonlinear elements, as shown with
examples.

1.5 Constitutive Equations of Mechanical Elements

1.5.1 Springs

A spring is a mechanical element that stores potential energy by virtue of its
elasticity; it is called linear if the force F required to stretch or compress it is
directly proportional to its displacement from its natural length l, i.e., with reference
to Fig. 1.4,

F = k(s− l) (1.7)

where s is the total length of the spring, and k is its stiffness, also called the spring
constant. Every linear relationship between the force or torque load acting on a
spring and the corresponding translational or angular displacement is known as
Hooke’s Law.
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Fig. 1.4 A translational
spring

If the natural length of the spring is not mentioned, then we will assume that the
variable s is measured from the unloaded configuration of the spring, and hence, the
above relation reduces to

F = ks (1.8)

It should be noted that the spring of the iconic model of Fig. 1.4 implies a
helicoidal type of spring, but the sources of elastic effects of the systems that we
will study are more varied than this kind of elements. This icon is rather an abstract
representation of the elasticity of the system at hand. As well, notice that linear
springs exhibit the same behavior in tension as in compression.

Moreover, elastic elements may be precompressed, or prestretched. For example,
a cable is capable of withstanding tensile loads, but not so compressive loads;
concrete, in turn, withstands rather high compressive loads, but relatively low tensile
loads. However, a crane can be supplied with a cable to support a load. Upon
application of the static load, the cable undergoes a prestretching. If the load is
supported only by the cable, and held in equilibrium, perturbations can occur—from
vibrations transmitted by the floor or from gust winds—that take the load outside
of its equilibrium position, the cable then responding with both elongations and
compressions from its prestretched state.

A lumped spring is often used to represent the elasticity of continuous structural
elements like cables, beams, shafts, rods, plates, and shells. Indeed, when these
elements are used to produce stiffness in one single direction, then a simple spring
model is sufficient, the spring constant in these cases being derivable from basic
elasticity theory or its approximations like beam, plate and shell theories. For exam-
ple, if a rod or a cable of cross-sectional area A, length l, and modulus of elasticity E
is subject to a tension P at its ends, then the cable undergoes an elongation δ under
this load, the relation between load and elongation being given by

P =
AE
l

δ

and, hence, the spring stiffness of the element under study takes the form

k =
AE
l

(1.9)
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Fig. 1.5 A cantilever beam with a load acting at its free end

Fig. 1.6 A shaft of circular cross section under torsion

which is a translational stiffness, as it is associated with a translational spring,6 its
units being N/m.

Shown in Fig. 1.5 is a cantilever beam of length l, modulus of elasticity E , and
cross-sectional area moment of inertia I, subject to a vertical load at its free end. The
displacement y(x) at any point along the neutral axis is derived from beam theory as

y(x) =
P
EI

(
1
2

lx2− 1
6

x3
)

and hence, the deflection of the free end, δ ≡ y(l), is given by

δ =
Pl3

3EI
, whence P =

3EI
l3 δ

Therefore, the corresponding spring constant is

k =
3EI
l3 (1.10)

As a further example, consider a shaft of circular cross section, shear modulus G,
length l, and torsion constant J, as shown in Fig. 1.6. The relation between the twist
angle θ and the torque T applied at its free end, while keeping the other end fixed,
is given by

T =
GJ
l

θ

6For brevity, translational springs and their corresponding stiffness are referred to as “springs”
and “stiffness” when no confusion is possible.
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Fig. 1.7 A Belleville spring and its force-displacement relation

and hence, the resulting spring stiffness is

k =
GJ
l

(1.11)

which is termed torsional stiffness, with units of Nm, the spring at hand being a
torsional spring.

For the special case in which the shaft is of circular cross section, J is simply the
cross-sectional moment of inertia. Thus, if a denotes the radius of the cross section,
then

J =
1
2

πa4, and k =
2G
l

πa4 (1.12)

Yet another example of springs that are not of the helicoidal type is the
Belleville spring, shown in Fig. 1.7a. This spring is structurally a continuous element
fabricated essentially of a washer that has been shaped in such a way that its planar
faces have become conical surfaces. Under a perfectly axial load F , the spring
exhibits a purely axial displacement x, its force-displacement relation being given
by a formula first reported by Almen and László [1], namely,

F = F0ξ

[(
h
d

)2

(ξ − 1)(0.5ξ − 1)+ 1

]
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where F0 and ξ are given by

F0 =
4E

1−ν2

hd3

KD2
e
, ξ ≡ x

h

while E denotes the modulus of elasticity, ν the Poisson ratio, K a dimensionless
constant that depends on the ratio De/Di, and all geometric parameters being shown
in Fig. 1.7a. Plots of the ratio F/F0 vs. ξ are shown in Fig. 1.7b for various values
of the ratio h/d. Note that F0 is defined as the value of F when the displacement x
that it produces equals h.

Besides linear springs, i.e., those obeying Hooke’s Law, we have nonlinear
springs. The nonlinearity of springs can stem from two sources: their material,
in which case one speaks of material nonlinearities, or their geometry, in which
case one speaks of geometric nonlinearities. Note, moreover, that a mechanical
system composed of linear springs can exhibit geometric nonlinearities in the
presence of large relative displacements at the ends of the springs, as illustrated
in Example 1.5.1. Hard springs exhibit a force-displacement curve with a slope
whose absolute value increases as the absolute value of the displacement increases;
soft springs, correspondingly, exhibit a force-displacement curve with a slope that
decreases in absolute value as the absolute value of the displacement increases. The
slope at any point of a force-displacement plot represents, in fact, the local spring
stiffness of the nonlinear spring at hand. Thus, hard springs become stiffer as their
deformation increases; soft springs become more compliant as their deformation
increases. We shall not discuss material nonlinearities in springs, for these fall
beyond the scope of the book, but we will outline the occurrence of geometric
nonlinearities in mechanical systems with linear springs.

The three different types of spring force-displacement relations, namely, linear,
soft, and hard springs, are illustrated in Fig. 1.8. An example of nonlinear spring
made of steel, which is a linearly elastic material under moderate loads, is the
Belleville spring of Fig. 1.7, whose nonlinearity is of the geometric type. Note that
this spring is linear if the ratio h/d = 0.4; larger values of this ratio produce a spring
that behaves like that of Fig. 1.9.

Example 1.5.1 (A Nonlinear Spring). Shown in Fig. 1.9a is a mechanical system
consisting of a rigid but massless crank of length l and a massless linear spring of
stiffness k. The crank and the spring are pinned to the frame of a machine at points
a distance l apart. Upon applying a torque τ to the crank, the spring responds with
a reaction force that is a function of θ and, together with the reaction force of the
pin on the crank, balances τ . Moreover, the spring is unloaded when the distance
between the two ends of the spring, s, equals l. Find the relation between τ and θ .

Solution: The free-body diagram of the crank is shown in Fig. 1.9b. The spring
force has a magnitude kΔs, where Δs denotes the change in length of the spring
from its natural length, and, since the spring is massless, the force is directed along
the axis of the spring. Moreover, the crank is also massless, and hence, the reaction
force R at the pin must be equal in magnitude and opposite in direction to the spring
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Fig. 1.8 Force-displacement relation of linear and nonlinear springs
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Fig. 1.9 Nonlinearly elastic system

force, as illustrated in the same figure. Now, since the moment of inertia of the
crank is neglected, the moments acting on the crank must add up to zero, so that we
obtain

τ = (kΔs)d

Furthermore, from Fig. 1.9b, we can express s as

s = 2l cos

(
θ
2

)

Therefore,
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Fig. 1.10 Nonlinear torque-angular displacement relation

Δs≡ s− l = l

[
2cos

(
θ
2

)
− 1

]

Furthermore, from the same figure, d can be written as

d = l sin

(
θ
2

)

Substituting the foregoing expressions for Δs and d in the above expression for τ
yields

τ = kl2 sin

(
θ
2

)[
2cos

(
θ
2

)
− 1

]

which is apparently a nonlinear relation between τ and θ . The torque-angular
displacement relation of the nonlinear spring obtained above is displayed in
Fig. 1.10. Note that the spring behaves linearly in the neighborhood of the origin,
between −45◦ and +45◦, approximately. Beyond this interval, the spring exhibits a
soft behavior, up until θ attains values of±70◦, approximately. Beyond this interval,
the spring hardens.

1.5.2 Dashpots

A linear dashpot is a dissipative element, i.e., one that, rather than storing energy,
dissipates it. Dashpots are included in mechanical models in order to take into
account the effect of drag forces caused by fluids, such as lubricants, or air.
A dashpot is linear if the force required to produce a relative velocity ṡ between
its two ends is proportional to that velocity, i.e., with reference to Fig. 1.11,

F = cṡ (1.13)
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Fig. 1.11 A translational
dashpot

where c is the damping constant of the dashpot, its units being Ns/m. Again, we
can have both linear and nonlinear dashpots, the latter occurring, as in the case
of springs, by virtue of material or geometric nonlinearities. Moreover, we shall
leave material nonlinearities in dashpots aside, but will outline the occurrence of
nonlinear dashpots by virtue of geometric effects. The discussion of this item will
be eased once the concept of dissipation function has been introduced, which is done
in Sect. 1.6.5.

The above discussion pertains to translational dashpots, the associated coeffi-
cient thus being a translational damping coefficient. The same concept applies to
rotational dashpots, the corresponding rotational damping coefficient being defined
likewise,

τ = cθ̇ (1.14)

and hence, has units of Nms.

1.5.3 Series and Parallel Arrays of Linear Springs

Springs can appear in series and parallel arrays, thereby giving rise to equivalent
springs. The stiffness of the equivalent spring is different from those of the
individual springs of the array, but, obviously, it depends on these. Below we derive
expressions for the equivalent stiffness of these two types of arrays. Let us assume
that we have two springs of stiffnesses k1 and k2, which are laid out in a series array,
as shown in Fig. 1.12a7

Furthermore, let qA, qB and qC denote the displacements of points A, B and
C along the axes of the springs, from a certain reference configuration in which
the springs are unloaded, i.e., neither stretched nor compressed. What we want
is an expression relating the force F applied at points A and C with the relative
displacement of A with respect to C, qA− qC, as

F = kser(qA− qC) (1.15)

7FBD is the abbreviation of free-body diagram.
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Fig. 1.12 (a) Series array of
two springs, and (b) the FBDs
of the two springs

a b

We note that the springs being massless by definition, each is under static
equilibrium, and hence, the upper spring exerts a force F upwards on the lower
spring, and, by Newton’s third law, the lower spring exerts a force F downwards
onto the first one, as depicted in Fig. 1.12b.

The force F acting at the ends of each of the two springs can then be
correspondingly written in each of two forms, namely,

F = k1(qA− qB), F = k2(qB− qC)

It is apparent that we have to eliminate qB from the two above relations, which can
be readily done by solving for this variable from each of them, thus obtaining

qB =
k1qA−F

k1
, qB =

F + k2qC

k2

Upon equating the above two expressions for qB, we can obtain a relation between
F and qA− qC. To this end, we solve for F from the equation thus arising, i.e.,

F =
k1k2

k1 + k2
(qA− qC)

whence it is apparent that the series equivalent kser of the two springs is the
coefficient of the relative displacement qA− qC in the above expression, namely,

kser =
k1k2

k1 + k2
(1.16)
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a b

Fig. 1.13 (a) Parallel array of two springs, and (b) FBDs of the two springs

Now we derive the expression for the equivalent stiffness of the parallel array of
Fig. 1.13a. We do this by writing the equilibrium equations for each of the supports
of the springs, as derived from the free-body diagrams of Fig. 1.13b. In this figure,
the force acting at the extremes of the spring of stiffness ki is denoted by Fi, i.e.,

F1 = k1(qA− qC), F2 = k2(qA− qC)

and, from the static equilibrium of any of the two supports,

F = F1 +F2 ≡ (k1 + k2)(qA− qC)

from which it is apparent that the equivalent kpar of the parallel array is

kpar = k1 + k2 (1.17)

The reader is invited to state the implicit assumptions that have allowed us
to dispense with the equations of balance of moments in the foregoing analysis.
Furthermore, the foregoing discussion applies to translational springs, the same
being applicable to their torsional counterparts.

1.5.4 Series and Parallel Arrays of Linear Dashpots

Dashpots can also occur in series and parallel arrays, as shown in Figs. 1.14a and b.
As we did earlier for springs, the equivalent dashpot of the two arrays can be

readily determined. It is left to the reader to show that the equivalent dashpot
coefficients of the series and parallel arrays, cser and cpar, respectively, take the forms

cser =
c1c2

c1 + c2
, cpar = c1 + c2 (1.18)
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Fig. 1.14 (a) series and
(b) parallel arrays of dashpots

a b

Nonlinear dashpots can occur by virtue of two items, namely, the dissipation
mechanism and the geometry. In fact, linear dashpots can give rise to nonlinear
ones by virtue of the geometry of the system in which they appear, as we shall
show in Example 1.6.2. However, linear dashpots showing geometric nonlinear-
ities give rise to dissipative forces that can be either linear or nonlinear in the
generalized coordinate, but linear in the generalized speed. Again, the foregoing
discussion applies to translational dashpots, the same being applicable to rotational
dashpots.

1.6 Planar Motion Analysis

In setting up the equations of planar motion, we will need sometimes to compute
expressions such as8 ω × r or r× f, where r is the position vector of a point of
a rigid body in a given coordinate frame. Now, while planar mechanics involves
only two-dimensional vectors, the cross product is essentially a three-dimensional
vector operation, which prevents us, in principle, from analyzing planar motion with
only two-dimensional vectors. What we need is a two-dimensional form of the cross
product, as introduced below.

8Henceforth, vectors are represented with lower-case boldfaces, matrices with upper-case bold-
faces, scalars with math italics. Thus, while ω is a vector, ω is a scalar.
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Fig. 1.15 Vector r and its image under E

Let E be an orthogonal matrix that rotates vectors in the plane through an angle
of 90◦ counterclockwise (ccw), namely,

E≡
[

0 −1
1 0

]
(1.19a)

With this definition, we can readily prove that

ET E = EET = 1 (1.19b)

in which 1 is now defined as the 2× 2 identity matrix. Moreover, note that E is
skew-symmetric, i.e., E =−ET , and hence,

E2 =−1, E−1 =−E (1.19c)

Also note that, given any vector r = [x, y ]T , its image under E is given by

Er =
[−y

x

]
(1.19d)

as illustrated in Fig. 1.15.
Now, let us compute the cross product ω× r for planar motion, where ω = ωk,

and k is a unit vector normal to the plane of motion and pointing towards the
viewer. Moreover, if r lies in the plane of motion, its z-component vanishes, the
cross product thus taking the form

ω× r = det

⎡

⎣
i j k
0 0 ω
x y 0

⎤

⎦=−ωyi+ωxj

where we have assumed that the unit vectors i and j are parallel to the X and Y axes,
respectively. The two-dimensional form of the foregoing product, then, becomes

(ω× r)2D = ω
[−y

x

]
≡ ωEr (1.20)
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where we have introduced a subscripted vector product to distinguish it from its 3D
counterpart, while recalling Eq. 1.19d.

Likewise, the cross product r× f is a vector perpendicular to the plane of the
two-dimensional vectors r and f, of signed magnitude ‖r‖‖f‖sin(r, f), where (r, f)
denotes the angle between these two vectors, measured from r to f. Thus, if sin(r, f)
is positive, the cross-product vector points in the direction of k; otherwise, in the
direction of −k. More concretely, let r be defined as before, f being defined, in
turn, as

f≡
⎡

⎣
fx

fy

0

⎤

⎦

Hence,

r× f = det

⎡

⎣
i j k
x y 0
fx fy 0

⎤

⎦= (x fy− y fx)k≡ nk

Since we know the direction of r× f, i.e., perpendicular to the plane of motion,
all we need is the quantity n above, which can be readily recognized as the scalar
product9 of the two-dimensional vectors Er, as given by Eq. 1.19d, and f, i.e.,

n = fT Er≡ (Er)T f =−rT Ef (1.21)

Therefore, n can be either positive or negative, depending on whether it represents
a ccw or a cw (clockwise) moment.

Example 1.6.1 (A Rigid Ring Suspended from a Pin). To illustrate the foregoing
concepts, we aim to find the angular velocity of the ring of radius a shown in
Fig. 1.16a, when basculating without slipping on a circular pin of radius b. The
pin is fixed to a wall, while the ring is subject to the action of gravity, which keeps
it in contact with the pin.

Solution: In this problem, θ is the angle made by the line of the ring passing through
the contact point Q and the center of the ring C with the vertical. Hence, this line is
not fixed to the ring; one may be tempted to take θ̇ as the angular velocity ω of the
ring, but, as a consequence of the foregoing remark, it turns out that ω �= θ̇ .

The angular velocity ω can be obtained in many ways, the simplest being based
on Willis’ formula for epicyclic gear trains.10 In the absence of knowledge of this
formula, one can proceed by a straightforward kinematic analysis. Thus, we realize
first that the distance from O to C remains constant, and hence, the ring (R) might as
well be coupled to the pin (P) via a rigid arm (A), as sketched in Fig. 1.16b, whose
angular velocity is θ̇ . Now, C can be regarded either as a point of R or as a point
of A. If regarded as a point of R, the velocity vC of C can be simply stated as the

9The scalar product of two vectors a and b, of the same dimension, also termed the dot product, is
represented by the two alternative expressions a ·b and aT b.
10See a textbook on kinematics of mechanisms.



24 1 The Modeling of Single-dof Mechanical Systems

a b

Fig. 1.16 (a) A rigid ring suspended from a circular pin, and (b) its equivalent model with an
additional body, the arm A

cross product of the angular velocity ωk by the vector directed from Q to C, ae,
because Q is stationary. Thus,

vC = aωEe

with e defined as the unit vector parallel to line OC, and E defined already in
Eq. 1.19a. If C is regarded as a point of A, the velocity of C is then obtained as
the cross product of the angular velocity of A, namely, θ̇k, by the vector directed
from O to C, i.e.,

vC = (a− b)θ̇Ee

Upon equating the coefficients of vector Ee in the two foregoing expressions, we
obtain an equation for ω in the form

aω = (a− b)θ̇

whence,

ω =
a− b

a
θ̇

which shows that θ̇ is the angular velocity of the ring only in the very special case
in which b→ 0, i.e., when the pin becomes a point. Likewise, when b = a, the ring
is placed tight onto the pin, and cannot move without sliding, thereby obtaining, in
that case, that ω vanishes.

The dynamics model of this system finds interesting engineering applications
[2]. Indeed, in order to predict wear in journal bearings that are mounted with some
play, we need the radius of the bearing, which sometimes is unknown, and difficult
to measure accurately with a measuring tape. In this case, the radius of interest can
be estimated accurately from the period of the ‘small-amplitude’ of the array of
Fig. 1.16a.
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1.6.1 Lagrange Equations

While the use of the Newton-Euler equations is quite straightforward when applied
to an isolated rigid body, these equations become too cumbersome when applied to
systems composed of many elements. Indeed, the Newton-Euler equations applied
to systems invariably require the calculation of internal forces of constraint whose
sole role is to keep the system together, but develop no power. The occurrence of
such forces brings about unnecessary complexities in the models thus derived. For
this reason, we recall the Lagrange equations in this section, and note that, within
this formulation, internal forces of constraint are eliminated naturally.

The first issue in the Lagrange formulation is how to represent the motion of the
system at hand, which brings about the concept of generalized coordinate, to be
discussed presently. Both the relative layout of the system components and of the
whole system with respect to an inertial frame are described by signed distances
between landmark points in each component, whether rigid body, particle, massless
spring or massless dashpot, and signed angles between landmark lines in the same
components. Of course, the inertial frame must also be supplied with landmark
points and lines to determine the position and orientation of each component
with respect to it. The foregoing distances and angles are generically termed the
generalized coordinates of the system. In general, there are no rules to define these
coordinates uniquely and hence, the same system can be described by many different
sets of generalized coordinates. As well, the number of generalized coordinates
describing the configuration of a system is not unique, but a given system always
has a minimum number of these below which the configuration is not fully defined.
Such a minimum number is the degree of freedom (dof) of the system. Single-dof
systems are fully described with one single generalized coordinate, henceforth
represented as q when the discussion applies to arbitrary systems.

The time-derivatives of the generalized coordinates are the generalized speeds of
the system. If the number of generalized coordinates equals the degree of freedom
of the system, then these are referred to as independent generalized coordinates.
Correspondingly, the associated generalized speeds are termed the independent
generalized speeds. Furthermore, the whole set of both independent generalized
coordinates and independent generalized speeds constitutes the state of the system,
the evolution of the configuration of the system, in turn, constituting its motion.
Notice that the Newton-Euler equations governing the motion of a mechanical
system determine the values of the second derivatives of the generalized coordinates,
for given values of generalized coordinates and generalized speeds along with given
values of the applied forces and moments. Hence, by knowing the state of the
system at a given instant, it is possible to predict the state of the system an instant
later. Again, the evolution of single-dof systems is fully determined by one single
generalized coordinate q and one single generalized speed q̇.

The set of independent generalized coordinates and independent generalized
speeds is known generically as the state variables of the system. Thus, the
values of the state variables of a system at a given instant—i.e., the initial
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conditions—along with the inputs—applied forces and moments—and the mathe-
matical model derived from the Newton-Euler or the Lagrange equations, determine
the motion of the system, which is the reason why we call these systems de-
terministic. The state variables of a single-dof system can then be stored in a
two-dimensional array x≡ [q, q̇ ]T termed the state-variable vector of the system.

1.6.2 Energy Functions

The Lagrange equation for a single-dof system is given below11:

d
dt

(
∂L
∂ q̇

)
− ∂L

∂q
=

∂
∂ q̇

(Π−Δ) (1.22)

where:

q is the generalized coordinate;
T is the total kinetic energy of the system;
V is the total potential energy of the system;
L is the Lagrangian of the system, given by

L = T −V (1.23)

Π is the power supplied to the system by motors delivering controlled forces or
torques; and
Δ is the dissipation function associated with all dissipative forces in the system.

All functions T , V , L, Π, and Δ are generically termed energy functions, even
though only the first three have units of energy.

We will discuss below the various terms in the Lagrange equation. While the
Lagrangian formalism can be applied to mechanical systems of particles and both
rigid and flexible bodies, and to other physical systems as well, we will focus
henceforth on mechanical systems composed of rigid bodies undergoing planar
motion. Furthermore, we assume that the system at hand, although having one single
dof, is composed of multiple elements, i.e., r rigid bodies, s massless springs and d
massless dashpots.

1.6.3 Kinetic Energy

The kinetic energy Ti of the ith rigid body can be determined using one of two
expressions: the first is general and applies in all cases; the second is applicable
only in special cases that nevertheless arise frequently, and is simpler than the first

11The formal derivation of the Lagrange equations lying beyond the scope of the book, the reader is
invited to review this derivation, as pertaining to systems of particles in a mechanics book, e.g., [3].
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expression. In the first expression, we decompose the motion of the body into two
parts, namely, a pure translation of the whole body identical to that of its center of
mass, and a pure rotation of the body about its center of mass. This decomposition
is known as König’s Theorem. Thus, we have

Kinetic Energy of the ith Rigid Body of a Mechanical System Undergoing
Planar Motion

Ti =
1
2

mi‖ċi‖2 +
1
2

ICiω2
i (1.24)

where:

mi is the mass of the ith rigid body;
ċi is the two-dimensional velocity vector of the center of mass of the ith rigid
body with respect to an inertial frame, ||ċi|| representing its magnitude;
ICi is the scalar moment of inertia of the ith rigid body with respect to its
center of mass; and
ωi is the scalar angular velocity of the ith rigid body with respect to an
inertial frame.

In the alternative expression, we first determine a point O of the rigid body that
is instantaneously fixed to an inertial frame. In planar motion, this point, called
the instantaneous center, always exists. If the velocity of each point of the body
is referred to O, then the expression for the kinetic energy simplifies as described
below:

Kinetic Energy of the ith Rigid Body of a Mechanical System Undergoing
Planar Motion Based on a Fixed Point Oi of the Body

Ti =
1
2

IOiω2
i (1.25)

where:

IOi is the scalar moment of inertia of the ith rigid body with respect to a
point Oi of the body that is instantaneously fixed to an inertial frame; and
ωi is the scalar angular velocity of the ith rigid body with respect to an
inertial frame.

The kinetic energy of the overall system is the sum of the kinetic energies of all
r rigid bodies, i.e.,

T =
r

∑
1

Ti (1.26)

As we will show with examples, the velocity vector of the center of mass of each
body and its scalar angular velocity can be always written as linear functions of
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the generalized speed, the associated coefficients being functions of the generalized
coordinate. Likewise, the angular velocity of all bodies of the system can always be
written as a linear function of the generalized speed. The representation of center-
of-mass velocities and body angular velocities requires a careful kinematic analysis
whose importance cannot be overstated. Under the assumption that the foregoing
analysis has been conducted, then, the total kinetic energy of the system under study
takes the form

T =
1
2

m(q)q̇2 + p(q, t)q̇+T0(q, t) (1.27)

where the coefficients m(q) and p(q, t) as well as T0(q, t) are, in general, functions
of the generalized coordinate q; the last two can also be explicit functions of time.
However, if the system neither gains nor loses mass—a rocket loses mass as its
fuel burns—then m is not an explicit function of time. All systems considered
in this book are assumed to be of the first type, i.e., with m = m(q). Note that
systems that are externally driven by a source producing a controlled motion that
does not depend on the generalized speed have a nonzero kinetic energy T0 even
if the generalized speed is set equal to zero. The first term of that expression is
quadratic in the generalized speed; the second term is linear in this variable; and
the third term is independent of the generalized speed, but is a function of the
generalized coordinate and, possibly, of time as well. Moreover, this function of
q is most frequently nonlinear, while the second and the third terms of the same
expression arise in the presence of actuators supplying a controlled motion to the
system. Furthermore, because of the kinetic energy being essentially positive, the
coefficient m(q) of Eq. 1.27 is also positive. It is, hence, called the generalized
mass of the system. As such, the generalized mass has units of mass or of
moment of inertia. In certain cases, when working with nondimensional quantities
or with normalized expressions, the generalized mass can even be nondimensional.
Other units are possible, depending on the manipulations introduced to derive the
governing equation in its final form.

1.6.4 Potential Energy

In setting up the Lagrange equations of the system under study, we need an
expression for its potential energy. Here, we assume that we have two possible
sources of potential energy: elastic and gravitational. The former appears because
of the flexibility of some elements of the system; the latter because of the gravity
field. The potential energy due to the gravity field is, in general, a nonlinear function
of the generalized coordinate, but does not depend on the generalized speed. Thus,
we will assume that, in general, the potential energy Vg due to gravity is a nonlinear
function of the generalized coordinate q, i.e.,

Vg =Vg(q) (1.28)
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On the other hand, the elastic potential energy is due to springs of all sorts.
We will study mainly linear springs,12 i.e., springs requiring a force kΔs to stretch
them or compress them for an amount Δs, with k denoting the spring stiffness. Here,
Δs is the elongation or contraction of the spring from its unloaded configuration.
Hence, the potential energy due to the stiffness ki of the ith spring takes the form

Vi =
1
2

ki(Δsi)
2 (1.29a)

Δsi being the elongation or contraction of the ith spring. The foregoing discussion
applies to translational springs, a similar expression applying to torsional springs:

Vi =
1
2

kti(Δθi)
2 (1.29b)

Thus, under the assumption that the system has a total of s springs, the total
potential energy is given as

V =Vg +
s

∑
1

1
2

ki(Δqi)
2 (1.30)

where ki can be either translational or torsional and qi is a generalized coordinate.

1.6.5 Power Supplied to a System and Dissipation Function

The energy sources of a mechanical system can be of two kinds, namely, force—or
torque—sources and motion sources, the two being developed by controlled motors.
If the controlled item is force or torque, then we speak of a force-controlled source;
if motion, then of a motion-controlled source.

A force f acting at a point of a body that moves with velocity v develops a power
f · v onto the body. When the force is applied by controlled sources like motors
or muscles that impel the body, the power is positive, and we speak of a driving
or active force. On the contrary, when the force is applied by the environment in
such a way that it opposes the motion, the power is negative, and we speak of a
load or a dissipative force. However, nothing prevents a motor from acting against
the motion, thereby functioning as a brake, i.e., as a load. Therefore, the power
supplied by motors can be either positive or negative. In mechanical engineering
parlance, when a motor drives the load, one speaks of forward-driving; otherwise,
of backward-driving.

Regarding moments, the same holds, if velocity changes to angular velocity.
In this case, then, the power developed by a moment n onto a body that rotates
with an angular velocity ω is given by n ·ω or, in the planar case, as nω . A moment

12Erroneously, translational springs are sometimes referred to as “linear.”
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applied about a fixed axis is termed torque; it is represented as τ or T , depending on
the other variables used, to avoid confusion; the power in this case is given by either
τω or, correspondingly, Tω .

The counterpart of the concept of generalized coordinate is the concept of
generalized force. Once a set of independent generalized coordinates and speeds has
been decided on, the generalized forces are determined uniquely. Thus, single-dof
systems have a single generalized force associated with them. Now, if we let the total
power developed by force-controlled sources be denoted by Π, then, the generalized
active force φ f associated with the generalized coordinate q is derived as

φ f =
∂Π
∂ q̇

(1.31)

where q̇ is the corresponding generalized velocity. Note that φ f stems only from
force-controlled sources.

Systems are not only acted upon by driving forces but also by dissipative forces
that intrinsically oppose the motion of the system. As a rule, dissipative forces are
functions of velocity and hence, of the generalized speed of the system. Here, we
postulate the existence of a dissipation function Δ from which the dissipative force
φd is derived as

φd =−∂Δ
∂ q̇

(1.32)

the negative sign taking into account that Δ is essentially a positive quantity, while φd

opposes motion. Here, a word of caution is in order: while the dissipation function
has units of power, it is not necessarily equal to the power developed by dissipative
forces, as we shall see presently. As a matter of fact, power can be either positive
or negative, i.e., power is a sign-indefinite quantity, while a dissipation function is
positive-definite.

Dissipation of energy occurs in nature in many forms. The most common
mechanisms of energy dissipation are (a) viscous damping, (b) Coulomb or dry-
friction damping, (c) hysteretic damping, and (d) flow-induced drag. We will be
concerned in the book mainly with the first two forms of energy dissipation, and
of these, mostly with the first one. Furthermore, with regard to viscous damping,
we will focus on linearly-viscous damping, which can be taken into account by
linear dashpots,13 the counterparts of linear springs. Linear dashpots coupling two
elements of a system at points A and B are characterized by quadratic dissipation
functions. That is, the dissipation function of the ith linear dashpot of a system takes
the form

Δi =
1
2

ciṡ
2
i (1.33a)

13Again, translational dashpots are sometimes erroneously referred to as “linear.”
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where ṡi is the relative velocity of points A and B along the direction of line AB. Note
that, by virtue of the form of the dissipation function, this attains the same value
whether the dashpot is stretching or contracting at the same rate. The corresponding
function for a rotational dashpot is

Δi =
1
2

ciθ̇ 2
i (1.33b)

Power-dissipation, like energy, is additive, and hence, if a mechanical system
comprises d dashpots, then the total power dissipation of the system is

Δ =
d

∑
1

Δi (1.34)

Now, upon differentiation of the dissipation function Δi of Eq. 1.33a with respect
to ṡi, we obtain the generalized force exerted by the dashpot, φdi, as

φdi =−ciṡi (1.35)

which always opposes the motion, with a similar expression for a rotational dashpot.
That is, if the dashpot is stretching, φdi acts to compress it; if contracting, then
the force acts to stretch it. The constant ci is known as the dashpot coefficient or
damping coefficient.

Note that the power Πd dissipated by a linear dashpot of coefficient c is given by

Πd =−φd ṡ =−cṡ2 =−2Δ

and hence, equals twice the negative of the dissipation function of the dashpot at
hand.

As we shall see with examples, motion-controlled sources induce an active
generalized force that we will label φm = φm(q, q̇, t), and does not arise from Π, but
rather from the Lagrangian of the system. An additional form of generalized force
is that stemming from the potential energy V (q, t), that enters in the Lagrangian via
this function; these forces, arising from a potential function, are called conservative
forces, and are denoted by φp(q, t), the subscript reminding us that they stem from
a potential.

The total generalized force φ associated with the generalized coordinate q is then
the sum of all generalized forces described above, namely,

φ ≡ φp +φm +φ f +φd (1.36)

Systems free of driving sources, whether of the force- or motion-controlled type,
are said to be autonomous. Therefore, autonomous systems are characterized by
φm = φ f = 0.
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a b

Fig. 1.17 A nonlinear dashpot derived from a linear one

Example 1.6.2 (A Configuration-dependent Dashpot). If the spring of Fig. 1.9 is
replaced by a linear dashpot, we have the array of Fig. 1.17. Derive expressions for
both the dissipation function of the array and that of the associated dissipative force,
while regarding θ as the generalized coordinate.

Solution: Since the dashpot is linear, its dissipation function takes the form

Δ =
1
2

cṡ2

but we need an expression in terms of θ and θ̇ , the generalized coordinate and the
generalized speed. This expression is readily derived by noticing that s = s(θ ), and
hence,

ṡ =
ds
dθ

θ̇

where ds/dθ is obtained from the expression for s derived in Example 1.5.1,
namely,

ds
dθ

=−l sin

(
θ
2

)

After simplifications, the foregoing relations lead to

Δ =
1
4

cl2(1− cosθ )θ̇ 2

which is a positive-definite expression that vanishes only when either θ or θ̇ does.
Now the generalized force φd associated with the dashpot is readily found as

φd =−∂Δ
∂ θ̇

=−1
2

cl2(1− cosθ )θ̇

which is a nonlinear function of θ , although linear in θ̇ . For this reason, we say that
the associated damping coefficient is configuration-dependent.
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Example 1.6.3 (The Dissipation Function of an Epicyclic Gear Train). If we fix the
internal gear R of Fig. 1.16b to an inertial frame, and let the arm A rotate freely, while
carrying the pinion P, that now translates and rotates simultaneously, we obtain an
epicyclic gear train. Under the assumption that the joints at O and C are lubricated
with a linearly viscous fluid, these joints produce dissipative torques that can be
derived from a dissipation function Δ. Find an expression for Δ in terms of the
angular velocity θ̇ of the arm A.

Solution: Let the angular velocity of the pinion be denoted by ωP, which is cw if
that of the arm, θ̇ , is ccw. Now, in order to set up the dissipation function of this
system, it is important to note that this is the sum of two quadratic expressions in
relative angular velocities, one for each joint. The reason why we have emphasized
here the word relative is that motions of a mechanical system as a single rigid body
do not produce any dissipation. It is the relative motion that matters when it comes
to energy dissipation. Therefore, we have

Δ =
1
2

cCθ̇ 2 +
1
2

cOω2
P/A

where cC and cO denote the damping coefficients at joints C and O, respectively.
Moreover,

ωP/A ≡ ωP−ωA = ωP− θ̇

The velocity of point Q can be expressed as

vQ = vO + vQ/O

where vO and vQ/O are given as

vO = (a− b)θ̇ and vQ/O = bωP

Upon setting the velocity of point Q equal to zero, we have

vQ/O =−vO

or

ωP =−a− b
b

θ̇

and hence,
ωP/A =−a

b
θ̇

the dissipation function thus becoming

Δ =
1
2

[
cC +

(a
b

)2
cO

]
θ̇ 2

which is the expression sought.
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1.6.6 The Seven Steps of the Modeling Process

We derive below the general form of the Lagrange equations, Eq. 1.22, as pertaining
to single-dof systems. To this end, we use Eq. 1.27 to derive the Lagrangian in the
form

L =
1
2

m(q)q̇2 + p(q, t)q̇+T0(q, t)−V(q)

Hence,
∂L
∂ q̇

= m(q)q̇+ p(q, t)

and
d
dt

(
∂L
∂ q̇

)
= m(q)q̈+m′(q)q̇2 +

∂ p
∂q

q̇+
∂ p
∂ t

Likewise,
∂L
∂q

=
1
2

m′(q)q̇2 +
∂ p
∂q

q̇+
∂T0

∂q
− ∂V

∂q

Moreover, the right-hand side of Eq. 1.22 is nothing but the sum of the terms due to
force-controlled sources and dissipation, i.e,

∂
∂ q̇

(Π−Δ) = φ f +φd

Therefore, the Lagrange equations take the form

m(q)q̈+
1
2

m′(q)q̇2

︸ ︷︷ ︸
h(q,q̇)

=−∂ p
∂ t

+
∂T0

∂q
︸ ︷︷ ︸

φm

−∂V
∂q

︸ ︷︷ ︸
φp

+φ f +φd (1.37)

That is,

h(q, q̇) =
1
2

m′(q)q̇2 (1.38a)

φm(q, q̇, t) = −∂ p
∂ t

+
∂T0

∂q
(1.38b)

φp(q, t) = −∂V
∂q

(1.38c)

In summary, then, the Lagrange equation for single-dof systems takes the form

m(q)q̈+ h(q, q̇) = φ(q, q̇, t) (1.39a)
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where

h(q, q̇) =
1
2

m′(q)q̇2 (1.39b)

φ(q, q̇, t) = φp(q, t)+φm(q, q̇, t)+φ f (q, q̇, t)+φd(q, q̇, t) (1.39c)

i.e., the governing model is a second-order ordinary differential equation in the
generalized coordinate q. In this equation, the configuration-dependent coefficient
m(q), the generalized mass, was already introduced in Eq. 1.27,while the second
term of the left-hand side, h(q, q̇), contains inertia forces stemming from Coriolis
and centrifugal accelerations. For this reason, this term is sometimes called the
term of Coriolis and centrifugal forces. The right-hand side, in turn, is the sum
of four different generalized-force terms, namely, (1) φp(q, t), a generalized force
stemming from the potential energy of the Lagrangian; (2) φm(q, q̇, t), a generalized
force stemming from motion-controlled sources and contributed by the Lagrangian
as well; (3) φ f (q, q̇, t), a generalized force stemming from force-controlled sources,
and contributed by the power Π; and (4) φd(q, q̇, t), a generalized force of dissipative
forces, stemming from the dissipation function Δ. The integration of Eq. 1.39a with
prescribed initial values q(0) = q0 and q̇(0) = q̇0, and given generalized force
φ(q, q̇, t) can be a challenging task. We will not be concerned with this task in
this book. What we will do is study the time response of the foregoing system
under ‘small’ perturbations from its equilibrium state. The techniques to derive
the associated time response will be studied in Chap. 2. To illustrate the modeling
process we resort to an example, the process comprising a sequence of seven steps.

Example 1.6.4 (A Locomotive Wheel Array). Derive the Lagrange equation of the
system shown in Fig. 1.18. This system consists of two identical wheels of mass m
and radius a that can be modeled as uniform disks. Furthermore, the two wheels
are coupled by a slender, uniform, rigid bar of mass M and length l, pinned to the
wheels at points a distance b from the wheel centers. We can safely assume that the
wheels roll without slipping on the horizontal rail and that the only nonnegligible
dissipative effects arise from the lubricant at the bar-wheel pins. These pins produce
dissipative moments proportional to the relative angular velocity of the bar with
respect to each wheel.

Solution: Under the no-slip assumption, it is clear that a single generalized
coordinate, such as θ , suffices to describe the configuration of the entire system
at any instant. The system thus has a dof = 1. We now introduce the seven-step
procedure to derive the mathematical model sought:

1. Kinematics. This is the most important part of the process, because the remain-
der depends on its correctness. Moreover, this step is also the most challenging,
for it requires sound knowledge of basic mechanics and geometry. What is
important here is to realize that the simplest approach is always the easiest to
implement and the most reliable. In general, we aim here to find expressions
of center-of-mass (c.o.m) velocities and angular velocities that are linear in the
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a b

c

Fig. 1.18 A mechanical system with three moving bodies and one single dof

generalized speed θ̇ . A previous inspection of the quantities required will reveal,
in many instances, that c.o.m velocities themselves are not needed, but rather the
squared magnitudes of these velocities. Since the latter are scalar, their derivation
is far simpler than that of the former. Upon numbering the bodies of the system
as shown in Fig. 1.18a, we realize that the motions of bodies 1 and 2 are identical,
that of body 3 being a pure translation. Moreover, all points of body 3 describe
circles of radius b.

Now, if we denote by P the center of the pin connecting the wheel 1 with the
coupler bar, we have

vP = ċ1 + vP/C

where vP/C denotes the relative velocity of P with respect to C1, the center of
mass and centroid of wheel 1, a relation that is shown in Fig. 1.18c. In this figure,
we show in parentheses the signed magnitude of each velocity term of the right-
hand side of the foregoing equation. Note that, from this velocity triangle we
could determine vP as such, but, as a matter of fact, we do not need it; what
we need is rather the squared magnitude of this velocity vector. Moreover, the
coupler bar undergoing a pure translation, its center of mass C3 has a velocity
identical to vP, and hence,

ċ3 = ċ1 + vP/C
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In fact, from the expression for Ti of Eq. 1.24, all that we need to find T3 is ‖ċ3‖2,
which can be done with much less effort than finding ċ3 itself. This is done from
the velocity triangle of Fig. 1.18c and the ‘cosine law’, namely,

‖ċ3‖2 = a2θ̇ 2 + b2θ̇ 2 + 2abθ̇ 2 cosθ

and, clearly, ω3 = 0.
2. Kinetic energy. Here, our goal is to derive an expression for the kinetic energy

that is of the form of Eq. 1.27. To this end, we use the forms (1.24 and 1.25) and
so, Ii denotes the moment of inertia of the ith body about its center of mass Ci.
Moreover,

I1 = I2 =
1
2

ma2, I3 =
1

12
Ml2

As a matter of fact, I3 will not be needed because body 3 undergoes a pure
translation. We have written it down only for completeness, and for future
reference, because this is a useful expression. Thus, from Eqs. 1.24 and 1.25,
we obtain, respectively,

T1 = T2 =
1
2

ma2θ̇ 2 +
1
2

(
1
2

ma2
)

θ̇ 2 =
1
2

m

(
3a2

2

)
θ̇ 2

T3 =
1
2

M(a2 + b2 + 2abcosθ )θ̇ 2

whence,

T =

[
3
2

ma2 +
1
2

M(a2 + 2abcosθ + b2)

]
θ̇ 2

which is, indeed, a quadratic expression in θ̇ . Notice that this expression, in this
particular example, contains neither a linear term in the generalized speed nor an
independent term.

3. Potential energy. First, we note that the sole source of potential energy is gravity.
Moreover, the centers of mass of the two wheels remain at the same level, and
hence, it is convenient to use this level as a reference. Therefore,

Vg = Mgbcosθ

4. Lagrangian. This is now readily derived as

L = T −V =

[
3
2

ma2 +
1
2

M(a2 + 2abcosθ + b2)

]
θ̇ 2−Mgbcosθ

5. Power supplied. Apparently, the system is not subjected to any force-controlled
source, and hence, Π = 0.
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6. Power dissipation. What is important here is to find the angular velocity of the
bar with respect to each of the wheels; this velocity will determine the dissipation
function occurring by virtue of the lubricant at the pins. Since the bar moves
under pure translation, its relative angular velocity with respect to each of the
wheels is −θ̇ , and hence,

Δ = 2× 1
2

cθ̇ 2

where the factor of 2 is included to account for the two pins.
7. Lagrange equation. Now, all we need is to evaluate the partial derivatives

involved in Eq. 1.22, namely,

∂L

∂ θ̇
=
[
3ma2 +M(a2 + 2abcosθ + b2)

]
θ̇

Hence,

d
dt

(
∂L

∂ θ̇

)
=
[
3ma2 +M(a2 + 2abcosθ + b2)

]
θ̈ − 2Mab(sinθ )θ̇ 2

and
∂L
∂θ

=−Mab(sinθ )θ̇ 2 +Mgbsinθ

Furthermore,
∂Π
∂θ̇

= 0,
∂Δ
∂ θ̇

= 2cθ̇

the equation sought thus being

[
3ma2 +M(a2 + 2abcosθ + b2)

]
θ̈ −Mab(sinθ )θ̇ 2 = Mgbsinθ − 2cθ̇

which is termed the governing equation of the system at hand.
In the equation derived above, we can readily identify the functions m(θ ) and

h(θ , θ̇ ) of Eq. 1.39a. Thus, the generalized mass of the system is

m(θ )≡ 3ma2 +M(a2 + 2abcosθ + b2)

Here, note that m(θ ) has units of moment of inertia. Moreover, the generalized
mass is, in this case, configuration-dependent, for it is apparently a function
of angle θ . Likewise, the term of Coriolis and centrifugal forces is readily
identified as

h(θ , θ̇ ) =−Mab(sinθ )θ̇ 2

which is quadratic in θ̇ and, hence, arises from centrifugal forces. Finally, the
right-hand side contains one term of gravity forces, Mgbsinθ , and one that is
dissipative, −2cθ̇ . No active force occurs in this example because the system is
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Fig. 1.19 Overhead crane driven by a motion-controlled source

neither force- nor motion-driven by controlled sources. The only driving force
here is gravity, and this is taken into account in the Lagrangian. We thus have

φp(θ ) = Mgbsinθ , φm = φ f = 0, φd(θ̇ ) =−2cθ̇

Example 1.6.5 (An Overhead Crane). Now we want to derive the Lagrange equa-
tion of the overhead crane of Fig. 1.19 that consists of a cart of mass M that is driven
with a controlled motion u(t). A slender rod of length l and mass m is pinned to the
cart at point O by means of roller bearings producing a resistive torque that can be
assumed to be equivalent to that of a linear dashpot of coefficient c.

Solution: We proceed as in the foregoing example, in seven steps, namely,

1. Kinematics. Since the motion of the cart is controlled, u(t) is not a generalized
coordinate, but rather a control variable, also known as an input to the system,
the only generalized coordinate thus being θ . Moreover, the cart undergoes pure
translation, and so, its kinematics is rather trivial. The rod, however, undergoes
both translation and rotation. Let ċ denote the velocity of the c.o.m of the rod,
and ω its scalar angular velocity. We would like to have both ċ and ω as
linear functions of θ̇ , but, just as in Example 1.6.4, we do not actually need
ċ itself, but rather its magnitude-squared, which turns out to be much simpler
to derive, as we will show presently. With regard to ċ, then, at this stage we
only set up the velocity triangle of Fig. 1.19, from which we will derive later the
desired magnitude-squared. In that triangle, vO and vC/O denote, respectively, the
velocity of point O and the relative velocity of C with respect to O. Hence,

ċ = vO + vC/O, ω = θ̇
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2. Kinetic energy. Here, we will need ‖ċ‖2, which is readily obtained from the
velocity triangle as

‖ċ‖2 =
l2

4
θ̇ 2− l(cosθ )u̇θ̇ + u̇2

Now, let Tc and Tr denote the kinetic energies of the cart and the rod, respectively,
i.e.,

Tc =
1
2

Mu̇2

Tr =
1
2

m

[
1
4

l2θ̇ 2− l(cosθ )u̇θ̇ + u̇2
]
+

1
2

1
12

ml2θ̇ 2

=
1
2

m

[
1
3

l2θ̇ 2− l(cosθ )u̇θ̇ + u̇2
]

and hence,

T =
1
2

m

[
1
3

l2θ̇ 2− l(cosθ )u̇θ̇
]
+

1
2
(M+m)u̇2

which contains one quadratic term in the generalized speed, one linear term in the
same variable, and one independent term. Compared with Eq. 1.27, the foregoing
expression yields

p(θ , t) =−1
2

ml(cosθ )u̇(t), T0(t) =
1
2
(M+m)u̇2

where the physical interpretation of p(θ , t) becomes apparent: it is the angular
momentum of a particle of mass m, moving with a velocity u̇(t), with respect to
a point lying a distance (1/2)l cosθ from the particle. Note that the latter is the
difference of level between C and O. Likewise, T0 represents the kinetic energy
of a particle of mass M+m moving with a velocity u̇(t).

3. Potential energy. This is only gravitational and pertains to the rod, the potential
energy of the cart remaining constant, and, therefore, can be assumed to be zero.
Hence, if we use the level of the pin as a reference,

Vg =−mg
l
2

cosθ

4. Lagrangian. This is simply

L =
1
2

m

[
1
3

l2θ̇ 2− l(cosθ )u̇θ̇
]
+

1
2
(M+m)u̇2 +mg

l
2

cosθ

5. Power supplied. Again, we have no driving force, and hence, Π = 0.
6. Power dissipation. Here, the only sink of energy occurs in the pin, and hence,

Δ =
1
2

cθ̇ 2
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7. Lagrange equations. Now it is a simple matter to calculate the partial derivatives
of the foregoing functions:

∂L

∂ θ̇
=

1
3

ml2θ̇ − 1
2

ml(cosθ )u̇

d
dt

(
∂L

∂ θ̇

)
=

1
3

ml2θ̈ +
1
2

ml(sin θ )u̇θ̇ − 1
2

ml(cosθ )ü

∂L
∂θ

=
1
2

ml(sin θ )u̇θ̇ − 1
2

mgl sinθ

In order to complete the Lagrange equations, we need only the generalized force.
Since the system is driven under a controlled motion, the active component of the
generalized force stems from the Lagrangian, and will be made apparent when
we set up the governing equations, the dissipative component being linear in
θ̇ , i.e.,

φd =−cθ̇

Therefore, the governing equation becomes

1
3

ml2θ̈ − 1
2

ml(cosθ )ü+
1
2

mgl sin θ =−cθ̇

that can be rearranged in the form

1
3

ml2θ̈ =−1
2

mgl sinθ +
1
2

ml(cosθ )ü− cθ̇

Now we can readily identify the generalized mass as

m(θ ) =
1
3

ml2

which, again, has units of moment of inertia. Moreover, this quantity turns out to
be, in this case, constant and is identical to the moment of inertia of the rod about
point O. Likewise,

h(θ , θ̇ ) = 0

and so, the system at hand contains neither Coriolis nor centrifugal forces.
Finally, the right-hand side is composed of three terms: (1) a gravity term φp(θ )
that is solely a function of θ , but not of θ̇ ; (2) a generalized active force φm(θ , t)
that is provided by a motion-controlled source, i.e., the motor driving the cart
with a controlled displacement u(t); and (3) a dissipative term. All these terms
are displayed below:

φp(θ ) =−1
2

mgl sinθ , φm(θ , t) =
1
2

ml(cosθ )ü, φ f = 0, φd(θ̇ ) =−cθ̇
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Apparently, the motion of the slider induces an active force (1/2)ml(cosθ )ü onto
the system. This force, however, is not derived from a power function, because
the system at hand is not force-driven, but rather motion-driven. As well, note
that the gravity term now bears a negative sign, whereas in Example 1.6.4, a
positive sign. The reader is invited to comment on the reason for this difference
in signs.

Example 1.6.6 (A Force-driven Overhead Crane). Describe how the mathematical
model of Example 1.6.5 changes if the pin is substituted by a motor that supplies a
controlled torque τ(t), in order to control the orientation of the rod for purposes of
manipulation tasks. Here, we assume that this torque is accompanied by a dissipative
torque linear in θ̇ , as in Example 1.6.5.

Solution: The motor-supplied torque now produces a power Π = τ(t)θ̇ (t) onto the
system, the generalized force now containing an active controlled-force component
φ f (θ , θ̇ , t), namely,

φ f (θ , θ̇ , t) =
∂Π
∂θ̇

= τ(t)

all other terms remaining the same. Therefore, the governing equation becomes now

1
3

ml2θ̈ =−1
2

mgl sinθ + τ(t)+
1
2

ml(cosθ )ü− cθ̇

Note that this system has two inputs, u(t) and τ(t), but, apparently, one single
dof. Nevertheless, the system can still be driven without conflict between the two
inputs because u(t) actually drives the second degree of freedom of the system, that
of the cart translation. If the motion θ (t), instead of τ(t), were the second input,
then the system would lose its sole degree of freedom, i.e., it would no longer be
dynamical.

In particular, for linear systems, which will be the focus of the book, h vanishes,
because it contains higher-order terms. Moreover, φp becomes the product of a
constant times q, this constant taking positive, negative, or even zero values. If it
is positive, then it represents the stiffness of the system. Note that this stiffness is, in
general, a combination of the stiffnesses of the individual springs of the system and
includes gravity effects as well.

Example 1.6.7 (An Eccentric Circular Plate). Shown in Fig. 1.20a is an eccentric
circular plate whose c.o.m C is located a distance d from the center of its circular
bore of radius a, as depicted in that figure. Moreover, the plate rolls on the pin of
radius b without slipping. Under the above conditions, derive the Lagrange equation
that governs the oscillations of the plate, with ψ as generalized coordinate.

Solution: Again, we proceed in seven steps to derive the Lagrange equation sought.

1. Kinematics. Consider the position of the plate shown with a dashed circle in
Fig. 1.20b, in which the point of contact Q0 of the plate with the pin is aligned
with the center of the bore, O0 and the center of mass of the plate, C0. The three
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a b

Fig. 1.20 An eccentric plate suspended from a pin

foregoing points thus define a vertical line L0 of the plate. Moreover, considering
a general position of the plate, as the one shown with a solid line in the same
figure, line M is defined as passing through the instantaneous contact point
Q and the centroid of the bore O, and is, consequently, not fixed to the plate.
Furthermore, L1 denotes line L0 in the general position. The angles ψ and θ are
defined as the angles made by lines L1 and M , respectively, with the vertical, as
shown in Fig. 1.20b. The angular velocity of the plate is identical to that of the
ring of Example 1.6.1 and corresponds to ψ̇ . So, we have

ω = ψ̇ =
a− b

a
θ̇

At the dashed position of the plate, we have ψ = θ = 0. Therefore, after
integration of the above relation, we obtain

ψ =
a− b

a
θ or θ =

a
a− b

ψ

To obtain the kinetic energy expression, the distance QC is required and is now
obtained. With the aid of triangle QOC of Fig. 1.20b, this distance is readily
obtained, using the cosine law, as

QC
2
= a2 + d2 + 2ad cos(θ −ψ)

2. Kinetic energy. Here, we use Eq. 1.25 to obtain the kinetic energy of the plate
based on the contact point Q, that is instantaneously fixed to the pin and hence,
to an inertial frame. Thus

T =
1
2

IQω2
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with IQ given by König’s theorem as

IQ = IC +mQC
2

Using the expressions previously found for QC
2

and ω , we obtain

T =
1
2
{IC +m[a2 + d2 + 2ad cos(θ −ψ)]}ψ̇2

3. Potential energy. Here, the potential energy is only due to gravity. Taking the
level of the center of the pin as a reference, the potential energy is given by

V =−mg[(a− b)cosθ + d cosψ ]

4. Lagrangian. This is simply

L = T −V =
1
2
{IC +m[a2 + d2 + 2ad cos(θ −ψ)]}ψ̇2

+mg[(a− b)cosθ + d cosψ ]

5. Power supplied. Again, we have no driving force, and hence, Π = 0.
6. Power dissipation. Apparently, the system is not subjected to any working

friction force,14 and hence, Δ = 0.
7. Lagrange equations. Now, all we need is to evaluate the partial derivatives

involved in Eq. 1.22, namely,

∂L
∂ψ̇

= {IC +m[a2 + d2 + 2ad cos(θ −ψ)]}ψ̇

d
dt

(
∂L
∂ψ̇

)
= {IC +m[a2 + d2 + 2ad cos(θ −ψ)]}ψ̈

−2mad

(
dθ
dψ
− 1

)
sin(θ −ψ)ψ̇2

∂L
∂ψ

= −mad

(
dθ
dψ
− 1

)
sin(θ−ψ)ψ̇2−mg(a− b)

dθ
dψ

sinθ−mgd sinψ

Furthermore,
∂Π
∂ψ̇

=
∂Δ
∂ψ̇

= 0

14Actually, friction force between pin and plate is present, but it develops no work because the
point of application Q of this force is stationary. The sole role of the friction force here is to
prevent sliding.
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the equation sought thus being

{IC +m
[
a2 + d2 + 2ad cos(θ −ψ)

]}ψ̈−mad

(
dθ
dψ
− 1

)
sin(θ −ψ)ψ̇2

+mg(a− b)
dθ
dψ

sinθ +mgd sinψ = 0

Now, from the relation between θ and ψ ,

dθ
dψ

=
a

a− b
,

dθ
dψ
− 1 =

b
a− b

whence the Lagrange equation can be rearranged as

{IC +m[a2 + d2 + 2ad cos(θ −ψ)]}ψ̈

−mad
b

a− b
sin(θ −ψ)ψ̇2 =−mg(asinθ + d sinψ)

The generalized mass can be readily identified as

m(ψ) = IC +m[a2 + d2 + 2ad cos(θ −ψ)]

which has units of moment of inertia and is configuration-dependent.
Likewise, we can readily identify the term of Coriolis and centrifugal forces as

h(ψ , ψ̇) =−mad
b

a− b
sin(θ −ψ)ψ̇2

thus obtaining, again, an expression quadratic in the generalized speed ψ̇ for this
term. Finally, the right-hand side is composed of a sole term that is due to gravity
forces; we thus have

φp(ψ) =−mg(asinθ + d sinψ)

while
φm = φ f = φd = 0

Example 1.6.8 (A Simplified Model of an Actuator). Shown in Fig. 1.21 is the iconic
model of an actuator used to rotate a load—e.g., a control surface in an aircraft, a
robot link, a door, or a valve—of mass m, represented by link AB of length a, about
a point A. The driving mechanism consists of three elements in parallel, namely, a
linear spring of stiffness k, a linear dashpot of coefficient c, and a hydraulic cylinder
exerting a controlled force F(t), to lower or raise the load. Under the assumption
that the spring is unloaded when s = a, and that the link is a slender rod, find the
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Fig. 1.21 The iconic model of an actuator

mathematical model of the foregoing system in terms of θ , which is to be used as
the generalized coordinate in this example.

Solution: We proceed as in the previous cases, i.e., following the usual seven-step
procedure:

1. Kinematics. This step is quite simple, for the only element capable of storing
kinetic energy is the load, which undergoes a pure rotation about point A, and
hence, its kinetic energy can be derived in terms of its angular velocity ω only;
the angular velocity is given simply by

ω = θ̇

where we have adopted the positive direction of θ , and hence, of ω , clockwise.
Besides the foregoing item, we will need a relation between the length of the
spring, s, and the generalized variable, θ . This is readily found from the geometry
of Fig. 1.21, namely,

s = 2asin

(
θ
2

)

2. Kinetic energy. Here, we use Eq. 1.25 to obtain the kinetic energy of the load
based on the center A of the pivot fixed to the inertial frame. Thus,

T =
1
2

IAω2 =
1
2

IAθ̇ 2
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with IA given by

IA =
1
3

ma2

Thus,

T =
1
6

ma2θ̇ 2

3. Potential energy. We now have both gravitational and elastic forms of potential
energy. If we take the horizontal position of AB as the reference level to measure
the potential energy due to gravity, then

V = mg
a
2

cosθ +
1
2

k(s− a)2

or, in terms of the generalized coordinate alone,

V = mg
a
2

cosθ +
1
2

k

[
2asin

(
θ
2

)
− a

]2

4. Lagrangian. This is simply

L = T −V =
1
6

ma2θ̇ −mg
a
2

cosθ − 1
2

k

[
2asin

(
θ
2

)
− a

]2

5. Power supplied. The system is driven under a controlled force F(t) that is
applied at a speed ṡ, and hence, the power supplied to the system is

Π = F(t)ṡ

In order to express the foregoing power in terms of the generalized speed ṡ, we
differentiate the relation between s and θ with respect to time:

ṡ = aθ̇ cos

(
θ
2

)

thereby obtaining the desired expression:

Π = F(t)aθ̇ cos

(
θ
2

)

6. Power dissipation. Power is dissipated only by the dashpot of the hydraulic
cylinder, and hence,

Δ =
1
2

cṡ2 =
1
2

ca2θ̇ 2 cos2
(

θ
2

)
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7. Lagrange equations. We first evaluate the partial derivatives of the Lagrangian:

∂L

∂ θ̇
=

1
3

ma2θ̇ , ⇒ d
dt

(
∂L

∂ θ̇

)
=

1
3

ma2θ̈

∂L
∂θ

=
a
2

mgsinθ − ka2
[

2sin

(
θ
2

)
− 1

]
cos

(
θ
2

)

= amgsin

(
θ
2

)
cos

(
θ
2

)
− ka2

[
2sin

(
θ
2

)
− 1

]
cos

(
θ
2

)

where we have written all partial derivatives in terms of angle θ/2. Furthermore,

∂Π
∂θ̇

= F(t)acos

(
θ
2

)
,

∂Δ
∂ψ̇

= ca2θ̇ cos2
(

θ
2

)

the equation sought thus being

1
3

ma2θ̈ = −a

{
ka

[
2sin

(
θ
2

)
− 1

]
−mgsin

(
θ
2

)}
cos

(
θ
2

)

+F(t)acos

(
θ
2

)
− caθ̇ cos

(
θ
2

)

The generalized mass can be readily identified from the above model as

m(θ ) =
1
3

ma2

which is nothing but the moment of inertia of the bar AB about the pivot center
A. Likewise, we can readily identify the term of Coriolis and centrifugal forces
as zero, which is understandable because of the simple motion undergone by the
bar. Note that the centrifugal inertia force of the bar is directed toward point A,
i.e., this force is applied at a point of zero velocity, and hence, does no work on
the system, for which reason it does not appear in the mathematical model. Also
note that the generalized-force terms are identified below as:

φp(θ ) =−a

[
(2ka−mg)sin

(
θ
2

)
− ka

]
cos

(
θ
2

)

while

φd(θ ) =−caθ̇ cos

(
θ
2

)
, φ f (θ ) = F(t)acos

(
θ
2

)
, φm = 0
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s

(given)

Fig. 1.22 A simple model of an aircraft control surface and its actuation mechanism

for the system is not driven by any motion-controlled source of energy. Note
that the mechanical interpretation of the generalized force is the moment of the
actuator force F(t) about point A.

Finally, the equation of motion can be rearranged as

θ̈ = − 3
ma

[
(2ka−mg)sin

(
θ
2

)
− ka

]
cos

(
θ
2

)

+
3F(t)

ma
cos

(
θ
2

)
− 3c

ma
θ̇ cos

(
θ
2

)

Example 1.6.9 (Motion-driven Control Surface). Shown in Fig. 1.22 is a highly
simplified model of the actuator mechanism of an aircraft control surface—e.g.,
ailerons, rudder, etc. In the model, a massless slider is positioned by a stepper
motor at a displacement u(t). The inertia of the actuator-aileron system is lumped
in the rigid, slender, uniform bar of length l and mass m, while all the stiffness and
damping is lumped in a parallel spring-dashpot array whose left end A is pinned
to a second massless slider that can slide without friction on a vertical guideway.
Moreover, it is known that the spring is unloaded when u = l and θ = 0. A second
motor, mounted on the first slider, exerts a torque τ(t) on the bar.

(a) Derive the Lagrangian of the system.
(b) Give expressions for the power Π supplied to the system and for the dissipation

function Δ.
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(c) Obtain the mathematical model of the system and identify in it the generalized
forces (1) supplied by force-controlled sources; (2) supplied by motion-
controlled sources; (3) stemming from potentials; and (4) produced by
dissipation.

Solution:

(a) The kinetic energy of the system is that of the overhead crane of Example 1.6.5,
except that now the cart has negligible mass, i.e., M = 0, and hence,

T =
1
2

m

[
1
3

l2θ̇ 2− l(cosθ )u̇(t)θ̇
]
+

1
2

mu̇2(t)

The potential energy is the same as that of Example 1.6.5 plus the elastic energy
Ve of the spring, which is

Ve =
1
2

k(s− l)2

Moreover, from the geometry of Fig. 1.22,

s = u(t)− l sinθ

whence,

V =−1
2

mgl cosθ +
1
2

k[u(t)− l sinθ − l]2

and

L=
1
2

m

[
1
3

l2θ̇ 2− l(cosθ )u̇(t)θ̇
]
+

1
2

mu̇2(t)+mg
l
2

cosθ−1
2

k[u(t)− l sinθ − l]2

(b)

Π = τ(t)θ̇ , Δ =
1
2

cṡ2

and ṡ is computed by differentiation of the foregoing expression for s:

ṡ = u̇(t)− lθ̇ cosθ

Therefore,

Δ =
1
2

c[u̇(t)− lθ̇ cosθ ]2

(c)
∂L

∂ θ̇
=

1
3

ml2θ̇ − 1
2

ml(cosθ )u̇(t)

d
dt

(
∂L

∂ θ̇

)
=

1
3

ml2θ̈ +
1
2

ml(sin θ )u̇(t)θ̇ − 1
2

ml(cosθ )ü(t)

∂L
∂θ

=
1
2

ml(sinθ )u̇(t)θ̇ − 1
2

mgl sinθ − k[u(t)− l sinθ − l](−l cosθ )
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Fig. 1.23 A fluid clutch

∂L
∂θ

=
1
2

ml(sin θ )u̇(t)θ̇ − 1
2

mgl sinθ + kl[u(t)− l sinθ − l]cosθ

∂Π
∂θ̇

= τ(t)

∂Δ
∂ θ̇

= c[u̇(t)− lθ̇ cosθ ](−l cos) = cl[lθ̇ cosθ − u(t)]cosθ

Thus, the mathematical model is derived as

1
3

ml2θ̈ +
1
2

ml(sinθ )u̇(t)θ̇ − 1
2

ml(cosθ )ü(t)− 1
2

ml(sinθ )u̇(t)θ̇ +
1
2

mgl sinθ

−kl[u(t)− l sinθ − l]cosθ = τ(t)− cl[lθ̇ cosθ − u(t)]cosθ

or,

1
3

ml2θ̈ =

(ii)
︷ ︸︸ ︷
1
2

ml(cosθ )ü(t)+ clu̇(t)cosθ + klu(t)cosθ

(iii)
︷ ︸︸ ︷

−1
2

mgl sinθ − kl2(1+ sinθ )cosθ +

(i)
︷︸︸︷
τ(t)−

(iv)
︷ ︸︸ ︷
cl2θ̇cos2θ

Example 1.6.10 (A First-order Model—A Hydraulic Clutch). Given in Fig. 1.23
is the iconic model of a hydraulic clutch undergoing tests. In this setting, a
motor drives the left disk of the clutch at a controlled rate ω(t), while the right
disk is coupled to a linearly elastic shaft of torsional stiffness k and negligible
inertia. Moreover, the right end of the shaft is clamped to a fixed wall. Derive the
mathematical model of the device.
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Fig. 1.24 Fluid clutch with attached rotor

Solution: Similar to Example 1.6.5, this system is motion-driven, and hence, ω(t)
is an input to the system, rather than a generalized speed. Moreover, from the
conditions of the problem, it is apparent that the system cannot store kinetic energy,
its only energy-storing capability being in the form of elastic potential energy. The
fluid in the clutch, on the other hand, dissipates energy and is, hence, equivalent to a
dashpot that, to keep the model simple, is assumed to be linear. Note also that there
is no power input to the system stemming from a controlled-force source. Thus,

T = 0, V =
1
2

kθ 2, Π = 0, Δ =
1
2

c(ω− θ̇)2

With these energy functions already derived, we proceed now to obtain the Lagrange
equation of the system, which leads to a mathematical model in the form

θ̇ =−k
c

θ +ω(t)

Note that this is a first-order ODE. Similar to second-order systems, we can identify,
in this case, a ‘generalized force’ stemming from a potential-energy function on
the right-hand side, and one stemming from a controlled-motion source. However,
on the left-hand side we do not have a generalized mass, because no generalized
acceleration occurs in this equation, which is the result of the inability of the system
to store kinetic energy.

Example 1.6.11 (One More First-order Model). We now unclamp the right disk of
the clutch of Fig. 1.23 and attach it rigidly to a rotor of moment of inertia J, thereby
ending up with the system of Fig. 1.24. Furthermore, we assume in this case that the
shaft is rigid, and derive the mathematical model governing the motion of the rotor
in terms of the generalized coordinate θ .

Solution: In this case, inertia is no longer neglected, but the energy-storing
capability of the shaft is. Thus, the kinetic energy is nonzero in this case, but the
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potential energy vanishes. Otherwise, the conditions remain as in Example 1.6.10.
The energy functions are, thus,

T =
1
2

Jθ̇ 2, V = 0, Π = 0, Δ =
1
2

c(θ̇ −ω)2

and hence, the Lagrange equation of the system leads to

Jθ̈ = cω(t)− cθ̇

where the generalized mass is the moment of inertia of the rotor. Moreover, in
the right-hand side we can readily identify a generalized force stemming from a
controlled-motion source, namely, the first term, the second term being a dissipative
generalized force. Now, if we let θ̇ = ωR and divide both sides of the foregoing
equation by J, we obtain

ω̇R +
c
J

ωR =
c
J

ω(t)

which is, again, a first-order ODE but, this time, in a generalized speed, rather than
in a generalized coordinate.

1.7 Hysteretic Damping

Hysteretic damping occurs in solids by virtue of internal friction, which arises,
in turn, when the solid undergoes deformations that vary with time. This kind
of damping can be accounted for by the introduction of an equivalent dashpot
coefficient whose numerical value is obtained via experiments. In these experiments,
the structural element whose hysteresis is to be accounted for by means of an
equivalent dashpot is subjected to harmonic loads that induce correspondingly
harmonic deformations. This experiment can be performed on a machine commonly
used for fatigue tests, various kinds of which are commercially available. Tests
performed on structural elements have shown that, when the element undergoes a
series of cycles of harmonic deformations, the energy dissipated by virtue of internal
friction is proportional to the square of the amplitude A of the harmonic deformation,
i.e., if we denote the dissipation of energy per cycle by Ec, then we have

Ec = αA2 (1.40a)

where α is a factor with units of stiffness, i.e., N/m, if A has units of meter; this
factor is determined experimentally.

Now, in order to find the equivalent dashpot coefficient ceq, what we do is
calculate the energy dissipated per cycle when the linear dashpot is subjected to
a harmonic motion of the same amplitude and the same frequency. We shall show in
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Chap. 2. that the energy dissipated per cycle by a mass-spring-dashpot system, with
a dashpot coefficient ceq, is

Ec = ceqπωA2 (1.40b)

in which ω is the frequency of the excitation signal. Upon equating the two
expressions for Ec in Eqs. 1.40a and b, we can readily solve for ceq, namely,

ceq =
α

πω
(1.41)

1.8 Coulomb Damping

Coulomb damping is more difficult to model than viscous damping. In fact, the
mechanism by which power is dissipated when two solids move one with respect
to the other in direct contact, i.e., without an intermediate layer of lubricant, is
extremely complex. Simple models have been proposed to account for Coulomb
friction, the simplest one assuming that the friction force is of a saturation type and
always opposes either relative motion or the trend towards it. We assume that we
have two bodies A and B undergoing planar motion, in contact at a common plane,
and their velocities, denoted by scalars vA and vB, are parallel to the plane of motion
and to the contact plane, as shown in Fig. 1.25. Note that the vector representation
of these velocities is not needed because their directions are assumed constant.
The relative velocity of A with respect to B, when the two bodies move in pure
translation, is vR≡ vA−vB. The Coulomb friction force exerted by body B onto body
A acts in the direction opposite to the relative velocity and can then be approximated
as fBA = −μNsgn(vR), where μ is the coefficient of dynamic friction, N is the
normal force exerted by one body onto the other, and sgn(·) represents the signum
function, defined as +1 or −1, depending on whether the argument is positive or
negative. If the argument is zero, the signum function is so far undefined, but this
does not bother us for, in this case, the friction force can take on any value between
−μN and +μN. For concreteness, let us assume that we have a body with the form
of a block, resting on a horizontal surface, in direct contact with the surface; besides,

a b

Fig. 1.25 Two bodies in relative motion under direct contact
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a b

-

-

Fig. 1.26 Relation between applied force and Coulomb friction force

a vertical force N presses the block against the surface. If we now apply a force F
varying from 0 to any value, whether positive or negative, as indicated in Fig. 1.26a,
then we observe that the block remains at rest until a saturation level is reached.
Beyond this level, the block starts sliding in the direction of the force. Moreover,
the force balancing the block when at rest, denoted by fC, then, accommodates to
the value of F , i.e., fC = F , until saturation is reached. Once the threshold value
at saturation has been reached, experience tells that fC remains virtually constant.
In reality, fC shows a decrease as the relative velocity of the block with respect to
the surface increases. For purposes of our study, however, we will assume that this
force remains constant. We therefore assume that the relation between F and fC is
of the saturation type shown in Fig. 1.26b, i.e.,

fC = μNsat

(
F

μN

)
(1.42)

where sat(x) is the saturation function, defined as

sat(x)≡
{

x, for |x| ≤ 1;
sgn(x), for |x| ≥ 1.

(1.43)

with x being a dimensionless, unbounded real variable.
The power dissipated by the Coulomb friction force, ΠC, with the definitions of

Fig. 1.25, is then readily calculated as

ΠC =− fBAvR =−μN|vR| (1.44)

Note that, if vR is identical to the generalized speed q̇, and the power ΠC is defined
as the associated Coulomb dissipation function, then the friction force fBA can be
calculated as the partial derivative of ΠC with respect to q̇, for we have, for any real
number x,

∂ |x|
∂x

= sgn(x) (1.45)
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a b

Fig. 1.27 Cam-follower mechanism with Coulomb friction

In this case the dissipation function is just the negative of the dissipated power, i.e.,

Δ = μN|vR|

Example 1.8.1 (Coulomb Friction Cum Geometric Nonlinearity). Illustrated in
Fig. 1.27a is a cam plate with a flat face follower. The cam is an eccentric circular
plate with radius a and center C that rotates at an angular speed ψ̇ about point O a
distance e from C. In the absence of lubricant, a Coulomb friction force, proportional
to the normal force N, is developed at the contact point, the friction coefficient
being μ . Moreover, angle ψ denotes the orientation of a line fixed to the cam with
respect to a line fixed to the frame. Derive an expression for the generalized friction
force thus developed, while using angle ψ as the generalized coordinate.

Solution: If the cam plate rotates ccw, the friction force fC is directed to the right, as
shown in Fig. 1.27b; otherwise, fC is directed to the left. In any event, the magnitude
of the force is μN; hence, the friction force is

fC =−μNsgn(vR)

where vR is the relative velocity of the cam plate with respect to the follower F at
the contact point K in the direction of fC. As such, this quantity can be positive or
negative. We will designate vR as positive when it produces a friction force onto the
cam that is directed to the right, i.e., vR is positive when it points to the left.

We now determine vR. To this end, let vKC and vKF denote the vector velocities
of the contact point K as belonging to the cam and the follower, respectively.
Moreover, the relative-velocity vector vR of point KC of the cam with respect to
point KF of the follower is given by

vR ≡ vKC− vKF

vR being the signed magnitude of vR, which is positive when vR points to the left.
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a b

Fig. 1.28 Velocity relations of the cam-follower mechanism

From Fig. 1.28a, it is apparent that the magnitude of vKC is rψ̇ , with r defined
as the distance from O to K. This distance can be determined from the same figure,
of course, by the ‘cosine law’, but, as we will show presently, we will not need it.
Moreover, we assume that there is neither separation nor penetration between cam
plate and follower, the relative velocity vR then having a zero component in the
direction of the common normal. The velocity triangle thus resulting is shown in
Fig. 1.28b. From this triangle, then,

vR = r(cosα)ψ̇

where r cosα is readily found from Fig. 1.28a as

r cosα = a+ esinψ

Hence,

vR = (a+ esinψ)ψ̇

Therefore,

fC =−μNsgn [(a+ esinψ)ψ̇ ] =−μNsgn(ψ̇)

where the factor (a+ esinψ) has been deleted from the signum function because
it is positive-definite, i.e., it is positive for any value of ψ , which is apparent from
Fig. 1.27.

Now, the power dissipated by fC is simply ΠC = fCvR and, if we recall the
expressions of fC and vR, then,

ΠC =−μN(a+ esinψ)[sgn(ψ̇)]ψ̇

However, for any real number x,

[sgn(x)]x = |x|
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Fig. 1.29 Cam-follower mechanism with Coulomb friction

and so,

ΠC =−μN(a+ esinψ)|ψ̇ |
Moreover, if we recall relation (1.45), then

∂ΠC

∂ψ̇
=−μN(a+ esinψ)sgn(ψ̇)

This means that, in this case, the power dissipated is simply the negative of the
dissipation function Δ. Thus, if we denote by φC the generalized Coulomb force
associated with the generalized coordinate ψ , we have

φC =− ∂Δ
∂ψ̇
≡ ∂ΠC

∂ψ̇
=−μN(a+ esinψ)sgn(ψ̇)

Example 1.8.2 (The Governing Equations of a Motor-cam Transmission). Now,
assume that the cam mechanism of Fig. 1.27a is driven by a motor that delivers
a controlled motion θ (t) at the left end of its elastic shaft of stiffness k, as shown in
Fig. 1.29, the cam plate having a moment of inertia with respect to its axis of rotation
JO. Under the assumption that a constant load N acts on the follower, which has a
negligible mass, and that contact between cam and follower is direct, i.e., without
any intermediate lubricant, derive the mathematical model of the shaft-cam-follower
system.
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Solution: While the kinematics of this system is quite simple, we have to start by
establishing any relations of this kind that we may need. As a matter of fact, all we
need here is s(ψ), which was derived in Example 1.8.1. For quick reference, we
reproduce this relation below, accompanied by an expression for ṡ in terms of ψ̇ :

s(ψ) = a+ esinψ , ṡ = eψ̇ cosψ

It is now a trivial matter to derive the Lagrangian of the system, namely,

L≡ T −V =
1
2

JOψ̇2− 1
2

k(ψ−θ )2

Moreover, the power supplied to the system from force-controlled sources is simply

Π =−Nṡ =−Neψ̇ cosψ

where the minus sign arises from the opposite directions of ṡ—which is upwards—
and N—which is downwards. The dissipation function, in turn, was derived in
Example 1.8.1, and is here repeated for quick reference:

Δ = μN(a+ esinψ)|ψ̇ |

After performing all differentiations involved, the governing equation turns out to be

JOψ̈ =−kψ + kθ −Necosψ− μN(a+ esinψ)sgn(ψ̇)

In this model, we can readily identify JO as the generalized mass of the system,
while h = 0. Furthermore, φp(ψ) = −kψ ; φm(t) = kθ (t); φ f (ψ , ψ̇) = −Necosψ ;
and φd(ψ , ψ̇) = −μN(a+ esinψ)sgn(ψ̇). It should be pointed out that the sign of
the φ f term is alternating; this term becomes positive whenever 90◦ ≤ ψ ≤ 270◦.
As such, this term acts alternately as a source and as a sink of energy. Therefore,
the same term cannot stem from a dissipation function, which is invariably a sink of
energy; it is accounted for in the power supplied to the system, and hence, when this
power is negative, the term becomes one of power extracted from the system, and the
load is said to be backward-driven; otherwise, the load is said to be forward-driven.

1.9 Equilibrium States of Mechanical Systems

Henceforth, a mechanical system will be said to be in an equilibrium state if both
q̇ = 0 and q̈ = 0. This condition implies that, at equilibrium, q attains a constant
value qE .
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Now, given the form of h(q, q̇), as displayed in Eq. 1.38a, it is apparent that,
at equilibrium, h vanishes. Since the first term of Eq. 1.39a also vanishes at
equilibrium, we derive the equilibrium equation in the form

φ(qE ,0) = 0 (1.46)

Usually, qE is not known, its value being found from the roots of the above equation.
Moreover, Eq. 1.46 is nonlinear, and hence, it may admit a solution or none. If

it does admit a solution, usually this is not unique, which means that, in general,
multiple equilibrium states are possible. Additionally, nonlinear equations admit
closed-form solutions only occasionally. In general, iterative numerical methods are
needed to find the equilibrium states, but, in many engineering applications, rough
estimates of these roots suffice, which can, moreover, be obtained by inspection of
a plot.

Example 1.9.1 (Equilibrium Analysis of the Overhead Crane). Find the equilibrium
configuration(s) of the system introduced in Example 1.6.5 under the condition that
the cart is driven with a constant acceleration ü = a.

Solution: We first set ü = a, θ̈ = 0 and θ̇ = 0 in the governing equation derived in
that example, thereby obtaining the equilibrium equation

−1
2

mgl sinθE +
1
2

ml(cosθE)a = 0

which can be written as

tanθE =
a
g

and hence,

θE = tan−1
(

a
g

)

which is a double-valued relation. The system, therefore, admits two equilibrium
configurations, one with the rod above and one with the rod below the pin. These
configurations will be referred to as the rod-up and rod-down configurations, the two
θ values differing by 180◦. The foregoing relation among the constant horizontal
acceleration a, the vertical gravity acceleration g and the equilibrium angle θE is
best illustrated in Fig. 1.30, where the force triangle, composed of the pin force fP,
the weight of the rod mg, and the inertia force−ma, is sketched. Note that the same
force triangle holds for the two equilibrium configurations.

Moreover, from Fig. 1.30, it is apparent that

cosθE =
g

√
a2 + g2

, sinθE =
a

√
a2 + g2

thereby completing the equilibrium analysis of the crane.
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Fig. 1.30 Force triangle of
rod of overhead crane in
equilibrium

Example 1.9.2 (Equilibrium States of the Actuator Mechanism). Determine all the
equilibrium states of the actuator mechanism introduced in Example 1.6.8. To this
end, assume that

mg
ka

= 2−
√

2 and F(t) = 0

Solution: Upon setting θ = θE , θ̇ = 0, and θ̈ = 0 in the mathematical model derived
in Example 1.6.8, the equilibrium equation is obtained as

[
(2ka−mg)sin

(
θE

2

)
− ka

]
cos

(
θE

2

)
= 0

If we now introduce the given relation between the gravitational and the elastic
forces into the above equation, this simplifies to

[√
2sin

(
θE

2

)
− 1

]
cos

(
θE

2

)
= 0

or, even further, [

sin

(
θE

2

)
−
√

2
2

]

cos

(
θE

2

)
= 0

which vanishes under any of the conditions given below:

sin
θE

2
=

√
2

2
or cos

θE

2
= 0
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Fig. 1.31 The three
equilibrium configurations
of the actuator mechanism

a

b

c

That is, equilibrium is reached whenever θE attains any of the three values given
below:

θE = 90◦, 180◦, 270◦

The foregoing values yield the equilibrium configurations of Fig. 1.31.

Example 1.9.3 (Equilibrium Analysis of the Eccentric Plate). Here, we want to
determine the equilibrium configuration(s) of the eccentric plate introduced in
Example 1.6.7.

Solution: The equilibrium equation is obtained by setting θ = θE , ψ = ψE , ψ̇ = 0,
and ψ̈ = 0 in the governing equation, which leaves us only with

φp(ψE)≡−mg[asinθE + d sinψE ] = 0

or
asinθE + d sinψE = 0

The geometric interpretation of the above equation is straightforward if we look at
Fig. 1.20. What this equation states is that the c.o.m of the plate must lie on the
vertical of the center of the pin, a rather plausible result. This condition is thus
fulfilled by

ψE = 0,π

If ψE = 0, then θE = 0 from the geometric relation between θ and ψ , and the
equilibrium condition is satisfied; however, if ψE = π , then θE = [a/(a−b)]π from
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a b

Fig. 1.32 The equilibrium configurations of the eccentric plate for ψE = π , with (a) b = a/2 and
(b) b = 2a/3

the geometric relation between the angles mentioned above, but the equilibrium
condition is not necessarily satisfied in this case. Indeed, upon substitution of the
last two values into the equilibrium equation, we obtain

asin

(
a

a− b
π
)
= 0

which is verified if and only if the argument of the sine function is an integer
multiple of π , i.e., if

a
a− b

= N

where N is an integer. Hence, if ψE = π is an equilibrium position at all, we must
have

b =
N− 1

N
a

Therefore, unless b is given the above value for some integer N, an equilibrium
position with the center of mass C above the center of the pin is not possible. This
type of equilibrium configurations, for N = 2 and N = 3, or b = a/2 and b = 2a/3,
respectively, is shown in Figs. 1.32a and b.

Apparently, the configuration of Fig. 1.32b is physically impossible because,
although the center of mass lies on the vertical of the center of the pin, the pin
cannot exert a pull on the plate.

Moreover, if we substitute θE = 2ψE , for a value of b = a/2 in the equilibrium
equation, and expand sin(2ψE), we obtain, after rearranging of terms,

(2acosψE + d)sinψE = 0
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a b c

Fig. 1.33 Trajectory of the center of mass for b = a/2 and d = 3a/2 and configurations at which
(a) ψE = 180◦; (b) ψE = 138.59◦; and (c) ψE = 221.41◦ (or −138.59◦)

which is satisfied not only for ψE = 0, but also for

ψE = arccos

(
− d

2a

)
, if d ≤ 2a

An equilibrium position other than ψE = 0 or π is obviously outside of the question,
although it is apparently possible in light of the above equilibrium equation. The
apparent paradox can be resolved if we trace the path of the center of mass, as shown
in Fig. 1.33a, for b = a/2 and d = (3/2)a. It is apparent that the two configurations
stemming from cosψE = −3/4, namely, ψE1 = 138.59◦ and ψE2 = 221.41◦, are
symmetric with respect to the vertical. Moreover, θE1 = 277.18◦ or −82.82◦, and
θE2 = 442.82◦ or 82.82◦. Therefore, the two above equilibrium configurations are
symmetric with respect to the vertical, which is plausible, for one equilibrium
configuration should be the mirror-image of the other with respect to the vertical
of the center of the pin. From the path of C it is apparent that the two configurations
satisfying the equilibrium equation at values other than ψE = 0 or π correspond
to maxima of the potential energy of the plate, but they are not equilibrium
configurations, for the center of mass of the plate in these configurations does not
respect the equilibrium condition of lying on the vertical of the center of the pin.
Shown in Figs. 1.33b and c are the configurations at which the potential energy of
the system at hand attains local maxima. Note that the configuration of the plate for
ψE = π in this example is one of a minimum potential energy and is an equilibrium
configuration.

Example 1.9.4 (A System with a Time-varying Equilibrium State). Derive the equi-
librium states of the rack-and-pinion transmission of Fig. 1.3.

Solution: Let us assume that the moment of inertia of the pinion about its center of
mass is I, and that its mass is m, its radius being a. Thus, the velocity of its c.o.m is
aθ̇ , and hence, the kinetic energy becomes

T =
1
2

ma2θ̇ 2 +
1
2

Iθ̇ 2 =
1
2
(I +ma2)θ̇ 2
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Moreover, no changes in the potential energy are apparent, since the center of mass
of the pinion remains at the same level, and hence, we can set V = 0, which leads to
L = T in this case. Now the Lagrange equation of the system is, simply,

(I+ma2)θ̈ = 0

and hence, the equilibrium equation, obtained when we set θ̈ = 0, becomes an
identity, namely, 0 = 0. This means that the system is in equilibrium under any
constant angular velocity of the pinion, which is sometimes referred to as an
indifferent equilibrium configuration.

Example 1.9.5 (One More System with a Time-varying Equilibrium State). We
study here the epicyclic gear train of Fig. 1.16b, which, we assume, has all its axes
vertical, and hence, gravity does not come into the picture. Under these conditions,
and with the outer gear fixed to an inertial base, we will determine the equilibrium
states of this system. Furthermore, we assume that the arm A is a uniform, slender
rod of length a− b and mass m, while the planet P is a uniform disk of mass M and
radius b.

Solution: First, we need the Lagrange equations of the system, which requires, in
the first place, the kinetic energy of all its moving parts. In Example 1.6.3, we found
the angular velocity ωP of the planet P, which turned out to be

ωP =−a− b
b

θ̇

The kinetic energy is given by

T =
1
2

1
3

m(a− b)2ω2
A +

1
2

M(a− b)2θ̇ 2 +
1
2

1
2

Mb2ω2
P

Upon substitution of the above expression for ωP in the foregoing formula and the
angular velocity θ̇ of the arm, and performing some simplifications, we have

T =
1

12
(2m+ 9M)(a− b)2θ̇ 2

Moreover, no source of potential energy is apparently present in the system, and
hence, we have

V = 0

the Lagrange equation of the system thus reducing to

1
6
(2m+ 9M)(a− b)2θ̈ = 0

Therefore, the equilibrium equation reduces, again, to the identity 0 = 0, the system
thus admitting equilibrium states wherever θ̇E = const., not necessarily zero.
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What we can see as a common feature in the last two examples is that their
Lagrangians are independent of the generalized coordinate. Furthermore, both are
conservative, autonomous systems, i.e., neither subject to dissipation nor to driving
forces or motions. As a matter of fact, any conservative, autonomous, single-dof
system whose Lagrangian is independent of the generalized coordinate admits time-
varying equilibrium states.

1.10 Linearization About Equilibrium States. Stability

Linear systems do not exist in real life. They are abstractions that scientists
and engineers have created in order to derive models amenable to analysis. In
fact, nonlinear systems, in general, exhibit an extremely complex and, many a
time, unexpected behavior. On the contrary, linear systems, particularly those with
constant coefficients, also known as linear time-invariant or stationary systems,
which are the focus of this book, exhibit a simple pattern of behavior, and hence, are
easier to analyze than their nonlinear counterparts. Most sources of linear systems
are nonlinear systems that are linearized about their equilibrium states.

If a system is in an equilibrium state and is perturbed slightly, then, the system
may respond in one of three possible ways:

• The system returns eventually to its equilibrium state
• The system never returns to its equilibrium state, from which it wanders farther

and farther
• The system neither returns to its equilibrium state nor escapes from it; rather, the

system oscillates about the equilibrium state

In the first case, the equilibrium state is said to be stable or, more precisely,
asymptotically stable; in the second case, the equilibrium state is unstable or
asymptotically unstable. The third case is a borderline case between the two
foregoing cases. This case, then, leads to what is known as a marginally stable
equilibrium state.

In studying the stability of a system, we can gain insight into this issue by
resorting to energy arguments, as we do below. The energy of the system under
study may (1) be dissipated into unrecoverable heat, as predicted by the Second
Law of Thermodynamics, (2) grow due to a source, or even (3) remain constant.
In the first case, we have a stable equilibrium state; in the second case, we have
an unstable equilibrium state, while, in the third case, we have a marginally stable
equilibrium state. Note that, in the third case, the energy remains constant. Thus, the
third case is conservative, for it preserves its energy at a constant value.

We analyze below a single-dof system governed by the equation

m(q)q̈+ h(q, q̇) = φ(q, q̇, t) (1.47)
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Thus, we denote the value of q at its equilibrium state by qE and linearize the
system about this state, as described below. Moreover, at equilibrium, q̇ = 0.

First, we perturb slightly the equilibrium state, which we do by adding an amount
δq to qE , this perturbation thus inducing a perturbation δ q̇ of q̇, and δ q̈ of q̈. We
then have

q≡ qE + δq, q̇≡ δ q̇, q̈≡ δ q̈ (1.48)

where δq and its time-derivatives are all functions of time.
It is noteworthy that the nonlinear functions h and φ will have to be evaluated

at their perturbed values. A direct evaluation of these functions is possible only in
special cases, which nevertheless occur frequently in applications. These cases are
those in which the said functions are either trigonometric, hyperbolic or polynomial,
for which explicit formulas for the evaluation of sums appearing in their arguments
are readily available. Otherwise, one can resort to a series expansion. In any
instance, we recall the assumption that the perturbation is small, and hence, the
functions involved are readily calculated via their first-order approximations. Thus,
if a series expansion is introduced, we have, up to first-order terms15

m(qE + δq) ≈ mE +m′(qE)δq (1.49a)

h(qE + δq,δ q̇) ≈ h(qE ,0)+
∂h
∂q

∣
∣
∣
∣
E

δq+
∂h
∂ q̇

∣
∣
∣
∣
E

δ q̇ (1.49b)

φ(qE + δq,δ q̇, t) ≈ φ(qE ,0, t)+
∂φ
∂q

∣
∣∣
∣
E

δq+
∂φ
∂ q̇

∣
∣∣
∣
E

δ q̇+ δφ(t) (1.49c)

where the subscripted vertical bar indicates that the quantity to its left is evaluated
at equilibrium, i.e., at the state xE = [qE ,0]T , mE and φE denoting functions m
and φ evaluated at the equilibrium state; moreover, we have taken into account
that h vanishes at equilibrium, by virtue of Eq. 1.38a. Further, φ also vanishes at
equilibrium, by virtue of the equilibrium Eq. 1.46, and so,

mE ≡ m(qE) (1.50)

The same applies to the partial derivatives of m, h and φ with respect to q and q̇ with
the symbol |E .

An equilibrium configuration is understood throughout the book as a configura-
tion of the system governed by q = qE , at which we have assumed that q̇ = 0.

In evaluating the partial derivatives of h with respect to q and q̇ at equilibrium,
we have, from Eq. 1.38a,

∂h
∂q

∣
∣
∣
∣
E
=

1
2

m′′(q)q̇2

∣
∣
∣
∣
E
= 0,

∂h
∂ q̇

∣
∣
∣
∣
E
= m′(q)q̇

∣
∣
E = 0

15The expressions (1.49a–c) are said to be “first-order” because all variations δ q and δ q̇ appear
linearly therein.
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Therefore,
h(qE + δq,δ q̇) = 0 (1.51)

Upon substituting Eqs.1.49a and c, along with Eq. 1.51, into Eq. 1.47, we have

(
mE +m′(qE)δq

)
δ q̈ =

∂φ
∂q

∣
∣∣
∣
E

δq+
∂φ
∂ q̇

∣
∣∣
∣
E

δ q̇+ δφ(t) (1.52)

Under the small-perturbation assumption, the quadratic term involving the
product δqδ q̈ in the left-hand side of the above equation is too small with respect
to the linear terms, and hence, is neglected. The perturbed equation of motion thus
reduces to

mEδ q̈+ cEδ q̇+ kEδq = δφ(t) (1.53a)

with the definitions below:

cE ≡− ∂φ
∂ q̇

∣
∣∣
∣
E
, kE ≡− ∂φ

∂q

∣
∣∣
∣
E

(1.53b)

From the foregoing discussion, mE is a mass and is, hence, positive. However,
nothing in the above derivations prevents the other two coefficients from taking any
real values, including negative ones. If they are both positive, then they represent
the equivalent damping and the equivalent stiffness of a dashpot and a spring,
respectively; otherwise, they behave like active elements that introduce energy
into the system, which thus gives rise to instabilities. We do not elaborate on this
issue here, but rather limit ourselves to asymptotically stable and marginally stable
systems.

The system of Eq. 1.53a is asymptotically stable if both kE and cE are positive. If
kE = 0, then we can still have asymptotic stability, provided that cE > 0. However,
if cE = 0 and kE > 0, then all we have is marginal stability. All other cases are
asymptotically unstable. In summary, we have the conditions below:

Given the linearized equation of a one-dof system,

mEδ q̈+ cEδ q̇+ kEδq = δφ(t) (1.54)

where mE > 0, the system

• is asymptotically stable if and only if cE is positive and kE is non-negative;
• is marginally stable if and only if cE = 0 and kE > 0;
• is asymptotically unstable otherwise.

We assume now that none of the coefficients of Eq. 1.54 is negative. Moreover,
since mE is positive, we can divide all terms of that equation by mE , thereby
obtaining

δ q̈+ 2ζωnδ q̇+ω2
n δq = δ f (t) (1.55)
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Fig. 1.34 A linear
mass-spring-dashpot system

which is the normal form of the second-order ODE governing the motion of the
linear system under study, with ωn and ζ , the natural frequency and the damping
ratio of the system, respectively, defined as

ωn ≡
√

kE

mE
, ζ ≡ cE

2mEωn
=

cE

2
√

kEmE
(1.56a)

and

δ f (t)≡ δφ(t)
mE

(1.56b)

For brevity, we shall write Eqs. 1.53a and 1.54 in a simpler form, i.e., by dropping
the subscript E and the δ symbol, whenever the equilibrium configuration is either
self-understood or immaterial, namely,

mq̈+ cq̇+ kq = φ(t) (1.57)

or, in normal form, as
q̈+ 2ζωnq̇+ω2

n q = f (t) (1.58a)

with ωn and ζ defined now as

ωn ≡
√

k
m
, ζ ≡ c

2mωn
(1.58b)

and, obviously, f (t) defined as

f (t)≡ φ(t)
m

(1.58c)

The mathematical model appearing in Eq. 1.57 corresponds to the iconic model
of Fig. 1.34.

Example 1.10.1 (Stability Analysis of the Overhead Crane). Determine the stability
of the equilibrium configurations of the overhead crane introduced in Example 1.6.5.
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Solution: In order to undertake the stability analysis of the equilibrium configu-
rations of the system under study, we make the substitutions given below in the
governing equation derived in Example 1.6.5, with ü = a = const and c = 0 (neglect
dissipation). We have

θ = θE + δθ , θ̇ = δ θ̇ , θ̈ = δ θ̈

which leads to

δ θ̈ +
3g
2l

sin(θE + δθ ) =
3a
2l

cos(θE + δθ )

We now invoke the assumption that δθ is “small”, and hence, cosδθ → 1 and
sinδθ → δθ , the linearized model thus taking the form

δ θ̈ +
3
2l

(gcosθE + asinθE)δθ = 0

Finally, we recall the expressions derived for cosθE and sin θE in Example 1.9.1
above, thereby obtaining

δ θ̈ ± 3
2l

√
a2 + g2δθ = 0

We thus have that the equilibrium configuration at which angle θE lies between
0◦ and 90◦, i.e., the rod-down configuration, is marginally stable. However, the
equilibrium configuration for which θE lies between 180◦ and 270◦, i.e., the rod-up
configuration, is unstable. Note that the natural frequency of the marginally stable
configuration is readily derived from the above linearized equation as

ωn =

√
3
√

a2 + g2

2l

which is reminiscent of the natural frequency of a simple pendulum of length l,√
g/l.

Example 1.10.2 (Stability Analysis of the Actuator Mechanism). Decide whether
each of the equilibrium configurations of Fig. 1.31, of the actuator mechanism,
found in Example 1.9.2 is stable or unstable, when the system is unactuated—i.e.,
when F(t) = 0. For the stable cases, whether stability is asymptotic or marginal,
and find, in each case, the equivalent natural frequency and, if applicable, the
damping ratio.

Solution: What we have to do is linearize the governing equation about each
equilibrium configuration, with F(t) = 0. To do this, we substitute the values below
into the Lagrange equation of the system at hand:

θ = θE + δθ , θ̇ = δ θ̇ + δθ , θ̈ = δ θ̈ , F(t) = 0
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The equation of motion thus becomes

δ θ̈ =−3
√

2
k
m

[

sin

(
θE + δθ

2

)
−
√

2
2

]

cos

(
θE + δθ

2

)
− 3c

ma
δ θ̇ cos

(
θE + δθ

2

)

We analyze below each of the three equilibrium configurations found in
Example 1.9.2:

(a) θE = π/2: In this case,

sin

(
θE + δθ

2

)
= sin

(
π
4
+

δθ
2

)
=

√
2

2

(
1+

δθ
2

)

cos

(
θE + δθ

2

)
= cos

(
π
4
+

δθ
2

)
=

√
2

2

(
1− δθ

2

)

the linearized equation about the equilibrium configuration considered here thus
becoming, after simplifications,

δ θ̈ =−3
√

2
2

k
m

δθ
2

(
1− δθ

2

)
− 3
√

2
2

c
ma

δ θ̇
(

1− δθ
2

)

Upon dropping the quadratic terms of the above expression, and rearranging the
expression thus resulting in normal form, we obtain

δ θ̈ +
3
√

2
2

c
ma

δ θ̇ +
3
√

2
2

k
m

δθ
2

= 0

Now it is apparent that all coefficients of the above equation are positive,
and hence, the system equilibrium state is asymptotically stable. The natural
frequency and the damping ratio associated with the linearized system are thus

ωn =

√
3
√

2
2

k
m
, ζ =

3c
4a

√
2
√

2
3km

which are reminiscent of the natural frequency and the damping ratio of a mass-
spring-dashpot system,

√
k/m and c/(2

√
km), respectively.

(b) θE = π : now we have

sin

(
θE + δθ

2

)
= sin

(
π
2
+

δ
2

)
= 1, cos

(
π
2
+

δ
2

)
=−δθ

2
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Upon substitution of the foregoing values into the Lagrange equation, we obtain,
after simplification,

δ θ̈ =−3
√

2
k
m

(
1− δθ

2

)(
−δθ

2

)
− 3c

ma
δ θ̇
(
−δθ

2

)

Next, we delete the quadratic terms from the above equation, and rewrite it in
normal form, thus obtaining

δ θ̈ − 3
k
m

2
√

2− 2
2

δθ
2

= 0

whence it is apparent that the coefficient of δθ is negative, the equilibrium
configuration at hand thus being unstable.

(c) θE = 3π/2: this configuration is the mirror-image of the first one, θE = π/2,
and hence, is bound to have the same properties as that one. Without further
analysis,16 we can conclude that this configuration is asymptotically stable, with
its natural frequency and damping ratio identical to those found for its mirror-
image in the first case analyzed above.

Example 1.10.3 (Stability Analysis of the Eccentric Plate). Analyze the equilibrium
configurations found in Example 1.9.3 for the eccentric plate, find its natural
frequency and, if applicable, the damping ratio of the stable configuration(s).

Solution: In Example 1.9.3 we found that the system at hand admits general and
special equilibrium configurations. The general equilibrium configuration is ψE =

θE = 0. We thus set

ψ = δψ , θ = δθ =
a

a− b
δψ , ψ̇ = δψ̇ , ψ̈ = δψ̈

in the Lagrange equation derived in Example 1.6.7:

{IC +m[a2 + d2 + 2ad cos(δθ − δψ)]δψ̈−mad
b

a− b
sin(δθ − δψ)δψ̇2

=−mg(asinδθ + d sinδψ)

16One equilibrium configuration can be obtained from the other by looking at the latter with the
aid of a mirror. Mirror-imaging, of course, shouldn’t affect the intrinsic properties of the system.
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where

cos(δθ − δψ) = cosδθ cosδψ + sinδθ sinδψ ≈ 1

sin(δθ − δψ) ≈ δθ − δψ =
b

a− b
δψ

sinδθ ≈ δθ =
a

a− b
δψ

Therefore, upon dropping the higher-order terms from the perturbed governing
equation and performing the foregoing substitutions, we have

[IC +m(a+ d)2]δψ̈ +mg

(
a2

a− b
+ d

)
δψ = 0

and, since a > b, the two above coefficients are positive, with the coefficient of δψ̇
vanishing, the equilibrium configuration thus being marginally stable, its natural
frequency being

ωn =

√
mg[a2 +(a− b)d]

(a− b)[IC +m(a+ d)2]

Furthermore, we analyze below the special equilibrium configurations. For
concreteness, let us analyze the configuration of Fig. 1.32a, for b = a/2, which thus
yields the special equilibrium configuration

ψE = π , θE = 2ψE = 2π or 0

upon linearization about this configuration, we have

ψ = π + δψ , θ = δθ = 2δψ , θ −ψ = δψ−π , ψ̇ = δψ̇ , ψ̈ = δψ̈

and hence, the perturbed governing equation takes the form

{IC +m[a2 + d2 + 2ad cos(δψ−π)]}δψ̈−mad sin(δψ−π)δψ̇2

+mg[asin2δψ + d sin(π + δψ)] = 0

or
[IC +m(a− d)2]δψ̈ +mg(2a− d)δψ = 0

whence it is apparent that the equilibrium configuration under study is stable
as long as d < 2a. Let dC ≡ 2a be the critical value of d, beyond which the
equilibrium configuration becomes unstable. Here we have a case of an equilibrium
configuration with the center of mass above the support, which is nevertheless
stable. In order to gain insight into the nature of the equilibrium configuration at
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a b c

Fig. 1.35 The equilibrium configuration ψE = π , θE = 0, for (a) d < dC , (b) d = dC , and (c)
d > dC

hand, for the three cases (a) d < dC, (b) d = dC, and (c) d > dC, we display a slightly
perturbed17 configuration from equilibrium for each of these cases in Fig. 1.35a–c.

It is apparent from Fig. 1.35 that the moment of the normal force N acting on
the eccentric plate with respect to O is zero. Now, when d < dC, the moments of
the two remaining forces, the friction force μN and the weight mg, are opposite to
each other, with μN having a larger moment arm, thereby allowing for stability. On
the contrary, in the case d > dC, the moment arm of μN is smaller than that of the
weight mg, which thus leads to instability.

Finally, if d < dC, the natural frequency of the plate for small-amplitude
oscillations around the configurations ψE = 0 and ψE = π are

ωn =

√
mg(2a+ d)

IC +m(a+ d)2 , for ψE = 0

and

ωn =

√
mg(2a− d)

IC +m(a− d)2 , for ψE = π

Example 1.10.4 (A Mass-spring-dashpot System in a Gravity Field). Illustrated in
Fig. 1.36 is a mass-spring-dashpot system suspended from a rigid ceiling. For this
system, discuss the difference in the models resulting when the displacement of the
mass is measured (a) from the configuration where the spring is unloaded and (b)
from the static equilibrium configuration.

17For ease of visualization, δ θ and δ ψ are exaggerated in the figure, but they are both assumed to
be “small”.
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a b c d

Fig. 1.36 Mass-spring-dashpot system in a gravity field

Solution: In the foregoing examples it became apparent that, when linearizing a
system at an equilibrium state, constant terms drop from the linearized equation by
virtue of the equilibrium equation. As a matter of fact, the same happens with linear
systems acted upon by constant forces, e.g., when subjected to a gravity field.

In Fig. 1.36a the system is displayed with the spring unloaded, while the same
system is shown in its static equilibrium position in Fig. 1.36b, this position being
that at which the spring force balances the weight of the mass, and hence,

kΔs = mg

Apparently, Δs is the corresponding deflection of the spring. Further, we define the
origin of the generalized coordinate x to be at the position of static equilibrium,
as illustrated in Fig. 1.36c. Now we aim to derive the equation of motion of the
system by assuming that the mass undergoes a positive displacement, as shown in
Fig. 1.36c, which thus leads to the free-body diagram of Fig. 1.36d. We see that the
only forces acting on the mass are the weight mg of the block and the upwards spring
force k(x+Δs), where x+Δs is the extension of the spring from its natural length.
Application of Newton’s equation in the vertical direction now gives

mẍ = mg− k(x+Δs)− cẋ

= mg− kΔs− kx− cẋ

Thus, the equilibrium equation derived above reduces to

mẍ+ cẋ+ kx = 0
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If, rather than measuring the displacement of the mass from equilibrium, we
measure it from the position in which the spring is unloaded, then we set up the
governing equation in terms of the new variable ξ , defined as

ξ ≡ x+Δs

whence
x = ξ −Δs, ξ̇ = ẋ, ξ̈ = ẍ

Upon substituting these expressions in the governing equation derived above, we
have

mξ̈ + cξ̇ + kξ = kΔs

or
mξ̈ + cξ̇ + kξ = mg

Note that a simple change of variable makes the difference between a homogeneous
ODE, i.e., one with zero in the right-hand side, and an ODE with a constant input.
Homogeneous ODEs are associated with autonomous systems.

1.11 Exercises

1.1. A robotic link is modeled as a slender rigid bar of length l and uniformly
distributed mass m, as shown in Fig. 1.37. The link is actuated by an electric motor
via a gear train with gear and pinion of Ng and Np teeth, respectively. Moreover,
the gear is coupled to the link by means of a massless, rigid shaft. Establish the
mathematical model of the system for a given torque τ(t) applied by the motor, in
terms of the angle of rotation ψ of the pinion, if the mounting of the shaft on its
bearings produces a linearly viscous torque of coefficient c.

Fig. 1.37 A simple model of a robotic link and its mechanical transmission
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Fig. 1.38 A disk with an
eccentric bore on a rough
surface

θ

A

B

g

Fig. 1.39 An overhead transport mechanism

1.2. With reference to the system of Fig. 1.37, assume now that the pinion is driven
with a controlled angle ψ(t), and that the shaft is linearly elastic, all other conditions
remaining as in Problem 1.1. Derive the mathematical model of the system in terms
of the generalized coordinate θ

1.3. Shown in Fig. 1.38 is a uniform disk of mass m and radius a with an eccentric
bore of radius b < a, the bore center being a distance e from the center of the disk.
While trying to place the disk in its stable equilibrium state by hand, an operator
incurs an error that we can safely assume to be small. Moreover, we can also assume
that the disk and the table surfaces are rough enough, so as to prevent any sliding.
Under these conditions, find the natural frequency of the ensuing motion in terms of
the given parameters.

1.4. Shown in Fig. 1.39 is the iconic model of an overhead mechanism used for
material handling. This mechanism is composed of a bogie that is driven under a
controlled displacement u(t), and carries three pin-joined identical links of mass m
and length l, which can be modeled as slender rigid bars of uniformly distributed
mass. The mechanism is “stiffened” by means of a transverse element that can be
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Fig. 1.40 Planetary gear
train

modeled as a combination of a spring of stiffness k and a dashpot of coefficient ct

in parallel, the spring being unloaded when θ = π/2. Moreover, the lubricant of
each pin provides linearly viscous damping of coefficient c. Under these conditions,
and taking into account the action of gravity, derive the mathematical model of the
system, with θ as generalized coordinate.

1.5. With the transverse element removed and a particular constant acceleration of
the bogie, show that the mathematical model of the system of Fig. 1.39 takes the
form

θ̈ +
12
5

c
ml2 θ̇ +

2
5

g
l
(4sinθ − 3cosθ ) = 0

where damping arises from the lubricant in the four joints. Now, using the above
model,

(a) Find the equilibrium configuration(s) of the system
(b) Find the constant acceleration of the bogie
(c) Identify the stable equilibrium configuration(s), and determine the correspond-

ing natural frequency and damping coefficient for “small” deviations from
equilibrium

1.6. Shown in Fig. 1.40 is the iconic model of a planetary gear train. The planet is
modeled as a rigid disk of radius b, mass m2 and moment of inertia J = m2b2/2 with
respect to its center of mass O2. Moreover, the planet gear is pinned to the carrier
of mass m1 at O2, while the carrier is pinned in turn to the mechanism frame at O1

and driven by a motor that supplies a torque τ(t). Furthermore, the lubricant at the
joints O1 and O2 is assumed to provide linear damping of coefficients c1 and c2,
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Fig. 1.41 Simplified model
of an automobile suspension

respectively. Finally, the planet rolls without slipping on the internal gear of radius
a+ b that is fixed to an inertial frame, with an angular velocity φ̇ .

(a) Derive the mathematical model of the system.
(b) Now, in the absence of driving torque, find all equilibrium states.
(c) Decide whether each equilibrium state is stable, unstable or marginally stable.
(d) For the stable or marginally stable state(s), find the corresponding natural

frequency and the damping ratio under small oscillations about the equilibrium
state.

1.7. Shown in Fig. 1.41 is a highly simplified iconic model of an automobile
suspension. It consists of a slender, homogeneous, rigid rod of length l and
mass m pinned to an inertial frame at O by means of a frictionless hinge.
Moreover, the end P of the rod is supported by a spring-dashpot array whose
upper end is free to move horizontally and without friction by virtue of a massless
slider S.

Under the assumption that the system is in equilibrium when θ = 0, and that,
in this state, the spring is stretched by an amount l/2, show that this configuration
is stable. Then, find the natural frequency and the damping ratio of the system for
small-amplitude oscillations around the same equilibrium configuration. �

For the systems described in Exercises 1.8–1.12:

(a) Derive the corresponding mathematical model in terms of the generalized
coordinate indicated either in the text or in the accompanying figure

(b) Derive the linearized equation for ‘small-amplitude’ oscillations about the
stable equilibrium configuration(s)

(c) Find expressions for the natural frequency and damping ratio associated with
the linearized equation
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Fig. 1.42 Multilink model of
an automobile suspension

1.8. Multilink model of an automobile suspension with a slider that translates
without friction along a horizontal guideway, as shown in Fig. 1.42. Assume that
the system overall damping is lumped in the dashpot of coefficient c, and that the
system is in equilibrium when the parallel bars of length b are in the horizontal
position, in which case y = 0. Use y as the generalized coordinate. What is the value
of y in terms of the given physical parameters when the spring is unloaded?

1.9. Repeat Problem 1.8 with θ as generalized coordinate.

1.10. The positioning mechanism of a machine tool, consisting of a disk of mass m
with center of mass at point C a distance e from O, and moment of inertia J about
O, is shown in Fig. 1.43. Moreover, the disk is coupled to the machine frame via a
viscoelastic element that is lumped as a spring in parallel with a dashpot. The disk
rolls without slipping on a horizontal surface. Use x as generalized coordinate.

1.11. Loading system consisting of a vehicle with mass M and prescribed motion
x(t), together with a mass m rolling on wheels that provide linearly viscous damping
cw (Ns/m), and pulled by an inextensible cable of negligible mass, as shown in
Fig. 1.44. The spring of stiffness k is intended to account for the elasticity of the
physical cable. Assume that the dissipation provided by the lubricant at the pulley of
radius r, which has negligible inertia, is also linear, of coefficient cp (Nms). Lump all
viscous damping in one single dissipation function. Derive the mathematical model
of the system under the assumption that u = 0 when x = r, and that lE is the length
of the spring when the system is in equilibrium.
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Fig. 1.43 Iconic model of the positioning mechanism of a machine tool

Fig. 1.44 A loading system

1.12. The balance mechanisms of Figs. 1.45a and b, consisting of uniform, slender
bars of masses and lengths indicated in the figures. Assume linearly viscous
damping of coefficient c in every joint.

1.13. An eccentric circular cam of radius a having moment of inertia JO about point
O rotates about point O a distance e from the center C, as indicated in Fig. 1.46. The
follower is of mass m, while the cam, which can be safely modeled as a circular disk
of uniform density, is driven by a motor via a rigid shaft. Under the assumptions that
(1) the motor supplies a controlled torque τ(t) to the shaft and that (2) the interface
between cam and follower is lubricated, so that Coulomb friction is neglected, but
the lubricant provides a linearly viscous force, derive

(a) An expression for the mass of the cam, mC, in terms of the data, and
(b) The equation of motion of the system, with θ as generalized coordinate.
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a b

Fig. 1.45 Balance mechanisms

Fig. 1.46 Eccentric cam mechanism

1.14. Now, replace the rigid shaft of the system of Fig. 1.20 by an elastic shaft of
torsional stiffness k and drive the shaft with a controlled angle ψ(t). If all other
conditions remain the same, derive the underlying mathematical model.

1.15. With reference to Fig. 1.47, which represents the iconic model of a machine-
tool positioning mechanism, assume that the disk, of mass m and moment of inertia
J about its c.o.m, is statically balanced, so that its centroid O coincides with its
center of mass. Moreover, the disk represents a pinion that rolls over a horizontal
rack without slipping, while the slider at the right end of the linear spring-dashpot
array is free to move along a vertical, smooth guideway. If it is known that the spring
is unloaded when θ = 0,

(a) Set up the mathematical model of the system with θ as generalized coordinate;
then,
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Fig. 1.47 Iconic model of a machine-tool positioning mechanism

Fig. 1.48 A deploying
mechanism

(b) Show that a possible equilibrium configuration of the system is θ = 0. Are there
other equilibrium configurations? Hint: the line y = −mx, for m > 0 intersects
the curve y = sin(x) at other point than x = 0 if and only if m≤ 1.

(c) Decide whether the equilibrium configuration θ = 0 is stable; if it is, find the
damping ratio and the natural frequency of the system for small-amplitude
motions.

1.16. The iconic model of Fig. 1.48 represents a deploying mechanism used in
aerospace applications. Under the assumption that the spring is unloaded when
y = a,

(a) Derive the mathematical model of the system
(b) Find the value of y at equilibrium and
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Fig. 1.49 An aileron
mechanism

(c) Find expressions for the natural frequency and damping ratio of the model, for
oscillations around the equilibrium configuration

1.17. The iconic model of Fig. 1.49 represents an aircraft aileron mechanism. The
model consists of a rigid, slender, uniform bar of length � and mass m, pivoted at A
to an inertial frame. The bar is supported by a spring-dashpot parallel array pinned
at B and C. The elasticity and the damping of the system are lumped in the spring
of stiffness k and the dashpot of coefficient c.

Under the assumption that the spring is unloaded when the bar is horizontal,

(a) Derive the mathematical model of the system
(b) Find the numerical value of the ratio k�/mg required for the system to be in

equilibrium when θ = π/4
(c) Find expressions for the natural frequency and damping ratio of the model, for

“small-amplitude” oscillations around the equilibrium configuration described
above

(d) Find the value of c/m in terms of g/l so that the “small-amplitude” model will
be critically-damped, i.e., so that ζ =

√
2/2
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Chapter 2
Time Response of First- and Second-order
Dynamical Systems

Science seems to have uncovered a set of laws that,
within the limits set by the uncertainty principle,
tell us how the universe will develop with time,
if we know its state at any one time.

Hawking, S.W., 1988, A Brief History of Time,
Bantam Books, Toronto-New York-London-Sydney-Auckland.

2.1 Preamble

How physical systems, e.g., aircraft, respond to a given input, such as a gust wind,
under given initial conditions, like cruising altitude and cruising speed, is known
as the time response of the system. Here, we have two major items that come into
the picture when determining the time response, namely, the mathematical model
of the system and the history of the input. The mathematical model, as studied in
Chap. 1, is given as an ODE in the generalized coordinate of the system. Moreover,
this equation is usually nonlinear, and hence, rather cumbersome to handle with the
purpose of predicting how the system will respond under given initial conditions
and a given input. However, if we first find the equilibrium states of the system, e.g.,
the altitude, the aircraft angle of attack, and cruising speed in our example above,
and then linearize the model about this equilibrium state, then we can readily obtain
the information sought, as described here.

We will thus start by assuming that the system model at hand has been linearized
about an equilibrium state. That is, we will be concerned mainly with the time
response of linear, time-invariant (LTI) dynamical systems, also termed linear time-
invariant systems (LTIS), when subjected to arbitrary initial conditions and inputs.
This class of systems is also known as stationary systems and systems with constant
coefficients, and so, we will use these terms interchangeably. We will discuss in this
chapter only first- and second-order systems, i.e., systems that are described by first-
and second-order ODEs, respectively, more general systems being discussed in later
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chapters. However, notice that we have emphasized above that we will be concerned
mainly with LTIS, thereby indicating other kinds of system models that do not fall
into the same category. Such models arise, as we saw in Chap. 1, in the presence
of Coulomb friction forces. In this case, the models at hand are not linear but, by
adopting a simple model of the friction forces, as we did in Chap. 1, the models thus
derived turn out to be piecewise linear, and hence, lend themselves to an analysis
with the tools of LTI dynamical systems.

Applications of this analysis are numerous, e.g., vibration isolation; prediction
of vibration transmitted by a moving base; design of instruments; vehicle dynamics;
etc. We will outline applications in these fields.

We consider first systems to which no input is applied, these systems being
subject only to initial conditions. The response of such systems, in the realm of
system theory, is known as the zero-input response. In the language of mechanical
vibration, the same goes by the name of free response. After this, we will study
the response of the same systems to an arbitrary input, with zero initial conditions,
which is called, in the realm of system theory again, the zero-state response. In some
instances, this response is called the forced response. Here, note that the terminology
of system theory is more accurate, for it presupposes zero initial conditions; the
forced response presupposes only a nonzero-input, but says nothing about the initial
conditions. Hence, we will adopt the terminology of system theory for the sake of
language accuracy. The response of these systems to arbitrary initial conditions and
arbitrary input is then obtained by superposition, namely, as the sum of their zero-
input and zero-state responses.

Since we will study LTIS intensively, we need first a definition of these. In
Chap. 1 we introduced a definition of linear systems from the point of view of the
structure of their mathematical models, namely, systems that give rise to governing
equations where the generalized coordinate, the generalized speed and the time rate
of change of the latter appear linearly, i.e., to the first power, multiplied by constants,
that are termed the stiffness, the damping coefficient and the mass of the system,
respectively.

From the viewpoint of their time response, the systems of interest to our study in
this chapter have the properties listed below: let the time response of a system to an
input f (t), with zero initial conditions, be denoted by x f (t)(t), which will represent
the time history of the generalized coordinate x(t), for t ≥ 0. Thus, the time response
of linear time-invariant dynamical systems

1. is linearly homogeneous, i.e., for any real number α ,

xα f (t)(t) = αx f (t)(t)

a property that is called linear homogeneity, or homogeneity, for brevity;
2. is additive, i.e., for a second input g(t),

x f (t)+g(t)(t) = x f (t)(t)+ xg(t)(t)

a property that is called additivity;
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a b

Fig. 2.1 Homogeneity of a LTIS

Fig. 2.2 Additivity of a LTIS

a

b

Fig. 2.3 Time invariance of a LTIS

3. is time invariant, i.e., for any time-interval Δt,

x f (t+Δt)(t) = x f (t)(t +Δt) (2.1)

a property that is called time invariance.

The foregoing properties are best illustrated with the aid of a black-box represen-
tation of a LTIS, as in Fig. 2.1a. In this figure, the system at hand is represented as a
block with an input f (t) and a response, also known as output, x f (t)(t). Homogeneity
is illustrated in Fig. 2.1b, while additivity and time invariance in Figs. 2.2 and 2.3,
respectively. In fact, time invariance is best illustrated with the aid of an artifact
called a time delay.

Moreover, let

f (n)(t)≡ dn

dtn f (t), F(t)≡
∫ t

0
· · ·
∫ t

0
f (τ)dτ

︸ ︷︷ ︸
n times

Then, as a consequence of the additivity property, we have two further properties,
namely,
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a

b

Fig. 2.4 Interchangeability of the differentiation and the input of a LTIS

a

b

Fig. 2.5 Interchangeability of the integration of the input and the output of a LTIS

x f (n)(t)(t) =
dn

dtn x f (t)(t) (2.2)

xF(t)(t) =
∫ t

0
· · ·
∫ t

0
x f (τ)(τ)dτ

︸ ︷︷ ︸
n times

(2.3)

We will find that the foregoing properties allow us to obtain the time response of this
class of systems in a systematic way, sometimes with substantial time savings and,
quite important, in a safer manner, less error prone. The two foregoing properties are
illustrated in Figs. 2.4 and 2.5, for one single step of differentiation and integration,
respectively.

2.2 The Zero-input Response of First-order LTIS1

Consider the first-order, linear, stationary dynamical system described below:

ẋ =−ax, t > 0, x(0) = x0 (2.4)

1In a course focusing on vibrations, this section can be skipped. However, its reading is strongly
recommended because it helps gain insight into the response of second-order damped systems,
studied in Sect. 2.3.2
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where a and x0 are given constants. We want to determine x(t) explicitly; some
would say analytically, but the latter is vague and very often misused. What we
mean here by explicitly, as opposed to numerically, is also termed symbolically, for
we are after an algebraic expression of the function x(t). To this end, we assume that
this function is analytic, i.e., that it has a series expansion of the form:

x(t) = x(0)+ ẋ(0)t +
1
2

ẍ(0)t2 + . . .+
x(k)(0)

k!
tk + . . . (2.5)

In order to evaluate the coefficients of the above series, we differentiate both sides
of the differential equation of (2.4) infinitely many times with respect to time, which
yields

ẋ = −ax

ẍ = −aẋ = a2x

x(3) = a2ẋ =−a3x

...

x(k) = (−1)kakx, etc. (2.6)

Upon evaluation of the foregoing expressions at t = 0, we obtain

ẋ(0) = −ax0

ẍ(0) = a2x0

x(3)(0) = −a3x0

...

x(k)(0) = (−1)kakx0, etc. (2.7)

If we substitute the expressions appearing in Eq. 2.7 into Eq. 2.5, the desired
expression is readily derived, namely,

x(t) =

[
1− at+

1
2

a2t2− . . .+(−1)k aktk

k!
+ . . .

]
x0

The series appearing inside the brackets in the above equation is readily identified
as the exponential of −at, i.e.,

x(t) = e−atx0, t ≥ 0 (2.8)

which is the time response sought.
Needless to say, the time response of Eq. 2.8 is proportional to the initial value

x0. Moreover, the time-varying part of the above expression is apparently dependent
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Fig. 2.6 Zero-input response of a first-order system for various values of its time constant

Fig. 2.7 Tugboat towing a
barge: (a) physical system;
and (b) iconic model

a

b

upon one single parameter, namely, coefficient a, which determines the nature of the
response. Note that this coefficient has units of frequency, its reciprocal, labelled τ ,
having units of time. In fact, when a > 0, τ being positive as well, is termed the time
constant of the system.

Furthermore, from Eq. 2.8, it is apparent that (1) if a > 0, the time response
decays with time and does so the faster the greater a is, i.e., the time response of a
system of this kind fades away faster for smaller time constants τ; (2) if a < 0, the
time response grows unbounded, i.e., we are in the presence of an unstable system.
We show in Fig. 2.6 various plots of the response of LTI first-order dynamical
systems for various values of positive a, with x(t) divided by x0.

Example 2.2.1 (Collision Detection). Figure 2.7a shows a tugboat towing a barge
at a uniform speed v0. Due to an engine failure, the tugboat undergoes a shock
that breaks the towing cable. Upon the assumption that the boat and the barge will
continue on the same course after failure, an insurance company wants to know
under which conditions on the relevant physical parameters involved an eventual
collision will not occur.
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Solution: Let mT and mB denote the mass of the tugboat and the barge, respectively.
Moreover, assume that wind and water drag forces are known to be proportional to
traveling speeds, the proportionality factors depending on water and wind conditions
as well as on hull shape and hull materials. For the prevailing wind and water
conditions, and hull properties, the drag constants are denoted by cT and cB for
the tugboat and barge, respectively. After the failure, each vessel behaves as a first-
order system and can be modeled as a mass-dashpot system, as shown in Fig. 2.7b,
namely,

mBv̇B + cBvB = 0, mT v̇T + cT vT = 0, vB(0) = vT (0) = v0

or

v̇B +
1
τB

vB = 0, v̇T +
1
τT

vT = 0, vB(0) = vT (0) = v0 (2.9)

The time constants of the two foregoing systems, τB and τT , are thus,

τB =
mB

cB
, τT =

mT

cT

Obviously, to avoid collisions, the barge speed should decay faster than the tugboat
speed. Hence, the company should grant insurance only if the time constant of the
barge is smaller than that of the tugboat. The condition sought is, then,

τB < τT or
mB

cB
<

mT

cT

Note that tugboats are usually less massive than barges but, fortunately for insurance
companies, barges are usually not as streamlined as tugboats and, hence, present a
larger drag coefficient than tugboats, thereby making unlikely a collision under the
circumstances described above.

2.3 The Zero-input Response of Second-order LTIS

In this section we are concerned with LTI dynamical systems described by a second-
order ODE. We shall thus distinguish among undamped, underdamped, critically
damped and overdamped systems. For brevity, we focus on the first two types, the
last two being left as exercises.

2.3.1 Undamped Systems

The model associated with these systems is displayed below:

ẍ =−ω2
n x, t > 0, x(0) = x0, ẋ(0) = v0 (2.10)
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which is the equation governing the motion of the harmonic oscillator. Again, in
order to derive the time response of this system explicitly, we differentiate both
sides of the differential equation of (2.10) infinitely many times, which yields

x(3) = −ω2
n ẋ

x(4) = −ω2
n ẍ = ω4

n x

x(5) = ω4
n ẋ

x(6) = ω4
n ẍ =−ω6

n x

...

x(2k) = (−1)kω2k
n x

x(2k+1) = (−1)kω2k
n ẋ, etc. (2.11)

Upon evaluation of the foregoing derivatives at t = 0, and substitution of these values
into the series expansion of x(t), we derive the expression given below:

x(t) =

[
1− ω2

n t2

2!
+

ω4
n t4

4!
− . . .+(−1)k ω2k

n t2k

2k!
+ . . .

]
x0

+
1

ωn

[
ωnt− ω3

n t3

3!
+

ω5
n t5

5!
− . . .+(−1)k ω2k+1

n t2k+1

(2k+ 1)!
+ . . .

]
v0 (2.12)

The terms in brackets multiplying x0 and v0 in Eq. 2.12 are readily recognized to
be the series expansions of cosωnt and sinωnt, respectively. Hence, the expression
sought for x(t) is readily derived as

x(t) = (cosωnt)x0 +
1

ωn
(sinωnt)v0, t ≥ 0 (2.13)

Apparently, the response of undamped second-order systems is a linear com-
bination of the two initial conditions x0 and v0, the associated coefficients being
time-varying. Moreover, the first coefficient is simply the cosine function with a
frequency equal to the natural frequency of the system; the second coefficient is
the sine function with the same frequency, but multiplied by the reciprocal of the
natural frequency. Note that, regardless of the nature of the generalized coordinate
x(t), whether a translational or an angular displacement, the two terms of the
expression of Eq. 2.13 are dimensionally homogeneous. Indeed, the first coefficient
is dimensionless and multiplies a constant with units of displacement; the second
coefficient has units of time but multiplies a constant with units of velocity. As
a consequence, the participation of the velocity initial condition on the response
becomes more relevant as the ratio v0/ωn grows with respect to the initial condition
x0. Shown in Fig. 2.8 are plots of time responses for various values of v0/(ωnx0).
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Fig. 2.8 Zero-input response
of undamped second-order
system for various values of
v0/ωnx0
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Fig. 2.9 The lifting mechanism of an elevator: (a) the mechanical model; (b) its iconic model; and
(c) the FBD of the cable

Example 2.3.1 (Elevator Design). Shown in Fig. 2.9a is a crude iconic model of
the lifting mechanism of an elevator. Under the assumption that the damping in
the mechanism is negligible, one can model the mechanism-load system as the
mass-spring layout shown in Fig. 2.9b. The cable is made of steel fibers that give
it a stiffness of 1,000kN/m, the weight of the empty elevator is 4,905 N and the
maximum allowable load is 12 passengers, under the assumption that the average
passenger weighs 735.75 N.

(a) Determine the speed w1 that produces a tension in the cable that is five times
the static load in the presence of a sudden arrest.
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(b) Under the same sudden-arrest conditions, find the critical speed w2 beyond
which the cable becomes loose and the mechanism can no longer control the
elevator.

What conclusions can you draw from this design?

Solution: A crucial step in formulating this problem is the choice of the mass
position from which we measure its displacement. Since we want to derive a
zero-input mathematical model, we should measure the displacement x from the
static equilibrium configuration, and not from the unloaded-spring configuration, as
shown in Fig. 2.9b, in light of Example 1.10.4. The governing equation is thus

ẍ+ω2
n x = 0, t ≥ 0, x(0) = 0, ẋ(0) = w1

whose time response is

x(t) =
w1

ωn
sinωnt

From Fig. 2.9c, the tension F(t) in the cable, or in the spring for that matter, is

F(t) = k(xU − x)

where xU , the value of x when the spring is unloaded, is calculated from the
condition

F(0) = mg, x(0) = 0

Hence,

xU =
m
k

g =
g

ω2
n

In order to calculate the natural frequency of the system, we need k and m, the
former being given in the problem statement, the latter derived below from the data:

m =
5000+ 750×12

9.81
=

14000
9.81

= 1427 Kg

the natural frequency of the system thus being

ωn =

√
k
m

=

√
1× 106

1427
= 26.47 s−1 = 4.213 Hz

(a) Upon substitution of x and xU in the expression for F(t), we obtain

F(t) = k

(
g

ω2
n
− w1

ωn
sinωnt

)
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which apparently attains a maximum when sinωnt attains a minimum, i.e., at
an instant t1 at which sinωnt1 =−1. Therefore,

Fmax = k

(
g

ω2
n
+

w1

ωn

)

By setting Fmax = 5mg, we obtain

k

(
g

ω2
n
+

w1

ωn

)
= 5mg

Therefore,

w1 =
4g
ωn

= 1.4824 m/s

a speed with which passengers are lifted at the rate of about one-half storey per
second.2

(b) The above expression for F(t) obviously attains a minimum when sinωnt
attains a maximum, i.e., at an instant t2 at which sinωnt2 = 1. Therefore,

Fmin = k

(
g

ω2
n
− w

ωn

)

Thus, the cable becomes loose when Fmin = 0, i.e., when

g
ω2

n
=

w
ωn

Hence,

w =
g

ωn
= 0.3706 m/s

which is a speed at which passengers are lifted at the rate of about one storey
every 4 s, i.e., unacceptably low. From the above result, it is obvious that the
design is poor. Now, if we observe the two expressions for w, it is apparent
that this value is inversely proportional to the quantity

√
k/m. Now, the mass

is fixed, because the load is specified by the client; what we can do is choose
a more compliant cable. For example, if we want to increase the value of w
obtained in item (b) by a factor of 25, which would give w = 9.265 m/s as a
speed that would make the cable loose upon a sudden arrest, then the cable
should be specified with a stiffness of 200 kN/m.

Alternatively, we can solve this problem using an energy approach. Indeed, the
total energy E0 of the system can be calculated from the conditions at t = 0, while
using the position of the mass at this instant as the reference level for the potential

2A typical average lifting speed is about 1 storey (≈3 m) per second.
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energy due to gravity. Thus, the potential energy due to gravity at t = 0 vanishes,
but the spring is stretched by a length xU , and hence,

E0 =
1
2

mw2 +
1
2

kx2
U =

1
2

m

(
w2 +

g2

ω2
n

)

From the expression for F(t) derived above, it is apparent that the maximum value of
the tension in the cable is attained at the minimum value of x at the bottom position
of the mass, xb, at which ẋ = 0. The tension Fb at x = xb is, thus,

Fb = k(xU − xb) = 5mg

Hence,

xb = xU − 5
mg
k

=−4
mg
k
≡−4

g
ω2

n

Therefore, the energy Eb at the bottom position is given by

Eb =
1
2

k(xU − xb)
2 +mgxb =

25
2

m2g2

k
− 4

m2g2

k

i.e.,

Eb =
17
2

m2

k
g2

Upon equating Eb with E0, we obtain

17
2

m2

k
g2 =

1
2

m

(
w2 +

g2

ω2
n

)

Hence,

w1 = 4
g

ωn

which is exactly the same result obtained in item (a). Now, to solve item (b), we
note that the cable becomes loose if x = xU at the top position, in which ẋ = 0. The
energy Etop at this position is

Etop = mgxU = mg
(m

k

)
g

Thus, if we equate Etop with E0, we obtain

(
m2

k

)
g2 =

1
2

m

(
w2 +

g2

ω2
n

)
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whence

w2 =
g

ωn

a result identical to that obtained in (b).

2.3.2 Damped Systems

Now we consider a damped system, namely,

ẍ+ 2ζωnẋ+ω2
n x = 0, t > 0, x(0) = x0, ẋ(0) = v0 (2.14)

with both ζ and ωn non-negative. In trying to find an expression for x(t) by
following the procedure introduced in the first two cases, we would readily find
that this does not apply as directly. The reason is that now we would have to
factor two infinite series, a task that is extremely cumbersome. However, we can
circumvent this problem by writing the given system in state-variable form, i.e., by
transforming it into a system of two first-order, linear, constant-coefficient ordinary
differential equations. This is readily done by letting

z1 ≡ x, z2 ≡ ẋ (2.15)

whence the two-dimensional state-variable vector z(t) is defined as

z(t)≡
[

z1(t)
z2(t)

]
=

[
x
ẋ

]
, z(0)≡

[
x0

v0

]
(2.16)

Thus, the system appearing in Eq. 2.14 can be readily expressed as

ż1 = z2 (2.17a)

ż2 = −ω2
n z1− 2ζωnz2 (2.17b)

z1(0) = x0, z2(0) = v0 (2.17c)

or, in vector form,

ż = Az, t > 0, z(0) = z0 (2.18a)

with matrix A defined as

A≡
[

0 1
−ω2

n −2ζωn

]
(2.18b)
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Now, the solution z(t) can be expressed by means of its series expansion, namely,

z(t) = z(0)+ ż(0)t +
1
2!

z̈(0)t2 + . . .+
1
k!

z(k)(0)tk + . . . (2.19)

On the other hand, the time derivatives of z appearing in Eq. 2.19 can be readily
derived by successively differentiating both sides of Eq. 2.18a, namely,

ż = Az

z̈ = Aż≡ A2z
...

z(k) = Akz, etc.

Upon evaluation of the foregoing derivatives at t = 0 and substitution of these values
into Eq. 2.19, a series expansion for z(t) is obtained, namely,

z(t) =
(

1+At+
1
2!

A2t2 + . . .+
1
k!

Aktk + . . .

)
z0 (2.20)

where 1 denotes the 2× 2 identity matrix.

The series inside the parentheses multiplying z0 is readily identified as the
exponential3 of At, and hence,

z(t) = eAtz0, t ≥ 0 (2.21)

which is the expression sought.
The problem of computing the time response of the given system has thus been

reduced to computing the exponential of At. This computation can be done in
many ways, 19 of which were discussed by Moler and Van Loan [1], but there are
many more. Conceptually, the simplest way is via the Cayley-Hamilton Theorem,
as discussed in Appendix A. The exponential of At, as computed therein, is given
below. We distinguish here three cases, namely,

1. Underdamped case: ζ < 1. Here we have

eAt =
e−ζωnt
√

1− ζ 2

[√
1− ζ 2 cosωdt + ζ sinωdt (sinωdt)/ωn

−ωn sinωdt
√

1− ζ 2 cosωdt− ζ sinωdt

]

(2.22a)

3The exponential of a matrix is formally identical to that of a real argument: both have the same
expansion.
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Fig. 2.10 Relation among
ωn, ωd and ζ

where ωd , termed the damped natural frequency, is defined as

ωd ≡ ωn

√
1− ζ 2 (2.22b)

and hence, the time response of underdamped systems is given by the two
components of z(t), x(t) and ẋ(t):

x(t) =
e−ζωnt
√

1− ζ 2

(√
1− ζ 2 cosωdt + ζ sinωdt

)
x0

+
e−ζωnt

ωd
(sinωdt)v0 (2.23a)

ẋ(t) = −ωne−ζωnt
√

1− ζ 2
(sin ωdt)x0 +

e−ζωnt
√

1− ζ 2

(√
1− ζ 2 cosωdt− ζ sinωdt

)
v0

(2.23b)

The relation among ωn, ωd and ζ is best illustrated in Fig. 2.10, whence it is
apparent that ωd < ωn.

2. Critically damped case: ζ = 1. Now we have

eAt = e−ωnt
[

1+ωnt t
−ω2

n t 1−ωnt

]
(2.24a)

and hence, the time response of critically damped systems is

x(t) = e−ωnt [(1+ωnt)x0 + v0t] (2.24b)

ẋ(t) = e−ωnt [−ω2
n tx0 +(1−ωnt)v0] (2.24c)

3. Overdamped case: ζ > 1. In this case,

eAt =
e−ζωnt

r

[
r cosh(rωnt)+ ζ sinh(rωnt) 1

ωn
sinh(rωnt)

−ωn sinh(rωnt) r cosh(rωnt)− ζ sinh(rωnt)

]

(2.25a)
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where r ≡
√

ζ 2− 1. Hence, the time response of overdamped systems is

x(t) =
e−ζωnt

r

{
[r cosh(rωnt)+ ζ sinh(rωnt)]x0 +

1
ωn

sinh(rωnt)v0

}
(2.25b)

ẋ(t) =
e−ζωnt

r

{
−ωn sinh(rωnt)x0 +

e−ζωnt

r
[r cosh(rωnt)− ζ sinh(rωnt)]v0

}

(2.25c)

In all three above cases it is apparent that the response is a linear combination
of the two initial conditions x0 and v0, such as in the undamped case. Contrary to
the undamped case, in the case of damped systems we have one more parameter
that comes into the picture, namely, the damping ratio ζ , which brings about
another parameter, the damped frequency ωd of underdamped systems. Shown in
Figs. 2.11a, c and e are plots of time responses of underdamped, critically damped
and overdamped systems, respectively, for various values of damping ratio, with
x0 = 1 and v0 = 0. Figures 2.11b, d and f show the same responses for initial
conditions x0 = 0 and v0 = 1. In all cases, x0 has units of displacement, whether
translational or angular, while v0 has units of the corresponding velocity.

2.3.2.1 Identification of Damping from the Time Response

Knowing the time response of an underdamped system allows us to determine its
damping ratio, as we will show presently. Let us take the time response of Fig. 2.11b
for x0 = 0 and v0 = 1, and measure the displacements xk and xk+1 at two different
instants tk and tk+1, respectively, separated by a full period T , i.e., tk+1 = tk + T ,
where T ≡ 2π/ωd. We then have, from expression (2.23a),

xk

xk+1
=

e−ζωntk sinωdtk
e−ζωntk+1 sinωdtk+1

However, by virtue of the relationship between tk and tk+1,

sinωdtk+1 = sin(ωdtk + 2π)≡ sinωdtk

and hence, the foregoing ratio becomes

xk

xk+1
=

e−ζωntk

e−ζωntk+1
≡ eζωnT
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Fig. 2.11 Zero-input response of various second-order systems for various initial conditions

Now, if we take the logarithm of both sides of the foregoing equation, we obtain an
interesting relation, namely,

ln

(
xk

xk+1

)
= ζωnT ≡ 2πζωn

ωd
≡ 2π

ζ
√

1− ζ 2

The left-hand side of the latter expression is known as the logarithmic decrement of
the motion and is denoted by δ . Note that it is a constant, regardless of the value
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t
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2π
ωd

tk+1tk

xk

xk+1

Fig. 2.12 An illustration of the logarithmic decrement

of tk, and depends solely on the damping ratio ζ , for the natural frequency ωn is
eliminated because ωdT = 2π , and hence,

δ =
2πζ

√
1− ζ 2

(2.26)

The ratio xk/xk+1, from which the logarithmic decrement is computed, is illustrated
in Fig. 2.12.

Therefore, knowing the logarithmic decrement from a simple measurement on
the time-response plot, we can determine the damping ratio as

ζ =
δ

√
(2π)2 + δ 2

(2.27)

Note that, for small values of the damping ratio, the denominator of Eq. 2.26 reduces
to unity, and hence, the logarithmic decrement and the damping ratio obey a linear
relation, namely,

For ζ  1, ζ ≈ δ
2π

(2.28)

Finally, note that the above results do not depend on the initial conditions; we
should thus be able to derive them with another set of initial conditions. Moreover,
if the displacement is measured N cycles apart, it is not difficult to show that the
logarithmic decrement can then be expressed as

δ =
1
N

ln

(
xk

xk+N

)
(2.29)

The above derivation is left as an exercise.



2.3 The Zero-input Response of Second-order LTIS 103
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Fig. 2.13 A landing gear: (a) its iconic model (USP: unloaded spring position; SEP: static
equilibrium position); (b) the FBD of the aircraft; and (c) the FBD of the landing gear

Example 2.3.2 (Design of a Landing Gear). If we assume that, upon landing, all
wheels of an aircraft touch the landing strip simultaneously, and that the aircraft
body is rigid, the system consisting of aircraft body and landing gear can be modeled
as a mass-spring-dashpot system with a mass mA accounting for the mass of the
aircraft body plus the payload, an equivalent stiffness kE and an equivalent damping
coefficient cE , as shown in Fig. 2.13a.4 For an aircraft weighing 1,000 kN, find the
equivalent stiffness and the equivalent damping coefficient that, upon landing, will
produce oscillations of the body

(a) of 1 Hz and with an amplitude of its second cycle of 5% that of the first cycle.
(b) Moreover, determine the deflection of the landing gear when the oscillations

have settled and the system is in equilibrium.
(c) As well, determine the peak force exerted on the ground upon landing, if the

vertical approach velocity is of 10 m/s (this value is about 2.5 times that of a
rough landing, but we want to design for extreme conditions).

Solution: To begin with, we set up the mathematical model of the system at hand,
with the generalized coordinate x measured from the static equilibrium position,
the value of x when the spring is unstretched being denoted by xU , as shown in
Fig. 2.13a. The mathematical model thus becomes

mAẍ+ cEẋ+ kEx = 0, x(0) = x0, ẋ(0) = v0

Now, from the second design requirement, we can readily determine the logarithmic
decrement δ by application of relation (2.26), namely,

δ = ln

(
100
5

)
= 2.9957

4For this simple model, the wheels are assumed to be massless, rigid disks.
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With this value we can now compute the damping ratio ζ from relation (2.27),
which yields ζ = 0.4304. Furthermore, knowing the damped frequency and the
damping ratio, the natural frequency is readily computed from Eq. 2.22b, namely,

ωn =
ωd√
1− ζ 2

=
2π

0.9026
= 6.9609 s−1

and hence, from the data and Eqs. 1.56a or 1.58b,

kE = mAω2
n =

1000
9.81

× 6.96092 kN/m = 4 939 kN/m

and

cE = 2ζmAωn = 2× 0.4304× 1000
9.81

× 6.9609= 610.8 kNs/m

thereby determining the design requirements for the overall landing-gear system.5

Further, the deflection of the landing-gear system at its equilibrium state is equal
to that of the mass-spring-dashpot with which it is modeled. This deflection, denoted
xU , can be readily computed from the relation

kExU = mAg

and hence,

xU =
mAg
kE

=
1000
4 939

m = 0.2024 m

Now we proceed to determine the peak force transmitted by the landing aircraft
to the ground. To this end, we note that the force transmitted by the spring-
dashpot array to the mass is equal to that transmitted to the ground, as illustrated
in Figs. 2.13b, c.

Thus, if we let fT (t) denote the transmitted force, we have

fT (t) = cE ẋ(t)+ kE(x+ xU) = cE ẋ+ kEx+mAg

The maximum force, occurring at a time tM, as yet to be determined, is found upon
zeroing the derivative of fT (t) with respect to time. This derivative is calculated
below:

ḟT (t) = cE ẍ+ kEẋ(t)

5Aircraft landing gears, like the suspension of terrestrial vehicles are designed with a natural
frequency of around 1 Hz.
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Upon solving for ẍ from the mathematical model and inserting the result into the
foregoing equation, we have, after simplification,

ḟT (t) = mA

[(
kE

mA
− c2

E

m2
A

)
ẋ− cE

mA
ω2

n x

]

Now, if we recall definitions (1.58b), the zeroing of the foregoing expression then
leads to

(1− 4ζ 2)ẋ− 2ζωnx = 0

which is satisfied at time t = tM.
Next, we resort to the time response obtained above, i.e., Eqs. 2.23a, b, and

substitute the expressions for x(t) and ẋ(t) of those relations into the foregoing
equations, which yields, after simplifications,

Dsin ωdtM =−
√

1− ζ 2N cosωdtM

with D and N defined as

D ≡ (1− 2ζ 2)ωnx0 + ζ (3− 4ζ 2)v0

N ≡ 2ζωnx0− (1− 4ζ 2)v0

and hence, tM is determined as

tM =
1

ωd
tan−1

(
−
√

1− ζ 2 N
D

)

and the maximum transmitted force, fM , is found as

fM ≡ fT (tM) = cE ẋ(tM)+ kEx(tM)+mAg

Upon substitution of the relation between x and ẋ at t = tM found above, into the
foregoing expression, we obtain

fM = mA

(
4ζ 2

1− 4ζ 2 + 1

)
ω2

n x(tM)+mAg

which readily simplifies to

fM =
mAω2

n

1− 4ζ 2 x(tM)+mAg

This expression is valid for 1−4ζ 2 �= 0. The case 1−4ζ 2 = 0 is left as an exercise.
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All we need now is x(tM), which we evaluate below. We first note that

x(tM) =
e−ζωntM
√

1− ζ 2

[(√
1− ζ 2 cosωdtM + ζ sinωdtM

)
x0 +

sinωdtM
ωn

v0

]

Next, we substitute the relation between cosωdtM and sinωdtM obtained above,
which yields

x(tM) =
e−ζωntM
√

1− ζ 2

[√
1− ζ 2(cosωdtM)x0−

(
ζx0 +

v0

ωn

)
cosωdtM

]

Upon simplification,

x(tM) = e−ζωntM x0D− (ζx0 + v0/ωn)N
D

cosωdtM

where cosωdtM is derived from the value of tanωdtM obtained above, i.e.,

cosωdtM =
D

√
(1− ζ 2)N2 +D2

, 0≤ ωdtM ≤ π

Therefore.

x(tM) = e−ζωntM x0D− (ζx0 + v0/ωn)N√
(1− ζ 2)N2 +D2

Thus, all we need now to compute x(tM) is the initial conditions x0 and v0. The value
of x0 is the length of the spring upon touching down; at this instant, the spring is
stretched a small amount due to the weight of the landing gear, which is not known.
However, if we realize that the latter is negligible when compared to the weight
of the aircraft body, we can then safely assume that the spring is unloaded upon
touching down, and hence,

x0 =−xU =−0.2024 m

Further, v0 is the vertical component of the aircraft velocity upon touching down,
i.e.,

v0 = 10 m/s

which thus yields x(tM) = 0.2956m, and hence, the peak force is given by

fM =
mAω2

n

1− 4ζ 2 x(tM)+mAg =
1000× 6.96092

g(1− 4× 0.43042)
× (0.2956)+ 1000= 6,636 kN

Note that the maximum force exerted by the landing gear on the ground is about
seven times the weight of the aircraft, which indicates that dynamical effects are
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a b

Fig. 2.14 The iconic model of a terrestrial vehicle: (a) upon climbing up a slope; and (b) the
free-body diagram of its suspension

of the utmost importance both for the mechanical engineer designing landing gears
and the fuselage structure, and for the civil engineer designing the landing strip.

Example 2.3.3 (Suspension Analysis). A rather crude iconic model of a terrestrial
vehicle is shown in Fig. 2.14a, upon overcoming a slope of angle α , assumed to be
“small,” at a uniform speed w. (a) Determine the force transmitted to the ground just
after the vehicle has overcome the slope and finds itself on level ground, in terms
of the given parameters; (b) for a slope of 2%, ζ =

√
2/2, and ωn = 1 Hz, find the

speed w that will cause the vehicle “to fly” upon reaching the top of the slope; and
(c) for the given numerical values, find the maximum and the minimum values of
the force transmitted to the ground and the instants at which these extrema occur,
during the first cycle of oscillations.

Solution:

(a) A free-body diagram of the lower part of the suspension is shown in Fig. 2.14b,
from which the force fT (t) transmitted to the ground can be expressed as
the negative of the reaction force fR(t) on the vehicle. Moreover, such as in
Example 2.3.2, xU denotes the value of x when the spring is unloaded, and
hence,

xU =
m
k

g =
g

ω2
n

Therefore,

fR(t) =− fT (t) =−(kx+ cẋ)+mg≡−m
(
ω2

n x+ 2ζωnẋ− g
)

For convenience, we work with fR(t), which is positive upwards, and hence,
this function is non-negative.
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Now, since we measure x(t) from the equilibrium configuration, the mathemat-
ical model of the system takes the form

ẍ+ 2ζωnẋ+ω2
n x = 0, t ≥ 0, x(0) = 0, ẋ(0) = wα

where we have approximated sinα by its argument, by virtue of the small6 value
of α . Therefore, the time response of the system takes the form

x(t) =
e−ζωnt

ωd
(sinωdt)wα

ẋ(t) =
e−ζωnt
√

1− ζ 2

(√
1− ζ 2 cosωdt− ζ sinωdt

)
wα

Now, the force transmitted to the ground just after the vehicle has overcome the
slope is

fR(0) =−m
[
ω2

n x(0)+ 2ζωnẋ(0)− g
]
=−m(2ζωnwα− g)

(b) For the vehicle body “to fly,” fR(0) must vanish, and hence, we must have

w =
g

2ζωnα
=

9.81

2(
√

2/2)× 2π× 0.02
= 55 m/s

or 198.7 km/h, which is a rather unlikely speed in North-American roads, and
hence, the design, defined by the values of ζ and ωn, is suitable.

(c) In order to determine the maximum—or minimum for that matter—of the force
transmitted to the ground, we must set ḟR(t) = 0, i.e.,

ḟR(t) =−m(ω2
n ẋ+ 2ζωnẍ) = 0

By taking into account the mathematical model of the system at hand into the
above equation, we obtain

ḟR(t) =−m
[
ω2

n ẋ+ 2ζωn
(−2ζωnẋ−ω2

n x
)]

= 0

or
(
1− 4ζ 2) ẋ = 2ζωnx

6Roads are typically designed with slopes below 6%, although exceptionally roads with slopes of
10% and even 20% exist. The validity of the approximation sinx ≈ x is limited by π/30 or 6◦,
while a slope of 6% entails an angle α = 3.4◦.
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and, since 1− 4ζ 2 = 1− 4(1/2) =−1 �= 0,

ẋ =
2ζωnx
1− 4ζ 2

If we now substitute the expressions for x(t) and ẋ(t) obtained above, into the
foregoing expressions, we have

√
1− ζ 2 cosωdt0− ζ sinωdt0 =

2ζωn

1− 4ζ 2

sinωdt0
ωn

where t0 is the instant at which a stationary value of fR(t) occurs. After
simplifications,

tanωdt0 =

√
1− ζ 2(1− 4ζ 2)

(3− 4ζ 2)ζ

For the given numerical value of ζ ,
√

2/2, we obtain

tanωdt0 =−1

and hence, stationary values, i.e., maxima and minima, of fR(t) occur at the
values given below:

ωdt0 =
3π
4
,

7π
4
,

11π
4

, . . . ,etc.

Now, in order to determine the instants corresponding to the foregoing angular
values, we need ωd , which is readily calculated as

ωd =
√

1− ζ 2ωn =

√
2

2
2π =

√
2π

Thus, fR(t) attains extremum values—local maxima and minima—at a se-
quence of values ti given by

ti =

√
2

2

(
3
4
+ i

)
, i = 1,2, . . .

or

t1 = 0.5303 s, t2 = 1.2374 s, t3 = 1.9445 s, . . . , etc.

Now, in order to determine whether a stationary value of fR(t) is a maximum or
a minimum, or even a saddle point, we calculate f̈R(t) and investigate its sign.
The general expression for the derivative of interest is

f̈R(t) =−m
[(

ω2
n − 4ζ 2ω2

n

)
ẍ− 2ζω3

n ẋ
]
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Upon introducing the mathematical model into the above derivative, we obtain

f̈R(t) = mω3
n

[
4ζ (1− 2ζ 2)ẋ+(1− 4ζ 2)ωnx

]

Now, at a stationary value, i.e., at t = ti, for i = 1,2, . . . ,

(1− 4ζ 2)ẋ(ti) = 2ζωnx(ti)

and hence,

f̈R(ti) = m
ω4

n

1− 4ζ 2 x(ti) =−19.739x(ti)

whence,

sgn[ f̈R(ti)] =−sgn[x(ti)]

Now we evaluate x(t1):

x(t1) = x

(
3π

4ωd

)
=

e−ζωnt1

ωd
sin

(
3π
4

)
wα =

√
2

2
e−ζωnt1

ωd
wα > 0

the sign of f̈R(t1) being therefore negative, which means that fR(t1) is a
maximum, namely,

fR(t1) =−m
[
ω2

n x(t1)+ 2ζωnẋ(t1)− g
]

and, if we take into account the relation between x and ẋ at stationary values of
fR(t), we obtain

fR(t1) =−m

[
ω2

n

1− 4ζ 2 x(t1)− g

]

where x(t1) is given by

x(t1) =
e−ζωnt1

ωd
(sin ωdt1)wα =

e−ζωdt1/
√

1−ζ 2

ωd
(sin ωdt1)wα

whence,

x(t1) = 3.0169× 10−4w

Therefore,

fR(t1) =−m

(
4π2

1− 2
× 3.0169× 10−4w− g

)
= m(0.1191w+ g)
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Now we investigate the sign of x(t2):

x(t2) =
e−ζωnt2

ωd
sin

(
7π
4

)
wα =−

√
2

2
e−ζωnt2

ωd
wα < 0

Therefore, fR(t2) attains a minimum value given by

fR(t2) =−m
[
ω2

n x(t2)+ 2ζωnẋ(t2)− g
]

Again, upon considering the relation between x and ẋ at a stationary value of
fR(t), we obtain

fR(t2) = m

[
ω2

n x(t2)
4ζ 2− 1

+ g

]

with x(t2) readily calculated as

x(t2) =−1.3037× 10−5w

and hence,

fR(t2) = max{(−5.1468× 10−4w+ g), 0}
where a provision has been taken in order to avoid negative values of the
reaction force, which are physically inadmissible.

2.4 The Zero-State Response of LTIS

The response of a system to the sole action of external excitations, i.e., under the
assumption that the system is at rest prior to the application of the excitations, is
termed the zero-state response. This term indicates that the state of the system—
position and velocity in mechanical systems—is equal to zero. In this section,
we derive the zero-state response of the systems under study for an arbitrary
excitation by resorting to the property of superposition of linear systems. To this
end, we decompose the arbitrary input as a continuous train of amplitude-modulated
impulses. Hence, we start by studying the response of the systems at hand to a unit
impulse. It will become apparent that this form of excitation is the simplest one.
The unit impulse, like its derivative and its integral, the doublet and the unit step,
respectively, belong to a class of functions termed discontinuous. These functions
pose interesting challenges to the analyst [2], that need not be discussed in an
introductory book. These functions will be handled with due care in the balance
of the book.
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Fig. 2.15 Unit impulse
applied at t = 0

2.4.1 The Unit Impulse

The unit impulse is defined as a function of time that is zero everywhere, except
for an infinitesimally small neighborhood around the origin, in which the function
attains unbounded values. However, its time integral from −∞ to +∞ is exactly +1.
Thus, if we denote by 0− and 0+ the instants just before and just after 0, respectively,
the unit-impulse function, represented as δ (t), is then defined as:

δ (t)

⎧
⎨

⎩

= 0 for t ≤ 0−;
→ ∞ for 0− < t < 0+;
= 0 for t ≥ 0+

(2.30)

and ∫ +∞

−∞
δ (t)dt = 1 (2.31)

the unity on the right-hand side of the last equation being dimensionless. As a
consequence, the unit-impulse function has units of s−1, i.e., of frequency. This
function is also called the delta function or the Dirac function, and is represented as
a vertical arrow at the origin, as in Fig. 2.15, of unit length in the scale adopted.

Note that, if the unit-impulse function is multiplied by a constant A to obtain
Aδ (t), it follows from Eq. 2.31 that its time integral from −∞ to +∞ is equal to A.
We then say that Aδ (t) is an impulse function of magnitude A, the “magnitude” be-
ing, in fact, the area under the impulse. Such a non-unit impulse is thus represented
as an arrow of height A in the scale adopted. The height of the arrow, then, denotes
the time integral of the associated impulse function on the whole real axis.

2.4.2 The Unit Doublet

The time derivative of a unit impulse, δ̇ (t), is called the doublet function. It is
formally defined as

δ̇ (t) =
d
dt

δ (t) (2.32)
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Fig. 2.16 Doublet applied at
t = 0

Using the definition of the time-derivative, Eq. 2.32 can be written as

δ̇ (t) = lim
ε→0

δ (t + ε)− δ (t− ε)
2ε

= lim
ε→0

[
1

2ε
δ (t + ε)− 1

2ε
δ (t− ε)

]

with ε being defined as

2ε ≡ 0+− 0−

Therefore, the physical interpretation of a doublet is the limiting case of two
impulses of ∞ amplitude, one applied at t = 0− and the other at t = 0+, the latter
being the negative of the former. The doublet is sketched in Fig. 2.16.

The units of the doublet are, of course, s−2, i.e., frequency-squared. As will
be shown later, the doublet can be used to describe inputs that cause the position
of the mass of a mass-spring-dashpot system to change instantaneously without
undergoing any change in its velocity.

The triplet, the quadruplet, etc. are functions defined likewise. In general, the
(n− 1)st derivative of the unit impulse, denoted by δ (n−1)(t), is termed the n-tuplet
function. Of interest to us are mainly the impulse and the doublet functions.

2.4.3 The Unit Step

Further, the unit-step function, or Heaviside function, is defined below:

u(t)≡
{

0, for t ≤ 0−,
+1, for t ≥ 0+

(2.33)

This function is sketched in Fig. 2.17.
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Fig. 2.17 Unit-step function
applied at t = 0

Note that the unit-step function is undefined in the interval 0−< t < 0+. This does
not bother us, because the values of this function in that interval are never needed,
except for the basic assumption that this function remains bounded everywhere,
including that interval. The unit-step function is needed to represent abrupt changes
of variables upon which a function jumps instantaneously from one value to another
by a finite amount. This corresponds to physical situations such as a constant, finite
force applied suddenly onto a mass, the sudden closing of a switch in a circuit driven
by a battery, the sudden exposure of a body at a given temperature to a constant,
finite temperature, different from that of the body, and so on.

The relationship between the unit-step and the unit-impulse functions is
obviously

u(t) =
∫ t

−∞
δ (θ )dθ (2.34)

where θ is a dummy variable of integration. Hence, the unit-step function is
dimensionless. Furthermore,

δ (t) =
du(t)

dt
(2.35)

2.4.4 The Unit Ramp

One more function of interest is the unit-ramp function, r(t), defined as

r(t)≡
{

0, for t ≤ 0−

t, for t ≥ 0+.
(2.36)

The unit-ramp function is sketched in Fig. 2.18.
Note that r(t) can be interpreted as the integral of u(t), i.e.,

r(t)≡
∫ t

−∞
u(θ )dθ (2.37)
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Fig. 2.18 Unit-ramp
function applied at t = 0

with θ , again, being a dummy variable of integration. Moreover, we have the
relations:

u(t) =
dr(t)

dt
, δ (t) =

d2r(t)
dt2 (2.38)

Obviously, the unit-ramp function has units of time, i.e., second.
We will now derive explicit expressions for the impulse responses of first- and

second-order LTI dynamical systems.

2.4.5 The Impulse Response

In this subsection we consider the response of linear time-invariant dynamical
systems to a unit impulse, the response at hand being termed the impulse response—
of the system at hand, of course. The importance of the impulse response cannot be
overstated. For example, knowing the impulse response of a LTIS we can obtain,
by superposition, the response of the same system to any input, provided that
the initial conditions are zero in all cases. On the other hand, the unit impulse
models quite effectively inputs that have a very short duration but a very large
amplitude and hence, their effect on the behavior of the system under study is not
negligible. Examples of such inputs appear whenever collisions occur. For example,
when hitting a ball with a tennis racket, the ball is acted upon by an infinitely
large force during an infinitesimally small interval of time. As a consequence, the
ball undergoes a finite change in its velocity that implies a finite change in its
momentum. This finite change can be explained as the result of a finite impulse
acting on the ball.

The impulse responses of first- and second-order LTI systems are derived in this
order. After this, we show how, by exploiting the properties of linearity and time-
invariance of the systems at hand, the impulse response of such systems can be used
to determine the response of the same systems to any type of input by means of the
convolution integral. The responses of first- and second-order LTI systems for any
arbitrary input will then be derived.
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2.4.5.1 First-order Systems

In this case, the associated differential equation is

ẋ =−ax+ δ (t), t > 0−, x(0−) = 0 (2.39)

where we have assumed that the system is at rest prior to the application of the
impulse. A simple way of computing the response of the foregoing system is by
calculating its state x(t) at t = 0+ and rewriting Eq. 2.39 for t ≥ 0+, when the
impulse function is zero, thereby reducing the response of the system to the zero-
input response, which was already found. In order to find x(0+), Eq. 2.39 is rewritten
in the form:

ẋ+ ax = δ (t), t > 0−, x(0−) = 0

The presence of a delta function on the right-hand side of the previous equation
requires a delta function on the left-hand side. Now, let us look for this function
there. It can be either in x or in ẋ. If it were in x, then ẋ would be proportional
to a doublet, which should be balanced by a doublet on the right-hand side. Since
no such doublet is present there, this possibility is discarded. Then, the impulsive
function must be in the ẋ term, which implies that x is a multiple of the unit-step
function, and hence, at the origin, x undergoes a finite jump. This means that, in the
neighborhood of t = 0, x remains bounded. Now we have enough information on all
terms appearing in Eq. 2.39 to perform their integral from t = 0− to t = 0+, which
is done below:

∫ 0+

0−
ẋdt =−a

∫ 0+

0−
xdt +

∫ 0+

0−
δ (t)dt (2.40)

The integral of the left-hand side is readily identified as x(0+); the first integral
appearing on the right-hand side vanishes, for x(t), not containing any impulsive
component, is finite in the neighborhood of t = 0. Finally, the last integral of that
equation is simply +1 by definition, and hence, one has

x(0+) = 1

Now, Eq. 2.39 can be rewritten as:

ẋ =−ax, t ≥ 0+, x(0+) = 1 (2.41)

with zero-input term and nonzero initial conditions. The response of the system
appearing in Eq. 2.41 was already found in Sect. 2.2. If we now just replace 0 of
Eq. 2.8 with 0+, and recall the initial condition of the system at hand, we readily
derive

x(t) =

{
0, for t ≤ 0−;
e−at , for t ≥ 0+

(2.42a)
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Fig. 2.19 Impulse response of a first-order system for various values of a

The response given in Eq. 2.42a is the impulse response of a first-order system;
we shall denote this response by hI(t), and thus, in compact form,

hI(t)≡ e−at u(t) (2.42b)

which is sketched in Fig. 2.19, for various values of parameter a. Notice that, in
the figure, hI(t) = 0, for t < 0−, an important feature of the response at hand that
escapes to methods relying on math-book solutions to ODEs.

Note that the integral of the differential equation (2.39) given in Eq. 2.42a should
verify (1) the differential equation and (2) the initial conditions. Below we show that
it indeed verifies both. In fact, upon differentiation of x(t) as given by Eq. 2.42b, we
obtain

ḣI(t) =−ae−at u(t)+ e−at δ (t)

where relation (2.35) has been recalled. Now, since we are considering the response
of the system for t ≥ 0+ only, at which δ (t) = 0 and u(t) = 1, the foregoing
expression readily reduces to

ḣI(t) =−ae−at =−ahI(t), t ≥ 0+

thereby showing that the solution found verifies indeed the differential equation.
Moreover,

hI(0+) = e−a0+

︸ ︷︷ ︸
1

u(0+)
︸ ︷︷ ︸

1

= 1

and hence, hI also verifies the initial conditions, the proposed response, Eq. 2.42b,
thus being a valid solution to the initial-value problem (2.41), and hence to the
original problem (2.39).
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Fig. 2.20 Fluid clutch

Example 2.4.1 (Fluid-clutch Tests). Consider the fluid clutch of Example 1.6.10.
The system is reproduced in Fig. 2.20 for quick reference. If the left-end disk is
displaced suddenly through an angle φ0, determine the ensuing motion of the right-
end plate, θ (t). If we let φ(t) denote the angular displacement of the left-end plate,
then ω(t) = φ̇(t).

Solution: The mathematical model of this system can be readily shown to be

θ̇ +
1
τ

θ = ω(t), θ (0−) = 0, ω(t) = φ̇(t), φ(t) = φ0u(t), t > 0−

where the time constant τ is defined as τ ≡ c/k and the input angle φ(t) has been
modeled as a unit-step function. Hence,

ω = φ̇(t) = φ0δ (t)

and the model now takes on the form

θ̇ +
1
τ

θ = φ0δ (t), θ (0) = 0, t > 0

In the next step, we transform the above model into zero-input form by expressing
it as a homogeneous ODE with non-zero initial condition. To this end, we integrate
both sides of the equation between 0− and 0+, while taking into account that θ (t) is
not impulsive. We realize this by resorting to the arguments introduced above. From
this integration we obtain

θ (0+)−θ (0−) = φ0

and, by virtue of the original initial condition, θ (0−) = 0 and hence, θ (0+) = φ0,
the homogeneous ODE thus taking the form

θ̇ +
1
τ

θ = 0, θ (0+) = φ0, t > 0+
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Therefore, the time response sought is

θ (t) = φ0e−t/τ , t > 0+

2.4.5.2 Second-order Undamped Systems

In this case, the governing equation is

ẍ+ω2
n x = δ (t), x(0−) = 0, ẋ(0−) = 0, t > 0− (2.42c)

As in the case of first-order systems, the impulse on the right-hand side must be
balanced with an impulse on the left-hand side. Moreover, this impulse cannot lie in
the x term. If it did, then ẋ would necessarily contain a doublet and ẍ a triplet, which
should be balanced in the right-hand side. Since neither triplet nor doublet appear in
that side, x is not impulsive, and hence, is bounded at the origin. The only impulsive
term of the LHS7 of Eq. 2.42c is, then, the first term. Next, we integrate both sides
of the same equation between 0− and 0+, thereby obtaining

∫ 0+

0−
ẍdt +ω2

n

∫ 0+

0−
xdt =

∫ 0+

0−
δ (t)dt (2.42d)

The first integral of the left-hand side of Eq. 2.42d yields, as in the first-order case,

∫ 0+

0−
ẍdt = ẋ(0+)− ẋ(0−) = ẋ(0+) (2.42e)

the second integral vanishing because its integrand is finite at the origin and the
integration is performed over an infinitesimally small time-interval around the
origin. Finally, the integral of the right-hand side yields 1. Thus, Eq. 2.42d reduces to

ẋ(0+) = 1

Moreover, since ẋ(t) is bounded at the origin, x(t) does not undergo any finite jump
at the origin, and hence,

x(0+) = x(0−) = 0

Thus, Eq. 2.42c can be rewritten as

ẍ+ω2
n x = 0, x(0+) = 0, ẋ(0+) = 1, t ≥ 0+

7Abbreviation of left-hand side.
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Fig. 2.21 Impulse response of a second-order undamped system

Therefore, the time response of the system under study can be obtained from the
general expression, Eq. 2.13, as

x(t) =

{
0, for t ≤ 0−;
(sinωnt)/ωn, for t ≥ 0+

The impulse response of the given undamped second-order system is represented
henceforth by gI(t), i.e., in compact form,

gI(t)≡ 1
ωn

(sinωnt)u(t) (2.42f)

which is plotted in Fig. 2.21, for ωn = 1 s−1 and ωn = 2.5 s−1. Again, notice that
the foregoing time response vanishes for values of t ≤ 0−.

2.4.5.3 Second-order Damped Systems

In this case, the governing equation is

ẍ+ 2ζωnẋ+ω2
n x = δ (t), x(0−) = 0, ẋ(0−) = 0, t > 0− (2.42g)

As in the previous case, the impulse on the right-hand side must be balanced with
an impulse on the left-hand side. Moreover, this impulse can neither lie in the x nor
in the ẋ term. If it lied, say, in the latter, then ẍ would necessarily contain a doublet,
which should be balanced in the right-hand side. Since no doublet appears in that
side, ẋ and, consequently, x do not contain impulsive functions, and are, hence,
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bounded at the origin. Next, we integrate both sides of Eq. 2.42g between 0− and
0+, thereby obtaining

∫ 0+

0−
ẍdt + 2ζωn

∫ 0+

0−
ẋdt +ω2

n

∫ 0+

0−
xdt =

∫ 0+

0−
δ (t)dt (2.42h)

The first integral of the left-hand side of Eq. 2.42h is readily evaluated, namely,

∫ 0+

0−
ẍdt = ẋ(0+)− ẋ(0−) = ẋ(0+)

where the given initial conditions of Eq. 2.42g were taken into account.
Moreover, the second and the third integrals of the left-hand side of Eq. 2.42h

vanish because their integrands are finite at the origin and the integration is
performed over an infinitesimally small time-interval around the origin. Finally, the
integral of the right-hand side yields 1, Eq. 2.42h thus reducing to

ẋ(0+) = 1

Furthermore, since ẋ(t) is bounded at the origin, x(t) does not undergo any finite
jump at the origin, and hence,

x(0+) = x(0−) = 0

Thus, Eq. 2.42g can be rewritten as

ẍ+ 2ζωnẋ+ω2
n x = 0, x(0+) = 0, ẋ(0+) = 1, t ≥ 0+

Therefore, the time response of the system under study can be obtained from the
general expressions derived in Sect. 2.3.2. For underdamped systems, for example,
we have, from Eq. 2.23a,

x(t) =

{
0, for t ≤ 0−;
(e−ζωnt sinωdt)/ωd , for t ≥ 0+

By analogy with the previous cases, the response of the underdamped second-
order system to a unit impulse is termed the impulse response of that system, and is
denoted by jI(t), i.e., in compact form,

jI(t)≡ e−ζωnt

ωd
(sinωdt)u(t) (2.42i)

The impulse response derived above is represented graphically in Fig. 2.22 for
various values of ζ , with ωn fixed. Needless to say, jI(t) = 0, for t ≤ 0−.

The impulse responses kI(t) and lI(t) of critically damped and overdamped
systems, respectively, are derived likewise, the details of their derivation being left
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Fig. 2.22 Impulse response of a second-order underdamped system for various values of ζ
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Fig. 2.23 Impulse response of a second-order critically damped system

as an exercise to the reader. These responses are displayed in Figs. 2.23 and 2.24,
respectively, the latter for various values of ζ , expressions for these being included
in Eqs. 2.91 and 2.92a. It goes without saying that kI(t) = 0 and lI(t) = 0, for t ≤ 0−.

Example 2.4.2 (Damping Identification from the Impulse Response). A test pad8

is modeled as shown in Fig. 2.25. In this model, the steel pad of mass m1 is
mounted on relatively soft springs. The light damping of the springs, as yet unknown
but assumed to be linear, is represented in the model by the dashpot. In order
to determine the physical parameters of the pad-suspension system, it has been

8Taken, with some modifications, from [3].
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Fig. 2.24 Impulse response of a second-order overdamped system

Fig. 2.25 Test pad

proposed to record its impulse response. To this end, a steel ball of mass m2 is
dropped onto the center of the pad from a height h, and then caught by an observer
on the first bounce. The ensuing motion of the pad is then recorded, as appearing
in Fig. 2.26. Under the assumption that the collision of the ball with the pad is
perfectly elastic, (a) estimate, from the plot of this figure, the natural frequency
and the damping ratio of the system, and (b) calculate the maximum excursion of
the pad in its first oscillation. It is known that the ratio m2/m1 is 0.01 and h = 1 m.
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Fig. 2.26 Impulse response of the test pad

Solution:

(a) Let

vrel(t)≡ v2(t)− v1(t)

be the relative velocity of the ball with respect to the pad, for every time t ≥ 0.
Moreover, we recall that, for a perfectly elastic shock, we have

vrel(0
+) =−vrel(0

−)

The relative velocity just before the impact is equal to the velocity of the ball,
i.e.,

vrel(0
−) = v2(0

−)− 0 =
√

2gh

with the positive direction defined downward. Thus,

vrel(0
+)≡ v2(0

+)− v1(0
+) =−

√
2gh (2.43)

Now, we note that the velocities of the ball and the pad undergo jumps upon
colliding, but both remain finite. If we let jd denote the impulse developed by
the dashpot and js denote that developed by the spring, then

jd =

∫ 0+

0−
cv1(t)dt = 0 because v1 is finite (2.44)

js =
∫ 0+

0−
kx1(t)dt = 0 because x1 is finitex (2.45)
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so that the total impulse is zero. Thus, the total change in linear momentum, Δp,
is zero as well, which means

Δp = m1v1(0
+)+m2v2(0

+)−m2v2(0
−) = 0

from which we obtain, upon dividing all terms of the above equation by m1,

v1(0
+)+αv2(0

+) = α
√

2gh (2.46)

where α ≡ m2/m1 = 0.01. Now, solving Eqs. 2.43 and 2.46 for v1(0+) and
v2(0+) gives

v1(0
+) =

2α
1+α

√
2gh, v2(0

+) =−1−α
1+α

√
2gh

Noting that x1(0+) = 0, the time response of Eq. 2.23a takes the form

x1(t) =
e−ζωnt

ωd
(sinωdt)v1(0

+)

Moreover,

v1(0
+) =

0.02
1.01

√
2× 9.81× 1.0= 0.08771 m/s

From the plot of Fig. 2.26, we can readily find that the damped frequency ωd of
the system is 0.5 Hz. Now, the damping ratio ζ of the system can be found via
the logarithmic decrement δ , which can be estimated from the same plot. Here,
it is apparent that the system is, in fact, lightly damped, and so, the decrement
of the amplitude of the oscillations from one cycle to the next one is very small.
Measuring it from the plot, then, can lead to substantial error. In order to cope
with this uncertainty, we measure the decrement through various cycles. From
the figure, it is apparent that we have information of up to six cycles, and so, if
we measure the first and the sixth negative peaks, we obtain x1 = 0.022 m and
x6 = 0.005 m, which, when plugged into Eq. 2.29, with k = 1 and N = 5, yield

δ =
1
5

ln

(
x1

x6

)
=

1
5

ln(4.4) = 0.296

For light damping, we have

ζ ≈ δ
2π

= 0.04711
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Now, the natural frequency ωn is simply obtained as

ωn =
ωd√
1− ζ 2

=
2π/T
√

1− ζ 2
=

2π/2√
1− 0.047112

= 3.1451 rad/s

where, from inspection of the plot of Fig. 2.26, T = 2 s, thereby completing the
identification of the parameters involved.

(b) Now, in order to calculate the maximum excursion of the pad at the first
oscillation, all we need is calculate x1(t) at the instant tM at which ẋ1 first
vanishes. From the above expression for x1(t), we can readily derive

ẋ1(t) =
e−ζωnt
√

1− ζ 2

(√
1− ζ 2 cosωdt− ζ sinωdt

)
v1(0

+)

and hence, t1 can be found as the instant at which the term inside the parentheses
of the above expression vanishes, i.e., from

√
1− ζ 2 cosωdt1− ζ sinωdt1 = 0

whence,

tanωdt1 =

√
1− ζ 2

ζ

Upon substituting the foregoing value of ζ , 0.04711, into the above expression,
we obtain

tanωdt1 = 21.1843 ⇒ ωdt1 = 87.2974◦= 1.5236 rad

and hence, sinωdt1 = 0.9989, which yields

ωnt1 =
ωdt1√
1− ζ 2

=
1.5236
0.9989

= 1.5253 rad

Therefore,

x1(t1) = xmax =
e−0.04711×1.5253

2π× 0.5
× 0.9989× 0.08771= 0.02595

with an accuracy that could not have been obtained from the plot, thereby
completing the solution.

2.4.6 The Convolution (Duhamel) Integral

The unit impulse was shown above to be useful in the modeling of impulsive inputs
of extremely short duration, but the usefulness of this concept goes far beyond that.
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Specifically, we can use the impulse response, along with the properties of linearity
and time invariance of LTI systems, to determine the response of these systems to
any input under zero initial conditions. The time response thus obtained is what is
known as the zero-state response of the system under analysis, also known as the
forced response, as pointed out already in the Preamble.

As a matter of fact, if we have the impulse response of a LTIS, then we do not
even have to know the system in detail in order to determine its zero-state response
to any input. To illustrate this statement, we take a black-box approach; we shall
thus see that the zero-state response of the system under study can be obtained as
the convolution, to be defined presently, of the impulse response of the system with
the input.

We shall resort below to a fundamental identity, that we shall prove in detail.
Prior to this, we need the relation

f (t)δ (t)≡ f (0)δ (t) (2.47a)

which follows because the delta function is zero everywhere, except at the origin,
where it attains an infinite value. Note, moreover, that, if the impulse is applied at
t = τ > 0, rather than at t = 0, then, Eq. 2.47 takes the form

f (t)δ (t− τ)≡ f (τ)δ (t− τ)≡ fτ δ (t− τ) (2.47b)

where fτ is a constant, for fixed τ . Thus,

∫ t

0
f (τ)δ (t− τ)dτ ≡

∫ t

0
f (t)δ (t− τ)dτ ≡ f (t)

∫ t

0
δ (t− τ)dτ

the last identity following because f (t) is independent from the integration variable,
τ . Now we evaluate the integral appearing in the rightmost-hand side of the above
equation. To do this, we let θ ≡ t − τ and regard t as fixed, which thus leads to
dθ =−dτ , and hence,

∫ t

0
δ (t− τ)dτ =−

∫ 0

t
δ (θ )dθ ≡

∫ t

0
δ (θ )dθ

Furthermore, we recall relation (2.34) and the definition of δ (t), Eq. 2.30, the last
integral thus yielding

∫ t

0
δ (θ )dθ ≡

∫ t

−∞
δ (θ )dθ ≡ u(t)

But we are interested in positive values of t, for we are studying the response of the
system to an excitation applied at t = 0 and observing its behavior thereafter. Thus,
the unit-step function becomes 1, thereby proving that

f (t)≡
∫ t

0
f (τ)δ (t− τ)dτ (2.48)
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Fig. 2.27 (a) The impulse response of a LTIS; (b) the same response to a delayed impulse; (c) the
response of the system to a modulated, delayed impulse; (d) the response of the system to a
continuous train of modulated, delayed impulses; (e) the zero-state response as the convolution
of the input with the impulse response of the system

which is the identity sought. i.e., f (t) can be regarded as a continuous train of
impulses applied at instants τ , of amplitude fτ ≡ f (τ), for 0≤ τ ≤ t.

Now, in order to obtain the response x(t) of the system to an arbitrary input f (t),
we regard the latter as the integral appearing in the right-hand side of Eq. 2.48.
Moreover, we denote the impulse response of the same system, which can be
any system, as long as it is linear and time-invariant, by h(t), as indicated with
the block diagram of Fig. 2.27a. Now, by time-invariance, the response of the
system to a delayed input δ (t − τ) is a delayed impulse response h(t − τ), as
shown in Fig. 2.27b. If, now, the delayed impulse is modulated with an amplitude
fτ , the corresponding response is, by homogeneity, fτ h(t − τ), as illustrated in
Fig. 2.27c, with fτ defined as in Eq. 2.47b. Furthermore, by additivity, the response
of the system to a continuous train of delayed, modulated impulses, is, in turn,
a continuous train of delayed, modulated impulse responses, both trains being
represented as integrals between τ = 0 and τ = t, because of the continuity of the
train, as illustrated in Fig. 2.27d. Finally, by virtue of the identity shown in Eq. 2.48,
the train of inputs of Fig. 2.27d is readily identified as f (t), thereby obtaining the
input–output relation of Fig. 2.27e, namely,

x(t) =
∫ t

0
f (τ)h(t− τ)dτ (2.49)
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The integral appearing in Eq. 2.49 is called the convolution, or the Duhammel
integral, of the two functions, f (t) and h(t). More generally, given any two functions
φ(t) and ψ(t), their convolution, represented as φ(t)∗ψ(t), is defined as

φ(t)∗ψ(t)≡
∫ t

0
φ(τ)ψ(t− τ)dτ (2.50)

Important properties of the convolution are given below:

1. Commutativity:

φ(t)∗ψ(t) = ψ(t)∗φ(t) (2.51a)

2. Distributivity:

φ(t)∗ [g1(t)+ g2(t)] = φ(t)∗ g1(t)+φ(t)∗ g2(t) (2.51b)

3. Linear homogeneity:

φ(t)∗ [αψ(t)] = αφ(t)∗ψ(t) (2.51c)

Note that commutativity implies the identity shown below, whose proof is left to
the reader: ∫ t

0
φ(τ)ψ(t− τ)dτ ≡

∫ t

0
φ(t− τ)ψ(τ)dτ (2.52)

distributivity and homogeneity following from the properties of the Riemann
integral.

From the above equation, we can rewrite Eq. 2.49 alternatively as

x(t) =
∫ t

0
f (t− τ)h(τ)dτ (2.53)

In summary, we have seen that the response of a linear time-invariant system
to an arbitrary input f (t) is equal to the convolution of the input with the impulse
response of the system. Thus, the response of a LTIS to any input can be determined
from its impulse response. We can then say that the behavior of a LTI system is
characterized completely by its impulse response.

Given the convolution theorem for a general LTIS, the responses of first- and
second-order systems to an arbitrary input can be readily derived, as shown below.

2.4.6.1 First-order Systems

Inserting the expression for the impulse response hI(t) given in Eq. 2.42b into
Eq. 2.53, we obtain

x(t) =
∫ t

0
f (t− τ)e−aτdτ (2.54)
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2.4.6.2 Second-order Undamped Systems

Likewise, if we recall the expression for the impulse response gI(t) given in
Eq. 2.42f, and substitute it into Eq. 2.53, we obtain

x(t) =
∫ t

0
f (t− τ)

1
ωn

(sinωnτ)dτ (2.55)

2.4.6.3 Second-order Damped Systems

We consider first the convolution of underdamped systems. To derive this convolu-
tion, we recall the expression for the pertinent impulse response jI(t), as given in
Eq. 2.42i, and substitute it into Eq. 2.53, thus obtaining

x(t) =
∫ t

0
f (t− τ)

e−ζωnτ

ωd
(sinωdτ)dτ (2.56)

the convolution for critically damped systems being derived likewise, i.e.,

x(t) =
∫ t

0
f (t− τ)τe−ωnτ dτ (2.57)

Finally, the convolution for overdamped systems takes the form

x(t) =
∫ t

0
f (t− τ)

e−ζωnτ
√

1− ζ 2
sinh

(√
1− ζ 2ωnτ

)
dτ (2.58)

Note that the foregoing results could have been obtained alternatively by inserting
the appropriate impulse response function in Eq. 2.49.

2.5 Response to Abrupt and Impulsive Inputs

The step function models applications of abrupt inputs, such as the sudden closing
of a circuit or the sudden arrest of a body undergoing a perfectly plastic collision
with a stationary body of infinite mass, e.g., a speeding car hitting a wall.9 The
impulse function, on the other hand, models forces of a very short duration that
nevertheless affect the state of the system due to the finite amount of energy
transferred to or from the system in infinitesimal amounts of time. While we have
already studied the response of first- and second-order LTI dynamical systems to

9Note that an abrupt change in the velocity implies an impulse in the acceleration.
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unit impulses, the response to step inputs is yet to be studied. In addition, other
situations occurring in real life, such as the sudden relocation of a heavy body,
without a noticeable change in its velocity, such as a table driven by an indexing
mechanism—a Geneva mechanism, for example—have not yet been studied. In this
section, we shall determine the responses of the system of interest to various types
of impulsive and abrupt inputs. These inputs can be used to model certain types of
physical phenomena, as discussed earlier. The responses can be found using three
different approaches:

• By using the convolution theorem
• By direct integration of the differential equation, with the appropriate input

function inserted
• By making use of the properties illustrated in Figs. 2.4 and 2.5

We determine below the responses of first- and second-order systems to unit-
doublet, unit-step, and unit-ramp inputs using either or both of the last two methods.
The use of the convolution will be discussed in Sect. 2.7.

2.5.1 First-order Systems

2.5.1.1 Step Response

If the system under study is acted upon by a unit-step input, then Eq. 2.39 becomes

ẋ =−ax+ u(t), t ≥ 0−, x(0−) = 0 (2.59)

By linearity, the response of the system under study to the unit step is the integral of
the response of the same system to the unit impulse, since the former is the integral
of the latter. We next denote the response to the unit step by hS(t), i.e.,

hS(t) =
∫ t

0
hI(θ )dθ (2.60a)

where θ is a dummy variable of integration. Thus,

hS(t)≡
{

0, t ≤ 0−;
(1− e−at)/a, t ≥ 0+

(2.60b)

or, in a more compact form,

hS(t)≡ 1− e−at

a
u(t) (2.60c)

which can be called the step response of the first-order system under study. This
response is plotted in Fig. 2.28 for various values of positive a. Note that systems
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Fig. 2.28 Unit-step response of a first-order system for various positive values of a

with a small time constant are capable of following an input faster than those with
a large time constant. That is, systems with a large time constant are slower than
systems with a small one.

2.5.1.2 Ramp Response

The mathematical model now takes the form

ẋ =−ax+ r(t), t > 0−, x(0−) = 0 (2.61)

In Exercise 2.30 the reader is asked to derive the ramp response of the system at
hand, denoted by hR(t), as shown below:

hR(t)≡ 1
a

[
r(t)− 1

a
(1− e−at)u(t)

]
(2.62)

2.5.2 Second-order Undamped Systems

2.5.2.1 Doublet Response

In this case, the governing equation is

ẍ+ω2
n x = δ̇ (t), x(0−) = 0, ẋ(0−) = 0, t > 0− (2.63)

The doublet appearing in the right-hand side of Eq. 2.63 must be balanced with a
corresponding term in the left-hand side, which cannot appear in the x-term. Indeed,
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if it did, then the ẍ term would comprise a quadruplet, which does not appear in
the right-hand side. Thus, the doublet appears only in the ẍ term, and hence, the
x term comprises a step function and is thus finite in a neighborhood around the
origin. Now, both sides of Eq. 2.63 are integrated between t = 0− and t > 0−, thus
obtaining

ẋ+ω2
n

∫ t

0−
xdτ = δ (t), x(0−) = 0, t > 0− (2.64a)

where the initial condition on ẋ(t) is no longer needed, for the highest-order
derivative appearing in the foregoing equation is ẋ. Next, the two sides of Eq. 2.64a
are integrated between 0− and 0+, thereby obtaining

∫ 0+

0−
ẋdt +ω2

n

∫ 0+

0−

∫ t

0−
xdτdt =

∫ 0+

0−
δ (t)dt (2.64b)

The first integral of the left-hand side of Eq. 2.64b is readily recognized as x(0+)−
x(0−), the second integral vanishing because x is bounded at the origin, as proven
above, and hence, its integral is bounded in a neighborhood around the origin as
well. Furthermore, the integral of the right-hand side reduces to 1, and hence,
Eq. 2.64b takes the form

x(0+)− x(0−) = 1

Moreover, if we take into account the initial conditions of Eq. 2.63, then

x(0+) = 1

The above discussion shows that a unit doublet input indeed produces an instanta-
neous change in position of unit magnitude. A doublet of magnitude Aδ̇ (t) would
produce an instantaneous position change of magnitude A, without affecting its
velocity. Furthermore, since x(t) is a multiple of the unit-step function, ẋ(t) is a
multiple of the unit-impulse function, and hence, ẋ(0+) = ẋ(0−) = 0, i.e., it attains
infinite values inside the interval 0− < t < 0+, but is zero elsewhere. Then, Eq. 2.63
reduces to the form:

ẍ+ω2
n x = 0, x(0+) = 1, ẋ(0+) = 0, t ≥ 0+

whose time response was already found in Eq. 2.13 for a more general case. Taking
the foregoing equation into account, we can write

x(t) =

{
0, for t ≤ 0−;
cosωnt, for t ≥ 0+

(2.65a)
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Fig. 2.29 Doublet response of an undamped second-order system

By analogy with Eq. 2.60c, the response of Eq. 2.65a can be called the doublet
response of the given second-order system, and is denoted by gD(t), i.e., in compact
form,

gD(t)≡ (cosωnt)u(t) (2.65b)

its plot being included in Fig. 2.29, for two different values of ωn.
Alternatively, since the unit doublet is the first derivative of the unit impulse, by

Eq. 2.2 we can obtain the doublet response by differentiating the impulse response,
namely,

gD(t) =
d
dt

gI(t)

i.e.,

gD(t) =
d
dt

(
1

ωn
(sinωnt)u(t)

)
= (cosωnt)u(t)+

1
ωn

(sinωnt)δ (t) (2.66)

Recalling the definitions of δ (t) and u(t), we see that the last term in the rightmost-
hand side is zero for t ≥ 0+ and that gD(t) = 0 for t ≤ 0−. Thus, gD(t), as obtained
in Eq. 2.66, reduces to Eq. 2.65b.

A mass-spring system is acted upon by a doublet when its mass is given a sudden
relocation, without affecting its velocity. For example, when a crank turning at a
very high speed performs an indexing operation on a Geneva10 wheel, the latter
undergoes a finite rotation in no time at all. This situation can be modeled as the
system appearing in Eq. 2.63, when the elasticity of the shaft attached to the crank
is taken into account.

10See Fig. 3.2.
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Fig. 2.30 Unit-step response of a second-order undamped system

2.5.2.2 Step Response

If now the system is acted upon by a unit step, we have

ẍ+ω2
n x = u(t), t > 0−, x(0−) = 0, ẋ(0−) = 0 (2.67)

Again, by linearity, we can express the response of the system under study as the
integral of the impulse response of the same system, i.e.,

x(t) =
∫ t

0
gI(θ )dθ =

1− cosωnt
ω2

n
u(t) (2.68)

Expression (2.68) can be called the step response of the undamped second-order
system under study. We will represent this response as gS(t), i.e.,

gS(t)≡ 1− cosωnt
ω2

n
u(t) (2.69)

This response is plotted in Fig. 2.30.

2.5.2.3 Ramp Response

We now have

ẍ+ω2
n x = r(t), t > 0−, x(0−) = 0, ẋ(0−) = 0 (2.70)
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The reader is invited in Exercise 2.30 to derive the ramp response of the system at
hand, denoted by gR(t), as shown below:

gR(t)≡ 1
ω2

n

[
r(t)− 1

ωn
(sinωnt)u(t)

]
(2.71)

2.5.3 Second-order Damped Systems

2.5.3.1 Doublet Response

In this case, the governing equation is

ẍ+ 2ζωnẋ+ω2
n x = δ̇ (t), x(0−) = 0, ẋ(0−) = 0, t > 0− (2.72)

The doublet appearing in the right-hand side of Eq. 2.72 must be balanced with a
corresponding term in the left-hand side, which can neither appear in the second nor
in the third term of that side. Indeed, if it appeared in the ẋ term, then the ẍ term
would comprise a triplet, which does not appear in the right-hand side. Likewise, if
the doublet appeared in the x term, then the ẍ term would have a quadruplet, which
should be balanced in the right-hand side. Thus, the doublet appears only in the ẍ
term, and hence, the ẋ term comprises an impulse and the x term, a step function.
Now, both sides of Eq. 2.72 are integrated between t = 0− and t > 0−, thus obtaining

ẋ+ 2ζωnx+ω2
n

∫ t

0−
xdτ = δ (t), x(0−) = 0, t > 0− (2.73)

where, again the initial condition on ẋ(t) is not needed, for the highest-order
derivative appearing in the foregoing equation is ẋ.

Further, the two sides of Eq. 2.73 are integrated between 0− and 0+, which yields

∫ 0+

0−
ẋdt + 2ζωn

∫ 0+

0−
xdt +ω2

n

∫ 0+

0−

∫ t

0−
xdτ =

∫ 0+

0−
δ (t)dt (2.74)

The first integral of the left-hand side of Eq. 2.74 is readily recognized as x(0+)−
x(0−), the second and the third integrals of the same side vanishing because x and
its integral were found to be bounded at the origin. The integral of the right-hand
side reduces to 1, and hence,

x(0+)− x(0−) = 1

which, in light of the initial conditions of Eq. 2.72, leads to

x(0+) = 1
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Fig. 2.31 Doublet response of an underdamped second-order system for various values of ωn

Since x(t) is a multiple of the unit-step function, ẋ(t) is a multiple of the unit-
impulse function, and hence, ẋ(0+) = ẋ(0−) = 0, i.e., it attains infinite values inside
the interval 0− < t < 0+, but is zero everywhere else. In summary, Eq. 2.72 reduces
to a homogeneous equation with nonzero initial conditions, namely,

ẍ+ 2ζωnẋ+ω2
n x = 0, x(0+) = 1, ẋ(0+) = 0, t ≥ 0+ (2.75)

whose time response was already found in Eq. 2.23a for a more general case, and
hence, for underdamped systems,

x(t) =

{
0, for t ≤ 0−;
e−ζ ωnt√

1−ζ 2

(
ζ sinωdt +

√
1− ζ 2 cosωdt

)
, for t ≥ 0+

The response of a damped, second-order system to a unit doublet can be called
the doublet response of this system, and is, henceforth, represented by jD(t), i.e., in
compact form,

jD(t)≡ e−ζωnt
√

1− ζ 2

(
ζ sinωdt +

√
1− ζ 2 cosωdt

)
u(t) (2.76a)

The doublet response of the system under study is plotted in Fig. 2.31, for various
values of ζ between 0 and 1.

Alternatively, as done with the undamped second-order system, we can also
obtain the doublet response by taking the first derivative of the impulse response,
namely,

jD(t) =
d
dt

jI(t) =
d
dt

[
e−ζωnt

ωd
(sin ωdt)u(t)

]



138 2 Time Response of First- and Second-order Dynamical Systems

i.e.,

jD(t) =
e−ζωnt
√

1− ζ 2

[√
1− ζ 2 cosωdt + ζ sinωdt

]
u(t)+

[
e−ζωnt

ωd
(sin ωdt)

]

δ (t)

However, in light of Eq. 2.47a, the second term of the right-hand side of the above
expression vanishes, jD(t) thus reducing to the form given in Eq. 2.76a.

The doublet responses of critically damped and overdamped systems are left as
exercises.

2.5.3.2 Step Response

If the same system is acted upon by a unit-step function, we have

ẍ+ 2ζωnẋ+ω2
n x = u(t), t > 0−, x(0−) = 0, ẋ(0−) = 0 (2.77)

whose response can be found, again by superposition, as the integral of the response
of the same system to a unit impulse. Thus, for underdamped systems we have

x(t) =
∫ t

0
jI(θ )dθ =

∫ t

0

e−ζωnθ

ωd
(sinωdθ )dθ (2.78)

The integral in Eq. 2.78 can be readily evaluated if sinωdθ is expressed as

sinωdθ ≡ e jωd θ − e− jωdθ

2 j
, j =

√−1

thereby obtaining

x(t) =
1

2 jωd

∫ t

0

[
e−(ζωn− jωd)θ − e−(ζωn+ jωd)θ

]
dθ

and hence

x(t) =

{
0, t ≤ 0−;[
1− e−ζωnt(cosωdt + ζωn

ωd
sinωdt)

]
/ω2

n , t ≥ 0+

Again, we call the response displayed above the step response of the second-
order underdamped system, and denote it by jS(t), i.e., in compact form,

jS(t)≡ 1
ω2

n

[

1− e−ζωnt

(

cosωdt +
ζ

√
1− ζ 2

sinωdt

)]

u(t) (2.79)

which is plotted in Fig. 2.32, for fixed ωn and various values of ζ .



2.5 Response to Abrupt and Impulsive Inputs 139

0.5 1 1.5 2 2.5 3

0.01

0.02

0.03

0.04

0.05

0.05

0.1

0.2

0.4
0.6

0.8

0.01

t

js (t)

Fig. 2.32 Step response of a second-order underdamped system for various values of ζ

The step responses of critically damped and overdamped systems are left, again,
as exercises.

2.5.3.3 Ramp Response

If now the system is acted upon by a ramp function, we have

ẍ+ 2ζωnẋ+ω2
n x = r(t), t > 0−, x(0−) = 0, ẋ(0−) = 0 (2.80)

As the reader can verify, the response of a second-order underdamped system to a
ramp, denoted by jR(t), is given by

jR(t)≡ 1
ω2

n

[
r(t)− 2ζ

ωn
u(t)

]
+

e−ζωnt

ω3
n

(

2ζ cosωdt +
2ζ 2− 1
√

1− ζ 2
sinωdt

)

u(t)

(2.81)

Likewise, the response of a second-order, critically damped system to a ramp,
denoted by kR(t), is given by

kR(t)≡ 1
ω2

n

(
1− e−ωnt) r(t)− 2

ω3
n

(
1− e−ωnt)u(t) (2.82)

Finally, the ramp response of an overdamped second-order system, denoted by
lR(t), is given by

lR(t) ≡ 1
ω2

n

(
r(t)− 2ζ

ωn
u(t)

)
+

e−ζωnt

ω3
n

[
2ζ cosh(ρωnt)+

2ζ 2− 1
ρ

sinh(ρωnt)

]
u(t)

(2.83a)



140 2 Time Response of First- and Second-order Dynamical Systems

a b

Fig. 2.33 Testbed for thrusters (a) its iconic model, and (b) its input under a firing thruster

where

ρ ≡
√

ζ 2− 1 (2.83b)

An example of input that can be represented as a superposition of inputs studied
here is the pulse, introduced below: A pulse p(t) is a signal, i.e., a function of time,
that is characterized by its short duration. Formally,

p(t) =

⎧
⎨

⎩

0, t < 0−

Π(t), 0+ ≤ t ≤ T−

0, t > T+

(2.84)

where provisions here have been made to allow for possible discontinuities in the
function Π(t). As well, T is a “small” time-interval with respect to the observation
time.

2.5.4 Superposition

Sometimes, a LTIS is acted upon by an input that is abrupt, impulsive, or a
combination of both, but is none of the above functions. Nevertheless, this input can
be decomposed into a linear combination of doublets, impulses, steps, and ramps.
By homogeneity, additivity, and time-invariance, the response can then be readily
obtained by superposition as the corresponding linear combination of the individual
responses to the inputs studied in this section.

Example 2.5.1 (Response of a Flexible System Under Thruster-firing). The iconic
model of a mechanical system used to test on-off thrusters for space applications
is shown in Fig. 2.33a. Such a thruster fires for a given finite time-interval T ,
thus providing a constant force F0 to the mass, during that period, as shown in
Fig. 2.33b, the force thus being a pulse with Π(t) = F0. Find the time response of
the underdamped system to this pulse.
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Solution: The pulse of Fig. 2.33b can be represented as the sum of two step
functions of the same amplitude F0 and opposite signs, the positive step being
applied at t = 0, the negative at t = T , i.e.,

f (t) = F0u(t)−F0u(t−T)

the mathematical model of the system being

mẍ+ cẋ+ kx = f (t)

As the system is underdamped, its step response is jS(t), as given by Eq. 2.79. We
can, therefore, write the time response sought in the form

x(t) =
F0

m
jS(t)− F0

m
jS(t−T)

Since we have already found an expression for jS(t), the foregoing expression would
suffice for our purposes. For completeness, we expand this response as

x(t) =
F0

mω2
n

{[

1− e−ζωnt

(

cosωdt +
ζ

√
1− ζ 2

sinωdt

)]

u(t)

−
[

1− e−ζωn(t−T )

(

cosωd(t−T )+
ζ

√
1− ζ 2

sinωd(t−T)

)]

u(t−T )

}

This total time response is sketched in Fig. 2.34 as the sum of two step responses.

2.6 The Total Time Response

The total time response of dynamical systems is the time response under non-zero
input and non-zero initial conditions. By superposition, the total time response of
linear dynamical systems and, in particular, of LTI dynamical systems, is simply
the sum of the zero-input and the zero-state responses. We summarize below these
results for each of the systems under study.

2.6.1 First-order Systems

Here the system of interest is modeled by

ẋ =−ax+ f (t), t > 0−, x(0−) = x0 (2.85)
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Fig. 2.34 Time response of the testbed to a thruster pulse

If we recall the zero-input response of Eq. 2.8 and the zero-state response given
by the convolution of Eq. 2.54, the required time response is

x(t) = e−atx0 +
∫ t

0
f (t− τ)e−aτ dτ (2.86)

2.6.2 Second-order Systems

As in previous sections, here we distinguish among the usual cases, as described
below.

2.6.2.1 Undamped Systems

For second-order undamped systems, we have

ẍ+ω2
n x = f (t), x(0−) = x0, ẋ(0−) = v0, t > 0− (2.87)

The time response of this system is then the sum of the zero-input response of
Eq. 2.13 and the zero-state response given by the corresponding convolution, as
appearing in Eq. 2.55, namely,
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x(t) = (cosωnt)x0 +
1

ωn
(sinωnt)v0 +

∫ t

0
f (t− τ)

1
ωn

(sinωnτ)dτ (2.88)

2.6.2.2 Damped Systems

A second-order damped system acted upon by a non-zero input and non-zero initial
conditions is represented below:

ẍ+ 2ζωnẋ+ω2
n x = f (t), x(0−) = x0, ẋ(0−) = v0, t > 0− (2.89)

For underdamped systems, the time response is derived as the sum of the zero-
input response of Eq. 2.23a and the zero-state response given by the convolution of
Eq. 2.56, namely,

x(t) =
e−ζωnt
√

1− ζ 2

(√
1− ζ 2 cosωdt + ζ sinωdt

)
x0 +

e−ζωnt

ωd
(sinωdt)v0

+

∫ t

0
f (t− τ)

e−ζωnτ

ωd
(sinωdτ)dτ (2.90)

Correspondingly, the total responses of critically damped and overdamped
systems are shown below:

x(t) = e−ωnt [(1+ωnt)x0 + tv0]+

∫ t

0
f (t− τ)τe−ωnτ dτ (2.91)

and

x(t) =
e−ζωnt

r

[
[r cosh(rωnt)+ ζ sinh(rωnt)]x0 +

1
ωn

sinh(rωnt)v0

]

+

∫ t

0
f (t− τ)

e−ζωnτ

rωn
sinh(rωnτ)dτ (2.92a)

r ≡
√

ζ 2− 1 (2.92b)

In simulation studies it is useful to have the foregoing total responses for all
three cases of damped systems in a single expression, which can be done with
the aid of the concept of state variable introduced in Sect. 2.3.2. The zero-input
response of damped systems in state-variable form is given in Eq. 2.21. The zero-
state response in state-variable form can be derived from the convolution, but we
have three different formulas for this, namely, for each of the three associated cases.
A generally applicable convolution expression in terms of state variables is derived
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below. To this end, we first cast the governing equation, Eq. 2.89, in state-variable
form, namely,

ż = Az+b f (t), t > 0, z(0) = z0 (2.93)

with z and A defined in Eqs. 2.15, 2.16, 2.18a, b, while b as defined as

b≡
[

0
1

]
(2.94)

Thus, the impulse response of the system in state-variable form is defined as the
response of the system under z0 = 0 and f (t) = δ (t). We can determine, then, the
impulse response of the system at hand in exactly the same manner as we did for
the scalar first-order system in Sect. 2.4.5. That is, we transform Eq. 2.93 with zero
initial condition and acted upon by a unit impulse into a system with zero input
and non-zero initial condition at time 0+. We do this by integration of both sides of
the aforementioned equation, with f (t) = δ (t), between t = 0− and t = 0+, which
yields

z(0+)− z(0−) =
∫ 0+

0−
Az(t)dt +

∫ 0+

0−
bδ (t)dt (2.95)

In the foregoing equation, the left-hand side reduces to z(0+), while the first
integral of the right-hand side vanishes because z(t) remains bounded at the origin.
Moreover, the second integral reduces to b by virtue of the definition of the impulse
function, and hence,

z(0+) = b

Thus, the system under study takes the form

ż = Az, z(0+) = b, t > 0+ (2.96)

whose time response, henceforth represented by zI(t), can be readily derived from
Eq. 2.21, namely,

zI(t) = eAtbu(t) (2.97)

which is the impulse response of the system under study. Now, obtaining the zero-
state response for an arbitrary input is straightforward if we convolve the foregoing
impulse response with a given input f (t), thus deriving

z(t) =
∫ t

0
eAτ b f (t− τ)dτ (2.98)

and hence, the total response of the system takes the form

z(t) = eAtz0 +

∫ t

0
eAτ b f (t− τ)dτ (2.99a)
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or, by virtue of the commutativity of the convolution,

z(t) = eAtz0 +
∫ t

0
eA(t−τ)b f (τ)dτ (2.99b)

The two above expressions for the total response of damped systems are valid, in
fact, for arbitrary n-degree-of-freedom (n-dof) systems, in which the state-variable
vector z becomes 2n-dimensional, while vector b 2n-dimensional, and matrix A of
2n× 2n.

2.7 The Harmonic Response

Besides impulsive and abrupt inputs, dynamical systems can be subjected to
persistent, time-varying inputs that behave in an unpredictable manner. This is
the case in aircraft subjected to gust winds and turbulence or terrestrial vehicles
traveling on imperfect roads. While these systems are subjected to time-varying
inputs that are difficult, if not impossible, to describe in the form of an explicit
function f (t), these inputs can be regarded as the summation of infinitely-many
inputs of a much simpler structure. In fact, as the French mathematician Joseph
Fourier (1768–1830) showed in his famous work Théorie analytique de la chaleur,
published in 1812, any periodic function can be decomposed into an infinite sum
of sines and cosines of multiples of a fundamental frequency. Such an expansion
of a periodic function is known as a Fourier series. By extension, the same
decomposition can be applied to arbitrary functions using a continuous distribution
of frequencies that can be determined using what is known as the Fourier transform.
Thus, given any input, not necessarily periodic, it is always possible to find its
frequency content by a study that is known as spectral analysis. For linear systems,
such a decomposition, whether in a continuum of frequencies or in a discrete,
although infinite set of multiples of a fundamental frequency, is extremely useful
because it allows the analyst, by superposition, to find the response of the system
to that arbitrary input. Indeed, by means of superposition, the said response can
be found as an infinite sum, i.e., a series of responses to harmonic (sinusoidal
and cosinusoidal) inputs. These facts allow us to understand the importance of the
response of dynamical systems to simple harmonic inputs. We will term, henceforth,
such a response the harmonic response of the system at hand, which also goes by
the name of frequency response.

Below we study the response of mechanical first- and second-order systems to
harmonic inputs and then, using a Fourier expansion, we derive the response of
these systems to any periodic function. While the Fourier transform of arbitrary,
possibly random functions allows the study of the response of dynamical systems to
unpredictable or stochastic inputs, we will skip in this book the Fourier transform
and focus on the Fourier series.
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The philosophy behind the analysis that follows is that we are interested in the
behavior of systems after a very long time has elapsed since an initial time, i.e., since
the system started being perturbed or excited with an input of the nature mentioned
above. Hence, initial conditions become immaterial and can be set arbitrarily. Now,
when we speak of long periods, we must realize that we are speaking of a time span
that is large with respect to the natural time scale of the system under study. In
fact, every single-dof system studied in Chap. 1 has one distinct time scale, namely,
the time constant for first-order systems or the natural period, i.e., the inverse of
the natural frequency, for second-order systems. Moreover, all physical systems
always contain a certain amount of damping, that takes care of any nonzero initial
conditions whose effect on the system response becomes negligible after a certain
finite time. Thus, we begin by deriving the zero-state response of the systems at hand
to harmonic excitations. For example, when we study the vibrations in the fuselage
of aircraft under turbulence occurring at cruising conditions, the initial conditions
become irrelevant. We might as well consider, then, that the system, in this case the
fuselage, started its motion at time −∞.

We will assume a harmonic input, i.e., the forcing term in the governing equations
is assumed to have the form

f (t) = Acosωt +Bsinωt (2.100)

We can study the response of the systems at hand to the input of Eq. 2.100 by
superposition, i.e., by finding first the response to an input of the form cosωt, then
that to one of the form sinωt and then express the total input as a suitable linear
combination of the two foregoing responses. Of course, by linearity, the coefficients
of that linear combination are the corresponding coefficients A and B of Eq. 2.100.
Coefficients A and B are termed the amplitude of the cosine and the sine signals,
respectively.

Below we study the time response of first- and second-order systems and show
that this response can be decomposed into a transient part and a steady-state part.
The transient part decays with time and, after a finite time T has elapsed, it becomes
negligible. What remains is a harmonic response that constitutes the steady-state
response. In particular, for a harmonic excitation of the form

f (t) = Acosωt (2.101)

the steady-state response, represented by xCS(t), takes the form

xCS(t) = M cos(ωt +φ) (2.102)

where M and φ are the magnitude and phase of the response under study. Thus,
the harmonic response is fully characterized by these two parameters, as shown
in Fig. 2.35. It will become apparent that both the magnitude and the phase
are functions of: (a) the amplitude and the frequency of the input and (b) the
parameters—τ for first-order, ζ and ωn for second-order systems. Below we derive
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Fig. 2.35 Harmonic response of a linear, time-invariant dynamical system

expressions for the magnitude and phase of the harmonic response of the systems
of interest and plot what is known as their frequency response plots. These plots are
also known as the Bode plots of the system at hand.

Prior to our study, we recall some useful trigonometric identities, namely,

CC cosωt +CS sinωt = K cos(ωt +αC) (2.103a)

where

K =
√

C2
C +C2

S , αC =−arctan

(
CS

CC

)
(2.103b)

and

CC cosωt +CS sinωt = K sin(ωt +αS) (2.104a)

where

αS = arctan

(
CC

CS

)
(2.104b)

with K as defined in Eq. 2.103b.
Note that if the harmonic functions of the left-hand side of Eqs. 2.103a and

2.104a involve themselve a phase angle β , then the phase angle of the harmonic
functions in the right-hand side changes correspondingly, i.e.,

CC cos(ωt+β )+CS sin(ωt+β ) =K cos(ωt+α ′C) or K sin(ωt+α ′S) (2.105a)

where the coefficient K is the same as that of Eq. 2.103b, but the phase angles are
now

α ′C = αC +β , α ′S = αS +β (2.105b)

2.7.1 The Unilateral Harmonic Functions

It will be useful to derive a relationship between the zero-state response of a system
to inputs of the forms (cosωt)u(t) and (sinωt)u(t). These two functions are zero up
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until t = 0−; they are identical to the harmonic functions afterwards, and henceforth
termed the unilateral harmonic functions. Note that, if observed at instants t�0,
the unilateral harmonic functions become the usual harmonic functions.

Let xC(t) be the zero-state response (ZSR) of any linear system to an input of the
form (cosωt)u(t); likewise, let xS(t) be the ZSR of the same system to an input of
the form (sinωt)u(t); and let xI(t) be the impulse response of the same system. Note
that here we do not distinguish among undamped, underdamped, critically damped,
and overdamped systems; neither do we distinguish between first- and second-order
systems. In the process, we will need the time-derivatives of the unilateral harmonic
functions, which we readily derive:

d
dt

[(cosωt)u(t)] =−ω(sinωt)u(t)+ (cosωt)δ (t)

But, from Eq. 2.47a,

(cosωt)δ (t) = (cos(0))δ (t)≡ δ (t)

and so,
d
dt

[(cosωt)u(t)] =−ω(sinωt)u(t)+ δ (t) (2.106)

or, solving for (sinωt)u(t),

(sinωt)u(t) =− 1
ω
[(cosωt)u(t)]+

1
ω

δ (t) (2.107)

Thus, the response of the system to the unilateral sine function can be derived as a
linear combination of the response to the unilateral cosine function and the impulse
response, by merely mimicking the foregoing relation among inputs in terms of
the corresponding relation among responses. This we can do by exploiting the
properties of LTIS, namely,

xS(t) =− 1
ω

d
dt

xC(t)+
1
ω

xI(t) (2.108)

Likewise,
d
dt

[(sinωt)u(t)] = ω(cosωt)u(t)+ (sinωt)δ (t)

Again, from Eq. 2.47,

(sinωt)δ (t)≡ (sin(0))δ (t)≡ 0

and so,
d
dt

[(sin ωt)u(t)] = ω(cosωt)u(t) (2.109)
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whence,

(cosωt)u(t) =
1
ω

d
dt

[(sinωt)u(t)] (2.110)

Thus, we can find the response of a LTIS to the unilateral sine function in terms
of its response to the unilateral cosine function by simply mimicking the foregoing
expression, in exactly the same way as done previously, i.e.,

xC(t) =
1
ω

d
dt

xS(t) (2.111)

The presence of the impulse response in Eq. 2.108 is to be highlighted. This term
appears in that equation by virtue of the corresponding impulsive term in Eq. 2.106.

2.7.2 First-order Systems

The equation of motion of a first-order system is recalled below:

ẋ+ ax = f (t) (2.112)

In the subsequent discussion, we shall assume that the parameter a characterizing
the system is positive. Moreover, the zero-state response of a first-order system
to the (cosωt)u(t) input, denoted, as above, by xC(t), will be derived. Now,
since the unit step function is dimensionless, the input function in Eq. 2.112 is
dimensionless, which means that its left-hand side is also dimensionless, and hence,
x(t) is expressed in units of time. This should not bother the reader, for actual
physical excitations always carry physical units that are accounted for by the units
of the amplitudes A and B of Eq. 2.100.

The response sought can be expressed in terms of the convolution, namely,

xC(t) =
∫ t

0
cosω(t− τ)hI(τ)dτ (2.113a)

where hI(t) is the impulse response of the system under study, i.e.,

hI(t) = e−atu(t) (2.113b)

which is recalled to be dimensionless.
Now, the integral of Eq. 2.113a can be obtained in many ways. If a straightfor-

ward approach is used, we would substitute the cosine function of the convolution
by its exponential representation, namely,

cosωt ≡ e jωt + e− jωt

2
(2.114)
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with j defined as the imaginary unity, i.e., as j≡√−1. Alternatively, one can simply
search in a table of integrals or resort to symbolic computations, using scientific
software—e.g., Maple, Mathematica or Macsyma. The result is, in any case, as
indicated below:

xC(t) =
1

a2 +ω2

(−ae−at + acosωt +ω sinωt
)

u(t) (2.115)

from which we can readily identify the transient and the steady-state components of
the time response. Indeed, since we assumed at the outset that a> 0, the exponential
term in the above expression decays with time, and hence, the transient part of the
response, xCT (t), is readily identified, namely,

xCT (t) =
−a

a2 +ω2 e−atu(t) (2.116)

while the steady-state component, xCS(t), is given by

xCS(t) =
1

a2 +ω2 (acosωt +ω sinωt)u(t)

Since we are interested in this section in studying the behavior of the systems at
hand after a long time has elapsed, we can assume that the system started being
excited in the distant past. For the time frame of observation in which we are
interested, we can write u(t) = 1, and the above equation can then be rewritten
in the form

xCS(t) =

(
a

a2 +ω2

)
cosωt +

(
ω

a2 +ω2

)
sinωt (2.117)

Using Eqs. 2.103a, b, we may rewrite this expression in the form

xCS(t) = M cos(ωt +φ) (2.118a)

where

M =
1√

a2 +ω2
φ =−arctan

(ω
a

)
(2.118b)

For completeness, we derive now the time response of the same system to an
input of the form (sinωt)u(t) using Eq. 2.108. First, we calculate

d
dt

(xC(t)) =
1

a2 +ω2

(
a2e−at − aω sinωt +ω2 cosωt

)
u(t)

+
1

a2 +ω2

(−ae−at + acosωt +ω2 sinωt
)

δ (t) (2.119)
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which, by virtue of Eq. 2.47, simplifies to

d
dt

(xC(t)) =
1

a2 +ω2

(
a2e−at − aω sinωt +ω2 cosωt

)
u(t)

Moreover, we recall that

xI(t) = e−atu(t)

Thus, from Eq. 2.108, we have

xS(t) = − 1
ω

1
a2 +ω2

(
a2e−at − aω sinωt +ω2 cosωt

)
u(t)+

1
ω

e−atu(t)

= − 1
a2 +ω2

[−ωe−at− asinωt +ω cosωt
]

u(t) (2.120)

The transient component of the response xS(t), denoted by xST (t), is readily
singled out from Eq. 2.120, namely,

xST (t) =
ω

a2 +ω2 e−atu(t) (2.121)

Likewise, the steady-state component of the same response, denoted by xSS(t), is
identified from Eq. 2.120 as

xSS(t) =
1

a2 +ω2 (asinωt−ω cosωt)u(t)

After a long time t has elapsed, the unit-step function is identical to unity, and
hence, the above expression becomes

xSS(t) =
1

a2 +ω2 (asinωt−ω cosωt) (2.122)

Correspondingly, the magnitude and the phase of the xSS(t) response can be
readily identified from the above expression for this signal, thereby obtaining

xSS(t) =

(
a

a2 +ω2

)
sinωt−

(
ω

a2 +ω2

)
cosωt (2.123)

Using Eq. 2.104a, we may write this equation as

xSS(t) = M sin(ωt +φ) (2.124a)
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where

M =
1√

a2 +ω2
φ =−arctan

(ω
a

)
(2.124b)

which are essentially the same as those derived for the cosine input, as they should.

2.7.3 Second-order Systems

We attempt first to find the harmonic response of undamped systems using the
approach introduced for first-order systems.

2.7.3.1 The Response to the Unilateral Cosine Function

For a unilateral cosine input, we have

ẍ+ω2
n x = (cosωt)u(t) (2.125)

In the above equation, the right-hand side is, again, dimensionless, and so is its
left-hand side, which implies that x(t) is represented in units of time-squared.

Further, we recall the impulse response of second-order undamped systems,
namely,

gI(t) =
1

ωn
(sinωnt)u(t)

which is recalled to bear units of time.
Upon calculation of the convolution of the (cosωt)u(t) input with the foregoing

impulse response, we obtain

x(t) =
1

ω2
n −ω2 (cosωt− cosωnt)u(t) (2.126)

from which we cannot identify a decaying term, as we did for first-order systems,
and our attempt to follow the previous approach stops here.

An alternative approach to finding the harmonic response of undamped second-
order systems is now introduced. We first derive the harmonic response of under-
damped systems, the response associated with undamped systems being obtained as
the limiting case, when ζ → 0, of the harmonic response thus found.

Let us then consider the second-order damped system excited by a unilateral
cosine function:

ẍ+ 2ζωnẋ+ω2
n x = (cosωt)u(t) (2.127)
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Moreover, the impulse response of the above system for the underdamped case is

jI(t) =
e−ζωnt

ωd
(sinωdt)u(t) (2.128)

In order to obtain the response of the system of Eq. 2.127, we resort to the
convolution of the (cosωt)u(t) input with the foregoing impulse response. This
convolution is calculated in exactly the same manner as done for first-order systems,
thereby obtaining the desired expression xC(t) for the given input, namely,

xC(t) =
N(t)

D
u(t) (2.129a)

with N(t) and D defined as

N(t) ≡
[
−ζ (ω2 +ω2

n )√
1− ζ 2

sinωdt +(ω2−ω2
n )cosωdt

]

e−ζωnt

−[(ω2−ω2
n )cosωt− 2ζωωn sinωt

]
(2.129b)

D ≡ ω4− 2ω2ω2
n +ω4

n + 4ζ 2ω2ω2
n ≡ (ω2−ω2

n )
2 + 4ζ 2ω2ω2

n (2.129c)

We thus have

xC(t) =
1/ω2

n

(1− r2
f )

2 + 4ζ 2r2
f

{

e−ζωnt

[
−ζ (1+ r2

f )√
1− ζ 2

sinωdt− (1− r2
f )cosωdt

]

+
[
2ζ r f sinωt +(1− r2

f )cosωt
]
}

u(t) (2.130a)

with the frequency ratio r f defined as

r f ≡ ω
ωn

(2.130b)

Since ζ > 0 and ωn > 0, we can see that the transient term is that comprising the
exponential in Eq. 2.130a, namely

xCT (t) =
e−ζωnt

ω2
n

[
(1− r2

f )
2 +(2ζ r f )2

]

[−ζ (1+ r2
f )√

1− ζ 2
sinωdt− (1− r2

f )cosωdt

]

u(t)

The steady-state component xCS of the response given in Eq. 2.130a can now be
recognized as

xCS(t) =
1

ω2
n

[
(1− r2

f )
2 +(2ζ r f )2

]
[
2ζ r f sinωt +(1− r2

f )cosωt
]

u(t)
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Again, we are interested only in the response after a long time has elapsed since the
system was first excited, and so, the unit-step function can be replaced by unity in
the above expression, thus obtaining

xCS(t) =
2ζ r f

ω2
n

[
(1− r2

f )
2 +(2ζ r f )2

] sinωt +
1− r2

f

ω2
n

[
(1− r2

f )
2 +(2ζ r f )2

] cosωt

(2.131)

Using Eq. 2.103a we may rewrite this expression in the form

xCS = M cos(ωt +φ) (2.132a)

where

M =
1/ω2

n√
(1− r2

f )
2 +(2ζ r f )2

φ =−arctan

(
2ζ r f

1− r2
f

)

(2.132b)

Now the total response of an undamped second-order system to a unilateral cosine
input (cosωt)u(t) can be derived by setting ζ = 0 in Eq. 2.130a, thereby obtaining

xC(t) =
1/ω2

n

1− r2
f

(cosωt− cosωnt)u(t) (2.133)

which is identical to the expression derived directly from the convolution theorem
and displayed in Eq. 2.126.

The corresponding harmonic response of undamped systems can now be derived
by setting ζ = 0 in Eq. 2.131, which yields the associated steady-state response as

xCS(t) =
1/ω2

n

1− r2
f

cosωt (2.134)

From the above expression, it is clear that the magnitude of the response is the
absolute value of the coefficient of cosωt. For the phase, we must consider two
cases. First, when r f < 1, the denominator of the said coefficient is positive and,
hence, the coefficient is also positive. Thus, the response to the input (cosωt)u(t)
is exactly the same signal, except for a difference in magnitude; the response is
therefore in phase with the input, i.e., φ = 0. On the other hand, when r f > 1, the
denominator and, hence, the whole coefficient of cosωt, are negative. Thus, the
response of the system, apart from a difference in amplitude, is opposite in sign to
the input, which corresponds to φ = ±180◦. However, the positive sign does not
make physical sense, since it implies that the response “leads” the input, i.e., the
system responds to the input before it is applied. The negative sign implies a lag
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in phase, which is consistent with the actual behavior of dynamical systems. The
response of the undamped system to the given input is, then,

xCS(t) = M cos(ωt +φ) (2.135a)

where

M =
1/ω2

n

|1− r2
f |
, φ =

{
0◦ if r f < 1;
−180◦ if r f > 1.

(2.135b)

The foregoing expressions for the amplitude and phase of the harmonic
response of second-order systems were derived from the steady-state response
of underdamped systems. However, a close look at those derivations reveals that
nothing prevents us from applying them to critically damped and overdamped
systems as well. In fact, M cos(ωt +φ) is a particular solution of the second-order
damped system excited by the input cos(ωt).

As a matter of fact, the steady-state responses derived above are nothing but
particular solutions of the associated ODEs, as the reader can readily verify. Upon
substituting the foregoing expressions for the harmonic response of second-order
systems into the corresponding mathematical model, it will become apparent that
those expressions verify indeed the model, if with particular initial conditions. In
the realm of the harmonic response, we are interested in the behavior of the system
at arbitrarily large values of t, and so, the initial conditions in this case become
irrelevant.

2.7.3.2 Resonance

One special situation occurs when r f = 1, or ω = ωn. From Eq. 2.135a, we see
that M attains unbounded values when this occurs. Thus, when a harmonic input
is applied to a second-order undamped system at a frequency exactly equal to
its natural frequency, the magnitude of its response is infinite. This phenomenon
is called resonance and does not occur in first-order systems. Of course, such a
situation could never occur in a real-life system since, first, damping is always
present to some extent in actual systems, and, more importantly, the assumption of
the system being linear would no longer apply, as large amplitudes in the response
would occur, thus making the underlying model no longer valid. Still, the concept
is of extreme practical importance since, in actual systems, a very large and violent
response is produced whenever an exciting force is near the natural frequency of
the system. Thus, great care must go into the design of mechanical systems that
are required to remain as unperturbed as possible in the presence of harmonic
disturbances. What is needed in these cases is, apparently, a design that will ensure
that the system at hand is not subjected to excitations bearing frequencies near its
natural frequency at any time during their normal operating conditions.
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2.7.3.3 The Response to the Unilateral Sine Function

For completeness, and for further reference, we derive below the response of
underdamped systems to a unilateral sine input, (sinωt)u(t); the desired response
is denoted here by xS(t). We do this by resorting to the same idea introduced earlier
for first-order systems, namely, by recalling Eq. 2.108. To this end, we must first
differentiate xC(t) as given by Eqs. 2.129a, b, i.e.,

d
dt

(xC(t)) =
Ṅ(t)

D
u(t)+

N(t)
D

δ (t)

where N(t) and D are given in Eqs. 2.129b, d; it will become more convenient to
write the latter in the form

D = ω4
n

[
(1− r2

f )
2 + 4ζ 2r2

f

]
(2.136)

The impulsive term in the above expression for the time-derivative of xC(t)
reduces to

N(t)
D

δ (t) =
N(0)

D
δ (t)

but N(0) vanishes, and hence,

d
dt

(xC(t)) =
Ṅ(t)

D
u(t) (2.137)

The time derivative Ṅ(t) is readily found to be, with the aid of computer algebra,

Ṅ(t) = −ζωne−ζωnt

[

−ζ (ω2 +ω2
n )√

1− ζ 2
sin ωdt +(ω2−ω2

n )cosωdt

]

+e−ζωnt

[

−ζωd(ω2 +ω2
n )√

1− ζ 2
cosωdt−ωd(ω2−ω2

n )sinωdt

]

+
[
2ζω2ωn cosωt +ω(ω2−ω2

n )sinωt
]

or, after rearrangement of terms,

Ṅ(t) = e−ζωnt

{[
ζ 2ωn(ω2 +ω2

n )√
1− ζ 2

−
√

1− ζ 2ωn(ω2−ω2
n )

]

sinωdt

−ζωn(ω2−ω2
n +ω2 +ω2

n )cosωdt

}

+Aω3
n

[
2ζ r2

f cosωt + r f (r
2
f − 1)sinωt

]
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Upon further rearranging of terms, the above expression reduces to

Ṅ(t) = ω3
n e−ζωnt

(
1− r2

f + 2ζ 2r2
f√

1− ζ 2
sinωdt− 2ζ r2

f cosωdt

)

+ω3
n

[
2ζ r2

f cosωt + r f (r
2
f − 1)sinωt

]
(2.138)

We can now substitute Eq. 2.137 and the corresponding impulse response, jI(t),
into Eq. 2.108. For quick reference, we recall below the impulse response of
underdamped systems:

jI(t) =
e−ζωnt

ωd
(sinωdt)

where ωd = ωn

√
1− ζ 2. After substituting the previous results into Eq. 2.108, and

performing some algebraic manipulations, we obtain

xS(t) = − 1/ω2
n

(1− r2
f )

2 +(2ζ r f )2
H(t)u(t) (2.139a)

where

H(t) ≡ e−ζωntr f

[
1− r2

f − 2ζ 2

√
1− ζ 2

sinωdt− 2ζ cosωdt

]

+2ζ r f cosωt +(r2
f − 1)sinωt (2.139b)

Now, the transient response xST (t) of the system at hand to the unilateral sine
input is readily identified from the above expression, namely,

xST (t) =
−(1/ω2

n)

(1− r2
f )

2 +(2ζ r f )2
e−ζωnt r f

[
1− r2

f − 2ζ 2

√
1− ζ 2

sin ωdt− 2ζ cosωdt

]

u(t)

(2.140)

while the corresponding steady-state response is

xSS(t) =
−(1/ω2

n)

(1− r2
f )

2 +(2ζ r f )2

[
2ζ r f cosωt− (1− r2

f )sinωt
]

u(t)

Again, we are interested, in the steady state, at times t very large, at which u(t) can
be replaced by unity, the above response then becoming

xSS(t) =
−(1/ω2

n)

(1− r2
f )

2 +(2ζ r f )2

[
2ζ r f cosωt− (1− r2

f )sin ωt
]

(2.141)
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and hence, xSS(t) has the form

xSS(t) = M sin(ωt +φ) (2.142a)

where

M =
1/ω2

n√
(1− r2

f )
2 +(2ζ r f )2

, φ =−arctan

(
2ζ r f

1− r2
f

)

(2.142b)

The total response of an undamped system to a unilateral sine input can be derived
by setting ζ = 0 in the expression for xS(t) given by Eq. 2.139 to obtain

xS(t) =
1/ω2

n

1− r2
f

(
sinωt− r f sinωnt

)
u(t) (2.143)

Likewise, the steady-state response of an undamped system to a sinusoidal input is
now derived by setting ζ = 0 in the expression derived for xSS(t), thereby obtaining

xSS(t) = MS sin(ωt +φ) (2.144a)

where

MS =
(1/ω2

n )

|1− r2
f |
, φ =

{
0◦ if r f < 1;
−180◦ if r f > 1

(2.144b)

It is instructive to analyze the total response of an undamped system when
excited by a harmonic input with a frequency identical to that of the system, i.e.,
when ω = ωn or, equivalently, when r f = 1. For example, if we set ω = ωn in
Eq. 2.133 or Eq. 2.143, we obtain an indeterminacy, i.e., 0/0. In order to resolve this
indeterminacy, we apply L’Hospital’s rule to Eq. 2.133, that we rewrite in the form

xC(t) =
1/ω2

n

1− r2
f

(cosωnr f t− cosωnt)≡ F(r f )≡ N(r f )

D(r f )

and we regard this expression as a function of r f only. By L’Hospital’s rule, then,

F(1) = lim
r f→1

N′(r f )

D′(r f )
=
−(1/ω2

n)ωnt sinωnr f t

−2r f

∣
∣∣
r f =1

which yields

F(1) =
1

2ωn
t sinωnt

The function 2ωnF(t) is plotted in Fig. 2.36 for ωn = 1Hz = 2π rad/s, which shows
a dramatic case of instability. Note that the amplitude of the above response grows
linearly with time.
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Fig. 2.36 Resonant response
of an undamped second-order
system
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2.7.4 The Response to Constant and Linear Inputs

We consider a load that has been suspending from a crane by means of a cable during
a time long enough as to have allowed all transient components of its time response
to have faded away. If the crane is subjected to the sole weight of the load, we have
an example of a mass-spring system acted upon by a constant input, the weight of
the load. Likewise, a terrestrial vehicle, like that of Example 2.3.3, that has been
climbing up a slope for a time long enough as to have allowed for the decay of the
transient components of its time response, is an instance of a mass-spring-dashpot
system acted upon by a linear input. In this subsection we study the time response
of these systems, which is quite straightforward to obtain.

For the sake of brevity, we skip first-order and undamped second-order systems
here, and focus on second-order underdamped systems. Moreover, in all cases
considered here we assume zero initial conditions, with the purpose of being able to
apply superposition. We thus have

ẍ+ 2ζωnẋ+ω2
n x = A, x(0) = 0, ẋ(0) = 0 (2.145)

where A is a constant, and initial conditions are given at t = 0, without mentioning
explicitly whether at 0+ or at 0−, a difference that now becomes irrelevant because
the excitation is smooth, and hence, does not contain any impulsive or abrupt
components. The simplest way of obtaining the time response of the system at hand
is by rewriting the foregoing equation in the form

ẍ+ 2ζωnẋ+ω2
n

(
x− 1

ω2
n

A

)
= 0, x(0) = 0, ẋ(0) = 0

It is thus apparent that we can cast the foregoing system in a zero-input form with a
simple change of variable, namely,

ξ = x− 1
ω2

n
A, or x = ξ +

1
ω2

n
A (2.146)
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which implies that the initial conditions will have to be given in terms of ξ (0) and
ξ̇ (0), i.e.,

ξ̈ + 2ζωnξ̇ +ω2
n ξ = 0, ξ (0) =− 1

ω2
n

A, ξ̇ (0) = 0

Now it is a simple matter to derive the time response of the above system, which
turns out to be

ξ (t) =− A
ω2

n

e−ζωnt
√

1− ζ 2
(
√

1− ζ 2 cosωdt + ζ sinωdt)

Therefore, upon returning to the original variable x(t), the foregoing expression
leads to the time response of an underdamped second-order system to a constant
input, namely,

xconst(t) =
A

ω2
n

[

1− e−ζωnt
√

1− ζ 2
(
√

1− ζ 2 cosωdt + ζ sinωdt)

]

(2.147)

which the reader is invited to compare with the corresponding step response.
Now we derive the time response of the same system to an input that is linear

with time, under zero initial conditions, i.e.,

ẍ+ 2ζωnẋ+ω2
n x = At, x(0) = 0, ẋ(0) = 0 (2.148)

Let us call xlin(t) the time response of the system under study to a linear input,
with zero initial conditions. Since the linear input is the integral of the constant
input, by linearity we have

xlin(t) =
∫ t

0
xconst(θ )dθ

Upon performing the above integration with the aid of computer algebra, we have

xlin(t) =
A

ω3
n

{

ωnt + e−ζωnt

[

2ζ cosωdt +
(2ζ 2− 1)
√

1− ζ 2
sinωdt

]

− 2ζ

}

(2.149)

whence it is apparent that the initial condition xlin(0) = 0 is satisfied. The time-
derivative of the foregoing expression need not be computed, for it is identical to
xconst(t), by definition. Since this function verifies the initial condition xconst(0) = 0,
we have that the expression for xlin(t) indeed satisfies the given zero initial
conditions, thereby completing the computation of the time responses of second-
order damped systems to constant and linear inputs.
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2.7.5 The Power Dissipated By a Damped Second-order System

Damping can be determined experimentally if the energy dissipated by a damped
second-order system and the motion undergone by the system are both known. In
particular, when the system is excited by a harmonic force, we know that the system
undergoes harmonic motion as well. Below we derive the relation that allows us
to determine the damping coefficient c when we know the amount of energy EC

dissipated by a damped second-order system per cycle as well as its amplitude M
and the frequency ω .

The system at hand is assumed to undergo a motion of the form

x(t) = M cos(ωt +φ) (2.150)

and hence,

ẋ(t) =−ωM sin(ωt +φ) (2.151)

Thus, from Chap. 1, the power Πd dissipated by the dashpot takes the form

Πd(t) = cẋ2(t) = cω2M2 sin2(ωt +φ) (2.152)

which can be further expressed as

Πd(t) =
1
2

cω2M2 [1− cos2(ωt +φ)] (2.153)

Now, EC is obtained simply by integration of the power Πd(t) dissipated throughout
a complete cycle, i.e.,

EC =

∫ 2π/ω

0
Πd(t)dt =

1
2

cωM2
∫ 2π

0
[1− cos2(ωt +φ)]ωdt (2.154)

the integral thus reducing to 2π , and hence,

EC = πcωM2

Therefore, if all parameters EC, ω and M are known, the damping coefficient can
be readily found as

c =
EC

πωM2 (2.155)

2.7.6 The Bode Plots of First- and Second-order Systems

In the preceding section we derived expressions for the magnitude of the response
of first- and second-order systems to a harmonic input. This magnitude has a unit
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associated with it, which is the same as that of the variable x. In engineering practice,
it is often advantageous to work with dimensionless quantities. Thus, we will define
a dimensionless quantity μ called the magnification factor. For first-order systems,
M has units of a−1, and hence, Ma or, equivalently, M/τ , is dimensionless and plays
the role of the magnification factor μ , i.e.,

μ f ≡Ma ≡ M
τ

(2.156)

Likewise, for second-order systems, M has units of time squared, and hence, we
can render it dimensionless by multiplying it by a quantity with units of frequency-
squared. The obvious candidate is ω2

n , i.e., the square of the natural frequency of
the system at hand. Thus, for second-order systems, the magnification factor is
defined as

μs = Mω2
n (2.157)

With the preceding definitions, we can readily derive the magnification factors
for first- and second-order systems, using the expressions derived for M previously.
These are listed below, along with the corresponding expression for the phase angle.
As before, for second-order systems, only the undamped and underdamped cases are
considered, the critically damped and overdamped cases being left as exercises.

For first-order systems, we have

μ f =
1

√
1+
(ω

a

)2
, φ f =−arctan

(ω
a

)
(2.158)

while, for second-order undamped systems,

μsu =
1

|1− r2
f |
, φsu =

{
0◦ if r f < 1;
−180◦ if r f > 1

(2.159)

Finally, for second-order underdamped, critically damped and overdamped systems,

μsd =
1

√
(1− r2

f )
2 +(2ζ r f )2

, φsd =−arctan

(
2ζ r f

1− r2
f

)

(2.160)

Plots of μ and φ versus logω are known as Bode plots of the system and provide
all the information of the harmonic response of the system under study. However, the
log(·), like the exponential e(·), of an argument with physical units is meaningless,
which calls for a normalization of ω in the Bode plots, as explained below.
Figures 2.37 and 2.38 show the Bode plots of first- and second-order systems. Note
that, for first-order systems, we have plotted μ and φ versus ω/a, the latter being
a dimensionless quantity similar to the frequency ratio of second-order systems.
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Fig. 2.37 Magnification
factor and phase plots for
first-order system
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Fig. 2.38 Bode plots of second-order system for different values of damping ratio ζ : (a) magnifi-
cation factor; and (b) phase

Similarly, for second-order systems, μ and φ are plotted versus the frequency ratio
ω/ωn ≡ r f , which is also a dimensionless quantity. For both systems, the scales
for μ , ω/a and ω/ωn are logarithmic to a base of 10. Moreover, the Bode plots of
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second-order systems are shown for undamped, underdamped and critically damped
systems; for underdamped systems, plots for different values of the damping ratio ζ
are displayed.

Magnification factors are usually given in decibels, abbreviated db. A nondimen-
sional variable x is given in a decibel scale according with the definition

xdb = 20log10(x) db (2.161)

That is, x increases by an order of magnitude every 20 db. Likewise, the interval in
which the frequency ratio increases by one order of magnitude is called a decade,
abbreviated dec; sometimes, the octave is used instead, which is defined as the
interval over which the frequency ratio is doubled, and abbreviated oct. For most
engineering applications, the decade is the most useful unit, for which reason, this
is what we will use here.

Note that, from the Bode plots displayed in Figs. 2.37 and 2.38, it is apparent
that for very low values of the frequency ratio, the plot of the magnification ratio
flattens out at a constant value of unity. Likewise, for very high values of the same
ratio, the same plot flattens out at a constant slope. Moreover, while this slope is of
−20 db/dec for first-order systems, it is of −40 db/dec for second-order systems.
Note, for example, the similarity between the magnification Bode plots for first-
order and critically damped second-order systems. The only difference in these plots
is their slope at high frequency ratios. Instruments with Bode plots of the forms of
Figs. 2.37 and 2.38 are said to be low-pass filters, as they reject frequencies above
the reference frequency, a or ωn.

In general, n-order systems, which occur in multi-dof systems, have Bode plots
that flatten out at high frequency ratios at values of−20n db/dec.

2.7.7 Applications of the Harmonic Response

From the Bode plots of damped second-order systems, it is apparent that, at
excitation frequencies ω that are very low with respect to the natural frequency ωn

of the system, the magnitude of the harmonic response of these systems is virtually
the same as that of the excitation. By the same token, at very high frequencies,
the magnitude of the harmonic response becomes negligibly low. In the subsections
below we show how we can apply these observations to practical design problems.
We may, for example, want to design a pneumatic hammer so that, at the tool-end,
it will transmit a very high force, capable of breaking hard rock while, at the handle
end, it will transmit a gentle force to the operator. Alternatively, we may want to
design instruments to measure accurately displacement, velocity or acceleration.
In these cases, we want to obtain a signal transmission with the highest fidelity, and
so, we should make sure that the natural frequency of our instrument is tuned with
the frequency range of the signal that we want to measure.
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a b

Fig. 2.39 A pneumatic hammer under harmonic excitation: (a) Iconic model and (b) its tool FBD

2.7.7.1 Vibration Isolation

Consider the model of a pneumatic rock-breaking hammer depicted in Fig. 2.39a, in
which the force F0 cosωt is applied by the rock on the cutting tool and the support,
depicted as an inertial frame, is the handle, which is firmly held by the operator.
The latter is now regarded as an inertial frame. We want to determine the relation
between the force transmitted to the handle and the force applied onto the tool,
for design purposes. Moreover, the static force due to gravity in this and the
examples below is irrelevant, as it does not vary harmonically, and hence, does
not appear in our analysis.

First we need to derive an expression for the transmitted force F(t). From the
free-body diagram of Fig. 2.39b, it is apparent that this force is the resultant of the
forces acting at the ends of the spring and the dashpot, respectively. Hence,

F(t) = cẋCS + kxCS

where xCS is the steady-state component of the displacement under a cosine
excitation. Thus, the transmitted force is a linear combination of the steady-state
displacement and velocity of the mass. Now, since the input is a harmonic function,
so is the steady-state displacement, and hence, the velocity. The transmitted force
is, then, harmonic as well, and we can fully determine it by its magnitude FT and
its phase ψ . For ease of manipulation, we represent the steady-state displacement
in the form given by Eq. 2.102, and hence, the steady-state velocity is obtained by
simple differentiation of the foregoing expression. For quick reference, we include
expressions for these two items below:

xCS(t) = M cos(ωt +φ), ẋCS(t) =−Mω sin(ωt +φ)
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Therefore,

F(t) =−cMω sin(ωt +φ)+ kM cos(ωt +φ) (2.162)

and recalling that c = 2ζωnm and k = ω2
n m, we have

F(t) = −2ζωnmMω sin(ωt +φ)+ω2
n mM cos(ωt +φ)

= ω2
n mM

[−2ζ r f sin(ωt +φ)+ cos(ωt +φ)
]

Using Eqs. 2.103a and 2.103b, we may rewrite F(t) as

F(t) = FT cos(ωt +ψ) (2.163)

where

FT ≡ ω2
n Mm

√
1+(2ζ r f )2 (2.164)

and, as the reader is invited to verify, M is given in this case as

M =
F0/m

ω2
n

√
(1− r2

f )
2 +(2ζ r f )2

(2.165)

We have, therefore,

FT ≡ F0
√

1+(2ζ r f )2
√
(1− r2

f )
2 +(2ζ r f )2

(2.166)

Moreover, using Eq. 2.105b, we have

ψ ≡ tan−1(2ζ r f )+φ = tan−1(2ζ r f )− tan−1

(
2ζ r f

1− r2
f

)

(2.167)

The magnification factor μF of the transmitted force is thus defined as the ratio

μF ≡ FT

F0
=

√
1+(2ζ r f )2

(1− r2
f )

2 +(2ζ r f )2
(2.168)

Plots of both the magnification factor μF and the phase angle ψ are shown in
Fig. 2.40.

The similarity between the Bode plots of Figs. 2.38 and 2.40 is to be highlighted.
Note that both magnification plots converge to the same asymptotes for very low
frequency ratios, namely, at a constant value of unity. Furthermore, at very high
frequency ratios, the Bode plots of Fig. 2.40 flatten out at a constant slope of
−40 db/dec, as μF → 0. Moreover, the magnification plots of the same figure, for
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Fig. 2.40 The Bode plots of the force transmitted by a damped second-order system to its base:
(a) magnification factor; and (b) phase

all values of damping coefficient ζ , cross the μF = 1 axis at the same point. A quick
calculation shows that the crossing point is located at r f =

√
2, a fact that the reader

is encouraged to verify.
With regard to the design of pneumatic hammers as described above, we can use

the Bode plots of Fig. 2.40. From these plots it is apparent that the force transmitted
to the operator will be negligibly small as long as the operation frequency ω of the
rock-breaking force is substantially above

√
2 times the natural frequency of the

tool-pneumatic cylinder of the hammer, when the cylinder is modeled as a spring-
dashpot array in parallel, as shown in Fig. 2.39.

An alternative application of the above-derived Bode plots is in the design of
foundations for equipment that is to remain stationary in the presence of parasitical
vibration of the ground. Such vibration is usually present in environments where
various machines are in operation. Equipment that should remain undisturbed by
this vibration include instruments and precision machine tools. To illustrate this
idea, let us assume that the equipment to be isolated from parasitical vibration can
be safely modeled as a rigid body of mass m and the foundation as a spring-dashpot
array in parallel, exactly as the model shown in Fig. 2.39a. Furthermore, we assume
that the ground undergoes a vertical displacement y(t) =Y cosωt. We want to relate
the harmonic response of the system, x(t), to this input. To this end, we sketch first
the iconic model of the system in Fig. 2.41, and then derive its mathematical model.

The free-body diagram of the mass of Fig. 2.41 leads to

mẍ+ cẋ+ kx = cẏ+ ky

and hence, in normal form,

ẍ+ 2ζωnẋ+ω2
n x = 2ζωnẏ+ω2

n y
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a b

Fig. 2.41 The iconic model of a mass suspended on a viscoelastic foundation that is subjected to
vibration

Further, by virtue of the harmonic form of the signal y(t), we have

ẍ+ 2ζωnẋ+ω2
n x =−2ζωnωY sinωt +ω2

nY cosωt

That is, the system is subject to a linear combination of a sine and a cosine signal.
Using Eq. 2.103a, we rewrite the right-hand side of the above expression in cosine
form, thereby obtaining

ẍ+ 2ζωnẋ+ω2
n x = Acos(ωt +σ) (2.169)

where

A≡ ω2
n

√
1+(2ζ r f )2 Y, σ ≡ arctan(2ζ r f )

Using Eq. 2.132a, the steady–state response of the system is given by

xCS(t) = M cos(ωt +σ +φ) (2.170a)

where

M =
A/ω2

n√
(1− r2

f )
2 +(2ζ r f )2

(2.170b)

or

M =
Y
√

1+(2ζ r f )2
√
(1− r2

f )
2 +(2ζ r f )2

(2.170c)

and

φ =− tan−1

(
2ζ r f

1− r2
f

)

(2.170d)
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Hence, the magnification factor μY of the transmitted motion is given by

μY ≡ M
Y
≡
√

1+(2ζ r f )2

(1− r2
f )

2 +(2ζ r f )2
(2.171)

which is identical to the magnification factor found above for the transmitted force
μF , and so, a Bode plot for this item is not needed.

For design purposes, then, we aim to design a foundation so that it will isolate the
vibration y(t) by giving the foundation a natural frequency that will be substantially
below all parasitical frequencies. In this way, the parasitical frequency ratios will be
substantially to the right of the value r f =

√
2 of the Bode plot of Fig. 2.40.

One more application of the Bode plots of Fig. 2.40 is in the explanation of a
phenomenon worrying the civil engineers in charge of road maintenance. Transport-
regulating bodies specify the maximum allowable static load (mass) per axle in
terrestrial vehicles, whether these transport people or goods. Thus, buses and trucks
are subjected to the same regulations; transportation companies, with the aim of
maximizing their profit per trip, load their units to the limit. However, as it turns
out, buses produce much less damage to the road than trucks. The explanation can
be found in the difference in the suspension of the two types of vehicles: those of
buses are designed to give the passengers a comfortable ride; those of trucks are
designed to require the least maintenance, and hence, the only damping that the
latter have is the one that comes within the leaf springs that they use. In order to
explain the difference that the damping makes, let us model the load-suspension
system pertaining to one axle with the iconic model of Fig. 2.13a. Furthermore, we
model the irregular road profile as a sinusoidal track, thereby ending up with the
iconic model of Fig. 2.41, where y =Y cosωt, and the Bode plots of Fig. 2.40 apply.
Moreover, we can safely assume that trucks and buses, like any other terrestrial
vehicle, have suspensions that produce vertical vibrations with a natural frequency
of ωn = 1 Hz, the only difference in the two types of suspension then being in the
damping. Now, the damping in trucks is very low, say, around 0.1, while that of
buses can be safely assumed to be around 0.5. From Fig. 2.40a, it is apparent that μ
for ζ = 0.1 reaches a peak that is around four times that occurring at ζ = 0.5. As
a consequence, the truck transmits to the road a dynamic force that is around four
times as big as that transmitted by the bus.

2.7.7.2 Velocity Meter Design

Contrary to the second example of the preceding section, we may want in some
instances, such as when designing an instrument to measure the velocity of a moving
body, to be able to pick up the desired velocity within its frequency range with the
highest fidelity. What we mean by the latter is that we want to be able to subject
a mass m to a harmonic displacement that will follow the velocity signal to be
measured with the highest possible magnitude and the smallest possible phase angle.
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Fig. 2.42 An iconic model of the velocity meter

In order to attain this goal, obviously, the two signals, displacement of m and
measured velocity, must have the same frequency. The purpose of this design task
is to determine the physical parameters m, c and k of a velocity meter, modeled
as a mass-spring-dashpot system, so that it will exhibit the harmonic response
described above. Our iconic model in this case is shown in Fig. 2.42, where y(t)
is the displacement of the object whose velocity is to be measured, onto which the
base of the instrument is firmly attached; moreover, x is the displacement of the
mass m and the pick-up signal z(t) is defined as z≡ y− x. The mathematical model
is now readily derived from Fig. 2.42 in the form

mẍ =−c(ẋ− ẏ)− k(x− y) (2.172)

or
ẍ+ 2ζωn(ẋ− ẏ)+ω2

n(x− y) = 0 (2.173)

or, in terms of z, the measured signal,

z̈+ 2ζωnż+ω2
n z = ÿ (2.174)

We now assume that the velocity signal ẏ of interest is harmonic, of the form

ẏ =V cosωt (2.175)

and hence, the foregoing model takes the form

z̈+ 2ζωnż+ω2
n z =−ωV sinωt
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Fig. 2.43 The Bode plots of the velocity transmission of a velocity meter

However, since we want our instrument to follow the velocity signal, which is
cosinusoidal, we have to express the foregoing model with a cosinusoidal excitation
as well, which is done by simply adding a phase of 90◦ to the above sinusoidal
signal, thus obtaining

z̈+ 2ζωnż+ω2
n z = ωV cos

(
ωt +

π
2

)
(2.176)

The steady-state response of the system, then, can be written as

z = ωVM cos(ωt +φV ) (2.177)

where M and φV take the forms of Eqs. 2.142a, b, except that the latter is augmented
by a phase angle of π/2. Now, the magnification factor that we need is one relating
ωVM with the amplitude of the excitation signal V , as a dimensionless quantity. We
thus define the magnification factor of interest, along with the corresponding phase
angle, as shown below:

μV ≡ ωnωVM
V

=
r f√

(1− r2
f )

2 +(2ζ r f )2
, φV =

π
2
−arctan

(
2ζ r f

1− r2
f

)

(2.178)

which are plotted in Fig. 2.43.
An inspection of the Bode plots of Fig. 2.43 reveals that the frequency range in

which the magnification factor of this instrument attains its peak value is remarkably
narrow. Such an instrument is said to have a narrow bandwidth, which makes
it useless for our envisioned application. A narrow bandwidth means that the
magnification factor attains values above unity in a correspondingly narrow range
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Fig. 2.44 The Bode plots of the velocity transmission of a velocity meter with a high damping
ratio ζ = 5

of values of r f . A means of enhancing the bandwidth of this instrument is to design
it with a rather high damping ratio, say ζ = 5, as made apparent by the plot of
Fig. 2.44a. From this plot, it is apparent that the velocity meter under study is useful
for the measurement of velocity signals comprising a frequency ranging from 0.2ωn

to about 10ωn. The corresponding phase angle is shown in Fig. 2.44b.

2.7.7.3 Accelerometer Design

Accelerometers are designed to provide a displacement signal that follows as closely
as possible a harmonic acceleration signal with a high amplitude and a low phase
angle. We thus assume that the accelerometer is modeled as the system of Fig. 2.41,
the acceleration signal ÿ(t) that we want to measure being harmonic, namely,

ÿ(t) = Acosωt

the underlying mathematical model thus taking the form

z̈+ 2ζωnż+ω2
n z = ÿ

with z defined as

z≡ y− x

The steady-state response thus becoming

z(t) = MA cos(ωt +φA)
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with MA given as

MA =
A

ω2
n

√
(1− r2

f )
2 +(2ζ r f )2

the phase being given as in Eq. 2.160, namely, as

φA =−arctan

(
2ζ r f

1− r2
f

)

Now, we define the magnification factor μA as

μA ≡ ω2
n MA

A

thereby obtaining

μA =
1

√
(1− r2

f )
2 +(2ζ r f )2

which is identical to the magnification factor of Eq. 2.160 and plotted in Fig. 2.38.

2.7.7.4 Seismograph Design

The instrument of Fig. 2.42 can be used as a seismogragh if we want to measure
a harmonic displacement y(t) of the base with the pick-up signal z ≡ y− x. The
mathematical model we have is identical to that derived for the accelerometer, i.e.,

z̈+ 2ζωnż+ω2
n z = ÿ

Upon the assumption that the displacement y(t) is harmonic, we can write

y(t) = Y cosωt

and hence,

ÿ =−ω2Y cosωt

the mathematical model thus becoming

z̈+ 2ζωnż+ω2
n z =−ω2Y cosωt ≡ ω2Y cos(ωt +π)

The steady-state response of the system is then of the form

z(t) = MY cos(ωt +φY )
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Fig. 2.45 The Bode plots of a seismograph

with MY and φY given as

MY =
r2

f Y√
(1− r2

f )
2 +(2ζ r f )2

, φY = π− arctan

(
2ζ r f

1− r2
f

)

The magnification factor μY is thus defined as

μY ≡ MY

Y
=

r2
f√

(1− r2
f )

2 +(2ζ r f )2

Plots of the magnification factor and the phase angle are shown in Fig. 2.45.
Note that the Bode plots of this instrument reveal that the seismograph is

insensitive to low frequencies but very sensitive to high frequencies. The instrument
is thus said to be a high-pass filter.

In summary, the Bode plots obtained here have a common feature: the difference
between the high-frequency asymptote slope and the low-frequency asymptote slope
is always +20 db/dec. This feature is common to all second-order systems.

2.7.8 Further Applications of Superposition

In the two examples below, we include further applications of superposition, while
resorting to the time responses derived for harmonic inputs. We do this to analyze
the response of a second-order system to a pulse-like input, which is not periodic.
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Fig. 2.46 The iconic model of a terrestrial vehicle upon encountering a bump

Example 2.7.1 (An Undamped Terrestrial Vehicle Hitting a Bump). A highly sim-
plified iconic model of a terrestrial vehicle traveling at a constant speed v, upon
hitting a bump of height B, is shown in Fig. 2.46.

In this model, we neglect the damping in the suspension and consider only its
stiffness. Moreover, we assume that the bump does not affect the horizontal, uniform
motion of the vehicle, the bump being modeled via the function b(x), defined below:

b(x)≡
{

Bsin(2πx/λ ), for 0≤ x≤ λ/2;
0 otherwise

Here, we have x = vt and hence, the period of the sine function, in terms of the
wavelength λ , is T = λ/v. Determine the motion of the suspension-mass system
after the vehicle has hit the bump.

Solution: In order to ease our task, we start by realizing that b(x) can be
synthesized as

b(x) = B

(
sin

2πx
λ

)
u(x)+B

(
sin

2π(x−λ/2)
λ

)
u

(
x− λ

2

)

and so, we can obtain the desired response by superposition, i.e., as the sum of
the responses to each of the two foregoing unilateral sinusoidal functions. The
mathematical model of the system at hand, then, takes the form

z̈+ω2
n z = ω2

n B

[(
sin

2πvt
λ

)
u(t)+

(
sin

2πv(t−λ/(2v))
λ

)
u

(
t− λ

2v

)]
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where we have replaced b(x) by b(t) for consistency with the model, since the
independent variable of the latter is time. Moreover, we assume that the vehicle
travels undisturbed up until it hits the bump, at which time we start observing the
system and set arbitrarily t = 0. The time response of interest can now be derived
by superimposing the time responses of each of the two sine inputs of the above
model. We start, then, by deriving the response to the first input. To this end, we use
the total response xS(t) derived in Eq. 2.143 for an undamped second-order system
acted upon by a harmonic input of the form (sin ωt)u(t), with zero initial conditions,
namely,

xS(t) =
1/ω2

n

1− r2
f

(
sinωt− r f sinωnt

)
, ω ≡ 2πv

λ
≡ 2π

T
, r f =

ω
ωn

=
2πv
λ

√
m
k

That is, the time it takes the vehicle to traverse the bump is one-half of the period
T associated with the wavelength λ and the speed v. The total response z(t) of the
system at hand is now derived by linearity and time-invariance as

z(t) = B
1−r2

f

{
[
sinωt− r f sinωnt

]
u(t)

+

[
sinω

(
t− T

2

)
− r f sin ωn

(
t− T

2

)]
u

(
t− T

2

)}

or, after some rearrangement of terms,

z(t) =
B

1− r2
f

{
(sin ωt)u(t)+

[
sinω

(
t− T

2

)]
u

(
t− T

2

)}

− Brf

1− r2
f

{
(sinωnt)u(t)+

[
sinωn

(
t− T

2

)]
u

(
t− T

2

)}

Note that the first term in the foregoing expression is nothing but the bump
function b(t) divided by (1− r2

f ). Now, as to the second term, this looks like a bump
as well, but it is not. Indeed, this term is a linear combination of two harmonics
of the same kind, i.e., of sines, with one delayed with respect to the other by half
a period of the bump signal. Since the natural frequency ωn of the system is, in
general, different from the bump frequency ω , the two sinusoidal terms of the above
expression do no cancel each other. We thus have, in summary,

z(t) =
1

1− r2
f

[
b(t)− r f β (t)

]

where

β (t)≡ B

{
(sinωnt)u(t)+

[
sinωn

(
t− T

2

)]
u

(
t− T

2

)}
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Fig. 2.47 The plot of β (t)/B
appearing in the response of
the vehicle with an undamped
suspension upon hitting a
bump, for
ωn = 1Hz=2π rad/s and
T =2 s
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Fig. 2.48 Nondimensional
time response of the
undamped suspension to a
bump with
ωn = 1 Hz = 2π rad/s and
T = 2 s
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The ratio β (t)/B is plotted in Fig. 2.47 for ωn = 1Hz = 2π rad/s and T = 2 s, the
total time response z(t) being plotted in Fig. 2.48 in nondimensional form.

That is, the response of the undamped system to a bump is a linear combination
of the bump and the function β (t), the amplitude of this response increasing as the
difference 1− r2

f decreases. Note that this difference vanishes when the frequency
of the bump equals that of the spring-mass system, which occurs, in terms of the
given parameters, when

λ
v
=

2π
ωn

Most terrestrial vehicles have a natural frequency of about 1 Hz, i.e., of ωn =
2π s−1. If we were going to encounter a sinusoidal bump with a wavelength λ
obeying the foregoing relation, for a given traveling speed v, we would like to have
an idea of the order of magnitude of the parameters involved, for realistic situations.
For example, if the traveling speed is around 72 km/h, then v = 20 m/s, which thus
would yield a value λ = 20 m, a rather huge wavelength, and hence, not realistic.
A more realistic value of λ is 1 m, which, for the same natural frequency of the
vehicle, gives a velocity v = 1 m/s or 3.6 km/h, a rather unusually small value.
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Fig. 2.49 Nondimensional
time response of the
undamped suspension with
ωn = 1 Hz and
T = 2π/ωn = 1 s
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While a value of r f = 1 is, therefore, unlikely to happen in real-life situations, it
is instructive to find the response of the vehicle under this condition. To this end, we
regard function z(t), as given above, as a function of r f , i.e.,

z(r f )≡ N(r f )

D(r f )
≡ F(r f )

with N(r f ) and D(r f ) given by

N(r f )≡ b(t;r f )− r f β (t), D(r f )≡ 1− r2
f (2.179)

By application of L’Hospital’s rule, we have

F(1) = lim
r f→1

N′(r f )

D′(r f )

and hence, as the reader is invited to verify,

z(t) =−1
2

{
tḃ(t)− b(t)−πB[cos(ωnt−π)]u(t− π

ωn
)

}
, for r f = 1orωnλ = 2πv

Therefore, the vertical oscillations of the vehicle under study remain bounded, even
under these apparently resonant conditions. The explanation is simple: r f refers to
the ratio ω /ωn, where ω = 2πr/λ for the system of Fig. 2.46, with r denoting the
radius of the wheel. However, notice that the input to this system is not harmonic,
but a bump. The foregoing response is plotted in Fig. 2.49 for ωn = 1 Hz and r f = 1.

It is pointed out here that, the bump being zero for t > λ/v, it disappears from
the time response after the vehicle has traversed it. Hence, the remainder of z(t),
namely, the term containing the function β (t), is the steady-state response of the
system.
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Fig. 2.50 The iconic model of a terrestrial vehicle upon encountering a bump

Example 2.7.2 (A Damped Terrestrial Vehicle Encountering a Bump). Find the time
response of the vehicle introduced in the foregoing example, if we add “shocks” to
its suspension, as shown in Fig. 2.50, under the assumption that the system at hand
becomes underdamped.

Solution: The model now takes the form

z̈+ 2ζωnż+ω2
n z = 2ζωnḃ(t)+ω2

n b(t)

and hence, the response can be synthesized as the sum of the two responses zb(t)
and zḃ(t) to the first and the second terms of the right-hand side, respectively. We
start by calculating ḃ(t), namely,

ḃ(t) =
db(x)

dx
dx
dt
≡ db(x)

dx
v = b′(x)v

and then find b′(x). From the expression derived in the previous example for b(x),
it is now a simple matter to show that

b′(x) =
2πB

λ

[(
cos

2πx
λ

)
u(x)+

(
cos

2π(x−λ/2)
λ

)
u

(
x− λ

2

)]

2.7.9 Derivation of zb(t)

To derive zb(t) we use the xS(t) response for the second-order underdamped system
derived in Sect. 2.7.3, and invoke linearity and time-invariance, thereby obtaining

zb(t) = ω2
n BxS(t)+ω2

n BxS

(
t− T

2

)
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and hence,

zb(t) = −
B

(1− r2
f )

2 +4ζ 2r2
f

[

r f e−ζ ωnt

(
1−2ζ 2− r2

f√
1−ζ 2

sinωdt−2ζ cosωdt

)

+2ζ r f cosωt +(r2
f −1)sinωt

]

u(t)

− B
(

1− r2
f

)2
+4ζ 2r2

f

{
r f e−ζ ωn(t− T

2 )

[1−2ζ 2− r2
f√

1−ζ 2
sinωd

(
t− T

2

)

−2ζ cosωd

(
t− T

2

)]
+2ζ r f cosω

(
t− T

2

)
+(r2

f −1)sinω
(

t− T
2

)}
u

(
t− T

2

)

which can be recast in the form

zb(t) =
−1

(1− r2
f )

2 +4ζ 2r2
f

{

Br f e−ζ ωnt

(
1−2ζ 2− r2

f√
1−ζ 2

sinωdt−2ζ cosωdt

)

u(t)

+Br f e−ζ ωn(t− T
2 )

[
1−2ζ 2− r2

f√
1−ζ 2

sinωd

(
t− T

2

)
−2ζ cosωd

(
t− T

2

)]

u

(
t−T

2

)

+2ζ r f B

[
(cosωt)u(t)+cos ω

(
t− T

2

)
u

(
t− T

2

)]

+(r2
f −1)B

[

(sinωt)u(t)+ sinω
(

t− T
2

)
u

(
t− T

2

)]}

2.7.9.1 Derivation of zḃ(t)

This response is derived likewise, i.e., by means of the response xC(t) of an
underdamped system to a unilateral cosine input, namely,

zḃ(t) = (2ζωn)ωBxC(t)u(t)+ (2ζωn)ωBxC

(
t− T

2

)
u

(
t− T

2

)

Hence, upon substituting both xC(t) and xC(t−T/2) into the foregoing expression,
we obtain

zḃ(t) =
2ζ r f B

(1− r2
f )

2 + 4ζ 2r2
f

{
e−ζωnt

[−ζ (1+ r2
f )√

1− ζ 2
sinωdt− (1− r2

f )cosωdt

]

+2ζ r f sinωt +(1− r2
f )cosωt

}
u(t)
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+
2ζ r f B

(
1− r2

f

)2
+ 4ζ 2r2

f

{
e−ζωn(t− T

2 )

[−ζ (1+ r2
f )√

1− ζ 2
sinωd

(
t− T

2

)

−(1− r2
f )cosωd

(
t− T

2

)]
+ 2ζ r f sinω

(
t− T

2

)

+(1− r2
f )cosω

(
t− T

2

)}
u

(
t− T

2

)

which can be rewritten as

zḃ(t) =
2ζ r f

(1− r2
f )

2 +4ζ 2r2
f

{

Be−ζ ωnt

[−ζ (1+ r2
f )√

1−ζ 2
sinωdt− (1− r2

f )cos ωdt

]

u(t)

+Be−ζ ωn(t− T
2 )
[−ζ (1+ r2

f )√
1−ζ 2

sinωd

(
t− T

2

)

−(1− r2
f )cos ωd

(
t− T

2

)]
u

(
t− T

2

)

+2ζ r f B

[
(sinωt)u(t)+

(
sinω

(
t− T

2

))
u

(
t− T

2

)]

+(1− r2
f )B

[
(cosωt)u(t)+

(
cosω

(
t− T

2

))
u

(
t− T

2

)]}

The total response z(t) of the vehicle is, then,

z(t) = zb(t)+ zḃ(t)

Shown in Fig. 2.51 are the individual responses zb(t), zḃ(t) and their sum z(t),
for ωn = 1Hz = 2π rad/s, ζ = 0.707 and T = 2 s.
Animation of this time response is available in 3-DampedBump1dof.mw.

2.8 The Periodic Response

In this section, we will assume that the systems under study are subjected to
an arbitrary, though periodic, input; otherwise, conditions are similar to those of
the harmonic response. Thus, we assume that a very long time has elapsed since
the system under analysis was first perturbed. This is the case in many real-life
situations, like aircraft fuselage under vibrations produced by the turbines at cruising
speed or bodies of terrestrial vehicles under vibrations produced by the engine
running at constant r.p.m., and so forth. In these examples, the source of vibration
is either a turbine or an IC engine, both running at uniform angular velocity, thus
producing a periodic, although non-harmonic, input.
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Fig. 2.51 Time response of an underdamped suspension encountering a bump

By means of Fourier analysis, we will decompose any periodic input into
an infinite summation, i.e., a series, of harmonics of multiples of a fundamental
frequency. To do this, we need some background, as described below:

2.8.1 Background on Fourier Analysis

We begin with a few definitions that will prove useful in the ensuing analysis.
A function f (t) is periodic of period T if, for any real value of t,

f (t) = f (t +T ) (2.180)

An even function f (t) is a function with the property

f (t) = f (−t) (2.181)

while an odd function f (t) obeys

f (t) =− f (−t) (2.182)

Now, a function need not be even or odd everywhere, i.e., for any value of t, to
be of interest to us. Since we are interested in periodic functions, we will look at
the functions under study only within a period of length T , and so, we may add
that a certain function is even or odd within the interval [−T/2,+T/2] if the above
definitions hold not necessarily everywhere, but within the said interval. Moreover,
we recall below a few facts that will prove to be useful in this discussion. The
pertinent proofs are available in any book on Fourier analysis or partial differential
equations.
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Fact 1: Let a function f (t) be even in the interval [−T/2,+T/2] and a function
g(t) be odd in the same interval. The integral of the product of these functions over
the same interval vanishes.

An example of even function is the cosine function, one of odd function
is the sine function. Note that the cosine and the sine functions are even or,
correspondingly, odd, everywhere.

It is now apparent that the sum of an arbitrary number of even functions is even
as well, a similar statement holding for odd functions. Here, we must realize that, if
a function is not even, it need not be odd, while keeping in mind the result below:

Fact 2: Any function f (t) can always be decomposed into the sum of an even and
an odd component, fE(t) and fO(t), respectively, which are given by

fE(t)≡ 1
2
[ f (t)+ f (−t)], fO(t)≡ 1

2
[ f (t)− f (−t)] (2.183)

Given any periodic function f (t) of period T , its Fourier expansion is given
below:

f (t) = a0 +
∞

∑
1

ak cos

(
2πk
T

t

)
+

∞

∑
1

bk sin

(
2πk
T

t

)
(2.184a)

where

a0 =
1
T

∫

I
f (t)dt (2.184b)

ak =
2
T

∫

I
f (t)cos

(
2πkt

T

)
dt, k = 1,2, . . . ,etc. (2.184c)

bk =
2
T

∫

I
f (t)sin

(
2πkt

T

)
dt, k = 1,2, . . . ,etc. (2.184d)

with I denoting any interval of length T , such as [−T/2,T/2] or [0,T ].
We note that a0 is nothing but the mean value of f (t) in the interval of integration.

Moreover, ω0 = 2π/T is known as the fundamental frequency of f (t).
The process under which the foregoing coefficients ak and bk are determined, for

a given periodic function f (t), is known as Fourier analysis or spectral analysis.
Needless to say, the Fourier analysis of a given function can be conducted with
paper and pencil by quadrature of the underlying integrals or by table-lookup only
in special textbook-type of cases. Otherwise, the analyst has to resort to numerical
methods. Note that the table-lookup procedure can be greatly eased and broadened
if symbolic computation software is used. In many instances, integrals that are not
available in tables can be found with the aid of this type of software.

Example 2.8.1 (A Simple Example). Find the Fourier expansion of the function

f (t) = sin2 ω0t
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Fig. 2.52 A train of impulses

Solution: This is a periodic function of fundamental period T = 2π/ω0. Its
Fourier expansion is particularly simple because we do not have to go through the
calculation of its Fourier coefficients from integrals. Indeed, our task will be greatly
eased if we recall the identity below:

sin2 ω0t ≡ 1
2
− 1

2
cos2ω0t

which is already the Fourier expansion of the given function, and hence,

a0 =
1
2
, a2 =−1

2

all other coefficients vanishing.

Example 2.8.2 (Fourier Analysis of a Train of Impulses). Obtain the Fourier expan-
sion of the train of impulses given below:

f (t) =
∞

∑
i=−∞

(−1)iδ
(

t− iT
2

)

which is plotted in Fig. 2.52.

Solution: From symmetry considerations it is apparent that the mean value of the
function at hand is zero. It is also apparent that this function is even, and hence,

a0 = 0, bk = 0, k = 1,2, . . .
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The remaining Fourier coefficients are calculated below:

ak =
2
T

∫ +T−/2

−T−/2
f (t)[cos(kω0t)]dt

=
2
T

∫ +T−/2

−T−/2

[
∞

∑
i=−∞

(−1)iδ
(

t− iT
2

)]

cos

(
2πkt

T

)
dt

=
2
T

∞

∑
i=−∞

(−1)i
∫ +T−/2

−T−/2
δ
(

t− iT
2

)
cos

(
2πkt

T

)
dt

where the integration extremes have been set so as to take into account the
discontinuities in the impulse functions in the integrand.

It is apparent that the interval of integration comprises only two impulses, those
at t = −T/2 and at t = 0, the impulse at t = +T/2 being left out of the interval.
Hence, the expression for ak reduces to

ak =
2
T

∫ +T−/2

−T−/2

[
−δ
(

t +
T
2

)
+ δ (t)

]
cos

(
2πkt

T

)
dt

=
2
T

[

−
∫ +T−/2

−T−/2
δ
(

t +
T
2

)
cos

(
2πkt

T

)
dt +

∫ +T−/2

−T−/2
δ (t)cos

(
2πkt

T

)
dt

]

In light of the identity appearing in Eq. 2.47, the above integrands are evaluated as

δ
(

t +
T
2

)
cos

(
2πkt

T

)
= δ

(
t +

T
2

)
cos

[
2πk
T

(
−T

2

)]

= δ
(

t +
T
2

)
cos(kπ) = δ

(
t +

T
2

)
(−1)k

δ (t)cos

(
2πkt

T

)
= δ (t)cos

[
2πk
T

(0)

]
= δ (t)

Therefore,

ak =
2
T

[

−
∫ +T−/2

−T−/2
δ
(

t +
T
2

)
(−1)kdt +

∫ +T−/2

−T−/2
δ (t)dt

]

=
2
T

[
−(−1)k + 1

]

and hence,

a2k−1 =
4
T
, a2k = 0
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Fig. 2.53 A square wave

i.e., the Fourier expansion of the train of impulses contains only cosine terms of
odd-numbered frequencies, all these terms with identical coefficients, namely,

f (t)≡
∞

∑
i=0

(−1)iδ
(

t− iT
2

)
=

4
T

∞

∑
k=1

cos

[
2(2k− 1)π

T
t

]

Example 2.8.3 (Fourier Analysis of a Square Wave). Determine the Fourier expan-
sion of the square wave sq(t) displayed in Fig. 2.53.

Solution: It is not very difficult to realize that the integral of the train of impulses
yields a train of pulses, a pulse having the shape depicted in Fig. 2.33b. Indeed, every
negative impulse produces a sudden decrease of one unity, while every positive
impulse produces an increase of one unity in the above integral. We can therefore
realize that the integral of f (t) is a signal that oscillates, about a given mean
value f , between −1/2 and +1/2, the jumps occurring every time an impulse
fires. Therefore, the above integral undergoes oscillations of amplitude equal to
1/2, while the given square wave undergoes oscillations of unit amplitude. As a
consequence, we have

sq(t) = 2
∫

t
f (θ )dθ

where the integral has been left indefinite and the integration takes place in the
domain of the dummy variable θ . Moreover, because of the linearity of the integral
operation,11 the Fourier series of the integral of the train of impulses is the integral
of the Fourier series of the train, i.e.,

sq(t) =
8
T

∞

∑
k=1

∫

t
cos

[
2(2k− 1)π

T
θ
]

dθ +C

11The integral operation is both additive and homogeneous, and hence, linear.
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where the integration constant is found from the condition that the mean value of
sq(t) is zero, which is apparent from Fig. 2.53. Moreover, upon evaluation of the
integral,

sq(t) =
4
π

∞

∑
k=1

1
2k− 1

sin

[
2(2k− 1)π

T
t

]
+C

Since the mean value of each term of the series is zero, that of the whole series is
zero as well, and hence, C = 0, which thus leads to

sq(t) =
4
π

∞

∑
k=1

1
2k− 1

sin

[
2(2k− 1)π

T
t

]

Alternatively, we can proceed to evaluate the Fourier coefficients by direct integra-
tion, as we show below. To this end, we observe first that the square wave is an odd
function with zero mean value and hence,

ak = 0, k = 0,1,2, . . .

the remaining coefficients being calculated from

bk =
2
T

∫ T/2

−T/2
sq(t)sin

(
2πkt

T

)
dt

which, after evaluation and simplification, yields

bk =
2

πk
[1− cos(πk)]

and hence,

bk =

{
4/(πk), for k odd;
0, for k even

Therefore,

sq(t) =
4
π

∞

∑
1

1
2k− 1

sin

[
2π(2k− 1)t

T

]
≡ 4

π

∞

∑
0

1
2k+ 1

sin

[
2π(2k+ 1)t

T

]

=
4
π

[
sin

(
2πt
T

)
+

1
3

sin

(
6πt
T

)
+

1
5

sin

(
10πt

T

)
+ . . .

]

which thus confirms the result obtained above.

Example 2.8.4 (Fourier Analysis of a Monotonic Function). Shown in Fig. 2.54 is
the profile of a pre-Columbian pyramid, of those found by tourists when visiting
archeological sites in Mexico. This profile is labelled pyr(x) in that figure, in which
the wave length λ now plays the role of the period T in the previous examples. In
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Fig. 2.54 A Pre-Columbian pyramid

thinking of tourists using wheelchairs, we would like to design the suspension of a
motor-driven wheelchair to help these tourists climb up these pyramids comfortably.
In order to do this, let us find the Fourier expansion of the profile.

Solution: We first note that the given profile can be obtained from the integral of the
square wave of Fig. 2.53 when shifted 1 upwards. Thus, all we need to obtain the
Fourier series of the given profile is (a) add 1 to the square-wave Fourier expansion
derived above, (b) integrate each term of the Fourier series thus resulting, and
(c) divide each integral by 2, i.e.,

pyr(x) =
1
2

[∫

x

{

1+
4
π

∞

∑
k=1

1
2k− 1

sin

[
2π(2k− 1)ξ

λ

]}

dξ

]

in which ξ is a dummy variable of integration. Hence,

pyr(x) =
1
2

x− λ
π2

∞

∑
k=1

1
(2k− 1)2 cos

[
2π(2k− 1)x

λ

]
+C

where C is a constant of integration that can be obtained by noting that pyr(0) = 0
in Fig. 2.54. Thus,

0 =C− λ
π2

∞

∑
k=1

1
(2k− 1)2

But, as the reader can verify, e.g., using computer algebra,

∞

∑
k=1

1
(2k− 1)2 =

π2

8
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Fig. 2.55 Polygonal approximation of function f (t)

and hence,

C =
λ
π2

π2

8
=

λ
8

Therefore,

pyr(x) =
λ
8
+

1
2

x− λ
π2

∞

∑
k=1

1
(2k− 1)2 cos

[
2π(2k− 1)x

λ

]

=
λ
8
+

1
2

x− λ
π2

[
cos

(
2πx
λ

)
+

1
9

cos

(
6πx
λ

)
+

1
25

cos

(
10πx

λ

)
+ . . .

]

Notice that the above expansion includes a linear term, which accounts for the
monotonicity of pyr(x).

2.8.2 The Computation of the Fourier Coefficients

Here we study the procedure under which the Fourier coefficients of a periodic
function are computed using a numerical approach. We aim to compute the
coefficients {ak}∞

0 and {bk}∞
1 of the Fourier expansion of a periodic function f (t).

We shall do this by simple numerical quadrature, as explained by Kahaner et al. [4].
Various schemes of numerical quadrature are available, the one that lends itself best
to our purposes is that based on the trapezoidal rule. In this scheme, the interval of
integration is divided into a number N of subintervals ti−1 ≤ t ≤ ti, for i = 1, . . . ,N,
and a set of N + 1 points of coordinates (ti, fi), with fi ≡ f (ti), for i = 0,1, . . . ,N,
is defined in the f (t)-vs.-t plane. In the next step, every pair of neighboring points
is joined with a straight line, thereby obtaining a polygonal approximation of the
given function, as illustrated in Fig. 2.55.
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The desired integral is then approximated as the area below this polygon. Note
that each side of the polygon, along with its two vertical lines and the segment
joining points ti−1 and ti in the t axis forms a trapezoid, which is the reason why this
scheme is called the trapezoidal rule. Moreover, we shall refer to this trapezoid as
the ith trapezoid, its area Ai being given by

Ai =
1
2

Δti( fi−1 + fi), Δti ≡ ti− ti−1, fi ≡ f (ti) (2.185)

Within our scheme, we shall divide the interval of integration uniformly, i.e.,

Δti ≡ T
N
, i = 1, . . . ,N (2.186)

Now, a0 is readily approximated as

a0 ≈ 1
T

T
N

[
1
2
( f0 + f1)+

1
2
( f1 + f2)+ . . .+

1
2
( fN−2 + fN−1)+

1
2
( fN−1 + fN)

]

=
1
N

[
1
2
( f0 + fN)+ f1 + f2 + . . .+ fN−2 + fN−1

]

But, since f (t) is periodic, fN = f0, and hence,

a0 ≈ 1
N
( f0 + f1 + f2 + . . .+ fN−2 + fN−1) (2.187)

i.e., a0 becomes the mean value of the set of sampled function values { fi}N−1
0 .

Moreover,

ak ≈ 2
T

T
N

{
1
2
[ f0 cos(kω0t0)+ f1 cos(kω0t1)]

+
1
2
[ f1 cos(kω0t1)+ f2 cos(kω0t2)]+ . . .

+
1
2
[ fN−2 cos(kω0tN−2)+ fN−1 cos(kω0tN−1)]

+
1
2
[ fN−1 cos(kω0tN−1)+ fN cos(kω0tN)]

}

But, for j = 1, . . . ,N,

t j ≡ t0 +
jT
N

and cos(kω0tN) = cos(kω0t0)
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and, hence, the foregoing expression becomes

ak ≈ 2
N

{
f0 cos(kω0t0)+ f1 cos

[
kω0

(
t0 +

T
N

)]
+ f2 cos

[
kω0

(
t0 +

2T
N

)]
+ . . .

+ fN−2 cos

[
kω0

(
t0 +

(N− 2)T
N

)]
+ fN−1 cos

[
kω0

(
t0 +

(N− 1)T
N

)]}

However,

cos

[
kω0

(
t0 +

jT
N

)]
= cos(kω0t0)cos

(
kω0

jT
N

)
− sin(kω0t0)sin

(
kω0

jT
N

)

the above expression thus becoming

ak ≈ 2
N

cos(kω0t0)

{
f0 + f1 cos

(
kω0

T
N

)
+ f2 cos

(
kω0

2T
N

)
+ . . .

+ fN−2 cos

(
kω0

(N− 2)T
N

)
+ fN−1 cos

(
kω0

(N− 1)T
N

)}

− 2
N

sin(kω0t0)

{
f1 sin

(
kω0

T
N

)
+ f2 sin

(
kω0

2T
N

)
+ . . .

+ fN−2 sin

(
kω0

(N− 2)T
N

)
+ fN−1 sin

(
kω0

(N− 1)T
N

)}

and, in compact form,

ak ≈ 2
N
[cos(kω0t0)]

N−1

∑
j=0

f j cos

(
kω0 j

T
N

)
− 2

N
[sin(kω0t0)]

N−1

∑
j=1

f j sin

(
kω0 j

T
N

)

(2.188)

Likewise, for the bk coefficients, we have

bk ≈ 2
N
[sin(kω0t0)]

N−1

∑
j=0

f j cos

(
kω0 j

T
N

)
+

2
N
[cos(kω0t0)]

N−1

∑
j=1

f j sin

(
kω0 j

T
N

)

(2.189)

From Eqs. 2.188 and 2.189 it is apparent that the Fourier coefficients have been
approximated by a linear combination of two sums of terms, a sum Ck and a sum Sk,
which are defined as

Ck ≡ 2
N

N−1

∑
j=0

f j cos

(
kω0 j

T
N

)
, Sk ≡ 2

N

N−1

∑
j=1

f j sin

(
kω0 j

T
N

)
(2.190)
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In particular, for k = N/2, when N is even,

CN/2 =
2
N

N−1

∑
j=0

f j cos

(
N
2

ω0 j
T
N

)
≡ 2

N

N−1

∑
j=0

f j cos

(
ω0 j

T
2

)

=
2
N

N−1

∑
j=0

f j cos( jπ) =
2
N

N−1

∑
j=0

f j(−1) j (2.191)

SN/2 =
2
N

N−1

∑
j=1

f j sin

(
N
2

ω0 j
T
N

)
≡ 2

N

N−1

∑
j=1

f j sin

(
ω0 j

T
2

)

=
2
N

N−1

∑
j=1

f j sin( jπ) = 0 (2.192)

In summary, the Fourier coefficients can be approximated in the form

ak ≈ [cos(kω0t0)]Ck− [sin(kω0t0)]Sk (2.193)

bk ≈ [sin(kω0t0)]Ck +[cos(kω0t0)]Sk (2.194)

Interestingly, the foregoing expressions can be cast in a rather revealing vector
form, namely,

[
ak

bk

]
≈
[

cos(kω0t0) −sin(kω0t0)
sin(kω0t0) cos(kω0t0)

][
Ck

Sk

]
, for k = 1,2, . . . ,etc. (2.195)

the 2×2 matrix being orthogonal; this matrix rotates vectors in the plane by an angle
kω0t0. Thus, the magnitudes of the two vectors involved in the foregoing equation
are approximately equal, i.e.,

a2
k + b2

k ≈C2
k + S2

k (2.196)

Note that a0 is not included in the foregoing vector expression; it appears in
Eq. 2.187.

Moreover, the two foregoing sums, Ck and Sk, bear a particular significance
in the context of Fourier analysis. They turn out to be the coefficients of the
discrete Fourier transform of the sequence of discrete values S ≡ { f j}N−1

1 .
Now, the said transform is the discrete counterpart of the Fourier transform of a
continuous function f (t), for−∞ < t <+∞, and hence, finds extensive applications
in engineering and economics. As a matter of fact, the discrete sequence S defined
above, is known in economics as a time-series. The frequency analysis of time-series
is important in many areas. For example, in management, the frequency analysis of
the variations of market indicators given as time-series provides clues on trends,
which helps in the decision-making process. Included in Kahaner et al. [4] is an
application of time-series frequency analysis to the meteorological phenomenon
known as ‘El Niño’.
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Because of the frequent occurrence of the Ck and Sk coefficients in many
applications, software for their efficient computation is available in many scientific
packages, e.g., Matlab, IMSL, Maple, Mathematica, and the like. Kahaner et al.’s
book is nowadays complemented with a companion book [5] that offers down-
loadable software.12 This software package includes tools for the calculation of the
foregoing coefficients in the context of a more general set of routines meant for what
is called the Fast Fourier Transform (FFT). FFT, or FFT analysis, is used extensively
in engineering, science, and economics to determine the frequency contents of either
continuous or discrete functions of time, i.e., signals. Astronomer Carl Sagan, in his
science fiction bestseller Contact, describes a group of information scientists trying
to find a clue on the existence of God with the aid of the number π . What these sci-
entists do is a frequency analysis of the occurrence of the digits in this number and,
moreover, they try this frequency analysis in various numerical bases. The frequency
map that the scientists obtain, with number 11 as a basis, turns out to be a circle!

Coming back to our problem of calculating the Fourier coefficients of a periodic
signal, the natural question to ask is up to how many coefficients can we compute
from a subdivision of the integration interval of length equal to one period into
N subintervals? As discussed by Kahamer et al., if the interval is divided into N
subintervals, then we can, at most, compute �N/2� coefficients, where � ·� stands
for the floor function of ( ·), defined as the greatest integer contained in the real
interval [0, N/2].

An interesting result, known as Parseval’s Theorem or Parseval’s identity [6] is
now recalled, that finds extensive applications in the realm of Fourier analysis. We
will use it for error estimation in our calculations. This result can be readily derived
by squaring both sides of Eq. 2.184a, thus obtaining

f 2(t) = a2
0 +

[
∞

∑
1

ak cos

(
2πk
T

t

)]2

+

[
∞

∑
1

bk sin

(
2πk
T

t

)]2

+2a0

∞

∑
1

ak cos

(
2πk
T

t

)
+ 2a0

∞

∑
1

bk sin

(
2πk
T

t

)

+2

[
∞

∑
1

ak cos

(
2πk
T

t

)][ ∞

∑
1

bk sin

(
2πk
T

t

)]

(2.197)

In the next step, we integrate both sides of the foregoing equation within one whole
period. Without going into the details, it is apparent from the above equation that
there will be an infinite sum of terms of five kinds, namely,

1. a2
k cos2

( 2πk
T t
)
. The integral over one whole period of these terms is a2

k times T/2,
for every k;

12http://www.mathworks.com/moler
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2. b2
k sin2( 2πk

T t). The integral over one whole period of these terms is b2
k times T/2

as well, for every k;
3. a jbk cos( 2π j

T t)sin
( 2πk

T t
)
, for j, k = 1,2, . . ., including terms for which j = k. The

integral of every term of this kind vanishes;
4. a jak cos( 2π j

T t)cos
( 2πk

T t
)
, for j, k = 1,2, . . . and j �= k. The integral of every term

of this kind vanishes;
5. b jbk sin( 2π j

T t)sin
( 2πk

T t
)
, for j, k = 1,2, . . . and j �= k. The integral of every term

of this kind vanishes.

As a result of the foregoing observations, the right-hand side of Eq. 2.197 reduces
to the infinite sums of terms of the first two kinds described above, and hence,

∫ T/2

−T/2
f 2(t)dt = a2

0T +
T
2

∞

∑
1

a2
k +

T
2

∞

∑
1

b2
k (2.198a)

or, if we divide both sides of the above equation by T ,

1
T

∫ T/2

−T/2
f 2(t)dt = a2

0 +
1
2

∞

∑
1

a2
k +

1
2

∞

∑
1

b2
k (2.198b)

Now, by taking the square root of both sides of the above equation, we obtain

[ f (t)]rms =

√√
√
√1

2

(

2a2
0 +

∞

∑
1

a2
k +

∞

∑
1

b2
k

)

(2.199a)

with [ f (t)]rms defined as the root-mean square of f (t), i.e.,

[ f (t)]rms =

√
1
T

∫ T/2

−T/2
f 2(t)dt (2.199b)

Therefore, the root-mean-square value of the periodic function f (t) equals the
square root of one-half the sum of the squares of its Fourier coefficients, with a2

0
taken twice. Since root-mean square values are associated with energy—all energy
functions are quadratic either in the generalized coordinates or in the generalized
speeds—what Parseval’s Theorem states is simply one more form of the First Law
of Thermodynamics, i.e., the Principle of Conservation of Energy.

Note that the right-hand side of Eq. 2.198b is an infinite sum of squares. As
a consequence, if the infinite sums are truncated after Nh harmonics, the Nh-
approximation of the given function thus resulting leads to an underestimation of
[ f (t)]rms, i.e.,

a2
0 +

1
2

Nh

∑
1

a2
k +

1
2

Nh

∑
1

b2
k < [ f (t)]2rms (2.200a)
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Fig. 2.56 Iconic model of an
air compressor mounted on a
viscoelastic foundation

Let eNh be the error in the Nh-approximation of a given periodic function f (t).
The square of this error is defined as

e2
Nh
≡ [ f (t)]2rms−

(

a2
0 +

1
2

Nh

∑
1

a2
k +

1
2

Nh

∑
1

b2
k

)

> 0 (2.200b)

Obviously, as more and more harmonics are included in the Nh-approximation of a
given periodic function, the error decreases monotonically.

In summary, to calculate the Fourier coefficients, we have

Algorithm (Fourier):

1. If N is even, then the coefficients are calculated for k = 1, . . . ,N/2, with ak

being calculated for a0 as well; otherwise, the coefficients are calculated for
k = 1, . . . ,(N− 1)/2.

2. Calculate a0 as the mean value of the numbers { f j }N−1
0 .

3. Calculate the Ck and Sk coefficients, for k = 1, . . . ,�N/2� using expressions
(2.190).

4. Calculate the ak and bk coefficients, for k = 1, . . . ,�N/2� using expressions
(2.195).

Example 2.8.5 (Spectral Analysis of the Displacement of an Air Compressor).
Shown in Fig. 2.56 is the iconic model of an air compressor mounted on a
viscoelastic foundation that is modeled as a spring of stiffness k f in parallel with
a dashpot of coefficient c. The relative displacement s(t) of the piston with respect
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Fig. 2.57 Slider displacement vs. crank angular displacement

to the housing of the compressor is measured as indicated in the same figure and is
given below as a function of the angular displacement of the crank, θ :

s(θ ) = acosθ + b
√

1−ρ2 sin2 θ

where ρ ≡ a/b and the crank turns at a constant angular velocity ω0.
For the foregoing displacement, which is plotted in Fig. 2.57 for a = 100mm and

ρ = 0.5, compute the Fourier coefficients of the function s(θ ) numerically and give
an estimate of the error incurred in the calculations. (As one can readily realize, a
longhand Fourier analysis of the foregoing function would be intractable.)

Solution: It is apparent that the signal at hand is even, and hence, its sine coefficients
are all zero. Therefore, we only need worry about the ak coefficients, for k = 0,1, . . .,
N. Let us now calculate these coefficients for 1, 2, and 4 harmonics. For purposes of
illustration, we obtain these coefficients below by longhand calculations for 1 and
2 harmonics, i.e., for N = 2 and 4; for Nh = 4 or N = 8, we resort to numerical
calcualtions, but do not include the details here.

1. For Nh = 1, N = 2, which yields the sampled values f0, f1 and f2 = f0, as shown
in Fig. 2.58. We thus have

f (t) ≈ a0 + a1 cosω0t

the coefficients a0 and a1 being calculated below. First, note that

f0 = f (0) = 300, f1 = f (t1) = 100
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Fig. 2.58 Polygonal approximation of function s(θ ) with N = 2 intervals

Therefore,

a0 =
1
2
( f0 + f1) = 200

C1 =
2
2

1

∑
j=0

f j cos

⎛

⎝ k︸︷︷︸
1

ω0 j
T
2

⎞

⎠= f0 cos(0)
︸ ︷︷ ︸

1

+ f1 cos

⎛

⎜
⎜
⎝ω0

T
2︸︷︷︸

π

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
−1

= f0− f1 = 200

S1 =
2
2

1

∑
j=0

f j sin

(
ω0 j

T
2

)
= f0 sin(0)

︸ ︷︷ ︸
0

+ f1 sin

⎛

⎜
⎜
⎝ω0

T
2︸︷︷︸

π

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
0

= 0

Hence,

a1 =C1 cos

⎛

⎝ω0t0︸︷︷︸
0

⎞

⎠− S1 sin

⎛

⎝ω0t0︸︷︷︸
0

⎞

⎠=C1 = 200

Thus, with one harmonic,

f (t)≈ 200(1+ cosω0t)
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Fig. 2.59 Polygonal approximation of function s(θ ) with N = 4 intervals

2. For Nh = 2, N = 4, which yields the sampled values f0, f1, f2, f3 and f4 = f0 of
Fig. 2.59. Now we have

f (t)≈ a0 + a1 cosω0t + a2 cos2ω0t

In order to calculate the above coefficients, we start by calculating the function
values at the sampled instants:

f0 = 300, f1 = acos
(π

2

)

︸ ︷︷ ︸
0

+b
√√
√
√1−ρ2 sin2

(π
2

)

︸ ︷︷ ︸
1

= 200
√

1− 0.25= 173.2051= f3

where we have made use of symmetry to find f3. Moreover, by inspection,

f2 = 100

and hence,

a0 =
1
4
(300+ 173.2051+100+ 173.2051)= 186.6025

Furthermore,

C1 =
2
4

3

∑
j=0

f j cos

(
ω0 j

T
4

)
=

1
2

[
f0 cos(0)+ f1 cos

(π
2

)
+ f2 cos(π)

+ f3 cos

(
3π
2

)]
1
2
( f0− f2) = 100
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Table 2.1 Fourier coefficients of function s(θ ) of the air compressor

Nh = 1 Nh = 2 Nh = 4

a0 (mm) 200.00000000000 186.60254037844 186.84270485857
a1 (mm) 200.00000000000 100.000000000000 100.000000000000
a2 (mm) 26.794919243112 13.397459621556
a3 (mm) 2.1316282072803×10−14

a4 (mm) −0.48032896025319

S1 =
1
2

3

∑
j=0

f j sin

(
ω0 j

T
4

)
=

1
2

[
f0 sin(0)+ f1 sin

(π
2

)
+ f2 sin(π)

+ f3 sin

(
3π
2

)]
1
2
( f1− f3) = 0

Likewise,

C2 =
1
2

3

∑
j=0

f j cos

(
2ω0 j

T
4

)
=

1
2
[f0 cos(0)+ f1 cos(π)+ f2 cos(2π)+ f3 cos(3π)]

=
1
2
(300− 173.2051+100−173.2051)= 26.7949

S2 =
1
2

3

∑
j=0

f j sin

(
2ω0 j

T
4

)
=

1
2

[
f0 sin(0)+ f1 sin(π)+ f2 sin(2π)

+ f3 sin(3π)
]
= 0

Therefore,

a1 = C1 cos(ω0t0)− S1 sin(ω0t0) = 100

a2 = C2 cos(2ω0t0)− S2 sin(2ω0t0) = 26.7949

and hence,

f (t)≈ 186.6025+ 100.0000cosω0t + 26.7949cos2ω0t

Note that the coefficient of the first harmonic turns out to be nothing but the crank
length, which is plausible in light of the expression for s(t) given above, in which
this length is the coefficient of cosθ .

3. The foregoing values, as well as those for Nh = 4 (N = 8), are given with 14
digits, as obtained with the aid of Matlab, in Table 2.1. We thus have, with four
harmonics and four decimals,

s(θ )≈ 186.8427+ 100.0000cosθ + 13.3975cos2θ − 0.4803cos4θ

where the third harmonic does not appear because a3 turns out to vanish. Again,
notice that the coefficient of the first harmonic is the crank length.
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Fig. 2.60 s(θ )-approximation with 1, 2, and 4 Fourier terms

The plots of s(θ ) approximated with Nh = 1, 2 and 4 are shown in Fig. 2.60.
Note, from this figure, that the value of s(θ ) approximated with one single harmonic
overestimates s(θ ) by 33% at its peak values; when s(θ ) is approximated with two
harmonics, an overestimation of 4.5% is obtained. The approximation with four
harmonics, on the other hand, underestimates s(θ ) by less than 0.01%, but this
difference, obviously, is not visible in that figure.

Let us now try to estimate the error incurred in the foregoing calculations, which
we can do with the aid of Parseval’s identity. To this end, we need the integral of
s2(θ ) over one whole period, which gives us the rms value of s(θ ), i.e.,

srms =

√
1

2π

∫ 2π

0

(
acosθ + b

√
1−ρ2 sin2 θ

)2

dθ

Upon expansion of the above integrand, s2(θ ), we obtain

s2(θ ) = a2 cos2 θ + 2ab
√

1−ρ2 sin2 θ + b2(1−ρ2 sin2 θ )

It is now apparent that the desired integral cannot be calculated by simple quadrature
because of the presence of the square-root term. However, a close look of Table 2.1
will reveal that the crank length a is the coefficient of the first harmonic of the
Fourier expansion of s(θ ) with more than one harmonic, and hence, the remaining
harmonics of that expansion are bound to give the Fourier expansion of the second

term of s(θ ), b
√

1−ρ2 sin2 θ . Therefore, the error incurred in approximating s(θ )
by its Fourier expansion is identical to the error incurred in the approximation of
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Table 2.2 Fourier
coefficients of function√

1−ρ2 sin2 θ and the

estimate of its rms value,
√

Σ

Nh = 1 Nh = 2 Nh = 4

a0/b 1.0000 0.9330 0.9342
a2/b 0.1340 0.06699
a3/b 0.0000
a4/b −0.002402√

Σ 1.0000 0.9378 0.9354

√
1−ρ2 sin2 θ , which will prove to be much easier to compute. Indeed, the rms

value of the foregoing square root is

[√
1−ρ2 sin2 θ

]

rms
=

√
1

2π

∫ 2π

0
[1−ρ2 sin2 θ ]dθ

Thus,
[√

1−ρ2 sin2 θ
]

rms
=

√
1

2π

∫ 2π

0

[
1− ρ2

2
(1− cos2θ )

]
dθ

or
[√

1−ρ2 sin2 θ
]

rms
=

√
1

2π

[(
1− ρ2

2

)
θ +

ρ2

4
sin(2θ )

]2π

0

Finally,
[√

1−ρ2 sin2 θ
]

rms
=

√
1

2π

[
1− ρ2

2

]
2π =

√

1− ρ2

2

For the case at hand, ρ = 0.5, and hence,

[√
1−ρ2 sin2 θ

]

rms
=
√

0.8750 = 0.9354

which is exact to four digits. Table 2.2 includes the values of the Fourier coefficients
of the expansion of the foregoing square root, which are identical to those of [s(θ )−
a]/b.

An approximation to the Fourier expansion of s(θ ), frequently invoked, is
obtained by approximating the square root, for “small” values of ρ , in the form

√
1−ρ2 sin2 θ ≈ 1− ρ2

2
sin2 θ ≡ 1− ρ2

4
[1− cos(2θ )]

which thus yields the approximate Fourier expansion

√
1−ρ2 sin2 θ ≈ 1− ρ2

4
+

ρ2

4
cos(2θ )
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whose approximate Fourier coefficients are

a0 = 1− ρ2

4
= 0.9375, a1 = 0, a2 =

ρ2

4
= 0.0625

Therefore, according to Parseval’s identity,

[(
1− ρ2

4

)
+ρ cosθ +

ρ2

4
cos(2θ )

]2

rms
= a2

0 +
1
2

a2
1 +

1
2

a2
2

= 0.93752+ 0.5× 0.06252 = 0.8809

and hence,
[(

1− ρ2

4

)
+ρ cosθ +

ρ2

4
cos(2θ )

]

rms
= 0.9385

Displayed in Table 2.2 are the values of the coefficients of the exact Fourier

expansion of
√

1−ρ2 sin2 θ , item
√

Σ appearing in the same table being defined as

√
Σ≡

√√
√√1

2

[
(a0

b

)2
+

Nh

∑
1

(ak

b

)2
]

As compared with the exact value obtained above for the rms value of the square
root, 0.9354, the approximation formula gives a fairly acceptable error of about
0.3%. Note that the exact Fourier expansion of the same function, as given by
Table 2.2, gives an error of about 0.2% when the first two harmonics are considered.
Thus, the proposed approximation, which is limited to “small” values of ρ , gives
acceptable errors even for a relatively large value of ρ , namely, 0.5.

Finally, note that the exact Fourier expansion of the above square-root function
matches the function itself, up to at least the first four digits, when the expansion
includes the first four harmonics. The moral of the story is, then, that while simple
approximations can give acceptable results, an even higher accuracy can be achieved
at a rather low computational overhead.

2.8.3 The Periodic Response of First- and Second-order LTIS

In this section we shall determine the steady-state response of first- and second-order
systems to periodic inputs. Such a response will be termed the periodic response of
the system at hand. As we have seen, such an input can be represented as an infinite
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series of sine and cosine terms using the Fourier expansion of Eqs. 2.184a, b. Now,
Eq. 2.184a can be rewritten as

f (t) = a0 +
∞

∑
1

ak cosωkt +
∞

∑
1

bk sinωkt (2.201)

where

ωk =
2πk
T

(2.202)

Focusing on the terms under the summation signs, we see that they involve harmonic
functions of certain frequencies ωk. The steady-state response of the system to any
one of these terms alone has the form

MC
k cos(ωkt +φk) or MS

k sin(ωkt +φk) (2.203)

where MC
k , MS

k and φk can be determined using the results of Sect. 2.7 with A = ak,
B = bk, and ω = ωk. Since a0 can be regarded as a harmonic function of magnitude
a0 and frequency ω = 0, the steady-state response M0 of the system to the input
a0, can be determined using the results of Sect. 2.7 with A = a0 and ω = 0. The
steady-state response of the system to the periodic input f (t) can then be obtained
via superposition, so that

xP(t) = M0 +
∞

∑
1

MC
k cos(ωkt +φk)+

∞

∑
1

MS
k sin(ωkt +φk) (2.204)

or

xP(t) = M0 +
∞

∑
1

MC
k cos

(
2πk
T

t +φk

)
+

∞

∑
1

MS
k sin

(
2πk
T

t +φk

)
(2.205)

In the balance of this section we will determine expressions for MC
k , MS

k and φk for
various types of systems.

2.8.3.1 First-order LTI Dynamical Systems

If a first-order LTI dynamical system is driven by a periodic function f (t), then we
can model the system dynamics in the form

ẋ+ ax = a0 +
∞

∑
1

ak cos
2πk
T

t +
∞

∑
1

bk sin
2πk
T

t (2.206)

The term M0 is determined by setting ω = 0 and multiplying M by a0 in Eqs. 2.118a,
b, to obtain

M0 =
a0

a
, φ0 = 0 (2.207)
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Now, MC
k and φk are obtained by setting ω = 2πk/T and multiplying M by ak in

Eqs. 2.118a, b, so that

MC
k =

ak√
a2 +(2πk/T)2

φk =−arctan

(
2πk
Ta

)
(2.208)

MS
k is obtained likewise, by setting ω = 2πk/T and multiplying M by bk in

Eqs. 2.124a, b, which yields

MS
k =

bk√
a2 +(2πk/T)2

, (2.209)

2.8.3.2 Second-order Undamped LTI Dynamical Systems

Below we show the model of an undamped second-order system driven by a periodic
function expressed in Fourier-expansion form, namely,

ẍ+ω2
n x = a0 +

∞

∑
1

ak cos
2πk
T

t +
∞

∑
1

bk sin
2πk
T

t (2.210)

We derived the frequency response of these systems in Sect. 2.7.3 for har-
monic inputs, the associated magnitude and phase expressions being displayed
in Eqs. 2.135a, b and 2.144a, b. From these responses, we obtain the frequency
response expressions for the system at hand, i.e.,

M0 =
a0

ω2
n
, φ0 = 0 (2.211a)

MC
k =

ak/(ω2
n )

|1− k2r2
0|
, φC

k =

{
0◦ if kr0 < 1;
−180◦ if kr0 > 1

. (2.211b)

MS
k =

bk/(ω2
n )

|1− k2r2
0|

(2.211c)

where r0 is defined as the ratio

r0 ≡ ω0

ωn
≡ 2π

T ωn
(2.212)

2.8.3.3 Second-order LTI Dynamical Systems

A damped system acted upon by a periodic input leads to the model below:

ẍ+ 2ζωnẋ+ω2
n x = a0 +

∞

∑
1

ak cos
2πk
T

t +
∞

∑
1

bk sin
2πk
T

t (2.213)
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The frequency response expressions for the underdamped case were obtained
in Sect. 2.7.3. We also pointed out in that subsection that the same amplitude and
phase relations hold for critically damped and overdamped systems. From the two
sets of magnitude and phase expressions, Eqs. 2.132a, b and 2.142a, b, we obtain
the desired frequency-response expressions for the system at hand, as shown below:

M0 =
a0

ω2
n
, φ0 = 0 (2.214a)

MC
k =

ak/ω2
n√

(1− k2r2
0)

2 +(2ζkr0)2
(2.214b)

φk = −arctan

[
2ζkr0

1− (kr0)2

]
(2.214c)

MS
k =

bk/(ω2
n )√

(1− k2r2
0)

2 +(2ζkr0)2
(2.214d)

r0 =
ω0

ωn
=

2π
Tωn

(2.214e)

Example 2.8.6 (The Periodic Response of an Air Compressor). For the numerical
values given below, find the steady-state dynamic force transmitted to the ground
by the compressor-foundation system of Sect. 2.8.2, with the crank turning at a
constant ω0.

a = 100 mm; ρ = 0.5; m = 10 kg; M = 200 kg;

ωn = 26.1799 s−1; ω0 = 100 rpm; ζ = 0.2

Solution: As the reader can readily verify, the mathematical model of the
compressor-foundation system takes the form:

ẍ+ 2ζωnẋ+ω2
n x =− m

M+m
s̈, ωn ≡

√
k f

M+m

where s(θ ) is given in Example 2.8.5. Now, we need the Fourier expansion of the
right-hand side of the foregoing equation. To this end, we can proceed in two ways,
namely, (i) by finding s̈(t) explicitly from the second derivative of s(θ ) given above,
and then computing the Fourier coefficients of this function; alternatively, (ii) by
differentiation of the terms of the Fourier expansion of s(θ ) found in Example 2.8.5.
Since we already have the latter, it is apparent that the second approach should be
more expeditious.

Note that s(θ ) was found to be accurately approximated with its first four
harmonics, namely,

s(θ ) = a0 +
4

∑
1

ak cos(kθ )
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Fig. 2.61 The four Fourier coefficients Ak of the force-transmission analysis

and hence,

ṡ(θ ) =−ω0

4

∑
1

kak sin(kθ ), s̈(θ ) =−ω2
0

4

∑
1

k2ak cos(kθ )

the governing equation thus taking the form

ẍ+ 2ζωnẋ+ω2
n x =

4

∑
1

Ak cos(kθ )

with Ak defined as

Ak = ω2
0

m
M+m

k2ak, k = 1,2,3,4

Shown in Fig. 2.61 are the four coefficients Ak, for the given numerical values.
Now, the force transmitted to the foundation, F(t), can be expressed as a sum of

harmonics having the form of the expression appearing in Eq. 2.163, i.e.,

F(t) =
4

∑
1

Fk cos(kω0t +ψk)

with Fk and ψk derived from the expressions given in Eqs. 2.166 and 2.167, with
F0 = Ak(M+m) or F0 = ω2

0 mk2ak, for k = 1,2,3,4. Therefore,

Fk ≡ Ak(M+m)
√

1+(2ζ rk)2
√
(1− r2

k)
2 +(2ζ rk)2

, ψk ≡ tan−1(2ζ rk)− tan−1
(

2ζ rk

1− r2
k

)
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Fig. 2.62 Steady-state force transmitted to the foundation

where the counter k in the foregoing expansion is not to be confused with the
stiffness of the foundation, k f . Moreover, the counter is not needed, for the value
of ωn is given instead. Additionally,

rk ≡ kω0

ωn
, k = 1,2,3,4

The steady-state transmitted force, computed with four harmonics, is plotted in
Fig. 2.62.

2.9 The Time Response of Systems with Coulomb Friction

Systems with Coulomb friction are more difficult to handle than those with viscous
friction that we studied so far. One reason is that these systems lead to nonlinear
models, as we will show presently.

We consider here a very simple model, namely, a mass coupled to an inertial
frame through a linear spring and Coulomb friction, as depicted in Fig. 2.63. Here,
we model friction as in Chap. 1, namely, we do not distinguish between static and
dynamic friction coefficients and take the friction force as proportional to the normal
force, the proportionality factor μ , i.e., the friction coefficient, being constant.

Under the foregoing conditions, it is now a simple matter to derive the governing
equation of interest, namely,

mẍ+ kx =

{−μN, if ẋ > 0;
μN, if ẋ < 0;
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Fig. 2.63 Mass-spring
system subjected to Coulomb
friction

which readily leads to

mẍ+ kx =−μNsgn(ẋ) (2.215)

or

ẍ+ω2
n x =−μN

m
sgn(ẋ) (2.216)

Such a model is, then, said to be piecewise linear. We have thus, piecewise,
an undamped second-order system acted upon by a constant force of magnitude
f0 = μN/m. Clearly, as the velocity changes sign, so does the friction force, always
opposing the motion. It is then expected that, within a period in which the velocity
does not change sign, the friction force will slow down the mass, which will
eventually come to a standstill. Now, because of the potential energy stored in the
spring upon reaching the standstill position, the mass will resume motion as long
as the force supplied by the spring is large enough to overcome the friction force.
Motion will eventually stop when the spring force is not large enough to overcome
the friction force. Thus, in order to find the desired time response, we can assume,
without loss of generality, that we start observing the system while the mass is
stationary, and so, we can assume the initial conditions x(0) = x0 > 0 and ẋ(0) = 0.
We then have

ẍ+ω2
n x = μ

N
m
, x(0) = x0 > 0, ẋ(0) = 0 (2.217)

The response of the above system is readily derived from previous results. Indeed,
this response has the form given in Eq. 2.88, with v0 = 0 and f (t) = μN/m =
const, i.e.,

x(t) = (cosωnt)x0 +

∫ t

0
μ

N
m

1
ωn

(sinωn(t− τ))dτ (2.218)

and hence,

x(t) =
μN

mω2
n
+(cosωnt)

(
x0− μN

mω2
n

)
(2.219)

while the velocity is

ẋ(t) =−ωn(sinωnt)

(
x0− μN

mω2
n

)
(2.220)
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Therefore, the mass will reach a standstill at a time t = t1 = π/ωn. Furthermore,
upon substitution of t1 in the expression for x(t), Eq. 2.219, an expression for x1 ≡
x(t1) is readily derived, namely,

x1 =
μN

mω2
n
−
(

x0− μ
N

mω2
n

)
=−x0 + 2

μN
mω2

n

Now we regard t = t1 as the initial time for the ensuing motion. The governing
equation from which this motion is derived is identical to the former, Eq. 2.217,
with the difference that now the non-homogeneous term changes sign, the response
thus becoming

x(t) =− μN
mω2

n
+(cosωnt)

(
x0− 3μ

N
mω2

n

)
, t ≥ t1

Likewise,

ẋ(t) =−ωn(sin ωnt)

(
x0− 3μ

N
mω2

n

)

Therefore, the mass reaches a standstill at a time t2 > t1 given by t2 = 2π/ωn, at
which x(t) attains the value x2 ≡ x(t2), given by

x2 = x0− 4
μN

mω2
n

The motion for t > t2 is derived likewise. It is apparent by now that the mass will
attain a standstill at t = t3 = 3π/ωn, at which

x3 ≡ x(t3) =−x0 + 6
μN

mω2
n

and hence, the mass attains rest at a sequence of positions {xi }F
1 given by

xi = (−1)i
(

x0− 2i
μN

mω2
n

)
, i = 1, . . . ,F

xF , the final position, being reached when the friction force is greater than the force
provided by the spring while the mass is at rest, the mass thereby stopping for good.
The value F is the lowest integer F for which

k|xF |< μN < k|xF−1|

or

|xF |< μN
k

< |xF−1|

A plot of the above time response is shown in Fig. 2.64.
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Fig. 2.64 Time response of mass-spring system subjected to Coulomb friction

Note that the time response of the system at hand is piecewise harmonic, with
decreasing amplitude. However, contrary to viscous damping, which produces an
exponential decrement of the motion amplitude, Coulomb damping produces a
linear decrement. Hence, the nature of a damped system can be identified by
inspection, i.e., by looking at its decrement.

Finally, it can be readily proven that the sequence of values {xi}F
1 is governed by

the recursive relation given below:

xi+1 =−xi + 2
μN

mω2
n
, x0 = x0, i = 1, . . . ,F (2.221)

with xF observing the constraint derived above.

2.10 Exercises

2.1. We refer to the tugboat-barge system of Example 2.2.1 under the failure
conditions described therein, but with the numerical data given below: τB = 10 s,
τT = 8 s, v0 = 5 m/s, the length of the tugging cable being 8 m. Determine the time
elapsed until the occurrence of a collision. Hint: A graphical solution is suggested
here.

2.2. The iconic model of an overhead material-transport system is sketched in
Fig. 2.65. The system consists of a massless, rigid wheel driven at a controlled
constant speed w along a bent track, in such a way that the load, of mass m, can
be safely assumed to undergo pure translation. Note that the load is attached to the
wheel by means of an undamped suspension. Find the value of w beyond which the
wheel will jump off the track after reaching the horizontal track section.

2.3. Refer to the aircraft modeled upon landing as shown in Fig. 2.13. At touch-
down, the fuselage lies a height h0 = 1/(2π) m above its static-equilibrium level
(SEL), while the approach velocity has a horizontal component u0 that can safely
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Fig. 2.65 An overhead material-transport system with an undamped suspension

be assumed constant during touchdown and a vertical component v0 of 4
√

2 m/s. If
ωn = 1 Hz and ζ =

√
2/2,

(a) Find the maximum height h1 reached by the fuselage from the SEL right after
landing

(b) Find the maximum force transmitted to the ground

2.4. Consider the overhead crane of Example 1.6.5. We want to stabilize the
unstable rod-up equilibrium configuration with analog feedback applied by a
torsional spring of stiffness k at the pin of attachment of the rod with the slider. Find
the minimum value kmin of k that will make the feedback system stable, under the
assumption that the spring is unloaded in the rod-up equilibrium configuration. Now,
for a value of k= 2kmin and constant ü= 0.5g, sketch the time response of the system
under the perturbations (1) δθ0 = 0.02 rad, δ θ̇0 = 0; (2) δθ0 = 0, δ θ̇0 = 0.02 rad/s;
and (3) δθ0 = 0.01 rad, δ θ̇0 = 0.06 rad/s. Comment on the relationship among the
three results. Assume that the pin provides a light damping of 10%, i.e., the damping
ratio is 0.1, and g/l = 4 s−2.

2.5. We refer to the system of Exercise 1.2. An experiment is conducted to
determine the stiffness of the shaft. The experiment consists of letting the bar fall
freely from its top position, i.e., with the motor exerting a zero torque on the pinion.
As the bar reaches its bottom position, the motor is blocked, thereby fixing the left
end of the shaft to an inertial frame. It is then noted that the link undergoes 80
small-amplitude oscillations, behaving as a rigid body, about its lowest position in
10 s. Moreover, the light damping always present, in the form of air drag, material
hysteresis, and the like, produces a decrement of the amplitude of the oscillations
such that, after 80 oscillations, the amplitude is only 5% of its original value. With
this information, and knowing that the bar is 1 m long and weighs 117.72 N, find
the stiffness of the shaft and the coefficient of damping, under the assumption that
damping is linear.

2.6. The system of Example 2.4.2 is revisited here. Under the assumption that ωn =
3.1451 rad/s and ζ = 0.04711, find the minimum height h from which the mass m2
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Fig. 2.66 A railroad car approaching a bumper

should be dropped in order to produce a strong-enough rebound of the pad that will
exert a pull of the springs on the ground. Assume that the coefficient of restitution of
the ball with the pad is e = 0.5. Find the instant tmin at which the pull is expected to
occur. Note: Because of the change in conditions, the plot of Fig. 2.25 has nothing
to do with this problem.

2.7. Boxes are transported on a horizontal track of rollers. Upon placement of a box
of mass m on the rollers, the box is given a push that moves it at a speed v0. Find
the value of v0 that will allow the box to travel a given distance d before its speed
drops below 0.5 v0, under the assumption that the lubricant of the rollers produces
linearly viscous damping of a known coefficient c(Ns/m).

If a batch of different boxes, ordered by weight, is to be placed on the rollers
at equal time-intervals T , with equal initial speed v0, how would you order the
placement of the boxes, in order to prevent collisions between boxes, i.e., from
heavier to lighter, alternating them, etc.? Explain your rationale.

2.8. The railroad car shown in Fig. 2.66 is released with a speed of 20 km/h a
distance of 50 m from the bumper to the right. The car weighs 100 kN, and its
axles turn on bearings providing a linearly viscous damping that decreases its speed
by 80% just before hitting the bumper. Once the bumper has been hit, assume that
the car engages the bumper without backlash and without energy losses. Then, the
compression of the springs is recorded. It is found that the spring compression
reaches a first peak of 250 mm and a second one of only 35 mm. Find:

(a) The damping coefficient of the car axles
(b) The damping ratio of the car-bumper system
(c) The natural frequency of the same system
(d) The stiffness of the bumper
(e) The damping coefficient of the bumper

2.9. Assume that the railroad car of Fig. 2.66 weighs 98.10 kN, and travels at a
velocity v(t) to the right. Upon hitting the bumper, coupling is assumed to occur
instantly and without backlash. Under these ideal conditions, assume further that
the wheels roll without slipping on the railway, the only sink of energy being the
lubricant in the axles, which can be assumed to produce linearly viscous damping
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a b

Fig. 2.67 A helicopter lifting a load: (a) the physical system (silhouette of the Aérospatiale—
Eurocopter—AS 355 Écureil Helicopter); (b) the iconic model

of coefficient cW = 0.7 kNs/m. The car is released with a velocity vR and, 10 s
afterwards, it is observed to hit the bumper with a velocity of 10 m/s.

(a) Find the value of vR.
(b) The bumper is to be designed so that it will provide linearly viscous damping

with a damping ratio of ζ = 0.5 and undamped oscillations of 1/(2π)Hz.
Specify the spring stiffness and the dashpot coefficient.

(c) Find the maximum force transmitted to the bumper, when the car approaches it
as described above, i.e., with a velocity of 10 m/s.

(d) Sketch the displacement of the car as a function of time after coupling has taken
place, and determine the maximum deflection experienced by the bumper.

(e) What design changes (i.e., new values of k and c) would you recommend in
order to bring the maximum deflection of item (d) down to 10 % of the value
found above, without changing the damping ratio? Under these changes, what
is the maximum force transmitted for the given approach velocity?

2.10. Shown in Fig. 2.67a13 is a helicopter lifting a load of mass m at a constant
lifting speed v, lE being the length of the spring when the load is airborne and under
static equilibrium. The lifting mechanism is modeled in Fig. 2.67b as a linear mass-
spring-dashpot system. Moreover, the force f exerted by the cable on the mass can
be expressed in the form

f (t) = kx+ cẋ

We define the dynamic factor D f as the dimensionless quantity by which the
weight of the load has to be multiplied, when designing the cable, to account for the
dynamic effects of lifting. We want to determine this factor by finding the maximum
force exerted on the cable once the load is airborne. To this end,

13Reproduced with authorization from http://commons.wikimedia.org/wiki/ File:Helicopter
silhouette AS-355.svg

http://commons.wikimedia.org/wiki/
File:Helicopter_
silhouette_AS-355.svg
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(a) Show that the condition under which the force in the cable attains a stationary
value (maximum, minimum, or saddle point) is given by

(4ζ 2− 1)ẋ+ 2ζωnx = 0

(b) Find an expression for D f , if we know that ζ = 0.5

2.11. For the motor-clutch system described in Example 1.6.10, assume that the
rotor can be safely modeled as a homogeneous cylinder of mass m = 5 kg and
radius r = 100 mm. In designing this system, we want to meet the specification
below: when the rotor is turning at a constant angular velocity ω , it is required that,
upon turning the motor off, the rotor angular velocity be reduced to at least 1% of
its original value in 100 ms. What is the minimum value of the dashpot coefficient
that will produce this behavior?

2.12. (To be assigned only if Problem 1.8 was previously assigned.) In designing
the suspension of Problem 1.8, a test is conducted on the suspension such that the
wheel is displaced from its equilibrium state by a small amount y0 and is then
released at rest. It is required that the wheel return to within 1% of its equilibrium
configuration after the second oscillation. If the natural frequency of the suspension
is 1 Hz, what is the required value of the damping ratio? Under these conditions,
for y0 = 50 mm and ẏ0 = 0, plot the time response of the system for the first three
oscillations.

2.13. A fluid clutch connects a load, e.g., the whole inertia of an automobile, to
an engine, as shown in Fig. 1.23. Assume that the torque transmitted through the
clutch, when it is engaged, is proportional to the difference in speed of the input
and output shafts (proportionality constant c). Assume also that the speed ω of the
engine shaft is constant and unaffected by the load. If the load is a pure inertia J
and the system is underdamped, find the time response of the load angular velocity
ωR = θ̇ , after the clutch is suddenly engaged.14

2.14. A wheelchair crossing a ditch is modeled as the underdamped mass-spring-
dashpot system shown in Fig. 2.68.

(a) Determine the time response x(t) of its vertical motion, upon traversing the
ditch at a constant speed v, in terms of the physical parameters of the system
and the geometry of the ditch.

(b) Plot x(t) vs. time at a suitable scale, for values of

ωn = 1 Hz, ζ =

√
2

2
,

v
λ ωn

= 0.01,
1

2π
, 10.0

Comment on the results.

14This exercise is drawn from a similar one in [3].
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Fig. 2.68 The iconic model of a wheelchair crossing a ditch

Fig. 2.69 A terrestrial vehicle climbing a cycloidal ramp

2.15. A terrestrial vehicle is modeled as the underdamped mass-spring-dashpot
system shown in Fig. 2.69. Determine the time response y(t) of its vertical motion,
upon overcoming a cycloidal slope at a constant speed v, in terms of the physical
parameters of the system and the geometry of the slope. The cycloidal slope is
modeled via the function η(x), defined as

η(x)≡
⎧
⎨

⎩

0, for x≤ 0
H[x/L− 1/(2π)sin(2πx/L)], for 0≤ x≤ L
H, for x≥ L



216 2 Time Response of First- and Second-order Dynamical Systems

Fig. 2.70 Vehicle with undamped suspension traveling on a wavy road

Furthermore, plot the response of the system under the conditions: c = 0 and
ωn = 1 Hz, for three values of v, v = 0.01ωnL, v = ωnL/(2π), and v = 10ωnL,
L = 1m. Comment on your results.

2.16. Shown in Fig. 2.70 is the iconic model of a vehicle with an undamped sus-
pension—intended to model worn-out “shocks”—traveling on a wavy road whose
profile is modeled as a sinusoidal wave η(x) = hsin(2πx/λ ).

(a) In order to prevent the mass from oscillating with an amplitude greater than
5h, a range of the values of the constant velocity v should be avoided; find this
range in terms of the given parameters.

(b) Now, we want to add shock absorbers to the suspension, while knowing that the
weight of the vehicle body is 10 kN and that the damped frequency of the system
should be 1 Hz. Find the stiffness and the dashpot coefficient of the suspension
that will prevent the mass from moving with amplitudes greater than 2.5h under
any constant velocity v.

2.17. An aircraft turbine mounted on a testbed is modeled as shown in Fig. 2.71a.
The turbine provides a compressive force f (t) of the saturation type,15 as plotted
in Fig. 2.71b. Derive the time response of the system, x(t), under zero initial
conditions.

2.18. A Baja vehicle weighing 5,000 N is being designed with a suspension that has
to provide a natural frequency of 1 Hz. Moreover, it is required that, upon letting the
vehicle fall from a certain height h0, the vehicle body bounce back to successive
height peaks h1 and h2, so that h2 be 20% of h1. Find the dashpot coefficient and the
spring stiffness of the suspension.

15The saturation function sat(x) was introduced in Eq. 1.37 and plotted in Fig. 1.26b.
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a b

Fig. 2.71 Model for an aircraft turbine

Fig. 2.72 An overhead material-transport system with an underdamped suspension

2.19. We study here the behavior of the underdamped material-handling system of
Fig. 2.72 as the wheel goes down a step of height h along its track at t = 0.

(a) Derive the mathematical model of the system.
(b) Find the time response of the system.
(c) Find the values of x(0+) and ẋ(0+).

2.20. Shown in Fig. 2.73 is the model of a terrestrial vehicle with an undamped
suspension, traveling at a constant speed v0 on a bumpy road that is known to have a
periodic profile. For purposes of our analysis, we model the road profile in the form

η(x) = h
∣
∣∣sin
(π

λ
x
)∣∣∣
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Fig. 2.73 Terrestrial vehicle traveling on an bumpy road

Fig. 2.74 Terrestrial vehicle overcoming a 45◦ ramp

for a bump height h and a wavelength λ . Upon introducing the coordinate y mea-
suring the vertical position of the mass with respect to its equilibrium configuration,
the governing equation takes the form

ÿ+ω2
n y = ω2

n η

Find the steady-state response y(t) of the system in terms of the parameters of
the system and of the road profile. Hint: 2sinacosb = sin(a+ b)+ sin(a− b).

2.21. An all-terrain terrestrial vehicle with an underdamped suspension is modeled
as in Fig. 2.74. It is meant to overcome a 45◦ slope as shown in the same figure, while
traveling at a constant speed v0. The variable x measures the vertical displacement
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Fig. 2.75 Magnitude (μ) and phase (φ ) of the tests conducted on a vehicle suspension

of the vehicle with respect to an inertial frame. This frame is located so that the
origin corresponds to the position of static equilibrium of the vehicle when it is at
rest on the ground before hitting the ramp. The variable y represents the height of
the ramp from the ground. Derive the time response of the vehicle.

2.22. We refer here to the suspension system of Problem 1.8. The linearized model
about the equilibrium configuration y = 0 takes the form

mEÿ+ cEẏ+ kEy = f (t)

where y is a “small-amplitude” displacement from equilibrium, while mE , cE , and
kE are the equivalent mass, equivalent dashpot coefficient, and equivalent stiffness
of the linearized system, and f (t) is an external vertical force. Expressions for mE ,
cE , and kE are given as

mE = 19m, cE =
3
4

c, kE =
3
4

k

The suspension system is tested on a machine that applies a vertical force
f (t) = F0 cosωt on the wheel with ω changing in a broad spectrum of frequencies,
thus obtaining the plots shown in Fig. 2.75. For the displacement y(t) determine the
values of c and k, if m = 5 kg.

2.23. The tool of a NC lathe is modeled as a linearly elastic, massless spring,
while the positioning mechanism is modeled as a mass-dashpot system, as shown
in Fig. 2.76. When the workpiece is turning at a constant angular velocity ω f ,
the workpiece exerts a displacement y(t) = Acosω f t on the tip of the tool due
to the irregularities in the workpiece profile, where A is assumed to be “small.”
Find the frequency ω f for which the force transmitted to the machine-tool frame
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Fig. 2.76 Model of a
NC-lathe-tool system

Fig. 2.77 Iconic model of a coordinate-measuring machine

is a maximum. In this model, note that the workpiece cannot, properly speaking,
exert a pull on the tool. However, the spring is assumed to be under compression
all the time, the displacement y(t) becoming positive when the contact point of the
workpiece is to the right of its nominal position; the latter is defined, in turn, as the
one that the contact point would have if the workpiece were perfectly circular.16

2.24. Shown in Fig. 2.77 is a rough iconic model of a coordinate-measuring
machine, as it is probing a nominally flat surface at a constant velocity w, while
approaching a groove that can be safely modeled as a triangular ditch. Note that
the slider is massless and can move freely and without friction on its horizontal
guideway. Also note that the probe is always in contact with the surface. Under
the assumption that the system at hand is underdamped, and for a set of numerical
values that yield the model

ẍ+ 2ẋ+ 2x = 200[u(t)− 2u(t−T )+ u(t− 2T)]

16This exercise is drawn from a similar one in [3].
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Fig. 2.78 Iconic model of a coordinate-measuring machine

find the time response of the system in terms of the corresponding responses to
abrupt and impulsive excitations.

2.25. Shown in Fig. 2.78 is the same model of the coordinate-measuring machine
of Exercise 2.24 as it probes a nominally flat surface at a constant velocity w. The
surface shows small irregularities that can be approximated as a harmonic wave of
amplitude A. Note that: (1) the slider is massless; (2) the slider can move freely and
without friction on its horizontal guideway; and (3) the probe is always in contact
with the surface. Under the foregoing assumptions,

(a) show that the mathematical model of the system can be cast in the form

ẍ+ 2ζωnẋ+ω2
n x = f (t)

and find an expression for f (t).
(b) Under the assumption that the system at hand is underdamped, and for a set of

numerical values that yield the model

ẍ+ 2ẋ+ 2x = 200cosωt [μm/s2]

find an expression for ω in terms of the parameters of the problem.
(c) Find the value of the steady-state peak force exerted by the probe on the surface,

assuming m = 1 kg.

2.26. Find an expression for the time response of the underdamped system of
Fig. 2.79 traveling at a constant velocity w upon encountering a ramp of angle α , in
terms of the response(s) of the same system to abrupt and impulsive excitations.

2.27. Shown in Fig. 2.76 is the iconic model of the tool-carrying mechanism of
a lathe, with point P indicating the contact point between tool and workpiece.
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Fig. 2.79 An underdamped system encountering a ramp

The latter subjects the tip of the tool to a harmonic displacement y(t) = Acosωt,
with A = 500 µm, that is due to the irregularities on the machined surface. The
mathematical model of this system takes the form

ẍ+ 2ζωnẋ+ω2
n x = ω2

n y(t)

If we know that m = 1 kg, ζ = 0.5, and ωn = 200/π Hz for the model at hand, find
the range of cutting speeds ω that will produce a steady-state force exerted at point
O higher than 48 N, with O denoting the mounting of the tool carrier on the frame
of the machine.
Hint: The use of Bode plots is highly recommended here.

2.28. Shown in Fig. 2.76 is the iconic model of the tool-carrying mechanism of a
lathe, with point P indicating the contact point between tool and workpiece. The
presence of an irregularity on the latter subjects the tip of the tool to a triangular
bump, as shown in Fig. 2.80. The mathematical model of this system takes the form

ẍ+ 2ζωnẋ+ω2
n x = f (t)

(a) Find an expression for f (t) in terms of the parameters of the system.
(b) Now, for a given set of numerical values of the natural frequency and the

damping ratio, the foregoing system is acted upon by a function f (t)—not
necessarily the same as that of item (a)—of the form

f (t) = r(at)− 2r(at− aT)
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Fig. 2.80 Triangular bump profile

Fig. 2.81 A simplified model of a press mechanism

where r(t) is the unit ramp, and T is a constant. Sketch the foregoing excitation
and find the time response of the system at hand to this excitation.

2.29. A simple model of the mechanism of a press is shown in Fig. 2.81. In this
model, the Scotch yoke of the left is driven by a crank that turns at a constant angular
speed ω , while the spring is undeformed when x = 0 and y = 0.

(a) Under the current design it has been found that, when ω =
√

k/m, the mass
oscillates with an amplitude M = 5l. From this observation, can you estimate
the damping ratio ζ?

(b) A modification is being proposed, that consists of changing the spring to
one with a new stiffness knew. Choose knew, without modifying c, so that the
amplitudes of the oscillations of the mass and the Scotch yoke coincide.

2.30. Derive the ramp response of (1) first-order systems and (2) undamped second-
order systems. What is the steady-state component of these responses? Skip (1) if
first-order systems were not covered by your instructor.

2.31. Derive the ramp response of (1) underdamped, (2) critically damped and (3)
overdamped second-order systems. What is the steady-state component of these
responses? Skip (1) if first-order systems were not covered by your instructor.
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2.32. A wheelchair designed for climbers of pre-Columbian pyramids is to be
analyzed to verify whether it meets its design specifications. To this end, we use
the Fourier expansion of the pyramid profile derived in Example 2.8.4 and base our
analysis on the first two harmonics. The forward velocity of the wheelchair is to be
kept at a constant 3m/s; the length of the pyramid steps is assumed to be λ/2 =
0.5m; the natural frequency of the chair is 1 Hz; and the damping ratio is 0.7071.

(a) Find the magnitude and the phase of the harmonics of the steady-state response.
(b) What is the error incurred in the approximation of the pyramid profile when

taking only the first two harmonics?
(c) What about the error in the approximation of the steady-state response with

only two harmonics?

2.33. A production machine carries a pneumatic hammer which is to be designed
so that, upon hitting a nail with a force F0 cosωt, with F0 = 100N and ω = 10Hz,
the machine support experiences a harmonic force with an amplitude of only 10 N.

(a) If the hammer weighs 200 N, and the hammer-suspension system has a natural
frequency of 1 Hz, what damping ratio do you recommend to meet the design
specifications?

(b) If the nail is assumed to provide a periodic force in the form of a square wave
with intermittent values of 0 N and 100 N over equal periods of 0.1 s, find the
steady-state response of the hammer by taking only the first two harmonics of
the Fourier expansion of the periodic force.

(c) What is the error incurred in the approximation of the force with only two
harmonics?

(d) What about the error in the approximation of the force transmitted to the user?

2.34. The air compressor of Example 2.8.6 is revisited here. The velocity ṡ of
the piston with respect to the housing is given below as a function of the angular
displacement θ of the crank, in dimensionless form:

ṡ
ωa

=

[

1+ρ
cosθ

√
1−ρ2 cos2 θ

]

sin θ

where ω denotes the constant angular velocity of the crank, and ρ ≡ a/b. Moreover,
the foregoing dimensionless velocity is plotted for ρ = 0.5 in Fig. 2.82a. The
acceleration s̈ appearing in the right-hand side of the mathematical model of that
example can be found from the above expression by straightforward differentiation.
However, as one can readily realize, a Fourier analysis of the foregoing velocity,
not to speak of its time-derivative, would be untractable with longhand calculations.
Here we have a typical example of an algebraically difficult problem that can be
rendered tractable with a reasonable approximation. Indeed, we can approximate
the velocity plot of Fig. 2.82a by a triangular wave, as depicted in Fig. 2.82b.

Express the right-hand side of the corresponding mathematical model as a series
of harmonic functions, under the assumption that the crank turns at a constant rate
ω0 rad/s, for a piston velocity approximated as in Fig. 2.82b.
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Fig. 2.82 Plot of (a) nondimensional piston velocity and (b) its piecewise linear approximation

2.35. A vehicle with worn-out shock absorbers is represented in Fig. 2.83 as it rolls
through a bumpy road whose bumps follow a circular pattern of radius r. The vehicle
travels with an unperturbed constant speed v = 20ωnr, where ωn =

√
k/m. We want

to estimate how much the body of the vehicle will “jump” as it traverses the road.
To this end, we conduct an approximate Fourier analysis of the road profile using a
trapezoidal integration of the profile, which yields the expansion below:

η(x)≈ ã0 + ã1 cos
(πx

r

)
+ ã2 cos

(
2πx

r

)

where ãk, for k = 0,1,2 are the approximate Fourier coefficients of the road profile,
computed using the trapezoidal rule. Our computer-algebra calculations yield

ã0 =
1+
√

3
4

r, ã1 =−1
2

r, ã2 =
1−√3

2
r
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Fig. 2.83 An undamped vehicle traversing a bumpy road

(a) For starters, we want to estimate the error of the above approximation of the
road profile. Find an expression for that error.

(b) Under the above approximation, the (steady-state) periodic response of the
vehicle can be approximated as

y(t)≈M0 +M1 cos
(πvt

r
+φ1

)
+M2 cos

(
2πvt

r
+φ2

)

Find expressions for M0, M1, M2, φ1, and φ2.
(c) Estimate the amount of “jumping” by means of the root-mean square value of

y(t), i.e., find an expression for [y(t)]rms, where, in order to avoid algebraic
mistakes and spending precious time with the required algebra, you need not
substitute the expression for {Mi}2

0 and {φi}2
1 found in item (b). Hint: Express

y(t) as a truncated Fourier series, i.e., as a sum of (1) a constant term, (2) two
cosine terms, and (3) two sine terms, none of these with a phase angle.

2.36. A fluid clutch, similar to that of Fig. 1.23, is considered here, with a Geneva
wheel—see Fig. 4.13—mounted between the motor M and the driving disk rotating
at an angular velocity ω . Moreover, the load is driven by the above-mentioned disk
through a viscous fluid that transmits a moment proportional to the difference in
angular velocities of the two disks, the constant of proportionality being the viscous
friction coefficient c. The system can be modeled as shown below:

ω̇R +
1
τ

ωR =
1
τ

ω

where ω ≡ φ̇ , ωR ≡ θ̇ , and τ is the time constant of the system, defined as τ ≡ J/c.
Moreover, the profile of the angular displacement φ is approximated as indicated in
Fig. 2.84.
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φ

t

Fig. 2.84 Displacement produced by a Geneva wheel

Find an expression for the time response ωR(t) after a long-enough time has
elapsed so as to allow for the decay of all transients, i.e., at steady-state.

2.37. A fluid clutch connects a load, e.g., the whole inertia of an automobile, to
an engine, as shown in Fig. 1.23. Assume that the torque transmitted through the
clutch, when engaged, is proportional to the difference in speed of the input and
output shafts (proportionality constant c). Assume also that the speed ω(t) of the
input shaft is unaffected by the load. If the load is a pure inertia J, find the steady-
state angular velocity ωR = θ̇ of the load, if the input angular velocity ω(t) is given
by17

ω(t) =
c
J

∣
∣∣
∣sin

2πbt
J

∣
∣∣
∣

2.38. Shown in Fig. 2.85 is a rotor of moment of inertia J that turns at a rate θ̇ , as
it is driven by a shaft via a universal joint. If the input axis of the universal joint is
driven, in turn, at a constant angular velocity ω0, the output axis delivers a periodic
angular velocity σ , which is transmitted to the left end of an elastic shaft of stiffness
k. That is, if the constant angle between input and output axes is labelled α , and the
angular displacement of the input shaft is denoted by ψ , then,

φ̇ = σ =
cosα

1− sin2 α sin2 ψ
ω0, ω0 ≡ ψ̇

Moreover, the relation between the output angle φ and the input angle ψ is given by

tanφ =− cotψ
cosα

17This exercise is drawn from a similar one in [3].
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Fig. 2.85 Rotor driven by a universal joint

Using Parseval’s Formula, we can estimate the error in the approximation of the
function σ(t) by comparing the rms value of σ(t), σ̃ , with the sum of the squares of
the coefficients of the series, and hence, the square of the error in the approximation
takes the form

e2 = a2
0 +

1
2

Nh

∑
1

a2
k +

1
2

Nh

∑
1

b2
k− σ̃2

where σ̃ is calculated as

σ̃ =

√
1
T

∫ T

0
σ2(t)dt

It is highly recommended that you calculate this integral using numerical
quadrature, as implemented in a Matlab routine (quad or quad8), or that you
use another reliable commercial routine with truncation-error control, which is
indicated via a user-prescribed tolerance. Assign your tolerance judiciously: if you
choose a very loose tolerance, your computed integral will contain an inadmissible
high error; if too tight, the procedure may take too long to finish. As well, it is
recommended that you calculate the Fourier coefficients using the computational
scheme given in Sect. 2.8.2.

Produce a table of error e vs. Nh, for Nh = 1, 2, 3, 4, 5, 10, and 20. Comment on
your tabulated results.

Now, find the steady-state response θ̇ (t) for Nh harmonics of the Fourier
expansion of σ(t), using a suitable value of Nh, that you should choose based on
the table that you produced above. Plot time response vs. time in an interval [0,4T ].
For this part of the problem, use the model

θ̈ + 2ζωnθ̇ +ω2
n θ = ω2

n φ

For the calculation, use the numerical values

α = 30◦, ζ = 0.1, ωn = 10p, p = 0.3 s−1
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Fig. 2.86 Follower motion
program of quick-return cam
mechanism
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2.39. The oscillating follower of a quick-return cam mechanism goes through a
lower dwell in the first 25% of its cycle; then, it performs a working stroke of
60◦ of amplitude for 50% of its cycle; it goes further through an upper dwell for
10% of its cycle, and returns to its lower dwell in the remaining 15% of its cycle.
One period of the periodic angular displacement of the follower be represented
by φ = φ(ψ), where ψ is the angular displacement of the cam, which rotates
at a constant rate ψ̇ = ω = const, the motion program φ(ψ) being given below.
Moreover, the follower drives an elastic shaft connected to a load of moment of
inertia J mounted on bearings that provide a linearly viscous dissipative torque of
coefficient c, the displacement of the load being denoted by θ . The follower motion
program, displayed in Fig. 2.86, is given by

φ(ψ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for 0≤ ψ ≤ π
2

;

π
3

[
ψ
π
− 1

2
− 1

2π
sin(2ψ−π)

]
, for

π
2
≤ ψ ≤ 3π

2
;

π
3
, for

3π
2
≤ ψ ≤ 17π

10
;

π
3

[
20
3
− 10ψ

3π
− 1

2π
sin

(
40π− 20ψ

3

)]
, for

17π
10
≤ ψ ≤ 2π

while the mathematical model of the follower-load system takes the form

θ̈ + 2ζωnθ̇ +ω2
n θ = ω2

n φ

and the torque experienced by the shaft, τ(t), is

τ(t) = k[θ (t)−φ(t)]

The numerical values of the variables involved are given as

ζ = 0.1, ωn = 10ω , ω = 300 rpm
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Fig. 2.87 A terrestrial vehicle traveling on a wavy road

(a) Using Parseval’s Formula, estimate the error in the Fourier approximation of
the function φ(t) by comparing the rms value φ̃ of φ(t) with the sum of the
squares of the coefficients of the truncated Fourier series. The difference of the
two quantities produces the square of the error, e2. Now, produce a table of error
e vs. Nh, for Nh = 1, 2, 3, 4, 5, 10, and 20. Comment on your tabulated results.

(b) Then, find the steady-state response θ (t) for Nh harmonics of the Fourier
expansion of φ(t), using a suitable value of Nh, which you should choose based
on the table that you produced above. Plot the steady-state response vs. time in
the interval [0, 4T ], where T is the duration of one cycle.

(c) Now plot the steady-state value of the torque experienced by the elastic shaft in
dimensionless form, i.e., plot τ(t)/(Jω2

n ) vs. time, in the time-interval [0, 4T ].

2.40. A terrestrial vehicle traveling at a constant velocity v on a wavy road with a
profile that can be approximated fairly well by h|sin(2πx/λ )| is shown in Fig. 2.87,
its mathematical model taking the form,

ÿ+ 2ζωnẏ+ω2
n y = 2ζωnη̇(t)+ω2

n η(t)

where ωn ≡
√

ks/m, ζ ≡ c/(2mωn), and 0 < ζ < 1, while

η = h|sin(2πx/λ )|.

(a) With ω0 ≡ 2πv/λ , express the right-hand side of the mathematical model in the
form

2ζωnη̇(t)+ω2
n η(t) =

∞

∑
k=0

Ck cos(kω0t +ψk)

and give expressions for Ck and ψk.
(b) Using only the first two harmonics of the Fourier expansion of the right-hand

side of the mathematical model, find the steady-state response of the system.
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Fig. 2.88 The model of an automobile suspension encountering a triangular ditch

2.41. The model of an automobile suspension is depicted in Fig. 2.88. Find the
time response of the model as the vehicle approaches a ditch that is modeled by a
triangular pulse. Assume that the traveling speed v of the vehicle is constant, and
that this speed is not affected by the ditch. Use the relations

ζ =

√
2

2
, ωn ≡

√
k
m

=
v
h
.
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Chapter 3
Simulation of Single-dof Systems

Solving a problem no longer means writing down
an infinite series or finding a formula like Cramer’s rule,
but constructing an effective algorithm.

Strang, G., 1988, Linear Algebra, Third Edition,
Harcourt Brace Jovanovich College Publishers,
Fort Worth, TX.

3.1 Preamble

Simulation consists in producing the time response of a dynamical system to a
certain input and certain initial conditions with the aid of a model of the system.
In some instances, like in flight simulators, the model is a piece of hardware that is
wired so as to behave like the actual system. Flight simulators have attained such a
degree of development that, nowadays, commercial pilots can obtain certification
without ever having flown a real aircraft, but rather, by accumulating a certain
number of hours at the cockpit of a flight simulator. The simulation we will study
here takes place not on a hardware model, but rather on a piece of software. Thus,
the simulation of interest is based on the mathematical model of the system at hand.
However, as we shall see, the time-response analysis conducted in Chap. 2 is not
suitable for numerical simulation, some further work being needed, as explained in
this chapter.

The advantages of simulation are obvious: simulations spare us dealing with the
actual system, which implies that we don’t need expensive investments to conduct
tests, with the inherent risk of damaging the equipment or even the operator using it.
Below we give an introduction to the main items behind simulation, while focusing
on single-degree-of-freedom systems. Simulation of multi-dof systems is studied
in Chap. 7

J. Angeles, Dynamic Response of Linear Mechanical Systems: Modeling, Analysis
and Simulation, Mechanical Engineering Series, DOI 10.1007/978-1-4419-1027-1 3,
© Springer Science+Business Media, LLC 2011
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3.2 The Zero-Order Hold (ZOH)

The time response of first- and second-order mechanical systems obtained in
Chap. 2, although general enough, is not suitable for computer implementation.
Indeed, those expressions involve a reevaluation of both the zero-input and the
zero-state responses at every instant. Obviously, a straightforward evaluation of
these responses is not advisable, and hence, alternatives that are more suitable
for numerical implementation should be explored. Below we derive relations for
the digital simulation of the systems under study, based on the zero-order hold
(ZOH) [1]. The ZOH allows us to convert linear dynamical systems of the type at
hand, termed continuous-time systems, into a discrete form, suitable for numerical
simulation. The discrete model thus obtained is termed, correspondingly, a discrete-
time linear dynamical system. Due to the discrete form of this system, it is also
called digital, as opposed to its original counterpart, which is also termed analog.
The zero-order hold can thus be regarded as an analog-to-digital (A/D) converter.

The zero-order hold is a device that transforms a given input f (t) into a sampled
signal f (t). This is done by defining f (t) in the form

f (t)≡ f (tk), for tk ≤ t < tk+1 (3.1)

and hence, f (t) is constant in the interval tk ≤ t < tk+1, which is called the
sampling interval. The A/D conversion of the original analog function into its digital
counterpart is illustrated in Fig. 3.1. The ZOH box of Fig. 3.1, thus, represents a
device that responds with a constant value fk of the input signal, when a circuit

Fig. 3.1 A/D conversion by means of the zero-order hold
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is closed instantaneously. The output of the ZOH is kept at fk until the next
sampling instant tk+1, at which time the circuit is closed again, and the output is
kept henceforth at fk+1, until the next sampling instant.

Now we apply this concept to obtain the digital version of the governing
equations of first- and second-order systems.

3.3 First-Order Systems

The system at hand takes the form

ẋ =−ax+ f (t), x(0) = x0, t ≥ 0 (3.2)

The time response of this system was found in Chap. 2 to be

x(t) = e−atx0 +

∫ t

0
e−a(t−τ) f (τ)dτ (3.3)

Now, for simulation we cannot evaluate the foregoing response continuously in time,
for simulation is intended to be conducted on a computer; therefore, the simulation
interval 0≤ t ≤ tN should be divided into N subintervals defining a set of sampling
instants { tk }N

0 . Moreover, we would like to be able to calculate the response at
t = tk+1 based on that at t = tk. To this end, we assume that we have evaluated the
foregoing response up until an instant t = tk, and let xk≡ x(tk) be the initial condition
of the system at hand for the new interval. Thus, the response at t = tk+1, xk+1, is
given by

xk+1 = e−a(tk+1−tk)xk +

∫ tk+1

tk
e−a(tk+1−τ) f (τ)dτ

In order to evaluate the above integral, we resort now to the ZOH and replace f (t)
by its staircase approximation f (t). Moreover, we let

fk ≡ f (tk)

The expression for xk+1 obtained above reduces now to

xk+1 = e−a(tk+1−tk)xk + e−a(tk+1) fk

∫ tk+1

tk
eaτdτ

Furthermore, we assume that all subintervals are of equal length, i.e., Δtk≡ tk+1−
tk = h, for all k, and so, the foregoing expression reduces to

xk+1 = e−ahxk +
1
a
(1− e−ah) fk
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Hence, the response at time tk+1 is calculated simply as a linear combination of the
response and the forcing term or input at the same instant tk. This response, then,
takes the form

xk+1 = Fxk +G fk (3.4a)

with the constant coefficients F and G defined as

F = e−ah, G≡ 1
a
(1− e−ah) (3.4b)

The system appearing in Eq. 3.4a is a discrete-time system. Notice that this is a
dynamical system itself that evolves at discrete intervals of time, such as a savings
account, that gains interest at finite intervals of, say, one month. In a savings account,
xk is the monthly balance, F is 1+r, where r is the monthly interest in decimal form,
G is unity, and fk is the amount deposited or withdrawn during the same period. The
evolution of the savings account is a dynamical system because its state, i.e., its
balance at any time, is not just a function of the amount deposited or withdrawn in
that month, but rather a functional1 of the total history of deposits and withdrawals.
As well, the savings account is termed causal, for its balance does not depend on
future deposits or withdrawals, but only on past ones. Causality is a charateristic of
dynamical systems.

Note that Eq. 3.4a gives the response at instant tk+1 based on that at instant tk.
Sometimes one may be interested in the response at a particular time and not in the
whole past history. In this case an expression for xn in terms of the initial condition
x0 and the history of the input, { fk }n

0 is needed. This expression is derived below
by first evaluating xk for successive values of k, namely,

x1 = Fx0 +G f0

x2 = Fx1 +G f1 = F(Fx0 +G f0)+G f1

= F2x0 +FG f0 +G f1

x3 = Fx2 +G f2 = F(F2x0 +FG f0 +G f1)+G f2

= F3x0 +F2G f0 +FG f1 +G f2

and so on. Hence, the general expression for xn is

xn = Fnx0 +
n−1

∑
k=0

FkG fn−1−k (3.5)

1The zero-state part of the total response of the system, i.e., the second term of the RHS—right-
hand side—of Eq. 2.86 and the third term of Eq. 2.88, make it apparent that the response of the
system at time t > 0 is determined by the whole past history of the input, f (t− τ), for 0 ≤ τ ≤ t .
This is what is called a functional.
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which is the discrete-time response of the first-order system, the counterpart of the
continuous-time response of Eq. 3.3. More specifically, the discrete-time counterpart
of the exponential e−at is the nth power Fn, i.e., e−nah, while the summation above
is the discrete-time counterpart of the continuous-time convolution. Notice that the
sum of the exponent of F in the summation appearing in Eq. 3.5 and the subscript
of the input is exactly n− 1, the instant previous to that at which the response is
calculated. This relation parallels that of the convolution, in which the instant at
which the impulse response and that at which the input appear in the integrand add
up to the current instant t.

Example 3.3.1 (Clutch Tests). The clutch of Example 1.6.11 is to be tested by
driving it with a velocity of the motor that varies harmonically with a frequency
ω and an amplitude A. Thus, the motor delivers an input angular velocity to the
clutch disk of the form Acosωt. Moreover, the clutch disk is assumed to be turning
at a constant 1,500 rpm when it is engaged by the motor turning with an amplitude
of 300 rpm at a frequency of 1 Hz. Furthermore, the time constant of the system
is 2 s. In particular, we want to know the velocity of the rotor at time t = 10s. What
would be a suitable sampling interval h?

Solution: In our case the system is governed by the continuous-time model

ṗ =−1
τ

p+
1
τ

Acosωt, p(0) = p0, t ≥ 0

where p denotes the angular velocity of the rotor, to distinguish it from the frequency
of oscillations of the angular velocity of the motor, ω . The discrete-time response
of the above system takes the form

pk+1 = F pk +G fk, p(0) = p0

whose coefficients are calculated as

F = e−h/τ , G = τ(1− e−h/τ)

from which it is apparent that we need a sufficiently small h/τ ratio. We can choose,
for example, h/τ = 0.01, which thus yields h = 0.02s, and hence,

F = 0.990, G = 0.0199s

while

fk =
1
τ

Acosωtk

where A is the given amplitude and ω is the frequency at which the angular
velocity of the motor is varying harmonically, i.e., A = 300 rpm ≡ 31.416s−1 and
ω = 1 Hz≡ 2π s−1. Hence,

fk = (31.416/2)cos(2πtk) = 15.708cos(6.283kh) = 15.708cos(0.126k)
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We thus have

pk+1 = 0.990pk + 0.0199 [15.708cos(0.126k)] = 0.990pk + 0.313cos(0.126k)

Now, what we need in order to find p at t = 10s is the solution of the difference
equation 3.4a, i.e., Eq. 3.5. We thus have to determine n first, which is done from
the relation nh = 10s, i.e., n = 500. Upon substitution of the foregoing numerical
values into the time response given in the form of Eq. 3.5, we have

p500 = 0.990500(50π)+
499

∑
k=0

0.990k(0.313)cos[0.126(499− k)]

= 0.990500(50π)+ 0.313
499

∑
k=0

0.9900k cos[0.126(499− k)] (3.6)

where 50π is the initial angular velocity of the rotor in radians per second.2 Since
the numerical value of F , 0.9900, is smaller than unity, its integer powers are also
smaller than unity. As a matter of fact, the numerical values of these decrease
monotonically with the exponent, as this increases, to the point that, for large enough
exponents, this numerical value virtually vanishes. In our case,

0.990500 = 0.00674

and hence, the zero-input response at t = 10s has diminished to less than 1% of its
initial value. This part of the response thus belongs to the transient response of the
system. The value of the first term in Eq. 3.6 is

0.990500(50π) = 1.058

The second term, using 16 digits in all calculations, is

499

∑
k=0

0.990k cos[0.126(499− k)] = 0.0408

and hence, the required value is

p(10)≡ p500 = 1.099s−1

2The above calculations have been conducted with 16 digits, but only three significant digits are
displayed.
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3.4 Second-Order Systems

Here, we will study, as usual, undamped, underdamped, critically-damped and
overdamped systems.

3.4.1 Undamped Systems

The model at hand is the usual

ẍ+ω2
n x = f (t), x(0) = x0, ẋ(0) = v0, t ≥ 0 (3.7)

its time response having been obtained in Chap. 2 as

x(t) = (cosωnt)x0 +
1

ωn
(sinωnt)v0 +

∫ t

0

1
ωn

[sin ωn(t− τ)] f (τ)dτ (3.8)

What we need now is an expression for xk+1 ≡ x(tk+1) in terms of xk ≡ x(tk),
ẋ(tk)≡ vk and fk ≡ f (tk). Thus, we regard instant tk as the initial instant and compute
xk+1 from instant tk, i.e.,

xk+1 = cos(ωnh)xk +
1

ωn
sin(ωnh)vk +

1
ωn

∫ tk+h

tk
sin[ωn(tk + h− τ)] f (τ)dτ (3.9)

where we have assumed that tk+1− tk = h, for all k.
To calculate the foregoing integral, we let u≡ tk + h− τ , which yields

∫ tk+h

tk
sin[ωn(tk + h− τ)]dτ =−

∫ 0

h
sinωnudu (3.10)

and hence,
∫ tk+h

tk
sin[ωn(tk + h− τ)]dτ =

1
ωn

(1− cosωnh) (3.11)

thereby showing that the said integral is a constant as long as the sampling takes
place at equal intervals of length h. Thus, xk+1 takes the form

xk+1 = (cosωnh)xk +
1

ωn
(sin ωnh)vk +

1
ω2

n
(1− cosωnh) fk (3.12)

However, Eq. 3.12 requires the updating of vk at every sampling instant, and
hence, an expression for vk+1 in terms of variables evaluated at instant tk is needed.
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This expression is obtained from the time derivative of x(t) as given by Eq. 3.8,
namely,

ẋ(t)≡ v(t) =−ωn(sin ωnt)x0 +(cosωnt)v0 +

∫ t

0
[cosωn(t− τ)] f (τ)dτ (3.13)

To obtain the desired expression, we have to evaluate, between tk and tk+1, the
integral appearing in Eq. 3.13. The foregoing value is termed here L, i.e.,

L≡
∫ tk+h

tk
cos[ωn(tk + h− τ)] fk dτ (3.14)

which is calculated by resorting to a substitution like that used in Eq. 3.10, the
integral thus reducing to

L =
1

ωn
(sinωnh) fk (3.15)

Then, the final expression for vk+1 takes the form

vk+1 =−(ωn sinωnh)xk +(cosωnh)vk +
1

ωn
(sinωnh) fk (3.16)

Thus, whereas Eq. 3.12 allows the updating of the displacement, the velocity is
updated using Eq. 3.16.

Moreover, we can show that the simulation of undamped second-order systems
is formally identical to that of first-order systems, which can be made apparent by
writing Eqs. 3.12 and 3.16 in vector form. If we let zk ≡ [xk, vk ]

T denote the vector
of state variables at t = tk, then

zk+1 = Fzk + g fk (3.17a)

with F and g defined now as a 2× 2 matrix and a two-dimensional vector, namely,

F≡
[

cosωnh (sin ωnh)/ωn

−ωn sinωnh cosωnh

]

, g≡
[
(1− cosωnh)/ω2

n

(sin ωnh)/ωn

]

(3.17b)

thereby showing that, indeed, the simulation scheme for undamped second-order
systems is formally identical to that for first-order systems. The obvious difference
is, of course, that the scheme developed above appears in terms of two-dimensional
vectors. Hence, the equivalent expression for zn in terms of z0 is readily derived as

zN = FNz0 +
N−1

∑
k=0

Fkg fN−1−k (3.18)

Here, again, notice that the discrete counterpart of the matrix exponential is the F
matrix raised to the nth power and that the summation is the discrete counterpart



3.4 Second-Order Systems 241

of the continuous-time convolution. Moreover, notice that the calculation of the nth
power of F, for values of n > 2, when powers lower that the nth are not needed,
can be computed with the aid of the Cayley-Hamilton Theorem, introduced in
Appendix A

So far we have not considered the effect of roundoff errors that are unavoidable
when computing with floating-point arithmetic. If we look closely at matrix F as
given by Eq. 3.17b, we will note that its diagonal entries have their absolute values
comprised between zero and unity, while its off-diagonal entries are unbounded,
and can take any real value, depending on the value of ωn. For very large values
of ωn, for example, a correspondingly large roundoff error will be incurred when
computing the (2, 1) entry of F. Moreover, this roundoff error will be magnified as
the simulation proceeds, for exponent n takes larger and larger values. As a means
to alleviate the buildup of roundoff error that can lead to catastrophic results, we
rewrite Eqs. 3.8 and 3.13, if in terms of two new variables, w(t) ≡ ẋ(t)/ωn and
φ(t)≡ f (t)/ω2

n , thereby obtaining

x(t) = (cosωnt)x0 +(sinωnt)w0 +
∫ t

0
[sinωn(t− τ)]ωnφ(τ)dτ (3.19a)

ẋ(t)
ωn
≡ w(t) =−(sinωnt)x0 +(cosωnt)w0 +

∫ t

0
[cosωn(t− τ)]φ(τ)dτ (3.19b)

The corresponding simulation scheme, i.e., the discrete-time response of the
undamped second-order system, is thus the discrete-time version of Eq. 3.19a and b,
namely,

ζk+1 = Hζk +hφk (3.20a)

where

ζk =

[
xk

wk

]
, H≡

[
cos(ωnh) sin(ωnh)

−sin(ωnh) cos(ωnh)

]

, h≡
[

1− cos(ωnh)

sin(ωnh)

]

(3.20b)

Notice that the foregoing simulation scheme needs to be complemented with the
relation giving explicitly vk, namely,

ẋ≡ vk = ωnwk (3.20c)

Now, matrix H, and vector h by the way, are better behaved numerically. Note
that, in the foregoing scheme, H is an orthogonal matrix, i.e.,

HHT = 1 (3.21)

with 1 denoting the 2× 2 identity matrix. Moreover, det(H) = +1, which makes H
proper orthogonal.3 Proper orthogonal matrices represent rotations. An important

3Orthogonal matrices whose determinant is −1 are termed improper; they represent reflections.



242 3 Simulation of Single-dof Systems

property of orthogonal matrices, whether proper or not, is that the product of any
two orthogonal matrices remains orthogonal. As a consequence, the powers of any
orthogonal matrix are also orthogonal. One more important property of orthogonal
matrices is that, upon multiplying a vector, the vector only changes its direction, but
its magnitude—or, more precisely, its Euclidean norm—remains unchanged.

The simulation scheme of Eq. 3.18 now takes an alternative, numerically robust4

form:

ζN = HNζ0 +
N−1

∑
k=0

HkhφN−1−k (3.22)

As a consequence of the orthogonality of H, the foregoing zero-input response
ζn = Hnζ0 is conservative, i.e., te total energy of the system at instant tn is
necessarily identical to that at t0 = 0. Indeed, H represents a rotation in the x-w
plane through an angle θ = ωnh, and hence, H2 represents a rotation through an
angle 2θ and, in general, Hn represents a rotation through an angle nθ . That is

Hn =

[
cosnωnh sinnωnh
−sinnωnh cosnωnh

]
(3.23)

Given that rotations preserve the vector magnitude,

‖ζn‖ ≡ ‖Hnζ0‖= ‖ζn‖

i.e.,

x2
n +w2

n = x2
0 +w2

0 ⇒ x2
n +

ẋ2
n

ω2
n
= x2

0 +
ẋ2

0

ω2
n

Upon clearing denominators, and dividing the both sides by 2, the foregoing
equation leads to

1
2

mẋ2
n +

1
2

kx2
n =

1
2

mẋ2
0 +

1
2

kx2
0

thereby showing that the energy of the system at instant tn is identical to that at
instant t0.

Example 3.4.1 (Discrete-time Response of an Undamped Suspension). Here we set
up the simulation model for the system analyzed in Example 2.7.1. We assume
that the suspension under study has a natural frequency of 1Hz and that the bump
has a height of 500mm and a wavelength λ of 1,000mm. Moreover, the vehicle is
speeding at v0 = 100km/h when it hits the bump, and we assume that the bump
does not affect its uniform horizontal speed. We want to calculate the value of the

4Robustness means here insensitivity to roundoff errors.
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vertical displacement and velocity of the car body at the instant just after the bump
has been overcome, as well as the amount of energy transferred to the suspension by
the bump. Finally, we want to calculate the value of the vertical displacement and
the vertical velocity at t ≈ 5s after the vehicle hit the bump.

Solution: The model has the form

ẍ+ωnx2 = ω2
n b(t), x(0) = 0, ẋ(0) = 0

with b(t) defined as the ‘bump function’, already introduced in Example 2.7.1. We
now have to determine the length h of The sampling interval. What we need is a
small-enough value of h in order to yield a product ωnh small enough so as not to
miss the bump. From the given information, the vehicle traverses the bump in a time
Δt = λ/(2v0), i.e., Δt = 0.018s. We will thus choose h so as to be able to sample
the bump, say, five times, and hence, h = Δt/4 = 0.0045s. Now, the product ωnh
takes the value ωnh = 0.0283rad = 1.620◦. Moreover, the sampling instants tk are
given by

tk = kh = k
Δt
4

= k
λ

8v0
= 0.0045k s

Hence, the bump is traversed in five sampling instants t0, t1, . . . , t4, the sampled
bump, bk, now taking the form

bk ≡ b(tk) =

{
500sin(πk/4) mm, for 0≤ k ≤ 4
0 for k > 4

Now, let xk ≡ x(tk), vk ≡ ẋ(tk) and wk ≡ vk/ωn, with the state-variable vector ζk

defined as

ζk ≡
[

xk

wk

]

Moreover, function φk of Eq. 3.20a turns out to be, in this case, bk. The foregoing
definitions permit us to write the discrete-time model in the form of Eq. 3.20a, i.e.,

ζk+1 = Hζk +hbk

with H and h given as in Eq. 3.20b, which require the values below:

cos(ωnh) = 0.9996, sin(ωnh) = 0.0283

Therefore,

H =

[
0.9996 0.0283
−0.0283 0.9996

]
, h =

[
0.0004
0.0283

]

We thus have, for the given numerical values, b0 = 0, b1 = 70.72, b2 = 100, b3 =
70.72, and b4 = 0, all of them in mm.
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The calculation of the response at t5 is now straightforward:

ζ1 = Hζ0 +hb0 = 0

ζ2 = Hζ1 +hb1 =

[
0.0283
2.002

]

ζ3 = Hζ2 +hb2 =

[
0.2149
1.002

]

ζ4 = Hζ3 +hb3 =

[
28.5
1004

]

ζ5 = Hζ4 +hb4 =

[
56.88
1002

]

where all values are given in mm. Therefore,

x5=56.88 mm, ẋ5=ωnw5 =2π× 1002=6298 mm/s=6.298 m/s=22.67 km/h

the vehicle body thus attaining a vertical velocity compared to the traveling speed, a
result of the undamped suspension. Now, the energy Eu transferred to the suspension
is readily calculated as

Eu =
1
2

mẋ2
5 +

1
2

kx2
5 =

1
2

m
(
ẋ2

5 +ω2
n x2

5

)
= 19.90m Nm

Further, in order to calculate the state-variable vector at t ≈ 5s, we first determine
the sampling instant closest to 5 s, namely, k = �5/h� = 1111, with the ‘floor
function’ � ·� defined in Sect. 2.8.2. Therefore, what we need is ζ1111, which is
readily obtained by regarding t = 4h as the initial time and ζ5 as the initial value
of ζ, the input to the system thus vanishing. All we need is thus the zero-input
response of the system, i.e.,

ζ1111 = H1106ζ5

for the sampled bump—just as its analog counterpart—vanishes for k > 4. The value
of H1106 can now be obtained with the aid of the Cayley-Hamilton Theorem, as
explained in Appendix A. However, this is not needed, given the special form of
matrix H. Since this matrix is orthogonal in the case of undamped systems, the
argument of its trigonometric functions represents simply an angle of rotation, say θ .
Therefore, the nth power of H is nothing but a rotation through an angle nθ , and
hence,

H1106 =

[
cos(2π× 1106× 0.0045) sin(2π× 1106× 0.0045)

−sin(2π× 1106× 0.0045) cos(2π× 1106× 0.0045)

]

=

[
0.9896 −0.1440
0.1440 0.9896

]
(3.24)
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Therefore,

ζ1111 =

[−88.06
1000

]
mm

or

x1111 =−88.06 mm, ẋ1111 = 2π× 1000 = 6283 mm/s

As the reader can verify, the energy of the suspension at t1111 is identical to that at
t5, to four digits of accuracy, as it should be, for the system is conservative.

3.4.2 Damped Systems

Our model here is the usual

ẍ+ 2ζωnẋ+ω2x = f (t), x(0) = x0, ẋ(0) = v0 (3.25)

We will derive a suitable simulation procedure for this system based on the ZOH
introduced in Sect. 3.2. To this end, we now write the above model in state-variable
form, as done in Chap. 2, thereby obtaining a system of two first-order linear ODEs,
namely,

ẋ = v (3.26a)

v̇ = −ω2
n x− 2ζωnẋ+ f (t) (3.26b)

with the initial conditions x(0) = x0 and v(0) = v0. We can now write Eq. 3.26a and
b in state-variable form, namely,

ż = Az+b f (t), z(0) = z0 (3.27)

where

A≡
[

0 1
−ω2

n −2ζωn

]
, b≡

[
0
1

]
, z≡

[
x
v

]
(3.28)

In the above definitions, A is a 2× 2 matrix, while b and z are two-dimensional
vectors.

The total response of the above system was obtained in Chap. 2 in the form

z(t) = eAtz0 +

∫ t

0
eA(t−τ)b f (τ)dτ (3.29)
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Similar to the case of undamped systems, Eq. 3.29 is not suitable for simulation,
for it requires computing a matrix exponential and a convolution every sampled
instant tk. Thus, a more suitable model for simulation is required, which is derived
below with the aid of the ZOH.

We begin by sampling the input function f (t) at equal intervals h ≡ tk+1− tk,
thereby obtaining its staircase approximation f (t) defined earlier. Now, assuming
that we have computed a value zk ≡ z(tk), we shall derive an expression for zk+1 ≡
z(tk+1). We do this by invoking the time-invariance of the system at hand, while
regarding tk as the initial time and calculate zk+1 from the total response, Eq. 3.29,
if with f (t) instead of f (t). Obviously, the shorter the sampling interval h, the closer
the former approaches the latter. Thus, we have

zk+1 = eA(tk+1−tk)zk +
∫ tk+1

tk
eA(tk+1−τ)b f (τ)dτ (3.30)

where the first exponential readily reduces to a constant, namely,

F≡ eA(tk+1−tk) ≡ eAh (3.31)

The integral is evaluated as we describe below: We let θ ≡ tk+1− τ and rewrite
that integral in terms of θ . To this end, we need the extremes of the integration
interval, which are readily determined by noticing that θ = h when τ = tk and θ = 0
when τ = tk+1. Moreover, dτ =−dθ , and hence,

∫ tk+1

tk
eA(tk+1−τ)b f (τ)dτ =−

∫ 0

h
eAθ b fk dθ (3.32)

where fk ≡ f (tk), and so, it is a constant. Since vector b is a constant as well, the
product b fk can be taken out of the integration sign, thereby obtaining

∫ tk+1

tk
eA(tk+1−τ)b f (τ)dτ = g fk (3.33)

where g is defined below:

g≡
(∫ h

0
eAθ dθ

)
b (3.34)

Thus, all we need in the expressions above is the integral of the exponential of
A, from θ = 0 to θ = h. If we recall the integral of the scalar eaθ in the same
interval, we can write the above integral in an explicit form. The said scalar integral
is reproduced below for quick reference:

∫ h

0
eaθ dθ =

eah− 1
a

(3.35)
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We can now mimic the above expression to obtain the matrix integral of interest, by
properly replacing the scalar a by matrix A. What we mean by properly replacing a
scalar by a matrix refers, obviously, to the care with which we must handle matrix
algebra, since a division by a matrix is meaningless and the product of matrices
is, in general, not commutative. Obviously, then, the division by the scalar a in the
aforementioned expression is to be replaced by the inverse of A, which requires that
A be invertible. Additionally, the numerator of the same expression becomes the
matrix eAh− 1, where 1 is defined here as the 2× 2 identity matrix. The question
that remains, then, is where to write A−1, to the right or to the left of the foregoing
difference. This question can be readily answered if we recall that any square matrix
commutes with its analytic functions.5 By the same token, then, any two analytic
functions of the same matrix commute, while A−1, the exponential of Ah and the
identity matrix are all analytic functions of A. Thus, where we place the inverse of
A, whether to the right or to the left of the above difference, becomes immaterial,
and hence,

∫ h

0
eAθ dθ = A−1(eAh− 1)≡ (eAh− 1)A−1 (3.36)

Therefore,

g≡ A−1(eAh− 1)b≡ (eAh− 1)A−1b (3.37)

Notice that the second expression of Eq. 3.37 is slightly more convenient than the
first one. Indeed, if we let c = A−1b, then

g = (F− 1)c (3.38a)

and c is computed as the solution of a system of two linear equations in two
unknowns, namely,

Ac = b (3.38b)

The simulation scheme of the system at hand takes the form

zk+1 = Fzk + g fk (3.39)

with the initial condition z0 = z(0). The simulation algorithm, then, can be
summarized as
Algorithm Damped-1dof

1. Calculate the exponential of Ah: F ← eAh

2. Calculate c from Eq. 3.38b
3. g ← (F− 1)c;
4. Compute zk+1 as indicated in Eq. 3.39

5Fact 4 of Appendix A.
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Note that the constant matrices involved in the foregoing algorithm can be com-
puted by longhand calculations. Indeed, all we do is replace t by h in the exponential
formula we found for At in Appendix A. For underdamped systems, e.g.,

F =
e−ζωnh
√

1− ζ 2

⎡

⎣
√

1− ζ 2 cosωdh+ ζ sin ωdh
1

ωn
sinωdh

−ωn sinωdh
√

1− ζ 2 cosωdh− ζ sinωdh

⎤

⎦

(3.40)

while, for damped and overdamped systems, Eqs. A.31 and A.32 apply. Moreover,
still for undamped systems,

F− 1 = C

⎡

⎢
⎣

Rcosωdh+ ζ sinωdh− 1
C

1
ωn

sinωdh

−ωn sin ωdh Rcosωdh− ζ sin ωdh− 1
C

⎤

⎥
⎦ (3.41a)

with C and R defined as

C =
e−ζωnh

R
, R =

√
1− ζ 2 (3.41b)

Furthermore, the calculation of c requires solving a system of two linear equations
in two unknowns. In the case at hand, however, this solution is not necessary, as the
inverse of A can be readily calculated symbolically, i.e.,6

A−1 =
1

ω2
n

[−2ζωn −1
ω2

n 0

]
(3.42)

and hence, g becomes, for underdamped systems,

g =
1

ω2
n

⎡

⎢
⎢
⎣

1− e−ζωnh

(
ζ√

1−ζ 2
sinωdh+ cosωdh

)

ωne−ζ ωnh√
1−ζ 2

sinωdh

⎤

⎥
⎥
⎦ (3.43)

thereby completing the required calculations.
The system at hand is now modeled by the discrete-time system given below.

zk+1 = Fzk + g fk (3.44)

6Equation 3.42 is valid for all three kinds of damped systems.
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which, in component form becomes, still for underdamped systems,

xk+1 =
e−ζωnh
√

1− ζ 2

[(√
1− ζ 2 cos(ωdh)+ ζ sin(ωdh)

)
xk +

1
ωn

sin(ωdh)vk

−
(

ζ
ω2

n
sin(ωdh)+

√
1− ζ 2

ω2
n

cos(ωdh)

)

fk

]

+
1

ω2
n

fk (3.45a)

and

vk+1 =
e−ζωnh
√

1− ζ 2

[
−ωn sin(ωdh)xk +

(√
1− ζ 2 cosωdh− ζ sinωdh

)
vk

+
1

ωn
sin(ωdh) fk

]
(3.45b)

As in the undamped case, the matrix F derived above is not dimensionally
homogeneous and hence, is prone to numerical instability. We solve this problem
as in the undamped case, i.e., by expressing the foregoing simulation scheme in
terms of the new variables wk ≡ vk/ωn and φk ≡ fk/ω2

n , and hence, F, zk and g are
replaced by H, ζk and h, respectively, as given below:

H ≡ C

[
Rcosωdh+ ζ sinωdh sinωdh

−sinωdh Rcosωdh− ζ sinωdh

]
(3.46a)

ζk ≡
[

xk

wk

]
, h =

⎡

⎣ 1− e−ζωnh

(
ζ
R

sinωdh+ cosωdh

)

C sinωdh

⎤

⎦ (3.46b)

with C and R defined in Eq. 3.41b. The simulation scheme that provides the discrete-
time response of the second-order damped system now takes the form

ζk+1 = Hζk +hφk (3.47a)

which, again, has to be complemented with

vk = ωnwk (3.47b)

Similar to the discrete-time response of the undamped system, Eq. 3.18, that of
the damped system takes the form

zN = FNz0 +
N−1

∑
k=0

Fkg fN−1−k (3.48)
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Example 3.4.2 (Discrete-time Response of a Damped Suspension). The discrete-
time response of the suspension analyzed in the previous example, if with ‘shocks’
added to it, is required here. To this end, assume that the natural frequency of the
system is still 1Hz and that the damping ratio is now 0.7071, while the bump has
the same features as above. Again, assume that the vehicle is speeding at 100km/h
and that the bump does not affect its uniform horizontal speed. Calculate: (a) the
vertical displacement and velocity of the vehicle body at the instant just after it has
overcome the bump; (b) the energy transferred by the bump to the suspension; (c) the
energy dissipated by the shocks; and (d) the vertical displacement and velocity of
the vehicle body at a time t = 10h, where h is the sampling interval, that is taken as
in the undamped case.

Solution: First, we note that the model takes the form

ẍ+ 2ζωnẋ+ω2
n x = f (t)

with f (t) defined now as

f (t)≡ 2ζωnḃ(t)+ω2
n b(t)

b(t) denoting the bump function defined in Example 3.4.1, and ḃ(t) its time
derivative. The φk function of Eq. 3.47a thus takes the form

φk ≡ 2ζ
ωn

ḃk + bk

where bk denotes, as in Example 3.4.1, b(tk), while ḃk denotes, correspondingly,
ḃ(tk), and hence,

φk ≡
{

3928cos(0.7854k)+ 100sin(0.7854k) mm, for 0≤ k ≤ 4
0, for k > 4

That is,

φ0 = 3928, φ1 = 2848, φ2 = 100, φ3 =−270.8, φ4 =−392.8

with all foregoing values in mm, all other values of φk being zero. Furthermore, we
determine the damped frequency of the system at hand, namely,

ωd =
√

1− ζ 2ωn = 0.7071(2π) = 4.4429s−1

and hence,

ωdh = 0.0200 rad = 1.1455◦
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Moreover,

cosωdh = 0.9998, sinωdh = 0.0200, e−ζωnh = 0.9802

Hence, for H, h and ζk given as in Eq. 3.50a and b),

H =

[
0.9996 0.0277
−0.0277 0.9604

]
, h =

[
0.0004
0.0277

]

What we need now is ζ5, as in Example 3.4.1, which is calculated below:

ζ1 = Hζ0 +hφ0 =

[
1.549
112.5

]
mm

ζ2 = Hζ1 +hφ1 =

[
5.690
183.5

]
mm

ζ3 = Hζ2 +hφ2 =

[
10.81
178.8

]
mm

ζ4 = Hζ3 +hφ3 =

[
14.69
96.40

]
mm

ζ5 = Hζ4 +hφ4 =

[
15.81
−16.68

]
mm

and hence,

x5 = 15.81 mm, ẋ5 =−2π× 16.68 =−104.8 mm/s

Therefore, the energy Ed transmitted to the suspension upon crossing the bump is
given by

Ed =
1
2

mẋ2
5 +

1
2

kx2
5 =

1
2

m
(
ẋ2

5 +ω2
n x2

5

)
= 0.0104m Nm

Obviously, the energy dissipated by the shocks is simply the difference between the
energy transferred to the undamped suspension minus the above figure, i.e.,

ΔE = Eu−Ed = 19.89m Nm

That is, the shocks absorbed 99.95% of the energy Eu transferred by the bump.
In order to gain more insight into the role of the shocks, let us assume a rather light
vehicle, with a mass of 500 kg, which gives a ΔE of 9,940 Nm, or 2.761 watt h,
which is the amount of energy consumed by a 60-watt light bulb when left lit for
2.761 min.

Now we calculate ζ10. We do this simply as in Example 3.4.1, namely,

ζ10 = H5z5
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with H5 obtained using the procedure introduced in Appendix A.Note that, in this
case, we cannot do the shortcut that we did in Example 3.4.1, for matrix H is no
longer orthogonal. Thus,

H5 = f01+ f1H

with coefficients f0 and f1 calculated from the formulas derived in Appendix A,
namely,

f0 =
λ 5

2 λ1−λ 5
1 λ2

λ2−λ1
, f1 =

λ 5
1 −λ 5

2

λ1−λ2

in which λ1 and λ2 are the eigenvalues of H:

λ1,2 = 0.9800± j0.0196= 0.9802e± j0.0200

The foregoing expressions simplify to

f0 = −λ1λ2(λ1 +λ2)(λ 2
1 +λ 2

2 )

f1 = λ 4
1 +λ 3

1 λ2 +λ 2
1 λ 2

2 +λ1λ 3
2 +λ 4

2

and hence, upon substituting numerical values,

f0 =−3.761 f1 = 4.607

Therefore,

H5 =

[
0.8440 0.1271
−0.1271 0.6640

]

whence,

ζ10 =

[
56.12
−65.44

]
mm

i.e.,

x10 = 11.22 mm, ẋ10 =−2π× 13.01 mm/s =−82.24 mm/s

The energy of the suspension, then, at the end of 10h = 0.045 s, has reduced to

Es =
1
2

mẋ2
10 +

1
2

kx2
10 =

1
2

m
(
ẋ2

10 +ω2
n x2

10

)
= 0.0059 Nm

Note that the shocks have now absorbed only 56.73% of the energy that the
suspension had since it overcame the bump. See 3-DampedBump1dof.mw.
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Example 3.4.3 (A Mass Acted Upon by a Time-varying Force). The system under
study now consists of a particle of mass m acted upon by a force f (t). We want to
derive a scheme for the simulation of the ensuing motion when the mass starts from
initial conditions x(0) = x0 and ẋ(0) = v0.

Solution: The model at hand takes the form

mẍ = f (t), x(0) = x0, ẋ(0) = v0, t ≥ 0

We start by writing the governing equations in state-variable form, namely,

ẋ = v

v̇ =
1
m

f (t)

and hence, matrix A and vector b can be readily identified as

A =

[
0 1
0 0

]
, b =

[
0

1/m

]

Because of the absence of a spring, no natural frequency occurs in the model,
and hence, the simulation scheme of Eq. 3.39 suffices in this case, the discrete-time
model now taking the form

zk+1 = Fzk + g fk

where zk is defined as zk ≡ z(tk) and z(t)≡ [x(t), v(t) ]T is the state-variable vector.
Now we need the exponential of A, but this is derived in Appendix A

F = eAh =

[
1 h
0 1

]

where h is the sampling interval. Moreover, g is derived as

g =

(∫ h

0
eAt dt

)
b =

[
h h2/2
0 h

][
0

1/m

]
=

[
h2/(2m)

h/m

]

and hence, the simulation scheme reduces to

xk+1 = xk + hvk +
h2

2m
fk

vk+1 = vk +
h
m

fk (3.49)

Note that the foregoing scheme is nothing but the motion of a particle of mass m
acted upon by a constant force fk in the time interval tk ≤ t ≤ tk+1, at the beginning
of which the state of the particle is given by [xk, vk ]

T , a result to be expected.



254 3 Simulation of Single-dof Systems

Fig. 3.2 A Geneva wheel
driving a rotor

Example 3.4.4 (Discrete-time Response of a Geneva Wheel). Shown in Fig. 3.2 is
the model of the driving mechanism of a movie camera, consisting of a crank
that turns at a constant angular velocity ω0, and drives a Geneva wheel with an
intermittent motion. This motion consists, in turn, of alternating dwell-and-forward
phases of equal duration T each, with T defined as the time it takes the crank to go
through one full rotation, that is,

T =
2π
ω0

with ω0 measured in rad/s. Moreover, the motion transmitted to the wheel is given by

θ1(t) =
π

3T
t +θp(t)

and displayed in Fig. 3.3, with θp(t) defined as a periodic component of the motion,
that is given by

θp(t) =

⎧
⎪⎨

⎪⎩

− π
3T

t, for 0≤ t ≤ T/2;

π
3T

(t−T )+ arctan[ f (t)], for T/2≤ t ≤ T

while f (t) is given, in turn, as

f (t) =− sinω0t
2+ cosω0t

Under the assumption that the load J2 is originally at rest and θ2 is set to
a value θ2(0) = 0, the wheel starts being driven by the crank, which turns at a
constant ω0. By simulation, find the periodic and the nonperiodic parts of the steady-
state response of the load, θ2p(t), and θ2n(t), respectively. For the calculation,
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Fig. 3.3 Angular
diplacement of the Geneva
wheel when driven at a
uniform rate ω0 = 2π/T

θ

use the numerical values

ζ = 0.1, ωn = 10ω0, ω0 = 0.3s−1

Solution: The model has the form

θ̈2 + 2ζωnθ̇2 +ω2
n θ2 = ω2

n

( π
3T

t +θp(t)
)

By linearity, the time response θ2(t) can be decomposed into a periodic part, θ2p(t),
and a nonperiodic part, θ2n(t). Therefore,

θ̈2p + 2ζωnθ̇2p +ω2
n θ2p = ω2

n θp(t) (3.50a)

θ̈2n + 2ζωnθ̇2n +ω2
n θ2n = ω2

n
π

3T
t (3.50b)

We now have to determine the length h of the sampling interval. The periodic
motion has a frequency of ω0 rad/s. We can choose to sample this period in, say, 10
intervals, and hence, h = T/10 = π/5ω0. The sampling instants tk are thus given by

tk = kh =
π

5ω0
k = 2.0944k s

Since Eq. 3.50a and b are of the usual form, Eqs. 3.25, 3.46a, b and 3.47a can be
used directly. Here, φpk and φnk, for the periodic and nonperiodic part, respectively,
are given by

φpk = θp(tk) =

⎧
⎪⎪⎨

⎪⎪⎩

− π
30

k, for 0≤ k ≤ 5;

π
3

(
k

10
− 1

)
+ arctan fk, for 5≤ k ≤ 10
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Table 3.1 Sampled values of
the periodic and non-periodic
inputs of the system
of Fig. 3.2

k φpk φnk

0 0 0
1 −0.1047 0.1047
2 −0.2094 0.2094
3 −0.3142 0.3142
4 −0.4189 0.4189
5 −0.5236 0.5236
6 0.0396 0.6283
7 0.1982 0.7330
8 0.1813 0.8378
9 0.1016 0.9425
10 0 1.0472

with

fk = f (tk) =− sin(πk/5)
2+ cos(πk/5)

and

φnk =
π
30

k

For the first period T , φpk and φnk are given in Table 3.1.
Furthermore, the damped frequency of the system is

ωd =
√

1− ζ 2ωn = 2.9850s−1

and hence,

ωnh = 6.2832 rad, ωdh = 6.2517 rad

Moreover,

cosωdh = 0.9995, sinωdh =−0.0315, e−ζωnh = 0.5335

Hence,

H =

[
0.5315 −0.0169
0.0169 0.5349

]
, h =

[
0.4685
−0.0169

]

Now, using Eq. 3.47a, the periodic part θ2p and the nonperiodic part θ2n of the
time response are readily obtained as the first component of ζp and ζn respectively,

ζp(k+1) = Hζpk +hφpk

ζn(k+1) = Hζnk +hφnk
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Table 3.2 Discrete-time
periodic and non-periodic
responses of the system of
Fig. 3.2

k θ2p θ2n θ2

0 0 0 0
1 0 0 0
2 −0.0491 0.0491 0
3 −0.1242 0.1242 0
4 −0.2133 0.2133 0
5 −0.3097 0.3097 0
6 −0.4100 0.4100 0
7 −0.1995 0.5124 0.3129
8 −0.0131 0.6159 0.6028
9 0.0781 0.7200 0.7981
10 0.0892 0.8243 0.9136

Using the zero initial conditions, we have ζp0 = ζn0 = [0, 0]T , and thus,

ζp1 = Hζp0 +hφp0 =

[
0
0

]
rad, ζn1 = Hζn0 +hφn0 =

[
0
0

]
rad

ζp2 = Hζp1 +hφp1 =

[−0.0491
0.0018

]
rad, ζn2 = Hζn1 +hφn1 =

[
0.0491
−0.0018

]
rad

and so on.
Finally, the total time response θ2(t) is simply

θ2(t) = θ2p(t)+θ2n(t)

For the first period T , we obtain the values displayed in Table 3.2.
The periodic and nonperiodic parts of the time response as well as the total

response are plotted in Fig. 3.4, for the interval [0, T ]. We can see that we have
a very rough approximation of the time response of the Geneva wheel. The same
time responses are plotted for an interval [0, 4T ] in Fig. 3.5 when using a smaller
sampling interval h, say h = T/100.

3.5 Exercises

3.1. Find all equilibrium configurations of the mechanical system given in
Example 1.6.5, where a = zg and mg/(kl) = z× 10−7, with z denoting your seven-
digit telephone number. If you don’t have one, then use a friend’s but make sure
that your friend is not taking the same vibrations/dynamics course as you are.
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Fig. 3.4 Discrete-time response of the system of Fig. 3.2 over one period T , with a sample time
h = T/10: (a) periodic part; (b) non-periodic part; and (c) total response

Now determine which equilibrium configurations are stable, unstable or marginally
stable. Upon choosing a stable configuration, obtain the steady-state response of
the system when this is acted upon by a square-wave force of the shape of that
displayed in Fig. 2.53, with an amplitude of (M +m)g/10, for M = m, and acting
on the cart in the horizontal direction. Assume the period T = 1/(2ωn), where ωn

is the natural frequency of the linearized model.

3.2. Shown in Fig. 2.56 is an air compressor mounted on a viscoelastic foundation
that is modeled as a spring of stiffness k in parallel with a dashpot of coefficient c.
Furthermore, the moving parts of the compressor produce negligible inertia forces,
except for the piston of mass m. Additionally, the housing of the compressor, as
well as all other components besides the slider-crank mechanism, are lumped in one
single mass M. Under these conditions, the mathematical model of the compressor-
foundation system takes the form

(M+m)ẍ+ cẋ+ kx =−ms̈
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Fig. 3.5 Discrete-time response of the system of Fig. 3.2 over four periods T , with a sample time
h = T/100: (a) periodic part; (b) non-periodic part; and (c) total response

where s(t) is the relative displacement of the piston with respect to the housing of
the compressor, measured as indicated in the figure. The foregoing model is now
cast in normal form, namely,

ẍ+ 2ζωnẋ+ω2
n x =− m

M+m
s̈

The displacement s of the piston with respect to the housing is given below as a
function of the angular displacement of the crank, θ :

s(θ ) = acosθ + b
√

1−ρ2 sin2 θ

in which ω denotes the constant angular velocity of the crank and ρ ≡ a/b = z×
10−7, with z defined as in Exercise 3.1 above.

Compute the coefficients of the first twenty harmonic components of the
foregoing periodic function. Now, using Parseval’s Formula, estimate the error in
the approximation of the function x(t) by comparing the rms value x̃ of x(t) with
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the sums of the squares of the coefficients of the series, and hence, the error in the
approximation takes the form

e =

√√
√√ 1

T

(

a2
0 + 4

N

∑
0

a2
k + 4

N

∑
1

b2
k

)

− x̃

where x̃ is calculated as

x̃ =

√
1
T

∫ T/2

−T/2
x2(t)dt

It is highly recommended that you calculate this integral with Romberg’s method,
which is implemented in a Matlab function, or that you use any other reliable
commercial routine.

Usually, books take only up to the second harmonic of the foregoing expansion,
claiming that this is sufficient for ‘small’ values of ρ . What relative error (indicated
as a percentage) would be incurred in your approximation if you took only up to the
second harmonic? What relative error would be incurred in the force transmitted to
the foundation when the crank turns at a constant ω , in terms of ω , if you took only
up to the second harmonic?

3.3. We revisit Example 3.4.4 here. With the data of this example compute the
coefficients of the first Nh harmonic components of the periodic function θp(t), by
dividing the period in 2Nh intervals of equal length.

Now, using Parseval’s Formula, estimate the error in the approximation of the
function θp(t) by comparing the rms value θ̃ of θp(t) with the sums of the squares
of the coefficients of the series. The error in the approximation can be expressed as

e =

√√
√
√a2

0 +
1
2

Nh

∑
1

a2
k +

1
2

Nh

∑
1

b2
k− θ̃ 2

where θ̃ is calculated as

θ̃ =

√
1
T

∫ T

0
θ 2

p(t)dt

It is highly recommended that you calculate this integral using numerical quadra-
ture, as implemented in a Matlab function (quad or quad8), or that you use another
reliable commercial routine, with truncation-error control, which is indicated via a
user-prescribed tolerance. Assign your tolerance judiciously: if you choose a very
loose tolerance, your computed integral will contain an inadmissibly high error;
if too tight, the procedure may take too long for a negligible gain. As well, it is
recommended that you calculate the Fourier coefficients using the computational
scheme given in Sect. 2.8.2.

Produce a table of error e vs. Nh, for Nh = 1, 2, 3, 4, 5, 10, and 20. Comment on
your tabulated results.
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Now, find the periodic part θ2p(t) of the steady-state response θ2(t) for Nh

harmonics of the Fourier expansion of θp(t), using a suitable value of Nh, that
you should choose based on the table that you produced above. Plot this periodic
response vs. time in an interval [0,2T ]. For this part of the exercise, use the model

θ̈2p + 2ζωnθ̇2p +ω2
n θ2p = ω2

n θp(t)

Here, you should use the Fourier series of θp(t) with Nh harmonics, as found above.
For the calculation, use the numerical values

ζ = 0.1, ωn = 10ω0, ω0 = 0.3s−1

Let the non-periodic part of the steady-state response be θ2n(t). Find an expression
for this response.

3.4. The oscillating follower of a quick-return cam mechanism goes through a
lower dwell in the first 25% of its cycle, then performs a working phase of 60◦
of amplitude for 50% of its cycle, goes then through an upper dwell for 10% of
its cycle, and returns to its lower dwell in the remaining 15% of its cycle. Let the
angular displacement of the follower be represented by φ = φ(ψ), where ψ is the
angular displacement of the cam, which rotates at a constant rate ψ̇ =ω = const, the
motion program φ(ψ) being given below. Moreover, the follower drives an elastic
shaft connected to a load of moment of inertia J mounted on bearings that provide
a linearly viscous dissipative torque of coefficient c, the displacement of the load
being denoted by θ . We thus have the follower motion program given by

φ(ψ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, for 0≤ φ ≤ π/2;

hσ(x), for π/2≤ φ ≤ 3π/2;

h, for 3π/2≤ φ ≤ 17π/10;

hσ(1− x), for 17π/10≤ φ ≤ 2π ;

with h as the maximum value for φ(ψ) and σ(x) defined as

σ(x) =−20x7 + 70x6− 84x5+ 35x4, 0≤ x≤ 1

while the mathematical model of the follower-load system takes the form

θ̈ + 2ζωnθ̇ +ω2
n θ = ω2

n φ

and the torque experienced by the shaft, τ(t), is

τ(t) = k[θ (t)−φ(t)]
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The numerical values of the variables involved are given as

ζ = 0.1, ωn = 10ω , ω = 300 rpm

(a) Using Parseval’s Formula, estimate the error in the approximation of the
function φ(t) by comparing the rms value φ̃ of φ(t) with the sums of the squares
of the coefficients of the series. The difference of the two quantities is the error,
e. Now, produce a table of error e vs. Nh, for Nh = 1, 2, 3, 4, 5, 10, and 20.
Comment on your tabulated results.

(b) Then, find the steady-state response θ (t) for Nh harmonics of the Fourier
expansion of φ(t), using a suitable value of Nh, that you should choose based
on the table that you produced above. Plot time response vs. time in the interval
[0, 4T ], where T is the duration of one cycle.

(c) Now plot the steady-state value of the torque experienced by the elastic shaft in
dimensionless form, i.e., plot τ(t)/(Jω2

n ) vs. time, in the time-interval [0, 4T ]

Reference

1. Åström KJ, Wittenmark B (1990) Computer-controlled systems: theory and design. Prentice-
Hall Inc, Englewood Cliffs, NJ



Chapter 4
Modeling of Multi-dof Mechanical Systems

How dare we, creatures of length, height, and width,
speak of four-dimensional space?
Is it possible by using all our three-dimensional intelligence
to imagine a superspace of four dimensions?
And how would a four-dimensional cube or sphere look like?

Gamow, G., 1961, One, Two, Three . . . Infinity,
Dover Publications, Inc., New York.

4.1 Introduction

The modeling of multi-dof systems calls for various concepts that were not required
when studying single-dof systems. For example, the concept of degree of freedom,
to begin with, plays a major role here. Furthermore, the concept of vector of
generalized coordinates, and the corresponding vector of generalized speeds arise
only in multi-dof systems. Associated with these vectors, we have the vector
of generalized force, while the concepts of generalized mass matrix, generalized
damping matrix and generalized stiffness matrix enter in this context as natural
extensions of their scalar counterparts encountered in single-dof systems. We shall
introduce these concepts via the vector form of the Lagrange governing equations.
One more concept that pertains to multi-dof systems is that of rigid modes, namely,
non-trivial motions under which the potential energy of the whole system does not
undergo any change.

The modeling techniques that we will introduce in this chapter allow us to model
a variety of structures and machines. As a matter of fact, these mechanical systems
are made of beams, plates, shells and other elements that can be accurately modeled
as continua. We will be mostly concerned with linear mechanical systems composed
of a finite set of mechanical elements. If the system at hand is representable by a set
of n independent generalized coordinates, we say that the system has n degrees
of freedom. Chapter 8 gives an overview of the simplest instances of continuous
systems: bars under tension/compression or torsion; strings, and beams.

J. Angeles, Dynamic Response of Linear Mechanical Systems: Modeling, Analysis
and Simulation, Mechanical Engineering Series, DOI 10.1007/978-1-4419-1027-1 4,
© Springer Science+Business Media, LLC 2011
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4.2 The Derivation of the Governing Equations

A mechanical system is available to us through the configuration it attains at a given
instant. A configuration consists, in turn, of the relative layout of the components of
the system and of the absolute layout of the overall system with respect to an inertial
frame. Such as in the case of single-dof systems, both the relative layout of the
system components and that of the whole system with respect to an inertial frame are
described by signed distances between landmark points in each component, whether
rigid body, particle, massless spring or massless dashpot, and signed angles between
landmark lines in the same components. Again, such as in the case of single-dof
systems, these distances and angles constitute the generalized coordinates of the
system.

Now, if we assume that the dof of a system is known, say n, it is always
possible to find n independent generalized coordinates that fully describe the system
configuration. However, an arbitrary set of n generalized coordinates may not
necessarily be independent. In the examples that we will study here, the independent
generalized coordinates will be either apparent or given as part of the problem
statement.

We recall, moreover, that the time derivatives of the generalized coordinates are
the generalized speeds of the system at hand. Furthermore, if the system has n dof,
then it has a set of n independent generalized coordinates {qi }n

1 and n independent
generalized speeds { q̇i }n

1, that are conveniently stored in the n-dimensional arrays
q and q̇, respectively, defined as

q≡

⎡

⎢
⎢
⎢
⎣

q1

q2
...

qn

⎤

⎥
⎥
⎥
⎦
, q̇≡

⎡

⎢
⎢
⎢
⎣

q̇1

q̇2
...

q̇n

⎤

⎥
⎥
⎥
⎦

(4.1)

Additionally, the whole set of both independent generalized coordinates and
independent generalized speeds constitutes the set of 2n state variables of the
system. If we denote by x the state-variable vector, we then have

x≡
[

q
q̇

]
(4.2)

Once a set of independent generalized coordinates and speeds has been decided
on, the generalized forces are determined uniquely. Indeed, let the sum of all powers
developed by driving devices supplying controlled forces be denoted by Π and that
of all dissipation functions associated with dashpots and other sinks of energy be
denoted by Δ. Then, the generalized force φ f i associated with the ith generalized
coordinate qi is derived as

φ f i =
∂Π
∂ q̇i

(4.3)
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Likewise, the generalized force φdi stemming from dissipation and associated with
the ith generalized coordinate qi is derived as

φdi =− ∂Δ
∂ q̇i

(4.4)

The associated n-dimensional vectors of generalized driving force contributed by
force-controlled drivers, φ f , and generalized dissipative force, φd , are defined as

φ f ≡

⎡

⎢
⎢⎢
⎣

φ f 1

φ f 2
...

φ f n

⎤

⎥
⎥⎥
⎦
, φd ≡

⎡

⎢
⎢⎢
⎣

φd1

φd2
...

φdn

⎤

⎥
⎥⎥
⎦

(4.5)

We have, therefore, in vector form,

φ f =
∂Π
∂ q̇
≡

⎡

⎢
⎢
⎢
⎣

∂Π/∂ q̇1

∂Π/∂ q̇2
...

∂Π/∂ q̇n

⎤

⎥
⎥
⎥
⎦
, φd =−∂Δ

∂ q̇
≡

⎡

⎢
⎢
⎢
⎣

−∂Δ/∂ q̇1

−∂Δ/∂ q̇2
...

−∂Δ/∂ q̇n

⎤

⎥
⎥
⎥
⎦

(4.6)

Henceforth, the derivative, whether partial or total, of a scalar quantity with respect
to a vector is understood as the vector of the corresponding derivatives with respect
to each of the components of the vector. Likewise, we will come across derivatives
of vectors with respect to vectors. These are matrices, as discussed in more detail in
Sect. 4.5.

While the Lagrangian formalism can be applied to mechanical systems of
particles and both rigid and flexible bodies, and to other physical systems as well, we
will focus henceforth on mechanical systems composed of rigid bodies undergoing
planar motion. Furthermore, we recall the notation introduced in Chap. 1, namely,
we will denote the mass of the ith body as mi, its moment of inertia about an axis
perpendicular to the plane of motion, with respect to the center of mass, being
denoted by Ii. We denote, moreover, the position and the velocity vectors of the
center of mass of the ith rigid body by ci and ċi, respectively, its angular velocity
being denoted by the scalar ωi. The kinetic energy Ti of the ith body can then be
written in the form

Ti =
1
2

mi‖ċi‖2 +
1
2

Iiω2
i (4.7)

Thus, if the system under analysis is formed of r rigid bodies, its kinetic energy
becomes

T =
1
2

r

∑
1

mi‖ċi‖2 +
1
2

r

∑
1

Iiω2
i (4.8)
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As we will show with examples, both the square of the magnitude of the velocity
vector of the center of mass of each body and the square of its scalar angular velocity
can always be written as quadratic expressions of the independent generalized
speeds.

When the system is driven by controlled motions independent of the generalized
speeds, the foregoing quantities become quadratic expressions not only of the
generalized speeds, but also of the controlled rates, which are defined as the time
derivatives of the controlled variables. Moreover, the coefficients associated with
the above quadratic expressions are in many instances functions of the independent
generalized coordinates.

By conducting a kinematic analysis similar to that introduced in Chap. 1, it is
always possible to express the kinetic energy of the overall system as a quadratic
function of the generalized speeds. This transformation of the kinetic energy from a
quadratic form of the magnitudes of the centers of mass and the angular velocities
into a quadratic form in the generalized speeds is best understood with the examples
ahead. We shall then derive an expression for the kinetic energy of the system in the
form

T =
1
2

n

∑
i, j=1

mi jq̇iq̇ j +
n

∑
i=1

piq̇i +T0(q, t) (4.9)

or, in compact form,

T =
1
2

q̇T Mq̇+pT q̇+T0(q, t) (4.10)

where the mass matrix M plays the role of the scalar generalized mass of single-dof
systems, its entries being the coefficients mi j appearing in Eq. 4.9; these entries
are, in general, functions of the generalized coordinates, but not of the generalized
speeds. If we now group all pi coefficients of Eq. 4.9 into the n-dimensional array
p, we end up with the definitions below:

M = M(q)≡

⎡

⎢
⎢
⎢
⎣

m11 m12 . . . m1n

m12 m22 . . . m2n
... . . .

. . .
...

m1n m2n . . . mnn

⎤

⎥
⎥
⎥
⎦
, p = p(q, t) ≡

⎡

⎢
⎢
⎢
⎣

p1

p2
...

pn

⎤

⎥
⎥
⎥
⎦

(4.11)

where it is noteworthy that M is symmetric. Note that each product piq̇i has units
of energy, while q̇i has units of generalized speed. It is then apparent that the
coefficients pi of Eq. 4.9 have units of generalized momentum, which could be
either momentum or angular momentum.

In setting up the Lagrange equations of the system under study, we need an
expression for its potential energy, which, as in the single-dof case, can be either
elastic or gravitational. The former appears because of the presence of springs, the
latter because of the gravity field. The potential energy due to the gravity field is, in
general, a nonlinear function of the generalized coordinates, but does not depend on
the generalized speeds. Thus, we will assume that, in general, the potential energy
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Vg due to gravity is a nonlinear function of the generalized coordinates. Likewise,
the elastic potential energy Ve is a nonlinear function of the generalized coordinates,
and hence, the total potential energy V , the sum of the two, is also a function solely
of the generalized coordinates, i.e.,

V =V (q) =Vg(q)+Ve(q) (4.12)

Now we turn to the formulation of the governing equations using a Lagrangian
approach. Here, we will need the Lagrangian L of the system, which is defined
exactly as in the case of single-dof systems, namely, as

L≡ T −V (4.13)

the Lagrange equations taking the form

d
dt

(
∂L
∂ q̇

)
− ∂L

∂q
= φ f +φd (4.14)

It will become apparent, with the aid of the examples, that the foregoing
equations take a general form resembling that of the single-dof case, except that
now the generalized mass becomes the n× n mass matrix and all other quantities
become n-dimensional vectors, namely,

Mq̈+h(q, q̇) = φp +φm +φ f +φd (4.15)

where the vectors of generalized force that arise from a potential and from motion-
controlled sources, φp and φm, respectively, are contributed by the Lagrangian.
The above mathematical model is thus a system of n nonlinear ordinary differential
equations of the second order. The integration of these equations, with prescribed
initial values q(0) = q0 and q̇(0) = r0, and given generalized active forces φm(t)
and φ f (t), lies beyond the scope of the book. As pertaining to linear, constant-
coefficient systems, the integration of the underlying ODEs for two-dof systems
in symbolic form will be discussed in Chap. 5, for n-dof systems numerically in
Chap. 7.

If we recall Eq. 1.39b, h(q, q̇) for the single-dof case is quadratic in q̇ and
nonlinear in q. Likewise, the n-dimensional term h(q, q̇) of Eq. 4.15 is quadratic in
the generalized speeds q̇ and nonlinear in the generalized coordinates q. This term
thus plays the role of the generalized Coriolis and centrifugal forces of the single-dof
case. For this reason, this term is also called the vector of generalized Coriolis and
centrifugal forces. Moreover, terms φg and φm of the right-hand side of Eq. 4.15
stem from the left-hand side of Eq. 4.14, the former appearing in the Lagrangian
because it represents generalized forces due to gravity, the latter from controlled-
motion actuators, the remaining two terms of the right-hand side of that equation
having been already explained. The whole right-hand side of that equation is called
the vector of generalized forces and is represented by φ. Note that φ= φ(q, q̇, t).
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From Eq. 4.15 it is apparent that matrix M plays a key role in the dynamics
of mechanical systems. Moreover, this matrix has properties that impact on the
behavior of these systems. First and foremost, given the form of the kinetic energy
of Eq. 4.9, it is apparent that M is symmetric and hence, all its eigenvalues are
real. Furthermore, since the kinetic energy cannot be negative, it turns out that
M is positive-semidefinite, and hence, its eigenvalues are not only real, but also
non-negative and, in fact, in many instances, they are all positive, M then being
positive-definite. Moreover, the term h(q, q̇) does not have any particular structure,
except that h is, in general, a nonlinear function of q and a quadratic function of q̇.

Just like in Chap. 1, we now have the seven-step procedure outlined below to set
up the governing equations of n-dof mechanical systems:

1. Introduce a set of generalized coordinates q1, . . . ,qn and their time rates
of change q̇1, . . . , q̇n, defining the state of the system. Group them in the
n-dimensional vectors q and q̇, i.e.,

q = [q1, . . . ,qn]
T : vector of generalized coordinates

q̇ = [q̇1, . . . , q̇n]
T : vector of generalized speeds

and, by means of a kinematic analysis, express the squares of the magnitudes
of the c.o.m. velocities and the squares of the angular velocities as quadratic
expressions in the generalized speeds.

2. Evaluate T = T (q, q̇), the kinetic energy of the whole system, as the sum of the
individual kinetic energy expressions.

3. Evaluate V = V (q), the potential energy of the whole system, as the sum of the
individual expressions, for every potential-energy-storing element.

4. Evaluate L≡ T −V , the Lagrangian of the whole system: L = L(q, q̇).
5. Evaluate Π = Π(q, q̇), the power supplied to the system from force/torque-

controlled sources (Π≥ 0), then its partial derivative ∂Π/∂ q̇, to obtain φ f :

φ f = ∂Π/∂ q̇ (4.16)

6. Evaluate Δ = Δ(q, q̇), the sum of the dissipation functions of all dissipative
elements of the system (Δ≥ 0), as well as its partial derivative ∂Δ/∂ q̇, to obtain
φd :

φd = ∂Δ/∂ q̇ (4.17)

7. Write the governing equations using the foregoing partial derivatives:

d
dt

(
∂L
∂ q̇

)
− ∂L

∂q
= φ f −φd (4.18)
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a b

c

Fig. 4.1 A two-link robotic arm

Example 4.2.1 (A Two-Link Robotic Arm with Viscous Damping). A two-link
robotic arm suspended from the ceiling is shown in the iconic model of Fig. 4.1.
In this model we have assumed that the two links are rigid bodies pinned at O1 and
O2, the moment of inertia of body 1 with respect to O1 being denoted by J1, that
of body 2 with respect to its center of mass being denoted by J2, while the masses
of these bodies are labelled m1 amd m2, respectively. Moreover, we assume that the
joints are lubricated with a fluid that provides linearly viscous damping, while the
motors at the joints provide torques τ1 and τ2. As indicated in the figure, the effect of
gravity is considered and the first link is assumed to be inertially symmetric. What
we mean by this is that its center of mass C1 is aligned with the two joint centers.
Derive the Lagrange equations of motion of this system.

Solution: The seven steps leading to the mathematical model of Eq. 4.18 are now
implemented.

1. Kinematics. We start by introducing the generalized coordinates of the system.
Apparently, the system has two dof, and hence, two generalized coordinates are
needed to describe it in an arbitrary configuration. We thus define the generalized
coordinates as angles θk, for k = 1,2, as shown in Fig. 4.1, that measure the
orientation of the two links with respect to the vertical. In setting up the kinetic
energy, we shall resort to Eq. 4.8, where four kinematic variables are needed,
namely, ċ1, ċ2, ω1 and ω2. As a matter of fact, the variables as such are not
needed, but rather ||ċ1||2, ||ċ2||2, ω2

1 and ω2
2 . From the definitions of θ1 and θ2,
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it is apparent that

ω1 = θ̇1, ω2 = θ̇2

Moreover,

||ċ1||2 = ρ2
1 θ̇ 2

1

the computation of ||ċ2||2 being less straightforward. In order to ease the
calculation of this magnitude, we sketch in Fig. 4.1b an even more abstract iconic
model of the system, while indicating the velocity of O2 and the relative velocity
of C2 with respect to O2. These velocities are included in that figure as ȯ2 and
v, respectively, accompanied by their signed magnitudes inside parentheses—
these quantities are not magnitudes, properly speaking, for they can take negative
values. We thus have

ċ2 = ȯ2 + v

a relation that is illustrated in Fig. 4.1c. Now, from this figure and the cosine law,
it is apparent that

‖ċ2‖2 = a2θ̇ 2
1 +ρ2

2 θ̇ 2
2 + 2aρ2θ̇1θ̇2 cos(θ2−θ1)

2. Kinetic energy. We first recall that J1 denotes the moment of inertia of body 1
with respect to O1, while J2 that of body 2 with respect to its c.o.m., whence,

T1 =
1
2

J1θ̇ 2
1 , T2 =

1
2

J2θ̇ 2
2 +

1
2

m2[a
2θ̇ 2

1 +ρ2
2 θ̇ 2

2 + 2aρ2θ̇1θ̇2 cos(θ2−θ1)]

Therefore, the kinetic energy of the overall system is

T =
1
2

(
J1θ̇ 2

1 + J2θ̇ 2
2

)
+

1
2

m2
[
a2θ̇ 2

1 +ρ2
2 θ̇ 2

2 + 2aρ2θ̇1θ̇2 cos(θ2−θ1)
]

3. Potential energy. This is readily obtained as

V =−m1gρ1 cosθ1−m2g(acosθ1 +ρ2 cosθ2)

where m1 and m2 are the masses of the first and second links, respectively.
4. Lagrangian. The Lagrangian becomes

L =
1
2

(
J1θ̇ 2

1 + J2θ̇ 2
2

)
+

1
2

m2
[
a2θ̇ 2

1 +ρ2
2 θ̇ 2

2 + 2aρ2θ̇1θ̇2 cos(θ2−θ1)
]

+m1gρ1 cosθ1 +m2g(acosθ1 +ρ2 cosθ2)

The partial derivatives of the Lagrangian needed to set up the Lagrange equations
of the system are now computed as
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∂L

∂ θ̇1
= (J1 +m2a2)θ̇1 +m2aρ2θ̇2 cos(θ2−θ1)

d
dt

(
∂L

∂ θ̇1

)
= (J1 +m2a2)θ̈1 +m2aρ2θ̈2 cos(θ2−θ1)

−m2aρ2θ̇2(θ̇2− θ̇1)sin(θ2−θ1)

∂L
∂θ1

= m2aρ2θ̇1θ̇2 sin(θ2−θ1)−m1gρ1 sinθ1−m2gasinθ1

∂L

∂ θ̇2
= (J2 +m2ρ2

2 )θ̇2 +m2aρ2θ̇1 cos(θ2−θ1)

d
dt

(
∂L

∂ θ̇2

)
= (J2 +m2ρ2

2 )θ̈2 +m2aρ2θ̈1 cos(θ2−θ1)

−m2aρ2θ̇1(θ̇2− θ̇1)sin(θ2−θ1)

∂L
∂θ2

= −m2aρ2θ̇1θ̇2 sin(θ2−θ1)−m2gρ2 sinθ2

5. Power supplied. The total power supplied from force-controlled sources is the
sum of the powers delivered by the two motors, i.e.,

Π = τ1θ̇1 + τ2(θ̇2− θ̇1)

its partial derivatives being

φ f 1 =
∂Π
∂θ̇1

= τ1− τ2, φ f 2 =
∂Π
∂θ̇2

= τ2

6. Dissipation function. This item is the sum of the dissipation functions associated
with the individual joints, i.e.,

Δ =
1
2

c1θ̇ 2
1 +

1
2

c2(θ̇2− θ̇1)
2

which is quadratic in the relative angular velocity of the second link with
respect to the former, not in the absolute angular velocity of this link, its partial
derivatives being

φd1 =
∂Δ
∂ θ̇1

= (c1 + c2)θ̇1− c2θ̇2, φd2 =
∂Δ
∂ θ̇2

= c2(θ̇2− θ̇1)

7. Governing equations. After simplifications, the Lagrange equations reduce to

(J1 +m2a2)θ̈1 +m2aρ2[cos(θ2−θ1)]θ̈2−m2aρ2θ̇ 2
2 sin(θ2−θ1)

=−g(m1ρ1 +m2a)sin θ1 + τ1− τ2− (c1 + c2)θ̇1 + c2θ̇2
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m2aρ2[cos(θ2−θ1)]θ̈1 +(J2 +m2ρ2
2 )θ̈2 +m2aρ2θ̇ 2

1 sin(θ2−θ1)

=−m2gρ2 sinθ2 + τ2− c2(θ̇2− θ̇1)

It is now a simple matter to identify the mass matrix via the coefficients of θ̈1 and
θ̈2, which yields

M =

[
J1 +m2a2 m2aρ2 cos(θ2−θ1)

m2aρ2 cos(θ2−θ1) J2 +m2ρ2
2

]

a 2× 2 matrix that is apparently symmetric, as it should. Moreover, M is positive-
definite, as shown below: Indeed, to show that M is positive-definite, all we need
is show that its two eigenvalues are positive. Furthermore, to prove that the two
eigenvalues of a 2× 2 matrix are positive, or negative, for that matter, we do not
need to actually compute its two eigenvalues, if we recall from Appendix A that the
trace of the matrix is the sum of its eigenvalues,1 while its determinant is the product
of these. Hence, the two eigenvalues of a 2×2 matrix are positive if and only if both
the trace and the determinant of the matrix are positive. Now we have

tr(M) = J1 + J2 +m2(a
2 +ρ2

2)> 0

Moreover,

det(M) = (J1 +m2a2)(J2 +m2ρ2
2 )−m2

2a2ρ2
2 cos2(θ2−θ1)

= J1J2 +m2(J1ρ2
2 + J2a2)+m2

2a2ρ2
2 sin2(θ2−θ1)> 0

thereby showing that the mass matrix of this system is positive-definite.
Further, the h(q, q̇) vector and the vectors of generalized force are readily

identified, namely,

h(q, q̇) =
[−m2aρ2θ̇ 2

2 sin(θ2−θ1)

m2aρ2θ̇ 2
1 sin(θ2−θ1)

]

φp = −
[

g(m1ρ1 +m2a)sinθ1

m2gρ2 sin θ2

]
, φ f =

[
τ1− τ2

τ2

]

φd =

[−(c1 + c2)θ̇1 + c2θ̇2

−c2(θ̇2− θ̇1)

]

1In the case at hand, the trace of M has a physical meaning, as the diagonal entries of M bear the
same units, those of moment of inertia. Depending on the choice of the generalized coordinates,
these entries may bear distinct units, in which case the trace is meaningless. In such cases, the
eigenvalues must be computed to prove positive-definiteness.
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a b

Fig. 4.2 A two-link gantry robot

The system being apparently driven under controlled forces supplied by actuators,
it contains a corresponding term φ f . As well, since no apparent controlled motions
are present, the corresponding term φm does not appear above. Finally, note that
the vector of generalized gravity force, φp, does not involve the generalized speeds.
This is the case in general, for this force stems from a potential energy that does not
depend on the velocities of the system elements.

Example 4.2.2 (A Two-dof Gantry Robot). Now we analyze a similar system, but
with an added complexity. The system at hand is the gantry robot of Fig. 4.2. It
consists of two identical links that can be modeled as slender rods of lengths l
and mass m, with the base joint O1 now mounted on a trolley that can slide under
controlled motion along a horizontal track. The motion of the trolley is thus given
as a function u(t). If the two joints are lubricated with a fluid that produces linearly
viscous torques and the same joints are acted upon by motors producing driving
torques τk, for k = 1,2, find the mathematical model of the system under the action
of gravity.

Solution: We proceed as in the foregoing example, i.e., in seven steps.

1. Kinematics. The system at hand involves one more independent motion when
compared to the system of Example 4.2.1, namely, the motion of the base.
However, the latter is prescribed and does not count toward the dof of the system,
which is still two, and hence, fully described by θ1 and θ2, that are, again,
regarded as the generalized coordinates of the system. Nevertheless, because
of the base motion, the procedure used in Example 4.2.1 to find the square of
the magnitude of the velocity of the center of mass C2 is no longer practical.
Another approach to derive this expression is now introduced, that finds frequent
applications in robotics. Let r1 and r2 denote the vectors directed from O1 to O2
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and from the latter to P, as shown in Fig. 4.2b. Furthermore, let ȯk, for k = 1,2,
denote the velocity of point Ok, with ṗ denoting the velocity of point P. The
ensuing derivations will become more handleable if we now recall matrix E
introduced in Sect. 1.6, namely,

E≡
[

0 −1
1 0

]

Matrix E, it is recalled, rotates vectors in the plane through 90◦ counterclockwise,
without changing their magnitude. E is in fact an orthogonal matrix and,
moreover,

E2 =−1

where 1 denotes the 2× 2 identity matrix. We then have the relations below2

ȯ1 = u̇i

ȯ2 = ȯ1 + θ̇1Er1 = u̇i+ θ̇1Er1

ṗ = ȯ2 + θ̇2Er2 = u̇i+ θ̇1Er1 + θ̇2Er2

Furthermore, from the modeling assumptions,

ċ1 = u̇i+
1
2

θ̇1Er1

and hence,

‖ċ1‖2 =

(
u̇i+

1
2

θ̇1Er1

)T (
u̇i+

1
2

θ̇1Er1

)
= u̇2 + i · (Er1)u̇θ̇1 +

1
4
‖Er1‖2θ̇ 2

1

But Er1 is simply r1 with its first and second components interchanged, the first
one having, additionally, its sign reversed. From Fig. 4.2a, b,

r1 =

[
l sin θ1

−l cosθ1

]
⇒ Er1 =

[
l cosθ1

l sin θ1

]

and hence, i · (Er1) is just the first component of Er1, i.e.,

i · (Er1) = l cosθ1

Moreover, since E preserves the magnitude of vectors, ‖Ev‖ ≡ ‖v‖, for any
vector v, and hence,

‖Er1‖ ≡ ‖r1‖= l

2Notice the recursive nature of these relations: the second is based on the first, as the third on the
second. Recursion is at the core of computational algorithms in multibody system dynamics.
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Therefore,

‖ċ1‖2 = u̇2 + l(cosθ1)u̇θ̇1 +
1
4

l2θ̇ 2
1

Likewise,

ċ2 = u̇i+ θ̇1Er1 +
1
2

θ̇2Er2

whence,

‖ċ2‖2 = u̇2 + ‖Er1‖2θ̇ 2
1 +

1
4
‖Er2‖2θ̇ 2

2 + 2i · (Er1)u̇θ̇1 + i · (Er2)u̇θ̇2

+(Er1) · (Er2)θ̇1θ̇2

where

r2 =

[
l sin θ2

−l cosθ2

]
⇒ Er2 =

[
l cosθ2

l sinθ2

]

Now we can readily write

i · (Er2) = l cosθ2, ‖Er2‖= l

Moreover,

(Er1) · (Er2) = (Er1)
T (Er2)≡ rT

1 ET Er2

and if we recall further that E is an orthogonal matrix, then ET E = 1, where 1
denotes the 2× 2 identity matrix. Hence,

(Er1) · (Er2) = rT
1 r2 = r1 · r2 = l2 cos(θ2−θ1)

Therefore,

‖ċ2‖2 = u̇2 + l2
[

θ̇ 2
1 +

1
4

θ̇ 2
2 + θ̇1θ̇2 cos(θ2−θ1)

]
+ lu̇

(
2θ̇1 cosθ1 + θ̇2 cosθ2

)

2. Kinetic energy. The kinetic energy of each of the two links is labeled T1 and T2,
respectively, that of the trolley T3. The corresponding expressions are

T1 =
1
2

m‖ċ1‖2 +
1
2

1
12

ml2θ̇ 2
1 , T1 =

1
2

m‖ċ2‖2 +
1
2

1
12

ml2θ̇ 2
2 , T3 =

1
2

Mu̇2

the kinetic energy of the overall system thus being

T =
1
2

(
m‖ċ1‖2 +

1
12

ml2θ̇ 2
1 +m‖ċ2‖2 +

1
12

ml2θ̇ 2
2

)
+

1
2

Mu̇2
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Upon introduction of the expressions for ‖ċ1‖ and ‖ċ2‖ derived in item 1 of this
example into the above expression for T , we obtain

T =
1
2

m

[
4
3

l2θ̇ 2
1 +

1
3

l2θ̇ 2
2 + l2[cos(θ2−θ1)]θ̇1θ̇2 + lu̇(3θ̇1 cosθ1 + θ̇2 cosθ2)

+2u̇2
]
+

1
2

Mu̇2

3. Potential energy. The derivation of the potential energy is more straightforward:

V =−3
2

mgl cosθ1− 1
2

mgl cosθ2

where we have used as a reference level that of O1.
4. Lagrangian. This is simply the difference of the two foregoing items, i.e.,

L =
1
2

m

[
4
3

l2θ̇ 2
1 +

1
3

l2θ̇ 2
2 + l2[cos(θ2−θ1)]θ̇1θ̇2 + lu̇(3θ̇1 cosθ1 + θ̇2 cosθ2)

+2u̇2
]
+

3
2

mgl cosθ1 +
1
2

mgl cosθ2

its partial derivatives being listed below:

∂L

∂ θ̇1
=

1
2

m

{
8
3

l2θ̇1 + l2 [cos(θ2−θ1)] θ̇2 + 3lu̇cosθ1

}

d
dt

(
∂L

∂ θ̇1

)
=

1
2

m

{
8
3

l2θ̈1 + l2 [cos(θ2−θ1)] θ̈2− l2 [sin(θ2−θ1)]
(
θ̇2− θ̇1

)
θ̇2

+3lücosθ1− 3lu̇θ̇1 sinθ1

}

∂L
∂θ1

=
1
2

m
{

l2 [sin(θ2−θ1)] θ̇1θ̇2− 3lu̇θ̇1 sinθ1− 3gl sinθ1
}

∂L

∂ θ̇2
=

1
2

m

{
2
3

l2θ̇2 + l2 [cos(θ2−θ1)] θ̇1 + lu̇cosθ2

}

d
dt

(
∂L

∂ θ̇2

)
=

1
2

m

{
2
3

l2θ̈2 + l2 [cos(θ2−θ1)] θ̈1− l2 [sin(θ2−θ1)]
(
θ̇2− θ̇1

)
θ̇1

+lücosθ2− lu̇θ̇2 sinθ2

}

∂L
∂θ2

=
1
2

m
{−l2 [sin(θ2−θ1)] θ̇1θ̇2− lu̇θ̇2 sinθ2− gl sinθ2

}
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5. Power supplied. The power supplied to the system is readily derived, as in the
previous example, namely,

Π = τ1θ̇1 + τ2(θ̇2− θ̇1)

its partial derivatives yielding the generalized forces of φ f 1 and φ f 2:

φ f 1 =
∂Π
∂θ̇1

= τ1− τ2, φ f 2 =
∂Π
∂θ̇2

= τ2

6. Dissipation function. Now we have

Δ =
1
2

c1θ̇ 2
1 +

1
2

c2(θ̇2− θ̇1)
2

its partial derivatives yielding the dissipative forces of φd1 and φd2:

φd1 =
∂Δ
∂ θ̇1

= (c1 + c2)θ̇1− c2θ̇2, φd2 =
∂Δ
∂ θ̇2

= c2(θ̇2− θ̇1)

7. Lagrange equations. The Lagrange equations of the system at hand become

4
3

ml2θ̈1 +
1
2

ml2 [cos(θ2−θ1)] θ̈2 − 1
2

ml2 [sin(θ2−θ1)] θ̇ 2
2 =

3
2

mgl sin θ1

− 3
2

mlücosθ1 + τ1− τ2− (c1 + c2)θ̇1 + c2θ̇2

1
2

ml2 [cos(θ2−θ1)] θ̈1 +
1
3

ml2θ̈2 +
1
2

ml2 [sin(θ2−θ1)] θ̇ 2
1 =

1
2

mgl sin θ2

− 1
2

mlücosθ2 + τ2− c2(θ̇2− θ̇1)

where, interestingly, the terms in u̇ vanished.

The mass matrix, the h(q, q̇) vector and the generalized force vectors are readily
identified as

M = ml2
[

4/3 (1/2)cos(θ2−θ1)

(1/2)cos(θ2−θ1) 1/3

]

h(q, q̇) =
1
2

ml2 [sin(θ2−θ1)]

[−θ̇ 2
2

θ̇ 2
1

]
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φp =
1
2

mgl

[
3sinθ1

sinθ2

]
, φ f =

[
τ1− τ2

τ2

]

φm =
1
2

mlücosθ1

[
3
1

]
, φd =

[−(c1 + c2)θ̇1 + c2θ̇2

−c2(θ̇2− θ̇1)

]

Note, again, that the vector of generalized gravity forces does not involve the
generalized speeds, and that the matrix of generalized mass is positive-definite.

4.3 Equilibrium States

In this section we will study the equilibrium states of n-dof mechanical systems.
Moreover, for the sake of simplicity, we will assume that the system is described
by a set of n independent generalized coordinates. The system at hand can thus
be assumed to be governed by Eq. 4.15. This system is in an equilibrium state if
q̇ = 0 and q̈ = 0, which implies that, at equilibrium, q attains a constant value qE ,
determined from the equilibrium equations. These are then derived from Eq. 4.15,
by simply setting q̇ = 0 and q̈ = 0 in this equation, thereby obtaining an equation
formally identical to Eq. 1.46, namely,

φ(qE ,0) = 0 (4.19)

because h(q, q̇), being quadratic homogeneous in q̇, vanishes at equilibrium.
The equilibrium equation is thus obtained upon solving the system of n alge-

braic3 equations (4.19) in the n unknown components of vector qE . Note that this
system of equations is, in general, nonlinear, and hence, may or may not admit a
real solution. Moreover, if it admits a real solution, this is, in general, not unique.
The solution of systems of nonlinear algebraic equations can be quite challenging,
but the examples with which we will be concerned lend themselves to rather
straightforward, if ad-hoc solutions, as will be illustrated with the examples below.

Example 4.3.1 (Equilibrium Configurations of the Two-Link Robot). Obtain the
equilibrium configurations of Example 4.2.1, when the motors are turned off and
assumed to apply no braking torques.

Solution: Upon setting θ̇k = 0, θ̈k = 0 and τk = 0, for k = 1,2, in the Lagrange
equations of Example 4.2.1, we obtain the equilibrium equations in the form

g(m1ρ1 +m2a)sinθ1 = 0

m2gρ2 sinθ2 = 0

3As opposed to differential.
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a b c

d

Fig. 4.3 The four equilibrium configurations of a two-link robot

whence it is apparent that, at an equilibrium state, we have

sinθ1 = 0, sinθ2 = 0

Thus, the system is at equilibrium whenever the joints are at rest and the center of
mass C2 is aligned with the two joint centers, all these points lying on a vertical. It is
apparent, moreover, that four such equilibrium configurations are possible. Indeed,
let us call joint O2 the elbow, a common terminology in robotics. There are two
equilibrium configurations of the elbow-down type and two of the elbow-up. Each of
these configurations corresponds to the arm either fully extended or fully retracted,
as displayed in Fig. 4.3.

Example 4.3.2 (Equilibrium Configurations of the Gantry Robot). Determine the
equilibrium configurations of the system shown in Fig. 4.2 under ü ≡ a = const,
when the motors are turned off and exert no braking torque.

Solution: We start by setting θ̇k = 0, θ̈k = 0 and τk = 0, for k = 1,2, in the
governing equations derived in Example 4.2.2 above. The equilibrium equations
now take the form

3
2

mgl sinθ1 = −3
2

mlacosθ1

1
2

mgl sinθ2 = −1
2

mlacosθ2
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a b c d

e

Fig. 4.4 Equilibrium configurations of the two-dof gantry robot

whence

tanθ1 = tanθ2 =−a
g

Let us define γ as

γ = arctan

(
−a

g

)

Here, we recall that, tan(x) = tan(x+π); as a consequence, there are four possible
solutions to the equilibrium equations, and thus, four equilibrium states, given
by (θ1,θ2) = (γ,γ), (γ,γ + π), (γ + π ,γ), (γ + π ,γ + π), which are shown in
Fig. 4.4a–d, respectively, the relation among a, g and γ appearing in Fig. 4.4e. Here,
note that the negative sign in the argument of the arctan(·) function indicates that
an acceleration a to the left, i.e., negative according to the positive direction of u(t)
assumed in Fig. 4.2, produces an angle γ ccw from the vertical.

Example 4.3.3 (A Time-Varying Equilibrium State). Shown in Fig. 4.5 is the over-
head crane of Example 1.6.5, but now with the motor that drives the cart providing
not a controlled motion, but rather a controlled force F(t); likewise, the motion of
the rod is now controlled by a motor providing a torque τ(t). Find the Lagrange
equations of the system under the above conditions, and then determine the
equilibrium states of this system under the assumption that damping is negligible
and that F = 0 and τ = 0.

Solution: The translation of the cart becomes now a generalized coordinate, that
we label x. We thus have a two-dof system with vector of generalized coordinates
defined as q ≡ [x, θ ]T , its kinetic energy taking a form similar to that derived in
Example 1.6.5, namely,
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Fig. 4.5 A two-dof overhead crane

T =
1
2
(M+m)ẋ2 +

1
6

ml2θ̇ 2− 1
2

ml(cosθ )ẋθ̇

while the potential energy is the same as in that example, i.e., V =−(1/2)mgl cosθ ,
and hence,

L =
1
2
(M+m)ẋ2 +

1
6

ml2θ̇ 2− 1
2

ml(cosθ )ẋθ̇ +
1
2

mgl cosθ

The partial derivatives needed to set up the Lagrange equations of the system are
now

∂L
∂ q̇

=

[
(M+m)ẋ− 1

2 mlθ̇ cosθ
1
3 ml2θ̇ − 1

2 mlẋcosθ

]

d
dt

(
∂L
∂ q̇

)
=

[
(M+m)ẍ− 1

2 ml(θ̈ cosθ − θ̇ 2 sinθ )
1
3 ml2θ̈ − 1

2 mlẍcosθ + 1
2 mlẋθ̇ sinθ

]

∂L
∂q

=

[
0

1
2 mlẋθ̇ sinθ − 1

2 mgl sinθ

]

Moreover,

Π = Fẋ+ τθ̇ , Δ = 0
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the Lagrange equations of the system thus being

(M+m)ẍ− 1
2

ml(θ̈ cosθ − θ̇ 2 sinθ ) = F(t)

1
3

ml2θ̈ − 1
2

mlẍcosθ +
1
2

mgl sin θ = τ(t)

Upon setting ẋ, θ̇ , ẍ, θ̈ , F(t) and τ(t) equal to zero in the above equations, the first
becomes identically satisfied, while the second yields

sinθ = 0

and hence, equilibrium is possible for any constant value ẋE = v0, as long as
sinθ = 0, which yields the two equilibrium configurations θE = 0 or π , correspond-
ing to rod-down and rod-up, exactly as in Example 1.6.5.

Note that, such as in the case of single-dof systems, the above time-varying
equilibrium configuration occurs concurrently with ∂L/∂x = 0, and the governing
equation associated with x is conservative and autonomous. Thus, we have here a
similar condition for the occurrence of time-varying equilibrium states to that de-
rived in the single-dof case, i.e., a time-varying equilibrium state of an autonomous
system is possible if (1) the governing equation associated with the generalized
coordinate qk is free of dissipative terms, and (2) ∂L/∂qk = 0.

In this example we have two generalized coordinates that are of different
dimensions, one having units of length, the other being dimensionless. This special
feature brings about interesting consequences. In fact, the mass matrix of this system
takes the form

M =

[
M+m − 1

2 ml cosθ
− 1

2 ml cosθ 1
2 ml2

]

Apparently this matrix is symmetric, but we would be interested in verifying
whether it is positive-definite as well. In order to do this, we recall our well-known
rule of verifying positive definiteness of 2× 2 matrices based upon the signs of the
trace and the determinant of the matrix under study, which give two necessary and
sufficient conditions for our purpose. So, let us find the trace of this matrix:

tr(M) = M+m+
1
3

ml2

which is physically meaningless because we cannot compute the sum in the right-
hand side. Note that the third term has units of moment of inertia, while the first two
have units of mass.

So as to verify the positive-definiteness of M, the reader is invited to compute
its eigenvalues and verify that both, although bearing different units, are positive.
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Alternatively, let us make a change of variables, by redefining the vector of
generalized coordinates in dimensionally homogeneous form, namely, as

q≡
[

x/l
θ

]
≡
[

ξ
θ

]

Now we rewrite the governing equations in terms of the new set of generalized
coordinates, thereby obtaining

(M +m)lξ̈ − 1
2

ml(θ̈ cosθ − θ̇ 2 sinθ ) = F(t)

1
3

mlθ̈ − 1
2

mlξ̈ cosθ +
1
2

mgsinθ =
τ(t)

l

where we have divided the two sides of the second equation by l. Now the mass
matrix becomes

M =

[
(M+m)l − 1

2 ml cosθ
− 1

2 ml cosθ 1
2 ml

]

which is now dimensionally homogeneous, its trace being

tr(M) = (M +m)l+
1
2

ml = Ml +
3
2

ml

and has units of Kg ·m. We might as well have multiplied the two sides of the first of
the last two equations by l, while leaving the second unchanged. The mass matrix
thus resulting would have had units of moment of inertia. In any case, the mass
matrix can be proven to be positive-definite.

4.4 Linearization of the Governing Equations
About Equilibrium States

We now derive the governing equations upon ‘small’ perturbations of the equilib-
rium states. To this end, we introduce perturbations δq, δ q̇ and δ q̈, which lead to

q≡ qE + δq, q̇≡ δ q̇, q̈≡ δ q̈ (4.20)

Upon conducting an analysis similar to that of Sect. 1.10, we end up with the
n-dof counterpart of Eq. 1.53a, namely,

MEδ q̈+CEδ q̇+KEδq = δφ(t)

which is a system of n second-order ODEs in δq, with the three n×n matrices ME ,
CE and KE defined as the n× n matrix counterparts of the scalar coefficients mE ,
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cE and kE , respectively, of Eq. 1.53a, with the definitions below that parallel those
of Eq. 1.53b, namely,

ME ≡M(qE), CE ≡−∂φ
∂ q̇

∣
∣
∣∣
(qE ,0)

, KE ≡−∂φ
∂q

∣
∣
∣∣
(qE ,0)

(4.21)

For brevity, when the foregoing linearization process is self-understood, we shall
delete the subscript E and the symbol δ from the above equation, which thus takes
a simplified form, namely,

Mq̈+Cq̇+Kq = φ(t) (4.22)

The above system of equations is the vector counterpart of the scalar Eq. 1.57. Just
as in the scalar case, we can now determine the nature of the equilibrium states
based on the matrix coefficients of Eq. 4.22. For quick reference, we recall here that
a system is said to be autonomous when all its motors are turned off and no external
perturbations act upon it. As well, we recall that the scalar linearized equation of
an autonomous system is asymptotically stable if and only if all its coefficients
are positive; it is marginally stable when all its coefficients are positive, except for
that of the velocity term, which vanishes. Without entering in the details of the
proof, which we can skip at an introductory level, we can state similar conditions
for the stability of Eq. 4.22, but here care must be taken in that the coefficients of
this equation are now matrices and a matrix cannot be called, properly speaking,
positive or negative. However, if all the eigenvalues of a matrix are positive, then
the matrix is termed positive-definite; if none is negative, then the matrix is termed
positive-semidefinite. Similar definitions apply to negative-definite and negative-
semidefinite matrices. Note, however, that, if a matrix is neither positive-definite nor
semidefinite, it is not necessarily negative-definite or semidefinite. Matrices with
positive and negative eigenvalues are termed sign-indefinite.

The stability conditions for Eq. 4.22, with its right-hand side equated to zero, are
thus summarized as:

1. Equation 4.22 is asymptotically stable if all its coefficients are positive-definite,
except for K, which can be positive-semidefinite

2. Equation 4.22 is marginally stable if coefficient C is positive-semidefinite, but
all others are positive-definite

Note that the above conditions are sufficient, but not necessary. In fact, under
condition 1, C should be positive-definite, and hence, symmetric, for C is supposed
to have real eigenvalues. However, when gyroscopic forces are present, like in
systems mounted on platforms turning under controlled motion, then C is the sum
of a symmetric part and a skew-symmetric part. Moreover, if the symmetric part is
positive-definite, then the system is asymptotically stable, for the gyroscopic forces
do not contribute to destabilizing the system. Gyroscopic forces lie beyond the scope
of this book.
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When all matrix coefficients of Eq. 4.22 are at least positive-semidefinite, they
are directly associated with our basic mechanical elements introduced in Chap. 1.
In fact, it is apparent that the mass matrix M is associated with mass, which is
the reason why it is called the mass matrix. Likewise, when C and K are at least
positive-semidefinite, they are called the damping matrix and the stiffness matrix.
Moreover, because M is associated with mass in any instance, it is always at least
positive-semidefinite. In fact, if every generalized coordinate is associated with a
non-negligible inertia, then M is positive-definite. This matrix becomes semidefinite
only when some generalized coordinates do not represent the displacement, whether
angular or translational, of a rotor or, correspondingly, of a mass. In this book we
will discuss only systems with a positive-definite mass matrix.

Example 4.4.1 (Linearized Model of a Two-link Robot). Out of the four possible
equilibrium configurations of the system of Example 4.3.1, analyze that at which
θk = 0, for k = 1,2, with regard to stability.

Solution: In order to proceed with the linearization of the mathematical model of
the system at hand, let us perturb the generalized variables—coordinates, speeds and
accelerations—at the equilibrium configuration. For compactness, we shall group
the generalized coordinates θk, for k = 1,2, into vector θ, the generalized speeds
being grouped into vector θ̇, while the generalized accelerations are grouped into
vector θ̈, and the generalized torques are grouped into vector τ . The perturbed
variables are now

θ = δθ, θ̇ = δ θ̇, θ̈ = δ θ̈, τ = δτ

In the linearization process we shall need the trigonometric functions of the
perturbed variables. These are readily computed below for quick reference:

cos(δθk) ≈ 1, sin(δθk)≈ δθk

cos(δθ2− δθ1) ≈ 1+ δθ1δθ2 ≈ 1, sin(δθ2− δθ1)≈ δθ2− δθ1

where we have considered that δθ1δθ2 ≈ 0 because it is a second-order term.
Upon substituting the foregoing values into the governing equations, the linearized
equations are derived as

(J1 +m2a2)δ θ̈1 +m2aρ2δ θ̈2 +(c1 + c2)δ θ̇1− c2δ θ̇2 + g(m1ρ1 + m2a)δθ1

= δτ1− δτ2

m2aρ2δ θ̈1 +(J2 +m2ρ2
2 )δ θ̈2 + c2(δ θ̇2− δ θ̇1)+m2gρ2δθ2 = δτ2
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From the above linearized model it is now a simple matter to identify the mass,
damping and stiffness matrices, as well as the generalized force. These are

M =

[
J1 +m2a2 m2aρ2

m2aρ2 J2 +m2ρ2
2

]
, C =

[
c1 + c2 −c2

−c2 c2

]

K = g

[
m1ρ1 +m2a 0

0 m2ρ2

]
, φ=

[
δτ1− δτ2

δτ2

]

Note that here gravity plays the role of springs, the stiffness matrix thus being
proportional to g. Moreover, all three matrices above are positive-definite, and
hence, in the absence of external torques τk, for k = 1,2, the system is asymptotically
stable. Since real-life joints always carry a certain amount of damping, robotic
manipulators of this kind are asymptotically stable under small-amplitude motions,
a rather comforting result for robotics engineers. The positive-definiteness of the
three above matrices may not be apparent at first glance, but it is there. Indeed, all
it takes to prove positive-definiteness is to calculate the trace and the determinant of
these matrices, which are both positive, for each matrix.

Example 4.4.2 (Linearized Model of a Gantry Robot). For the system of Fig. 4.2,
derive the linearized equations of at the equilibrium configuration of Fig. 4.4a.
Moreover, in the absence of perturbations, i.e., for δ ü = 0, is this configuration
stable? unstable? marginally stable?

Solution: First, we rewrite the governing equations in a simpler form, by multiply-
ing their two sides by 2 and dividing them by ml2, which thus leads to

8
3

θ̈1 +[cos(θ2−θ1)] θ̈2− [sin(θ2−θ1)] θ̇ 2
2 +

3g
l

sinθ1

+
2(c1 + c2)

ml2 θ̇1− 2c2

ml2 θ̇2 =
2

ml2 (τ1− τ2)− 3
l

ücosθ1

[cos(θ2−θ1)] θ̈1 +
2
3

θ̈2 +[sin(θ2−θ1)] θ̇ 2
1 +

g
l

sinθ2

+
2c2

l2 (θ̇2− θ̇1) =
2

ml2 τ2− 1
l

ücosθ2

Next, we substitute the generalized variables of the above equations by their
perturbed values at the equilibrium states found in Example 4.3.2. Of these states,
we choose to linearize about the elbow-down configuration. Thus, we have now, for
k = 1,2,

θk ← γ + δθk, θ̇k ← δ θ̇k, θ̈k ← δ θ̈k
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Moreover, we set ü = a + δ ü, where a is a prescribed constant value of ü at
equilibrium, and hence, the linearized equations take the form

8
3

δ θ̈1 + cos(δθ2− δθ1)δ θ̈2− sin(δθ2− δθ1)(δ θ̇2)
2 +

3g
l

sin(γ + δθ1)

+
2(c1 + c2)

ml2 δ θ̇1− 2c2

ml2 δ θ̇2 =−3
a+ δ ü

l
cos(γ + δθ1)

cos(δθ2− δθ1)δ θ̈1 +
2
3

δ θ̈2 + sin(δθ2− δθ1)(δ θ̇1)
2 +

g
l

sin(γ + δθ2)

+
2c2

ml2 (δ θ̇2− δ θ̇1) =−a+ δ ü
l

cos(γ + δθ2)

We note that

cos(δθ2− δθ1)≈ 1, sin(δθ2− δθ1)≈ δθ2− δθ1

Moreover, at the elbow-down configuration

cosγ =
g

√
a2 + g2

, sinγ =
−a

√
a2 + g2

Hence,

sin(γ + δθk) = sinγ cosδθk + cosγ sinδθk ≈ sinγ +(cosγ)δθk

=
−a+ gδθk√

a2 + g2

cos(γ + δθk) = cosγ cosδθk− sinγ sinδθk ≈ cosγ− (sinγδ )θk =
g+ aδθk√

a2 + g2

After retaining only constant and linear terms, and taking into account the equilib-
rium equations, the linearized model becomes

8
3

δ θ̈1 + δ θ̈2 +
2(c1 + c2)

ml2 δ θ̇1− 2c2

ml2 δ θ̇2 +
3
l

√
a2 + g2δθ1 = − 3g

l
√

a2 + g2
δ ü

δ θ̈1 +
2
3

δ θ̈2 +
2c2

ml2 δ θ̇2− 2c2

ml2 δ θ̇1 +

√
a2 + g2

l
δθ2 = − g

l
√

a2 + g2
δ ü

Hence, the linearized equations can be cast in the form of Eq. 4.22, with the two-
dimensional vectors of generalized coordinates, generalized speeds, generalized
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accelerations and generalized forces q, q̇, q̈ and φ, respectively, defined below,
along with the mass, damping and stiffness matrices:

q ≡
[

δθ1

δθ2

]
, q≡

[
δ θ̇1,

δ θ̇2

]
, q≡

[
δ̈ θ1

δ θ̈2

]
, φ≡

[−3B
−B

]
δ ü
l

M ≡
[

8/3 1
1 2/3

]
, C≡ 2

ml2

[
c1 + c2 −c2

−c2 c2

]
, K≡

[
3A 0
0 A

]

where

A =

√
a2 + g2

l
, B =

g

l
√

a2 + g2

Now it is apparent that the stiffness matrix is composed of both g and the
prescribed constant acceleration a.

Finally, a quick calculation of the trace and the determinant of each of M, C and
K shows that these three matrices are positive-definite. Therefore, in the absence of
perturbations, the equilibrium configuration of Fig. 4.4a is asymptotically stable.

4.5 Lagrange Equations of Linear Mechanical Systems

When we know beforehand that a mechanical system is linear, its Lagrange
equations can be derived with much less effort than in the general case. In particular,
we will be concerned only with constant-coefficient linear mechanical systems of
the form of Eq. 4.22, in which all matrix coefficients are constant. Henceforth, these
systems will be referred to simply as linear, for the sake of brevity, the constancy
of their matrix coefficients being implicit. An important property of systems of this
class is that their kinetic energy is both independent of the generalized coordinates
and quadratic in the generalized speeds, while their potential energy is quadratic in
the generalized coordinates and, as usual, independent of the generalized speeds.

A few preliminary definitions are now introduced. A quadratic form Q of n
variables x1, x2, . . ., xn takes the general form

Q =
n

∑
i=1

aiix
2
i + 2

n

∑
i=1

n

∑
j=i+1

ai jxix j +
n

∑
i=1

bixi +Q0 (4.23a)

which can be rewritten alternatively in terms of the two n-dimensional vectors x and
b, and a symmetric matrix A, all of which are defined as

x≡

⎡

⎢
⎢
⎢
⎣

x1

x2
...

xn

⎤

⎥
⎥
⎥
⎦
, b≡

⎡

⎢
⎢
⎢
⎣

b1

b2
...

bn

⎤

⎥
⎥
⎥
⎦
, A≡

⎡

⎢
⎢
⎢
⎣

a11 a12 · · · a1n

a12 a22 · · · a2n
...

...
. . .

...
a1n a2n · · · ann

⎤

⎥
⎥
⎥
⎦

(4.23b)
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and hence,

Q = xT Ax+bT x+Q0 (4.23c)

What is interesting in this context is that the potential and kinetic energies of linear
mechanical systems are quadratic in the generalized coordinates and the generalized
speeds, respectively. Moreover, the power supplied to the system by external actions
is linear in the generalized speeds, and the power dissipation is independent of the
generalized coordinates and quadratic in the generalized speeds.

Now we turn to the energy functions of the system at hand. Although these can
take a more general form, we will assume rather simple forms, namely,

T =
1
2

q̇T Mq̇+pT q̇+T0 (4.24a)

V =
1
2

qT Kq (4.24b)

Π = fT
f q̇ (4.24c)

Δ =
1
2

q̇T Cq̇ (4.24d)

where the n× n constant matrices M, C and K are the mass, damping and stiffness
matrices of the system, as defined in Eq. 4.11 of Sect. 4.2. As well, f f is the vector
of generalized forces, as provided by actuators, while p is, as in the scalar case, a
vector with units of generalized momentum. This vector thus contains inputs from
controlled motions, and can be a function of q, a function of time, or even a constant.
For the systems under study, only the case in which p is independent of q and q̇ will
be considered. Finally, T0 is, in general, a function of q and time, but not of q̇. Again,
for the systems of interest here, only the case in which T0 is independent of q and q̇
will be considered. From Eq. 4.24a, b, d, it is apparent that the mass, damping and
stiffness matrices can be calculated as the Hessian matrices of the kinetic energy, the
dissipation function and the potential energy, respectively, the first two with respect
to the generalized speeds, the third one with respect to the generalized coordinates.
Here, we recall that a Hessian matrix is a matrix of second derivatives. In our case,
since the order of differentiation is immaterial, the above Hessian matrices are all
symmetric. We thus have

M =
∂ 2T
∂ q̇2 ≡

⎡

⎢
⎢⎢
⎣

∂ 2T/∂ q̇2
1 ∂ 2T/∂ q̇1∂ q̇2 . . . ∂ 2T/∂ q̇1∂ q̇n

∂ 2T/∂ q̇2∂ q̇1 ∂ 2T/∂ q̇2
2 . . . ∂ 2T/∂ q̇2∂ q̇n

...
...

. . .
...

∂ 2T/∂ q̇n∂ q̇1 ∂ 2T/∂ q̇n∂ q̇2 . . . ∂ 2T/∂ q̇2
n

⎤

⎥
⎥⎥
⎦

(4.25a)
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C =
∂ 2Δ
∂ q̇2 ≡

⎡

⎢
⎢
⎢
⎣

∂ 2Δ/∂ q̇2
1 ∂ 2Δ/∂ q̇1∂ q̇2 . . . ∂ 2Δ/∂ q̇1∂ q̇n

∂ 2Δ/∂ q̇2∂ q̇1 ∂ 2Δ/∂ q̇2
2 . . . ∂ 2Δ/∂ q̇2∂ q̇n

...
...

. . .
...

∂ 2Δ/∂ q̇n∂ q̇1 ∂ 2Δ/∂ q̇n∂ q̇2 . . . ∂ 2Δ/∂ q̇2
n

⎤

⎥
⎥
⎥
⎦

(4.25b)

K =
∂ 2V
∂q2 ≡

⎡

⎢
⎢
⎢
⎣

∂ 2V/∂q2
1 ∂ 2V/∂q1∂q2 . . . ∂ 2V/∂q1∂qn

∂ 2V/∂q2∂q1 ∂ 2V/∂q2
2 . . . ∂ 2V/∂q2∂qn

...
...

. . .
...

∂ 2V/∂qn∂q1 ∂ 2V/∂ q̇n∂ q̇2 . . . ∂ 2V/∂q2
n

⎤

⎥
⎥
⎥
⎦

(4.25c)

While we have assumed at the outset that matrix M is positive-definite, C and K
can be either positive-semidefinite or positive-definite.

Henceforth, a mechanical system will be characterized as linear if its energy
functions take the forms given in Eq. 4.24a–d, with p and T0 independent of q and
q̇. Moreover, deriving expressions for the above energy functions is straightforward,
for this can be done separately, for each element at a time. The total amounts are
then calculated by simple addition.

Given the simple forms of the energy functions of linear mechanical systems,
their associated Lagrange equations take an equally simple form, namely,

Mq̈+Cq̇+Kq =−ṗ+ f f (4.26)

where the independence of p and T0 from q and q̇ has been taken into account.
In the above equation we can recognize the generalized force supplied by motion-
controlled sources, fm, as

fm =−ṗ (4.27)

Example 4.5.1 (A Simple Model for the Whirling of Shafts). When a massive rotor,
like in power-generation equipment, is mounted on a shaft, a slight offset of its
c.o.m. can induce inertia forces that are large enough to produce a motion of the
c.o.m. around the axis of the shaft—in the undeformed configuration of the shaft.
This occurs because of the flexibility of the shaft and the bearings on which it is
mounted. The same phenomenon can occur in moderately massive rotors when
these spin at high-enough rates, as in grinding wheels. This phenomenon, known
as whirling of shafts, is illustrated in Fig. 4.6a. A simple model of this situation
considers that the rotor is a homogeneous rigid cylinder whose center of mass is
offset with respect to the axis of the shaft. Moreover, the inertia forces and the
flexibility of the mounting (shaft and bearings) produce vibration of the c.o.m. in the
X-Y plane. The rotor, furthermore, is assumed to rotate only about an axis parallel
to the neutral axis of the shaft, and hence, no gyroscopic effects are considered.
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Fig. 4.6 (a) Rotor-shaft system under whirling (b–c) plant and (c–d) side views of rotor-shaft
system

In reality, especially when high natural frequencies of the mounting are excited,
the rotor shows precession and nutation, but we will not be concerned with these
complex motions in this simple model. Thus, we can model the whole system as
illustrated in Fig. 4.6b–d. In these figures, we assume that all the flexibility of shaft
and bearings is lumped in the springs on which the shaft is mounted. Moreover, the
shaft is now modeled as a rigid body that is rigidly coupled to the rotor. Derive the
mathematical model of this system.
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Solution: The system under study apparently has two dof, and so, two generalized
coordinates suffice to describe its motion. Let the generalized coordinates be the
Cartesian coordinates x and y of point C of the shaft axis contained in the mid plane
of the rotor. These coordinates, additionally, are measured from the equilibrium
configuration of the system; as a consequence, then, gravity forces will not appear
in the model to be derived below. We can thus define the vectors of generalized
coordinates and generalized speeds as

q≡
[

x
y

]
, q̇≡

[
ẋ
ẏ

]

Furthermore, the rotor is assumed to turn at a constant angular velocity ω , and
hence, the Cartesian coordinates u and v of the center of mass G of the rotor-shaft
ensemble become

u = x+ ecosωt, v = y+ esinωt

where ω , being a constant, is assumed to stem from a controlled motion, and hence,
is not a generalized speed. Now, let the mass of the rotor-shaft ensemble be denoted
by m and its moment of inertia about G be denoted by J, the kinetic energy of the
system thus taking the form

T =
1
2

[
m(u̇2 + v̇2)+ Jω2]

with u̇ and v̇ given by

u̇ = ẋ− eω sinωt, v̇ = ẏ+ eω cosωt

and so, the kinetic energy, expressed as a quadratic form of the generalized speeds,
becomes

T =
1
2

m
[
ẋ2 + ẏ2 + 2ωe(ẏcosωt− ẋsinωt)+ω2e2]+

1
2

Jω2

from which it is a simple matter to identify all three terms of Eq. 4.24a, and hence,
M and p. Indeed,

1
2

q̇T Mq̇=
1
2

m(ẋ2+ ẏ2), pT q̇=mωe(−ẋsinωt+ ẏcosωt), T0 =
1
2
(J+me2)ω2

Therefore,

M≡ m

[
1 0
0 1

]
, p≡ mωe

[−sinωt
cosωt

]
≡ mωE(g− c)
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with E defined already in Sect. 1.6 and c and g defined as the position vectors
of points C and G of Fig. 4.6d, respectively. Therefore, p is the momentum of a
particle of mass m placed at point G and moving with a velocity ωe in a direction
perpendicular to line CG.

On the other hand, the potential energy is simply

V =
1
2

k1x2 +
1
2

k2y2

while the power supplied to the system by controlled forces is zero and the
dissipation function takes the form

Δ =
1
2

c1ẋ2 +
1
2

c2ẏ2

Now it is a simple matter to determine the damping and stiffness matrices. This is
done by application of the Hessian formulas, thereby obtaining

C =

[
c1 0
0 c2

]
, K =

[
k1 0
0 k2

]

Moreover, the generalized force arises solely from a motion-controlled source, i.e.,
f = fm, the latter being given by Eq. 4.27. Note that, from the above expressions,
p is a function solely of time, independent of the generalized coordinates and the
generalized sapped, while T0 is a constant. Hence,

f = fm =−ṗ = mω2e

[
cosωt
sinωt

]

That is, the generalized force of the system stems from a controlled motion, that of
the rotor about its axis. It has become apparent that the two equations are decoupled,
for all three matrices obtained above are diagonal. Hence, the system leads, in fact,
to two independent single-dof systems. Upon dividing each of these by m, the said
systems become

ẍ+ 2ζ1ω1ẋ+ω2
1 x = ω2ecosωt

ÿ+ 2ζ2ω2ẏ+ω2
2 y = ω2esinωt

where ωk and ζk, for k = 1,2, are the natural frequencies and the damping ratios of
the x and y equations, as defined in Eq. 1.56a, namely,

ωk ≡
√

kk

m
, ζk ≡ ck

2mωk
, k = 1,2
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Fig. 4.7 A five-dof model of an aircraft wing

Example 4.5.2 (A Model for the Torsional Vibrations of Aircraft Wings). A simple
model for the torsional-vibration analysis of aircraft wings is shown in Fig. 4.7,
which consists of a flexible shaft of piecewise constant stiffness and five rotors. Note
that the layout is symmetric about the mid-plane of the aircraft, and the shaft consists
of four sections with different stiffnesses. The central rotor accounts for the aircraft
body, while the other two rotors for the engines on each side. The generalized
coordinates of the system are the angular displacements θk, for k = 1, . . . ,5. Derive
the mass and the stiffness matrices of this model.

Solution: We calculate the required matrices as the Hessians of the kinetic energy
and the potential energy, and hence, we need expressions for these items. These
expressions, with all angles measured from an inertial frame, are readily derived
below:

T =
1
2

[
J2(θ̇ 2

1 + θ̇ 2
5 )+ J1(θ̇ 2

2 + θ̇ 2
4 )+ J0θ̇ 2

3

]

V =
1
2

[
k2[(θ2−θ1)

2 +(θ5−θ4)
2]+ k1[(θ3−θ2)

2 +(θ4−θ3)
2]
]

Hence, the mass matrix is readily shown to be diagonal, namely,

M = diag(J2, J1, J0, J1, J2)≡

⎡

⎢⎢
⎢
⎢
⎢
⎣

J2 0 0 0 0
0 J1 0 0 0
0 0 J0 0 0
0 0 0 J1 0
0 0 0 0 J2

⎤

⎥⎥
⎥
⎥
⎥
⎦
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while the stiffness matrix takes the form

K =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

k2 −k2 0 0 0
−k2 k2 + k1 −k1 0 0

0 −k1 2k1 −k1 0
0 0 −k1 k2 + k1 −k2

0 0 0 −k2 k2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

It is apparent that matrix M is positive-definite, its eigenvalues being its diagonal
entries, which are all positive. However, matrix K not being diagonal, its sign-
definition via its eigenvalues is less apparent. Nevertheless, K is tridiagonal and
exhibits the symmetries corresponding to the symmetry of the iconic model. This
feature makes it possible to obtain its eigenvalues in closed form by means of
computer algebra, namely,

λ1 = 0, λ2 =
3
2

k1 + k2 +
1
2

r1, λ3 =
3
2

k1 + k2− 1
2

r1, λ4 =
1
2

k1 + k2 +
1
2

r2,

λ5 =
1
2

k1 + k2− 1
2

r2

with r1 and r2 given by

r1 =

√
9k1

2− 8k1k2 + 4k2
2 ≡

√
5k2

1 + 4(k1− k2)2, r2 =
√

k2
1 + 4k2

2

and λi, for i = 1, . . . ,5 can be proven to be all positive. As K contains one
zero eigenvalue and four positive eigenvalues, the matrix is positive-definite. The
physical significance of this result is that, when all rotors turn by the same amount,
the shaft stores no potential energy, which is apparent because, in this case, the wing
and the aircraft body rotate as a rigid body. The existence of a semidefinite stiffness
matrix thus leads to a motion that is called a rigid mode. These systems occur in
other instances, less obvious than this example. More on these systems is discussed
in Sect. 4.6.

Example 4.5.3 (A Model for the Vertical Vibration of Mass-transit Cars). Derive
the mathematical model of the car shown in Fig. 1.1, which is mounted on two
bogies, each carrying two wheel axles, the cars running on pneumatic tires. This
design is seen in operation in subway systems of cities like Paris, Montreal, Mexico
City and Sao Paolo. Because of the type of tires, each of the wheels of an axle must
be allowed to rotate independently; otherwise, the tires would wear too often. Now,
there are two types of cars, namely, tractors, with powered wheels, and trailers,
with idle wheels. The axles of bogies of tractors are thus provided with a differential
gear train to allow for power transmission to each of the two sections of the axle at
different speeds. Furthermore, each axle is driven by a DC motor, that is integrated
to the differential gear train, thereby forming a motor-differential bridge.
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Fig. 4.8 Mechanical model of the suspension system

Solution: The mechanical model of the array described above is shown in Fig. 4.8,
which is essentially that of Fig. 1.1, if with more detail. This model consists of an
H-shaped structural element, which is for this reason termed the H in the subway
jargon. Moreover, the suspension itself consists of two parts, the primary and
the secondary suspension. The primary suspension is composed, in turn, of eight
identical springs of stiffness k1 and four more of stiffness k2, where k1 accounts for
the coupling of the H to the axle and k2 for the support of the motor-differential
bridge. The car body is coupled to the H via a secondary suspension, composed of
two identical springs of stiffness k3. Furthermore, the spring stiffness of the rubber
wheels is k4. The model includes dashpots of damping coefficient c1 and c2, to
account for either the natural damping of the primary and secondary suspensions or
for that of shock absorbers. Referring to Fig. 4.8, we have the definitions below:

• m1: mass of the chassis
• m2/2: mass of each motor-differential bridge
• m3: half the mass of the car body

The iconic model corresponding to the mechanical model of Fig. 4.8 appears
in Fig. 4.9. In order to derive the mathematical model of the system appearing in
Fig. 4.9, we define now the three-dimensional vector of generalized coordinates x as

x =
[

x1, x2, x3
]T

where all three components are measured from their equilibrium configurations,
thereby doing away with gravity terms, as per the discussion of Example 1.10.4.

The mathematical model corresponding to Fig. 4.9 takes the form

Mẍ+Cẋ+Kx = 0
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Fig. 4.9 Iconic model of
suspension system

In the mathematical model displayed above, M, C and K are the 3× 3 mass,
damping and stiffness matrices, respectively, where the mass and the stiffness of the
elements involved are supposed to be constant. Moreover, the matrices appearing in
the above model can be obtained as the Hessian matrices of: the kinetic energy with
respect to the vector ẋ of generalized velocities; the dissipation function with respect
to the same; and of the potential energy with respect to the vector x of generalized
coordinates, respectively, i.e.,

M =
∂ 2T
∂ ẋ2 , C =

∂ 2Δ
∂ ẋ2 , K =

∂ 2V
∂x2

where T and V are the kinetic and the potential energies, respectively, while Δ is the
dissipation function of the system. These are readily derived from Fig. 4.9, namely,

T =
1
2

m1ẋ2
2 +

1
2

m2ẋ2
1 +

1
2

m3ẋ2
3

Δ =
1
2
(4c1)(ẋ2− ẋ1)

2 +
1
2
(2c2)(ẋ3− ẋ2)

2

and

V =
1
2
(8k1 + 4k2 + 4k4)x

2
1 +

1
2
(8k1 + 4k2+ 2k3)x

2
2

+
1
2

2k3x2
3− (8k1 + 4k2)x1x2− 2k3x2x3
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where we have disregarded gravity, which is plausible if we measure each xi from
the equilibrium position. Hence,

M =

⎡

⎣
m2 0 0
0 m1 0
0 0 m3

⎤

⎦ , C =

⎡

⎣
4c1 −4c1 0
−4c1 4c1 + 2c2 −2c2

0 −2c2 2c2

⎤

⎦ , K =

⎡

⎣
k11 k12 0
k12 k22 k23

0 k23 k33

⎤

⎦

where

k11 = 8k1 + 4k2+ 4k4, k12 =−8k1− 4k2, k22 = 8k1 + 4k2 + 2k3,

k23 = −k33 =−2k3 (4.28)

The manufacturer provides the numerical values given below:

k1 = 4.9× 106, k2 = 3.43× 106, k3 = 8.37× 105, k4 = 1.783× 106

m1 = 1.971× 103, m2 = 3.256× 103, m3 = 1.578× 104

where stiffness units are N/m and mass units are kg. In the latter, m3 is half the
mass of the car body under full load, i.e., when the cars are fully occupied by
passengers. Dashpots are included in the model for completeness, although the
suspension bears no shock absorbers. A study was conducted for the Mexico City
Sistema de Transporte Colectivo with the purpose of deciding on the addition of
shock absorbers to attenuate the vertical vibration that exhibited the cars of the time
in the longest distances between stations [1]. According to this study, feasible values
found are

c1 = 19.61 kN s/m, c2 = 123.6 kN s/m

Moreover, for an angular velocity ω rad/s of the wheels, under no slipping, the
velocity v of the train is given by

v = 0.5 dω

where d = 0.960m is the diameter of the wheels, thereby completing the modeling
of the undamped system.

Note that M and K are positive-definite, but C is positive-semidefinite. Indeed,
under motions with x1 = x2 = x3, the system dissipates no energy, which explains
the semidefiniteness of C.

4.6 Systems with Rigid Modes

Generally speaking, systems with rigid modes are those exhibiting non-trivial
motions where no changes in the potential energy are experienced by the system.
For example, in conservative systems, i.e., undamped systems, rigid modes occur
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Fig. 4.10 A two-dof semidefinite system

whenever their stiffness matrix is positive-semidefinite, just as in Example 4.5.2
above. For this reason, these systems are also termed semidefinite. Note that
semidefinite matrices always have at least one vanishing eigenvalue. Associated
with this eigenvalue, semidefinite matrices have an eigenvector that is mapped
into the zero vector when multiplied by the semidefinite matrix. Furthermore, a
damped system can also be semidefinite if both its damping and stiffness matrices
are semidefinite and they both share the same eigenvectors associated with their
zero eigenvalues.

A damped semidefinite system is shown in Fig. 4.10, consisting of two masses
coupled by a spring-dashpot parallel array, that can move otherwise freely on a flat
surface.

As the reader can readily verify, the damping and stiffness matrices of this
system are

C = cA, K = kA, A =

[
1 −1
−1 1

]

Now, these two matrices are semidefinite, as both are proportional to matrix A,
whose eigenvalues are λ1 = 0 and λ2 = 2, its corresponding eigenvectors being

e1 =

√
2

2

[
1
1

]
, e2 =

√
2

2

[−1
1

]

the eigenvalues of C being cλ j, those of K being kλ j, for j = 1,2. The mechanical
significance of the eigenvalues of these matrices is better understood if we write the
governing equations of the system in the absence of external forces:

m1ẍ1 + c(ẋ1− ẋ2)+ k(x1− x2) = 0

m2ẍ2− c(ẋ1− ẋ2)− k(x1− x2) = 0
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Now, upon summation and subtraction of the two sides of the above equations, we
obtain a new set of equations, namely,

m1ẍ1 +m2ẍ2 = 0

m1ẍ1−m2ẍ2 + 2c(ẋ1− ẋ2)+ 2k(x1− x2) = 0

Furthermore, upon integration of the first of the above equations twice with respect
to time, one obtains

m1ẋ1 +m2ẋ2 =C1, m1x1 +m2x2 = c1t +C2

where C1 and C2 are integration constants whose values depend on the given initial
conditions. Now, from the above equations we can solve for, say x2, in terms of x1

and for ẋ2 in terms of ẋ1, namely,

ẋ2 =
C1−m1ẋ1

m2
, x2 =

C1t +C2−m1x1

m2

Furthermore, we substitute the two above expressions in the second of the new set
of governing equations derived above, which, after simplifications, leads to

ẍ1 + c
m1 +m2

m1m2
ẋ1 + k

m1 +m2

m1m2
x1 =

cC1 + kC2

m2
+

k
m2

C1t

and can be rewritten in normal form, namely, as

ẍ1 + 2ζeqωeqẋ1 +ω2
eqx1 = A+Bt

with the equivalent natural frequency and the equivalent damping ratio defined as

ωeq ≡
√

k
meq

, ζeq ≡ c
2meqωeq

and the equivalent mass meq and constants A and B defined, in turn, as

meq ≡ m1m2

m1 +m2
, A≡ cC1 + kC2

m2
, B≡ k

m2
C1

We have thus decoupled the motion of the center of mass from the motion about
the center of mass. The former leads to a stationary c.o.m., the latter to the motion
of mass meq, coupled to an inertial frame via a spring-dashpot parallel array with
damping coefficient c and spring stiffness k.

The zero eigenvalue of the mass and damping matrices, thus, corresponds to
the rigid mode, i.e., a harmonic motion with zero frequency, while the second
eigenvalue leads to the motion of the equivalent mass-spring-dashpot system.
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Fig. 4.11 A landing gear
modeled as a double
pendulum

While the rigid mode of the foregoing example was straightforward to identify,
other instances exist where the rigid mode is more elusive. We illustrate this idea
with an example below.

Example 4.6.1 (A Landing Gear). Introduced in Example 4.2.1 is a system that can
model a landing gear, as shown in Fig. 4.11. We assume that the wheel is statically
balanced and hence, its center of mass coincides with its centroid O2. Derive the
governing equations of this system in the absence of driving torques, and show that
this system admits a rigid mode. For simplicity, neglect viscous friction.

Solution: To simplify matters, we focus on the linearized model. For quick
reference, we rewrite below the stiffness matrix derived in Example 4.4.1, with
ρ2 = 0, namely,

K = g

[
m1ρ1 +m2a 0

0 0

]

Since K is already in diagonal form, we need not calculate its eigenvalues; these are
its diagonal entries, which include the factor g. Hence, K has one eigenvalue equal
to zero, which indicates that it is positive-semidefinite, the system thus admitting a
rigid mode. Moreover, the mass matrix simplifies to

M =

[
J1 +m2a2 0

0 J2

]
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and hence, the two linearized equations reduce to

(J1 +m2a2)δ θ̈1 + g(m1ρ1 +m2a)δθ1 = 0

J2δ θ̈2 = 0

Therefore, the two generalized coordinates δθ1 and δθ2 are decoupled, i.e., the
motion of the wheel does not affect that of the carrier, and vice versa.

4.7 Exercises

4.1. Shown in Fig. 4.12 is the iconic two-dof model of a terrestrial vehicle, in
which we have neglected the damping of the suspension. The vehicle is travelling
at a constant speed w, when it encounters a bump of height B, represented by the
function b(x) defined as

b(x)≡
{

Bsin(2πx/λ ), for 0≤ x≤ λ/2;
0 otherwise

Derive the mathematical model of the system.

4.2. Shown in Fig. 4.13 is the model of the indexing mechanism of a production
machine, consisting of a crank that turns at constant angular velocity ω0, and

Fig. 4.12 The two-dof iconic model of a terrestrial vehicle encountering a bump
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Fig. 4.13 Indexing mechanism of a production machine

drives a Geneva wheel with an intermittent motion. This motion consists, in turn,
of alternating dwell-and-forward phases of equal duration T/2 each, with T defined
as the time it takes the crank to go through one full rotation, that is,

T =
2π
ω0

and ω0 measured in rad/s. Moreover, the motion transmitted to the wheel is
approximated by

ψ(t) =
π

3T
t +ψp(t)

where ψp(t) is a periodic function of period T , that we need not specify here. Derive
the mathematical model of the system.

4.3. A long drill for deep-boring is modeled as a mechanical system with n identical
rotors of moments of inertia J connected by n−1 identical elastic shafts of torsional
stiffness k and subject to linearly viscous friction of coefficient c, as indicated in
Fig. 4.14. Derive expressions for the mass matrix M, the stiffness matrix K, and
the damping matrix C, when using θ1, θ2, . . . , θn−1, θn as generalized coordinates.
These angles are measured from an inertial frame.

4.4. The frame of mass m1 of Fig. 4.15 rides on frictionless rollers, while the
uniform rod is pivoted to the frame via a pin that provides linearly viscous damping.
Derive the mathematical model of the system under the assumption that l2 is large
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Fig. 4.14 The iconic model of a long drill

m1

l2

k k

f=fm cos wf t

m2, l1

q

No
friction

c

Fig. 4.15 A mechanical system mounted on an air cushion

enough with respect to the distance between the two vertical walls of the frame
so as to allow us to assume that the point of attachment of the springs to the rod
moves on an essentially straight path. Furthermore, under this assumption, find a
relation among the system parameters so that the equilibrium state under which the
frame travels at uniform speed and the bar remains vertical is stable. Linearize the
model about this equilibrium state and obtain expressions for its mass, stiffness, and
damping matrices.4

4.5. A gear transmission is modeled as indicated in Fig. 4.16. In this model, two
identical disks of moment of inertia J are coupled via smaller disks of moment of
inertia αJ, where α < 1. Moreover, the two smaller disks are coupled to each other
via an elastic shaft of torsional stiffness k. Under the assumption that the smaller
disks roll without slipping with respect to the larger ones, we have the relations

θ3 =−rθ1, θ4 =−rθ2

4Taken, with some modifications, from Cannon [2].
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Fig. 4.16 Gear transmission

in which r denotes the transmission ratio. Find the mass and stiffness matrices
of the system, using θ1 and θ2 as independent generalized coordinates, which are
measured from an inertial frame.

4.6. Assume that the slider of the overhead crane of Fig. 1.19 has a mass 2m, and
that it is acted upon by a force f (t). Derive the governing equations of the system,
and find its equilibrium configurations for f (t) = 0. Then, linearize these equations
about a marginally stable state, and determine the mass and stiffness matrices of the
system. Are these matrices positive-definite or semidefinite?

4.7. Obtain the mathematical model of the system of Fig. 4.1, Example 4.2.1, with
a different set of generalized coordinates, q1 = θ1, q2 = θ2−θ1.

4.8. We revisit Example 4.2.2, but now we assume that the trolley is acted upon by
a horizontal force F(t), and hence, u is now a third generalized coordinate. Obtain
the mathematical model of the system thus resulting.

4.9. Derive the linearized model for the system of Fig. 4.1, Example 4.2.1, using
the generalized coordinates defined in Exercise 4.7.

4.10. Derive the linearized model of the three-dof system introduced in Exer-
cise 4.8.
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Chapter 5
Vibration Analysis of Two-dof Systems

And here the two brothers [Tweedledum‘ and Twedledee]
gave each other a hug, and then they held out the two hands that
were free,
to shake hands with her [Alice].

Carroll, L., 1872, Through the Looking Glass and What Alice
Found There.
Taken from the 1982 edition of
The Complete Illustrated Works of Lewis Carroll,
Chancellor Press, London.

5.1 Introduction

The vibration analysis of two-dof systems bears many common features with that
of n-dof systems, yet it also bears simplifying features that make it amenable
to longhand calculations. Moreover, as we show here, two-dof systems can be
analyzed completely with graphical methods. We show that the Mohr circle, a
rather fundamental tool in engineering analysis, finds extensive applications in
understanding the behavior of the kind of systems at hand. Once the analysis of
two-dof systems has been fully understood, that of n-dof systems comes virtually as
a byproduct.

A fundamental difference between single-dof systems and multi-dof systems
is their zero-input response. In fact, while the zero-input response of the former
is always harmonic, that of the latter is seldom so. This difference will be made
apparent in this chapter, which focuses on undamped, linear mechanical systems.
An outline of damped systems is given at the end of the chapter.

J. Angeles, Dynamic Response of Linear Mechanical Systems: Modeling, Analysis
and Simulation, Mechanical Engineering Series, DOI 10.1007/978-1-4419-1027-1 5,
© Springer Science+Business Media, LLC 2011
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5.2 The Natural Frequencies and the Natural Modes
of Two-dof Undamped Systems

A two-dof undamped linear mechanical system is shown in Fig. 5.1. It is composed
of two masses m1 and m2, coupled by three springs of stiffness k1, k2 and k3, which
are assumed to be unloaded when x1 = x2 = 0. The generalized coordinates of this
system are x1 and x2, which are grouped in vector x. The governing equation of this
system can be readily derived using the method outlined in Chap. 3. The governing
equation thus resulting is given below:

Mẍ+Kx = 0, x(0) = x0, ẋ(0) = v0, t ≥ 0 (5.1)

where 0 denotes the two-dimensional zero vector, whereas the mass matrix M and
the stiffness matrix K are given as

M =

[
m1 0
0 m2

]
, K =

[
k1 + k2 −k2

−k2 k2 + k3

]
(5.2)

In the next step of our analysis we will reduce the model given in Eq. 5.1 to
one with a leading coefficient equal to the identity matrix. In our example, the
stiffness matrix is positive-definite, but this need not be always so, for positive-
semidefinite stiffness matrices can be equally handled. However, we will assume
that the mass matrix is positive-definite. Semidefinite mass matrices imply the
presence of particles or rigid bodies of zero mass or zero moment of inertia about a
certain axis, which will be left out in our study. The above-mentioned reduction is
described below: first, since M is positive-definite by assumption, it can always be
factored in the form

M = NT N (5.3)

The above factoring is not unique. Two of the most common ways of factoring a
positive-definite matrix are the Cholesky factoring [1] and the square-root factoring.

Fig. 5.1 A two-dof system
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The former consists of defining N as upper-triangular with non-negative diagonal
entries, in which case the factoring becomes unique. The latter consists of defining
N as positive-definite, which is possible because M is positive-definite as well. In
this case N can be assumed symmetric and, since the eigenvalues of M are positive,
their square roots are real, N thus becoming a square root of M. Note, however, that
this square root is not unique. Indeed, if we imagine, without loss of generality, that
M is in diagonal form—this is plausible because M is symmetric, and hence, has
real eigenvalues and mutually orthogonal eigenvectors— then its square root is also
diagonal and its diagonal entries are the square roots of the corresponding diagonal
entries of M. Moreover, since each diagonal entry of N can be either positive or
negative, we conclude that M, being n× n, admits 2n different square roots. Of
these, only one is positive-definite, and only one is negative-definite, the remaining
roots being sign-indefinite. Thus, matrix N of the factoring of Eq. 5.3 is unique if
we define it as the positive-definite square root of M. Numerically, the Cholesky
factoring is more economical than the square-root factoring. However, the latter is
adopted here because (1) in the case of two-dof systems, it lends itself to a Mohr-
circle treatment, and (2) in simulation, the square-root factoring is done off-line and
hence, the overhead difference in the two types of factoring—which is higher for
the square-root factoring—becomes immaterial. Thus, we define N as the positive-
definite square root of M, and represent it as

N≡
√

M (5.4)

If we now substitute M =N2 into Eq. 5.1 and multiply both sides of that equation
by N−1, which exists by virtue of the positive-definiteness1 of N, we derive

Nẍ+N−1Kx = 0 (5.5)

Now, let us introduce a change of variable:

y = Nx ⇒ ÿ = Nẍ (5.6)

Further, substitution of Eq. 5.6 into Eq. 5.5 yields a new form of the governing
equation, with a leading coefficient equal to 1, the 2× 2 identity matrix, namely,

ÿ+Py = 0, y(0)≡ y0 = Nx0, ẏ(0)≡ w0 = Nv0, t ≥ 0 (5.7)

where

P≡ N−1KN−1 (5.8)

1A positive-definite matrix is necessarily non-singular and hence, invertible.



310 5 Vibration Analysis of Two-dof Systems

Because the coefficient of the second-derivative term of Eq. 5.7 is the identity
matrix, that equation will be henceforth termed the normal form of the governing
equations.

Furthermore, since K is at least positive-semidefinite and N and, consequently,
N−1, are symmetric and positive-definite, matrix P is positive-semidefinite at least.
Hence, a positive-definite (or, at least, semidefinite) matrix, say Ω, exists whose
square is P. We have thus defined

P≡Ω2 ≡ N−1KN−1 (5.9a)

Moreover, the positive-semidefinite (or definite) square root of P, namely,

Ω≡
√

N−1KN−1 (5.9b)

is termed the frequency matrix. Therefore, the normal form of the governing
equations can be rewritten as

ÿ+Ω2y = 0, y(0) = y0, ẏ(0) = s0, t ≥ 0 (5.10)

Note that the scalar equation governing the free-vibration motion of a single-dof
second-order, undamped system, Eq. 2.10 with ζ = 0, has the form

ÿ+ω2
n y = 0, y(0) = y0, ẏ(0) = s0, t ≥ 0 (5.11)

where ωn is the natural frequency of the system, defined as
√

k/m. The striking
similarity between Eqs. 5.10 and 5.11 is to be highlighted.

Moreover, since Ω is at least positive-semidefinite, besides being necessarily
symmetric, its eigenvalues are non-negative and its eigenvectors are mutually
orthogonal.

Let {ωi}2
1 be the two—non-negative—eigenvalues of Ω. These are the natural

frequencies of the system under study. Moreover, let {ei}2
1 denote the unit eigenvec-

tors of Ω, which are necessarily mutually orthogonal, i.e.,

‖e1‖= ‖e2‖= 1, eT
1 e2 = 0 (5.12)

That is, the sets {ωi}2
1 and {ei}2

1 verify the relations

Ωei = ωiei, i = 1,2 (5.13)

Now, by virtue of Fact 1 of Appendix A, ωi and ei also verify

Ω2ei = ω2
i ei, i = 1,2 (5.14)



5.2 The Natural Frequencies and the Natural Modes of Two-dof Undamped Systems 311

and hence, if we express Ω2 in terms of K and N, as given by Eq. 5.9a, we have

N−1KN−1ei = ω2
i ei

or

KN−1ei = ω2
i Nei (5.15)

Vector N−1ei appearing in Eq. 5.15 is called the ith modal vector of the given
system, the reasons behind this name becoming apparent in the ensuing discussion.
Let the ith modal vector be represented by fi, i.e.,

fi ≡ N−1ei, i = 1,2 (5.16a)

and hence,

ei = Nfi, i = 1,2 (5.16b)

Upon substitution of Eq. 5.16a into the left-hand side of Eq. 5.15, and of
Eq. 5.16b into the right-hand side of the same equation, we have

Kfi = ω2
i N2fi (5.17a)

i.e.,

ω2
i Mfi = Kfi (5.17b)

or

(ω2
i M−K)fi = 0, i = 1,2 (5.17c)

Note that the eigenvectors of Ω are, by definition, of unit magnitude. However,
the modal vectors are not, in general, of unit magnitude. These vectors, nevertheless,
obey an interesting relationship, as made apparent below. Let us compute the
product

pi ≡ fT
i Mfi = eT

i (N
−1)T MN−1ei = eT

i N−1MN−1ei, i = 1,2

Now, since M = N2, it is apparent that

N−1MN−1 = 1

with 1 defined already as the 2×2 identity matrix. Therefore, the foregoing product
pi reduces to

Pi = eT
i N−1NNN−1ei = eT

i ei = 1, i = 1,2
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which means that

fT
i Mfi = 1, i = 1,2 (5.18)

i.e., the modal vectors are of unit magnitude if we define their magnitude properly,
namely, as the weighted magnitude

‖fi‖2
M ≡ fT

i Mfi, i = 1,2 (5.19)

Thus, the modal vectors are of unit magnitude with respect to the mass matrix.
Now it is just natural to investigate the magnitude of the modal vectors with

respect to the stiffness matrix. To this end, we define the product

qi ≡ fT
i Kfi ≡ eT

i N−1KN−1ei = eT
i Ω

2ei, i = 1,2

Since ei is an eigenvector of Ω2, of eigenvalue ω2
i , we have

qi = ω2
i

and hence,

fT
i Kfi = ω2

i , i = 1,2 (5.20)

i.e., the weighted magnitude of the ith modal vector, when the weighting matrix is
the stiffness matrix, is the ith natural frequency, namely,2

‖fi‖K = ωi (5.21)

One more property of the modal vectors follows from Eq. 5.17b, if we multiply
its two sides by M−1, namely,

M−1Kfi = ω2
i fi (5.22)

where the product M−1K is known as the dynamic matrix of the system, i.e.,

D≡M−1K (5.23)

Therefore, the eigenvalues of the dynamic matrix are the natural frequencies-
squared, its eigenvectors being the modal vectors. Note, however, that these
eigenvectors are not of unit magnitude.

Thus, the natural frequencies and the modal vectors can be calculated from the
eigenvalue problem associated with the dynamic matrix. Indeed, Eq. 5.22 can be
rewritten as

(ω2
i 1−M−1K)fi = 0 (5.24)

2Properly speaking, the magnitude displayed in Eq. 5.21 requires that K be positive-definite, but
we need not worry about this technicality here.
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However, note that the dynamic matrix not being necessarily symmetric, we
cannot resort to the Mohr circle to graphically solve the foregoing eigenvalue
problem. Therefore, we have to solve this problem in an entirely algebraic fashion,
which we do below first in general, and then, with the aid of an example.

Since the modal vectors are nonzero, the above equation implies that the matrix
difference in parentheses must be singular, i.e.,

det(ω2
i 1−M−1K) = 0 (5.25)

which, upon expansion, leads to a fourth-degree polynomial in ωi, for the deter-
minant of an n× n matrix whose entries are polynomials of the pth degree is a
pnth-degree polynomial. In our case, p = 2 and n = 2, which thus leads to pn = 4.
As a matter of fact, the foregoing determinant is quadratic in ω2

i , and hence, the
above characteristic equation takes the form

ω4
i + 2aω2

i + b = 0, i = 1,2 (5.26)

which is the characteristic polynomial of the dynamic matrix, with coefficients
a and b depending on the two matrices M and K. The two roots of the foregoing
characteristic equation can thus be expressed as

ω2
1,2 =−a±

√
a2− b≥ 0 (5.27)

The foregoing eigenvalues are bound to be nonnegative, for we know that these
are the eigenvalues of the frequency matrix squared, which is at least positive-
semidefinite. Moreover, from basic algebra we know that the coefficient of the linear
term in a quadratic equation—in ω2

i in the case at hand—is the negative of the sum
of the two roots, while the independent term is the product of the two roots. Hence,
in Eq. 5.26, a < 0 and b≥ 0. Once the two natural frequencies have been calculated
with the aid of Eq. 5.27, the natural modes are found from Eq. 5.24. Now, since this
equation represents a homogeneous system of linear equations in fi, it determines
this unknown up to a certain factor. This factor is determined, in turn, by imposing
conditions (5.18).

As we will show in Sect. 5.3, the zero-input response of two-dof systems, in
general, is not harmonic, as opposed to that of single-dof systems. However,
harmonic motions are possible, but only if they are shaped by the modal vectors.
That is, if x(t) has the shape

x(t) = Ai(cosωit)fi (5.28)

Upon substitution of x(t) and ẍ(t), as given above, in the governing equation
(5.1), we have

Mẍ+Kx =−Ai(cosωit)(ω2
i M−K)fi
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By virtue of Eq. 5.17c, the right-hand side of the foregoing equation vanishes,
and hence, x(t), as given by Eq. 5.28, verifies the governing equation. Since we have
two modal vectors for a two-dof system, harmonic motions of two distinct shapes
are possible. Moreover, each of these two kinds of motions oscillates at one of the
natural frequencies of the system. Each of the two shapes is called a mode; hence the
name given to vectors fi. Furthermore, any of the three Eqs. 5.17a–c above is termed
the modal equation of the system at hand. Now it is a simple matter to realize that
the modal vectors { fi }2

1 are orthogonal with respect to the mass matrix. Indeed, if
we express the orthogonality of the eigenvectors ei in terms of Eq. 5.16b, we obtain

fT
1 N2f2 = 0

and, by virtue of definition (5.4), the foregoing equation leads to

fT
1 Mf2 = 0 (5.29)

thereby showing the normality of the modal vectors with respect to the mass matrix.
Furthermore, if both sides of Eq. 5.17b, for i = 2, are multiplied from the left by fT

1 ,
then, by virtue of Eq. 5.29, one can readily verify that the two foregoing vectors are
orthogonal with respect to the stiffness matrix as well, i.e.,

fT
1 Kf2 = 0 (5.30)

In the system of Fig. 5.1, let us assume that

m1 = m, m2 = 4m, k1 = k, k2 = 8k, k3 = 4k (5.31)

N thus being a diagonal matrix with diagonal entries
√

m and 2
√

m, i.e.,

N =
√

m

[
1 0
0 2

]
(5.32)

and hence,

Ω2 =
k
m

[
1 0
0 1/2

][
9 −8
−8 12

][
1 0
0 1/2

]
= ω2

[
9 −4
−4 3

]
(5.33)

with ω2 defined as ω2 ≡ k/m. The Mohr circle of Ω2 is shown in Fig. 5.2a.
From Fig. 5.2a, the eigenvalues of Ω2 are determined by the intersection of its

Mohr circle with the horizontal axis, namely,

ω2
1 = ω2, ω2

2 = 11ω2
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a b

Fig. 5.2 Mohr circle of (a) Ω2 of the system of Fig. 5.1, (b) Ω of the same system

while the corresponding eigenvectors, e1 and e2, are calculated using the relations
derived in Appendix A, thus obtaining

e1 =

√
5

5

[
1
2

]
, e2 =

√
5

5

[−2
1

]

Moreover, the natural frequencies of the system are readily found to be

ω1 = ω , ω2 =
√

11ω

Furthermore, in Fig. 5.2b we introduce two new concepts, the mean frequency
and the frequency radius, denoted by ω and ρ , namely,

ω =
1+
√

11
2

ω , ρ =

√
11− 1

2
ω

the frequency matrix then taking the form

Ω=

[
ω + u −v
−v ω− u

]

with u and v defined below in terms of the mean frequency and the frequency radius.
From the similarity of the corresponding triangles in Fig. 5.2a,b, we obtain

u =
3
5

ρ =
3(
√

11− 1)
10

ω , v =
4
5

ρ =
4(
√

11− 1)
10

ω
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a b

Fig. 5.3 The two natural modes of the system of Fig. 5.1

and hence,

ω + u =
1+ 4

√
11

5
ω , ω− u =

4+
√

11
5

ω

Therefore, the positive-definite square root of Ω2 is

Ω=
ω
5

[
1+ 4

√
11 2(1−√11)

2(1−√11) 4+
√

11

]

Moreover, the modal vectors are

f1 = N−1e1 =

√
5m

5m

[
1
1

]
, f2 = N−1e2 =

√
5m

5m

[−2
1/2

]
,

The natural modes of the system, drawn from the modal vectors, are then
represented as shown in Fig. 5.3, which are apparently obeyed if the vectors of initial
conditions, x0 and v0, are both proportional to any one of the two modal vectors of
the system at hand. An animation of the Mohr circles of the harmonic functions of
the frequency matrix of this system is included in 5-MohrCircleAnmtn.mw.

Alternatively, we can find the natural frequencies and the natural modes of the
system under study using an algebraic approach, i.e., by computing the eigenvalues
and eigenvectors of the dynamic matrix, which was defined in Eq. 5.23. To do this,
let us first calculate the dynamic matrix of the system under study:

D≡M−1K =
k
m

[
9 −8
−2 3

]

which, apparently, is not symmetric, its characteristic equation being

det(ω2
i 1−D)≡ det

[
ω2

i − 9ω2 8ω2

2ω2 ω2
i − 3ω2

]
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where

ω2 ≡ k
m

Upon expansion of the above determinant, the characteristic polynomial takes
the form

P(ω2) = ω4
i − 12ω2ω2

i + 11ω4

whose roots can be readily found as

ω2
1,2 = ω2, 11ω2

The modal vectors are now calculated.
For ω1 = ω :

ω2
1 1−D = ω2

[−8 8
2 −2

]
, f1 ≡

[
x1

y1

]

and hence, the associated system of homogeneous equations, derived from Eq. 5.24,
takes the form

2ω2
[−4 4

1 −1

][
x1

y1

]
=

[
0
0

]

which leads to

− 4x1+ 4y1 = 0

x1− y1 = 0

Therefore, y1 = x1, the above system thus reducing to one single equation in one
unknown, say x1. In order to determine x1, we apply condition (5.18), namely,

[
x1 x1

]
[

m 0
0 4m

][
x1

x1

]
= 1

or

5mx2
1 = 1

whence,

x1 =±
√

5m
5m
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If we take the positive sign in the above expression, then,

f1 =

√
5m

5m

[
1
1

]

For ω2 =
√

11ω :

ω2
2 1−D = ω2

[
2 8
2 8

]
, f2 ≡

[
x2

y2

]

That is,

2ω2
[

1 4
1 4

][
x2

y2

]
=

[
0
0

]

thereby leading to

x2 + 4y2 = 0

x2 + 4y2 = 0

whence x2 = −4y2, the above system thus reducing to one single equation in one
unknown, say y2, which is found by application of condition (5.24), namely,

[−4y2 y2
]
[

m 0
0 4m

][−4y2

y2

]
= 1

or

20my2
2 = 1

Therefore,

y2 =±
√

20m
20m

≡=±1
2

√
5m

5m

and hence, upon taking the positive sign in the above expression, we obtain

f2 =

√
5m

5m

[−2
1/2

]

thereby completing the intended calculations, which yield the same results as when
one proceeds with the Mohr circle applied to the frequency matrix.

Example 5.2.1 (Modal Analysis of a Two-dof Gantry Robot). Determine the natural
frequencies and the natural modes of the two-dof gantry robot introduced in
Example 4.2.2, a task that is known as modal analysis.
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a b

Fig. 5.4 Mohr circles of: (a) the mass matrix M of the two-dof gantry robot; and (b) the positive-
definite square root of M

Solution: For quick reference, we recall below the mass and stiffness matrices
of the linearized model derived in Example 4.4.2 about the stable elbow-down
configuration. Moreover, we consider in that model that the disturbance ü vanishes
and neglect damping, i.e., we assume c1 = c2 = 0. The said matrices are

M =
1
3

[
8 3
3 2

]
, K = A

[
3 0
0 1

]
, A≡

√
a2 + g2

l

Furthermore, it is apparent that the modal analysis is not affected if both the mass
and the stiffness matrices are multiplied by the same factor. So, let us redefine these
matrices as

M =

[
8 3
3 2

]
, K = ω2

[
3 0
0 1

]
, ω2 ≡ 3

√
a2 + g2

l

The positive-definite square root of M, matrix N, is now calculated from the
Mohr circle of M, as shown in Fig. 5.4.

From Fig. 5.4a, the eigenvalues μ1 and μ2 of M are readily calculated as

μ1 = 5− 3
√

2 = 0.7574, μ2 = 5+ 3
√

2 = 9.243

and hence, the eigenvalues ν1 and ν2 of N are

ν1 =
√

μ1 = 0.8703, ν2 =
√

μ2 = 3.040

Therefore, the parameters of the Mohr circle of N, as shown in Fig. 5.4b, are

ν ≡ 1
2
(ν1 +ν2) = 1.955, ρ ≡ 1

2
(ν2−ν1) = 1.085
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Fig. 5.5 Mohr circle of the
square of the frequency
matrix of the gantry robot

while

u = v =

√
2

2
ρ = 0.7672

Therefore,

N =

[
ν + u v

v ν− u

]
=

[
2.722 0.7672
0.7672 1.188

]

whence,

N−1 =

[
0.4491 −0.2900
−0.2900 1.029

]

the frequency matrix-squared then becoming

Ω2 = ω2
[

0.6891 −0.6891
−0.6891 1.311

]

The eigenvalues and eigenvectors of Ω2, and hence, those of Ω, are now
determined from the Mohr circle of Ω2, displayed in Fig. 5.5. From this figure, one
can readily find

r ≡ ω2
√

0.31102+ 0.68912 = 0.7560ω2

and hence,

ω2
1 = ω2− r = 0.2440ω2, ω2

2 = ω2 + r = 1.756ω2

the natural frequencies thus being

ω1 = 0.4939ω , ω2 = 1.325ω
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a b

0.3146

0.2199

1.022
–0.4872

aa
gg

δθ1

δθ2

δθ1

δθ2

Fig. 5.6 Natural modes of the two-dof gantry robot: (a) first mode, at ω1 = 0.4939ω; (b) second
mode, at ω2 = 1.325ω

while the corresponding eigenvectors are

e1 =

[
0.8401
0.5425

]
, e2 =

[−0.5425
0.8401

]

The modal vectors are now determined from simple matrix-times-vector multi-
plications, as indicated in Eq. 5.16a, which thus yields

f1 =

[
0.2199
0.3146

]
, f2 =

[−0.4872
1.022

]

The normal modes are represented in Fig. 5.6.
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5.2.1 Algebraic Properties of the Normal Modes

Let us define the eigenmatrix E of Ω as

E≡ [e1 e2
]

(5.34)

By virtue of the orthogonality (eT
1 e2 = 0) and the normality (‖e1‖= ‖e2‖= 1) of

the two eigenvectors of the frequency matrix, the eigenmatrix is orthogonal, i.e.,

E−1 = ET =

[
eT

1

eT
2

]

We now can assemble the two equations of Eq. 5.13 in the form

ΩE =
[
ω1e1 ω2e2

]
(5.35)

Moreover, the right-hand side of Eq. 5.35 can be expressed as the product of E
by a diagonal matrix Ωd with diagonal entries equal to the natural frequencies, i.e.,

[
ω1e1 ω2e2

]≡ EΩd , Ωd ≡
[

ω1 0
0 ω2

]
(5.36)

and hence, Eq. 5.36 can be rewritten as

ΩE = EΩd

Therefore,

Ωd = ETΩE, or Ω= EΩdET (5.37)

That is, the eigenmatrix E diagonalizes Ω in the sense of Eq. 5.37. Also note that

Ω2
d = ETΩEETΩE = ETΩ2E (5.38)

which means that the eigenmatrix also diagonalizesΩ2. Now, if we define the modal
matrix F as

F≡ [f1 f2
]≡ N−1E (5.39)

then it is apparent from Eqs. 5.18 and 5.29 that

FT MF = 1 (5.40)
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Moreover, from Eqs. 5.20 and 5.30,

FT KF =Ω2
d ≡

[
ω2

1 0

0 ω2
2

]

(5.41)

That is, F diagonalizes M in the sense of Eq. 5.40, while F diagonalizes K in the
sense of Eq. 5.41.

The modal matrix of the gantry robot of Example 5.2.1 is, thus,

F =

[
0.2199 −0.4872
0.3146 1.022

]

Furthermore, the modal matrix also diagonalizes the dynamic matrix, but in a
sense different from that in which it diagonalizes the mass and the stiffness matrices.
Indeed, let us calculate

F−1DF = (N−1E)−1M−1KN−1E

where M−1 can be written as N−1N−1, and hence,

F−1DF = ET NN−1
︸ ︷︷ ︸

1

N−1KN−1
︸ ︷︷ ︸

Ω2

E = ETΩ2E

which is readily recognized as Ω2
d . Therefore,

F−1DF =Ω2
d (5.42)

The difference between the foregoing form of diagonalization and that displayed
in Eqs. 5.40 and 5.41 is to be highlighted: While the modal matrix appears inverted
in Eq. 5.42, it appears transposed in Eqs. 5.40 and 5.41.

5.3 The Zero-Input Response of Two-dof Systems

In this section we derive the zero-input response of a two-dof system. We distinguish
here between those with positive-definite and systems with positive-semidefinite
stiffness matrices, the latter being characterized by the presence of a rigid mode.
If the system at hand contains a rigid-body mode, then the frequency matrix is
positive-semidefinite, and hence, singular. In this case, however, finding the time
response of the system is, in a way, a simpler task, for the problem reduces to finding
the response of a single-dof system. We thus begin by discussing the zero-input
response of semidefinite systems.



324 5 Vibration Analysis of Two-dof Systems

Fig. 5.7 A two-dof semidefinite system

5.3.1 Semidefinite Systems

We illustrate the general approach to handling this kind of systems with an example.
Consider the system of Fig. 5.7, which, as we will show below, contains a rigid-body
mode.

The governing equation of this system has the form of Eq. 5.1, with

M =

[
m1 0
0 m2

]
, K =

[
k −k
−k k

]
(5.43)

The mathematical model of the system under study thus takes on the scalar form

m1ẍ1 + k(x1− x2) = 0 (5.44a)

m2ẍ2− k(x1− x2) = 0 (5.44b)

with initial conditions

xk(0) = ak, ẋk(0) = bk, k = 1,2 (5.44c)

As shown in Sect. 4.6, the foregoing equations can be rewritten as

m1ẍ1 +m2ẍ2 = 0 (5.45a)

m1ẍ1−m2ẍ2 + 2k(x1− x2) = 0 (5.45b)

The first of the two above equations states nothing but the conservation of
momentum. Dividing both sides of this equation by m1 +m2 and integrating once
with respect to time gives

m1ẋ1 +m2ẋ2

m1 +m2
= v0 (5.46)
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where v0 is a constant of integration whose mechanical interpretation is given below.
Integrating this equation once more gives

m1x1 +m2x2

m1 +m2
= v0t + x0 (5.47)

where x0 is another constant of integration. Now it should be apparent that the left-
hand side of this equation is nothing but the coordinate of the c.o.m. of the system,
which we shall denote by x(t), so that

x(t) = x0 + v0t (5.48)

and it is now clear that v0 and x0 are the initial velocity and the initial position,
respectively, of the c.o.m. Moreover, Eq. 5.46 simply states the well-known fact that
the velocity of the c.o.m. of the system is constant.

From Eq. 5.47, we can readily solve for x2, namely,

x2(t) =
(m1 +m2)(x0 + v0t)−m1x1(t)

m2
(5.49)

Furthermore, from Eq. 5.45a, it is apparent that ẍ2 = −(m1/m2)ẍ1. If, further-
more, we substitute the above expression for x2 into Eq. 5.45b, we obtain, after
simplifications,

m1ẍ1 + k

(
1+

m1

m2

)
x1 = k(m1 +m2)

x0 + v0t
m2

If we now divide both sides of the above equation by m1, we obtain

ẍ1 + k
m1 +m2

m1m2
x1 = k

m1 +m2

m1m2
(x0 + v0t)

or

ẍ1 +
k

meq
x1 =

k
meq

(x0 + v0t) (5.50)

with the equivalent mass meq defined as

meq ≡ m1m2

m1 +m2
(5.51)

The normal form of the above equation is thus readily derived as

ẍ1 +ω2
n x1 = ω2

n x0 +ω2
n v0t, x1(0) = a1, ẋ1(0) = b1 (5.52)
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with ωn defined as the natural frequency of the non-rigid mode, which is given by

ωn ≡
√

k
meq

(5.53)

x0 being the initial value of the abscissa of the center of mass, i.e.,

x0 ≡ m1x1(0)+m2x2(0)
m1 +m2

≡ m1a1 +m2a2

m1 +m2
(5.54a)

and v0 is the initial value of the velocity of the center of mass, i.e.,

v0 ≡ m1ẋ1(0)+m2ẋ2(0)
m1 +m2

≡ m1b1 +m2b2

m1 +m2
(5.54b)

It is now apparent that x1(t) can be computed separately from x2(t), the analysis
thus leading to that of two decoupled single-dof systems, one that is governed by
Eq. 5.52, determining the non-rigid mode of the system, the other one being simply
the motion of the center of mass of the system. We discuss below the derivation of
the time response of the non-rigid mode. To do this, we need to find the response of
a system acted upon by a constant input and that of the same system acted upon by
an input that is linear in time, with nonzero initial conditions, as given by Eq. 5.52.
The desired response can then be found by superposition, as explained below.

First and foremost, it is essential that we identify properly the excitation terms of
Eq. 5.52. At a first glance, one would be tempted to treat the first term of the right-
hand side of that equation as a step function, the second as a ramp function, but they
are neither. Indeed, by virtue of the Principle of Conservation of Momentum, the
center of mass of the system has been moving with a velocity v0 even before the
observations started at time t = 0, while the value x0 is constant. Hence, we cannot
apply here either the step response nor the ramp response to find the response of the
system of Eq. 5.52.

Since the system is acted upon by two inputs, ω2
n x0 and ω2

n v0t, it seems natural to
find its time response by superposition. However, superposition applies not only to
the two different inputs, but also to the nonzero initial conditions. In other words, we
have to superimpose the zero-input response to its two zero-state responses obtained
for each of its inputs. We proceed then by finding all the individual responses; then
we superimpose them all. Thus,

1. Zero-input response: The system is driven solely by its initial conditions, i.e.,

ẍ1 +ω2
n x1 = 0, x1(0) = a1, ẋ1(0) = b1 (5.55)

The desired time response, derived in Sect. 2.7.3, is displayed in Eq. 2.8. Hence,

x1(t) = a1 cosωnt +
b1

ωn
sinωnt (5.56)
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2. Zero-state response: We divide this response into two parts, that due to ω2
n x0 and

that due to ω2
n v0t.

(a) First zero-state response: We have

ẍ1 +ω2
n x1 = ω2

n x0, x1(0) = 0, ẋ1(0) = 0 (5.57)

We can find this response using the results of Sect. 2.7.4, by setting ζ = 0,
and hence,

x1(t) = x0(1− cosωnt) (5.58)

(b) Second zero-state response: Now the system under study takes the form

ẍ1 +ω2
n x1 = ω2

n v0t, x1(0) = 0, ẋ1(0) = 0 (5.59)

The desired time response can now be found by linearity, namely, from the
zero-state response derived in item (a). Let us call the input of Eq. 5.57 u1(t),
that of Eq. 5.59 u2(t), the corresponding time responses being denoted by ξ1(t)
and ξ2(t). Now we note the relation between u1(t) and u2(t), namely,

u2(t) =
v0

x0

∫ t

0
u1(θ )dθ (5.60)

where θ is a dummy integration variable. From the above relation for the two
inputs, we can readily derive the relation for the corresponding responses, i.e.,

ξ2(t) =
v0

x0

∫ t

0
ξ1(θ )dθ (5.61)

where ξ1(θ ) is nothing but x1(θ ), as given by Eq. 5.58, i.e.,

ξ1(θ ) = x0(1− cosωnθ ) (5.62)

and hence,

ξ2(t) = v0

∫ t

0
(1− cosωnθ )dθ

The desired response, x1(t), to the given input, ω2
n v0t, is then obtained upon

expansion of the foregoing integral, namely,

x1(t) = ξ2(t) = v0

(
t− 1

ωn
sinωnt

)
(5.63)

Alternatively, expression (5.63) could have been obtained from the results of
Sect. 2.7.4 for the response to a linear input, with ζ = 0.
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Fig. 5.8 An elastic belt-pulley transmission

Now the total time response is simply the sum of all three individual responses
displayed in Eqs. 5.56, 5.58 and 5.63, namely,

x1(t) = a1 cosωnt +
b1

ωn
sinωnt + x0(1− cosωnt)+ v0t− v0

ωn
sinωnt

or, more systematically,

x1(t) = x0 + v0t +(a1− x0)cosωnt +
b1− v0

ωn
sinωnt (5.64)

i.e., the motion of the first mass is given as the superposition of the uniform-velocity
motion of the center of mass and a harmonic motion about the center of mass.

The motion of the second mass is simply derived from Eqs. 5.49 and 5.64. After
obvious simplifications, this response is derived as

x2(t) = x0 + v0t− m1

m2

[
(a1− x0)cosωnt +

b1− v0

ωn
sinωnt

]
(5.65)

which is, likewise, the superposition of the motion of the center of mass and a
harmonic motion, thereby completing the analysis of the whole system. Animations
of the zero-input response of this system, that include its rigid and flexible mode,
are included in 5-Semidef2dof.mw.

Example 5.3.1 (A Belt-Pulley Transmission). Shown in Fig. 5.8 is a belt-pulley
transmission composed of two pulleys that are modeled as homogeneous rigid
disks of radii r1 and r2 and centroidal moments of inertia J1 and J2, respectively.
Moreover, the belt is assumed elastic and weightless, while neglecting its viscosity,
so that the belt can be modeled as two identical lumped springs of stiffness k. Show
that this system admits a rigid mode and describe it. Moreover, the belt is assumed
to be purely elastic; if, additionally, we neglect the viscous effect of the lubricant
and the dry friction in the bearings, no dissipation is present.
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Solution: We will study the zero-input response of this system and so, we will
assume zero input power. The kinetic and potential energies of the system can be
readily derived as

T =
1
2

J1θ̇ 2
1 +

1
2

J2θ̇ 2
2 , V =

1
2

2k(r1θ1− r2θ2)
2

It is now apparent from the above expression for V that no changes of potential
energy occur when the system undergoes a motion whose the generalized coordi-
nates are related by r1θ1−r2θ2 = 0. This means that the system has one rigid mode,
which is given by the above relation, and hence, its stiffness matrix is bound to be
positive-semidefinite, i.e., singular. As a consequence, the frequency matrix of the
system is also positive-semidefinite. It is a simple matter to derive the mass and
stiffness matrices, as shown below:

M =

[
J1 0

0 J2

]

, K = 2k

[
r2

1 −r1r2

−r1r2 r2
2

]

The reader can now compute the determinant of matrix K and realize that, indeed,
this matrix is singular. Moreover, since the trace of the same matrix is apparently
positive, so is the sum of its eigenvalues, and, since one eigenvalue is bound to
be zero, the remaining eigenvalue is bound to be positive, the matrix thus being
positive-semidefinite.

In deriving the time response of the system under study it will prove advanta-
geous to introduce a change of variables. One obvious candidate is the rigid mode,
and hence, we shall define one of the new variables as r1θ1− r2θ2. Since we need
one additional new variable, independent from the former, the obvious choice is to
define it as r1θ1 + r2θ2. In fact, we will define the latter as the first variable, the
former as the second, i.e.,

ψ1 ≡ r1θ1 + r2θ2

ψ2 ≡ r1θ1− r2θ2

Hence, in the presence of a rigid mode, ψ2 vanishes, but ψ1 does not. Likewise,
if we have a motion under which ψ1 vanishes but ψ2 does not, we call this a purely
flexible mode. In general, for arbitrary initial conditions, the time response will
contain a combination of both the rigid and the purely flexible mode. Below we
shall obtain the time response of the two foregoing modes independent from each
other, i.e., by decoupling one from the other. In order to obtain the time response in
the given coordinates, we need the inverse change of coordinates, namely,

θ1 ≡ 1
2r1

(ψ1 +ψ2) θ2 ≡ 1
2r2

(ψ1−ψ2)
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and hence,

θ̈1 ≡ 1
2r1

(ψ̈1 + ψ̈2) θ̈2 ≡ 1
2r2

(ψ̈1− ψ̈2)

Now, we have initial conditions on the original variables; the initial conditions
for the new variables are readily found from the former, i.e.,

ψ1(0) = r1θ1(0)+ r2θ2(0), ψ2(0) = r1θ1(0)− r2θ2(0)

ψ̇1(0) = r1θ̇1(0)+ r2θ̇2(0), ψ̇2(0) = r1θ̇1(0)− r2θ̇2(0)

Upon the foregoing change of variable, the governing equations become

ψ̈1 + ψ̈2 +
4kr2

1

J1
ψ2 = 0

ψ̈1− ψ̈2− 4kr2
2

J2
ψ2 = 0

from which ψ̈1 can be eliminated by subtracting the second equation from the first
one, thus obtaining

ψ̈2 + 2k
J1r2

2 + J2r2
1

J1J2
ψ2 = 0

or, in a more familiar form,
ψ̈2 +ω2

n ψ2 = 0

with initial conditions ψ2(0) and ψ̇2(0) given above and the natural frequency ωn

defined as

ωn ≡
√

2k

(
r2

2

J2
+

r2
1

J1

)

The time response of the system at hand is thus the familiar

ψ2(t) = ψ2(0)cosωnt +
ψ̇2(0)

ωn
sin ωnt

Furthermore, a differential equation for ψ1(t) can be readily derived if the two
governing equations in the new coordinates are added sidewise, thus obtaining

ψ̈1 + 2k

(
r2

1

J1
− r2

2

J2

)
ψ2 = 0
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or

ψ̈1 = 2k

(
r2

2

J2
− r2

1

J1

)[
ψ2(0)cosωnt +

ψ̇2(0)
ωn

sinωnt

]

from which ψ1(t) can be derived by simple quadrature. Indeed, by time-integrating
the above equation, we obtain

ψ̇1(t) = 2k

(
r2

2

J2
− r2

1

J1

)[
ψ2(0)

ωn
sinωnt− ψ̇2(0)

ω2
n

cosωnt

]
+ c1

where c1 is an integration constant, to be determined from the initial conditions.
Thus, at t = 0,

ψ̇1(0) =−2k

(
r2

2

J2
− r2

1

J1

)
ψ̇2(0)

ω2
n

+ c1

from which

c1 = ψ̇1(0)+ 2k

(
r2

2

J2
− r2

1

J1

)
ψ̇2(0)

ω2
n

and hence,

ψ̇1(t) = ψ̇1(0)+ 2k

(
r2

2

J2
− r2

1

J1

)[
ψ2(0)

ωn
sinωnt +

ψ̇2(0)
ω2

n
(1− cosωnt)

]

Upon integration of the last equation, we obtain

ψ1(t) = ψ̇1(0)t + 2k

(
r2

2

J2
− r2

1

J1

)[
−ψ2(0)

ω2
n

cosωnt +
ψ̇2(0)

ω2
n

(
t− 1

ωn
sinωnt

)]
+ c2

where c2 is a second integration constant, to be detrmined from the initial conditions
as well. At t = 0, we have

ψ1(0) =−2k

(
r2

2

J2
− r2

1

J1

)
ψ2(0)

ω2
n

+ c2

whence

c2 = ψ1(0)+ 2k

(
r2

2

J2
− r2

1

J1

)
ψ2(0)

ω2
n

Therefore,

ψ1(t) = ψ1(0)+ ψ̇1(0)t + 2k

(
r2

2

J2
− r2

1

J1

) [
ψ2(0)

ω2
n

(1− cosωnt)

+
ψ̇2(0)

ω2
n

(t− 1
ωn

sinωnt)

]
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Now, in order to find the time response in the original generalized coordinates,
all we need is to change back to those coordinates, thereby obtaining

θ1(t) = r2(A+Bt)+ r1J2(C cosωnt +Dsinωnt)

θ2(t) = r1(A+Bt)+ r2J1(C cosωnt +Dsinωnt)

with coefficients A, B, C, and D defined as

A ≡ r2J1θ1(0)+ r1J2θ2(0)

r2
1J2 + r2

2J1
, B≡ r2J1θ̇1(0)+ r1J2θ̇2(0)

r2
1J2 + r2

2J1

C ≡ r1θ1(0)+ r2θ2(0)

r2
1J2 + r2

2J1
, D≡ r1θ̇1(0)− r2θ̇2(0)

ωn(r2
1J2 + r2

2J1)

From the above expressions it is apparent that the motion of the overall system
is the superposition of the rigid mode and the purely-flexible mode. Indeed, the
first term of each of the two above expressions represents a displacement that is
linear in time, and hence, corresponds to a uniform motion starting from an initial
value r2A or, correspondingly, r1A, and moving with the constant speed r2B or,
correspondingly, r1B. The second term comprises the flexible mode.

Furthermore, if the two original governing equations are added sidewise, we
obtain an interesting result, namely,

J1θ̈1 + J2θ̈2 = 2k(r2θ2− r1θ1)(r1 + r2)

or, if we define h(t) as the total angular momentum of the overall system, i.e.,

h(t)≡ J1θ̇1 + J2θ̇2

then, the above equation can be rewritten as

ḣ(t) = 2k(r2θ2− r1θ1)(r1 + r2)

in which the right-hand side vanishes only if the system moves under its rigid mode.
As a consequence, then, the angular momentum of the whole system is not preserved.
Can the reader give a physical explanation of this fact?

We have thus derived a procedure, described below, to obtain the zero-input
response of a semidefinite two-dof system:

1. Decouple the rigid from the flexible mode, thus obtaining two new governing
equations, one of which contains one single generalized coordinate

2. Find the time response of the subsystem with one single generalized coordinate
3. Find the remaining time response by substituting the time response found in step-

2 above
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5.3.2 Systems with a Positive-Definite Frequency Matrix

Under the assumption that the stiffness matrix is positive-definite, the frequency
matrix, defined in Eq. 5.9a, is positive-definite as well. In this case, the response of
the system at hand can be derived from the response of a single-dof system, as we
will show presently.

The time response of a single-dof mass-spring system governed by Eq. 5.11 is
now recalled for quick reference:

y(t) = (cosωnt)y0 +
1

ωn
(sinωnt)s0, t ≥ 0 (5.66)

Further, the response of the system appearing in Eq. 5.10 can be readily derived
just by mimicking the response of the scalar system of Eq. 5.11, given by Eq. 5.66.
In doing so, we will rewrite Eq. 5.66 in vector form, with y(t) replaced by the two-
dimensional vector y(t) and the scalar ωn by the 2× 2 frequency matrix Ω. Here,
care must be taken when mimicking the 1/ωn factor in the above equation, for the
reciprocal of a matrix does not exist. This reciprocal must be substituted by Ω−1

instead, which exists because Ω is assumed to be positive-definite. The zero-input
response of the two-dof system, then, takes the form3

y(t) = (cosΩt)y0 +Ω−1(sinΩt)s0, t ≥ 0 (5.67)

where cosΩt and sinΩt are the analytic functions of Ωt derived from the corre-
sponding scalar functions cosωit and sinωit, with ωi denoting the ith eigenvalue
of the frequency matrix, that is, the ith natural frequency of the system at hand,
for i = 1,2. Note from Eq. 5.67 that, if both y0 and w0 are proportional to the
eigenvector ei, then y(t) is harmonic, with frequency ωi. Otherwise, in general, y(t)
is not harmonic.

The foregoing matrix functions bear some of the properties of their scalar
counterparts, namely,

cos2Ωt + sin2 Ωt = 1 (5.68a)

d
dt
(cosΩt) = −ΩsinΩt ≡−(sinΩt)Ω (5.68b)

d
dt
(sinΩt) = ΩcosΩt ≡ (cosΩt)Ω (5.68c)

∫ t

0
cosΩθdθ = Ω−1 sinΩt ≡ (sinΩt)Ω−1 (5.68d)

∫ t

0
sinΩθdθ = Ω−1(1− cosΩt)≡ (1− cosΩt)Ω−1 (5.68e)

3The second term of the right-hand side of Eq. 5.67 can be alternatively expressed with the order
of Ω−1 and sinΩt reversed, a consequence of Fact 4 of Appendix A.
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where 1 is the 2× 2 identity matrix and Fact 4 of Appendix A has been invoked.
The reader can readily verify the foregoing relations, for example, by assuming,
without loss of generality, that Ω is in diagonal form. Using Eqs. 5.68b, c, the proof
that y(t), as given by Eq. 5.67, is the integral of the system of ODE of Eq. 5.10 is
straightforward.

In mimicking the trigonometric relations for matrices, care must be taken in that,
in general, for arbitrary 2× 2 matrices A and B,

cos(A+B) �= cosAcosB− sinAsinB

sin(A+B) �= sinAcosB+ cosAsinB

Nevertheless, if A and B in the above relations share the same set of eigenvectors,
then they commute under the operation of multiplication, and the relations above do
hold with the equality sign. This is the case if, for example, A and B are analytic
functions of the same matrix, or if one is an analytic function of the other. Now,
since the vector of generalized coordinates is x, rather than y, a transformation back
to the original coordinates is in order. From Eq. 5.6, we have

x(t) = N−1(cosΩt)Nx0 +N−1Ω−1(sinΩt)Nv0, t ≥ 0 (5.69a)

where ẋ(0) ≡ v0 and s0 ≡ Nv0. Note from Eq. 5.69a that, if both x0 and v0 are
proportional to the modal vector fi, then both Nx0 and Nv0 are proportional to the
eigenvector ei. As a consequence, then, the above zero-input response is harmonic,
with frequency ωi.

In simulation studies, we also need ẋ, which can be readily derived by straight-
forward differentiation of Eq. 5.69a, which thus leads to

ẋ(t) =−N−1Ω(sinΩt)Nx0 +N−1(cosΩt)Nv0, t ≥ 0 (5.69b)

Example 5.3.2 (Zero-Input Response of a Two-dof System). In computing the time
response of the system of Fig. 5.1 with the numerical values given in Eq. 5.31,
we resort to Eq. 5.69a. In this equation, the sine and cosine functions of the
frequency matrix are needed. These functions are computed from the Mohr circles
of Fig. 5.9a,b.

The matrices thus resulting are displayed below:

cosΩt ≡
[

c+ uC −vC

−vC c− uC

]
, sinΩt ≡

[
s+ uS −vS

−vS s− uS

]
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a b

Fig. 5.9 The Mohr circle of (a) cosΩt and (b) sinΩt of the two-dof system composed of two
masses coupled by three springs

where variables c and c are the abscissa of the center and the radius of the Mohr
circle of cos(Ωt), with similar definitions for s and s, i.e.,

c ≡ c(t)≡ cosω1t + cosω2t
2

, c≡ c(t)≡ cosω2t− cosω1t
2

s ≡ s(t)≡ sinω1t + sinω2t
2

, s≡ s(t)≡ sinω2t− sinω1t
2

In the Mohr circles of Fig. 5.9a,b, we have

ck ≡ cosωkt, sk ≡ sinωkt, k = 1,2

Moreover, from similarity of triangles,

uC =
3
5

c, vC =
4
5

c, uS =
3
5

s, vS =
4
5

s

and hence,

c+ uC =
c1 + 4c2

5
, c− uC =

4c1 + c2

5

s+ uS =
s1 + 4s2

5
, s− uS =

4s1 + s2

5
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Therefore,

cos(Ωt) =
1
5

[
c1 + 4c2 −2(c2− c1)

−2(c2− c1) 4c1 + c2

]

sin(Ωt) =
1
5

[
s1 + 4s2 −2(s2− s1)

−2(s2− s1) 4s1 + s2

]

Moreover, from the expression for the inverse of a 2× 2 matrix displayed in
Eq. A.19a and A.19b, we have

Ω−1 =

√
11

55ω

[
4+
√

11 2(
√

11− 1)

2(
√

11− 1) 1+ 4
√

11

]

Now, let the initial conditions be given as

x0 =

[
a1

a2

]
, v0 =

[
b1

b2

]

Hence,

y0 = Nx0 =
√

m

[
a1

2a2

]
, s0 = Nv0 =

√
m

[
b1

2b2

]

Upon expansion of the time response of Eq. 5.69a and rearrangement of terms,
we obtain the said response as a linear combination of functions cosω1t, cosω2t,
sinω1t and sinω2t. The terms entering in that expression are calculated below:

[cos(Ωt)]y0 =

√
m

5

[
(a1 + 4a2)c1 + 4(a1− a2)c2

2(a1 + 4a2)c1− 2(a1− a2)c2

]

[
Ω−1 sin(Ωt)

]
s0 =

√
m

55ω

[
11(b1 + 4b2)s1 + 4

√
11(b1− b2)s2

22(b1 + 4b2)s1− 2
√

11(b1− b2)s2

]

Furthermore,

[
N−1(cosΩt)

]
y0 =

1
5

[
(a1 + 4a2)c1 + 4(a1− a2)c2

(a1 + 4a2)c1− (a1− a2)c2

]

[
N−1Ω−1 sin(Ωt)

]
s0 =

1
55ω

[
11(b1 + 4b2)s1 + 4

√
11(b1− b2)s2

11(b1 + 4b2)s1−
√

11(b1− b2)s2

]
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and hence,

x1(t) =
1
5
[(a1 + 4a2)cosωt + 4(a1− a2)cos

√
11ωt]

+
1

55ω
[11(b1 + 4b2)sin ωt + 4

√
11(b1− b2)sin

√
11ωt]

x2(t) =
1
5
[(a1 + 4a2)cosωt− (a1− a2)cos

√
11ωt]

+
1

55ω
[11(b1 + 4b2)sin ωt−

√
11(b1− b2)sin

√
11ωt]

In summary, then, the time response of the system is a linear combination of
the harmonic functions associated with its two natural frequencies. Now a question
arises, namely, is the zero-input response of two-dof systems, like that of their single-
dof counterparts, in general, harmonic? For the answer to be positive, we need a
certain time interval T at which the harmonics of the two frequencies both cover
integer numbers of cycles, N1 and N2, namely,

ω1T = 2πN1, ω2T = 2πN2

Now, if we divide the corresponding sides of the second of the two foregoing
equations by those of the first, we obtain

ω2

ω1
=

N2

N1

which means that, for the zero-input response to be harmonic for arbitrary initial
values, the ratio of the two natural frequencies must be a rational number. In our
example we have

ω2

ω1
=

√
11ω
ω

=
√

11

which is, apparently, irrational; as a consequence, the response of the system is
not, in general, harmonic. As we have seen earlier, we need a special set of initial
conditions, namely, shaped by any of the two modal vectors, in order to obtain a
harmonic zero-input response. Now, from the form of the response derived above,
it is apparent that a harmonic response is possible if the initial conditions obey any
one of the two relations below:

1. a1 = a2 and b1 = b2

2. a1 =−4a2 and b1 =−4b2

which are apparently obeyed if the vectors of initial conditions, x0 and v0, are both
proportional to any one of the two modal vectors of the system at hand.
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Fig. 5.10 A test pad mounted on an elastic suspension

Example 5.3.3 (A Two-dof Test Pad). Shown in Fig. 5.10 is a test pad mounted on an
elastic suspension, consisting of a slender rigid bar of mass m and length l. A small
ball of mass αm is dropped from a height h at an offset d = l/4 with respect to the
centerline of the bar, and α is the ratio of the mass of the ball to the mass of the bar,
as indicated in Fig. 5.10. Find the time response of the pad under a perfectly elastic
shock of the ball with the bar and under the assumption that the bar (a) is at rest
prior to being hit by the ball and (b) undergoes small-amplitude rotations that allow
for a linear-model analysis.

Solution: We define the generalized coordinates x1, x2 and θ , as shown in Fig. 5.10.
In order to obtain a mathematical model with a zero input, we aim to determine
the initial conditions right after the impact of the ball with the bar. In the analysis
below we measure velocities the same way as we measure the displacements of the
end-points of the bar, i.e., assuming that upward velocities are positive.

The initial conditions are determined from the basic Principle of Conservation
of Momentum. In the analysis below, let vB and vR denote the velocities of the ball
and of point R of the bar, where R denotes the point of the bar where collision takes
place. Let vrel, moreover, be defined as the relative velocity of the ball with respect
to the bar, and hence, just prior to the shock,

vrel(0
−) = vB(0−)− vR(0−)
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while, right after the shock,

vrel(0
+) = vB(0

+)− vR(0
+)

From the data,

vrel(0
−) =−

√
2gh

while, from the assumption of a perfectly elastic shock,

vrel(0
+) =−vrel(0

−)

and hence,

vB(0+)− vR(0+) =
√

2gh (5.70)

Moreover, from the nature of the shock, it is apparent that no displacement jumps
occur upon collision; only velocity jumps appear. Now, since the force developed
in the springs is proportional to the displacements, it is apparent that no impulsive
forces are developed by the springs. As a consequence, both the momentum and
the angular momentum of the whole ball-pad system are preserved. The system
momentum just before and just after the shock is calculated below:

p(0−) =−αm
√

2gh, p(0+) = mvC(0
+)+αmvB(0

+)

where vC is the velocity of the center of mass of the bar. Upon equating the two
above expressions, we obtain

vC(0
+)+αvB(0+) =−α

√
2gh (5.71)

Moreover, the angular momentum about any point O fixed on the centerline right
before and right after the shock is given by

hO(0
−) = αmd

√
2gh, hO(0

+) =
ml2

12
θ̇ (0+)−αmdvB(0+)

Therefore, the conservation of the angular momentum, for d = l/4, leads to

lθ̇ (0+)− 3αvB(0+) = 3α
√

2gh (5.72)

Furthermore, from planar kinematics we have,

vR(0+) = vC(0
+)− l

4
θ̇ (0+) (5.73)
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Upon substitution of Eq. 5.73 into Eq. 5.70, we obtain

vB(0+)− vC(0
+)+

l
4

θ̇ (0+) =
√

2gh (5.74)

In summary, then, we have derived three independent equations, (5.71), (5.72),
and (5.74), to determine three unknowns, namely, vB(0+), vC(0+) and θ̇ (0+). We
proceed now to solve for these unknowns: From Eq. 5.71, we can solve for vC(0+),
namely,

vC(0
+) = α[−

√
2gh− vB(0+)] (5.75)

Likewise, from Eq. 5.72, we can solve for θ̇ (0+) as

θ̇(0+) =
3α
l
[
√

2gh+ vB(0+)] (5.76)

Now, upon substitution of Eqs. 5.75 and 5.76 into Eq. 5.74, an equation in vB(0+)
alone is derived, from which

vB(0
+) =

1− 7α/4
1+ 7α/4

√
2gh (5.77)

whence corresponding expressions for vC(0+) and θ̇ (0+) are readily derived:

vC(0
+) =− 2α

1+ 7α/4

√
2gh, θ̇ (0+) =

6α
1+ 7α/4

√
2gh
l

(5.78)

Now, the initial conditions for the generalized coordinates x1(t) and x2(t), and
their time derivatives are derived below. Note that, since no jumps in the generalized
coordinates occur, we have

x1(0
+) = x2(0

+) = 0 (5.79)

Moreover, from planar kinematics we have, for any instant t,

ẋ1(t) = vC(t)− θ̇(t)
l
2
, ẋ2(t) = vC(t)+ θ̇(t)

l
2

and hence,

ẋ1(0
+) = vC(0

+)− θ̇(0+)
l
2
=− 5α

1+ 7α/4

√
2gh (5.80)

ẋ2(0
+) = vC(0

+)+ θ̇(0+)
l
2
=

α
1+ 7α/4

√
2gh (5.81)
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Having derived the initial conditions for the generalized coordinates x1(t) and
x2(t) and their time derivatives, it is now a simple matter to obtain the time response
of the system under zero-input conditions. To this end, we derive expressions for the
mass and stiffness matrices. The former is computed as the Hessian of the kinetic
energy, which in turn takes the form

T =
1
2

mv2
C +

1
2

JCθ̇ 2

where JC is the moment of inertia of the bar about the center of mass, i.e., JC =
ml2/12, and hence,

T =
1
2

mv2
C +

1
24

ml2θ̇ 2

Upon expressing the velocity of the center of mass and the angular velocity in
terms of the generalized velocities as

vC =
ẋ1 + ẋ2

2
, θ̇ =

ẋ2− ẋ1

l
(5.82)

we have

T =
1
6

m(ẋ2
1 + ẋ1ẋ2 + ẋ2

2)

Moreover, the potential energy of the system is

V =
1
2

k(x2
1 + x2

2)

and hence, the mass and stiffness matrices are readily derived as

M =
1
6

m

[
2 1
1 2

]
, K = k

[
1 0
0 1

]
≡ k1

with 1 defined as the 2× 2 identity matrix. By virtue of the particular form of the
stiffness matrix, the square of the frequency matrix is obtained as

Ω2 = 2kM−1 = ω2
[

2 −1
−1 2

]
, ω2 ≡ 2k

m

its Mohr circle being shown in Fig. 5.11a. From this circle, we can readily determine
the eigenvalues of Ω2 and hence, the natural frequencies ω1 and ω2, namely,

ω1 = ω =

√
k
m
, ω2 =

√
3ω =

√

3
k
m

Moreover, from the same Mohr circle we can derive that of the frequency matrix,
as shown in Fig. 5.11b.
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a b

Fig. 5.11 The Mohr circles of (a) Ω2, and (b) Ω for the test pad

a b

Fig. 5.12 The Mohr circles of: (a) cos Ωt: and (b) sin Ωt for the test pad

Hence, the frequency matrix is

Ω=
ω
2

[
1+
√

3 1−√3

1−√3 1+
√

3

]

In the ensuing calculations we will also need the harmonic functions of the
frequency matrix multiplied by t. These can be determined from the Mohr circle
of Ω, as displayed in Fig. 5.12a,b.

From the Mohr circles of the corresponding harmonic functions, one can readily
obtain

cos(Ωt) =

[
c −c
−c c

]
, sin(Ωt) =

[
s −s
−s s

]
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where c, c, s and s are defined as

c ≡ c(t)≡ 1
2
(cosω1t + cosω2t), c≡ c(t)≡ 1

2
(cosω2t− cosω1t)

s ≡ s(t)≡ 1
2
(sin ω1t + sinω2t), s≡ c(t)≡ 1

2
(sinω2t− sinω1t)

Now, since the stiffness matrix is proportional to the identity matrix, we note that
we can write, in the given generalized coordinates,

ẍ+Ω2x = 0

and hence, the time response, in this particular case, takes the simple form

x(t) = cos(Ωt)x0 +Ω−1 sin(Ωt)v0

Moreover, in our case,

x0 = 0, v0 =

[−5a
a

]
, a≡ α

1+ 7α/4

√
2gh

Furthermore, a simple calculation leads to

Ω−1 =

√
3

6ω

[
1+
√

3 −(1−√3)

−(1−√3) 1+
√

3

]

=
1

6ω

[
3+
√

3 3−√3

3−√3 3+
√

3

]

and hence, upon substitution of all quantities involved, the final result turns out to be

x(t) =− a
ω

[
2sinω1t +

√
3sinω2t

2sinω1t−√3sinω2t

]

or, in terms of the original parameters,

x(t) =− α
1+ 7α/4

√
2mgh

k

[
2sinω1t +

√
3sinω2t

2sinω1t−√3sinω2t

]

Therefore, the zero-state response of the system at hand is a linear combination
of the sine functions of ω1t and ω2t. Moreover, the two natural frequencies observe
the ratio

ω2

ω1
=

√
3ω
ω

=
√

3

which is irrational. As a consequence, the two ends of the rod move with non-
periodic motion. However, the motion of the c.o.m., given by the coordinate x(t),
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and the rotation of the bar, θ (t), are harmonic, as we can readily verify, namely,

x(t) = − 2α
1+ 7α/4

√
2mgh

k
sin

√
k
m

t

θ (t) =
2
√

3α
1+ 7α/4

1
l

√
2mgh

k
sin

√
3k
m

t

Thus, the first natural frequency corresponds to the translation of the c.o.m., the
second to the rotation of the bar about its center of mass.

5.3.3 The Beat Phenomenon

Mechanical systems that are only slightly coupled exhibit an interesting behavior
known as beat. A feature of this behavior is a periodic response, which is caused by
its two natural frequencies being relatively close to each other. What we mean by
this, is that the ratio of the frequency radius to the mean frequency is much smaller
than unity, thereby appearing as if the ratio of the two natural frequencies were a
rational number.

In order to illustrate the beat phenomenon, let us consider again the system of
Fig. 5.1, with m1 = m2 = m but now we let k1 = k3 = k and k2 = αk, and assume
that α << 1. Thus, the mass and stiffness matrices take the forms

M = m1, K = k

[
1+α −α
−α 1+α

]

with 1 representing the 2× 2 identity matrix. Hence, the frequency matrix-squared
is readily computed as

Ω2 = ω2
[

1+α −α
−α 1+α

]
, ω ≡

√
k
m

its Mohr circle being shown in Fig. 5.13a. From this figure, it is apparent that the
radius of the Mohr circle of Ω2 is quite small when compared with the abscissa of
its center.

Furthermore, from the same figure, the eigenvalues of Ω2 are readily derived as

ω2
1 = ω2, ω2

2 = (1+ 2α)ω2

and hence, the natural frequencies are

ω1 = ω , ω2 =
√

1+ 2α ω
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a b

Fig. 5.13 The Mohr circle of: (a) the frequency matrix-squared; and (b) the frequency matrix, of
a slightly coupled mechanical system

Now, if we take into account that α << 1, the linear approximation of ω2

becomes
ω2 ≈ (1+α)ω

and hence, the Mohr circle of the frequency matrix becomes as in Fig. 5.13b. Note
that, from the above approximation, we have

ω2

ω1
≈ 1+α

i.e., the ratio of the two frequencies is almost unity, the system thus showing an
almost periodic response for any initial conditions, which is a characteristic of
beat. From the circle of Fig. 5.13b, it is apparent that the mean frequency and the
frequency radius take the approximate values

ω ≈
(

1+
α
2

)
ω , ρ ≈ α

2
ω

and hence, ω and ρ obey the relation

ω ≈ ω +ρ

the ratio ρ/ω thus becoming

ρ
ω
≈ α

2+α
<< 1

which follows because of the assumption on the order of magnitude of α . The
frequency matrix, in turn, can be approximated as

Ω≈ ω
2

[
2+α −α
−α 2+α

]
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x2

x1

t

t

Fig. 5.14 A typical time response of a weakly-coupled two-dof system

Now, in order to determine the time response of this system, we find first the
harmonic functions of the frequency matrix times t. This is most simply done by
recalling the expressions derived in Sect. A.4 of Appendix A. Upon consideration
of the approximations given above, these matrices take the forms

cos(Ωt) ≈
[

cosωt cosρt −sinωt sinρt
−sinωt sinρt cosωt cosρt

]

sin(Ωt) ≈
[

sinωt cosρt cosωt sin ρt

cosωt sinρt sinωt cosρt

]

The time response is now obtained as a sum of the two terms below:

[cos(Ωt)]x0 =

[
(a1 cosρt)cosωt− a2(sinρt)sinωt

−a1(sinρt)sinωt +(a2 cosρt)cosωt

]
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[
Ω−1 sin(Ωt)

]
v0 =

1
2ω(1+α)

[
[(2+α)b2 +αb1]sc+ 2[(2+α)b1+αb2]cs

[αb2 +(2+α)b1]sc+ 2[αb1 +(2+α)b2]cs

]

where c≡ cosρt, s≡ sinρt, c≡ cosωt, s≡ sinωt. It is thus apparent that the time
response can be regarded as a linear combination of fast varying harmonics, cosωt
and sinωt, of slowly-varying amplitude, Acosρt and Bsinρt. A typical response of
this system is shown in Fig. 5.14.

5.4 The Classical Modal Method

Regardless of whether the system is semidefinite or definite, we can find its zero-
input response by decoupling its two modes by means of a change of variable.
Indeed, let us multiply both sides of Eq. 5.1 by M−1:

ẍ+Dx = 0, t ≥ 0, x(0) = x0, ẋ(0) = v0 (5.83a)

where we recall that the dynamic matrix D was defined in Eq. 5.23. Furthermore, let
us introduce the vector of modal coordinates ξ as

x = Fξ or ξ = F−1x (5.83b)

whence,

ξ(0) = F−1x0, ξ̇(0) = F−1v0, ẍ = F−1ξ̈ (5.83c)

Upon substitution of Eqs. 5.83b, c into Eq. 5.83a, we obtain

ξ̈+Ω2
dξ = 0, ξ(0) = F−1x0 ≡α, ξ̇(0) = F−1v0 ≡ β (5.84)

where Ωd is the diagonal form of the frequency matrix. The above equation can
now be written in component form as

ξ̈1 +ω2
1 ξ1 = 0, ξ1(0) = α1, ξ̇1(0) = β1 (5.85a)

ξ̈2 +ω2
2 ξ2 = 0, ξ2(0) = α2, ξ̇2(0) = β2 (5.85b)

We have thus decoupled the two modes of the system, the mathematical model
now simplifying to two independent single-dof systems, whose zero-input response
was studied in Sect. 2.3. Therefore, the time response of the system in modal
coordinates is

ξi(t) = αi cosωit +
βi

ωi
sinωit, i = 1,2 (5.86)
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Now, in order to obtain the time response of the system in the given generalized
coordinates, all we need is go back to the original coordinates by multiplying vector
ξ by F, as indicated in Eq. 5.83b.

Example 5.4.1 (The Two-dof Test Pad Revisited). Find the time response of the test
pad of Example 5.3.3 using modal coordinates.

Solution: The dynamic matrix of the system can be readily computed as

D = M−1K = ω2
[

2 −1
−1 2

]
, ω ≡

√
2k
m

which happens to coincide, in this particular case, with the frequency matrix-
squared—can the reader explain this coincidence?—whose eigenvalues were com-
puted in Example 5.3.3 and found to be

ω1 = ω =

√
2k
m
, ω2 =

√
3ω =

√
6k
m

Furthermore, the eigenvectors of the frequency matrix, e1 and e2, are shown in
Fig. 5.11, whence,

e1 =

√
2

2

[
1
1

]
, e2 =

√
2

2

[
1
−1

]

Now we need the modal matrix, and hence, the modal vectors. Upon arranging
the two foregoing vectors in the eigenmatrix, we have

E =

√
2

2

[
1 1
1 −1

]

Then, F is calculated as in Eq. 5.39, with N, the positive-definite square root of
M, given by

N =
1
2

√
m
6

[
1+
√

3
√

3− 1√
3− 1 1+

√
3

]

as the reader is invited to verify. Hence,

N−1 = 2

√
6
m

√
3

12

[
1+
√

3 1−√3
1−√3 1+

√
3

]

Therefore,

F =
1
2

√
2
m

[
1+
√

3 1−√3

1−√3 1+
√

3

]√
2

2

[
1 1

1 −1

]

=
1
2

√
1
m

[
2 2

√
3

2 −2
√

3

]
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That is

F =

√
1
m

[
1
√

3

1 −√3

]

The initial conditions of the modal coordinates are thus

α = F−1x0 = 0

β = F−1v0 =− 1

2
√

3

√
m

[−√3 −√3
−1 1

]
α
√

2gh
1+ 7α/4

[−5
1

]

where vector α should not be confused with the scalar α , representing the ratio of
the mass of the ball to the mass of the pad. Thus,

α = 0

β =

√
3m
6

α
√

2gh
1+ 7α/4

[−4
√

3
−6

]
=−
√

3m
3

α
√

2gh
1+ 7α/4

[
2
√

3
3

]
(5.87)

Therefore,

ξ1 = −
√

3m
3

α
√

2gh
1+ 7α/4

2
√

3

√
m
2k

sin

√
2k
m

t

ξ2 = −
√

3m
3

α
√

2gh
1+ 7α/4

3

√
m
6k

sin

√
6k
m

t

which simplify to

ξ1 = − 2m√
k

α
√

2gh
1+ 7α/4

sin

√
2k
m

t

ξ2 = − m√
k

α
√

2gh
1+ 7α/4

sin

√
6k
m

t

Note that, up to scaling factors, the modal coordinates look like functions x(t)
and θ (t), which represent the motions of the center of mass of the pad and of the
pad about its center of mass, as derived in Example 5.3.3.

Now, transforming back to the given coordinates, we have

x = Fξ =− α
1+ 7α/4

√
m
k

⎡

⎢
⎣

2sin
√

2k
m t +

√
3sin

√
6k
m t

2sin
√

2k
m t−√3sin

√
6k
m t

⎤

⎥
⎦

which is identical to the expression obtained with the time-response formula.
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Example 5.4.2 (The Belt-Pulley Transmission Revisited). Find the time response of
the belt-pulley transmission introduced in Example 5.3.1 using modal coordinates.

Solution: We start by calculating the dynamic matrix of the given system:

D =

[
1/J1 0

0 1/J2

]

2k

[
r2

1 −r1r2

−r1r2 r2
2

]

=

[
2kr2

1/J1 −2kr1r2/J1

−2kr1r2/J2 2kr2
2/J2

]

whose eigenvalues are calculated from

det(ω21−D) = det

([
ω2− 2kr2

1/J1 2kr1r2/J1

2kr1r2/J2 ω2− 2kr2
2/J2

])

= 0

whence,

ω2
[

ω2− 2k

(
r2

1

J1
+

r2
2

J2

)]
= 0

with roots

ω1 = 0, ω2 =

√
2k

J1J2
(r2

1J2 + r2
2J1)

Now, the modal vectors f1 and f2 are calculated from

(ω2
i 1−D)fi = 0, i = 1,2

under condition (5.29), repeated below for quick reference:

fT
1 Mf1 = fT

2 Mf2 = 1, fT
1 Mf2 = 0

the last condition being necessarily satisfied from the algebraic properties of the
modal vectors. Thus, for i = 1,

(ω2
1 1−D)f1 ≡ Df1 = 0

or, if we let f1 = [x y]T , then

[
r2

1/J1 −r1r2/J1

−r1r2/J1 r2
2/J2

][
x
y

]
=

[
0
0

]

whose first scalar equation leads to

r1

J1
(r1x− r2y) = 0
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the second scalar equation of that vector equation not adding further information on
f1 because it is linearly dependent with the first one. We thus have

r1x− r2y = 0 or y =
r1

r2
x

Furthermore, f1 must have a unit magnitude with respect to the mass matrix, and
hence,

[
x y
]
[

J1 0
0 J2

][
x
y

]
= 1

which leads to

J1x2 + J2y2 = 1

Solving for x2 from the two above equations,

x2 =
r2

2

r2
1J2 + r2

2J1

and hence, if we choose the positive square root of the above expression,

x = r2

√
r2

1J2 + r2
2J1

r2
1J2 + r2

2J1
, y = r1

√
r2

1J2 + r2
2J1

r2
1J2 + r2

2J1

whence,

f1 =
1

√
r2

1J2 + r2
2J1

[
r2

r1

]

Now, for i = 2, we let f2 = [u v]T and find f2 from

(ω2
2 1−D)f2 = 0

or

2k

[
(r2

1J2 + r2
2J1)/J1J2− r2

1/J1 r1r2/J1

r1r2/J1 (r2
1J2 + r2

2J1)/J1J2− r2
2/J2

][
u
v

]
=

[
0
0

]

whose first scalar equation leads to

2k

(
r2

2

J2
u+

r1r2

J1
v

)
= 0
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its second scalar equation adding no further information on f2 because that equation
is linearly dependent with the first one. Moreover,

[
u v
]T
[

J1 0
0 J2

][
u
v

]
= 1

or
r2

1J2 + r2
2J1

r2
1J2

u2 =
1
J1

If we take the positive root in the above equation, then

u = r1

√
J2/J1

r2
1J2 + r2

2J1
, v =−r2

√
J1/J2

r2
1J2 + r2

2J1

whence,

f2 =
1

r2
1J2 + r2

2J1

[
r1
√

J2/J1

−r2
√

J1/J2

]

Therefore, the modal matrix takes the form

F =
1

r2
1J2 + r2

2J1

[
r2 r1

√
J2/J1

r1 −r2
√

J1/J2

]

its inverse being

F−1 =

[
r2J1 r1J2

r1
√

J1J2 −r2
√

J1J2

]

and, if we define the equivalent moment of inertia Jeq as

Jeq ≡
√

J1J2

then,

F−1 = Jeq

[
r2
√

J2/J1 r1
√

J1/J2

r1 −r2

]

from which we obtain the initial values of the modal coordinates and their time
derivatives as

α =

[
ξ1(0)

ξ2(0)

]

Jeq

[
r2
√

J1/J2θ1(0)+ r1
√

J2/J1θ2(0)

r1θ1(0)− r2θ2(0)

]

β =

[
ξ̇1(0)

ξ̇2(0)

]

Jeq

[
r2
√

J1/J2θ̇1(0)+ r1
√

J2/J1θ̇2(0)

r1θ̇1(0)− r2θ̇2(0)

]
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The time response of the system in modal coordinates is

ξ1(t) = α1 +β1t

ξ2(t) = α2 cosω2t +
β2

ω2
sinω2t

It is apparent that the first modal coordinate represents the rigid mode of the
system, while the second one the flexible mode. Now, going back to the original
generalized coordinates,

[
θ1(t)

θ2(t)

]

=

√
Jeq/J1J2

r2
1J2 + r2

2J1

[
r2(α1 +β1t)+ r1

√
J2/J1[α2 cosω2t +(β2/ω2)sinω2t]

r1(α1 +β1t)− r2
√

J1/J2[α2 cosω2t +(β2/ω2)sinω2t]

]

Upon substitution of the values of αi and βi, for i = 1,2 in terms of the initial
conditions of the original coordinates in the above expression, we obtain

θ1(t) = r2(A+Bt)+ r1J2(C cosωnt +Dsinωnt)

θ2(t) = r1(A+Bt)+ r2J1(C cosωnt +Dsinωnt) (5.88)

where coefficients A, B, C, and D are identical to those introduced in Example 5.3.1,
thereby confirming the validity of the results in the two examples.

5.5 The Zero-State Response of Two-dof Systems

In this section we will be concerned with the time response of a two-dof system
under a nonzero forcing term and zero initial conditions, i.e.,

Mẍ+Kx = φ(t), x(0) = 0, ẋ(0) = 0, t ≥ 0 (5.89)

or, in normal form,

ÿ+Ω2y = g(t), y(0) = 0, ẏ(0) = 0 (5.90)

where y is defined as in Eq. 5.6, while g(t) is given as

g(t)≡ N−1φ(t) (5.91)

As in Sect. 5.3, we distinguish between systems with a positive-semidefinite
frequency matrix and those with a positive-definite frequency matrix.
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5.5.1 Semidefinite Systems

In this case, the frequency matrix is positive-semidefinite because the stiffness
matrix is so, the derivation of the zero-state response being simplified as in the case
of the zero-input response. To illustrate this derivation, we go back to our previous
example of Fig. 5.7. We shall assume that the abscissa of the center of mass of the
system, x, is measured in a coordinate system located such that x0 = 0, with v0 = 0.
As well, a force fk(t) is assumed to act upon mass mk, for k = 1,2, the governing
equations thus becoming

m1ẍ1 + k(x1− x2) = f1(t) (5.92a)

m2ẍ2 + k(x2− x1) = f2(t) (5.92b)

with initial conditions all zero, i.e.,

x1(0) = x2(0) = 0, ẋ1(0) = ẋ2(0) = 0 (5.92c)

Upon summation of the two equations (5.92a & b), we obtain

m1ẍ1 +m2ẍ2 = f1(t)+ f2(t) (5.93)

whose left-hand side can be readily recognized to be the product of the total mass
m1 +m2 by the acceleration of the center of mass, ẍ, i.e.,

(m1 +m2)ẍ = f1(t)+ f2(t) (5.94)

and hence, upon simple quadrature of the above equation, we have

x(t) =
1

m1 +m2

∫ θ=t

θ=0

[∫ τ=θ

τ=0
[ f1(τ)+ f2(τ)]dτ

]
dθ (5.95)

which is related to the generalized coordinates by

m1x1 +m2x2 = (m1 +m2)x (5.96)

Upon solving for x2 from Eq. 5.96, we obtain

x2(t) =
m1 +m2

m2
x(t)− m1

m2
x1(t) (5.97)

We then substitute Eq. 5.97 into Eq. 5.92a, thus obtaining

ẍ1 +
k

meq
x1 =

k
meq

x(t)+
1

m1
f1(t), x1(0) = 0, ẋ1(0) = 0
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with the equivalent mass meq defined as

meq ≡ m1m2

m1 +m2

The above governing equation can thus be recast in a more familiar form:

ẍ1 +ω2
n x1 = ω2

n x(t)+
1

m1
f1(t), x1(0) = 0, ẋ1(0) = 0 (5.98)

the natural frequency ωn of the above system being

ωn ≡
√

k
meq

Now the time response of the system described by Eq. 5.98 is readily derived
using the convolution, namely,

x1(t) =
1

ωn

∫ t

0

[
ω2

n x(t− τ)+
1

m1
f1(t− τ)

]
sinωnτdτ (5.99)

where f1(t) is given and x(t) is computed from Eq. 5.95. Moreover, x2(t) is
determined from Eq. 5.96 in terms of x(t) and x1(t), thereby completing the analysis.

In summary, we have derived a step-by-step procedure to find the zero-state
response of semidefinite two-dof systems of the kind discussed here. Now, the
feature distinguishing these systems from others is the conservation of momentum
in the absence of external forces. Note that the belt-pulley system of Example 5.3.1
does not have this feature, and hence, the procedure cannot be applied to it. In
the case of that system, however, the procedure would be, while different from
the one described here, more straightforward to establish. The derivation of the
corresponding procedure is not discussed here, but is left as an exercise to the reader.

The procedure to find the zero-state response of momentum-conserving systems4

is now described:

1. Determine x(t), the motion of the center of mass, from quadrature
2. Find the time response of the first mass by application of the convolution integral
3. Find the time response of the second mass as a linear combination of the two

foregoing responses

Example 5.5.1 (A Momentum-Preserving Semidefinite System). Given the model of
a two-rotor turbine, as depicted in Fig. 5.15, which is composed of two identical
rigid disks of moments of inertia J about their c.o.m., coupled by an elastic shaft of
stiffness k. When the system is at rest, a constant torque τ0 is suddenly applied on
rotor A. Find the ensuing motion of the system.

4A system can be momentum-preserving only in the absence of an input. In this section, the time
response of this kind of systems under zero initial conditions and non-zero input is studied.
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Fig. 5.15 A two-rotor system

Solution: It is a simple matter to show that the mass and stiffness matrices of this
system are

M = J

[
1 0
0 1

]
, K = k

[
1 −1
−1 1

]

whence it is apparent that the stiffness matrix is positive-semidefinite. As a matter
of fact, the rigid mode of the system is readily identified as one for which θ1 = θ2.
The mathematical model of the system in scalar form is then readily derived as

Jθ̈1 + k(θ1−θ2) = τ0u(t)

Jθ̈2 + k(θ2−θ1) = 0

where u(t) is the unit-step function and the initial conditions are assumed to be
all zero. Note that, in the absence of input torque, the sum of the two above
equations leads to Jθ̈1 + Jθ̈2 = 0, which in turn leads to Jθ̇1 + Jθ̇2 = const, thereby
realizing that the system is momentum-preserving. As a consequence, the procedure
of Sect. 5.5.1 can be applied to find its time response.

In this case, however, we do not have a ‘center of mass’ and, hence, neither have
we a ‘c.o.m. coordinate’. This does not prevent us from defining the variable θ (t) in
exactly the same way as we defined the variable x(t) in Sect. 5.5.1, i.e., as5

θ ≡ θ1 +θ2

2

5In this case, θ is simply the average of θ1 and θ2 because the rotors have identical moments of
inertia; in general, θ is defined as the weighted average.
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Hence, upon summation of the two scalar governing equations displayed above,
we obtain a second-order ODE for θ , namely,

Jθ̈ =
τ0

2
u(t), θ (0−) = 0, θ̇ (0−) = 0

and hence, by simple quadrature,

θ̇ (t) =
τ0

2J
r(t)

where r(t) is the ramp function. One more quadrature leads to

θ (t) =
τ0

4J
t2u(t)

Now, because of the simple structure of the mass and stiffness matrices of this
system, its time response can be determined by introducing some shortcuts in the
foregoing general procedure. Indeed, if we subtract the second equation from the
first of the governing scalar equations, we obtain

2Jφ̈ + 4kφ = τ0u(t), φ(0−) = 0, φ̇ (0−) = 0

with φ defined as

φ ≡ θ1−θ2

2
The above ODE for φ can now be rewritten in normal form as

φ̈ +ω2
n φ =

τ0

2J
u(t), φ(0−) = 0, φ̇(0−) = 0

with the natural frequency ωn defined as

ωn ≡
√

2k
J

Thus, all we need to find the response of the system described by the above
equation is the step response of a second-order undamped system. This response
was derived in Sect. 2.5.2. Hence, from linearity,

φ(t) =
τ0

2Jω2
n
(1− cosωnt)u(t)

Now, finding the time response of the given system in the given generalized
coordinates is a simple matter, for all we do is invert the relations defining θ and φ ,
thereby obtaining
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θ1 =
τ0

2J

(
1
2

t2 +
1− cosωnt

ω2
n

)
u(t)

θ2 =
τ0

2J

(
1
2

t2− 1− cosωnt
ω2

n

)
u(t)

Therefore, the motion of the system is the superposition of a uniformly acceler-
ated motion and a harmonic motion, as one should have expected.

5.5.2 Definite Systems

The time response of the system governed by Eq. 5.90, when its frequency matrix
is positive-definite, can be derived by mimicking that of undamped scalar systems.
This is done by recalling the time response of a single-dof mass-spring system to an
excitation g(t), under zero initial conditions, which is reproduced below for quick
reference:

y(t) =
∫ t

0

1
ωn

sinωn(t− τ)g(τ)dτ (5.100)

For a two-dof system, the zero-state response is derived by simply replacing y(t)
and g(t) by their vector counterparts and the natural frequency ωn by the frequency
matrix Ω in the response given in Eq. 5.100, namely,

y(t) =Ω−1
∫ t

0
sinΩ(t− τ)g(τ)dτ (5.101)

where Ω−1 exists because Ω is positive-definite, and hence, nonsingular. While this
form of deriving the time response of the system at hand seems plausible, it is rather
informal, and hence, a verification is warranted. In order to test whether a proposed
solution to an ODE, or to a system of ODEs, with prescribed initial conditions, is
in fact the solution, two items must be verified: (1) when the solution is substituted
into the ODE, this equation, or this system, must hold, and (2) the solution proposed
must verify the initial conditions. From results on the existence and unicity of the
solution of linear systems of ODEs,6 then, the solution proposed is, in fact, the
solution if it passes these two tests.

Now, in order to verify the first condition above, we will need to recall how to
differentiate an integral with variable integration extremes. Specifically, if we have
the function of time, z(t), defined as

z(t)≡
∫ t

0
f (t,τ)dτ (5.102)

6In the theory of ODE it is known that, given a system of linear ODE with prescribed initial
conditions, the system (a) admits a solution and (b) this solution is unique.
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then

ż(t) =
∫ t

0

[
∂
∂ t

f (t,τ)
]

dτ + f (t,τ)
∣
∣
∣
∣
τ=t

(5.103)

and hence, the time-derivative of y(t) given in Eq. 5.101 takes the form

ẏ(t) =
∫ t

0
[cosΩ(t− τ)]g(τ)dτ (5.104)

One more time-differentiation leads to

ÿ(t) =−Ω
∫ t

0
[sinΩ(t− τ)]g(τ)dτ +[cosO]g(t)

where O stands for the 2× 2 zero matrix, and hence,

cos(O) = 1

with 1 defined, as before, as the 2× 2 identity matrix, thereby ending up with
a relation that mimics the scalar case. Therefore, the above expression for ÿ(t)
becomes

ÿ(t) =−Ω
∫ t

0
[sinΩ(t− τ)]g(τ)dτ + g(t) (5.105)

Hence, it is a simple matter to test that the proposed y(t) verifies indeed the given
ODE. To test whether the same expression verifies the initial conditions, we simply
evaluate y(t) and its time-derivative, as given in Eqs. 5.101 and 5.104, at t = 0, as
we do below:

y(0) = Ω−1
∫ 0

0
[sinΩ(−τ)]g(τ)dτ = 0

ẏ(0) =
∫ 0

0
[cosΩ(−τ)]g(τ)dτ = 0

the initial conditions thus being verified as well. Therefore, the proposed function
y(t) is actually the time response sought.

Now, going back to the generalized coordinate x and the generalized speed ẋ, we
have

x(t) = N−1Ω−1
∫ t

0
sinΩ(t− τ)N−1f(τ)dτ (5.106a)

ẋ(t) = N−1
∫ t

0
[cosΩ(t− τ)]N−1f(τ)dτ (5.106b)
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cos

Fig. 5.16 The vibration absorber

Example 5.5.2 (The Vibration Absorber). An interesting application of the zero-
state response of two-dof systems is found in the elimination of resonance in single-
dof systems. Show that by adding one extra degree of freedom to such a system, the
natural frequency of the system can be shifted away from the excitation frequency.

Solution: We are concerned here with a single-dof undamped system of mass m1

and stiffness k1 that is acted upon by a harmonic force f0 cosω f t, where ω f happens
to coincide with the natural frequency of the system,

√
k1/m1. In order to suppress

the undesired resonance, we add a second mass m2 to the foregoing system, coupled
to m1 via a spring of stiffness k2, thereby ending up with the two-dof system of
Fig. 5.16.

As we will show presently, the resonant condition of the single-dof system can be
suppressed by properly selecting the values of m2 and k2. In order to find means of
selecting these values, we derive first the mathematical model of the two-dof system
of Fig. 5.16, which takes the form

Mẍ+Kx = φ(t)

with M and K defined as

M =

[
m1 0
0 m2

]
, K =

[
k1 + k2 −k2

−k2 k2

]
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whence,

N =

[√
m1 0
0

√
m2

]

and so

Ω2 =
1

m1m2

[
m2(k1 + k2) −√m1m2k2

−√m1m2k2 m1k2

]

Moreover,

x≡
[

x1

x2

]
, φ(t)≡ f0 cosω f t

[
1
0

]

Thus, the system takes the normal form of Eq. 5.90 with g(t) defined as

g(t)≡ N−1φ(t) = a(cosω f t), a≡ f0
√

m1

m1

[
1
0

]

Since resonance occurs regardless of the initial conditions, we are interested in
the steady-state response of the system at hand. Hence, initial conditions become
irrelevant in this analysis. Now, the steady-state response of the foregoing system,
as modeled by Eq. 5.90, can be derived by mimicking the corresponding response
of its single-dof counterpart, as derived in Sect. 2.7.3, which is reproduced below
for quick reference:

y(t) =
a

ω2
n −ω2

f

cosω f t

where a is the scalar counterpart of vector a. Now, by properly mimicking the above
response, we obtain

y(t) = (Ω2−ω2
f 1)−1a(cosω f t)

Again, this form of producing the time response of the system under study is
rather informal, a verification thus being warranted. It is left to the reader the task
of verifying that y(t), as given above, actually verifies the ODE, but the initial
conditions need not be verified, for none are given, the reason being that we are
interested here in the steady-state response of the system.

The sole item to determine is now the inverse appearing in the above expression
for y(t). Note that this inverse exists as long as the excitation frequency ω f is not a
natural frequency of the two-dof system. Under the assumption that this is not the
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case, we proceed to calculate that inverse. To this end, we expand first the matrix to
be inverted, namely,

Ω2−ω2
f 1 =

⎡

⎢
⎢
⎣

2k
m1
−ω2

f −k2

m̃

−k2

m̃
k2

m2
−ω2

f

⎤

⎥
⎥
⎦

with

k≡ 1
2
(k1 + k2) , m̃≡√m1m2

i.e., k is the arithmetic mean of k1 and k2, m̃ the geometric mean of m1 and m2.
If we recall the expression derived in Eq. A.18 of Appendix A, the inverse of the
foregoing matrix can be readily derived as

(Ω2−ω2
f 1)−1 =

1
ΔΩ

⎡

⎢
⎢
⎣

k2

m2
−ω2

f
k2

m̃
k2

m̃
2k
m1
−ω2

f

⎤

⎥
⎥
⎦

with ΔΩ defined as

ΔΩ ≡ det
(
Ω2−ω2

f 1
)
= ω4

f −
(

k
m1

+
k2

m2

)
ω2

f +
kk2

m̃2

Hence,

y(t) =
√

m1 f0

m1ΔΩ

⎡

⎢
⎣

k2

m2
−ω2

f

k2

m̃

⎤

⎥
⎦cosω f t

Therefore,

x(t) =
f0

m1ΔΩ

⎡

⎢
⎣

k2

m2
−ω2

f

k2

m̃

⎤

⎥
⎦cosω f t

It is now apparent that if we choose m2 and k2 so that they obey the relation

k2

m2
= ω2

f

then it is possible to keep the first mass stationary, thereby suppressing the
resonance. It is to be noted, however, that this technique of resonance-suppression
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works only for the excitation frequency ω f . If this frequency changes, the secondary
system will have to be changed correspondingly. Moreover, suppressing the above
frequency has been accomplished at the expense of introducing two possible
resonant frequencies, namely, the two natural frequencies of the foregoing two-
dof system. It is left as an exercise for the reader to determine these two natural
frequencies.

An example of time response of a two-dof system to a triangular bump is included
in 5-UDampedTriangPulse2dof.mw.

5.6 The Total Response of Two-dof Systems

The total time response of the system under study is simply the sum of the zero-
input and the zero-state responses given above. Thus, for our semidefinite example
of Sect. 5.3.1, we have

x1(t) = x0 + v0t +(a1− x0)cosωnt +
b1− v0

ωn
sin ωnt

+
1

ωn

∫ t

0

[
ω2

n x(t− τ)+
1

m1
f1(t− τ)

]
sinωnτdτ (5.107)

x2(t) = x0 + v0t− m1

m2

[
(a1− x0)cosωnt +

b1− v0

ωn
sinωnt

]
+

m1 +m2

m2
x(t)

− m1

m2ωn

∫ t

0

[
ω2

n x(t− τ)+
1

m1
f1(t− τ)

]
sinωnτdτ (5.108)

On the other hand, for definite systems,

x(t) = N−1(cosΩt)Nx0 +N−1Ω−1(sinΩt)Nv0

+N−1Ω−1
∫ t

0
sinΩ(t− τ)N−1φ(τ)dτ (5.109)

For the simulation of the systems under study, we will need an expression for ẋ,
which can be readily derived by simple superposition of the expressions obtained in
Eqs. 5.69b and 5.106b, namely,

ẋ = −N−1Ω(sinΩt)Nx0 +N−1 cosΩtNv0

+N−1
∫ t

0
cosΩ(t− τ)N−1φ(τ)dτ (5.110)
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5.6.1 The Classical Modal Method Applied to the Total Response

An alternative procedure to calculate the total time response of two-dof systems is
based on the introduction of modal coordinates, following an approach similar to
that introduced for the zero-input response. To illustrate the procedure, we recall
the mathematical model of the system at hand under nonzero initial conditions and
nonzero input, namely,

Mẍ+Kx = φ(t), x(0) = x0, ẋ(0) = v0 (5.111)

Upon multiplying both sides of the foregoing equation by M−1, we obtain

ẍ+Dx = M−1φ(t), x(0) = x0, ẋ(0) = v0 (5.112)

Now, modal coordinates are introduced:

x = Fξ, ẋ = Fξ̇, ẍ = Fξ̈

Again,

ξ(0) =α, ξ̇(0) = β

and so,

α= F−1x0, β = F−1v0

The mathematical model of Eq. 5.111 thus becomes

Fξ̈+DFξ= M−1φ(t), ξ(0) =α, ξ̇(0) = β

Next we multiply both sides of the foregoing equation by F−1 to obtain

ξ̈+Δ2
Dξ = φ(t), ξ(0) =α, ξ̇(0) = β (5.113a)

where

Δ2
D = F−1DF, f(t) = F−1M−1φ(t), (5.113b)

Equation 5.113a can be written in component form as

ξ̈1 +ω2
1 ξ = f1(t), ξ1(0) = α1, ξ̇1(0) = β1

ξ̈2 +ω2
2 ξ = f2(t), ξ2(0) = α2, ξ̇2(0) = β2

thereby obtaining two single-dof decoupled systems, whose response was obtained
in Sect. 2.6 in the form

ξi(t) = αi cosωit +
βi

ωi
sinωit +

1
ωi

∫ t

0
fi(τ)sin ωi(t− τ)dτ, i = 1,2 (5.114)
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The total time response in the original given coordinates is obtained by a simple
change of variable.

Example 5.6.1 (The Momentum-Preserving System Revisited). Obtain the time re-
sponse of the system introduced in Example 5.5.1, under the same initial and
excitation conditions, using modal coordinates.

Solution: We start by calculating the dynamic matrix:

D = M−1K = ω2
0

[
1 −1
−1 1

]
, ω2

0 ≡
k
m

whose characteristic equation is readily derived as

det

[
ω2−ω2

0 ω2
0

ω2
0 ω2−ω2

0

]

= 0

or

ω2(ω2− 2ω2
0) = 0

The natural frequencies are thus found as

ω1 = 0, ω2 =
√

2ω0

thereby confirming the result obtained in Example 5.5.1. The modal vectors are then
found to be

f1 =

√
2J

2J

[
1
1

]
, f2 =

√
2J

2J

[
1
−1

]

Hence, the modal matrix is

F =

√
2J

2J

[
1 1
1 −1

]

whence,

F−1 =−
√

2J
2

[−1 −1
−1 1

]
=

√
2J
2

[
1 1
1 −1

]

Also,

f(t) = F−1M−1φ(t) =

√
2J

2J

[
1
1

]
τ0u(t)

the mathematical model in modal coordinates thus becoming

ξ̈1 =

√
2J

2J
τ0u(t), ξ1(0) = α1, ξ̇1(0) = β1

ξ̈2 + 2ω2
0 ξ2 =

√
2J

2J
τ0u(t), ξ2(0) = α2, ξ̇2(0) = β2
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The time responses of these uncoupled systems are readily found to be

ξ1(t) = α1 +β1t +

√
2J

4J
t2τ0u(t)

ξ2(t) = α2 cos
√

2ω0t+
β2√
2ω0

sin
√

2ω0t+

√
2J

2J
τ0√
2ω0

∫ t

0
u(θ )sin

√
2ω0(t−θ )dθ

The convolution integral in the above equation can be evaluated in closed form
upon realizing that u(t) = 1 in the interval of integration, thereby obtaining

ξ2(t) = α2 cos
√

2ω0t +
β2√
2ω0

sin
√

2ω0t +

√
2J

4J
τ0

ω2
0

(1− cos
√

2ω0t)u(t)

Since the initial conditions in the given example are all zero, the above time
responses reduce to

ξ1(t) =

√
2J

4J
τ0t2u(t)

ξ2(t) =

√
2J

4J
τ0

ω2
0

(1− cos
√

2ω0t)u(t) (5.115)

Upon changing back to the original generalized coordinates, the foregoing
responses will reveal that they yield exactly the same result as that of Example 5.5.1.

5.7 Damped Two-dof Systems

Here we will go back to the system of Fig. 5.1, if with added dashpots of coefficients
c1, c2 and c3, as displayed in Fig. 5.17.

The governing equations of the system under study take the form

Mẍ+Cẋ+Kx = φ(t), x(0) = x0, ẋ(0) = v0 (5.116)

with M and K already defined in Eq. 5.2, and reproduced below for quick reference,
where C is included. Here, the latter can be readily derived as the Hessian matrix of
the dissipation function of the system, whence,

M =

[
m1 0
0 m2

]
, C =

[
c1 + c2 −c2

−c2 c2 + c3

]
, K =

[
k1 + k2 −k2

−k2 k2 + k3

]
(5.117a)

Moreover,

x≡
[

x1

x2

]
, φ(t)≡

[
φ1(t)
φ2(t)

]
(5.117b)
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Fig. 5.17 A damped two-dof system

We thus have that M is, in general, positive-definite, while C and K are at
least positive-semidefinite. Moreover, in order to derive the time response of this
system, we begin by expressing the foregoing model in normal form. This is done
by factoring M as in Sect. 5.2 and introducing the same change of variable as before,
which leads to the model

ÿ+Δẏ+Ω2y = g(t), y(0) = y0, ẏ(0) = s0 (5.118)

with Ω and g(t) defined as in the undamped case, while Δ is defined as

Δ≡ N−1CN−1 (5.119)

and should not be mistaken by the dynamic matrix introduced in Eq. 5.23. Note that,
by virtue of their definitions, Ω is either positive-definite or positive-semidefinite,
depending on whether K is positive-definite or semidefinite. By the same token, Δ
is positive-definite if C is; if C is positive-semidefinite, then Δ is correspondingly
semidefinite.

The question that arises naturally is whether we can perform a modal analysis of
damped systems, similar to that of undamped systems. That is, what are the natural
frequencies and the natural modes of damped systems? The answer to this question,
in general, is far from obvious and constitutes, even nowadays, when tremendous
progress has been achieved in the modal analysis of mechanical systems, an open
question. To be sure, particular instances of two-dof systems exist, and, for that
matter, of n-dof systems as well, for which a modal analysis in the form of that
pertaining to undamped systems, is possible. Such instances comprise basically
three cases, namely,

1. Systems whose damping and stiffness matrices are both proportional to a third
matrix.
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2. Systems with proportional damping, whose damping matrix C is a linear
combination of the mass and the stiffness matrices. This kind of systems are
seldom found in practice as discrete systems, but are found as lumped-parameter
approximations of continuous systems.

3. Semidefinite systems, i.e., systems with a rigid mode. Note that, in this kind of
systems, the 2×2 damping and stiffness matrices are both semidefinite and share
the same eigenvectors.

As an example of the first kind of the systems described above we have the test
pad of Example 5.3.3, if we add identical dashpots of coefficient c to each end of
the bar, i.e., in parallel with the springs of Fig. 5.10. For the generalized coordinates
x1 and x2 defined in the same figure, the mass and stiffness matrices are as before,
the damping matrix becoming

C =

[
c 0
0 c

]
(5.120)

It is now apparent that both the damping and the stiffness matrices are pro-
portional to the same matrix, namely, the 2× 2 identity matrix. The governing
equations, in scalar form, become now

1
6

m(2ẍ1 + ẍ2)+ cẋ1 + kx1 = 0 (5.121a)

1
6

m(ẍ1 + 2ẍ2)+ cẋ2 + kx2 = 0 (5.121b)

If we now add the two above equations sidewise and subtract the first equation
from the second likewise, we obtain, after simplifications,

ẍ+ 2
c
m

ẋ+ 2
k
m

x = 0 (5.122a)

θ̈ + 6
c
m

θ̇ + 6
k
m

θ = 0 (5.122b)

where x(t) denotes the coordinate of the c.o.m., while θ (t) the rotation of the bar, as
indicated in Fig. 5.10. It is now apparent that, as in the undamped case, the motion
of the c.o.m. is decoupled from the rotation about the c.o.m. We can thus distinguish
two sets of system parameters, namely, the natural frequency and the damping ratio
of the translation of the c.o.m., ωC and ζC, respectively, and the same items of the
rotation about the c.o.m., namely, ωθ and ζθ , defined below:

ωC ≡
√

2
k
m
, ζC ≡

√
2km
km

c, ωθ ≡
√

6k
m
, ζθ ≡

√
6km

2km
c,

Hence, it is apparent that ωθ > ωC and ζθ > ζC. It is thus possible that the
rotational mode be overdamped, while the translational mode be underdamped. The



5.7 Damped Two-dof Systems 369

zero-input response of each of these modes can be readily found from the results of
Sect. 2.3.2. Under the assumption that the two modes are underdamped, we obtain

x(t) =
e−ζCωCt
√

1− ζ 2
C

[(√
1− ζ 2

C cosωCt + ζC sinωCt

)
x0 +

1
ωC

(sinωCt)v0

]

θ (t) =
e−ζθ ωθ t
√

1− ζ 2
θ

[(√
1− ζ 2

θ cosωθ t + ζθ sinωθ t

)
θ0 +

1
ωθ

(sinωθ t)ω0

]

where ωC and ωθ are the damped frequencies of the translational and rotational
modes, respectively. Moreover, x0, v0, θ0 and ω0 are the initial values of x(t), ẋ(t),
θ (t) and θ̇ (t), respectively. Now, the response of the system in the generalized
coordinates is obtained from the relations

x1(t) = x(t)− l
2

θ , x2(t) = x(t)+
l
2

θ (5.123)

and hence,

x1(t) =
e−ζCωCt
√

1− ζ 2
C

[(√
1− ζ 2

C cosωCt + ζC sin ωCt

)
x0 +

1
ωC

(sin ωCt)v0

]

− l
2

e−ζθ ωθ t
√

1− ζ 2
θ

[(√
1− ζ 2

θ cosωθ t + ζθ sinωθ t

)
θ0 +

1
ωθ

(sinωθ t)ω0

]

x2(t) =
e−ζCωCt
√

1− ζ 2
C

[(√
1− ζ 2

C cosωCt + ζC sin ωCt

)
x0 +

1
ωC

(sin ωCt)v0

]

+
l
2

e−ζθ ωθ t
√

1− ζ 2
θ

[(√
1− ζ 2

θ cosωθ t + ζθ sinωθ t

)
θ0 +

1
ωθ

(sinωθ t)ω0

]

whence it is apparent that the time response in the given generalized coordinates
is a linear combination of exponentially decaying harmonics of the type of those
occurring in the zero-input response of single-dof systems.

In order to exemplify the second kind of the above-mentioned damped systems,
let us consider the system shown in Fig. 4.10, which is reproduced here as Fig. 5.18
for quick reference.

We derived in Sect. 4.6 the governing equations of this system in the form

m1ẍ1 + c(ẋ1− ẋ2)+ k(x1− x2) = 0

m2ẍ2− c(ẋ1− ẋ2)− k(x1− x2) = 0
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Fig. 5.18 A two-dof semidefinite system

Moreover, in the same section, we decoupled the two modes of the system, thus
obtaining

ẍ1 + 2ζrmeqωeqẋ1 +ω2
eqx1 = A+Bt

Furthermore, we assume that the initial conditions are given in the form

x(0)≡ x0 =

[
a1

a2

]
, ẋ(0)≡ ẋ0 =

[
b1

b2

]

and hence, constants C1 and C2 of Sect. 4.6 become

C1 = m1b1 +m2b2, C2 = m1a1 +m2a2

whence A and B turn out to be

A =
c(m1b1 +m2b2)+ k(m1a1 +m2a2)

m2
, B =

k(m1b1 +m2b2)

m2

Now, the response x1(t) of the above system consists of three parts: (1) the zero-
input response; (2) the response to a constant excitation; and (3) the response to a
linear excitation, the last two under zero initial conditions. The first part was derived
in Sect. 2.3.2, the last two in Sect. 2.7.4, and need not be repeated here.

Finally, the third case of damped systems can be exemplified also with the system
of Fig. 5.18 for, in this case, K and C are proportional to the same matrix A in the
form

K = kA, C = cA

with A given by

A =

[
1 −1
−1 1

]

We now turn to the general case of damped two-dof systems. As a consequence
of the foregoing discussion, the zero-input response of damped second-order
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systems, in general, does not take the form of a single exponentially decaying
harmonic. That is, similar to the zero-input response of undamped two-dof sys-
tems, the zero-input response of damped two-dof systems is not, in general, an
exponentially decaying harmonic. The natural question to ask is, then, whether,
under special circumstances, the said response is shaped by a simple exponentially
decaying harmonic. By the latter we mean a function φ(t) of the form

φ(t) = Aeλ t (5.124)

where λ is, in general, a complex number—in order to account for undamped,
underdamped, critically damped and overdamped systems—and A is a constant. In
order to answer this question, then, we would have to look for zero-input responses
of the form

x(t) = eλ tf (5.125a)

where f would play the role of a modal vector. Note that, if the zero-input response
of a damped two-dof system takes the form of Eq. 5.125a, then

ẋ(t) = λ eλ tf (5.125b)

ẍ(t) = λ 2eλ tf (5.125c)

Upon substitution of the foregoing expressions in the governing equation,
Eq. 5.118, with g(t) = 0, we obtain

(λ 21+λ D+Ω2)f = 0 (5.126)

Therefore, simple exponentially decaying motions are possible with complex
exponent λ , provided that λ verifies Eq. 5.126, which represents a generalized
eigenvalue problem. Contrary to the simple eigenvalue problem derived in con-
nection with undamped two-dof systems, solutions to the more general problem
of Eq. 5.126 are less known. Note that λ in the above problem plays the role of an
eigenvalue, while f that of an eigenvector. A trivial solution f of Eq. 5.126, f = 0,
is obviously, of no interest to us, and will henceforth be discarded. We are thus
interested in nontrivial solutions f �= 0, which calls for the matrix in parenthesis in
Eq. 5.126 to be singular, i.e.,

det(λ 21+λ D+Ω2) = 0 (5.127)

A close look at Eq. 5.127 reveals that each entry of the matrix in parenthesis is
quadratic in λ . Moreover, since that matrix is of 2× 2, its determinant is quartic
in λ . As a consequence, the characteristic equation of the problem under study is a
fourth-order polynomial, of the form

P(λ )≡ a0 + a1λ + a2λ 2 + a3λ 3 +λ 4 = 0 (5.128)
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which thus admits up to four complex solutions. Moreover, since the entries
of the D and Ω2 matrices are real, the {ak}3

0 coefficients of the characteristic
polynomial P(λ ) are all real, and hence, its complex roots are bound to appear
in complex-conjugate pairs. Computing the four roots of the foregoing equation is
routine work with currently available software. Indeed, to compute the roots of a
quadratic polynomial one can resort to either numerical or symbolic-computations
software. Of the former, one can name IMSL or Matlab, while Macsyma, Maple and
Mathematica are meant for symbolic computations.

Once the four complex eigenvalues {λk}4
1 of the problem at hand are available,

the corresponding normal modes, {fk}4
1 are calculated from Eq. 5.126. Note that,

since the eigenvalues are, in general, complex, the modal vectors are expected to be
complex as well. Hence, the computations must be performed with complex arith-
metic. However, the solution of the eigenvalue problem can be readily formulated in
real arithmetic, which, additionally, allows for a graphical solution of the foregoing
eigenvalue problem. Indeed, all it takes to transform the problem into the real field
is represent the eigenvalue λ as

λ ≡ x+ jy (5.129)

where, x and y are two real numbers, representing the real and the complex parts
of λ . Under these conditions, then, Eq. 5.126 leads to two real equations, one for its
real part and one for its imaginary part, namely,

f1(x,y) = 0, f2(x,y) = 0 (5.130)

Now, the solution of the foregoing system of two equations in two unknowns
can be readily computed using either a purely numerical approach, e.g., via a
Newton-type method [1], or a semigraphical approach using the plotting capabilities
of commercial software. We outline the latter with a numerical example in the
subsection below.

Example 5.7.1 (Modal Analysis of a Damped Test Pad). Shown in Fig. 5.19 is an
asymmetric test pad, similar to the one of Example 5.3.3. The difference with the
latter is that the pad of this example has a spring-dashpot suspension on each of
the ends of the the rod and, moreover, the c.o.m. of the pad is offset with respect
to the centerline. The model at hand consists of a body with mass m and centroidal
moment of inertia J, supported by a damped suspension. Moreover, the c.o.m. C of
the pad is located a distance d from the centerline. Find the eigenvalues of the system
and decide whether each mode is underdamped, critically damped or overdamped.

Solution: The dynamics model takes the form of Eq. 5.116, with

x≡
[

x
θ

]
, ẋ≡

[
ẋ
θ̇

]
, ẍ≡

[
ẍ
θ̈

]
, φ≡

[
0
0

]
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Fig. 5.19 Asymmetric test pad with damped suspension

and the coefficient matrices are

M≡
[

m 0
0 J

]
(5.131)

C≡
[

c1 + c2 c2(l + d)− c1(l− d)

c2(l + d)− c1(l− d) c1(l− d)2 + c2(l + d)2

]

(5.132)

K≡
[

k1 + k2 k2(l + d)− k1(l− d)

k2(l + d)− k1(l− d) k1(l− d)2 + k2(l + d)2

]

(5.133)

Moreover,

N =

[√
m 0

0
√

J

]

Now, using matrix N we can obtain the normal equation of the system at hand,
and hence, its characteristic equation, from which the two nonlinear equations
(5.130) can be derived. We assume the numerical data shown below:

m = 1459 kg, J = 2168 kg m2, l = 1.524 m, d = 0.1524 m,

k1 = 35277 N/m, k2 = 38217 N/m, c1 = 3500 Ns/m, c2 = 3800 Ns/m

Using the foregoing data, the two matrices Δ and Ω2 are found to be

Δ=

[
5.0034 0.8826
0.8826 7.9630

]
, Ω2 =

[
50.3729 8.8169
8.8169 80.1513

]
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Fig. 5.20 C1 (dashed) and C2 (solid) contours of Eq. 5.134

Table 5.1 Numerical values
of each eigenvalue

Intersection point 1 2 3 4

Real part (x) −2.380 −4.103 −2.380 −4.103
Imag part (y) 6.503 8.107 −6.503 −8.107

The two scalar equations derived from the associated characteristic equation are
then

f1(x,y) ≡ 3959.71+ 786.58x+169.59x2+ 12.97x3+ x4− 169.59y2

−38.90xy2− 6x2y2 + y4 = 0

f2(x,y) ≡ y(786.58+ 339.17x+38.90x2+ 4x3− 12.97y2− 4xy2) = 0 (5.134)

Each of the two foregoing equations, then, defines a contour in the x-y plane.
Furthermore, we denote by Ck the contour defined by the kth equation, and obtain
their plots as shown in Fig. 5.20, in which C2 is shown with solid line.

It should be noted that the x and the y axes represent the real and imaginary
parts of the system eigenvalues, respectively. Moreover, the two contours intersect
at four points, corresponding to the four complex eigenvalues of the system. The
coordinates of the intersection points are given in Table 5.1.

Furthermore, the four eigenvalues occur as two complex conjugate pairs, as
expected. Now, we recall here that a single-dof system can be underdamped,
critically damped or overdamped, depending, on the value of ζ . In two-dof systems,
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one mode may be underdamped, while the other overdamped. For that matter, one
mode may even be undamped. In the case at hand, given that each mode admits
complex conjugate eigenvalues, both are underdamped.

The reader is invited to find the damping ratio and the natural frequency
associated with each of the two pairs of eigenvalues of Table 5.1, which can be
done using the results of Example A.3.4.

5.7.1 Total Response of Damped Two-dof Systems

In order to find the total response of damped two-dof systems, all we need is
their zero-state response, and then, superimpose it with the foregoing zero-input
response. To derive the total response, we define s(t) ≡ ẏ(t) and solve for ṡ ≡ ÿ
from Eq. 5.118, thereby obtaining a system of four first-order linear ODEs, namely,

ẏ = s (5.135a)

ṡ = −Ω2y−Δs+ g(t) (5.135b)

with the initial conditions y(0) = y0 and ẏ(0) = s0. We can now write Eqs. 5.135a
and b in state-variable form as a four-dimensional system of linear ODEs, namely,

ζ̇ = Aζ+Bg(t), ζ(0) = ζ0 (5.136a)

where

A≡
[

O 1
−Ω2 −Δ

]
, B≡

[
O
1

]
, ζ ≡

[
y
s

]
(5.136b)

In the above definitions, A is a 4× 4 matrix, while B is a 4× 2 matrix, ζ is a four-
dimensional state-variable vector, and g(t) was defined in Eq. 5.91 as N−1f(t).

The total response of damped one-dof systems in state-variable form was
obtained in Chap. 2. In that case, the system was represented by a first-order
equation formally identical to Eq. 5.136a, with matrix A of 2× 2 and vector z of
dimension 2. Moreover, rather than a 4× 2 matrix B, we had in that model a two-
dimensional vector b and the input to the system, f (t), was a scalar. Here, the input
is a two-dimensional vector. By introducing the proper substitutions, then, the total
response of the system takes the form

ζ(t) = eAtζ0 +
∫ t

0
eA(t−τ)Bg(τ)dτ (5.137)

Of course, the foregoing time response is given in terms of the transformed
variables y = Nx(t), ẏ(t) ≡ s(t) = Nẋ(t) = Nv(t). In order to express the same
response in the original state variables x(t) and v(t), a back-transformation is in
order:

ζ(t) = Zz(t), Z =

[
N O
O N

]
(5.138)

The derivations of this expression is left as as exercise.
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It is now apparent that the calculation of the time response of the system at
hand involves the calculation of the exponential of a 4 × 4 matrix and of its
convolution with a given function of time. Here, unfortunately, we cannot mimic
the response of the system under study as we did in the case of undamped systems.
The fundamental reason why this mimicking is not possible here lies in that one
‘mode’ of the system may be underdamped, while the other is overdamped, and
so, the general time response cannot be derived from any particular time response
of single-dof systems. Note, moreover, that the calculation of the aforementioned
matrix exponential involves the four eigenvalues of matrix A, which can be found
using a numerical procedure for general square matrices, for the said matrix is
apparently non-symmetric. Hence, complex eigenvalues are likely to occur, but,
since the matrix entries are all real, these eigenvalues should appear in complex-
conjugate pairs, such as in the case of the general eigenvalue problem of Eq. 5.126.
As a matter of fact, the two characteristic equations, that were obtained in the
foregoing equation, and that associated with the 4× 4 matrix A, yield the same
eigenvalues.

Example 5.7.2 (The Whirling of Shafts, a Simple Case). Obtain the trajectory of
point C of the rotor fixedly attached to the whirling shaft introduced in Exam-
ple 4.5.1 when the shaft is turning at a constant angular velocity ω .

Solution: Since this system is decoupled, i.e., its two generalized coordinates do not
appear simultaneously in the same governing equation, its response reduces to that
of two independent single-dof systems. For quick reference, we reproduce below
the governing equations of the system under study:

ẍ+ 2ζ1ω1ẋ+ω2
1 x = ω2ecosωt

ÿ+ 2ζ2ω2ẏ+ω2
2 y = ω2esinωt

with ωk and ζk defined, for k = 1,2, as

ωk ≡
√

kk

m
, ζk ≡ ck

2mωk

We are interested in the steady-state response of the system. Moreover, since the
two foregoing equations are already decoupled, their steady-state responses are as
derived in Sect. 2.7.3, i.e., as

x(t) = Mx cos(ωt +φx)

y(t) = My sin(ωt +φy)

where Mx and My denote the magnitude of the response, while φx and φy the
corresponding phase, namely,

Mx =
er1√

(1− r2
1)

2 +(2ζ1r1)2
, φx =− tan−1

(
2ζ1r1

1− r2
1

)
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My =
er2√

(1− r2
2)

2 +(2ζ2r2)2
, φy =− tan−1

(
2ζ2r2

1− r2
2

)

with rk defined as the frequency ratio in the x and y directions, for k = 1,2, namely,

rk ≡ ω
ωk

What we want now is to find the trajectory described by point C of the rotor
of Fig. 4.6. To this end, we have to eliminate the parameter t from the two above
expressions for x(t) and y(t). We thus expand the foregoing expressions in the forms

x(t) = Acosωt−Bsinωt

y(t) = C cosωt +Dsinωt

with coefficients A, B, C and D defined as

A ≡ Mx cosφx, B≡Mx sinφx

C ≡ My cosφy, D≡My sinφy

If we want to eliminate t from the above relations, then, we must solve for the
trigonometric functions involved in the above equations, and then equate the sum of
the squares of the expressions thus resulting to unity, thereby obtaining an equation
in x and y, free of t, which describes the trajectory of point C. We thus write the
above-mentioned equations in vector form as

[
A −B
C D

][
cosωt
sinωt

]
=

[
x
y

]

Now, if we denote by Δ the determinant of the above matrix coefficient, we obtain

[
cosωt
sinωt

]
=

1
Δ

[
D B
−C A

][
x
y

]

with Δ reducing to

Δ = det

[
A −B
C D

]
= AD−BC = MxMy cos(φx +φy)

Moreover, let

e≡
[

cosωt
sinωt

]
, r≡

[
x
y

]
, P≡

[
D B
C A

]
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and hence, the above expression for the vector of harmonic functions of ωt can be
rewritten as

e =
1
Δ

Pr

Now, e is a unit vector, and hence, upon making its magnitude equal to unity in
the above equation, a quadratic equation in r is obtained, namely,

rT PT Pr = Δ2, PT P =

[
M2

y MxMy sin(φx−φy)

MxMy sin(φx−φy) M2
x

]

whence the desired trajectory, f (x,y) = 0, can be readily derived, namely,

f (x,y) ≡ rT PT Pr−Δ2 = 0

which is, apparently, a quadratic equation, and hence, the trajectory sought is a
conic section. From elementary analytic geometry, the conic is (a) an ellipse if
PT P is positive-definite; (b) a parabola if the same matrix is semidefinite; and (c)
a hyperbola or two lines passing through the origin if the matrix is sign-indefinite.
Because of the form of the matrix involved, which can only be positive-definite or
semidefinite, the third case is ruled out. All we are left with is to investigate the first
two cases. From the nature of the problem it should be expected that the trajectory
be an ellipse, which is the case, because PT P is, indeed, positive-definite. To show
this, all we have to do is verify that its determinant is in fact positive, but this is the
case, for

det(PT P) = det

[
C2 +D2 BD−AC
BD−AC A2 +B2

]

i.e.,

det(PT P) = det

[
M2

y MxMy sin(φx−φy)

MxMy sin(φx−φy) M2
x

]

= M2
x M2

y cos2(φx−φy)≥ 0

the said matrix becoming singular only if the difference between the two phase
angles is a multiple of 90◦. We will assume that this is not the case and, moreover,
that M2

x > M2
y and sin(φx − φy) > 0, for purposes of illustration. Note that, if

the above assumptions do not hold, the ensuing analysis is still possible, if with
the necessary adaptations to the new conditions. We thus determine below the
parameters of the elliptical trajectory, namely, the magnitude and the orientation of
its semiaxes, the former being given by the eigenvalues, the latter by the eigenvectors
of PT P. Thus, all we need is an eigenvalue analysis of the same matrix, which can
be readily accomplished with the aid of the Mohr circle. We show in Fig. 5.21 this
circle, along with its parameters, from which the ellipse of Fig. 5.22 is derived.
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Fig. 5.21 The Mohr circle of PT P

Fig. 5.22 The elliptical trajectory of point C of the rotor of mounted on a shaft under whirling

From the Mohr circle of Fig. 5.21 it is apparent that the two eigenvalues of PT P,
π1 and π2, are given by

π1 =
M2

x +M2
y

2
− r, π2 =

M2
x +M2

y

2
+ r
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where r is, in turn, given by

r ≡ 1
2

√
M4

x − 2M2
x M2

y cos2(φx−φy)+M4
y

while the angle α defining the inclination of the semiaxes of the ellipse is given by

α = tan−1

⎛

⎝ 2MxMy sin(φx−φy)

M2
y −M2

x +
√

M4
x − 2M2

x M2
y cos2(φx−φy)+M4

y

⎞

⎠

Now we introduce a new set of coordinates, x′-y′, oriented along the eigenvectors
e1 and e2 of matrix PT P. Thus, the x′ and y′ axes make each an angle α with the x
and y axes, respectively. In the new set of coordinates, the quadratic equation derived
above for r becomes

π1(x
′)2 +π2(y

′)2 = Δ2

or

(x′)2

Δ2/π1
+

(y′)2

Δ2/π2
= 1

which is the equation of an ellipse of semiaxes

a =
Δ√
π1

, b =
Δ√
π2

as shown in Fig. 5.22.
It is noteworthy that the center of mass turns around the axis of rotation with a

periodic motion that can be either in the same direction as the rotation of the rotor
or opposite to it, as we will show presently. Indeed, the angle θ made by line OC of
Fig. 4.6d with the x axis is given by

tanθ =
y
x
=

My sin(ωt +φy)

Mx cos(ωt +φx)

Upon differentiating the foregoing expression with respect to time, we obtain

θ̇ =
xẏ− yẋ
x2 + y2

and hence,

sgn(θ̇ ) = sgn(xẏ− yẋ)

with

xẏ− yẋ = ωMxMy cos(φx−φy)
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and hence,

sgn(θ̇ ) = sgn[cos(φx−φy)]

From the expressions for tanφx and tanφy given above, the harmonic functions
of the phase angles are readily derived as

cosφx =
r2

1− 1
√
(r2

1− 1)2 +(2ζ1r1)2
, cosφy =

r2
2− 1

√
(r2

2− 1)2 +(2ζ2r2)2

sinφx =
2ζ1r1√

(r2
1− 1)2 +(2ζ1r1)2

, sin φy =
2ζ1r2√

(r2
2− 1)2 +(2ζ2r2)2

whence,

cos(φx−φy) =
(r2

1− 1)(r2
2− 1)− 4ζ1ζ2r1r2√

(r2
1− 1)2 +(2ζ1r1)2

√
(r2

2− 1)2 +(2ζ2r2)2

Therefore,

sgn(θ̇ ) = sgn[(r2
1− 1)(r2

2− 1)− 4ζ1ζ2r1r2]

thus concluding that if the foregoing expression inside the brackets is positive, the
ellipse is traced in the same direction as the rotation of the rotor; if negative, then
the ellipse is traced in the opposite direction. The reader is invited to analyze under
which conditions the term inside the brackets of the above equation vanishes.

In summary, then, the trajectory of the center C of the rotor, described upon
whirling of the shaft, is an ellipse of semiaxes given by the eigenvalues and
the eigenvectors of matrix PT P. Note that the entries of this matrix depend on
the mechanical parameters of the system, and hence, if the ellipse is determined
experimentally, the said parameters can be estimated from these measurements.
Knowing these parameters is essential for a proper operation, i.e., away from
resonant conditions.

5.8 Exercises

5.1. (To be assigned only if Exercise 4.7 was previously assigned) We refer to the
system of Fig. 4.12, representing the two-dof iconic model of a terrestrial vehicle,
under the conditions described in Exercise 4.7. If we assume that the bump does not
affect the horizontal, uniform motion of the vehicle, determine its time response,
namely x1(t) and x2(t), for t ≥ 0, if time is set equal to zero at the instant in which
the vehicle hits the bump.
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Hint: It will be helpful to recall the total time response of a single-dof undamped
system to the function sin(ωt)u(t), as given in Eq. 2.143, which is reproduced below
in a form suitable for the problem at hand:

xS(t) = (ω2
n −ω2)−1(sin ωt−ωω−1

n sinωnt)u(t)

Also note that

sin[(ωt)1] =
[

sinωt 0
0 sinωt

]
= (sinωt)1

5.2. (To be assigned only if Exercise 4.4 was previously assigned) With reference
to the system of Fig. 4.15, a horizontal force f (t) = F0 cosω f t is applied to the
frame, that causes the system to oscillate with a “small-amplitude” motion. Obtain
an expression for the magnitude and the phase angle of the rod angle θ vs. ω f , and
sketch the corresponding Bode plots for light damping. Discuss the cases (1) c → 0
and (2) k → 0.

5.3. If we assume that the tires of the subway car of Fig. 4.9 are rigid, the system
reduces to one with two dof. Derive expressions for the associated 2× 2 mass and
stiffness matrices, and find the natural frequencies and the natural modes of the
system.

5.4. A more realistic model of the belt-pulley transmission of Fig. 5.8 should
include a dashpot of damping coefficient c in parallel with each of the springs shown
in that figure. For the damped model, assume that a torque τ = τ0 cosωt acts on the
pulley of moment of inertia J1. Find the Bode plots of the steady-state response of
the flexible mode ψ2(t) defined as in Example 5.3.1, i.e., as

ψ2(t)≡ r1θ1(t)− r2θ2(t)

5.5. Let us assume that the parameters of the system of Fig. 4.16 have numerical
values yielding the numerical mass and stiffness matrices

M =

[
5 0
0 5

]
Kg ·m2, K =

[
10 −10
−10 10

]
Nm

For the foregoing matrices, find the time response of the system under the
conditions described below: As the system is at rest, an impulsive moment τ0δ (t) is
applied on each of the two large disks, with τ0 being a constant with units of Nms
and δ (t) being the unit-impulse function. Moreover, the two foregoing moments
balance each other.

5.6. The iconic model of Fig. 4.10 represents a locomotive of mass m2 pulling a car
of mass m1. Consider that the coupling between locomotive and car is viscoelastic,
with an equivalent natural frequency of 10 Hz and a damping ratio of 0.7071.
Moreover, the locomotive is being driven by an electric motor that delivers a force
F(t) = F0(10+ cosωt) pulling to the right. Find the steady-state response of the
system.
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5.7. Find the natural frequencies and the natural modes of the overhead crane of
Fig. 1.19 for “small-amplitude” oscillations about a stable equilibrium state, in the
absence of damping. As well, assume that the slider travels at a uniform speed to
the right, with the rod in a vertical, stable position, and subject to no external force.
Under these conditions, the slider encounters a stationary obstacle on its way, with
which it undergoes a perfectly elastic collision. Find the time response of the system
if the speed of the slider just prior to the collision is v0.

5.8. Here, we consider the iconic model shown in Fig. 5.10, but disregarding the
ball. This model represents now an aircraft engine undergoing tests on an elastic
foundation. Find the time response of the pad when the engine exerts on the pad the
excitation described below:

(a) A moment τ(t) and a vertical force f (t) applied at its center of mass
(b) A vertical force f (t) applied at point R

For the two above items, assume that τ(t) and f (t) are given as

τ(t) =
1
2

τ0

[
1+ sat

(
2t−T

T

)]
, f (t) =

1
2

f0

[
1+ sat

(
2t−T

T

)]

where the saturation function sat(x) is defined in Eq. 1.37 and sketched in Fig. 1.24b.

5.9. Two 2× 2 matrices with real entries are given below:

M =

[
a b
c d

]
, K =

[
e f
g h

]

(a) State the conditions on the entries of M under which it can represent the mass
matrix of a two-degree-of-freedom mechanical system.

(b) State the conditions on the entries of K under which it can represent the stiffness
matrix of a two-degree-of-freedom mechanical system. Here, allow for the
possibility of rigid modes.

(c) We now assume that

M =

[
a b
b a

]
, K =

[
e −e
−e e

]
, a > 0, a2 > b2, e > 0

are the mass and the stiffness matrices of a certain two-degree-of-freedom
mechanical system. Find its natural frequencies and its natural modes.

5.10. A robotic joint is modeled as a mechanical system with rotors of moments of
inertia J and 2J, connected by a viscoelastic coupling (a parallel array of a torsional
spring and a torsional dashpot) with torsional stiffness k and torsional damping
coefficient c, as indicated in Fig. 5.23.
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Fig. 5.23 Robotic joint

Fig. 5.24 An undamped model of an unloaded press

(a) Derive the mathematical model of the system in terms of the angles θ1 and θ2

shown in Fig. 5.23 if we know that the spring in the coupling is unloaded when
these two coordinates are identical.

(b) Under the assumption that τ2(t) =−τ1(t) and that all initial conditions are zero,
the torque τ(t) experienced by the coupling at its ends can be expressed in the
form

τ(t) =−(keθ1 + ceθ̇1)

Find expressions for ke and ce in terms of the system parameters.
(c) Under the same conditions as in item (b) above, τ1(t) is modeled as a

harmonic torque of amplitude τ0 and frequency ω . Thus, the steady-state torque
transmitted to the coupling is also harmonic with an amplitude τT and a phase
angle ψ . Using Bode plots, rather than lengthy calculations, find the ratio τT /τ0,
if ζe = 0.5 and ωe = ω/5, where ce = 2ζeωeJ and ke = ω2

e J.

5.11. A more elaborate, if undamped, model of the press described in Exercise 2.29
is shown in Fig. 5.24. For the case in which ω = 10

√
k/m, find the amplitude of the

oscillations undergone by the mass at the right.
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Fig. 5.25 An undamped model of a loaded press

Fig. 5.26 A test pad mounted on an elastic suspension

5.12. When the press of Fig. 5.24 is loaded, the press-load system can be repre-
sented by the iconic model of Fig. 5.25. Find the time response of the system, still
under the assumption that ω = 10

√
k/m.

5.13. Here, we consider the iconic model of Fig. 5.26 that represents an aircraft
engine undergoing tests on an elastic foundation. Find the amplitudes of the
oscillations exhibited by each end of the pad when the engine exerts a moment
τ(t) = τ0 cosω f t on the pad, where ω f = (3/2)

√
k/m. To do this, note that the

mathematical model of the system can be cast in the form

Mẍ+Kx =
τ0

l
(cosω f t)b

It will be helpful to recall the steady-state time response of a single-dof
undamped system to the function Acos(ω f t), as derived in Sect. 2.7.3, which is
reproduced below in a form suitable for the problem at hand:

y(t) = (ω2
n −ω2

f )
−1Acosω f t
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Fig. 5.27 Drive function of the Geneva wheel of the mechanism of Fig. 4.13

5.14. (To be assigned only if Exercise 4.2 was previously assigned) We analyze
here the model of the driving mechanism of the mechanism shown in Fig. 4.13, for
ψp(t) given as

ψp(t) =

⎧
⎪⎨

⎪⎩

− π
3T

t, for 0≤ t ≤ T/2;

π
3T

(t−T )+ arctan[ f (t)], for T/2≤ t ≤ T

and displayed in Fig. 5.27, while f (t) is given, in turn, as

f (t) =− sinω0t
2+ cosω0t

(a) Compute the coefficients of the first Nh harmonic components of the foregoing
periodic function, by dividing the period in 2Nh intervals of equal length.
Produce a table of error e in the Fourier approximation of ψp(t) vs. Nh, for
Nh = 1, 2, 3, 4, 5, 10, and 20. Comment on your tabulated results.

(b) Find the steady-state response of the system, i.e., θ1(t) and θ2(t), for Nh

harmonics of the Fourier expansion of ψp(t). Choose the smallest value of Nh

that will give you an error smaller than 0.05 in the approximation of ψp(t).
Plot θ1(t) and θ2(t) vs. time in the [0, 4T ] interval. Note that these plots are
composed of a periodic and a nonperiodic part.
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Fig. 5.28 A gearbox with
elastic shafts

For the calculation, use the numerical values

ωn = 10ω0 =

√
k
J
, ω0 = 0.3 s−1

(c) In order to design the two shafts of the mechanism, we need the root-mean-
square value of the torque experienced by each shaft, which you are asked to
provide. Find also the maximum absolute values of these torques.

Hint: Example 5.5.1 may be helpful in solving this problem.

5.15. A gearbox is modeled as shown in Fig. 5.28, which comprises two identical
gears of moments of inertia J1 and N1 teeth, meshing with two identical pinions of
moments of inertia J2 and N2 teeth. All three shafts have stiffness k. For the relations
given below:

J1 = J, J2 =
9

16
J,

N1

N2
=

4
3
,

find the natural frequencies and natural modes of the system. Sketch the latter.

5.16. Derive a procedure to obtain the zero-state response of a two-dof semidef-
inite system that does not preserve the generalized—translational or angular—
momentum. To this end, use as an example the belt-pulley system of Fig. 5.8.

5.17. We revisit here the vibration absorber introduced in Example 5.5.2. Show
that the solution x(t) derived from y(t) = (Ω2−ω2

f 1)−1a(cosω f t) indeed verifies
the mathematical model of the two-dof system at hand. Furthermore, find the natural
frequencies and the modal vectors of the same two-dof system.
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5.18. We refer here to the rotor-shaft system of Fig. 4.6a, as introduced in
Example 4.5.1. Investigate under which conditions θ̇ vanishes and give a physical
interpretation of this case.

Reference

1. Kahaner D, Moler C, Nash S (1989) Numerical methods and software. Prentice-Hall, Inc.,
Englewood Cliffs, NJ



Chapter 6
Vibration Analysis of n-dof Systems

Time is the measure of change.

Aristotle’s Physics, Chapter 12

6.1 Introduction

The vibration analysis of n-dof systems is the subject of this chapter, the focus
being undamped systems, while only outlining the analysis of damped systems
in Sect. 6.6. The analysis of n-dof undamped systems parallels that of their two-
dof counterparts, the only difference being that the calculations that were possible
in graphical form for the latter are not possible for the former. Hence, the
analyst has to resort to a numerical procedure to implement these calculations.
The widespread availability of pertinent mathematical software, however, eases
the analysis tremendously. Therefore, frequent mention will be made to suitable
software, as the need arises.

The methods applicable to undamped systems, however, cannot be readily ported
into their damped counterparts. Indeed, a closed-form expression for the time
response of the latter in a form that would mimic the total response of single-dof
systems à la Sect. 2.6.2 is not possible. The reason is that we would need one single
formula, but this formula is evasive, given that in Sect. 2.6.2 we do not have one, but
rather three distinct formulas, depending on the nature of the system at hand, which
can be underdamped, critically damped or overdamped. Most frequently, the n-dof
damped system would have some modes—if one could speak of modes in the same
way that one does with reference to undamped systems—that are underdamped,
some that are overdamped, and possibly some critically damped modes. For this
reason, the time response of damped systems is only outlined in Sect. 6.6. A more
detailed discussion of damped systems, in the context of simulation, is included in
Chap. 7.

J. Angeles, Dynamic Response of Linear Mechanical Systems: Modeling, Analysis
and Simulation, Mechanical Engineering Series, DOI 10.1007/978-1-4419-1027-1 6,
© Springer Science+Business Media, LLC 2011

389
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6.2 The Natural Frequencies and the Natural Modes of n-dof
Undamped Systems

In this case, the mathematical model of the system at hand is formally identical to
that of a two-dof system, namely,

Mẍ+Kx = 0, x(0) = x0, ẋ(0) = v0, t ≥ 0 (6.1)

where, now, M and K are symmetric n× n matrices, the former being, additionally,
positive-definite, while the latter is either positive-semidefinite or positive-definite.
Moreover, the vector of generalized coordinates x is n-dimensional. As shown in
Sect. 5.2, the foregoing model leads to a simpler model in normal form, namely,

ÿ+Ω2y = 0, y(0) = y0, ẏ(0) = s0, t ≥ 0 (6.2)

with Ω2, the frequency matrix, defined as in Chap. 4, namely,

Ω2 ≡N−1KN−1 (6.3)

Likewise, N is defined, as in Chap. 4 as well, as the positive-definite square root
of M:

N≡
√

M (6.4)

and y is given by the transformation below:

y = Nx ⇒ ÿ = Nẍ (6.5)

Now, the frequency matrix of the system at hand is a n× n symmetric positive-
semidefinite matrix. If K is positive-definite, then Ω is, correspondingly, positive-
definite as well. Moreover, y, like x, is a n-dimensional vector.

Again, such as in the two-dof case, the mathematical model of a n-dof undamped
system is formally identical to that of a single-dof mass-spring system, where, now,
the natural frequency ωn is replaced by the n×n frequency matrix Ω. Furthermore,
the n eigenvalues of the frequency matrix are non-negative and its n eigenvectors
are mutually orthogonal.

Let {ωi }n
1 be the n—non-negative—eigenvalues of Ω. These are the natural fre-

quencies of the system under study. Moreover, let {ei }n
1 denote the unit eigenvectors

of Ω, which are necessarily mutually orthogonal, i.e.,

‖e1‖= ‖e2‖= · · ·= ‖en‖= 1, eT
i e j = 0, for i �= j (6.6)

That is, the sets {ωi}n
1 and {ei}n

1 verify the relations

Ωei = ωiei, i = 1, . . . ,n (6.7)
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The calculation of {ωi }n
1 and {ei }n

1 cannot be accomplished, in general, using the
Mohr circle, which is applicable only to 2×2 symmetric matrices. Likewise, matrix√

M cannot be calculated graphically, for M is also a n× n matrix. Moreover, what
we will need to compute the frequency matrix is not

√
M itself, but its inverse. We

explain below how to compute this inverse. To this end, we notice that M being
symmetric, it has n real eigenvalues and n mutually orthogonal eigenvectors, its
eigenvalues being, additionally, positive, for we have assumed at the outset that M
is positive-definite. We start by defining

E≡ [e1 e2 · · · en
]
, Ωd ≡

⎡

⎢
⎢
⎢
⎣

ω1 0 · · · 0
0 ω2 · · · 0
...

...
. . .

...
0 0 · · · ωn

⎤

⎥
⎥
⎥
⎦

(6.8)

Such as in the two-dof case, matrix E diagonalizes Ω in the sense

Ωd = ETΩE (6.9)

whence,

Ω = EΩdET (6.10)

Moreover, let {μi }n
1 and {mi }n

1 be the sets of eigenvalues and eigenvectors of
M, respectively. We now define

M≡ [m1 m2 · · · mn
]
, Md ≡

⎡

⎢
⎢
⎢
⎣

μ1 0 · · · 0
0 μ2 · · · 0
...

...
. . .

...
0 0 · · · μn

⎤

⎥
⎥
⎥
⎦

(6.11)

Since any symmetric matrix is diagonalizable in the same way as Ω is, as
indicated in Eq. 6.9, M is diagonalizable with the aid of M, namely,

M
T

MM = Md (6.12)

Furthermore, if we recall Fact 3 of Appendix A,
√

M and M share the same
eigenvectors. Moreover,

√
M, like M, is a symmetric matrix and hence, it is

diagonalizable with matrix M, i.e.,

M
T√

MM =
√

Md (6.13)
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Now, taking the positive-definite square root of Md is a simple matter, for this is a
diagonal matrix, and hence,

√
Md =

⎡

⎢
⎢
⎢
⎣

√μ1 0 · · · 0
0
√μ2 · · · 0

...
...

. . .
...

0 0 · · · √μn

⎤

⎥
⎥
⎥
⎦

(6.14)

Once we have
√

Md , calculating
√

M is trivial, for all it takes is the reverse
transformation of Eq. 6.13, namely,

√
M = M

√
MdM

T
(6.15)

However, to calculate Ω we need, in fact,
√

M−1, rather than
√

M itself. Obviously,
we can calculate

√
M−1 once we have

√
M because of the relation

√
M−1 = (

√
M)−1 (6.16)

which the reader is invited to verify. However, notice that, while
√

Md is diagonal,√
M is, in general, full, and hence, more time-consuming to invert than

√
Md . The

way to calculate the foregoing matrix is, then, in the form

√
M−1 ≡ (

√
M)−1 = M

√
M−1

d M
T

(6.17)

where
√

M−1
d is readily calculated as

√
M−1

d =

⎡

⎢⎢
⎢
⎣

1/
√μ1 0 · · · 0
0 1/

√μ2 · · · 0
...

...
. . .

...
0 0 · · · 1/

√μn

⎤

⎥⎥
⎥
⎦

(6.18)

Additionally, in order to calculate the foregoing eigenvalues and eigenvectors, we
have to resort to a numerical method. In practice, the eigenvalues and eigenvectors
of n× n matrices are best computed using scientific software—Matlab, Maple
or Mathematica—where a transformation method is applicable that obviates the
process of polynomial root-finding, which is prone to ill-conditioning—numerical
instability—for large values of n. For pedagogical reasons, eigenvalues are com-
puted in this chapter via the characteristic polynomial, the eigenvectors following
from linear-equation solving. We will illustrate the foregoing ideas with examples.
Prior to describing the steps in the underlying computations, however, we introduce
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some properties of the mass and stiffness matrices, that parallel those of two-dof
systems. By virtue of Fact 1 of Appendix A, ωi and ei verify

Ω2ei = ω2
i ei, i = 1, . . . ,n (6.19)

and hence, if we express Ω2 in terms of K and N, as given by Eq. 6.3, we have

N−1KN−1ei = ω2
i ei

or

KN−1ei = ω2
i Nei (6.20)

Vector N−1ei appearing in Eq. 6.20 is called, such as in Chap. 4, the ith modal
vector of the given system. If we let the ith modal vector be represented by fi, then,

fi ≡ N−1ei, i = 1, . . . ,n (6.21a)

and hence,
ei = Nfi, i = 1, . . . ,n (6.21b)

Upon substitution of Eq. 6.21a into the left-hand side of Eq. 6.20, and of Eq. 6.21b
into the right-hand side of the same equation, we have

Kfi = ω2
i N2fi (6.22a)

i.e.,

ω2
i Mfi = Kfi (6.22b)

or

(ω2
i M−K)fi = 0, i = 1, . . . ,n (6.22c)

Note that the eigenvectors of Ω are, by definition, of unit magnitude. However, the
modal vectors, such as in the two-dof case, turn out to be of unit magnitude, but not
in the usual sense; these vectors are, in fact, of unit magnitude with respect to the
mass matrix, i.e.,

fT
i Mfi = 1, i = 1, . . . ,n (6.23a)

or

‖fi‖M = 1, i = 1, . . . ,n (6.23b)

Furthermore, when the magnitude of the modal vectors is computed with respect
to the stiffness matrix, it turns out that the magnitude-squared of the ith modal vector
is, such as in the two-dof case, identical to the square of the ith natural frequency,
i.e.,

fT
i Kfi = ω2

i , i = 1, . . . ,n (6.24a)

or

‖fi‖K = ωi, i = 1, . . . ,n (6.24b)
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One more property of the modal vectors follows from Eq. 6.22b, if we multiply
its two sides by M−1, namely,

M−1Kfi = ω2
i fi (6.25)

where the product M−1K is readily identified as the dynamic matrix of the system
at hand, such as in the case of two-dof systems, i.e.,

D≡M−1K (6.26)

Therefore, the eigenvalues of the dynamic matrix are the natural frequencies-
squared, its eigenvectors being the modal vectors. Note, however, that these
eigenvectors are not of unit magnitude.

As we studied in Sect. 4.3, the zero-input response of two-dof systems is, in
general, not harmonic, the same holding for n-dof systems. Therefore, harmonic
motions of n-dof systems occur only if they are shaped by the modal vectors. That
is, if x(t) has the shape

x(t) = Ai(cosωit)fi (6.27a)

then

ẍ(t) =−ω2
i Ai(cosωit)fi (6.27b)

Upon substitution of x(t) and ẍ(t), as given above, in the governing Eq. 6.1, we
have

Mẍ+Kx =−Ai(cosωit)(ω2
i M−K)fi, i = 1, . . . ,n

By virtue of Eq. 6.22c, the right-hand side of the foregoing equation vanishes,
and hence, x(t), as given by Eq. 6.27a, verifies the governing equation. Since we
have now n modal vectors, harmonic motions of n distinct shapes are possible.
Moreover, each of these motions oscillates at one of the natural frequencies of the
system. Each of the n shapes is called a mode, hence the name given to vectors
fi. Furthermore, any of the three Eqs. 6.22a–c above is termed the modal equation
of the system at hand. Now it is a simple matter to realize that the modal vectors
{ fi }n

1 are orthogonal with respect to the mass matrix. Indeed, if we express the
orthogonality of the eigenvectors ei and e j, for i �= j, in terms of Eq. 6.21b, we
obtain

fT
i N2f j = 0, i, j = 1, . . . ,n; i �= j

and, by virtue of definition (6.4), the foregoing equation leads to

fT
i Mf j = 0, i, j = 1, . . . ,n; i �= j (6.28)

thereby showing the orthogonality of the modal vectors with respect to the mass
matrix. Furthermore, if both sides of Eq. 6.22b, for j �= i, are multiplied from the
left by fT

i , then, by virtue of Eq. 6.28, one can readily verify that the two foregoing
vectors are orthogonal with respect to the stiffness matrix as well, i.e.,

fT
i Kf j = 0, i, j = 1, . . . ,n; i �= j (6.29)
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If, as in the two-dof case, the modal vectors are arrayed columnwise in the n× n
matrix F, then F obeys the relations

FT MF = 1, FT KF =Ω2
d , F−1DF =Ω2

d (6.30)

similar to those derived in Sect. 5.2.1, where Ωd was introduced to represent the
diagonal form of the frequency matrix.

Example 6.2.1 (Torsional Vibrations of an Aircraft Wing). The system of Fig. 4.7 is
revisited here, with matrices M and K given as

M = J0

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 4 0 0 0
0 0 9 0 0
0 0 0 4 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, K = k

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −1 0 0 0
−1 3 −2 0 0
0 −2 4 −2 0
0 0 −2 3 −1
0 0 0 −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Find the natural frequencies and the natural modes of the system.

Solution: We begin by computing N as the positive-definite square root of M,
which in this case is straightforward, since M is diagonal. Therefore,

N =
√

J0

⎡

⎢⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1

⎤

⎥⎥
⎥
⎥
⎥
⎦
, N−1 =

1√
J0

⎡

⎢⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1/2 0 0 0
0 0 1/3 0 0
0 0 0 1/2 0
0 0 0 0 1

⎤

⎥⎥
⎥
⎥
⎥
⎦

and hence,

Ω2 =
k√
J0

N−1

⎡

⎢
⎢
⎢⎢
⎢
⎣

1 −1 0 0 0
−1 3 −2 0 0
0 −2 4 −2 0
0 0 −2 3 −1
0 0 0 −1 1

⎤

⎥
⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢
⎢⎢
⎢
⎣

1 0 0 0 0
0 1/2 0 0 0
0 0 1/3 0 0
0 0 0 1/2 0
0 0 0 0 1

⎤

⎥
⎥
⎥⎥
⎥
⎦

i.e.,

Ω2 =
k
J0

⎡

⎢⎢
⎢
⎢
⎢
⎣

1 −1/2 0 0 0
−1/2 3/4 −1/3 0 0

0 −1/3 4/9 −1/3 0
0 0 −1/3 3/4 −1/2
0 0 0 −1/2 1

⎤

⎥⎥
⎥
⎥
⎥
⎦
≡ ω2

0 A
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where ω0 is defined as

ω0 ≡
√

k
J0

As expected,Ω2 is a symmetric matrix. Moreover, the system admits apparently one
rigid mode, under which all rotors turn through the same angle θ , which thus leads
to the displacement vector x = θ [1, 1, 1, 1, 1 ]T . It is now obvious that the product
Kx vanishes, and the potential energy of the system under this motion vanishes as
well. Now, since K is positive-semidefinite, Ω2 and, hence, Ω itself, are positive-
semidefinite as well, which means that at least one of the natural frequencies of the
system is zero. Further, we compute the natural frequencies of the system as the
square roots of the eigenvalues of Ω2. To do this, we first derive the characteristic
polynomial of A. From Fact 2 of Appendix A, the eigenvalues of Ω2 are those of A
multiplied by ω2

0 . We thus have, if we let P(λ ) denote the characteristic polynomial
of A,

P(λ ) = det(λ 1−A) = det

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ − 1 1/2 0 0 0
1/2 λ − 3/4 1/3 0 0
0 1/3 λ − 4/9 1/3 0
0 0 1/3 λ − 3/4 1/2
0 0 0 1/2 λ − 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Upon expanding the foregoing determinant by the cofactors of its first row, we have

det(λ 1−A) = (λ − 1)Δ11− 1
2

Δ12

where

Δ11 = det

⎡

⎢
⎢
⎣

λ − 3/4 1/3 0 0
1/3 λ − 4/9 1/3 0
0 1/3 λ − 3/4 1/2
0 0 1/2 λ − 1

⎤

⎥
⎥
⎦

and

Δ12 = det

⎡

⎢⎢
⎣

1/2 1/3 0 0
0 λ − 4/9 1/3 0
0 1/3 λ − 3/4 1/2
0 0 1/2 λ − 1

⎤

⎥⎥
⎦

Now, we expand below each of the two foregoing 4×4 subdeterminants. We do this
by cofactors of their first column, namely,

Δ11 =

(
λ − 3

4

)
Δ1111− 1

3
Δ1121

Δ12 =
1
2

Δ1111 (6.31)
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where Δ1111, appearing in the two foregoing subdeterminants, is given below:

Δ1111 = det

⎡

⎣
λ − 4/9 1/3 0

1/3 λ − 3/4 1/2
0 1/2 λ − 1

⎤

⎦

and

Δ1121 = det

⎡

⎣
1/3 0 0
1/3 λ − 3/4 1/2

0 1/2 λ − 1

⎤

⎦

All we need now is expand the foregoing 3× 3 subdeterminants. We do this by
cofactors of their first row, namely,

Δ1111 =

(
λ − 4

9

)[(
λ − 3

4

)
(λ − 1)− 1

4

]
− 1

3

(
1
3
(λ − 1)

)

Δ1121 =
1
3

[(
λ − 3

4

)
(λ − 1)− 1

4

]

Finally, upon back-substituting the foregoing subdeterminants in the above expres-
sion for P(λ ), we obtain, after several reduction steps that are left to the reader to
verify,

P(λ ) =
(

λ 2− 7
4

λ +
1
2

)(
λ 2− 79

36
λ +

19
18

)
λ

It is apparent that the above polynomial admits the root λ = 0, which is just a
consequence of matrix K being semidefinite, and hence, singular. Furthermore, the
roots of the first quadratic factor of P(λ ) are readily computed as

λ =
7±√17

8

Those of the second quadratic factor of P(λ ) being

λ =
79±√769

72

Thus, the five eigenvalues of A are, in ascending order,

λ1 = 0, λ2 = 0.35961, λ3 = 0.71207, λ4 = 1.39039, λ5 = 1.48237

Therefore, the natural frequencies sought are

ω1 = 0, ω2 = 0.59967ω0, ω3 = 0.84384ω0, ω4 = 1.17915ω0, ω5 = 1.21753ω0
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Now we calculate the eigenvectors of Ω2, and hence, the normal modes of the
system under study. Since A and Ω share the same eigenvectors, we calculate the
eigenvectors of the former, which we do for each eigenvalue of A. Let, in every case,

ei ≡
[
v w x y z

]T
, i = 1, . . . ,5

subject to the condition that each vector ei be of unit magnitude, i.e.,

v2 +w2 + x2 + y2 + z2 = 1

Then, the components of each eigenvector ei are calculated from the linear
homogeneous system

(A−λi1)ei = 0

We thus have

For λ1 = 0:

v− 0.5w = 0

−0.5v+ 0.75w− 0.3x = 0

−0.3w+ 0.4x− 0.3y = 0

−0.3x+ 0.75y− 0.5z = 0

−0.5y+ z = 0

From the first equation we have

w = 2v

Upon substituting the foregoing value of w into the second equation,

x = 3v

The remaining unknowns are found following the foregoing pattern, which yields

y = w = 2v, z = v

and hence,

e1 =
[
1 2 3 2 1

]T
v

where the value of v will be chosen so as to render e1 of unit magnitude.
For λ2 = 0.35961:

0.64039v− 0.5w = 0

−0.5v+ 0.39039w−0.3x = 0

−0.3w+ 0.084830x− 0.3y = 0
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−0.3x+ 0.39039y− 0.5z = 0

−0.5y+ 0.64039z = 0

Proceeding as in the first case, we obtain, from the first equation,

w = 1.28078v

Upon substituting the foregoing value into the second equation, we obtain

x = 0

Likewise, we obtain, successively,

y =−w =−1.28078v, z =−v

Hence,

e2 =
[
1 1.28078 0 −1.28078 −1

]T
v

For λ3 = 0.71207:

0.28793v− 0.5w = 0

−0.5v+ 0.037930w−0.3x = 0

−0.3w− 0.26763x− 0.3y = 0

−0.3x+ 0.037930y− 0.5z = 0

−0.5y+ 0.28793z = 0

Proceeding exactly as in the two previous cases, we have

e3 =
[
1 0.57586 −1.43449 0.57586 1

]T
v

Furthermore,
For λ4 = 1.39039:

− 0.39039v− 0.5w = 0

−0.5v− 0.64039w−0.3x = 0

−0.3w− 0.94595x− 0.3y = 0

−0.3x− 0.64039y− 0.5z = 0

−0.y+ 0.39039z = 0
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whence,

e4 =
[
1 −0.78078 0 0.78078 −1

]T
v

Finally,
For λ5 = 1.48237:

− 0.48237v− 0.5w = 0

−0.5v− 0.73237w−0.3x = 0

−0.3w− 1.03793x− 0.3y = 0

−0.3x− 0.73237y− 0.5z = 0

−0.5y− 0.48237z = 0

which leads to

e5 =
[
1 −0.96474 0.61966 −0.96474 1

]T
v

thereby completing the calculation of all the eigenvectors of A. It is left to the reader
to verify that these eigenvectors are mutually orthogonal.

Now, in order to calculate the normal modes, we proceed as in Chap. 4, which
requires matrices E and F, given as

E≡ [e1 e2 e3 e4 e5
]
, F≡ [f1 f2 f3 f4 f5

]

We thus have

E =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0.22942 0.43516 0.46024 0.55734 0.48533
0.45883 0.55735 0.26503 −0.43516 −0.46822
0.68825 0.0 −0.66021 0.0 0.30074
0.45883 −0.55735 0.26503 0.43516 −0.46822
0.22942 −0.43516 0.46024 −0.55734 0.48533

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Then, F is calculated as in Chap. 4 from

F = N−1E

where N, it is recalled, is
√

M, i.e.,

N−1 =

√
J0

J0

⎡

⎢
⎢⎢
⎢
⎢
⎣

1 0 0 0 0
0 0.5 0 0 0
0 0 0.3 0 0
0 0 0 0.5 0
0 0 0 0 1

⎤

⎥
⎥⎥
⎥
⎥
⎦
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Fig. 6.1 Representation of the natural modes of vibration of an aircraft wing

Upon calculating the foregoing product, we obtain

F =

√
J0

J0

⎡

⎢
⎢
⎢
⎢⎢
⎣

0.22942 0.43516 0.46024 0.55734 0.48533
0.22942 0.27868 0.13252 −0.21758 −0.23411
0.22942 0.0 −0.22007 0.0 0.10025
0.22942 −0.27868 0.13252 0.21758 −0.23411
0.22942 −0.43516 0.46024 −0.55734 0.48533

⎤

⎥
⎥
⎥
⎥⎥
⎦

The modes thus calculated are displayed in Fig. 6.1. From that figure, it is apparent
that the first, third and fifth modes are symmetric, while the other two modes
are antisymmetric. Note also that the number of nodes, i.e., points at which the
mode diagram traverses the vertical axis, increases by one as the natural frequency
increases to the next higher value. That is, the rigid mode has no node, the second
mode has one node, while the third mode has two nodes, the fourth mode has three,
and the fifth mode four.

Example 6.2.2 (Model for the Roll Vibrations of a Terrestrial Vehicle). An iconic
model for the study of the roll vibrations of a terrestrial vehicle is shown in Fig. 6.2.
In this model, the two identical masses with the two identical springs of stiffness
k1 represent the wheels, while the block of length 2l represents the body and the
two identical springs of stiffness k2 represent the suspension. Note that, under this
type of motion, we can safely assume that the center of mass of the vehicle lies at
midspan between the two wheels, i.e., along the centerline of the vehicle. Find the
natural frequencies and the natural modes of the system.
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Fig. 6.2 Iconic model for the roll vibrations of a terrestrial vehicle

Solution: As the reader is invited to verify, the mass and stiffness matrices of the
system under study take the forms

M =

⎡

⎢
⎢
⎢⎢
⎢
⎣

(1/4)Mρ2
++m (1/4)Mρ2− (1/4)Mρ2

+ (1/4)Mρ2−
(1/4)Mρ2− (1/4)Mρ2

++m (1/4)Mρ2− (1/4)Mρ2
+

(1/4)Mρ2
+ (1/4)Mρ2− (1/4)Mρ2

+ (1/4)Mρ2−
(1/4)Mρ2− (1/4)Mρ2

+ (1/4)Mρ2− (1/4)Mρ2
+

⎤

⎥
⎥
⎥⎥
⎥
⎦
,

K =

⎡

⎢
⎢
⎣

k1 0 0 0
0 k1 0 0
0 0 k2 0
0 0 0 k2

⎤

⎥
⎥
⎦ , ρ2

+ = 1+ρ2, ρ2
− = 1−ρ2

where ρ ≡ r/l, with r defined as the radius of gyration of the vehicle body. Now, let
us assume the numerical values given below:

M = 16m, ρ =
√

2/2, k1 = k, k2 = 9k

Under these conditions, the mass and stiffness matrices become

M = m

⎡

⎢
⎢
⎣

7 2 6 2
2 7 2 6
6 2 6 2
2 6 2 6

⎤

⎥
⎥
⎦ , K = k

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 9 0
0 0 0 9

⎤

⎥
⎥
⎦
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What we observe now is that the mass matrix is full, its square root being now more
elaborate to compute. A straightforward way of computing the square root of M is
to first diagonalize it, using its eigenvectors. Once it is in diagonal form, its square
root is simply the matrix of the square roots of its diagonal entries. Moreover, what
will be needed is not just the square root of M, but the inverse of this. As explained
above, this inverse is most easily computed via the inverse of M in diagonal form.
Alternatively, the said inverse can be directly obtained using the Cayley-Hamilton
Theorem, an approach that is not recommended in this case because it requires,
besides the calculation of the eigenvalues of M, the solution of a system of four
linear equations in four unknowns. This solution is straightforward, but, if done
by hand, may quickly lead to arithmetic errors. The most straightforward way of
calculating the said inverse is by using the sqrtm function of MATLAB, followed
by the inv function of the same software package. For matrices of moderate
numerical complexity, like the one at hand, we can also use software for symbolic
computations. We reproduce below the steps for the calculation of the frequency
matrix:

Let

M = mA, K = kB

with A and B defined, obviously, as

A =

⎡

⎢
⎢
⎣

7 2 6 2
2 7 2 6
6 2 6 2
2 6 2 6

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 9 0
0 0 0 9

⎤

⎥
⎥
⎦

Hence, the frequency matrix-squared takes now the form

Ω2 = ω2
√

A−1B
√

A−1

with ω2 defined, in turn, as

ω2 ≡ k
m

The steps to calculate the frequency matrix-squared are summarized below:

1. Square root of A. This is done using computer-algebra software, which produces

√
A =

⎡

⎢⎢
⎣

2.2132 0.2718 1.3951 0.2856
0.2718 2.2132 0.2856 1.3951
1.3951 0.2856 1.9695 0.3054
0.2856 1.3951 0.3054 1.9695

⎤

⎥⎥
⎦
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2. Square root of A−1. This is calculated as

√
A−1 ≡ (

√
A)−1 =

⎡

⎢
⎢
⎣

0.8182 −0.0139 −0.5745 −0.0198
−0.0139 0.8182 −0.0198 −0.5745
−0.5745 −0.0198 0.9247 −0.0461
−0.0198 −0.5745 −0.0461 0.9247

⎤

⎥
⎥
⎦

which is done also using computer-algebra software.
3. Calculation of the frequency matrix-squared. We do this via

√
A−1B

√
A−1,

namely,

√
A−1B

√
A−1 =

⎡

⎢
⎢
⎣

3.6431 0.1816 −5.2421 0.0656
0.1816 3.6431 0.0656 −5.2421
−5.2421 0.0656 8.0444 −0.7441
0.0656 −5.2421 −0.7441 8.0444

⎤

⎥
⎥
⎦≡W

and hence,

Ω2 = ω2W

Now, the calculation of the natural frequencies and natural modes is done via
the eigenvalues and eigenvectors of matrix W. Let the eigenvalues of this matrix be
{λi }4

1, its eigenvectors being {ei }4
1, which are identical to those of the frequency

matrix. We then have, by resorting to MATLAB’s routine eig,1

λ1 = 0.1021, λ2 = 0.1865, λ3 = 11.0229, λ4 = 12.0635

and hence,

ω1 = 0.3195ω , ω2 = 0.4319ω , ω3 = 3.3201ω , ω4 = 3.4733ω

The eigenvectors are displayed below, as the columns of the 4× 4 matrix E:

E =

⎡

⎢
⎢
⎣

0.5741 0.6018 0.4128 0.3713
0.5741 −0.6018 0.4128 −0.3713
0.4128 0.3713 −0.5741 −0.6018
0.4128 −0.3713 −0.5741 0.6018

⎤

⎥
⎥
⎦

Hence,

F = N−1E =

√
m

m

√
A−1E

1Computer-algebra software can also be used here.
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Fig. 6.3 Representation of the natural modes of a terrestrial vehicle under roll vibrations

i.e.,

F =

√
m

m

⎡

⎢⎢
⎣

0.2164 0.2947 0.6732 0.6428
0.2164 −0.2947 0.6732 −0.6428
0.0216 0.0266 −0.7497 −0.7901
0.0216 −0.0266 −0.7497 0.7901

⎤

⎥⎥
⎦

The natural modes are displayed in Fig. 6.3, where one can notice that the second
mode exhibits more modes than its third and fourth counterparts.

6.2.1 Algebraic Properties of the Normal Modes

We summarize below the properties that were discussed at the beginning of this
section. By virtue of the orthogonality and the normality of the n eigenvectors of the
frequency matrix, the eigenmatrix is orthogonal, i.e.,

ET E =

⎡

⎢⎢
⎢
⎣

eT
1 e1 eT

1 e2 · · · eT
1 en

eT
2 e1 eT

2 e2 · · · eT
2 en

...
...

. . .
...

eT
n e1 eT

n e2 · · · eT
n en

⎤

⎥⎥
⎥
⎦
=

⎡

⎢⎢
⎢
⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤

⎥⎥
⎥
⎦
= 1

where 1 denotes the n× n identity matrix.
Furthermore, it is apparent from Eqs. 6.23a and 6.28 that

FT MF = 1 (6.32)

Moreover, from Eqs. 6.24a and 6.29,

FT KF =Ω2
d ≡

⎡

⎢
⎢
⎢
⎣

ω2
1 0 · · · 0

0 ω2
2 · · · 0

...
...

. . .
...

0 0 · · · ω2
n

⎤

⎥
⎥
⎥
⎦

(6.33)
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That is, F diagonalizes M in the sense of Eq. 6.32, while F diagonalizes K in the
sense of Eq. 6.33. Also, the dynamic matrix obeys the relation

F−1DF =Ω2
d

Matrix Ωd of the system of Example 6.2.1 is, thus,

Ωd =

⎡

⎢⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 0.59967ω0 0 0 0
0 0 0.84384ω0 0 0
0 0 0 1.17915ω0 0
0 0 0 0 1.21753ω0

⎤

⎥⎥
⎥
⎥
⎥
⎦

and the dynamic matrix of the same example is

D = ω2
0

⎡

⎢
⎢
⎢⎢
⎢
⎣

1 −1 0 0 0
−1/4 3/4 −1/2 0 0

0 −2/9 4/9 −2/9 0
0 0 −1/2 3/4 −1/4
0 0 0 −1 1

⎤

⎥
⎥
⎥⎥
⎥
⎦

6.3 The Zero-input Response of Undamped n-dof Systems

In this section we derive the zero-input response of n-dof undamped systems by
mimicking the corresponding response of single-dof systems. However, as we saw
in Chap. 4, this approach requires that the frequency matrix, and hence, the stiffness
matrix, be positive-definite. Semidefinite systems will be studied in Sect. 6.3.1 using
an alternative approach. The systems we will consider here are, thus, assumed to
have positive-definite mass and stiffness matrices.

Under the assumption that the stiffness matrix is positive-definite, the frequency
matrix, defined in Eq. 6.3, is positive-definite as well. In this case, the response of the
system at hand can be derived from the response of a single-dof system, as we did
in the two-dof case. The time response of n-dof systems, then, is formally identical
to that of two-dof systems, namely,

y(t) = (cosΩt)y0 +Ω−1(sinΩt)v0 (6.34)

ẏ(t) = −Ω(sinΩt)y0 +(cosΩt)v0, t ≥ 0 (6.35)

where, now, y, y0, ẏ, and v0 are all n-dimensional vectors, while Ω is a n× n
symmetric and positive-definite matrix; Ω is, hence, nonsingular as well. Moreover,
cosΩt and sinΩt are the analytic functions of Ωt derived from the corresponding



6.3 The Zero-input Response of Undamped n-dof Systems 407

scalar functions {cosωit }n
1 and {sinωit }n

1, with ωi denoting the ith eigenvalue of
the frequency matrix. Note from Eq. 6.34 that, if both y0 and v0 are proportional to
the eigenvector ei, then y(t) is harmonic, with frequency ωi. Otherwise, in general,
y(t) is not harmonic.

Now, since the vector of generalized coordinates is x, rather than y, a transfor-
mation back to the original coordinates is in order. From Eq. 6.5, we have

x(t) = N−1(cosΩt)Nx0 +N−1Ω−1(sinΩt)Nv0, t ≥ 0 (6.36)

ẋ(t) = −N−1Ω(sinΩt)Nx0 +N−1(cosΩt)Nv0, t ≥ 0 (6.37)

where ẋ(0) ≡ v0 and w0 ≡ Nv0. Note from Eq. 6.36 that, if both x0 and v0 are
proportional to the modal vector fi, then both Nx0 and Nv0 are proportional to
the eigenvector ei, say of the forms x0ei and v0ei, with x0 and v0 defined as
the proportionality factors. As a consequence, then, and by virtue of Fact 3 of
Appendix A, we have that (cosΩt)Nx0 = (x0 cosωit)ei and Ω−1(sinΩt)Nv0 =
(v0/ωi)(sin ωit)ei. Hence, x(t) is proportional to N−1ei, i.e., to fi. Therefore, under
the given conditions, x(t) is harmonic, of frequency ωi.

In computing the time response of the systems at hand, we cannot proceed
as we did in Chap. 4, i.e., graphically, with the aid of the Mohr circle. The
foregoing calculations will have to be done numerically. Below we outline the
computational procedure: under the assumption that we have Ω and its eigenvalues
and eigenvectors, we can now calculate

cos(Ωdt) =

⎡

⎢
⎢
⎢
⎣

cosω1t 0 · · · 0
0 cosω2t · · · 0
...

...
. . .

...
0 0 · · · cosωnt

⎤

⎥
⎥
⎥
⎦

sin(Ωdt) =

⎡

⎢
⎢
⎢
⎣

sinω1t 0 · · · 0
0 sinω2t · · · 0
...

...
. . .

...
0 0 · · · sin ωnt

⎤

⎥
⎥
⎥
⎦

Ωd
−1 sin(Ωdt) =

⎡

⎢
⎢⎢
⎣

sinω1t/ω1 0 · · · 0
0 sin ω2t/ω2 · · · 0
...

...
. . .

...
0 0 · · · sinωnt/ωn

⎤

⎥
⎥⎥
⎦

Now, in order to calculate all matrices involved in the time response given in
Eq. 6.36, all we need is a suitable transformation, namely,

cos(Ωt) = Ecos(Ωdt)ET (6.38a)
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sin(Ωt) = Esin(Ωdt)ET (6.38b)

Ω−1 sin(Ωt) = E[Ω−1
d sin(Ωdt)]ET (6.38c)

Example 6.3.1 (Time Response of a Vehicle-suspension System). For the system
depicted in Fig. 6.2, find the time response upon transmitting to the left wheels an
initial speed ẋ1(0) = v0, while leaving all other initial conditions equal to zero.

Solution: We computed already the eigenvalues and eigenvectors of the frequency
matrix of this system in Example 6.2.2. We thus have

Ωd =

⎡

⎢
⎢
⎣

0.3195ω 0 0 0
0 0.4319ω 0 0
0 0 3.3201ω 0
0 0 0 3.4733ω

⎤

⎥
⎥
⎦

Now, since x(0) = 0, we will not need cos(Ωdt). All we need is Ω−1
d sin(Ωdt):

Ω−1
d sin(Ωdt) =

1
ω

diag(s1,s2,s3,s4)

with

s1 = 3.1299sin(0.3195ωt), s2 = 2.3154sin(0.4319ωt)

s3 = 0.3012sin(3.3201ωt), s4 = 0.2879sin(3.4733ωt)

Now, we have
Ω−1 sin(Ωt) = E[Ω−1

d sin(Ωdt)]ET

Hence,

y(t) =
v0
√

m
ω

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

3.8101sin(.3195ωt)+ 2.2019sin(.4319ωt)
+0.0076sin(3.3201ωt)+ 0.0057sin(3.4733ωt)

3.8101sin(.3195ωt)− 2.2019sin(.4319ωt)
+0.0076sin(3.3201ωt)− 0.0057sin(3.4733ωt)

2.7396sin(.3195ωt)+ 1.3586sin(.4319ωt)
−0.0105sin(3.3201ωt)− 0.0092sin(3.4733ωt)

2.7396sin(.3195ωt)− 1.3586sin(.4319ωt)
−0.0105sin(3.3201ωt)+ 0.0092sin(3.4733ωt)

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦
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and, finally,

x(t) = N−1y(t) =
v0

ω

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

1.4363sin(.3195ωt)+ 1.0786sin(.4319ωt)
+0.0124sin(3.3201ωt)+ 0.0098sin(3.4733ωt)

1.4363sin(.3195ωt)− 1.0786sin(.4319ωt)
+0.0124sin(3.3201ωt)− 0.0098sin(3.4733ωt)

0.1427sin(.3195ωt)+ 0.0975sin(.4319ωt)
−0.0138sin(3.3201ωt)− 0.0121sin(3.4733ωt)

0.1427sin(.3195ωt)− 0.0975sin(.4319ωt)
−0.0138sin(3.3201ωt)+ 0.0121sin(3.4733ωt)

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

6.3.1 The Calculation of the Zero-input Response of n-dof
Systems Using the Classical Modal Method

Alternatively, the time response of n-dof systems can be obtained by resorting to
modal coordinates, also known as normal coordinates. These are those in which the
system equations are decoupled. The underlying ideas parallel those of Sect. 5.3.

We begin by recalling the system mathematical model in normal form, Eq. 6.2.
Upon multiplying both sides of that equation by ET , we have

ET ÿ+ETΩ2y = 0, y(0) = y0, ẏ(0) = w0, t ≥ 0

Now we introduce the coordinate transformation

ξ ≡

⎡

⎢
⎢
⎢
⎣

ξ1

ξ2
...

ξn

⎤

⎥
⎥
⎥
⎦
= ET y, y = Eξ (6.39a)

ξ̈ = ET ÿ, ÿ = Eξ̈ (6.39b)

the above mathematical model thus becoming

ξ̈+ETΩ2Eξ = 0, ξ(0) = a, ξ̇(0) = ḃ, t ≥ 0 (6.40)

In the above equation, we can readily identify the matrix coefficient of ξ as Ω2
d , and

hence, the model takes the form

ξ̈+Ω2
dξ = 0, ξ(0) = ET y0 = a, ξ̇(0) = ET w0 = b, t ≥ 0 (6.41a)
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which can be rewritten in component form as

ξ̈1 +ω2
1 ξ1 = 0 (6.41b)

ξ̈2 +ω2
2 ξ2 = 0 (6.41c)

...

ξ̈n +ω2
n ξn = 0 (6.41d)

with the initial conditions

ξi(0) = ai, ξ̇i(0) = bi, i = 1, . . . ,n (6.41e)

That is, the normal coordinates allow us to express the mathematical model of
a n-dof system as a set of n uncoupled single-dof systems. Hence, obtaining
the response of the system at hand has been reduced to obtaining that of n
single-dof systems, which is a straightforward task. Note that the time response of
the ith single-dof system of the above set can now be written in the form

ξi(t) = (cosωit)ai +
1
ωi

(sinωit)bi, ωi �= 0, i = 1, . . . ,n (6.42)

which is valid as long as ωi is not zero. In the special case in which ωi = 0, the
treatment follows that discussed in Sect. 5.3. For concreteness, let us assume that
ω1 = 0, the remaining natural frequencies being all greater than zero. The model
for the first mode then takes the form of a unit-mass particle under free motion, i.e.,
under zero external force:

ξ̈1 = 0, ξ1(0) = a1, ξ̇1(0) = b1 (6.43)

The time response of this system is simply that of uniform motion, i.e.,

ξ1(t) = a1 + b1t (6.44)

If the system has more than one rigid mode, the other rigid modes are treated
likewise. We now have the time response for all modes, including the rigid ones.
Therefore, all we need is this time response in the given coordinates, x(t). To go
back to these coordinates, we first return to y(t), which is readily done by resorting
to Eq. 6.39a, i.e.,

y(t) = Eξ(t)

Finally, the time response in the original coordinates is expressed as

x(t) = N−1y(t) (6.45)

thereby completing the time response of the system at hand.
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Example 6.3.2 (Time Response of the Wing Model to a Gust-wind Disturbance).
For the wing model of Fig. 4.7, that was analyzed in Example 6.2.1, we want to
know how the system will respond to a gust-wind perturbation transmitting a sudden
pitch rate θ̇3(0) = p to the aircraft fuselage. To this end, find the time response of
the system to the initial conditions

θ(0) = 0, θ̇(0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
p
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Solution: We adopt the numbering of frequencies in ascending order, as introduced
in Example 6.2.1. The first item to determine is the initial conditions for the normal
coordinates. We begin by calculating those for y(t), namely,

y(0) = Nθ0, ẏ(0) = Nθ̇0

Therefore,

y(0) = 0, ẏ(0) = 3
√

J0 p

⎡

⎢
⎢
⎢
⎢⎢
⎣

0
0
1
0
0

⎤

⎥
⎥
⎥
⎥⎥
⎦

Thus, the initial conditions for the normal coordinates are now

ξ(0) = 0, ξ̇(0) = ET ẏ(0) = 3
√

J0 p

⎡

⎢⎢
⎢
⎢
⎢
⎣

0.68825
0.0

−0.66021
0.0

0.30074

⎤

⎥⎥
⎥
⎥
⎥
⎦

whence it is apparent that only the symmetric modes are excited, which is natural,
for the initial conditions are symmetric.

We thus have, in normal coordinates,

ξ̈1 = 0, ξ1(0) = 0, ξ̇1(0) = 3
√

J0 0.68825p

Hence, the time response of the rigid mode is

ξ1(t) = 3
√

J0 0.68825 pt
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Likewise, the time response of the remaining modes, which are all flexible, is

ξ2(t) = 0

ξ3(t) =
−0.66021
0.84384ω0

(3
√

J0 p)sin(0.84384ω0t)

= −0.78239
(

3
√

J0 r
)

sin(0.84384ω0t)

ξ4(t) = 0

ξ5(t) =
0.30074

1.21753ω0
(3
√

J0 p)sin(1.21753ω0t)

= 0.24701
(

3
√

J0 r
)

sin(1.21753ω0t)

where r is the ratio r ≡ p/ω0. Therefore,

y(t)=3
√

J0

⎡

⎢
⎢
⎢⎢
⎢
⎣

0.15790pt− 0.36009r sin(0.84384ω0t)+ 0.11988r sin(1.21753ω0t)
0.31579pt− 0.20736r sin(0.84384ω0t)− 0.11566r sin(1.21753ω0t)
0.47369pt+ 0.51654r sin(0.84384ω0t)+ 0.07429r sin(1.21753ω0t)
0.31579pt− 0.20736r sin(0.84384ω0t)− 0.11566r sin(1.21753ω0t)
0.15790pt− 0.36009r sin(0.84384ω0t)+ 0.11988r sin(1.21753ω0t)

⎤

⎥
⎥
⎥⎥
⎥
⎦

Finally, in the original coordinates, to four decimals, we have

θ(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

3[0.1579pt− 0.3601r sin(0.8438ω0t)+ 0.1199r sin(1.2175ω0t)]
(3/2)[0.3158pt− 0.2074r sin(0.8438ω0t)− 0.1157r sin(1.2175ω0t)]

0.4737pt+ 0.5165r sin(0.8438ω0t)+ 0.0743r sin(1.2175ω0t)
(3/2)[0.3158pt− 0.2074r sin(0.8438ω0t)− 0.1157r sin(1.2175ω0t)]

3[0.1579pt− 0.3601r sin(0.8438ω0t)+ 0.1199r sin(1.2175ω0t)]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Therefore, the time response to the given initial conditions is symmetric, which is to
be expected, because of the symmetry of (a) the initial conditions and (b) the model.
The presence of the linear terms pt in the above response, that arise by virtue of the
rigid mode, is to be highlighted.

6.4 The Zero-state Response of n-dof Systems

The time response of a n-dof system under a nonzero forcing term and zero initial
conditions is the subject of this section. We thus have

Mẍ+Kx = φ(t), x(0) = 0, ẋ(0) = 0, t ≥ 0 (6.46)
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or, in normal form,

ÿ+Ω2y = g(t), y(0) = 0, ẏ(0) = 0 (6.47)

where y is defined as in Eq. 6.5, while g(t) is given as

g(t)≡ N−1φ(t) (6.48)

As in Sect. 6.3, we distinguish between systems with a positive-semidefinite and
those with a positive-definite frequency matrix. The former will be discussed in
Sect. 6.4.1.

The time response of the system governed by Eq. 6.47, when its frequency matrix
is positive-definite, can be derived by mimicking that of undamped scalar systems.
This is done by recalling the time response of a single-dof mass-spring system to an
excitation g(t), under zero initial conditions, which is reproduced below for quick
reference:

y(t) =
1

ωn

∫ t

0
sinωn(t− τ)g(τ)dτ (6.49)

For a n-dof system, the zero-state response is derived by simply replacing y(t) and
g(t) by their vector counterparts and the natural frequency ωn by the frequency
matrix Ω in the response given in Eq. 6.49, namely,

y(t) =Ω−1
∫ t

0
sinΩ(t− τ)g(τ)dτ (6.50)

where Ω−1 exists because Ω is positive-definite, and hence, nonsingular. Such as in
the two-dof case, the above derivation of the time response is rather informal, but its
validity can be readily verified as in Chap. 4, namely, by substituting the foregoing
expression in Eq. 6.50, and noticing that this expression satisfies both the ODE and
the initial conditions.

Now, going back to the generalized coordinate vector x and the generalized speed
vector ẋ, we have

x(t) = N−1Ω−1
∫ t

0
sinΩ(t− τ)N−1f(τ)dτ (6.51)

ẋ(t) = N−1
∫ t

0
[cosΩ(t− τ)]N−1f(τ)dτ (6.52)
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6.4.1 The Calculation of the Zero-state Response of n-dof
Systems Using the Classical Modal Method

The modal method is advantageous in that it does not require that the system be
definite. In order to apply it, we resort to modal, a.k.a. normal, coordinates, which
we do by multiplying both sides of Eq. 6.47 by ET , thereby obtaining

ET ÿ+ETΩ2y = ET g(t), y(0) = 0, ẏ(0) = 0

Again, we introduce the change of variable of Eqs. 6.39a and b, with the additional
definition

γ(t)≡ ET g(t) (6.53)

thereby obtaining

ξ̈+Ω2
dξ = γ(t), ξ(0) = 0, ξ̇(0) = 0 (6.54a)

or, in component form,

ξ̈i +ω2
i ξi = γi(t), ξi(0) = 0, ξ̇i(0) = 0 (6.54b)

where γi(t) is the ith component of vector γ(t). Thus, we derive, for the ith normal
mode

ξi(t) =
1
ωi

∫ t

0
[sinωi(t− τ)]γi(τ)dτ, ωi �= 0, i = 1, . . . ,n (6.55)

Now, if any of the natural frequencies is zero, we cannot apply, at least directly,
the foregoing expression. For concreteness, let us assume that ω1 = 0, all other
natural frequencies being greater than zero. Thus, for i = 1, Eq. 6.54b takes the
form

ξ̈1 = γ1(t), ξ1(0) = 0, ξ̇1(0) = 0 (6.56)

The time response of the foregoing system being derived by simple quadrature, i.e.,

ξ̇1(t) =
∫ t

0
γ1(τ)dτ (6.57)

and

ξ1(t) =
∫ t

0

(∫ θ

0
γ1(τ)dτ

)
dθ (6.58)

Once we have all time responses in normal coordinates, we can go back to the
original coordinates, as in Sect. 6.3. We thus have

x(t) = N−1Eξ(t) (6.59)
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6.5 The Total Response of n-dof Undamped Systems

The total time response of the system under study is simply the sum of the zero-input
and the zero-state responses given above. Let xI(t) and xS(t) denote the zero-input
and the zero-state responses of the systems under study. We thus have

x(t) = xI(t)+ xS(t) (6.60)

That is, for definite systems,

x(t) = N−1(cosΩt)Nx0 +N−1Ω−1(sinΩt)Nc

+N−1Ω−1
∫ t

0
[sinΩ(t− τ)]N−1φ(τ)dτ, t ≥ 0 (6.61a)

ẋ(t) = −N−1Ω(sinΩt)Nx0 +N−1(cosΩt)Nc

+N−1
∫ t

0
[cosΩ(t− τ)]N−1φ(τ)dτ, t ≥ 0 (6.61b)

The total response in modal coordinates, then, takes the form

ξi(t) = (cosωit)ai +
1
ωi

(sin ωit)bi

+
1
ωi

∫ t

0
[sinωi(t− τ)]γi(τ)dτ, ωi �= 0, i = 1, . . . ,n (6.62a)

ξ̇i(t) = −ωi(sin ωit)ai +(cosωit)bi

+

∫ t

0
[cosωi(t− τ)]γi(τ)dτ, ωi �= 0, i = 1, . . . ,n (6.62b)

where the initial conditions of the Eq. 6.40 have been recalled. If, say ω1 = 0, then
the total response of this mode takes the form

ξ1(t) = a1 + b1t +
∫ t

0

(∫ θ

0
γ1(τ)dτ

)
dθ (6.63a)

ξ̇1(t) = b1 +

∫ t

0
γ1(τ)dτ (6.63b)

6.6 Analysis of n-dof Damped Systems

The analysis of n-dof damped systems deserves special attention, as one formula
mimicking the single-dof case, which is possible for undamped systems, is not
possible here. We thus take the same approach as in Sect. 5.7.1. To this end, we
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start by converting the system of n second-order ODEs of Eq. 4.22 into a system of
2n first-order ODEs. We thus express the foregoing equations in normal form, by
recalling the usual transformations:

Ω2 =
√

M−1K
√

M−1, Δ=
√

M−1C
√

M−1, y =
√

Mx, g(t) =
√

M−1φ(t)
(6.64)

Further, we define

ẏ = w (6.65a)

ẇ = −Ω2y−Δw+ g(t) (6.65b)

with the initial conditions y(0) = y0 and v(0) = v0. We can now write Eqs. 6.65a
and b in state-variable form as a 2n-dimensional system of linear ODEs, namely,

η̇ = Aη+Bg(t), η(0) = η0 (6.66a)

where

A≡
⎡

⎣
O 1
−Ω2 −Δ

⎤

⎦ , B≡
[

O
1

]
, η ≡

[
y
w

]
(6.66b)

In the above definitions, A and B are 2n× 2n and 2n× n matrices, respectively,
while η is a 2n-dimensional vector. Furthermore, O and 1 are the 2n× 2n zero and
identity matrices. Apparently, A is not symmetric, and hence, its eigenvalues and
eigenvectors are bound to be complex.

The total response of damped two-dof systems in state-variable form was
obtained in Eq. 5.137, with matrix A of 4× 4, matrix B of 4× 2 and vector z of
dimension four.2 The total response of the damped n-dof system at hand takes a
form similar to that of Eq. 5.137, if with the foregoing differences, namely,

η(t) = eAtη0 +

∫ t

0
eA(t−τ)Bg(τ)dτ (6.67)

which gives the time response of interest in the transformed variables y =
√

Mx and
ẏ = w =

√
Mẋ. In order to obtain the time response in the original coordinates, via

the state vector z = [xt , ẋT ]T , a change of coordinates is in order, which is left as an
exercise.

Closed-form expressions of the exponential and the integral of Eq. 6.67 in terms
of matrices Ω and Δ will not be pursued, as these expressions are elusive. However,
the time response of damped systems will be obtained in Chap. 7 in terms of the
impulsive response.

2Notice that z = [xT , ẋT ]T in Eq. 5.137, while in Eqs. 6.66a and b, η = [yT ,wT ]T .
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6.7 Exercises

6.1. A certain mechanical system has the mass and stiffness matrices shown below

M = m1, K = k

⎡

⎢
⎢
⎣

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

⎤

⎥
⎥
⎦

where 1 is the 4× 4 identity matrix. Find the natural frequencies and the normal
modes of the system.

6.2. For the undamped model of the subway car suspension system of Fig. 4.9,

(a) Find the natural frequencies and the modal vectors.
(b) Suppose that the subway is travelling at a constant speed v when it encounters

a bump of height B = 5mm and wavelength λ = π m at time t = 0. Write
a computer program that will determine the responses of the generalized
coordinates x1(t), x2(t), and x3(t) for 0 ≤ t ≤ 10 s under the velocities (1)
v = 20.6m/s = 74.16km/h, and (2) v = 23.4m/s = 84.2 km/h.

Make sure to include a well-documented listing of the source code of your
program, as well as plots of the time responses.

6.3. Verify that the eigenmodes of the system of Example 6.2.1 satisfy Eq. 6.30,
with Ωd defined in Eq. 6.9.

6.4. Repeat Exercise 6.3 for the system of Example 6.2.2.

6.5. Plot the time response (ω/v0)x(t) of Example 6.3.1 for one (normalized)
longest natural period3 T1 = 1/0.3195(dimensionless).

6.6. Repeat Exercise 6.5 for the time response θ(t) of Example 6.3.2.

6.7. Show that the time response of n-dof undamped systems of Eqs. 6.62a and b
are equally valid for semi-definite systems. Hint: assume, e.g., that ω1 = 0, then
recall that limω1t→0(ω1t/sin(ω1t)) = 1.

6.8. Once the time response (6.67) has been obtained, a simple change of variable
can be applied to obtain the response in terms of the original state vector z =
[xT , ẋT ]T , as η and z are related by

η(t) = Zz(t), Z =

[
N O
O N

]

3The natural periods of a linear mechanical system are the reciprocals of its natural frequencies.
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with N =
√

M and O denoting the n× n zero matrix. Alternatively, z(t) can be
obtained from the original state equations if the model (5.116) is cast in state-
variable form:

ż = A∗z+b∗φ(t)

Find expressions for A∗ and B∗ in terms of A and B, respectively. Then, reconcile
the response obtained from the above model with that obtained by means of a change
of variable in Eq. 6.67. Hint: Recall Fact 5, which allows you to write

Z−1eAZ = eZ−1AZ



Chapter 7
Simulation of n-dof Systems

Computers are good at following instructions,
but not at reading your mind.

Knuth, D.E., 1984, The TEXbook, Addison-Wesley, Boston, MA.

7.1 Introduction

The principles introduced in Chap. 6 allow the determination of the time response
of n-dof systems when n is either small enough or the system possesses symmetries
that render its time response analysis handleable in closed form. More general n-dof
systems call for a numerical procedure. This is done here upon extension of the
techniques introduced in Chap. 3. The aim of this chapter is thus to derive simulation
schemes for the total time response of n-dof systems, for an arbitrary integer n. The
principles laid down in Chap. 3 will be applied.

Given that the emphasis is on the fundamentals, at an intermediate level,
specialized numerical integration schemes available in the literature are left aside.
Instead, algorithms are developed that are robust to roundoff and truncation errors—
the latter arise when approximating integrals by sums, and derivatives by finite
differences, for example—as they preserve the energy of undamped systems. The
algorithms are based on the material introduced in Chaps. 3–6. In engineering
practice, continuous structures, e.g., aircraft fuselages, are discretized by a finite
number N of linearly elastic elements from which the n× n mass and stiffness
matrices are derived, where n > N, and n depends on the type of element used. In
this context, these matrices are used to conduct the modal analysis of the structure,
in the absence of damping.

The simulation algorithms proposed here are based on the zero-order hold,
introduced in Chap. 3, and, for undamped systems, on a closed-form time response,
as derived in Chap. 5 for two-dof systems of this kind—i.e., undamped. It is shown
that, for a n-dof undamped system, the 2n× 2n system matrix, mapping a state at

J. Angeles, Dynamic Response of Linear Mechanical Systems: Modeling, Analysis
and Simulation, Mechanical Engineering Series, DOI 10.1007/978-1-4419-1027-1 7,
© Springer Science+Business Media, LLC 2011
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instant tk into a state at instant tk+1, is proper orthogonal. Hence, the system matrix
in question represents a rotation in the 2n-dimensional space of state variables. The
outcome is that the state-variable vector, seen as a vector in 2n-dimensional space,
only rotates in this space during simulation, without changing its magnitude—i.e.,
its norm, in a more general sense. The magnitude of the state-variable vector, in fact,
equals the total energy of the system, and hence, energy is inherently preserved by
the simulation algorithm, as made apparent in Sect. 7.3.1.

Regarding damped systems, these were handled in Chap. 3 using the closed-form
expression for their general time response, under non-zero initial conditions and
non-zero input. A crucial step in this analysis is the computation of the zero-state
response, which calls for the symbolic computation of the integral of the exponential
of the system matrix A, as occurring in Eq. 3.34. The integral is displayed in Eq. 3.37
in terms of eAh, labeled F, which is displayed in turn in Eq. 3.40. For n-dof damped
systems, matrix A is of 2n× 2n, a symbolic expression for its exponential being
quite challenging. For this reason, a numerical evaluation is usually pursued, which
is available in scientific software.

Two simulation algorithms for damped systems are developed in this chapter:
one is an extension of the algorithm introduced in Chap. 3 for single-dof damped
systems, without attempting to derive the matrix exponential and its time integral in
terms of the mass, damping and stiffness matrices. The second algorithm does this
based on the Laplace transform, outlined in Appendix B, and the impulse response
of the system.

7.2 Undamped Systems

The model of a n-dof undamped linear mechanical system was formulated in
Sect. 4.5 as

Mẍ+Kx = φ(t), x(0) = x0, ẋ(0) = v0, t ≥ 0 (7.1)

where M and K are symmetric n× n matrices, the former being, additionally,
positive-definite, while the latter is at least positive-semidefinite. A semidefinite
system entails rigid modes, which can be extracted from the original system by
suitably reducing the number of generalized coordinates x; this renders the reduced
form of both M and K positive-definite. The issue of rigid-mode extraction being
rather special, will not be included in this book. It is thus assumed that the
two foregoing matrices are positive-definite. Moreover, the vector of generalized
coordinates x is n-dimensional, and so is φ(t), which represents an array of n input
generalized forces.

The foregoing model is now cast in what was introduced in Chap. 5 as the normal
form, namely,

ÿ+Ω2y = φ(t), y(0) = y0, ẏ(0) = s0, t ≥ 0 (7.2)
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with Ω, the frequency matrix, defined in Eq. 6.3 as the positive-definite square
root1 of

Ω2 ≡N−1KN−1 (7.3)

and N as the positive-definite square root of M, i.e.,

N≡
√

M (7.4)

while y and φ(t) are given by the transformations below:

y = Nx, s = ẏ = Nẋ, g(t) = N−1φ(t) (7.5)

7.3 The Discrete-Time Response of Undamped Systems

The simulation algorithm relies on the concept of discrete-time (DT) system,
introduced in Chap. 3, as derived from its given continuous-time (CT) counterpart,
Eq. 6.1, or from its normal form, Eq. 6.2, for that matter.2 The continuous time
response of the former was derived in Eq. 6.61a and b, as reproduced below for
quick reference:

x(t) = N−1(cosΩt)Nx0 +N−1Ω−1(sinΩt)Nv0

+N−1Ω−1
∫ t

0
sinΩ(t− τ)N−1φ(τ)dτ, t ≥ 0 (7.6)

ẋ(t) = −N−1Ω(sinΩt)Nx0 +N−1(cosΩt)Nv0

+N−1
∫ t

0
[cosΩ(t− τ)]N−1φ(τ)dτ, t ≥ 0 (7.7)

Similar to two-dof systems, the state variable vector of n-dof will be labeled
z(t), i.e.,

z =
[

x
ẋ

]
(7.8)

which is a 2n-dimensional array.
By virtue of the relation between the vector of generalized coordinates x(t) and

its transformed counterpart y(t), as well as between the vector of generalized forces

1A n×n positive-definite matrix has 2n square roots, of which one is positive-definite, one negative-
definite, and all others sign-indefinite.
2This section is largely based on material that appeared in Al-Widyan et al. [1], c© 2003, with
permission from Begell House, Inc.
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f(t) and its transformed counterpart φ(t), as appearing in Eq. 7.5, the time response
of the normal-form model reduces to:

y(t) = cos(Ωt)y0 +Ω−1 sin(Ωt)s0 +
∫ t

0
Ω−1 sin[Ω(t− τ)]g(τ)dτ (7.9a)

ẏ(t) ≡ v(t) =−Ωsin(Ωt)y0 + cos(Ωt)s0 +

∫ t

0
cos[Ω(t− τ)]g(τ)dτ (7.9b)

Similar to Sect. 3.4, what we need now is an expression for y(tk+1) ≡ yk+1 in
terms of yk ≡ y(tk), ẏk ≡ v(tk) and gk ≡ g(tk). Thus, we regard instant tk as the
initial time and compute yk+1 from instant tk using Eq. 7.9a, i.e.,

yk+1 = cos(Ωh)yk +Ω−1 sin(Ωh)sk +Ω−1
∫ tk+h

tk
sin[Ω(tk + h− τ)]g(τ)dτ

= cos(Ωh)yk +Ω−1 sin(Ωh)sk +Ω−1
{∫ tk+h

tk
sin[Ω(tk + h− τ)]dτ

}
gk

where φk ≡ φ(tk) is constant in tk ≤ t ≤ tk+1, as per the assumption behind the
zero-order hold, introduced in Sect. 3.2, while keeping tk+1− tk = h, for all k.

To calculate the integral in curly brackets in the foregoing expression, we let
u≡ tk + h− τ , which allows us to write,

∫ tk+h

tk
sin[Ω(tk + h− τ)]dτ =−

∫ 0

h
sin(Ωu)du≡

∫ h

0
sin(Ωu)du (7.10)

and hence, upon mimicking, in matrix form, the integral of the scalar sine function,

∫ tk+h

tk
sin[Ω(tk + h− τ)]dτ =Ω−1[1− cos(Ωh)]≡ [1− cos(Ωh)]Ω−1 (7.11)

thereby showing3 that the integral at hand is a constant as long as the sampling takes
place at equal time intervals of length h. Thus, yk+1 takes the form

yk+1 = cos(Ωh)yk +Ω−1 sin(Ωh)vk +Ω−2 [1− cos(Ωh)]gk (7.12)

which is the discrete-time response sought. However, the foregoing response
requires the updating of vk, which means that an expression for vk+1 similar to
that for yk+1 must be derived; this is done with the aid of Eq. 7.9b. To obtain the

3The identity in Eq. 7.11 follows from Fact 4 of Appendix A.
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desired expression, we have to evaluate, between tk and tk+1, the integral appearing
in Eq. 7.9b labeled c:

c≡
∫ tk+h

tk
cos[Ω(tk + h− τ)]φk dτ ≡

{∫ tk+h

tk
cos[Ω(tk + h− τ)]dτ

}
gk

The above integral is evaluated by resorting to the same substitution used in Eq. 7.10,
the term c thus reducing to

c =Ω−1 sin(Ωh)gk (7.13)

Then, the final expression for sk+1 becomes

sk+1 =−Ωsin(Ωh)yk + cos(Ωh)vk +Ω−1 sin(Ωh)gk (7.14)

If we let ηk ≡ [yT
k , sT

k ]
T denote the vector of state variables at instant t = tk, then

ηk+1 = Fηk +Γgk (7.15a)

with F and Γ defined now as 2n× 2n matrices, namely,

F≡
[

cos(Ωh) Ω−1 sin(Ωh)

−Ωsin(Ωh) cos(Ωh)

]

, Γ≡
[
Ω−2[1− cos(Ωh)]

Ω−1 sin(Ωh)

]

(7.15b)

and hence, the expression for ηN in terms of η0 is readily derived by mimicking
the expression derived for undamped second-order, single-dof systems in Eq. 3.18,
which leads to

ηN = FNη0 +
N−1

∑
k=0

FkΓgN−1−k, N = 1,2, · · · (7.16)

thereby obtaining the discrete-time response of n-dof undamped systems. The
output of the system is ηN itself. In practice, this response is not to be computed
with the above formula; it is rather calculated at every sample instant tk by means
of Eq. 7.15a, which only requires two matrix-times-vector multiplications. The time
response of Eq. 7.16 makes it apparent that ηN involves the first N powers of F, and
hence, the first N powers of both Ω and Ω−1. Furthermore, the relation between ηk

and zk, the discrete-time counterpart of the state-variable vector given by Eq. 7.8, is

ηk = Yzk, Y =

[
N 0
0 N

]
(7.17)



424 7 Simulation of n-dof Systems

If we realize that the eigenvalues of ΩN are {ωN
i }n

1 and those of (Ω−1)N are
{1/ωN

i }n
1, then it is apparent that the “small” eigenvalues become attenuated in

time because of ΩN , while their “large” counterparts become amplified likewise.
A similar phenomenon, but opposite to this one, occurs because of (Ω−1)N . This
problem arises, apparently, because the entries of F and Γ have different physical
units. A similar remark was made in connection with the discrete-time response
of undamped single-dof systems regarding matrix F and vector g, as appearing in
Eq. 3.17b. The way to cope with this problem, introduced in Chap. 3, was a change
of variable, which is done here as well.

By looking closely at matrix F, as given by Eq. 7.15b, it is apparent that the
absolute values of the entries of its diagonal blocks lie between zero and unity, while
the entries of its off-diagonal blocks are unbounded, and can take any real value,
depending on the eigenvalues of Ω. Moreover, roundoff errors will be unavoidably
magnified as the simulation proceeds, for exponent N in Eq. 7.16 takes larger and
larger values. As a means to alleviate roundoff-error buildup, that can lead to
catastrophic results, we rewrite Eqs. 7.12 and 7.14 in a more suitable form. To
this end, by virtue of the commutativity of Ω and Ω−1 with any analytic function
of Ω, in particular with cos(Ωh) and sin(Ωh), Eqs. 7.12 and 7.14 are expressed
alternatively as:

yk+1 = cos(Ωh)yk + sin(Ωh)Ω−1sk +[1− cos(Ωh)]Ω−2gk (7.18a)

Ω−1sk+1 = −sin(Ωh)yk + cos(Ωh)Ω−1sk + sin(Ωh)Ω−2gk (7.18b)

Now we introduce the change of variable

wk ≡Ω−1sk and uk ≡Ω−2gk ≡ (Ω2)−1gk (7.19)

thereby obtaining the simpler scheme

yk+1 = cos(Ωh)yk + sin(Ωh)wk +[1− cos(Ωh)]uk (7.20a)

wk+1 = −sin(Ωh)yk + cos(Ωh)wk + sin(Ωh)uk (7.20b)

One simple way of computing Ω−1 and (Ω2)−1 is via Ωd , the diagonal form of the
frequency matrix, introduced in Eq. 6.8, its relation with Ω appearing in Eqs. 6.9
and 6.10. The reader should be able to prove that

Ω−1 = EΩ−1
d ET , (Ω2)−1 = E(Ω2

d)
−1ET (7.21)
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The simulation scheme of Eq. 7.20a and b now takes the form

ζk+1 = Hζk + Juk (7.22a)

zk = Ξζk (7.22b)

with vector zk defined as the discrete-time counterpart of z(t), introduced in Eq. 7.8,
while vector ζk is defined as the state variable vector of the simulation scheme of
Eq. 7.20, i.e.,4

zk ≡
[

xk

vk

]
=

[
xk

ẋ(tk)

]
, ζk ≡

[
yk

wk

]
(7.22c)

Matrices H, J and Ξ are defined, in turn, as

H≡
[

cos(Ωh) sin(Ωh)

−sin(Ωh) cos(Ωh)

]

, J≡
[

1− cos(Ωh)

sin(Ωh)

]

, Ξ≡
[

N−1 O

O N−1Ω

]

(7.22d)
where O is the n× n zero matrix.

The output of the foregoing system is the original discrete-time state vector zk,
containing the n components of xk and the n components of ẋ(tk).

Now, matrices H and J are better behaved numerically. Note that, in the foregoing
scheme, H is orthogonal, i.e.,

HHT = 1 (7.23)

with 1 denoting the 2n× 2n identity matrix.
The discrete-time response of the system at hand now takes the form

ζN = HNζ0 +
N−1

∑
k=0

HkJuN−1−k (7.24)

where, by virtue of the special structure of H,

Hk =

[
cos(kΩh) sin(kΩh)

−sin(kΩh) cos(kΩh)

]

, k = 1,2, . . . (7.25)

which the reader is invited to verify. This matrix represents a rotation through angles
of kωih, i = 1, . . . ,n, where ωi is the ith eigenvalue of Ω, in 2n-dimensional space,
in the same way that, in 2D space, Hnof Eq. 3.23 represents a rotation through an
angle nωnh—with ωn representing the natural frequency of the single-dof system in
question.

4Properly speaking, the lower block of zk, as given by Eq. 7.22b, is different from ẋ(tk) because of
the approximation involved when introducing the ZOH.
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The simulation algorithm, for k= 1, · · · ,N, is summarized below:

Algorithm UDnDOF

1. calculate the eigenvalues and eigenvectors of M,
{μi}n

1 and {mi}n
1, respectively; k← 0

2. M ← [m1 m2 · · · mn]
3. Md ← diag(μ1, μ2, · · · , μn);
4. N−1

d ← diag(1/
√μ1, 1/

√μ2, · · · ,1/√μn);

5. N−1←MN−1
d M

T

6. Ω2← N−1 KN−1;
7. calculate the eigenvalues and eigenvectors ofΩ2,
{ω2

i }n
1 and {ei}n

1, respectively;
8. E← [e1 e2 · · · en];
9. Ωd← diag(ω1, ω2, · · · , ωn), C← diag(cosω1h, cosω2h, · · · , cosωnh),

S← diag(sin ω1h, sin ω2h, · · · , sinωnh)
10. Ω← EΩd ET , cos(Ωh)← ECET , sin(Ωh)← ESET

11. H←
[

cos(Ωh) sin(Ωh)
−sin(Ωh) cos(Ωh)

]
;

12. J←
[

1− cos(Ωh)
sin(Ωh)

]
;

13. uk← (Ω2)−1 gk;
14. ζk+1←Hζk + Juk;
15. xk+1←N−1 yk+1, ẋk+1←N−1Ωwk+1;
16. if tk < T then k← k+1 go to 13; else stop

7.3.1 The Numerical Stability of the Simulation Algorithm
of Undamped Systems

As stated in Chap. 3, the powers of orthogonal matrices are orthogonal as well. This
means that the powers of H in Eq. 7.24 are orthogonal, which means, in turn, that the
magnitude of the discrete zero-input response HNζ0 remains equal to that of ζ0. That
is, HNζ0 is nothing but vector ζ0 rotated N times by matirx H in 2n-dimensional
space. Therefore,

‖ζk‖= ‖ζ0‖, k = 1, . . . ,N (7.26)
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which leads to the conservation of energy of the undamped, zero-input response of
the system at hand, as shown presently. For starters, a 2n×2n nonsingular matrix Z
is introduced5:

Z =

[
Ω O
O Ω

]
(7.27)

with O introduced in Eq. 7.22d as the n×n zero matrix. Now a property of Z and H
is pointed out:

ZHZ−1 = H (7.28)

The proof of the above relation is straightforward: For brevity, let C ≡ cosΩh and
S≡ sinΩh. Then,

ZHZ−1 =

[
Ω O

O Ω

][
C S

−S C

][
Ω−1 O

O Ω−1

]

=

[
ΩCΩ−1 ΩSΩ−1

−ΩSΩ−1 ΩCΩ−1

]

(7.29)

However, Fact 4 of Appendix A states that any square matrix commutes with its
analytic functions. This means that

ΩCΩ−1 =ΩΩ−1C = C, ΩSΩ−1 =ΩΩ−1S = S

thereby proving relation (7.28). The reader should be able to prove that

ZHkZ−1 = Hk, k = 1, 2, . . .

Further, multiplying by Z the two sides of Eq. 7.24, with uN−1−k = 0, for k =
0, 1, . . . , N − 1 and 0 denoting the n-dimensional zero vector, while the 2n× 2n
identity matrix 1 is inserted bewteen HN and ζ0, disguised as the product Z−1Z,
thereby obtaining

ZζN = ZHNZ−1Zζ0 (7.30)

Now, by virtue of Eq. 7.28, the foregoing equation leads to

ZζN = HNZζ0 (7.31)

Moreover,

‖ZζN‖2 =

∥
∥
∥∥

[
ΩyN

ΩwN

]∥∥
∥∥

2

=

∥
∥
∥∥

[
ΩNxN

ΩΩ−1NẋN

]∥∥
∥∥

2

5Not to be confused with Z introduced in Exercise 6.8.
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Upon expansion,

‖ZζN‖2 = xT
NN Ω2

︸︷︷︸
N−1KN−1

NxN + ẋT
N N2
︸︷︷︸

M

ẋN

where the definitions of Ω2 and N, besides their symmetries, have been recalled
from Eqs. 7.3 and 7.4. Therefore,

‖ZζN‖2 = xT
NKxN + ẋT

NMẋN = 2EN

which is twice the total energy EN at instant t = tN . Likewise,

‖Zζ0‖2 = xT
0 Kx0 + ẋT

0 Mẋ0 = 2E0

However, in light of the orthogonality of HN , the magnitudes of ZζN and Zζ0 are
identical. Therefore,

‖ZζN‖2 = ‖Zζ0‖2 ⇒ EN = E0

thereby showing that the discrete zero-input response of the undamped system under
study is energy-preserving. Commercial simulation software being by its nature of a
general-purpose type, entails a cumulative roundoff-error that produces a slow, but
persistent growth—or decay—of the energy of the system.

7.3.2 On the Choice of the Time Step

While the ZOH and a suitable change of variable have led to a robust algorithm
guaranteeing the conservation of energy in the simulation of undamped systems, the
time step h must be suitably chosen; else, the simulation results may be misleading.
In fact, h cannot be larger than Tmin/2, where Tmin is the minimum period associated
with the natural frequencies of the system, as required by Shannon’s Theorem.6 That
is, if the natural frequencies are ordered such that ω1 ≤ ω2 ≤ . . .≤ ωn, then

h≤ π
ωn

(7.32)

Failure of complying with this condition will lead to the hiding of high frequencies,
a phenomenon known as aliasing.

6The interested reader can have a glimpse of the theorem in Åström and Wittenmark [2].
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Fig. 7.1 The iconic model of
the suspension system

One example is included below to illustrate the performance of the algorithm.

Example 7.3.1 (Discrete-time Response of Undamped, Three-dof Suspension). The
suspension system shown in Fig. 4.8 was modeled in Example 4.5.3. The time
response of this system is simulated here under a perturbation arising by a sudden
displacement of 100 mm of the third mass in the upward direction, with the purpose
of exciting the lowest frequency of the system. Moreover, the effects of the dashpots
are neglected here.

Referring to Fig. 7.1, the undamped counterpart of Fig. 4.9, m1, m2, and m3

denote the mass of: each motor-differential bridge; the chassis and one-half the mass
of the car body, respectively.

In deriving the mathematical model of the system appearing in Fig. 7.1, we define
the three-dimensional vector of generalized coordinates x as

x =
[

x1 x2 x3
]T

where all three components are measured from the equilibrium configuration.
The mathematical model corresponding to Fig. 7.1 takes the form of Eq. 6.1, with

matrices M and K given by

M =

⎡

⎣
m2 0 0
0 m1 0
0 0 m3

⎤

⎦ , K =

⎡

⎣
8k1 + 4k2 + 4k4 −8k1− 4k2 0
−8k1− 4k2 8k1 + 4k2+ 2k3 −2k3

0 −2k3 2k3

⎤

⎦

Moreover, the manufacturer provides the numerical values given below:

m1 = 1971 kg, m2 = 3256 kg, m3 = 15780 kg

k1 = 4900× 103 N/m, k2 = 3430× 103 N/m, k3 = 837× 103 N/m,

k4 = 1783× 103 N/m
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Solution: Using the above data, the system matrices are readily calculated as

M =

⎡

⎣
3256 0 0

0 1971 0
0 0 15780

⎤

⎦ kg, K =

⎡

⎣
60052 −5292 0
−5292 5459 −1674

0 −1674 1674

⎤

⎦ kN/m

The eigenvalues of the frequency matrix are displayed in array ω, its three unit
eigenvectors columnwise in array E:

ω =

⎡

⎣
9.092543

41.194823
210.875591

⎤

⎦ , E =

⎡

⎣
0.625961 −0.774860 0.088118
−0.779837 −0.621173 0.077450
0.005277 0.117198 0.993095

⎤

⎦

which were computed using MapleTM.
The modal vectors, introduced in Eq. 6.21a, are displayed below in array7 F:

F = N−1E =

⎡

⎣
0.001544 −0.013579 0.010970
0.001745 −0.013992 −0.017565
0.007906 0.000933 0.000042

⎤

⎦

It is recalled that the eigenvectors of Ω are the result of a change of coordinates,
given by Eq. 7.5, and hence, do not offer an immediate interpretation in terms of
the given set of generalized coordinates, stored in array x. To ease the interpre-
tation of the analysis results, a transformation back into the original coordinates
is thus warranted, thereby obtaining the above modal vectors. What the above
natural frequencies reveal is interesting: with wheel diameters of 0.960 m, as per
Example 4.5.3, and the car rolling with unavoidably small unbalanced wheels,8

resonances are expected to occur at traveling speeds of 4.3644 m/s (≈15.7 km/h),
19.7735 m/s (≈71.18 km/h), and 100.8 m/s (≈363.0 km/h). The first natural fre-
quency is not apparent at a constant speed, as the subway zooms through this
speed. Neither is the third, but the second natural frequency is more likely to be
excited. Under the second mode, masses 1 and 2 move with approximately the same
displacement in the same direction, while mass 3 moves in the opposite direction
with a displacement of about one order of magnitude smaller than that of the two
other masses.

Under the above perturbation, and with reference to the model of Eq. 6.1, we
have

f(t) = 0, x(0) =
[
0 0 100

]T
mm, ẋ(0) = 0

7Not to be confused with matrix F of Eq. 7.15b!
8A (statically) unbalanced wheel can be visualized as a disc with its mass concentrated at a point
C offset from its center O by a distance e << r, for a radius r.
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Fig. 7.2 The time response produced by the simulation algorithm

Figure 7.2 shows the time response of the system to be above excitation. Those
results were generated by the algorithm introduced here. What these plots reveal is
that the amplitude of the motion of the three masses remains unaltered during the
first 20 s, a result of the inherent-energy-preserving feature of the algorithm.

Animations of the three modes of the model of the subway cars are included in

7-metro1stMode.mw
7-metro2ndMode.mw
7-metro3rdMode.mw

Animation of the response of the same model to a bump is included in

7-MetroBump.mw

7.4 The Discrete-Time Response of Damped Systems

The systems of interest are modeled by Eq. 4.22, which represents an initial-value
problem of n second-order ODEs in the n generalized coordinates x. This model
was cast in state-variable form in Eqs. 6.64–6.66b, which allowed the derivation of



432 7 Simulation of n-dof Systems

its time response explicitly in terms of the system initial conditions η0, input g(t),
and system matrices A and B. The system representation and its time response are
reproduced below for quick reference: we start by recalling the mathematical model
in terms of 2n first-order, linear ODE in the state-variable vector η = [yT , sT ]T .
Further, with N denoting the positive-definite square root of the mass matrix M,
additional definitions follow: y = Nx; s ≡ Nẋ; Ω2 ≡ N−1KN−1; Δ ≡ N−1CN−1,
with K and C denoting the n× n stiffness and damping matrices, respectively.
Moreover, the new n×n matrix Δ is the dissipation matrix. The governing equation
was introduced in Eq. 5.118 for two-dof systems. For n-dof systems, the governing
equation has exactly the same form, the vectors involved being now n-dimensional
and the matrices of n× n, namely,

ÿ+Δy+Ω2y = g(t), y(0) = y0, ẏ(0) = s0 (7.33)

In state-variable form,

ẏ = s (7.34a)

ṡ = −Ω2y−Δs+ g(t) (7.34b)

with the initial conditions y(0) = y0 and s(0) = s0. We can now write Eq. 7.34a and
b in state-variable form as a 2n-dimensional system of linear ODEs, namely,

η̇ = Aη+Bg(t), η(0) = η0 (7.35a)

where

A≡
[

O 1
−Ω2 −Δ

]
, B≡

[
O
1

]
, η ≡

[
y
s

]
(7.35b)

whose time response was found in Chap. 6 to be

η(t) = eAtη0 +

∫ t

0
eA(t−τ)Bg(τ)dτ (7.35c)

The foregoing representation of the time response is useful for gaining insight
into the system response, but is not convenient for simulation, as it requires
computing the exponential and the integral of a product in which the exponential
appears as a factor at every instant t of interest. An alternative representation of the
time response in discrete time is thus sought, similar to that of Eq. 3.39.

7.4.1 A Straightforward Approach

An approach similar to that of Sect. 3.4.2 is followed here: upon introduction of
the ZOH for a constant time increment tk+1 − tk = h, for k = 1, 2, . . . ,N, the
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discrete-time response of the system becomes formally similar to that derived for
the second-order damped system in Eq. 3.39, namely,

ηk+1 = Fηk +Ggk (7.36a)

with

ηk ≡
[

yk

sk

]
, F≡ eAh, G≡ (F− 1)A−1B, gk ≡ g(tk) (7.36b)

Similar to the discrete-time response of second-order damped systems, Eq. 3.48,
that of the system at hand becomes

ηN = FNη0 +
N−1

∑
k=0

FkGgN−1−k (7.37)

From the experience gained in Sect. 7.3, one can realize that the form of the
system matrix A is not appropriate for simulation, as it involves three non-zero
blocks with different units: 1 is obviously dimensionless; Ω2 has units of frequency-
squared; and Δ has units of frequency. The outcome is that the powers of F
appearing in the foregoing time response will become corrupted with roundoff-error
amplification, which can appear in the form of numerical damping, or numerical
excitation, for that matter. The way to cope with this shortcoming is straightforward,
if the remedy found for single-dof damped systems is recalled. In this vein, a new
variable w is defined as

w≡Ω−1Nẋ =Ω−1s (7.38)

whence the system Eqs. 7.34a, b now takes the form

ẏ = Ωw (7.39a)

ẇ = −Ωy−Ω−1ΔΩw+Ω−1g(t) (7.39b)

and the system matrices become

A =

[
O Ω

−Ω −Ω−1ΔΩ

]
, B =

[
O

Ω−1

]
(7.40)

where, apparently, all the entries of A now have units of frequency, and hence, its
exponential and the integral of the latter are numerically better behaved. As the time
response sought involves x and ẋ, these state variables should be recovered from the
time response of Eq. 7.34b. This is simply done by introducing the system output z,
defined as

z =
[

x
ẋ

]
=Ξζ (7.41a)
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with ζ and Ξ defined as

ζ =

[
y
w

]
, Ξ≡

[
N−1 O
O N−1Ω

]
(7.41b)

The discrete-time response of the system now takes the form

ζk+1 = Hζk + Jgk (7.42a)

with ζk, gk, H and J defined as

ζk =

[
yk

wk

]
=

[
y(tk)
w(tk)

]
, gk = g(tk), H = eAh, J = (H− 1)A−1B≡ A−1(H− 1)B

(7.42b)

The simulation algorithm, for k= 1, · · · ,N, parallels that devised for undamped
systems:

Algorithm DnDOF

1. calculate the eigenvalues and eigenvectors of M,
{μi}n

1 and {mi}n
1, respectively; k← 0

2. M ← [m1 m2 · · · mn];
3. Md ← diag(μ1, μ2, · · · , μn);
4. N−1

d ← diag(1/
√μ1, 1/

√μ2, · · · ,1/√μn);

5. M = MMd M
T
, N−1 ≡

√
M−1←MN−1

d M
T

;
6. Ω2← N−1 KN−1;
7. calculate the eigenvalues and eigenvectors of Ω2,
{ω2

i }n
1 and {ei}n

1, respectively;
8. E← [e1 e2 · · · en];
9. Ωd ← diag(ω1, ω2, · · · , ωn);

10. Ω← EΩd ET , Ω−1 = E Ω−1
d ET ;

11. Δ←N−1 CN−1;

12. A←
[

O Ω

Ω −Ω−1ΔΩ

]
;

13. H← eAh;

14. Solve for J from AJ = (H− 1)B, B =

[
O

Ω−1

]
;

15. Ξ←
[

N−1 O
O N−1Ω

]
;

16. ζk+1←Hζk + Jgk;
17. zk+1←Ξζk+1;
18. if tk < T then k← k+1 go to 16; else stop
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Example 7.4.1 (Discrete-time Response of Damped, Three-dof Suspension). We
revisit here Example 7.3.1, but with shock absorbers in the primary and secondary
suspensions, as per the iconic model of Fig. 4.9, with the damping coefficients found
to be appropriate for coping with resonance upon exciting the second mode [3]:

c1 = 39.225 kN s/m, c2 = 123.55 kN s/m

Plot the generalized coordinates x1(t), x2(t) and x3(t) for 0≤ t ≤ 4 s.

Solution: The equations of motion of this system were derived in parametric
form in Example 4.5.3. Substituting the numerical values of the stiffness and
damping coefficients, Algorithm DnDOF algorithm is used to obtain the plots of
the generalized coordinates x1(t), x2(t) and x3(t), as shown in Fig. 7.3.

7.4.2 An Approach Based on the Laplace Transform

First, some preliminary results are introduced.9 These are related to the eigenvalue
problem associated with n-dof damped systems. For completeness, a summary of
the Laplace transform is given in Appendix B.

7.4.2.1 The Eigenvalue Problem of n-dof Damped Systems

For starters, the mathematical model of the system in what was dubbed normal form
in Chap. 5 is recalled from Eq. 5.118, reproduced below for quick reference:

ÿ+Δẏ+Ω2y = g(t), y(0) = y0, ẏ(0) = s0 (7.43)

In formulating the eigenvalue problem of the system at hand, the counterpart
problem of two-dof systems of Chap. 5 is recalled, but now as applied to n-dof
systems. To this end, we set g(t) = 0 in Eq. 7.43 and Laplace-transform the two
sides of the equation thus resulting, under zero initial conditions:

(s21+ sΔ+Ω2)η = 0 (7.44)

in which s is the complex variable of the Laplace transform, while η is an
eigenvector10 of the system (5.118). The latter will be henceforth assumed of unit
norm. Thus, since η is, in general, complex,

‖η‖2 = η∗η = 1 (7.45)

9The material in this section is based largely on Angeles et al. [4].
10Not to be confused with the state-variable vector introduced in Eq. 7.15a.
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Fig. 7.3 The time response
produced by the simulation
algorithm
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with ( ·)∗ denoting conjugate-transposition, whether of a vector or of a matrix.
Furthermore, note that the original model of the damped system is given in Eq. 7.33
Therefore, the eigenvectors of the original model, henceforth referred to as the
modal vectors and denoted by φ, corresponding to η, are obtained from the change
of variable of variable y = Nx, and denoted by φ. The two vectors are related by

φ= N−1η, or η = Nφ (7.46)

where it is apparent that vector φ is not of unit norm in the sense of Eq. 7.45.
However, it is of weighted unit norm with respect to the mass matrix, i.e.,

φ∗Mφ= 1

By virtue of the foregoing propertyφ �= 0, and hence, the matrix in parentheses in
Eq. 7.44 must be singular, which thus leads to the characteristic equation of system
(7.33), namely,

P(s)≡ det(s21+ sΔ+Ω2) = 0

Moreover, since matrices 1, Δ and Ω are all real, the coefficients of the charac-
teristic polynomial P(s) are all real as well, and hence, the complex eigenvalues of
an arbitrarily damped linear mechanical system occur in complex-conjugate pairs.

Now, since the determinant is homogeneous of degree n in its entries, P(s) is a
2n-degree polynomial in s, its 2n roots being, then, the eigenvalues of system (7.43).
The solution of the characteristic equation and the computation of the natural modes
of the system is described below. The foregoing number of eigenvalues tallies with
the number of eigenvalues of the 2n× 2n system matrix A of Eq. 7.35b.

The computation of the natural frequencies of linear mechanical systems under
small-amplitude vibration is nowadays a trivial issue in the case of undamped
systems. In fact, in this case, the problem reduces to a standard eigenvalue problem,
as shown in Sect. 5.2, for whose solution commercial software is available, e.g.,
Maple, MATLAB, etc.

The general case of damped systems is quite challenging in that it gives rise to
a more algebraically cumbersome problem. In this case, standard software cannot
be applied, at least directly, and special methods must be devised. The challenge
here lies in the calculation of the complex solutions of a fairly general eigenvalue
problem, associated with n×n matrices, where n can be in the hundreds. Moreover,
the problem cannot be reduced to the simple calculation of the complex eigenvalues
of one single matrix, but rather a complex number must be found that renders the
determinant of a linear combination of n× n matrices equal to zero.

Below we introduce a method that resorts to commercially available hardware
and software, and produces the desired eigenvalues as the intersections of two
contours in the complex plane. Hence, these eigenvalues can be determined visually
with the aid of a CAD system using the mouse to point at the intersections.
Further refinement, if needed, can be obtained using the Newton-Raphson method
to compute the roots of a system of two nonlinear equations in two unknowns.
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In these cases, the rough estimates of the contour intersection points are good initial
guesses, to be submitted to the code implementing the Newton-Raphson method.
Explicit invariant expressions are provided for the calculation of the underlying 2×2
Jacobian matrix that is needed by this method.

Properties of the System Eigenvalues and Eigenvectors

Henceforth, given a complex number z, its conjugate is indicated by z. We first recall
a basic result:

Lemma 7.4.1. Let A be a symmetric, positive-definite real n×n matrix, and u and
v two n-dimensional vectors defined over the complex field. Then

(v∗Au) = u∗Av (7.47)

The proof of this lemma is straightforward and is, hence, omitted.
As a direct consequence of the foregoing lemma, we have, upon setting v = u in

Eq. 7.47,
(u∗Au) = u∗Au (7.48)

Now, let us assume that ηk and ηl are two complex eigenvectors of system (7.43),
of two complex eigenvalues sk and sl , respectively, so that each pair (sk,ηk) and
(sl ,ηl) verifies Eq. 7.44, i.e.,

(s2
k1+ skΔ+Ω2)ηk = 0 (7.49a)

(s2
l 1+ slΔ+Ω2)ηl = 0 (7.49b)

Upon premultiplying Eq. 7.49a by η∗l and Eq. 7.49b by η∗k , one obtains

s2
kη
∗
l ηk + skη

∗
l Δηk +η∗l Ω

2ηk = 0 (7.50a)

s2
l η
∗
kηl + slη

∗
kΔηl +η∗kΩ

2ηl = 0 (7.50b)

The conjugate of Eq. 7.50a is

s2
kη
∗
kηl + skη

∗
kΔηl +η∗kΩ

2ηl = 0 (7.50c)

and hence, if we subtract sidewise Eq. 7.50b from Eq. 7.50c, we have

(s2
k − s2

l )η
∗
kηl +(sk− sl)η

∗
kΔηl = 0

Further, if sk �= sl , we can delete the common factor sk− sl from the left-hand side
of the above equation, thus obtaining

η∗k [(sk + sl)1+Δ]ηl = 0
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a relation that can be interpreted as a form of mode-orthogonality. Notice that, con-
trary to the undamped case, this relation depends on the corresponding eigenvalues.

Now, when l = k, Eq. 7.50a becomes

s2
kη
∗
kηk + skη

∗
kΔηk +η∗kΩ

2ηk = 0

which, by virtue of assumption (7.45), becomes

s2
k + skη

∗
kΔηk +η∗kΩ

2ηk = 0

and, in light of Eq. 7.48, the complex-conjugate of the above equation is

s2
k + skη

∗
kΔηk +η∗kΩ

2ηk = 0

whereby the term independent of sk, by analogy with single-dof second-order
systems, is labeled ω2

k , and the coefficient of the term linear in sk is, likewise labeled,
2ζkωk, these two items pertaining to the kth mode, i.e.,

ωk =
√
η∗kΩ2ηk =

√
η∗kΩ2ηk, ζk =

η∗kΔηk

2ωk
=

η∗kΔηk

2ωk
(7.51)

As a result, then, once the system eigenvalues and eigenvectors are available,
computing the parameters ζk and ωk of the underdamped, complex modes, is
straightforward. Moreover, the above results show that the modal parameters are
derived from quadratic forms associated with the frequency and the dissipation
matrices.

The Solution of the System Eigenvalue Problem

Discussed here is the computation of the system eigenvalues and eigenvectors,
{sk, ηk}2n

1 . We start with a fundamental result:

Lemma 7.4.2. Let {λk}n
1 and {ek}n

1 be the set of eigenvalues of a n× n matrix A,
defined over the complex field, and their corresponding eigenvectors. Then, the set
of eigenvalues of A∗ is {λ k}n

1.

The proof of this lemma is also straightforward and hence, omitted. Furthermore,

Lemma 7.4.3. Let A be a n× n matrix over the complex field. Then,

det(A∗) = det(A)

Proof: By virtue of Lemma 7.4.2, we have

det(A∗) =
m

∏
1

λ k
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But, since the product of the conjugates of various complex factors is identical to
the conjugate of the product of the same factors, the above determinant can be
expressed as

det(A∗) =
m

∏
1

λk

which is identical to the conjugate of the determinant of A, i.e.,

det(A∗) = det(A)

thus completing the proof. �
From the foregoing lemma it is now apparent that the characteristic polynomial

P(s) obeys
P(s)≡ P(s)

Thus, the real and imaginary parts of P(s) can be found using standard relations,
namely,

Re{P(s)}= 1
2
[P(s)+P(s)] Im{P(s)}= 1

2
[P(s)−P(s)]

Moreover, let s = x+ jy, with j ≡ √−1. Now, in order for P(s) to vanish, both
its real and imaginary parts must vanish, which thus leads to

P1(x,y) ≡ 1
2
[det(s21+ sΔ+Ω2)+ det(s21+ sΔ+Ω2)] = 0 (7.52a)

P2(x,y) ≡ 1
2
[det(s21+ sΔ+Ω2)− det(s21+ sΔ+Ω2)] = 0 (7.52b)

thereby deriving two polynomial bivariate equations in the two unknowns x and y.
The roots of these equations are bound to occur in complex-conjugate pairs, given
that the coefficients of s and s2 in the two equations are real. We are interested only
in the real solutions.

Notice that Eq. 7.52a and b define two contours, C1 and C2, in the x-y plane,
whose intersections determine all the real solutions of the foregoing polynomial
system. These solutions, in turn, define all real and complex eigenvalues of the
problem at hand. While the intersections of the two contours can be detected by hand
and eye, with the aid of a mouse, precise solutions can be obtained numerically. We
will not elaborate on the numerical solution of this system, which is amply discussed
in the specialized textbooks.

The Factoring of the Characteristic Polynomial

Let {sk}2m
1 be the set of complex system eigenvalues, with sm+k = sk, and {sk}2n

2m+1
the set of real system eigenvalues. From the results of the foregoing section, it is now
apparent that the characteristic polynomial P(s) admits a factoring in m quadratic
and 2(n−m) linear factors in s, containing the modal information of the system.



7.4 The Discrete-Time Response of Damped Systems 441

That is,

P(s) =
m

∏
1
(s2 + 2ζiωis+ω2

i )
2n

∏
2m+1

(s+ si)

where ωi and ζi are given in Eq. 7.51. Moreover, in terms of the modal frequencies
and damping ratios, the complex eigenvalues are given as

si,m+i =

(
−ζi± j

√
1− ζ 2

i

)
ωi, i = 1, . . . ,m

Note that the only parameter of each linear factor is its time constant τk,
defined as

τi ≡− 1
si
> 0, i = 2m+ 1, . . . ,2n

which is necessarily positive, given that both the dissipation and the frequency
matrices are positive-semidefinite.

The System Transfer-function Matrix

Once the factoring of the characteristic polynomial P(s) is available, finding the
transfer-function matrix is straightforward. It will be made apparent that the transfer
function leads to the impulse response of the system by application of the inverse
Laplace transform, as well as the frequency response of the system.

To obtain the transfer function of the system at hand, we simply Laplace-
transform the mathematical model of the system in normal form, Eq. 7.43, with
zero initial conditions and nonzero input g(t), which yields

(s21+ sΔ+Ω2)y(s) = g(s)

whence,
y(s) = (s21+ sΔ+Ω2)−1g(s)

The transfer function H(s)—a function of s, not to be confused with constant H
introduced in Eqs. 7.22d and 7.41b—can then be obtained as the partial derivative
of the response, y(s), with respect to the input, g(s), i.e.,

H(s) = (s21+ sΔ+Ω2)−1 (7.53)

which is, by definition, the impulse response of the system. From the above
definition of H(s), and recalling the units of 1, Δ and Ω, it is apparent that H(s)
has units of s2, i.e., of time-squared. As pointed out in Appendix B, moreover, the
units of the Laplace transform of a function of time are those of the function times
second. In this light, then H(t) has units of time.
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Note that the zero-state response of the system to any arbitrary input can now be
written as the convolution of H(t), the inverse Laplace transform of H(s), and g(t),
namely,

y(t) =
∫ t

0
H(t− τ)g(τ)dτ (7.54a)

In order to have the complete zero-state response of the system, we need ẏ(t), which
is readily computed from the above expression upon application of the formula for
the derivative of an integral with variable integration extremes, namely,

ẏ(t) =
∫ t

0

∂H(t− τ)
∂ t

g(τ)dτ +H(t− τ)g(τ)|τ=t

=
∫ t

0

∂H(t− τ)
∂ t

g(τ)dτ +H(0)g(t) (7.54b)

The inverse Laplace transform of H(s) is readily obtained via its partial-fraction
expansion:

H(s) =
m

∑
1

(s2 + 2ζiωis+ω2
i )
−1(Hi + sHm+i)+

2n

∑
2m+1

(s+ si)
−1Hi (7.55)

The constant coefficients {Hi}2n
1 are obtained using the standard procedure applica-

ble to scalar transfer functions. Indeed, upon multiplying both sides of Eq. 7.55 by
(s2 + 2ζiωi +ω2

i ), and evaluating the two sides of the expression thus resulting at
the two roots si and si of the foregoing quadratic factor, we obtain, for i = 1, . . . ,m,

Hi + siHm+i = Ai (7.56a)

Hi + siHm+i = Ai (7.56b)

where

Ai ≡ (s2 + 2ζiωis+ω2
i )H(s)

∣
∣
s=si

Now, the constant coefficient matrices Hi and Hm+i can be computed upon
subtracting and adding sidewise Eq. 7.56a and b, thus obtaining, in this order,

Hm+i =
Im{Ai}
Im{si} , Hi = Re{Ai}−Hm+iRe{si}

Coefficients Hi, for i = 2m+ 1, . . . ,n, are calculated, in turn, as

Hi = (s+ si)H(s)
∣
∣
s=si

Hence, the impulse response of the system takes the form

H(t) =
m

∑
1

{
HiL

−1
[

1

s2 + 2ζiωis+ω2
i

]

+Hm+i
d
dt

L −1
[

1

s2 + 2ζiωis+ω2
i

]}
+

2n

∑
2m+1

esitHi
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The explicit form of the foregoing inverse Laplace transforms is that of under-
damped systems, critically damped and overdamped modes having been included as
linear terms. Moreover, if a critically-damped mode ever occurs, then its eigenvalue
would be a double root of the characteristic polynomial, which would give rise
to two terms containing functions et and tet in the above summation. Then, the
corresponding term in that summation would change accordingly. For conciseness,
we do not consider any further the rather unlikely case of critical damping. Hence,

H(t) =
m

∑
1

e−ζiωit
√

1− ζ 2
i

{
sin ωit

ωi
Hi +

[√
1− ζ 2

i cosωit− ζi sinωit

]
Hm+i

}

+
2n

∑
2m+1

esitHi (7.57a)

its time-derivative being obtained using computer algebra, thus obtaining

Ḣ(t) =
m

∑
1

−ζiωie−ζiωit
√

1− ζ 2
i

{
cosωitHi +

[
−ωi

√
1− ζ 2

i sinωit− ζiωi cosωit

]
Hm+i

}

+
2n

∑
2m+1

sie
sitHi (7.57b)

It is noteworthy that the impulse response verifies the matrix ODE

Ḧ+ΔḢ+Ω2H = δ (t)1, H(0) = O, Ḣ(0) = O (7.57c)

where δ (t) and O denote, respectively, the Dirac impulse function and the n×n zero
matrix.

Furthermore, the zero-input response can now be derived upon taking the Laplace
transform of the two sides of Eq. 7.43 with g(t) = 0 and nonzero initial conditions,
thus obtaining

y(s) = H(s)[(s1+Δ)y0 + s0],

and hence, the desired response takes the form

y(t) = H(t)(Δy0 + s0)+ Ḣ(t)y0 (7.58a)

The reader is invited to compare the similarity between the above expression and
the zero-input response of a scalar second-order system.

An expression for ẏ(t), completing the zero-input response, is derived by
straightforward time-differentiation of the above expression for y(t), namely,

ẏ(t) = Ḣ(t)(Δy0 + s0)+ Ḧ(t)y0 (7.58b)
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The total time response of the system at hand is then obtained by superposition,
i.e., as the sum of the zero-input response given by Eq. 7.58a and b and the zero-state
response of Eq. 7.54a and b, thereby obtaining

y(t) =
[
H(t)Δ+ Ḣ(t)

]
y0 +H(t)s0 +

∫ t

0
H(t− τ)g(τ)dτ (7.59a)

s(t) =
[
Ḣ(t)Δ+ Ḧ(t)

]
y0 + Ḣ(t)s0 +

∫ t

0

∂H(t− τ)
∂ t

g(τ)dτ

+H(0)g(t) (7.59b)

the last term of the foregoing equation vanishing by virtue of the initial conditions
(7.57c). The discrete-time response can now be derived upon calculating the
response at t = tk+1 = tk + h and regarding the state-variable values at t = tk as
the initia conditions. Moreover, H(t) and Ḣ(t) are evaluated at t = tk+1− tk = h,
thereby obtaining

yk+1 =
[
H(h)Δ+ Ḣ(h)

]
yk +H(h)sk +

∫ tk+h

tk
H(tk + h− τ)gkdτ

vk+1 =
[
Ḣ(h)Δ+ Ḧ(h)

]
yk + Ḣ(h)sk +

∫ tk+h

tk

∂H(tk + h− τ)
∂ t

gkdτ

where gk ≡ g(tk), matrices H(h) and Ḣ(h) are evaluated directly from Eq. 7.57a and
b, while Ḧ(h) from Eq. 7.57c, which yields

Ḧ(h) = δ (h)1−ΔḢ(h)−Ω2H(h)

but δ (h) = 0 from the definition of the impulse function, and hence,

Ḧ(h) =−ΔḢ(h)−Ω2H(h) (7.60)

The simulation scheme for s(t) thus becomes

sk+1 =
[
Ḣ(h)Δ−ΔḢ(h)−Ω2H(h)

]
yk + Ḣ(h)sk +

[∫ tk+h

tk

∂H(tk + h− τ)
∂ t

]
gkdτ

Again, for reasons of numerical stability, it is preferable to work with
wk =Ω−1sk, and hence, the simulation scheme becomes

yk+1 =
[
H(h)Δ+ Ḣ(h)

]
yk +H(h)Ωwk

+

[∫ tk+h

tk
H(tk + h− τ)dτ

]
gk (7.61a)
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wk+1 = Ω−1 [Ḣ(h)Δ−ΔḢ(h)−Ω2H(h)
]

yk +Ω−1Ḣ(h)Ωwk (7.61b)

+Ω−1
[∫ tk+h

tk

∂H(tk + h− τ)
∂ t

]
gkdτ (7.61c)

All that remains now to complete the simulation scheme of interest is the
evaluation of the integrals in the above equation. This is done using the same idea
introduced in Sect. 3.4: let θ ≡ tk+1− τ , which yields the integral J of Eq. 7.61a as

J≡
∫ tk+1

tk
H(tk+1− τ)dτ =−

∫ 0

h
H(θ )dθ =

∫ h

0
H(θ )dθ

Likewise, the integral L of Eq. 7.61c is obtained as

L ≡
∫ tk+1

tk

∂H(tk+1− τ)
∂ tk+1

dτ =−
∫ 0

h

∂H(θ )
∂θ

dθ =

∫ h

0

∂H(θ )
∂θ

dθ =

∫ h

0
dH

= H(h)−H(0) = H(h)

where the initial conditions of Eq. 7.57c have been recalled.
Expressions for the foregoing integrals are obtained with the aid of computer

algebra:

J =
m

∑
1

1

ω2
i

(
1+ ζ 2

i

)√
1− ζ 2

i

{
[
e−ζiωih (−ζi sinωih− cosωih)+ 1

]
Hi

+

[

ωi

√
1− ζ 2

i

[
e−ζiωih (−ζi cosωih+ sinωih)− ζi

]

+ωi

[
e−ζiωihζi (ζi sinωih+ cosωih)− ζi

]
]

Hm+i

}

+
2n

∑
2m+1

1
si

(
esih− 1

)
Hi (7.62a)

and

L = H(h) =
m

∑
1

1
√

1− ζ 2
i

{
e−ζiωih sinωih

ωi
Hi +

[

e−ζiωih
(√

1− ζ 2
i cosωih

−ζi sinωih

)
−
√

1− ζ 2
i

]

Hm+i

}

+
2n

∑
2m+1

(
esih− 1

)
Hi (7.62b)
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If we let H(h)≡Hh and Ḣ(h)≡ Ḣh, then the simulation scheme (7.61a and b) takes
the form

yk+1 =
[
HhΔ+ Ḣh

]
yk +HhΩwk + Jgk

wk+1 = Ω−1 [ḢhΔ−ΔḢh−Ω2Hh
]

yk +Ω−1ḢhΩwk +Ω−1Lgk

or, in terms of the state-variable vector ζ defined in Eq. 7.41a,

ζk+1 = Fζk +Ggk (7.63a)

where

F =

[
HhΔ+ Ḣh HhΩ

Ω−1
(
ḢhΔ−ΔḢh−Ω2Hh

)
Ω−1ḢhΩ

]

, G =

[
J

Ω−1L

]

(7.64a)

Given that H(t) has units of time, all the entries of F are dimensionless, and hence,
F is dimensionally homogeneous. The reader should be able to prove that all the
entries of G have units of time-squared s2. The simulation algorithm derived in
Sect. 7.4.1 is still applicable, the only steps that change are 12–14. Once vector ζk+1

is available, its counterpart zk+1 in the original state variable is obtained by means
of a linear transformation:

zk+1 = Zζk+1, Z≡
[

N−1 0
0 N−1Ω

]

thereby completing the simulation scheme.
Note that, once functions y(t) and ẏ(t) have been obtained, a transformation back

to the original variables x(t) and ẋ(t) is needed, as per the transformations of Eq. 7.5,
i.e.,

x(t) = N−1y(t), ẋ(t) = N−1ẏ(t)

whence the impulse response I(t) of the original mathematical model, Eq. 7.33,
follows. Indeed, upon taking into account the variable transformation of Eq. 7.5,
we have

I(t) = N−1H(t)N

With the above relations, it is now possible to derive the zero-input response of
the given system in terms of the generalized-coordinate and the generalized-velocity
vectors, x and ẋ, respectively:

x(t) = [I(t)M−1C+ İ(t)]x0 + I(t)v0 (7.65a)

ẋ(t) = [İ(t)M−1C+ Ï(t)]x0 + İ(t)v0 (7.65b)

In fact, in deriving the above expressions, we have obtained the exponential of the
matrix coefficient of system (7.33) when written in state-variable form, namely, as

ż = Ax+Bf(t), z(0) = z0 (7.66a)
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Fig. 7.4 Simplified vibrational model of an automobile suspension

with the definitions:

z≡
[

x
ẋ

]
, A≡

[
O 1

−M−1K −M−1C

]

, B≡
[

O

M−1

]

(7.66b)

and O denoting the n× n zero matrix. Therefore,

eAt =

⎡

⎣
I(t)M−1C+ İ(t) I(t)

İ(t)M−1C+ Ï(t)] İ(t)

⎤

⎦ (7.66c)

thereby obtaining the exponential of the system matrix times t in block form, in
terms of the original system matrices M, K and C. As a matter of fact, K does not
appear explicitly in Eq. 7.66c. This matrix is implicit in terms I and İ.

Example 7.4.2 (Two-dof Damped Test Pad Revisited). We revisit here the two-dof
model of the test pad introduced in Example 5.7.1, and reproduced in Fig. 7.4
for quick reference. In the foregoing example, all the system parameters were
given numerical values. In this example, these parameters are left in terms of one
parameter, ω =

√
k/M. The model consists of a body with mass M, supported by

two spring-dashpot arrays and excited by an external force F(t) and an external
torque T (t), which need not be specified, as they are not required in this example.
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The stiffness ki and the dashpot coefficient ci, for i = 1,2, of the two arrays are not
necessarily the same. Moreover, the center of mass (c.m.) of the body is located a
distance d from its geometric center and the mass moment of inertia of the body
about its c.m. is denoted by I. We will consider only two types of motion for the
system, namely, (a) up-and-down translational motion of the body along the x axis
and (b) small angular motion of the body about an axis perpendicular to the plane
of the figure.

Find the components of matrix I(t).

Solution: The mathematical model takes the form of Eq. 7.33, with

x≡
[

x
θ

]
, ẋ≡

[
ẋ
θ̇

]
, ẍ≡

[
ẍ
θ̈

]
, φ≡

[
F(t)
T (t)

]

and coefficient matrices

M≡
[

M 0
0 I

]
,

C≡
[

c1 + c2 c2(l + d)− c1(l− d)

c2(l + d)− c1(l− d) c1(l− d)2 + c2(l + d)2

]

,

K≡
[

k1 + k2 k2(l + d)− k1(l− d)

k2(l + d)− k1(l− d) k1(l− d)2 + k2(l + d)2

]

Moreover,

N =

[√
M 0
0
√

I

]

Now, using matrix N we can obtain the mathematical model of the system at hand
in normal form (7.33), and hence, its characteristic equation. We assume the data
shown below:

c1 = c, c2 = 2c, k1 = 2k, k2 = k, d =
l
2
, I = Mr2,

with r defined as the radius of gyration of the block. Using the foregoing data, the
system matrices take the forms

M = M

[
1 0

0 r2

]

, C = c

[
3 5l/2

5l/2 19(l/2)2

]

, K = k

[
3 l/2

l/2 11(l/2)2

]

,

whence,

N =
√

M

[
1 0
0 r

]

Moreover, we introduce the notation

λ =
l
r
, σ =

c
M
, ω2 =

k
M
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Then, the two matrices Δ and Ω2 are readily computed as

Δ= σ

[
3 5λ/2

5λ/2 19(λ/2)2

]

, Ω2 = ω2

[
3 λ/2

λ/2 11(λ/2)2

]

It is now apparent that Δ and Ω2 do not commute under multiplication, and hence,
the system at hand is not proportionally-damped.11 The characteristic equation of
the system then follows immediately:

det

[
s2 + 3σs+ 3ω2 (5/2)λ σs+(1/2)λ ω2

(5/2)λ σs+(1/2)λ ω2 s2 + 19(λ/2)2σs+ 11(λ/2)2ω2

]

= 0

Upon expansion, the characteristic equation becomes, with the assumed relations
λ = 2

√
3 and σ = ω ,

P(s)≡ s4 + 60ωs3+ 132ω2s2 + 240ω3s+ 96ω4 = 0

The two scalar equations derived from the above characteristic equation are, then,
with s≡ x+ jy,

f1(x,y) ≡ 96ω4 + 240ω3x+ 132ω2(x2− y2)+ 60ωx(x2− 3y2)

+x4 + y4− 6x2y2 = 0,

f2(x,y) ≡ (60ω3 + 66ω2x+ 45ωx2+ x3− 15ωy2− xy2)ωy = 0

It is apparent from the second equation that y = 0 is a possible solution. Moreover,
note that the first equation is even in y, and so is the second, once the solution y = 0
is removed from it. This is natural, for the solutions should exhibit a symmetric
array in the complex plane, about the x-axis. The superimposed contour plots of the
two foregoing equations are shown in Fig. 7.5, in which C2 is shown with solid line.
It should be noted that the x and y axes represent the real and imaginary parts of
the system eigenvalues, respectively. Moreover, the two contours intersect at four
points, two of which lie in the x axis, and hence, correspond to real eigenvalues. The
computed eigenvalues, along with their corresponding eigenvectors, are displayed
in Table 7.1.

With the system eigenvalues and eigenvectors known, we can now proceed to
obtain the modal parameters. Since we have two complex and two real modes, we
have one underdamped and one overdamped mode, the latter being broken down
into two first-order systems with time constants τ3 and τ4. The natural frequency
and the damping ratio of the underdamped mode are, then,

ω1 = 1.804337024ω s−1, ζ1 = 0.4718069257

11In proportionally damped systems, the damping matrix is a linear combination of the mass and
the stiffness matrices, which then leads to a simple eigenvalue problem.
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Fig. 7.5 Contours C1 and C2 of the numerical example

Table 7.1 Eigenvalues and eigenvectors

Intersection point Real part (x) Image part (y) Eigenvector (η)

1 −0.851298704ω 1.59088737ω
[

0.190672205−0.967892209 j
−0.0620574141+0.151583836 j

]

2 −0.851298704ω −1.59088737ω
[

0.190672205+0.967892209 j
−0.0620574141−0.151583836 j

]

3 −0.510275608ω 0

[
0.840871577
0.541234691

]

4 −57.7871270ω 0

[−0.155461394
−0.987841969

]

while the time constants of the two first-order systems are

τ3 = 1.95972526436ω s, τ4 = 0.0173048921492ω s

The system transfer-function matrix is readily calculated as

H(s) =

⎡

⎢
⎢⎢
⎣

s2 + 57s+ 33
P(s)

−
√

3(5s+ 1)
P(s)

−
√

3(5s+ 1)
P(s)

s2 + 3s+ 3
P(s)

⎤

⎥
⎥⎥
⎦

Now, in order to obtain the partial-fraction expansion of H(s), we calculate matrices
Ak, for k = 1,2,3,4:

A1 =

[
(−0.1438449538− .1311668795 j)×107 276353.9107+167636.7853 j

276353.9107+167636.7853 j −50391.61089−18462.28050 j

]
,
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A2 =

[
(−0.1438449538+ .1311668795 j)×107 276353.9107−167636.7853 j

276353.9107−167636.7853 j −50391.61089+18462.28050 j

]
,

A3 =

[
0.7282387310 4.627417546
4.627417546 29.40380979

]
,

A4 =

[
0.1376649089×107 886092.7926

886092.7926 570341.7414

]

Hence, the Hk matrix coefficients take the forms

H1 =

[−0.1576534923× 107 201487.8310
201487.8310 −22190.06370

]
,

H2 =
1
ω

[−0.2876899076× 107 552707.8214
552707.8214 −100783.2218

]
,

H3 =
1
ω

[
0.7282387310 4.627417546
4.627417546 29.40380979

]
,

H4 =
1
ω

[
0.1376649089×107 886092.7926

886092.7926 570341.7414

]

Thus, the components of the impulse-response matrix are

H11(t) =
1
ω
[1.134170188 f5(t)(483593.4317 f4(t)− 0.2536567356×107 f3(t))

+0.7282387310 f2(t)+ 0.1376649089×107 f1(t)],

H12(t) =
1
ω
[1.134170188 f5(t)(−149102.7549 f4(t)+ 487323.5314 f3(t))

+4.627417546 f2(t)+ 886092.7926 f1(t)],

H21(t) =
1
ω
[1.134170188 f5(t)(−149102.7549 f4(t)+ 487323.5314 f3(t))

+4.627417546 f2(t)+ 886092.7926 f1(t)],

H22(t) =
1
ω
[1.134170188 f5(t)(35252.04082 f4(t)− 88860.75726 f3(t))

+29.40380979 f2(t)+ 570341.7414 f1(t)]

where

f1(t) ≡ e−.5102756076 t, f2(t)≡ e−57.78712698 t, f3(t)≡ cos(1.804337024 t),

f4(t) ≡ sin(1.804337024 t), f5(t)≡ e−.8512987042 t
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Further,

N =

⎡

⎣
1 0

0
1
6

√
3

⎤

⎦ ⇒ N−1 =

[
1 0

0 2
√

3

]

Thus, the components of the impulse-response matrix I(t), for the original general-
ized coordinates, are

I11(t) =
1
ω
[1.134170188 f5(t)(483593.4317 f4(t)− .2536567356107 f3(t))

+0.7282387310 f2(t)+ .1376649089107 f1(t)],

I12(t) =
1
ω
[0.3274067319 f5(t)(−149102.7549 f4(t)+ 487323.5314 f3(t))

+1.335820384 f2(t)+ 255792.9562 f1(t)],

I21(t) =
1
ω
[3.928880782 f5(t)(−149102.7549 f4(t)+ 487323.5314 f3(t))

+16.02984460 f2(t)+ .3069515474107 f1(t)],

I22(t) =
1
ω
[1.134170188 f5(t)(35252.04082 f4(t)− 88860.75726 f3(t))

+29.40380979 f2(t)+ 570341.7414 f1(t)]

7.5 Exercises

For Exercises 7.2–7.10, obtain the discrete-time response and illustrate it with plots
for a duration that shows the salient features of the response, when the duration is
not indicated.

7.1. Compute eAt for the system of Example 7.4.2 using computer algebra. Then,
using the foregoing expression, compute matrix H of Algorithm DnDOF. When
doing this, notice that, although the latter is given by eAh, the two exponentials
are different, for their arguments A are. Hint: Notice the relation between the
two different state-variable vectors, z and ζ, as given by Eq. 7.41a. Based on this
relation, find the corresponding relation between the two exponentials.

7.2. The system of Example 6.3.1 when the wheels encounter a bump identical to
that of Example 3.4.1. Plot the time response for 20 s, assuming that the subway
train is traveling at constant speeds of 50, 71 and 80 km/h.

7.3. The vehicle modeled in Example 6.2.2, to study its behavior under roll motion.
To this end, assume that v0 = 1 m/s and ω = 1 Hz. Compare your result with the
response obtained in Example 6.3.1.
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7.4. The system described in Exercise 5.11, for a response defined in terms of
dimensionless generalized coordinates ξi ≡ x1/l, for i = 1,2, assuming x = 0 and
ẋ= 0. Plot ξi, for i= 1,2, for the time intervals 0≤ t ≤ 5/ω and 1000≤ t ≤ 1005/ω .
Compare your results with those given by the total response given in Sect. 5.6.

7.5. Repeat Exercise 7.4, but now taking into account damping, which can be
modeled by replacing the springs of Fig. 5.24 with a parallel array of a spring and a
dashpot of coefficient c, so that c/m = 0.002ω .

7.6. The system described in Exercise 5.12, for a response defined in terms of
dimensionless generalized coordinates ξi ≡ x1/l, for i = 1,2, assuming x = 0 and
ẋ= 0. Plot ξi, for i= 1,2, for the time intervals 0≤ t ≤ 5/ω and 1000≤ t ≤ 1005/ω .
Compare your results with those of the total response given in Sect. 5.6.

7.7. Repeat Exercise 7.6, but now taking into account damping, which can be
modeled by replacing the springs of Fig. 5.24 with a parallel array of a spring and a
dashpot of coefficient c, so that c/m = 0.002ω .

7.8. The system described in Exercise 5.15, with ν ≡N1/N2 and
√

k/(J1 + J2ν2)=
10 Hz under a sudden disturbance θ1(0) = θ2(0) = 0, θ̇1 = 1 rad/s, θ̇2 = 0.

7.9. The system of Example 5.5.2, with ω f = 100 Hz, under the assumption that
f0 = 100m1g. With the purpose of keeping the overall system as heavy as the
original one, m2 should be made 1% of m1.

7.10. The system of Example 4.2.1, if with some modifications, is used to model
the human arm under “normal” walking conditions. To this end, the forearm is
assumed to have a length

√
2/2a, with a denoting the length of the arm.12 Moreover,

the shoulder joint O1 is assumed to undergo a harmonic vertical displacement of
amplitude 50 mm and frequency given by twice the length of one step, i.e., 900 mm,
but no horizontal displacement—laboratory conditions assumed here. Moreover, the
subject is assumed to walk at a speed of 1 step/s. Use anthropometric data for the
mass of the arm and the forearm to produce an undamped two-dof system, with
reasonable values for the masses and the moments of inertia of the arm and the
forearm.

7.11. The system of Example 7.4.2 is revisited here. Simulate the time response of
this system under the assumption that, with the system at rest at t = 0, impulsive
loads F(t) = F0δ (t) and T (t) = T0δ (t) are applied. Consider three cases: (1) F0 =
Mg/ω , T0 = 0; (2) F0 = 0, T0 = Mgr/ω ; (3) F0 = Mg/ω , T0 = Mgr/ω . In all three
cases, assume the numerical values given in that example and ω = 1Hz.

12Leonardo da Vinci concluded that the ratio of the forearm length to that of the arm is 71.4%, not
too far from the assumption adopted here.
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Chapter 8
Vibration Analysis of Continuous Systems

And the spiral in every thing
disperses its vibration as it turns:
motion knows no rest.

Paz, O., 1960, Libertad Bajo Palabra,
Lecturas Mexicanas 4, Mexico City.1 Translated by the author.

8.1 Introduction

The continuum is an abstraction that finds extensive applications in mechanics, for
it serves to model many mechanical systems, such as fluids and structural elements
of the most complex shapes. In fact, all mechanical systems encountered by the
engineer are most accurately modeled by continua, but, in some instances, the
type of motion most likely to occur is describable by a finite set of independent
generalized variables. This is why we can interpret mechanical systems with
n-dof as approximations of continuous systems; the latter are characterized by the
presence of infinitely many dof. For example, the membrane in a loudspeaker is
most accurately modeled as a continuum, but, because of the symmetries of its
shape and those imposed by its constraints, we can, in many instances, model it
as a simple, single-dof mass-spring-dashpot system. If non-symmetries are present,
or if we are interested in modeling the imperfections of the design and the assembly,
then a continuous model becomes mandatory.

We will not be concerned in this chapter with arbitrary continuous systems, but
rather with the simplest ones, i.e., those with one single spatial variable. In spite
of this limited scope, we will be able to model many practical mechanical systems,
such as prismatic bars under axial and torsional motion; strings under lateral motion;
and beams under flexural motion. In all these cases, the geometry of the system,

1From Octavio Paz’s 1944 poem Condición de Nube.
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which will be referred to as the element indistinctly, is assumed to be simple, namely,
of a constant cross section, whose detailed shape, in most cases, is not needed. As
will become apparent in the sections below, all that matters for the purposes of
our analysis is the global properties of the cross section, such as its area, its polar
moment of inertia, and other similar area properties. Therefore, the configuration
of the overall element is completely known when the location of a landmark point
on its cross section is known as a function of a variable, say x, defined along a line
perpendicular to the cross section, and time t. We will thus define the displacement,
whether translational, in which case it is denoted by u(x, t) or y(x, t), or angular, in
which case it is denoted by θ (x, t), as a function of two variables, x and t. Here, x
takes any values between a left value, say a and a right value, say b. That is,

u = u(x, t), θ = θ (x, t), a≤ x≤ b, t ≥ 0 (8.1)

Therefore, we can regard the continuum as the limiting case, in which n→ ∞, of
a finite set of n generalized coordinates {xk }n

1, where

a≡ x1 < x2 < · · ·< xn ≡ b (8.2)

We shall see that all properties studied for n-dof systems, e.g., the existence of
natural frequencies and natural modes, orthogonality of the latter, etc., find their
counterpart in the case of continuous systems. A major difference will be made
apparent in the case of continuous systems: the number of natural frequencies and
natural modes becomes now infinite.

8.2 Mathematical Modeling

We derive below the mathematical models of the systems that we will consider
in this chapter: (1) bars under axial vibration; (2) bars under torsional vibration;
(3) strings under transverse vibration; and (4) beams under flexural vibration. In
all cases below, we assume that the motions under study produce small enough
strains on the element at hand so as to allow us to assume safely that the constitutive
material operates in the linearly elastic regime. This leads to finite axial or angular
displacements in bars, and small transverse displacements in strings and beams,
assumptions that will be invoked when deriving integrals for the mathematical
models to be obtained in the subsections below.

8.2.1 Bars Under Axial Vibration

We first consider the prismatic bar shown in Fig. 8.1a. This bar has cross-section area
As, constant Young modulus of elasticity E and mass μ per unit length. Moreover,
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a b

Fig. 8.1 (a) A prismatic bar under axial vibration; (b) the FBD of a differential element of
length dx

for the sake of conciseness, we will assume that μ is also a constant. From the FBD
of the differential element shown in Fig. 8.1b, it is apparent that

∂ f (x, t)
∂x

dx = μdx
∂ 2u(x, t)

∂ t2 (8.3)

Furthermore, let us denote with σ(x, t) the stress at the cross section located
at distance x from the left end, at time t. This stress is assumed to be uniformly
distributed throughout the cross section, i.e.,

σ(x, t)≡ f (x, t)
As

(8.4)

Likewise, we let ε(x, t) be the strain at the same cross section, assumed to be
uniformly distributed throughout the cross section, i.e.,

ε(x, t)≡ ∂u(x, t)
∂x

(8.5)

Next, we invoke Hooke’s Law:

σ(x, t) = Eε(x, t) (8.6)

Upon substitution of Eqs. 8.4–8.6 into Eq. 8.3, and dropping of the common factor
dx from both sides of the same equation, we obtain

EAs
∂ 2u(x, t)

∂x2 = μ
∂ 2u(x, t)

∂ t2 (8.7)

which can be recast in the form

∂ 2u(x, t)
∂x2 = β 2 ∂ 2u(x, t)

∂ t2 , 0 < x < l, t ≥ 0 (8.8a)
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Fig. 8.2 A circular cylindrical bar under torsional vibration

where the constant appearing in the right-hand side has been denoted as a square
because it is the quotient of two positive quantities, and is thus defined as

β ≡
√

μ
EAs

(8.8b)

which, as the reader is invited to verify, has units of speed-inverse. Note that the
mathematical model derived above consists of a partial differential equation (PDE)
in u. The integral of this equation yields a function u(x, t) determining the motion of
the bar under study both in the one-dimensional x-domain and in the time-domain.
Therefore, in order to find a particular integral of this equation, we need both initial
and boundary conditions. Moreover, since the PDE of interest is of the second order
in both x and t, we need two initial conditions and two boundary conditions. Details
on these conditions will be discussed in Sect. 8.3.

8.2.2 Bars Under Torsional Vibration

Let us now consider the circular cylindrical bar of Fig. 1.6, reproduced here as
Fig. 8.2, undergoing torsional vibration.

The FBD of a differential element of length dx and differential mass moment
of inertia about the axis dI, of the bar under study, is included in Fig. 8.3. In this
figure, the torque acting at the cross section located a distance x from the left end is
defined as τ(x, t). We further define γ(x, t) as the angular deflection per unit length,
also known as the shear deformation; γ(x, t) is measured in units of rad/m, and is
given by

γ(x, t) =
∂θ
∂x

(8.9)

Let us now consider an external fiber of the bar that prior to deformation is
parallel to the axis of the bar, and let φ denote the angle made by that fiber with
its initial configuration, as depicted in Fig. 8.3. Then, for “small” values of φ , and
noticing that the radius of the cross section is r, we have, from the same figure,

φ ≈ tanφ =
rdθ
dx
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φ

dI

rdθ

r

dx

τ(x,t)
∂τ
∂x

dxτ(x,t)+ θ(x,t)

Fig. 8.3 FBD of a differential element of a circular cylindrical bar under torsion

and, if we recall that θ is a function of two variables, x and t, then

φ = r
∂θ
∂x
≡ rγ (8.10)

Further, application of Euler’s Law, Eq. 1.4b, to the element of Fig. 8.3 yields

∂τ(x, t)
∂x

dx = (dI)
∂ 2θ (x, t)

∂ t2 (8.11)

where

dI =
1
2

r2dm, with dm = ρπr2dx

and ρ defined as the constant mass density of the bar, which has units of kg/m3.
Therefore,

dI =
1
2

ρπr4dx (8.12)

Furthermore, we invoke Hooke’s Law for torsion, which takes the form

τ(x, t) = GJγ(x, t) (8.13)

and rightfully has units of Nm.
In the above equation, G is a constant known as the shear modulus, and has units

of stress, i.e., of N/m2, while J is another constant denoting, in the case of a circular
cross section, the area moment of inertia of the cross section about the axis of the
bar, i.e.,

J =
1
2

πr4
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Moreover, the product GJ is known as the torsional stiffness of the bar. Note that
the torsional stiffness is independent of the bar length and has units of Nm2. Upon
substitution of Eq. 8.9 into Eq. 8.13, we obtain

∂τ(x, t)
∂x

= GJ
∂ 2θ (x, t)

∂x2 (8.14)

Moreover, if Eq. 8.14 is substituted into Eq. 8.11, with the expression (8.12) derived
above for dI, the governing equation is obtained as

GJ
∂ 2θ (x, t)

∂x2 =
1
2

πρr4 ∂ 2θ (x, t)
∂ t2 , 0 < x < l, t ≥ 0 (8.15)

or
∂ 2θ (x, t)

∂x2 = β 2 ∂ 2θ (x, t)
∂ t2 , 0 < x < l, t ≥ 0 (8.16a)

which is formally identical to Eq. 8.8a, with constant β now defined as

β ≡
√

πρr4

2GJ
=

√
ρ
G

(8.16b)

and has, as in Sect. 8.2.1, units of speed-inverse.
Again, the mathematical model derived above is a PDE in θ (x, t) of the second

order in x and t. All that was said for the mathematical model of the prismatic bar
under axial vibration, then, is applicable to the mathematical model of the circular
cylindrical bar under torsional vibration.

8.2.3 Strings Under Transverse Vibration

Shown in Fig. 8.4a is a string of uniform mass per unit length μ undergoing
transverse motion. We are interested in motions entailing small absolute values of
the slope y′(x), and negligible displacements in the horizontal direction. Moreover,
we assume henceforth that the effects of gravity are negligible, and hence, gravity
will not be considered. This assumption implies that the prevailing values of the
inertia forces are much greater than those due to gravity. As a consequence of the
foregoing assumptions, the particles of the string can be assumed to be in static
equilibrium in the horizontal direction, although they are in dynamic equilibrium
in the vertical direction. Furthermore, by virtue of the small-slope assumption, the
length ds of a differential element of the string can be safely approximated as its
horizontal projection, dx. Now,let us look at the FBD of a differential element of
the string, of length ds, that is subjected to a tension acting on the left end, τL, and
one acting on the right end, τR, as shown in Fig. 8.4b. By virtue of the small-slope
assumption, the horizontal projection of τL can be safely approximated by τL itself,
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a b

c

Fig. 8.4 A string under transverse vibration: (a) general layout; (b) a differential element under
horizontal static equilibrium; (c) the same element under vertical dynamic equilibrium

the same approximation holding for the horizontal projection of τR. Moreover, since
we are assuming a static equilibrium of the differential element under study, in the
horizontal direction, the two tensions are bound to balance each other, i.e.,

τL = τR (8.17)

As a consequence, then, if no external forces act on the string, the tension along
the whole string is uniform. Henceforth, we denote this uniform tension by τ0. Note
that this assumption is not valid in the case of a string hanging from the ceiling, for,
in that case, the weight of the element induces a difference, in fact a gradient, in the
tension acting upward and the tension acting downward on the element.

Next, let us write the Newton equation for the element shown in Fig. 8.4c in the
vertical direction:

τ0 sin(θ + dθ )− τ0 sinθ = μds
∂ 2y(x, t)

∂ t2 (8.18)

Furthermore, under the small-slope assumption, sinθ and sin(θ +dθ ) can be safely
approximated by θ and θ + dθ , respectively, and, as mentioned above, the length
ds can be approximated by its horizontal projection dx. Thus, Eq. 8.18 reduces to

τ0dθ = μdx
∂ 2y(x, t)

∂ t2 (8.19)
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Moreover, noticing that angle θ is a function of both x and t, we can write

dθ
dx
→ ∂θ (x, t)

∂x
(8.20a)

On the other hand, by virtue of the small-slope assumption,

θ (x, t) =
∂y(x, t)

∂x
(8.20b)

Upon dividing both sides of Eq. 8.19 by dx, and substituting Eqs. 8.20a and b into
the equation thus resulting, we obtain

τ0
∂ 2y(x, t)

∂x2 = μ
∂ 2y(x, t)

∂ t2 , 0 < x < l, t ≥ 0 (8.21)

which can be recast in the now standard form

∂ 2y(x, t)
∂x2 = β 2 ∂ 2y(x, t)

∂ t2 , 0 < x < l, t ≥ 0 (8.22a)

with constant β now defined as

β ≡
√

μ
τ0

(8.22b)

Once more, the mathematical model derived here is a PDE in y(x, t) of the second
order in x and t. Again, β has units of speed-inverse.

8.2.4 Beams Under Flexural Vibration

Shown in Fig. 8.5a is a linearly elastic beam undergoing flexural motion. What this
means is that all particles of the beam, similar to those of the string, are in horizontal
static equilibrium, but in vertical dynamic equilibrium. Here, we neglect the mass
moment of inertia of the element about an axis perpendicular to the plane of the
figure, which, together with our assumption of small deformations and a suitable
geometry of the beam—maximum height of the beam section, in the case of variable
cross sections, smaller than one tenth the length of the beam—leads to what is
known as an Euler-Bernoulli beam. We will further assume that the beam has a
uniform cross section throughout its length, and that the mass distribution μ per
unit length is constant. Note, moreover, that by virtue of the theory of beams, the
normal stress acting on a beam section is not uniform, but varies linearly from top
to bottom. In any instance, we are not interested in the normal stress at a point, but
rather in the resultant normal force f (x, t) and the resultant bending moment M(x, t)
acting on the whole cross section located a distance x from the left. Note that both
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a

b

Fig. 8.5 An elastic beam under flexural vibration: (a) general layout; (b) FBD of a differential
element

the shear force and the bending moment are the resultant of the distributed shear
and normal stresses acting throughout the cross section. By the same token, we are
not interested in the tangential stress acting at each point of the cross section, but
rather in the shear force Q(x, t) acting on the whole section. One more fundamental
assumption in our study, under which the strains in the beam are small, implies that
the slope of the neutral axis of the beam, a.k.a. the elastica, is “small.” This is known
as the small-slope assumption.

Now, the dynamic equilibrium of the differential element of Fig. 8.5b leads to

Q(x, t)+
∂Q(x, t)

∂x
dx−Q(x, t) = μ

∂ 2u(x, t)
∂ t2 (8.23)

We now recall the relations below:

• From the small-slope assumption,

θ (x, t)≈ ∂u(x, t)
∂x

(8.24)
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• From beam theory, we have the constitutive equation below:

M(x, t) =−EI
∂ 2u(x, t)

∂x2 (8.25)

where E is the Young modulus of elasticity of the beam material and I is the area
cross-section moment of inertia about an axis passing through the beam axis in a
direction normal to the plane of motion. Moreover, the product EI is known as the
beam flexural rigidity. In our case, the flexural rigidity is constant and depends
entirely on both the material and the form of the cross section, but it does not
depend on the beam length; the flexural rigidity, additionally, has units of Nm2.

Further, balance of moments about the center of mass of the element, i.e., the
Euler equation, leads to

M(x+ dx, t)− 2Q(x, t)
dx
2
− ∂Q(x, t)

∂x
(dx)2

2
−M(x, t) = 0

where, obviously,

M(x+ dx, t) = M(x, t)+
∂M(x, t)

∂x
dx

Upon simplification and dropping of the second-order terms in the above
equation, we obtain the fundamental relation between the shear force and the
bending moment, namely,

Q(x, t) =
∂M(x, t)

∂x
(8.26)

Equations 8.25 and 8.26 thus yield one more relation, namely,

∂Q(x, t)
∂x

=−EI
∂ 2uxx(x, t)

∂x2 =−EI
∂ 4u(x, t)

∂x4 (8.27)

• The Newton equation in the vertical direction leads to

μdx
∂ 2u(x, t)

∂ t2 =
∂Q(x, t)

∂x
dx

• The governing equation now takes the form

EI
∂ 4u(x, t)

∂x4 + μ
∂ 2u(x, t)

∂ t2 = 0 (8.28)

which can be cast in the simpler form

∂ 4u(x, t)
∂x4 +β 4 ∂ 2u(x, t)

∂ t2 = 0 (8.29a)
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with constant β defined as

β ≡
( μ

EI

)1/4
(8.29b)

Note that, contrary to the three previous cases, the governing equation of the beam
under flexural vibration is now a PDE of the fourth order in x, but it is still of
the second order in t. Hence, in order to fully determine one particular integral of
the foregoing equation, we need now four boundary conditions. This issue will be
discussed further Sect. 8.3. As the reader is invited to verify, β has now units of√

s/m.

8.3 Natural Frequencies and Natural Modes

We study now the mathematical models derived in Sect. 8.2. To do this, we
distinguish two cases, models comprising second-order partial derivatives and those
comprising fourth-order partial derivatives.

8.3.1 Systems Governed by Second-Order PDE

In deriving the mathematical models of the systems of this class, we denoted with
u(x, t) and θ (x, t) the axial and the angular displacements of a bar, respectively; we
used y(x, t) to denote the vertical displacement of a string. In the discussion below,
we denote by w(x, t) any of the three foregoing functions of x and t, namely, u,
θ or y. Moreover, all the systems of the class under study are governed by a PDE of
the same form, namely,

∂ 2w(x, t)
∂x2 = β 2 ∂ 2w(x, t)

∂ t2 , 0 < x < l, t ≥ 0 (8.30)

where β was already defined in Eqs. 8.8b, 8.16b and 8.22b.
In trying to find integrals for Eq. 8.30, we resort to the method of separation of

variables, which consists in expressing the integral sought as the product of two
functions, each of a single variable, i.e., as

w(x, t) =W (x)T (t) (8.31)

Upon substitution of Eq. 8.31 into Eq. 8.30, we otain

W ′′(x)T (t) = β 2W (x)T̈ (t)
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which can be rearranged as
1

β 2

W ′′(x)
W (x)

=
T̈ (t)
T (t)

Now, in the above equation, we have a ratio of two functions of x equated with
a ratio of two functions of t. Since x and t are independent variables, the only
possibility we have to verify the above equation is that both be constant, i.e.,

1
β 2

W ′′(x)
W (x)

=
T̈ (t)
T (t)

=C = const

which thus yields two ODEs, namely,

T̈ (t)−CT(t) = 0

W ′′(x)−Cβ 2W (x) = 0

So far, we have left C arbitrary. Further, we recall our assumptions regarding the
variables involved, i.e., the axial displacement u or the angular displacement θ of the
cross section of a bar, or the transverse displacement y of a string. In any instance, we
have assumed that these displacements are either small or finite. As a consequence,
the above equations should yield bounded, i.e., stable integrals, which requires that
the constant coefficient multiplying the function itself in the second term of the left-
hand side in each of the two foregoing equations be positive. This means that C
must be negative.

Moreover, we notice that the above-mentioned constant has units of frequency-
squared, and hence, we let

C =−ω2 (8.32)

which thus leads to the two equations below:

T̈ (t)+ω2T (t) = 0 (8.33a)

W ′′(x)+λ 2W (x) = 0 (8.33b)

with constant λ defined as
λ ≡ β ω (8.33c)

and ω being a frequency as yet to be determined.
Therefore, Eq. 8.33a defines an initial-value problem for T (t), whose solution we

already derived in Chap. 2. That is, if we are given initial conditions T (0) = T0 and
Ṫ (0) =V0, then the integral of the said equation is

T (t) = T0 cosωt +
V0

ω
sinωt (8.34)

On the other hand, Eq. 8.33b defines a boundary-value problem for W (x). Here, we
need two conditions on either W (x) or W ′(x) in either of the extremes of the spatial
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Fig. 8.6 A fixed-free bar under axial vibration

domain of interest, i.e., at x = 0 or at x = l. In any instance, the integral of the
equation at hand takes the form

W (x) = Acos(λ x)+Bsin(λ x) (8.35)

with constants A and B to be determined from the boundary conditions (BCs). The
type of boundary conditions for a specific case depends entirely on the loading and
the support of the system at hand, as we describe below.

8.3.1.1 Bars Under Axial Vibration

In the most typical case, we have a bar with, say, its left end fixed and its right end
free, as shown in Fig. 8.6, the boundary conditions thus being

u(0, t) = 0, σ(l, t) = 0

Note that, by virtue of Eqs. 8.4, 8.5, and 8.6, the second of the above BCs leads to

∂u(x, t)
∂x

∣
∣
x=l = 0

As a consequence, then, the two boundary conditions on W (x) are

W (0) = 0, W ′(l) = 0 (8.36)

Upon imposition of the foregoing BCs on the expression for W (x) given in Eq. 8.35,
we have

Acos(0)+Bsin(0) = 0

−Aλ sin(λ l)+Bλ cos(λ l) = 0
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which is a system of two homogeneous linear equations in A and B, and can be cast
in the form

[
1 0

−λ sin(λ l) λ cos(λ l)

][
A
B

]
=

[
0
0

]
(8.37)

Obviously, we look for a nontrivial solution where the coefficients A and B are not
both zero; for Eq. 8.37 to admit such a solution, then, the determinant of its matrix
coefficient should vanish, i.e., if λ �= 0, then we must have

cos(λ l) = 0 (8.38a)

which is the characteristic equation of the given problem. Its roots are the
characteristic values or eigenvalues, of the boundary-value problem (BVP) defined
by Eq. 8.33b and the BCs of Eq. 8.36. The characteristic equation holds if and only if

λ l =
π
2
,

3π
2
, . . . , or λk =

(2k− 1)π
2l

, k = 1, 2, . . . (8.38b)

We have, therefore, an infinity of characteristic values λk, which thus lead to
infinitely-many solutions of the BVP at hand; moreover, it is apparent from Eq. 8.37
that A = 0, and hence, Wk(x) takes the form

Wk(x) = Bk sin

(
(2k− 1)π

2l
x

)
, k = 1,2, . . . (8.39)

The above set of characteristic solutions are known as the eigenfunctions of the
problem. Moreover, because these functions define the shape of the motion of the
bar at hand, the same functions are also known as the natural modes of the bar. Note
that the natural modes depend not only on the nature of the bar under study and its
physical parameters, but also on the BCs involved. Now, from Eq. 8.33c, ω is found
to admit infinitely many solutions as well, which are represented as ωk. These are
the natural frequencies of the system at hand, which are defined as

ωk =
λk

β
=

(2k− 1)π
2lβ

=
2k− 1

2
π

√
EAs

μ l2 , k = 1, 2, . . . (8.40)

Also note that ωk, as given above, is a quantity with units identical to those of
the square root therein. The corresponding radical, in turn, can be regarded as the
quotient of the quantity EAs/l, which is nothing but the stiffness of the rod when
regarded as a lumped spring, as displayed in Eq. 1.9, divided by μ l, which is the
mass of the bar. Thus, ωk has consistently units of frequency, each of its (infinitely
many) values being termed a natural frequency of the bar under study. We thus have
an infinity of natural frequencies, a natural mode being associated to each of them.
Moreover, by virtue of Eq. 8.34, each natural frequency defines a function of time
Tk(t) of the form
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a

b

c

d

Fig. 8.7 Natural modes of a bar under axial vibration: (a) undeformed configuration; (b) first
mode; (c) second mode; (d) third mode

Fig. 8.8 A circular
cylindrical bar, with its two
ends fixed, under torsional
vibration

Tk(t) = T0k cosωkt +
V0k

ωk
sinωkt (8.41)

Depicted in Fig. 8.7 are the undeformed configuration and the first three natural
modes of the bar of Fig. 8.6. In that figure, we show a uniform pattern painted on
the undeformed bar in Fig. 8.7a; this pattern is deformed as the bar takes the shapes
of its first three modes.

8.3.1.2 Bars Under Torsional Vibration

We now consider the BCs associated with the bar under torsional vibration depicted
in Fig. 8.8 whose two ends are fixed to walls constituting an inertial frame.

Here, the boundary conditions are

θ (0, t) = θ (l, t) = 0
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which readily lead to
W (0) =W (l) = 0 (8.42)

and hence, if we adopt a form of the integral of Eq. 8.33b in the form of Eq. 8.35,
then we have

Acos(0)+Bsin(0) = 0

Acos(λ l)+Bsin(λ l) = 0

thereby obtaining, again, a system of two homogeneous linear equations in A and B,
namely, [

1 0
cos(λ l) sin(λ l)

][
A
B

]
=

[
0
0

]
(8.43)

The foregoing system admits a nontrivial solution if and only if its determinant
vanishes, a condition that is expressed as

sin (λ l) = 0

which is the characteristic equation of the problem at hand. Note that this equation
admits, as in the case of the bar under axial vibration studied above, infinitely many
roots, that will be labelled λk, namely,

λkl = πk, or λk =
πk
l
, k = 1,2, . . . (8.44)

The foregoing roots, thus, determine the natural or normal modes of the bar under
torsion, with its two ends fixed. Furthermore, from the first of the foregoing
homogeneous equations, Ak = 0, the corresponding eigenfunctions then being

Wk(x) = Bk sin

(
πkx

l

)
, k = 1,2, . . . (8.45)

Shown in Fig. 8.9 are the first three modes of the system under study.
Again, substitution of Eq. 8.45 into Eq. 8.33c, with λ and ω now subscripted,

leads to the natural frequencies associated with the above modes:

ωk =
πk
β l

= πk

√
Gπr2

μ l2 , k = 1,2, . . . (8.46)

It is noteworthy that the above square root has in its radical the quotient of the
torsional stiffness of a circular cylindrical bar, as introduced in Sect. 1.5.1, when
regarded as a lumped torsional spring, namely, (1/2)πG(r4/l), divided by the mass
moment of inertia of the bar, i.e., (1/2)μ lr2. Hence, the above square root has units
of frequency. Again, each natural frequency ωk leads to a function of time Tk(t) of
the form of Eq. 8.41.
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Fig. 8.9 Natural modes of a
bar under torsional vibration:
(a) undeformed
configuration; (b) first mode;
(c) second mode; (d) third
mode

8.3.1.3 Strings Under Transverse Vibration

We now derive the natural modes and natural frequencies of vibration of the
string sketched in Fig. 8.10a. In the analysis below we recall that gravity has been
neglected at the outset. Moreover, each end of the string is fixed to a massless trolley
that can slide freely in a direction parallel to that of the motion of the string, by
means of the wheels rolling on a guideway. Further, we assume that the string moves
in a vertical plane; by virtue of our hypotheses, then, gravity does not appear in the
model that we will formulate below.2

The BCs are now derived by resorting to the FBD of the trolleys. We focus on
the FBD of the right trolley, depicted in Fig. 8.10b, which makes it apparent that the
force exerted by the guideway on the trolley wheels, and hence, on the trolley itself,
is normal to the axis of the guideways, for we have assumed that the inertia of the
trolley is negligible. Since the trolley is massless, it must be in static equilibrium,

2Even in the presence of gravity, we can always decompose the motion of the string into a rigid-
body motion downwards, due to gravity, and a vibratory motion, the latter being the subject of this
chapter.
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a b

Fig. 8.10 A string with its two ends free to slide along parallel guideways: (a) general layout; (b)
FBD of its right trolley

which means that the tension exerted by the string onto the trolley must be normal
to the axis of the guideways as well. We therefore have the BCs below:

∂y(x, t)
∂x

∣
∣
∣
∣x=0 =

∂y(x, t)
∂x

∣
∣
∣
∣
x=l

= 0 (8.47)

The two foregoing boundary conditions thus lead to corresponding BCs on W (x),
namely,

W ′(0) = 0, W ′(l) = 0 (8.48)

Upon imposing the above BCs onto function W (x) as given by Eq. 8.35, we obtain
the conditions below:

−Asin(0)+Bcos(0) = 0 (8.49)

−Asin(λ l)+Bcos(λ l) = 0 (8.50)

The two above equations are similar to those derived above for other cases, i.e.,
linear homogeneous, and can thus be cast in the form

[
0 1

−sin(λ l) cos(λ l)

][
A
B

]
=

[
0
0

]
(8.51)

which admits nontrivial solutions if and only if its determinant vanishes, i.e., if and
only if

sin(λ l) = 0 (8.52)

thereby obtaining the characteristic equation of the problem at hand. Its roots yield
the infinitely many eigenvalues displayed below:
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a

b

c

Fig. 8.11 The first three natural modes of vibration of the string supported on free-sliding trolleys

λ l = 0, π , . . . or λk =
π
l
(k− 1), k = 1, 2, . . . (8.53)

the eigenfunctions associated with the foregoing eigenvalues being derived upon
noticing that, from Eq. 8.49, Bk = 0, and hence,

Wk(x) = Ak cos

(
π(k− 1)

l
x

)
, k = 1, 2, . . . (8.54)

the first three of which are displayed in Fig. 8.11. The presence of a rigid mode in
this example is noteworthy. Again, note that each natural frequency ωk leads to a
function of time Tk(t) as in the previous cases. The natural frequencies are derived
from the general relation, Eq. 8.33c, i.e., as

ωk =
λk

β
=

√
τ0

μ
λk (8.55)
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Fig. 8.12 A string with its
two ends fixed

a

b

c

Fig. 8.13 The natural modes of a string with its two ends fixed: (a) first mode; (b) second mode;
(c) third mode

As a second example, we consider the string with its two ends fixed, as shown in
Fig. 8.12. It is left as an exercise to the reader to show that the eigenfunctions of the
string of Fig. 8.12 are identical to those of the bar under torsional vibration with its
two ends fixed. The three natural modes of this string are displayed in Fig. 8.13.

Now let us study the BCs for the case in which the trolley of the right-hand
side of Fig. 8.10 has a non-negligible mass M. The FBD of the trolley under these
conditions is shown in Fig. 8.14.

In Fig. 8.14, ÿl ≡ ∂y/∂ t2|x=l . Thus, applying Newton’s second law to the trolley
in the direction of motion,

Mÿl =−τ0 sinθl
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Fig. 8.14 The FBD of the
heavy right-hand side trolley

Under the assumption that θl is “small”, then

sinθl ≈ θl ≈ tanθl = y′l ≡
∂y
∂x

∣
∣
∣
∣
(l,t)

We thus have

M
∂ 2y
∂ t2

∣
∣
∣∣(l,t) =−τ0

∂y
∂x

∣
∣
∣∣
(l,t)

(8.56)

or, if we assume, as usual, that

y(x, t) =W (x)T (t) (8.57)

then, Eq. 8.56 leads to the desired BC, namely,

MW (l)T̈ (t) =−τ0W ′(l)T (t)

But, since T (t) obeys Eq. 8.33a, we have

T̈ (t) =−ω2T (t)

and hence, the above BC becomes

ω2MW (l)T (t) = τ0W ′(l)T (t)

However, T (t) is not identically zero—it may vanish instantaneously, though—and
hence, we can delete this function from the above equation to obtain the BC

W ′(l)−ω2 M
τ0

W (l) = 0 (8.58a)
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Furthermore, if we assume that the left-end of the string is fixed, we have the
additional BC

W (0) = 0 (8.58b)

and hence, the coefficients A and B of the general solution (8.35) obey the relations

Acos(0)+Bsin(0) = 0

−[λ sin(λ l)+ω2 M
τ0

cos(λ l)]A+[λ cos(λ l)−ω2 M
τ0

sin(λ l)]B = 0

or, in the usual form,

[
1 0

−λ sin(λ l)−ω2 M
τ0

cos(λ l) λ cos(λ l)−ω2 M
τ0

sin(λ l)

][
A
B

]
=

[
0
0

]

For nontrivial solutions, then, the determinant of the above matrix should vanish,
which thus yields the characteristic equation

λ cos(λ l)−ω2 M
τ0

sin(λ l) = 0

But, from Eq. 8.33c, ω2 = λ 2/β 2 = (τ0λ 2)/μ , and hence, the above equation
leads to

λ cos(λ l)− λ 2M
μ

sin(λ l) = 0

or, for λ �= 0,

cos(λ l)− λ M
μ

sin(λ l) = 0

Moreover, the numerator and denominator of the function appearing in the
second term of the foregoing equation are now multiplied by l, which thus leads to

tan(λ l) =
m
M

1
λ l

(8.59)

where m is the total mass of the string. The above equation is transcendental, its
infinitely-many roots being most easily found by graphical means upon superim-
posing the plots of the two functions f (λ l) = tan(λ l) and g(λ l) = (m/M)/(λ l); the
eigenvalues λ1, λ2, etc. can then be obtained from the abscissae of the intersections
of the two plots. Finding these values is left to the reader as an exercise.

One more case worth analyzing is the same system of Fig. 8.10 when the
massless right-hand trolley is suspended from a lumped spring of stiffness ks, as
shown in Fig. 8.15.
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a b

Fig. 8.15 String with left-end fixed and right-end constrained by a guideway and suspended from
a lumped spring: (a) general layout; (b) FBD of trolley

From the FBD of Fig. 8.15b, with yl ≡ y(l, t) and θl ≈ tanθl = ∂y/∂x|x=l ≡ y′l ,

−ksyl + τ0y′l = 0

or, if we recall Eq. 8.57,

−ksW (l)T (t)+ τ0W ′(l)T (t) = 0

and, since T (t) is not identically zero, we can delete it from the above equation to
obtain the BC

W ′(l) =
ks

τ0
W (l) (8.60)

Furthermore, the BC at the left-end is, again, W (0) = 0, the two BCs thus becoming

Acos(0)+Bsin(0) = 0

−[λ sin(λ l)+
ks

τ0
cos(λ l)]A+[λ cos(λ l)− ks

τ0
sin(λ l)]B = 0

or, in the usual form,

[
1 0

−λ sin(λ l)− ks
τ0

cos(λ l) λ cos(λ l)− ks
τ0

sin(λ l)

][
A
B

]
=

[
0
0

]
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Fig. 8.16 A belt-pulley transmission with the belt undergoing transverse vibrations

A nontrivial solution of the foregoing system of linear homogeneous equations thus
requires that the determinant of the matrix coefficient vanish, i.e.,

λ cos(λ l) =
ks

τ0
sin(λ l)

or
tan(λ l) =

τ0

ksl
(λ l) (8.61)

thereby ending up, again, with a transcendental equation whose roots yield the
eigenvalues of the problem under study. These roots can be found, again, by super-
position of the plots of the functions f (λ l) = tan(λ l) and g(λ l) = −[τ0/(ksl)]λ l.
The infinitely many intersections of the two foregoing plots, then, yield the
eigenvalues λ1, λ2, etc.

Another system of engineering relevance is the belt-pulley transmission shown
in Fig. 8.16 whose transverse vibrations can be treated as those of a string.3

In order to establish the boundary conditions of the belt, we look at the geometry
around the bottom separation points S and S′ of the pulleys, as sketched in
Fig. 8.17a,b, respectively, where

yS ≡ y(xS, t), yS′ ≡ y(xS′ , t)

It is now apparent from Fig. 8.17a that the slope of the belt at S is given by

∂y
∂x

∣∣
∣
∣
(xS,t)

= tanθ =
xS

a− yS

and hence,

(a− yS)
∂y
∂x

∣
∣
∣∣
(xS,t)

= x

∣
∣
∣
∣∣
xS

3Special assumptions on the belt geometry and construction must be introduced here for the string
model to be valid. For example, a “belt” made of a rubber O-ring would be a candidate for this
analysis.
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a b

Fig. 8.17 Geometric relations at the separation point of the belt from the pulley: (a) bottom left-
end; (b) bottom right-end

Upon expansion,

a
∂y
∂x

∣
∣∣
∣
(xS,t)
− yS

∂y
∂x

∣
∣∣
∣
(xS,t)

= xS

But, at S, both y ≈ 0 and ∂y/∂x≈ 0, if the belt is to remain taut. Likewise, xS ≈ 0,
and hence, the foregoing relation leads to

∂y
∂x

∣
∣
∣
∣
(0,t)

= 0 (8.62)

Now, if we look at the right pulley, in Fig. 8.17b, the slope at the separation point
S′ is given by

∂y
∂x

∣
∣
∣∣
(xS′ ,t)

= tanφ =
xS′ − l
a− yS′

i.e., [
(a− y)

∂y
∂x

]∣∣
∣
∣
(xS′ ,t)

= x
∣
∣
xS′
− l

Again, if the belt is to remain taut, y ≈ 0 and ∂y/∂x ≈ 0 at S′, while xS′ ≈ l, the
foregoing relation thus leading to

∂y
∂x

∣
∣
∣
∣
(l,t)

= 0

with identical relations for the upper section of the belt. Now it is apparent that the
BCs for the pulley are

∂y
∂x

∣
∣∣
∣
(0,t)

= 0,
∂y
∂x

∣
∣∣
∣
(l,t)

= 0
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which thus lead to

W ′(0) = 0, W ′(l) = 0

and hence, the eigenvalues of the system under study are those of Eq. 8.53, which
were derived for identical BCs. We thus have

λk =
π
l
(k− 1), k = 1, 2, . . . (8.63a)

The natural frequencies of the system are, in turn,

ωk =
λk

β
=

π
l
(k− 1)

√
τ0

μ
= π(k− 1)

√
τ0

μ l2 (8.63b)

Again, it is noteworthy that the radical is the quotient of the stiffness, τ0/l, divided
by a mass, μ l. In summary, the eigenfunctions of the system under study are

Wk = Ak cos

(
(k− 1)π

l
x

)
, k = 1,2, . . . (8.63c)

Notice the presence of a rigid mode for this system.

8.3.2 Systems Governed by Fourth-Order PDEs: Beams
Under Flexural Vibration

The mathematical model for beams under flexural vibration is displayed in Eq. 8.28.
If we apply again the technique of variable separation to this equation, we obtain

W iv(x)T (t)+β 4W (x)T̈ (t) = 0

which can be readily rewritten in the alternative form

1
β 4

W iv(x)
W (x)

=− T̈ (t)
T (t)

= ω2

where we have used our experience gained in the study of systems governed by
second-order PDEs to produce the last equation. We obtain, again, two ODEs, one
for W (x) and one for T (t), namely,

T̈ (t)+ω2T (t) = 0 (8.64a)

W iv(x)−λ 4W (x) = 0 (8.64b)

with λ defined as
λ ≡ β

√
ω (8.64c)
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Fig. 8.18 A clamped-free
beam with uniform cross
section

Note that the pair of Eqs. 8.64a and b is similar to the pair of Eqs. 8.33a and b,
except that the second of those equations is of fourth order. The integration of the
equation in T (t) needs no further discussion, that in W (x) is now addressed. The
general form of the integral of Eq. 8.64b is known to be [1]

W (x) = Acos(λ x)+Bsin(λ x)+C cosh(λ x)+Dsinh(λ x) (8.65)

whose four coefficients A, B, C, and D are to be determined from the BCs of the
given problem.

Let us consider the clamped-free beam of Fig. 8.18, of constant cross section of
area As, flexural rigidity EI and uniform mass per unit length μ .

The boundary conditions of the beam under study are readily derived: At the
clamped end, both the displacement u(x, t) and the slope ∂u(x, t)/∂x vanish, while,
at the free end, both the bending moment M(x, t) and the shear force Q(x, t) vanish.
We thus have, at the clamped end,

u(0, t) = 0,
∂u(x, t)

∂x

∣
∣
∣
∣
x=0

= 0

In setting up the BCs for the free end, we realize that we have such conditions
in terms of bending moment and shear force, not in terms of displacement and its
derivatives. We see here an essential difference in the two sets of BCs; this difference
is stressed by terming the first set, i.e., those associated with displacement and slope
geometric BCs. Those associated with bending moment and shear force are termed
natural BCs. Furthermore, if we recall the constitutive equations (8.25), we can set
up the natural BCs as

∂ 2u(x, t)
∂x2

∣
∣
∣
∣
x=l

= 0,
∂ 3u(x, t)

∂x3

∣
∣
∣
∣
x=l

= 0

Now, the four BCs derived above lead to corresponding BCs on W (x), namely,

W (0) = 0, W ′(0) = 0, W ′′(l) = 0, W ′′′(l) = 0 (8.66)

Upon imposing the geometric BCs derived above onto W (x), we obtain, at x = 0,

A+C = 0, B+D = 0
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which thus leads to a simpler form of W (x), namely,

W (x) = A [cos(λ x)− cosh(λ x)]+B [sin(λ x)− sinh(λ x)] (8.67)

Furthermore, we impose the natural BCs, at x = l, onto the form of W (x) given
in Eq. 8.67, thus obtaining two more conditions on the two remaining coefficients,
A and B, namely,

[
cos(λ l)+ cosh(λ l) sin(λ l)+ sinh(λ l)
−sin(λ l)+ sinh(λ l) cos(λ l)+ cosh(λ l)

][
A
B

]
=

[
0
0

]
(8.68)

What Eq. 8.68 represents is a system of two linear homogeneous equations in A
and B. Since the trivial solution A = B = 0 yields the equilibrium configuration
w(x, t) = 0 of the beam, which we already know, we are after values of these
coefficients that do not vanish simultaneously. This means that the matrix coefficient
of the above equation must be singular, and hence,

det

[
cos(λ l)+ cosh(λ l) sin(λ l)+ sinh(λ l)
−sin(λ l)+ sinh(λ l) cos(λ l)+ cosh(λ l)

]
= 0

which is an equation in λ only, free of A and B. The above equation is, then, the
characteristic equation of the problem at hand. Upon expansion of the determinant,
this equation leads to

cos(λ l)cosh(λ l)+ 1 = 0

or

cos(λ l) =− 1
cosh(λ l)

(8.69)

Solving for λ from the above equation can be done, as in similar cases, resorting
to a graphical approach. To this end, we regard the left- and the right-hand sides of
the above characteristic equation as independent functions of (λ l), and plot them
vs. (λ l). Upon superimposing the two plots, the solutions sought are given by the
abscissae of their intersections, as shown in Fig. 8.19. It is apparent that we obtain,
again, infinitely many eigenvalues. Moreover, the large eigenvalues, from the third
on, can be safely approximated by the roots of the cosine function.

The first three modes of the beam under study are shown in Fig. 8.20. The natural
frequencies of the beam at hand are now obtained from Eq. 8.64c, namely,

ω =
λ 2

β 2 or ωk =
λ 2

k

β 2 , k = 1,2, . . .
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Fig. 8.19 The infinitely-many eigenvalues of the vibrating clamped-free beam

Fig. 8.20 The first three
natural modes of vibration of
a clamped-free beam: (a) first
mode; (b) second mode;
(c) third mode

a

b

c

Now we recall the expression derived for β , and displayed in Eq. 8.16b, which
thus yields

ωk = λ 2
k

√
EI

ρAs
, k = 1,2, . . .

Furthermore, λk can be expressed as

λk =
αk

l
, k = 1,2, . . .
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with
α1 ≈ 1.875, α2 ≈ 4.694, α3 ≈ 7.855

and, for ‘large’ values of k,

αk ≈ π
2
(2k− 1), k = 4,5,6, . . .

Therefore, ωk can be rewritten as

ωk = α2
k

√
EI

ρAsl4 , k = 1,2,3, . . .

It is now apparent that ωk, as given above, is proportional to a square root whose
radical is, again, the quotient of a stiffness divided by a mass. In this case, the
stiffness is one third of that derived for a beam regarded as a lumped spring, in
Sect. 1.5.1; the mass is, correspondingly, that of the same beam. We have, thus, for
each natural frequency ωk, a function of t, Tk(t) of the form of Eq. 8.41.

8.4 The Properties of the Eigenfunctions

Similar to the normal modes of n-dof systems, those of continuous systems obey
orthogonality and normality properties, as discussed in this section.

8.4.1 Systems Governed by Second-Order PDEs

In order to better understand the concepts behind the orthogonality of the eigenfunc-
tions, we introduce first the concept of inner product ( f , g) of two functions f (x)
and g(x) in the interval 0 < x < l with respect to the weighing function w(x) > 0.
This product is defined as

( f , g)≡
∫ l

0
w(x) f (x)g(x)dx (8.70)

If the foregoing integral turns out to vanish, the two functions f (x) and g(x) are said
to be orthogonal with respect to w(x) in 0 < x < l. Moreover, if we set g(x) = f (x)
in Eq. 8.70, then we obtain the square of the weighted Euclidean norm of f (x), i.e.,

‖ f (x)‖2
w ≡

∫ l

0
w(x) f 2(x)dx (8.71)
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Fig. 8.21 A n-dof mass-spring system

Note that, by virtue of the hypothesis w(x) > 0 in 0 < x < l, it is apparent that the
right-hand side of the above equation is positive; it vanishes if and only if f (x) = 0 in
0 < x < l. Moreover, for w(x) = 1, the foregoing norm yields the root-mean-square
value of f (x) in 0 < x < l.

We now go back to the n-dof case and consider the system of Fig. 8.21. The mass
and stiffness matrices of this system are readily derived as

M =

⎡

⎢
⎢⎢
⎣

m1 0 0 · · · 0
0 m2 0 · · · 0
...

...
...

. . . 0
0 0 0 · · · mn

⎤

⎥
⎥⎥
⎦
, K =

⎡

⎢
⎢⎢
⎣

k1 + k2 −k2 0 · · · 0 0
−k2 k2 + k3 −k3 · · · 0 0

...
...

. . . · · · ...
...

0 0 0 · · · −kn kn

⎤

⎥
⎥⎥
⎦

More specifically, let us assume that all masses and springs are identical, i.e.,

m1 = m2 = · · ·= mn = m, k1 = k2 = · · ·= kn = k

Let us further assume that a modal analysis of the system under study has been
conducted, which yielded the natural frequencies {ωi }n

1 and the modal vectors
{ fi }n

1. For simplicity of notation, let us define, for i �= j,

f≡ fi ≡

⎡

⎢
⎢
⎢
⎣

f1

f2
...
fn

⎤

⎥
⎥
⎥
⎦
, g≡ f j ≡

⎡

⎢
⎢
⎢
⎣

g1

g2
...

gn

⎤

⎥
⎥
⎥
⎦

Since these vectors are orthogonal with respect to the mass and stiffness matrices,
we have

fT Mg = 0, fT Kg = 0

or, in component form,

m( f1g1 + f2g2 + · · ·+ fngn) = 0

k[ f1(2g1− g2)+ f2(−g1 + 2g2− g3)+ · · ·
+ fn−1(−gn−2 + 2gn−1− gn)+ fn(−gn−1 + gn)] = 0
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Alternatively, the above relations can be expressed as

m
n

∑
1

figi = 0

k

[

f1(2g1− g2)+
n−1

∑
2

fi(−gi−1 + 2gi− gi+1)

+ fn(−gn−1 + gn)

]

= 0

Let us further assume that the system of Fig. 8.21 is an approximation of the
system of Fig. 8.6, so that

m = μΔx, k = κΔx, κ ≡ EAs

l2

where μ and κ are the constant mass and stiffness distributions per unit length.
We have, therefore,

μ
n

∑
1

figiΔx = 0 (8.72a)

EAs

l2

[

f1(2g1− g2)+
n−1

∑
2

fi(−gi−1 + 2gi− gi+1)

+ fn(−gn−1 + gn)

]

Δx = 0 (8.72b)

On the other hand, let us approximate the integral of Eq. 8.70 in the form of the
sum of the areas of n rectangles, the ith of which has a height zi ≡ w(xi) f (xi)g(xi)
and all have the same base Δx, which thus yields

( f , g)≈
n

∑
1

wi figiΔx (8.73a)

where
wi ≡ w(xi), fi ≡ f (xi), gi ≡ g(xi), Δx≡ l

n
(8.73b)

Upon comparing Eqs. 8.72a and 8.73a, it is apparent that, when Δx → 0, the
summation of the left-hand side of the former tends to the integral of Eq. 8.70, with
a proper identification of w(x), f (x), and g(x), i.e., we have that, if f (x) and g(x)
denote the ith and the jth normal modes of the system of Fig. 8.6, and w(x) = μ ,
then, by letting f (x) ≡Wi(x) and g(x) ≡Wj(x), where Wi(x) and Wj(x) denote the
ith and the jth modes of the system,

(Wi,Wj)≡
∫ l

0
μWi(x)Wj(x)dx = 0, i �= j (8.74a)
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which means that, just as in the n-dof case, the natural modes of the system of
Fig. 8.6 are orthogonal with respect to the mass distribution μ . Likewise, for j = i,

(Wi,Wi)≡
∫ l

0
μW 2

i (x)dx = 1, i = 1,2, . . . ,etc. (8.74b)

whence it becomes apparent that the eigenfunctions have units of kg−1/2. Now, in
order to better interpret Eq. 8.72b in the continuous case, let us recall the formula
for the central-difference approximation of the second derivative of a function [2],
where a sample of equally spaced abscissae {xi }n

1 has been defined, with x0 = 0 and
xn = 1, the interval length being denoted by Δx, i.e.,

g′′i ≡ g′′(x)
∣
∣
xi
≈ gi−1− 2gi+ gi+1

(Δx)2 , i = 2, . . . ,n− 1 (8.75a)

and

g′′1 ≈
g0− 2g1+ g2

(Δx)2 , g′′n ≈
gn−1− 2gn + gn+1

(Δx)2 (8.75b)

where g0 = 0, but we do not have a value for gn+1. In order to determine this value,
we resort to the nature of the continuous counterpart, Fig. 8.6, of the n-dof system
under study. In this light, we can readily realize that the slope at the free end should
vanish, just as dictated by the BCs of that system, Eq. 8.36. This condition leads to
gn+1 = gn−1, the expressions for g′′1 and g′′n thus becoming

g′′1 ≈
−2g1 + g2

(Δx)2 , g′′n ≈
2gn−1− 2gn

(Δx)2 (8.75c)

On the other hand, upon multiplying both sides of Eq. 8.72b by n2, we have

EAs
n2

l2

[

f1(2g1− g2)+
n−1

∑
2

fi(−gi−1 + 2gi− gi+1)

+ fn(−gn−1 + gn)

]

Δx = 0

Now, if we subtract EAs(n2/l2) fn(gn−1−gn)Δx from the two sides of the foregoing
equation, we obtain

EAs
n2

l2

[

f1(2g1− g2)+
n−1

∑
2

fi(−gi−1 + 2gi− gi+1)

+ fn(−2gn−1 + 2gn)

]

Δx =−EAs
n2

l2 fn(gn−1− gn)Δx
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where we readily recognize n2/l2 as 1/(Δx)2, and hence, by virtue of expressions
(8.75a and c), the above relation becomes

−EAs

n

∑
1

fig
′′
i Δx =−EAs fn

gn−1− gn

(Δx)2 Δx

which, in light of Eq. 8.75c, becomes further

EAs

n

∑
1

fig
′′
i Δx =

1
2

EAs fng′′nΔx (8.76)

If we now let Δx→ 0, the foregoing summation becomes an integral similar to
that of Eq. 8.70, but with g′′(x) instead of g(x), i.e.,

∫ l

0
EAs f (x)g′′(x)dx = 0

If, moreover, we let f (x) and g(x) denote the ith and the jth eigenfunctions of the
system of Fig. 8.6, and notice that EAs now plays the role of the weighing function
w(x), then Eq. 8.70 takes the form

∫ l

0
EAsWi(x)W

′′
j (x)dx = 0 (8.77)

Upon integration of the left-hand side of Eq. 8.77 by parts, that equation takes
the form

EAsWi(x)W
′
j (x)
∣
∣l
0−

∫ l

0
EAsW

′
i (x)W

′
j(x)dx = 0

Furthermore, in view of the BCs of the problem at hand, it is a simple matter to
verify that

EAsWi(x)W
′
j (x)
∣
∣l
0 ≡ EAs[Wi(l)W

′
j (l)−Wi(0)W ′j(0)] = 0 (8.78)

equation (8.77) thus becoming

∫ l

0
EAsW

′
i (x)W

′
j (x)dx = 0 (8.79a)

In direct analogy with Eq. 6.24a, we should have

∫ l

0
EAs[W

′
i (x)]

2dx = ω2
i (8.79b)

In summary, then, Eqs. 8.74a and 8.79a state the orthogonality of the natural
modes of the bar of Fig. 8.6 under axial vibration. Moreover, if the natural modes
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verify the normality conditions of Eqs. 8.74b and 8.79b, then these modes, i.e., the
eigenfunctions of the system at hand, are termed the normal modes of this system.

We just introduced the concept of mode-orthogonality for a specific example.
Mode-orthogonality, however, is a general concept and can be proven to be valid
in all continuous systems leading to linear PDEs. The concept thus applies to all
cases studied in this chapter. A fundamental relation that we shall invoke in this
regard is Eq. 8.78. The reader is invited to verify that this relation holds for all
systems studied in Sect. 8.4.1 leading to a second-order boundary-value problem
(BVP), with coefficient EAs suitably replaced by its corresponding counterpart,
which depends on the nature of the system at hand, as explained below.

The orthogonality of modes of bars under torsional vibration and of strings under
transverse vibration, with respect to the mass distribution, take essentially the same
form as Eqs. 8.74a and b. However, notice that for bars under torsional vibration, the
variable of interest, θ (x, t), is nondimensional, and hence, properly speaking, the
normal modes Wi(x) have units of kg−1/2m−1. Thus, for Eq. 8.74b to hold, μ must
be replaced by a distribution of moment of inertia which, in this case, is (1/2)μr2.

As to orthogonality with respect to stiffness distribution, note that the weighing
function in integrals (8.79a and b) takes the form κ l2, the corresponding coefficient
for bars under torsional vibration and for strings under transverse vibration being
determined as explained below.

We first look at bars under torsional vibration, for which it is apparent from
Eq. 8.46 and the ensuing discussion, that κ is now a torsional vibration per unit
length, namely,

κ =
1
2

πG
r4

l2

and hence, the orthogonality conditions (8.79a and b) take the forms

∫ l

0

1
2

πGr4W ′i (x)W
′
j (x)dx = 0 (8.80a)

∫ l

0

1
2

πGr4[W ′i (x)]
2dx = ω2

i (8.80b)

Likewise, for strings under transverse vibration it is apparent, from Eq. 8.63b and
the ensuing discussion, that κ is, in this case,

κ =
τ0

l2 (8.81)

and hence, the orthogonality of modes with respect to the stiffness distribution takes
the forms

∫ l

0
τ0W ′i (x)W

′
j(x)dx = 0 (8.82a)

∫ l

0
τ0[W

′
i (x)]

2dx = ω2
i (8.82b)
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Strictly speaking, μ and κ need not be constant and, in fact, they are not constant
in many instances. For example, in the case of the string of Fig. 8.10 with a heavy
trolley at one end of mass M, the mass of the string can be regarded as a function of
x, with a Dirac function, in the x-domain, to account for the lumped mass M, i.e.,

μ(x) = μ +Mδ (x− l)

where we have relabelled the uniform mass distribution as μ in order to avoid
confusion with function μ(x). Note that, similar to an impulse defined in the
time domain, which has units of frequency, an impulse in the x-domain has units
of length-inverse, and hence, the two terms of the right-hand side of the above
equation are dimensionally homogeneous. The presence of the “impulsive” mass
of magnitude M in μ(x) has an important consequence in the orthogonality of the
eigenfunctions of this system. Indeed, orthogonality now takes the form

∫ l

0
μ(x)Wi(x)Wj(x)dx≡

∫ l

0
[μ +Mδ (x− l)]Wi(x)Wj(x)dx

and hence, the above integral becomes

∫ l

0
μ(x)Wi(x)Wj(x)dx = μ

∫ l

0
Wi(x)Wj(x)dx+MWi(l)Wj(l)

Therefore, the orthogonality of the eigenfunctions now becomes

μ
∫ l

0
Wi(x)Wj(x)dx+MWi(l)Wj(l) =

{
1, for i = j;
0, otherwise.

(8.83)

With the aid of the above orthogonality condition, we determine now the
eigenfunctions of the corresponding system, that of Fig. 8.10 with its left-end fixed
and with its right-end pinned to a heavy trolley. We thus have, with A = 0,

Wk(x) = Bk sin(λkx), k = 1,2, . . . (8.84)

with λk determined as the kth root of Eq. 8.59. Thus, for k = j = i, Eq. 8.83 leads to

μ
∫ l

0
W 2

i (x)dx+MW 2
i (l) = 1

or, after substitution of Eq. 8.84 into the above orthogonality condition, we obtain

μ
∫ l

0
B2

i sin2(λix)dx+MB2
i sin2(λil) = 1
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a b

Fig. 8.22 A string under transverse vibration, with one end pinned and the other end coupled to a
lumped spring: (a) layout of the system; (b) FBD of the spring

Upon expansion of the above integral and solving for B2
i from the equation thus

resulting, we have

B2
i =

2λi

λil μ +[2λiM sin(λil)− μ cos(λil)]sin(λil)

Now, from the associated characteristic equation,

sin(λil) =
μ

λiM
cos(λil)

Substitution of the above expression into the expression for B2
i derived above

yields, after simplifications,

B2
i =

2λ 2
i M

λ 2
i lμM+ μ2 cos2(λil)

and hence,

Wi(x) =

√
2λ 2

i M

λ 2
i lμM+ μ2 cos2(λil)

sin(λilx) (8.85)

Further, let us study the orthogonality condition with respect to the stiffness
distribution. To this end, let us consider the string of Fig. 8.22, which is pinned
at the left-end and coupled to a lumped spring of stiffness ks at its right-end, the
spring being prestressed by an amount Δs and having a natural length l0.

The boundary condition (BC) at the left end was already derived when the motion
of the string of Fig. 8.12 was studied, and is reproduced below for quick reference:

W (0) = 0

Now, the BC at the right-end is established from the FBD of the spring, as shown in
Fig. 8.22b. From this figure, it is apparent that

τ0 = ksΔs
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where Δs is the extension of the spring from its natural length l0, i.e.,

Δs =
τ0

ks

Moreover, from the same figure,

yl = (l0 +Δs) tanθl =−
(

l0 +
τ0

ks

)
y′l (8.86)

The two BCs derived above, then, lead to

Acos(0)+Bsin(0) = 0
[

cos(λ l)−
(

l0 +
τ0

ks

)
λ sin(λ l)

]
A+

[
sin(λ l)+

(
l0 +

τ0

ks

)
λ cos(λ l)

]
B = 0

Upon setting up the two BCs in the usual form, we have

[
1 0

cos(λ l)−
(

l0 +
τ0
ks

)
λ sin(λ l) sin(λ l)+

(
l0 +

τ0
ks

)
λ cos(λ l)

][
A
B

]
=

[
0
0

]

and hence, the characteristic equation of this system is

sin(λ l)+

(
l0 +

τ0

ks

)
λ cos(λ l) = 0

whence,

tan(λkl) =−
(

l0 +
τ0

ks

)
λk, k = 1,2, . . . (8.87)

Now, the orthogonality condition with respect to the stiffness distribution is
obtained. The latter is given in our case by Eq. 8.81 for the case in which the
distribution is constant. However, in the case at hand there is a lumped spring at
the right end, and hence, κ is no longer constant, but a function of x, given by

κ(x) =
τ0

l
+ ksδ (x− l)

Therefore,
κ(x)l2 = τ0 + l2ksδ (x− l)

the orthogonality condition sought thus being expressed as

∫ l

0
[τ0 + l2ksδ (x− l)]W ′i (x)W

′
j (x)dx =

{
ω2

i , for i = j;
0, otherwise.
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Upon expansion, the above integral, I, becomes

I ≡
∫ l

0
τ0W ′i (x)W

′
j (x)dx+ ksl

2W ′i (l)W
′
j (l)

the orthogonality condition under study thus becoming

∫ l

0
τ0W ′i (x)W

′
j (x)dx+ ksl

2W ′i (l)W
′
j (l) =

{
ω2

i , for i = j;

0, otherwise.
(8.88)

Finally, the eigenfunctions are found with the aid of the orthogonality condition
with respect to the mass distribution. From the BC leading to Ak = 0, we obtain

Wk(x) = Bk sin(λkx)

with λk obtained as the kth root of the characteristic equation (8.87). Now, we find
Bk from the orthogonality condition with respect to the mass distribution:

∫ l

0
μB2

k sin2(λkx)dx = 1

which yields
1
2

μB2
k

[
l− 1

2λk
sin(2λkl)

]
= 1

and hence,

Bk =

√
4λk

μ [2λkl− sin(λkl)]

Therefore, the eigenfunctions take the form

Wk(x) =

√
4λk

μ [2λkl− sin(λkl)]
sin(λkx) (8.89a)

their derivative with respect to x then becoming

W ′k(x) =

√
4λk

μ [2λkl− sin(λkl)]
λk cos(λkx) (8.89b)
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8.5 Exercises

The exercises given below may require a graphical solution found as the intersec-
tions of two functions, as illustrated with one example in Sect. 8.3.2.

8.1. Shown in Fig. 8.23 is an elastic rod of uniform cross section with constant
mass μ per unit length, Young modulus E , cross-section area As, length l, and a
concentrated mass M attached to its right end. Moreover, we assume that μ l/M =
0.1. Under axial vibrations, a section of the rod, located at point x, experiences a
displacement u(x, t). For purposes of analysis, we factor u(x, t) in the form

u(x, t) =U(x)F(t), 0 < x < l

(a) Find ordinary differential equations for U(x) and F(t).
(b) Establish boundary conditions for U(x).
(c) For the numerical values β = 1.9812×10−4 s/m and l = 10.0 m, obtain “good”

estimates of the first ten natural frequencies and plot the first three modes.
(d) Set up the orthogonality conditions of the eigenfunctions and test them by

numerical integration.

8.2. Consider a uniform beam of flexural rigidity EI, mass per unit length ρAs, and
length l, as shown in Fig. 8.24. This beam is clamped at one end and supported by
a spring of stiffness k at the other end. State the boundary conditions and derive the
associated characteristic equation, under the assumption that the spring is unloaded
at the configuration displayed in the figure.

Fig. 8.23 Elastic rod with
concentrated mass at one end

S

Fig. 8.24 A uniform beam
supported at one end by a
concentrated spring

S
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Fig. 8.25 A string supported
by two massless, rigid links

Fig. 8.26 The iconic model
of a long-haul truck

S

8.3. Shown in Fig. 8.25 is a string of uniform mass per unit length μ and length l,
attached to two rigid, massless links of length l0 that can rotate freely and without
friction about their pinned edges at A and B. Under small-amplitude transverse
vibrations, the projection of each link onto the x-axis is essentially equal to the link
length l0. Moreover, a point of the string, of abscissa x, experiences a displacement
y(x, t). For purposes of analysis, we factor y(x, t) in the form

y(x, t) =W (x)F(t), 0 < x < l

(a) Find ordinary differential equations for W (x) and F(t) that will allow you to
find y(x, t).

(b) State the boundary conditions for W (x), and derive the associated characteristic
equation.

(c) For values of l0/l = 0.01, 0.1, 0.2, 0.5, find the first three natural frequencies of
the system, and plot the corresponding eigenfunctions, for β = 0.04 m−1s.

(d) Does the string show a rigid mode? If so, describe it.

8.4. Shown in Fig. 8.26 is the iconic model of an unloaded long-haul truck. This
model consists of an elastic rod of uniform cross section As with constant mass μ per
unit length, Young modulus E , and length l, that travels in such a way that its ends
are kept at a uniform speed v0. Establish the eigenvalue problem associated with the
axial vibrations and find the corresponding eigenfrequencies and natural modes.

8.5. Assume that the B end of the shaft of the two-rotor turbine shown in Fig. 5.15
is fixed, and that the A end is mounted on roller bearings that allow the A rotor to
turn freely and without friction. Moreover, the shaft has a uniform, circular cross
section; shear modulus G; and radius r. Derive the characteristic equation of the
system for the torsional vibration of the shaft; find values for the ratios ωi/ω1, for
i = 2,3, with ωi denoting the ith natural frequency of the system, for i = 1,2,3, and
plot the first three modes.
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Fig. 8.27 The model of a
high-speed train under axial
vibration

S

8.6. The characteristic equation of the vibrating string of Fig. 8.10 with its left-end
fixed and a trolley of mass M in its right-end is derived in Eq. 8.52. For a value

τ0

ω2Ml
= 1

plot the first three natural modes of the string.

8.7. Derive the characteristic equation of the vibrating string of Fig. 8.15 under the
assumption that the trolley has a mass M.

8.8. Derive the characteristic equation of the cantilever beam of Fig. 8.18 when its
right-end carries a mass M.

8.9. A high-speed train is usually composed of two identical locomotives at its
ends and a series of a dozen passenger cars in-between. A simple iconic model of
such a system, for purposes of analysis of its axial vibration, is shown in Fig. 8.27,
consisting of a linearly elastic bar of uniform cross-section area As, Young modulus
of elasticity E , and mass per unit length μ . Derive the characteristic equation of
the system at hand, considering that the boundary conditions of the model thus
described take the form

Mutt (−l/2, t) = EAsux(−l/2, t), Mutt(l/2, t) =−EAsux(l/2, t)

where uv indicates the partial derivative of u with respect to variable v.
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Appendix A
Matrix Functions

Noli turbare circulos meos

Attributed to Archimedes.1

A.1 Introduction

Here we introduce the concept of analytic function of a square matrix and methods
to compute it. We illustrate the concept with a number of examples pertaining
to 2× 2 matrices that can be handled with longhand calculations. For symmetric
matrices, we introduce the Mohr circle to compute not only their eigenvalues
and eigenvectors, but also their analytic functions. Moreover, we include shortcuts
applicable to specific types of matrices, e.g., matrices with simple structures, with,
e.g., a limited number of non-zero entries.

A.2 Preliminary Concepts

Given a n× n matrix A, it is often necessary to compute an analytic function
F(A) of A. Probably the best known analytic function of a square matrix is the
matrix exponential, whose numerical calculation has been the subject of intensive
research. In fact, this calculation can be accomplished in many different ways,
nineteen of which were identified by Moler and Van Loan [1], but there are more
[2]. The simplest and most straightforward method of computing analytic functions
of 2× 2 matrices is based on the Cayley-Hamilton Theorem. Before recalling this
fundamental result of linear algebra, some preliminary definitions and concepts are
introduced below.

1Do not disturb my circles. Claimed to be Archimedes’ last words before he was murdered.
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Let x and y be n-dimensional vectors related by

y = Ax (A.1)

In general, y has an orientation and a magnitude different from that of x. However,
it may happen that some vectors x �= 0 are transformed by A into multiples of x, in
which case we can write

Ax = λ x (A.2)

where λ is a scalar. Equation A.2 can be rewritten as

(λ 1−A)x = 0 (A.3)

where 1 is the n× n identity matrix. Equation A.3 represents, thus, a homogeneous
system of n linear algebraic equations in n unknowns, the latter being all grouped
within vector x. Since we are interested in nontrivial solutions, the matrix coefficient
should be singular, i.e.,

det(λ 1−A) = 0 (A.4a)

Upon expansion of the foregoing determinant, one obtains

det(λ 1−A)≡ λ n + cn−1λ n−1 + · · ·+ c1λ + c0 = 0 (A.4b)

i.e., the determinant is an nth-degree polynomial in λ , which is called the char-
acteristic polynomial of A. The vanishing condition imposed on this polynomial,
appearing in Eq. A.4b, is called the characteristic equation of A, its n roots, whether
real or complex, distinct or repeated, being called the eigenvalues of A. Let these
roots be labelled λi, for i = 1, . . . ,n. For each λi, there exists at least one non-zero
vector xi for which Eq. A.2 holds, i.e.,

Axi = λixi (A.5)

Each xi is termed an eigenvector of A. Now we can state the main result:

Theorem (Cayley-Hamilton). Let Eq. A.4b be the characteristic equation of A.
Matrix A verifies its own characteristic equation, i.e.,

An + cn−1An−1 + · · ·+ c1A+ c01 = O (A.6)

where O is the n× n zero matrix.
The proof of the Cayley-Hamilton Theorem is straightforward for n×n matrices

with n linearly independent eigenvectors, especially for symmetric matrices. For
matrices with an incomplete set of eigenvectors, i.e., with less than n linearly
independent eigenvectors, the proof is more elaborate and falls beyond the scope of
the book. The diligent reader is referred to the pertinent literature [3] for an outline
of the proof.
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What the foregoing theorem states is very important, namely, the nth power of A
is a linear combination of its first n powers, since, from Eq. A.6 we can solve for
An as

An =−c0A0− c1A1− c2A2−·· ·− cn−1An−1 (A.7)

with A0 = 1 being identified as the first power of A.
As a consequence of Eq. A.4b, λ p, for any integer p ≥ n, can be expressed as a

linear combination of the first n powers of λ , including the first one, λ 0 = 1, i.e.,

λ p = k0 + k1λ + · · ·+ kn−1λ n−1 (A.8a)

Furthermore, as a consequence of Eqs. A.7 and A.8a, the pth power of A, for p≥ n,
can be correspondingly written as a linear combination of the first n powers of
A, i.e.,

Ap = k01+ k1A+ · · ·+ kn−1An−1 (A.8b)

where the ki coefficients are the same in Eqs. A.8a and b, but, in general, ki �= ci,
with ci as given in Eqs. A.4b, A.6 and A.7. Of course, if p = n, then ki = ci.

Further results that will be found useful in computing analytic functions of square
matrices are included below:

Fact 1: Let A be an arbitrary n× n matrix, its eigenvalues and eigenvectors being
{λi}n

1 and {ei}n
1, respectively. Moreover, the latter set is assumed to be normalized,

i.e., with each ei of unit magnitude. The eigenvalues {μi}n
1 of Ak are simply μi = λ k

i ,
for i = 1, . . . ,n, while A and Ak, for integer k share the same eigenvectors.

Fact 2: Let s be a scalar and A a n× n matrix. Then, A and sA share the same
eigenvectors, the eigenvalues of the latter being s times the eigenvalues of the former.

The proofs of the two foregoing facts are straightforward and can be skipped.

A.3 Calculation of Analytic Matrix Functions
of a Matrix Argument

As a direct application of the Cayley-Hamilton Theorem, let us consider any
analytic function f (λ ) of λ . If this function is analytic, then it can be expanded
in series, namely,

f (λ ) = f (0)+ f ′(0)λ +
1
2!

f ′′(0)λ 2 + · · ·+ 1
k!

f (k)(0)λ k + · · · (A.9)
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From relation (A.8a) it is clear that the foregoing series reduces to the sum

f (λ ) = f0 + f1λ + f2λ 2 + · · ·+ fn−1λ n−1 (A.10a)

with f0, f1, . . . , fn−1 being constant coefficients, as yet to be determined. Similarly,
let F(A) be the corresponding matrix function of A, i.e., if, for example, f (λ ) = eλ ,
then F(A) = eA. By virtue of the Cayley-Hamilton Theorem and Eq. A.10a, we have

F(A) = f01+ f1A+ f2A2 + · · ·+ fn−1An−1 (A.10b)

whose coefficients are the same as those appearing in Eq. A.10a.
In vibration analysis, the matrices whose analytic functions are to be computed

represent physical quantities like frequency. For example, when studying the
vibration of multi-dof systems, we come across the frequency matrix, whose entries
have all units of s−1, and hence, its kth power has entries with units of s−k.
Obviously, the kth and the (k + 1)st powers of this matrix cannot be added, for
they have different units. Hence, in performing calculations, we must make sure
that all matrices whose powers are to be added are dimensionally homogeneous.
The simplest way of rendering them so is by scaling all of them so that their entries
will be dimensionless.

We have thus a method to compute an analytic matrix function F(A) of matrix
A: Compute the coefficients f0, f1, . . . , fn−1 of the associated function f (λ ) and
express F(A) as a linear combination of the first n powers of A with the coefficients
mentioned above. To do this, we first evaluate f (λ ) for each eigenvalue λi, thereby
deriving a system of linear equations that can then be solved for these coefficients.
There are two cases, namely,

1. The n eigenvalues are distinct. Here, we can derive n linearly independent
equations in the given coefficients, i.e.,

f0 +λ1 f1 + · · ·+λ n−1
1 fn−1 = f (λ1)

f0 +λ2 f1 + · · ·+λ n−1
2 fn−1 = f (λ2)

...

f0 +λn f1 + · · ·+λ n−1
n fn−1 = f (λn) (A.11a)

which can be rewritten in vector form as

Λf = φ (A.11b)
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where Λ is an n× n matrix, whereas f and φ are n-dimensional vectors, all of
which are defined below.2

Λ=

⎡

⎢⎢
⎢
⎢
⎢
⎣

1 λ1 . . . λ n−1
1

1 λ2 . . . λ n−1
2

...
...

. . .
...

1 λn . . . λ n−1
n

⎤

⎥⎥
⎥
⎥
⎥
⎦
, f =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

f0

f1

...

fn−1

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

, φ=

⎡

⎢⎢
⎢
⎢
⎢
⎣

f (λ1)

f (λ2)

...

f (λn)

⎤

⎥⎥
⎥
⎥
⎥
⎦

(A.11c)

Since Eq. A.11a are linearly independent, a solution f to the foregoing system
exists, which is, additionally, unique.

2. Some eigenvalues are repeated. Assume that λ1 = λ2 = · · · = λr(r < n), but
the remaining ones, λr+1,λr+2, . . . ,λn, are distinct. Then, we compute the r− 1
derivatives of f (λ ) with respect to λ and evaluate them, together with the
function itself, at λ1. To these equations, we add equations corresponding to
Eq. A.11c for λr+1, . . . ,λn, to obtain a system of n linearly independent equations
in the n unknown coefficients, namely,

f0 +λ1 f1 +λ 2
1 f2 + · · ·+λ r−1

1 fr−1 + · · ·+λ n−1
1 fn−1 = f (λ1)

f1 +2λ1 f2 + · · ·+(r−1)λ r−2
1 fr−1 + · · ·+(n−1)λ n−2

1 fn−1 = f ′(λ1)

2 f2 + · · ·+(r−2)(r−1)λ r−3
1 fr−1 + · · ·+(n−2)(n−1)λ n−3

1 fn−1 = f ′′(λ1)

...

2 · · · (r−2)(r−1) fr−1 + · · ·+(n− r+1)(n− r+2) · · · (n−1)λ n−r
1 fn−1 = f (r−1)(λ1)

f0 +λr+1 f1 +λ 2
r+1 f2 + · · ·+λ n−1

r+1 fn−1 = f (λr+1)

...

f0 +λn f1 +λ 2
n f2 + · · ·+λ n−1

n fn−1 = f (λn)

2The structure of Λ is so frequent in system theory that it bears a name, Vandermonde matrix.
Scientific software provides means to create a Vandermonde matrix by entering, in general, only
the name (computer algebra) or the value of the argument λ and the dimension n of the square
matrix.
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The foregoing system is similar to system (A.11b), except that now Λ and φ are
defined as

Λ=

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

1 λ1 λ 2
1 . . . λ r−1

1 . . . λ n−1
1

0 1 2λ1 . . . (r− 1)λ r−2
1 . . . (n− 1)λ n−2

1

0 0 2 . . . (r− 2)(r− 1)λ r−3
1 . . . (n− 2)(n− 1)λ n−3

1
...

...
...

. . .
...

. . .
...

0 0 0 . . . (r− 1)! . . . (n− 1)!λ n−r
1 /(n− r)!

1 λr+1 λ 2
r+1 . . . λ r−1

r+1 . . . λ n−1
r+1

...
...

...
. . .

...
. . .

...

1 λn λ 2
n . . . λ r−1

n . . . λ n−1
n

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

φ=
[

f (λ1) f ′(λ1) f ′′(λ1) . . . f (r−1)(λ1) f (λr+1) . . . f (λn)
]T

x (A.12)

As a result of Facts 1 and 2, and Eq. A.10b, we now have

Fact 3: Let F(A) be the analytic matrix function of A derived from the analytic
scalar function f = f (λ ). Then, if we let {φi }n

1 be the set of eigenvalues of F(A)
and {λi }n

1 those of A, we have

φi = f (λi), i = 1, . . . , n (A.13)

Moreover, F(A) and A share the same eigenvectors.

A.3.1 Special Case: 2×2 Matrices

The special case of 2×2 matrices deserves attention because: (1) 2×2 non-singular
matrices can be inverted in closed form; (2) 2× 2 matrices entail the essential
properties of general n×n matrices, while being much easier to manipulate; and (3)
when these are, additionally, symmetric, their analytic functions can be computed
graphically, namely, with the aid of the Mohr circle.

So, let us assume that we have a 2× 2 arbitrary matrix A, given by

A≡
[

a11 a12

a21 a22

]
≡ [c1 c2

]≡
[

rT
1

rT
2

]

(A.14)

where ck and rT
k represent its kth two-dimensional column and row vectors,

respectively. Note that here we have indicated vectors as column arrays, a practice
that is followed throughout the book.
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The trace of A is a very important invariant 3 quantity that is defined as the sum
of the diagonal entries of the matrix, i.e.,

tr(A)≡ a11 + a22 (A.15)

The determinant of the foregoing matrix, also a matrix invariant, is given in turn by

det(A)≡ a11a22− a12a21 ≡−rT
1 Er2 (A.16)

with E defined in Sect. 1.6 as the 2 × 2 orthogonal matrix that rotates two-
dimensional vectors in their plane through an angle of 90◦ counterclockwise, which
is reproduced below for quick reference:

E≡
[

0 −1
1 0

]
(A.17)

Matrix E, as shown in the Section recalled above, has interesting properties, namely,

ET =−E, E−1 = ET =−E (A.18)

Now, the inverse of A is calculated just by (1) interchanging its diagonal entries,
(2) reversing the signs of its off-diagonal entries, and (3) dividing the resultant
matrix by Δ≡ det(A), i.e.,

A−1 =
1
Δ

[
a22 −a12

−a21 a11

]
(A.19a)

which can be represented in terms of its columns and rows, alternatively, as

A−1 =
1
Δ

E
[−r2 r1

]≡ 1
Δ

[
cT

2

−cT
1

]

E (A.19b)

The characteristic equation of A takes the form

P(λ )≡ det

[
λ − a11 −a12

−a21 λ − a22

]
(A.20)

or, upon expansion, as

P(λ ) = λ 2− tr(A)λ +Δ (A.21)

3Invariance means that, under a change of vector basis, the trace does not change. More precisely,
a quantity is invariant when it follows certain rules under a change of frame. A scalar is invariant
when it does not change under a change of frame.
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and hence, the two eigenvalues of this matrix are

λ1,2 =
tr(A)

2
±
√(

tr(A)

2

)2

−Δ (A.22)

If we want to calculate the coefficients f0 and f1 of the matrix function F(A) of
Eq. A.10b, we end up with a 2× 2 matrix Λ and a two-dimensional vector φ, that
were defined in Eq. A.11c for the general n× n case, namely,

Λ=

[
1 λ1

1 λ2

]
, f =

[
f0

f1

]
, φ=

[
f (λ1)

f (λ2)

]
(A.23a)

and hence,
[

f0

f1

]
=

1
λ2−λ1

[
λ2 −λ1

−1 1

][
f (λ1)

f (λ2)

]
(A.23b)

or

f0 =
λ2 f (λ1)−λ1 f (λ2)

λ2−λ1
(A.24a)

f1 =
f (λ2)− f (λ1)

λ2−λ1
(A.24b)

If matrix A has only one linearly independent eigenvector, the equations from which
the coefficients f0 and f1 are computed take the form

[
1 λ1

0 1

][
f0

f1

]
=

[
f (λ1)

f ′(λ1)

]
(A.25)

and hence, its solution readily follows, namely,

f1 = f ′(λ1) (A.26a)

f0 = f (λ1)−λ1 f1 (A.26b)

The foregoing expressions are given here for reference, as a means to verify
numerical results. In the examples that follow, we do not use these formulas, but
rather work on a case-by-case basis. The reader is invited to verify the results given
in Sect. A.4 with the aid of these expressions.
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A.3.2 Examples

In the examples below, matrix A is given, and a matrix function F(A) is sought.

A.3.2.1 Example A.3.1

A =

[
3 4
4 −3

]
, F(A) = A100

1. Characteristic equation:

det(λ 1−A)≡ λ 2− 25 = 0

Hence,

λ1 = 5, λ2 =−5

2. Write f (λ ) = λ 100, for λ1 and λ2, in the form (A.11a):

[
1 5
1 −5

][
f0

f1

]
=

[
5100

(−5)100

]

i.e.,
[

f0

f1

]
= 5100

[
1
0

]

and hence,

f0 = 5100, f1 = 0

3. Write A100 as a linear combination of 1 and A, namely, as

A100 = f01+ f1A = 51001+ 0A =

[
5100 0

0 5100

]

Thus,

A100 =

[
7.9× 1069 0

0 7.9× 1069

]
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A.3.2.2 Example A.3.2

A is given as in Example A.3.1, but F(A) is now defined as eA. Thus, Λ remains,
but φ changes as indicated below:

φ=
[
e5 e−5

]T

Hence,

f0 =
e5 + e−5

2
≡ cosh5, f1 =

e5− e−5

10
≡ sinh5

5

and so,

eA = f01+ f1A =

⎡

⎣
cosh5+(3/5)sinh5 (4/5)sinh5

(4/5)sinh5 cosh5− (3/5)sinh5

⎤

⎦

A.3.2.3 Example A.3.3

A =

[
σ −σ
σ σ

]
, σ =

√
2

2
, F(A) = A1000

det(A−λ 1) = det

[
σ −λ −σ

σ σ −λ

]
= 0

Thus,

λ 2− 2σλ + 2σ2 = 0

whence,

λ1,2 = σ ±
√

σ2− 2σ2

or

λ1,2 = σ ± jσ =

√
2

2
(1± j1) = e± jπ/4

Thus, coefficients f0 and f1 are computed from the equations below:

f0 +λi f1 = λ 1000
i , i = 1,2

i.e.,

f0 + e jπ/4 f1 = e j250π = 1 (A.27)

f0 + e− jπ/4 f1 = e− j250π = 1 (A.28)
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Now, if Eq. A.28 is subtracted from Eq. A.27, we obtain

2
(

sin
π
4

)
f1 = 0, f1 = 0

Substituting f1 = 0 in Eq. A.27 then gives

f0 = 1

which thus produces,

A1000 = 1

where 1 is the 2× 2 identity matrix. Can you explain this result?

A.3.2.4 Example A.3.4: The Zero-input Response of a Second-order
Damped System

Consider the system:

ẋ = v

v̇ = −ω2
n x− 2ζωnv

x(0) = x0, v(0) = v0

This system can be written in vector form as

ẋ = Ax, x(0) = x0

with A and x defined below:

A =

[
0 1
−ω2

n −2ζωn

]
, x =

[
x(t)
v(t)

]

Furthermore, the response of the system can be written as

x(t) = eAtx0

Thus, in order to evaluate the response of the system, all that we need is the
exponential of matrix At, which is computed in the usual manner. The characteristic
equation of A is first derived:

det(λ 1−A) = λ 2 + 2ζωnλ +ω2
n = 0
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from which,

λ1 = (−ζ +
√

ζ 2− 1)ωn, λ2 = (−ζ −
√

ζ 2− 1)ωn

and, recalling Fact 2, the eigenvalues of At are {λkt}2
1. Now, Eq. A.10a are written

for eλkt and k = 1,2 as
[

1 λ1t
1 λ2t

][
f0

f1

]
=

[
eλ1t

eλ2t

]

whence,

f0 =
λ2eλ1t −λ1eλ2t

(λ2−λ1)
, f1 =

−eλ1t + eλ2t

(λ2−λ1)t
Moreover,

λ2−λ1 =−2
√

ζ 2− 1ωn =−2ρωn; ρ ≡
√

ζ 2− 1

and hence,

f0 =
e−ζωnt

ρ

(
ζ

eρωnt − e−ρωnt

2
+ρ

eρωnt + e−ρωnt

2

)
(A.29a)

f1 =
e−ζωnt

ρωnt
eρωnt − e−ρωnt

2
(A.29b)

Thus, eAt takes on the form
eAt = f01+ f1At

Below we consider three cases, namely,

1. Underdamped system: ζ < 1. In this case, ρ is imaginary and can be written as

ρ = jr, r ≡
√

1− ζ 2 (real), j ≡√−1

and now f0 and f1 take the forms:

f0 =
e−ζωnt

jr
( jζ sin rωnt + jr cosrωnt)

=
e−ζωnt
√

1− ζ 2

(
ζ sinωn

√
1− ζ 2t +

√
1− ζ 2 cosωn

√
1− ζ 2t

)

f1 =
e−ζωnt

jrωn
j sin rωnt =

e−ζωnt

ωn

√
1− ζ 2

sinωn

√
1− ζ 2t
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The matrix exponential, then, takes the form

eAt =
e−ζωnt

R

⎡

⎣
ζ sinωdt +Rcosωdt (1/ωn)sinωdt

−ωn sinωdt −ζ sinωdt +Rcosωdt

⎤

⎦, (A.30a)

R ≡
√

1− ζ 2 (A.30b)

ωd being known as the damped frequency and is defined as

ωd ≡
√

1− ζ 2ωn (A.30c)

Thus, x(t) reduces to

x(t) = ( f01+ f1At)x0

i.e.,

x(t) =
e−ζωnt
√

1− ζ 2

(
ζ sinωdt +

√
1− ζ 2 cosωdt

)
x0 +

e−ζωnt

ωd
(sinωdt)v0

v(t) =
−ωne−ζωnt
√

1− ζ 2
(sinωdt)x0 +

e−ζωnt
√

1− ζ 2

(
−ζ sinωdt +

√
1− ζ 2 cosωdt

)
v0

Exercise: Prove that v(t) = dx/dt from the above expressions.

2. Critically damped system: ζ = 1. Here, λ1 = λ2 = −ωn, i.e., we end up with a
repeated eigenvalue and, hence, ρ = 0. Furthermore, note that, from Eqs. A.29a
and b, it is not possible to compute the coefficients f0 and f1 when ζ = 1, for
those equations yield indeterminacies in this case. Hence, we have to proceed as
indicated above for the case of repeated eigenvalues. We thus need the derivative
of both sides of Eq. A.10a with respect to λ . Below we write that equation and
its derivative for the case at hand:

f0 +λ f1 = eλ

f1 = eλ

whence,

f1 = eλ , f0 = (1−λ )eλ

We further replace λ by λ t and recall that λ =−ωn, which leads to

eAt = (1+ωnt)e−ωnt1+ e−ωntAt
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i.e.,

eAt =

[
(1+ωnt)e−ωnt te−ωnt

−ω2
n te−ωnt (1−ωnt)e−ωnt

]

(A.31)

Thus, the time response of the system at hand becomes

x(t) = (1+ωnt)e−ωnt x0 + te−ωnt v0

v(t) = −ω2
n te−ωnt x0 +(1−ωnt)e−ωnt v0

3. Overdamped system: ζ > 1. Since ρ is real in this case, f0 and f1, as given by
Eqs. A.29a and b, can be written as

f0 =
e−ζωnt

ρ
(ρ coshρωnt + ζ sinhρωnt)

f1 =
e−ζωnt

ρωn
sinhρωnt

and hence,

eAt =
e−ζωnt

ρ

[
(ρ coshρωnt + ζ sinhρωnt)1+

1
ωn

sinhρωntA
]

or

eAt =
e−ζωnt

ρ

⎡

⎣
ρ coshρωnt + ζ sinhρωnt

1
ωn

sinhρωnt

−ωn sinhρωnt ρ coshρωnt− ζ sinhρωnt

⎤

⎦ (A.32)

the time response of interest thus being

x(t) =
e−ζωnt

ρ
(ρ coshρωnt + ζ sinhρωnt)x0 +

e−ζωnt

ρωn
sinhρωntv0

v(t) = −ωne−ζωnt

ρ
(sinhρωnt)x0 +

e−ζωnt

ρ
(ρ coshρωnt− ζ sinhρωnt)v0

A.3.2.5 Example A.3.5

A =

[
2 1
1 2

]
, F(A) = ln(A)
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The characteristic equation of A is first derived:

det(λ 1−A) = det

[
λ − 2 −1
−1 λ − 2

]
= λ 2− 4λ + 3 = 0

Hence, the eigenvalues of A are:

λ1,2 = 2±√4− 3 = 2± 1 = 1,3

Now, F(A) is written as a linear combination of 1 and A, with coefficients f0 and f1

that are computed from:

f0 +λi f1 = ln(λi), i = 1,2

i.e.,

f0 + f1 = 0 (A.33a)

f0 + 3 f1 = ln(3) (A.33b)

From Eq. A.33a,
f0 =− f1 (A.34)

Upon substitution of Eq. A.34 into Eq. A.33b, we determine the two coefficients as

f1 =
1
2

ln(3)

f0 = −1
2

ln(3)

Thus,

lnA =
1
2

ln(3)

([−1 0
0 −1

]
+

[
2 1
1 2

])
=

1
2

ln(3)

[
1 1
1 1

x

]
≡ B

and hence, the following relation holds:

eB = A

As a matter of verification, let λ1,2 be eigenvalues of B and μ1,2 those of 2B/ ln(3).
One can readily verify that

λi =
1
2

ln(3)μi, i = 1,2
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As a further verification, given B, let us compute exp(B). To this end, first the
eigenvalues of B are determined. The characteristic equation of B is readily derived:

det

[
μ− 1 −1
−1 μ− 1

]
= μ2− 2μ = 0

from which,

μ1 = 0, μ2 = 2

and hence, one can verify immediately that

λ1 = 0, λ2 = ln(3)

Moreover, exp(B) is written as a linear combination of 1 and B, with coefficients g0

and g1 that are computed from the equations below:

g0 +λig1 = eλi , i = 1,2

i.e.,

g0 + 0 = 1

g0 + ln(3)g1 = eln(3)(= 3)

Upon solving the foregoing equations for the coefficients sought, one obtains

g0 = 1, g1 =
2

ln(3)

and hence,

eB =

[
1 0
0 1

]
+

[
1 1
1 1

]
=

[
2 1
1 2

]
= A

thereby verifying the computed results.

A.3.2.6 Example A.3.6

Let

A =

[−3 4
4 −9

]
, F(A) = ln(A)

First, the characteristic equation of A is

det(λ 1−A) = 0
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Upon expansion, the foregoing equation leads to

λ 2 + 12λ + 11 = 0

from which one can readily compute the eigenvalues of A:

λ1 =−1, λ2 =−11

Now, ln(A) is written as

ln(A) = f01+ f1A

where f0 and f1 are computed from the equations below:

f0 + f1λ1 = ln(λ1)

f0 + f1λ2 = ln(λ2)

i.e., with j ≡√−1,

f0− f1 = jπ

f0− 11 f1 = ln(11)+ jπ

from which the values sought are obtained as

f0 = jπ−α, f1 =−α, α ≡ ln(11)
10

and hence,

ln(A) =

[
jπ−α 0

0 jπ −α

]
−α

[−3 4
4 −9

]
=

[
2α + jπ −4α
−4α 8α + jπ

]

As a matter of verification again, let μ1 and μ2 be the eigenvalues of ln(A). Clearly,

μ1 = ln(λ1), μ2 = ln(λ2)

as expected.

A.3.2.7 Example A.3.7

A =

[
σ ω
ω −σ

]
, F(A) = eA
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As reported in Kailath’s book, the exponential of A, computed in symbolic form
with Macsyma, is given as

eA =

[
coshτ +(σ sinhτ/)τ (ω sinhτ/τ)

(ω sinhτ)/τ coshτ− (σ sinhτ)/τ

]

, with τ ≡
√

ω2 +σ2

The same result is now obtained using the Cayley-Hamilton Theorem. To this end,
the eigenvalues of A are first determined. This is done from the characteristic
equation of A, namely,

det(λ 1−A) = 0

i.e.,

λ 2−ω2−σ2 = 0

from which one readily determines the two eigenvalues of A, namely,

λ1 = τ, λ2 =−τ

with τ as previously defined. Next, eA is written as

eA = f01+ f1A

with f0 and f1 determined as usual, i.e., from

f0 + f1λ1 = eλ1

f0 + f1λ2 = eλ2

or, in vector form, [
1 λ1

1 λ2

][
f0

f1

]
=

[
eλ1

eλ2

]

from which one readily obtains

[
f0

f1

]
=

1
λ2−λ1

[
λ2 −λ1

−1 1

][
eλ1

eλ2

]
=

1
λ2−λ1

[
λ2eλ1 −λ1eλ2

−eλ1 + eλ2

]

and hence,

f0 =
−τeτ − τe−τ

−2τ
=

eτ + e−τ

2
= coshτ

f1 =
−eτ + e−τ

−2τ
=

eτ − e−τ

2τ
=

sinhτ
τ
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Hence, eA can be readily written as

eA = coshτ1+
sinhτ√
ω2 +σ2

A

which leads exactly to the result reported by Kailath.
Interestingly, if A is of 2× 2 and symmetric, then the foregoing calculations can

be done geometrically, using Mohr’s circle, as described in Sect. A.4.

A.3.2.8 Example A.3.8: A Matrix with a Repeated Eigenvalue

A =

[
0 1
0 0

]

Now we want to evaluate F(A), which is defined as

F(A) =

∫ h

0
eAt dt

where h is a constant.
Here, we have a matrix with the double eigenvalue λ = 0 and an analytic scalar

function f (λ ) given by

f (λ ) =
∫ h

0
eλ tdt =

eλ h− 1
λ

≡ N(λ )
D(λ )

We now calculate F as
F = f01+ f1A

with coefficients f0 and f1 obtained upon evaluating f (λ ) and f ′(λ ) at λ = 0,
namely,

f0 +λ f1 = f (0)

f1 = f ′(0)

However, note that, in calculating f (0), we end up with an indeterminacy, because

N(0) = 0, D(0) = 0

This indeterminacy can be resolved by resorting to L’Hospital’s rule:

f (0) =
N′(λ )
D′(λ )

∣
∣∣
λ=0

=
heλ h

1

∣
∣∣
λ=0

= h
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On the other hand,

f ′(λ ) =
1

D(λ )
[N′(λ )− f (λ )D′(λ )]

=
1
λ

[

heλ h− eλ h− 1
λ

(1)

]

=
hλ eλ h− eλ h + 1

λ 2 ≡ P(λ )
Q(λ )

Again, the evaluation of the above expression leads to an indeterminacy, because

P(0) = 0, Q(0) = 0

To resolve the foregoing indeterminacy, we resort again to L’Hospital’s rule:

f ′(0) =
P′(λ )
Q′(λ )

∣
∣∣
∣
∣
λ=0

=
heλ h + h2λ eλ h− heλ h

2λ

∣
∣∣
∣
∣
λ=0

=
h2eλ h

2

∣
∣∣
∣
∣
λ=0

=
h2

2

Therefore,

f0 = h, f1 =
h2

2

the final result being

∫ h

0
eAt dt = h

[
1 0
0 1

]
+

h2

2

[
0 1
0 0

]
=

[
h h2/2
0 h

]

A.4 Use of Mohr’s Circle to Compute Analytic Matrix
Functions

Prior to discussing the calculation of matrix functions using Mohr’s circle, we need
to recall a few facts concerning the construction of this circle for the calculation
of the eigenvalues and eigenvectors of a symmetric, but not necessarily positive-
semidefinite 2× 2 matrix. Let, for example, A be given as

A =

[
a11 a12

a12 a22

]
(A.35)

The Mohr circle of the above matrix is constructed by following the steps
described below:

1. Define the orthogonal coordinate axes X and Y
2. Locate the points A, B, C and D at (a11,0), (a22,0), (a11,a12) and (a22,−a12),

respectively
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a b

Fig. A.1 Mohr circle of a 2×2 symmetric matrix

3. Determine point E on the X axis as the intersection of the line defined by points
C and D with the X axis

4. The Mohr circle of the given matrix is the circle centered at E of radius r = DE

The foregoing construction is indicated in Fig. A.1a. From this figure we can
determine the eigenvalues and the eigenvectors of A. In fact, the eigenvalues of A
are given at the intersections of the Mohr circle with the X axis, namely, as points
F and G, whose abscissae are λ1 and λ2, respectively. Moreover, the eigenvector
associated with λ1 is the unit vector obtained from the vector directed from F to
D, and indicated as e1 in Fig. A.1b. The eigenvector associated with λ2 is simply
vector e1 rotated through an angle of 90◦ counterclockwise and appearing as e2 in
Fig. A.1b. Below we prove these results.

The characteristic equation of matrix A can be written as given in Eq. A.21 for
more general 2× 2 matrices, not necessarily symmetric, if by changing a21 by a12,
thereby obtaining

P(λ ) = λ 2− 2aλ +Δ (A.36)

with a and Δ defined as the mean value of the diagonal entries of A and the
determinant of A, respectively, i.e.,

a≡ a11 + a22

2
≡ tr(A)

2
, Δ≡ a11a22− a2

12 ≡ det(A) (A.37)

Thus, the two roots of the foregoing characteristic polynomial are

λ1 = a−
√

a2−Δ, λ2 = a+
√

a2−Δ (A.38)

Now, the radical R above turns out to be

R≡ a2−Δ =

(
a11− a22

2

)2

+ a2
12 ≡ r2 (A.39)
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and hence, the radical is nothing but the square of the radius r of the Mohr circle,
whence,

λ1 = a− r, λ2 = a+ r. (A.40)

Moreover, since a is the abscissa of point E , the two eigenvalues turn out to be the
abscissae of points F and G of the Mohr circle.

Now, the eigenvectors e1 and e2 are determined as follows: The eigenvector
e1, associated with λ1, is assumed to have components [ξ , η ]T . Since e1 verifies
Eq. A.2, we can write

(a11−λ1)ξ + a12η = 0 (A.41a)

a12ξ +(a22−λ1)η = 0 (A.41b)

Now, the two foregoing equations are linearly dependent, and hence, only one can
be used to determine ξ and η . However, one single equation of these is not enough,
for we have two unknowns. The two unknowns are then determined by recalling
that we have assumed at the outset that the eigenvectors are normalized, i.e., of unit
magnitude, and hence,

ξ 2 +η2 = 1

Moreover, we use Eq. A.41a to determine e1 by noticing that this equation can be
written as a dot product of vector a =

−→
FC by vector e1, where a has the components

shown below:

a≡
[

a11−λ1

a12

]
(A.42)

and hence, Eq. A.41a can be rewritten in the form

aT e1 = 0 (A.43)

which means that vector e1 is perpendicular to vector a. In order to ease matters,
we recall now the matrix E reproduced in Eq. A.17 that rotates vectors 90◦
counterclockwise without changing their magnitudes.

What Eq. A.43 states is that vector e1 is nothing but vector a rotated through
90◦ either clockwise or counterclockwise and divided by the magnitude of a, ‖a‖,
in order to render it of unit magnitude. Now, from the Mohr circle, ‖a‖ = FC and
hence, we can express e1 as vector−Ea divided by FC, namely,

e1 =−Ea

FC
(A.44)

Thus, geometrically we can determine e1 as the unit vector directed from F to D in
Fig. A.1b. Furthermore, inorder to determine e2 all we have to do is just remember
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Fig. A.2 Mohr cicle of F(A)
for a11 > a22 and a12 > 0

that the two eigenvectors of symmetric A are mutually orthogonal. Thus, e2 turns
out to be simply the unit vector directed from F to C, i.e.,

e2 =
a
||a|| (A.45)

and hence, e2 is as indicated in Fig. A.1b, thereby completing the intended proof.
From the Cayley-Hamilton Theorem and Fact 1, the eigenvalues of F(A) are

simply f (λi) and its eigenvectors are those of A. Now, since the two matrices A
and F(A) share the same eigenvectors, the points A′, B′, . . ., G′ in the Mohr circle
of F(A) must be located at the vertices of a polygon similar to that determined by
points A, B, . . ., G of the Mohr circle of A. Hence, the Mohr circle of F(A) can be
readily derived once that of A is available. Moreover, the intersections of the former
with the horizontal axis are at φi ≡ f (λi). The Mohr circle of F(A) is indicated in
Fig. A.2.

Furthermore, from Figs. A.1 and A.2, the entries of F(A) can be readily obtained.
Indeed, since A is symmetric, F(A) is symmetric as well, its entries being denoted
by f11, f12, and f22. Now, let rF denote the radius of the Mohr circle of F. From
Figs. A.1 and A.2, then, the relations given below are readily derived:

f11 =
φ1 +φ2

2
− rF

r

√
r2− a2

12 (A.46a)

f22 =
φ1 +φ2

2
+

rF

r

√
r2− a2

12 (A.46b)

f12 =
rF

r
a12 (A.46c)

where, if a12 < 0, then so is f12 and the two Mohr circles take the form of Figs. A.3a
and b. The eigenvector e1 of both A and F, in this case, is the unit vector directed
from F to C or from F ′ to C′ of Figs. A.3a and b, respectively. Moreover, e2 is just e1

rotated 90◦ counterclockwise, i.e., the unit vector directed from F to D of Fig. A.3a
or, correspondingly, from F ′ to D′ of Fig. A.3b.
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a b

Fig. A.3 Mohr circles of (a) A, for a11 > a22 and a12 < 0; (b) F(A)

Code for the production of the Mohr circle of a 2×2 symmetric matrix is availale
in ApA-MohrCircle.mw.

Furthermore, we have one more result:

Fact 4: Any square matrix A commutes with any of its analytic matrix functions
F(A), i.e.,

AF(A) = F(A)A (A.47)

This result can be proven by noticing that: (1) any analytic function of A can be
expressed as a sum of the first n powers of A, and (2) the obvious fact that any
square matrix commutes with its powers, i.e.,

AAk = AkA

As a direct consequence of this fact, we have

Fact 5: Let Φ ≡ F(A) be any analytic function of the n× n matrix A, and B a
similarity transformation4 of A, given by the n× n invertible matrix L:

B = LAL−1 (A.48)

Then,

Ψ≡ F(B) = LΦL−1 (A.49)

Proof. Since Φ is an analytic function of A, there exist coefficients {φk}n
0 such that

Φ=
n

∑
0

φkAk (A.50)

4A similarity transformation occurs wherever a change of variable y =Lx is introduced. Similarity
transformations are studied in basic linear-algebra courses.
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Likewise, Ψ can be expressed as

Ψ=
n

∑
0

ψkBk (A.51)

However,

Bk =
(
LAL−1)k

=

k factors
︷ ︸︸ ︷
LAL−1L︸ ︷︷ ︸

1

AL−1L︸ ︷︷ ︸
1

. . .L−1L︸ ︷︷ ︸
1

AL−1 (A.52)

whence,

Bk = LAkL−1 (A.53)

Therefore,

Ψ=
n

∑
0

ψkLAkL−1 = L

(
n

∑
0

ψkAk

)

L−1 (A.54)

In order to produce relation (A.49), all that remains is to prove that ψk = φk, for
k = 0,1, . . . ,n. By virtue of relation (A.49), and the definition of the characteristic
equation of A, Eq. A.4a, this equation holds if A is substituted by B. The conse-
quence is that A and B share the same eigenvalues. Moreover, in light of the results
of Sect. A.3, ψk = φk, for k = 0,1, . . . ,n, thereby proving this fact.

A.4.1 Examples

In order to illustrate the foregoing concepts, we compute here some analytic
functions of a few symmetric 2× 2 matrices.

A.4.1.1 Example A.4.1

Let A be given as

A =

[
25 48
48 97

]

We want to compute the positive-definite square root of matrix A, whose Mohr circle
is illustrated in Fig. A.4a. From this figure, the eigenvalues of A are 1 and 121, its
eigenvectors being [0.8944,−0.4472]T and [0.4472, 0.8944]T . The Mohr circle of√

A is readily constructed in Fig. A.4b as indicated below: the intersections of this
circle with the horizontal axis are

√
1 and

√
121, i.e., 1 and 11, the eigenvectors e1
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a b

Fig. A.4 Mohr circles of matrices (a) A and (b) F(A) of Example A.4.1

a b

Fig. A.5 Mohr circles of matrices A and F(A) of Example A.3.1

and e2 being determined as discussed above. From this information, the entries of√
A are readily computed, namely,

√
A =

[
3 4
4 9

]

Note that, according with the Mohr-circle construction, if the signs of the two
off-diagonal entries of A, as given above, are reversed, so are those of

√
A.

A.4.1.2 Example A.4.2

We repeat here Example A.3.1, but resorting to the Mohr circle. The Mohr circle
of matrix A, as given in that example, is displayed in Fig. A.5a. The eigenvalues of
A are thus readily found as λ1 = −5 and λ2 = 5. The eigenvalues of A100 are then
simply 5100 and (−5)100, i.e., they are identical and equal to 7.9× 1069. Thus, the
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a b

Fig. A.6 Mohr circles of matrices A and F(A) of Example A.3.7

Mohr circle of A100 reduces to a point, as shown in Fig. A.5b, which means that the
associated matrix is proportional to the identity matrix, i.e.,

A100 = 7.9× 10691 (A.55)

A.4.1.3 Example A.4.3

As a further illustration of the power of the Mohr-circle construction, we repeat here
Example A.3.7 using this technique. Thus, the Mohr circle of matrix A is displayed
in Fig. A.6a, that of eA in Fig. A.6b. In Fig. A.6a, the eigenvalues of A are simply
λ1,2 =±τ , where τ is the radius of the Mohr circle of Fig. A.6a, i.e.,

τ ≡
√

σ2 +ω2

the eigenvalues of eA simply being μ1,2 = e±τ , as shown in Fig. A.6b. Hence, the
radius ρ of the Mohr circle of the foregoing exponential is simply

ρ ≡ eτ − e−τ

2
≡ sinhτ

Moreover, the centre of the same circle is located a distance d to the right of the
origin, that is given by

d ≡ eτ + e−τ

2
≡ coshτ

The entries of eA are now found from the coordinates of the points A′, B′ and C′
of Fig. A.6b, which are the counterparts of points A, B and C of Fig. A.6a, i.e., the
two segments DC and D′C′ make the same angle with the horizontal axis. Let x
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and y denote the lengths of segments E ′A′ and A′C′, respectively, which are readily
found below: from the similarity of triangles OAC and E ′A′C′, we have

y
ω

=
ρ
τ

and hence,

y =
ρ
τ

ω

Recalling that ρ = sinhτ , we have

y =
ω sinhτ

τ

Furthermore, from the similarity of the same foregoing triangles, we have

x
σ

=
sinhτ

τ

and hence,

x =
σ sinhτ

τ

the abscissae f11 and f22 of points A′ and B′ thus being

f11 = coshτ +
σ sinhτ

τ

f22 = coshτ− σ sinhτ
τ

which are the diagonal entries of the exponential sought. Likewise, the off-diagonal
entry of the said exponential, f12 is simply y, i.e.,

f12 = y =
ω sinhτ

τ

Thus, the matrix sought takes the form

eA =

[
coshτ +(σ sinhτ)/τ (ω sinhτ)/τ

(ω sinhτ)/τ coshτ− (σ sinhτ)/τ

]

which is exactly that obtained with Macsyma—see [4].
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A.4.1.4 Example A.4.4: The Harmonic Functions
of a Positive-definite Matrix

Here we are given a symmetric positive-definite matrix that we encounter quite often
in the vibration analysis of two-degree-of-freedom systems, namely, the frequency
matrix shown below:

Ω=

[
ω11 ω12

ω12 ω22

]

(A.56)

where, for positive-definiteness, we must have

tr(Ω) = ω11 +ω22 > 0, det(Ω) = ω11ω22−ω2
12 > 0

and so, we can expect that the two eigenvalues of Ω, ω1 and ω2, will be positive.
The Mohr circle of Ω is shown in Fig. A.7a. Shown in Figs. A.7b and c are the Mohr
circles of cosΩt and sinΩt.

We start with some definitions: the center of the Mohr circle of Ω is located at
a distance equal to the mean value of the diagonal entries of Ω. It turns out that
this distance is also the mean value of the two eigenvalues of Ω. In the study
of vibrations of systems with two degrees of freedom, the eigenvalues of their
frequency matrix are nothing but the two natural frequencies, or eigenfrequencies
of the system at hand. Thus, we can call this distance the mean frequency of the
system and represent it by ω , the diameter of the Mohr circle of the same matrix
being equal to the difference of the two eigenfrequencies. We thus call the half of
this difference the frequency radius and represent it by ρ . We have formally defined
these quantities as

ω ≡ ω1 +ω2

2
≡ ω11 +ω22

2
(A.57a)

ρ ≡ ω2−ω1

2
≡
√(

ω11−ω22

2

)2

+ω2
12 (A.57b)

From the Mohr circle of the cosΩt and sinΩt matrices we can then infer their
entries, namely,

cosΩt =

[
a+ uC vC

vC a− uC

]
, sinΩt =

[
b+ uS vS

vS b− uS

]

and all we are left with is the calculation of the various parameters involved, namely,
a, b, . . ., uS and vS. We do these calculations geometrically, as described below:

First, we label rC and rS the radii of the Mohr circle of the cosΩt and sinΩt
matrices, which are calculated as
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Fig. A.7 The Mohr circles of
(a) a positive-definite matrix
and of its (b) cosine and (c)
sine functions

a

b

c

rC =
cos(ω2t)− cos(ω1t)

2
, rS =

sin(ω2t)− sin(ω1t)
2

Moreover, the distance of the centers of the Mohr circles of the cosΩt and sinΩt
matrices, a and b, are given by

a =
cos(ω2t)+ cos(ω1t)

2
, b =

sin(ω2t)+ sin(ω1t)
2

Furthermore, the Mohr circle of the frequency matrix makes apparent the
relations below:

ω1 = ω−ρ , ω2 = ω +ρ
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Upon substitution of the latter relations into the expressions for a, b, rC and rS,
we obtain

a = cos(ωt)cos(ρt)

b = sin(ωt)cos(ρt)

rC = −sin(ωt)sin(ρt)

rS = cos(ωt)sin(ρt)

Now, from the geometry of Figs. A.7b and c, we readily derive expressions for
uC, vC, uS and vS, namely,

uC = −ω11−ω22

2ρ
sin(ωt)sin(ρt)

vC = −ω12

ρ
sin(ωt)sin(ρt)

uS =
ω11−ω22

2ρ
cos(ωt)sin(ρt)

vS =
ω12

ρ
cos(ωt)sin(ρt)

and hence, the desired matrices take the forms

cos(Ωt) =

⎡

⎢
⎣

c(ωt)c(ρt)−ϖs(ωt)s(ρt) −ω12

ρ
s(ωt)s(ρt)

−ω12

ρ
s(ωt)s(ρt) c(ωt)c(ρt)+ϖs(ωt)s(ρt)

⎤

⎥
⎦

sin(Ωt) =

⎡

⎢
⎣

s(ωt)c(ρt)+ϖc(ωt)s(ρt)
ω12

ρ
c(ωt)s(ρt)

ω12

ρ
c(ωt)s(ρt) s(ωt)c(ρt)−ϖc(ωt)s(ρt)

⎤

⎥
⎦

where c and s stand for cos and sin, respectively, while ϖ—pronounced varpi—
stands for

ϖ ≡ ω11−ω22

2ρ
thereby completing the intended calculations.

A.5 Shortcuts for Special Matrices

Besides symmetric matrices, other matrices lend themselves to fast techniques to
compute their analytic functions, particularly their exponentials and trigonometric
functions. For example, skew-symmetric matrices, to which the Mohr circle cannot
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be applied, are easy to handle because their diagonal entries are zero and their
off-diagonal entries have identical absolute values, but are of opposite signs. Other
matrices with several zeros lend themselves to similar shortcuts, as shown with the
examples below.

A.5.1 Example A.5.1

Given

A =

[
0 −1
1 0

]
(A.58)

find the exponential of At. We do this by straightforward series expansions, namely,
by computing the exponential as

eAt = 1+At+
1
2!

A2t2 + · · ·+ 1
k!

Aktk + · · · (A.59)

It is a simple matter to show that

A2 = −1

A3 = −A

A4 = 1
...

etc.

and hence,

eAt = 1+At− 1
2!

1t2− 1
3!

At3 +
1
4!

1t4 +
1
5!

At5− . . . (A.60)

=

(
1− 1

2!
t2 +

1
4!

t4− . . .

)
1+
(

t− 1
3!

t3 +
1
5!

t5− . . .

)
A (A.61)

The series inside the parentheses above are readily recognized to be cost and
sin t, and hence,

eAt = cost1+ sintA =

[
cost −sin t
sin t cost

]

which is a matrix representing a rotation in the plane through a ccw angle of t.
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A.5.2 Example A.5.2

Let

A =

[
0 1
0 0

]
(A.62)

Find the exponential of At. We do it by straightforward calculation of the series
expansion, as in the previous example. Here, we note that A2 = O, i.e., A2 vanishes,
and so do all higher powers of A, the exponential sought thus reducing to

eAt = 1+At =

[
1 t
0 1

]
(A.63)

A.5.3 Example A.5.3

For A given as

A =

[
1 1
0 1

]
(A.64)

find the exponential of At.
In this case it is a simple matter to verify that

Ak =

[
1 k
0 1

]

and hence, the diagonal entries of the series expansion of the exponential of At yield
simply et , while the (2,1) entry of the same expansion vanishes and the (1,2) entry,
e12 turns out to be

e12 = t +
2
2!

t2 +
3
3!

t3 + · · ·+ k
k!

tk + · · ·

which can be readily shown to yield

e12 = tet (A.65)

the exponential sought thus becoming

eAt =

[
et tet

0 et

]
=

[
1 t
0 1

]
et
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A.5.4 Example A.5.4

For

A =

[
1 0
0 0

]

find cosAt and sinAt.
This is very simple to do because the matrix is symmetric and is already in

diagonal form. Thus,

cosAt =

[
cost 0

0 cos(0)

]
=

[
cost 0

0 1

]

sinAt =

[
sin t 0

0 sin(0)

]
=

[
sin t 0

0 0

]
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Appendix B
The Laplace Transform

I did it my way.

Paul Anka, 1969.

B.1 Introduction

The Laplace transform is a linear transformation that maps functions in the domain
of the real variable t, denoting time, into functions in the domain of the complex
variable s, defined as

s = σ + jω (B.1)

in which both σ and ω are real variables attaining values from−∞ to +∞.
Properly speaking, we should distinguish between the one-sided Laplace trans-

form and the double-sided Laplace transform, represented as L−(s) and L (s),
respectively. However, we will use only the one-sided Laplace transform, and so,
we need not specify the type of transform that we are talking about; neither will we
need any subscript to represent the one-sided transform.

Formally, then, the Laplace transform—that is, the one-sided Laplace
transform—of a real function f (t) is denoted as F(s), and defined as

F(s)≡L [ f (t)]≡
∫ ∞

t=0−
f (t)e−stdt (B.2)

whence it is apparent that the physical units of the Laplace transform of a function
f (t) are those of this function times t. For example, if f (t) represents a force, then
its Laplace transform has units of impulse.

In the above definition, the exponent of e should be dimensionless; otherwise,
the series expansion of that exponential would be meaningless—it would be the
infinite sum of terms with different units!—and hence, the units of s are apparently
those of frequency, i.e., s−1, which is one reason why we denote the complex part
of s as ω . One more item that should be apparent from that definition, Eq. B.2, is

J. Angeles, Dynamic Response of Linear Mechanical Systems: Modeling, Analysis
and Simulation, Mechanical Engineering Series, DOI 10.1007/978-1-4419-1027-1 10,
© Springer Science+Business Media, LLC 2011

531
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that not every real function f (t) need have a Laplace transform. For that transform
to exist, the integral should be finite, i.e., the integral should exist.

Moreover, if we are given a function of s, say F(s), we can determine the real
function f (t) whose Laplace transform is F(s). To find f (t) for a given F(s), we
resort to the inverse Laplace transform, denoted L −1[F(s)], namely,

f (t) = L −1[F(s)] =
1

2π j

∫ s=σ0+ j∞

s=σ0− j∞
F(s)estds (B.3)

where σ0 is any real value of σ , that is chosen large enough so as to make the above
integral converge to a function f (t).

As we will show presently, however, the practical way of finding the inverse
Laplace transform is by means of tables of Laplace-transform pairs, the foregoing
expression for that transform being rather of theoretical interest. Table X of
Cannon’s book [1] includes a basic list of Laplace-transform pairs, i.e., a list of pairs
of the most frequently encountered functions of time and their respective Laplace
transforms. From this list it is possible to obtain the inverse Laplace transform of a
given function of s, without resorting to expression (B.3).

Example B.1.1 (Laplace Transform of the Decaying Exponential). For the function

f (t) = e−at

where a≡α + jβ is an arbitrary complex number, with α > 0, state the condition(s)
under which its Laplace transform (B.2) exists, and find this transform.

Solution: By a straightforward application of the definition, we find

F(s) = L [e−at ] =

∫ t=∞

t=0−
e−ate−stdt =

∫ t=∞

t=0−
e−[α+σ+ j(β+ω)]tdt

Upon integration,

F(s) =−
[

e−[α+σ+ j(β+ω)]t

α +σ + j(β +ω)

]∞

t=0−
=− limt→∞[e−(α+σ)te− j(β+ω)t ]− 1

α +σ + j(β +ω)

Below we calculate the above limit:

lim
t→∞

[e−(α+σ)te− j(β+ωt ] = [ lim
t→∞

e−(α+σ)t ][ lim
t→∞

e− j(β+ω)t ]

= [ lim
t→∞

e−(α+σ)t ] lim
t→∞

[cos(β +ω)t− j sin(β +ω)t]

Now, the second limit of the rightmost-hand side is a complex number whose real
and imaginary parts oscillate between −1 and +1, regardless of the value of t.
This limit, then, does not exist, but this does not bother us because the sine and
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cosine functions remain finite at any time. On the other hand, the first limit is either
unbounded when α +σ < 0 or zero when α +σ > 0. Therefore, the above limit
exists, and hence, the Laplace transform of the given function exists if and only if

σ >−α

What the above condition states is that any value of σ above −α will allow us to
recover the given function of time upon computing the inverse Laplace transform
as given in Eq. B.3. Now, under the assumption that the above existence condition
holds,

L [e−at ] =
1

s+ a
(B.4a)

Note that, since we are calculating the one-sided Laplace transform, the same result
would have been obtained if we had calculated the Laplace transform of e−atu(t),
with u(t) defined as the unit step function, i.e.,

L [e−atu(t)] =
1

s+ a
(B.4b)

The reader is invited to derive the above result. However, note that the double-sided
Laplace transform of the above two functions are different.

Now it is a simple matter to obtain the Laplace transform of the unit step function.
To this end, let us make a = 0 in Eq. B.4b, thereby obtaining

L [u(t)] =
1
s

(B.5)

Note that, while the unit step function is dimensionless, its Laplace transform has
units of time.

B.1.1 Properties of the Laplace Transform

We first recall that the integration operator, like the differentiation operator, is linear
homogeneous in that (a) the integral (derivative) of a sum of two functions is equal
to the sum of the integrals (derivatives) of these functions, and (b) the integral
(derivative) of a function scaled by a constant factor α , real or complex, is equal
to the integral (derivative) of that function scaled by the same factor α . Property
(a) is known as additivity; property (b) as linear-homogeneity. We thus have that if
Fi(s) represents the Laplace transform of fi(t), for i = 1,2, and α is a constant, then

L [ f1(t)+ f2(t)] = F1(s)+F2(s) additivity (B.6a)

L [α f (t)] = αF(s) linear homogeneity (B.6b)

The above two properties amount to superposition.
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We can now obtain the Laplace transform of sinωt from the Laplace transform
of the exponential by a straightforward application of the above properties. To this
end, we recall the exponential representation of the sine function:

sinωt ≡ 1
2 j

(e jωt − e− jωt) (B.7)

whence

L [sinωt] =
1
2 j

(L [e jωt ]−L [e− jωt)])

Now, the first Laplace transform of the right-hand side is derived by setting a=− jω
in Eq. B.4b; the second Laplace transform is obtained likewise, upon setting a = jω
in the same equation, which thus yields

L [sinωt] =
1
2 j

(
1

s− jω
− 1

s+ jω

)

and can be readily simplified to

L [sinωt] =
ω

s2 +ω2 (B.8)

Additional relations pertaining to the Laplace transform are displayed below,
with F(s) denoting the Laplace transform of f (t).

L

[
d f (t)

dt

]
= sF(s)− f (0−) (B.9)

L

[
d2 f (t)

dt2

]
= s2F(s)− s f (0−)− ḟ (0−) (B.10)

...

L

[
dk f (t)

dtk

]
= skF(s)− sk−1 f (0−)− sk−2 ḟ (0−)−·· ·

−
[

dk−1 f (t)
dtk−1

]

t=0−
(B.11)

L

[∫

t
f (θ )dθ

]
=

1
s

F(s)+
∫

t
f (θ )dθ

∣
∣∣
t=0−

(B.12)

L [ f (t−T )] = e−T sF(s) (B.13)

the last item of the above list being the Laplace transform of the delay.
A relation that turns out to be of the utmost importance is the Laplace transform

of the convolution of two functions f (t) and g(t), represented by f (t) ∗ g(t).
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For quick reference, we recall below the definition of the convolution, already
introduced in Chap. 2:

f (t)∗ g(t)≡
∫ ∞

0
f (τ)g(t− τ)dτ ≡

∫ ∞

0
f (τ − t)g(θ )dτ (B.14)

If we let F(s) and G(s) represent the Laplace transforms of f (t) and g(t),
respectively, then we have

L [ f (t)∗ g(t)] = F(s)G(s) (B.15)

The reader is invited to verify the above relations.
By application of Property (B.9), we can find the Laplace transform of the cosine

function. To this end, we recall that

cosωt =
1
ω

d(sinωt)
dt

whence

L [cosωt] =
1
ω
[sL [sinωt]− sinω(0−)] =

s
s2 +ω2 (B.16)

Likewise, the Laplace transform of the impulse and the ramp functions can be
readily derived as those of the derivative and the integral, respectively, of the unit
step function, which yields

L [δ (t)] = 1− u(0−) = 1 (B.17)

L [r(t)] =
1
s2 +

∫ 0−

0−
u(θ )dθ =

1
s2 (B.18)

In the foregoing relations, each pair of a function of time and its correspond-
ing Laplace transform is called a Laplace-transform pair. Additional Laplace-
transform pairs are available in many places, e.g., in Table X and Appendix J of
Cannon’s book—see [1]—and in computer algebra software (Macsyma, Maple, or
Mathematica).

B.2 Time Response via the Laplace Transform

The use of the Laplace transform to obtain the time response of a linear, time-
invariant dynamical system is best illustrated with the aid of examples, as we do
in the balance of this appendix.

Example B.2.1 (A Fluid-clutch System). The system of Example 1.6.11, consisting
of a motor driving a rotary load via a fluid clutch, as shown in Fig. 1.24 and
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Fig. B.1 Fluid clutch with attached rotor (repeated from Fig. 1.24)

reproduced below as Fig. B.1 for quick reference, is revisited here. The clutch is
to be tested by driving it with a velocity of the motor that varies harmonically with a
frequency ω and an amplitude A. Thus, the motor delivers an input angular velocity
to the clutch disk of the form Acosωt. Moreover, the clutch disk is assumed to be
turning at a constant 1500 rpm when it is engaged by the motor turning with an
angular velocity of amplitude 300 rpm at a frequency of 1 Hz. The time constant of
the system has been estimated to be 2 s.

Solution: The mathematical model of the system under study was derived in
Example 1.6.11, as reproduced below:

ṗ+
1
τ

p =
1
τ

Acosωt, p(0−) = p0, t ≥ 0

where p = θ̇ .
Upon Laplace-transforming both sides of the above equation, we obtain

sP(s)− p0 +
1
τ

P(s) =
A
τ

s
s2 +ω2

which can be rearranged as

(
s+

1
τ

)
P(s) = p0 +

A
τ

s
s2 +ω2

and hence, upon solving for P(s),

P(s) =
p0

s+ 1/τ
+

A
τ

1
s+ 1/τ

s
s2 +ω2



B.2 Time Response via the Laplace Transform 537

Now the response p(t) is derived by inversion of the above Laplace transform, which
is eased by the properties of this transform. Thus, from the superposition property,
Eqs. B.6a and b,

p(t) = p0L
−1
[

1
s+ 1/τ

]
+

A
τ

L −1
[

1
s+ 1/τ

s
s2 +ω2

]

But the first inverse Laplace transform is readily recognized to be the exponential of
−t/τ , i.e.,

L −1
[

1
s+ 1/τ

]
= e−t/τ

while the second inverse transform is that of the product of two Laplace transforms,
and hence, is a convolution, namely,

L −1
[

1
s+ 1/τ

s
s2 +ω2

]
= L −1

[
1

s+ 1/τ

]
∗L −1

[
s

s2 +ω2

]
= e−t/τ ∗ cosωt

That is

L −1
[

1
s+ 1/τ

s
s2 +ω2

]
=
∫ ∞

0
e−θ/τ cosω(t−θ )dθ

Now, the evaluation of the foregoing integral can be done in various forms. We can,
for example, recall the exponential representation of the cosine function:

cosωt =
1
2
(e jωt + e− jωt)

and substitute it into the above integral, thereby obtaining the integral of a complex
exponential form. This integral is readily derived upon recalling

∫ t

0
eaθ dθ =

eat − 1
a

where a can be any complex number and θ is a dummy variable of integration. After
some algebraic manipulations, the above convolution integral is obtained as

∫ ∞

0
e−θ/τ cosω(t−θ )dθ =

1
(1/τ)2 +ω2

(
−1

τ
e−t/τ +

1
τ

cosωt +ω sinωt

)

the time response sought thus becoming

p(t) = p0e−t/τ +
A
τ

1
(1/τ)2 +ω2

(
−1

τ
e−t/τ +

1
τ

cosωt +ω sinωt

)
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Upon substitution of the given numerical values, we have

p(t) =
1500(2π)

60
e−0.5t +

300(2π)
60× 22

1
(0.5)2 +(2π)2 [−0.5e−0,5t + 0.5cos(2πt)

+2π sin(2πt)]

or

p(t)= 157.08e−0.5t+0.39538[−0.5e−0.5t+0.5cos(6.2832t)+6.2832sin(6.2832t)]

which is the time response sought.

B.2.1 The Inverse Laplace Transform via Partial-Fraction
Expansion

While Example B.2.1 allowed for a straightforward derivation of the time response
of the fluid-clutch system therein, most applications involve a rather complicated
Laplace transform not readily identifiable in a table of Laplace-transform pairs. In
these cases, a partial-fraction expansion (PFE) of the corresponding expression,
along with application of the superposition properties of the Laplace transform ease
the determination of the inverse Laplace transform of interest. We recall below the
partial-fraction expansion of a rational function, i.e., a function consisting of the
quotient of two polynomials of different degrees, in general. From a quick look at a
table of Laplace-transform pairs, it will become apparent that, except for the Laplace
transform of the delay, Eq. B.13, all Laplace transforms take the form of rational
functions in the variable s. Moreover, the Laplace transforms of the derivatives of a
function aside, the rational functions occurring in our study are of the proper type,
i.e., rational functions of s, for which the degree of the numerator is at most equal to
the degree of the denominator. Furthermore, the very nature of dynamical systems
leading to differential equations in the time domain, which is a consequence of
their nonanticipative behavior, invariably leads to systems whose impulse response
has a Laplace transform that is a proper rational function of the variable s. As a
consequence, the transfer functions of dynamical systems, to be formally introduced
in the section below, are proper rational functions of s.

Thus, we will be confronted with the calculation of the inverse Laplace transform
of rational functions of s, of the form

R(s) =
P(s)
Q(s)

(B.19a)

where

deg[P(s)] = m≤ deg[Q(s)] = n (B.19b)
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Furthermore, we assume henceforth, without loss of generality, that (a) Q(s) is
monic, i.e., that the coefficient of its highest-degree term, sn, is unity, and (b) we
know the roots of Q(s), {qk}n

1, which allows us to express Q(s) in factored form as

Q(s) = (s− q1)(s− q2) · · · (s− qn) (B.20)

Note that, if the denominator of R(s) is not a monic polynomial, i.e., if its leading
coefficient is different from unity, then we can divide both P(s) and Q(s) by that
coefficient and render Q(s) in monic form.

The partial-fraction expansion of R(s) is now derived. To this end we consider
two distinct cases: either Q(s) has distinct roots or it has at least one repeated root.

• Case I: Q(s) has distinct roots. In this case, the partial-fraction expansion of R(s)
takes the form

R(s) =
R1

s− q1
+

R2

s− q2
+ · · ·+ Rn

s− qn
(B.21)

the problem now being to compute the coefficients {Rk}n
1. This is a simple task,

for all we do to compute, say Rk, is multiply both sides of Eq. B.21 by the
corresponding denominator, s− qk, thereby obtaining

(s− qk)R(s) = (s− qk)
R1

s− q1
+(s− qk)

R2

s− q2
+ · · ·+Rk + · · ·+(s− qk)

Rn

s− qn

(B.22)

It is now apparent that Rk can be readily obtained if we evaluate both sides of
Eq. B.22 at s = qk, which thus yields

Rk = (s− qk)R(s)
∣
∣
∣
s=qk

(B.23)

Once all Rk coefficients of the PFE (B.21) are available, the inverse transform
r(t) of R(s) is derived as

r(t) = R1eq1t +R2eq2t + · · ·+Rneqnt (B.24)

• Case II: Q(s) has a repeated root. For the sake of conciseness, we illustrate the
PFE in this case under the assumption that only one root of Q(s) is repeated, the
more general case of various repeated roots being an obvious extension of this
case. Moreover, we start by assuming that the repeated root of Q(s) appears only
twice, and that this root is q1, i.e., we assume that Q(s) has been factored as

Q(s) = (s− q1)
2(s− q3) · · · (s− qn) (B.25)

where q2 does not appear explicitly because q2 = q1.
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The PFE of R(s) now takes the form

R(s) =
R11

s− q1
+

R12

(s− q1)2 +
R3

s− q3
+ · · ·+ Rn

s− qn
(B.26)

To compute R12, we proceed as before, but now we multiply both sides of
Eq. B.26 by (s− q1)

2, which thus yields

(s− q1)
2R(s) = (s− q1)R11 +R12 +(s− q1)

2 R3

s− q3
+ · · ·+(s− q1)

2 Rn

s− qn

(B.27)

Apparently, R12 can be found from the foregoing equation upon setting s = q1 in
its two sides, thereby obtaining

R12 = (s− q1)
2R(s)

∣∣
∣
s=q1

(B.28)

Now, in order to find R11, all we do is differentiate both sides of Eq. B.27 with
respect to s, which yields

d
ds

[
(s− q1)

2R(s)
]
= R11 + 2(s− q1)

R2

s− q2
+(s− q1)

2 d
ds

(
R2

s− q2

)
+ · · ·

+2(s− q1)
Rn

s− qn
+(s− q1)

2 d
ds

(
Rn

s− qn

)

= R11 + 2(s− q1)

(
R2

s− q2
+ · · ·+ Rn

s− qn
+

)

+(s− q1)
2 d

ds

(
R2

s− q2
+ · · ·+ Rn

s− qn

)

It is now apparent that

R11 =
d
ds

[
(s− q1)

2R(s)
]∣∣
∣
s=q1

(B.29)

the remaining coefficients, {Rk}n
2, being computed exactly as in Case I. Likewise,

the inverse transform r(t) of R(s) is now readily derived as

r(t) = R11eq1t +R12L
−1
[

1
(s− q1)2

]
+R3eq3t + · · ·+Rneqnt

the remaining question now being what the inverse transform of the second term
of the right-hand side of the above expression is. To answer this question, let us
express the above term as the product of two identical factors, and recall that
the Laplace transform of a product of two functions of s, each being in turn the
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Laplace transform of a given function of time, is the Laplace transform of the
convolution of the two functions of time, and hence,

L −1
[

1
(s− q1)2

]
= L −1

[
1

s− q1

]
∗L −1

[
1

s− q1

]

But

L −1
[

1
s− q1

]
= eq1t

and so,

L −1
[

1
(s− q1)2

]
= eq1t ∗ eq1t

or

L −1
[

1
(s− q1)2

]
=
∫ t

0−
eq1(t−τ)eq1τ dτ =

∫ t

0−
eq1(t−τ+τ)dτ

which, upon integration, leads to

L −1
[

1
(s− q1)2

]
= teq1t (B.30)

The reader is invited to prove that the inverse Laplace transform of a rational
expression similar to the one at hand, but with a multiple root qk of multiplicity
mk is given by

L −1
[

1
(s− qk)mk

]
=

1
mk− 1

tmk−1eqkt (B.31)

It is now apparent that the inverse transform of the function R(s) of Eq. B.26 is
given by

r(t) = R11eq1t +R12teq1t +R3eq3t + · · ·+Rneqnt (B.32)

Should a given root q1 of Q(s) appear more than twice, say, m1 times, then the
PFE of Q(s) would be

R(s) =
R11

s− q1
+

R12

(s− q1)2 + · · ·+
R1m1

(s− q1)m1
+

Rm1+1

s− qm1+1
+ · · ·+ Rn

s− qn
(B.33)

Coefficient R1m1 is now computed as

R1m1 = (s− q1)
m1R(s)

∣
∣
∣
s=q1

(B.34)

the remaining coefficients being found upon successively differentiating the
product (s− q1)

m1 R(s) with respect to s and evaluating this derivative at s = q1.
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The coefficients associated with nonrepeated roots, i.e., all Rk coefficients with
a single subscript in Eq. B.33, are computed, again, exactly as indicated in
Case I. Therefore, the inverse transform r(t) of the expression R(s) of Eq. B.33
is given by

r(t) = R11eq1t +R12teq1t + · · ·+R1m1

1
m1− 1

tm1−1eq1t +Rm1+1eqm1+1t

+ · · ·+Rneqnt (B.35)

Example B.2.2 (The Fluid-clutch System Revisited). Find the time response of the
fluid-clutch system of Example B.2.1 by application of PFE to the Laplace transform
found in that example.

Solution: For quick reference, we reproduce below the Laplace transform derived
in Example B.2.1:

P(s) =
p0

s+ 1/τ
+

A
τ

1
s+ 1/τ

s
s2 +ω2

Apparently, PFE is needed only to compute the inverse Laplace transform of the
second term of the right-hand side of the above equation. Let that term be denoted
by R(s), i.e.,

R(s) =
s

(s+ 1/τ)(s2 +ω2)

which can be rewritten in factored form as

R(s) =
s

(s+ 1/τ)(s+ jω)(s− jω)

and hence, the desired PFE takes the form

R(s) =
R1

s+ 1/τ
+

R2

s+ jω
+

R3

s− jω

its coefficients being determined below:

R1 = (s+ 1/τ)R(s)
∣
∣
∣
s=−1/τ

=
−1/τ

(1/τ)2 +ω2

R2 = (s+ jω)R(s)
∣
∣
∣
s=− jω

=
− jω

(1/τ− jω)(− j2ω)
=

1
2(1/τ− jω)

≡ 1/τ + jω
2[(1/τ)2 +ω2]

R3 = (s− jω)R(s)
∣
∣
∣
s= jω

=
jω

(1/τ + jω) j2ω
=

1
2(1/τ + jω)

≡ 1/τ− jω
2[(1/τ)2 +ω2]

Note that R2 and R3 are complex coefficients, but they are conjugate, i.e.,

R3 = R2
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We thus have

R(s) =
−1/τ

[(1/τ)2 +ω2](s+ 1/τ)
+

R2

s+ jω
+

R2

s− jω

=
−1/τ

[(1/τ)2 +ω2](s+ 1/τ)
+

R2(s− jω)

s2 +ω2 +
R2(s+ jω)

s2 +ω2

=
−1/τ

[(1/τ)2 +ω2](s+ 1/τ)
+

2Re{R2(s− jω)}
s2 +ω2

=
−1/τ

[(1/τ)2 +ω2](s+ 1/τ)
+

1
s2 +ω2 Re

{
s/τ +ω2 + jω(s− 1/τ)

(1/τ)2 +ω2

}

which reduces to

R(s) =
−1/τ

[(1/τ)2 +ω2](s+ 1/τ)
+

ω2 + s/τ
[(1/τ)2 +ω2](s2 +ω2)

and so,

P(s) =
p0

s+ 1/τ
− A/τ2

[(1/τ)2 +ω2](s+ 1/τ)
+

(A/τ)(ω2 + s/τ)
[(1/τ)2 +ω2](s2 +ω2)

or

P(s) =

(
p0− A/τ2

(1/τ)2 +ω2

)
1

s+ 1/τ
+

A
τ

ω2 + s/τ
[(1/τ)2 +ω2](s2 +ω2)

Hence,

p(t) =

(
p0− A/τ2

(1/τ)2 +ω2

)
L −1

[
1

s+ 1/τ

]
+

A
τ

L −1
[

ω2 + s/τ
[(1/τ)2 +ω2](s2 +ω2)

]

=

(
p0− A/τ2

(1/τ)2 +ω2

)
L −1

[
1

s+ 1/τ

]
+

Aω
τ[(1/τ)2+ω2]

L −1
[

ω
s2+ω2

]

+
A

τ2[(1/τ)2+ω2]
L −1

[
s

s2 +ω2

]

Now it is a simple matter to find the individual inverse Laplace transforms:

p(t)=

(
p0− A/τ2

(1/τ)2+ω2

)
e−t/τ+

Aω
τ[(1/τ)2+ω2]

sinωt+
A

τ2[(1/τ)2+ω2]
cosωt

which coincides with the expression found previously for the same time response.
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Example B.2.3 (Second-order Underdamped Systems). Find the inverse Laplace
transform of

R(s) =
1

s2 + 2ζωns+ω2
n

(B.36)

for the case in which ζ < 1.

Solution: We first find the roots q1 and q2 of the denominator:

q1,2 =−ζωn±
√

ζ 2ω2
n −ω2

n =−ζωn± jωn

√
1− ζ 2

or

q1 = (−ζ + j
√

1− ζ 2)ωn, q2 = (−ζ − j
√

1− ζ 2)ωn

Thus,

R(s) =
1

[s+(ζ − j
√

1− ζ 2)ωn][s+(ζ + j
√

1− ζ 2)ωn]

Hence, the PFE of R(s) is

R(s) =
R1

s+(ζ − j
√

1− ζ 2)ωn
+

R2

s+(ζ + j
√

1− ζ 2)ωn

Therefore,

R1 = [s+(ζ − j
√

1− ζ 2)ωn]R(s)
∣
∣∣
s=(−ζ+ j

√
1−ζ 2)ωn

=
1

s+(ζ + j
√

1− ζ 2)ωn

∣
∣
∣
s=(−ζ+ j

√
1−ζ 2)ωn

=
1/ωn

j2
√

1− ζ 2
=− j

2
√

1− ζ 2ωn

R2 = [s+(ζ + j
√

1− ζ 2)ωn]R(s)
∣∣
∣
s=(−ζ− j

√
1−ζ 2)ωn

=
1

s+(ζ − j
√

1− ζ 2)ωn

∣
∣
∣
s=−(ζ− j

√
1−ζ 2)ωn

=
1/ωn

− j2
√

1− ζ 2
=

j

2
√

1− ζ 2ωn

We thus have

1
s2 + 2ζωns+ω2

n
=− j/(2

√
1− ζ 2ωn)

s+(ζ − j
√

1− ζ 2)ωn
+

j/(2
√

1− ζ 2ωn)

s+(ζ + j
√

1+ ζ 2)ωn
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Now it is a simple matter to derive the inverse Laplace transform of the given
function of s:

L

[
1

s2 + 2ζωns+ω2
n

]
= − j

2
√

1− ζ 2ωn
e−(ζ− j

√
1−ζ 2)ωnt

+
j

2
√

1− ζ 2ωn
e−(ζ+ j

√
1−ζ 2)ωnt

=
je−ζωnt

2
√

1− ζ 2ωn
(e− j
√

1−ζ 2ωnt − e j
√

1−ζ 2ωnt)

=
je−ζωnt

2
√

1− ζ 2ωn
(− j2sin

√
1− ζ 2ωnt)

=
e−ζωnt

√
1− ζ 2ωn

sin
√

1− ζ 2ωnt

which is the desired inverse.
The foregoing examples illustrate one important fact in connection with the PFE

of a real rational function containing a quadratic factor in its denominator: although
the coefficients of the individual terms of its PFE are complex when the roots of
the quadratic factor are complex, these coefficients are complex-conjugate. As a
consequence, the sum of the corresponding terms of the PFE becomes real, as it
should. This means that quadratic factors of Q(s) deserve a special treatment that
saves us the time to compute complex coefficients, as explained below.

B.2.1.1 The Case of Quadratic Factors

We consider the general case of a quadratic factor in the denominator of R(s):

R(s) =
P(s)

(s2 + 2ζωns+ω2
n )(s− q3) · · · (s− qn)

(B.37)

where we have, on purpose, written the quadratic denominator exactly as the
characteristic equation of the second-order system, as derived in Example A.3.4,
because this factor will appear in systems containing such a system as a subsystem.
From our experience with Example B.2.2, it is apparent that a quadratic factor will
admit a PFE with a term that has a numerator linear in s and that quadratic factor in
the denominator, whence the PFE of the above expression takes the form

R(s) =
R1 +R2s

s2 + 2ζωns+ω2
n
+

R3

s− q3
+ · · ·+ Rn

s− qn
(B.38)
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Now, in order to compute the coefficients of the term with the quadratic
denominator, we first multiply both sides of Eq. B.38 by the denominator of the
first term of that equation, thus obtaining

(s2 + 2ζωns+ω2
n)R(s) = R1 +R2s+(s2 + 2ζωns+ω2

n )
R3

s− q3
+ · · ·

+(s2 + 2ζωns+ω2
n )

Rn

s− qn

Further, let q1 and q2 be the two roots of the quadratic term, which can be real or
complex, but, if real, they are assumed to be distinct, the case of a repeated root
having been previously discussed. We thus evaluate the above expression for the
two roots of that term, which yields

R1 +R2q1 = (s2 + 2ζωns+ω2
n)R(s)

∣∣
∣
s=q1

(B.39a)

R1 +R2q2 = (s2 + 2ζωns+ω2
n)R(s)

∣
∣
∣
s=q2

(B.39b)

thereby obtaining two equations in two unknowns, R1 and R2, of the form

[
1 q1

1 q2

][
R1

R2

]
=

[
A
B

]
(B.40a)

with A and B denoting the right-hand sides of Eqs. B.39a and b, which are thus
known. The determinant Δ of the matrix coefficient of the above system is readily
computed as

Δ = q2− q1 (B.40b)

which, by virtue of the assumption that the two roots are distinct, is different
from zero, and hence the matrix is nonsingular; the system thus admits a unique
solution for the two unknowns. We thus have, upon solving the foregoing system
for R1 and R2,

[
R1

R2

]
=

1
q2− q1

[
q2 −q1

−1 1

][
A
B

]
(B.41a)

or

R1 =
Aq2−Bq1

q2− q1
(B.41b)

R2 =
−A+B
q2− q1

(B.41c)

Example B.2.4. Derive the PFE of the function R(s) of Example B.2.2 using the
quadratic-factor approach.
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Solution: With this approach, we write R(s) in the form

R(s) =
R1

s+ 1/τ
+

R2 +R3s
s2 +ω2

in which R1 was already found using the standard procedure for nonrepeated roots,
namely,

R1 =
−1/τ

(1/τ)2 +ω2

the two remaining coefficients being calculated as outlined above. To this end, we
first realize that the two roots of the square factor s2+ω2 are q1 = jω and q2 =− jω ,
and set up the corresponding equations:

R2 +R3q1 = (s2 +ω2)R(s)
∣
∣
∣
s=q1

R2 +R3q2 = (s2 +ω2)R(s)
∣
∣∣
s=q2

where

(s2 +ω2)R(s)
∣∣
∣
s=q1

=
s

s2 +ω2

∣∣
∣
s= jω

=
ω2 + jω/τ
(1/τ)2 +ω2

(s2 +ω2)R(s)
∣
∣∣
s=q2

=
s

s2 +ω2

∣
∣∣
s=− jω

=
ω2− jω/τ
(1/τ)2 +ω2

and hence, the system of equations in the unknown coefficients is

[
1 jω
1 − jω

][
R2

R3

]
=

1
(1/τ)2 +ω2

[
ω2 + jω/τ
ω2− jω/τ

]

The determinant Δ of the matrix coefficient is readily found as

Δ =− j2ω

and hence,

[
R2

R3

]
=

1
− j2ω

1
(1/τ)2 +ω2

[− jω − jω
−1 1

][
ω2 + jω/τ
ω2− jω/τ

]

which, after some simplifications, leads to

[
R2

R3

]
=

1
(1/τ)2 +ω2

[
ω2

1/τ

]
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or

R2 =
ω2

(1/τ)2 +ω2 , R3 =
1/τ

(1/τ)2 +ω2

the PFE sought thus being

R(s) =− 1/τ
(1/τ)2 +ω2 +

ω2 + s/τ
(1/τ)2 +ω2

1
s2 +ω2

which is identical to the one found in Example B.2.2.

B.2.2 The Final- and the Initial-Value Theorems

These theorems, like several other results recalled in the book, are given without
a proof. The interested reader can find these proofs, e.g., in Cannon’s book, cited
in [1]. An interesting application of the Laplace transform lies in its ability to tell
values of the time response of a system at t = 0 and at t → ∞. This is done by
application of two basic theorems in connection with the Laplace transform, namely,
the Final-value Theorem (FVT) and the Initial-value Theorem (IVT), as recalled
below.

Under the assumption that all the roots of the denominator Q(s) of the Laplace
transform X(s) of a time response x(t) lie either in the left-hand side of the complex
plane or at the origin, the FVT states that the value of x(t) after a long time has
elapsed, can be found without resorting to the inverse Laplace transform, but rather
using the Laplace transform itself, namely, as

lim
t→∞

x(t) = lim
s→0

[sX(s)] (B.42)

Likewise, the IVT states that the initial value of the response, x(0+), can be
determined directly from the Laplace transform X(s), without resorting to the
inverse Laplace transform, namely,

x(0+) = lim
t→0+

x(t) = lim
s→∞

[sX(s)] (B.43)

Example B.2.5 (The Fluid-clutch System. . . Again!). We recall the Laplace trans-
form P(s) of p(t) as found in Example B.2.1, namely,

P(s) =
p0

s+ 1/τ
+

A
τ

1
s+ 1/τ

s
s2 +ω2
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Now,

(a) Find the angular velocity p(t) of the rotor both just after the clutch was engaged,
and when a long time has elapsed; and

(b) Find the angular acceleration ṗ(t) just after the clutch was engaged.

Solution:

(a) To find p(0+), we apply the IVT:

p(0+) = lim
t→0+

p(t) = lim
s→∞

[sP(s)]

i.e.,

p(0+) = lim
s→∞

(
p0s

s+ 1/τ
+

A
τ

1
s+ 1/τ

s2

s2 +ω2

)

or

p(0+) = lim
s→∞

[
p0

1+ 1/(sτ)
+

A
τ

1/s
1+ 1/(sτ)

1
1+(ω/s)2

]

which readily leads to

p(0+) = p0

thereby finding that the angular velocity of the rotor is continuous at time t = 0,
for p(0+) = p(0−). Now, in order to find limt→∞ p(t), we need the FVT.
Before applying it, we must verify that the roots of the denominator of the
Laplace transform P(s) comply with the hypothesis of the FVT—displayed as
emphasized text in the second paragraph of this subsection. To this end, we need
P(s) expressed as a rational function with a denominator Q(s). It is apparent that
the denominator, in this case, is

Q(s) = (s+ 1/τ)(s2 +ω2)

whose roots are q1 =−1/τ , q2 = jω , and q3 = − jω . While q1 lies in the left-
hand side of the complex plane, neither q2 nor q3 does, and hence, the theorem
is not applicable. The reason here is that limt→∞ p(t) does not exist. Indeed, if
we look at the time response p(t) derived in Example B.2.1, it is apparent that,
after a long-enough time has elapsed, the exponential terms have decayed and
can be neglected, the said response thus becoming

p(t) = 0.39538[0.5cos(31.416t)+ 6.2832sin(31.416t)], for large t
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which, with the aid of relations (2.104b), can be expressed as

p(t) = 2.4921cos(6.2832t− 1.4914), for large t

and hence, for large t, p(t) does not attain a definite value, for it oscillates
harmonically between −2.4921 and +2.4921.

(b) Now, to calculate ṗ(0+), we apply again the IVT:

ṗ(0+) = lim
s→∞
{sL −1[ṗ(t)]}= lim

s→∞
[s2P(s)− sp(0+)]

= lim
s→∞

[
p0s

1+ 1/(sτ)
+

A
τ

1
1+ 1/(sτ)

1
1+(ω/s)2 − sp0

]

=

(
− p0/τ

1+ 1/(sτ)
+

A
τ

)
=

A− p0

τ

The reader is asked to compare this result with that obtained by substitution of
t = 0+ in the mathematical model of this system, as given in Example B.2.1.

Reference
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Symbols
2×2 identity matrix, 22
cosΩt , 525
ln(A), 512
K, 295
π , 193
sinΩt , 525
eA, 506
ith modal vector, 311
n-dof mechanical systems, 268
n-dof system, 145, 419
n-dof undamped system, 419
q, 28
q̇, 290
q, 267, 290
q̇, 290
q̇, 289
Ω2, 316
Ω2, 322
q̇, 267
p, 289, 290
q, 289
sgn, 54, 110
‘small’ perturbations of the equilibrium states,

283

A
A/D, see analog to digital
absolute acceleration, 11
abstraction, 7
accelerometer design, 172
active force, 29
additivity, 86, 128
algorithm

DnDOF, 434
UDnDOF, 426

Algorithm Damped-1dof, 247
aliasing, 428
analog system, 234
analog-to-digital (A/D) converter, 234
analysis, 6
analytic function f (λ ) of λ , 499
analytic function F(A) of A, 497
analytic matrix function

method to compute, 500
angular deflection, 458
angular velocity, 9, 10
area moment of inertia, 459
asymptotic stability, 68
asymptotically stable, 284
asymptotically stable system, 68
asymptotically unstable system, 66
autonomous system, 31, 284

B
bandwidth, 171
bars

under axial vibration, 456
under torsional vibration, 456

BC, see boundary condition
beams

under flexural vibration, 456
beat phenomenon, 344
Belleville spring, 14
belt-pulley transmission, 328, 350
black-box, 127
black-box representation, 87
Bode plots, 147

of first- and second-order systems, 161
bogie-half-car, 8
boundary condition, 4, 491
boundary-value problem, 466
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bump, 302
function, 243

BVP, see boundary-value problem

C
c.o.m, see center of mass
cable, 12
Cannon’s book, see Cannon, R.H.
Cannon, R.H., 304
cantilever beam, 13
Carl Sagan, 193
causal, 236
causality, 236
Cayley-Hamilton Theorem, 98, 241, 497
center of mass, 28
characteristic equation, 468
characteristic equation of A, 498
characteristic polynomial

of the dynamic matrix, 313
of A, 498

characteristic solutions, 468
characteristic values, 468
Cholesky factoring, 308
classical modal method, 347

applied to the total response, 364
commutativity, 129
compressible and incompressible fluid, 4
computation of the Fourier coefficients, 189
computer algebra, 156, 160
conditions

boundary, 458
initial, 458

configuration
-dependent damping coefficient, 32
of a system, 25

conservative forces, 31
constant-coefficient mechanical systems, 6
constitutive equation, 7, 464
constitutive equations

of mechanical elements, 11
contact, 193
continua, 4, 455
continuous

-time system, 234, 421
train of impulses, 128

continuous model, 455
continuous systems, 455, 456
continuous-time convolution, 237
continuum, 455
continuum mechanics, 4
controlled

forces or torques, 26
motion, 28

rates, 266
variables, 266

convolution, 127, 129, 442
Duhamel integral, 115, 355
for critically damped systems, 130
for overdamped systems, 130
of underdamped systems, 130

Coriolis and centrifugal forces, 35
cosine law, 37
Coulomb

damping, 54
dry-friction damping, 30
friction, 6
friction cum geometric nonlinearity, 56

critically damped system, 91, 509
cross product, 22
CT system, see continuous-time system
cycloidal slope, 215

D
damped n-dof system

discrete-time response, 431
eigenvalue problem, 435
simulation via an extension of single-dof

systems, 432
simulation via the Laplace transform, 435

damped natural frequency, 99
damped suspension

discrete time-response, 435
damped systems, 97, 245, 307
damped two-dof systems, 366
damping

constant, 18
matrix, 285

damping ratio, 69
dashpots, 5
db, see decibel
dec, see decade
decade, 164
decibel, 164
definite system, 358
degree of freedom, 7, 25, 263
delayed

impulse response, 128
input, 128

delta function, see Dirac function
derivative of the impulse response, 137
design of foundations, 167
design of pneumatic hammers, 167
deterministic, 26
difference equation, 238
differential-algebraic systems, 5
digital system, 234
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Dirac function, 112
discrete Fourier transform, 192
discrete time, 234, 432
discrete-time

linear dynamical system, 234
system, 236, 248, 421

discrete-time response, 237
of n-dof undamped systems, 421, 423
of a damped suspension, 250
of first-order systems, 237
of undamped n-dof systems, 422
of undamped second-order systems, 241

discretization methods, 5
dissipation function, 29, 30
dissipative force, 29, 30
distributed normal stress, 463
distributed shear stress, 463
distributed-parameter models, 4, 5
distributed-parameter systems, 5
distributivity, 129
dof

see degree of freedom, 145
dot product, see scalar product
doublet function, 112
doublet response, 137

of second-order damped systems, 136
of second-order systems, 134
of second-order undamped systems, 132

drill for deep-boring, 303
driving force, 29
Duhammel integral, 129
dynamic equilibrium, 460
dynamic matrix, 312
dynamical system, 4

E
eigenfrequencies, 525
eigenfunctions, 468

properties, 484
eigenmatrix, 322
eigenvalue problem, 312, 313
eigenvalues, 468
eigenvalues of Ω, 525
eigenvalues of A, 498
elastic potential energy, 29
elastica, 463
energy functions, 26
engineering approximation, 8
epicyclic gear train, 33
equilibrium configuration, 292
equilibrium analysis

of the eccentric plate, 62
of the overhead crane, 60

equilibrium configuration, 67
equilibrium configurations

of the gantry robot, 279
of the two-link robot, 278

equilibrium states, 278
of mechanical systems, 59
of the actuator mechanism, 61

equivalent dashpot coefficient, 20
equivalent stiffness of parallel array, 20
Euclidean norm, 242
Euler’s Law, 459
Euler-Bernoulli beam, 462
even function, 182
excitations, 3
existence and unicity of the solution, 358
exponential of At , 98, 528

F
fast Fourier transform, 193
FBD, see free-body diagram
FFT, see fast Fourier transform
FFT analysis, 193
final-value theorem, 548
first law of thermodynamics, 194
first-order

LTI dynamical systems, 203
ODEs, 6
systems, 116, 235

flexural rigidity, 464
floating-point arithmetic, 241
floor function, 193
flow-induced drag, 30
fluid-clutch system, 542
force

-controlled source, 29
-driven overhead crane, 42
-driven system, 42
sources, 29

forced response, 86
Fourier algorithm, 195
Fourier analysis, 182, 183

of a monotonic function, 187
of a square wave, 186
of a train of impulses, 184
of the pyr(x) function, 187

Fourier coefficients, 192
Fourier expansion, 183
Fourier series, 145
Fourier transform, 145
free response, 86
free-body diagram, 18
frequency matrix, 310, 500
frequency radius, 315, 525
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frequency ratio, 153
frequency response, 145, 147
functional, 236
FVT, see final-value theorem

G
gear transmission, 304
generalized, see generalized velocity

active force, 30
coordinate, 6, 25, 264
Coriolis and centrifugal forces, 267
damping matrix, 263
dissipative force, 265
driving force, 265
forces, 30, 289
mass, 28
mass matrix, 263
momentum, 266
velocity, 30

generalized coordinate, 28
Geneva mechanism, 131
Geneva wheel, 134, 303

discrete-time response, 254
geometric BCs, 481
governing equation, 38, 271, 464
gyroscopic effects, 290
gyroscopic forces, 284

H
harmonic

excitation, 146
functions of a positive-definite matrix, 525
motions of single-dof systems, 313
oscillator, 92

harmonic response, 145
applications, 164
of first-order systems, 149
of second-order systems, 155
of undamped systems, 152, 154, 155

Heaviside function, 113
Hessian matrices, 289
high-pass filter, 174
Hooke’s Law, 457
hydraulic clutch, 51
hysteretic damping, 30, 53

I
iconic model, 8
idealization, 7
identification of damping from the time

response, 100

improper orthogonal matrix, 241
impulse, 128
impulse response, 115, 120, 127

of n-dof damped systems, 441
of first- and second-order LTI systems, 115

IMSL, 372
independent generalized coordinates, 25
independent generalized speeds, 25
indexing mechanism of a production machine,

302
inertia matrix, 9
inertial measurement units (IMU), 6
initial-value problem, 466
initial-value theorem, 548
input, 3
instability, 158
invariant quantity, 503
inverse Laplace transform

via partial-fraction expansion, 538
inviscid and viscous fluid, 4
IVT, see initial-value theorem

J
Joseph Fourier (1768–1830), 145
journal bearings, 24

K
König’s Theorem, 27
König’s theorem, 44
kinematic analysis, 28
kinetic energy, 26, 265

of the system, 266

L
L’Hospital’s rule, 158, 178, 515
Lagrange equations, 25, 266

of linear mechanical systems, 288
vector form, 263

Lagrangian, 26, 267
Laplace transform, 531

additivity, 533
basic properties, 534
denominator with repeated roots, 539
double-sided, 531
inverse, 532, 538
linear homogeneity, 533
numerator with distinct roots, 539
of cosωt , 535
of sinωt , 534
of second-order underdamped systems, 544
of the convolution, 534
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of the decaying exponential, 532
of the delay, 534
of the unit step function, 533
one-sided, 531
pairs, 532
properties, 533
quadratic factors, 545
superposition, 533
the impulse function, 535
the ramp function, 535

LHS, 119
linear dashpots, 30
linear homogeneity, 129
linear mechanical systems, 5
linear springs, 29, 30
linear time-invariant system, 85
linear transformation, 531
linear, soft, and hard springs, 15
linearity, 115, 127
linearity and time-invariance, 176, 179
linearization

about equilibrium states, 66
of the governing equations, 283

linearized
equation of a one-dof system, 68
model of a two-link robot, 285

linearized model
of a gantry robot, 286

linearly elastic, 456
linearly homogeneous, 86
linearly viscous damping, 30
load, 29
locomotive wheel array, 35
logarithmic decrement, 101
low-pass filters, 164
LTIS, see linear time-invariant system
lumped-parameter models, 5

M
Macsyma, 372
magnification factor, 162

of the transmitted force, 166
of the transmitted motion, 169

magnitude, 146
Maple, 372
marginal stability, 68
marginally stable, 284

equilibrium state, 66
mass density, 459
mass matrix, 266, 285
mass subjected to a time-varying force, 253
mass-spring-dashpot system in a gravity field,

74

mass-transit system
undamped discrete-time response, 429

Mathematica, 372
mathematical model, 35, 233
mathematical modeling, 8
Matlab, 193, 372
matrix

exponential, 497
function F(A), 500
functions, 497
notation, 21
with a repeated eigenvalue, 515

mean frequency, 315, 525
mechanical modeling, 7
mechanical system, 4
mechanical system configuration, 264
mechanical transmissions, 4
memory, 4
memoryless systems, 4
modal analysis, 318

of a damped test pad, 372
of a two-dof gantry robot, 318

modal coordinates, 364
modal equation, 314
modal matrix, 322
modal vectors, 311, 313, 316, 430
mode, 314
mode-orthogonality, 489
model, 233
model for the vertical vibration of mass-transit

cars, 295
modeling, 6
modeling process, 7
Mohr circle, 307, 313, 497, 516, 518

of cosΩt , 525
of sinΩt , 525
of Ω, 525

momentum-preserving system, 355
revisited, 365

motion, 25
motion sources, 29
motion-controlled source, 29
motion-driven system, 42
motor-cam transmission, 58
multibody systems, 7, 307

N
n-tuplet function, 113
natural BCs, 482
natural frequencies, 310, 525
natural frequencies of two-dof undamped

systems, 308
natural frequency, 69
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natural modes of two-dof undamped systems,
308

negative-definite matrix, 284
negative-semidefinite matrix, 284
neutral axis, 463
Newton equation, 464
Newton-Euler equations, 8, 10
nominal behavior, 6
non-zero initial conditions, 141
non-zero input, 141
nonlinear spring, 15
normal form

of the governing equations, 310
of the mathematical model, 420

normal stress, 462
numerical quadrature, 189

O
oct, see octave
octave, 164
odd function, 182
ODE, see ordinary differential equations
ordinary differential equations, 5, 6
orthogonal matrix, 22
orthogonality and normality, 484
orthogonality condition, 491
orthogonality of the eigenvectors, 314
oscillating follower, 229
output, 3, 87
overdamped system, 91, 510
overhead crane, 39

P
Parseval’s identity, see Parseval’s Theorem
Parseval’s Theorem, 193
partial derivatives

fourth-order, 465
second-order, 465

partial differential equation, 4, 458
partial-fraction expansion, 538

of a rational function, 538
particular solution of the second-order damped

system, 155
PDE, see partial differential equations
PDE of the fourth order, 465
perfectly elastic shock, 338
periodic

function, 182
input, 202
response, 181
response of an air compressor, 205

response of first- and second-order LTIS,
202

persistent time-varying input, 145
PFE, see partial-fraction expansion
phase, 146
planar motion, 21, 265
pneumatic hammer, 164
Poisson ratio, 15
positive-definite

matrix, 284
square root of M, 309

positive-definite matrix
harmonic functions, 525

positive-semidefinite
frequency matrix, 354
matrix, 284

potential, 31
energy: elastic and gravitational, 28

potentiometers, 4
power

developed by a moment, 29
dissipated by a damped second-order

system, 161
supplied to a system, 26, 29

Principle of Conservation of Energy, 194
proper orthogonal matrix, 241
proper rational function, 538
proportional damping, 368
pulse, 140
pulse-like input, 174
purely flexible mode, 329

Q
quadratic expressions, 266
quadratic form, 288
quadruplet function, 113
quick-return cam mechanism, 229

R
ramp response, 139

of first-order systems, 132
of an overdamped second-order system,

139
of second-order undamped systems, 135

reflection, 241
resonance, 155
response, 3

to abrupt and impulsive inputs, 130
of a damped, second-order system to a unit

doublet, 137
of a second-order underdamped system to a

ramp, 139
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of a second-order, critically damped system
to a ramp, 139

of first-order systems, 129
of second-order damped systems, 130
of second-order undamped systems, 130
to constant and linear inputs, 159
to the unilateral cosine function, 152
to the unilateral sine function, 156

Riemann integral, 129
rigid and deformable solid, 4
rigid mode, 263, 295, 323, 473
rigid ring suspended from a pin, 23
rms, see root-mean-square
rod, 12
root-mean-square, 194
rotation, 241, 420
rotational damping coefficient, 18
rotational dashpot, 18
roundoff errors, 241

S
sampled signal, 234
sampling interval, 234, 243
saturation function, 55
scalar moment of inertia, 10
scalar product, 23
Scotch yoke, 223
second-order

damped systems, 120
ODEs, 6
systems, 152, 239
undamped systems, 119, 204

second-order damped systems
discrete-time response, 249

seismograph design, 173
semidefinite stiffness matrix, 295
semidefinite systems, 354
semigraphical approach, 372
separation of variables, 465
series

equivalent of two springs, 19
expansion of cosωnt , 92
expansion of sinωnt , 92

series and parallel array, 20
of linear dashpots, 20
of linear springs, 18

seven steps, 34, 35, 268
seven-step procedure, 35
shaft, 13
Shannon’s Theorem, 428
shear deformation, 458
shear force, 463
shear modulus, 459

shortcuts for special matrices, 527
sign-indefinite matrix, 284
signed angles, 25
signed distances, 25
simulation, 233

of n-dof systems, 419
of single-dof systems, 233
time-step choice, 428

simulation scheme
for undamped second-order systems, 240

single-degree-of-freedom system, 6, 25, 307
skew-symmetric matrix, 22, 527
small-perturbation analysis, 6
small-slope assumption, 460, 463
spectral analysis, 145, 183

of the displacement of an air compressor,
195

spring stiffness, 12
springs, 5, 11
square matrix

analytic function, 497
square root of M, 309
square-root factoring, 308
stability, 66
stability analysis

of the actuator mechanism, 70
of the eccentric plates, 72
of the overhead crane, 69

stable system, 66
staircase approximation, 235, 246
state, 4, 25

-variable form, 375, 431
-variable vector, 26, 264
variable, 25, 264

static equilibrium, 460
steady-state

part, 146
response, 203
response of an undamped system to a

sinusoidal input, 158
Steiner’s Theorem, 9, 10
step response

of critically damped systems, 139
of first-order system, 131
of overdamped systems, 139
of second-order undamped systems, 135
of the second-order underdamped system,

138
of underdamped systems, 138

stiffness matrix, 285
strain, 457
stress, 457
strings

under transverse vibration, 456
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superposition, 6, 86, 115, 140, 203, 326, 332
system, 3

impulse response in state-variable form,
144

matrix, 419
output, 433
with a time-varying equilibrium state, 65
with positive-definite frequency matrix,

333
system with a time-varying equilibrium state,

64

T
tangential stress, 463
test pad, 122

revisited, 447
two-dof, 338

theory of beams, 462
time constant, 90
time delay, 87
time invariance, 87
time response, 85

of critically damped systems, 99
of first- and second-order systems, 85
of overdamped systems, 100
of underdamped second-order system to a

constant input, 160
via the Laplace transform, 535

time-invariance, 115, 127, 246
time-invariant, 6
time-series, 192
time-varying equilibrium state, 280
time-varying inputs, 145
torque, 30
torque source, 29
torsional spring, 14
torsional stiffness, 14, 460
torsional vibrations of aircraft wings, 294
total generalized force, 31
total kinetic energy, 26, 28
total potential energy, 26
total response

of two-dof system, 363
of damped two-dof systems, 375
of the system, 144

total time response
of dynamical systems, 141
of first-order systems, 141
of second-order damped systems, 143
of second-order undamped systems, 142

trace of A, 503
transducers, 4
transient part, 146

translational
damping coefficient, 18
dashpot, 18
spring, 13
stiffness, 13

transmitted force, 165
transverse motion, 460
trapezoidal rule, 189
triplet function, 113
two-dimensional form, 22
two-dof gantry robot, 273
two-dof model of a terrestrial vehicle, 302
two-dof systems, 307
two-dof test pad, 348
two-dof undamped linear mechanical system,

308
two-link robotic arm, 269

U
undamped

linear mechanical systems, 307
second-order system, 120
suspension discrete-time response, 242
systems, 91, 239
terrestrial vehicle, 175

undamped two-dof systems, x
underdamped

impulse response second-order system, 121
system, 91, 508

unilateral harmonic functions, 147
unilateral sine input, 156
unit doublet, 112
unit eigenvectors, 310
unit impulse, 111, 112, 126
unit ramp function, 114
unit step function, 113
unstable system, 66

V
Vandermonde matrix, 501
vector

notation, 21
of generalized coordinates, 263
of generalized forces, 267
of generalized speeds, 263
of modal coordinates, 347

velocity meter design, 169
vibration absorber, 360
vibration analysis of two-dof systems, 307
viscous damping, 30
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W
weighted magnitude, 312
whirling of shafts, 290, 376
Willis’ formula, 23

Y
Young modulus of elasticty, 456

Z
zero-input response, 86, 307

of damped systems in state-variable form,
143

of first-order LTIS, 88
of second-order damped systems, 507
of second-order LTIS, 91
of two-dof systems, 323

zero-order hold, 234, 419, 422, 432
zero-state response, 86, 127

in state-variable form, 143
of LTIS, 111
of two-dof systems, 353
to arbitrary input, 144

ZOH, see zero-order hold
ZSR, see zero-state response
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