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Preface

The experience of the past shows that throughout constant technology improve-
ment electronics (optoelectronics) has become more reliable, faster, more pow-
erful, and less expensive by reducing the dimensions of integrated circuits. These
advantages will lead to the development of modern microelectronics. The long-
term goal of this development will lead to nanoelectronics. Advancing to the
nanoscale is not just a step toward miniaturization, but requires the introduction
and consideration of many additional phenomena. At the nanoscale, most phe-
nomena and processes are dominated by quantum physics and they exhibit unique
behavior. Nanotechnology includes the integration of man-made nanostructures
into larger material components and systems (see, e.g. [1–4]). Importantly, within
these larger scale systems, the active elements of the system will remain at
nanoscale.

Low-dimensional structures have become one of the most active research not
only in nanoscience and nanotechnology but also isotopetronics. Quantum wells,
quantum wires, and quantum dots structures produced in the main by epitaxial
growth techniques (mainly molecular beam epitaxy (MBE) and metal-organic
chemical vapor deposition (MOCVD) and their various variations such as che-
mical beam epitaxy (CBE), atomic layer epitaxy (ALE), etc. (see, e.g. [5–10]).
MBE and MOCVD are of considerable technological interest since they are used
as active components in modern devices. These devices are high-electron-mobility
transistors, diodes and lasers, as well as quantum dots from quantum computations
and communications perspectives.

The seminal works of Esaki and Tsu [11] and others on the semiconductor
superlattice stimulated a vast international research effort to understand the fab-
rication and electronic properties of superlattice, quantum wells, quantum wires,
and quantum dots (see, for example, [1–4]). The dimensional scale of such sam-
ples between 10 and 100 nm which are the subject of nanoscience—is a broad and
interdisciplinary field of emerging research and development. Nanoscience and
nanotechnology are concerned with materials, structures, and systems whose
components exhibit novel and significantly modified physical, chemical properties
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due to their nanoscale sizes. The new direction of nanoscience is isotope-
engineered materials, which is studied the more low-dimensional in size, as a rule
the sizes of the sample of isotope-engineered materials compare with the atomic
size. Nuclear technology—neutron irradiation [12]—is a very useful method for
preparing low-dimensional structure: quantum wells, quantum wires, and quantum
dots [13]. A principal goal of isotope-engineered materials as new directions of the
nanotechnology is to control and exploit their new properties in structures and
devices at atomic, three molecular, and supramolecular levels. The minituarization
required by modern electronics is one of the driving forces for isotope-engineered
materials (isotopetronics)—new direction of nanotechnology (see, also [14]).

Modern nanoscience and nanotechnology is a fertile ground for teaching, as it
brings together the quantum theory of materials, novel physics in the electronic
and optical properties of solids, the engineering of small structures, and the design
of high performance electronic, photonic, and optoelectronic systems. The treat-
ments attempt to be introductory, comprehensive, and phenomenological in the
main. The new physics described in this book comes from one important con-
sideration—length scale (see, also [1, 2, 15, 16]) especially in mesoscopic physics.
As we all know, mesoscopic physics deals with structures which have a size
between the macroscopic and the microscopic or atomic one. These structures are
also called mesoscopic systems, or nanostructures [3] in a more colloquial way
since their size usually ranges from a few nanometers to about 100 nm. The
electrons in such mesoscopic systems show their wavelike properties [15, 16] and
therefore their behavior is markedly dependent on the geometry of the samples. In
this case, the states of the electrons are wave-like and somewhat similar to elec-
tromagnetic waves (see, e.g. [16]).

As mentioned above for the description of the behavior of electrons in solids, it
is very convenient to define a series of characteristic lengths. If the dimension of
the solids in which the electron embedded is of the order of, or smaller than these
characteristic lengths (kB de Broglie wavelength, or aex—exciton radius, etc.) the
material might show new properties, which in general are more interesting than the
corresponding ones in macroscopic materials. On the contrary, a mesoscopic
system approaches its macroscopic limit if its size is several times its characteristic
length.

As mentioned above, when the dimensions of the solid get reduced to a size
comparable with, or smaller kB, then the particles behave wavelike and quantum
mechanics should be used. Let us suppose that we have an electron confined within
a box of dimensions Lx, Ly, Lz. If the characteristic length is l, we can have the
following situations:

1. l h Lx, Ly, Lz. In this case the electron behaves as in regular 3D bulk
semiconductor (insulator).

2. l i Lx and Lx hh Ly, Lz. In this situation we have a 2D semiconductor perpen-
dicular to the x-axis. This mesoscopic system is also called a quantum well (for
details see Chap. 3).
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3. l i Lx, Ly and Lx, Ly hh Lz. This case corresponds to a 1D semiconductor or
quantum wire, located along the z-axis.

4. l ii Lx, Ly, Lz. In this case it is said that we have a 0D or a quantum dot [1, 2].

In general, we say in mesoscopic physics that a solid, very often a crystal, is of
reduced dimensionality if at least one of its dimensions Li is smaller than the
characteristic length. For instance, if Lx and Ly are smaller than l we have a crystal
of dimensionality equal to one. We could also have the case that l is comparable,
or a little larger, than one of the dimensions of the solid but much smaller than the
other two. Then we have a quasi 2D system, which in practice is a very thin film,
but not thin enough to show quantum size effect (for details see Chap. 3).

This review is organized into four chapters. In Chap. 1, I review the present
status of elementary excitations in solids. Preparation methods of low-dimensional
structures are described in Chap. 2. Chapter 3 deals with physics of low-dimen-
sional structure. In this chapter of the most frequently structures—quantum dots
are revised. The applications of low-dimensional structures is done in Chap. 4.

Tallinn Vladimir G. Plekhanov
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Chapter 1
Elementary Excitations of Isotope:
Mixed Crystals

1.1 Introduction

The modern view of solid-state physics is based on the presentation of elementary
excitations, having mass, quasiimpuls, electrical charge and so on (see, e.g. [17]).
According to this presentation the elementary excitations of non-metallic materials
are electrons (holes), excitons (polaritons [18]), and phonons [19]. The latter are the
elementary excitations of the crystal lattice, the dynamics of which is described in
harmonic approximation (see e.g. [20]). As is well known, the basis of such a view
on solids is the multiparticle approach. In such a view, the quasiparticles of solids are
ideal gas, which describe the behavior of the system, e.g. noninteracting electrons.
We should include such approach to consider the theory of elementary excitations as
a suitable model for the application of the common methods of quantum mechanics
for the solution of solid-state physics tasks. In this part of our review we briefly
consider not only the manifestations of the isotope effect in different solids, but also
bring the new accurate results, showing the quantitative changes of different char-
acteristics of phonons and electrons (excitons) in solids with isotopical substitution
(see, also [21]). The isotopic effect becomes more pronounced when we deal with
solids. For example, on substitution of H with D the change in energy of the electron
transition in solid state (e.g. LiH) is two orders of magnitude larger than in atomic
hydrogen (see, e.g. [22]). The use of elementary excitations to describe the compli-
cated motion of many particles has turned out to be an extraordinarily useful device
in contemporary physics, and it is the view of a solid which we describe in this part
of the book.

The basic Hamiltonian of our solid model is of the form [21]

H = Hion + Helectron + Helectron−ion (1.1)

where

Hion =
∑

i

p2
i

2m
+ 1

2

∑

i �= j

V (Ri − R j ), (1.2)
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2 1 Elementary Excitations of Isotope: Mixed Crystals

Helectron =
∑

i

p2
i

2m
+ 1

2

∑

i �= j

e2
∣∣ri − r j

∣∣ , (1.3)

Helectron−ion =
∑

i, j

v(ri − R j ). (1.4)

Hion describes a collection of ions (of a single species) which interacts through a
potential V(Ri −R j ) and which depends only on the distance between ions. By ion we
mean a nucleus plus the closed-shell, or core, electrons, that is, those electrons that are
essentially unchanged when the atoms are brought together to make a solid. Helectron
presents the valence electrons (the electrons outside the last closed shell), which are
assumed to interact via a Coulomb interaction. Finally, Helectron−ion describes the
interaction between the electrons (excitons) and the ions, which is again assumed to
be represented by a suitable chosen potential.

In adopting (1.1) as our basic Hamiltonian, we have already made a number of
approximations in the treatment of a solid. Thus, in general the interaction between
ions is not well—represented by a potential V(R), when the coupling between the
closed-shell electrons on different ions begins to play an important role (see, e.g.
[23, 24]). Again, in using a potential to represent electron–ion interaction, we have
neglected the fact that the ions possess a structure (the core electrons); again, when
the Pauli principle plays an important role in the interaction between the valence
electrons, that interaction may no longer be represented by a simple potential. It is
desirable to consider the validity of these approximations in detail (for details see,
e.g. [24]). In general, one studies only selected parts of the Hamiltonian (1.1). Thus,
for example, the band theory of solids is based upon the model Hamiltonian [23, 24]

HB =
∑

i

p2
i

2m
+

∑

i, j

v(ri − R j0) + VH(ri ), (1.5)

where R j0 represents the fixed equilibrium positions of the ions and the potential VH
describes the (periodic) Hartree potential of the electrons. One studies the motion
of a single electron in the periodic field of the ions and the Hartree potential, and
takes the Pauli principle into account in the assignment of one-electron states. In so
doing one neglects aspects other than the Hartree potential of the interaction between
electrons. On the other hand, where one is primarily interested in understanding the
interaction between electrons in metals, it is useful to consider only (1.3), replacing
the effect of the ion cores by a uniform distribution of positive charge [25]. In this
way one can approximate the role that electron interaction plays without having
present the additional complications introduced by the periodic ion potential. Of
course one wants finally to keep both the periodic ion potential and the electron
interactions, and to include also the effects associated with departure of the ions from
the equilibrium positions, since only in this way one does not arrive at a generally
adequate description of the solid. Usually for the elementary excitations in solids
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this is by first considering various different parts of the Hamiltonian (1.1) and then
taking into account the remaining terms which act to couple different excitations.

1.2 Energy Band Structure

As mentioned above, the detailed study of the electronic band structure is the key
to understand the behavior of electrons in solids, as well as their interaction with
the lattice vibrations (phonons). The properties of a solid containing of the order
of 1023 atoms/cm3 are very complicated to predict. Several approaches to solve this
problem were followed in the past providing a great amount of work in this field
[23, 24]. For example, calculations of the band structure were performed using
methods as �k · �p, tight binding or LCAO, pseudo potentials, etc. (for details, see
[23–26]).

Below, a simple basic frame to understand the electronic properties of crystal
will be presented. It is not the author’s purpose to give a detailed derivation of the
fundamental equations governing the band structure, but to present the main ideas
to understand the physical origin of the electronic band structure, phonon dispersion
relations, and electron–phonon interactions, responsible, for instance, for the Raman
effect (see also [20]).

First, we write the Hamiltonian describing a perfect crystal as [26]:

H =
∑

i

p2
i

2mi
+

∑

j

P2
j

2M j
+ 1

2

−∑

j ′ j

Z j Z j ′e2

4πε0|R j−R j ′ | −
∑

j i

Z j e2

4πε0|ri−R j |

+ 1

2

∑

i j

e2

4πε0|ri−r j | , (1.6)

where ri is the position of the ith electron, R j the position of the jth nucleus, Z is
the atomic number of the nucleus, pi and Pj are the momentum operators of the

electron and nucleus, respectively, e is the electronic charge, and
−∑

means that the
summation is only over pairs of indices which are not identical. This many-particle
Hamiltonian cannot be solved without a large list of simplifications:

1. Valence electron approximation. In the valence electron approximation we
reduce the number of electrons, neglecting the core electrons [26]. We will take
advantage of the fact that the core electrons are tightly bound to the nucleus forming
the so-called ion core. Thus, the core electrons will no longer appear explicitly. For
example, in the case of Si the electronic structure can be written as 1s22s22p63s2

3p2, where the 3s and 3p electrons are the only ones that hold are taken into account
(see, also [27]).

2. Born-Oppenheimer or adiabatic approximation [28]. This approximation
relies on the fact that ions are much heavier than electrons so they move much slowly.
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Typically, the energy scales involved in the ionic motion is of the order of tens of
meV, whereas the excitation energies for electrons is of the order of 1 eV. Converting
these values into frequencies we obtain 1013 and 1015 s−1 for lattice and electron
vibrations, respectively. That is, the electronic frequencies are two orders of magni-
tude larger than the ionic vibrations, therefore the electrons ‘see’ the ions essentially
stationary. Based on this we rewrite the Hamiltonian in Eq. (1.6) decoupling in part
the movement of the electrons from that of the lattice as (see also [29]) was done above
in Eq. (1.1). The purely electronic contribution to the Hamiltonian (1.1) Helectron is
the one responsible for the electronic excitation spectra in crystals, but still another
approximation must be done in order to deal with the problem.

3. Mean field approximation. Taking only the electronic part in Eq. (1.1), we
rewrite it as follows:

He =
∑

i

p2
i

2mi
+ 1

2

−∑

i,i ′

e2

4πε0|ri − ri ′ | −
∑

i, j

Z j e2

4πε0|ri − R j0| , (1.7)

where the first term is the kinetic energy of the electrons, the second is the Coulomb
repulsion between electrons, and the last term is the Coulomb attraction between the
nucleus in their equilibrium positions and the electrons. The mean field approxima-
tion replaces the Colombian terms in (1.7) by an average potential (see, e.g. [24]).
The resulting Hamiltonian is given by:

He =
∑

i

[
p2

i

2mi
+ V(ri )

]
⇒ H1e = p2

2m
+ V(r), (1.8)

where H1e is the one-electron Hamiltonian and V(r) is the average potential. The
first term in (1.8) is the free-electron Hamiltonian with plane waves as solutions.
The energy spectrum is described by a parabolic dispersion relation as E = �2k2

2m .
The presence of the potential V(r) gives to the opening of the gap, and to the typical
band structure of solid (see e.g. [26]). In order to obtain quantitative results, the one-
electron potential V(r) is obtained, for example, using first principle calculations or
semi-empirical methods.

The last step to obtain the band structure of solid is to take into account the
rotational and translational symmetry of the crystalline structure. In this way, the wave
functions that are solutions of (1.8) must have the same symmetry as the crystalline
structure. By using group theory [30] it is possible to obtain these symmetries for each
lattice structure and, thus, for the wave functions. Figure 1.1 shows the calculated
band structure for Si in some highly symmetric directions of the Brillouin zone.
As observed in this figure, the band structure of Si is indirect since the minimum
transition energy is not at the zone center but in the � −→ X.

The dependence of the band gap energy on isotopic composition has already been
observed for insulators and lowest (indirect–direct) gap of different semiconductors
(see also [22]). It has been shown to result primarily from the effect of the aver-
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Fig. 1.1 Electronic band
structure of Si calculated by
pseudopotential technique.
The solid and the dotted
lines represent calculations
with a nonlocal and a local
pseudopotential, respectively
(after [27])

age isotopic mass on the electron-phonon interaction (for details see below), with
a smaller contribution from the change in lattice constant. This simplest approxi-
mation, in which crystals of mixed isotopic composition are treated as crystals of
identical atoms having the average isotopic mass is referred to as virtual crystal
approximation (VCA). Going beyond the VCA, in isotopically mixed crystals one
would also expect local fluctuations in the band gap energy from statistical fluctu-
ations in local isotopic composition within some effective volume, such as that of
an exciton. Figure 91 of [31] shows the concentration dependence of the energy of
interband transition Eg . As can be seen from this figure the VCA method cannot
describe the observed experimental results. By now the change in Eg caused by iso-
topic substitution has been observed for many broad-gap and narrow-gap compounds
(see Table 1.1). In Table 1.1 the variation of Eg and ∂Eg/∂ M are shown at the isotopic
effect. We should hihglight here that the most prominent isotope effect is observed
in LiH crystal (see, also [22]).

1.3 Phonon States and Raman Spectra

The simplest kind of motion in solids is the vibration of atoms around the equilibrium
point. The interaction of the crystal forming particles with one another at the move of
one atom entangles neighbor atoms [20]. The analysis of this kind of motion shows
that the elementary form of motion is the wave of the atom displacement. As is well
known the quantization of the vibrations of the crystal lattice and after introduction of
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Table 1.1 Values of the coefficients ∂Eg/∂M (meV) and energies of the band-to-band transitions
Eg (eV) according to indicated references (after [22])

Substance ∂Eg/∂M (meV) Eg (eV)
13C −→ 12C 14.6 [32] 5.4125 [32]
7LiH −→ 7LiD 103 [33] 4.992 −→ 5.095 [33]
7LiH −→ 6LiH 12 [33] 4.980 [33]
CsH −→ CsD 60 [34] 4.440 [34]
30Si −→ 28Si 2 [35] 3.652 [35]
30Si −→ 28Si 2.09 [36] 1.166 [36]
68ZnO → 64ZnO 0.372 [37] 3.400 [37]
Zn18O →Zn16O 3.533 [37] 3.400 [37]
68ZnO → 64ZnO 0.40 [38] 3.400 [37]
Zn18O → Zn16O 3.20 [38] 3.400 [37]
69GaP −→ 71GaP 0.19 [39] 2.400 [39]
65CuCl → 63CuCl −0.076 [40] 3.220 [40]
Cu37Cl →Cu35Cl 0.364 [41] 3.220 [41]
Cd34S→Cd32S 0.370 [42] 2.580 [42]
110CdS → 116CdS 0.040 ÷ 0.068 [43] 2.580 [42]
Cu18

2 O →Cu16
2 O 1.116 [44] 2.151 [44]

71GaAs → 69GaAs 0.39 [40] 1.53 [40]
76Ge → 72Ge 0.225 [42–47] 1.53 [42–47]
76 → 73 → 70Ge 0.37 [46, 47] 0.74 [46, 47]

the normal coordinates, the Hamiltonian of our task will have the following relation
(see, e.g. [26]):

H(Q, P) =
∑

i,q

[
−�

2

2

∂2

∂ Q2(�q)
+1

2
ω2

j Q2
j (�q)

]
(1.9)

In this relation, the sum, where every addend means the Hamiltonian of linear
harmonic oscillator with coordinate Q j (�q), the frequency ω j (�q) and the mass equal
a unit. If the Hamiltonian system consists of the sum, where every addend depends on
the coordinate and conjugates its quasiimpuls, then according to quantum mechanics
[48–50] the wave function of the system equals the product of wave functions of
every appropriate addend and the energy is equal to the sum of assigned energies.
Any separate term of the Hamiltonian (1.9) corresponds, as indicated above, with
the linear oscillator

− �
2

2

∂2�

∂Q2 + 1

2
ω2 Q2� = ε�. (1.10)

Solving the last equation and finding the eigenvalues and eigenfunctions and then
expressing explicitly the frequency, we will obtain for the model with two atoms in
primitive cell (with masses M1 and M2; M1 > M2) the following equation:
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Fig. 1.2 Optical and acoustic
modes. The optical modes
lie at higher frequencies and
show less dispersion than the
acoustic modes (for details see
text)

ω2 = C

(
M1 + M2

M1 M2

)
±

[
C2

(
M1 + M2

M1 M2

)
− 4C2

M1 M2
sin2 ka

2

]

or

ω2± = A ±
[

A2 − B sin2 ka

2

]1/2

. (1.11)

There are now two solutions for ω2, providing two distinctly separate groups of
vibrational modes. The first group, associated with ω2−, contains the acoustic modes.
The second group arises with ω2+ and contains the optical modes; these correspond to
the movement of the different atom sorts in opposite directions (e.g. NaCl-structures),
it is contra motion whereas the acoustic behavior is motion in unison.

For small ka we have from (1.11′) two roots:

ω2 � 2C

(
1

M1
+ 1

M2

)

and

ω2 � C

2(M1 + M2)
K 2a2. (1.12)

Taking into account that Kmax = ±π/a, where a is a period of the crystal lattice,
i.e., Kmax respond to the border of the first Brillouin zone (see also Fig. 1.2)

ω2 = 2C

M1
and ω2 = 2C

M2
(1.13)

As it is clear, formula (1.11′) describes the optical branch of vibrations whereas
(1.12) the acoustical branch of vibrations. Usually the last formula is written as
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follows:

ω =
√

α

M
, (1.14)

where α is the so-called force constant. Here, M is the mass of vibrated atom (ion).
From the preceding relation it is clear that, as in molecular physics [21], in solids,
the isotope effect directly manifests in vibration spectrum, which depends on the
symmetry [30] measures either in IR—absorption or in Raman scattering of light.
Before analyzing Raman scattering spectra of different solids we briefly consider the
classical approximation of the mechanism of Raman effect [51–53].

Historically, Raman scattering denotes inelastic scattering of light by molecular
vibrations or by optical phonons in solids. In a macroscopic picture, the Raman effect
in crystals is explained in terms of the modulation of polarizability by the quasiparti-
cle under consideration. The assumption that the polarization depends linearly upon
the electric field strength [54] is a good approximation and is invariably used when
discussing the scattering of light by crystal excited by lasers. However, the approxi-
mation is not valid for large strength such as can be obtained from pulsed lasers [55].
The polarization may then be expressed as

P = αE + 1

2
βE2 + 1

6
γ E3 + 1

24
δE4 + . . . . . . , (1.15)

where β, the first hyperpolarizability coefficient, plays an important part for
large values of E, since it is responsible for the phenomenon of optical harmonic
generation using Q-switched lasers. Isolated atoms have β = 0, since, like μ the
dipole moment, it arises from interactions between atoms. A simplified theory of
Rayleigh scattering, the Raman effect, harmonic generation and hyper Raman scat-
tering is obtained by setting (see, e.g. [55])

E = E0cos ω0t, (1.16)

α = α0 +
(

∂α

∂ Q

)
Q, (1.17)

β = β0 +
(

∂β

∂ Q

)
Q, (1.18)

Q = Q0 + cos ωvt. (1.19)

Here, Q is a normal coordinate, ωv is the corresponding vibrational frequency
and ω0 is the laser frequency. After that we have
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P = α0E0cos ωvt + 1

2

(
∂α

∂ Q

)
Q0E0cos ω0t cos ωvt + 1

2
β0E2

0cos2ω0t

+ 1

2

(
∂β

∂ Q

)
Q0E2

0cos2ω0t cos ωvt. (1.20)

Then, after small algebra, we obtain

P = α0E2
0cosωvt + 1

2

(
∂α

∂ Q

)
Q0E0cos(ω0 − ωv)t + cos(ω0 + ωv)t + 1

2
β0E2

0

+ β0

4
E2

0 cos 2ω0t + 1

2
Q0E2

0

(
∂β

∂Q

)
cos(2ω0 − ωv)t + cos(2ω0 − ωv)t.

(1.21)

In the last relation the first term describes the Rayleigh scattering, second—Raman
scattering, third—d.c. polarization, fourth—frequency doubling and the last—hyper
Raman effect. Thus the hyper Raman effect is observed with large electric field
strength in the vicinity of twice the frequency of the exciting line with separa-
tions corresponding to the vibrational frequencies. α and β are actually tensors and
β components βαβγ which are symmetrical suffixes [30].

Semiconducting crystals (C, Si, Ge, α − Sn) with diamond-type structure present
ideal objects for studying the isotope effect by the Raman light-scattering method.
At present, this is facilitated by the availability of high-quality crystals grown
from isotopically enriched materials (see, e.g [56] and references therein). In this
part our understanding of first-order Raman light scattering spectra in isotopically
mixed elementary and compound (CuCl, GaN, GaAs) semiconductors having a zinc
blende structure is described. Isotope effect in light scattering spectra in Ge crys-
tals was first investigated by Agekyan et al. [57]. A more detailed study of Raman
light scattering spectra in isotopically mixed Ge crystals has been performed by
Cardona and Thewalt [56].

It is known that materials having a diamond structure are characterized by the
triply degenerate phonon states in the � point of the Brillouin zone (�k = 0). These
phonons are active in the Raman scattering spectra, but not in the IR absorption
one [51]. Figure 1.3a demonstrates the dependence of the shape and position of the
first-order line of optical phonons in germanium crystal on the isotope composition
at liquid nitrogen temperature (LNT) [58]. The coordinate of the center of the scat-
tering line is proportional to the square root of the reduced mass of the unit cell,
i.e.,

√
M . It is precisely this dependence that is expected in the harmonic approxima-

tion. An additional frequency shift of the line is observed for the natural and enriched
germanium specimens and is equal, as shown in Ref. [56] to 0.34 ± 0.04 and 1.06 ±
0.04 cm−1, respectively (see, e.g. Fig. 4.7 in Chap. 4 of Ref. [59]).

First-order Raman light-scattering spectrum in diamond crystals also includes one
line with maximum at ωLTO(�) = 1, 332.5 cm−1. In Fig. 1.3b the first-order scat-
tering spectrum in diamond crystals with different isotope concentrations is shown
[60]. As shown below, the maximum and the width of the first-order scattering line in

http://dx.doi.org/10.1007/978-3-642-28613-1_4
http://dx.doi.org/10.1007/978-3-642-28613-1_4
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Fig. 1.3 a First-order Raman
scattering spectra Ge with
different isotope contents [56]
and b First-order Raman scat-
tering in isotopically mixed
diamond crystals 12C13

x C1−x .
The peaks A, B, C, D, E and
F correspond to x = 0.989;
0.90; 0.60; 0.50; 0.30 and
0.001 (after [60])

isotopically mixed diamond crystals are nonlinearly dependent on the concentration
of isotopes x . The maximum shift of this line is 52.3 cm−1, corresponding to the
two limiting values of x = 0 and x = 1. Analogous structures of first-order light
scattering spectra and their dependence on isotope composition has by now been
observed many times, not only in elementary Si and α − Sn, but also in compound
CuCl and GaN semiconductors (for more details see reviews [31, 56]). Already
a shortlist of data shows a large dependence of the structure of first-order light-
scattering spectra in diamond as compared to other crystals (Si, Ge). This is the
subject of detailed discussion in [61].
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Fig. 1.4 Second-order Ra-
man scattering spectra in
synthetic diamond with dif-
ferent isotope concentration at
room temperature (after [63])

Second-order Raman spectra in natural and isotopically mixed diamonds have
been studied by Chrenko [62] and Hass et al. [63]. Second-order Raman spectra in a
number of synthetic diamond crystals with different isotope compositions shown in
Fig. 1.4 are measured wit resolution (∼4 cm−1) worse than for first-order scattering
spectra. The authors of the cited work explain this fact by the weak signal in the
measurement of second-order Raman scattering spectra. It is appropriate to note that
the results obtained in [63] for natural diamond (C13C = 1.1%), agree well with
the preceding comprehensive studies of Raman light-scattering spectra in natural
diamond [64]. As is clearly seen from Fig. 1.4 the structure of second-order light
scattering “follows” the concentration of the 13C isotope. It is necessary to add that in
the paper by Chrenko [64] one observes a distinct small narrow peak above the high-
frequency edge of LO phonons and the concentration of 13C x = 68%. Note in passing
that second-order spectra in isotopically mixed diamond crystals were measured in
the work by Chrenko [62] with a better resolution than the spectra shown in Fig. 1.4.
Second-order Raman light scattering spectra and IR absorption spectra in crystals of
natural and isotopically enriched 70Ge can be found in [31].
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A comprehensive interpretation of the whole structure of second-order Raman
light-scattering spectra in pure LIH (LiD) crystals is given in [22, 61]. Leaving this
question, let us now analyze the behavior of the highest frequency peak after the
substitution of hydrogen for deuterium (see, also [65]).

Absorption behavior of an IR-active phonon in mixed crystals with a change in
the concentrations of the components can be classified into two main types: one and
two-mode (see, e.g. the review [66]). Single-mode behavior means that one always
has a band in the spectrum with a maximum gradually drifting from one endpoint to
another. Two-mode behavior is defined by the presence, in the spectrum, of two bands
characteristic of each components leading not only to changes in the frequencies of
their maxima, but mainly to a redistribution of their intensities. In principle, one
and the same system can show different types of behavior at opposite ends [67].
The described classification is qualitative and is rarely realized in its pure form
(see, also [67]). The most important necessary condition for the two-mode behavior
of phonons (as well as of electrons [68]) is considered to be the appearance of the
localized vibration in the localized defect limit. In the review [66] a simple qualitative
criterion for determining the type of the IR absorption behavior in crystals with an
NaCl structure type has been proposed (see also [68]). Since the square of the TO
(�) phonon frequency is proportional to the reduced mass of the unit cell M, the shift
caused by the defect is equal to

� = ω2
TO

(
1 − M

M
′

)
. (1.22)

This quantity is compared in [66] with the width of the optical band of phonons
which, neglecting acoustical branches and using the parabolic dispersion approxi-
mation, is written as

W = ω2
TO

(
ε0 − ε∞
ε0 + ε∞

)
. (1.23)

A local or gap vibration appears, provided the condition |�| > (1/2)W is fulfilled.
As mentioned, however, in [66] in order for the two peaks to exist up to concentrations
of the order of ∼0.5, a stronger condition |�| > W has to met. Substituting the
numerical values from Table 1.1 of [61] into formulas (1.22) and (1.23) shows that
for LiH (LiD) there holds (since � = 0.44 ω2

TO and W = 0.58ω2
TO) the following

relation:
|�| > (1/2)W. (1.24)

Thereby, it follows that at small concentrations the local vibration should be
observed. This conclusion is in perfect agreement with earlier described experimental
data [65]. As to the second theoretical relation � > W , one can see from the above
discussion that for LiH (LiD) crystals the opposite relation, i.e., W > �, is observed
[20].
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Fig. 1.5 Second-order
Raman scattering spectra
in the isotopically mixed
crystals LiHx D1−x at room
temperature. 1 − x =
0; 2 − 0.42; 3 − 0.76; 4 − 1.
The arrows point out a shift of
LO(�) phonons in the mixed
crystals (after [61])

Following the results of [69], in Fig. 1.5 we show the second-order Raman scat-
tering spectra in mixed LiHx D1−x crystals at room temperature. In addition to what
has been said on Raman scattering spectra at high concentration [69], we note that as
the concentration grows further (x > 0.15) one observes in the spectra a decreasing
intensity in the maximum of 2LO (�) phonons in LiD crystal with a simultaneous
growth in intensity of the highest frequency peak in mixed LiHx D1−x crystals. The
nature of the latter is in the renormalization of LO(�) vibrations in mixed crystal [70].
Comparison of the structure of Raman scattering spectra (curves 1 and 2 in Fig. 1.5)
allows us, therefore, to conclude that in the concentration range of 0.1 < x < 0.45
the Raman scattering spectra simultaneously contain peaks of the LO(�) phonon of
pure LiD and the LO(�) phonon of the mixed LiHx D1 − x crystal. For further con-
centration growth (x > 0.45) one could mention two effects in the Raman scattering
spectra of mixed crystals. The first is related to an essential reconstruction of the
acoustooptical part of the spectrum. This straightforwardly follows from a compar-
ison of the structure of curves 1–3 in Fig. 1.5. The second effect originates from a
further shift of the highest frequency peak toward still higher frequencies, related to
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the excitation of LO(�) phonons. The limit of this shift is the spectral location of
the highest frequency peak in LiH. Finishing our description of the Raman scatter-
ing spectra, it is necessary to note that a resonance intensity growth of the highest
frequency peak is observed at x > 0.15 in all mixed crystals (for more details see
[72]).

One more reason for the discrepancy between theory and results of the experiment
may be connected with not taking into account in theory the change of the force-
constant at the isotope substitution of the smaller in size D by H ion [72]. We should
stress once more that among the various possible isotope substitutions, by far the most
important in vibrational spectroscopy is the substitution of hydrogen by deuterium.
As is well known, in the limit of the Born-Oppenheimer approximation the force-
constant calculated at the minimum of the total energy depends upon the electronic
structure and not upon the mass of the atoms. It is usually assumed that the theoretical
values of the phonon frequencies depend upon the force-constants determined at the
minimum of the adiabatic potential energy surface. This leads to a theoretical ratio
ω (H) /ω (D) of the phonon frequencies that always exceed the experimental data.
Very often anharmonicity has been proposed to be responsible for a lower value of
this ratio. In isotope effect two different species of the same atom will have different
vibrational frequencies only because of the difference in isotopic masses.



Chapter 2
Methods of the Preparation
of Low-Dimensional Structures

2.1 Molecular Beam Epitaxy and Metal-Organic
Chemical Vapor Deposition

During the 1980s two newer epitaxial techniques were introduced which are in
widespread use today for the preparation of III–V (II–VI) semiconductor multi-
layers for both physics studies and device fabrication. These techniques are molec-
ular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD)
[5–7, 73, 74]. With this it is possible to control both the chemical composition and
the level of doping down to thickness that approaches an atomic monolayer, and cer-
tainly within less than one nanometer (10−9 m). MBE and MOVCVD thus approach
the absolute limits of control for preparing layered semiconductor structures [5, 6].

Fabrication of a crystal layer upon wafer of a compatible crystal makes it possible
to obtain very well-controlled growth regimes and to produce high-quality crys-
tals with the desired crystalline orientation at temperatures typically well below the
melting point of the substrate. The schematic heart of the MBE process is shown in
Fig. 2.1, while the photograph of such equipment can be found in [75]. MBE is a con-
ceptually simple crystal growth technique. An MBE machine consists of a stainless
steel vessel of diameter approximately 1 m (Fig. 2.1) which is kept under ultrahigh
vacuum (10−11 Torr) by a series of pumps [75]. Recent comprehensive reviews and
monographs [5, 6, 73, 74] give an up-to-date description of the technique and its
application to the growth of semiconductor layers for electronic devices. On one
side (see Fig. 2.1) a number of cells (typically eight) are bolted onto the chamber.
These Knudsen cells are of some complexity, again to control the processes for which
they are responsible. Inside each a refractory material boat contains a charge of one
of the elemental species (for example, Ga, Al or As) for growth of the semiconductor,
Si (for n-type doping), and Be or B (for p-type doping). Each boat is heated so that
a vapor is obtained which leaves the cell for the growth chamber through a small
orifice. The vapor is accelerated by the pressure differential at the orifice and forms
a beam that crosses the vacuum chamber to impinge on a GaAs substrate which is
mounted on a holder controlled from the opposite site of the chamber. The substrate

V. G. Plekhanov, Isotope Low-Dimensional Structures, SpringerBriefs in Physics, 15
DOI: 10.1007/978-3-642-28613-1_2, © The Author(s) 2012
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Fig. 2.1 The MBE method for the growth of hetero-structures

holder contains a heater, as the quality of the grown crystal is a sensitive function of
the substrate temperature (about 580 and 630◦C is best for GaAs and AlAs [5, 6]).
The flux rate is controlled by the temperature within the Knudsen cell. The control
and monitoring of the fluxes from the different cells ensure approximately that a
monolayer’s worth of molecular beam species impinge on the substrate in 1 s. Thus
the growth rates of the layers are typically 10−6 mh−1. Shutters in front of the orifices
can be opened and closed in less than 0.1 s [74] and so combinations of Ga to Al flux
can be varied to produce the species for growing Alx Ga1−x As alloys. The opening
and closing of different shutters determines the multilayer structure that is grown in
terms of both semiconductor composition and doping profile (see also [2, 76]).

The advantages of MBE are:

1. The use of only high-purity elemental sources rather than less pure compounds
may ultimately result in the highest purity.

2. Growth occurs in UHV apparatus where background concentrations of undesir-
able gases such as H2O, CO, and O2 are very low.

3. In situ analytical tools (e.g. high-energy electron diffraction (RHEED), see
Fig. 2.1) may be used to monitor the crystal structure and composition.

4. Extreme control of growth rate and composition leads to very abrupt (〈20 Å)
changes in composition and/or doping level.

5. Pattern growth is possible through masks, by focused ion beams and on areas
defined by electron beam writing.

BN is found to be an excellent crucible (boat) material for growth of high-purity
III–V compounds [73]. A lower limit of the atomic or molecular flux from an diffusion
cell (see e.g. [6, 74])
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Fig. 2.2 A scheme of the
growth cell of an MOCVD
method

J = 1.11 × 1022[AP(T )]/d2(mT )1/2, (2.1)

where the flux J is expressed in molecules cm−2 s−1, A is the area of the opening,
P(T ) is the equilibrium pressure at the cell temperature, d is the distance to the
substrate, and m is the mass of the diffusing molecule. For typical systems, A ∼
1 cm2, d ∼= 10 cm and P(T) ranges from 10−2 to 10−3 Torr. These values give
a flux at the substrate of 1015 − 1016 molecules cm−2s−1 and a growth rate of
1–10 monolayers per second, the typical growth rate in MBE systems (for details see
[5, 73–75]).

Today, most of the III–V binary, ternary, and a few quaternary semiconducting
alloys have been grown by the MOCVD technique. GaAs and Alx Ga1−x As have
been the most fully researched. MOCVD, which is also known as organometal-
lic chemical vapor deposition (OMCVD), takes place in a glass reactor (the pho-
tograph see in [75]), typically about 0.3 m long and about 0.1 m in diameter (see
Fig. 2.2). In that reactor is a heated substrate site at an angle to a laminar flow of gas.
Radiofrequency (rf) inductive heating is used to achieve substrate temperature com-
parable to those for MBE growth, although research is aimed at being able to use
even lower substrate temperatures while maintaining high-quality growth.

In the case of growth of Si layers, several different gases containing Si atoms can
be used. They include silicon tetrachloride (SiCl4), silane (SiH4), and dichlorosilane
(SiH2Cl2). In the case of silicon tetrachloride, the following reaction with hydrogen
occurs:

SiCl4 + 2H2 −→ Si + 4HCl. (2.2)

The reaction can be conducted at temperatures in the range of 1,150–1,250◦C (see,
e.g. [6]). In the case of using silane and dichlorosilane, the reaction can be conducted
at even lower temperatures (1,000–1,100◦C). These temperatures are well below the
melting point of Si (Tm =1,412◦C [73]). Thus, these reactions release atoms of Si,
and the relatively low-temperature regimes provide efficient crystal growth onto the
seed.
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For growth of III–V compounds, the following reactions are used

AIII(CH3)3 + BV H3 −→ AIIIBV ,

AIII(CH3)3 + BV H3 −→ AIIIBV + 3CH4. (2.3)

Here, AIII is B, Al, Ga, IN, Tl and BV is N, P, AS, Sb, Bi. These reactions take place
at temperatures of ≈600–700◦C [6]. Dopants zinc [Zn(CH3)2] or silane are used to
provide the dopant species. It is important that epitaxial methods can be applied to
produce new materials that are difficult to grow by other methods. Examples are
wide-bandgap nitrides of the group III elements. These include INGaN and AlGaN
compounds.

In conclusion, both group IV elements (C, Si, Ge, Sn, Pb) and III–V compounds
are successfully grown with thickness control of the order of one monolayer. Different
types of doping-uniform doping, modulation doping, and delta-doping are realized
with high accuracy [3, 4]. Since in the chemical reactor the partial pressures of
chemicals are much higher than the pressure in the molecular beams of the MBE
method, the rate of crystal growth realized in the MOCVD method is higher than
that of MBE. The former may be used in industrial production, while the latter is
rather well suited for research laboratories.

The principles behind both MBE and MOCVD growth were established in the
1970s and refined in the 1980s, since which time further developments have taken
place. New methods of growth research whose benefits will be realized during the
last two decades can be found in references [5, 6, 73, 74].

2.2 Nanolitography and Etching Technologies

This paragraph describes the nanolitography and etching technologies used in fab-
rication of semiconductor nanostructures for physics and device studies. These
state-of-the-art fabrication techniques are available precisely because they are fore-
seen as essential in one or other strategies for the fabrication of future devices
(see, also [2, 3, 7]). As shown above, MBE and MOCVD grow high-quality single-
crystal wafers and crystalline multilayered structures thicknesses may be on the
nanometer scale. However, to produce an individual device or electric circuit scaled
down to nanosize in two or three dimensions, one needs to exploit the so-called nanoli-
tography. For these processes, whereby short-wave radiation, for example short-wave
ultraviolet (UV), electron beams, X-radiation, and ion beams are used to produce finer
structures. Figure 2.3 presents a rough overview of the different nanolitography meth-
ods. At first, it is possible to create ever finer structures by using higher-energy radi-
ation. But it must be noted that the material defects also increase proportionally [16].
It is clear that one practical limit to the smallest feature sizes that can be faithfully
be reproduced is the wavelength of that light, i.e., the diffraction limit with visible
light, in the range 400–800 nm. According Grenville et al. [77] the optical litography
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Fig. 2.3 Overview of
different litography method

using visible light is available down to 0.15 × 10−6 m feature sizes in lithography
for integrated circuits (see, also [1, 2]).

Electron-beam direct writing is a usual method to produce fine structures. The
major disadvantage of this approach is that all individual structures must be written
one after the other, which consumes a lot of time. That is why electron-beam writing
is only economical for the mask production and not for direct structuring tasks on
wafers. The X-ray lithography is very promising, although no usable lens systems
and reflectors for wavelengths between 0.5 and 5 nm are known. The imaging has
to be performed by so-called contact copies with special masks. The mask carrier is
a thin silicon film (∼2 × 10−6 m), which is transparent for X-radiation. The actual
masking part is a thin gold layer (10−6 m) structured by electron-beam writing.
In order to avoid contact copy image defects on the semiconductor wafer, the
X-ray beams should run as parallel as possible. When using a normal X-ray tube,
the distance between the radiation source and the silicon wafer is so small that many
image defects occur in the peripherical wafer area. This error �B can be simply
measured by the following rule (see, e.g. [74]):

�B = t
B

S
, (2.4)

where t represents the mask-wafer distance, B equals the wafer radius, and S is the
distance to the radiation source. To keep this deviation small, the distance S has to
be increased as much as possible, which can be achieved by extracting X-ray beams
from a synchrotron. When using such a synchrotron, the distance S can be chosen
to be relatively large, say 10 m, so that the error �B is reduced to less than ±10 nm.

The comparison between the different lithography methods, the highest through-
put is still achieved by optical lithography [2, 14]. A higher resolution can be attained
by using X-ray or electron beams. The single probe methods, whereby single atoms
are manipulated, yields the best results. Remarkable results are also produced by a
structure printing process, the so-called nanoprinting (see, also [1]). Another method
should be mentioned in this context: the scanning tunneling microscope (STM) can
be utilized to visualize and analyze the fine structure (for details see next paragraph).
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Fig. 2.4 Scheme of plasma
etching

There are two principal forms of etching—using wet chemicals or using (dry)
plasmas. Each method has advantages and disadvantages. Wet chemistry has been
used since the earliest days of integrated circuit manufacture. The range of dilute
acid and alkaline materials used is quite wide. For example HF reacts with SiO2 and
does not affect the photoresist or silicon. That is, this wet chemical etch is highly
selective. However, the rate of etching is the same for any direction, lateral or vertical,
so the etching is isotropic (see, however [1]). Using an isotropic etching technique
is acceptable only for relatively large structures. For nanosize structures, anisotropic
etching with faster vertical etching is preferable.

Anisotropic etching generally exploits a physical process, or some combination of
both physical and chemical methods. The best-known method of anisotropic etching
is reactive-ion etching. Reactive-ion etching is based on the use of plasma reactions.
This method works as follows. An appropriate etching gas, for example a chlo-
rofluorocarbon, fills the chamber with the wafers. The pressure is typically reduced,
so that an rf voltage can produce a plasma. The wafer to etch is a cathode of this rf
dicharge, while the walls of the chamber are grounded and act as an anode. Figure 2.4
illustrates a principal scheme for the ion-etching method. The electric voltage heats
the light electrons and they ionize gaseous molecules, creating positive ions and
molecular fragments (chemical radicals). Being accelerated in the electric field, the
ions bombard the wafer normal to the surface. This normal incidence of bombard-
ing ions contributes to the etching and makes the etching highly anisotropic. This
process, unfortunately, is not selective. However, the chemical radicals present in
the chamber give rise to chemical etching, which, as we pointed above, is selective.
From this, we can conclude that the method combines both isotropic and anisotropic
components and can give good results for etching on the nanoscale (see e.g. Fig. 3.4
in [1]). For further details on etching techniques see [78–80]).
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2.3 Techniques for Characterization of Nanostructures

Progress in the fabrication, study, and use of nanostructures would not be possi-
ble without adequate techniques for the characterization of these structures. These
techniques should allow one to determine the shape and geometrical parameters
of nanostructures, the distribution of chemical composition, the strain fields, etc.
Knowing all of these one can predict the electronic and optical properties which will
ultimately be relevant in applications. In this paragraph we briefly describe the next
techniques:

1. Hall measurements;
2. Secondary ion mass spectrometry (SIMS);
3. Methods for optical characterization;
4. Scanning tunneling microscopy (STM);
5. Atomic-force microscopy (AFM);
6. Transmission electron microscopy (TEM);

1. The simplest method for checking of doping levels (electrical characterization)
in bulk semiconductors is the Hall measurements [24, 26].

2. This method involves removing material from a multilayer structure using a beam
of high-energy ions (i.e., sputtering) and a mass analysis of the species from flat
center of the crater (for details see [16, 81]).

3. Photoluminescence (PL), electroluminescence, and photoreflectance spectroscopy
have all proved useful in the qualification of certain multilayer structures
[7, 83]. As is well known, the first two techniques involve the examination of
the wavelength- or energy-selected emission of light from a structure when the
structure has first been excited by light or an electron beam respectively. The
latter technique involves changes of reflectivity at different energies as small
electric fields are applied to the solid. All three provide information about optical
transitions and we shall see the way in which thin layers have optical transitions
modified by quantum-size effects including the shape of heterojunction interfaces
(atomically abrupt changes of comparison, or changes over two or more atomic
layers, with or without lateral steps in the interface plane).

The structure in the PL spectra as a function of energy can be used to infer
the position of various energy levels—in particular the bandgap of the different
layers—while the linewidths of the PL features can be interpreted in terms of
uniformity and absence of fluctuation. PL as a diagnostic technique has a num-
ber of advantages: it is nondestructive, fairly simple to implement, able to give
a rapid turnaround of information to crystal growers, and capable of use in a
wafer-mapping mode (i.e., checking out the uniformity of layers in a manufac-
turing environment). The disadvantages include complications that arise if one
has (as is often the case) an active device structure with heavily doped contact
layers on either side; such doped layers tend to reabsorb and redistribute the lumi-
nescent energy. The qualitative results produced are particularly useful for many
structures of optical devices (lasers etc.). Changes to the PL spectra under the
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Fig. 2.5 a Photoplumenescence spectra for wells of different thickness WL . b The photolumines-
cence excitation spectra from GaAs quantum wells (after [16])

influence of temperature changes, applied stress, magnetic fields, etc. all provide
further insight into the thicknesses, compositions, and uniformity of multilayers.
Photoluminescence excitation (PLE) spectroscopy involves the detection of light
at a fixed energy (generally near a prominent band-edge feature, e.g. the lowest
bandgap) while the excitation energy is monochromatic and is swept in energy.
The amplitudes of features in the PLE spectra provide further information about
the cross-section of the optical absorption processes involved in the relaxation of
the excited electrons (excitons [82]). Typical PL and PLE data for a range of thin
layers of GaAs between thicker AlGaAs layers, according to [16], is shown in
Fig. 2.5.

4. STM yields surface topographies and work-function profiles on an atomic scale
directly in real space. In terms of classical physics, a transfer process of an elec-
tron from one solid into another can be thought of as an electron transfer over
a vacuum barrier. This process requires additional energy and because of this
it has a small probability. On the other hand, according to quantum mechanics,
a particle can penetrate a classically forbidden spatial region under a potential bar-
rier. Thus, electron transfer between two solids can occur as a tunneling process
through (under) vacuum barrier. The principle of STM, which is based on elec-
tron tunneling, is straightforward. It consists essentially of a scanning metal tip
(one electrode of the tunnel junction) over the surface to be investigated—the
second electrode. At present, the resolution of STM reaches 0.5 Å vertically and
well below 2 Å laterally (see, e.g. [10]). On the other hand, STM is subject to
some restrictions in application: only conductive samples can be investigated,
and measurements usually have to be performed in UH vacuum. At the same
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Fig. 2.6 Cross-sectional STM. a An image of a stack of InAs islands in GaAs. b The lattice
parameter in the growth direction in an InAs island (the experimental data were obtained from
cross-sectional STM; the solid line is from a simulation assuming an In content increasing from
island base to island apex). c Comparison between measured and simulated height profiles for a
similar sample. d The electronic wavefunction measured at two different tip biases, compared with
simulation for the ground and the first excited states (after [9])

time, the tunnel current is sensitive to material composition and strain. Atomic
resolution in both lateral and vertical directions makes STM an ideal tool for the
investigation of growing surfaces at this scale, which can give insight into growth
mechanisms. STM systems attached to a growth chamber allow measurements
to be made without breaking the vacuum after growth [76]. It is remarkable that,
apart from providing structural information, low-temperature STM has been used
for wavefunction mapping of single electron states in nanostructures. Applied
to the InAs dots (islands) the STM methods directly reveal s-, p-d-, and even
f-type states as made visible by an asymmetry of the electronic structure (see
Fig. 2.6), which can be attributed to a shape symmetry of the islands (see also
[9, 83]).

5. An atomic force microscope (AFM) measures the force between the sample sur-
face and a very fine tip. The force is measured either by recording the bending
of a cantilever on which the tip is mounted—in contact mode—or by measuring
the change in resonance frequency due to the force—the trapping mode. With a
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Fig. 2.7 PbSe islands with {001} facets. a AFM image of the top surface of a PbSe/PbEuTe island
multilayer grown on BaF2. b The autocarrelation function. Islands are arranged in a regular array
up to the sixth-nearest neighbor (after [9])

typical resolution of several nanometers laterally and several Å vertically, AFM
is ideally suited to characterize the shapes of nanostructures. With AFM, any
surface can be investigated. Furthermore, most semiconductor materials oxidize
under ambient conditions, so that, strictly speaking, the AFM images usually
show the surface of this oxide. When obtaining quantitative data such as lateral
sizes and heights of structures, this has to be kept in mind, as well as the fact that
this image is actually a convolution of the sample’s surface morphology with the
shape of the microscope tip. Examples of the quantitative analysis of AFM im-
ages are shown in Fig. 2.7 [9]. There, the top surface of PbSe/PbEuTe multilayers
is shown. From Fig. 2.7a, one can see that PbSe forms triangular pyramids with
[001]-type side facets. The lateral ordering can also be analyzed. In Fig. 2.7b, a
hexagonal in-plane arrangement of pyramids is evident (for details see [8, 9]).

6. Among the methods which allow one “to see” things at the nanometer scale,
two types of electron microscopy play an important role. Transmission electron
microscope (TEM) makes possible the visualization of thin slices of material
with nanometer resolution [10]. This technique has subnanometer resolution,
and, in principle, can resolve the electron densities of individual atoms (see, also
[1, 74]). A TEM operates much like an optical microscope, but uses electrons
instead of visible light, since the wavelength of electrons is much smaller than
that of visible light. As we have already discussed, the resolution limitation of
any microscope is based on the wavelength of the probe radiation. Since electrons
are used instead of light, glass lenses are no longer suitable. Instead, a TEM uses
magnetic lenses to deflect electrons. In a TEM, the electrons are collimated from
the source and passed through the sample, and the resulting pattern of electron
transmission and absorption is magnified onto a viewing screen. In scanning
electron microscope (SEM), the electron beam is not projected through the whole
sample area. Instead, it is raster-scanned across the surface, and the secondary
electrons, or X-rays, emitted from the surface are recorded. This generates a low-
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Fig. 2.8 Schematic diagrams of SEM and TEM

resolution image, but allows the direct mapping of surface features, and can even
be used for elemental analysis. The scheme the both types of electron microscope
are depicted in Fig. 2.8. Thus, the structural and chemical information provided
by TEM (SEM) has made it the single most important analytical tool available
(for details see [84, 85]).

One example of atomically resolved TEM, from which the position of unit cells,
strain, and composition information were derived, is depicted in Fig. 2.9. Remarkably,
these techniques make it possible to visualize a detailed map of the strain for an
object of size a few tens of nanometers. From Fig. 2.9 it is seen clearly how the strain
increases at the apex of the InGaAs island, while around the island the strain changes
its sign.

Concluding this paragraph, we should note that powerful characterization tech-
niques have been developed to study nanosize objects. The techniques give 3D im-
ages in real space and on atomic scale in all three dimensions. The methods are
nondestructive (excluding TEM). They provide the means to perform structural and
chemical analysis of materials used in nanostructures. Moreover, these techniques
make it possible to observe and measure directly the electron distribution inside the
nanostructures; that is, it is possible to observe the electron probability density (for
details see [8–10, 86–88]).
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Fig. 2.9 Strain distribution obtained from the TEM images of InGaAS islands in GaAs by using
the method of digital analysis of lattice images (after [9])

2.4 Nuclear Technology

The advances in epitaxial thin film homo and heterostructures. synthesis, which
have been achieved through a variety of epitaxial techniques [5, 6], have led to a vast
array of new solid-state structures with many fascinating properties (see, e.g. [1–4]).
In view of this vast variety of activities and discoveries of isotope heterostructures,
including isotope heterostructures, has been studied only in the last two decades
[89–97]. In combination with the well-established neutron transmutation doping
(NTD [12]) technique, isotope heterostructures appear to represent a family of solid-
state structures, which offer new possibilities and numerous advantages over the
traditional multilayer structures (see above). The formation of a doped isotope mul-
tilayer structure can be broken down into two independent steps: growth of the struc-
ture with isotopically pure or deliberately mixed layers and selective doping with the
NTD process (see, also [96]). The formation of an isotope multilayer structure dif-
fers from the traditional methods only in sofar that isotopically pure and deliberately
mixed sources must be used, and, most importantly, that no dopants are introduced
during the growth process. Especially, it is very prospective for isotope-induced
band gap opening in graphene (will be published). The absence of any dopants dur-
ing the growth process automatically eliminates all dopant-induced effects including
autodoping and dopant interdiffusion between adjacent layers [93]. In principle, all
the established epitaxial techniques can be applied to the growth of isotope mul-
tilayer structures. The only requirement is the availability of semiconductor grade
pure isotopes. The doping of isotope heterostructures is achieved with the NTD
[12] techniques after the growth process has been completed. The NTD technique
is isotope selective and therefore it can be used superlatively for the creation of the
low-dimensional structure. The cross-section for thermal neutron capture and the
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subsequent nuclear processes of practically every stable isotope of all elements have
been measured, studied, and documented (see also [12] and references therein).

As we all know that breaking the crystal translational symmetry without strongly
influencing its electronic band structure can be done by means of a modification in the
mass of one or more atoms composing the crystal, without translational symmetry, the
wave vector conservation requirements can be circumvented. Ideal models for most
studies of elementary excitations are represented by isotopically pure crystals. A new
field offering interesting physical studies is opened with the growth of isotopically
tailor-made single crystals. The translational symmetry operations can be removed in
part by artificial fabricating isotopic superlattice in which layers of two isotopically
enriched materials alternate periodically. MBE of isotopically controlled germanium
has enabled studies of low-dimensional phonons in isotope superlattice [91–94] and
quantum dots [95].

In the remainder of this paragraph we describe the results of Raman measurements
on novel kinds of heterostructures, a series of isotopic superlattices of germanium
and silicon [92–96]. These samples represent an excellent model system to study
the vibrionic properties of superlattices because the electronic structure should be
affected only weakly by changes in the isotopic mass (see, e.g. [31, 56]).

Since these changes are the only difference between the superlattices constituents,
Raman spectroscopy is the only nondestructive method to investigate their structural
properties. Experimental data are compared with the results of planar force-constant
model [91]. Let us consider the case of Ge, with its five isotopes (see also [65]).
The readers will ask themselves if one should see five phonons (or more if they
know that there are two atoms per primitive cell), corresponding to the five different
masses, or only one corresponding to the average mass. We all know that the latter
is true. The transition from the average mass vibrations to those localized at all
possible pairs is an example of the Anderson localization phenomenon [98], which
is observed in Raman experiments on LiHx D1−x system (for details see [61]). In a
3D crystal fluctuations in the parameters of the secular equation lead to localization
(measured in units of frequency, i.e., (�M/M)ω0) are larger than the bandwidth of
the corresponding excitations [65, 66]. For optical phonons in Ge this bandwidth
is 100 cm−1 while (�M/M)ω0 � 0.04 × 300 = 12 cm−1 (see e.g. [98, 99]).
Hence, no phonon localization (with lines corresponding to all pairs of masses) is
expected, in agreement with the observation of only one line at 304 cm−1 (at 77 K)
for natural Ge (see Fig. 31 in [65]). For comparison we indicate that the bandwidth
in the LiHx D1−x mixed crystal is more than 500 cm−1, therefore the crystal and
localized phonons are in coexistence (for details see [61]).

In superlattice composed, for example, of n layers of 70Ge and m layers of 76Ge
repeated periodically, one would expect to find optical modes localized or nearly
localized in each of two constituents. Schematics of Si isotope superlattice are
depicted in Fig. 2.10. Koijma et al. [96] have grown three kinds of silicon isotope
superlattices (28Sin/30Sin , with n = 8, 12 and 24) using the solid-source MBE
technique. In this paper n denotes the thickness of each isotope layer in atomic
monolayers, each 0.136 nm thick. The periodicity, i.e., the number of 28Si/30Si
pair layers stacked vertically, are 80, 50 and 30 for n = 8, 12, and 24 samples
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Fig. 2.10 Schematics of Si
isotope superlattices. Thick-
ness of each isotope layer
are 1.1; 1.6; and 3.2 for
28Si8/30Si8; 28Si12/30Si12 and
28Si24/30Si24 samples, respec-
tively. Low index denotes the
thickness of each isotope layer
in atomic monolayers, each
0.136 nm thick (after [96])

Fig. 2.11 Raman spectra of
the 28Sin /30Sin samples with
n = 8, 12 and 24 (after [96])

respectively. The resulting total thickness of the superlattice are 160–200 nm (see
Fig. 2.10). The source for the 28Si layer is actually natSi which is composed of 92.2%
28Si. The source for the 30Si layer is a single Si crystal isotopically enriched to
30Si(∼98.74% [97]). In MBE in individual effusion cells equipped with crucibles
made of high purity tantalum. The crucible temperature is maintained at 1, 400◦C
for a growth rate of ∼0.01 nm/s. The base pressure of the vacuum is 5 × 10−10 torr
and the pressure during growth is ∼10−9 Torr.

As shown above, the E versus k dispersion of phonons in the superlattice is zone-
folded due to the new periodicity, na, introduced by the (28Si)n − (30Si)n unit where
a is the periodicity of the bulk Si. Because Raman spectroscopy, to first order, probes
phonons situated at k ∼ 0 in the dispersion relation, while only one longitudinal
optical (LO) phonon peak is observed with bulk Si, multiple LO phonon peaks should
appear for isotope superlattice due to the zone folding or phonon localization (see, e.g.
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Fig. 2.12 a Experimen-
tal Raman spectra of a
(70Ge)16(

74Ge)16 superlat-
tice for different annealing
steps at 500◦C. b Calculated
Raman spectra for the same
superlattice using the same
parameters (after [93])

[101]). Figure 2.11 shows the Raman spectra of Si superlattice. As expected, many
peaks are observed on the shoulders of the large natSi substrate LO peak around
523.5 cm−1. The wavenumbers of the identified peaks are indicated in Fig. 2.11 for
comparison with theoretical predictions fulfilled in the planar bond-charge model
for Si (see [99]). As was shown in [97] theoretical curves are not smooth due to
anticrossings. In general, the agreement between the experimental and theoretical
results is excellent, except for the one detail while LO1(

28Si) peaks in n = 12 and
24 samples are hidden in the large substrate peak, the LO1(

28Si) peak is observed
experimentally for the n = 8 sample and its position deviates from the calculation
(for details see Fig. 4 in [96]).

Raman spectra of a series of isotopic 70(Ge)74
n (Ge)n superlattice with 2 ≤ n ≤

32 (8 ≤ n ≤ 24) was published in [92, 93]. Three modes could be observed (see Fig.
2.12) for the 70(Ge)74

16(Ge)8 “as-grown” superlattice as theoretically predicted [98].
We should underline the excellent agreement between results of papers [92, 93].

In conclusion we emphasize that isotopic superlattices represent an excellent
model system for the investigation of confinement of optical phonons. Both fre-
quencies and relative intensities of the measured spectra are in good agreement
with calculations based on a planar bond–charge model and the bond–polarizability
approach.



Chapter 3
Electron Excitations in Low-Dimensional
Structures

3.1 Wave-Like Properties of Electrons

In classical physics we deal with two kinds of entities: particles, such as a small
mass which obeys Newtoniat’s equations, and waves as for example, electromagnetic
waves which behave according to Maxwell’s equations. Moreover, classical physical
models assume the continuity of quantities and involve no restrictions concerning
very small physical structures. The quantum theory shows, however, that values of
some measurable variables of a system, can attain only certain discrete meanings.
Therefore, in dealing with very small objects, like atoms, the above classification
(particles and waves) is not enough to describe their behavior, and we have to turn to
quantum mechanics, and to the dual concept of wave-particles. For instance, if light
interacts with a material, it is better to think of it as being constituted by particles
called photons instead of waves. On the other hand, electrons which have primary
concept of particles, behave like waves, when they move inside a solid of nanometric
dimensions.

In the third decade of the twentieth century, Davison and Germer showed that elec-
trons impinged against and in fact diffracted, as if they were waves, and followed
Bragg’s low of diffraction [26]. The details of the electron’s waves are described
in [102]. The illustration in Fig. 3.1 clearly shows the wave-particle dualism of the
electron by means of the accumulation of many single shots, corresponding to inde-
pendent electrons, in an interferometry experiment performed by A. Tonomura (for
details see [102]).

In 1924, de Broglie assumed that to every particle of momentum p, a wave of
wavelength

λ = �

p
, (3.1)

whereas usually � is a Planck’s constant (� = h
2π

) and
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Fig. 3.1 Observing the wave-like properties of the electrons in the double slit experiment (after
[102]). The pictures a −→ c have been taken at various times: pictures on the monitor after a 10
electrons, b 200 electrons, c 6,000 electrons, and d 140,000 electrons. Electrons were emitted at a
rate of 10 per second. [after A. Tonomura, 2006, Double-slit experiment (http://www.hqrd.hitachi.
co.jp/globaldoubleslit.cfm)]

p = �

λ
= h

2π
· 2π

λ
= �k. (3.2)

In (3.2) k is the so-called wave number. According to quantum mechanics the
electron is described by successive quantum-mechanical states, which represent a
certain probability that the particle may be located in a specific spatial region. These
measures of probability can be calculated from the wave function � that results from
the solutions of a partial differential equation called the Schrödinger equation

[
− �

2

2m
∇2 + V (

−→r , t)

]
� = i�

∂�

∂t
, (3.3)

where ∇2 is the operator ( ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ), and V (
−→r , t) is the potential energy,

which is generally a function of position and time. As is known, the function � does
not have a physical meaning, the product of � by its conjugate (�∗) is a real quantity,
such that the indicated above probability dP of funding a particle in a small volume
dV is given by

dP = |�|2dV . (3.4)

If the potential energy V is not time dependent, we can search for a solution to
Eq. (3.3) of the form

�(
−→r , t) = �(

−→r )e−iωt . (3.5)

http://www.hqrd.hitachi.co.jp/globaldoubleslit.cfm
http://www.hqrd.hitachi.co.jp/globaldoubleslit.cfm
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Substituting Eq. (3.5) into (3.3) and writing E = �ω, we can find the time-
independent Schrödinger equation

[
− �

2

2m
∇2 + V (

−→r )

]
�(

−→r ) = E�(
−→r ) (3.6)

for the time-independent wave function �(
−→r ). Schr ödinger’s equation can be solved

exactly in a few cases (see, e.g. [15, 48, 49, 50]). Probably the simple stone is that
of free particle, as for instance a free electron of energy E and mass m. In this case
�(

−→r ) = 0 and the solution of Eq. (3.6) is easily found to be

� = Aei(kx−ωt) + Bei(−kx−ωt) (3.7)

where

k =
(

2mE

�2

)
. (3.8)

Therefore, the free electron is described by a wave, which according to the de
Broglie relation has momentum and energy given, respectively, by

p = �k, E = p2

2m
. (3.9)

In general, we will assume that the electron travels in one direction, for example,
along the x-axis from left to right, and therefore the coefficient B in Eq. (3.7) is zero.
The wave function for the free electron can simply be written as:

� = Aei(kx−ωt). (3.10)

Another example in which Schrödinger’s equation can be solved exactly is that of
the hydrogen atom for which the potential is Coulombic, i.e., V varies with distance
r between proton and electron in the form 1/r. Solving Schrödinger’s equation, one
gets the well-known relation for the electron energies [48, 49, 50]:

En = − mr e4

2(4πε0)
2
�2n2

= −13.6

n2 eV, n = 1, 2, 3, . . . . . . (3.11)

In the last expression mr is the reduced proton–electron mass (mr = Mpm
Mp+m ). In

solid-state physics, the mathematical model of the hydrogen atom is often used, as
for example, in the study of the effects of impurities and excitons in crystals [26].
Although the equation giving the values of the energy is similar to Eq. (3.11), the
values of the binding energy En are much smaller since the dielectric constant of the
medium has to substitute the value of the permittivity of vacuum ε0. For instance, in
the case of silicon, the value of the dielectric constant is about 12ε0 [103].
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Another important relation that derives heuristically from the model described
above is Heisenberg’s uncertainty principle: in any experiment, the products of the
uncertainties, of the particle momentum �px and its coordinate �x must be larger
than �/2, i.e.,

�px · �x ≥ �/2. (3.12)

There are of course corresponding relations for �py · �y and �pz · �z. It is
important to remark that this indeterminacy principle is inherent to nature, and has
nothing to do with errors in instruments that would measure px and x simultaneously.
The second part of this principle is related to the accuracy in the measurement of the
energy and the time interval �t required for the measurement, establishing

�E�t ≥ �/2. (3.13)

So, uncertainty principle denotes that the location or the momentum of a parti-
cle, and its energy or its time of observation can only be determined imprecisely.
This statement is very important as we are considering nanoelectronic applications,
because the dimensions of such devices are so small that we can use the uncertainty
principle to roughly estimate the relevant nanoelectronic effects, for example, the tun-
neling effect. In the following sections some important nanoelectronic structures will
be discussed. Thereby it is inevitable to apply the wave model of matter to describe
the behavior of the electrons involved. The upcoming example of the potential shows
well that it is not possible to correctly determine the behavior of an electron in such
configuration by using the classical-particle model.

In conclusion of this paragraph we should note that the interpretation above of
|�|2 suggests the introduction of the term information. The information delivered
by a measuring process is inversely proportional to the probability of localizing a
particle in the observation space [102, 104]. Although this relation to information
theory is interesting, the concept was not generally adopted by physicists.

3.2 Dimensionality and Density of States

As we know from solid-state physics, most physical properties significantly depend
on the density of states (DOS) function S. The DOS function, at a given value E of
energy, is defined such that S(E)�E is equal to the number of states (i.e. solution of
Schrödinger equation) in the interval energy �E around E (see, e.g. [3]). We also
know that if the dimensions Li (i = x, y, z) are macroscopic and if proper boundary
conditions are chosen, the energy levels can be treated as quasi-continuous [26]. On
the other hand, in the case where any dimensions Li gets small enough, the DOS
function becomes discontinuous. Let us next obtain the DOS function for several
low-dimensional solids (see, also [3, 74]).

We also know that every electron state is defined by the set of numbers (kx , ky, kz).
According to the Pauli exclusion principle there will be two electrons (spin up and
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Fig. 3.2 Normal structures with different dimensions: normal solid-state body, quantum well,
quantum wire, quantum dot. Additionally their DOS are illustrated

spin down) for each occupied state. Since the electron energy is proportional to k2,
the occupied points in k-space, expressed by the set of all combinations of values
of kx , ky, kz will be located inside a sphere of radius k = kmax. On the other hand,
the difference between two consecutive values of each ki component (i = x, y, z) is
2π/L . Therefore, each allowed value of

−→
k (kx , ky, kz) should occupy a volume in

k-space given by (
2π

L

)3

= (2π)3

V
, (3.14)

where V is the volume of the crystal. Thus, the number of electron states with values
lying between k and k + dk should be

2
4πk2dk

(2π)3 V
= V k2dk

π2 , (3.15)

where the factor 2 takes into account the spin. Since the E = E(
−→
k ) relation is given

by Eq. (3.8), we have finally for the DOS function in energy the expression

dS(E)

dE
= V

2π2

(
2m∗

�2

)3/2 √
E . (3.16)

From the last relation, we see that dS(E)
dE increases as the square root of energy

(see, Fig. 3.2).
The behavior of electrons when their motion is restricted along one direction in the

wells of infinite height corresponds to a well-known problem in quantum mechanics,
the so-called particle in a box of infinite wells [30].
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In two-dimensional (2D) nanostructures carrier motion for both electrons and
holes is not allowed in the direction perpendicular to the well, usually taken as the
z-direction because of the potential wells. However, in the other two spatial directions
(x, y) parallel to the crystal interfaces, the motion is not restricted, i.e. the electrons
behave as free electrons. It is well-known from quantum mechanics that, in the case
of infinite potentials barriers, the wave functions and energy levels of the bound
electrons are given by

�n(z) =
(

2

a

)1/2

sin
(πnz

a

)
, (3.17)

En = �
2π2

2m∗a2 n2, n = 1, 2, 3, . . . (3.18)

Here, m∗ is the effective mass of the electrons in the well material for the motion
along z-direction and a is the width of the well. From the last relation (3.18) we can
derive several important consequences:

1. In general, quantum size effects will be more easily observable in quantum struc-
tures of very small size a, and for materials for which the electron effective mass is
as small as possible. In this case, GaAs nanostructures are very convenient since
m∗ ∼ 0.067 m0 [1, 14], where m0 is the free electron mass. This is equivalent to
saying that in materials for which the electron mobility or the free electron path
are large (see above), quantum effects are easier to observe.

2. Quantum size effects, which require energy transitions of electrons between
levels, are better observed at low temperatures, since the mean thermal energy of
carriers is of the order of kT.

As was indicated above, the motion of electrons in the quantum well (QW) is
confined only in one direction, z, but in the (x, y) planes the electrons behave as
in a 3D solid. Therefore, the electron wave function is separable as the product of
�x , �y and �z (see, also [3]) i.e.,

� = �x · �y · �z (3.19)

where, �x and �y satisfy the Schrödinger equation for a free electron, i.e., traveling
wave, while �z is given by the Schrödinger equation with a square well potential
V (z) and therefore can be expressed in Eq. (3.17). The expression for the total energy
of electrons in the potential well, can then be written as

E(kx , ky, n) = �
2

2m∗ (k2
x + k2

y)+En = �
2

2m∗ (k2
x + k2

y)+ �
2π2

2m∗a2 n2, n = 1, 2, 3, . . .

(3.20)

where the quasi-continuous values of kx , ky are determined by the periodic boundary
conditions as in the case of free electron in the bulk. Using the same algebra, we get
for the DOS function in 2D case:
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dS(E)

dE
= 2m∗

π2�2 . (3.21)

Note that in the 2D case, the DOS function is a constant, independent of energy
and exhibits a staircase-shaped energy dependence (see, also Fig. 3.4) in which all
the steps are of the same height, but located at energies En given by (3.18). It can
be appreciated that interval energy between 0 and E1 is not allowed. For E such that
E1 < E < E2 the electrons will be located in the subband corresponding to n = 1
and the value will be m∗

π2�2 . For the energy interval between E2 and E3, the electrons
can be located either in the n = 1 or in the n = 2 subbands, and consequently the
DOS function would be twice the above value, i.e., 2m∗

π2�2 ( 4m∗
π2�2 ; 4m∗

π2�2 etc., see Fig.
3.2). Such picture is a directly observed by optical absorption measurements [105].
When an electron is allowed only 1D motion (along. say, the x-direction), the energy
is given by

E = �
2k2

x

2m∗ (3.22)

A procedure analogous to that used above then yields for the DOS the expression

dS(E)

dE
= 1

π

(
2m∗

�2

)
1√
E

. (3.23)

Equation (3.23) shows that the DOS function of a 1D electron gas (1D) has a
square-root singularity at the origin. This result will have important consequences in
the physical properties of quantum wires (QWRs).

Quantum dots (QDs) are often nanocrystals with all three dimensions in the
nanometer range (Lx , L y, Lz). In this case, there is no continuous DOS function,
since there is quantization in three spatial directions. To consider the energy spec-
trum of a zero-dimensional system, we have to study the Schrödinger equation (3.6)
with a confining potential that is a function of all three directions. The simplest case
is the quantum box in the form of a parallelepiped with impenetrable wells. The
corresponding potential, V (x, y, z) is

V (x, y, z) =
{

0, inside of the box,
+∞, outside of the box

}
, (3.24)

where the box is restricted by the conditions 0 ≤ x ≤ Lx , 0 ≤ y ≤ L y, 0 ≤ z ≤ Lz .
Using the results of the above analysis discussed previously (see also [3]), one can
write down the solutions of the Schrödinger equation for a box:

En1,n2 ,n3 = �
2π2

2m∗

(
n2

1

L2
x

+ n2
2

L2
y

+ n2
z

L2
z

)
, n1, n2, n3 = 1, 2, 3, . . . . . . . . . (3.25)
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�n1,n2 ,n3 (x, y, z) =
√

8

Lx L y Lz
sin

(
πxn1

Lx

)
sin

(
π yn2

L y

)
sin

(
π zn3

Lz

)
. (3.26)

Of fundamental importance is the fact that En1 ,n2 ,n3 is the total electron energy,
in contrast to the previous cases, where the solution for the bound states in a QW
and QWR gave us only the energy spectrum associated with the transverse confine-
ment (see Eqs. (3.20) and (3.22)). Another unique feature is the presence of three
discrete quantum numbers n1, n2, n3 resulting straightforwardly from the existence
of three directions of quantization. Thus, we obtain 3-fold discrete energy levels and
wave functions localized in all three directions of the quantum box. In a QD of a
parallelepipeds shape we have three quantum numbers n1, n2, n3, that substitute for
the three components of the wavevector

−→
k : kx , ky, kz . The discrete spectrum in a

quantum box and the lack of free propagation of a particle in any direction are the
main features distinguishing QDs from QWs and QWRs. As is well known, these
features are typical for atomic systems as well [48–50].

Since in the case of QDs the electrons are totally confined, the energy spectrum
is totally discrete and the DOS function is formed by a set of peaks (see, Fig. 3.2)
in theory with no width and with infinite height. In practice, the peaks should have
a finite width, as a consequence, for instance, of the interaction of electrons with
lattice phonons and impurities.

3.3 Electron in Quantum Dot

If electron motion is quantized in all three possible directions, we obtain a new phys-
ical object, a macroatom. Questions concerning the usefulness of such objects for
applications naturally arise from the point of view of their electronic applications.
A fundamental question is the following: what is the current through a macroatom?
A valid answer is that there exists the possibility of passing an electric current
through an artificial atom due to tunneling of electrons through quantum levels of
the macroatom (see, e.g. [106, 107]). The field of single electron tunneling (SET)
comprises phenomena where the tunneling of a microscopic charge, usually carried
by an electron or a Cooper pair, leads to microscopically observable effects (see, also
[109, 110]). The basic principles governing single charge tunneling through QD are
briefly outlined in this paragraph.

For the description of our task, let us imagine a semiconductor of nanometric
size in the three spatial dimensions, for example a QD (see Fig. 3.2). Below we will
show that even change of one elementary charge (electron) in such small systems has
a measurable effect in the electrical and transport properties of the dot [107]. This
phenomenon is known as Coulomb blockade, which we will discuss in the simplest
possible terms (see, also [103]). Let us imagine a semiconductor dot structure, con-
nected to electron reservoirs (e.g. drain and source) of each side by potential barriers
or tunnel junctions (see, Fig. 3.3a). In order to allow the transport of electrons to or
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Fig. 3.3 a Scheme of a
quantum system to observe
Coulumb blockade effects;
b I–V characteristics in a
QD showing the Coulomb
blockade effect

from reservoirs, the barriers will have to be sufficiently thin, so that the electrons can
cross them by the tunnel effect. Further, suppose that we wish to change the number
N of electrons in the dot by adding just one electron, which will have to tunnel for
instance from the left reservoir into the dot. For this to happen, we will to provide
the potential energy eV to the electron by means of a voltage source. If the charge
in the QD is Q and its capacitance C, the potential energy is Q2/2C . Therefore an
energy of at least e2/2C will have to be provided to the electron, which means that
for the electron to enter the dot, the voltage will have to be raised to at least e2/2C .
Since the electron can either enter the dot or leave (this process is equivalent to a
hole entering the dot), we see that electrons cannot tunnel if

|V | < e/2C. (3.27)

Therefore, there this is a voltage range, between −e/2C and e/2C , represented
in Fig. 3.3b, in which current cannot go through the dot, hence the name of
Coulomb blockade given to this phenomenon (see, also [109] and references therein).
Evidently, if the above process is continued and we keep adding more electrons, we
will have the situation represented in Fig. 3.4, in which we will observe discontinu-
ities in the current through the QD whenever the voltage acquires the values expressed
by:



40 3 Electron Excitations in Low-Dimensional Structures

Fig. 3.4 Charging of a QD
capacitor as a function of volt-
age, in normalized coordinates

V =
(

1

2C

)
(2n + 1) e, n = 0, 1, 2, 3, . . . (3.28)

Observe that in Fig. 3.4 we have made use of normalized coordinates, both in
horizontal and vertical axes, to better appreciate the effect of the quantification in
current and voltage.

It is also interesting to observe from the above equations that as the size of the
QD is reduced, and therefore C gets smaller, the value of the energy necessary to
change the number of electrons in the dot increases. In this case, it will be easier to
observe the Coulomb blockade, since the changes in voltage and electric energy has
to be much larger than the thermal energy kT at the working temperature, in order
to observe measurable Coulomb blockade effects. Therefore, we should have for the
capacitance:

C 
 e2

kT
. (3.29)

For this condition to be fulfilled, either the capacitance of the dot should be very
small (values less than 10−16 F are very difficult to get) or we should work at very
low temperatures, usually smaller than 1 K.

Another condition to observe SET is that the number of electrons in the dot should
not fluctuate in equilibrium. Let us assume that the time taken for an electron to be
transferred in or out of dot is of the order of RT C , where RT is the equivalent
resistance of the tunnel barrier and C the capacitance of the dot. Fluctuations in the
number of electrons in the dot induce changes in potential energy of the order of
e2/C . Therefore we should have, according to the uncertainty principle

�E · �t = e2

C
RT C > h (3.30)
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and consequently for Coulomb blockade effects to be clearly observed we should
have

RT � h

e2 = 25.8 k	. (3.31’)

In single electron transport experiments, usually the current is measured, which
is proportional to the conductance. In terms of the conductance, the above condition
can be written as (for details, see, also [103, 107])

G 
 e2

h
. (3.32)

In reality, electrical methods applied to QDs to realize useful devices are not the
only method possible. The control of the electric current through the dots can also be
realized by means of light, sound, etc. (see, e.g. [3, 4]). Consider here optical control
of the dots and optoelectronic functions of 0D devices. The main peculiarities of the
optical properties of QDs arise due to electron and hole quantization (see, also [111,
112]). In QDs fabricated from semiconductors with different Eg , the carrier energies
have the form

EQD
e = EQD

g + εn (n1, n2, n3), EQD
h = −εp(n

′
1, n′

2, n′
3). (3.33)

In this expression EQD
g is the fundamental bandgap of the material of the QDs.

Very often EQD
g is less than the bandgap Eg of the surrounding material into which

the dots are embedded, εn and εp depend on sets of three discrete quantum numbers
for electrons and hole, respectively. The model dependences of Eg (3.24) can be
used for estimation of the energy levels. Owing to these discrete energy spectra, QDs
interact primarily with photons of discrete energies:

�ω = 2π�c

λ
= EQD

g + εn(n1, n2, n3) + εp(n
′
1, n′

2, n′
3). (3.34)

In the last formula c is the velocity of light and λ is the wavelength of the light.
The different combinations of quantum numbers (n1, n2, n3) and (n′

1, n′
2, n′

3) give
a series of optical spectral lines, for which interaction between the dots and light is
efficient. Importantly, the fact that EQD

g < Eg implies that the light interacting with
the dots is not absorbed by the surrounding material (for details see [14, 113]).

The optical control of the electric current flowing through a QD can be explained
with the help of a device that can be called a single-quantum-dot photodiode [112,
113]. In Fig. 3.5, we present the experimental results obtained [114] from excitation
of the ground exciton state (n1 = n2 = n3 = n′

1 = n′
2 = n′

3) of a single self-
assembled In0.5Ga0.5As QD embedded into a 360 nm-thick intrinsic GaAs layer.
Since Eg(InGaAs) < Eg (GaAs) the only optically part is the single In0.5Ga0.5As
QD. In [114] the experiments were carried out at 4.2 K. In Fig. 3.5, the photocurrent
is plotted as a function of the electric bias for various wavelengths of illuminating
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Fig. 3.5 Photocurrent reso-
nance for various excitation
wavelengths bias voltage.
At low bias the fine structure
splitting is fully resolved, at
higher bias the linewidth is
increased due to fast tunneling
(after [114])

light. The wavelengths are indicated on the photocurrent curves. One can see that
photocurrent–voltage dependences have, in fact, a pronounced resonant character.
This is explained [114] by the fact that the quantized electron and hole energies are
shorted under an applied electric field, as expected from the so-called Stark effect
observable for atoms and molecules. When these energies are such that wavelength
given by Eq. (3.34) corresponds to the illuminating light, the light excites electrons
and holes inside the QW, which produces the measured photocurrent. As the applied
bias increases, the energies are shifted to smaller values and the resonance wavelength
increases. In Fig. 3.5, spectra for excitation of the same ground exciton state of the
dot for different biases are shown. The observed photocurrent spectra are very narrow
because a single dot is involved [14]. Spectral broadening becomes visible at high
biases when the electron and hole energy levels decay as a result of the increased
rate of tunneling from the dot (for details see [114]).

In conclusion we should underline that a very interesting challenge of future
nanoelectronics is the control of switching device by just one electron (see, also
below).

3.4 Excitons in Nanostructures

When a semiconductor (insulator) of direct bandgap Eg is shone with near—bandgap
light, electron–hole pairs are created. If the electron and the hole were non-interacting
only photon energies �ω > Eg would be absorbed and Eg would be the absorption
edge. The coulombic electron–hole interaction greatly modifies this picture. The
electron–hole attraction gives rise to bound states of the relative motion of the exciton
[115, 116]. The appearance of intense, narrow absorption lines below the fundamental
absorption edge is the manifestation of these bound states.
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In the case of confined systems for electrons and holes, such as QWs, QWRs and
QDs, the excitonic effects are much more important than in bulk solids. In effect,
as will be shown below, the binding energy of the electron–hole systems forming
excitons is much higher in quantum confined systems than in the case of solids, and,
therefore, the excitonic transitions can be observed even at temperatures close to room
temperature, as close to the bulk case for which low temperatures are needed. This
makes the role played by excitons in many optoelectronic devices of nanoscale very
important (see, also [1–4, 15, 74, 114–119]). It represents the Coulombic binding
between the conduction electron and the isotropic part of the �8 hole. To the 0th
approximation in Q, L , M the exciton states formed between the �6 electron and the
�8 hole [120] are 4-fold degenerate and can be calculated like the exciton states in
idealized bulk material (see, e.g. [115, 116]).

3.4.1 Excitons in Quantum Wells

In diamond—like semiconductors the topmost valence band is 4-fold degenerate at
the zone center of the Brillouin zone (�8 symmetry) (see e.g. [103]). In the spherical
approximation the valence Hamiltonian can be written [118–120]

Hv(
−→
k ) = �

2
−→
k2

2mh
1 + �

2

2ml

(−→
k · −→

J
)2

, (3.35)

where 1 is the 4 × 4 identity matrix and
−→
J a spin 3/2 matrix. The effective masses

related to the heavy (h) and light (l) hole masses are:

1

mh
= 1

8mhh
− 9

8mlh
; 1

ml
= − 1

2mhh
+ 1

2MLH
. (3.36)

1. a. To obtain Eq. (3.35) we have used the fact that for
−→
k ‖ −→

J heavy hole states
correspond to m j = ±3/2 and light hole states to m j = ±1/2.

The relative motion of the exciton is thus described by Hamiltonian which is also
a 4 × 4 matrix:

Hexc =
[

p2

2m∗
c

− e2

kr

]
1 − Hv

( p

�

)
. (3.37)

Baldereschi and Lipari [121] have shown that Hexc can be rewritten as

Hexc = P(
−→r ,

−→p )1 +

⎡

⎢⎢⎣

Q L M 0
L∗ −Q 0 M
M∗ 0 −Q −L
0 M∗ −L∗ Q

⎤

⎥⎥⎦ (3.38)
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where P, Q, L, M are functions of −→r and −→p which have S-symmetry (P) and
D-symmetry (Q, L, M) respectively. The important point is that Q, L, M only
involve valence band parameters, whereas P also involves m∗

c and the Coulombic
term −e2/kr. In fact:

P(
−→r ,

−→p ) = p2

2μ0
− e2

kr
, (3.39)

where:
1

μ0
= 1

m∗
c

+ γ1

m0
. (3.40)

Here, γ1 is one of the Luttinger parameters [118] describing the �8 hole kinemat-
ics. The diagonal term P(

−→r ,
−→p ) is thus much larger than the others. It represents the

Coulombic binding between the conduction electron and the isotropic part of the �8
hole (see also [120]). The zeroth approximation in Q, L, M the exciton states formed
between the �6 electron and the �8 hole are 4-fold degenerate and can be calculated
like the exciton states in idealized bulk materials (see, e.g. [115, 116, 120]) except
that the reduced mass of the exciton involves neither the heavy hole nor the light hole
masses but an average of the two. As shown by Baldereschi and Lipari [121], the
corrections to the 0th approximation are very small under most circumstances (see,
also [122]).

To calculate exciton states in QW heterostructures, one should add the barrier
potentials for the electrons and holes to Eq. (3.38) which have the next expression

Vbarr(ze, zh) = VeY

(
z2

e − L2

4

)
+ VhY

(
z2

h − L2

4

)
, (3.41)

where L is the QW thickness and Ve, Vh the barrier heights for the electrons and holes.
Once again we have neglected some band structure effects, e.g. the effective mass and
dielectric mismatches between the host materials (see also [117]). For the L values
where the size quantization is important, we expect the ze, zh motion to be forced
by the QW effects. We thus need to keep the exact hole masses in order evaluate
the hole confinement energies correctly. This precludes the use of Baldareschi and
Lipari’s type of approach which is based on a suitable averaging of heavy and light
hole masses. Till date, time there does not exist any fully satisfactory treatment of
the exciton binding in quantum nanostructures (see, also [123]). Miller et al. [124]
and Greene and Bajaj [125, 126] have approximated the exciton Hamiltonian (see
also [120]) by

Hex = (P + Vbarr)1 +

⎡

⎢⎢⎣

Q 0
−Q

Q
0 Q

⎤

⎥⎥⎦ (3.42)

Miller et al. took [124] Ve, Vh to be infinite, whereas Greene and Bajaj [117]
accounted for the finite barrier effects; both groups were specifically interested in
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GaAs-Ga1−x Alx As QWs. The advantage of including Q in Hex is that a correct
evaluation of the size quantization of the holes can be obtained. The drawback of
this approximation is the inclusion of terms (brought by Q) for the in-plane exciton
motion which are, in principle, as small as the last over terms L, M (although the
latter are off diagonal). If we remember that the L, M terms actually give rise to strong
anticrossings between the hole subbbands [127, 128, 129], there is some possibility
that they can significantly contribute to the excitonic binding itself (see, also [117]).

As the exciton Hamiltonian Eq. 3.42 is a diagonal matrix, the excitons fall into
two categories; the heavy hole (P+Q) and the light hole (P−Q) excitons. The heavy
hole exciton Hamiltonian corresponds to m j = ±3/2 and is written as

Hhh
ex = p2

ze

2m∗
c

+ p2
zh

2m∗
hh

− e2

k|−→re − −→rh | + VeY

(
z2

e − L2

4

)

+VhY

(
z2

h − L2

4

)
+ p2⊥

2μhh
, (3.43)

where mhh and μhh are defined by

1

mhh
= 1

m0
(γ1 − 2γ2) and

1

μhh
= 1

m∗
c

+ 1

m0
(γ1 + 2γ2). (3.44)

The light hole exciton Hamiltonian corresponds to m j = ±1/2 and is written as:

Hhh
ex = p2

ze

2m∗
c

+ p2
zh

2m∗
lh

− e2

k|−→re − −→rh | + VeY

(
z2

e − L2

4

)

+VhY

(
z2

h − L2

4

)
+ p2⊥

2μlh
, (3.45)

where mhh and μlh are given by the expression:

1

mlh
= 1

m0
(γ1 + 2γ2) and

1

μlh
= 1

m∗
c

+ 1

m0
(γ1 − 2γ2), (3.46)

where γ1 and γ2 are well-known Luttinger parameters [118].
Thus, the heavy hole and light hole excitons again resemble those obtained in

idealized QW structures. However, μlh is not necessarily smaller than μhh. In fact
in GaAs the opposite is true: μlh = 0.051 m0 and μhh = 0.04 m0 whereas mlh =
0.08m0 and mhh = 0.45 m0 (see e.g. [3]). The inclusion of the Q term in Hex inverts
the parts played by the heavy and light masses along and perpendicular to the z
axis. The heavy hole exciton is indeed heavy along z but light in the layer plane and
vice versa. Thus in GaAs-Ga1−x Alx As QW, the curves which represent the binding
energies versus the GaAs slab thickness of the two kinds of excitons should cross.
For large wells the light and heavy hole confinement (governed by mlh and mhh,
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Fig. 3.6 Variation of the
binding energy of the ground
state E1s of the heavy-hole
exciton (solid lines) and
the light-hole (dashed lines)
as a function of the GaAs
QW size (L) for aluminium
concentration x = 0.15 and
0.3 and for infinite potential
wells (after [117])

respectively) are almost complete and the light hole exciton is more tightly bound
because its effective bulk Rydberg is larger than that of the heavy holes. On the
other hand, for narrow GaAs wells, the light holes are less confined than the heavy
holes. The Coulombic interaction between the electron and the hole in the light hole
exciton is thus weaker than the one in the heavy hole exciton. Consequently, the light
hole exciton is less bound than the heavy hole exciton. Figure 3.6 shows Bajaj [117]
results concerning the ground bound exciton states in GaAs-Ga1−x Alx As QWs for
two aluminum mole fractions x = 0.15 and x = 0.3. In these curves, the Dingle’s
rule [130] which states that the conduction band shares (85%) of the total bandgap
difference between GaAs and Ga1−x Alx As has been used. Otherwise, the overall
shapes of these curves look familiar: the exciton binding energies admit a maximum
value versus the GaAs well thickness, whose location and amplitude depend on
Ve, Vh, and μhh and μlh.

To summarize, the Coulombic bound states in heterostructures are qualitatively
well understood [3]. The effect of off-diagonal terms in the exciton Hamiltonian,
however, is an issue for quantitative understanding. We should remember that the
2D can only be approached hypothetically in infinitely QW. Figure 3.7 illustrates the
results of calculations of the exciton biding energy as a function of the width of an
infinitely deep CdTe QW [3]. As is well known the magnitude of the bulk exciton
binding energy for CdTe is 10.1 meV (see, e.g. [120]). The negative values on the
graph of Fig. 3.7 illustrate that it is indeed a bound state. From Fig. 3.7 it can be seen
that 2D exciton binding energy is equal for meaning of bulk exciton binding energy.
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Fig. 3.7 Exciton binding
energy in an infinitely deep
CdTe QW (after [3])

Fig. 3.8 Bohr radius of 2D
exciton in an infinitely deep
CdTe QW (after [3])

Figure 3.8 displays the corresponding Bohr radii rex for the energies of Fig. 3.7.
Remembering that the the Bohr radius in bulk, rex(3D) = 67 Å, then the 2D limit,
i.e.,

Lim rex(2D) = rex(3D)

2
(3.47)

lw −→ 0

is satisfied. The 3D limit is obeyed, although the data on the graph show a slight
scatter around the bulk radii of 67 Å. According to [3], the source of this discrepancy
is numerical accuracy. At the larger well widths, the wave function needs to be
known at many points in order to calculate the binding energy to very high tolerance
(according [3] thus leading to long computational times).

To conclude this paragraph we should note that the Coulombic interaction pro-
duces an excitonic series at every subband [74]. But normally only 1S exciton is
visible for each transition. In very good QWs it is, however, sometimes possible to
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distinguish the 2S exciton [131]. The relative positions offer a very good guide to the
actual exciton binding energy. In practice, the most important effect of the Coulomb
interaction on QW band structure is the appearance of strong, sharp spectral reso-
nances just below the band edge for the first electron-heavy-hole and electron-light-
hole transition (for details see [131]).

3.4.2 Excitons in Quantum Wires

1D semiconductor structures have received interest in recent years, and promising
advances have been obtained in quantum-wire fabrication and in application, e.g.,
photodetectors, photodiodes, and laser devices [131–135]. In analogy to the in-plane
dispersion discussed above, in a QWR it is possible to decouple the motion along the
length of the wire. Taking the axis of the wire along x (see, also Fig. 3.2) the total
potential V (x, y, z) can always be written as the sum of a 2D confinement potential
plus the potential along the wire, i.e.,

V (x, y, z) = V (x) + V (y, z). (3.48)

The eigenfunction can then be written as a product of two components:

�(x, y, z) = �(x)�(y, z). (3.49)

Substituting both (Eqs. (3.48) and (3.49)) into general 3D Schrödinger equation
for constant effective mass, then

− �
2

2m∗

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
�(x)�(y, z) + [V (x) + V (y, z)]�(x)�(y, z).

(3.50)
Writing the energy as a sum of terms associated with two components of the

motion, we get

− �
2

2m∗
(

�(y, z)
∂2�(x)

∂x2

)
+ �(x)

∂2�(y, z)

∂y2 + �

(
x0

∂2�(y, z)

∂z2

)

× �(y, z)V (x)�(x) + �(x)V (y, z)�(y, z) = (Ex + Ey,z)�(x)�(y, z). (3.51)

Now we can write

− �
2

2m∗

(
�(y, z)

∂2�(x)

∂x2

)
+ �(y, z)V (x) = �(y, z)Ex�(x) (3.52)
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− �
2

2m∗

[
�(x)

∂2�(y, z)

∂y2 + �(x)
∂2�(y, z)

∂z2

]
+ �(x)V (y, z)�(y, z)

= �(x)Ey,z�(y, z). (3.53)

In the above, �(y, z) is not acted upon by any operator in the first equation,
and similarly for �(x) in the second equation, and thus they can be divided out. In
addition, the potential component along axis of the wire V (x) = 0, giving the final
decoupled equations of motion as follows:

− �
2

2m∗
∂2�(x)

∂x2 = Ex�(x) (3.54)

and

− �
2

2m∗

[
∂2�(y, z)

∂y2 + ∂2�(y, z)

∂z2

]
+ V (y, z)�(y, z) = Ey,z�(y, z). (3.55)

Equation (3.54) is satisfied by a plane wave of the form exp(ikx x), thus giving
the standard dispersion relation:

Ex = �
2k2

2m∗ . (3.56)

The second of the last equations of motion, Eq. (3.55), is merely the Schrödinger
equation for the 2D confinement potential characterizing a QWR.

Further, we consider the cylindrical QWR and we use the polar coordinate. With
definition of the modulus r and angle θ as in ordinary case, the Cartesian coordinates
then follow as:

y = rsin θ and z = rcos θ. (3.57)

and

r =
√

y2 + z2. (3.58)

The wave function �(y, z) can clearly be written in terms of the new variables
r and θ ; however, the circular symmetry of the wave functions should not have a
dependence on the angle θ . Thus, the wave function can actually be written as �(r),
and the Schrödinger equation therefore becomes:

− �
2

2m∗

(
∂2

∂y2 + ∂2

∂z2

)
�(r) + V (r)�(r) = Er�(r), (3.59)

where the index on Er just indicates that this eigenvalue is associated with the confined
cross-sectional motion, as opposed to the unconfined motion along the axis of the
wire. In addition, the circular symmetry of the potential which defines the wire can
be written as V (r). Now:
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(
∂

(∂y)

)
�(r) =

(
∂

(∂r)

)
�(r) ·

(
(∂r)

(∂y)

)
. (3.60)

Differentiating both sides of Eq. (3.58) with respect to y, gives:

∂r

∂y
= 1

2
(y2 + z2)−

1
2 · 2y = y

r
. (3.61)

Hence:
∂

∂y
�(r) = ∂

∂r
�(r) · y

r
. (3.62)

The second derivative is then:

∂

∂y

∂

∂y
�(r) = ∂

∂y

[
∂

∂r
�(r) · y

r

]
. (3.63)

and thus:
∂2

∂y2 �(r) = y2

r2

∂2

∂r2 �(r) + ∂

∂r

(
1

r
− y

r2

∂r

∂y

)
(3.64)

Finally:
∂2

∂y2 �(r) = 1

r

∂

∂r
�(r) − y2

r3

∂

∂r
�(r) + y2

r2

∂2

∂r2 �(r) (3.65)

and similarly for z, hence:

(
∂2

∂y2 + ∂2

∂z2

)
�(r) = 2

r

∂

∂r
�(r) − (y2+z2)

r3

∂

∂r
�(r) + (y2+z2)

r2

∂2

∂r2 �(r).

(3.66)
Recalling that y2 + z2 = r2, then

(
∂2

∂y2 + ∂2

∂z2

)
�(r) = 1

r

∂

∂r
�(r) + ∂2

∂r2 �(r). (3.67)

Substituting into Eq. (3.59) gives the final form for the Schrödinger equation as
follows:

− �
2

2m∗

[
1

r

∂

∂r
+ ∂2

∂r2

]
�(r) + V (r)�(r) = Er�(r). (3.68)

In this case, reliance has been made on the specific form of the kinetic energy
operator, and hence this Schrödinger equation is only valid for a constant effective
mass. The numerical solution of Eq. (3.68) is shown in Fig. 3.9 [3]. This figure
displays the result of calculations of the electron confinement energy versus the
wire radius, for GaAs wire surrounded by Ga0.8Al0.2As, for constant effective mass.
As expected, the confinement energy decreases with increasing radius and the odd-
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Fig. 3.9 The confinement
energy in a finite barrier
circular cross-section QWR
(after [3])

Fig. 3.10 The radial com-
ponent of the wave function
�(r) for the lowest two eigen-
states in a finite-barrier QWR
with radius 300 Å of circular
cross-section (after [3])

parity eigenstate is of higher energy than for even. This latter point is highlighted in
Fig. 3.10, which plots the radial motion �(r) for the 300 Å radius wire. The even—
(n = 1) and odd—(n = 2) parity nature of the eigenstates can clearly be seen (for
details see [135] and references therein).

3.4.3 Excitons in Quantum Dots

It is perhaps easier to deal with a finite barrier QD with spherical rather than cuboid
symmetry. The approach is rather similar to that derived earlier for the circular cross-
section QWR. Given the spherical symmetry of the potential, then the wave function
would also be expected to have spherical symmetry, hence the Schrödinger equation
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for a constant effective mass could be written (see e.g. [14, 74]) as

− �
2

2m∗

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
�(r) + V (r)�(r) = Er�(r), (3.69)

where the index on Er has been added to indicate that this energy is associated with
the confinement along the radius. In this case:

r =
√

x2+y2+z2. (3.70)

The transition can be made from Cartesian (x, y, z) to spherical polar coordinates,
in effect just r, in the same way above. Using Eq. (3.66), each of the three Cartesian
axes gives an equation of the following form:

∂2

∂x2 �(r) = 1

r

∂

∂r
�(r) − x2

r3

∂

∂r
�(r) + x2

r2

∂2

∂r2 �(r). (3.71)

Therefore, the complete ∇2�(r) is given by:

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
�(r) =3

r

∂

∂r
�(r) − (x2+y2 + z2)

r3

∂

∂r
�(r)

+ (x2+y2+z2)

r2

∂2

∂r2 �(r). (3.72)

and (
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
�(r) = 2

r

∂

∂r
�(r) + ∂2

∂r2 �(r). (3.73)

Substituting into the Schrödinger equation then:

− �
2

2m∗

(
2

r

∂

∂r
+ ∂2

∂r2

)
�(r) + V (r)�(r) = Er�(r). (3.74)

Such spherical symmetric Schrödinger equations have been investigated before
(see e.g. [48, 49, 50]). The last equation as in the previous case, is numerically solved
and Fig. 3.11 shows the results of calculations of the three lowest energy levels of
a spherical GaAs QD surrounded by a finite barrier composed of Ga0.8Al0.2As,
with a sharp boundary. In fact, the formalism above, as that of the circular cross-
section QWR, is applicable for any radial potential profile V (r), e.g. it is also valid
for diffused interfaces [3]. Again, the behavior of the energies as a function of the
spatial dimension, as shown in Fig. 3.11, is as expected in confined systems, namely
the confinement energy decreases as the size of the system increases. Figure 3.12
displays the corresponding radial components of the wave functions. It can be seen



3.4 Excitons in Nanostructures 53

Fig. 3.11 The confinement
energy in a spherical GaAs QD
surrounded by a Ga0.8Al0.2As
barrier (after [3])

Fig. 3.12 The wave functions
of the three lowest energy
states in the 300 Å spherical
QD (after [3])

that they all have a maximum at the center of the potential and that as the principal
quantum number n increases, then the number of nodes increases.

3.5 Biexcitons in Quantum Dots

In 1958, Moskalenko [136] and Lampert [137] suggested that in crystals besides
excitons, more complex electronic quasi-particles might exist, made up of three or
four carriers. The latter, consisting of two electrons and two holes is well known
as biexcitons or excitonic molecules [138]. As the density of excitons is increased,
biexcitons are formed by increasing the light intensity. Biexcitons can be generated
either through ordinary excitation of the crystal or by two-photon absorption each
photon having an energy

hν = Ex − EBxx

2
, (3.75)
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Fig. 3.13 Spectrally resolved
four-wave mixing at τ = 3 ps
showing the heavy hole and
light hole biexcitons. Insert
shows the four-wave mixing
intensity of the heavy hole
exciton and biexciton as a
function of delay (after [140])

where EBxx is the biexciton binding energy and Ex is the exciton energy

Ex = Eg − EBx + �
2k2

2mx
. (3.76)

In the last relation Eg is the bandgap energy, EBx is the exciton binding energy,

and �2k2

2mx
is the kinetic energy with which an exciton moves through the crystal (see,

also [139]).
Compared to the bulk material, an increased stability of biexcitons due to the 2D

carrier confinement is observed for typical III–V structures like GaAs/AlGaAs QWs
[124, 140] (see Fig. 3.13) or for wide bandgap II–VI materials like CdZnSe/ZnSe
[141]. As a consequence of the enhanced biexciton binding energy, a variety of
optical properties, like e.g., the photoluminescence (PL) spectrum, the optical gain
or the four-wave mixing signal especially in wide bandgap II–VI QWs are strongly
influenced by biexcitons (see [141] and references therein).

Below, we briefly review some results obtained from optical spectroscopy on
epitaxially grown single SQDs based on II–VI and II–N compounds. As indicated
above, the biexciton (XX) or X2 is a four-particle state. In its lowest energy state
configuration, two electrons and two holes with antiparallel spins occupy the first
quantized state of the conduction and the valence band in the SQDs, respectively
(see, e.g. [13]). We should add that the QDs in the material systems described here
are quite small with diameters in the order of 10 nm and heights of a few nm. The
biexciton state is therefore a singlet state with a total spin of J = 0. Thus, the exciton
state X represents the final state for the biexciton recombination (see, also [144]).
In II–VI semiconductors, as in III–V materials with a zincblende crystal lattice,
Coulomb interaction leads to positive biexciton binding energies (see Eq. (3.76)),
i.e., the energetic distance between XX (X2) and X smaller than the energy difference
between the first exciton state and the ground state. A typical optical fingeprint for
the X2 is therefore an additional PL line at the low energy side of the exciton emission
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Fig. 3.14 Left side Excitonic (X) and biexcitonic (X2) emission from two individual CdSe/ZnSe
SQDs for different excitation powers. The PL spectra shown in the lower panel are unpolarized, the
data presented in the upper panel represent linearly polarized PL spectra (πx and πy , respectively).
Right side Energy level scheme for the biexciton-exciton cascade in a QD (after [141])

X that exhibits a strong (quadratic) dependence on the excitation power [139]. This
behavior is clearly visible in the left panel of Fig. 3.14. At low excitation density, the
PL spectrum of CdSe/ZnSe SQDs consists of emission peaks stemming from exciton
recombination of two individual QDs. With rising excitation density additional lines
emerge, red shifted by about 24 meV with respect to the excitonic emission X, and
rapidly increasing in intensity, which can be attributed to biexciton emission X2.
The biexciton binding energy is obviously much larger than in III–As based QDs
where typical values of a few meV (∼2 meV [140]) have been determined (see also
[139–143]). When having a closer look at the PL spectra presented in Fig. 3.14,
some more information can be extracted. One should have in mind that in QDs,
the light hole level is shifted to higher energies due to strain and confinement and
thus, excitons are formed between electrons and heavy holes. The ground state of a
heavy hole exciton in an SQD is a spin quadruplet, which can be by the z-component
(= component, according [141] in growth direction) of the total exciton spin Jz .
If the z-component of the electron spin, sz = ±1/2, and the z-component of the total
angular momentum of the heavy hole jz = ±3/2, are antiparallel, in such case, we
get Jz = sz + jz = ±2 (the dark exciton states [142]).

In II–VI QDs the energy difference �0 between bright and dark exciton states
that is given by the isotropic electron–hole interaction energy, amounts to about
1 meV and more which is nearly an order of magnitude larger than in InAs/GaAs
QDs [14]. As can be seen in Fig. 3.14, the exciton fine structure is reflected both in
the exciton and in the biexciton recombination: SQD1 does not show a significant
splitting of the exciton PL signal, while SQD2 exhibits a doublet with an energy
separation of almost 1 meV indicating a reduced QD symmetry. Exactly the same
behavior is observed in the corresponding biexciton lines. Moreover, the high energy
component of the X emission in SQD2 (πx polarized) corresponds to the low energy
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Fig. 3.15 Left panel Transient PL spectra from a single CdSe/ZnSe QD showing the single exciton
X and the biexciton transition (here denoted by B = X2). Right panel Decay curves for the exciton
and the biexciton PL signal (for details see text) (after [141])

component of the X2 emission and vice versa, in agreement with energy level scheme
(see Fig. 3.14). All these effects are easily accessible in wide bandgap II–VI QDs
because the characteristic energy splitting are significantly enhanced with respect to
III–As semiconductor QDs. We may expect a more significant value of the exchange
splitting for exciton and biexciton states in QD of isotope-mixed crystals (see, also
[31, 97]). Thanks to the large biexciton binding energy, II–VI QDs were the first,
where the biexciton-exciton cascade could be traced directly in the time domain on
SQD level [144]. Figure 3.15 depicts transient PL spectra (left) of both emission
lines and the time-dependent intensity of the exciton and the biexciton signal (right
panel). The biexciton emission shows a monoexponential decay with a time constant
of 310 ps. The exciton reveals a more complex behavior: the onset of the exciton line
its delayed, resulting in “plateau–like” characteristics of the exciton decay curve. The
excitation density according to authors of this experiment was set to a value where
an average number of two electron–hole pairs per excitation pulse in the SQD was
generated. Model calculations taking into account the biexciton state, the bright and
the dark exciton states and the “empty” QD (corresponding to a QD population with
2, 1 and 0 excitons, respectively), confirm that the exciton state is fed by the biexciton
recombination causing the delayed onset and the “plateau–like” characteristics of the
exciton emission dynamics (for details see [14] and references therein).
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3.6 Electron–Phonon Interaction in Low-Dimensional Structures

One of the central themes of this chapter is how reducing the size semiconductor
structures down to mesoscopic and smaller scales brings the quantum wave nature of
electrons into play, resulting in electronic and optical properties which are markedly
different from those of bulk structures. Many references [4, 74, 113] describe how
these properties can be exploited in device applications. But one of the key challenges
facing physicists and engineers is how to make devices operate at room temperature.
The main obstacle to achieving this goal is the unavoidable presence of phonons,
the quantum vibration of atoms (ions) making up a solid, and their ability to scatter
electrons. As is well known, the room temperature mobility of 2D (1D, 0D) elec-
tron gas is limited by phonon scattering and phonons provide the principal channel
of energy exchange between confined electrons and their surroundings. Over the
last three decades this topic has been the focus of intensive experimental and the-
oretical investigation, the progress of which has been charted specifically through
two series of International Conferences: Phonon Scattering in Condensed Matter
and Hot Carriers in Semiconductors (see e.g. [145, 146, 147]). Although most of the
basic concepts of electron–phonon interaction are the same as for 2D carrier–phonon
interactions [79–88], the additional carrier confinement gives rise to some interesting
differences. The most notable of these is the so-called phonon bottleneck [149, 150,
151, 152]. Reducing the dimensionality of the carrier system has the effect of reduc-
ing the phase space for carrier scattering. Corresponding to each new direction of
carrier confinement a form factor arises in the electron–phonon scattering rate. This
imposes a restriction on the magnitude of the momentum component in that given
direction of a phonon that can be emitted or absorbed. To illustrate this effect, we
consider the simple picture of an infinite rectangular confinement potential of width
W. The maximum phonon wavevector component in the confinement direction is
given by qmax ∼ π/W . Additionally, the confinement breaks up the carrier energy
spectrum into a set of discrete levels (see, Fig. 3.2) En = π2

�
2/2m∗W 2. We can

see that, for interlevel transitions, as W is reduced the energy �ω = EN
′ − EN of

the emitted phonon increases as W −2, while the momentum cut off increases more
slowly, as W −1. Since, for acoustic phonons, sq = ω, it becomes increasingly dif-
ficult for a phonon to be emitted or absorbed as W gets smaller. For optic phonons
the momentum cut off does not present a problem, but the narrow energy dispersion
means that the carrier level spacing must lie very close to the optic phonon energy
for emission or absorption to take place This could have very serious consequences
for carrier relaxation in QDs (for detail see below Fig. 3.17). However, in QWRs,
the continuous carrier energy spectrum along the wire direction lifts the restriction
a little (for details, see, also [164, 165]).

As we have indicated above, theoretical investigations [151] have found that in
heterostructures. The electron–phonon scattering rate with correct phonon mode
solutions taken into account does not differ significantly from the rate assuming bulk
phonon modes (see, however [152]). For example, the electron–phonon scattering
rate for AlAs-GaAs-AlAs QW will be somewhere in between the rates for bulk
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Fig. 3.16 Longitudinal [001]
acoustic (LA) and optical (LO)
phonon dispersion curves for
GaAs (solid line) and AlAs
(dotted line)

GaAs and AlAs phonons, approaching the rate for bulk GaAs (AlAs) phonons as the
well width increases (decreases) [166]. Only in free-standing structures, when the
confined electrons and phonons are both of lower dimension, are the rates expected
to be qualitatively different from those assuming bulk phonons [167, 168]. In the
following we shall restrict ourselves to QWs and wires embedded in a substrate
and make the simplifying approximation of bulk phonons (see also [147]). The
qualitative differences in the electron–phonon rates between low-dimensional and
bulk semiconductors are then a consequence of the reduced dimensionality of the
electron only.

At 100 K, the dominant phonon energy 3kBT � 26 meV = 210 cm−1, that mostly
acoustic phonons will be present (see Fig. 3.16). Due to this reason for the first we
should consider the lower temperature range where the effect of optical phonons on
electron–phonon rate can be neglected. As is well known (see, e.g. [147]), acoustic
phonons give rise to a perturbing potential in two different ways. In the first, small
changes in the relative positions of the atoms perturb the electrostatic potential expe-
rienced by the electrons, resulting in a change in the electron energy. In the second
way, changes in the relative position of oppositely charged ions Ga and As produce
an electric polarization and hence long-range electric field which again affects the
electron energy. The perturbing potentials known respectively as the deformation
and piezoelastic potentials (see, e.g. [100, 169]), have the following form [170]:

V DP−→q (
−→r ) ≈ CDPq1/2e−−→q −→r , (3.77)

V PE−→q (
−→r ) ≈ CPEq1/2e−−→q −→r (3.78)

Here CDP and CPE are the coupling strength constants and −→q is the phonon
wavevector. In this relations we have neglected the screening due to reduce the
electron–phonon interaction strength (see, also [171]). Below, we have also neglected
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Fig. 3.17 Calculated electron
relaxation rate 1/τ for E0 in the
vicinity of �ωLO. a T = 0 K;
b T = 300 K. The LO peak
is not shown in b, since it is
nearly the same as in a, in this
logarithmic scale. In a, the
scale in abscissa is different
above and below �ωLO, which
is indicated by the vertical
dashed line. Dot diameter L
corresponding to E0 is shown
cross the upper part (after
[156])

the dependence on longitudinal/transverse mode type and have approximated the
atomic lattice as an elastically isotropic continuum (see, however [164]). For the
considered temperature range, the dominant phonon wavelength is much larger than
the interatomic spacing, justifying our use of the continuum approximation which
replaces the discrete atomic lattice vector with continuous position vector −→r . For
the perturbing potentials (3.77) and (3.78) and electron states in the case of a QW
with thickness d and infinite well plane dimensions

�−→
k
(
−→r ) = Cei(kx x+ky y)sin(π z/d) (3.79)

and for QWR with width w, thickness d and infnite length along the x-direction, we
have

�−→
k
(
−→r ) = Ceikx x sin(πy/w)sin(π z/d). (3.80)

The QW matrix elements are
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|〈�k′ |V̂ (q)|�k〉|2 ∼ (|CDP|2q

+ |CPE|2q−1)q−2
z

[
(2πd)2 − q2

z

]−2
sin2(qzd/2)δk′

x ,kx±qx , δk′
y,
δky±qy

(3.81)

and the QWR matrix elements are

|〈�k′ |V̂ (q)|�k〉|2 ∼ (|CDP|2q

+ |CPE|2q−1)q−2
y

[
(2πw)2 − q2

y

]−2
sin2(qyw/2)q−2

z

[
(2πd)2 − q2

z

]−2

× sin2(qzd/2)δk′,k±q (3.82)

where C is a normalization constant, m* is the effective electron mass, for wire we
usually have w > d, and k and k’ are the electron wavevectors before and after
scattering, respectively. In addition to energy being conserved during a scattering
event, we can see that the momentum components parallel to the QW plane and wire
length are also conserved. On the other hand, the momentum components normal to
the well plane and wire length are not conserved. Furthemore, the matrix elements
are suppressed for normal momentum components exceeding the inverse well and
wire thickness. Let us restrict ourselves to the case where the electrons and phonons
are in thermal equilibrium at a common temperature T (hot electrons see [147]).
Taking into account the relation between Fermi energy and areal electron density,
EF = nπ�

2/m∗, we find that an AlAs/GaAs QW with n 5×1011 cm−2 has Fermi
energy in units of temperature, EFkB � 200 K, here m∗ = 0.067 m0 for GaAs [172].
A split-gate AlAs/GaAs quantum wire with a Fermi wavector of the order kF ≈
π/w = 6×109 cm−1 for width w = 500 Å has a Fermi energy EF/kB � 30 K. Such
numbers are represantive of those for actual structures and therefore we typically
find for QWs that electron scattering is approximately elastic in the acoustic phonon
dominated temperature regime, while for QWRs temperatures must be somewhat
lower to have approximately elastic scattering (for details see [166]).We should add
that the electron–phonon interaction due to optical modes has been reviewed in [164].

Below, we will briefly consider carrier–phonon interactions in QDs. The discus-
sion will focus on carrier relaxation processes [156, 172] and, in particular, the pre-
dicted phonon bottleneck effects [160, 162]. In higher-dimensional, e.g. QWs [147,
164], the dominant relaxation process is longitudinal-optical (LO) phonon emission
via Frölich interaction, with subpicoseconnd relaxation time. In a QD, however, this
process is forbidden due to the very discrete nature of the levels, unless the separation
level equals the LO phonon energy �ωLO. Inoshita and Sakaki [156] considered five
(LO, LA, LO ± LA and 2LA) kinds of phonons for description of electron relax-
ation in a QD. According to the results of [156] a first-order contribution (LO and
LA emission) was given supply by a golden rule as

1/τ = 2π

�

∑

−→q
|M if−→q |2 |Nq + 1|δ (

E0 − �ωq
)
, (3.83)
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where Nq is the Bose distribution function 1(
e�ωq kBT −1

) . The matrix element M if−→q
can be written as

M if−→q = a−→q 〈i |ei−→q −→r | f 〉 (3.84)

with
a−→q = D

√
�q/2ρc	 (LA mode) (3.85)

a−→q = g f /q
√

	 (LO mode). (3.85’)

Here, 	 is the system volume, the deformation potential (DP) D = 6.8 eV, density
ρ = 5.36 g/cm3, and the sound velocity c = 5.15 × 105 cm/s (see, e.g. [172,

174]). The Fröhlich coupling constant gf = [2πe2
�ωLO

(
1

ε∞ − 1
ε0

)
] with �ωLO =

35.9 meV, ε∞ = 10.9 and ε0 = 12.9 (GaAs QD). The mode indices to M if−→q , Nq and
ωq are suppressed to avoid unnecessary complication. By converting the summation
into an integral, Eq. (3.83) can be reduced to an analytic form (see, also [173]).
Figure 3.17a shows the relaxation rate 1/τ at T = 0 calculated in [156] as a function
of E0 � �ωLO = 35.9 meV. The LO (one-phonon) contribution has a sharp peak
immediately below �ωLO. This peak decreases exponentially on the low-energy side,
while it drops more steeply (but continuously) in the high energy side and vanishes
for E0 � �ωLO. Although the peak value exceeds 1015s−1, a slight detunning of E0
from peak dramatically reduces 1/τ . (For instance, 1/τ is only 108 s−1 for detunning
�E0 = −0.05 meV). This indicates that taking advantage of the LO process requires
extremely precise tunning of E0 to �ωLO, for more precise than it possible with
current microfabrication technology. The inclusion of the second-order LO + LA
process significantly alters the situation. It gives rise to a rather broad peak on the
high-energy side of �ωLO with a peak value exceeding � 1011 s−1. This peak value
(corresponding to τ = 10 ps), of course, is much smaller than that of the one-phonon
peak, but it is still large enough for our purpose of having efficient light emission.
Figure 3.17b shows 1/τ at T = 300 K. Now it is seen that the LO–LA process,
which is absent at T = 0 K, gives rise to another broad peak on the low-energy side
of �ωLO. The peak structure is nearly the mirror image of the LO + LA peak with
respect to �ωLO. By comparing Figs. 3.17a, b, it is seen that the LO + LA peak is
enhanced by a factor of 102 by the temperature increase. This reflects the enhanced
Bose functions of LA phonons. In Fig. 3.17b, dot diameter L is shown across the top.

To summarize the results of [156] it should be noted that for interval spacing E0 >

0.2 meV (or dot diameter L > 2,000 Å), multiphonon processes are generally found
to provide the dominant relaxation path, with exception of the narrow energy range
�ωLO − 0.3 meV < E0 < �ωLO. This range is so narrow that it would be hopelessly
difficult to tune the interval spacing to this energy. An alternative and more realistic
way to achieve rapid relaxation is the use of the LO ± LA processes, which are in a
wider range of E0 near �ωLO. In this paper [156] was shown that the relaxation time
< 1 ns can be achieved for E0 within the window |E0 − �ωLO| < 3 meV (at 300 K).
This suggest that efficient PL and lasing from a QD will be possible if a dot can be
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designed to have a nearly harmonic (equal-spaced) level structure, where the level
spacings fall into the above indicated window (see, also [160, 162]).

3.7 Exciton–Phonon Interaction in Low-Dimensional Structures

In this present paragraph we aim to give an introduction rather than a comprehensive
review of all properties of 2D, 1D, and 0D excitons and exciton-phonon interactions
(see for example [15, 123, 151, 152 159, 175, 176]). The exciton envelope function
in a state of QW with wavevector

−→
k can be written as [15]:

�k
(−→re , −→rh

) = exp
(

i
−→
k

−→
R‖

)
F (ρ) ϕe (ze) ϕh (zh) , (3.86)

where −→re , −→rh are the electron and hole positions,
−→
R‖ is the position of the exciton

center of mass, ρ = (−→re − −→rh
)
‖ where ‖ indicates the vector component in the QW

plane, F(ρ) is a function describing the relative electron–hole motion [115], z is the
growth direction of the structure, and ϕe (ze) and ϕh (zh) are the electron and hole
wave functions for the first size-quantized level. In the simple variational approach
(see also [15, 16])

F (ρ) =
√

2

πa2
B

exp

(
− ρ

aB

)
(3.87)

In the last relation a0 is the Bohr exciton radius. In 10 nm GaAs/Al0.4Ga0.6As
QWs, aB has a value of 12 nm and increases to 15 nm in 20 nm QWs [177]. Below,
Eqs. (3.86) and (3.87) are used in analysis of the exciton–phonon interaction. In
reality the 2D exciton spectrum is much more complicated than suggested by these
expression and includes excited exciton states (see [15, 123, 175]).

The main experimental method used to study 2D excitons is optical spectroscopy,
in particular, PL and photoluminescence excitation (PLE) techniques. Optical tran-
sitions involving exciton states in QWs are governed by selection rules [15]. For
example, the requirement that momentum is conserved in interactions between pho-
tons and excitons leads to the important conclusion that only excitons with k � 0
are optically active. The result of this is that an optical spectrum usually consists of
narrow lines at the energies corresponding to the minima of the exciton bands. We
should indicate the absence of polariton effects in single QWs. The polariton effects,
which are commonly seen in 3D exciton spectra (see, e.g. [82, 115, 178]), are due
to the strong exciton–photon interaction and are important when the wavelength of
the coupled exciton-photon interaction (polariton [18]) is bigger than the thickness
of the medium in which the polariton is propagating. In the 2D case the thickness of
a QW is so small that polariton effects may be neglected.

Typical exciton PL and PLE data for a range of thin layers of GaAs between
thicker AlGaAs layers is shown in Fig. 3.18. An increase in phonon density induces



3.7 Exciton–Phonon Interaction in Low-Dimensional Structures 63

Fig. 3.18 a PL spectra for wells of different thickness and b the PLE spectra from GaAs QWs
(after [16])

an increase in the population of excited exciton states and can also lead to quench-
ing of the PL in narrow QWs [16]. Phonons also affect the transport properties of
excitons, particularly at elevated temperatures when the exciton-phonon scattering
rate becomes greater than the scattering rate due to impurities and defects [115]. The
basic approach used in analyzing the 2D exciton-phonon interaction is similar to that
used for electrons and holes [147]. The main differences arise from the next facts:

(1) excitons are Bose particles so that Bose–Einstein or frequently Boltzman statis-
tics are used to describe their equilibrium distribution;

(2) since their density is usually low (nex < 1010 cm−2) therefore it does not take
into account exciton–exciton interaction;

(3) excitons have a finite lifetime;
(4) exciton interaction with optical phonons results in both scattering and in their

dissociation into uncoupled electron–hole pairs.

The two mechanisms responsible for the exciton–phonon interaction are those
responsible for acoustic phonon interaction with free carriers: DP and piezoelectric
(PE) coupling. However, the Hamiltonian for exciton-phonon interaction with both
electrons and holes, and for excitons in GaAs, this increases the matrix element for
DP coupling but decreases it to PE coupling in comparison with the corresponding
values for free carriers. Below, we limit the discussion to a basic treatment of the
exciton–phonon DP coupling and refer the reader to the references [15, 176–178]
for further details of the interaction. The probability of exciton-phonon transitions
taking place within a volume V is given by Fermi’s golden rule (see also [82]):
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W−→
k →−→

k′ = 2π

�

∑

−→q , j

|M−→q , j
−→
k −→ −→

k′ |2|N−→q , j + 1 ± 1

2
|

× δ
(

E−→
k′ − E−→

k
± �ω

(−→q , j
))

, (3.88)

where M
−→q , j
−→
k −→ −→

k′ is the matrix element of the
−→
k −→ −→

k′ transition involving emis-

sion (+) or absorption (−) of an acoustic phonon with polarization j = LA, TA
wavevector −→q , and frequency ω

(−→q , j
) = s j

−→q , s j is the sound velocity, and N−→q , j
are the phonon occupation numbers which, in equilibrium, are given by the Bose–
Einstein distribution:

N−→q , j =
[

exp

(
�ω

kBT0

)
− 1

]−1

, (3.89)

where T0 is the lattice temperature. The DP interaction Hamiltonian for creation
(annihilation) of an acoustic phonon of wavevector −→q and mode j can be written as

HDP
ex-ph = HDP

e-ph + HDP
h−ph =

√
�

2ρ0	s jq
iq[�eexp

(±i−→q −→re
) + �hexp

(±i−→q −→rh
)],

(3.90)
where �e, �h are the electron and hole DP constants, ρ0 is the material density,
	 is the volume, and we note that DP Hamiltonian for holes is anisotropic

HDP
h-ph =

(
a + b

2

)
(uxx + uyy) + (a − b)uzz, (3.91)

where a and b are constants and the diagonal components of the deformation tensor
are:

uαα =
√

�

2ρ0	s jq
i−→eα

(−→q , j
)

qαexp
(±−→q −→rh

)
, (3.92)

where −→e (−→q , j) is the polarization unit vector. The matrix element can be calculated
using the exciton wave functions given in (3.86)

M
−→q , j
−→
k −→−→

k′ = 〈�−→
k
|Hex−ph|�−→

k′ 〉 (3.93)

and substituting into (3.88) we obtain the expression for the transition probability

W−→
k →−→

k′ = �2
(−→q )

�ρ0S0s2
j

(
Ns j ,q +

1 ± 1

2

)
q2

qz
θ

(
q − q‖

)
, (3.94)

here energy and momentum conservation require
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q = �

2m∗ |k2 − k′2|; q‖ = |−→k − −→
k′ |; qz =

√
q2 − q2‖ (3.95)

and S0 is the simple area. θ (x) is the Heaviside step-function

θ (x) =
(

1 x � 0
0 x < 0

)
. (3.96)

If we use the approximation the QW barriers are infinitely high, the form factors
have the form

ze (qz) = zh (qh) = sin (qzw/2)

(qzw/2) [1− (qzw/2π)2 ] , (3.97)

where as before w is the QW width (for details, see [177, 178]).
In polar semiconductors like GaAs, excitons are coupled to optic phonons [172,

174] through the Fröhlich interaction [115, 116] and the resulting matrix elements
are approximately greater than those for acoustic phonons. However, because of their
high energy (�ωLO = 33.9 meV, see above), the role of optic phonons in exciton
dynamics is relatively unimportant at low temperatures, since the exciton binding
energy EB 
 �ωLO (for GaAs [172]), very few excitons exist at high temperatures
(kBT � �ωLO) where the optic phonon population is much greater. But there is an
interval of intermediate temperatures (100 K < T < 200 K) in which excitons can
still be observed in GaAs QWs and the population of optic phonons is sufficient to
influence their dynamics [177, 178].

The influence of optic phonons on the luminescence linewidths of GaAs QWs
was studied by Lee et al. [178] both experimentally and theoretically. Because the
optical phonon energy, �ωLO, is larger than the binding energy of an exciton EB(L),
after collision of an exciton with an optical phonon, the exciton either ionized or
the optical phonon energy is transferred into kinetic energy of the center of mass
with elevation of the exciton to an excited state. In the former case, for the phonon
absorption, these authors obtained for the transition rate:

W+(0) =
(

(32e2ω0β
4me Nq)

(π�2L2)

) [
1

ε∞
− 1

ε0

] Kmax∫

0

dkhkh

2π∫

0

dθ I (k, q)

×
[(

4k2
h + β2

)−3/2 −
(

4k2
0 + β2

)−3/2
]2

(3.98)

with

K0 =
[

2me

�2

]1/2
[
−Eex + �ωLO − �

2k2
h

2mh

]1/2

, (3.99)

Kmax =
[

2me

�2

]1/2

[−Eex + �ωLO]1/2 , (3.100)
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q2 = kh + k0 + 2k0 Kh cos θ, (3.101)

where Nq is optical phonon population, ε∞ (ε0) is the high-frequency (static) dielec-
tric constant, kh is the wavevector for the free hole, and I(k, q) has been defined in
following relation

I (k, q) = π

2q2(k2 + q)2

[(
2k2 + 3q2

)
π

k
− k4

(
1 − e−2πq/k

)

q
(
k2 + q2

)
]

. (3.102)

In the latter case, the exciton is in an excited state and the center of mass moving
after the phonon energy has been absorbed. Their calculations show that heavy hole
excitons the contribution to the PL width from optical phonons becomes equal to
that from acoustic phonons at T = 200 K. For light hole excitons this happens at
even higher temperature. The effect of optic phonons on the exciton diffusion was
analyzed by Hillmer et al. [179] who showed that it was greatest in wide QWs. Thus
in 15 nm QWs the exciton mobility from optic phonon scattering becomes equal to
that from acoustic phonon scattering at T ≈ 150 K, while in 4 nm QWs this does
not happen until T ≈ 200 K. So quantum confinement produces a relative decrease
in optic phonon scattering, or, in other words, acoustic phonons are more dominant
in exciton scattering in QWs than in bulk material.

Optic phonons can, however, play an important role in the relaxation of hot exci-
tons at all temperatures. Peaks are often seen in excitation spectra of exciton lumi-
nescence of photon energies equal to E(k = 0) + n �ωLO [82], where E(k = 0) is
the energy at the bottom of the exciton band and n is an integer. This indicates the
formation of hot excitons with kinetic energy much larger than EB (up to 10 times
[82]) which relax rapidly by emitting LO phonons and this relaxation process essen-
tially determines the lifetime of hot excitons [180]. The creation of hot excitons and
their relaxation by LO phonon emission in confined structure was first demonstrated
in II–VI QWs (see, e.g. [180] and references therein), but has not been seen in GaAs
QWs (see, also [181, 182]).

The QD structure has been developed and investigated in the last 2 decades
[111–113]. There is great interest in this development because there is the goal of
fabricating useful and reasonable include emission under low-threshold and under
high-temperature operation compared to that of a QW heterostructure laser (see, also
[183, 184, 186, 187]). Below we briefly consider three effects in QDs:

(1) As was shown above, the phonon bottleneck is an extremely debated issue in
QDs research. The relaxation between the discrete states of QDs as well as
between different exciton states in QD [189] will be slower than in QW, because
the coupling of phonons is expected to be less efficient in a QD;

(2) Exciton relaxation in QDs, which is crucial for high speed devices performance
[157];

(3) Nitride material systems which include AlN, GaN, InN and their alloys are
widely used as light-emitting diodes (LEDs), laser diodes (LDs) and high-
electron-mobility transistors (see e.g. [190, 191]).
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Fig. 3.19 PL spectrum of
InAs/GaInP with varying
excitation energy (after [189])

Sakaki et al. [156] have reported the exciton dynamics (see, however [48, 49, 50])
in InAs/GaInP self-assembled QDs, grown by MBE technique, where the electron and
hole are confined strongly. Due to the large band-gap in the barrier layer, the thermal
escape of carriers from QDS to the wetting layer and to the matrix is prevented, which
allows this sample to PL at room temperature. The PL spectra for the studied sample
in paper [189] are shown in Fig. 3.19. The excitation energy is 1.590 eV (780 nm) and
the temperature is 5 K. At the maximum intensity of 90J0, where J0 = 10 nJ/cm2, the
two peaks, labeled A and B, are at 1.362 and 1.484 eV, respectively. At a low intensity
of J0 to 5J0, the peak A is larger than B, however as the intensity becomes stronger,
the peak B dominates the entire spectra. This shows that when relatively few carriers
are excited with an excitation intensity of J0, these carriers are in the discrete energy
level (A). As the intensity of excitation beam is increased, the carries are distributed
over two exciton levels. From here on, the authors of [189] have referred to the
A peak, which is the lowest exciton level, as n = 1, and the B peak as n = 2 or the
second-lowest exciton state. The time-resolved PL of the n = 1 and 2 exciton levels
show a difference in their temporal evolution. Specifically, the rise time for the n = 1
data is ∼500 ps, slower than that of n = 2. According to the results of [189] there
is a physical phenomenon that affects the relaxation probability that occurs between
the exciton levels n = 1 and 2. The temperature dependence (5–200 K) of the time
progression is shown that there is involvement of phonons that affect the relaxation
process. The obtained results allowed by authors of [189] concluded that there is the
phonon bottleneck in InAs/GaInP QDs between n = 1 and 2 exciton states.

Heitz et al. have reported the optical studies of relaxation process in self-organized
InAs/GaAs QDs, which were grown by the MBE method (see, also [192]). The results
of PLE obtained in [157] are depicted in Fig. 3.20. The solid line in Fig. 3.20a presents
the excitation spectrum detected at the maximum (1.11 eV) of the QD luminescence
revealing excitation via absorption in the InAs WL and the GaAs barrier. Figure 3.20b
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Fig. 3.20 a Luminescence
(excited at 1.959 eV), CAS
(calorimetrically absorption
spectrum) and PLE (detected
at the luminescence max-
imum) spectra of the QD
structure; b excitation spectra
of different parts of the QD
luminescence [indicated by
arrows in a] given with respect
to the detection energy (after
[157])

Fig. 3.21 Luminescence
spectra of the QD structure
excited selectively at 1.165 eV
(solid line) and via the GaAs
barrier (dotted line) (after
[157])

compares PLE spectra recorded for different QD luminescence energies (indicated
by arrows in Fig. 3.20a) displayed with respect to the detection energy.

The shape of the excitation spectra is almost independent of the detection energy
showing only slight variations in the relative intensities of lines A–D. The ladder
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Fig. 3.22 Room temperature PL spectra of: a GaN QDs in AlN matrix grown on Si (111) substrate,
and b Ga0.8In0.2N QDs in GaN matrix grown on sapphire substrate (the 2D equivalent thickness of
the QD layer corresponding to each sample is indicated) (after [190])

A–D not being equidistant is attributed to the finite experimental resolution of only
6 meV in the PLE measurement. Figure 3.21 shows a better-resolved luminescence
spectrum excited selectively at the high energy onset of the QD luminescence using
a Nd:YAG laser (solid line) decomposes into three bands in the energy range of 1,
2, and 3LO phonon replica, respectively. Four different phonon modes with energies
of 29.6 meV (InAsWL), 31.9 (InAQD), 35.0 (IP) and 36.6 meV (GaAs) account for
the fine structure that is not resolved in PLE spectra. In strained nanostructures, the
InAs LO phonon energy of 29.9 meV is altered by both strain and phonon confine-
ment [145]. Both effects, according to [157] almost perfectly compensate for each
other. Thus, the phonon mode with an energy of 29.6 meV is attributed to InAs WL
(InAsWL). For the 3D InAs QDs, the energy shift due to phonon confinement can
be neglected. They calculated QD LO phonon energy 32.1 meV that is in excellent
agreement with InAsQ D mode energy of 31.9 meV determined from Fig. 3.21. The
mode interface (IF) with an energy of 35.0 meV is tentatively assigned to an interface
phonon in the QD structure. The obtained results in [157] allow the authors to con-
clude that scattering of LO phonons from different regions of the QD structure due to
the extended QD wave functions, together with acoustical phonon broadening, cir-
cumvents the phonon bottleneck [160, 162] effect, thus allowing exciton relaxation
and carrier capture necessary for device performance.

The room temperature PL spectra corresponding to GaN and GaInN QDs of
different sizes are displayed in Fig. 3.22. As can be seen, the PL energy is red
shifted when the QD size increases. The important point to note is that for each
kind of QDs, the PL is in the visible spectrum range. This could be quite surprising
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for GaN material for which the band-gap corresponds to ultra-violet luminescence.
In fact, the very large built-in electrical field in GaN/AlN structures strongly decreases
the transition energy. For GaN QDs in AlN matrix a 5.5 MV/cm electrical field has
been experimental determined [190]. This very high value of the internal electrical
field leads to transition energies in GaN QDs comparable with those in GaInN QDs,
although the GaInN band-gap (2.7 eV for 20% In-content) is much lower than the
GaN one (3.4 eV). This is a proof of the major influence of the electrical field on the
optical transitions in group III-nitride materials. The comparison with QW equivalent
structures indicates that QDs have higher luminescence efficiency. Moreover, the
wavelength emission of QDs can be tuned from blue to orange simply by varying
QD size. These results open a new route for the fabrication of efficient visible high-
emitting devices.



Chapter 4
Applications of Low-Dimensional Structures

The knowledge gained in the previous discussion makes it possible to consider and
analyze a variety of different nanostructure devices. In this chapter as a first step we
consider electronic and optical devices. Some of these mimic well-known microelec-
tronic devices but with small dimensional scales. This approach of applications to
devices with shorter response times and higher operational frequencies that operate
at lower working currents, dissipate less power, and exhibit other useful properties
and enhanced characteristics. Such examples include, in the first step, the field ef-
fect transistors considered below. On the other hand, new generations of the devices
are based on new physical principles, which cannot be realized in microscale de-
vices. Among these novel devices are the resonant-tunneling devices described in
the following section, and single-electron-transistor as well as optoelectronic devices
(light-emitting diodes and lasers).

4.1 Resonant Tunneling Diodes

As shown above electrons in heterojunctions and in QWs can respond with very
high mobility to applied electric fields parallel to the interfaces (see, also [74]).
In this paragraph, the response to an electrical field perpendicular to the potential
barriers at the interfaces will be considered. Under certain circumstances, electrons
can tunnel through these potential barriers, constituting the so-called perpendicular
transport (see, also [164, 165]). Tunneling currents through heterostructures can show
zones of negative differential resistance (NDR) (see, Fig. 4.1), which arise when the
current level decreases for increasing voltage (see, also [4]). The operation of NDR
QW electronic devices is based on the so-called resonant tunnel effect (RTE), which
takes place when the current travels through a structure formed by two thin barriers
with a QW between them. The I–V characteristics of RTE devices are depicted
in Fig. 4.1. This figure also shows the representation of the conduction band of a
double heterojunction with a QW between the junctions. The thickness of the QW
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Fig. 4.1 Schematic representation of the conduction band of a resonant tunnel diode: a with no
voltage, b–d for increasing applied voltage, c current–voltage characteristic

is supposed to be small enough (5–10 nm) as to have only one allowed energy level
E1 (resonant level). The well region is made from lightly doped GaAs surrounded
by higher gap AlGaAs (see, e.g. [1, 106]). The outer layers are made from heavily
doped n-type GaAs (n+ GaAs) to facilitate the electrical contacts. The Fermi level
of the n+ GaAs is represented within the conduction band, since it can be considered
a degenerated semiconductor [120].

Let us suppose that an external voltage, V, is applied, starting from 0 V. It can be
expected that some electrons tunnel from the n+ GaAs conduction band through the
potential barrier, thus resulting in increasing current for increasing voltage (region
1–2 in the I–V curve of Fig. 4.1c). When the voltage increases, the electron energy
in n+ GaAs increases until the value 2E1/e is reached, for which the energy of
the electrons located in the neighborhood of the Fermi level coincides with that of
level E1 of the electrons in the well (see, Fig. 4.1b). In this case, resonance occurs
and the coefficient of quantum transmission through the barriers rises very sharply.
In effect, when the resonant condition is reached, the electron wave corresponding to
the electrons in the well is coherently (see, e.g. Fig. 10.18 in [74]) reflected between
two barriers. In this case, the electron wave incident from the left excites the resonant
level of the electron in the well, thus increasing the transmission coefficient (and thus
the current through the potential barrier (region 2 in Fig. 4.1c). If the voltage further
increased (region 2–3), the resonant energy level of the well is located below the
cathode lead Fermi level and the current decreases, thus leading to the so-called
negative differential resistance (NDR) region (region 2–3 of Fig. 4.1). Finally, for
even higher applied voltage, Fig. 4.1d, the current again rises due to the thermo-ionic
emission over the barrier (region 4). RTD used in microwave applications are based
on this effect. A figure of merit used for RTD is the peak-to-valley current ratio of
their I–V characteristic, given by the ratio between the maximum current (point 2)
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and the minimum current in the valley (point 3). Although the normal values of
the figure of merit are about five for AlGaAs–GaAs structures at room temperature,
values up to ten can be reached in devices fabricated from strained InAs layers,
surrounded by AlAs barriers and operating at liquid nitrogen temperature [4]. If RTD
are simulated by a negative resistance in parallel with a diode capacitance C and a
series resistance RS , as is the case of normal diodes, it is relatively easy to demonstrate
that the maximum operation frequency increases as C decreases. The resonant tunnel
diode is fabricated from relatively low-doped semiconductors, which results in wide
depletion regions between the barriers and the collector region, and accordingly,
small equivalent capacity. For this reason, RTDs can operate at frequencies up to
several THz, much higher than those corresponding earlier tunnel diodes which just
reach about 100 GHz, with response time under 10−13s. Small values of the NDR, i.e.,
an abrupt fall after the maximum on the I–V curve result in high cut-off frequencies
of operation. In fact, RTDs are the only purely electronic devices that can operate
up to frequencies close to 1 THz, the highest of any electron transit time device (see,
also [193]).

4.2 Field Effect Transistors

The previously analyzed diodes are the simplest electronic devices, for which the
current is controlled by the diode bias and vice versa. A useful function can be per-
formed mainly due to nonlinearity of current-voltage dependences. In contrast, in
three-terminal devices known as transistors there exist the possibility of controlling
the current through two electrodes by varying the voltage or the current through the
third electrode. Below, we briefly describe the field effect transistors (FETs) on the
base of the nanowires. Nanowire FETs can be configurated by depositing the nano-
material onto an insulating substrate surface, and making source and drain on the
nanowire ends. Figure 4.2 illustrates this approach. There, we show a schematic dia-
gram of a Si-nanowire FET with the nanowire, the metal source and drain electrodes
on the surface of the SiO2/Si substrate (see, also [103]). This approach may serve
as the basis for hybrid electronic systems consisting of nanoscale building blocks
integrated with more complex planar silicon circuitry [4]. We should note that an
extremely small FET may be built on the basis of carbon nanotube [194]. In conclu-
sion, we have noted that the nanowire devices discussed here have great potential for
applications in nano and optoelectronics.

4.3 Single-Electron-Transistor

The so-called single electronics [106–110] that appeared in the late 1980s, is at
present a tremendously expanded research field covering future digital and analog
circuits, metrological standards, sensors, and quantum information processing and
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Fig. 4.2 A schematic diagram
of a Si-FET with nanowire,
the metal source, and drain
electrodes on the surface of a
SiO2/Si substrate (after [103])

transfer [4]. The basic device, called a single electron device (SED), literally enables
the control of electrons on the level of an elementary charge (see, also [103, 193]).
There are rich varieties of SEDs (see, e.g. [195–197]), but the operation principle of all
SEDs is basically the same. SEDs rely on a phenomenon that occurs when electrons
are to enter a tiny conducting material. When the tiny conducting material, or metallic
“island”, is extremely small, the electrostatic potential of the island significantly
increases even when only one electron enters it. For example, for a nanometer scale
island having a capacitance C of, say, 1 aF (10−18 F), the increase in the voltage,
which is e/C with e = 1.6 × 10−19 C, reaches 160 mV. This is much larger than the
thermale noise voltage at room temperature, 25.9 mV. Coulomb repulsion prevents
additional electrons from entering the island unless the island potential is intentional
lowered by an external bias. If the island potential is lowered gradually, the other
electrons can enter the island one by one with negligibly small power dissipation (for
details see [196] and references therein).

The single-electron transistor works as follows. The electron transfer is deter-
mined by two factors: the Coulomb charging of the dot and the quantized energy
levels in the dot (see above). If the drain is biased with respect to the source,
an electric current occurs in the regime of single-electron transfer. By applying the
voltage to the gate and changing the QD parameters, one can change the conditions
of electron tunneling and affect the source-drain current. Examples of modulation
of the conductance in single-electron transistors by the gate voltage are presented
in Figs. 4.3, 4.4. The devices have almost the same geometry. Their dimensions are
large enough to have a number of quantized levels. In Fig. 4.4 each peak in the con-
ductance corresponds to transfer of one electron, when an energy level enters into
resonance with the electron states in the contacts. Although the conductance versus
gate-voltage dependences are different, i.e., not reproducible, the peak spacing is the
same for both devices. It is determined by the change in the gate voltage required to
change the charging energy of the QDs by one electron. Figure 4.4 shows clearly that
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Fig. 4.3 A scanning electron microscope image of a single electron transistor (after [197])

Fig. 4.4 Conductance as a function of Vg for two samples with the same geometry (after [195])

the electric current is modulated significantly by the gate voltage. Thus, for transis-
tors with single-electron transport, strong control of very small electric current may
be possible.

4.4 Light-Emitting Diodes and Lasers

So far we have studied electronic nanoscale devices, i.e., a class of devices that
exploits electrical properties of nanostructures and operates with electric input and
output signals. Another class is composed of optoelectronic devices, which are based
on both electrical and optical properties of materials and work with optical and elec-
tric signals. In this paragraph we will analyze two very important classes of optoelec-
tronic devices: light-emitting diodes and lasers (diodes as well as photodetectors).
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As will be shown below, the energy of the electric current flowing through these
diodes is transformed into light energy. These optoelectronic devices have a huge
number of applications and deserve consideration in detail (see, also [183–188]).

Although stimulated emission [16] from the injection laser diode is very im-
portant (see, below), practically, sub-threshold operation of the diode—when only
spontaneous light is emitted—is in many cases advantageous and has a number
of applications. Diodes operating with spontaneous light emission are called light-
emitting diodes [186]. The important characteristic of the light-emitting diode is the
spectral distribution of emission The spectrum of emission is determined, primar-
ily, by the electron/hole distributions. Thus, the ambient temperature T, defines both
spectral maximum and the spectral width of emission. The peak value of the spectral
distribution can be estimated as [1,74]

�ω = Eg + kBT

2
. (4.1)

The full width at half maximum of the distribution is �ω ≈ 2kBT/� and is
independent of ω. In terms of the wavelength, λ, we obtain

�λ = λ2
m/ (2πc) �ω

or
�λ = 1.45λ2kBT, (4.2)

where λm corresponds to the maximum of the spectral distribution, �λ and λm are
expressed in micrometers, and kBT is expressed in eV. Figure 4.5 shows the spectral
density as a function of the wavelength for light-emitting diodes based on various
materials. For these different materials, the spectral linewidth increases in proportion
to λ2, in accordance with Eq. (4.2). From Fig. 4.5, one can see that light-emitting
diodes cover a wide spectral region from the infrared—about 8 µm for INGaAsP
alloys—to the near ultraviolet −0.4 µm for GaN. Light-emitting diodes are, indeed
very universal light sources [14].

Semiconductor lasers incorporating low-dimensional heterostructures, QWs and
QDs, are attracting considerable interest their potential for improved performance
over QW lasers (see, e.g. [186–188]). This prediction is based, in the single-particle
picture, on the sharper density of states resulting from the confinement of the charge
carriers in two or three directions. Among other advantages, the ideal QD and QWr
lasers would exhibit higher and narrower gain spectrum, low threshold currents, better
stability with temperature, lower diffusion of carriers to the device surfaces, and a
narrower emission line than double heterostructure or QW lasers (see, also [199]). The
observation of lasing from excitons in optically excited V-groove GaAs/AlGaAs QWr
laser structures was described in detail [200]. The observable emission is attributed
to the recombinations of excitons associated with the lowest energy electron- and
hole-subbbands of the QWr. Moreover, these authors show that the emission energy
remains nearly constant within the inhomogeneously broadened photoluminescence
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Fig. 4.5 The spectra of light-emitting semiconductor diodes with different bandgaps (after [201])

line of the QWrs for both continuous wave (cW) and pulsed optical excitation over
a wide range of power densities. These results corroborate the important role played
by electron-hole Coulomb correlations [133] in the optical emission from quasi-1D
QWrs in the density regime of the Mott transition.

Optical emissions of the QWr laser structure are displayed in Fig. 4.6 for different
values of the optical power density below, at and above the threshold for lasing in the
QWr. Upon increasing the pump power, these authors observe a nearly constant en-
ergy of the peak at 1.581 eV that corresponds to the optical transition e1–h1 associated
with the ground electron-hole-subband of the QWrs. A significant spectral narrowing
is also found as the power density is increased and crosses the lasing threshold. This
evidences the existence of amplified spontaneous emission within this inhomoge-
neously broadened PL line in this density regime. The observable emission intensity
varies linearly at low excitation power over three orders of magnitude (from 0.1 to
100 mW) [200]). Above the lasing threshold (at 350 mW) the intensity variation is
again linear (see, Fig. 4.6b), indicating that the modal gain is saturated. In Fig. 4.6c, a
high-resolution emission spectrum obtained above threshold features well-resolved
Fabry-Perot modes that correspond to different longitudinal optical modes within
the inhomogeneuous line of the QWr-PL. Detailed investigations of PL and PLE
spectra (see, Fig. 4.7) of the QWr allowed the indicated authors to conclude that the
lasing emission originates from the recombination of excitons as it is the case for the
QWr-peak of the cw-PL spectrum (for details see [200]).

In QDs, as indicated above, carriers are confined in the three directions in a very
small region of space, producing quantum effects in the electronic properties. As
we can see from Fig. 3.6, the electronic joint density of states for QD shows sharp
peaks corresponding to transitions between discrete energy levels of electrons and
holes. Outside these levels the DOS vanishes. In many ways, the electronic structure
of a QD resembles that of a single atom [111]. Lasers based on QDs could have
properties similar to those of conventional ion gas lasers, with the advantage that
the electronic structure of a QD can be engineered by changing the base material,
size, and shape. In the next we assume that the QDs are small enough so that the

http://dx.doi.org/10.1007/978-3-642-28613-1_3
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Fig. 4.6 a Photoluminescence spectra at 10 K of the QWr laser sample above, below and near
the lasing threshold in TE-polarization. b Dependence on input excitation power of the PL output
power;arrows indicate the excitation powers used for the optical spectra depicted in (a). c High
resolution emission spectrum above the lasing threshold showing the Fabri–Perrot modes of the
optical cavity (after [200])

Fig. 4.7 Linearly-polarized
PLE spectrum and the cor-
responding PL spectrum of
an etched QWr laser sample
at 10 K. The polarization of
the excitation is parallel to the
wire axis. The different optical
transition en–hn are marked
by arrows (after [200])

separation between the first two electron energy levels for both electrons and holes
is much larger than the thermal energy KT. Then for an undoped system, injected
electrons and holes will occupy only the lowest level. Therefore, all injected electrons
will contribute to the lasing transitions from the E1e to the E1hh levels, reducing the
threshold current with respect to other systems with lower confinement. The evolution
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Fig. 4.8 Evolution of threshold current density for lasers based on different confinement structures
(after [200])

of the threshold current density obtained along the years for various laser structures
is shown in Fig. 4.8. The lowest threshold currents have already been reached for QD
lasers [200]. As long as the thermal energy is lower than the separation between the
fist and second levels, the emission band in an ideal QD laser is very sharp and does
not depend on temperature (see, also [187, 188]. Therefore, QD lasers should have
a better stability with temperature without the need for cooling. We should add that
QDs have the narrowest spectrum and the highest gain (for details see also [1, 74,
187, 188]).

4.5 Isotope-Based Quantum Computers

The development of efficient quantum algorithms for classically hard problems has
generated interest in the construction of a quantum computer. A quantum computer
uses superpositions of all possible input states. By exploiting this quantum paral-
lelism, certain algorithms allow one to factorize [202] large integers with astound-
ing speed, and rapidly search through large databases [203], and efficiently simu-
late quantum systems [204]. In the nearer term such devices could facilitate secure
communication and distributed computing. In any physical system, bit errors will
occur during the computation. In quantum computing this is particularly catastrophic,
because the errors cause decoherence [205, 206] and can destroy the delicate super-
position that needs to be preserved throughout the computation. With the discovery
of quantum error correction [207–209] and fualt-tolerant computing, in which these
errors are continuously corrected without destroying the quantum information, the
construction of a real computer has became a distinct possibility (see also [210]). The
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Fig. 4.9 Illustration of two
cells in a one-dimensional
array containing 31P donors
and electrons in a Si host,
separated by a barrier from
metal gates on the surface.
“A gates” control the res-
onance frequency of the
nuclear spin qubits; “J gates”
control the electron-mediated
coupling between adjacent
nuclear spins. The ledge over
which the gates cross localizes
the gate electric field in the
vicinity of the donors (after
[212, 213])

tasks that lies ahead to create an actual quantum computer are formidable: Preskill
[211] has estimated that a quantum computer operating on 106 qubits with a 10−6

probability of error in each operation would exceed the capabilities of contemporary
conventional computers on the prime factorization problem. To make use of error-
correcting codes, logical operations and measurement must be able to proceed in
parallel on qubits throughout the computer.

Phosphorous donors in silicon present a unique opportunity for solid-state quan-
tum computation [212, 213]. Electrons spins on isolated Si:P donors have very long
decoherence times of ∼60 ms in isotopically purified 28Si at 7 K [214]. By con-
trast, electron spin dephasing times in GaAs (for example) are orders-of-magnitude
shorter due to spin–orbit interaction; and the background nuclear spins of the III–V
host lattice cannot be eliminated by isotope selection. Finally, the Si:P donor is a
self-confined, perfectly uniform single-electron quantum dot with a non-degenerate
ground state. A strong Coulomb potential breaks the six-valley degeneracy of
the silicon conduction band near donor site, yielding a substantial energy gap of
∼15 meV to the lowest excited [215] as needed for quantum computation. As we all
know, the Si:31P system was exhaustively studied more than 40 years ago in the first
electron-nuclear double-resonance experiments. At sufficiently low 31P concentra-
tions at temperature T = 1.5 K, the electron spin relaxation time is thousands of
seconds and the 31P nuclear spin relaxation time exceeds 10 h. It is likely that at mil-
likelvin temperatures the phonon limited 31P relaxation time is of the order of 1018

seconds [216], making, as we said above, this system ideal for quantum computation.
Kane’s original proposal [212, 213] envisions encoding quantum information

onto the nuclear spin 1/2 states of 31P qubits in a spinless I = 028Si lattice. The
Kane architecture employs an array of top-gates (see Fig. 4.9). to manipulate the
ground state wavefunctions of the spin-polarized electrons at each donor site in a high
magnetic field B ∼ 2 T, at very low temperature (T � 100 mK). “A -gates” above
each donor turn single-qubit NMR rotations via the contact hyperfine interaction; and
“J-gates” between them induce an indirect two-qubit nuclear exchange interaction
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Fig. 4.10 An electric field
applied to an A gate pulls
the electron wavefunction
away from the donor and
towards the barrier, reducing
the hyperfine interaction
and the resonance frequency
of the nucleus. The donor
nucleus-electron system is a
voltage-controlled oscillator
with a tuning parameter α of
the order 30 MHz (after [212,
213])

via overlap of the spin-polarized electron wavefunctions. In other words, spin—1/2
31P donor nuclei are qubits, while donor electrons together with external A—gates
provide single-qubit (using external magnetic field) and two-qubit operations (using
hyperfine and electron exchange interactions). Specifically, the single. donor nuclear
spin splitting is given by [212, 213]

�ωA = 2gnμn B + 2A + 2A2

μBB
, (4.3)

where gn is the nuclear spin g-factor (= 1.13 for 31P [212, 213]), μn is the nuclear
magneton, A is the strength of the hyperfine coupling between the 31P nucleus and
the donor electron spin, and B is the applied magnetic field. It is clear that by chang-
ing A one can effectively change the nuclear spin splitting, thus allowing resonant
manipulations of individual nuclear spins (Fig. 4.10). If the donor electrons of two
nearby donors are allowed to overlap, the interaction part of the spin Hamiltonian
for the two electrons and the two nuclei include electron-nuclear hyperfine coupling
and electron-electron exchange coupling (see also [212, 213]).

H = HZeeman + Hint = HZeeman + A1
−→
S1 · −→

I1 + A2
−→
S2 · −→

I2 + J
−→
S1

−→
S2 , (4.4)

where
−→
S1 and

−→
S2 represent the two electron spins,

−→
I1 and

−→
I2 are the two nuclear

spins, A1 and A2 represent the hyperfine coupling strength at the two donor sites,
and J is the exchange coupling strength between the two donor electrons, which is
determined by the overlap of the donor electron wavefunctions. The lowest order
p erturbation calculation (assuming A1 = A2 = A and J is much smaller than the
electron Zeeman splitting) results in an effective exchange coupling between the two
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nuclei and the coupling strength is (see [212, 213])

Jnn = 4A2J

μBB (μBB − 2J)
. (4.5)

Now the two donor electrons essentially shuttle different nuclear spin qubits and
are controlled by external gate voltages. The final measurement is done by first trans-
ferring nuclear spin information into electron spins using hyperfine interaction, then
converting electron spin information into charge states such as charge locations [217].
A significant advantage of silicon is that its most abundant isotope 28Si is spinless,
thus providing a “quiet” environment for the donor nuclear spin qubits. In addition,
Si has also smaller intrinsic spin–orbit coupling than other popular semiconductors
such as GaAs. In general, nuclear spins have very long coherence times because
they do not strongly couple with their environment, and are thus good candidates for
qubits (see, also [217–220]).

Although the nuclear spin offers unlimited decoherence times for quantum infor-
mation processing, the technical problems of dealing with nuclear spins through the
electrons are exceedingly difficult. A modified version of the Kane architecture was
soon proposed using the spin of the donor electron as the qubit [221–224]. In the
first scheme [221], A-gates would modulate the electron g-factor by polarizing its
ground state into Ge-rich regions of a SiGe heterostructure for selective ESR rota-
tions, while two-qubit electron exchange is induced through wavefunction overlap.
In the studies of Shlimak et al. [222–224] was used the new technology for growth of
SIGE heterostructures. Recent achievement in Si/Ge technology allows one to obtain
high quality heterojunctions with a mobility of about (1–5)×105 cm2 V−1s−1 [225].
Using Si/Ge heterostructures has several advantages concerning semiconductor-
based nuclear spin quantum computers (S–NSQCs). First, the concentration of nu-
clear spins in Ge and Si crystals is much lower, because only one isotope (73Ge and
29Si [31]) has a nuclear spin, and the natural abundance of this isotope is small (see,
also [56]). Second, the variation of isotopic composition for Ge and Si will lead to
the creation of a material with a controlled concentration of nuclear spin, and even
without nuclear spins. Utilization of isotopically engineered Ge and Si elements in
the growth of the active Si/Ge layers could help realize an almost zero nuclear spin
layer that is coplanar with the 2DEG. Then, one might deliberately vary the isotopic
composition to produce layers, wires, and dots that could serve as nuclear spin qubits
with a controlled number of nuclear spins (see also [226]).

The key point of a novel technology is the growth of the central Si and
barrier Si0.85Ge0.15 layers from different isotopes: the Si0.85Ge0.15 layers from iso-
tope 28Si and 72Ge and the central Si layer from isotope 28Si with 30Si spots intro-
duced by means of the nano-litography (see Fig. 4.11) (see also [227]). The formation
of quasi-1D Si wires will be achieved in a subsequent operation by the etching of Si
layer between wires and the filling of the resulting gaps by the Si0.85Ge0.15 barrier
composed from isotopes 28Si and 72Ge. Because different isotopes of Si and Ge are
chemically identical, this technology guarantees the high quality of the grown struc-
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Fig. 4.11 Schematics of the proposed device. After NTD, 31P donors appear only inside the 30Si-
spots and underlying 74Ge strips will be heavily doped with 75As donors. All sizes are shown in
nm (after [222–224])

tures [222–224]. After preparation, these structures will be irradiated with a neutron
flux in a nuclear reactor by the fast annealing of radiation damage.

As was shown by Di Vincenzo [228] two-bit gates applied to a pair of electron or
nuclear spins are universal for the verification of all principles of quantum compu-
tation. Because direct overlap of wavefunctions for electrons localized on P donors
is negligible for distant pairs, the authors of [222–224] proposed another principle
of coupling based on the placement of qubits at fixed positions in a quasi-1D Si
nanowire and using the indirect interaction of 31P nuclear spins with spins of elec-
trons localized in the nanowire which they called as “1D-electrons”. This interaction
depends on the amplitude of the wavefunction of the “1D - electron” estimated at
the position of the given donor nucleus �n(ri) and can be controlled by the change
in the number of “1D-electrons” N in the wire. At N = 0, the interqubit coupling is
totally suppressed, each 31P nuclear spin interacts only with its own donor electron.
This situation is analogous to that suggested in the Kane proposal [217, 218] and
therefore all single-qubit operations and estimates of the decoherence time are valid
also in the model by Shlimak et al. [222–224].

Below we briefly analyze the schematics of the device architecture which satis-
fies the scalability requirements of the quantum computer suggested in [222–224].
Figure 4.12 shows the schematics of the device architecture which allows one to vary
l (length of quantum wire) and N. The device consists of a 28Si nanowire with an
array of 30Si spots. Each spot is supplied by the overlying A-gate, the underlying
Source-drain-channel and the lateral N-gate. After NTD, P donors will appear in most
of the spots (which transforms these spots into qubits) and not appear in other spots
(non-qubits). In Fig. 4.12 it is assumed that spots 3 and 4 are non-qubits (0-spots) and
one needs to provide coupling between qubits 2 and 5. For this purpose, it is neces-
sary to connect the gates N2, N3, N4 and N5. The negative voltage applied between
other N-gates and the wire contact L will lead to pressing-out “1D-electrons” from
all corresponding areas and formation of the nanowire with l = 800 nm between the
sites 2 and 5 only (shown in grey in Fig. 4.12). The coupling between qubits 2 and
5 will be realized via injection in the wire of the necessary number of electrons N,
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Fig. 4.12 Schematics of a 28Si nanowire L with an array of 30Si spots (qubits and non-qubits
after NTD). Each spot is supplied by overlying A-gate, underlying source-drain-channel and lateral
N-gate. This device architecture allows to realize an indirect coupling between any distant qubits
(for details see text) (after [222–224])

Table 4.1 Important times for various two-level systems in quantum mechanics that might be used
as qubits, including prospective qubits ranging from nuclear physics, through atomic, electronic,
and photonic systems, to electron and nuclear spins

Quantum system tswitch, s t�, s Ratio

Mössbauer nucleus 10−19 10−10 109

Electrons: GaAs 10−13 10−10 103

Electrons: Au 10−14 10−8 106

Trapped ions: In 1014 10−1 1013

Optical microcavity 10−14 10−5 109

Electron spin 10−7 10−3 104

Electron quantum dot 10−6 10−3 103

Nuclear spin 10−3 104 107

The time tswitch is the minimum time required to execute one quantum gate; it is estimated as
�/�E, where �E is the typical energy splitting in the two level system; the duration of a π tipping
pulse cannot be shorter than this uncertainty time for each system. The phase coherence time as
seen experimentally, t�, is the upper bound on the length of time over which a complete quantum
computation can be executed accurately. The ratio of these two times gives the largest number of
steps permitted in a quantum computation using these quantum bits (after [228])

using the positive voltage applied to the gates N2–N5. According to [222–224], the
maximal coupling will be realized at N = 7, while at N = 0, the coupling will be
totally suppressed.

Concluding this part we present Table 4.1 giving the important times for vari-
ous two-level systems in quantum mechanics that might be used as quantum bits
according to [229] (see also [205, 206]).
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