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Preface 

The stability considerations are extremely important and inevitable in the design of 
many engineering structures compassing aeronautical engineering, civil engineering, 
mechanical engineering, naval architecture and applied mechanics wherein a designer 
is confronted by numerous stability problems. Most of the national standards have 
based their design codal provisions on the stability criteria, especially in design of 
steel structures. In view of making the engineers appreciative of limitations associated 
with many structural design codal provisions, most of the engineering colleges and 
universities offer the course on the subject as a part of curriculum. 

A number of books on the subject are available in the market, which had been writ­
ten before mid-eighties and treated the problems normally encountered in engineering 
mainly by classical techniques. In view of rapid advancements and improvements in 
the methods of analysis and in the computing environment, stiffness methods sup­
ported by numerical techniques are being extensively applied to relatively complex 
real-life problems. The later approach is emphasized in the present book. 

The text is specially designed to cater to the classroom or self-study needs of stu­
dents at advanced undergraduate and graduate level in structural engineering, applied 
mechanics, aeronautical engineering, mechanical engineering and naval architecture. 
Although the special problems pertaining to these disciplines differ philosophically 
but analytical and design principles discussed in the text are generally applicable to 
all of them. The emphasis is on fundamental theory rather than specific applications. 

The text addresses to the stability of key structural elements: rigid-body assem­
blage, column, beam-column, beam, rigid frame, thin plate, arch, ring and shell. 
The text begins with introduction to general basic principles of mechanics. This is 
followed by a detailed discussion on stability analysis of rigid-body assemblage, 
column, beam-column, beam, rigid frame, plates, arch and shell arranged in different 
chapters from 1 to 9. In Chap. 10, the elastic theories of buckling have been extended 
to the inelastic range. Where as in Chap. 11 on the design for structural stability, the 
American national standard, Australian standard AS: 1250-1981, British code BS: 
5940-1985 (Part-I) and Indian code of practice IS: 800-1984 have been compared 
for the provisions related to stability considerations and number of design illustra­
tions have also been given. Each chapter contains numerous worked-out problems 
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to clarify the discussion of practical applications that will facilitate comprehension 
of basic principles from the field of stability theory. Wherever possible alternate ap­
proaches to the solution of important problems have been given. Tables and formulae 
are devised in the form suitable for the use in the design office. Thus the book would 
also prove useful to the practicing engineers engaged in actual design. In addition 
exercise problems designed to support and extend the treatment are given at the end of 
each chapter. For more important ones answers have also been given. The illustration 
problems have been treated by the practical methods, which are best suited. There is 
conscious effort to present results in non-dimensional form to render the subject mat­
ter independent of system of units. These non-dimensional parameters facilitate the 
application of results to different materials and structural configurations encountered 
in practice. A large amount of practical data in tabular form and simplified formulae 
are given to make them suitable for the use in the design of various components. 

It is the opinion of the author that the undergraduate students should study first 
six chapters as a part of their required program of study. The remaining chapters 
can be studied at the graduate level. To make the fundamentals of stability analysis 
more understandable and meaningful, this text should be used at the level when the 
student has attained the basic knowledge of statics, solid mechanics or strength of 
materials and calculus. Only a minimum knowledge of calculus, Fourier series and 
Bessel functions is assumed on the part of reader. However, for reference necessary 
background information needed to deal with problems involving differential equations 
and Bessel functions is given in the appendix. The subject matter and its presentation 
sequence has been class tested over the past two decades. In the process students have 
made valuable suggestions for which author is grateful. 

The author wishes to express his sincere gratitude to the authors of various 
books on the subject who have been an inspiration to developing this text. The 
author thanks all those who have assisted in various ways in preparation of this 
text. Particularly, he wishes to acknowledge the assistance rendered by Dr. Puneet 
Gambhir, Er. Mohit Gambhir and Er. Neha Gambhir in preparation of manuscript. 
The author is extremely grateful to his wife Ms Saroj Gambhir for the patience she 
has shown while he was busy completing this job. The assistance and advice received 
from Dr. Thomas Ditzinger and Ms. Gaby Maas, the Editor, of Springer-Verlag is 
gratefully acknowledged. The author welcomes suggestions from the readers for 
improvement in the subject matter in any manner. 

Patiala, India 
May 12,2004 

M. L. Gambhir 



Contents 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.1 Definitions of Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.2 Structural Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
1.3 Methods for Stability Ananlysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

2 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
2.2 Idealization of Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
2.3 Equations of Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
2.4 Free-Body Diagrams........................................ 13 
2.5 Work of Externally Applied Forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

2.5.1 Eigenwork and Displacement Works . . . . . . . . . . . . . . . . . . . . 17 
2.5.2 Linear Springs....................................... 18 
2.5.3 Virtual Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
2.5.4 The Principle of Superposition of Mechanical Work . . . . . . . 22 
2.5.5 Non-Linearities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

2.6 Work of Internal Forces: Strain Energy. . . . . . . . . . . . . . . . . . . . . . . . . 25 
2.7 The Work Equation......................................... 29 
2.8 Energy Theorems of Elastic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
2.9 Potential Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

2.9.1 Total Potential Energy of a Deformable Body. . . . . . . . . . . . . 44 
2.9.2 Principle of Stationary Potential Energy . . . . . . . . . . . . . . . . . 45 
2.9.3 Applications of Total Potential Energy Principles . . . . . . . . . 46 

2.10 Methods of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
2.1 0.1 Method of Trial Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
2.10.2 Galerkin Method..................................... 60 
2.10.3 Finite Difference Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 
2.10.4 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 

2.11 Orthogonality of Buckling Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 
2.12 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 



VIII Contents 

3 Rigid-Body Assemblages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 
3.2 Methods of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 

3.2.1 Equilibrium Approach................................ 87 
3.2.2 Energy Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

3.3 Single-Degree-of-Freedom Rigid-Bar Assemblages . . . . . . . . . . . . . . 92 
3.3.1 Modeling of Elastically Deformable Elements 

by Equivalent Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 
3.4 Two-Degree-of-Freedom Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 
3.5 Discrete Element Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 
3.6 Problems ................................................. 114 

4 Buckling of Axially Loaded Members (Columns) .................. 119 
4.1 Introduction ............................................... 119 
4.2 Buckling Loads for Members with Different End Conditions . . . . . . 119 

4.2.1 Hinged-Hinged Strut ................................. 120 
4.2.2 Fixed-Free Cantilever Strut . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 
4.2.3 Fixed-Hinged Strut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 
4.2.4 Fixed-Fixed Strut .................................... 124 
4.2.5 Struts with Elastic Supports . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 
4.2.6 Framed Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 

4.3 Concept of Effective Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 
4.4 Approximate Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 
4.5 Large Deflection Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 
4.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 

5 Stability Analysis of Beam-Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 
5.1 Introduction ............................................... 171 
5.2 Derivation of Basic Equations ................................ 171 
5.3 Analysis of Beam-Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 

5.3.1 Beam-Column with Concentrated Loads . . . . . . . . . . . . . . . . . 173 
5.3.2 Beam-Column with an Interior Moment . . . . . . . . . . . . . . . . . 176 
5.3.3 Beam-Column Subjected to End Moments ............... 177 
5.3.4 Beam-Columns Subjected to Distributed Loads ........... 181 
5.3.5 Rotationally Restrained Beam-Columns ................. 184 

5.4 Beam-Column with Elastic Supports .......................... 185 
5.4.1 Differential Equation Method .......................... 185 
5.4.2 Numerical Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 

5.5 Strut with Initial Eccentricity ................................. 199 
5.6 Interaction Equation ........................................ 201 
5.7 Problems ................................................. 205 



Contents IX 

6 Stability Analysis of Frames ................................... 213 
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 
6.2 Classical Approach ......................................... 213 

6.2.1 Continuous Columns and Beam-Columns ................ 213 
6.2.2 Rigid-Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 

6.3 Semi-Geometrical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 
6.4 Stiffness Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 

6.4.1 Criterion for Determination of Critical Load. . . . . . . . . . . . . . 233 
6.4.2 Stiffness Matrix Including Axial Force Effects . . . . . . . . . . . . 235 

6.5 Stability Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 
6.5.1 Member with No Lateral Displacement .................. 240 
6.5.2 Member Subjected to a Relative End Displacement .4. . . . . . 242 

6.6 Frames with Sidesway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 
6.6.1 Single-Bay Multi-Storey Frames ....................... 257 
6.6.2 Multi-Bay Rigid Frames .............................. 265 
6.6.3 Substitute Frame Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 

6.7 Rigidly Connected Trusses ................................... 272 
6.8 Moment Distribution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 
6.9 Problems ................................................. 283 

7 Buckling of Members Having Open Sections ..................... 291 
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 
7.2 Torsional Buckling ......................................... 291 

7.2.1 Member Subjected to Torque .......................... 291 
7 .2.2 Member Subjected to Axial Force . . . . . . . . . . . . . . . . . . . . . . 299 

7.3 Lateral Buckling of Beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 
7.3.1 Torsional Buckling due to Flexure ...................... 315 
7.3.2 Torsional Buckling due to Flexure and Axial Force ........ 323 

7.4 Lateral Buckling of Beams with Transverse Loads . . . . . . . . . . . . . . . 324 
7.4.1 Lateral Buckling of a Cantilever Beam .................. 324 
7 .4.2 Lateral Buckling of a Simply Supported Beam. . . . . . . . . . . . 328 

7.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 

8 Elastic Buckling of Thin Flat Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 
8.2 Governing Differential Equations of Bending . . . . . . . . . . . . . . . . . . . 336 

8.2.1 Boundary Conditions ................................. 341 
8.3 Energy Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 

8.3.1 Strain Energy of Plates ............................... 342 
8.3.2 Potential Energy due to In-Plane Forces ................. 343 

8.4 Buckling Analysis of Rectangular Plates . . . . . . . . . . . . . . . . . . . . . . . 344 
8.4.1 Governing Differential Equation Solution . . . . . . . . . . . . . . . . 344 
8.4.2 Stationary Potential Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 362 

8.5 Buckling of Web Plates of Girders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 
8.5.1 Buckling of Rectangular Plate in Shear . . . . . . . . . . . . . . . . . . 368 



X Contents 

8.5.2 Buckling of Rectangular Plate due to Non-Uniform 
Longitudinal Stresses ................................. 371 

8.5.3 Buckling of Stiffened Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 
8.6 Strength of Thin Plates in Compression . . . . . . . . . . . . . . . . . . . . . . . . 383 
8.7 Plates Under Longitudinal Compression and Normal Loading ..... 387 

8.7.1 Governing Differential Equation Method ................ 387 
8.7.2 Energy Approach .................................... 390 

8.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 

9 Stability Analysis of Arches, Rings and Shells ..................... 397 
9.1 Introduction ............................................... 397 
9.2 Arches .................................................... 398 

9.2.1 Flat Arches ......................................... 398 
9.2.2 Circular Arches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 

9.3 Stability of rings and tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 
9.4 Elastic Instability of Thin Shells .............................. 410 

9.4.1 Governing Differential Equation ........................ 411 
9.4.2 Energy Approach .................................... 415 

9.5 Problems ................................................. 419 

10 Inelastic Buckling of Structures ................................ 425 
10.1 Introduction ............................................... 425 
10.2 Inelastic Buckling of Straight Columns ........................ 425 

10.2.1 Stress-Strain Relationship ............................. 427 
10.3 Theories of Inelastic Buckling ................................ 430 

10.3.1 Reduced Modulus Theory ............................. 430 
10.3.2 Tangent Modulus Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 

10.4 Eccentrically Loaded Columns ............................... 436 
10.4.1 Analysis of Short Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 

10.5 Inelastic Buckling by Torsion and Flexure ...................... 443 
10.6 Lateral Buckling of Beams in the Inelastic Range . . . . . . . . . . . . . . . . 443 
10.7 Inelastic Buckling of Plates .................................. 444 

10.7.1 Plates Subjected to Uniaxial Loading .................... 445 
10.7.2 Plate Subjected to In plane Biaxial Loading .............. 448 

10.8 Inelastic Buckling of the Shells ............................... 449 
10.9 Problems ................................................. 451 

11 Structural Design For Stability Of Members ..................... 453 
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 
11.2 Column Design Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 
11.3 Local Plate Buckling of Structural Members . . . . . . . . . . . . . . . . . . . . 457 

11.3 .1 Average Shear Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 
11.3.2 Flexural Buckling of Webs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 
11.3.3 Built-up Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 

11.4 Beam Design Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468 



Contents XI 

11.4.1 Lateral Buckling of Beams ............................ 468 
11.4.2 Effective Length of Compression Flange . . . . . . . . . . . . . . . . . 469 
11.4.3 Codal Provisions ..................................... 471 
11.4.4 Bearing Compressive Stress ........................... 476 

11.5 Stiffeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 
11.5.1 Vertical Stiffeners .................................... 478 
11.5.2 Horizontal Stiffeners ................................. 479 

11.6 Beam-Column Design Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480 
11.6.1 Codal Provisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 
11.6.2 Design of a Beam-Column Member. . . . . . . . . . . . . . . . . . . . . 484 

11.7 Optimum Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488 
11.8 Problems ................................................. 491 

Appendix A: Stability Functions .................................... 493 
A.l Stability Functions for Compression Members . . . . . . . . . . . . . . . . . . 493 
A.2 Stability Functions for Tension Members . . . . . . . . . . . . . . . . . . . . . . . 497 
A.3 Stability Magnification Factors for Members with Lateral Load . . . . 499 

Appendix B: Effective Length of Stepped 
and Multiple Level Load Columns .............................. 503 

Appendix C: Mathematical Essentials ............................... 515 
C.1 Linear Differential Equations ................................. 515 
C.2 Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518 
C.3 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 

Appendix D: General References ................................... 529 

Subject Index .................................................... 531 



The information contained in this text has been either generated or obtained from 
the sources believed to be reliable and much care has been taken by the author 
and the publishers to make the book error (factual or printing) free. However, nei­
ther the Springer-Verlag nor its author guarantees the accuracy or completeness 
of any information published herein, and neither the author nor the publisher shall 
be responsible for any errors, omissions, or damages arising out of the use of this 
information. This work is published with an intention of making the fundamental 
principles of stability analysis clear, and not to render engineering or other pro­
fessional services. For such services, the assistance of an appropriate professional 
should be sought. 



About the Author 

M.L. GAMBIDR is currently Director of Rayat Institute of Engineering and Infor­
mation Technology, Railmajra, Punjab, India. Previously he was Professor & Head 
of Civil Engineering Department, and Dean Planning & Resource Generation at 
the Thapar Institute of Engineering & Technology, Patiala. He obtained his Bache­
lor's and Master's degrees from University of Roorkee (presently Indian Institute of 
Technology, Roorkee), and his Ph.D. from Queen's University, Kingston, Canada. 

His major research interests have been in the areas of structural Engineering 
particularly in structural failures and rehabilitation of structures, structural reliability; 
structural stability and dynamics; and High Performance Concrete. He has supervised 
40 Masters and 6 Doctoral theses. He has wide experience in structural design of 
diverse types of structures in reinforced concrete and structural steel. Dr. Gambhir has 
published over sixty technical papers in reputed journals and has authored: Concrete 
Technology, Tata McGraw-Hill Publishing Company, 3rd Edition; and Reinforced 
Concrete Design, Macmillan (I) Ltd., 1st Edition. 

He has been recipient of several awards including Agra University Bursary, 
National Scholarship, Research Fellowship, Roorkee University (now liT Roorkee) 
Gold Medal, Canadian Commonwealth Scholarship and merit scholarships. He is 
a member of Indian Society for Technical Education and the Indian Society for 
Earthquake Technology. He has been member of numerous committees. 



1 

Introduction 

A structure is meant to withstand or resist loads with a small and definite deform­
ation. In structural analysis problems, the aim is to determine a configuration of 
loaded system, which satisfies the conditions of equilibrium, compatibility and force­
displacement relations of the material. For a structure to be satisfactory, it is necessary 
to examine whether the equilibrium configuration so determined is stable. In a prac­
tical sense, an equilibrium state of a structure or a system is said to be in a stable 
condition, if a disturbance due to accidental forces, shocks, vibrations, eccentricities, 
imperfections, inhomogeneities or irregularities do not cause the system to depart 
excessively from that state. The usual test is to impart a small disturbance to the 
existing state of the system, if the system returns back to its original undisturbed state 
when the cause of disturbance is removed, the system is said to be stable. 

There are two types of failures associated with a structure namely material failure 
and form or configuration failure. In the former, the stresses exceed the permissible 
values which may result in the formation of cracks. In the later case, even though 
the stresses are within permissible range, the structure is unable to maintain its 
designed configuration under the external disturbances (or applied loads which could 
be tensile and/or compressive). The loss of stability due to tensile loads falls in the 
broad category of material instability, whereas the stability loss under compressive 
load is usually termed structural or geometrical instability commonly known as 
buckling. 

A buckling failure is potentially very dangerous and may trigger the collapse 
of many types of engineering structures. It may take the form of instability of the 
structure as a whole or the localized buckling of an individual member or a part there 
of, which may or may not precipitate the failure of the entire structure. It is to be 
emphasized that the load at which instability occurs depends upon the stiffness of the 
structure or portion there of, rather than on the strength of material. 

M. L. Gambhir, Stability Analysis and Design of Structures
© Springer-Verlag Berlin Heidelberg 2004



2 1 Introduction 

1.1 Definitions of Stability 

As discussed in the previous section, buckling is a phenomenon encountered in 
engineering structures under predominantly compressive forces. The requirement that 
a body should be in equilibrium seems insufficient even from purely practical point 
of view. For a sound structure, it is desirable that it is in stable state of equilibrium. 
The stable state of equilibrium is defined as the ability of the structure to remain 
in position and support the given load, even if forced slightly out of its position by 
a disturbance. The question of stability can be posed in three different ways. The 
first way of posing the stability question is: if there is a possibility of existence of 
another adjacent configuration beside straight configuration for which the structure 
can assume equilibrium for P > P cr· 

There are indeed two possible equilibrium states, the straight and the bent one. 
For illustration consider an initially straight vertical flag-post column of uniform 
cross-section subjected to a concentrated force (load) P acting along its centroidal 
axis. As the load P is continuously increased from zero to a particular critical value 
of the load P cr for which the straight member sustains the load in the laterally bent 
configuration as shown in Fig. l.la. 

At this value of load P called critical or buckling load, the member either remains 
in straight position or in the laterally deflected configuration. Below this critical value 
of the load the member will be straight and above it will be in bent position. Thus at 
critical value Per two adjacent equilibrium positions are possible for the same external 
force-called condition of bifurcation or branching. Moreover, the configurations 
of deformation for these two cases are totally different. Buckling, a condition of 
bifurcation, constitutes one of the ways in which the structural member becomes 
unstable. The load deformation curves P versus ..1, and P versus y are shown 
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Fig.l.la-c. Load-deformation behaviour of cantilever subjected to axial compression. a Lat­
erally deflected shape, b P-Ll curve, c p-y curve 
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in Figs. l.lb and l.lc., respectively. Normally the buckling does not necessarily 
correspond to the ultimate load carrying capacity of the member, it may indicate 
considerable strength above the buckling load, though deformations associated with 
increased load may be appreciable. As P is increased a stage is reached beyond which 
further increase is impossible and the member continues to deflect progressively. Such 
a situation also describes a condition of general structural instability. Thus it may be 
stated that the instability occurs when two or more adjacent equilibrium positions 
correspond to fundamentally different deformation modes. 

The second way of posing question for stability investigation is that: if the column 
is given slight disturbance or perturbation causing it to vibrate, would the amplitude 
of vibration diminish or increase with the passage of time. This definition of stability 
is much more powerful than the preceding one since it puts the problem in wider 
context of dynamics. For P > Per• the system is dynamically unstable. 

The third way to pose the question is: if there is a value of P for which the total 
potential energy of the system ceases to be minimum. This criterion is restricted to 
conservative systems. 

The above three criteria are termed Euler's statical (non-trivial equilibrium state) 
criterion, Liapunov's dynamical criterion and potential energy stability criterion, 
respectively. It will be seen that for a continuous and conservative elastic system 
all these criteria are completely equivalent and within linearised analysis lead to 
an eigenvalue determinant from which the eigenvalue of critical or buckling load is 
retrieved. 

In the above flag-post type vertical column illustration the effect of only axial 
force has been considered. However, in practice the members are normally subjected 
to lateral forces along with axial forces. To illustrate the influence of bending forces 
on the axial deformations consider a simply supported beam subjected to a single 
lateral load Q and compressive force P ( < Per) as shown in Fig. 1.2a. The moment 
produces deflections which in turn cause additional moments along the member due 
to increased eccentricity of load P resulting in still more deflections. Finally a stable 
situation is reached where the deflections correspond to the bending moments due 
to lateral and axial loads. It should be noted that the iterative process just described 
actually need not be carried out to obtain a solution. The influence of axial force on 
bending moment can be incorporated directly into differential equation 

d2y 
EI- = -Mx = -(Mo + Py) dx2 (1.1) 

where Mo is the moment due to lateral forces, end moments etc. and the term Py 
takes into account the added influence of axial force and deflection. If the axial force 
and lateral loads increase proportionately and that the member deflects laterally in 
the plane of applied loads, the two load-deformation curves will be as shown in the 
Figs. 1.2a and 1.2b for P verses .<1, and P verses y, respectively. Here y corresponds 
to lateral deflection at the point of application oflateralload. Unlike in flag-post type 
column both axial and lateral deflections are observed from the outset of the load 
application. 
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Fig. 1.2a,b. Laterally loaded beam subjected to axial thrust. a P-6. diagram, b P-y diagram 

The concept of stability, and its counterpart instability, is often explained by 
analogy to the behaviour of a rigid ball of some weight placed in position at different 
points on a surface shown in Fig. 1.3 with zero curvature normal to the plane of figure. 
The ball is assumed to be in equilibrium at the points of zero slopes as indicated. 
However, the response of the ball to a slight disturbance or perturbation from these 
positions is quite different. At position I of the ball positive work will be required, 
and the ball returns to its original position upon removal of the disturbance. This 
case corresponds to the points on the ascendancy sides of load-deformation curves 
shown in Figs. l.lb, l.lc, 1.2a and 1.2b. This equilibrium position is stable. Case II, 

Ball 

Ball 

Ball 

Fig. 1.3. Ball analogy for the bifurcation diagrams 
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on the other hand represents a state of instability or unstable equilibrium since the 
disturbance will result in the giving up of energy and ball will progressively move. 
This corresponds to the points on descendancy portions of the load deformation curves 
shown in Figs. l.lb, l.lc, 1.2a and 1.2b. In case III, the ball neither returns to its 
original position nor continues to move on removal of disturbance. This state is termed 
neutral equilibrium condition. This condition of neutral equilibrium is frequently 
stated as the necessary condition for structural stability. This would be the case when 
structural members buckle or when they reach their maximum load-carrying capacity. 
Buckling can occur in both the elastic and inelastic ranges of material behaviour. For 
real materials ultimate carrying capacity is realized in the inelastic range. 

1.2 Structural Instability 

The loss of structural stability is termed instability, which takes place in different ways 
depending on the material properties, structural configuration and loading conditions. 
The loss of stability in terms of structural behaviour can be expressed by the load­
deformation relationship. For continuous conservative elastic systems stability is 
classified into three types of branching or bifurcations with distinct initial post­
buckling behaviour: 

1. A symmetric bent upward post-buckling curve. This bifurcation is stable and 
almost unaffected by imperfections, 

2. A symmetric bent downward curve which is unstable and imperfection sensitive, 
and 

3. An asymmetric post-buckling curve with a slope at the bifurcation point which 
is extremely sensitive even to a very small initial imperfection. 

The first type shown in Fig. 1.4a is called symmetric stable branching, because 
for the loads above the critical point, the characteristic deflection can be increased 
only by increasing load P. On the other hand the second type Fig. 1.4b is termed 

p p p • A • 
Ill I I I 
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I: I Ill , , 
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' ' ' ' \ , 
I I I I 
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y y y 

Fig. 1.4a-<. Points of static branching or bifurcation and points of imperfection. a Stable sym­
metric (positive curvature), b unstable symmetric (negative curvature), c unstable asymmetric 
(positive-negative curvature);-- perfect systems,--- asymptotic imperfect systems 
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Fig. l.Sa-c. Von Mises truss and an arch under external pressure (snap through buckling). 
a Mises truss, b arch, c P-y diagram;-- stable,---- unstable 

unstable because the deflection increases, if the system is perturbed above the critical 
point Per without increasing the load. In fact the load is to be reduced if an increase 
in deflections y is to be attained. 

The third type of branching point as shown in Fig. 1.4c is unstable for deflection 
to the right hand side and stable for the left hand side. However, since the deflection 
can occur in either direction, the point is regarded unstable for practical purposes. The 
unavoidable imperfections such as crookedness of central axis makes the behaviour 
of imperfect system (shown by dotted lines) asymptotic as regard to the ideal system. 
The point at which the imperfect system turns, i.e. the maximum of load-deformation 
curve, is termed limit point instability and is similar to the snap-through buckling of 
the mises truss or the flat arch under external pressure shown in Figs. 1.5a and 1.5b, 
respectively. P-y relationship for mises truss is shown in Fig. 1.5c. If the load P 
is increasing monotonically and reaches the value Pen the point jumps to another 
branch of the curve corresponding to a new geometrical form of the truss as shown 
in the Fig. 1.5c. In these types of structures, the loss of stability consists in sudden 
transition to a non-proximate form of equilibrium. 

A mass less cantilever column subjected to a follower force P where the direction 
of force P follows that of tangent at the free end i. e. the load is tangential load. 
The stability of such a system, in general, can not be determined by non-trivial 
equilibrium state approach, suggesting that buckling is impossible under such loading. 
The preceding conclusion is correct only if the structure would be truly mass less, 
which is of course, impossible in practice. A dynamical analysis is made possible 
by the inclusion of, say, a small mass at the tip of the structure. The analysis shows 
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Fig. 1.6a--c. Cantilevers subjected to follower and eccentric loads. a Follower or tangential 
load, b eccentric load, c P-y relationship for eccentric load;-- stable,--- unstable 

that the column is stable up to the load level P = Per and loss of stability occurs for 
P > Per and column passes from state of rest to a state of motion. 

Consider the case of a uniform cantilever column subjected to a compressive 
force P acting at an eccentricity e as shown in Fig. 1.6b. This case is equivalent to 
an imperfection due to crookedness in the centroidal axis. The load-deflection curve 
consists of an ascending branch and a descending branch with a definite apex which 
defines the maximum load carrying capacity of the member as shown in Fig 1.6c. Un­
der monotonic loading ascending branch corresponds to a stable equilibrium state and 
descending to an unstable equilibrium state. As the load approaches, Per unlimited 
progressing growth of displacement occurs. The loss of stability of such imperfect 
systems is due to transition to non-equilibrium states. Consider a thin-walled cylin­
drical shell subjected to axial compression. In the load-volumetric strain diagram 
shown in Fig. 1. 7b, the line OA represents the primary equilibrium path of unbuckled 
configuration of the shell where as the line BC represents the secondary equilibrium 
path of buckled non-cylindrical configuration of the shell. In such structures a finite 
disturbance during the application of the load can force the structure to pass from pri­
mary equilibrium configuration to a secondary equilibrium configuration even before 
the classical critical load is reached. This is due to diamond-shaped local buckling. 
In such structures the loss of stiffness after local buckling is so large that the buckled 
configuration can be maintained by returning to an earlier level of loading. 

It must be noted that in each of types of loss of stability, a change in the geometry 
or configuration results from either due to introduction of additional new forces or 
due to the change in the nature of forces that existed in the un-deformed structure. 
In terms of new forces that appear during the loss of structural stability a further 
classification of instability can be provided as follows: 

1. Flexural buckling, 
2. Torsional buckling, 
3. Torsional-flexural buckling, and 
4. Snap-through buckling. 
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Fig. 1.7a,b. Post-buckling behaviour of a thin walled cylindrical shell. a Cylindrical shell, 
b post buckling behaviour; -- stable, - - - unstable 

These instability modes may occur independently or in combinations. In order to 
explain persistent large discrepancy between theoretical and experimental results of 
eigenvalue buckling load, a study of post -buckling behaviour was suggested by Koiter. 
Koiter was the first to realize the immense importance of post-buckling in connection 
with imperfections as well as mode coupling phenomenon which combines two 
harmless stable buckling modes to a catastrophic highly unstable one. 

The explanation of above referred discrepancy lies not in linear eigenvalue analy­
sis but in post-buckling behaviour. The difference in the post-buckling behaviour lies 
in the linearizing the analysis by ignoring non-linear terms (Fig. 1.7). An adequate 
initial post-buckling analysis must in general consider up to fourth-order terms in 
the energy functional while the buckling load depends only on second-order terms, 
the slope of the post-buckling curve depends only on second- and third-order terms. 
Finally, the initial curvature depends only on second-, third- and fourth order terms 
unless the functional is symmetric in which case only fourth order terms have an 
effect on the initial curvature. 

1.3 Methods for Stability Ananlysis 

Stability analysis consists in determining the mode of loss of structural stability and 
corresponding load called critical load. The structure remains at rest before and after 
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buckling except in the cases where loss of stability is due to transition from the state 
of rest to a state of motion called kinetic or dynamical instability. Four distinctly 
different classical methods available for the solution of buckling problems are: 

1. Non-trivial equilibrium state approach, 
2. Work approach, 
3. Energy approach, and 
4. Kinetic or dynamical approach. 

The first of these, the so called statical equilibrium approach requires a second 
infinitesimally near equilibrium position which will sustain the load. In the other 
words it consists in determining the values of load for which a perfect system admits 
two or more different but adjacent equilibrium states. By different equilibrium states 
it is meant that the response of the structure is such that equilibrium can be maintained 
with different deformation patterns. The condition of infinitesimally close or adjacent 
equilibrium configuration renders the slope of deflection curve to be very small 
compared to unity. This enables the expression for curvature of deflection curve 
to be linearized. The method then requires the solution of governing differential 
equations subject to some prescribed boundary conditions. It leads to an eigenvalue 
problem. For a multi-degree-of-freedom system, the equations of equilibrium are 
expressed in matrix form. The determinant of coefficients of unknown displacements 
is termed stability determinant. For n degree-of -freedom system, the size of stability 
determinant would be (n x n) which according to the rules of linear algebra must 
vanish if the system of governing equations of equilibrium should have a non-trivial 
solution. It should be noted that the stability determinant is identical to the so-called 
Hessian of energy functional. 

The second method known as work approach requires that zero force (load or 
moment) causes the system to remain in the deformed position. 

The energy approaches (virtual work, minimum total potential energy or station­
ary potential energy, minimum complementary energy) as defined in Chap. 2, can 
also be used to establish neutrality of given equilibrium state. The method based on 
the principle of minimum potential energy may be stated as: a conservative (bolo­
nomic) system is in a configuration of stable equilibrium if, only if, the value of total 
potential energy II, is a relative minimum i.e. 8II18y = 0 (relative with respect to its 
immediate neighourhood). Thus for stability II must be a minimum i.e. a2 II 1 ay2 > 0 
and for instability II must be maximum i.e. a2 II 1 ay2 < 0. The critical state is thus 
given by vanishing of second variation i.e. a2 II I ay2 = 0. It is interesting to note that 
within linearized buckling instability analysis using energy formulation, the above 
criterion reduces to: II = 0, 8II = 0, 82 II = 0. It is stressed, however, that this 
equivalence is only true for the linear eigen-value analysis. 

In the kinetic or dynamic approach, the equations of motions are formulated and 
the load is established which results in deformation with zero frequency of vibration 
(A = 0). Thus the method consists in obtaining the so-called frequency equation. The 
frequency A has both positive and negative real parts. If A has a positive real part, the 
displacement increases as time t tends to infinity and structure is regarded unstable. 
On the other hand if A has a negative real part, the displacement vanishes as time t 
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tends to infinity and structure must be regarded stable. Therefore, the critical state 
is represented by vanishing of real part of A.. In a case of multi-degree-of-freedom­
system, the frequency equation is obtainable from frequency determinant which is 
the condition of non-trivial solution of equations of motion exactly as in the criterion 
of non-trivial equilibrium. On the other hand, the condition that A. should have zero 
real part is identical to the condition that the decrement should vanish. The decrement 
can be written in a determinant form. Thus in a dynamical investigation critical state 
is marked by vanishing of two determinants, the frequency determinant and so-called 
Burschart determinant. It should be noted in passing that the dynamical criterion 
of buckling is frequently used for experimental investigation of critical loads. This 
method is more general in the sense that the other approaches based on static concept 
are special cases of this approach when inertia forces are neglected. Moreover, since 
the dynamical method takes into account the inertia forces in its formulation, the 
mass distribution of the elastic system becomes as important as elastic stiffness of the 
system. The response of the system therefore becomes a function of both the space 
and the time coordinates. 

From the foregoing discussion it is evident, that the dynamical criterion for buck­
ling instability is the most general one. The energy method is restricted to conservative 
systems and the equilibrium method is limited to buckling to an adjacent equilibrium 
state and will thus fail in general to detect dynamical buckling. For a conservative 
elastic system, all the three approaches are equivalent as far as determination of 
critical load is concerned. All the three approaches lead to a stability or frequency 
determinant, the vanishing of which leads to an equation for determining critical 
parameters i. e. marginal stability. 

In additional to classical approaches several approximate methods have been 
developed to predict the load carrying capacity in very specific cases. 

1.4 Summary 

A structure is said to have a branching critical buckling load Per. if for a loading 
P > Per• it has more than one equilibrium state. In case of an Euler strut, for instance, 
these would be initial straight form and the slightly bent configuration. For a loading 
P < Per• the structure is said to be stable while for P > Per• the structure is unstable, 
There are three stability criteria associated with three methods of solution. The first 
is non-trivial equilibrium state criterion which is based on equilibrium method. The 
second is the dynamical criterion of stability which is based on vibrational analysis. 
Finally, the potential energy criterion states that an equilibrium state given by 8II = 0 
is stable if the total potential energy is minimum i.e. the second variation 82 II = 0. 
The state is unstable if 82 II < 0. Consequently, the critical state is gives by 82 II = 0. 
In the buckling analysis energy method plays an important role. 

To explain discrepancy between theoretical and experimental results three types 
of bifurcation with distinct post-buckling behaviour have been outlined. For post­
buckling analysis higher order terms in the energy functional must be considered. 
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Basic Principles 

2.1 Introduction 

In this chapter, the basic principles required to analyze the structural stability problems 
are discussed. Emphasis is laid on energy methods. In the beginning of the chapter, 
the idealization of the structures, equilibrium equations and rigid body diagrams have 
been described. The subject matter on energy principles starts with the definition of 
mechanical work for external and internal forces of an elastic system and establishes 
relationship between the two. 

2.2 Idealization of Structures 

The primary objective of structural analysis is to determine the reactions, internal 
forces and deformation at any point of given structure caused by applied loads and 
forces. To obtain this objective it becomes necessary to idealize a structure in a simpli­
fied form emendable to analysis procedures. The members are normally represented 
by their centroidal axes. This naturally does not consider the dimensions of the mem­
bers or depth of joints and hence there may be considerable differences between clear 
spans and centre-to-centre spans ordinarily used in the analysis. These differences are 
ignored unless cross-sectional dimensions of the members are sufficiently large to in­
fluence the results. The supports and connections are also represented in a simplified 
form as illustrated in Fig. 2.1. 

2.3 Equations of Equilibrium 

For a stationary structure or a body acted upon by a system of forces which include 
external loads, reactions and gravity forces caused by the mass of the elements, the 
conditions of equilibrium are normally established with reference to a coordinate 
system X, Y and Z. It is also convenient to replace all the forces by their compo­
nents along the chosen reference axes. The condition of equilibrium in X -direction 

M. L. Gambhir, Stability Analysis and Design of Structures
© Springer-Verlag Berlin Heidelberg 2004



12 2 Basic Principles 

p 

a 

H H 

L 
L 

(a) (b) 

Fig. 2.la,b. Idealization of structure. a Actual structure, b idealized structure 

expresses the fact that there is no net unbalanced force to move the body in that 
direction. Thus for static equilibrium, the algebraic sum of all the forces along the 
co-ordinate axis X must be zero. Mathematically it can be expressed as I: Fx = 0. 
Similar conditions hold good along co-ordinate axes Y and Z. Three additional con­
ditions of equilibrium state that the structure or element does not spin or rotate about 
any of the three axes due to unbalanced moments. The satisfaction of three force con­
ditions and three moment conditions establishes that the structure is in equilibrium 
or stationary condition. The six equilibrium conditions can be expressed as 

• Translational equilibrium 

(2.1) 

• Rotational equilibrium 

L Mx = 0 , L My = 0 and L Mz = 0 (2.2) 

In the vector form they can be expressed as 

FR = Fx i + Fy j + Fz k = 0 and MR = Mx i + My j + Mz k = 0 (2.3) 

For a planar structure lying in XY plane there is no force acting in Z-direction or 
any moment about X- andY-directions (axes). The moment Mz represents moment 
about an axis perpendicular to XY plane. Thus for a planar structure the equilibrium 
conditions are: 

(2.4) 

The major application of equilibrium analysis is in the evaluation of reactions and 
internal forces by representing a structure by a series of free body diagrams. 
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2.4 Free-Body Diagrams 

The analysis of all the structures is based on the concept that any part or the structure 
is in equilibrium along with the structure as a whole. This concept is used to determine 
the internal forces in a structure by drawing free-body diagrams for the parts of the 
structure. The free-body diagrams are useful tools in structural analysis. These are 
obtained by cutting the structure hypothetically or disengaging some connections 
and supports. In constructing a free-body diagram, the correct depiction of all the 
possible forces in the structure at the cuts and disengaged connections by appropriate 
force vectors is of extreme importance. At this stage the correct direction of the 
internal forces is not known. Once the values of these quantities are ascertained by 
statics, the proper direction (sense) of each force component can be established. All 
the external forces acting on the body in its original state must also be depicted on 
the diagram. This procedure can be applied to each of the free-body diagrams into 
which the structure has been discretised or broken down. However, in dealing with 
the forces acting on the free bodies, the internal forces common to two free bodies are 
double action forces denoted as equal but appositely directed force vectors. It should 
be realized that the internal forces are the resultants of internal stresses which are 
decomposed into components, normal to cross-section, termed normal (axial) force N 
and tangent to cross-section shear force Q. In addition there are stress couples which 
are termed bending moment M. To illustrate the discretization of a structure into 
a number of free-bodies or elements consider the structure shown in Fig. 2.2a. The 
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Fig. 2.2a-c. Free-body diagrams of the entire and discretized structure. a Structure, b free-body 
diagram of entire structure, c free bodies of individual parts 
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free-body diagrams of the entire structure and of the parts are shown in Figs. 2.2b 
and 2.2c, respectively. 

To illustrate the application of equilibrium condition considers the loaded beam 
shown in Fig. 2.3a. The free body diagram of the entire beam released from the 
supports is shown in Fig. 2.3b. There are four unknown reaction components Fox• 
Foy• Fzy and M0 acting on the free-body diagram of the entire beam. The free­
body diagrams of two parts disengaged at the hinge are shown in Fig. 2.3c. Three 
equilibrium conditions for this planar beam along with fourth structural condition 
that moment at the hinge 1 is zero, can be used to compute unknown reactions. The 
equilibrium condition 

L Fx = Fox = 0 gives Fox = 0 

Summation of moments at the hinge point 1, I: M Iz 

Fzy(2a) - 2wa(a) = 0 gives Fzy = wa 

Summing up vertical forces 

L Fy = Foy + Fzy - 2wa = 0 

0~. 
2a 
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~M0 M t 
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Fig. 2.3a-c. Free-body diagrams of the entire and discretized structure. a The beam and the 
loading, b free-body diagram of entire beam, c free-body diagrams of two parts separated by 
the hinge 
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Therefore 

Foy + Fzy = 2wa or Foy = wa 

L Moz = Mo - M- 2wa(2a +a+ a) + Fzy(5a) = 0 
2 . 

or Mo = M + 8wa - 5Fzya 

substituting the value of F2y we obtain 

Mo = M + 8wa2 - 5(wa).a = (M + 3wa2) 

The positive sign indicates that the directions of reactions assumed are the correct 
directions. 

2.5 Work of Externally Applied Forces 

Consider a force F moving through a very small but finite distance ox along its 
direction of action. The force will not change in magnitude appreciably during this 
small movement ox and the elementary work is defined as 

oWe= F(ox) (2.5) 

If the force has moved a total distance L the work done could be calculated by 
dividing the distance L into a number of arbitrary small distances oxi = L/n and the 
work would be approximated 

n n 

We= L:oWei = LFioxi (2.6) 

To be able to calculate exact value of We, the number of parts (n) must be infinitely 
large. Thus in the limit o() tends to d( ), the summation (L) tends to integral {j) and 
Fi renders a continuous function of x. Thus the expression for the work done by F(x) 
is 

L 

We= J F(x)dx (2.7) 

0 

In structural analysis problems F varies during displacement or deformation, e. g. 
consider the very important case of linear relationship between the load F and the 
displacement y i.e. F is linear function of y 

F= cy 

where cis a constant. Substituting this into (2.7) 

fy 1 2 

We = (cy) dy = 2cy 

0 
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Fig. 2.4a,b. Geometric representation of work w.r.t. load-deformation diagram. a Generalised 
force-displacement curve, b load-deformation-work diagram 

where y denotes the displacement or deflection of a point, and since F = cy, then 

We= !Fy 

Here the loading F represents a single force, P or moment M, and the deformation x 
represents the corresponding displacement and rotation, respectively. Thus F and x 
are frequently referred to as generalized force and generalized displacement. The 
curve F = f(x) would be in general some non-linear continuous curve as shown in 
Fig. 2.4a. The work done expression J F(x) dx represents the area under the curve. 
In the other words, the work can be interpreted geometrically as area under load­
deflection diagram. If the curve F = f(x) becomes straight line i. e. there exist a linear 
relationship between force and deformation, the area renders a triangle as shown in 
Fig. 2.4b and we obtain 

(2.8) 

The area A which together with A forms rectangle is obviously numerically iden­
tical to A in the case of linear force-deflection relationship. The area A is termed 
complementary work We. Thus the complementary work is defined as 

We= I ydP or I OdM (2.9) 

Equation (2.8) implies that translational and rotational work must be equivalent. To 
illustrate this consider the hinged arm 0-1 as shown in Fig. 2.5 with a force applied 
at the free end 1 which would move by a distance dy. The work done by the force is 

We = I P dy = I PL ( i) 
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Fig. 2.5. Equivalence of translational and rotational works 

Here PL is the bending moment M acting on the arm and (dy/ L) is the angle of 
rotation d&. Thus the work done can be expressed as 

We= J Mde 

2.5.1 Eigenwork and Displacement Works 

Eigenwork is defined as the work done by a force moving along the deformation 
caused by it. As an example consider the structure shown in Fig. 2.6a. The deflection 
under distributed load w is y(x), at the point of concentrated load P is y1 and at 
the point of moment M is 82 (y~=az, where a prime (') denotes differentiation with 
respect to x). The eigenwork of the loading in this case, with an assumed linear 
force-displacement relationship is 

(a) (b) 

P=f(y) 
{M= f(6)} 

Fig. 2.6a,b. Eigenwork and displacement work. a Loaded beam and its deflection, b geometrical 
interpretation of eigenwork and displacement work 
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L 

1 1 I 1 Weig = 2Py1 + 2 w y(x) dx + 2M82 (2.10) 

0 

In contrast to eigenwork, the displacement work is the work done by a force P1 along 
the displacement Y2 caused by another force P2. Thus force Pt does not vary during 
deformation and displacement work is consequently 

Wdis =I P1 dy2 = PtY2 (2.11) 

As an example consider the beam shown in Fig. 2.6b carrying multiple loads. In the 
double subscripted quantities term Yii represents a displacement at the point i due to 
force Pi acting at the point j. Consider the force P1 acting at point 1 which produces 
eigenwork Wn = (PtYn)/2. Now suppose that another load P2 is applied to the 
beam at point 2. This load will cause additional displacements Y22 and Y12 at the 
points 2 and 1, respectively. Thus the eigenwork ofload P2, W22 = (P2Y22)/2. 

The eigenwork of the external forces (loading) of the system is 

2 1 1 
Weig = ~ Wu = Wu + W22 = 2 Pt Yn + 2 P2 Y22 

t=l 

while the displacement work is 

2 

Wdis = L W;j = wl2 = PtYl2 
i,j 

(2.12) 

The displacement work wherein the load remains constant, could be interpreted as 
virtual work which is the product of a constant load and an imaginary very small 
displacement (virtual displacement). This concept of virtual work will be discussed 
later in this chapter. 

2.5.2 Linear Springs 

There are two kinds of springs normally encountered in the idealized structures: 
a normal force or extensional spring and a moment or rotational spring. A spring is 
said to be linear when load-deformation relationship of the spring is linear. 

Normal Force Spring 

It is capable of carrying a normal force only, i.e. it has no bending, torsional and shear 
stiffness. The elongation ..1 of an ideal elastic spring subjected to a normal force P is 
given by 

(2.13) 
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0 

EA l~=k~, ;Q1t=J=::::P 
8M =k,89 

8P 8P 8P=k08x 

(a) (b) 

Fig. 2.7a,b. Concept of linear normal force and rotational springs. a Normal force spring, 

b moment or rotational spring 

where kn is spring constant termed spring stiffness (i.e. force required for unit 

deformation). 
The inverse (lfkn) is described as the flexibility of the spring. In the structural 

analysis problems an ideal linear spring is represented symbolically as shown in 

Fig. 2. 7b. An elastic bar oflength L, cross-sectional area A and modulus of elasticity E 

carrying axial force o P, shown in Fig. 2. 7b can also be modeled as a normal force 

spring. The total elongation Ll of the member following Hooke's law is given by: 

(a) (p 1) PL P 
Ll = eL = E L = AE L = AE = (EAjL) 

Comparing this expression with the law of linear spring given by (2.13), the spring 

constant kn is given by 

kn = (EAjL) (2.14) 

Work of internal force of the spring which is stored as the energy due to elastic 

deformation ox can be computed as follows. The internal force N produced in the 

spring due to o P is 

N = oP =knox 

The eigenwork of the internal forces is thus 

-Wii =I Ndx =I knoxdx = ~kn(ox)2 

1 
= '2 (spring constant) (elongation)2 
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The strain energy U of the spring is thus 

1 2 
U = lkn(8x) (2.15) 

Moment or Rotational Springs 

A rotational spring is an idealized structure that is capable of resisting a rotation but 

does not have an axial stiffness. For an ideal linear rotational spring, the moment is 

directly proportional to the deformation which in this case is the angle of rotation e. 
The law of a linear rotational spring is thus 

M = kr() 

where kr is the moment stiffness i.e. the moment required for unit rotation and 

its inverse (1/kr) is the spring flexibility. An ideal rotational spring is symbolically 

represented as in Fig. 2. 7b. The eigenwork of the internal forces in the moment spring 
is 

-Win = Wu = J 8M d() =! (kr8()) d() = ~kr(80)2 

= 1/2 (spring constant) (angle of rotation)2 (2.16) 

In general, however, both ends of the spring will move, the relative rotation of the 

spring would be the net difference between the end rotations. The spring law should 

be stated more precisely as 

and the strain energy is thus 

(2.17) 

2.5.3 Virtual Work 

Virtual Work and Complementary Virtual Work 

The equilibrium condition states that for a body to be in equilibrium, the sum of all 

the forces acting on the body must be zero CL: P; = 0). Suppose now that a rigid 
particle acted upon by several forces P; has moved an arbitrary small distance 8..1 

which is compatible with the constraints on the particle. Then the work done by this 
force system would be given by the vector equation 

(2.18) 

which is nothing more than multiplying an equilibrium conditions by 8..1. This for­

mulation of equilibrium conditions has several computational advantages, e. g. the 
reactions of fixed supports drop out from the equations because they do not work. 
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In the preceding calculation, the virtual work has been defined as the product of 
a real force moving through a virtual displacement. In this form the principle is re­
ferred to more accurately as principle of virtual displacement. However, the principle 
of virtual work can be stated in another form known as principle of complementary 
virtual work. Here, the virtual work is defined as the product of virtual force moving 
through a real displacement. This principle thus states that if the system is in equi­
librium, then the sum of all virtual complementary works is zero for compatibility or 
geometric continuity (e. g. zero slope at point of fixation in case of fixed support, and 
members meeting at a rigid joint have same absolute rotation). Thus, the principle of 
virtual work (or virtual displacement principle) assumes compatibility and leads to 
equations of equilibrium while the principle of complementary virtual work assumes 
equilibrium and leads to equations of compatibility. 

To illustrate the dual character of these two fundamental principles of mechanics 
consider the model shown in Fig. 2.8.The model is discrete frame structure consisting 
of rigid-bars supported by rotational springs capable of activating reaction moments 
at the supports. 

( 1) Principle of virtual work 

Give the system a virtual rotation 8() as shown in Fig. 2.8a. The virtual works of 
various forces are 

8Wex = P(8.1) 

-8Win = M18()1 + Mz8{}z 

For compatibility 8()1 = 8()z = 8() = 8L1jh, then 

(a) (b) 

Fig. 2.8a,b. Concept of virtual displacements and virtual forces. a Virtual displacements, 
b virtual forces 



22 2 Basic Principles 

From the principle of virtual work 

Since 8..:1 is arbitrary but non-zero, then 

which is equilibrium condition. Noting that M; = k;O; 

(J = (Ph)/(krl + kr2) 

(2) Principle of complementary virtual work 

Apply on the system a virtual force 8P. The virtual work done by various forces are 

8Wc,ex = Ll(8P) 

-8Wc,in = 0(8M1) + 0(8M2) = 0(8M1 +8M2) 

For moment equilibrium: 

8M1 +8M2 = (8P)h . 

Therefore 

-8Wc,in = 0(8P)h 

From the principle of complementary work 

8Wc,ex + 8Wc,in = (Ll - h0)8P = 0 

Since 8P is arbitrary but non-zero, 

which is the compatibility condition. 

2.5.4 The Principle of Superposition of Mechanical Work 

An important property of linear deformation is the validity of principle of superposi­
tion which means that: if a force F1 produce a deformation r1 and F2 produces another 
deformation r2, then deformation due to F (= F1 + F2) is r (= r1 + r2). However, 
as far as mechanical work is concerned the principle of superposition can be applied 
to the displacement work component but it is not valid for eigenwork component. 
It can be noticed that in the case of eigenwork relationship between work Wu and 
displacement 8;; is parabolic and therefore principle of superposition does not hold 
good, while in case of displacement work, the relationship is linear and the principle 
of superposition is thus valid. 
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(a) (b) 

p p 

~ ~ 
(c) 

Fig. 2.9a-c. Basic features of Betti's and Maxwell theorems. a Loading sequence- case I, 
b loading sequence - case II, c Maxwell theorem 

Theorems of Betti and Maxwell 

Consider the beam shown in Fig. 2.9a subjected to load systems P; and Pj at points i 
and j, respectively. Suppose the load system P; is applied first and then subsequently 
the load system Pj. The work done by the forces is 

(2.19) 

where W;; and Wjj are eigenworks of P; and Pj, respectively, and W;j is the displace­
ment work of P; due to Pj. Now let the order of loading be reversed by bringing the 
load Pj first and then the load P; as shown in the Fig. 2.9b. The work done by the 
forces in the second case is 

Wu = Wjj + (W;; + Wji) (2.20) 

where Wji is the displacement work done by Pj due to P;. Since the total work done 
is independent of sequence of loading, W1 must be equal to Wu. 

Thus 

or 

(2.21) 

This theorem is known as Betti's theorem and may be stated: for a linearly elastic 
structure, the work done by a set of external forces P; acting through the displace­
ments Yij produced by another set of force Pj is equal to the work done by the later 
set of external forces Pj acting through the displacements Yji produced by force P;. 
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Consider both the load systems P; and Pi to be consisting of single load P (having 
the same magnitude but not necessarily in the same direction), then 

Py;i = Pyii or Yii = Yii (2.22) 

This is known as Maxwell's theorem of reciprocal deflection and states that: the 
deflection of point j due to force P at point i is numerically equal to the deflection 
of point i due to force P applied at point j. It should be noted that deflections 
are measured in the direction of the forces. Here force means a generalized force 
(including moment). 

2.5.5 Non-Linearities 

While computing the work, it is essential that distinction be made between linear and 
non-linear force-deformation relationships. In a statical structural system, there are 
three main types of non-linearities: physical, geometrical and loading configuration 
non-linearities. 

Physical Non-Linearity 

This type of non-linearity is due to the physical properties of material used in the 
structure. All materials exhibit non-linearities to different degrees. 

Geometrical Non-Linearity 

This non-linearity is associated with the change in the geometry during deformation. 
To illustrate this type of non-linearity consider the model shown in Fig. 2.10. The 

p 

(a) 

y=asin9=a9 

p 
p 

__.Q 

(b) 

Fig. 2.10a,b. Geometric and loading configuration nonlinearities. a Geometric nonlinearity, 
b loading configuration nonlinearity 
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exact value of maximum bending is given by 

Mmax = Pasine = Pa (e- ~: +- · · ·) (2.23) 

using Taylor series expansion. 
If the expression is linearized i.e. all non-linear terms in (;I are ignored, the 

equation reduces to 

Mmax = Pae 

This is valid only when deflection is small. Large errors would result from using this 
simplification, if the structures are very flexible and tend to display large deformation. 
The classical theory based on small deflections ignores this type of non-linearity. 

Loading Configuration Non-Linearity 

This type of non-linearity is due to the effect of applied axial force on the deformed 
structure. Once a deformation has occurred, however small, the axial force will add 
to the bending moments and consequently to the deflection and so on. To illustrate 
this type of non-linearity consider the model shown in the Fig. 2.10b. In the initial 
equilibrium state, the maximum bending moment is M 0 = Qa. This value of moment 
is based on ignoring the change in the length of lever arm from a to a cos e. But due 
to the presence of axial force, the bending moment will be amplified to 

M = Mo + Py1 + Py2 + ... (2.24) 

where Yt is the deflection due to M 0 , Y2 is that due to secondary moments Py1 and 
so on. Thus, the presence of axial load introduces non-linearity to the system. In the 
stability analysis of structures under static loading normally the equilibrium equations 
are written with respect to deflected configuration of the system. Such an analysis is 
termed linearized theory analysis and leads to eigenvalue problems. In the absence 
of lateral force Q, the equilibrium equation of deflected system shown in Fig. 2.1 Ob 
is 

Pasin(;l = kr(;l or P = ~ 
a sin (;I 

(2.25) 

For small deflection theory, sin (;I is linearized to (;I and P becomes independent of (;I, 
i.e. 

P = (krfa). 

2.6 Work of Internal Forces: Strain Energy 

One-dimensional continuous elastic bodies will be discussed in detail in the following 
sections. Internal forces are the resultants of internal stresses which are resolved into 
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component normal to cross-section, termed normal force N, and another tangential 
to the cross-section, termed shear force Q. In addition there are stress couples which 
are termed bending moment M. In case of 3-D or space structures there is another 
kind of internal force, called torsion moment M1• All these internal forces are double 
action forces. They are different from the fixation or reactions at a support. 

Ignoring, out of plane and shear deformations, a one-dimensional elastic body or 
say a rod can be imagined to be consisting of a number of discrete rigid elements 
of length .1x connected by perfectly elastic hinges, which are basically frictionless 
hinges with rotational spring devices simulating the bending flexibility of the rod. 
Such a discrete elements chain is shown in the Fig. 2.11a. 

The strain energy of bending of such a chain model is defined as the sum of the 
energy stored in all the elastic hinges. Denoting the elastic hinge constant kr. the 
strain energy stored in one spring (hinge) shown in Fig. 2.llc is 

8Ur = ~(moment in the spring) (rotation at the hinge) = ~(8M)(8(;l) 
1 1 2 

= 2(kr8())(8()) = 2kr(8()) = -8W; (2.26) 

(a) 

oe 

ox 
(b) (c) 

I. ox ou 
. .,. . ' 

(d) 

Fig. 2.1la-d. Deflection curve modeled by discrete rigid elements chain with bending and 
extensional flexibilities. a Discrete element chain, b extension flexibility, c elastic rotational 
hinge, d extension of an element 
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where 8() is the change in the angle between two adjacent elements. The total energy 
of bending for a chain of n elastic hinges is thus given by 

(2.27) 

In order to include extensibility of middle axis of the rod imagine the small elements 
of length 8x to be rigid but extensible. The extensibility is incorporated by internal 
extensional springs of spring constant kn as shown in Fig. 2.11b by telescopic ar­
rangement. If elongation of each element is 8u then the energy of internal forces due 
to stretching is given by 

1 1 1 2 
8Un = 2(8N)(8u) = 2(kn8u)(8u) = 2kn(8u) 

The stretching energy of the system is thus 

n 1 
Un = L8Un = L 2kn(8ui)2 =-Win 

!=1 

(2.28) 

Using the principle of superposition, the total strain energy Ui of the discrete me­
chanical model is therefore 

Since, 8()i = (8Mdkr) and 8ui = (8Ndkn), Ui can be expressed as 

U· = ~ [~ (8Mi)2 + ~ (8Ni)2
] = -W· 

l L..-2k 2k l 
i=l r n 

(2.29) 

The above expression can be used to derive the corresponding expression for a con­
tinuous one-dimensional elastic structure. Noting the relationship from strength of 
material 

M = EI (~) = EI (:) = Ellim G:) 
~ EI (8()) = EI 8() 

8x 8x 
(2.30) 

where 8() is the change in angle () of the tangent to the line of deflection. Comparing 
the formula with the law of linear moment springs M = kr(8()), it is seen that 
kr ~ Elj(8x). Substituting this value in (2.27) 

(2.31) 
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For a continuous body n ~ oo, summation L can be replaced by J and difference 
expression by differential expression. Thus 

(2.32) 

Using the geometrically linear approximation ()' = y" where y is deflection, we 
obtain 

I 1 I 1 (d2 )2 
Ur = 2 El(y")2 d.x = 2 El J d.x (2.33) 

substituting the relationship M =Ely", the relationship of (2.33) reduces to 

u =I! (M2) d.x 
rc 2 El 

The subscript c, indicates that it is complementary strain energy connected with 
complementary work. In a similar manner 

N = EAE = EAu' ~ EA(8uf8x) 

Here EA is the axial stiffness, E is the axial strain and u is the axial displacement 
component. Therefore elongational energy is 

11 2 11 t2 I N 2 
Un = 2 EAE d.x = 2 EAu d.x = 2EA d.x = Un,c (2.34) 

The total strain energy of an initially straight rod which is equivalent to the work of 
internal forces is thus 

ui = Ur + Un = I ~ [ El(y")2 + EA(u')2] d.x = -(Wir + Win) 

A small change in Ui defined as the first variation 8Ui is 

8Ui = I ~ [ El(2y")8y" + EA(2u')8u'] d.x 

= I (Ely" 8y" + EAu' 8u') d.x 

Since Ely" = M and EAu' = N, the expression for 8U reduces to 

8Ui = I (M8y" + N8u') d.x = I (M8()' + N8E) d.x 

= Virtual work of internal forces = Wi 

(2.35) 

(2.36) 

(2.37) 

Thus small change in U defined as first variation 8U is nothing else but the virtual 
work of internal forces. 
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2. 7 The Work Equation 

According to the law of conservation of energy, there is no gain or loss of energy 
in a conservative system during deformation under external loads. It means that the 
change in energy of applied load (i.e. external work done) is equal to the increase 
in stored or strain energy (i.e. the work done by the internal forces). This statement 
that the work of internal forces is equal to the work of external forces is valid for 
both eigenwork and displacement work. In a perfectly elastic closed system the work 
done by a load (stored as strain energy) will be released back completely when the 
load is removed in the absence of thermal dissipation or frictional or damping losses. 
Systems not following these conditions are commonly referred to as non-conservative 
systems. Thus we have 

(2.38) 

This work balance equation is equivalent to equilibrium conditions as has been 
shown earlier in Sect. 2.5.3. Using the principle of virtual work which is an axiom of 
equilibrium. 

8Wv = 8Wex + 8Win = 0 or 

8Wv - 8Win = 8Wex (2.39) 

which means that change in the energy of applied loads is equal to the increase in 
the stored energy. The work balance equation (2.38) can be used directly in solving 
problems in structural analysis. For illustration consider the cantilever, and simply 
supported beams of bending stiffness E I loaded by a concentrated load acting at the 
free end, and at a distance a from support 0, respectively, as shown in Fig. 2.12. It is 
required to determine the deflections at the loaded points. 

X p 

L 
~I 

~I PL~ 
Pab!L 

~ 0 

~! 
dx dx 

(a) (b) 

Fig. 2.12a,b. Cantilever and simply supported beams with b.m. diagrams. a Cantilever and its 
b.m. diagram, b simply supported beam and b.m. diagram 
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(a) Deflection of cantilever beam 

Assuming linear small deflection theory, external work is 

where YI is the deflection of the beam. The internal work can be easily determined 
in terms of bending moment. Thus 

L L 

-W; = f M2 dx = f (-Px)2 dx = p2£3 
m 2EI 2EI 6EI 

0 0 

From work equation - W;n = Wex 

we find that 

(2.40) 

(b) Deflection of simply supported beam 

External work assuming linear small deflection theory is 

where YI deflection of beam at the load point. The internal work can be computed 
in two parts 0-1 and 1-2, since the bending moment diagram is discontinuous at the 
load point 1. Thus 

!L M2 fa 1 (Pb ) 2 fb 1 (R ) 2 

-W;n = 2Eldx = 2EI LX dx + 2EI : x dx 
0 0 0 

Thus 

p2b2a3 p2a2b3 p2a2b2 p2a2b2 
- W;n = 6EJL2 + 6EJL2 = 6EIL2 (a+ b) = 6EIL 

It should be noted that for the computation of internal work in the part 1-2 of the 
beam, the point 2 has been taken as the origin for simplification. Finally from work 
equation 

(2.41) 
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Y! 
p 

2L/..J3 

(a) (b) 

Fig. 2.13a,b. The truss and its deflection. a Pin-joint truss, b exaggered deflection of the truss 

For multiple load system above method becomes complex. An alternate method 
using a trial shape function is suitable. The work equation is equally applicable to 
structures carrying axial loads. For illustration consider the truss shown in Fig. 2.13a. 
It is required to find the deflection of point 1. 

An exaggerated deflection of the truss is shown in Fig. 2.13b for clarity. An 
assumption of small deflection theory for load-deflection relationship implies a ~ 60° 
and f3 ~ 30°. The external work done is 

w: - !Py ex- 2 1 

The strain energy stored in the members of axial stiffness EA is given by 

"1 F?L; 
-Win = U = ~ 2 (AE); 

I 

= 2~E [ p2 ( ~) + ( .f3p) 2 (2L) J = :2: ( ~ + 3) 
equating external work done to internal energy stored 

Therefore 
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p 

L 

p 

Fig. 2.14. Rigid column supported by a rotational spring 

~ = L (1-cos 6) 

To illustrate the application of work balance equation to determine critical load 
consider a rigid (stiff) column hinged at the bottom and supported at the hinge by 
a rotational (moment) spring of stiffness kr as shown in Fig. 2.14. When the P attains 
critical value Per (buckling load), the system moves from unbuckled to a buckled 
state. However, load remains constant. The work done by the load is thus 

Wex = PLl (2.42) 

where Ll is the descent or vertical movement of the load and can be easily found from 
the geometry of deformation as 

Ll = L(l -cos(}) = L [ 1 - ( 1 - ~(}2 + ... ) J ~ L ( ~(}2) (2.43) 

In the Taylor series expansion of cos(} only first two terms have been retained. Thus 

Wex = P (~Le2) 
The internal work, on the other hand, is equal to the internal work of rotational spring 

1 2 
-Win= 2,kr(} 

Equating both the works we get 

1 2 1 2 
2,PL(}=2,kr(} i.e. Pcr=(kr/L) (2.44) 
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As long as P < (kr/ L) the system is stable and any sideway perturbation will cause 
the system to spring back to unbuckled state (after vibrating for sometime). However, 
for P > (kr/ L), any perturbation will make the system to move from a vertical 
unbuckled state to a no return position. 

For most of the beams and frames, axial and shear deformations can be ignored 
in determining deflection of central axis. On the other hand large axial force de­
formations in arches, suspension bridges and trusses have to be taken into account. 
Similarly, for deep beams shear deformation can reach large values. To determine 
the order of magnitude of contribution of shear force in the deflection, consider the 
maximum deflection due to load P applied at the free end of elastic cantilever of 
rectangular cross-section. The cross-section and magnitude of modulus of elasticity 
are assumed to be constant along the entire length of cantilever of Fig. 2.12a. The 
eigenwork of internal forces namely bending moment and shear force is 

L 2 L 2 

W; -I Mx dx + K I Qx dx 
m- 2EI 2GA 

(2.45) 

0 0 

where K is a constant depending upon the shape of cross-section termed shape factor. 
The value of K for a rectangular cross-section is 1.2. Thus 

The external eigenwork done during the displacement Ymax is 

Equating external work to the eigenwork of internal forces i.e. Wex = -Win 

( PL3
) (6PL) Ymax = 3EI + SG A = Ybend + Yshear 

PL3 
[ 3E (h2

)] 
= 3EI l + lOG L2 (2.46) 

where h is the height of the cross-section. The relationship between material con­
stants E and G is given by 

E - = 2(1 + v) 
G 

Taking v = 0.2 a typical value for concrete, the ratio EfG becomes 2.4. The total 
deflection 

(2.47) 
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For a very short or deep beam say Ljh = 1, the total deflection is 1.72 times that due 
to bending alone. Hence shear deformation are important. On the other hand for long 
or slender typical beam with Ljh = 15, the deflection due to shear is 0.32 per cent. 
However, it should be realized that this is not always the case. For an 1-beam with 
strong flanges and very thin web the shape factor can become up to ten times larger 
than rectangular section and shear force Q could not be ignored. 

In the situations where the loading configuration is difficult to treat using standard 
methods of structural analysis or where the system is highly statically indeterminate 
due to complicated support and boundary conditions, the work method is viable 
alternative method to the classical integration of differential equation. 

Differential Equations 

The differential equation of a problem can be obtained by using standard equilibrium 
procedure. Consider an element dx isolated from the structure and carrying constant 
distributed load w(x) within the element. Due to this loading force components, N, 
Q and M will generally vary as shown in the Fig 2.15b. The equilibrium conditions 
are 

dividing by dx we obtain 

dNjdx = N' =0 

dx 

(a) 

Q 

N 

w(x) Q+dQ 

f I I I I II I II II llfrN+dN 

~ dx M-KlM 

(b) 

Fig. 2.15a,b. Forces acting on an isolated element. a Loaded structure, b internal forces acting 
on an element 
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i.e. N is constant 

L Fy = 0 , Q - (Q + dQ) - w(x) dx = 0 (2.48) 

dividing by dx we obtain 

dQ/dx + w(x) = Q' + w(x) = 0 or Q' = -w(x) (2.49) 

This means that the rate of change of Q with respect to x is equal to the negative of 

loading w(x). The condition I: M = 0 about the left end of element gives 

-M + [CQ +dQ)dx] + [w(x)dx] (~) + (M +dM) = 0 

On simplification and dividing by dx we obtain 

dx dM 
Q+w(x)2 +~=0 

In the limit dx, the second term vanishes 

Q + M' = 0 or Q = -M' 

(2.50) 

(2.51) 

This means that the rate of change of M with respect to x is equal to the shear force Q. 
Differentiation of (2.51) and substitution in (2.49) gives 

M" = w(x) (2.52) 

This means that differentiating bending moment twice is equal to the loading. In 

other words, integration of loading as a function of x twice, gives the bending 

moment. However, for determining the constants of integration two moment boundary 

conditions are required which may not be obvious. It is advantageous to express the 

differential equation in terms of lateral displacement y(x). This can be accomplished 

by using standard linear relationship 

M = (Elf R) ~ Ely" (2.53) 

Thus the differential equation of elastic beam in the displacement form is 

Ely"" - w(x) = 0 (2.54) 

This is an ordinary linear differential equation of fourth-order and therefore requires 

determination of four constants of integration from the four displacement boundary 

conditions. 
A shape functions of y(x) which looks as close as possible to the expected one 

can be assumed. Such a assumed function is termed trial or test function. This trial 

function should in general approximate the deflection curve as far as possible but 

must satisfy all the boundary conditions related to deflection and slopes (y and y'). 

The internal work in terms of differential equation is given by 
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Fig. 2.16a-c. Virtual work method for calculation of displacement. a Displaced structure under 
load, b displacement due to virtual load P, c displacements due to loads P and P 

L 

-Win= f ~EI(y")2dx (2.55) 

0 

In this case trial function could be a second-order parabola or even simply a half 
sine wave. However, trial function should adapt to the boundary conditions of the 
problem. The work-balance approach used in the foregoing illustrations is limited to 
the determination of deflection caused by a single force at the point of application. In 
case of multiple loads more than one value of deflection will appear in the expression 
for external eigenwork, the resulting equations can not be solved. Due to these 
limitations, the method of real work is not widely used for deflection analysis. The 
principle of virtual (displacement) work may be utilized to solve this problem. This 
method is one of the most important methods used to calculate displacement of elastic 
structures and also forms the basis of force or flexibility method for the analysis of 
statically indeterminate systems. For illustration consider the simply supported beam 
shown in Fig. 2.16a. The beam supports load Pat point 1. It is required to determine 
vertical displacement at point 2. Let the load P be removed temporarily from the 
beam and virtual load P of arbitrary magnitude be applied at point 2 in the direction 
of desired deflection as shown in Fig. 2.16b. 

Now load the beam with the real load P, producing additional displacements Yt 
and Y2 under loads P and P, respectively, as shown in Fig. 2.16c. From the principle 
of energy balance that the external virtual work is equal to internal virtual work we 
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have 

(i.e. product of virtual force P and real displacement). 
The internal work is due to moment M caused by P acting through bending 

deformation de produced by real load P. The deformation de is defined by M dx IE I, 
where M is due to real load P. Thus 

_ !L _ !L _ (Md.x) -win= M(de) = M TI 
0 0 

Equating Wex and -win 
L - L -- !MM P.y2= -dx 

El 
1 !MM 

or Y2 = p El dx 
0 0 

Since P is arbitrary and moment M is a linear function of P, P can be replaced by 
a unit load and M by m, 

L 

Y2= I(~~) dx (2.56) 

0 

where m is moment caused by unit load applied in place of P. Thus, an application of 
unit external virtual force directly gives the desired displacement. This unit external 
force can be in the form of either a force or a moment depending upon the type of 
displacement to be determined. 

The value of integral could be easily evaluated by numerical integration in tabular 
form. However, since m is always a linear quantity, the above integral reduces to 
following simple expression 

Y =I ~~ dx =X I (;) dx =X (Area of Ml El diagram) (2.57) 

where X is the value (ordinate) of m diagram at the location of centre of gravity of 
corresponding smooth (continuous) part of (M I El) diagram as shown in Fig. 2.17. 
The method called area centre-of-gravity method is due to Otto Mohr, and is ap­
plicable to structures made up of straight members. For a rigid frame consisting of 
a number of discrete elements or members 

y = AlXl + A2X2 + ... = L (AX) (2.58) 
E1h E2h . El i 

I 

By an analogous treatment it can be shown that deflections due to axial forces, shear 
forces and torsional moments are 

Yn = I ~: dx • Yq = I ~~ dx and Ytor = I ~~P dx (2.59) 

respectively, where G is modulus of shear and /p is polar moment of inertia. 
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(a) 

X 

(b) 

Fig. 2.17a,b. Computation of deflection by area centre of gravity method. aM/ EI diagram, 
bm diagram 

The virtual work unit load method can also be used for determining the deflection 
of a truss. Since bending moments in a pin-jointed truss are by definition all zero, the 
virtual work formula in this case is 

-dW; = -dx I nN 
m EA 

Noting that N and n are always constant over the whole length, the internal virtual 
work of a discrete member of length L is 

L 

-dWin = ~: I dx = n:: 
0 

For a complete truss containing m members, the virtual work expression becomes 

- _ Lm (nNL) -W; --
m- AE . 

i=l I 

Equating external virtual work Wex ( = 1. y) to internal virtual work -Win 

y= t(n::). 
i=l I 

(2.60) 
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P=l 

(b) 

Fig. 2.18a,b. Pin jointed truss with real and virtual forces. a Pin jointed truss and real forces, 

b virtual forces 

The following example illustrates the procedure for evaluating deflections of the 

truss joints. Consider the pin jointed truss shown in Fig. 2.18a and let it is desired 

to determine vertical component of deflection at the joint 2. AE is same for all 

the members. The real and virtual forces in the members of truss are shown in the 

Figs. 2.18a and 2.18b, respectively. The vertical displacement is 

m 

Yz = AaE L(Nn)i 
i=! 

= AaE [(:;. 2~) + (2~. 4~) + (:;. 2~) + (:;. 2~) 
( P 1 ) ( P y'3) ( P v'3)] 32Pa 

+ y'3 . 2y'3 + 2v'3 . 4 + y'3 . 2 = 24AE 

2.8 Energy Theorems of Elastic Systems 

In this section some of the important theorems of elastic systems will be discussed. 

As mentioned in the earlier section eigenwork could be used in conjunction with 

the work equation to determine the deflection at the point of application of a load. 

However, eigenwork could be generalized to calculate deflections. Consider for ex­

ample a simple beam shown in Fig. 2.19a subjected to a system ofloads P (P1, P2, 

P3 , ••. , Pn) applied gradually. The beam undergoes deformation and strain energy, 

which is a function of external loads and is equal to external work done, is stored in 

the system, therefore, 
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(a) 

(b) 

Fig. 2.19. a Deflections due to the load system, b additional deflections due to 8Pk 

Now, if any one of the loads, say Pk is increased by a differential amount 8Pk, the 
strain energy of the system will change by an amount (aUjaPk)8Pk. The expression 
for total strain energy reduces to 

( au) n 1 
Ut = U + - 8Pk = Wex,t = U + LPidYi + -8PkdYk 

aPk i=l 2 

Neglecting the last term as being the product of two differential quantities, we have 

n 

Ut = u + L PidYi 
i=l 

(2.61) 

If the sequence of loading is reversed i.e. 8Pk is applied first and then the system of 
loads P as shown in Fig. 2.19b the total work done is 

Wex,t = Ut = U + (~8PkdYk) + 8PkYk 

The term (8Pk dyk/2) being of second order can be neglected. Consequently expres­
sion of work done reduces to 

(2.62) 

Since the order of application of loads is immaterial, the total work done or total 
internal strain energy in both the loading sequences must be equal. Therefore 

au 
U + -8Pk = U + 8PkYk or 

aPk 
au au a(Wex) a(- Wrn) - = Yk or Yk = - = -- = 
aPk aPk aPk aPk 

(2.63) 
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The above expression can be generalized to 

and () _ a(-W;n) 
k- aMk (2.64) 

where, Win is the internal work of the system. In the other words, for a linearly elastic 
structure, partial derivative of the total strain energy with respect to a typical load Pk 
gives the deflection due to this load in its direction. This is Cotterill-Castigliano's 
second theorem. 

Now, if one of the displacements, say Yk· is changed by an infinitesimal amount 
dyk while all other displacements are kept unchanged, the corresponding change in 
the strain energy would be (aU jayk)dYk· During such a change the force Pk is the 
only one which does work amounting to Pk dyk. Equating the change in the internal 
energy to the additional work done 

(2.65) 

This is known as Cotterill-Castigliano's.first theorem. It states that the partial deriva­
tive of strain energy of a system with respect to any one of the displacements at 
a certain point gives singular force at the same point. It should be noted that this 
theorem do not place any restriction on the relationship between deformation and 
force being linear. 

To apply Cotterill-Castigliano's second theorem for determining deflections, the 
strain energy must be expressed in terms of external loads. Consider, for example, 
the flexural system where the internal strain energy is due to bending. The expression 
for deflection is 

Yk = au = _!__ f(Mx) 2 /(2El) dx 
aPk aPk 

It is much easier to first differentiate the quantity under integral sign and then evaluate 
the integral i. e. 

L 

Yk = I ( ~;) ( ~~:) dx (2.66) 

0 

Similar expression can be developed for trusses where internal energy is due to axial 
strains. The expression for deflection of a truss point is 

(2.67) 

It must be noted that if a deflection component is required at a point where no action is 
applied or if an action exists at that point but not in the direction of desired deflection, 
then an imaginary action is assumed until the partial derivative for the total strain 
energy has been computed. In the resulting expression, the imaginary action is then 
reduced to zero. 
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The Cotterill-Castigliano's second theorem can be advantageously used for the 
calculation of redundant actions in statically indeterminate systems, The procedure 
consists in making the system statically determined by removing the redundant 
supports and replacing them with unknown redundant actions. Thus, the system 
under the given loading would have deflections at the location and in the direction 
of support reactions. The work is expressed in terms of external known loads and 
unknown redundant actions. The partial derivatives with respect to redundant actions 
(Ri) give deflection at their location and directions. However, the deflections are 
suppressed by the support that makes the system statically indeterminate in the first 
place. Thus 

- awin = 0 . 1 2 
aRi ' t = ' ' ... ' n (2.68) 

where n is the number of redundant actions. Suppose Ri is equal to unity, then we 
would have a unit deflection Yi. Thus 

Since y R must be equal to the prescribed deflection y pi, thus the net deflection 

However, from Cotterill-Castigliano's second theorem 

Differentiating the equation with respect to Ri, we obtain 

a2Wrn 
- aR? = Yi > 0 

I 

(2.69) 

that is Yi must be positive. Thus (2.68) is the necessary condition that the -Win is 
an extremum. While (2.69) says that extremum is minimum. Thus statically inde­
terminate redundancy takes a value that makes the work of internal forces -Win 

a minimum i. e. 

The Cotterill-Castigliano's first and second theorems lead to the formulation of 
stiffness and flexibility methods. 
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2.9 Potential Energy 

The word potential means ability or capability of achieving a particular goal. The 
ability of the load to do work is termed load potential which is very similar to the 
position energy of the load. In the structural mechanics the potential energy is always 
referred to an arbitrary datum. To establish basic concept, consider the surface profile 
shown in Fig. 2.20 which represents potential variation in terms of energy hills and 
valleys. It is evident that a particle or a ball on the surface could not be in equilibrium 
except at the top of a hill, at the bottom of a valley or at a point of inflection (or flat 
surface). As explained in Chap. 1, these are the points of local maximum, minimum 
or minimax on the energy surface where tangents are horizontal or have zero slope 
i.e. avjay = 0. Mathematically, these points are termed stationary points (called 
equilibrium points in structural mechanics). At an equilibrium position corresponding 
to the minimum energy point 2, an infinitesimal displacement or perturbation of the 
ball requires positive energy which raises the energy level of the load, V(y). This can 
be represented as 

V(yz - 8y) > V(yz) < V(yz + 8y) (2.70) 

On removal of perturbational force the ball roll backs to its position of minimum 
potential energy. This is termed as stable equilibrium position. Thus for a stable 
equilibrium which has minimum potential energy it must be ensured in addition to 
av;ay = 0 that a2Vjay2 > 0. Therefore, the principle of stationary potential energy 
may be stated as: if a system is in static equilibrium, the total potential energy of the 
system has a stationary value. 

The positions corresponding to maximum and inflection points on the energy 
surface indicate unstable and neutral equilibrium conditions, respectively. In case of 
ball resting on a point of maximum potential energy, a perturbation makes the ball to 
roll down to lower energy levels. This is termed unstable equilibrium given by: 

V(Yt - Lly) < V(yt) > V(yt + Lly) 

Datum 
~~----~~--------L---------L-------~--------------~Y 

Y3 Y4 

Fig. 2.20. Potential energy profile 
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Mathematically this condition is represented by 

(2.71) 

On the other hand at the point of inflection (i.e. at a flat surface), a perturbation makes 
the ball to stay back in the new position. There is no change in the energy level. This 
state is termed neutral equilibrium given by: 

V(y3 - ..1y) < V(y3) < V(y3 + ..1y) 

Mathematically such a condition can be represented by 

(2.72) 

It is clear from Fig. 2.20, that the constant Vd could not effect the equilibrium on the 
surface since the relative heights are relevant and it does not matter if the surface is 
raised or lowered uniformly or the datum is changed arbitrarily. 

2.9.1 Total Potential Energy of a Deformable Body 

As explained in the preceding section, the potential of a rigid system is a function 
of loads and displacements which on extremizing gives state equation which may be 
equilibrium equation, equation of motion or any other governing equation. The total 
potential energy of a deformable body comprises of two components namely: 

1. Potential energy of external load or force system i.e. load potential, and 
2. Potential ability of internal forces to do work. 

Potential of External Forces 

As has been discussed earlier in Sect. 2.5, that when the point of application of 
a force acting on a system moves it does work equal to the product of the force and 
the linear displacement of the point of application in the direction of the force. Here 
the words force and displacement have been used in generalized sense. This potential 
of loads for doing work is termed load potential or potential energy of the external 
load system. This quantity has been previously defined as external work, Wex = P..1. 

Timoshenko has defined the potential of a system in a deformed configuration as 
the work done by acting forces in moving from this configuration to some reference 
configuration. For static problems, it is convenient to take the shape of unloaded 
structure as the reference configuration. Thus the potential energy of the load system 
is the work done by all the acting forces when the structure is moved from its deflected 
loaded configuration along with the loads to its unloaded position. This process is 
known as backing up process. Due to negative work done by the loads during backing 
up process the potential energy of external loads is negative. For example for an 
elastic structure carrying a number of singular loads P1, P2, P3, ... , Pn, the potential 
energy due to loads is: Wex = - I:7=1 P; y;. This expression of load potential can 
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be interpreted as virtual displacement work. However, it should be noted that during 
loading process (forward process) the loads are gradually increased from zero to their 
final values and the eigenwork done is 4 L Pi Yi. Thus in the forward process load 
should have full value to start with. This is not necessary in Timoshenko's concept 
of potential energy. 

In case of vibration problems the mean position about which the mass oscillates 
is taken to be the reference position. 

Potential of Internal Forces 

As discussed earlier in the chapter, the internal work which is stored as strain energy 
of the system is always positive quantity. Therefore energy of internal forces is equal 
to the strain energy U. The total potential energy of a deformable structure designated 
by n and is defined as the difference between strain energy U i. e. elastic work of 
internal forces (-Win) and the potential of external forces Wex ( = V). Therefore 

n = U - (-Wex) = U + V (2.73) 

Thus the total potential energy functional of a system is computed as a function of 
displacements and deformations. 

2.9.2 Principle of Stationary Potential Energy 

The potential of the external forces which is defined as the work of external forces 
due to the displacement of the structure can be interpreted as a virtual work if the 
deflection is very small. The virtual work in tum can be written as an elementary work 
P dy = dWex· Similarly the virtual work of the internal forces can be interpreted as 
an elementary work of the internal forces, dU = -d Win. The elementary potential 
function is thus given by 

dn = dU.- dV = -dWin- dWex 

However, for equilibrium -dWin = dWex· Thus for equilibrium dn = 0. Since the 
loading is kept constant, the displacements (y) and strains are the only variables; the 
principle can be stated in the following form 

an 
-=0 
ay 

The elementary potential dn could also be expressed in the form 

an a a 
dn = -dy =--(Win) dy- -(Wex) dy = 0 

ay ay ay 

(2.74) 

and since dy is very small but not zero, ~~ = 0 for equilibrium. Thus the principle 
of virtual displacement can be stated that a deformable system is in equilibrium only 
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if the first variation of the total potential energy of the system is zero for every virtual 
displacement consistent with constraints. 

The variational principle of minimum total potential energy as derived from 
virtual work can be stated that: for equilibrium the first derivative or more generally 
the first variation vanishes (UJ = 0). Here only the displacement field is subjected 
to variation. In case of discrete systems represented by generalized co-ordinates y;, 
the principle reduces to a simple form ~~ = 0 for equilibrium. This forms a set of 
algebraic equations of equilibrium. The prlnciple 8II = 0 is a necessary and sufficient 
condition for equilibrium. Also in analogy with differential calculus, this stationary 
point can be shown to be minimum (which implies stability) if the second variation 
is larger than zero. Thus for stability we must have 

(2.75) 

It must be noted that within linear theory of small displacements, stationary point 
of II is always minimum. 

2.9.3 Applications of Total Potential Energy Principles 

The Cotterill-Castigliano's theorems can be derived from the principles of total 
potential energy. The principle of stationary total potential energy can be applied 
to the determination of deflection of structures, and buckling of struts of different 
boundary conditions. It is extensively used in the generation of differential equation 
i.e. the Euler-Lagrange equation of the problems. The variational principle can be 
used directly to solve the problems. The classical form of the direct method is the 
Rayleigh-Ritz procedure wherein a trial shape function termed Rayleigh-Ritz function 
satisfying at least all the geometric boundary conditions is used in computation of II. 

Deflection Problem 

For illustration consider a 3-hinged bars system shown in Fig. 2.21. The bars have 
same cross-sectional area. For writing the expression for total potential energy of 
the system the first step is to write the strain energy of stretching of the members 
due to deflection of the point of application of the load. The axial deformations of 
various members are computed in terms of vertical and horizontal components of the 
deflection Yv and Yh of load point as shown in Figs. 2.2lb and 2.21c, respectively. 
The deformations taking the elongation to be positive are 

1 
L11o = (yvcos30+ }'hCOs60) = 2(J3Yv +}'h) 

L1zo = Yv 

1 
L13o = (Yv COS 60- Yh COS 30) = 2(Yv- J3}'h) 
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a 

(2a/.J3,A) 

(a) 
p 

\ 

(b) (c) 

Fig. 2.21a--c. Deformation in the 3-hinged bar system. a 3-bar truss, b stretching due to Yv. 
c stretching due to Yh 

The elastic strain energy U is 

U ="" A;E .12 
~2L; ' 

AE [ ,j3 r;; 2 1 2 1 r;; 2 1] 
= 2a l(v3yv + Yh) 4 + (yv) + 2(Yv- v3vh) 4 

AE [ r;; 2 2 r;; 2 2 2 r;; ] = 16a v3(3yv + Yh + 2v3YvYh) + 8yv + (Yv + 3yh- 2v3YvYh) 

= AE [(9 + 3J3)y; + (3 + J3)y~ + (6- 2J3)YvYh] 
16a 

and the load potential, 

Therefore, the total potential energy of the system is 

Il=U+V 

( AE) P = 16a [(9 + 3J3)y; + (3 + J3)y~ + (6- 2J3)YvYu]- Jl(Yv + Yh) 
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Taking the variations of II with respect to Yv and Yh 
aii aii 

~II = - · ~Yv = 0 and ~II = - · ~Yh = 0 
ayv aYh 

On performing the above operations and noting that ~Yv and ~Yh are arbitrary or 
virtual displacements, following equations are obtained 

(AE) [2(9 + 3J3)Yv + (6- 2J3)Yh]- ~ = 0 
16a v2 

(:~) [2(3 + J3)Yh + (6- 2J3)Yv]- ~ = 0 

These equations can be arranged in the matrix form as 

(AE) [3(3 + J3) (3- J3)] {Yv} = _!___ {1} 
Sa (3 - J3) (3 + J3) Yh .,fi 1 

This is well known structure equilibrium equation encountered in the stiffness method. 
It should be noted that same result is obtained by using Cotterill-Castigliano's first 
theorem. On solving the above equations 

{~} = :~ c3:~)) {(2+1J3)} 
Buckling Problem 

Consider the structure shown in Fig. 2.22 which carries an axial load P. The critical 
load of this so-called strut is Per = rr2 E I I L 2• To compute the value of critical load 
using total potential energy method, II can be expressed as 

L 

II= U + V = f ~El(y")2dx- PL1 

0 

where the end shortening L1 can be expressed in terms of lateral deflection y by noting 
that 

Thus, 

L 

L1 ~ ~ f (y')2dx 

0 

L L 

II= f ~EI(y")2dx- P f ~(y')2dx 
0 0 

Assuming trial function y = a sin(rrx/ L). Substituting this value in II, integrating 
and then differentiating with respect to the only coordinate a and equating to zero 
gives 

Per= rr2 EI/L2 

This is the exact solution just because the trial function happens to be the exact 
solution of the corresponding differential equation. 
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Fig. 2.22. Buckling of strut carrying axial load 

2.10 Methods of Solution 

Sometimes, the structural systems are not amenable to exact solution or are difficult 
to analyze, we take recourse to approximate solution using stationary potential en­
ergy procedures. As mentioned earlier, the total potential energy of a system can be 
expressed as the function of its joint displacements. In case the joint displacements 
which are also known as degrees-of-freedom are too many in number, it is possi­
ble to define true deflected shape by an approximate profile called shape function 
This may contain one or more undetermined parameters. An assumed shape func­
tion must satisfy all the geometric or kinematic boundary conditions. Such shape 
functions are called kinematically admissible shape functions. The method using 
assumed displacement function is also termed trial or coordinate function method. 
The geometrical compatibility or boundary conditions associated with assumed dis­
placement function are the deflection (y) and slope (y'). Other boundary conditions, 
the so-called dynamical or force boundary conditions, associated with the bending 
moment and shear, and thus indirectly with y" and y111 are optional. 

2.10.1 Method of Trial Functions 

The method of trial function which is coherently connected to the minimum potential 
energy method is described in details in this section. As pointed out earlier, the 
minimum or stationary potential energy theory is based on the principle of virtual 
displacements and has all the advantages and limitations of that principle. It replaces 
the equations of equilibrium but it does not guarantee geometrical compatibility of 
assumed deflected shape with prescribed geometrical conditions of the system. This 
is taken care of by using kinematically admissible functions. 
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The total potential energy associated with flexural action can be defined as 

L L 

n = win - Wex = ~I El(y")2dx- ~pI (y')2 dx (2.76) 

0 0 

Here I, the moment of inertia of the member section has been assumed to be variable. 
If the trial function is assumed to be represented by 

(2.77) 

where (/Jt, ({J2, (/J3, • • • , (/Jn are admissible functions of x, and a; are the free coefficients 
representing the degrees-of-freedom or generalized co-ordinates which enable the 
function to take the best shape to extremize the potential energy. Substitution of 
(2.77) into (2.76) yields 

(2.78) 

The functions Ft and F2 are quadratic functions of independent arbitrary free coeffi­
cients a;. This means that principle of the minimum total potential energy is satisfied 
by minimizing a function rather than the integral of a function. This offers consider­
able simplification, and becomes nothing more than an ordinary maximum minimum 
problem with respect to independent variables at, a2, a3, ••. , an, that is 

an a 
-=-(Win- Wex) = 0 where i = 1, 2, 3, ... , n aa; aa; 

(2.79) 

Since the first derivatives of a quadratic function are linear functions, (2.79), will 
represent a set of linear, homogeneous equations in terms of unknown independent 
variables at, a2, a3, .•. , an as follows. 

({Juat + (/J12a2 + (/J13a3 + · · · (/Jtnan = 0 
(/J2ta1 + (/J22a2 + (/J23a3 + · · · (/J2nan = 0 

(2.80) 

The terms ((J's contain P, Eland Las well as numbers. For a non-trivial solutions, 
the determinant of coefficient must vanish, i.e., 

(/Jll (/)12 (/)13 

(/)21 (/)22 (/)23 

(/J1n 

(/J2n 

(/Jn 1 (/Jn2 (/Jn3 (/Jnn 

=0 (2.81) 

The expansion of determinant results in an nth order polynomial equation which 
is solved for the smallest value. This method of solution is generally known as 
Rayleigh-Ritz or Ritz method. 
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Determination of Trial Function 

A sound judgment, experience and a feel of physical behaviour of the structure 
facilitates determination of a trial function, which may be a polynomial expansion or 
a Fourier expansion displacement function. 

(a) Polynomial trial-function 

To find polynomial trial function the following procedure may be adopted. 

1. Assume a polynomial trial function of an order one higher than the number of 
geometric boundary conditions that must be satisfied, e. g., if m is the number 
of boundary conditions then a polynomial of the order n (= m + 1) need be 
assumed. 

2. Using m boundary conditions, n constants can be expressed in terms of the 
(n - m) constants. 

For illustration consider the case of fixed-simply supported strut shown in Fig. 2.23a. 
The geometrical boundary conditions of structure 

y(O) = y'(O) = 0 and y(L) = 0 (2.82) 

thus there are three boundary conditions, therefore a polynomial chosen to approxi­
mate the buckled form should have four constants at least. The polynomial is thus 

(2.83) 

L) t =----· ---y--L~a -~----- y=a[(iJ-%(iJ +~(iJ] 
(b) I ~ y=a[(iJ-MiJ] 

y=asin~ ory=4a[(i)-(iJ] 

I~ I y =~(1-cos z~x) or y=48a[ ~( i J _ M i JJ 
(d) 

Fig. 2.23a-d. Deflected shapes of beams with different support conditions and corresponding 
trial functions 
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The conditions y(o) = 0, and y'(o) = 0 give a0 = at = 0. Finally, the condition 
y(L) = 0 gives a2 = -a3L. The one-degree-of-freedom trial function obtained is 

(2.84) 

Setting for convenience, a3 = a, the trial function can be written as 

(2.85) 

If the dynamic boundary condition that the moment at the hinged end is zero, i.e., 
M(L) = Ely"(L) = 0 or y"(L) = 0 is also to be satisfied, there are four boundary 
conditions and the polynomial must therefore have five constants 

satisfying the four boundary conditions, 

y(o) = y'(o) = 0 give ao =at= 0 

y(L) = 0: a2L 2 + a3L3 + a4L 4 = 0, 

y"(L) = 0: 2a2 + 6a3L + 12a4L2 = 0 

Setting for convenience a4L 4 = a the solution of two equation gives 

The one-degree-of-freedom trial function obtained is thus 

(2.86) 

(2.87) 

For a fixed-free strut shown in Fig. 2.23b, the deflected configuration can be repre­
sented by the polynomial 

(2.88) 

The geometric boundary conditions y(o) = y'(o) = 0 give a0 = at = 0, and the 
deflection trial function reduces to a two-degree-of-freedom function. 

y = a2x2 + a3x 3 

If the dynamic boundary (moment) condition y"(L) = 0 is also satisfied the trial 
function reduces to a one degree-of-freedom function 

(2.89) 

For the fixed-fixed strut shown in Fig. 2.23d due to symmetry the geometric boundary 
conditions are: y(O) = 0, y'(O) = 0 and y'(L/2) = 0. The trial function obtained 
holds good for both the half portions with origin taken at the ends. 
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Similarly for a pin-ended (or simply supported) symmetrical strut the one-degree­
of-freedom trial function is assumed to bey = a0 + a1x + a 2x2• From boundary 
conditions ao = 0 and a 1 + azL = 0, the equation reduces to 

(2.91) 

However, it should be noted that the dynamic boundary conditions at the two ends 
are not satisfied. 

Suitable trial functions can also be obtained by using Fourier expansion instead 
of polynomial expansion of exact function of y. 

(b) Fourier trial-functions 

The deflected configuration can be approximated by sine or cosine series. For example 
the one-degree-of-freedom trial function for a simply supported strut may be assumed 
to be 

(2.92) 

which satisfies both the geometric and dynamic boundary conditions. Therefore this 
trial function is superior to the polynomial function given by (2.91). The trial function 
for a fixed-fixed strut may be assumed as 

a ( 2rrx) y=l 1-cosL (2.93) 

For a fixed-free strut one degree-of-freedom trial function with co-ordinate system 
passing through the free end of the deflected strut can be assumed as: 

y =a cos(~~) (2.94) 

When solving buckling problems by Rayleigh-Ritz method, it is useful to consider 
the trial function in the following general form: 

00 

y(x) = L>nf(x)xn (2.95) 
n=O 

where f(x) is a specifically chosen function which satisfies the geometric boundary 
conditions and L anxn is a power series 

End conditions 

Fixed-free strut 

Hinged-hinged strut 

Fixed-hinged strut 

Fixed-fixed strut 

Function, f(x) 

f(x) = x2 

f(x) = x(x- L) 

f(x) = x2(x- L) 

f(x) = x 2(x- L)2 (2.96) 
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p 

4 I' p 
p~ I ; 41 II 

U4 U2 U4 

oc::::::::::::: -=-=--------a 1 sin nxl L ~ 

(a) (b) 

Fig. 2.24a,b. Trial functions for simply supported stepped beams. a Beam stepped at the centre, 
b beam stepped at the end 

It must be noted that the polynomial trial functions given by (2.87), (2.89), (2.90) 
and (2.91) are simplest possible forms which satisfy (2.95). 

Consider the case of a simply supported strut with variable moment of inertia as 
shown in Fig. 2.24. Because of discontinuity in the moment of inertia the potential 
energy must be written in the form 

n = strain energy - load potential = U - V 

L/4 3Lj4 L L 

= f ~I (y")2dx + f 4~I (y")2dx + f ~I (y")2dx- f f(y')2dx 

0 L/4 3L/4 0 

The trial function suitable for a simply supported symmetrical strut is given by 
y = a1 sin(rrx/ L) which satisfies all the boundary condition of the problem. However, 
due to higher moment of inertia at the central portion the deflected curve is flatter 
than that for a uniform moment of inertia case, therefore another term a3 sin(3:nx j L) 
with three half sine waves satisfying all the geometric boundary conditions may 
be added to the above trial function. This inclusion of additional term will make 
the deflected shape flatter in the central portion. Thus a two-degree-of-freedom trial 
function recommended for this case is 

y = a1 sin(:nxj L) + a3 sin(3rrxj L) 

Substituting y, (y')2 and (y")2 in the strain energy and load potential expressions 
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The equilibrium conditions are given by: 8ITf8at = 0 and 8llf8a3 = 0 

( PL2 ) 
1.728- - 2- at- 4.320a3 = 0 and 

2n El . 

( 9PL2 ) - 4.320at + 88.128--2- a3 = 0 
2n El 

For non-trivial solution of these linear homogeneous equations, the determinant of 
coefficients should vanish i. e. 

where 

1

(1.728- a) -4.320 I 

-4.320 (88.128- 9a) = 0 

PL2 
a=-- or a 2 - 11.520a + 14.847 = 0 

2n2El 

The smallest root a= 1.4786 gives critical load Per= 2.957n2 Elf L2 which is about 
13.7 per cent larger than the exact value of 2.600n2 Elf L2• 

If only the first term of the trial-function is adopted i.e. a3 = 0, the total potential 
energy expression reduces to 

The equilibrium condition 8ITf8at = 0 gives 

( 1.728Eln4 - PJr2) at = 0 
L3 2L 

For non-trivial solution 

( 1.728Eln4 _ P7r2 ) _ 
L3 2L - O. 

Thus, 

This is far less accurate having an error of 32.9 per cent compared to the exact 
value. For asymmetrically stepped beam of Fig. 2.24b, a two-degree-of-freedom trial 
function shown in the figure will give better results. 
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Different Versions of the Rayleigh-Ritz Method 

As explained earlier for stationary potential an I aa = 0 and the method is referred 
to as equilibrium method. However, for n to be maximum representing unstable 
equilibrium a2 lllaa2 < 0, and to be minimum representing stable equilibrium 
a2 n 1 aa2 > o, the critical situation must be given by a2 n 1 aa2 = o which gives 
the critical or buckling load and method is referred to as stability method. On the 
other hand the work-equation interpreted as equating the work of internal forces with 
that of external forces gives ll = 0. From (2.76) 

P= 

[ EI [ (y")2dx] 

[[(y')2dx] 

(2.97) 

where y is the trial function. This expression is known as Rayleigh quotient. Another 
version of Rayleigh quotient due to Timoshenko is obtained by substituting the 
relationships 

(2.98) 

in the Rayleigh quotient as 

L 

f (P2y 2 I El) dx 
P=-"-o ____ _ or P = 

[ [ EI(y')2dx] 

[f y2dx] 

(2.99) 

It should be noted that the order of differentiation in this quotient is lower than that in 
the Rayleigh quotient. Since the error in using an approximate expression is increased 
in the process of differentiation, the Timoshenko quotient yields more accurate results 
compared with that of Rayeigh quotient. The Rayleigh-Ritz method could also be 
used in conjunction with the principle of minimum complementary energy anc = 0. 
The complementary energy function of the problem is 

L L 

n = f [ Mz - P(y')2 J dx = f [ M2 - (M')2 J dx 
c 2EI 2 2EI 2P 

(2.100) 

0 0 

(since Py = M and hence y' = M' I P as P will remain constant and only M is 
subjected to variations). In terms of complementary work principle setting llc = 0, 
a quotient termed as complementary energy quotient is obtained 

(2.101) 
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On replacing M by Py the quotient reduces to Timoshenko quotient. Observing the 
relationship M =Ely" from which we obtain 

(2.102) 

where c is an integration constant determined by geometric boundary conditions. 
Substituting this in the expression of IIc given in (2.100). 

ll = IL [ M 2 
- !._ ( M dx + c)2

] dx 
c 2EI 2 EI 

0 

(2.103) 

Setting IIc = 0, a new significant version of complementary energy quotient is 
obtained 

(2.104) 

Since this quotient involves no differentiation at all, it yields more accurate results 
than that obtained by using any other quotient. Trial functions satisfying moment 
boundary conditions can lead to better approximate solutions. Sometime these trial 
functions are more convenient to use than displacement trial functions. 

The fourth-order governing differential equation can also be obtained from the 
total potential energy functional which is generally a function of y", y', y and x, 
i.e. II= J~ il(y", y', y, x)dx. As explained earlier, the functional II is stationary 
if 8JI = 0 which is necessary and sufficient condition for equilibrium. For the 
stationary point to be minimum the second variation should be greater than zero i. e. 
82 II 2: 0. However, within the linear theory of small displacement, the stationary 
point is always minimum. 

L 

I - II I I -8JI = 8 JI(y , y , y, x) dx = 8Jidx 
0 

L - - -

=I (an 8Y, +an 8Y, +an 8Y) dx 
ay" ay' ay (2.105) 

0 

Rewriting the terms containing 8y" and 8y' into the forms containing only 8y using 
the integration by parts twice for the first and once for second term 

IL (ail) [(ail) (ail)' ]L IL (ail)" ay" 8y" = ay" 8y' - ay" 8y + ay" 8y 
0 0 0 

IL (ail) [(ail) JL IL (ail)' ay' 8y' = ay' 8y o - ay' 8y 
0 0 
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Thus the variation of functional 8II can be expressed as 

8n ~ j w;r (~;)' + (~~)] Oydx 
0 

[(afi) (afi)' ]L [(afi) ]L + ay" oy' - ay" oy o + ay' oy o (2.106) 

The first terms is the governing equation of the problem and the last two terms are 
boundary conditions. For 8II to vanish the governing expressions and expressions for 
boundary conditions must vanish. Thus the governing differential equation is given 
by 

I [G;)"- e;y + Ca~)] Oydx ~ 0 (2.107) 

Since 8y is arbitrarily small but non-zero, the differential equation reduces to 

( :~)"- ( ~~)' + ( aa~) = o (2.108) 

This is also called Euler-Lagrange equation. The general form of this equation is 

a<n) ( afi) <-1tLaxn ay<n) =0 (2.109) 

The total potential energy functional of a flexural system is given by 
L 

II= I [ ~/ (y")2- f(y')2 J dx 

0 

Applying the criterion 8II = 0 through (2.107): 

i.e. 

IL [EI 2 a2 (ay"2) p a (ay'2)] -(-1) - -- - -(-1)- - dx = 0 
2 ax2 ay" 2 ax ay' 

0 

L I (Ely"" + Py") dx = 0 

0 

(2.110) 

(2.111) 

Thus fourth-order governing differential equation can be obtained by Langrangian 
multiplier method, and by equilibrium method. The most important application is in 
establishing an approximate solution. This is achieved by assuming an expression for 
the elastic curve of deflection 

Y = aiYI + a2Y2 + a3y3 + · · · 
where Yi are admissible functions which can be admitted in making II stationary 
and make the boundary terms vanish as discussed earlier. These terms are called 
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geometrical boundary conditions. The independent coefficients ai are then determined 
in such a way that potential functional II is rendered stationary. The substitution 
of y in the functional II reduces it into simple quadratic function with independent 
variables, so called generalized coordinates ai. For equilibrium we must have 

aii = aii = aii = ... = aii = 0 
aa, aa2 aa3 aai 

(2.112) 

The equations aiijaai are a linear system of algebraic equations in a. This method 
is called Rayleigh-Ritz method, which is discussed later in this chapter. A different 
version of this method based on above differential equation called Galerkin method 
will be described subsequently. As an application of the method of analysis using 
function in conjunction with Hellinger-Reissner functional IIR. Consider fixed-fixed 
elastic strut. To account for the symmetry of the problem consider the region 0 :::: 
II :::: L /2 and functional reduces to 

L/2 

IIR=2 I [(~:-My")+f(y')2]dx 
0 

L/2 L/2 

= I ~; dx - 2 I My" dx + pI (y')2dx 
0 0 

Consider two different trial functions for M and y as follows 

where a,, a2 and a3 are independent coefficients. The derivatives of yare 

11 ( 2 L 2
) and y = 4a3 3x - 4 

Substitution in various terms of the functional and integration gives 

IL/2 M2 1 

E/ dx = 24EI [12af L + 6a1a2L 2 + a~L3 ] 
0 

L/2 

2 I My"dx = ~(a2a3L4) 
0 

p l(y')2dx= 1~5(a~L7) 
The function is thus reduced to a quadratic function of a 1, a2 and a3 

1 1 p 
IIR = -24 (12afL + 6a1a2L2 + a~L3)- -(a2a3L4 ) + -(a~L7) 

EI 8 105 
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The application of extremizing conditions gives 

8JIR 1 2 
- = --(24Lat + 6L a2) = 0 or 4at + La2 = 0 
8at 24El 

8JIR 1 2 3 L4 2 
-- = --(6L at+ 2L a2)- -a3 = 0 or 6at + 2La2- 3EIL a3 = 0 
8a2 24El 8 

8JIR L 4 2PL7 
-- = --a2 + --a3 = 0 or - 105a2 + 16PL3a3 = 0 
8a3 8 105 

These equations have a non-trivial buckled form solution, if and only if, the determi­
nant of coefficients at, a2 and a3 i.e. stability determinant vanishes. 

4 L 
6 2L 
0 -105 

The critical load is 

0 
-3EIL2 = 32 PL4 - 1260EIL2 = 0 
16PL2 

Per= 39.375 Elf L 2 

The exact value is 39.48 Ell L 2 . It should be noted that Reissner's principle is a very 
powerful method for obtaining accurate approximate solution. However it should be 
noted that in contrast to Raleigh's principle Hellinger-Reissner principle gives lower 
bound solution i.e. 

Per ~ Per,exaet 

2.10.2 Galerkin Method 

This method is also based on the assumption of trial functions and gives identical 
solution for a conservative system as given by Ritz method, if same trial function is 
used. However the trial function in case of Galerkin method must satisfy both the 
kinematic (related to the geometry of the system) and the dynamical (i.e. related to 
the moment and shear force) boundary conditions. The solution procedure consists 
in formulating the Galerkin equations of problem. This can be done by writing the 
governing differential equation Ely"" + Py" = 0 in terms of the trial function, 
multiplied by its variation and then integrating over the domain of the independent 
variable. The equilibrium equations are then found from extremizing the galerkin 
equations with respect to the coefficients of the trial functions. Next step is to find 
the stability determinant and the eigenvalue equation of the buckling load. As an 
illustration consider the case of a fixed-hinged strut using a single degree of freedom 
trial function satisfying both the geometrical and dynamical boundary condition as 

y =at (3L 2x2 - 5Lx3 + 2x4) = atYt 

The Galerkin equation is obtained by replacing y by Yt in the governing differential 
equation and multiplying the resulting equation by Yt and integrating. Thus 
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L 

G = f a!(Elyr" + PYDYl d.x = 0 (2.113) 

0 

The various derivatives of trial function are 

yr = 6L 2 - 30Lx + 24x2 and yr" = 48 

The integration of various terms of Galerkin equation is 

L 

L 

EI f 48(3L2x 2 -5Lx3 +2x4 )d.x= c6: 1 )L5 

0 

P f (6L 2 - 30Lx + 24x2)(3L2x 2 - 5Lx3 + 2x4 )d.x =- c::) L 7 

0 

Thus the Galerkin equation reduce to 

a 1 (36£/ _ l2PL2) Ls = O 
5 35 

From which critical load is given by Per = 21 E I/ L 2 • The exact solution is 
20.19 Elf L 2 • The error is only 4.0 per cent. Same procedure can be followed while 
using higher degree of freedom trial function. For example for the trial function 
having two-degree-of-freedom i.e. a1Y1 + a2y2, the Galerkin equations are: 

L 

G1 = f [ El(a1yr" + a2y;") + P(a1yr + a2y;) )Yl d.x = 0 

0 

L 

G2 = f [ El(a1yr" + a2y;") + P(a1yr + a2y;) ]Y2 d.x = 0 
0 

These are two linear algebraic homogeneous equations. The most of the solution 
then follows the standard stability investigation procedure which consists in finding 
stability determinant and eigenvalue equation of the buckling loads. The smallest root 
will correspond to the smallest critical load. The Galerkin method is also applicable to 
non-conservative system where no potential energy in classical since exists. It should 
be noted that the terms in the Galerkin equations have dimensions of work. Thus 
the differential equation is force equilibrium condition for an assumed displacement 
trial function and moment equilibrium condition in case of an assumed moment or 
rotational function. 

2.10.3 Finite Difference Method 

As discussed earlier the critical equilibrium of flexural or bending elements is ex­
pressed in terms of second-order or fourth-order linear differential equations. In some 
cases it is difficult if not impossible to perform formal integration to define deflected 
shape of the member. This is especially true when the cross-section of the member 
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varies along its length. In such case a procedure called finite difference or colloca­
tion method can be used to convert the governing differential equations into a set of 
linear simultaneous algebraic equations i. e. the differential equations are replaced 
by appropriate difference equations. The method consists in application of govern­
ing differential equation in finite difference form at pre-selected locations along the 
member. This method presumes that within a given interval the function represent­
ing deflected shape can be expressed by a polynomial of order n. In this section an 
extremely short account of finite difference method is given to enable the reader to 
solve simple problems. 

Consider the deflection curve modelled by a function y = f(x) divided into a set 
of n equal divisions, with ordinate at a point Xi denoted by Yi as shown in Fig. 2.25 
being represented by a polynomial of order n, i.e., 

(2.114) 

A second-order approximation passing through three points, for example, would be 

y = a2x2 + atx + ao 

Using local coordinates system shown in the Fig. 2.25 and assuming expansion about 
the reference point i, the coefficients of the polynomial are 

ao = Yi 

1 
at = 2h ( -Yi-t + Yi+t) 

1 
a2 = 2h2 (Yi-t - 2yi + Yi+t) 

An approximation to first and second derivatives of y with respect to x are 

dy I,..._, 2a 
dx = y = 2x +at 

y 

n 

Y; y=f(x) 
...- - - - -... Yi+t 

Yi-1 / 

........_ .._ Yi-2 _ ...-
/"' ...... Yi+2 - ' -

/Node point 

--------~---------L--------~--------L-------~---------~~x 
(i-2) (i-1) (i) (i+t) (i+2) 

, ... 
-h 

.. , .. 
-h 

.., .. 
+h 

.. I .. +h ... 1 

Fig. 2.25. Deflection curve divided into a set of equal increments 
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and 

d2y = y" ~ 2a2 
dx2 

At the node point i, the values of derivatives are 

'"" 1( ) Yi = a1 = - -Yi-1 + Yi+1 
2h 

and 

(2.115) 

These expressions are referred to as first difference and second difference, respec­
tively. This type of finite difference expression that uses the point i - 1 and i + 1 is 
called central finite difference. The other finite difference expressions using points i, 
i + 1, i +2; and i, i -1, i -2 areknownasforward.finitedifference and backward .finite 
difference, respectively. It should be noted that these finite difference expressions are 
inadequate for the fourth-order differential equation. For the fourth-order case it is 
necessary to presume a fourth-order polynomial at the outset 

(2.116) 

requiring five reference points for its evaluation. Assuming these to be symmetrically 
placed about the central node point i, the resulting difference expressions for various 
derivatives can be obtained as 

Y =Yi 

1 (dy) ,..__ 1 Yi = dx i = 12h (Yi-2- 8Yi-t + 8yi+l - Yi+2) 

11 (d2y) ,..., 1 
Yi = ctx2 i = 12h2 (-Yi-2 + 16Yi-l- 30yi + 16Yi+l- Yi+2) 

Ill (d3y) "" 1 ( 2 2 ) Yi = dx3 i = 12h3 -Yi-2 + Yi-1 - Yi+1 + Yi+2 

Ill/ ( d4 y) "" 1 ( 4 6 4 ) 
Yi = dx4 i = h4 Yi-2 - Yi-1 + Yi - Yi+t + Yi+2 (2.117) 

The finite difference expressions for the fourth-order differential equation can also be 
obtained from the first and second difference expressions of second-order differential 
equation. 
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Similarly, 

1 l"' = <l')" = -<l' - 2y~' + y~' ) I I h2 1-1 I 1+1 

1 [ 1 1 
= h 2 h 2 (Yi-2 - 2Yi-1 + Yi) - 2 · h 2 (Yi-1 - 2yi + Yi+1) 

+ : 2 (Yi - 2Yi+1 + Yi+2) J 
1 

= h4 (Yi-2- 4Yi-1 + 6yi- 4Yi+1 + Yi+2) 

However, it should be noted that depending on the problem, the boundary conditions 
also may need to be expressed in their expanded fourth-order form. 

To demonstrate the methods consider the simply supported strut of uniform cross 
section as shown in the Fig. 2.26a. The governing differential equation for a simply 
supported strut is 

y" + (P/ El)y = 0 for the range 0 :::; x :::; L 

The displacement boundary conditions are: at x = 0, y = 0 and x = L, y = 0. 
The differences equation corresponding to this differential equation is obtained by 
substituting the value of derivatives. Figure 2.26a illustrates an example where the 
domain is subdivided into three equal increments of size h = L j3 (i.e. four nodes 

p~ &:p ~ (I,L) . 

I• •I• •I• •I 

~WV 
(a) 

p p 

(b) 

Fig. 2.26a,b. Nodes sub-dividing the deflection curves into equal increments. a Uniform simply 
supported strut, b stepped simply supported strut 
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including the ends) are used. The unknown values of y at each of the interior node 
points are y, and Y2 as indicated. For a node i the differential equation becomes. 

11 (p) } (p) Y; + EI Yi = h2 (Yi-! - 2y; + Yi+!) + El Yi = 0 

or 

where a 2 = (Ph2 j El). The application of this difference equation to each of the 
interior nodes 1 and 2 furnish the following linear simultaneous equations in terms 
of unknown displacement values Yl and Y2 

at node 1: 

at node 2: 

(0 - 2y, + Y2) + a2y, = 0 

(y, - 2y2 + 0) + a 2y2 = 0 

It should be noted that due to symmetry Y2 = y, and only one equation need to be 
considered. For a non-trivial solution 

a 2 ( = ~~) = 1.0 or Per=!;= 9~1 

If the simply supported strut of the above problem is subdivided into four and 
five equal increments, the values of the critical load Per will be 9.38 Elf L 2 and 
9.55 E I j L 2, respectively. Thus it would be seen that greater accuracy is achieved by 
assuming more interior node points. 

To illustrate the application of the method to the cases where cross-section of 
strut is variable, consider the simply supported stepped strut shown in Fig. 2.26b. In 
such cases at the nodes 1 and 3 where the cross-section changes, an average value of 
M IE I can be adopted as an approximation. Average value of M j E I at nodes 1 and 3 
is: 

M M [ 1 1 ] 1 M ( 2h h ) 
EI = E h + h 2 = Ela where Ia = h + h 

Application of difference equation to the interior nodes 

or 

at node 1: 

at node 2: 

(0- 2y, + Y2) + (aa)2y, = 0 

(y, - 2y2 + Y3) + (a2)2y2 = 0 

Rearrangement of these equations gives 

(a; - 2)y, + Y2 = 0 

2y, + (a~ - 2)y2 = 0 
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For a nontrivial solution, the determinant of the system of equations must vanish i. e. 

I (a; - 2) 1 I 2 2 2 2 
2 (a~ _ 2) = 4- 2(aa + a2) + (a2)(aa) - 2 = 0 

As a typical case consider fJ = I and ]z = 4/ i.e. 

2[J]z 2(1)(41) 8/ 
I---- --

a - lJ + ]z - I + 4/ - 5 

Therefore, 

Ph2 5Ph2 
a2- = --

a Ela 8EI ' 
Ph2 Ph2 a2 ____ _ 

2 - E]z- 4EI 
L 

and h =-
4 

Substituting the values of a; and a~ 

2-2(~+~)(Ph2)+~-~(Phz)2 =0 
8 4 EI 8 4 EI 

( ~~ y -( 556) ( ;; ) + ( ~) = 0 

The smallest root of quadratic equation is Ph2 1 EI = 1.2919. Thus the smallest 
critical load for the stepped strut is 

1.2919 EI 20.67 EI 
Per = ---:::--- = ---;:--

h2 Lz 

which is 19.5 per cent less then the exact solution Per= 25.66 Elf L2• 

2.10.4 Numerical Integration 

Sometimes the function to be integrated may vary in a complex manner such that 
classical integration is not suitable. For example in the beams with sudden change 
in cross section (stepped beams) or where the cross section is continuously variable, 
the moment of inertia I can not be expressed as a simple function of x, the distance 
along the beam. In such situations even the finite difference method discussed in 
the previous section is not convenient due to reduced accuracy of the estimation. 
A numerical integration technique provides a powerful method to handle all the cases 
of loads and cross-section variations. Of all the methods available for numerical 
integration, the Newmark's method (1943) appears to be most convenient for the 
purpose. 

The method consists in selecting specific points along the length of the members, 
known as node points, and then relating the loads, moments and deflection to these 
points. The domain of the member is thus subdivided into a number of increments or 
segments, and the position of the nodes and thus the segment lengths are selected to 
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suit the problem so that solution thus obtained will be either exact or accurate enough. 
The position of the node points have to be chosen in such a manner that the important 
features of both loading and cross-section variation are properly accounted for. All 
the calculations deal with the discrete values of loading, moment, curvature, slope 
and deflection at the node points only, from these discrete values the corresponding 
diagrams can be drawn. The method described is a forward integration procedure, 
the integration being carried forward in a step-by-step manner from one node point 
to next. 

Computation of Deflection 

The integration to obtain deflection starts with the curvature Ml EI produced at any 
point in a member. For small values of d y I dx ( = y', the slope of the member due to 
bending), the curvature can be taken as d2yldx2 (= y"). Thus, 

curvature, y" = M IE I (2.118a) 

1 !M slope, y = Eldx +At (2.118b) 

deflection, y = J y'dx = J J ~dxdx + Atx + A2 (2.118c) 

The constants of integration A 1 and A2 can be obtained from the boundary conditions 
for slope and deflection. A 1 is the value of slope at x = 0, and if this is unknown and 
is guessed incorrectly, the effect of this error will appear in y curve in terms of A1x. 
Thus correction to y is linear. A2 is the value of deflection at x = 0. 

The first step of the procedure for computing deflections from a known or trial 
curvature distribution, is to evaluate concentrated values for curvature at N discrete 
node points Xi = Xt, x2, ... , Xn at an interval Llx. The slope is then computed by 
numerical integration of the curvature 

i 

y; = J y"dx = LY;Llx 
k=l 

(2.119) 

In this integration the slope at the starting end is assumed to be zero i. e. y~ = 0, 
although this may not be the true boundary condition. The deflection Yc can now be 
computed by numerical integration of the slope y' as follows: 

i 

Yci = J y' dx = LY~Llx 
k=l 

(2.120) 

with initial boundary condition of Yo = 0. 
If the computed deflected shape Yd does not conform to the end boundary condi­

tion, a linear correction is applied to the deflection values to make them conform to 
the true deflection condition. The correct deflection (Fig. 2.28t) is given by 

i 
Yi = Yci - NYcN (2.121) 
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Boundary or End Conditions 

In computation of deflection from discrete curvature values two known end conditions 
are required relating to slope and deflection. These may be either one slope or 
one deflection conditions-and in most cases these will be known locations of zero 
slope and deflection-or two deflection conditions, often two known locations of 
zero deflection. These known boundary conditions are essential for integration from 
curvature to slope and from slope to deflection. They are related to constants of 
integration and generally come directly from end conditions of the beam or the way 
the beam is supported. In case of two known deflection conditions, the computation 
of slope from curvature is not direct due to the lack of a slope condition, it require 
the computation of trial slope value and a subsequent linear correction to deflection. 
This can be achieved by assuming a value for slope at some suitable point as a basis 
for completing the calculations for slope and deflection, and then to apply a simple 
linear correction to the deflection values to make them conform to the two known 
deflection conditions. Any small error in the trial value of slope results in a constant 
error in the slope line and this in tum produces a linear error in the deflection line 
as can be seen from constants of integration of differential equations of slope and 
deflection. 

Curvature Diagram 

The curvature or M 1 E I diagram is a necessary bridge between calculation of moments 
and of deflections. The plot of the curve showing variation in Ml EI is important 
if the cross section i.e. I of the beam is variable. The process of computation of 
moments normally provides values at the nodes. The shape of curvature (or moment) 
diagram passing through these points is important in the sense that it controls the 
concentration of curvature values at the node points. According to the shape of 
curvature y" (i.e. M IE I) diagram various concentration formulae will be used to 
lump y" at the node points. To ensure correctness of this step, moment diagram 
should be sketched through the spot values of M, the Ml EI diagram should also be 
sketched in the cases where there is variation in I value. 

Beams of Variable Cross-Section 

The beams with variable I are very common in structural design. A variable I 
means that the shape of curvature diagram is different from that of moment diagram. 
However, as long as the general form of Ml EI diagram is known and its values are 
available at every node point, the variation of I does not pose any difficulty in this 
numerical integration procedure. The accuracy of the numerical solution depends on 
how well the spot values of M IE I at the nodes define the total M IE I curve i. e. on 
the accuracy of the concentration formula. The discontinuity in y" often lowers the 
overall accuracy of solution 
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Concentration of y" Values at the Nodes 

A continuously varying curvature (y") curve can be concentrated at the node points 
for the purpose of numerical integration for calculating slopes (y') and displacements 
(y ). A function or a curve in general can be defined in terms of power series 

00 

y" = f(x) = ao + a1x + a2x2 + ... + akxk = L akxk 
k=O 

(2.122) 

where a0 , a 1, a2, etc. are constants that specify the amount of x0 , x 1, x2, etc. in the 
function . ao is always the spot value of function at the origin of curve where x = 0, 
other constants have to be determined from the known nodal values of f(x). 

The procedure for concentrating y" curve at the node points in the form of Y" 
values i.e. angle changes between adjacent rigid chords, depends on the variation of 
y" curve. A linear or trapezoidal variation is defined by first two terms of the series and 
a parabolic variation is defined by first three terms. In case of trapezoidal variation 
the curve varies linearly between two known points whereas in case of parabolic 
variation the curve passes through three known points usually equally spaced along 
x-axis. 

Consider the curve f(x) shown in Fig. 2.27 passing through the values fi-I· fi 
and fi+I at three equally spaced nodes i - 1, i and i + 1, respectively, with origin 
being taken at node i and hence at nodes i - 1, and i + 1, x = -h and x = +h, 

I· -h ·I· +h ·I 
Fig. 2.27. Concentration of curvature values f ( = y") 
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respectively. At any point x the value of function is f, thus the total change over 
a short length dx at x is f dx. The effect due to this change at the nodes i and i + 1 
are fdx(h- x)jh and fdx(xjh), respectively, such that e.g. of shaded area under the 
curve over chord i, i + 1 remains unchanged. Thus the concentrations at the nodes 
i and i + 1 are 

and 

Similarly, 

h 

Fi,i+l = * J f(x)(h- x) dx 
0 

h 

F;+l,i = * J f(x)x dx 

0 

h 

F;,i-1 = J f(x)(h- x) dx 

0 

Total concentration at the node i is 

These general expressions can be used for any form of curve. 

(i) Linear or trapezoidal variation 

In this case the general equation for f retains first two terms only 

f(x) = ao + a1x 

Applying the known node conditions 

atx = 0 

atx = h 

(2.123) 

(2.124) 

(2.125) 

(2.126) 

From which, a0 = fi and a1 = (fi+l - fi)jh. The equation for f(x) reduces to 

f(x) = f; + [Cfi+l- fi)xfh] (2.127) 

Substituting this in (2.123) and (2.124) 

1/h[ (fi+l-f,) J Fi,i+l = h /; + 1 h 1 x (h - x) dx 

0 

(2.128) 
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and 
h 

F:- . - ~I [ +. + Ui+1 - /;) J dx 
!+1,1 - h J1 h X X 

0 

= h(2fi+t + Ji.)/6 (2.129) 

In the particular case where function f(x) also has trapezoidal shape between nodes 
i - 1 and i with chord i - 1, i being of same length as i, i + 1 and Ji. being common 
to both the chords. 

F;,i-t = h(2f; + fi.-t)/6 

Thus the total concentration at the node i is 

F; = Fi.i+t + F;,i-t = h(f;-t + 4Ji. + fi.+t)/6 

(ii) Parabolic variation 

(2.130) 

(2.131) 

In this case the variation of function f(x) is parabolic passing through three known 
points Ji. _ t. /; and fi+ t . The nodes i - 1, i and i + 1 are equally spaced. The power 
expression for f(x) retains only three terms 

f(x) = ao + atx + azx2 (2.132) 

Substituting the known values at the node points 

x = -h fi.-t = ao +at (-h)+ az( -h)2 

x = 0 fi. = ao +at (0) + az(0)2 

x = h !i+1 = ao +at (h)+ az(h)2 

The values of constants are obtained as 

ao = Ji. , at = (Ji.+I - Ji.-t)/(2h) 

and 

az = (fi.-t - 2fi. + fi.+t)/(2h2) 

Therefore, the function given by (2.132) can be rewritten as 

f(x) = Ji. + [<Ji.+I- fi.-t)/(2h)]x + [<ii.-1- 2Ji. + fi.+t)/(2h2)]x2 (2.133) 

Substituting this expression for f(x) in (2.123) and (2.124) 

F;,i+t = h(3fi.+t + 10Ji.- fi.-t)/24 

F;+t,i = h(7 Ji.+1 + 6/; - fi.-t)/24 

The equivalent expression for Fi,i-1 can be written as 

F;,i-t = h(3fi.-t + 10Ji.- fi+t)/24 

The total central concentration at the node i is give 

F; = F;,i-t + F;,i+t = h(fi-1 + 10Ji. + Ji.+1)/12 

(2.134) 

(2.135) 

(2.136) 

(2.137) 
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Computation of Y" Values at the Discontinuity 

If the slope discontinuity in M j E I curve is caused by a point load Wi acting at i and 
beam cross-section is constant, the problem can be treated by adding a term Wi h to 
the concentration Y[' to account for the slope discontinuity. 

II h 
Yi = 12 EI(Mi-1 + lOMi + Mi+t + Wih) (2.138) 

where Mi_ 1, Mi and Mi+l are total computed moments atthe nodes i -I, i and i + 1, 
respectively. However, it should be noted that this approach is applicable only if I is 
constant. If I is variable and there are both distributed and point load systems acting, 
the problem can be handled by keeping two effects separate up to Y" curve for best 
accuracy. 

The method provides an iterative procedure starting from a assumed deflected 
shape or a trial function. The correct deflected shape is obtained by following the 
steps outlined in Fig. 2.28: 

1. Assume a suitable buckling mode or a trial function Ya· The nearer this is to the 
true mode, the less is work of computation. 

2. Using the trial function assumed in the step 1, compute bending moment dis­
tribution M(x) = M(x) + Pya(x) in which M(x) represents primary bending 
moment in the straight beam-strut and Pya is the disturbing moment due to P 
acting on Ya(x). 

3. From the moment distribution obtained in the step 2 compute curvature distri­
bution y"(x) = M(x)/ EI. For a strut with constant cross-section the shape of 
y"(x) curve is same as M(x) curve. 

4. Discretize the continuous curvature distribution curve by subdividing the struc­
ture into N equal chords and compute nodal curvature values yz. Obtain the angle 
change at nodes given by Y" by concentrating the y" curve at the nodes by using 
appropriate formula (trapezoidal or parabolic) based on the shape of y" curve 
between the nodes under consideration. 

5. From Y" values compute the derived deflection Yct by integrating twice by New­
mark's method. The derived Yct values provide a better approximation to the true 
mode than Ya· 

6. Repeat the steps 1 to 5 using Yd in place of Ya to derive a new set of Yd values 
until it converges to true buckling mode, i.e., Ya = Yd at all the node points to 
the required accuracy. This condition indicates that the system is in equilibrium. 

7. Compare Yd with Ya at the end of final cycle with fully converged results. The ratio 
of nodal values of two curves is unity for all the nodes for the stable configuration. 
Obtain the value of critical load Per from this comparison. 

Special Features 

1. The higher the number of nodes chosen (i.e. the larger number of chords used) 
the more accurate is the solution for Per· 
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(b) 

(c) 

d ~ M L~-----'--~~-·-(-x) _______ __JIMN 0 M(x) . 

~ y"(x) 

Yo~! !-y-;·-=-~ Y'N 

(d) 

y'=O 
(e) 

~~ 
y 00 =0 YeN 

(t) yci = r ykdx 

k=l 

Ydo=0~d3 
(g) 

Fig. 2.28a-g. Computation procedure by Newmark's integration method. a Structure, b as­
sumed buckling mode or trial function, c bending moment distribution M(x), d curvature 
distribution e slope computation, f computated deflections, g corrected deflections i.e. derived 
deflections 
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2. The type of result expected depends upon the number of nodes chosen or the 
number of degrees-of-freedom given to the system. In the numerical solution, 
the degree-of-freedoms of the structure are restricted to make it buckle in one of 
a definite number of modes. Therefore one has to be certain that the first buckling 
mode of the original structure is closely represented by one of the possible modes 
of the discretized structure. 

3. For a given discretization scheme i.e. a given number of nodes, the value of Per 

for the first mode will be more accurate than that of second mode. This is 
because, the higher the buckling mode the more complex is the deflected shape 
and consequently a shorter chord length is required to model it accurately. 

This iterative procedure known as a method of successive approximations is similar 
to stodola's method of finding fundamental frequency of beams. 

To illustrate the procedure consider the simply supported stepped strut shown in 
Fig. 2.29. The critical value of the load that will cause buckling, Per can be computed 
by using the following steps: 

1. Assume trial displacement function or buckling mode Ya. Since the strut is simply 
supported at the ends, a buckling mode of the type Ya = ax(L- x) j L 2 satisfying 
boundary condition will be most suitable. The initial values at salient points are 
taken as 0.0, 5.5, 9.0, 10.0, 9.0, 5.5 and 0.0. 

2. Draw the moment diagram M(x) = -Pya. 
3. Calculate Mj EI values along the length of the strut. This is an important step as 

it indicates the correct way to apply concentration formulae. 
4. Select the positions of node points to follow the important features of Mj EI 

curve. In this particular problem, node points are required at the points of change 

o"'~'-----5 ..... 5 ___ 9_.. ___ T ... ~o ___ i--:-K:-"--r, 
I· h ·I· h ·I· h ·I· h ·I· h ·1· h ·1 

.i--

~ 2.75 

0 "' :: -
1.375 2.25 

- ~ 9 
5 --L__~.75 - I - -~ (MIEDcurve 

2.5 2.25 1.375 

Fig. 2.29. Assumed buckling mode, M/ EI curve of stepped strut 
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of cross-section and one at the mid length. A scheme with N = 6 adequately 
represents the important features of the problem and makes equal chord technique 
possible. Calculate values of y11 curve at the node points. 

5. Compute Y 11 values. In order to use parabolic distribution formulae at the dis­
continuities the curves are imagined to continue beyond discontinuity. The ex­
trapolated portions of the curves are shown by dotted lines in Fig. 2.29 and the 
extrapolated values are known as fictitious values. Due to discontinuity formulae 
giving Y 11 at each side of the nodes are used. Thus 

11 h [ J aP ( a Ph ) Y10 = 24 3(0) + 10( -5.5) - 1 ( -9) EI = -46 24£/ 

11 h [ J aP ( a Ph ) Y12 = 24 3(-4.5) + 10(-2.75)- 1(0) EI = -41 24£/ 

11 h [ J aP ( a Ph ) Y21 = 24 3(-2.75) + 10(-4.5)- 1(-5) EI = -48.25 24£/ 

11 h [ ]aP ( aPh ) Y23 = 24 3(-2.5) + 10(-2.25)- 1(-1.375) EI = -28.625 24£/ 

11 2h aP ( aPh) y3 = -[(-2.25) + 10(-2.5) + (-2.25)]- =-59 --
~ m ~m 

Integrate Y 11 to compute chord slopes Y' for which one slope value is required 
to be known. By symmetry y~ = 0, hence calculations are carried through from 
right to left. Integrate y' to calculate y from left where Ya = 0. 

6. Compare Yct with Ya· The simplest way to accomplish this is to scale down the Yd 
values so that the value at node 4 is as in Ya· These form the new Ya values for 
the next cycle comprising of steps (2) to (5). When Yct and Ya become close as 
they do in the second cycle the iteration may be stopped. 

7. Obtain the value of critical load Per by comparing Yct with Ya· 

At buckling: 

Therefore, 

407.19laPh2 
----=lOa 

24£/ 

0.5894£/ 2.15n2 EI 
Per = = --=---

h2 L2 (ash= L/6) 

The computations are given in Table 2.1. 
At buckling: (40.646)(aPh2)/(24E/) =a or 

Per= 21.256EljL2 = 2.154n2 E/jL2 (ash= L/6) 

where (n2EljL2) is buckling load for a simply supported strut of uniform cross­
section. 

The values of Per obtained by using I: Ya I: Yctl I: y~ is not necessarily an 
overestimate, except in the particular case- where EI is constant when it becomes 
identical with Rayleigh's estimate. 



Node 0 1 2 3 4 Multiple factor 
-...1 
0\ 

Iteration #1 

Assumed deflection, Ya 0.00 5.6 8.9 10.0 8.9 a N 
Moment due toP, M(y) 0.00 -5.6 -8.9 -10.0 -8.9 aP ~ t:J:j 

Curvature, y" = (M/ El) 0.00 -5.6-2.80 -4.45 -2.225 -2.50 -2.225 (aP)f(El) 1:1" ~-
-47.10-41.35 -47.9-28.35 

;" (") 

Change in slope, Y" -58.90 (aPh)/(24El) ~ ~ -88.45 -76.25 r' 
Slope, y' = L: Y" 223.60 135.15 58.90 0 (aPh)/(24El) = 0 (") 

Deflection, y = L: y' 0.00 223.60 358.75 417.65 (aPh2)/(24El) (1) .s· 
::ll 0 

0.00 (41.165)(aPh2)f(24El) 
(1) "' Derived deflection, Yd 5.35 8.59 10.00 8.59 a. 

Ratio Ya/Yd 1.04673 1.03609 
0 

1.000 = 
(") 
0 

From minimum and maximum values of (Ya/Yd): 20.687(£/f L 2) < Per < 21.654(Elf L 2) .g 
From LYa/ LYd (= 1.02957): Per= 21.299(EI/L2) = g_ 
From LY• LYdiLY~ (= 1.02625): Per= 21.230(E//L2) 0 = "' 
Iteration #2 C" 

'< 
Ya 0.00 5.35 8.59 10.0 8.59 a g 
y" 0.00 -5.35 -2.675 -4.295 -2.1475 -2.50 -2.1475 (aP)f(El) ~ 

-44.91 - 39.635 -45.975- 27.6375 :::1. 
Y" -58.59 (aPh)/(24El) (") 

-84.545 -73.6125 e. 
y' 216.7475 132.2025 58.59 0 (aPh)/(24El) s· 
y 0.00 216.7475 348.9500 407.5400 (aPh2)j(24El) fD 

Yd 0.00 5.32 8.56 10.00 (40.754)(aPh2)/(24El) ~ 
~-
0 

Iteration #3 = 
Ya 0.00 5.32 8.56 10.0 8.56 a 

g 
::r 

y" 0.00 -5.32-2.66 -4.28-2.14 -2.50 -2.14 (aP)j(El) e. 
Y" 

-44.64 - 39.44 -45.78 - 27.57 .g 
-58.56 (aPh)j(24El) (1) 

-84.08 -73.35 
y' 215.990 131.910 58.56 0 (aPh)j(24El) 

y 0.00 215.99 347.90 406.46 (aPh2)/(24El) 

Yd 0.00 5.314 8.559 10.00 (40.646)(aPh2)j(24El) 
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Important Notes 

1. For a converged solution the derived values Yct will be of exactly the same shape 
as Ya and will equal Ya at all the points. 

2. If the assumed value Ya happens to be the true value, the solution will be found 
in one cycle, no convergence being necessary. 

3. If the value of Per is calculated before the numerical procedure has converged 
completely i.e. iteration is stopped before Yal Yct = 1 at all the nodes (i.e. before 
the governing equation of equilibrium is fully satisfied at all the nodes) a set of 

differing values of Per would be obtained by equating Ya to Yct at each different 
node in tum. For example in the above illustration the second iteration has been 
started with Ya being 5.33, 8.59, 10.00, 8.59 and 5.33 and has produced Yct as 
5.32, 8.56, 10.00, 8.56 and 5.32 (40.719 aPh2 124El) after two iterations. If we 

were to compute Per by making Ya = Yd at the nodes 1, 2, and 3 in tum this would 
have given Per = 21.25, 21.29, and 21.22 (Ell L 2). The maximum value comes 
from the situation at node 2. The value 21.29 (Ell L 2) is upper bound to the fully 

converged value of Per and the minimum 21.22 ( E I I L 2) is lower bound. Thus in 
any stability computation before complete convergence is attained, the values of 

Per obtained from Yal Yct ratio across the structure bound the true value of Per· 

4. The Per values computed from YaiYct = 1 at each node before complete conver­
gence is achieved, can be used to provide good estimate of true buckling load. 
The following are commonly used methods of averaging. 

(a) Weighted average of Per value from ~ Ya = 1 
L, Yct 

Per= 21.26(EIIL2) 

(b) An average value of Per (based on least square solution) from LYa;d = 1 
LYct 

LYaYd 
x ( 24 El) (303.772) ( 24 El) 
LY~ 40.719 Ph2 = 303.152 40.719 Ph2 = 1 

X 

or 

This value is the same as that obtained by Rayleigh's method when EI is constant. 

The value obtained is always higher than the converged value. The later method of 
averaging is much more accurate than the first one. 

Forced Convergence 

In the procedure using successive approximation, there is a simple relationship be­

tween errors in the assumed Ya and derived Yct values which can be expressed as 

error in Ya 
--.-- = constant 
error m Yct 

(2.139) 
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If Ya,1. Ya,2 and Ya,3 are three successive approximations for Ye in the iteration 
procedure where Ya,2 is derived from Ya,1 and Ya,3 from Ya,2· Thus the errors in these 
values being Ye- Ya,1• Ye- Ya,2 and Ye- Ya,3. respectively. From (2.139) 

Ye - Ya,1 Ye - Ya,2 
= 

Ye - Ya,2 Ye - Ya,3 

(Ya.l)(Ya,3) - (Ya,2)2 
Ye = 

Ya,1 - 2ya,2 + Ya,3 
(2.140) 

In case Ya,1. Ya,2 and Ya,3 have close values, the value Ye obtained may be doubtful, 
but the problem can be circumvented by using the following procedure. If 8 1 is the 
error in Ya,1• then 

This reduces to 

2 
Ya,1Ya,3 - Ya 2 

Ye = 81 + Ya,1 = 2 ' 
Ya,1 - Ya,2 + Ya,3 

81 =- [ (Ya,1 - Ya,2)2 J 
Ya,1 - 2Ya,2 + Ya,3 

(2.141) 

Equation (2.141) gives better results than (2.140) when successive values of Ya are 
close together. This process is called Aitken's procedure. In the problem illustrated 
in Table 2.1 the three successive values of Ya at the nodes 1 and 2 are 5.6, 5.35 and 
5.32, and 8.9, 8.59 and 8.56, respectively. Using these values in (2.140): 

at node 1: 

at node 2: 

Ye = [(5.6)(5.32)- (5.35)2]/[5.6- 2(5.35) + 5.32] = 5.3159 

Ye = [(8.9)(8.56) - (8.59)2]/[8.9 - 2(8.59) + 8.56] = 8.5568 

2.11 Orthogonality of Buckling Modes 

If Ym and Yn are two different modes in a buckling problem, and Mm and Mn are the 
moments throughout the structure corresponding to these modes, then according to 
the principle of orthogonality of buckling modes 

(2.142) 

or in numerical integration solution L Mm (Mn/ El) = 0. 
X 

Here the integration is with respect to x over the length L of the structure or the 
summation is over all the node points. In the cases where El is constant the moments 
Mm and Mn will be orthogonal, and in case of pin-ended strut (where M = -Py), 
the modes Ym and Yn will be orthogonal i.e. 
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L I YmYn dx = LYmYn = 0 (2.143) 
Q X 

In the relationship of (2.142) Mm can be considered as a generalized loading in the 
modem, and Mnf EI = y~ which is curvature in mode n, can be considered as the 
corresponding generalized displacement in mode n. Equation (2.142) thus can be 
interpreted that the work done by load Mm as it is displaced through y~ is zero. 

The orthogonality relationship in the bucking problem can be derived from the 
general equation of stability written as 

p 
M 11 +-M=0 

EI 
(2.144) 

where Misunderstood M (x). Consider two buckling modes Ym and Yn with associated 
moment and load values being (Mm, Pm) and (Mn, Pn), respectively. Therefore 

p 
M 11 + _!!!_M = 0 

m EJ m 
(2.145) 

and 

M 11 + Pn M =0 
n EJ n 

(2.146) 

Multiplying (2.145) and (2.146) by Mn and Mm, respectively. 

11 Pm 
MmMn + EIMmMn = 0 (2.147) 

11 Pn 
MnMm + EIMnMm = 0 (2.148) 

However, M~Mn = (d/dx)(M~Mn)- M~M~ and M~Mm (d/dx)(M~Mm) -
M~M',. Subtracting (2.148) from (2.147) 

d 1 1 MmMn 
dx (MmMn- MnMm) = (Pn- Pm)-m (2.149) 

Integrating (2.149) over the length of the strut between limits x = 0 and L 

L 

1 1 L I MmMn [MmMn - MnMm]o = (Pn - Pm) -mdx (2.150) 

0 

It should be noted that M or M 1 is always zero at an end. Hence left hand side of 
equation must be zero. Further, as P m f= Pn 

L 

I MmMndx =O 
EI 

0 

This is the orthogonality relationship of buckling modes. 
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2.12 Problems 

Problem 2.1. The rigid cantilever frame shown in Fig. P.2.1 has constant flexural 
rigidity (E/) and carries a concentrated load P at the free end. Using different 
versions of energy approach determine displacements at the points B, C and D and 
slope at the point D. 

a 

P.2.1 

[Ans. OBv = 40Pa3 /3El<{.), OBh = 0; 8cv = 4~;~3 ({.), 8ch = 6;~3 ( ~); 

35Pa3 
8Dv- -­

- 3El ' 

Problem 2.2. Use Cotterill-Castigliano's theorem to compute vertical deflection at 
the point D of the beam shown in Fig. P.2.2. 

p 

A,___D~_..,..B _ __,~C 
.A :.Q: 

I· . I ·I· ·I a a a 

P.2.2 

[Hint: Apply fictitious load W at the point D. The deflection at the point D is: 

8o = oUjoW = f [Mx(oMxfoW)dx]/EI = Pa3/4EI(t)] 

Problem 2.3. A simply supported beam AB shown in Fig. P.2.3 having moment of 
intertia of 2/ at the central half portion and I for the remaining, is subjected to 
a concentrated load P at the centre. Determine central deflection and end slopes. 
[Ans. 8c = 3Pa3 /4El, eB = eA = 5Pa2 /SEI] 

Problem 2.4. A simply supported beam shown in Fig. P.2.4 is subjected to an end 
moment M0 at the end B. Determine the end slopes and maximum deflection. 
[Ans. eA = M0 L/6El andeB = M0 L/3El. Thedeflectionatdistancexfromtheend 
is given by: Ox = M0 L(x- x 3 / L 2)/6EI. Maximum deflection occurs at x = L/../3 
and its magnitude is: Omax = M0 L 2 /(9../3El)] 
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A 

L 

P.2.4 

Problem 2.5. The free end of cantilever beam shown in Fig. P.2.5 is supported by an 
inclined tie rod. The cross-sectional area of tie rod is A and the flexural rigidity of 
cantilever beam is EI. Use strain energy method to determine vertical displacement 
at the joint Band tension in the tie rod due to concentrated load P acting at B. E is 
same for the beam and tie rod. 

c 9 

A D===~===it=="~ B 

p 

P.2.5 

[Ans. U = {(AE sin2 t9cost9/2L) + (8E//2L3)}..12, where ..::1 is downward displace­
ment at the point B . ..::1 = P/{(AE sin2 t9 cos&/ L) + (3EI/ L3) }] 

Problem 2.6. In the rigid frame shown in Fig. P.2.6 determine the distance by which 
the points A move closer under the action of force P acting at the points B. EI is 
constant throughout. 

A A 

2a 

+ a 

P.2.6 

[Ans . ..1A = 2Pa3 I El.] 



82 2 Basic Principles 

Problem 2.7. The square rigid frame with uniform cross-section shown in Fig. P.2.7 
is subjected to diagonally opposite forces P at the points B and D. Ignoring axial 
deformations determine the distance by which the points A and C move closer. 

p 

A B 
,-----/-/-//-/.,(-T 

/ 
/ / a 

/ 

D /// _l 
p 
/1--- a ---lc 

P.2.7 

[Hint: Due to symmetry only half the frame ABD carrying load P/2 at the ends 
B and D need be considered with roller supports such that movement is allowed 
only along the diagonal BD i.e. presume the reference coordinate system along the 
diagonals . ..1Ac = Pa3 f24El.] 

Problem 2.8. The three-bar pin-jointed frame in a vertical plane shown in Fig. P.2.8 
is subjected to a vertical load Pat the common point D. Use energy method to analyse 
the frame. The bars are of constant cross-section. 

3a 3a 

B 
--I c 

r 
4a 

_L 
D 

p 

P.2.8 

[Hint: Consider BD as the redundant member with force T1. The forces in 
the other bars are T2, and cose = 4/5, L:Vv = T1 + 2T2cose = P and 
U = 1~ { ~ Tf + ~ ( P - T1 )2}. Therefore, from the theorem of least work: T1 
125 P/253.] 
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Problem 2.9. While fabricating the pin-jointed plane frame shown in Fig. P.2.9, it 
was found that member A C is fabricated ~ too short. Determine the forces in the 
members after assembly. AE is same for all members. 

P.2.9 

[Ans. F6 = S+~v'3 ( L11E) (tension), and F1 
(compression)] 

Fs 

Problem 2.10. All members of the truss shown in Fig. P.2.10 are of same cross­
section and material. Compute force in each of the members due to opposite forces P 

acting at A and C. 

p 

A B 

a 

D J:f-------.C'6_l 
p 

c 

f-a~ 
P.2.10 

[Hint: Consider only half the frame ABC as in problem 2. 7.] 

Problem 2.11. Analyze the continuous beam ABCD shown in Fig. P.2.11. The beam 
is fixed at the end A and supported at B and C, and free at the end D. The beam 
carries a concentrated load P at the free end. 

[ 
3P 12P 16P 

Ans: RA = T(t); Rs = - 7-CD; Rc = 7(t) and 

Pa 2Pa J 
MAs= -7, MsA = Msc = 7 andMcs =Mev= -Pa 
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p 

A ls------------'B;r--------,C....--------'L 

1- . f. ' f. ' -
P.2.11 

Problem 2.12. Analyze the rigid frame shown in the Fig. P.2.12. At the point C 
a frictionless hinge is provided. EI is constant throughout. Also calculate deflection 
at the point C due to the concentrated load acting at the point B. 

p } 
A c 

B 

I· 2a ·I· 2a -1- -1 a 

P.2.12 

Problem 2.13. The governing differential equation of a hinged-hinged compression 
member supported along its entire length by an elastic medium applying a force k per 
unit length per unit deflection as shown in the Fig. P.2.13 is given by: El(d4vjdx4 ) + 
kv+ P(d2vjdx2) = 0. Determine the critical load using the finite difference technique 
when: (i) the member is divided into two segments, and (ii) the member is divided 
into three segments. 

:r ' B 
p -------2:~, E;=tk =;:=={ k==;=t k==;:::tk===;:t~kJ1~, p 

I· L ·I 
P.2.13 

[ ( 8EI kL2 ) J Ans: Per = L2 + 4 with two segments 
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Problem 2.14. Solve the problem 2.13 when the ends of the compression member 
are fixed-fixed instead of hinged-hinged as shown in the Fig. P.2.14. 

L --------1 

P.2.14 

Problem 2.15. Analyze the stepped compression member shown in Fig. P.2.15 by 
using energy approach. 

~= 
II 

12 

p~ p 

, .. 
Ll Lz .. I 

P.2.15 

[Hint: Use the shape function: v(x) = A ( 1 -cos ~~) J 

Problem 2.16. Analyse the stepped simply-supported compression member shown 
in Fig. P.2.16 by: (i) Rayleigh-Ritz method, and (ii) Galerkin technique. 

P.2.16 
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Rigid-Body Assemblages 

3.1 Introduction 

This section deals with the class of structures consisting of rigid-body-assemblages 
wherein the elastic deformations are limited entirely to localized spring elements. In 
these systems, the rigid bodies are constrained by the support hinges so that only one 
type of displacement is possible. For the systems discussed here the formulation of 
the stability problem differs from the classical Euler formulation due to its basically 
discrete nature. 

These systems can further be classified into single, two or multi-degree-freedom 
systems. The degrees of freedom are generally referred to generalized coordinates 
which represent the number of independent coordinates (displacements or rotations) 
which must be known in order to define the position (configuration) of the system. 
The word independent signifies that any of the generalized coordinates can be varied 
freely while others remain unchanged. 

3.2 Methods of Analysis 

Analytical approaches to stability analysis described here are based on static concept 
since the structure remains at rest before and after buckling. The methods are based on 
the investigation of the system close to its position of equilibrium and are applicable 
only if the external forces have a potential i.e. they are conservative. The aim is to 
predict the mode of loss of stability and corresponding load under which the structure 
gets into a critical state. The approaches discussed are: 

1. Equilibrium approach, and 
2. Energy approach. 

3.2.1 Equilibrium Approach 

This technique deals with the equilibrium configuration of the idealized perfect 
system and is characterized by the fact that there exist discrete values of the load at 

M. L. Gambhir, Stability Analysis and Design of Structures
© Springer-Verlag Berlin Heidelberg 2004
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which additional equilibrium configurations (modes) appear in the neighbourhood of 
trivial solution (initial equilibrium position). In the other words the method consists 
in predicting the values of the loads for which a perfect system admits additional but 
adjacent (close) equilibrium states with different deformation patterns called modes. 
The assumption of an equilibrium configuration close to the initial one enables to 
consider the slopes of deflected elements as small compared to unity. 

3.2.2 Energy Approach 

This technique is based on the principle of minimum potential energy which states 
that a conservative system is in a configuration of stable equilibrium, if and only 
if, the value of potential energy is relative minimum (relative with respect to its 
immediate neighbourhood). A mechanical system is said to be conservative, if the 
virtual work W ( = Win + Wex) vanishes for a virtual displacement that carries the 
system completely around any closed path. Here, Wex and Win are parts of virtual work 
performed by internal and external forces, respectively, during virtual displacement. 
Thus conservative system is in equilibrium when energy stored is equal to the work 
done by external loads. This criterion enables to predict the critical load at which 
response of the system ceases to be in stable equilibrium. The virtual displacement 
referred here is an admissible displacement configuration satisfying geometric or 
force boundary conditions. 

When system deforms, the load point approaches the reference point and there is 
loss of potential energy. At the same time restraining springs develop or store elastic 
energy. The external virtual work done is given by 

8Wex = -Pil (3.1) 

where Ll represents virtual displacement of the point of application of external force 
projected along its line of action. If the strain energy due to internal work is represented 
by 8U, the principle of virtual work can be expressed as 

8U = 8Wex or 8U - 8Wex = 0 (3.2) 

Normally, the increment in external work due to virtual displacement is represented 
as a change in potential energy as 

8V = -8Wex 

Thus (3.2) can be written as 

8(U + V) = 8(fl) = 0 (3.3) 

Hence, U + V = II = const. 
The quantity II ( = U + V) is referred to as total potential or simply potential 

of the system. Thus, if a system is in static equilibrium, the total potential energy 
of the system has stationary value i.e. its first variation is zero (8II = 0). For small 
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values of P, n is positive in any non-trivial admissible configuration. For sufficiently 
large value of P, n is -ve making equilibrium configuration unstable. Thus the 
instability problem reduces to determination of value of load for which total potential 
of a perfect system ceases to be positive definite. For this case mathematically, 

(3.4) 

for neutral equilibrium 82 n = 0 and for unstable equilibrium 82 n < 0. 
The aim of above two approaches is to predict the smallest load for which 

non-trivial equilibrium exists. For the types of systems considered here, the energy 
approach is equivalent to the equilibrium method. One of the major advantages of 
the energy approach is that in its formulation, definition of coordinate system and 
sign convention is deemed unnecessary. Only expressions for strain energy and work 
done by external loads are needed. 

For illustration of above principles consider the rigid-bar system constrained or 
supported by a linear and a rotational spring as shown in Fig. 3.1. The structure is 
a single-degree-of-freedom system since only one displacement (i.e. rotation, e) is 
required to be known to define its deflected position or configuration. Both equilib­
rium, and energy approaches can be used to predict the critical load. The system is 
in equilibrium in undisturbed position under load P. To test its stability, the system 
is displaced by a small rotation e. 

p 

3 ~ 

L 

Fig. 3.1. Rigid-bar system with linear and rotational springs 
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(a) Equilibrium approach 

In the displaced position, the restoring force is provided by linear and rotational 
springs. The destabilizing force producing displacement of the system is due to 
axial load P. If P < Per• the system will spring back to its original position, i.e., 
the restoring moment caused by spring forces is greater than the destabilizing or 
overturning moment produced by external load. On the other hand, if the destabilizing 
moment is greater than restoring moment, the equilibrium will be disturbed and the 
system will collapse or fall down. 

At critical load condition, P = Per i.e. at neutral equilibrium both the moments 
balance, each other. At this stage disturbance will make the system merely stay in that 
displaced position. The generalized coordinate in this case may be taken as rotation, 
0. All other displacements can be computed in terms of 0. For equilibrium balance 
the two moments about an axis passing through the point 1. 

Therefore, 

Destabilizing moment = Restoring moment 

Per· LO = [ke(aO)] a+ k7 0 

(b) Energy approach 

The various forms of energy approach are: 

1. Principle of virtual displacements 
2. Law of conservation of energy, and 
3. Principle of stationary potential energy. 

(3.5) 

According to the principle of virtual displacement, if a system which is in equilib­
rium under the action of set of forces is subjected to virtual displacement i. e. any 
displacement compatible with the system constraints, the total work done by the 
forces will be zero. This method thus consists of first identifying all the forces acting 
on the system, and then imposing a small virtual displacement, corresponding to 
each degree-of-freedom and equating the work done to zero. Let the system shown 
in Fig. 3.1 is given small virtual displacement 0 from the equilibrium position, then 

8Wex = 8U 

where 8Wex = PL1, in which L1 is descent or vertical movement of load P due to 
rotation 0, given by 

( 02 ) L02 
L1=L-Lcos0=L-L 1- 2 + ... ~ 2 (3.6) 

Thus, 

( L02) 
8Wex = P 2 (3.7) 
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and 

Therefore, 

1 2 1 2 1 22 2 PerL() = 2k,() + 2kea () 

Per= (k, + kea2) I L 

The buckling load can also be obtained by the application of law of conservation 
of energy. According to this law the work done by external load Wex is equal to the 
internal energy Win developed in the system. In the present case 

Wex =Pi'!= PL()2 12 

1 2 2 2 
Win = 2 [kr() + kea () ] 

Thus, at critical load condition 

1 2 1 2 22 2 2 PerL() = 2 [ k,() + kea () ] giving Per = (k, + kea ) I L 

The third approach of variation of energy namely the principle of stationary potential 
is a versatile technique. According to this principle, if the system is in static equi­
librium, the potential energy n of the system has a stationary value. Therefore for 
stationary potential energy 

8ll=0 

In the rigid-bar system of Fig. 3.1, due to rigid body displacement the bar does not 
suffer any deformation, the restoring force is provided by springs and hence elastic 
energy is stored only in the springs. 

The potential of the system is given by 

ll=V+U 

The potential energy due to external load can be expressed as 

V =-Pi'!= -P(LI2)()2 

The strain energy stored in the springs is given by 

1 2 1 2 
U = 2 k,() + 2 ke(a()) 

Thus the total potential energy of the system is 
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For stationary energy 

()[] { 1 } 8[] = 888(} = -PL(} + l[k,(2(}) + kea2(2(})] 8(} = 0 

Since 8(} is any arbitrary virtual displacement, for non-trivial admissible configuration, 

or 

In the following sections single- and multi-degree-of-freedom systems are discussed. 

3.3 Single-Degree-of-Freedom Rigid-Bar Assemblages 

A single-degree-of-freedom system or a structure which can be adequately idealized 
by a single-degree-of-freedom system can be analysed by equilibrium and energy 
approaches. 

Example 3.1. In the two bar linkage with top end guided to move freely up and down 
shown in Fig. 3.2a, the movements at the joints 1 and 2 are constrained by a linear 
spring of stiffness ke and rotational springs of stiffness k,1 and k,z as shown in the 
figure. The springs are un-stretched when linkage is vertical. Predict the maximum 
load Per for a stable equilibrium. 

p p p 

p 
(a) (b) (c) 

Fig. 3.2a-c. A SDOF rigid-bar assemblage with rotational and linear springs. a Two-rigid-bar 
system, b displaced configuration, c free-body diagram of rigid-bar 2-3 
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The generalized coordinate of the system is taken to be the displacement y of 
the joint 2. Since the linkage bars are rigid, they do not undergo any deformation 
and hence no energy of any kind is stored when a vanishingly small displacement 
is imposed on the system as shown in the Fig. 3.2b. However, potential energy is 
stored in the linear and rotational springs due to stretching and relative rotations of 
the springs. 

(a) Equilibrium approach 

Consider moment equilibrium of the forces shown in the free body diagram of 
Fig. 3.2c about an axis passing through the joint 2. 

Py- (Fa1a2/L)- (M1a2fL)- Mz = 0 

whereF = key;Ml = krl(yfal);Mz = krZ(fJz) = kdfJ12+fJ23) = krzY(l/al+lfaz) 
and L = a1 + az. On substitution the equilibrium equation reduces to: 

or 

Per= {ke(alaz) + krl (azfal) + kda1 + az)2 j(a1az)} /(al + az) 

for typical case with a1 = az =a 

Per= (kea2 + krl + 4krz)/(2a) 

(b) Energy approach 

Principle of stationary potential energy 

The values of V and U with respect to displaced equilibrium configuration can be 
computed as follows. The potential energy, V associated with the descent or vertical 
displacement Ll [= (a1fJt2 + azfJi3)/2] of the load towards base position is given by 

V = P(-Ll) = -Py2 [_!_ + _!_] 
2 a1 az 

The potential energy associated with the deformations of linear and rotational springs 
is given by 

Potential, 
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For potential to be stationary, 

For non-trivial solution 8y oft 0, and hence 

key+ krl (2'_) + kr2Y (_!_ + _!_) 2 
- Py (_!_ + _!_) = 0 

ai a1 a2 a, a2 

or 

Principle of virtual displacements 

Let the system be given a virtual displacement y from the equilibrium position. The 
virtual work performed by the conservative load Pas it moves (descends) through 
a distance L1 produced by virtual displacement is given by 

1( 2 2) l[1 1] 8Wex = P(L\) = P- a1812 + a2823 = P- - +-
2 2 a1 a2 

The virtual work done by linear and rotational springs is 

It can be seen that energy approach is advantageous in the sense that in its formulation, 
definition of coordinate system and sign convention is not required. 

Example 3.2. The rectangular rigid-bar-assemblage shown in Fig. 3.3 consists of 
three rigid-bars interconnected by frictionless hinges. The displacement at the joint 3 
and rotation at the joint 4 are resisted by linear and rotational springs, respectively. 
The critical load for the systems is to be predicted. 



p 

h h 

4 

p 

(a) 
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k r 

p 

(b) 

p 

(h9) 

Fig. 3.3a,b. SDOF 3-rigid-bar assemblage with rotational and linear springs. a Rigid-bar 
assemblage, b displaced configuration 

The generalized coordinate of this system is taken to be rotational angle () . 
All other displacements are computed in terms of this generalized coordinate. The 
potential energy associated with the deformation of the linear and rotational springs 
and due to displacement (descent), ..1 of load P towards the base position, is given 
by 

For stationary potential energy 

an 
on= aeoe = [-PM+ keh2() + k,e] 88 = 0 

For non-trivial solution 

-Ph+keh2 +k,=0 or Pcr=(keh)+(~) 

The result can also be obtained by equilibrium approach. For example consider 
moment equilibrium about an axis passing through point I of the system. 

giving, 

Disturbing moment = restoring moment due to spring actions 

P(M) = ke(h())h + k,() 

Per= (keh) + (~) 
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3.3.1 Modeling of Elastically Deformable Elements by Equivalent Springs 

Sometimes it is convenient and conceptually simple to replace a flexible or elastically 
deformable member by equivalent linear or rotational spring. The stiffness constant of 
such a linear or rotational spring is defined as a force required for a unit deformation 
and thus equivalent to the inverse of displacement or rotation due to unit load or 
unit moment as the case may be. For illustration consider the simply supported beam 
shown in Fig. 3.4a carrying a concentrated load P at the mid-span point. For small 
deflection within elastic range, the displacement is proportional to the corresponding 
load. This can be expressed as P = ky which is identical in form to the law of a linear 
normal force spring. If P is made unity 

1 = ky or k = (1/y) = (48£// L 3) 

The beam clearly behaves as a spring support for the load Pas shown in Fig. 3.4b. 
The beam can thus be replaced by an equivalent spring with stiffness k = ( 11 y), where 
y is the deflection of the structure due to unit load acting at the same point where 
the equivalent spring effect of the beam is to be determined. Similarly the horizontal 
member of the structure shown in Fig. 3.4c can be simulated by computing rotation 81 
due to unit moment and its inverse (1 /81) is the required value of the spring constant 
k, = 3EI/ L. The following three examples illustrate the modelling or idealization 
of flexible members by linear and rotational springs. 

p 

A ·· ........ Jr ... ... ····~ 
(a) (b) 

2 p 

· ··· . .. 0 

(c) (d) 

Fig. 3.4a-d. Modelling of elastically deformable elements by equivalent springs. a Continuous 
beam, b discrete model, c structure, d simulated model 
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p p p 

a2 kl 
a2 3 2 3 2 

y 

(a 3,EI ) 

a, 
al 

4 

(a) (b) (c) 

Fig. 3.5a-c. SDOF rigid and flexible-bar assemblage. a Rigid and flexible-bars system, b ide­
alized rigid-bar system, c deflected position 

Example 3.3. The rectangular rigid and flexible bars assemblage shown in Fig. 3.5a 
consists of two rigid bars 1-2 and 2-3, and one flexible member 3-4 with a given 
E I value, interconnected by frictionless hinges. It is required to predict the critical 
load for the system. 

During deformation the flexible member 3-4 essentially behaves as a cantilever 
which is a modelled as a linear normal force spring with a spring constant ke = 
(3ElfaD. The idealized model is shown in Fig. 3.5b. The generalized coordinate of 
the model is taken as displacement y at the joint 2. The potential energy associated 
with the descent, .£1 of load P and deformation of linear spring is given by: 

J1 = V + U = P - + -kel ( l) 1 
2at 2 

For stationary potential energy 

an ( Py ) 8J1 = -8y = --+key 8y = 0 ay al 

For non-trivial solution, 

Thus, 

Py 
-- +key=O 

Q} 

The equilibrium approach is equally applicable. Consider moment equilibrium about 
the hinge 1. 
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P(y) = (key)(ai) 

or 

Example 3.4. The rectangular rigid and flexible bars-assemblage shown in Fig. 3.6 
consists of three rigid-bars 1-2, 2-3 and 3-4 and one flexible axial member 3-5 
interconnected by frictionless hinges. The end 4 of bar 3-4 is rigidly connected to 
a flexible flexural member 4-6 as shown in the figure. It is desired to compute the 
critical load for the system. 

The flexible hinged member 3-5 is modelled by a linear normal force spring of 
stiffness (EAja3) and the member 4-6 is modelled by a rotational spring of stiffness 
(4Elja4 ). The idealized rigid-bars system with concentrated spring actions is shown 
in Fig. 3.6b. This reduced system is same as that given in Fig. 3.3. The generalized 
coordinate of this system is taken to be rotation () . The potential energy of the system 
is given by 

p p 
Axial member 

3 
2~---------r~~ 

Rigid bar 

Flexural member 

4 k, 

(a) (b) 

p 

(c) 

Fig. 3.6a-c. SDOF rigid-bar assemblage with flexural and axial action members. a System 
with rigid and flexible bars, b idealized rigid-bar system, c displaced configuration 
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for stationary potential energy 

an [ 2 ] 8JJ = ae8e = (-Pa18) + kea1e + kre 88 = 0 

Therefore for non-trivial solution 

and 

( kr) (EA) (4£/) 1 Per = kea1 + - = - a1 + -- -
a1 a3 a4 a1 

Example 3.5. A crane consisting of a rigid bar 1-2 of length L hinged at 1 is supported 
by an elastic cable 2-3 as shown in Fig. 3.7a. In the unloaded condition the bar is 
inclined at an angle of 60° from the horizontal. If the load P is increased gradually 
at what angle will the system become unstable. 

The flexible cable or member 2-3 in this case can be modelled by a linear spring of 
stiffness ke = ( E Aj a) as shown in Fig. 3. 7b. The displaced equilibrium configuration 
is given in the Fig. 3.7b. In the displaced position spring takes an inclined position. 
However, for small displacement it may be assumed to act horizontally. 

3 

(a) 

Extension of the spring = L cos e - L cos 60° = L (cos e - ~) 

vertical descent of load P, ..1 = L sin 60° - L sine = L ( ~ - sine) 

Cable 
2 

----- ;',, E 
-·l-' 2' L L,' 

' 

e P 

(b) 

Fig. 3.7a,b. SDOF rigid-bar and cable assemblage. a Rigid-bar cable system, b idealized 
system with displaced configuration 



100 3 Rigid-Body Assemblages 

The values of V and U based on the equilibrium configuration are given by 

V = -PLl = PL (sine- ./3;2) 

U = ~kt [ L (cose- ~) r 
Total potential of the system 

n = v + u = PL (sine- ..!3;2) + ~ktL2 (cose- ~Y 
From the principle of stationary potential energy 

8ll =a: 8e = [PLcose +ktL2 (cose- ~)(-sine)] 8e = 0 

Since 8e is an arbitrarily small virtual displacement 

PLcose- ktL2 (cose- ~)sine= 0 

Therefore, 

P = ktL (cose- ~) tane = (~A) L (cose- ~) tane 

For a given load value of critical angle can be computed. This analysis can also be 
accomplished by equilibrium approach. Consider moment equilibrium about an axis 
passing through the hinge 1 

PLcose = ktL [ (cose- ~) J L sine 

Giving, 

P = ktL (cose- ~) tane 

Thus, the value of P is dependent on e. For critical value of P 

~= = ktL (cose- ~ sec2 e) = 0 

or 

1 
cos3 e = l i.e. ecr = 37.467° 

Therefore, 

Per= 0.2251ktL 

It should be noted that the assumption that the spring force is horizontal is not valid 
and the analysis gives only a rough estimate of Per· 
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3.4 Two-Degree-of-Freedom Systems 

The Examples 3.6 and 3. 7 illustrate the application of foregoing principles to the two­
degree-of-freedom rigid-bar systems with concentrated linear and rotational springs. 

Example 3.6. In the rigid-bar-assemblage shown in Fig. 3.8, three uniform rigid 
bars of length a are interconnected by hinges at points 1 and 2 and their lateral 
displacements are resisted by linear springs located at each hinge with values as 
indicated. The assemblage is guided to move vertically by rollers at point 3 and 
hinged at point 0. It is desired to compute critical load of the assemblage. 

p 
p Pcr=0.4227(ka) Pcr=l.5773(ka) 

3 _L_ 

3' 6. 

: ~923 
3' 3' 

k 2 
2 k2Y2 

a k I 

kly l 

a 

0 

p 

(a) (b) (c) 

Fig. 3.8a-c. 2-DOF rigid-body assemblage with linear springs. a Rigid-bar assemblage, b de­
flected shape, c buckling modes 

Unlike the rigid-bar systems discussed earlier, this system has two degrees­
of-freedom since two generalized coordinates YI and yz are required to define its 
displaced configuration. Depending upon the magnitudes and signs of these ordinates 
the system has two buckling modes, and each mode has a corresponding critical load 
value. The system can be analysed by equilibrium and by principle of stationary 
potential energy approaches. 

(a) Equilibrium approach 

The angles of inclination of various rigid-bars are expressed in terms of displacement 
coordinates Yt and yz as follows 
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Yt 
tan001 = -, 

a 
tan 012 = Yz - Y! and tan 023 = y2 

a a 
(a) 

The axial forces transferred through the bars are computed by considering equilibrium 
in vertical direction. Equilibrium at 

joint-0 T, cosOo1 = P i.e. T, = (P/ cos001) 

joint-1 T,cosOo,-Tzcos012=0 i.e. T2=T,(cos0odcos012)=(Pfcos012) 

joint-3 T3 cos023 = P i.e. T3 = (P/ cosOz3) (b) 

Now consider equilibrium in the horizontal direction 
atjoint-1: 

Thus, 

T, sin001 - T2 sin012 = k,y, 

Ptan001 - Ptan012 = k,y, 

p (:')- p (y2 : Yl) = k1y1 or (2P- k,a)y,- Py2 = 0 (c) 

atjoint-2: Ptan012 + Ptan023 = kzyz 

p(Y2 :y')+P(~)=kzY2 or -Py,+(2P-kza)yz=0 (d) 

The linear homogeneous equations (c) and (d) are expressed as 

[ (2P- k,a) - P J { Y1 } = { 0} 
-P (2P- k2a) Y2 0 

for non-trivial solution i.e. non-vanishing values Yt and yz 

Therefore, 

giving 

'

(2P-k1a) -P I=O 
-P (2P- k2a) 

4P2 - 2(kt + kz)aP + k1k2a2 - P 2 = 0 

3P2 - 2a(k, + k2)P + k1k2a2 = 0 

(e) 

(f) 

for computation of buckling modes consider either of the two equations (c) and (d) 

Y2 = 2P- k1a = ( 2 _ k,a) 
Y! p p 
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Since the normalized modes have relative displacement values take y1 = 1 and thus 

Y2 = [2- (kta/ P)] (g) 

As a typical case take kt = k and k2 = 2k. From equation (f) 

Perl = 0.4221ka and Pea = 1.5713ka 

The corresponding buckling modes or deformation configurations from equation (g) 
are 

Perl = 0.4221ka, 

Per2 = 1.5773ka, 

YI = 1.0 and Y2 = -0.366 

YI = 1.0 and Y2 = 1.366 

These modes are shown in Fig. 3.8c. Since the load will attain lower value first, Pert 
gives critical load value. The readers will appreciate that this treatment is similar to 
computation of eigenvalues. 

(b) Stationary potential energy approach 

For small values of displacements, tanl1o1 ~ l101, tanl112 = l112 and tanl123 = 1123· 
Due to rotation the downward movements of various bars are 

L1ot = (a11Jtf2) = (yif2a) 

L112 = (a11f2/2) = (Y2- Yt)2 j2a and 

L123 = (a11i3!2) = (yV2a) 

The total descent or movement of load point is 

1(2 2 2) ..1 = ..101 + ..112 + ..123 = 2 1101 + 1112 + 023 a 

1 [ 2 2 2] = 2a Yt + (Y2 - YI) + Y2 (h) 

The potential energy associated with the movement of the load P is V = - P .1, and 
the strain energy stored in the linear springs is given by 

Thus potential energy is given by 

{ p [ 2 2 2] 1 ( 2 2) } n = (V + U) = - 2a Yt + (Y2 - YI) + Y2 + 2 ktYt + k2Y2 (i) 

For stationary potential energy 

an { P } lin= - · 8y1 = -- [2yl - 2(y2- YI)] + ktYI 8y1 = 0 
oy1 2a 
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and 

an 8y2 = {-!..... [2(y2 - yJ) + 2y2J + k2Y2} 8y2 = o 
ay2 2a 

-(2P- k1a)yi + Py2 = 0 

Pyi - (2P- k2a)y2 = 0 

These equations are same as those obtained by equilibrium approach. 

(j) 

Example 3.7. Three uniform rigid-bars of lengths a~. a2 and a3 are hinged together 
at the points 1 and 2 as shown in Fig. 3.9a. The top end of the assemblage is guided 
to move vertically up and down. Concentrated moment resisting elastic springs are 
attached to adjoining members at the points 1 and 2 with stiffness as indicated in the 
figure. It is desired to predict critical load for this assemblage. 

p 
p Per = 0.276 (k/a) Per= 0.908 (k/a) 

3 
3' 3' 

2' 

1.00 

I ' 

p p 

(a) (b) (c) 

Fig. 3.9a-c. A 2-DOF rigid-body assemblage with rotational springs. a Rigid-bar assemblage, 
b deflected configuration, c buckling modes 

The generalized co-ordinates for this system are taken to be the displacements 
of hinge points YI and Y2 as shown in the figure. Alternatively, the generalized co­
ordinates may be taken to be the rotations of the rigid bars. However, in this example 
the former system is adopted, further it will be assumed that the displacements are 
small so that small deflection theory is valid. 
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(a) Equilibrium approach 

For moment equilibrium at spring joints 1 and 2, the external moment should balance 
the internal moment. 

Atjoint-1: 

(a) 

Atjoint-2: 

(b) 

From equations (a) and (b), for non vanishing values of Yl and Y2 

(c) 

From equation (a) 

(d) 

As a typical case let a1 = 4a, a2 = Sa, a3 = 6a, k1 = k and k2 = 2k, substitute these 
values in (c) 

I (P- .!!... - .!!... ) .!!... I (71k) ( k2 ) 4a 5a Sa _ p2 _ _ p _ _ 

2! (P- 2! - 2!) - 60a 4a2 
5a 5a 6a 

(e) 

The solution of quadratic equation (e) gives two values for Per corresponding to the 
first and second buckling modes 

P = 0.276(k/a) and 0.908(k/a) 

The lower value of P i.e. 0.276(k/ a) gives the critical load. The two buckling modes 
are obtained by substituting these two critical loads separately into equation (d). 

First mode Pert = 0.276(k/a) 
Second mode Pcr2 = 0.908(kfa) 

The modes are shown in Fig. 3.9c. 

Y2/Y1 = 0.87/1.0 
Y2/Y1 = -2.29/1.0 
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(b) Stationary potential energy approach 

The downward movement or descent of the point 3 is 

_ 1 [( 1 1) 2 ( 1 1) 2 2YIY2] - - - + - YI + - + - Y2 - --
2 a1 a2 a2 a3 a2 

(f) 

The potential energy of axial force, V = - P .6.. 
Relative rotations of the bars at joints 1 and 2 are given by 

( YI YI- Y2) [( 1 1) ( 1) J l'h = eo! + e!2 = - + --- = - + - YI - - Y2 
a1 a2 a1 a2 a2 

( Y2 YI- Y2) [ ( 1) ( 1 1) J e2 = e23 - e12 = - - --- = - - YI + - + - Y2 
a3 a2 a2 a2 a3 

The potential energy of the spring is 

1 2 1 2 
U = 2(k181) + 2(k282) 

= k1 [YI (__!__ + __!__) _ Y2] 2 + k2 [y2 (__!__ + __!__) _ YI ] 2 
(g) 

2 a1 a2 a2 2 a2 a3 a2 

Total potential energy of the spring and axial force, n = V + U 

For a typical case, let a1 = a2 = a3 = a. From stationary potential energy procedure 

[ 1 2PJ [ 1 PJ -(4k!+k2)-- YI+ -(-4ki-4k2)+- Y2=0 a2 a 2a2 a 

[ 1 PJ [ 1 2PJ - ( -4kl - 4k2) + - YI + - (ki + 4k2) - - Y2 = 0 
2a2 a a2 a 

(i) 

A non-trivial solution of equation (i) is possible only when assemblage buckles under 
the action of axial force P, and this is indicated when determinant of the coefficients 
matrix equals zero. The expansion of determinant and rearrangement of terms gives: 
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(Pa)2 - 2(k1 + kz)(Pa) + 3klk2 = 0 

Per = ~ [ (kl + kz) ± J ki + k~ - k1k2 J (j) 

Thus equation (j) gives two values of Per corresponding to first and second buckling 
modes. The two mode shapes are found by substituting these two critical loads into 
either of equations (i) and solving for one of the generalized coordinator in terms 
of the other. The reader may note that in this particular example the equilibrium 
approach is much simpler. 

The procedures illustrated in Examples 3.6 and 3.7 are equally applicable to 
higher degrees-of-freedom systems. However, the governing equations become pro­
gressively complicated with the increase in the degrees-of-freedoms. 

3.5 Discrete Element Method 

The method is similar to finite element method which idealizes a continuous struc­
ture by a finite degrees-of-freedom discrete model i.e. the method approximates the 
structure as a chain made up of rigid straight bars connected together by friction­
less hinges. The bending rigidity in the model is accomplished by the provision of 
rotational springs at the hinges. 

The major difference in continuous and discrete models is that the deformation 
of the continuous system is described by differential geometry while that of discrete 
system by elementary geometry i.e. deformation is given by straight lines and all rela­
tionships are obtained from elementary geometry which lead to algebraic equations. 
In the other words an approximation of a continuous deflection curve by a polygon 
of straight lines, results in approximating the differential equation of equilibrium by 
several algebraic equations which are easily solved. Thus this method is amenable to 
matrix formulation and the method has great potential in solving statically determi­
nate structural problems. 

To illustrate the basic idea of the discrete element method considers a simply 
supported beam shown in Fig. 3.10 wherein the deflection curve is approximated 
by two straight lines. These straight lines of deflection correspond to fictitious rigid 
bars assemblage consisting of two rigid elements connected at an elastic hinge or 
frictionless hinge with linear elastic rotational spring 1. The concept is thus equivalent 
to replacing the original continuous beam by a fictitious discrete elements beam and 
thus localizing the rotations at discrete nodal points. The elastic constants of these 
fictitious springs can be obtained from the standard relation 

d2y d (dy) de , M=El-=El- - =El-=Ele 
ctx2 d.x d.x d.x 

(3.8) 

Thus 

de M 
d.x EI 
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p 

l 

--:::::::::::::::9:::::::::::::::-­
, 

p 

Fig. 3.10. Approximation of deflected curve by two straight lines 

which means 

lim LlO = M 
Llx--->0 L1x EI 

If the limit to differential quotient is omitted we obtain 

Thus the bending moment at a hinge in a discrete element model is given by 

M ~ k(LlO) 

(3.9) 

where LlO is the change in slope at the hinge. For the bending moment to be same in 
both the discrete and continuous models 

M = EIO' ~ EI (~:) = k(LlO) (3.10) 

Thus we obtain k = (Elf Llx). In this expression Llx = Ljn, where n is the number 
of identical elements. The required expression for the constant of the fictitious spring 
is 

k = nEI/L (3.11) 
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p 

EI 

L 

0 

Fig. 3.11. A deflected cantilever approximated by n discrete elements 

However, it is recognized that in general the fixed end of a structural system is 
relatively more stiff. Thus a provision of a spring of greater stiffness than that of 
common one k = (nEil L) at the fixed end of discrete element model will lead to 
more accurate results with fewer elements. To determine such a fixed end spring 
stiffness consider a cantilever of length L subjected to a concentrated load at the free 
end. Let the cantilever be divided into n equal discrete elements of length (L/n) as 
shown in Fig. 3.11. The deflection at a node distant (L/n) from the fixed end is 

YI = _!_ (~) 2 (3L- ~) 
6EI n n 

[ . Px2(3L- x)J 
smce y(x) = --6-E-1--

Application of moment equilibrium equation IJM0 = 0 at the node 0 gives 

koeo = PL 

and substituting for eo and YI gives 

where eo = n YI 
L 

ko= ~ (E/) 
3n -1 L 

(3.12) 

(3.13) 

Example 3.8. The deflection curve of the simply supported strut shown in Fig. 3.12 
is approximated by three equal straight lines i.e. the system is divided into three rigid 
elements which are connected at elastic hinges with the spring stiffness k. Due to 
symmetry the system can be dealt as a single-degree-of-freedom system. From the 
geometry of deformation curve shown in the figure 
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1 2 3 
p 

p 

(a) 

(b) 

Fig. 3.12a,b. Three and four-element models of simply supported strut of Example 3.8. a Three­
element model, b four-element model 

3EI 
kt =kz =k= L' 

and ..1 = 2 ( ~) (1- cosB01) 

The total potential energy in this case is 

II= 2 (~) kB51 - 2P ( ~) (1- cosB01) 

= kB51 - (2PL/3)(1- cos Bot) 

The equilibrium or stationary potential energy equation aiija801 = 0 gives 

3kBOl 9EIBOl 
Per=-..,....-..,....-= 

LsinBot L2 sinBot 

Expanding (sinBot)-1 and retaining up to second-order terms only, the initial post 
buckling equation reduces to 



3.5 Discrete Element Method 111 

where eO! = 38 I L and 8 is the maximum deflection, thus the buckling equation 
becomes 

9EI EI 2 
Per= L 2 + (13.5) L 4 8 

The asymptotically exact equation is 

n 2EI EI 2 
Per= --y + (12.17) L 4 8 

For a mere single degree-of-freedom discrete element analysis the result is remarkably 
accurate both for buckling load (Perl = 9EI/ L 2) and initial post buckling curvature 
(Pcr2 = 13.5EI/ L 4). The result will converge to the exact value as the number of 
elements increase. As an illustration consider the structure to be approximated by four 
element model as shown in Fig. 3.12b. Following the geometry of deformation shown 
in the figure, the total potential energy of this approximation which is essentially a two 
degree-of-freedom system due to symmetry is 

noting that 

Thus, 

The equilibrium equations from stationary principle are given by 

an [PL J - = 2kl ceo1- e12)- - (2eOJ) = o 
aeo1 4 

or 

and 

or 

-2k,eoi + ( 2k, + 4kz- ~L) e12 = o 

for a non-trivial solution 

I (2k1 -a) - 2k1 1- 0 where a = PL/2 
-2k1 (2ki + 4kz- a) - ' 

a2 - 4(k, + kz)a + 8k1k2 = 0 
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In the present case k1 = k2 = k3 = k = (4EI/ L), consequently 

a2 -8ka+Sk2 =0 

which gives 

The buckling load with four element approximation is given by 

Per= (4- ./8)(8Elj L 2) = (9.37 Elf L 2) 

This indicates significant improvement over the value obtained with three element 
approximation. 

Example 3.9. To study the convergence of buckling load to its exact value consider 
a cantilever strut or a column which is fixed at the base and free at the top and 
subjected to an axial load in on-deformed equilibrium position. This is a standard 
case and the exact value of buckling load is (1r2 EI/4L2) or 2.467 Elf L2. Consider 
two cases using one and two rigid element discretizations, respectively. 

Case 1: One-element model, Fig. 3.13b 

The potential energy for computation of buckling load of this model with single 
element is 

The equilibrium equation from stationary energy principle is 

an 
- = ko9oi - PL9oi = 0 
ae01 

from which critical load is found to be 

Per= ko/L 

where ko = 3EI/ L (a case of higher stiffness for spring at the fixed end). 
Thus, Per = 3 E I 1 L 2• As a first approximation the error is tolerable. 

Case II: Two-element model, Fig. 3.13c 

In this case 

24EI 4.8EI 2EI 
ko=SL=-L- and k=z: 
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p p p p 

JI YI 
' 
' 

eOJ, ' 
L 

'o ko 

(a) (b) 

p p p p 

' y3 

12 

0 
(c) (d) 

Fig. 3.13a-d. One, two and three-element models for a cantilever strut of Example 3.9. 

a Continuous strut, b one-element model, c two-element model, d three-element model 

Thus the potential energy of the system is given by 

The equilibrium conditions an;aeo1 and an;ae12 lead to two linear homogeneous 
algebraic equations in eo1 and e12. These equations have non-trivial solution, if 
the determinant of coefficients of e01 and e12 vanishes. Expanding determinant and 
solution of resulting quadratic equation gives: 

Substituting the values of ko and k 

Per= 2.552EI/L2 

The value is much more closer to the exact value. A model with three-element will 
give still better result. It is evident that as the number of elements increase the result 
converges to the exact value. 
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3.6 Problems 

Problem 3.1. Three identical rigid bars of length a are hinged together at the joints 1 
and 2, and are supported by hinges at the points 0 and 3 as shown in Fig. P.3.1. The 
assemblage is stabilized by a linear spring of stiffness k. A moment M is applied at 
the mid-point of bar 1-2. Predict the critical value of moment M which will make the 
system elastically unstable. 

3 3 

a 

: k(a9) 
' 

I' 

a 

I· a 

(a) (b) 

P.3.1 

[Hint: Rotate the bar 0-1 by a small angle about the point o. 
Wex = Met = M(J2 and Win = t (ka8)(a8) = k(a8)2 /2. Equating Wex to Win will give 
Mer= ka2 /2] 

Problem 3.2. Two rigid bars A B and BC are hinged together at the joint B. The 
end A is hinged and end C is supported on a roller. Two linear springs of constant 

~p 
3a I a •I' 2a , I• a ·I 

P.3.2 
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k1 and k2 are attached to the points 1 and 2, respectively, as shown in Fig. P.3.2. 
Determine the critical value of the load P. 
[Hint: The displacement of hinge B may be taken as the generalized co-ordinate, and 
all other displacements are expressed in terms of it. Per= (27kia/28) + (4k2af21)] 

Problem 3.3. Two identical rigid-bars 1-2 and 2-3 are hinged together at joint 2 as 
shown in Fig. P.3.3 and supported by a hinge at a point 1 and a roller at point 3. The 
movement at the roller end is resisted by a linear spring of constant k. Predict the 
load at which the assemblage becomes unstable. Also calculate the angle () which the 
bar makes with the horizontal. 
[Ans. Per= (3../2j4)ka and cos3 () = (1/../2)] 

p 

a 

P/2 P/2 

P.3.3 

Problem 3.4. Two uniform rigid-bars of length a are hinged together at joint 1 and 
are supported by a hinge at point 0. The displacements at points 1 and 2 are resisted by 

elastic springs having spring constants 3k and 2k, respectively, as shown in Fig. P.3.4. 
A constant axial force P acts at the point 2. Determine the critical value of load P 
that will hold the assemblage in equilibrium in displaced position. 
[Ans. Per = l.O(ka) and 6.0(ka) and corresponding mode shapes can be obtained 
from: (y2/YI) = Pj(P- 2ka).] 

2 
p 

3k 2k 

I· 
a 

"" I· 
a ·I 

P.3.4 
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Problem 3.5. Two uniform rigid-bars of length a, 1-2 and 2-3 are hinged together at 
joint 2 and supported by a hinge at point 1. Concentrated moment resisting elastic 
springs of stiffnesses k1 and k2 are attached at the hinges 1 and 2, respectively. 
A constant axial force act at the free end 3 as shown in Fig. P.3.5. Determine the 
critical load and corresponding buckling modes. 
[Hint: The potential energy of the assemblage is: 

1 2 1 2 1 ( 2 2) 
II= 2k101 + lk2 (01- 02) - 2Pa 01 + 02 , 

and Per = ~ [ (k1 + 2k2) ± (Jci + 4~) 112] 

~ 
3 

M p 

kz 
, .. a ., .. a ·I 

P.3.5 

Problem 3.6. Four uniform rigid-bars of lengths a, 2a, 2a and a are hinged together 
at joints 1, 2 and 3 as shown in Fig. P.3.6 and are supported by a hinge at point 0 
and roller at point 4. Concentrated moment resisting elastic springs of stiffness k are 
attached to adjoining bars at hinges 1, 2 and 3. A constant axial force acts at the roller 
end 4. Using small deflection theory determines the critical loads and corresponding 
buckling modes. 
[Ans. Per= 0.5(kja), l.O(kja) and 4.0(kja) with corresponding buckling modes as 
(1, 0, -1), (1, 2, 1) and (1, -1, 1)] 

0 1 2 
:::~~!fa~!fa~;{,<' ~u/4# ?WffieO Wk*W 

I· a ·I· 2a ·I· 2a ·I· a ·I 
P.3.6 

Problem 3. 7. For calculating the critical load, a pin-ended Euler column of length 6a 
and stiffness E I is assumed to be divided into three equal segments of length 2a 
each, with flexural stiffness of each segment k = Elj2a being concentrated at the 
centre of the segment by a spring-hinge. The hinges are imagined to be connected 
by rigid-bars. Determine the critical load and the percentage error introduced is this 
idealization. 
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[Hint: Refer to Problem 3.6, Per= Elj(4a2), Euler's load= n 2 Elj(36a2), percent­
age error= 8.81} 

Problem 3.8. A column fixed at the base and hinged at the top carries an axial 
load P in the un-deformed equilibrium position. Determine the buckling load by 
considering one-, two- and three-rigid element discretizations. Also determine the 
percentage error when exact buckling load is (20.19E// L 2 ). 

Problem 3.9. A cantilever column with fixed base and free top is discretized with 
three-rigid elements. The flexural stiffness of these elements is assumed to be lumped 
or concentrated at the interconnecting hinges. Determine critical loads and the per­
centage error introduced in the idealization. 

Problem 3.10. A fixed-fixed strut subjected to an axial load P is discretized with 
two-and three-rigid elements. The flexural stiffness of these discrete elements is 
considered to be concentrated at the interconnecting hinges. Predict the buckling 
load for the models and percentage of error introduced in each of the models when 
exact value of buckling load is 4n2 Elf L 2. 
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Buckling of Axially Loaded Members (Columns) 

4.1 Introduction 

The classical critical load theory of perfect axial members assumes that the member 
in question is initially straight, slender, of solid cross section with flexural stiffness 
rigidity E I being constant throughout its length and subjected to an axial compressive 
force applied along the centroidal axis of the member. Moreover, it is presumed that 
the material of the member is homogeneous, isotropic and perfectly elastic. The 
assumption of small deflection theory of bending also holds good for the critical load 
theory. 

The critical value of the axial thrust for a centrally loaded member is generally 
expressed in terms of that for an idealized column which is hinged at both the ends 
and subjected to an axial compressive force. This column is known as Euler column 
with the critical value of axial thrust being called as Euler buckling load which is 
denoted as Pe. 

4.2 Buckling Loads for Members with Different End Conditions 

The buckling loads can be derived directly from the governing differential equations 
obtained by considering the state of equilibrium of the member in its bend form 
caused by a disturbance. In view of small deflection theory being used, the moment 
curvature relation becomes linear and can be expressed as 

(4.1) 

where M is bending moment and I is second moment of area. For a deformed shape to 
be in equilibrium, the internal resisting moment must balance the external disturbing 
moment Py. Hence 

M. L. Gambhir, Stability Analysis and Design of Structures
© Springer-Verlag Berlin Heidelberg 2004
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or 

d2y 
d.x2 +a2y = 0 (4.2) 

where a2 = P/(El). Equation (4.2) is a linear homogeneous differential equation 
with constant coefficients. It should be noted that since the buckling will occur in the 
plane of minimum bending rigidity, minimum value of EI is to be used in (4.2). This 
is second-order formulation of the problem. The general solution is 

y(x) =A sin ax+ Bcosax (4.3) 

The arbitrary constants of integration A and B are evaluated from the prescribed 
boundary conditions associated with the end supports. The application of the method 
to the cases with standard boundary conditions is illustrated in the following section. 

4.2.1 Hinged-Hinged Strut 

Consider a strut hinged at both the ends as shown in Fig. 4.1. The boundary conditions, 
would be y(O) = y(L) = 0. The first condition gives B = 0 and in order to satisfy 
the second boundary condition 

A sinaL= 0 (4.4) 

If A is set equal to zero, then y(x) = 0 everywhere along the length, meaning that 
the initial straight configuration of the strut is the only equilibrium state under the 

First mode 

p .... p Second mode 

1 .. 
U2 •I• U2 •I 

p p 
Third mode 

1 .. 
U3 •i• U3 ·I· U3 ·I 

Fig. 4.1. Buckling modes of hinged-hinged strut 
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force P and no bend equilibrium state is available. This is a trivial solution. Thus for 
non-trivial solution second term must vanish i.e. sinaL = 0, for which it is necessary 
that 

aL = nn n = 1, 2, 3 ... 

Since a2 = P/(El), (4.5) can be written as 

The corresponding deflected shape is given by 

nnx 
y = Asin-­

L 

The smallest Per value corresponds to the case where n = 1. Thus, 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

This smallest load Pe at which the strut ceases to be in a stable equilibrium is known 
as Euler load. The corresponding bent configuration called buckled mode shape is 
given by y = A sin(nx/ L) which is shown in Fig. 4.1a. For n = 2, 3, ... higher 
values of critical load are obtained, the corresponding buckled modes of the strut are 
defined by (4.7) and shown in Figs. 4.1b and 4.lc. 

When the force Pis different from the values defined by (4.6), then A = 0 i.e. 
only trivial straight form of strut is available, but when force P takes on any of the 
values defined by (4.6), the relation A sinaL = 0 is satisfied both with A = 0 and 
A f. 0. It means that at these values both straight and non-trivial bent equilibrium 
states are possible. Hence these values are sometimes known as bifurcation loads. 

The above procedure involving homogeneous differential equation of equilibrium 
along with homogeneous boundary conditions forms a class of problems known as 
eigenvalue problems. 

4.2.2 Fixed-Free Cantilever Strut 

Consider the cantilever strut shown in Fig. 4.2 acted upon by a compressive force P 
at its free-end. The external bending moment at any cross-section in the bent config­
uration is 

(d2y) 
EI dx2 = -M = P(ym - y) 

or 

(4.9) 
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y 

L. Deflected configuration 

Ym 

- - 1- - - - 2 
Initial configuration 

X ·I 
(a) 

oC p 

(b) 

Fig. 4.2a,b. Buckling modes of fixed-free strut. a First mode, b second mode 

As explained in Appendix Appendix C the general solution to (4.9) is 

y(x) = A sin ax+ B cos ax+ Ym 

where Ym is the unknown deflection at the free end. The integration constants are 
determined from the prescribed boundary conditions, namely y(O) = y' (0) = 0 at 
the fixed end. From the first of these B = -ym and from the second A= 0. Thus the 
bent configuration of the strut is given by 

y(x) = YmO- cos ax) (4.10) 

The boundary condition at the free end, i.e. y(L) = Ym gives 

Ym = YmO- cosaL) or Ym cosaL = 0 (4.11) 

The solution requires either Ym = 0 or cos aL = 0. The solution Ym = 0 represents 
the initial straight form of the strut. Thus to ensure a non-trivial solution, cos aL = 0 
for which it is necessary that 

or 

aL = (2n- 1):n/2 n = 1, 2, 3, ... 

(2n - 1)21l'2 EI 
P. - -------,-::-;:---
cr- 4L2 (4.12) 
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The smallest value of Per corresponds ton = 1, thus: 

n 2EI n 2EI 
Per,!= Per= 4L2 = (lL)Z (4.13) 

The corresponding buckled mode shape is defined by y(x) Ym[l -cos {;f)l. 
F 2 3 h. h al f . . I I d b . d 9Jr2 EI 25Jr2 El or n = , , . . . 1g er v ues o cntlca oa s o tame are "'4£2' ~· 

. . . and the corresponding buckled modes are: yz = Ym [ 1 - cos e~x)], Y3 

Ym [ 1 - cos ( s~x)]. The first two buckled mode shapes are shown in Fig. 4.2a,b. 

4.2.3 Fixed-Hinged Strut 

The governing differential equation of equilibrium for the fixed-hinged strut shown 
in Fig. 4.3 is 

El (~~) = -M = -Q(L -x)- Py 

where Q is shear force in the member. Differentiating this equation twice with respect 
to x 

(4.14) 

This is a fourth-order governing homogeneous differential equation for a general bend­
ing problem. As described in Appendix Appendix C, the general solution to ( 4.14) is 

y =A sin ax+ B cos ax+ C(xj L) + D (4.15) 

y 

L. 

L 

Fig. 4.3. Buckling mode of a fixed-hinged strut 
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The boundary conditions to be satisfied are 

y(O) = y'(O) = y(L) = y"(L) = 0 

These requirements lead to four linear homogeneous algebraic equations in terms of 
constants A, B, C and D as follows 

(O)A + 
(aL)A + 

(l.O)B + (O)C + (l.O)D = 0 

(O)B + (l.O)C + (O)D = 0 

(sinaL)A + (cosaL)B + (l.O)C + (l.O)D = 0 

(sinaL)A + (cosaL)B + (O)C + (O)D = 0 

If A = B = C = D = 0, the member will remain in the initial straight configuration 
for all values of P which is a trivial solution. For non-trivial solution, the determinant 
of coefficients must vanish, i.e., 

0.0 1.0 0.0 1.0 
aL 0.0 1.0 0.0 

=0 
sinaL cosaL 1.0 1.0 

sinaL cosaL 0.0 0.0 

or 

tanaL = aL (4.16) 

The solution to transcendental equation (4.16) can be obtained either numerically or 
graphically. The smallest root of ( 4.16) as obtained by trial and modification is 4.493. 

Therefore, aL = 4.493 or 

20.19£/ 
Per,!= --L-:::2- (4.17) 

and 

( 4.493x) [x (4.493x) J y(x) =A sin -L- - L +cos -L- -1 

4.2.4 Fixed-Fixed Strut 

The fixed-fixed strut shown in Fig. 4.4 has four geometric boundary conditions hence 
the fourth-order governing differential equation given by (4.14) is required. In this 
type of strut both the ends of member are fixed against bending rotations and lateral 
translations, the boundary conditions to be satisfied are 

y(O) = y'(O) = y(L) = y'(L) = 0 (4.18) 
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y 

L. 
p ~ p 

L ... , 
(a) 

1 • p 

1 .. 

U2 

... I 
(b) 

Fig. 4.4a,b. Buckling of fixed-fixed strut. a Symmetric mode, b antisymmetric mode 

The solution to governing differential (4.14) is given by (4.15) and must satisfy 
boundary conditions given by ( 4.18). The stability condition or characteristic equation 
of this case is given by 

0.0 1.0 0.0 1.0 
sinaL cosaL 1.0 1.0 

aL 0.0 1.0 
=0 

0.0 
aLcosaL -aL sinaL 1.0 0.0 

or 

(aL) sinaL+ 2(cosaL- 1) = 0 (4.19) 

This equation can be simplified to a form 

sin (a~) [ (a~) cos (a~) - sin (a~) J = 0 (4.20) 

For the solution of this equation, either sin ( aJ:) = 0 or ( aJ:) cos ( aJ:) -sin ( aJ:) = 0. 
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(i) When sin ( af) = 0, then ( af) = mr, n = 1, 2, 3, ... Therefore, 

4n2n 2 El 
Per=-----::--

£2 

The corresponding mode shapes are given by 

The first or minimum critical load for n = 1, is: 

4n2 El n 2 El 
Per,!= -v = (0.5£)2 

(4.21) 

(4.22) 

(4.23) 

and corresponding mode shape is y(x) = B [cos ( 2~x) - 1] and is shown in Fig. 4.4a. 

(ii) If ( a2L) cos ( af) - sin ( af) = 0 

( a2L) = tan ( a2L) 
The lowest root of the stability or transcendental equation is given by 

(a~) = 4.493 or 
80.75£/ n 2 El 

Pcr,l = ------::-- = 
L 2 (0.35)2 

(4.24) 

The critical load given by ( 4.23) is lower than that given by ( 4.24 ). The value given by 
( 4.24) corresponds to the first antisymmetric buckling mode as shown in the Fig. 4.4b. 

4.2.5 Struts with Elastic Supports 

The procedure described above is equally applicable to the struts with elastic supports. 
To illustrate this generality of procedure, consider the problem of buckling of fixed­
partially restrained strut shown in Fig. 4.5 where the free end of the member is free 
to rotate but constrained against lateral deflection by a spring of stiffness kn. As 
the boundary condition at the partially restrained end of the member involves shear 
which is a third-derivative consideration, the fourth-order differential equation must 
be used to solve the problem, i.e. 

d4y + a2 (d2y) = 0 where 
dx4 dx2 

2 p 
a=-

El 

The boundary conditions are 

y(O) = y'(O) = y"(L) = 0, (4.25a) 

and the boundary condition at the restrained end stipulates that the shear developed 
in the strut at x = L is resisted by the force in the spring due to lateral deflection, 
that is, 
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EI constant 

' 

I· L ·I 
Fig. 4.5. Fixed-partially laterally restrained strut 

or 

(y"' + a 2y' - yy)x=L = 0 where (4.25b) 

The substitution of the general solution i. e. 

y = Asinax + Bcosax + C (i) + D (4.26) 

into the boundary stipulations yields a set of four simultaneous homogeneous, linear 
equations expressed in the matrix form as 

0.0 1.0 0.0 

[ aL 
0.0 1.0 

-a2 sinaL -a2 cosaL 0.0 
-yL sinaL -yLcosaL (a2 - yL) 

~:~ ] [;] = 0 
0.0 c 

(-yL) D 

(4.27) 

For a solution other than trivial one A = B = C = D = 0, the determinant 
of coefficients must vanish. This condition yields following stability condition or 
characteristic equation. 

tan aL = aL - ( ~) 

tanaL = aL- (aL) 3 [ E/3 ] 
knL 

(4.28) 
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where 

aL = (Pi2 = n {P:: VTI yP: (4.29) 

As a typical case consider kn = 1 i~1 and the characteristic equation reduces to 

(aL) 3 
tanaL = aL- --

12 

The smallest root obtained by trial and modification is aL = 4.911304 and corre­
sponding critical load 

n 2 EI 
P. ----::­

cr - (0.64£)2 
(4.30) 

If kn is infinitely large the buckling problem reduces to that of a fixed-hinged strut 
with characteristic equation taking the form: tanaL = aL, which is same as given 
by (4.16). 

4.2.6 Framed Columns 

The column members of a frame are typical examples of elastically restrained 
columns wherein elastic restraints are provided by connecting beams. The flexu­
ral or rotational stiffness kr of a beam is 4 E I I L if its far end is fixed and 3 E I I L 
when the far end is hinged. The axial or extensional stiffness, kn (= EAI L) of the 
beam member is taken to be infinitely large for simplification. For illustration con­
sider a column hinged at the lower end and connected to (i.e. elastically restrained 
by) a beam at the upper end as shown in Fig. 4.6. The boundary conditions of the 
idealized column shown in Fig. 4.6b for the end A are: y(O) = y" (0) = 0. At the 
end B, they are y(L) = 0 and -Eiy"(L) = krY'(L) or y"(L) + yy'(L) = 0 where kr 
is the rotational spring constant associated with the beam BC, and y = ~~. As dis­
cussed earlier, the rotational stiffness kr is obtained by treating the beam BC hinged 
at B and fixed at the end C and is given by: 

For this problem with four prescribed boundary conditions, the governing differential 
equation is 

(4.31) 

which has general solution, y(x) = A sin ax+ B cos ax+ C ( f:) +D. On substituting 
this solution into the boundary stipulations, following simultaneous homogeneous and 
linear equations are obtained 
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Fig. 4.6a,b. Buckling of framed column with hinged base. a Framed column, b idealized 
column with elastic support 

B 
-B 

A~~ B~~ C 
A(-a2 sinaL+ ay cosaL) B(-a2 cosaL- ay sinaL) C (f) 

D=O 
=0 

D=O 
=0 

(4.32) 

From first three equations, B = D = 0, C = -A sinaL. Substituting these values in 
the fourth equation yields 

A [ -a2 sinaL+ ay cosaL- (f) sinaL] = 0 

For the non-trivial solution A ::/= 0, the characteristic equation is 

or 

tanaL = ay = aL 
a2 + (yjL) (a2L2 jyL) + 1 

aL 1 
cotaL=-+­

yL aL 
(4.33) 

This transcendental equation can be solved to obtain the smallest value of the root to 
compute critical load. In a typical case where It =I and L 1 = L, (4.33) reduces to 

4aL 
tan aL = ----=--­

(aL)2 + 4 
(4.34) 
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The smallest root is: aL = 3.83 and the corresponding critical load Per is given by 

(3.83)2 EI rr2 EI 
Per= L2 = (0.82L)2 (4.35) 

If h is infinitely large, (4.33) reduces to tanaL = aL and smallest root obtained by 
trial and modification is aL = 4.493 and corresponding critical load is: 

P. = a2 EI = (4.493)2 EI = rr2 EI (4 36) 
er £2 (0.7 £)2 . 

The effective length of the compression member AB increases from 0.7L to 0.82L 
due to reduction in the rigidity of the beam. If BC is long with small / 1, then the 
restraint B will tend to vanish and the member AB will revert to a hinged-hinged 
column. 

In another variation of the foregoing problem consider the case when member AB 
is in the same line as BC, making the structure a two-span continuous strut shown in 
Fig. 4.7a wherein the span AB is subjected to an axial force such that the axial force 
in the span BC is presumed to be zero. The procedure and results of the foregoing 
problem are also applicable to this case. 

The column members of a symmetrical portal frame can also be modelled as 
elastically restrained columns, the elastic restraint being provided by connecting 
beam. The flexural or rotational stiffness of the beam depends upon the buckling mode 
considered for the analysis. In most of the practical cases, the axial or extensional 
stiffness (EA/ L) of the beam member is taken to be infinitely large. 

y 

L. 
A B p c~ p 

Z1 2! EI Ell 

I· 
L 

·I· 
L, 

·I 
(a) 

--------

•M:~ m, --- cl p 

~ * 
p 

EI ~ -----
L 

I· 
L, 

·I 
(b) 

Fig. 4.7a,b. Two-span continuous strut. a Two-span continuous strut mode, b elastically sup­
ported strut model 
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Fig. 4.8a,b. Portal frame with column hinged at the base. a Symmetric mode, b antisymmetric 
mode 

(a) Portal frame with columns hinged at the base 

Consider the symmetrical portal frame with columns hinged at the base as shown in 
Fig. 4.8. The portal may buckle either in a symmetric mode without sidesway or in 
an antisymmetric mode with side sway. The buckling of the frame can be viewed 
as buckling of column members with rotational restraint provided by horizontal 
beam member. The elastically restrained column models for the symmetric and 
antisymmetric buckling modes are shown in Fig. 4.8a and b, respectively. 

( i) Symmetric buckling mode 

The boundary conditions are: 

y(O) = y"(O) = y(L) = 0 

and 

Ely"(L) + krY'(L) = 0 or y"(L) + yy'(L) = 0 (4.37) 

where y = ~'1 and kr is the rotational spring constant (stiffness) associated with 
the connecting horizontal beam. For these four prescribed boundary conditions, the 
fourth-order governing equation must be used 

d4y + a2 (d2y) = 0 
dx4 dx2 

with its general solution as: y = A sin ax+ B cos ax+ C (f)+ D. The characteristic 
equation is given by (4.33) or 

cotaL =(~~)+(a~) (4.38) 
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The smallest root of this equation represents the first critical load for buckling of 
the portal frame. For the symmetrical buckling mode, the portal buckles in a manner 
shown in Fig. 4.8a such that side sway is prevented. Thus kr = ~. 

yL = krL = 2EhL = 2 [(h)(.£)]. 
El LIE/ I LI 

For a typical portal frame with h =I and LI = L, yL = 2 and the characteristics 
equation reduces to 

cotaL =(a~)+ (a~) (4.39) 

and the smallest root aL = 3.59. Therefore 

(3.59)2 EI 12.9EI rr2 EI 
Per = L2 = -v = (0.875L)2 (4.40) 

(ii) Antisymmetrical buckling mode 

In this case the side sway is permitted and the frame is assumed to buckle in an 
antisymmetric mode shown in Fig. 4.8b. Here kr == 6Z:1 and where 

yL = krL = 6EhL = 6 [(h)(.£)] 
El LIE/ I LI 

the boundary conditions are: 

y(O) = y"(O) = 0 

y"(L) + yy'(L) = 0 

and y"'(L) + a2y'(L) = 0 (4.41) 

Using fourth-order governing differential equation with its general solution being 
substituted in the boundary conditions yields 

aLtanaL = yL (4.42) 

For the typical case -f:; = f reducing yL to 6 and the characteristic equation reduces 
to 

6 
tanaL =­

aL 

The smallest root obtained by trial and modification is aL = 1.35. Therefore, 

(1.35)2 EI 1.823E/ rr2 EI 
Per = L2 = L2 = (2.327 L)2 

(4.43) 

(4.44) 

It must be noted that antisymmetric buckling is associated with the lower value of 
critical load. 
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Fig. 4.9a,b. Portal frame with column fixed at the base. a Symmetric mode, b antisymmetric 
mode 

(b) Portal frame with columns fixed at the base 

Consider the portal frame shown in the Fig. 4.9. As in the case of portal with hinged 
columns, it may buckle either in a symmetric mode or in an antisymmetric mode. 

(i) Symmetric buckling mode 

The boundary conditions are: 

y(O) = y'(O) = y(L) = 0 and y" (L) + yy'(L) = 0 (4.45) 

Substituting the general solution of fourth-order differential equation in the boundary 
stipulations yields four linear algebraic homogeneous equations 

B 

a A c (t) 
AsinaL Bcos aL C 

A(aycosaL-a2 sinaL) -B(aysinaL+a2 cosaL) C(f ) 

From first three boundary conditions 

A(sinaL- aL) + B(cosaL - 1) = 0 

From second and fourth boundary conditions 

D = O 

=0 
D=O 

=0 

A(ay cosaL- a 2 sinaL- ya) - B(ay sinaL+ a 2 cosaL) = 0 

For non-trivial solution (A f= 0 and B f= 0), the characteristic equation is 

aL(l - yL) sinaL - (2yL + a 2 L 2) cos aL + 2yL = 0 

(4.46) 

(4.47) 
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which can be solved for the smallest root of aL. Here 

2Eh 
as kr=-­

Lt 

For a typical case of portal frame with ~ = f, yL = 2. The characteristics equation 
reduces to 

aL sinaL+ [4 + (aL)2] cosaL = 4 (4.48) 

The smallest root obtained by trial and modification method is aL = 5.018186. 
Therefore, 

(5.018186)2 EI 
Per= L2 

25.182£/ rr2E/ 
--~~- =------~ 

L2 (0.626L)2 
(4.49) 

It should be noted that if kr i.e. yL tends to zero, this elastically restrained column 

reduces to a fixed-hinged column with Per = (~.~f~2 and on the other hand if kr is 
infinitely large (ljyL = 0), the column becomes fixed-fixed column with Per = 

rr2EI 
(0.5L)2' 

( ii) Antisymmetrical buckling mode 

In this case column buckles with a side sway as shown in the Fig. 4.9b. The boundary 
conditions are: 

where 

y(O) = y'(O) = 0 

y"(L) + yy'(L) = 0 

and y"'(L) + a2 y'(L) = 0 

kr (6Eltf Lt) 6(/tf Lt) 
y=-= = 

EI EI I 
6(h/Lt) 

or yL = (//L) (4.50) 

Substituting the general solution of fourth-order differential equation namely, 
y(x) = A sin ax+ B cos ax+ C(xj L) + D into the boundary conditions, following 
characteristic equation is obtained for non-trivial solution 

tanaL =- (~) =- (;~) (4.51) 

The behaviour of this elastically restrained column lies between that of fixed-free and 
fixed-hinged columns. Thus the smallest root of characteristic equation lies between 
(rr/2) and rr depending on the value of yL. Typically consider h/L1 = 1/L i.e. 
yL =6. 

The characteristic equation reduces to tan aL = -(aL/6) and the smallest root 
is given by aL = 2.7165. Thus 

(2.7165)2 EI 7.3794£/ rr2 EI 
Per = L2 = L2 = (1.156L)2 (4.52) 
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4.3 Concept of Effective Length 

In each of the above illustrations, the critical load has been expressed in the form Per = 
rr2 EI j(KL)2 where K is termed effective length factor. This form of representation 
enables to express the critical buckling load in terms of Euler load of a hypothetical 
pin-ended member of length K L. Thus effective length factors could be obtained 
from the expression 

(4.53) 

The K values of simple cases are given in Table 4.1. When a compression member 
is an integral part of a structure, its ends are connected to the other members. The 
connected members provide rotational as well as translational restraint. To determine 
the buckling load of a particular compression member in a given structure, the 
engineers generally use their experience and judgment to estimate the effective length 
factor K for a given design situation as regard to the members immediately connected 
to the compression member in question. In most of the cases the effective length K L 
is actually the distance between the points of contra flexure. 

The corresponding critical stress is given by 

Per rr2 E 
aer = -A- = ...,.(K ____ L_jr-c)-::-2 as I= Ar2 (4.54) 

where A is the cross-sectional area and r is radius of gyration about an axis of the 
cross-section which governs buckling. The ratio KLjr is referred to as the effective 
slenderness ratio of the strut. 

The classical procedure for computation of critical buckling load is equally appli­
cable to the columns connected to the rigid or flexible links or having internal hinges 
as illustrated in Example 4.1. 

Example 4.1. Structural members AB fixed at the base A and subjected to an axial 
force through a rigid link bar BC as shown in Fig. 4.10. The link bar is connected to 
the member by a hinge at B. Determine the critical buckling load of the system. 

The deflected configuration and free-body diagrams are shown in Fig. 4.10b,c, 
respectively. The member AB is subjected to an axial force P as well as lateral force 
MA/(L 1 + L2). From the moment equilibrium of the link BC 

or 

Ym = (Lt + L2)P 
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Table 4.1. Effective length factors 

Per = rr2 Ef/(KL)2 Remarks 

Strut type Boundary conditions K 

1. Rigid boundaries 

(a) Standard cases 

+ fixed free 2.00 

--------. --=:::::::::::: i· hinged slide 2.00 

··~ ~ · hinged hinged 1.00 

fixed slide 1.00 

·I ~· 
fixed hinged 0.70 

fixed fixed 0.50 

(b) Special cases 

·I ~· 
fixed internal hinge hinged 1.3495 

hinged continous hinged 0.50 

·1~1· fixed continous fixed 0.33 

2. Elastic boundaries 

hinged hinged with 0.82 k,=4Ef/L 
elastic spring 0.875 k, = 2Ef/ L 

·I~· fixed hinged with 
elastic spring 0.626 k, = 2Ef/L 

·I I 
fixed free with 

translational spring 0.64 kn = 2Ef/ L 3 

Equating the internal resisting moment to the external disturbing moment in the 
cantilever flexural member AB 

El (d_z_Y) = -M =- [-P(ym- y)- _M_A"--X-] 
dx2 (LI + Lz) 

where Ym is the maximum lateral deflection at the top end B of the cantilever AB. 
Therefore, 

(4.55) 
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Fig. 4.10a,b. Column with internal hinge. a Column link system;from left to right: structure, 
deflected configuration, idealized column, b fixed hinged column with interior hinge 

The boundary conditions to be satisfied are 

y(O) = Ym, y(LJ) = 0 and y'(Lt) = 0 (4.56) 

The general solution to the second order governing differential equation is 

y = A sin ax + B cos ax + ( : 2 ) Ym + Ym 

Substituting the general solution into the prescribed boundary conditions yields: 

i.e. 

and 

B + Ym = Ym i.e. B = 0 

. (Lt) AsmaLt+BcosaLt+Ym L2 +Ym=O 

AacosaLt- BasinaL1 + Ym = 0 
L2 
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or 

-.-- cosaL1 +- = 0 [ Ll +L2] [ Yma ] Ym 
L2 smaL1 L2 

Therefore, 

As a typical case assume L1 = L2 (= 0.5L) and characteristic equation reduces to 

tan(aL1) = 2(aL1) 

The lowest root of this transcendental equation obtained by trial and modification 
procedure is given by: aL1 = 1.164. Hence, 

(1.164)2 EI 5.4196£/ rr2 EI 
Per = 2 = = ---:-:-:---:::-

L1 £2 (1.3495L)2 
(4.57) 

If the rigid link bar BC is replaced by a flexible member of same cross-section as 
the member AB, the structure reduces to a strut with internal hinge as shown in the 
Fig. 4.10b. In this case the buckling failure may occur in two different modes. The 
first is the buckling of length BC as an Euler strut with buckling load of rr2 EI/(L2 ) 2• 

The second mode of failure is the buckling of complete structure with point B moving 
laterally and the length BC acts as a link transmitting load from C to B. Thus it is 
again a case of buckling of the cantilever AB due to force becoming inclined as B 
deflects laterally. The lower of the two critical load values will provide the solution. 

As a typical case consider L 1 = 0.6L and L2 = 0.4L. The critical load for the 
failure of this component. 

rr2 EI rr2 EI 61.685£/ 
Per = Li = (0.4L)2 = L2 

For the failure of entire structure, the characteristic equation tanaL1 = a(L1 + L2) 
reduces to 

tanaL1 = aL1 [ 1 + ~:] = 1.667aL1 

By trial and modification, the smallest root is given by 

aL1 = 1.0526 

Therefore, 

(1.0526)2 EI 1.10797 EI 3.078£/ 
Per= 2 = = ----=--

L1 (0.6L)2 L2 

Thus, the critical load for this fixed-hinged strut with an internal hinge is 

3.078£/ rr2 EI 
Per=---=--

L2 (1.791L)2 

(4.58) 

(4.59) 
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4.4 Approximate Techniques 

The method based on integration of classical differential equation used in the preced­
ing sections is suitable for the struts of uniform cross-section with relatively simple 
boundary conditions. The procedure becomes complicated when the member cross­
section varies along its length or when the boundary conditions are complex. In such 
a situation, approximate techniques, discussed in Chap. 2, based on work equation, 
and total potential energy in conjunction with the trial displacement functions prove 
to be extremely useful tools of analysis. The energy approach has inherent ability to 
converge to the exact solution. On the other hand Newmarks numerical integration 
technique is very powerful method giving accurate results. 

The Rayleigh's quotient method which is another form of energy method is 
frequently used in determining the elastic flexural buckling load. As explained in 
Chap. 2, the accuracy of the solution largely depends upon the accuracy of assumed 
displacement trial function. Consider the buckling of a pin-ended strut of length L 
with boundary conditions as y(O) = y(L) = 0. In Sect. 4.2.1, a single sine wave was 
selected as the trial function which predicted exact critical load Per = rr2 E I I L 2• Let 
us consider a multi-degree-of-freedom trial function for deflected configuration 

( rrx) . (3rrx) " . [ rrx] y(x) = a1 sin L + a3 sm L + ... = L...,a2n-! sm (2n- l)L (4.60) 
n 

where n = 1, 2, .... This equation satisfies all the geometric boundary conditions. 
The first and second derivatives are 

, " [(2n- 1)rr] [ rrx] y = L...,a2n-! L cos (2n- l)L 
n 

(4.61) 

[ ]
2 , (2n - 1)rr . rrx 

Y =-L:a2n-t L sm[(2n-l)z:-] 
n 

(4.62) 

The integrals of the component of total potential energy can be expressed as 

L L PI Prr2 " 2 I 2 [(2n- 1)rrx] 2 (y')2dx = 2L 2 L...,a~n-!(2n -1) cos L dx 
0 n 0 

Prr2 " 2 2 ( 1 ) [ L . 2rr(2n - 1 )x J L 
= 2L2 L...,a2n-1(2n-1) 2 x+ 2rr(2n-1) sm L o 

n 

Prr2" 2 2 (L) Prr2" 2 2 
= 2L2 L..., a2n-! (2n - 1) 2 = 4L L..., a2n-l (2n - 1) 

n n 
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For a member of constant cross-section throughout its length 

L L 

~I I (y")2dx = ~~4 I a~n-1 (2n - 1)4 I sin2 [ (2n ~ l)Jrx] dx 

0 0 0 

_ EI1r4 "" 2 2 _ 4 (~)[ _ L . 21r(2n-1)x]L 
- 2£4 ~a2n-1( n 1) 2 x 2Jr(2n-1) sm L o 

EI1r4"" 2 4 
= 4£3 ~ a2n-1 (2n- 1) 

n 

Considering only three terms in the series, the total potential is given by: 

1r4EI Prr2 
II= U + V = -- (a2 + 34a2 + 54a2)-- (a2 + 32a2 + 52a2) (4.63) 4£3 1 3 s 4L 1 3 s 

= a2 (Jr4EI- Prr2) a2 (34Jr4EI- 32Prr2) a2 (54Jr4EI- 52Prr2) 
1 4£3 4L + 3 4£3 4L + s 4L3 4L 

Differentiating the total potential energy with respect to each of the unknowns, a1, 
a3 and as, and equating the resulting expressions to zero yields following three 
independent equations. 

1r2EI 
Per= -v 

32Jr2 EI 
i.e. Per = --=-­£2 

i.e. 
S21r2 EI 

Per=--=--£2 
(4.64) 

The smallest criucalload at buckling is given by Per = 1r2 E I/ L 2. This is infact the ex­
act solution to the problem because the first term of assumed sine-series corresponds 
identically to the true deflected shape of the member at the buckling. Moreover, it 
should be noted that the partial differentiation with respect to a1, a3 and as did notre­
sult in a set of simultaneous algebraic equations. Rather, each differentiation resulted 
in separate equation containing single unknown a1 or a3 or as, and a parenthesized 
containing Per. This was because the chosen sets of functions are orthogonal over 
the interval of integration. Due to the property of orthogonality the Fourier series are 
frequently used for the Ritz solution. 

In the foregoing treatment it has been assumed that the moment of inertia of the 
cross-section is constant along the length of the member. However, if moment of 
inertia varies along the length of the member, the total potential energy associated 
with a flexural member can be defined as 

L L 

II= ~E I I(y")2dx- ~pI (y')2dx (4.65) 

0 0 
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(i) l b = 00 (ii) l b = 0 
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Fig. 4.11a,b. Frame with columns having variable cross-section. a Frame, b idealized columns 

Example 4.2. Estimate the critical load Per that will cause buckling of the complete 

portal shown in Fig. 4.11. The columns are identical and change in cross-section from 

h to h at a height L 1 from the base. The horizontal beam is presumed to be rigid, 

preventing rotation at the top of columns but does not restrain the structure against 

side sway. 

The idealized column is shown in Fig. 4.11 b. The critical load corresponding to 

the sway buckling mode will be the smallest. The boundary conditions are 

y(O) = y'(O) = y'(L) = 0 and y(L) =a (4.66) 

A trial function satisfying these geometric or kinematic boundary condition is given 

by 

a ( rrx) y(x) = 2 1 -cos L (4.67) 

Substituting this trial function in the expression for the total potential energy given 
by (4.65), The internal work done or strain energy term is: 

Ef(arr2
)

2 
2 (rrx) W· =V=- - Ieos - dx 

m 2 2L2 L 
L 

= -- Ieos - dx (Ea2rr4
) f 2 (rrx) 

8L4 L 
L 

(Ea2rr4
) f ( 2rrx) = 16L 4 I 1 +cos L dx 

L 
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The load potential or external work done is given by: 

_ [( Pa2rr:2) I 1 ( 2rr:x) ] - -- - 1-cos- dx 
8£2 2 L 

L 

= ( ~~;2 ) [x- (~)sin ( 2~x) t 
= ( ~~;2 ) {[x- ( 2~) sin (2~x) J:1 + [x _ ( 2~) sin (2~x) J:J 

( Pa2rr:2) [ ( L) . (2rr:L 1) = -- LI - - Sin --
16£2 2rr L 

( L ) . (2rr:LI )] +(L - LI) + 2rr: Sin ~ 

(4.69) 

From work equation: - Wex = Win 
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Therefore, 

_ n 2Eft [(L1) (h) (L2) ( 1 ) ( h) . (2JrLt)J Per----+--+- 1--sm--
L2 L It L 2n It L 

(4.70) 

As a typical case consider L2 = L 1 = ~ and h = ~ = I. 

P. = 1f2 £(2/) (~ + ~ · ~ + - 1 ~ sinn) 
cr L2 2 2 2 2Jr2 

1.5n2 EI 14.8EI n 2 EI 
= = =----=-

L2 L2 (0.816L)2 
(4.71) 

If the top ends of the columns are free to rotate and sway, the geometric or kinematic 
boundary conditions are: 

y(O) = y'(O) = 0 and y(L) =a 

The trial displacement function satisfying these boundary conditions may be taken 
as 

y(x) =a ( 1- cos;~) (4.72) 

Substituting this trial function in the expressions for strain energy and external work 

win= u =I [~EI {y")2
] ctx 

L 

E (a1f2)2 I ( nx)2 = 2 4L2 I cos 2L dx 
L 

( Ea21f4) I ( nx) = 64L4 I 1 +cosy dx 
L 

= ( :~4 ) [I ( x + ~ sin 7) J: 
Integrating over the column height 

The external work done is given by 

L 

PI (an)2 . 2 (1rx) Pa2n 2 
-W. =- - sm - dx= --(L) 

ex 2 2L 2L 16L2 
(4.74) 

0 
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At critical load from work equation - Wex = Win 

( Eftn2) [L1 (h) (L2) ( 1) ( /2) . (1rL1 )] Per= -- - + - - + - 1 - - sm -
4L2 L It L 1r It L 

(4.75) 

Again as a typical case consider L2 = L 1 = ~ and h = ~ = I. 

P. = (n2EI) [~ ~ _1 ] = (4.4865)£/ = n2EI 
cr 2£2 2 + 4 + 2n £2 (1.483£)2 (4.76) 

However, to study the effect of more terms in the representation of displacement, 
consider 

( JTX) ( 3nx) y(x) = a 1 1 -cos 2L + a3 1 -cos 2L + ... 

" [ (2n - 1)nx] = ~a2n-I 1- cos 2L 
n 

(4.77) 

1 " [(2n- 1)n] . (2n- 1) 
y = ~ a2n-I 2L sm 2L JTX 

n 

and 11 " [(2n- 1)n] 2 (2n- 1) 
y = ~a2n-I 2L cos 2L JTX 

n 

where n = 1, 2, 3, .... 

p JL I 2 P.Jr2 " 2 2 f 2 (2n - 1) 
-Wex = 2 (y) dx = 8L2 ~a2n_ 1 (2n -1) sin ----u;-- nxdx 

0 n 

P.JT2 
" 2 2 = 16L ~(2n- 1) a2n-I 

n 

L 

1 f 112 Win = 2 EI(y ) dx 

0 

[ 

Lt 

Eft ( 1T )4 L 4 2 f 2 (2n - 1)nx = - - (2n - 1) a2n 1 cos dx 
2 2L - 2L 

n 0 

(h) JL 2 (2n- 1)nx ] + - cos dx 
It 2L 

L1 
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Ehrr4 "- 2 1)4 2 [!L1
1 ( 1 (2n- 1)rrx) dx 

= 32L4 L.../ n- a2n-1 2 +cos L 
n 0 

+ ( ~~) J ~ ( 1 +cos (2n ~ 1)rrx) dx] 
LJ 

= Ehrr4 "-<2n _ 1)4a2 { [(L + L sin (2n- 1)rrL1 )] 
64L 4 ~ 2n-1 1 (2n - 1)rr L 

n 

+ (h) [L2 + L (sin (2n - 1)rrL _sin (2n - 1)rrL1 )] } 
h (2n - 1)rr L L 

El}rr4 
"- 4 2 [ (h) = 64L 4 ~)2n - 1) a2n_1 L1 + h L 2 

+ L (1- h) sin (2n- 1) rrL1] 
(2n - 1)rr It L 

Assuming only two terms in the series, the total potential energy of the strut is 

n = W; + W. = a2 [P7r2 - Eltrr
4 {L1 +(h) L2 + ~ (1- h) sin rrL1 }] 

m ex 1 16L 64L 4 It Tl It L 

+aj [9P7r2- 81E/trr4 {L1+(h) L2+~ (1- h) sin 3rrL1 }] 
16L 64L 4 It 3rr It L 

Differentiating the total potential energy with respect to each of the unknowns, a1 
and a3, and equating resulting expression to zero yields: 

an = 0 gives Per= Eltrr2 [(L1) +(h) (L2) + _!_ ( 1 _ h) sinrr (L1 )] 
CJa1 4L2 L h L1 rr h L 

an = O gives Per = 9 Elt rr2 [( L 1 ) + (h) ( L2) + _1 ( 1 _ h) sin 3rr ( L1 ) ] 
Oa3 4L2 L h L1 3rr h L 

For the case of uniform strut with L1 = L, L2 = 0 and h = I, above expressions 
reduce to 

and (4.78) 

Per= (rr2 EI/4L2) being the smallest value gives the solution to the problem. For the 
typical case L1 = L2 = (L/2) and h = (h/2) = /,the critical load values reduce 
to 

( 3 1 ) [rr2E(2/)] 4.4865£/ rr2 EI 
Per = 4 + 2rr (2L)2 = L 2 = (1.483L)2 

P. = (~ _1 ) [9rr2 £(2/)] = 35.6661£/ = rr2 EI 
er 4 + 6rr (2L)2 L 2 (0.526L)2 (4.79) 
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The assumed deflected configuration or the trial function can also be of polynomial 
form as explained in Chap. 2. The following example will illustrate the use of 
polynomial trial functions. 

Example 4.3. Estimate the critical value of the load P acting along the centroidal 
axis of the tapered strut shown in Fig. 4.12 that will cause its buckling. The strut is 
clamped at the end A and pinned to a roller support at B. The moment of inertia of 
cross-section of the strut reduces linearly from It at the fixed end to /0 at the hinged 
end. The variation in the moment of inertia of the cross-section may be defined by 
the relationship 

/(x) = Io [13- (/3- 1) (f) J It 
where f3 =­

Io 

The parameter f3 is a measure of magnitude of the taper of the member. f3 = 1 
represents a prismatic member. For the fixed-hinged supported case, the single­
degree-displacement trial function is given by 

To facilitate computations a non-dimensional variable~ (= xj L) is introduced such 
that 0 :=: ~ :=: 1. Thus the dimensional variables reduce to 

/(~) = Io[/3 - (/3 - 1)~] (4.80) 

and 

The first and second derivatives of y(~) with respect to~ are 

, (a) [ 15 2 3] Y = £ 3~ - 2~ + 4~ 

p 

L 

I~= I 0 [j3-(~-1)~) and ~ = xiL 

Fig. 4.12. Buckling of tapered strut 
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and 

y" = (;2 ) [3 -15~ + 12e] 

The total potential associated with flexural deformations in this case can be defined 
as 

I I 

Ef 112 PI t2 II = Win - Wex = 2 l(y ) Ld~ - 2 (y ) Ld~ = 0 (4.81) 

0 0 

Substituting y' and y" in the expression for II 

( a2El) !L = 2L 4 ° [,8 - (,8 - 1)~](3 - 15~ + 12~2)2 Ld~ 
0 

( Pa2) !L [ 15 2 3]
2 

- 2L2 3~ - l~ + 4~ Ld~ 
0 

or 

~3° (1.05,8 + 0.75)- -(0.0867) = 0 ( 
2El) ~p 
2L 2L 

Therefore, 

(4.82) 

where 

K 2 = rr2 /[11.534 x (1.05,8 + 0.75)) 

As a typical case consider h = 5 ! 0 i.e. ,B = 5. The critical load at buckling becomes 

69.20Elo 
Per=-------,--£2 

For a prismatic member with h = Io i.e. ,B = 1 

Elo 20.16£10 rr2 E/0 
Per = (11.534 X 1.8) £2 = L 2 = (0.6895L)2 

The exact solution for this case is (20.14£/o/ L 2). As discussed earlier in Chap. 2, it 
is advantageous to assume displacement function in the general form. 

00 

y(x) = Lanf(x)xn (4.83) 
n=O 
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where f(x) is a special function satisfying the prescribed geometrical boundary 
conditions and L anxn is a power series. For the present case of fixed-hinged strut 
choosing f(x) = x2(x- L) with n = 1, the trial function becomes 

y(x) = aox2(x- L) + atx3(x- L) 

In terms of non-dimensional variable g (= xj L), the trial function in the range 
0 ~ g ~ 1 can be defined as 

y(g) = ao(g3 - g2) +at (g4 - g3) (4.84) 

The first and second derivatives with respect to g are 

y' (g) = ( ~) [ao(3g2 - 2g) +at (4g3 - 3g2)] 

y" (g) = ( : 2) [ao(6g - 2) +at (12g2 - 6g)] 

Substituting the values of y' and y" in various terms of the total potential expression, 
namely 

L t 

(~)I I(x)[y"(x)fdx = (~)I I(g)[y"(g)f(Ldg) 

0 0 
t 

= ( ::~) I [,8- (,8- 1)g][ao(6g - 2) +at (12g2 - 6g)]2 Ldg 

0 

t 

= (::~)I [,8- (,8- 1)g][a5(36g2 + 4- 24g) + ai(144g4 + 36g2- 144g3) 

0 + 2aoat (72g3 - 60g2 + 12g)] dg 

(Elo) 2 2 = 2L3 [ao(.B + 3) +at (0.6,8 + 4.2) + 2aoat (0.6,8 + 3.4)] 

L 1 

~I (y')2dx =~I [y'(g)]2(Ldg) 

0 0 

1 

= (;;,) I [ao(3g2 - 2g) +at ( 4g3 - 3g2) fctg 

0 

1 

= (;;,)I [a5(9g4 + 4g2 - 12g3) + ai{16g6 + 9g4 - 24g5) 

0 + 2aoat (12g5 - 17g4 + 6g3)] 
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Therefore, total potential energy is given by 

II = ( ::~) { a5 [ (fi + 3) - c~) a 2 J + ai [ (0.6fi + 4.2) - ( : 5 ) a 2 J 
+2aoal [ (0.6fi + 3.4) - ( 1~) a 2 J} 

where a 2 = PL2 j(EI0 ). The conditions of equilibrium are given by 8Ilf8ao = 
0 and 8Ilj8a1 = 0. For a non-trivial solution i.e. a buckled form solution, the 
determinant of the coefficients of ao and a1 vanishes. This stability detenninant 
provides characteristic equation. The characteristic equation is given by: 

[7.5(fi + 3)- t:i][7(fi + 7)- a 2]- (i) [(6fi + 34)- a 2f = 0 (4.85) 

For a prismatic member fi = 1.0 and the characteristic equation reduces to 

or 

a4 - 128a2 + 2240 = 0 

The smallest root giving critical load is 20.92. Therefore, 

2 (Ek) a = 20.92 or Per= 20.92 L2 

For the typical case of tapered column with fi = 5, the characteristic equation 
becomes 

[60- a 2][84- a 2]- (~) [64- a 2f = 0 

a4 - 256a2 + 11648 = 0 

The smallest root which corresponds to the critical load is a 2 = 59.181. Therefore, 

(E/o) Per= 59.181 [} (4.86) 

It should be noted that for a prismatic member the one-degree-of-freedom trial 
function gives better results than two-degree-of-freedom trial function, because the 
former satisfied both geometrical and dynamical boundary condition. However, for 
tapered strut, later provided much better results. 

The Newmark's numerical integration technique as described in Chap. 2 is ex­
tremely useful tool for analysis of variety of strut problems. The following examples 
will illustrate the versatility of the method. The example is a variation of Euler strut 
illustrating the effect of end conditions on the solution. 



150 4 Buckling of Axially Loaded Members (Columns) 

Example 4.4. A simply supported strut (Euler strut) has an overhang beyond the roller 
support as shown in Fig. 4.13. An axial force is applied at the unsupported end C. 
The load is free to deflect vertically with C while its line of action remains horizontal. 

A buckled configuration is shown in Fig. 4.13c. It should be noted that any 
configuration involving a displacement of P will produce support (vertical) reactions 
which are to be taken into account while calculating moment M. To compute these 
support reactions, equate moments at the pinned support to zero i.e. I: Mo = 0. 

and 

Pat 
Ro= -R3 = --

3h 

Pat 
R3 = 3h 

For convenience take at = 3a at C. This will reduce values of reactions at the support 
nodes 0 and 3 to convenient values of Pa I h and (- Pa I h), respectively. 

The assumed deflection values of Ya may be obtained by tracing the buckled con­
figuration on a graph paper with the help of a flexible elastic strip. It should be noted 
that the deflected shape is similar to one obtained by application of a concentrated 

y 

t-. Q 

B~XJ ~ 
(a) 

A£ ~ 
0 2 3 4 5 z ~B .. p 

I 
L 1 = 0.6L ·I· L 1 =0.4L 

·I (b) 
p 

-0.4 -0.5 

(c) 

Pa1 Pa 
Pa R3 =-=-

R =- 3h h 
0 h 

2' - - - - 3.0- - - - 4' 
~25 

~~(Mil) (d) 

Fig. 4.13a-d. Buckling of strut with overhang. a Coordinate system and loads to obtain 
deflected configuration, b discretized strut, c buckled configuration, d moment diagram 
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vertical force at the overhang end C of the strut. The deflection due to a force Q 
acting at C are given by 

Yx = ( 6i1 ) (~:) x(LI- x2) for the range 0:::;: x:::;: L 1 

= ( 6i1 ) Xt (2Lt L2 + 3L2Xt -xi) for the range 0 :::;: Xt :::;: L2 

Consider a typical case with Lt = 0.6L and L2 = 0.4L. The deflection are Yo= 0; 
Yt = 0.064, Y2 = 0.080, Y3 = 0, Y4 = -0.204 and Ys = -0.480 (x2QL3 /18E/). 
Since we are interested in the relative values, the displacement coordinates are scaled 
such that Ys = 3.00a. 

Expressing the value of displacements in the form Yi = gia. The coefficients gi 
are: 0.000; -0.400; = -0.500; 0.000; 1.275 and 3.000. For the portions AB and BC 
the moments are given by (i -gi) and (gs -gi), respectively. For an improved accuracy 
at the node 3, the two M/ I curves meeting at this node are extrapolated to the fictious 
points 4' and 2', respectively. For extrapolation the effect of vertical reaction at the 
en ode 3 is ignored. The iterative procedure for computation of buckling load is given 
in Table 4.2. 

At buckling: 

Therefore, 

aPh2 

3.000a = 138.284 12E/ 

6.5083EI rr2 EI 
Per = -----::--- = 

£2 (1.231£)2 

As another variation of Euler strut consider the vertical displacement of the free 
end C being restrained by a roller support such that the end is free to move horizontally. 
Thus the overhang strut reduces to a two-span continuous strut which is a single­
degree indeterminate structure. The analysis of this strut is given in Example 4.5. 

Example 4.5. Estimate the critical value of axial load P which will cause the two-span 
continuous strut of constant cross-section shown in Fig. 4.14 to buckle. As a typical 
case take Lt = 0.6L and L2 = 0.4L. 

The two-span continuous strut has a single-degree-of-indeterminacy. Consider 
R3 to be the redundant action. The analysis of basic structure obtained by ignoring 
R3 will result in a displacement at the support B i.e. node 3. This will violate the 
prescribed boundary condition of zero displacement at the node 3; hence a correction 
in displacement need be applied in each cycle of numerical integration. The value of 
R3 should be adjusted such that Y3 = 0. Using triangular moment diagram (due to 
R3) of arbitrary value, the form of correction Yc to be applied to y to account for the 
redundant force is computed. This can be achieved by means of thrust line concept. 
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Table 4.2. Computation of buckling load for a strut with an overhang 

Node# 0 2 3 4 5 Multiplier 

1st Cycle 

Ya = lia 0 -0.400 -0.500 0.000 1.275 3.000 a 

M:-y"{ 0 1.400 2.500 3.000 ~ (2.725) aP 
El- (3.500) <--- 3.000 1.725 0.000 

Y" 16.50 29.40 17.387+16.038 20.25 aPhj(l2EI) 33.425 

y' ( -20.80)" -4.300 25.100 58.525 78.775 -do-

y 0 -20.800 -25.100 0.000 58.525 137.300 aPh2 j(12EI) 

Yct 0 -0.454 -0.549 0.000 1.279 3.000 (45.767)aPh 2 

/(12£/) 

2nd Cycle 

Ya 0 -0.454 -0.549 0.000 1.279 3.000 a 

y" 
0 1.454 2.549 3.000~ (2.721) 

(3.549) <--- 3.000 1.721 0.000 aP 

Y" 17.189 29.944 17.463+ 15.807 20.21 aPhj(12EI) 
33.270 

y' (-21.441)" -4.252 25.692 58.962 79.172 -do-

y 0 -21.441 -25.693 0.000 58.962 138.134 aPh2 j(12EI) 

Yct 0 -0.466 -0.558 0.000 1.281 3.000 (46.045)aPh 2 

j(l2EI) 

3rd Cycle 

Ya 0 -0.466 -0.558 0.000 1.281 3.000 a 

y" 
0 1.466 2.558 3.000 ~ (2.719) 

(3.558) <--- 3.000 1.719 0.000 aP 

Y" 17.218 30.046 17.477+15.799 20.19 aPhj(12EI) 
33.277 

y' ( -21.494)" -4.276 25.770 59.047 79.237 -do-

y 0 -21.494 -25.770 0.000 59.047 138.284 aPh2 j(12EI) 

Yct 0 -0.466 -0.559 0.000 1.281 3.000 (46.095)aPh 2 

/(12£/) 

a If the slope of the chord 0-1 is assumed to be ( -llo), then the slopes of chords 1-2 and 2-3 are ( -llo + 16.50) 

and ( -llo + 16.50 + 29.40), respectively. Starting with 0.000 displacement at the node 0, the displacement at the 

node 3, Y3 = [0.000 + (-llo)h + (-llo + 16.50)h + (-llo + 16.50 + 29.50)h = [-31/o + 2(16.50) + 29.40)h. 

However, the prescribed deflection at node 3 is zero, thus llo = -20.80. 

The thrust line is known to pass through the supports A and C (i.e. has zero 
ordinate values) and must pass through the point of contra flexure. A computationally 
convenient comparable value say 0.3a is selected at the point 3 as shown in Fig. 4.14. 
The moment at any point in the strut is then P times the offset distance between the 
deflected configurations of the strut Ya and the thrust line. The thrust lines may be 
extended to the points 2' and 4' for calculating fictitious moments for better accuracy. 

At buckling: 

Therefore, 

Pah2 
-l.OOa = (-8.25)--

12£/ 

36.364£/ 
Per=---::---

£2 
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y 

L2 =0.4L 

(a) 

~ 2.0 
3.0 M 

(b) 

(c) 

Fig. 4.14a-c. Buckling of a continuous two-span strut. a Strut with interior support, b moment 
due to arbitrary value of RB, c buckled configuration 

The analysis procedure as usual starts with the assumption of buckling configuration 
Ya with a minimum number of points of contra flexure. The displacements in the 
two spans are of opposite signs. The estimated values of displacements in assumed 
configuration as obtained from a sketch drawn on a graph paper with the help of 
flexible elastic strip are 0.00; -1.00; -0.95; 0.00; 0.42 and 0.00. The computations 
are shown in Table 4.3. 

The application of numerical technique to a stepped strut is illustrated in Ex­
ample 4.2. The procedure is equally convenient for strut with continuously variable 
cross-section. 

Example 4.6. Estimate the critical value of axial load P that will cause the propped 
cantilever of continuously variable section shown in Fig. 4.15 to buckle. 

As in the previous example the strut is a first-degree redundant structure. The 
reaction RB at the support B can conveniently be chosen as the redundant quantity. 
With origin at B the moment Mat a section is given by: M = -Py + RBx. The 
term RBx is the effect of redundant and is represented in Fig. 4.15b by a triangular 
moment diagram. The first term - Py is exactly the same as in Euler strut problem. The 
analysis of basic structure neglecting the second term will result in a displacement at 
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Table 4.3. Computations of buckling load for a continuous two-span strut 

Node# 0 2 3 4 5 Multiplier/ 

remarks 

I. Correction for arbitrary value of redundant, R3 

M 0 -1.0 -2.0 -3.0 -1.5 0 Fig. 4.14b 

Y" -6.0 -12.0 -8.0-7.5 -9.0 Trapezoidal --=-15.5 
formula 

y' (8.0) 2.0 -10.0 -25.5 -34.5 

Yc 0 8.0 10.0 0.0 -25.5 -60.0 

II. Computation Table 

1st Cycle 

Ya 0.0 -1.00 -0.95 0.00 0.42 0.00 a 

M II {0.0 0.90 0.75 -0.30--+ (-0.82) PajEI 
El = y (0.50) +-- -0.30 -0.57 0.00 

Y" 9.75 8.10 0.04-2.61 -6.00 Pahj(12EI) --=23'7 
y' (-9.20)a 0.55 8.65 6.08 0.08 --<lo-

y 0.0 -9.20 -8.65 0.00 6.08 6.16 Pah2 /(12£1) 

Yc 0.0 0.82 1.03 0.00 -2.62 -6.16 -do-

Yd 0.0 -8.38 -7.62 0.00 3.46 0.000 Pah2 /(12£1) 

Ya = Yct 0.0 -1.00 -0.91 0.00 0.41 0.000 (8.38)Pah2 

/(12£1) 

2nd Cycle 

Y" { 0.00 0.90 0.71 -0.30--+ (-0.81) 
(0.46) +-- -0.30 -0.56 0.00 PajEI 

Y" 9.71 7.70 0.03-2.57 -5.90 Pahj(12EI) ---=2.54 
y' (-9.04)a 0.67 8.37 5.83 -0.07 --<lo-

y 0.0 -9.04 -8.37 0.00 5.83 5.76 Pah2 j(12EI) 

Yc 0.0 0.77 0.96 0.00 -2.45 -5.76 -do-

Yct 0.0 -8.27 -7.41 0.00 3.38 0.000 Pah2 j(12EI) 

Ya = Yd 0.0 -1.00 -0.90 0.00 0.41 0.000 (8.27)Pah2 

/(12£1) 

3rd Cycle 

Y" { 0.00 0.90 0.70 -0.30--+ (-0.81) 
(0.45) +-- -0.30 -0.56 0.00 PajEI 

Y" 9.70 7.60 0.04-2.56 -5.90 Pahj(12EI) ---=2.52 
y' (-9.00)a 0.70 8.30 5.78 -0.12 -do-

y 0.0 -9.00 -8.30 0.00 5.78 5.66 Pah2 j(12EI) 

Yc 0.0 0.75 0.94 0.00 -2.41 -5.66 -do-

Yd 0.0 -8.25 -7.36 0.00 3.37 0.000 Pah2 j(12EI) 

Ya = Yct 0.0 -1.00 -0.89 0.00 0.41 0.000 (8.25)Pah2 

/(12£1) 

a See note at the end of Table 4.2 



4.4 Approximate Techniques 155 

(a) 

~ L_ ____ ....L. ___ ....L. __ --=.:..:....L __ -=,.,oo.o 

(b) 

~~ .. p . -0.33 -·- - 0· 2 
- - -0.4 0 -. y 

-0.8 - -0·6 _0_89 1.00 . Trial position of thrust line 

(c) 

Fig. 4.15a-c. Buckling of propped cantilever of continuously variable section. a Propped 
cantilever of variable cross section, b moment diagram due to arbitrary redundant, c buckling 
configuration 

the support B. The effect of second term represented by a triangular moment diagram 
of arbitrary value is added in such a way that all boundary conditions are satisfied. By 
neglecting RBx completely and taking M = -Pya produces convergence problem. 
It should be noted that the moment diagram has a point of contra flexure where Pya 
and RBx components of Ma cross over. Making a guess for this position of C will 
make the M values quite accurate resulting in a much faster convergence. The line 
joining points of zero moment namely BC is termed thrust line. The moment at any 
point in the strut is then P times the offset distance between deflected configuration 
of the strut and the thrust line. To illustrate the efficiency of the procedure, assume 

that the deflected shape is given by trial function y(x) =a [ (:[)3 - {:[)2] which is 

applicable to a strut of uniform cross-section and corresponding trial value of thrust 
line ordinate is 0.8a. The relative values of Ya are: 0.00; -0.33; -0.89; -1.00 and 
0.00. The computations are given in Table 4.4. 

At buckling: 

Therefore, 

aPh2 
-l.OOOa = -4.919--

12£/o 

39.032£/0 
Per= L 2 
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Table 4.4. Computations of buckling load of a redundant strut 

Node# 0 2 3 4 Multiplier/remarks 

I. Correction for arbitrary value of redundant, RB 

M 4.000 3.000 2.000 1.000 0.000 
MjEY=y" 1.333 1.200 1.000 0.667 0.000 

Y" 7.767 14.333 11.867 7.670 Parabolic variation 
y' 7.767 22.100 33.967 41.637 

Yc 0.000 7.767 29.867 63.834 105.471 

II. Computation Table 

1st Cycle 

Ya 0.000 -0.330 -0.890 -1.000 0.000 a 

M -0.800 -0.270 0.490 0.800 0.000 aP 

y" -0.267 -0.108 0.245 0.533 0.000 aP/Elo 
Y" -1.136 -1.102 2.875 5.575 aPhf(12Elo) 

y' -1.136 -2.238 0.637 6.212 -do-
y 0.000 -1.136 -3.374 -2.737 3.475 Pah2 /(12Elo) 

Yc 0.000 -0.256 -0.984 -2.103 -3.475 -do-
yd 0.000 -1.392 -4.358 -4.840 0.000 aPh2 

/(12Elo) 
2nd Cycle 

Ya = Yd 0.000 -0.288 -0.900 -1.000 0.000 a= (4.840)aPh2 

/(12EI) 
M -0.800 -0.312 0.500 0.800 0.000 aP 

y" -0.267 -0.125 0.250 0.533 0.000 aPfEio 

Y" -1.185 -1.267 2.908 5.580 aPhj(12Elo) 

y' -1.185 -2.452 -0.465 6.036 -do-
y 0.000 -1.185 -3.637 -3.181 2.855 Pah2 /(12Elo) 

Yc 0.000 -0.210 -0.808 -1.728 -2.855 -do-

yd 0.000 -1.395 -4.445 -4.909 0.000 aPh2 f(12Elo) 

Ya = Yd 0.000 -0.284 -0.905 -1.000 0.000 a = (4.909)aPh2 

/(12EI) 
3rd Cycle 

M -0.800 -0.316 0.505 0.800 0.000 aP 

y" -0.267 -0.126 0.253 0.533 0.000 aPfEio 

Y" -1.186 -1.274 2.937 5.583 aPhj(12Elo) 

y' -1.186 -2.460 0.477 6.06 -do-
y 0.000 -1.186 -3.646 -3.169 2.891 Pah2 /(12EI0) 

Yc 0.000 -0.213 -0.819 -1.750 -2.891 -do-

yd 0.000 -1.399 -4.465 -4.919 0.000 aPh2 /(12Elo) 

Yd 0.000 -0.284 -0.908 -1.000 0.000 a= (4.919)aPh2 

/(12Elo) 
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4.5 Large Deflection Theory 

The classical expressions for linear theory based on small deflection used in the pre­
ceding sections are not applicable to the geometrically non-linear problems involving 
large deflections. In classical linear theory, the presumption that the deflections are 
small renders the moment-curvature relation linear. They are based on un-deformed 
form of the structure. Moreover, the magnitude of deflections at the post-buckling 
stage remains undetermined. To determine these deflections accurate expression for 
the curvature of buckled strut is required. Consider an element of strut shown in 
Fig. 4.16. 

. dy dy I 
sm(}=- ~- =y 

ds dx 

Thus the slope(} = (sin-1 y1). Since the curvature is the rate of change of slope 

1 I d • -1 I y" R = (} = dx (sm y ) = [1 - (y1)2]'/2 

Noting that the radius of curvature of an element before deflection is infinity i.e. 
curvature, ~ = ~ = 0. Hence change in curvature 

1 1 y" 
= y"[l - (y1) 2r~ ---= I (4.87) 

R R [1- (y1)2p 

p p 

y + A 
:al 

~~, 

-----c:: =, 

- - -
L 

~ 
~ 
5 
"' a 

t 
0 

p p 

(a) (b) 

Fig. 4.16a,b. Equilibrium position of Euler strut and its bifurcation diagram. a Equilibrium 
position, b bifurcation diagram 
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A discerning reader will notice that this expression is different from that encountered 
in theory of elasticity namely, 1/ R = y" /[1 - (y') 2 ]312 . The difference in the two 
expressions is due to the difference in the co-ordinate system adopted. In the former 
the coordinate axis is along the deflected shape while in the later the co-ordinate axis 
is along the un-deftected strut. 

The displacement or movement of the load Ll can be expressed from geometrical 
considerations as 

(ds)2 = (dx- du)2 + (dy)2 

Divide by d.x: 

Noting that ds ~ dx 

1 = (1 - u')2 + (y') 2 or (l - u') = [1 - (y') 2]112 

Thus 

Integrating both sides 

L L I du = Ll =I [l- (l- y'2)If2] dx 

0 0 

The total potential energy of the strut II = (U - V) is given by: 

L 

II = I { (!) El(y")2(1 - y'2)-l - P[1 - (1 - y'2)112]} dx 

0 

L 

(4.88) 

=I {(!}EI(y")2(l+y'2+ ... )-P[(Dy'2-(k)y'4+ ... ]}ctx 
0 

Retaining terms upto fourth-order only: 

L L 

II= I { (!) El(y")2 - (!) Py'2} dx +I [ (!) Ely'2y"2 + (k) Py'4] dx (4.89) 
0 0 

It must be noted that there are no constant terms. The first term is quadratic form 
of classical eigenvalue problem of a buckled strut and corresponds to the linearized 
differential equation of Euler strut: y"" + a 2y" = 0. 
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To illustrate the significance of the results consider a perfect simply supported 
strut under the action of an axial load P. The equilibrium configuration is assumed 
to be given by a trial function: 

y(x) =a sin (7) 
Substituting y(x) in the expression for ll given by (4.89). 

From 

(4.90) 

(4.91) 

where terms up to a2 are considered. 
This equation is normally referred to as initial post-buckling equation. A plot 

of P versus mid-point displacement a is shown in the Fig. 4.16b. The curve starts 
at a constant first term (rr2 E I I L 2, the Euler critical load of a hinged-hinged strut). 
The curve has a horizontal tangent at Per· The local curvature of Per is equal to 
the coefficient of a2 12. The critical load obtained is exact one because the trial 
function used happens to be the exact solution of the linearized eigen-value differential 
equation y" + a2y = 0. 

4.6 Problems 

Problem 4.1. Compute the critical load for the uniform strut clamped at one end and 
constrained at the other end such that it is free to move or slide laterally without 
rotation as shown in Fig. P.4.1. 

P----~--~~~===============E=I======================~~~,·--~---p 
L 

P.4.1 

Problem 4.2. A strut of uniform cross-section is hinged at one end and restrained at 
the other by a rotation spring of stiffness kr as shown in Fig. P.4.2. Determine the 
flexural buckling load ofthe strut as a function of L, EI and kr. Describe graphically 
the variation of effective length factor K as a function of ratio kr 1 E I. 
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P.~~·~~========E=I=con=~=t=============~~.r--p 

P.4.2 

Problem 4.3. A strut of uniform cross-section is fixed at one end and at the other 
end it is restrained against bending rotation by a spring of stiffness kr as shown in 
Fig. P.4.3. Determine the flexural buckling load of the strut as a function of L, EI 
and kr. Describe graphically the variation of effective length factor K as a function 
of the ratio kr/ El. 

L 

P.4.3 

Problem 4.4. In a column and beam structure shown in Fig. P.4.4. The upper end 
of the column is free and the lower end is rigidly connected to a horizontal beam. 

p 

T 
B 

EI 

L 

I 
I 

I 
I 

/ 
/ 

/ 

-------

P.4.4 
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The column carries an axial thrust P. Determine the flexural buckling load of the 
structure. 

[Hint: kr = 3Eit/ Lt. The characteristic equation is aL tanaL = k7 Lj(El).] 

Problem 4.5. In the column and beam structure of Fig. P.4.5, the lower end A of the 
column is hinged and the upper end is rigidly connected to a horizontal member BC 
with the end C: (i) roller supported, (ii) fixed and (iii) hinged. The column carries 
axial thrust P. Determine the flexural buckling load of the structure. 

p 

EI, L 

[Ans. The characteristic equations are: 

(i) aL tan(aL) = 3 (21) ( ~). 
3aL 

(ii) tanaL = 2 and 
(aL) + 3 

4aL 
(iii) tanaL = 2 .] 

(aL) +4 

P.4.5 

Problem 4.6. In a rigidly connected column and beam system shown in Fig. P.4.6, 
the base of the column is fixed and the far end of the beam is: (i) roller supported and 
(ii) fixed. The column is subjected to an axial force P. Determine the critical value 
of the load. 

[Ans. Characteristic equations is: (aL) cot(aL) = -3 ( ~) ( + ).J 
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p 

c 

El, L 

A 

P.4.6 

Problem 4.7. A strut of constant cross-section is fixed at one end, and at the other 
end it is free to rotate but is constrained against translation by a spring of stiffness 
kn as shown in Fig. P.4. 7. Determine flexural buckling load of the strut as a function 
of L, E/ and kn. Describe graphically the variation of effective length K as a function 
of the ratio (knL 3 I EI). 

l~=====:===r~kn-p 

P.4.7 

[Hint: K = rrj(aL). The characteristic equation is: 

knL3 = [ (aL) 3 ] . 

EI aL -tanaL 

Assume values of ratio knL3 j(EI) as 0.0, 5.0, 10.0, 15.0, etc. and calculate corre­
sponding aL and hence K. Plot K versus knL3 j(EI).] 
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Problem 4.8. A continuous strut of constant cross-section and of length L ( = L 1 + 
L2) is subjected to an axial load P as shown in Fig. P.4.8. If the strut is fixed at A 
and constrained against lateral deflection at a point B distant L 1 from A, determine 
(a) the effective length factor of segment AB as function of the ratio Ld Lz, and 
(b) the effective length factor of segment BC as function of the ratio L 1 I L2. 

~A B c 

ll 
... p 

I· L, ·I· Lz ·I 
P.4.8 

Problem 4.9. If the strut of Problem 4.8 were hinged at the end A, what would be 
the corresponding effective length factors as functions of Ld L2? 

Problem 4.10. The lateral displacement at the mid-point of a hinged-hinged strut is 
restrained by a spring of stiffness kn attached at the point as shown in Fig. P.4.10. 
Determine the buckling load. What would be the critical load for the second mode of 
buckling? 

P--~~~=,====B===Jl~ko====EI===~~.~P 

L/2 
·j· L/2 

P.4.10 

Problem 4.11. An axially loaded strut is supported by two translation and two rota­
tion springs as shown in Fig. P.4.11. The boundary conditions of the strut are: 

At x = 0: y"(O) = YrlY'(O) and y"'(O) + a 2y'(O) = YnlY(O) 
At x = L: y"(L) = Yr2Y'(L) and y"'(L) + a 2y'(L) = Ynzy(L) 

where Yrl = kri/(El), Yr2 = kr2/(El), Ynl = knd(El) and Yn2 = kn2/(El). Deter­
mine the critical load of this elastically supported strut. 

[Hint: Substitute the general solution to the governing dijferential equation i.e. 
y(x) = A sin ax + B cos ax + C (I) + D in each of the boundary conditions. Equate 
determinant of coefficients to zero. That is, 

0 -YnlL a2 -YnlL 
-aYrl a2 -yrl/L 0 = 0] 
(-YnzLsinaL) (-YnzLcosaL) (a2 - YnzL) (-YnzL) 
-(aYr2 cosaL + a2 sinaL) -(aYr2 sinaL- a2 cosaL) -YnzL 0 
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'1"'"-----------------------~ - - - - - - - - - - - - - - - - - - - - - -

y 

1: 
X .. , 

L 

P.4.11 

y(L) 

Problem 4.12. A strut of uniform cross section is hinged at one end and free at the 
other. The lateral displacement at a point distant L 1 from hinged end is restrained by 
an elastic spring of stiffness kn as shown in Fig. P.4.12. Determine the critical load 
of the strut. 

p~z;~==, ======E==I ======r=t===========~llll(-p 

' kn 

I· •I• ·I 
P.4.12 

Problem 4.13. A tapered propped cantilever strut shown in Fig. P.4.13 is subjected to 
an axial load P. The moment of inertia of the cross-section varies linearly from /0 at 
the propped hinged end to 5/o at the fixed end. Use Newmark's numerical integration 
technique with four divisions to estimate the critical load Per· 

[Ans. Per= 54.18Elo/L2] 

r p 

I· L 

P.4.13 
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Problem 4.14. Use Newmark's numerical integration technique with four divisions 
to estimate the first critical value of the thrust P that will cause the buckling of the 
stepped strut shown in Fig. P.4.14. 

p 

5Io 
----~~==~Io====~================~====~I~o==~~----p f o.m .j. O.SL .;. 025L f 

P.4.14 

[Ans. Per= 33.45Elo/ L 2] 

Problem 4.15. Estimate the critical load that will cause the buckling of the simply 
supported tapered strut of continuously variable cross-section as shown in Fig. P.4.15. 
The strut has maximum moment of inertia of Io at the mid-point. The moment of 

inertia at distance x from the mid-point is given by: I(x) = Io [ 1- 2 (I}2r. 

!. X .i 
L 

P.4.15 

Problem 4.16. A simply supported strut of uniformly varying rectangular cross­
section of constant width is subjected to a compressive load P as shown in Fig. P.4.16. 
Estimate the first critical load of the strut. 

Io lx p 

:i lctx I 
do I· X 

:1. 1- 0.5L 0.5L 
1------------------t--------------------1•1 lx = Io ( dx /do) 3 

P.4.16 

[Ans. Per= 6.46Elo/L2] 
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Problem 4.17. Estimate the first critical weight per unit length of vertical unsupported 
mast of constant cross-section fixed at the base that will cause the mast to buckle 
under its own weight. Use numerical integration with four divisions. 

L 

P.4.17 

[Ans. Per= 7.84£/o/ L2] 

Problem 4.18. Use Rayleigh-Ritz technique to estimate the critical load for a non­
uniform simply supported strut shown in Fig. P.4.18. The variation of moment of 

inertia may be assumed to be: I(x) = /0 [ 1 + (~)sin(~) J. As a typical case 

estimate Per for the strut with ~ = 1. 

lx= Io[l + (I!Ilo-1) sin(7tx/L)] 

L 

P.4.18 

Problem 4.19. The linearly tapered cantilever strut shown in Fig. P.4.19 is subjected 
to an axial thrust along its centroidal axis. The moment of inertia of the strut is given 
by l(x) = /0 [1 + fJx], where Io is moment of inertia at x = 0 and tJ is a measure of 
magnitude of the taper of strut and is defined by: tJ = [(h/ /o) -1]/ L. For a prismatic 
member fJ = 0. 

[Ans. For tJ = 2, Per= 2.12Elo/L2.] 
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j--1 
-----_!10 

1- ]"" p 

I· L ·I 
P.4.19 

Problem 4.20. The cantilever strut of stepped cross-section shown in Fig. P.4.20 is 
subjected to an axial thrust. Determine the critical load which will cause the cantilever 
to buckle. Use appropriate trial displacement function and 
(a) Rayleigh-Ritz method 
(b) Energy method 
(c) Galerkin's Technique, and 
(d) Newmark's numerical integration technique. 

I 
l1 = 2Io 

Io 

I~ p 

I· 0.5L ·I· 0.5L ·I 
P.4.20 

[ Ans. P cr = 4.1 E Io/ L 2 (approximate). Different procedures will provide critical load 
values to different degrees of accuracy.] 

Problem 4.21. A strut is supported by a translation and a rotation springs at each of 
its ends as shown in Fig. P.4.2l.The stiffness of translation and rotation springs is kn 
and kr. respectively. The boundary conditions for the strut are: 

Shear force, Q = knY and moment, M = kry' at x = 0 and x = L. Obtain 
the equation of equilibrium for the strut from the variational principle of stationary 
potential energy: 

[Hint: L 

8IJ(y) = J [8y" Ely"- 8y' Py']dx- [8yknY- 8y'kr(Y1)]~ 
0 
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X 

y(x) y(L) 

P.4.21 

Integrate the first part twice: 

L I 8y[(Ely")" + Py"]dx- [8y{(Ely"')' + Py'}]~ 
0 

+ [8y' Ely"]~ - [8yknY- 8y'kry']~ . 

Since at the boundaries x = 0 and x = L, Q = knY = -{(Ely111 ) 1 + Py'} and 
M = kry' =-Ely". Thus all boundary values []~vanish. Thus 

L 

8II(y) = I 8y[(Ely'')" + Py"]dx . 

0 

From the stationary condition 8II(y) = 0, the equilibrium equation obtained is: 
(Ely")" + Py" = 0.] 

Problem 4.22. Show that a cantilever strut is in a stable equilibrium at bifurcation 
point of Pe = rr:2 EI/(2L)2 . 

[Hint: Assume the deflection shape function, y(x) =a [ 1 -cos ;{ ].1 

Problem 4.23. Solve Problem 4.17 by Rayleigh-Ritz method. 

[Hint: As a trial function take two-degree-of-freedom function, 

[ rr:x] [ 3rr:x] y(x) = a 1 1 -cos L + a2 1 -cos L 



and substitute this in the energy functional 

L 

n = f DEI(y11
) 2 - ~w(l- x)(y')2 J dx 

0 
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and integrate. Obtain equations of equilibrium ~ = ~~ = 0 and corresponding 
stability determinant. Solve the characteristic equation for smallest root, Per = 
6.87EI/L3.] 
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Stability Analysis of Beam-Columns 

5.1 Introduction 

The primary objective of this chapter is to develop methods for predicting the defor­
mation response of individual slender members or simple frames composed of such 
members subjected simultaneously to axial force and bending moment. Such struc­
tural members are termed beam-columns. In this chapter we are mainly concerned 
with lateral deformations i.e. deformations perpendicular to the longitudinal axis 
of the member. The analysis procedures are based upon the solution of appropriate 
differential equations. 

It is recognised that the influence of axial force on bending deformations is 
one of the most important aspects of the structural analysis and design. The lateral 
loads and/or end moments cause deflections which are further amplified by axial 
compression causing moment, Py along the member. These additional deflections 
add significantly to the moments, which may result still further deflections. Finally, 
a stable situation is reached where deflections correspond to the bending moments 
due to both lateral load and Py. Because of this interaction between the axial force 
and the moments, the general superposition procedures are inappropriate. However, 
as the bending moment approaches zero, the member tends to become axially loaded 
strut, a problem that has been treated in details in Chap. 4. On the other hand, if the 
axial force vanishes, the problem reduces to that of a beam. 

5.2 Derivation of Basic Equations 

The iterative process described above actually need not be carried out to obtain 
a solution. The influence of axial force on the bending moment can be incorporated 
directly into the governing differential equation: 

( d2y) El dx2 = -Mx = -[Mo(x) + Py(x)] (5.1) 

M. L. Gambhir, Stability Analysis and Design of Structures
© Springer-Verlag Berlin Heidelberg 2004
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where M0 (x) is the moment due to lateral forces, end moments, or from a known 
eccentricity of axial force at one or both ends and Py(x) takes into account the added 
influence of the axial force and deflection. The moment Mo(x) may vary along the 
length of the member. The moment-equilibrium equation (5.1) can be expressed in 
the standard form for the case when E I is constant. 

( d2y) Py __ Mo(x) 
dx2 + EI - EI or ( d2y) + a 2y = _ Mo(x) 

ctx2 EI 
(5.2) 

where a 2 = J1 . As described in Chap. 2, the shear force equilibrium expression of 
beam-column elements can be obtained by differentiating the moment-equilibrium 
relation given by (5.1) with respect to x, i.e. 

d ( d2y) (dy) Q(x) = dx EI ctx2 + p dx . 

If E I is constant 

(5.3) 

Similarly, a second differentiation of (5.1) yields the equilibrium equation for lateral 
loads, i.e. 

For the case when EI is constant. 

(5.4) 

where w(x) is the intensity ofload at a point on the element. 

5.3 Analysis of Beam-Columns 

Beam-column being the basic component of a rigid frame will be treated first, and 
then the analysis will be extended to the rigid frame. If EI is constant, the general 
solution of (5.4) has the form 

y(x) =A sin ax+ B cos ax+ Cx + D + f(x) (5.5) 

where a 2 = J1 and f(x) is a particular solution of lateral load w(x). The integra­
tion constants A, B, C and D are to be determined from the prescribed boundary 
conditions. The boundary conditions of a beam-column with uniform cross-section 
encountered in practice are: 



deflection, 

slope, 

moment, 
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y(x) =A sin ax+ Bcosax + Cx + D + f(x) 

y' = a(A cos ax- B sin ax)+ C + f'(x) 

M = -Ely" = Ela2 (A sin ax + B cos ax) - EI !" (x) 

= P(A sin ax+ B cos ax) - EI !" (x) 

shear force, Q = -Ely"' = -aP(A cos ax - B sin ax) + EI !"' (x) (5.6) 

To obtain the general solution given by (5.5) it is required to find f(x) which depends 
on the lateral loading and to determine constants A, B, C, and D that satisfy the 
prescribed boundary conditions. 

5.3.1 Beam-Column with Concentrated Loads 

Consider the simply supported beam-column member of length L with constant EI 
subjected to a single lateral load W shown in Fig. 5.1. Because of the discontinuity 
at W, the problem is treated in two parts: one considering the beam to the left of W 

(0 _:::: x _:::: L- z); and other to the right (L - z _:::: x _:::: L). The moment equilibrium 
is defined by taking moment about an arbitrary point at a distance x from the left 

L. 
A 

WzJL Deflection 

,..,. due toW L-z 

(a) 

wn··· 

A i p 

(b) 

EI 

w 

B 

---
Additional 

deformation due to P 

... , .. z -I 

wi··· w2 wl 

i t t B 

I z,Ji 
p 

Fig. S.la,b. Simply supported strut with concentrated loads. a Equilibrium of a beam-column 
member. b beam-column with a number of concentrated loads 
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support of the member. Thus, for the left-hand part of the beam. 

(d2y) (Wz) EI dx2 + Py(x) = - L x , 

For the right-hand portion 

(
d2y) W(L- z)(L- x) 

EI - 2 + Py(x) = - , 
dx L 

L-z-:sx-:s.L 

Substituting a2 = J1 , the equations reduce to 

11 2 ( Wz) y +a y =- ElL x 

11 2 (W(L- z)) y +a y = - (L - x) 
ElL 

The solutions are: 

. (Wz) y(x) =A smax + Bcosax- PL x, 

[
W(L- z)(L- x)] 

y(x) = Csinax + Dcosax- PL , L-z-:sx-:s.L 

The boundary conditions for evaluation of constants A, B, C and D are y(O) = 
y(L) = 0 giving B = 0 and C = -DcotaL and at the point of application ofload W 
the matching conditions are 

Yleft(L - z) = Yright(L - z) and Y{eft(L - z) = Y~ght(L - z) 

The constants of integration are therefore 

Wsinaz 
A- · B=O 

- PasinaL ' 

C= 
W sina(L- z) W sina(L- z) 

and D = ----'---
PatanaL Pa 

Thus, the equations for the elastic curve are 

( Wsinaz) . (Wz) y(x) = . smax- - x, 
Pa smaL PL 

0 :'S x :'S (L - z) 

( Wsina(L-z)) 
y(x) = . sina(L- x) 

Pa smaL 

_ [W(L- z)(L- x)J 
PL ' 

(L - z) -::::. x -::::. L (5.7) 
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From the differentiation of (5.7) 

W sinaz Wz 
y' = ---cosax--

P sinaL PL 
0 :S x :S (L - z) 

W sina(L- z) W(L- z) 
------ cosa(L- x) + ----

p sinaL PL 
y' (L - z) :s x :s L (5.8) 

and 

11 Wasinaz . 
y = - sm ax , 0 :S x :S (L - z) 

PsinaL 
11 Wa sina(L- z) . 

y = - . sma(L- x) , (L - z) :S x :S L (5.9) 
PsmaL 

If the load W is applied at mid-span i.e. z = L /2, the elastic curve is symmetrical 
and only one portion of the member need be considered. The mid-span i.e. x = L /2, 
deflection will be the maximum. 

y(L/2) = Ymax = 2;a [tan ( a2L) - ( a2L) J 

= 4:~/ La:/2)3 ] [tan (a~) - (a~)] 
because P = a2 El. Substituting 1/f = aL = ?:. {P 2 2fPe 

WL 3 3(tan 1/1- 1/1) 
Ymax = 48£/TJ(l/1) where TJ(l/1) = 1/13 (5.10) 

The parameter 1/f depends on the ratio (P/ Pe).lt should be noted that the first term of 
the equation represents the deflection which is obtained by lateral load acting alone. 
The second term represents the influence of axial force P. For small values of P, the 
quantity 1/f is also small and the factor TJ(l/1) reduces to 

TJ(l/1) = :3 [ ( 1/1 + ~3 + ... ) -1/1 J ~ 1.0 

On the other hand, if P approaches Pe, i.e., 1/1 tend to rr /2, TJ ( 1/f) becomes infinite and 
structure becomes instable. Thus when the axial compressive force approaches the 
limiting value Pe, even the smallest lateral load will produce considerable deflection. 
It should be noted that the deflection varies linearly with the lateral load W but not 
with the axial compression P. 

The maximum slope (at the ends of the centrally loaded member) is 

(} _ WL 2 [2(1-cosl/f)J 
max - 16£/ 1/12 COS 1/1 

WL 2 

= 16£/q;(l/f) where q;( 1/1) = [ _2_( 1--=-;_co_s_l/f_) J 
1/1 cos 1/1 

(5.11) 
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The maximum moment at the mid-span is given by 

Mmax = EI (d2~) = WL (tan"") 
dx x=L/2 4 1/1 

(5.12) 

The proportionality of deflection to the lateral load enables to handle the case where 
the beam-column member is subjected to several concentrated lateral loads by using 
the principle of super-position. Consider the case of column-beam member subjected 
ton lateral loads W,, W2, ... , Wn acting at distances Z!o Z2, ... , Zn, from the right 
support, respectively, as shown in Fig. 5.1b, where Z! < z2 •... < Zn· The deflection 
curve between the load Wm and Wm+! is obtained from (5.7). 

. m m 
smax L . x L Y(x) = W· smaz· - - W·z· 

Pa . L I I PL I I 

sma i=l i=l 

(5.13) 

sina(L- x) Ln . (L ) (L- x) n + W· sma - z· - "" Wi(L- Zi) 
PasinaL . 1 

1 1 PL .~, 
l=m+ l=m+ 

The expressions of the elastic curve of beam-column member subjected to concen­
trated load(s) given by ( 5. 7) and ( 5 .13) can conveniently be used to derive expressions 
for the other load cases. 

5.3.2 Beam-Column with an Interior Moment 

Consider the simply supported beam-column member AB of Fig. 5.2 subjected to an 
interior moment Moat distance z from the end B. The moment Mo can be visualized 
as a couple of two equal and opposite loads of magnitude W (= Mofoz) acting at 
distances z and z + oz from the end B as shown in the figure. The deflection curve 
for the portion to the left of the loads can be obtained from the (5.7). 

where 

y(x) = W[f(z + oz) - /(z)] = (Woz) J(z + oz) - f(z) 
oz 

[ sinaz . zx] 
f(z) = . sm ax - -

PasmaL PL 

In the limiting case when oz approaches 0, the second term represents the derivative 
of f(z). The product Woz remains finite and is equal to Mo. Consequently 

M0 [(cosaz) . x] y(x) = - -.-- smax- - , 
P smaL L 

0::::: x::::: (L- z) (5.14a) 

Similarly, 

() Mo[(cosa(L-z)). (L ) (L-x)J y x = -- sma -x - , 
P sinaL L 

(L- z)::::: x::::: L 

(5.14b) 
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(z +liz) :I 
Fig. 5.2. Simply supported strut subjected to interior moment 

In the typical case of a moment being acting at the mid-span of the member, the 
deflection curve is antisymmetric about the mid-span, and 

(5.15) 

5.3.3 Beam-Column Subjected to End Moments 

The deflection curve for the simply supported beam-column member subjected to 
a moment M 8 at the right end Bas shown in Fig. 5.3a can be obtained from the 
expressionoftheinteriormomentcase. Toachievethissubstitutez = OandMo = M 8 

in (5.14a), i.e. 

y = MB [( s~nax) _ .:_] 
P srnaL L 

(5.16) 

Equation (5.16) can also be derived by using the fundamental governing differential 
equation: 

2 MBX 
or y"+a y= -­

ElL 

wherea2 = P/ EI and the boundary conditions are y(O) = y(L) = 0. The substitution 
of general solution y =A sin ax+ Bcosax + M8 xf PL in the boundary conditions 
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y 

~· Ma 

p p 

L ~I 
(a) 

MA 

p p 

(b) 

Fig. 5.3a,b. Beam-column subjected to end moments. a Beam-column with end-moment at 
one support, b beam-column with end-moments at both supports 

yields the values of constants and hence 

y(x) = MB [(sin ax)_~] 
P sinaL L 

The end slopes ()A and ()Bare given by 

()A= y'(O) = ~ [sinaaL - ~] = ~;~ [ ~ Cin12¥r - 2~)] 
()B = y'(L) =- ~B [as~:::L- ~] =-~;~ [2~ Can12¥r- 2~)] (5.17) 

It should be noted that the terms ~~f and ~~f are the angles produced by the 
moment M 8 acting alone. In (5.17) these terms are multiplied by the trignometrical 
factors representing the influence of axial force P on the end rotations. Thus 

(5.18) 
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As P (i.e. 1/1) approaches zero the factors rpi(l/1) and rp2(1/l) approach unity, and 
increase infinitely as 1/1 approaches n /2. 

If the member is subjected two moments MA and M 8 at the ends A and Bas 
shown in Fig. 5.3b, the elastic curve can be obtained by superposition 

_ MA [sina(L- x) (L- x)] (M8 ) [sin ax x J y(x)-- - + - ----
p sinaL L P sinaL L 

(5.19) 

The angles() A and ()8 are obtained by using (5.17) and (5.18) 

(5.20) 

The end moments MA and M8 in practice may appear as applied moments or as 
two eccentrically applied compressive axial loads P. Substituting MA = PeA and 
M 8 = Pe8 in (5.19), where eA and e8 are, respectively, the eccentricities at the ends 
A and B. Thus 

_ [sina(L -x) ((L -x))] [sinax (x)J y(x) - eA . - + eB -.-- - -
smaL L smaL L 

(5.21) 

To illustrate the effect of axial thrust on bending consider the case wherein the member 
is subjected to equal end moments to produce a single curvature type of deformation 
i.e. MA = -M8 = Mo as shown in Fig. 5.4a. The deflected shape is given by 

y(x) = Mo [cos (aL -ax)- cos (aL)] 
P cos(aL/2) 2 2 

= (MoL
2

) ( 2 
2 ) [cos(l/1- 21/Jx) -cosl/J] 

8£/ 1/1 cos 1/1 L 
(5.22) 

The maximum deflection occurs at x = L /2 and is given by 

( M 0 L 2 ) 
Ymax = 8£/ rp(l/J) (5.23) 

where rp( 1/1) is the multiplication or amplification factor. The end slopes and maximum 
bending moment at the mid-span are: 

()A= ()B = Y (0) = -- --1 MoL (tan 1/J) 
2£/ 1/1 

(5.24) 

and 

Mmax = -Ely"(L/2) = Mosecl/1 

or 

(5.25) 
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(a) 

p 

(b) 

Fig. 5.4a,b. Beam-column subjected to end moments. a End-moments producing single cur­
vature bending, b end-moments producing antisymmetric bending 

where Pe = Jr2EI/L2• For the case P/ Pe = 0.00, Mrnax = Mo i.e. the maximum 
moment is same as in the case of pure bending. The moment increases over that 
at zero thrust by 50 per cent for P/ Pe = 0.287 and the increase is 200 per cent at 
P/ Pe = 0.614. Finally at P/ Pe = 1.0, the increase becomes infinite. 

In case the end moments have same magnitude but opposite sense as shown in 
Fig. 5.4b, i.e. MA = MB = Mo, (5.19) yields 

Mo [sina(L- x) - sinax 2x ] 
y(x) = P sinaL + L - 1 (5.26) 

When the axial force P is very small, a ~ 0 and the sine term reduces to 

. (ax)3 
smax =ax---

6 

Thus (5.26) yields 

Mo 
y(x) = 6EIL [x(x - L)(2x - L)] 

which is identical to the solution of the beam subjected to end moment Mo. On the 
other hand when the axial load P approaches the critical value Pe = 1r2 E I I L 2 or 
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aL = n:, the elastic curve becomes 

y(x) = ( ~0) [2(f) -1 +cos(~)] (5.27) 

It should be noted that the elastic curve is always in two half waves no matter how 
small the end moment Mo is. 

5.3.4 Beam-Columns Subjected to Distributed Loads 

Consider a beam-column member with axial force P subjected to a uniform load of 
intensity w over a portion or entire span as shown in Fig. 5.5. 

(a) Uniformly distributed lateral load over a portion of the span 

The load is applied over the portion extending from the point x = a to x = b from 
the right end as shown in Fig. 5.5a. The uniformly distributed load can be considered 
as a system of infinitely small concentrated forces and the method of superposition 
used in case of concentrated loads can be extended to the case of distributed load 

y 

~· w 

i i i t t i p z ~ 
p 

~~~i~ I~ a :I z 

b 

(a) 

w per unit length 

p £ i t t i i i i i i t i i ~ p 

EI 

I~ 
L 

·I 
(b) 

Fig. S.Sa,b. Beam-column carrying uniformly distributed load. a Uniformly distributed load 
over a portion, b uniformly distributed load over entire span 



182 5 Stability Analysis of Beam-Columns 

by replacing summation CL:) by integration (f dx). Consider an infinitesimally small 
element of length dz of continuous load at distance z from the right hand support. The 
deflection produced by the elemental load w dz is obtained by treating it a concentrated 
load acting at distance z from the right-hand support. The deflection due to total load 
is then determined by integrating between the limits z = a to z = b. Thus the 
deflection for the portion of the beam-column to the left ofthe load is given by (5.7). 

b b () f (wdz)sinaz . f wzdz 
y x = smax - x -- , 

PasinaL PL 
0 :S x :S (L -b) 

a a 

wsmax wx 
= 2 (cosab- cosaa)- --(b2 - a2) 

Pa sinaL 2PL 
(5.28) 

For the portion to the right of load 

b b 

f (wdz)sina(L-x) . f (wdz)(L-z)(L-x) 
y(x) = . sma(L- z)-

PasmaL PL 
a a 

wsina(L -x) 
= Pa2 sinaL [cosa(L-a)-cosa(L-b)] 

w(L- x) 2 2 
- 2PL [2L(b- a) - (b -a )] , (L -a) :::::: x :::::: L (5.29) 

For the deflection at any point over the loaded portion 

L-x L-x 

f (wdz)sinaz . J x(wdz)z 
y(x) = smax-

PasinaL PL 
(5.30) 

a a 

b b 

+j (wdz) sina(L- z) . f 
------- sma(L - x) -

PasinaL 

(wdz)(L- z)(L- x) 

PL 
L-x L-x 

This equation can be used to obtain deflections for the case when beam-column 
member carries uniformly distributed load over its entire length. 

(b) Uniformly distributed load over the entire span 

Consider the uniformly loaded simply supported beam-column member of length L 
with constant EI as shown in Fig. 5.5b. The governing differential equation is 

(5.31) 

The boundary conditions are: y(O) = y"(O) = y(L) = y"(L) = 0. 
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The particular solution is given by 

(5.32) 

From the boundary conditions the constants of (5.5) are determined to be 

A= (a4~J) C ~;:szL) = (a4~J) [tan (a~)] = (a~P) [tan (a~)] 
w w 

B=-D=--=-
a4EI a2P 

wL wL 
C=---=--

2a2EI 2P 

The elastic deflection curve is therefore 

( w ) [ (aL) Lxa2 a2x2] y(x) = a2P tan T sin ax+ cos ax- - 2- -1 + - 2-

( w ) [cos(aL/2- ax) a2x J = - - 1- -(L- x) 
a2 P cos(aL/2) 2 

(5.33) 

It is evident from the above expression that deflection varies linearly with the lateral 
load w but not with axial compression P. The maximum deflection at the mid-span 
of the member (i.e. x = L/2) is given by 

where 

y =~[sec (aL)- 1- (a£)2] 
max a2P 2 8 

wL4 
--4:-- [2 sec 1/1 - 2 - 1/12] 
2(aL) EI 

_ 5wL4 [12(2sec1fr-2-1fr2)]-(5wL4 ) 
- 384£/ 51fr4 - 384£/ 'f/(1/1) (5.34) 

Thus 1jf depends upon the ratio :. . The factor rJ(1fr) which is function of P, EI 
and L is termed amplification factor. Thus the mid-span deflection is obtained by 
multiplying the pure bending deflection by the factor rJ(1fr). When P approaches 
Pe = (rr2E/fL2) or (aL) approaches rr even smallest lateral load will produce 
considerable lateral deflection. For the mid-point deflection of a simply supported 
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beam-column member under symmetrical loading condition, the amplification factor 
ry(1/J) can be approximated by the expression 

1 
rJ(1/I) :::::! (1 - PIPe) 

provided that the ratio PIPe is not large. For values of PIPe less than 0.6, for example, 
the error in this approximate expression is less than 2 per cent. This approximate 
expression for estimating deflection at the centre of beam-column is frequently used 
in design computations. 

5.3.5 Rotationally Restrained Beam-Colnmns 

Consider the case of a beam-column in which lateral translation is prevented at both 
the ends and the end rotations are restrained by rotational springs as shown in Fig. 5 .6. 
The problem is equivalent to the beam-column of Fig. 5.3b where MA = -krA()A and 
Ms = -krB()B· Substituting values of()A and ()Bin (5.20). 

MA [k:A + ( 3~/) qJ1(1/J)J + Ms [ (6~/) qJz(1/J)J = 0 and 

MA [ ( 6~/) qJz(1/J)J + Ms [k:B + ( 3~/) qJ1(1/J)J = 0 (5.35) 

For non-trivial solution of these two homogeneous linear equations, the determinant 
of coefficients of MA and Ms must vanish. The resulting stability condition or 
characteristic equation is 

As a typical case take krA = krs = kr, (5.36) reduces to 

~ + ( 3~1 ) qJ1 (1/1) ± ( 6~1 ) qJz(1/l) = 0 (5.37) 

, .. L 

Fig. 5.6. Beam-column with elastically restrained leads 



5.4 Beam-Column with Elastic Supports 185 

From first of (5.35): 

The plus sign in (5.37) corresponds to the symmetric case (MA = -MB) and minus 
sign to asymmetric case (MA = MB). Substituting the values of cp, ('ift) and cpz(1/J) the 
symmetric case becomes 

[2£/J tan 1/1 = - - 1/1 
krL 

(5.38) 

The value of 1/lcr lies between rr/2 and rr depending upon the value of kr. When kr 
approaches zero, 1/Jcr =} f and Per = rr2 EI I L 2 • For the antisymmetric case 

(5.39) 

The value of 1/lcr lies between rr and 4.493. When kr =} 0, 1/lcr =} rr, and when 
kr =} 00, 1/lcr =} 4.493. 

5.4 Beam-Column with Elastic Supports 

5.4.1 Differential Equation Method 

As has been discussed in earlier chapters that a structural member connected to 
an external spring system develops certain forces as it deflects and thus the free 
movement of member is restricted to greater or lesser extent. The forces developed in 
the springs depend on the amount of deformation produced in them due to deflection 
of the member. This results in a type of variable loading. The invariable (constant) 
lateral load on a strut causes initial eccentricity which introduces the stress problem, 
but it does not alter the Pe value of the system. Whereas in case of a spring, it results 
in a deflection dependent lateral load and a restoring force (as does the member) as 
deflection takes place. Thus the presence of spring affects the elastic stability value Pe 
and even small spring stiffness may cause a considerable increase in Pe. 

There are two general types of translational elastic supports: 

Translational springs 

(i) Point elastic support, and 
(ii) Distributed elastic support. 

The former is represented by an individual spring, and it applies a force of value Q 
to the member as a point load; Q is dependent on the deflection y of the beam at that 
point. For a linear spring of stiffness k, the force Q is proportional to deflection y, 
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i.e. Q = -ky. The negative sign is introduced as the direction of Q is opposite to 
that of the deflection. 

On the other hand the distributed elastic support (medium) can be considered as 
a series of point supports very close together. If a force 8 Q acts over an element of 
length 8x (direction x being normal to the direction of the springs), the intensity of 
distributed force in the elastic medium is 

8Q = dQ = q = f(y) 
8x dx 

(5.40) 

For a linear spring action q = -ky, where k is the force per unit deflection per 
unit length of the elastic medium. k is frequently known as the elastic modulus. The 
stiffness of the spring affects the buckling load of the system considerably and it may 
cause a complete change in the buckling mode. 

Consider the case of Euler strut with an added central spring of stiffness k as 
shown in Fig. 5.7a. The problem can be easily dealt with potential energy approach. 
The total potential energy of the system is given by 

n = [/ ~ EI(y")2 dx + ~ky; - J ~ P(y')2 dx J 
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-1 0 2 .. .. 
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4 5 

Fig. 5.7a,b. Buckling of simply supported strut with an elastic support at mid-point. a Simply 
supported strut with an elastic spring, b variation of Per/ P1 with fJ 
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where Yc is the deflection at the point of elastic support. Consider deflection trial 
function y(x) =a sin(rrxj L), thus Yc = a and 

Therefore, 

L L 

EI I , 2 EI I [a2rr4 . 2 (Jrx)] dx Elrr4a2 
2 (y ) dx = 2 U sm L = 4L3 

0 0 

~ky2 = ~ka2 
2 c 2 

p IL p IL [a2Jr2 (JrX)] J>rr2a2 - (y')2 dx =- --cos2 - dx = --
2 2 L2 L 4L 

0 0 

II = { ~~4 + ~k - ( :
2

) } a2 

For neutral equilibrium, 8/I = (d/Ijda)oa = 0. Therefore, 

Elrr4 k Prr2 

4£3 + 2- 4L =O 

Per= rr~~I [ 1 + (rr;:/) ( 2:;) J 
Per [ ( 2kL )] or-= 1+ - 2- =1+,8 
Pe,l 1r Pe 

(5.41) 

where ,8 = 2kLjrr2 Pe is dimensionless quantity relating k to Pe,l and L. When 
,8 = 0 i.e. spring is inoperative, Per = Pe,l· With increasing positive values of ,8, 
Per increases linearly, and there comes a point at which the symmetrical buckling 
load equals the second critical load of the Euler strut problem, and the system could 
equally well buckle anti-symmetrically with the spring becoming inoperative. This 
would take place at ,8 = 3 or Per= 4Pe,l as shown in Fig 5.7b. Beyond this point no 
increase will be obtained and the spring becomes unimportant. 

On the other hand with increasing negative values of ,8 (a disturbing force) there 
comes a point at ,8 = -1 where Per = 0. The stiffness of the system reduces to zero. 
This value of ,8 is called critical value ,8 that alone will cause instability in the system. 
Thus the presence of springs may make the buckling mode higher than expected. In 
case of doubt about the true mode, both symmetrical and antisymmetrical modes will 
have to be studied. 

This procedure is equally applicable to the strut with a larger number of elastic 
supports. Consider the problem of hinged-hinged strut of constant cross-section 
supported on an elastic medium of constant modulus k as shown in the Fig. 5.8a. The 
governing differential equation can be derived by following the standard procedure 
for the moment equilibrium of an element of the member 
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Fig. 5.8a,b. Buckling of simply supported strut resting on an elastic medium. a Simply sup­
ported strut on an elastic medium of constant stiffness, b influence k on Per and buckling 
mode 

or 

( d2y) as M = El dx2 

The four boundary conditions are: y(O) = y(L) = y"(O) = y"(L) = 0. The general 
solution to this equation is: y(x) = an sin n~x where y(x) represents the buckling 
mode and the value of n can be any integer as in the case of Euler strut problem. The 
total potential energy of the system is given by 

L L 

n = ~EI I (y'')2 ctx + ~k I lctx- f I (y')2 ctx 
0 0 

_ [n4n 4 El kL _ Pn2n 2] a 2 
- 40 + 4 4L ( n) 

For neutral equilibrium, ofl = (dfl/dan)8an = 0. Since 8an is arbitrary, for no-trivial 
solution (dfljdan) = 0. Therefore 

or (5.42) 
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where Pe,I = :n:2 Elf L 2, the Euler buckling load, and f3 = kL 4 j:n:4 El, a dimension­
less quantity relating k to the stiffness of the member and L. The different buckling 
modes are given by n = 1, 2, 3, etc. The relation is shown in the Fig. 5.8b. As f3 
is increased from zero, the mode changes from single to two half-waves buckling at 
f3 = 4, and from two to three half-waves buckling at f3 = 36, etc. There is a series 
of negative values of f3 each of which produces a state of neutral equilibrium for 
P = 0. The first of these corresponding to single half-wave buckling mode occurs at 
fJI = -1, the second at f3z = -16 and so on. 

5.4.2 Numerical Procedure 

The complexities in the loading system, in the beam cross-section, and in the elastic 
supporting system can be conveniently handled by the numerical procedure discussed 
in Sect. 4.4. However, it should be appreciated that while dealing with struts or beam­
columns with spring supports, the problem is somewhat different in that the member 
is subjected to two opposing forces, a disturbing force (due to axial and transverse 
loading) and a restoring force (due to the spring system). The beam is now not the 
only system resisting deflection, the springs also resist movement and in some cases 
they may even offer a stronger resistance than the beam. 

In the problems where the resistance of the springs to deflection is small relative 
to that of beam, the convergence of the iteration procedure is very fast. On the other 
hand when the resistance of the springs to deflection is greater than that of the beam, 
as in the case of a flexible beam on a stiff foundation, the iteration procedure may 
diverge and the methods can become too unwieldy. In this type of problems it is often 
easier to use classical or a solution based on energy consideration. 

The numerical solution for the stability problems with the added effect of the 
elastic supports as usual starts with a trial deflection Ya for the buckling mode. 
The values of the derived deflection Yd are made up of two components: (1) effect 
of spring loading k, and (2) the effect of axial loading P. If Yd,k and Yd,p are the 
derived deflection values due to k and P, respectively, the total derived deflection 
corresponding to the initial trial Ya is 

Yd = Yd,k + Yd,p (5.43) 

where for compressive axial load Yd,p is positive and Yd,k is negative. It will be noticed 
that in the iteration cycle, starting from a factor 'a' in Ya· Yd,k also has a single factor 
of 'a' and Yd,p has a total factor of (a Ph2 I El). Thus to use (5.43), a guessed value 
of P must be introduced in Yd,p so that both Yd,p and Yd,k can be reduced to the same 
factor 'a'. The simplest way to do this is to satisfy the equation Ya = Yd,p + Yd,k at 
the point of maximum displacement and to scale all the Yd values in the proportion. 
This procedure has been demonstrated in example 5.1. 

Example 5.1. A simply supported beam of constant cross-section carries both lateral 
load and an axial compression of value P = 0.4:n:2EijL2 as shown in Fig. 5.9. 
Estimate the deflection at salient points. 
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w 

U2 U2 

Fig. 5.9. Simply supported strut with lateral loads 

This problem may be treated as a case of beam-column member subjected to 
a compression load at an eccentricity Yi. This initial eccentricity is due to lateral 
loading on the member and is represented by the deflection of the member due to 
lateral loading before axial forces are added. The compressive load P will tend to 
increase initial eccentricity, the total value of deflection approaching infinity as P 
approaches Pe, 1• the first critical load in pure compression buckling. Thus P can not 
be greater than Pe,1· 

In the numerical solution the first step is to calculate absolute values of eccen­
tricity Yi at the node points. The next step is to assume trial values of additional 
deflection Ya due to the compressive load P. Using the total deflection y = Yi + Ya 
compute moments through the member due to P, and hence determine derived de­
flection values Yd· As has been pointed out earlier, the closer the trial values Ya to the 
exact values of Ye· the lesser will be the computational effort. In most of the cases it 
is good to assume the trial values based on the relation 

[ P. J-1 
Ya,1 = Yi ; 1 - 1 (5.44) 

The numerical procedure is given in Table 5.1. In the first part, the deflections due to 
lateral loading have been computed in the absence of axial load P. This gives value 
of initial eccentricity Yi of P. In the second part the additional deflection Ya due to 
application of P are computed. 

As Pe, 1 for the simply supported beam-column member is Euler value 1r2 E I I L 2, 

a good approximation is given by 

[ P. J-1 [ 1 J-1 
Ya,1 = Yi ; 1 - 1 = Yi 0.4 - 1 = 0.667yi 

Therefore, y = Yi + Ya,1 = 1.667yi 
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Table 5.1. Computation of deflection of beam-column subjected to lateral loads 

Node No. 0 2 3 4 Multiplier 

I. Computation of initial eccentricity (deflection), Yi due to lateral load 

Load, W -1.25 -0.50 0 w 
Shear, Q 0.75 0.75 -0.50 -1.00 w 
y" = MjEI 0 

Y" 
0.75 

9.00 

(-17.5)a -8.5 

1.50 

(7.50 + 8.25) 

15.75 

y' 

Yi 0 -17.50 -26.00 

II. Additional deflection due to axial load P 

First iteration 

y = !.667yi 0 -29.17 -43.33 

Y" 33.45 49.37 

y' 

0 
0 

Second Iteration 

(-58.66)a -25.02 

-58.66 -83.88 

-12.06 -17.25 

y = Yi + Yct 0 -29.56 -43.25 
Y" 33.88 49.31 
y' ( -58.90)a -25.02 

Yct 
Yct 

0 

0 

Third Iteration 

Y = Yi + Yct 0 
Y" 
y' 

Yct 
Yct 

0 

0 

-58.90 -83.92 

-12.11 -17.26 

-29.61 -43.26 

33.94 49.32 

(-58.95)a -25.01 

-58.95 -83.96 
-12.12 -17.26 

2.00 

ll.5 

0 WhjEI 

Wh 2 j12EI 

7.25 18.75 Wh 3 j12EI 

-18.75 0 Wh 3 /12£/ =a 

-31.25 

35.58 

24.29 59.63 

-59.73 

-12.28 

0 a 

!OaPhj(12EI) 

10aPh2 /(12£1) 

0 -do-

a 

-31.03 0 a 

35.35 10aPhj(I2EI) 

24.29 59.63 10aPh2 /(12£1) 

-59.63 

-12.26 

-31.01 

35.34 

24.31 59.65 

-59.65 

-12.26 

0 -do-

a 

0 a 

10aPh/(12EI) 

10aPh2 /(12£1) 

0 -do-

a 

aNote: YOI = (9 x 3 + 15.75 x 2 + 11.5)/4 = 17.5, where 4 is the number of panels. 

The elastic curve ordinate at the mid span 

Wh3 ( 839.6Ph2 ) 

y = 12£/ 26 + 12£/ 

WL 3 ( 43.159P) WL 3 4WL3 

= 768£/ 26 + Pe = 768£/26 + 17·26) = 71£/ 

Example 5.2. A simply supported symmetrical strut of continuously variable cross­
section lx = /0{1- 4.0[(x/L)2 - (xjL) 3]} shown in Fig. 5.10 carries an axial 
compression of P. Estimate the first critical value of P that will cause its buckling. 

If the strut has an initial eccentricity (at P = 0) measured as the off-set distance 
between the axis and the line joining end points i.e. the thrust line, estimate the de-
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y 

p p 

I. 
Fig. 5.10. Beam-column of variable cross section 

flection due to an axial thrust of magnitude P = 0.5JT2 Elf L2• The initial eccentricity 
is given by Yi = a sin JTX I L. The numerical integration for the buckling load is given 
in Table 5.2. 

Table 5.2. Buckling load of a strut of a continously variable cross-section 

Node No. 0 2 3 Multiplier and remarks 

lx 0.5 0.7 0.9 1.0 Io 

First Iteration Half strut is considered 

Ya 0.0 5.0 8.7 10.0 a y(x) =a sin(rrxj L) 

y" = M/EI 0.0 -7.1 -9.67 -10.0 Pa/Elo 

Y" -80.67 -113.77 -119.34 Pahj(12Elo) 

y' 254.11 173.44 (59.67) 0.0 Pah2 /(12£/o) 

Yct 0.0 254.11 427.55 487.22 --<io-

Yd 0.0 5.22 8.77 10.0 (48.72)[Pah2 /(12£/o)] 

Second Iteration 

Ya 0.0 5.22 8.77 10.0 a 

y" 0.0 -7.45 -9.74 -10.0 aPfElo 

Y" -84.24 -114.85 -119.48 aPh/(12Elo) 

y' 258.83 174.59 (59.74) 0.0 Pah 2 /(12£/o) 

Yct 0.0 258.83 433.42 493.16 --<io-

Yct 0.0 5.25 8.79 10.0 (49.32)[Pah 2 /(12£/o)] 

Third Iteration 

Ya 0.0 5.25 8.79 10.0 a 

y" 0.0 -7.50 -9.77 -10.0 aP/Elo 

Y" -84.77 -115.25 -119.54 aPhj(12Elo) 

y' 259.79 175.02 (59.77) 0.0 aPh 2 f(12Elo) 

Yct 0.0 259.79 434.81 494.58 --<io-

Yd 0.0 5.25 8.79 10.0 (49.46)[aPh2 /(12£/o)] 

At buckling: aPh2 

lO.OOa = 494.58 12£/o 
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8.73£/o 
p ,-------,.-

cr, - L2 

The estimation of deflection due to thrust of value P = 0.5n2 EljL2 i.e. P = 

4.935£/j L 2 is given in Table 5.3. 

Table 5.3. Deflections of the eccentric strut of variable cross-section 

Node No. 0 2 3 Multiplier and remarks 

Initial eccentricity Half strut is considered 

Yi 0.00 0.50 0.87 1.0 a 

lx 0.50 0.70 0.90 1.0 Io 

First iteration Ya,l = [(Pcr,IJP) -l]-1yi 

= 1.30yi 

Ya 0.00 0.65 1.13 1.30 a 

Y = Yi + Ya 0.00 1.15 2.00 2.30 a 

y" = MjEI 0.00 -1.64 -2.22 -2.30 aPjEio 

Y" -18.62 -26.14 -27.44 aPhj(12Elo) 

y' 58.48 39.86 (13.72) 0.0 Pah2 j(12Elo) 

Yd 0.00 58.48 98.34 112.06 Pah2 j(12Elo) = 0.01142a 

Yd 0.00 0.67 1.12 1.28 a 

Second iteration 

Ya 0.00 0.67 1.12 1.28 a 

Y = Yi + Ya 0.00 1.17 1.99 2.28 a 

y" 0.00 -1.67 -2.21 -2.28 aPjEio 

Y" -18.91 -26.05 -27.22 aPh/(12Elo) 

y' 58.57 39.66 (13.61) 0.0 Pah2 j(12Elo) 

Yd 0.00 58.57 98.23 111.84 Pah2 j(12Elo) = O.D1142a 

Yd 0.00 0.67 1.12 1.28 a 

The maximum deflection at the mid point is given by: 

y = Yi + Yd = 2.28a 

Example 5.3. A hinged-hinged strut of constant cross-section shown in Fig. 5.11 is 

supported by an elastic medium of constant stiffness k = 50 E I 1 L 4 . Estimate the first 

critical value of the axial thrust P. 

EI 
p p 

Fig. 5.11. Simply supported strut on elastic medium 
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Since the value of k is less than -k1 = {J1Jr4 Elf L 4 , the numerical solution is 
within the range of convergence. The numerical integration is given in the Table 5.4. 
Due to symmetry only half portion of the strut is considered for the first symmetrical 
mode. 

Table 5.4. Buckling of hinged-hinged strut supported on uniform elastic medium 

Node No. 0 2 3 

First iteration 

Ya 5.0 8.67 10.0 

I. Effect of k 

q =-ky 0 -5.0 -8.67 -10.0 

w 0 -58.67 -101.17 -117.34 

Q 218.51 159.84 (58.67) 

M 0 218.51 378.35 437.02 

Y" 256.34 443.90 512.69 

y' -956.59 700.25 (-256.35) 

Yd 0 -956.59 1656.84 1913.19 

Yd,k 0 -2.563 -4.444 -5.126 

I. Effect of P 

M 0 -5.0 -8.67 -10.0 

Y" -58.67 -101.17 -117.34 

y' 218.51 159.84 58.67 

Yd 0 218.51 378.35 437.02 

Yd,k 0 7.563 13.905 15.126 

Y = Yd,k + Yd,P 5.00 8.66 10.00 

At buckling: 

15.126a = 437.02aPh2 fi2EI 

Therefore, Per= 14.952ElfL2 

Multiplier and remarks 

Consider 
y(x) =a sin rrxf L 

a 

ak 

akh/12 

-<lo-

akh2 f(12) 

10akh3 /(12)2 EI 

-<lo-

10akh4 /(12)2 EI 

a 

aP 

aPhf12EI 

-<lo-

aPh2/12EI 

a 

a 

It should be noted that the solution has converged in one iteration because the 
trial displacement function happens to be the exact one. 

Example 5.4. A rigid frame shown in Fig. 5.12 is composed of two identical members 
BA and BC each having uniform taper. They are rigidly connected at joint Band are 
hinged to rigid supports at A and C. The moment of inertia I vary from 4/0 at the rigid 
joint to !0 at the hinged supports. The horizontal member BC carries a concentrated 
load W at the mid-span and the vertical member is subjected to an axial thrust P of 
magnitude 15Elo/ L2• Estimate the lateral deflections in the strut and draw bending 
moment diagram. 

For analysis the horizontal member AB is treated as simply supported beam with 
moment Mo at the point B. The vertical member reduces to a hinged-hinged strut with 
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p w 
Mo t c B 

T :t. 

P = 15EI0/I} W 

B 

B 

A Io A 

U2 U2 

(a) (b) 

p Mf 
~A 

p 

~:4i 
4.00 3.25 2.50 1.75 1.00 10 

L=4xh 

(c) 

Fig. 5.12a-c. Buckling of frame with tapered members. a Frame with variable section, b free 
body diagrams c isolated beam-column 

moment Moat the top end and carries an axial thrust Pas shown in Fig. 5.12b. It is 
required to estimate the deflected position of the member AB under joint action of Mo 
and P. The deflection in the member AB due to Mo before Pis applied provides the 
initial eccentricity to the load P. Since the two members are identical in all respects 
(including boundary conditions), hence the deflections in two due to Mo are same. 
The calculations for displacement due to moment Mo are given in Table 5.5. 

Table 5.5. Calculations of deformation due to end moment Mo 

Node No. 0 (B) 2 3 4 (C) Multiplier 

I 4.00 3.25 2.50 1.75 1.0 Io 

M 1.0 0.75 0.50 0.25 0.0 Mo 

y" = MjEI 0.2500 0.2308 0.2000 0.1429 0.0000 Mo/Elo 

Y" 1.4674 2.7580 2.3737 1.6290 Mohf(l2Elo) 

y' -5.130 (-3.6626)a -0.9046 1.4691 3.0981 -do-

Yd 0.0000 3.6626 -4.5672 -3.0981 0.0000 Moh2 j(I2Elo) 

1 ~h ~h 
y8 = (-3.6626-1.4674) 12£/o = -5.130 12£/o 
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The stiffness; 

Mo 12£/o 9.357 Elo 
KBc - KBA - - - --- - ----'-

- - y~ - 5.130h - L 

Influence coefficient at node 2 for fixed-end-moment MB 

Y2 = -, = -0.8903h . 
YB 

The fixed end moment due to load W alone, M BC = - W( -0.8903h) = 0.2226 WL. 
The moment in the members BA and BC is 0.445WL each at the node B. 

In the second part of analysis the effect of axial compression is taken into account. 
The initial eccentricity due to Mo (produced by load W) before P is applied is taken 
from the first part of analysis. For a good trial approximation for the additional 
deflection due to P, the knowledge of the first critical load for the member BA under 
compression will be helpful. The value of first critical load may either be computed 
or assumed on the basis of average moment of inertia. For the present problem Pe, 1 

may be assumed to be 

_ rr2E(/o +4/o)/2 _ (Elo) 
Pe 1 - 2 - 24.67 - 2 ' L L 

The first trial approximation for Ya may be taken as 

( P. )-1 
Ya = ; 1 - 1 Yi = 1.55yi 

The computation of additional displacement on account of axial thrust is given in 
Table 5.6. 

Table 5.6. Calculation of additional deflection due to axial thrust 

Node No. 0 2 3 4 Multiplier 

lx 4.00 3.25 2.50 1.75 1.00 Io 

Yi 0.000 -3.663 -4.567 -3.098 0.00 Moh 2 j(12Elo) 

Ya for first 0.000 -5.678 -7.079 -4.802 0.00 (Ya, 1 = l.55yi) 
iteration 

Final Iteration 

Ya 0.000 -5.458 -8.320 -6.505 Moh 2 j(12Elo) 

y = Yi + Ya 0.000 -9.121 -12.887 -9.603 -do-
y" = PyjEI 0.000 2.806 5.155 5.487 0.0 MoPh 2 j12(Elo)2 

Y" 5.840 33.215 59.843 60.029 MoPh3 /12(Elo) 2 

y' (-69.84)* -36.625 23.218 83.247 -do-

Yd 0.000 -69.840 -106.465 -83.247 0.0 Mo Ph4 / (12E Io)2 

Yd 0.000 -5.456 -8.318 -6.504 0.0 MoPh 2 /(12Elo)2 

(Ph 2 ji2EI = 0.078125) 
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, Moh Moh 
YsA = [ -5.456- (5.840/12)] 12£/o = -5.943 12£/o 

Hence the total slope at B due to M0 and P is given by 

~ ~h ~h 
YsA = [-5.943- 5.130]-- = -11.073--

12£/o 12£/o 

Stiffness of member BA: 
Ms Elo 

ksA = -,- = 4.335-
YsA L 

It should be noted that stiffness of the member BA reduces considerably due to the 
presence of axial thrust. However, the stiffness of the member BC remains unchanged 
as computed previously in the first part of analysis. The moment distribution factors 
at the joint B are: 

Dsc = (9.357)/(9.357 + 4.335) = 0.6834 

and 

DsA = (4.335)/(9.357 + 4.335) = 0.3166 

From moment distribution 

MsA = 0.2226 WL(0.3166) = 0.0705 WL 

Example 5. 5. A section of a vertical wall A B constructed monolithic with a horizontal 
slab BC is shown in Fig. 5.13. The unit lengths of wall and slab have moments of 
inertia I and h, respectively, in transverse bending. The structure is idealized as 
being simply supported on continuous knife edges at B and C that can be assumed 
as acting at centre line of member. A continuous vertical knife edge load p per unit 
length (assumed concentrated) is applied at the centre of top of the wall. In addition 
to the axial thrust P, the wall is subjected to a horizontal shear force Q as shown in 
Fig. 5.13b. 

The member AB is presumed to be an elastically restrained beam-column. The 
governing differential equation is 

which has solution y(x) = A sin ax + B cos ax + Cx + D with following boundary 
conditions. 

y(O) = y"(L) = 0 and kry'(O) = (EI)y"(O) 

In addition at the top end of the member AB i.e. at x = L, the end shear condition is: 

Q + Py' + (EI)y"' = 0 . 
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p and q are per unit length 

(a) 

p 

L 

(b) (c) 

Fig. 5.13a-c. Wall-column monolithic with horizontal slab. a Structure, b idealized supports, 
c idealized wall-column 

Substitution of the general solution in each of these boundary conditions yields the 
following set of simultaneous equations. 

(O)A + (l.O)B + (O)C + (l.O)D = 0 
(ay)A + (a2)B + (y)C + (O)D = 0 
(sinaL)A + (cosaL)B + (O)C + (O)D = 0 
(O)A + (O)B + (l.O)C + (O)D = -Q/ P 

where y = kr/ El. The spring constant due to bending of horizontal member kr = 
3E/tf L1. The moment M 8 at the rigid joint B is of special interest 

Ms = M(O) = (El)y"(O) = -Ela2(B) = -P(B) 

The constants can be computed as 

C = -Q/P, D = -B, A= (-cotaL)B 

and thus 

(Q) [ ysinaL ] 
B =- P a(y cosaL- a sinaL) 
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Thus the moment at the rigid joint is given by 

( QL) [ sinaL ] or 
Ms =- aL cosaL- (aLjyL) sinaL 

M8 [ (sinaL)jaL ] 
QL =- cosaL- (aLjyL) sinaL 

where 

As a typical consider h/ L 1 = If Land thus yL = 3. For Pj Pe = 0, the problem re­
duces toone of pure bending with M 8 = QL. At Pj Pe = 0.1, M 8 = 3.14 QL, which 
corresponds to an increase in moment over that at zero axial thrust of 214 per cent. 
From this example it is clear that axial force can have a profound effect upon maxi­
mum moment at the base of the column. At Pj Pe = 1.0, the axial load multiplying 
factor becomes infinitely large. 

5.5 Strut with Initial Eccentricity 

In the discussions so far the column has been assumed to be perfectly straight and 
the axial thrust is assumed to pass through the centroidal axis. However, in practice 
both the lack of straightness (i.e. imperfection of shape) and small eccentricity of 
load may be present in the structure. This type of problems can be easily handled 
by classical and numerical techniques. The numerical procedure is a powerful tool 
to estimate deflection. Irrespective of value of initial eccentricity Yi and value of end 
thrust, the numerical procedure converges to a set of values Ye which along with Yi 

will give the final equilibrium position of the structure. 
For illustration consider the behaviour of hinged-hinged strut with initial eccen­

tricity Yi measured from the position of thrust line as shown in Fig. 5.14a. Let the 
displacement of final deflected shape measured from the straight configuration is 
represented by y(x). As in case of displacement functions, the initial eccentricity Yi 

can also be expressed in the form of a polynomial or trignometrical series. In the 
present case consider a trignometrical series 

00 

'""' . mrx 
Yi= ~ansmL 

n=l 

(5.45) 

Thus the internal resisting moment is 

(5.46) 



200 5 Stability Analysis of Beam-Columns 

(a) 

Ya = additional deflection due to P 

(b) 

Fig. 5.14a,b. Strut with initial eccentricity. a Initial eccentricity Yi at P = 0, b equilibrium 
configuration after application of P 

which is balanced by external disturbing moment, i.e., Py = M. Therefore, 

EI(~) +Py = E/(~i) (5.47) 

Substituting for Yi from (5.45). 

(5.48a) 

(5.48b) 

wherea2 = P/El. 
The general solution to the governing equation is 

y(x) =A sin ax+ Bcosax + yp 

Let the particular solution yP is given by 

00 

'"' . mrx 
yP= ~YnsrnL 

n=1 
(5.49) 

Substituting yP from (5.49) in (5.48b) 

00 00 00 

'"' ( nrr ) 2 nrrx 2 '"' nrrx '"' ( nrr ) 2 • nrrx - ~ Yn L sin L +a ~ Yn sin L = -~an L srn L 
n=1 n=1 n=1 
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Consider the nth term 

(5.50) 

where Pe = "~f. The total deflection can thus be written as 

" [ an J n7rx y =A sin ax+ Bcosax + ~ [1 _ (P/ Pe)(1/n2)] sin L (5.51) 

From the boundary conditions 

y(O) = 0, gives B = 0 and y(L) = 0, yields A= 0 

Thus, 

" [ an J . (nJrx) 
y(x) = ~ [1 - (P/ Pe)(1/n2)] sm L (5.52) 

Considering a single term representation for elastic deflected curve, the mid-point 
deflection of the strut is given by 

[ p J-1 
y(L/2) =a 1 - Pe (5.53) 

As the thrust P approaches Pe the mid-span deflection tends to infinity. Sometimes 
this is known as imperfection approach to determination of critical load. According 
to this approach, the critical load of perfect column is defined as the load at which 
imperfect column develops an infinite displacement. It should be noted that the 
problem of an initially bent strut is not an eigenvalue problem since for every load 
there is a definite displacement. 

5.6 Interaction Equation 

In general the beam-columns are subjected to two basically different kinds of loading: 
axial thrust and bending moment. An expression relating these two, called interaction 
equation, gives a reasonable prediction of structural strength. It has been noticed in the 
preceding sections that the axial thrust significantly increases the primary moments, 
i.e. those which result from lateral loads and applied end moments etc. If limited 
allowable normal stress is the design criterion, the limited stress can be related to 
the axial thrust and bending moment by the equation. 

P Mmax 
O"max = aau = - + --A Z 

(5.54) 

where A and Z are area and section modulus of the cross-section of the member, 
respectively. Since P is constant along the member, the stress depends on the location 
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and magnitude of maximum bending moment. It is to be recognized that at a cut 
section of the member, the axial thrust acts through the centroid, and the bending 
moment is about an axis which passes through that point. 

In case the allowable normal stress is the yield stress in the material, then 

!__ + MoW = l.O 
Py My 

(5.55) 

where Py = Aay, the maximum yield value of the yield thrust when bending moment 
is zero; and My = Zay, the initial yield value of the bending moment when axial 
thrust is zero. 

Consider the case of a strut subjected to the equal and opposite compressive loads 
applied at eccentricities e and f3e at the ends, A and B, respectively. The deflection 
curve for this case is from (5.21). 

[ ( sin ax x) sina(L- x) (L- x)] y(x) = e f3 -.- - - + . - --
smaL L smaL L 

The moment at a section is 

M =-Ely"= EI e ($--) [f3(sinax) + sina(L- x)] 
smaL 

The maximum moment occurs at the section where aMjax = 0, i.e. 

Alternative! y, 

f3cosax- cosa(L- x) = 0 
cosa(L- x) 

or f3= ---­
cosax 

sinaL 
cotax= ---­

{3- cosaL 

(sinn/f) 

(f3- cos n .j Pj Pe) 

(5.56) 

(5.57) 

(5.58a) 

(5.58b) 

However, it must be understood that for a given value of {3, if (5.58a) or (5.58b) 
predicts a location of maximum moment that is off the end of the member (0 > x > 
L), the maximum value occurs at the end. 

As an illustration consider the case where f3 = + 1.0, i.e. the strut is subjected 
to a compressive load applied at a eccentricity e at each end resulting in a single­
curvature type primary bending moment. The maximum bending moment occurs at 
the mid-span (x = L/2) and its value is obtained from (5.57) as 

Mmax = (~JaZ)e [sin (aL) +sin (aL)] =--!!- [2sin (aL)] 
smaL 2 2 smaL 2 

Pe[2 sin(aL/2)] 
2 sin(aL/2) cos(aL/2) = [Pe sec(aL/2)] = MoW (5.59) 
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From (5.55) 

P Pe sec(ctL/2) P [ ec J - + 2 = - 1 + 2 sec(ctL/2) = 1.0 
Py (Ar jc)ay Py r 

[as My = Z.ay = (//c)ay = (Ar2 jc)ay] 

or !._- ay 

A - [1 + ~sec aL J 
,2 2 [ 1 + ~sec (...!... !P)J ,2 2:n:y £A 

(5.60) 

where r is the radius of gyration of the cross-section about the centroidal axis, and 
c is the distance from the centroid to the extreme fibre of the cross-section. The 
relation given by (5.60) is usually termed as secant formula. As mentioned earlier, 
the amplification or magnification factor r; can be conservatively approximated as 

1 
(5.61) Sapprox. = ( p ) 

1--
Pe 

It is to be recognized that the interaction relation given by (5.55) presumes initial 
yielding of extreme fibre. However, in practice the allowable values concept is more 
commonly used. Defining the desired allowable values as 

(5.62) 

where Cp and Cb are prescribed factors to provide sufficient margin of safety against 
yielding, the modified interaction equation reduces to 

!_ + MoW = l.O 
Pa Ma 

(5.63) 

Alternatively in terms of allowable stresses (5.63) can be expressed as 

fa + /b(l;) = l.O 
Fa Fb 

(5.64) 

where fa and /bare actual compressive stress (P/A) and bending stress (M/Z), 
respectively, and Fa and Fb are corresponding allowable stresses when each one is 
acting independently. 

It should be noted that the term (aL) appears in all of the beam-column problems. 
This term can conveniently be expressed in a meaningful non-dimensional form 

ctL = L {P = n: {P VEi y-p; 
and 

P (p) (Py) (p) [ Aay J (p) [ (L/r)2 J 
Pe = Py Pe = Py n 2 EI/ L 2 = Py (n2 E/ay) 

(5.65) 
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where the ratio (L/r) is referred to as slenderness ratio. For smaller values of Ljr 
the axial yield value governs. For larger values, the buckling occurs. For the known 
bending and axial forces the suitable cross-section for the beam-column can be 
determined by trial and modification. 

Example 5.6. A wide flange rolled steel section (SC series) of length 3.75 m is to be 
selected to support an axial compressive force of 525 kN and a single-end bending 
moment ({J = 0) of 5.0kNm. Assume the effective length coefficient K = 0.8. 
The material has yield strength and modulus of elasticity of 250 MPa and 200 GPa, 
respectively. It is specified that the allowable axial stress (in absence of bending) 
should be (0.55 /y). and the allowable stress in bending (in absence of axial force) 
should be 0.66 /y. i.e., 

Pa = CpA/y = (0.55)(250)A 

Ma = CbZ/y = (0.66)(250)Z 

From the interaction equation 

!_ + M(~) = 1.0 
Pa Ma 

where amplification factor~ depends upon P/ Pe,a 

p p 
= 

Pe,a 0.55[1l'2 (200000)//(0.8 X 3750)2] 

(525 X 103) 432205 
= 0.55[Jr2(200000)//(0.8 x 3750)2] = I 

The suitable section can be determined by trial and modification. Various trials are 
listed in Table 5.7. The terms in the last column of table are the sum of the two terms 
of the left-hand side of the interaction equation. The section whose value is closest 
to 1.0 (but slightly less) will be the most desirable section. For this example the most 
appropriate section in SC 150. 

Table 5.7. Interaction values for the trial sections 

Section A lx Zx PfPe,a s MoW/Ma PfPa (7) + (8) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
X l(f x1<P 

SC140 4240 1470 211 0.296 1.421 0.204 0.901 1.105 

SC150 4740 1970 259 0.221 1.284 0.152 0.805 0.955 

SC160 5340 2420 303 0.180 1.219 0.122 0.715 0.837 
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Example 5.7. A structural aluminium round tube of 125 mm external diameter and 
8 mm thickness is subjected to an eccentrically applied compressive axial load of 
5 kN. At one end of the member the eccentricity is e while at the other end it is zero 
(i.e., f3 = 0). The yield strength of the material is 25 N jmm2• Determine the limiting 
value of eccentricity that can be accepted over a length of 2.4 m with a load factor of 
safety of 1.9 against attainment of yield strength. Take E = 6.0kNjmm2• 

For the given section: 

Area of cross-section, A = 2940.53 mm2 . 

Second moment of area, I = 5055.14 x 103 mm4 

Section modulus, Z = 80.88 x 103 mm3 

Radius of gyration, r = 41.46 mm 

Distance of extreme fibre, c = 62.50 mm 

The form of interaction equation involving eccentricity is given by (5.60) . 

.!._ [1 + (ec) sec(!_ {P)] = 1.0 
Py r2 2r V EA 

Therefore, 

To ensure the stipulated load factor of safety, the applied load of 5 kN will be increased 
to 9.5 kN and the analysis is carried out at that prorated value. 

( ;r fix) = 0.00028 and cos ( ;r fix) ~ 1.0 

Py 25 x 2940.53 
p = 9.5 X 1Q3 = 7.738 

Thus, 

[ (41.46)2 ] 
e = (7.738- 1) (1) = 185.32mm. 

62.5 

5. 7 Problems 

Problem 5.1. A beam-column is subjected to two loads of equal magnitude W acting 
at distanced from either support as shown in Fig. P.5.1. Determine the equation of 
the elastic curve and the end rotations. 
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w w 
d d .. .. I 

P.S.l 

[Ans. 

y(x) =(~)sec a2L cosaL (~- ~) sinax- ax, 0 < x < d 

eA = Bs = y'(O) =(;)sec a~ cosaL (~- ~)- 1 J 

Problem 5.2. A simply supported beam with an over-hang is subjected to an axial 
compressive force P, and a lateral load W at its free end as shown in the Fig. P.5.2. 
Determine the equation of the elastic curve and rotations at the support. 

w 

p z L p 

EI ~ EI 

.I I .. 2U3 
.. j .. U3 

P.5.2 

Problem 5.3. A cantilever beam of length L, bending stiffness EI, and cross­
sectional area A is subjected to a lateralloadW at the free-end. In addition it carries 
(i) an axial thrust, and (ii) an axial tensile force. Derive the equations of elastic curve. 
If Ymax is the deflection at the free end of the cantilever, plot the variation of Ymax as 
a function of PjW. 

Problem 5.4. A simply supported beam of length L and bending stiffness EI is 
subjected to an axial thrust P, and a concentrated load W at the mid-span as 
shown in Fig. P.5.4. Obtain approximations for the elastic curve using the series 
y(x) = L an cos(mrxj L), n = 0, 1, 2, ... (origin at mid-span) with the principle of 
minimum potential energy. 



5.7 Problems 207 

y 

L. 
w 

p p 

EI 

L/2 ~I J L 

P.5.4 

Problem 5.5. A simply supported beam oflength L, bending stiffness EI is subjected 
to an axial thrust P, and two end moments Mo and f3Mo at the left and right supports, 
respectively, as shown in Fig. P.5.5. Using the series y(x) = L an sin(mrx/ L), 
n = 1, 2, 3, ... obtain approximations for the elastic curve based on principle of 
minimum potential energy. 

y 

Mo t-, 
~Mo 

p (z ~) p 
EI 

I~ L ~I 
P.S.S 

Problem 5.6. A simply supported beam oflength L, bending stiffness EI is subjected 
to an axial thrust P, and a uniformly varying distributed load Wx = w0 (x/ L) as shown 
in Fig. P.5.6. Derive the expressions for elastic curve, maximum deflection and end 
slopes. 

Problem 5.7. Estimate the first critical value of the axial thrust in the cantilever of 
constant cross-section with elastic supports as shown in Fig. P.5.7. 
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y 

Wx = wo(x!L) 

p p 

X 

L 

P.5.6 

/ 
EI 

p 

(k 0 = 3EI!L3) 

I. L/3 L/3 L/3 

P.5.7 

Problem 5.8. Estimate the first critical value of end thrust P in a fixed-hinged strut 
of constant cross-section supported by an elastic medium of constant stiffness, k = 
rr4 EI/3L 4 as shown in Fig. P.5.8. 

[Hint: The problem is first degree redundant with critical negative modulus value of 
-237.8 EI/ L 4}. 

L 

P.5.8 
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Problem 5.9. Calculate the first critical negative value of k for the beam of constant 
cross-section supported on a continuous elastic medium with end conditions as: 
(i) fixed-free, and (ii) fixed-fixed. 

[Ans. (i) kt = -123.6 Elf L 4, and (ii) kt = -500.5 Elf L 4]. 

Problem 5.10. Estimate the first critical value of the axial load P acting on a can­
tilever of constant stiffness EI which is supported on an elastic medium whose 
modulus varies linearly from 0 at the free-end to a maximum of 170 E I I L 4 at the 
fixed end as shown in Fig. P.5.10. Use (i) Energy method, and (ii) Numerical integra­
tion for solution. 

[Ans. 6.0 Elf L2 ]. 

y 

t ..,.x 
L 

kx = (170EIIL4 )[1- (x!L)] 

P.5.10 

p 

Problem 5.11. In the cross-section of part of idealized structure shown in Fig. P.5.11, 
the wall 0-1 is built monolithic with the horizontal slab of thickness d with moment 
of inertia of /0 • The thickness of wall is reduced uniformly from d at the junction with 
the horizontal slab to d/2 at the top with outside face being vertical. The structure is 
idealized as simply supported on the continuous knife edges at 0 and 2 and assumed 
to be acting at the centre line of the members. A continuous vertical knife edge load 
of value w = EI0 j2L2 per unit length is applied at the centre of the top of the 
wall. Estimate the transverse deflections in the wall and draw the bending moment 
diagram. 

[Hint: This is a case with initial eccentricity which vary from 0 at the top of the wall 
to d/4 at the base. The .first critical value ofwcr,l = 1.19 Elof2L2 and Yt = 2.28a] 

Problem 5.12. A rigid frame shown in Fig. P.5.12 consists of two identical members 
0-1 and 1-2, each having same uniform taper. The moment of inertia varies from Io at 
the hinged-end to 5/o at the rigid-joint 1. Estimate the first critical value of the axial 
thrust P. 
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(d/2) 

L 

I 
0 

1=(10 /8) 

L/2 

P.S.ll 

d 

~I 

[Hint: Treat the tapered horizontal member 1-2 as simply supported with a moment 
Mo acting at the joint 1]. 

Problem 5.13. A SC200 rolled steel beam-column of length 9 m, pin-connected at 
the ends is laterally supported against weaker direction of bending. In addition to an 
axial compressive force P applied through the centroid of the section at the ends, the 
member is subjected to an end-moment Moat one end of the member. Determine 
the value of Mo for P = 50kN. Assume E = 200kNjmm2, jy = 250Njmm2 and 
desired factor of safety of 1.05. 

Problem 5.14. Design a beam-column member oflength 3. 75 m subjected to an axial 
force of 800kN, and end moments Mx = 2.5kNm and My = 2.5kNm. Assume 
effective length coefficient K = 0.7 and Fy = 250Njmm2 • 

[Ans. SC200 section is adequate]. 

Problem 5.15. A column of length 3.5 min a multistorey non-sway building frame 
is subjected to an axial force of 725 kN and a major axis moment Mx of 80 kNm 
at both the ends. At the top and bottom joints of the column L kc and L kb values 
are 6, 20 and 6, 18, respectively. If the section HB300 is readily available, check its 
adequacy for the present situation. 
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p 

L 

L 

P.5.12 

p 

L/2 

2I 

L/2 

P.5.16 
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Problem 5.16. A vertical cantilever column of constant cross-section is strengthened 
by a horizontal beam at its mid-point as shown in the Fig. P.5.16. Estimate the first 
critical value of axial compression in the column for buckling of the column in the 
plane perpendicular to the one containing column and the beam, when the horizontal 
beam is (i) simply supported, and (ii) fixed at the ends. 

[Hint: The beam will act as an elastic support of stiffness k at the mid-point of the 
column. k is equal to (i) 48 Elf L3 and (ii) 192 Elf L 3.] 



6 

Stability Analysis of Frames 

6.1 Introduction 

In the previous chapters the stability of column, and beam-column was examined 
by treating them as independent or isolated members with appropriate boundary 
conditions. The simple frames have been treated as struts or beam-columns with 
elastically restrained ends wherein the effect of the connecting members has been 
modelled by end springs. However, in practice the columns, beams, and beam­
columns are normally rigidly joined together to make skeletal structure called a frame 
in which the total structure is called upon to withstand the applied loads. In these 
rigid-jointed frames, the end conditions of a member and hence its effective length 
depends upon the relative stiffness of the members meeting at the ends and that of 
member itself. Moreover, in a frame the deflection even in a single member due to 
buckling causes distortion in all the members. Thus, the response of the frame needs 
be examined in its totality wherein actual buckling of total frame is considered. In 
this chapter the stability analysis of the frames using classical differential equation 
method, semi-geometrical method, matrix method and modified moment distribution 
method etc. has been described. 

6.2 Classical Approach 

In this section classical differential equation method has been used to obtain char­
acteristic or stability equations for continuous columns, beam-columns, and frames. 
The solution to these equations yields the critical loads. 

6.2.1 Continuous Columns and Beam-Columns 

Continuous columns and beam-columns are the simplest forms of a rigid-jointed 
frame. For illustration consider two-span continuous column ABC shown in Fig. 6.1 
which is statically indeterminate to the first degree. The bending moment at the 

M. L. Gambhir, Stability Analysis and Design of Structures
© Springer-Verlag Berlin Heidelberg 2004
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(a) 

S's 

(b) 

Fig. 6.1a,b. Two-span continuous beam-column, with both spans loaded. a Structure and its 
buckling mode, b both spans considered simply supported 

rigid intermediate support is taken to be the redundant action. The sagging moment 
producing compression on the top is considered positive and the angle of rotation in 
the direction of positive moment is taken to be positive. The axial thrust and flexural 
rigidity remain constant within each span but are allowed to vary from span to span. 

The continuity or compatibility condition to be satisfied by the moment M at the 
interior support B is 

en = e~ or en - e~ = 0 (6.1) 

where en and e~ are the angles of rotation at the support B obtained by treating each 
of the spans AB and BC to be simply supported beam-column with an end-moment 
as shown in Fig. 6.1b. The expressions for en and e~ are given by (5.18). 

where 

Similarly 



6.2 Classical Approach 215 

where 

VFz = (a2~2) 

Substituting in (6.1) 

( M L 1 ) [ ( h ) ( Lz) J _ O 3Eh f/J(VF1) + /z L1 f/J(VFz) -

Since (MLd(3Efi)) =j:. 0 the characteristic equation obtained is 

q;(¥Fl) + ( ~:) ( ~~) f/J(VFz) = 0 (6.2) 

Let Pz = J...P1 where).. is a known constant. Then 

¥Fz = ro/1 where y = ( ~~) [ >.. ( ~:) r12 
Using these substitutions in (6.2), the characteristic equation reduces to 

q;(¥Fd + (~:) (~~) q;(ro/1) = o (6.3) 

The roots of this equation provide the critical loads for buckling by flexure of the 
two-span continuous beam-columns. As a typical case consider Lz = L1 = L, 
]z = h = I and Pz = P1 = P i.e. ).. = 1. 

In this case the member will buckle as shown in Fig. 6.1a and the bending 
moment at the middle support will be zero and each of the spans can be treated as 
hinged-hinged strut. Therefore, 

rr:2EI 
Per= ----u-

As a variation consider the case of a typical continuous beam with unequal spans of 

L1 = (2/3)Lz = L , ]z = h = I and ).. = 1 . 

Therefore, 

The Eqs. (6.3) and (5.18) give 

q;(¥F) + (~) q; ( 3:) = o 

[2~ (2~ - tan
1
2¥F) + (~) (3~) (3~ - tan

1
3¥F)] = 0 

[ (2~ - tan
1
2¥F) + (3~ - tan

1
3¥F)] = 0 
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Using trial and modification procedure the smallest root obtained is 21/1 = 2.427. 
Therefore, 21/1 = aL = 2.427 or 

EI n 2EI 
Per= (5.89)-L2 = -(1-.2-9_4_L-=-)2 

In another case consider the same two-span member with P2 = 0 i.e. only the 
span AB is subjected to the axial force P1. The rotations at the interior support Bin 
this case are: 

Substituting these expressions in (6.1), 

Since M 1- 0, the characteristic equation becomes 

(6.4) 

Substituting (5.18) in (6.4) 

21/11 cot 21/11 = 1 + ( ~) ( ~:) ( ~~) (21jJJ)2 = 0 (6.5) 

The solution of (6.5) provides the critical load. 
As a typical case consider L1 = 2Lz/3 = L, and [z = h = /. Equation (6.5) 

reduces to 

21/II cot 21/11 = 1 + (1 /2) (21jJJ) 2 

Using trial and modification procedure the smallest root of (6.6) is given by 

Therefore, 

21/11 = a 1L = 3.5909 where a 1 = 

EI n 2 EI 
Per = (12.895) L2 = (0.875L)Z 

I 

(6.6) 

It should be noted that the adjoining uncompressed member restrains the collapse of 
loaded span. 

The procedure can be extended to a continuous beam-column having any num­
ber of spans. Consider a n-span continuous beam-column supported on n + 1 rigid 
supports 1, 2, 3, ... , n + 1 with spans of length L1, L 2 , L 3 , ••• , Ln and flexural 
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1l ~ 7Ji .., L 

(i-1) ~--I .. -------=L:...!j.::!)!___ ______ 41 .. ·~----___:L::..!.._i -----i .. -~1 (i+ 1) 

Fig. 6.2. Two consecutive spans of a continuous beam-column 

rigidities of Eft, Eh Eh ... , Eln, respectively. The moments at the supports are 
denoted by M1, M2, M3, ... , Mn+I· Consider two consecutive spans between sup-
ports i - 1, i and i + 1 as shown in Fig. 6.2. The continuity or compatibility condition 
at the intermediate support i requires the deflection curves of two spans to have the 
same tangent i. e. 0; = o;' where 

Here, Oo; and Obi represent the rotations at the intermediate support i in the two 
adjacent spans due to lateral loads. The continuity condition 0; = 0[, gives 

(6.7) 

Equation (6.7) is the general form of the three-moment equation at the interior sup­
port i. The moment quantities are positive when they cause compression at the top 
fibres of the beam-column. In applying the three-moment equation to a particular 
beam-column, the interior supports, such as 2, 3, 4, etc. are located successively and 
as many equations as the unknown redundant support moments are written. A si­
multaneous solution of the equations for the unknown moments yields the required 
result. The application of the method is illustrated in the following examples. 

Example 6.1. A two-span continuous beam-column ABC of constant cross-section 
shown in Fig. 6.3 supports a uniformly distributed load of intensity w over the 
span BC. Estimate the moment at the support B, if the member is subjected to an 
axial thrust of magnitude 4 E I j L 2• 

For this problem M;-I = Mi+I = 0 and M; = M. The quantities pertaining to 
the spans AB and BC are represented by the subscripts 1 and 2, respectively. Thus 
for the span AB, 
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w/unit length 

A i2 I I I I I It p 

~ 
P(=4EIJL2 ) 

EI EI 

I· L ·I· l.SL ·I 
Fig. 6.3. Two-span continuous beam-column 

and = aL = ~ fp = ~ [ (4EI/L2) ] 112 = 1.0 
Oos=O 1/11 2 2VPe 2 (x2EJjL2) 

(/J1(1/IJ) = (_2__) [-1-- - 1-] = 1.4365 
21/11 21/11 tan 21/11 

Similarly for the span BC 

x [ (4E//L2) ]1/2 
1/12 = 2 [x2EJ/(1.5L)2] = 1.5 

e' = [w(l.5L)3 ] [3(tan1/f2 -1/12)] = [w(1.5L)3 ] (11.201) = 1.5751 [wL 3
] 

08 24El 1/Ji 24El El 

(/J1 (1/12) = (_2__) [-1- - - 1-] = 7.3486 
21/12 21/12 tan 21/12 

Substituting these values in (6.7) 

[ ( 1.5L) (/) J 6£/ (1.5751wL3 ) 2M (1.4365) + L I (7.3486) = -L EI 

Therefore, M = (0.3793)wL2 

The value of support moment in the absence of axial thrust is 0.1125wL 2. Thus 
the support moment increases by 237.16 per cent due to the presence of axial force. 

Example 6.2. A two-span continuous beam-column is clamped at the end C and 
carries an axial thrust P as shown in Fig. 6.4. Determine Per• the first critical value 
of P that will cause the beam-column to buckle. 

In this case there are two redundant moments M 8 and Me which require the 
application of three moment's equation at B and C. 
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Wz 
w 1 ~ P1 B Pz 

PI 
A I I I l c~p2 
~ II zr Iz 

1- Ll ·I· Lz ·I 
Fig. 6.4. Two-span continuous beam-column with clamped end 

In the matrix form these equation can be expressed as 

[
2 [ ~1 ( 1/11) + { ( ~:) ( ~:) ~1 ( 1/lz)}] 

~(1/lz) 

{(~:) (~:)~z(1fr2)}] {~~} 
2 ~1 (1/lz) 

= -1 6
::

1 
(OoB + 0~8)} 

6E[z 
--Ooc 

Lz 

(6.8) 

At critical load the redundant moments approach infinity i. e. the determinant of 
matrix of coefficients on left hand side of (6.8) must vanish. Therefore, 

(6.9) 

2 ~1 (1/lz) 

The expansion of determinant gives the characteristic equation. It should be noted 
that the critical load is independent of lateral load acting on the beam-column. As 
a typical case consider 

L1 = 2Lz/3 = L; It= lz =I and P1 = Pz = P 

Therefore, 

[( LLz1) (llz1 )] -- 1.5 ·, 21/fz (P 1/11 = 3 = 1/1 since a1 = az = V Ei 

The characteristic equation obtained by the expansion of determinant is: 

4[~1 (1/1) + 1.5~1 (1.51/1)] ~1 (1.51/f) - 1.5[~z(l.51/f)]2 = 0 

Substituting ( 5 .18) and by trial and modification the smallest root of the characteristic 
equation is 21/1 = 5.499. Therefore, 

21/1 = aL = 5.499 
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Hence, 

6.2.2 Rigid-Frames 

The buckling of a rigid-jointed frame implies the buckling of its compression mem­
bers. In simple cases, the beam-column members with end moments can be easily 
isolated. The results for the beam-column derived in Chap. 5 can be readily applied 
to determine the critical load at the buckling for this isolated framed member. For il­
lustration consider the rigid frame ABCD shown in Fig. 6.5a. The free-body diagram 
of the isolated member AB is shown in Fig. 6.5b. This member can be treated as 
a beam-column subjected to an end moment Mo and axial thrust P at an eccentricity 
e as shown in Fig. 6.5b. Using results derived earlier in (5.17), the rotation Oo at the 
joint B is given by (6.9). 

e Mo 
Oo = L(aLcosecaL -1) + PL (aLcotaL -1) 

For the beam element BC 

2Eft 
Mo = --Oo 

Lt 

Eliminating Mo from (6.10) and (6.11) 

00 = (ejL)(aLcosecaL- 1) 

(1/ PL)(2Eltf Lt)O - aL cotaL) + 1 

p p 

Mc=Ma=Mo 

(a) (b) 

p 

(6.10) 

(6.11) 

(6.12) 

Fig. 6.5a,b. Rigid frame subjected to end moments and axial thrust. a Frame, b isolated 
beam-column 
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At the buckling of the frame rotation becomes very large i.e. it tends to infinity. This 
occurs when the denominator of (6.12) vanishes, that is 

(aLcotaL -1) = PLL 1 = ~ (.!._) [(!.._) (L1)] L2 
2Eh 2 EI h L 

= ~(aL)2[(~) (~1 )] 
Thus 

aLcotaL = 1 + ~(aL)2 [ (~) ( ~1 ) J 
For a typical case where I/ L =hi L2, (6.13) reduces to 

1 aL 
cotaL =-+­

aL 2 

(6.13) 

(6.14) 

By trial and modification, the lowest root of transcendental equation is given by 
aL = 3.59. Therefore, 

In another variation of the above problem consider the symmetric closed frame shown 
in Fig. 6.6 wherein lateral joint movement is prevented. When the axial thrust attains 
the critical value, the columns AB and CD tend to deflect laterally as shown in the 
figure, resulting in bending of the beams AC and BD which in turn apply restraining 
moments at the column ends. Thus these compression members may be treated as 
columns with elastic restraints. The rotation at the ends of the columns are given by 
(5.20) 

MAL MnL 
(}A = 3EI cp1 (1/1) + 6EI cp2 (1/l) and 

MAL MnL 
(}B = 6EI ~(1/1) + 3EI cp1(1/l) (6.15) 

where 

3 ( 1 1 ) 
cp1 ( 1/1) = 21/1 21/1 - tan 21/1 and 

6 ( 1 1 ) ~ ( 1/1) = 21/1 sin 21/1 - 21/1 

In which 21/1 = aL = 1r J P / Pe and Pe = 1r2 E I/ L 2 • In the present problem due to 
symmetry Mn = -MA = Mo and (}B = -{}A =eo. For compatibility, the rotation eo 
of the column must be the same as that of horizontal member which is given by 
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(L,I) 
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p 

(a) 
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I (L, I) 

I 

p 
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p 

(b) 

Fig. 6.6a,b. Non-sway buckling mode of closed frame. a Closed frame, b isolated beam column 

MoL1 
Bo=---

2£/I 

Substituting this value of Bo in any one of (6.15) e. g., 

MoL1 MoL 
Bo = - 2Eh = 6EI [2<P1 (1/f) + <P2 (1/f)] 

= ( ~;~) (2:) Cin
1
21{f - tan

1
21{f) 

or 

(6.16) 

For a typical case where the members of the frame are identical i.e. L 1 = L and 
h = I, (6.16) reduce to: 

1 ( 1 1 ) 1 
21/f sin21/f - tan21/f = -2 

or tan 1/f = -1/f (6.17) 
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The lowest root of this transcendental equation is given by 

1/1 = aL/2 = 2.02916 

Therefore, 

(4.0583)2 EI 16.47 EI rr2 EI 
Per= = = L2 L 2 (0.774L)2 

In the preceding discussion the lateral joint displacement of the structures analysed 
has been prevented. The following example will illustrate the procedure to determine 
the buckling load of the frames undergoing lateral displacement or sway. 

Example 6.3. The portal frame shown in Fig. 6.7 is subjected to axial load P. Deter­
mine the critical value of load P if the joints B and C are allowed to undergo lateral 
movement (sway). The deflected configuration is shown in the figure. 

The governing differential equation for the vertical member can be written as 

(d2y) 
EI dx2 = P(o- y) - M 

(d2y) 
or EI dx2 + Py = Po- M (6.18) 

p p p 

B~--------------~c 

(EI,L) (EI,L) 

A D 
/ / 

(a) (b) 

Fig. 6.7a,b. Buckling of a fixed base portal frame. a Symmetrical portal, b sway buckling 
mode 
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This is second-order non-homogeneous ordinary differential equation with constant 
coefficients. Its solution can be expressed as 

y =A sin ax+ Bcosax + (8- ~) (6.19) 

where a 2 = (PIE I). The boundary conditions at x = 0 i.e. y(O) = 0 and y' (0) = 0 
give 

B =- [8- ~] and A= 0 

Thus the elastic curve is given by 

y = [ 8 - ~ J ( 1 - cos ax) (6.20) 

The unknown 8 and M can be evaluated by the additional boundary conditions at 
X=L 

I MLI 
y(L) = 8 and y (L) = 6Eh 

These conditions lead to 

M 
8cosaL + p(l- cosaL) = 0 

and 8asinaL-- a sinaL+-- = 0 M ( LIP) 
P 6Eh 

(6.21) 

For non-trivial solution, the determinant of coefficients of 8 and M I P must vanish. 
That is 

cosaL (1- cosaL) 

=0 
a sinaL ( . LIP) - asmaL+--

6Eh 

(6.22) 

For the given geometry, the transcendental equation can be solved for the critical load 
at buckling. For the typical case where (LI/ II)I(LI I)= 1.0, (6.22) reduces to 

tanaL 1 
= 

aL 6 

By trial and modification the smallest root obtained is aL = 5.53783 and the first 
critical load is given by: 

(5.53783) 2 EI 30.668 EI 
Per= LZ (0.5673L)2 

The following example will illustrate the application of the method to a hinged base 
portal frame. 
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Example 6.4. A symmetrical portal frame hinged at the base is subjected to an axial 
thrust P as shown in Fig. 6.8a. Determine the critical value of load P at the buckling 
of the frame. 

In view of the symmetry of the structure and loading, the frame has been analysed 
for both the symmetric and antisymmetric buckling modes. 

(i) Symmetric mode: In this mode, the joints B and C do not move but undergo the 
rotations. The rotations and hence the moments at these joints are equal in magnitude 
and cause compression at the top of the beam i.e. M 8 = -Me = M. As the ends 
A and D are hinged the support moments are zero. 

Application of (6.7) to the members AB and BC yields 

2Mq;l (1/1) + [ ( ~~) ( ~) J [2q;l (1/11) + f/J2(1/II)] M = 0 (6.23) 

Application of (6.7) to the members BC and CD results in the same (6.23) since the 
structure is symmetric. Further as M i= 0, for non-trivial solution (6.23) reduces to 

2(/JI (1/1) + [ (~I) ( ~) J (2(/JI (1/11) + (/)2(1/11)] = 0 (6.24) 

As there is no axial load in the member BC, 1/11 = I .j PIPe = 0 and hence 
'PI (1/11) = f/J2(1/II) = 1.00, and (6.24) gives 

2~ ( 2~ - tan
1
21/l) + ~ [ ( ~1 ) ( ~)] = 0 (6.25) 

For the given geometry of frame Per can be obtained from the transcendental equation 
(6.25). For the typical case where [(Lt/ L)(// It)] = 1.0, 21/1 = 2.59. The critical 

p p p p p p 

B t---------iC 

(I,L 

(a) (b) (c) 

Fig. 6.8a-c. Buckling of a portal frame hinged at the supports. a Symmetrical portal frame, 
b symmetrical buckling mode, c anti-symmetrical buckling mode 
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load, Per is given by 

(2.59)2 EI 
Per= L2 

(ii) Antisymmetric Mode: In this mode, the joints B and C undergo lateral displace­
ment and hence the vertical members AB and CD undergo rigid body rotation (}0 as 
shown in Fig. 6.8c. Further, the moments at Band Care same, M. The application 
of (6.7) to the members AB and BC gives 

Consider the equilibrium of vertical member AB as a free body 

Therefore, 

For non-trivial solution 

2q;1 (1/r) + { ( ~1 ) ( ~)} {2q;1 (1/rJ)- q;2(1jr1)}- ( ~~;) = 0 (6.27) 

Here 

As there is no axial force in the member BC i.e. Vr1 = 0 and hence q;1 ( ljr1) 
qJ2(1/rJ) = 1.0. Equation (6.27) reduces to 

2: (2~- tan
1
21/r) + [ ( ~1 ) (:)]- (2~)2 = 0 

or co;~Vr _ ~ [ ( ~1 ) (:) J = 0 (6.28) 

This transcendental equation can be used to determine the critical load at the buckling. 
For a typical case when [(LJ/ L)(l/ h)] = 1, the lowest root of the equation is: 
21/r = 1.35. Therefore 
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6.3 Semi-Geometrical Approach 

This approach suggested by Haarman, uses the knowledge of buckled configuration 
of the frame structure made up of axial loaded straight members. The method is 
based on the observation that the elastic curve of an axially loaded, originally straight 
member can be described by a sine curve with respect of a rectangular coordinate 
system having origin at one flex point and one axis directed through the other flex 
point. Application of boundary or compatibility conditions will provide the critical 
value of the load that will cause the structure to buckle. 

Consider the case of a fixed-hinged strut AB shown in Fig. 6.9. One flex point is 
at the hinged support A and the other C is in the column at distance kL (i. e. effective 
length of the strut). With point A as origin, direct the x-axis through the point C 
making an infinitesimally small angle() with initial strut axis. x-axis makes an offset 
of 8 at the fixed support. The y-axis is assumed to be normal to x-axis. 

With the increase in value of axial load P, the strut starts deflecting and at buckling 
the resultant force on the strut P cr becomes inclined since the line of action P must 
pass through the two flex points. For infinitesimal deformation P ~ Per• the equation 
for the elastic curve between the points A and C can be expressed as 

y(x) = A sin(;~) 
and hence 

1 (A:rr) (:rrx) y (x) = kL cos kL 

The geometric boundary conditions are 

y(L)=-8=Asin(::k) i.e. A=- 8 
sin(:rr/k) 

y'(L) = -e =-(I)=(;;) cos (i) 
Substituting (6.31) into (6.32) 

f =- (;;)cos(i) = sin(~/k) (k:)cos(i) 

or tan(i) =I 

y 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

p ~1-----E=: ____ B-f•~ ~:st-~- =-~~It' 
(a) (b) 

Fig. 6.9a,b. Buckling load by Haarman method. a Fixed-hinge strut, b buckling mode 
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By trial and modification (rr/k) = 4.4934 or k ~ 0.6992 = 0.7. Therefore, 

rr2 EI 20.191 EI 
P. - - ----=--
cr- (0.7£)2 - £2 

The method is equally applicable to rigid frames. 

Example 6.5. In the symmetrically loaded portal frame shown in Fig. 6.10, the 
columns have same area of cross-section which is different from that of beam. Deter­
mine the critical value of load P that will cause the frame to buckle. Use Haarman's 
semi geometrical method. 

The frame can buckle in two different modes namely, symmetrical mode without 
side sway and antisymmetrical mode with side sway. 

(i) Symmetrical Mode: The symmetrical buckling configuration is shown in 
Fig. 6.10a where B' and C' represent the flex points. The elastic curve AB' can 
be represented by 

y(x) =A sin(;~) and y'(x) = (;;)cos(;~) (6.33) 

p p 

Per Per 
(EI, L) (EI, L) 

t------~ 
1\ 1\ 

A D \ I \ 

I 
I 

I 
I 

I lp I I Per 

I 
lcr I 

9a 

kL I 0 j 
1--

B 
c 

9a 

y 

Per Per 

(a) (b) 

Fig. 6.10a,b. Buckling of a portal hinged at the support. a Buckling without sidesway, b buck­
ling with sidesway 
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The boundary conditions are 

y(L) =A sin(~)= -8 

and , nA (n) y (L) = -{}- ()B =-cos -
kL k 

where 

es = -{}-~:cos(~)=~ sin(~)-~: cos(~) 
For the horizontal beam with two end moments ( M c = - M B) 

MsL1 
()B - lEh with Ms = Pcr8 

Therefore, 

Pcr8LI PerL lA sin(n/k) 
()B = -- = -------

2£/t 2Elt 

Equating es from (6.34) and (6.35), 

_ PcrLIA sin(n/k) = ~sin(~) _ nA cos(~) 
lE/1 L k kL k 

( ~) cot ( ~) = 1 + ~ ( ~:) [ (f) ( ~11 )] 
or 

(6.34) 

(6.35) 

(6.36) 

For a typical case with It = I and L1 = L, i.e. (ILJ! ltL) = 1, the characteristic 
equation reduces to 

( ~) cot ( ~) = 1 + ~ ( ~ f (6.37) 

By trial and modification, (n/k) = 3.591, i.e. k = 0.8749 and 

n 2 EI 12.895£/ 
p - - ---;:--
cr- (0.8749L)2 - L2 

(ii) Antisymmetrical Mode: The antisymmetrical buckling configuration is shown in 
Fig. 6.10b. For the beam with two end moments (Me= Ms) 

() = (MsLI) = (Pcr8)LI = [n2E/] [ 8L1] 
B 6Elt 6Eh (kL) 2 6Eh 

= (~f (~~~) (6~) (6.38) 
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The equation to elastic curve is assumed to be 

y =A sin(;~) 

For the column the boundary conditions are 

y(L)=8=Asin(~) 

y'(L) = (~~)cos(~)= eB 

Equating eB from (6.38) and (6.39) 

;; cos(~)= (~) 2 (~~{) [ ( 6~) sin(~)] 
cot(~)=(~)(~)(~~{) 

(6.39) 

(6.40) 

For the typical case hiLI =IlL i.e. ILI/(IJL) = 1, the characteristic equation 
reduces to 

(6.41) 

By trial and modification, rr 1 k = 1.3495 i.e. k = 2.328. Therefore, 

rr2 EI 1.821£/ 
P. - - ---;:--

cr - (2.328L)2 - L 2 

Example 6.6. In the closed-frame shown in Fig. 6.11, the vertical members have the 
same EI values and are subjected to equal axial loads. The EI values of horizontal 
members are different from columns as shown in the figure. Determine the critical 
value of load P that will cause the frame to buckle when it is restrained from 
undergoing any horizontal movement. 

Due to the symmetry of the structure the beam end moments are equal and 
opposite i.e. Mv = -MA and Me= -MB. Therefore, 

(6.42) 

where 
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p p p p 

B EI 2 c 

IA EI EI 

EI 1 

Ll 
X 

(a) 

(c) 

Fig. 6.11a-c. Nonsway buckling of a closed frame. a Closed frame, b nonsway buckling mode, 
c geometry of elastic curve 

The equation of elastic curve between two flex points E and F can be expressed as 

. ('JT:X) y = Asm kL 

Therefore, 

1 (AJT:) ('JT:X) y = kL cos kL (6.43) 

Hence, the offsets at the level of column supports A and B are 

liz= -A sin (:~t) 

lit =-A sin ( Jr(x~~ L)) 

= -A {sin ( :7 ) cos CD -cos ( :~t ) sin ( ~)} (6.44) 

For small deformation, eo = (liz - lit) I L. Therefore, 

Oo = - ~ [ { 1 - cos ( ~) } sin ( :7 ) + sin ( ~) cos ( :7 ) ] (6.45) 
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The slopes of the beams at the joints A and B are 

e1 = y'(xt- L) +eo and e2 = -y'(x!)- eo (6.46) 

Substituting for y' (x) and eo from (6.43) and (6.45) into (6.46): 

e1 = ~ [ { ( i) sin ( i) - 1 + cos ( i) } sin ( :~1 ) 

+ { (i) cos (i)-sin (i)} cos (:~1 ) J (6.47) 

e2 = ~ [ { 1 - cos ( i)} sin ( :7) + {sin ( i) - ( i)} cos ( :~1 ) J (6.48) 

Substituting 81 and 82 from (6.44) into (6.42) 

A [I (n)2 (L1/) { . (7rXt) (n) (7rXt) . (n)}] e1 = - L 2 k Lit sm kL cos k - cos kL sm k (6.49) 

e2 = -~[~(if(~~~) sin (:~1 ) J (6.50) 

Eliminating e1 and e2 from (6.47) to (6.50) and for a non-trivial solution i.e . 

. (JrXt) (JrXt) 
sm kL = cos kL "I= 0 

Following eigen value equation is obtained. 

~ (~~y (~~;J (ir +/(~~) [<h/~zh)] [I- (i)cot(i)J 

+ [tan G~J; (~) J = 1 (6.51) 

As a typical case consider L 1 = L and /2 = It = /, the characteristic equation 
reduces to 

By trial and modification 

( i) = 4.2098 and hence k = 0. 7 4626 

Therefore, 

n 2 E/ 17.722£/ 
P. - - --::-;;--
cr- (0.74626L)2 - L2 
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6.4 Stiffness Method 

The classical differential equation and semi-geometrical approaches discussed in the 
preceding sections are complex and can conveniently be used only for the analysis 
of simple frames. The more general basic stiffness (or displacement) approach which 
considers the equilibrium of forces or moments provides an extremely powerful tool 
for the stability analysis of framed structures. The stiffness formulation normally used 
in matrix form yields unknown nodal displacements which are frequently referred to 
as kinematic redundant. For the purpose of this section it is presumed that the reader 
has the basic knowledge of matrix stiffness or displacement method. 

6.4.1 Criterion for Determination of Critical Load 

Consider the rigid-jointed structure shown in Fig. 6.12a. The moment Mo acting on 
the joint 0 causes the joint to rotate by an angle Oo. The stiffness of the joint 0 is given 
by 

ko = kot + koz + k03 (6.53) 

2 

3 
/ 

(a) 

y 
(D2,F2) (03,F3) 

B 

AA 
(D4,F4) A a 

X 

I· L ·I 
(b) 

Fig. 6.12a,b. General displacements and signs convention. a Rotation at a rigid joint, b general 
displacement and forces 
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Therefore, 

Oo = Mo/ko 

In the above discussion it is presumed that there is no axial load present in the 
members of the structure. The effect of axial compression is to reduce the stiffness of 
the member. As the applied loads on the structure increase, the member forces increase 
and the overall resistance of the structure to any random disturbance decreases. At the 
critical load, the structure offers no resistance to the disturbance and the configuration 
of the structure is not unique i. e. any displaced position may be maintained without 
additional load. In the above referred rigid-jointed frame, if the loading is increased 
continuously, ko decreases and Oo continues to increase till at some multiple Ne of 
the working load (i. e. at critical load) the frame will collapse because of elastic 
instability at the joint 0. At this stage the rotation Oo becomes infinite. This suggests 
a criterion for elastic instability, viz, that at the critical load displacements (rotation 
in this case) increase infinitely. For this condition to take place, the stiffness of the 
joint must reduce to a vanishingly small value. 

For a structure with several rigid-joints, it is necessary to formulate the stiffness 
matrix of the entire structure. However, it should be noted that the structure stiffness 
matrix [ K] for the structure in which members are subjected to axial load is different 
from the conventional stiffness matrix [K]. The relationship of the externally applied 
loading to the displacements can be expressed as 

where 

{F} = [K]{D} 

or {D} = [Kr1{F} = [adj~K]J {F} 
IKI 

{F} =vector of joint loads 

{D} =joint displacements and 

[K] =structure stiffness matrix. 

(6.54) 

It should be noted that in the solution for displacement {D}, the denominator will 
always be determinant of the stiffness matrix [K]. For any displacement to become in­
finitely large, I K I must vanish and this condition means that every other displacement 
in the frame must also tend to infinity. Therefore, for elastic instability the condition 
is IKI = 0 i.e. the stiffness matrix is singular. This equation usually referred to as 
characteristic equation may admit several different solutions of elastic instability load 
factor Ne. but smallest of these is of course, the value usually required. The higher 
eigen-values correspond to different types of external restraints acting on the struc­
ture and are therefore invalid unless these restraints can exist. Therefore, a solution 
should be checked to see if it implies any superfluous restraint. 

As explained above the influence of compressive axial force is to reduce member's 
overall effective bending resistance and thereby to cause greater deformations. Tensile 
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forces on the other hand reduce deformations. For a constant value of axial force P 
less than its critical value P cr. the stiffness can be defined including the influence 
of axial thrust. Usually the expressions for the various bending stiffness coefficients 
are expressed as the product of stiffness with no axial thrust present times the axial 
correction or magnification factors. These correction or modification factors are 
function of the ratio PIPe where P is the axial force in the member and Pe is the 
Euler's buckling load with both ends of the member being presumed pinned. 

6.4.2 Stiffness Matrix Including Axial Force Effects 

In the application of stiffness matrix method the real structure is modelled or replaced 
by a set of elements that are connected to one another at their node points. The 
load-deformation characteristics of the elements are pre-determined and described 
by element or member stiffness matrix [k]. As in the case of conventional analysis 
any element of the matrix, say kij, is defined as the force in ith direction due to unit 
displacement injth direction- with all other displacements maintained at zero, i.e., 
the subscript i refers to the resulting or imposed force and the j to the deformation 
parameter. Thus the matrix equation that describes the equilibrium of an element AB 
shown in Fig. 6.12b is given by 

(6.55) 

where the subscripts 1, 2, 3 and 4 are the directions shown in the Fig. 6.12b. [k] is 
local element stiffness matrix, {D} is displacement vector and {F} the corresponding 
externally applied force vector. 

Consider an axially loaded member AB of uniform cross-section of length L and 
having a bending rigidity EI as shown in the Fig. 6.13. For a member with no axial 
force, the stiffness influence coefficients are given in Fig. 6.13a: 

For Dt(= L1A) = 1 

12E/ 6EI 12E/ k _ 6EI 
k 11 = ----v- ' kzt = L2 , k3t = -----v- ' and 41- L2 (6.56) 

For Dz(= 8A) = 1 

6EI 4EI 6EI k4z = 2EI ktz = L2 , kzz= L, k32 = -- and (6.57) 
L2 L 

For D3(= L1B) = 1 

12E/ 
k13 = - ----v- ' 6EI 

kz3 =- L2 , 
k _ 12E/ 
33- L3 

6EI 
and k43 = ---

L2 
(6.58) 
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(iii) 

6El!I3 

(iv) 

(a) (b) 

Fig. 6.13a,b. Stiffness influence coefficients. a Without axial load, b with axial load 

For D4(= BB) = 1 

6£1 
k14 = L 2 , 

2£/ 
k24= T, 

6EI 
k34 = --­L2 

4£/ 
and k44 = -­

L 
(6.59) 

When axial force is also present, the stiffness influence coefficients as shown in 
Fig. 6.13b can be expressed as 
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- (EI) kll = s L3 , 
- (EI) k21 = q L2 , - (EI) k31 = -s L 3 

- (EI) and k41 = q L2 

- (EI) kl3 = -s L3 , - (EI) - (EI) k23 = -q L2 , k33 = s L3 - (EI) and k43 = -q L2 

(6.60) 

and so on. Here the correction or modification factors r, rc, q and s are functions 

of P, E, I and L, and are termed stability coefficients. The factors r and rc are 

termed rotational coefficients, and q and s are the shear coefficients. Thus the force­

displacement relationship for an element in terms of stiffness matrix which is function 

of P / Pe is given by 

[ 

s q 

EI q r ( L) -s -q 

q rc 

-s 

-q 
s 

-q 

(6.61) 

The size of stiffness matrix can be reduced by letting Q 8 = - Q A = Q and combining 

the transverse displacements L1A and L1B into a relative term L1 (= L1A - L1B) . Thus 

we obtain 

(6.62) 

The elements of stiffness matrix reduce to those of conventional stiffness matrix 

when P = 0. The element stiffness matrices can be assembled into a structure 

stiffness matrix [K] which can be used to determine the critical loading. The effects 

of elastic supports can be considered by treating the springs as members while 

formulating structure stiffness matrix. To illustrate the application of matrix approach 

to the stability analysis problems, consider the continuous, two-span strut AC of 

uniform EI shown in Fig. 6.14. The structure has three-degrees-of-freedom: one 

lateral displacement L1t and two rotations 11, and l12. The strut is discretized into two 

elements AB and BC. The element stiffness matrices are obtained from the (6.61) 

for the relevant degrees of freedom. 

Element#l Node 1 Node2 
,.-"'-., ,.-"'-., 

L1tf L 11, L12/L l12 

[k], ~ (~), [ 

s q -s q 

l 
L1t/L } 1 

q r -q rc 11, 
(6.63) 

-s -q s -q L12/L 
} 2 

q rc -q r 112 
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Element#2 
Node2 Node3 

,-"-., ,-"-., 

.t12/ L e2 .t13/ L e3 

[kh ~ ( ~), [ 

s q -s q l ~~L l 2 
q r -q rc 

(6.64) 
-s -q s -q .tJ.3j L } 

3 
q rc -q r e3 

Thus the structure stiffness matrix [K] = [k]J + [kh is given by 

Node 1 Node2 

s q 0 q 
q r 0 rc 

- (EI) [K] = L 0 0 0+0 0+0 0 0 
q rc 0+0 r+r 0 0 :C) 

2r 
0 0 0 0 
0 0 0 0 

(6.65) 

For elastic instability: 

(6.66) 

Use trial and modification procedure with values of the stability functions obtained 
from table given in Appendix A.1 for various values of parameters, p = (P/ Pe). For 

p = 0.14: [k] = 5.0397 

p = 0.16: [K] = -0.3543 

By interpolation [K] = 0, when p = 0.1587. Therefore, 

1.5663£/ 
£2 

Let us consider the case when the end C is hinged instead of being fixed. With this 
additional rotation the number of degrees-of-freedom increases to four. Following 
the above procedure, equilibrium equations of the structure in this case would be: 

(6.67) 
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p 
~ 

CD B 0 cl 
EI ~ EI 

, .. L ·I· L ·I 
(a) 

r 
A ) 

e, CD ~le2 0 
cl 

J., CD 
[i] 

±: 
B 

+:,0 
0 

±=0 
63=0 

B[Ij c 
[I] 0 

(b) 

Fig. 6.14a,b. Formulation of structure stiffness matrix. a Continuous two-span strut, b degrees­

of-freedom of the elements. CD element number, OJ node number 

Due to the presence of hinge at the node 3, M 3 = 0, hence from the fourth equilibrium 

equation: rdh + r83 = 0 or 83 = -cez. Substituting this value of 83 in third 
equilibrium equation, the force-displacement relation reduces to 

( ~/) [; ; 
q rc 

q ] l.!J./L) {FL) rc 81 = Mt 
2r- rc2 8z Mz 

(6.68) 

The quantity 2r- rc2 = r + [r(1-c2)] = r+r'. Thus, for this case, elastic instability 
occurs when 

s q 

IKI = q r 

q 

rc 

q rc (r + r') 

= q2[2rc- (2r + r')] + s[r(r + r') - (rc)2] = 0 (6.69) 

By trial and modification for 

p = 0.12: [K] = 4.0863 

p = 0.14: [K] = -0.5316 

Hence by interpolation for [K] = 0, p = 0.1377 and 

- (0 1377)n2E/- 1.359£/ 
Per- . £2 - £2 
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It is evident that the matrix approach is a very powerful tool for analysis of structures 
when used in conjunction with computers. However, in the following sections a more 
direct approach is used. 

6.5 Stability Functions 

6.5.1 Member with No Lateral Displacement 

For the structural element AB with the loading shown in the Fig. 6.13b-ii 

(6.70) 

The carry-over effect is defined by the relationship 

MB k21 
c=-=-

MA k11 
(6.71) 

In the absence of lateral loads along the element, the governing differential equation 
can be written as 

(6.72) 

where a 2 = J1 . The general solution to this fourth-order differential equation is 

y =A sin ax+ Bcosax + C (i-) + D (6.73) 

For an imposed unit rotation at the end A (i.e. ()A = 1) while the end B is fixed 
against rotation, the boundary conditions to be satisfied at 

x = 0 : y(O) = 0 and y' (0) = 1 , 

x = L: y(L) = 0 and y'(L) = 0. (6.74) 

On substitution of general solution in the boundary conditions the values of integration 
constants are obtained as follows: 

y(O) = B + D = 0 i.e. 

'(0) A C 1 . y = a+ L = 1.e. 

D=-B 

c 
- = 1-Aa 
L 

y(L) =A sinaL+ BcosaL + C + D 

= A(sinaL- aL) + B(cosaL- 1) + L = 0 

1 • c 
y (L) = aAcosaL- aBsmaL + L 

= Aa(cosaL -1)- BasinaL+ 1 = 0 

(6.75) 

(6.76) 
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Solving (6.75) and (6.76) for A and B 

1- aL sinaL- cosaL 
A=--------------------

a(2- 2cosaL- aL sinaL) 
(6.77) 

sinaL -aLcosaL 
B= --------------------

a(2- 2cosaL- aL sinaL) 
(6.78) 

The end moments are given by 

11 2 (EI) [ aL(sinaL -aLcosaL)] MA =-Ely (0) = EI(a B)= --
L 2- 2cosaL- aL sinaL 

= r(l/1) ( ~/) (6.79) 

MB = -Ely"(L) = Ela2(A sinaL+ BcosaL) 

( EI) [ aL(aL- sinaL) ] 
= L 2- 2cosaL- aL sinaL 

= rc(l/1) ( ~/) (6.80) 

Since the forces MA and MB are due to unit rotation, they represent corresponding 
stiffness influence coefficients. Thus 

- (EI) kn = r L , - (EI) k21 = rc L (6.81) 

where 

[ 1/I(S - 1/IC) ] 
r = (2- 2C - 1/IS) ' 

rc- [ 1/1(1/1- S) ] 
(2- 2C- 1/IS) 

S = sin 1/1 , C = cos 1/1 , 1/1 = aL = :rr {P = :rr.JP y?e (6.82) 

Therefore, the induced bending moments at the ends A and B of the element due to 
applied rotation e A at A are given by 

MA = r (~I) e A and M B = rc (~I) e A (6.83) 

Thus carry-over factor is defined as 

MB (1/1- S) 
c--- ------

- MA - (S- 1/IC) 
(6.84) 

The stiffness influence coefficient for an element AB hinged at the far end B can be 
obtained by applying a moment -rc(EI/ L)BA at the end B, thereby reducing the net 
moment at B to zero i.e. reducing it to a hinged end-condition. This operation results 
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in a carry-over moment of c[ -rc(Elf LWA1 to end A. Thus the total moment at the 
end A becomes 

( El) 2 (El) MA = r L ()A-rc L ()A 

( El) 1 (El) = r(1 - 2) L ()A = r L ()A (6.85) 

where r1 = r(1 - c2). The term r1 represents rotational stiffness influence coefficient 
of a prismatic element when the far end is hinged. 

The stiffness influence coefficients r, r1 and rc reduce to 4, 3 and 2, respectively, 
when P = 0. This can be obtained by taking the limits 1ft --+ 0 using L'Hospital's 
rule four times and substituting 1ft = 0. 

The moment equilibrium of the element as a free body about the right hand end 
gives 

MA +MB- Q~L =0 

or r (~)()A+ rc ( ~1) ()A - Q~L = 0 (6.86) 

Therefore, the end shear term can be defined from (6.86) as 

1 (El) (El) QA = (r+rc) L2 ()A =q L2 ()A (6.87) 

where 

[ 1/12(1 - C) ] 
q = (2 - 2C - 1/t S) . 

For the case when P = 0, i.e. 1ft = 0, q(l/t) = 6. It should be noted that the 
simplifications in the stiffness values applicable to the prismatic elements with no axial 
force are also applicable when these members constitute parts of the frame undergoing 
buckling. For example a symmetric element subjected to end moments which are 
equal in magnitude but opposite in sense i.e. ()B = -()A causing single curvature 
bending, the effective stiffness is (2 Elf L), whereas for the one with antisymmetric 
bending i.e. ()B =()A, the modified stiffness is (6 Elf L). For the beam elements with 
moment applied at one end only i.e. ()B = (()Af2), the modified stiffness is (3Elf L). 

6.5.2 Member Subjected to a Relative End Displacement L1 

Consider the case of a member AB subjected to a relative displacement L1 at the 
ends while end rotations are prevented as shown in Fig. 6.13b-i. For an imposed unit 
end displacement L1 = 1, the boundary conditions for determination of integration 
constants of the general solution of governing differential equation are 

y(O) = 1, y1(0) = y1(L) = 0 and y(L) = 0 (6.88) 
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Substituting the general solution, y = A sin ax + B cos ax + ( Cx I L) + D into the 
boundary conditions given by (6.88): 

y(O) = B+ D = 1 

y'(O) = aA + (C/L) = 0 

y'(L) = aAcosaL- aBsinaL + (C/L) = 0 

y(L) =A sinaL+ BcosaL + C + D = 0 

The values of the constants obtained are: 

A= 
sinaL cosaL- 1 

(2- 2cosaL- aL sinaL) ' 
B=- , 

(2 - 2 cos aL - aL sinaL) 

C= 
aLsinaL 

(2- 2cosaL- aL sinaL) 

1- cosaL- aL sinaL 

and 

D = ---------
(2- 2cosaL- aL sinaL) 

(6.89) 

The end moments are given by 

MA = -Ely"(O) = a2B(El) 

[ (aL) 2(cosaL- 1) J (E/) (E/) (6_90) 
=- (2- 2cosaL- aL sinaL) L2 = q L2 

MB = -Ely"(L) = a 2 (A sinaL+ BcosaL)(El) 

[ (aL)2(1- cosaL) J (E/) (E/) (6_91) 
- (2-2cosaL-aLsinaL) L2 =-q L2 

The end shear in the element is given by 

QA = Ely"'(O) = -EJa3 A 

= [(2- 2c~sL~~s~n:~sinaLJ (~~) = s (~~) <6·92) 

QB = Ely"'(L) = -Eia\AcosaL- BsinaL) 

=- [ (2- 2c~sL~~ s~n:~ sinaL)] ( ~~) = -s ( ~~) <6·93) 

Since MA, MB, QA and QB are forces due to unit lateral displacement, they represent 
stiffness influence coefficients. Thus 

- (E/) k13 = q L2 ' 
- (E/) k23 = q L2 , - (E/) k33 = s L3 

- (E/) and k43 = -s L3 

where 

[ 1/r2(1 - C) J 
q = (2 - 2C - 1/r S) 

[ 1/r3 s J and s= 
(2- 2C -ljrS) 
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where 

S = sin 1/1 , C = cos 1/1 , 1/1 = aL = n ,Ji5 . 

The parameters r, rc, r', q ands which are functions of p (= Pj Pe) are termed stability 
functions. The selected values of these functions are tabulated in Appendix A.1. For 
intermediate values interpolation may be adopted. 

The stability functions that have been developed for compressive forces can be 
readily modified for axial tension. This is accomplished by replacing P by - P i.e. 
substitute ai (= a.J=I) for a and 1/fi (= 1/IH) for 1/f. Since sin(i1/l) = isinh 1/1 
and cos(i1/l) =cosh 1/J, the functions become 

~1/IC-S) ~S-~ 
r = rc = --'---------'---

(2- 2C + 1/fS) ' (2- 2C + 1/IS) 
(6.94) 

[ 1/12(C- 1) ] 
q = (2 - 2C + 1/1 S) 

[ 1/13 s ] and s= 
(2- 2C + 1/fS) 

(6.95) 

where S = sinh 1/1, C = cosh 1/1 and 1/1 = aL = n .JP. The selected values of the 
stability functions for axial tension are listed in Appendix A.3. 

To illustrate the application of these functions in the elastic stability analysis of 
structure consider the symmetrical rigid-jointed plane frame subjected to loads P as 
shown in Fig. 6.15. It is required to estimate the critical values of load P to produce 
elastic instability of the frame. A possible buckled configuration of this two-degrees­
of-freedom system is shown in the figure. The applied loads are directly transferred 
into the members 2-3 and 2' -3' as axial compressive forces and hence their stiffness 
coefficients are expressed in terms of rotational stability function r. Since there is 

no axial force in the members 1-2, 2-2' and 2' -1 ', the usual stiffness and carry -over 
coefficients (4Elj L) and (2EI/ L) are used. With these modifications the stiffness 
matrix [K] is formulated as in the case of conventional analysis [K]{L1} = {F} 

[ k22 k22'] { ()2 } {0} 
k2r2 k 2r2r ()2' - 0 

(6.96) 

The stiffness matrix [K] is given by 

[(
4£/ + 4EI + r £(21)) 

_ L L L 

[K[ ~ c~~) 

= (EI) [(8+2r) 2 ] 
L 2 (8 + 2r) 

(6.97) 

For elastic instability the determinant of stiffness matrix must vanish, that is, 

IKI = = 0 or (8 + 2r)2 - (2)2 = 0 
1

(8+2r) 2 I 

2 (8 + 2r) 
(6.98) 

Therefore, (6 + 2r)(10 + 2r) = 0 giving r = -3.0 and -5.0 
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p p 

I 2 2' 
I ' 

I 
I I 

21 21 

3 3' 

I· L L ·I 
(a) 

p p 

I ' 

(b) 

Fig. 6.15a,b. Buckling of symmetrical frame. a Frame fixed at the base, b frame hinged at the 
base 

The lowest value of p (= Pj Pe) occurs for r = -3.0. Referring to the relevant 
stability functions table in Appendix A.l for r = -3.0, p = 2.730. Therefore, 

2.730rr2 E(21) 
Per= PcrPe = L 2 

5.46rr2 EI 53.888 E/ 
= 

The effective length Leff of member 2-3 (or 2' -3') is given by 

rr2 E(2/) _ [ rr2 E(2/) J 
L2 -Per £2 

eff 
i. e. 

L 
Leff = -- = 0.605L 

..;Pcr 

Identical results are obtained directly by considering stiffness of only one joint 2 or 2' 
because the frame has geometric and loading symmetry (()zr = e2) . The stiffness of 
joint 2 is equal to the sum of stiffness of members 2-1, 2-2' and 2-3. Thus 

k2 = k21 + k22' + kz3 

__ 4EI + 2EI + r [E(2/)J L L L (k2z' = 2Elj L due to symmetry) 

= (6 + 2r) ( ~/) 
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For elastic instability k2 = 0, giving r = -3.0. From the stability functions table 
given in Appendix A.1 for r = -3.0, p = 2.730. Therefore, Per= 53.888 EljL2. 

As a variation consider the case when the joints of the frame 3 and 3' are hinged 
as shown in Fig. 6.15b. This change makes the structure a four-degrees-of-freedom 
system. However, due to perfect symmetry in geometry and loading, only half the 
frame need be considered for stability analysis. The rotational stability functions for 
the members 2-3 and 2'-3' with far ends hinged are represented by r' [= (1- c2)r]. 
Thus the stiffness of the joint 2 is given by 

kz = kz1 + kzz' + k23 

= 4~1 + 2~/ + r' [ E~l) J = (6 + 2r') ( ~/) 

The condition of elastic instability, kz = 0 gives r' = -3.0. From the stability 
functions table given in Appendix A.l. For r' = -3.0, p = 1.407. Therefore, 

1.407rr2 E(2/) 
Per = -----::-­

L2 
27.773E/ 

L2 

Example 6. 7. Estimate Per• the first critical value of the load P that will cause the 
rigid jointed frame shown in Fig. 6.16 to collapse under the following conditions: 
(i) load P is acting at the joint 1 only, (ii) each of the joints 1 and 2 carry load P. 

(iii) joints 1 and 2 carry loads P and 2P, respectively, and (iv) beam member 1-2 
only is subjected to compression. (Elf L) values are same for all the members. The 
horizontal displacement or sway is prevented. 

Since the sway is prevented the system has two-degrees-of-freedom lh and e2. 

(i) In this case the member 1-3 alone is subjected to axial thrust P; hence its 
stiffness influence coefficients will be in terms of rotational stability function r. For 
members 1-2 and 2-4 with no axial force, the usual influence coefficient (4EI/ L) is 
used. Therefore, the member terminal moments are 

M 13 = r ( ~1 ) e1 , M12 = 4 ( ~1 ) e1 + 2 ( ~1) ez 

Mzl=4(~)e2 +2(~1 )e1 and M24 =4(~1)e2 • 
For the equilibrium of joints 1 and 2 

{M1(=M12 +M13)}=(E/)[(r+4) 2 ]{e1} {0} 
Mz(= M21 + Mz4) L 2 (4 + 4) ez = 0 

For elastic instability, the determinant of matrix [ K] must vanish i.e. 

- l(r+4) 21 I K I = 2 8 = 8r + 28 = o 
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p p 

(4) 2 

(r,rc) 
case (i) L EI constant (4) 

3 4 

p p p p 

(4) 2 

case (ii) EI constant 

(r,rc) (r,rc) 

3 4 

p 2P p 2P 

(4) 

case (iii) EI constant 

p ----~-----(r_,r_c) ______ ~2~~p p 

case (iv) (4) EI constant (4) 

(a) (b) 

Fig. 6.16a,b. Buckling of a fixed base portal with different loading conditions. a Loading 
system, b buckling mode 
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Thus r = -3.50. From the stability function table of Appendix A.1 for r = -3.5, 
p = 2.8079. Therefore, 

2.8079n2 EI 27.71 EI 
Per = = ----=--£2 £2 

For determination of corresponding buckling mode substituter = -3.5 in any of the 
equilibrium equations, e. g. consider the equation (r + 4 W1 + 2()2 = 0. On substitution 
this equation reduces to 0.5()1 + 2()2 = 0 i.e. ()2 = -0.25()1· This buckling mode is 
shown in Fig. 6.16. 

(ii) In this case both the columns carry axial thrust of magnitude P, hence their 
stiffness influence coefficients involve rotational stability function r. The modified 
stiffness matrix in this case would be 

K = (EI) [(r+4) 2 ] 
[ ] L 2 (r +4) 

For elastic instability 

IKI = l(r; 4) (r~ 4)1 = (r+2)(r+6) =0 

Therefore, r = -2.0 and -6.0. From the stability functions table in Appendix A.1 
for 

r = -2.0: p = 2.551 and corresponding Per= 25.177 E/jL2 

r = -6.0: p = 3.095 and Per= 30.546E/jL2. 

The critical value of load at the buckling is given by smaller of these two values. 
As usual the buckling modes can be easily determined from any of the equilib­
rium equations. For the first buckling mode at r = -2.0, the equilibrium equation 
(r + 4 W1 + 2()2 = 0 reduces to 

2()1 + 2()2 = 0 i.e. ()2 = -()1 

i.e. the rotations at joints 1 and 2 are equal in magnitude but opposite in sense i.e. the 
buckling mode is symmetrical as shown in Fig. 6.16. Same result can be obtained by 
using the second equilibrium equation. For the second buckling mode at r = -6.0, 
the equilibrium equation reduces to 

- 2()1 + 2()2 = 0 i.e. ()2 = ()1 

Thus, the second buckling mode has anti-symmetrical configuration. It should be 
noted that symmetric buckling mode gives lower value of critical load. 

(iii) In contrast to the case (ii), the loads carried by two columns are different. 
Hence the rotational stability function r has different values for the two columns; say 
r1 and r2 and the critical load cannot be determined directly. In this case 

P1 (P/ Pe) 1 
-= = 
P2 (2Pj Pe) 2 
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i.e. PI and P2 are in the ratio of 1:2. The stiffness matrix in this case would be 

[K] = (EI) [(ri + 4) 2 ] 
L 2 (r2 + 4) 

For elastic instability 

IKI = l(rl; 4) (r2! 4)1 = (ri + 4)(r2 + 4)- 4 = 0 (a) 

The load factor Ne to cause the collapse can be determined by trial and modification. 
As a first trial assume Ne = 1.0, i.e. PI = 1.0 and P2 = 2.0. The corresponding 
values of r as obtained from the stability functions table given in Appendix A.l are 
ri = 2.467 and r2 = 0.143, respectively. On substituting these values in equation (a), 
the value of determinant reduces to 

IKI = (2.467 + 4)(0.143 + 4)- 4 = 22.79 

Assume Ne = 1.48 giving values of stability functions ri = 1.502 and r2 = -4.673, 
the corresponding value of determinant is 

IKI = (1.502 + 4)( -4.673 + 4.0) = -3.70 

Assume Ne = 1.44 with corresponding ri = 1.591 and r2 = -4.021 

IKI = (1.591 + 4)( -4.021 + 4) = 0.117 

By interpolation Ne = 1.4412. Therefore 

p 

Thus, 

PI = - = 1.4412 
Pe 

14.224£/ 
£2 

(iv) In this case the beam 1-2 alone is subjected to axial thrust P and the columns are 
free from axial compression. The instability condition is given by 

IKI = 1(4 + r) rc I = (4 + r)2- (rc)2 = 0 
rc (4 + r) 

Using stability functions table given in Appendix A.1, by trial and modification for 

p = 2.12: IKI = (4- 0.242)2 - 13.987 = +0.1356 
- 2 p = 2.16: IKI = (4- 0.379) - 14.582 = -1.4704 

By interpolation for IKI = 0, p = 2.12338. Therefore, 

2.12338Jr2 EI 20.957 EI 
Per = = ----=--£2 £2 

and the corresponding buckling mode is shown in Fig. 6.15b. 
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Example 6.8. A two span continuous strut of uniform cross section, shown in Fig. 6.17 
is subjected to: (i) an axial force of Pin the segment 1-2 with axial force in segment 
2-3 presumed to be equal to zero, and (ii) an axial thrust P such that both the segments 
1-2 and 2-3 carry axial compressive force P. Estimate the flexural buckling or critical 
load for the strut. EI is same for both the segments. 

(i) In this case the segment 1-2 alone is subjected to an axial thrust P, hence its 
stiffness influence coefficients are in terms of rand rc. For the segment 2-3, the usual 
influence coefficients (4 Elj2L) and (2 E/j2L) are used. For this three-degrees-of 
freedom structure, the force-displacement equation [K]{D} = {F} can be expressed 
as 

For elastic instability 

rc 

(r + 2) 

1 

IKI = r[2(r + 2)- 1]- rc(2rc) = 0 

Using trial and modification procedure for 

p = 1.24: IKI = (2.011)[2(2.011 + 2)- 11- 2(6.977) = 0.1672 

p = 1.28: IKI = (1.930)[2(1.930 + 2)- 1]- 2(7.150) = -1.0602 

p 

(a) 

rl>(rc)I 2 

EI lji 
L ·I· 

P~P 
(b) 

Tz,(TCh 

EI 

2L 

3 

p 

Fig. 6.17a,b. Buckling of a two segment continuous strut. a Strut subjecterl to axial load in 
one segment, b strut split into two parts 
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By interpolation for IKI = 0, p = 1.2454. Therefore, 

(ii) In this case each of the segments 1-2 and 2-3 carry axial thrust P and hence 
stiffness influence coefficients are in terms of r and rc. The stiffness values for 
segments 1-2 and 2-3 have been identified by the subscripts 1 and 2, respectively. 

Since the lengths of the segments are different 

Let P1 = p and hence P2 = 4p. The stiffness matrix in this case becomes 

For elastic instability 

(rch 
(r1 + 0.5r2) 

0.5(rch 

(6.99) 

By trial and modification procedure, using stability functions from the table given in 
Appendix A.l. For 

p = 0.36: r1 = 3.502, (rc)I = 4.549, r2 = 1.591 , (rc)~ = 7.930 

and IKI = 1.4107 

p = 0.40: r1 = 3.444, (rc)I = 4.621 , r2 = 1.224, (rc)~ = 8.881 

and IKI = -1.9256 

By interpolation for IKI = 0, p = 0.3769. Therefore, 

6.6 Frames with Sidesway 

So far in this chapter structures with only rotational degrees-of-freedom have been 
discussed. Lateral displacement of an axially loaded structural member without joint 
rotations at the ends, and moments due to eccentric axial loads increase terminal 
moments and member rotations. These effects must be included in the moment sway­
equation. The amplification effect could be covered by means of magnification or 
modification factor and the sway problem could be analyzed by any of the available 
methods. 
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X 
p p 

v 

M 8 = rc(EIIL) 

L 

p p 
(a) (b) 

Fig. 6.18a,b. Behaviour of straight prismatic member. a Rotational stiffness, b sway or shear 
stiffness 

Consider an axially loaded, straight, prismatic member AB subjected to an end 
rotation e A = 1 as shown in Fig. 6.18a. The forces developed are shown in the figure. 
For static equilibrium take moment about bottom end. 

MA + Mn + Q' L = 0 

, (MA + Mn) -r(l + c)(EI/ L) 
Q -- -------- L - L or 

= -r(1 +c)(~;)= -q (~;) (6.100) 

where q = r(1 +c) which is generally referred to as shear stiffness stability factor. 
If the column is restrained against additional rotation and the end B is allowed 

to sway by an amount v, the sway angle is given by ¢' = v/ L. The restraining 
moments M~ and M~ at the ends A and Bare both equal to -(MA + Mn)</J'. For 
static equilibrium 

M~ + M~ + Q" L + Pv = 0 

or - 2(MA + Mn)</J' + Q" L + Pv = 0 (6.101) 

Defining the sway angle when P is absent in the above equation (but not from its 
effect on MA and M8 ) by¢, the equation reduces to 

-2(MA + Mn)</J + Q"L = 0 

Subtracting (6.102) from (6.101) 

-2(MA + Mn)(</J'- ¢) + PL</J' = 0 (since v = L</J') 

(6.102) 

(6.103) 



6.6 Frames with Sidesway 253 

Expressing the load Pin terms of Euler's load Pe (= n 2ElfL2 ) 

pn2EI 
P = PPe = ----v-

Thus, (6.103) can be expressed as 

-2r(1 +c) ( ~) (l/>1
- 4>) + p [ n:;/J lj>1L = 0 

I pn24>1 
or 4> - 4> = 2r(1 +c) 

Therefore, 

(6.104) 

(6.105) 

The term m is defined as sway magnification factor. When P is absent and the joints 
do not rotate, the equilibrium equation (6.102) gives 

(EI) (Q1L) MA = MB = -r(1 +c) L 4> = - T (6.106) 

With the effect of axial load taken into account 

1 1 (£/) 1 (Q"L) MA = MB = -r(l +c) L 4> = -s - 2- (6.107) 

The above expressions can be used to determine the rotational stiffness at one end of 
an axially loaded column when the other end is allowed to sway. If the shear force 
is maintained zero, the corresponding rotational stiffness will automatically take into 
account the effect of side sway. From (6.100) and (6.101). 

Ql= MA+MB 
L 

and Q" = [2(MA + MB)l/>1 - P(Ll/>1)]/ L 

If the total shear is to vanish Q1 + Q" = 0 i. e. 

where 

Therefore, 

1 1 m 
4>- --- [ -E!!!._] - 2 2 1 - 2r(l+c) 

(6.108) 
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Thus the final moments are: 

M~ = r ( ~/) - r(1 + c) ( ~) ( ~) 

= r [ 1 - (1 +c)~ J ( ~/) = t ( ~/) 

M~ = rc ( ~/) - r( 1 + c) ( ~/) ( ~) 

= r [ c- (1 +c)~ J ( ~) = t' ( ~/) 

(6.109) 

(6.110) 

The terms t and t' are rotational stiffness factors for axially loaded compression 
member undergoing transverse relative displacement. The negative sign is used with t' 
because M 8 is usually negative for varying p values, and hence positive values are 
tabulated. For p = 0, t = + 1 and -t' = -1 and thus M8 j MA = -t' jt = -1 and 
the ratio is recognized as a carry-over-factor used previously. 

For the case when the member carries axial tension (p = - p) 

1 

m = 1 + [ 2~~~c) J 
(6.111) 

The modified value of m is used in (6.109) and (6.110) to compute t and t', re­
spectively. However, it shall be noted that parameters r and rc in this case should 
correspond to member carrying axial tension. These values are also tabulated in 
Appendix A.2. 

To demonstrate the effectiveness of the procedure developed above considers the 
continuous strut shown in Fig. 6.14 which has been previously analyzed by matrix 
stiffness approach. The terminal moments in this case are 

M12 = t ( ~1) e1- t' ( ~) e2, M21 = -t' ( ~) e1 + t ( ~) e2 

and M23=r(~)e2 
For the equilibrium of joints 1 and 2 

M1 = M12 = t ( ~1 ) e1- t' ( ~1 ) e2 = o 

M2 = M21 + M23 = -t' ( ~/) 81 + (t + r) ( ~/) 82 = 0 

i.e. {~~} = ( ~) [ ~t' (t-:1r)] {:~} 
For elastic-instability, 

IKI = ~~t' (t-:'r)l = t(t + r)- (t') 2 = o 
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Using trial and modification procedure. For 

p = 0.14: IKI = 0.4882 

p = 0.16: IKI = -0.0338 

By interpolation for IKI = 0, p = 0.1587. Hence, 

For further illustration, consider the hinged base portal frame shown in the 
Fig. 6.19 with E I being same for all the members. An estimate of the critical value 
of load P at which the frame will buckle is required for the conditions: (i) when 
the frame is restrained from side sway movement at the beam level, and (ii) when 
restraint is removed to allow the frame to sway. 

p p 
p p p p 

2 2' 

I (r',r'c) 

EI 
(r',r'c) 

I' 

I· 2L 

(a) (b) (c) 

Fig. 6.19a-c. Buckling of hinged base portal frame. a Hinged based portal, b non-sway 
symmetrical mode, c sway antisymmetrical mode 

Case-I: Due to perfect symmetry in loading and geometry, the symmetrical buckling 
mode will govern the critical value of the load. Thus (}2 = (} and ()2, = -(}. The beam 
2-2' does not carry axial force and its effective stiffness is: 2(Eij2L) = (Elf L). The 
members 2-1 and 2' -1' are hinged at the joints 1, and I', respectively, and hence their 
stiffness is given by r' ( E I I L) where r' = r(I - c2) . The terminal moments at the 
joint 2 can be written as 

, (£/) (£/) M21 = r L (} and M22' = L (} 

Therefore, 

1 (£/) M2 = M21 + M22' = (r + 1) L (} 

For elastic instability the stiffness of joint 2 must vanish, that is r' + 1 = 0 orr' = -1. 
From the stability functions table given in Appendix A.1 for r' = -1, p = 1.1748. 
Therefore, 
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11.5948£/ 

L2 

Alternatively, the terminal moments at the nodes 2 and 1 are 

M21 = r ( ~1) e2 + rc ( ~1 ) e1 

M12 = r ( ~/) e1 + rc ( ~/) e2 and 

M22' = 2 (~:) e2 = ( ~) e2 

Thus for the equilibrium of joints 2 and 1 

For elastic instability I K I = 0. Therefore, 

l(r: 1) r:l = (r + 1)r- (rc) 2 = r[r(1- c2) + 1] 

= r(r1 + 1) = 0 

where r1 = r(l - c2). For non-trivial solution r1 + 1 = 0. This result is the same as 
obtained directly. 

Case-11: In this case there are four rotations and one translation resulting in 
a five-degrees-of-freedom system. The elastic instability condition will require an 
expansion of (5 x 5) order determinant. The solution will be cumbersome. However, 
the existence of perfect symmetry in loading and geometry and the fact that anti­
symmetrical collapse mode occurs earlier than symmetrical collapse mode if there 
is no restraint against it, can be exploited for simplifying the computations. Due 
to the absence of lateral or side loading each column develops zero shears. With 
a sidesway moment, the joint rotations are equal in magnitude on two sides of the 
axis of symmetry. Thus using symmetry and no shear condition, the terminal moments 
are 

(E/) 1 (El) M21 = t L e2 - t L e1 

(E/) 1 (El) M12 = t T e1 - t T e2 

The beam moment allowing for anti-symmetrical deformations is 

(E/) (3£/) 
M22' = 6 2L e2 = L e2 
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Thus for equilibrium at the joints 2 and 1 

(El) 1 (El) (t + 3) L e2 - t L e1 = o 

1 (El) (El) -t L e2 + t L e1 = o 

Therefore, 

Thus for elastic instability 

IKI = It~/ ~til = (t + 3)t- (t1) 2 = 0 

Using trial and modification procedure with value of t and t1 from the stability 
functions table given in Appendix A.2. For 

p = 0.10: IKI = (0.647 + 3)(0.647)- (1.186)2 = 0.953 

p = 0.12: IKI = (0.570 + 3)(0.570)- (1.229)2 = 0.524 

p = 0.14: IKI = (0.491 + 3)(0.491)- (1.274)2 = 0.091 

By linear extrapolation for IKI = 0, p = 0.1442. Therefore 

l.423EI 

L2 

The following examples will illustrate the application of method to various types of 
rigid frames. 

6.6.1 Single-Bay Multi-Storey Frames 

Example 6.9. A symmetrical two-storey one-bay frame with (Ell L) values being 
equal for all the members shown in Fig. 6.20 is subjected to: (i) load P at the top of 
each column, (ii) load P at the top and 2P at the lower beam level in each column. 
Estimate the critical value of the load that will cause the frame to buckle. 

Case-I: Frame subjected to loads P only at the top of columns: 

(a) Non-sway symmetrical buckling mode 

Because of perfect symmetry in loading and geometry, only half frame need be 
considered with ei' = -ei. The terminal moments for various members are the 
following. 
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p p p p 

-r-3 3' 3 3' 
2I 1 21 
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L I I 
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2P 2P 2' Case II 2 
2I 
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2L --I· I 
1 1' _ ... -..,;; 

I· 2L 
I 

(a) 

p p p p 

6EIIL 

93·=93 

(b) (c) 

Fig. 6.20a-c. Buckling of symmetrical two storey one-bay frame. a Different loading cases, 
b non-sway symmetrical mode, c sway antisymmetrical mode 

Columns: 

Beams: 

M32 = r ( ~/) 03 + rc ( ~) Oz 

M23 = r ( ~1 ) Oz + rc ( ~/) 03 

M21 =r(~1)o2 

M33'=2(~)o3 and Mzz'=2(~)ez 

For the static equilibrium of joints 2 and 3 

Mz = M21 + M23 + Mzz' = 2(r + 1) ( ~) Oz + rc ( ~/) 03 

M3 = M32 + M33' = rc ( ~) Oz + (r + 2)03 

or [2(r + 1) rc ] {02} = {0} 
rc r+2 03 0 
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For elastic instability I K I = 0 that is 

- 12(r + 1) rc I 2 IKI = rc (r + 2) = 2(r + 1)(r + 2)- (rc) = 0 

Using trial and modification procedure with values of stability functions r and rc 
from the table given in Appendix A. I. Taking 

p = 1.72 : r = 0.927 and (rc)2 = 9.739 , 

IKI = 2(1.927)(2.927)- 9.739 = 1.542 

p = 1.76: r = 0.823 and (rc)2 = 10.059, 

IKI = 2(1.823)(2.823)- 10.059 = 0.234 

By extrapolation for IKI = 0, Per= 1.7672. Therefore, 

Perrr2E/ 1.7672rr2E/ 17.44£/ 
Per= £2 £2 £2 

(b) Sway buckling mode 

In this case due to antisymmetry Oi' = Oi and the beam moments are (6 E I I L )Oi. The 
terminal moments are given by the following. 

Column moments: 

Beam moments: M33' = 6 ( e:) 03 and M22' = 6 ( ~1) 02 

Therefore, for elastic instability 

IKI = 1(2t +, 6) -t'61 = (2t + 6)(t + 6)- (t')2 = o 
-t t+ 

Using trial and modification procedure for 

p = 0.50: t = -1.691 and t' = 2.792, thus 

IKI = [2(-1.691) + 6](-1.691 + 6)- (2.792)2 = 3.4857 
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p = 0.54: t = -2.099 and t' = 3.120, therefore 

IKI = ( -4.198 + 6) + ( -2.099 + 6)- (3.120) 2 = -2.7048 

p = 0.52 : t = -1.887 and t' = 2.949 , thus 

IKI = (-3.774 + 6)(-1.887 + 6)- (2.949)2 = 0.459 

For IKI = 0, by interpolation Per= 0.5229 Therefore, 

0.5229n2 EI 
Per = PerPe = ---::--­L2 

5.161 EI 
L2 

(Since p = 1.00 for fixed-fixed column and 0.0625 for fixed-free column, this is 
value of p = 0.5229 is quite reasonable). 

Case-11: In this case the axial loads carried by the columns of top and bottom 
storey are different. Axial force in members 3-2 and 2-1 are P and 3P, respectively. 
Since (Elf L) and hence Pe is same for all the members, the values of p for the 
columns are proportional to axial load carried by them, i.e. P23 = p and p12 = 3p. 

(a) Symmetrical or non-sway buckling mode 

The terminal moments are the following 

Columns: Mz1 = r12 ( ~1 ) ez 

M23 = rz3 ( ~/) {]z +(reb ( ~/) (]3 

M32 = r23 ( ~) e3 + (rc)z3 ( ~) ez 

Beams: [£(2/)J (2 EI) 
Mzz' =2 --u ez = L ez 

(2£/) 
M33' = T e3 

For the equilibrium of joints 2 and 3 

Mz = (r12 + rz3 + 2) ( ~/) {]z + (rc)z3 ( ~/) (]3 = 0 

M3 = (rc)n ( ~/) {]z + (rz3 + 2) ( ~/) (]3 = 0 
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Thus for elastic instability 

IKI = l(r12 + r23 + 2) (reb I= 0 
(rc)z3 (r23 + 2) 

or (r12 + r23 + 2)(r23 + 2)- [(rch3]2 = 0 

Trial and modification procedure is used to compute the critical value of the loads. 
For p = 0.80, P23 = 0.80 and Pl2 = 2.40. Substituting the values of stability 

functions r and rc from the stability functions table given in Appendix A.1. 

IKI = [(-1.301 + 2.816 + 2)(2.816 + 2)- 5.502] = 11.426 

For 

p = 1.00 : P23 = 1.00 and Pl2 = 3.00 

IKI = [(-5.032 + 2.467 + 2)(2.467 + 2)- (6.088)] = -8.612 

For I K I = 0, by interpolation 

( -8.612)(0.80) - (11.426)(1.0) 
p = = 0.914 

( -8.612) - (11.426) 

For 

p = 0.92: pz3 = 0.92 and p = 2.76 

IKI = [(-3.180 + 2.610 + 2)(2.610 + 2)- (5.839)] = 0.7533 

By interpolation for IKI = 0 

( -8.612)(0.92) - (0.7533)(1.0) 
p = ( -8.612) - (0.7533) = 0"9263 

Therefore, 

0.9263JT2EI 9.14£/ 
Per= = --=--£2 £2 

(b) Antisymmetrical sway buckling mode (8;' = 8;) 

For this case the terminal beam moments are 

The corresponding equilibrium equations can be expressed as 
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For elastic instability 

IKI = '(t!2 + t~3 + 6) -t23 1- o 
-t23 (t23 + 6) -

= (t12 + t23 + 6)(t23 + 6)- (t23)2 = 0. 

In this case also consider P23 = p and Pt2 = 3p. 
Trial and modification procedure is used to estimate the critical value of p. For 

p = 0.20 : P23 = 0.20 and P12 = 0.60 

IKI = (-2.842 + 0.235 + 6)(0.235 + 6)- (1.425)2 = 19.125 

p = 0.24: P23 = 0.24 and P12 = 0.72 

IKI = (-5.173 + 0.049 + 6}(0.049 + 6)- (1.540)2 = 2.927 

p = 0.26: P23 = 0.26 and Pt2 = 0.78 

IKI = (-7.217- 0.050 + 6)(-0.050 + 6)- (1.603)2 = -10.108 

By interpolation for IKI = 0 

( -10.108)(0.24)- (2.927)(0.26) 
P - -02445 

- (-10.108)- (2.927) - . 

The values obtained for the sway case are lower than that for the non-sway case and 
hence are critical. Thus the critical value of P to produce elastic instability of the 
frame is 

Example 6.10. A two-storey single-bay frame shown in Fig. 6.21 is subjected to 
loads Pt at the top of the columns and P2 at the mid-height as shown in the figure. If 
the magnitude of the load Pt is equal to 0.4 Pe, estimate the value of P2 that will cause 
the frame to buckle where Pe = (1r2 Elf L2 ) and EI is same for all the members. 

The frame has perfect symmetry in geometry and loading. The buckling mode 
may be either symmetrical or antisymmetrical. In the symmetrical non-sway case 
shown in Fig. 6.21b the moment equilibrium equations for the joints 1 and 2 can be 
written as 

{Mt} = (EI) [(riO+ r12 + 4) 
M2 L (rc)12 

(rc)12 ] {Ot} {0} 
(r12 + 4) Oz - 0 

For elastic instability 
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Fig. 6.21a--c. Buckling of two storey single bay frame. a Two-storey frame, b non-sway mode, 
c sway mode 

For the member 
pl 

1-2: P12 = - = 0.4, r12 = 3.444 and (rc)2 = 4.621 
Pe 
P1 + Pz Pz 

1-0 : Plo = = 0.40 + p where p = -
Pe Pe 

Therefore, the characteristic equation reduces to 

(r10 + 3.444 + 4)(3.444 + 4)- 4.621 = 0 or rw = -6.823 

From the stability functions table given in Appendix A.1 for rw = -6.823, p10 = 
3.1642. Therefore, 

Pz 
p = 3.1642-0.40 = 2.7642 =­

Pe 
Pz = 2.7642 Pe 

For the sway antisymmetric buckling configuration (mode) shown in Fig. 6.21c, the 
corresponding instability equation reduces to 

IKI = (tw + t12 + 12)(t12 + 12)- (t~2 ) 2 = o, 
12E/ 

since Mzz' = Mn' = --8; 
L 
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For the member 1-2 with P12 = 0.4, t12 = -0.878 and ti2 = 2.172. Therefore, 

(t10 - 0.878 + 12)(-0.878 + 12)- (2.172)2 = 0 

i.e. tw = -10.698 and corresponding value of Pw from the stability functions table 
is 0.8396. Thus, p = 0.8396 - 0.40 = 0.4396 and hence P2 = 0.4396 Pe. 

As a variation in the problem suppose that the force P2 = 0.40 Pe. It is required 
to estimate the values of force P, which will cause the frame to buckle. In this case 

P1 P, + P2 
P12 = - and Pw = = (P12 + 0.40) 

Pe Pe 

For the symmetrical buckling mode, for instability 

- 2 IKI = (rw + r12 + 4)(r!2 + 4) - [(rc)12l = 0 

Adopt trial and modification procedure using stability functions from table given in 
Appendix A.1. For 

P12 = 1.00: IKI = (1.678 + 2.467 + 4)(2.467 + 4)- 6.088 = 46.59 

P12 = 1.80: IKI = (-0.519 + 0.717 + 4)(0.717 + 4)- 10.397 = 9.40 

p12 = 2.00: IKI = (-1.301 + 0.143 + 4)(0.143 + 4)- 12.424 = -0.6496 

P12 = 1.96: IKI = ( -1.133 + 0.264 + 4)(0.264 + 4) - 11.967 = 1.3836 

Therefore by interpolation for IKI = 0, P12 = 1.9872 and thus 

1 98 2 1. 9872rr2 E I 
P, = . 7 Pe = ---=--­L2 

For antisymmetric buckling configuration 

- I 2 IKI = (tw + 112 + 12)(112 + 12)- (112) = 0 

Using stability functions values from the table given in Appendix A.2. For 

p12 = 0.20: IKI = ( -2.842 + 0.235 + 12)(0.235 + 12) - (1.425)2 = 112.89 

P12 = 0.40: IKI = (-8.159- 0.878 + 12)(-0.878 + 12)- (2.172)2 = 28.237 

P12 = 0.44: IKI = (-10.725- 1.174 + 12)(-1.174 + 12)- (2.392)2 = -4.628 

p12 = 0.42: IKI = (-9.303- 1.022 + 12)(-1.022 + 12)- (2.278)2 = 13.199 

By interpolation for IKI = 0, P12 = 0.4348 and thus 

P, = 0.4348 Pe . 
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6.6.2 Multi-Bay Rigid Frames 

In case of multi-bay frames, the rotation degrees-of-freedom increase with the number 
of bays, thereby increasing the size of stiffness matrix. However, certain frames can 
be subdivided into a number of similar one-bay frames. This subdivision called the 
principle of multiples is based on an application of super positioning to structural 
properties. The super positioning depends upon the (Elf L) pattern for the entire 
frame being such that it breaks down into a number of patterns f3tR, fhR etc. for 
separate one-bay frames, where fJ1. fJz, etc. are constants for individual subsidiary 
frames. The total loading P is also divided into ( Pf3i I L f3i) components, so that each 
frame carries load proportional to its overall stiffness coefficient {3. In such a frame 
satisfying the principle of multiples, all the joints at any particular beam level rotate 
by the same amount and the column sways are also, of course, identical in each 
storey. Therefore, the exact analysis of any of the subsidiary one-bay frames will lead 
directly to the exact analysis of the entire frame. For illustration consider the two-bay 
building frame shown in Fig. 6.22b along with its subsidiary one-bay frames. The two 
one-bay frames clearly add up to the original frame, since deformations are identical 
in each of the two subsidiary frames. Therefore, only one frame need be analysed. 
The moments and forces occurring in the actual frame are obtained by direct addition 
in the common interior columns. 

p 2P p p 2P p p 2P p 

L EI EI 

4 5 6 

Non-sway mode Sway mode 

(a) 

p 2P p p p p p 

2 
EI EI 3 .. + 

L EI 2EI EI 

4 

(b) 

Fig. 6.22. Buckling of single storey two-bay frame. a Frame with El values same for all the 
members, b frame with El of interior column being twice of the exterior 
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Example 6.11. A single-storey two-bay (i.e. three columns) symmetrical frame is 
loaded symmetrically as shown in the Fig. 6.22. Estimate the first critical value of the 
load P that will cause the frame to buckle under following conditions: (i) EI values 
are same for all the members, and (ii) EI value for the interior column is twice that 
of a exterior column. 

If the frame is prevented from the side sway there are three rotational degrees­
of-freedom e" e2 and e3 • Here, the critical load has been determined without making 
use of symmetry of the system. 

Case-I 
P 2P 

Pt4 = P36 = (rr2E//L2) = P and P25 = (rr2£JjL2) = 2p 

For elastic instability 

(rt + 8) 4 0 

IKI = 4 (r2 + 16) 4 = (rt + 8)[(r2 + 16)(rt + 8)- 32] 
0 4 (rt + 8) 

(rt + 8)2[(r2 + 16) - 32/(rt + 8)] = 0 

Two of the roots of the stability eigen-equation are apparent i.e. rt = -8 (i.e. 
p = 3.2476). For the third root (r2 + 16) - 32/(rt + 8) = 0. Using trial and 
modification procedure, p = 1. 727. Therefore, 

1.727rr2E/ 17.045£/ 
Per= = L2 

If the frame is allowed to sway the corresponding eigen-equation can be obtained by 
replacing r by t. For It = -8.00, p = 1.099 and for (t2 + 16)- 32/(tt + 8) = 0, 
p = 0.4252. Therefore, 

0.4252rr2E/ 4.197 EI 
Per = ---=--- = -----=--L2 L2 

Case-II 
P 2P 

Pt4 = P36 = (rr2 Elf L2) = P and P25 = (rr2 £(2/)/ L2) = P · 

Thus r2 = r1 = r and for elastic instability 

(r + 8) 

IKI= 4 
0 

4 

(2r + 16) 
4 

0 
4 = 2(r + 8)(r2 + 16r + 48) 

(r + 8) 

= 2(r + 8)(r + 4)(r + 12) = 0 

Therefore, r = -4.0, -8.0 and -12.0. 
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Alternatively, as the frame satisfies the criterion of multiplies, it can be split into 
two single bay frames shown in Fig. 6.22b. Analysis of any one of these subsidiary 
frames leads to the analysis of entire frame. For elastic instability of the frame shown 
in Fig. 6.2lb. 

- lr + 8 4 I IKI = 4 (r + 8) = (r + 4)(r + 12) = 0 

Thus r = -4.0 and -12.0. The critical load Per is governed by the lowest value 
r = -4.0. From the stability functions table given in Appendix A.1 for r = -4.0, 
p = 2.877. The critical value of the load is 

28.396£/ 
L2 

For the sway buckling mode with anti-symmetric configuration the force-displacement 
equation I K I { L1} = { F} is given by 

For anti-symmetric mode 82 = 81 and the above equations reduce to (EI/L)(t! + 
12)81 = F1. For elastic instability t1 + 12 = 0 i.e. t1 = -12.0. From the stability 
functions table for t1 = -12.0, p = 0.854. Therefore, 

0.854;r2E/ 
Per = ---=---L2 

8.429 EI 
L2 

Example 6.12. The vertical members (columns) of a multi-bay closed framed struc­
ture are subjected to compressive loads as shown in Fig. 6.23. Estimate the critical 
values of the load that will cause the frame to buckle. 

The critical loads predicted by non-sway symmetrical and anti-symmetrical buck­
ling modes are larger than those of sway modes, thus only sway modes will be 
considered for the analysis. 

The frame has seven degrees-of-freedom (one sway and six rotations) and hence 
will involve operations with (7 x 7) determinant. However, a close scrutiny reveals 
that the frame satisfies the criterion for multiples and hence can be split into two 
single-bay closed frames. Consider the frame of Fig. 6.23b, the terminal moments 
are: 

M13 = [ 62~1 ]e1 = c~1)e1 and M24 = [ 6~~/)Je2 = ( 6~1 )e2 
(Due to antisymmetry of the mode, 83 = 81 and 84 = 82). 
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f 
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i 

(a) 

p p p p 

2 l-----2I-----f4 4 J-----21----16 

(b) 

Fig. 6.23a,b. Buckling of frame satisfying multiples criterion. a Multi-bay closed frame struc­
ture, b two single-bay subsidiary frames 

Using rotational stiffness without shear coefficients, the terminal moments in the 
columns are: 

M12 = t12 ( ~/) 81 - ti2 ( ~/) 82 

and M21 = t12 ( ~) 82 - ti2 ( ~) 81 

Thus for equilibrium of joints 1 and 2 

( MI = M12 + Mn) = (E/) [(t12 ~ 3) -ti2 ] {81} 
M2 = M21 + M24 L -t12 (t12 + 6) 82 

For elastic instability 

IKI = l(tJ~;23) (t~~~26)1 = (t!2 + 3)(tl2 + 6)- (ti2)2 = o 

Using trial and modification method with stiffness values from the stability functions 
table. For 

p = 0.50 ; (J2 = -1.691 , ti2 = 2.792 and IKI = -2.15 

p = 0.48; (J2 = -1.508 , ti2 = 2.648 and IKI = -0.3098 

p = 0.46; tn = -1.336 , ti2 = 2.515 and \KI = 1.4357 
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By interpolation for IKI = 0, p = 0.4764. Thus the critical value of the load Pis: 

0.4764n2 EI 
Per = ---=---£2 

6.6.3 Substitute Frame Method 

4.7018£/ 
£2 

The special methods taking advantage of symmetrical or anti-symmetrical structural 
actions are dependent on both geometry and loading being symmetrical. The substi­
tute frame method consists in replacing the actual frame with geometrical symmetry 
but unsymmetrical in its stiffness values by a symmetrical one-bay frame. The flexural 
rigidity of the columns of the substitute frame is taken to be the average of the flexural 
rigidities of the columns of the original frame. The flexural rigidity of the beam of 
the substitute frame is taken to be the sum of flexural rigidities of the beams in the 
original frame. The columns of the substitute frame are subjected to the loads, the 
magnitude of which is average of loads acting on the original frame. The substitute 
frame can now be analysed by any of the special methods to obtain a rough estimate 
of the buckling load. 

p 2P 2P p 

f 
L 

i 
1 .. 2L 2L 

(a) 

3P 3P 

2 2' 
3I 

2I 2I 

1' 

2L 

(b) 

Fig. 6.24a,b. Substitute frame for a multi bay frame. a Single-storey three-bay frame, b substi­
tute frame 
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For illustration consider the single-storey multi-bay frame shown in the Fig. 6.24a. 
EI values are same for all the members. This frame does not satisfy the principle of 
multiples. The corresponding substitute frame is shown in Fig. 6.24b. The EI values 
of various components of substitute frame are 

Beam: (Eib)s = L Eib = 3EI 

1 1 
Columns: (Eic)s = 2 L Eic = lE(I +I+ I+/)= 2EI 

Load on each column of the substitute frame Ps is given by 

Thus the degrees-of-freedom reduce from 5 (four rotational and one sway) to 3 (two 
rotations and one sway). The problem can further be simplified by invoking the 
perfect symmetry of substitute frame in geometry and loading. As usual the critical 
load is governed by the sway or anti-symmetric buckling mode. 

In the sway mode, the terminal moments are 

For the equilibrium of joint 2: 

M2 = M21 + M22' = (2t + 9) (~I) fh = 0 

Therefore, for elastic instability 

(2t + 9) = 0 or t = -4.50 

From the stability functions table given in Appendix A.1, fort = -4.50, Ps.cr = 
0.6927. The Ps value for each column of substitute frame is approximately given by 

L,P 6P P 
Ps = -- = - = 1.5 p where p = -

L,Pe 4Pe Pe 

Therefore, 

= (Ps,cr) (rr2 EI) = (0.6927) (rr2 EI) = 4.558 EI 
Per 1.5 £2 1.5 £2 £2 

As a variation considers the case when EI values of interior columns is twice that 
of exterior columns as shown in Fig. 6.25. In this case, the frame satisfies the prin­
ciple of multiples and hence can be split into three symmetrical subsidiary frames. 
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p 2P 2P p 

T2 
4 6 8 
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~2L 2L 2L -------l 
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2 

f 4 
4 6 6 8 
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I 

3 
3 5 5 7 

~ 2L ---J 
2L -----J ~ 2L ---1 

(b) 

Fig. 6.25a,b. Splitting of multibay frame into single-bay subsidiary frames. a Multi-bay frame, 
b subsidiary frame 

Each of the subsidiary frames is perfectly symmetric in geometry and loading with 
E I values being same for all the members. The critical load can be determined by 
the consideration of any one of the subsidiary frames . For a sway or anti-symmetric 
buckling mode 

t + 3 = 0 or t = -3.00 

From the stability functions table fort= -3.00, Per= 0.610, and hence 

If the principle of multiples is not invoked, and frame is analysed by using the 
substitute frame method 

(E/b)s = L(El)b = 3 E/ 

1 1 
(Efc)s = 2 L Efc = 2£(/ + 2/ + 2/ + /) = 3 E/ 

and 

Ps = 3P. 

The terminal moments are 
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Thus, for elastic instability 

3t + 9 = 0 or t = -3.00 

From the stability functions table fort = -3.00, Ps,cr = 0.61. The p value for the 
substitute frame columns is given by 

L;P 6P 
Ps = L Pe = (1 + 2 + 2 + l)Pe = p 

where 
p 

p=­
Pe 

Therefore, 

p _ (n 2EJ) _ 0.6ln2EI _ 6.02EI 
cr - Ps,cr £2 - £2 - £2 

It should be noted that for the frames satisfying the principle of multiples both the 
methods give identical results. 

6. 7 Rigidly Connected Trusses 

For triangular subset trusses (as opposed to vierendeel truss which are rectangular in 
form) the relative displacements of the ends of the members other than those due to 
axial shortening are zero. Thus in the stability analysis ..1 will be zero. The following 
examples will illustrate the application of stability functions to this class of structures. 

Example 6. I 3. A two-bar rigidly connected truss shown in Fig. 6.26 supports a load P. 
Estimate the value of P to produce elastic instability of truss. 

p p 

2 

\ 

\ 

(EI,L) G) I \ 

I \ 

I 

60° I 

Fig. 6.26. Two-bar rigidly connected truss 
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The primary forces in the members are obtained by assuming the joint 2 to be 
hinged. These forces will be altered slightly by the moment induced by linear joint 
displacements. However, this effect is neglected. Ignoring the linear displacement of 
the joint 2, the only displacements to be considered are the rotation (h and (h at the 
joints 2 and 3, respectively. 

The force-displacement relationship [F] = IKI[L\] is given by 

For elastic instability I K I = 0 i. e. 

This result can also be obtained directly by considering the stiffness of joint 2 with 
member 2-3 being hinged at the far end. 

The primary forces in the members are: 

Thus p values for the members are given by 

or Pt = 2p and P2 = p. The value of Per to cause collapse must, however, be 
determined by trial and modification. 

From the stability functions table, by interpolation p = 1.0086. The critical value 
of the load is 

r-; r-; [ 1.0086rr2(2E/)] 34.483 EI 
P cr = V;) P2 cr = V 3 2 = 2 ' L L 

Example 6.14. A three-bar rigidly connected truss is subjected to a load P applied 
symmetrically as shown in Fig. 6.27. EI and L values are same for all the members. 
Estimate the critical value of loads P that will cause the frame to buckle. 

The primary forces in the members are computed by assuming the joints to be 
pinned. The force in each member is equal to (P/../3). Therefore, p and rotational 
stiffness values r and rc are same for all members. The system has three degrees-of­
freedom (Jt, fh and fh. For the equilibrium of joints 
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p 
p p 

p (i) First mode (ii) Second mode p 
EI and L are constant 

(a) (b) 

Fig. 6.27a,b. Buckling of three-bar rigidly connected truss. a Three-bar truss, b buckling modes 

For elastic instability I K I = 0, i.e. 

2r rc rc 

rc 2r rc = 2r3 (1 + c)(2- c)2 = 0 
rc rc 2r 

The firsttworoots of the eigen-value equation are given by: (2-c)2 = Oi. e. c = 2.00. 
This case corresponds to 81 = 0 and 83 = -Bz = e. From the stability functions 
table for c = 2.00, p = 1.5077. 

The third root of eigen-value equation is given by: 1 + c = 0 or c = -1.00. 
This case corresponds to 81 = Bz = 83 = e. From the stability functions table for 
c = -1.00, p = 4.00. 

Therefore, the critical value of the load P is controlled by p = 1.5077 and hence 

_ r;;;(l.5077rr2E/) _ 25.77£/ 
Per - v 3 L 2 - L 2 

Example 6.15. Estimate the critical load factor Ne against elastic instability of rigidly 
connected truss shown in Fig. 6.28. EI and L are same for all members. The value 
of Pe for each member is ./3P. 

Treating the truss to be pin-jointed, the primary axial forces obtained in various 
members are shown in Fig. 6.28. Since the Pe is same for all the members, the Pij 

(= Pij/ Pe,ij) values are proportional to the axial forces in the members i.e., 

P12 = 2p, Pl3 = (O)p, Pll' = P and P23 = -p 

where p = 1/3. Disregarding the linear displacements of the joints, only rotational 
displacements at the joints 1 and 2 need be considered. Due to symmetry 81' = -81, 

Bz' = -Bz and 83 = 0. 
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p p 

2PI.J3 2PI.J3 

Compression 
PI.J3 

,.._ ~ Tension 

p 
p 

EI and L are the same for all the members 

Fig. 6.28. Buckling of rigidly connected symmetrical truss 

The terminal moments in the rigidly connected members meeting at joint 1 are: 

M12 = r12 ( ~1 ) e1- (rc)12 ( ~1 ) e2 

M 13 = r13 ( ~) 81- (rc)13 ( ~) 83 

Mu' = TII' ( ~/) 81 - (rc)n 1 ( ~) 81' 

For moment equilibrium of joint 1 

Mt = M12 + M13 + Mn' 

= [r!2 + r!3 + ru'- (rc)u'] ( ~1 ) e!- (rc)!2 ( ~) e2 = 0 

(since e3 = 0 and el' = 8t) 
The terminal moments in the members meeting at joint 2 are: 

M21 = r 12 ( ~1) e2- (rc) 12 ( ~1 ) e1 

M23 = r23 ( ~1) e2- (reb ( ~1) 83 

Therefore, for the moment equilibrium of joint 2 

M2 = M21 + M23 = -(rc)12 ( ~/) 81 + (r12 + r23) ( ~/) 82 = 0 

(since e3 = 0) 
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For elastic instability 

IKI = lr12 + r13 + rn' - (rc)n' 
-(rc)12 

-(rc)12 1- 0 
(r12 + rz3) -

or IKI = [r12 + r13 + rtl'- (rc)n,](r12 + rz3)- [(rc)12f = 0 

The value of p to cause collapse is determined by trial and modification procedure. 
Let p = 1.00, therefore, the required stability coefficients for various members are: 

Pt2 = 2.00: 

P13 = 0.00: 

Pll' = 1.00: 

P23 = -1.00: 

and 

r12 = 0.143, 

r13 = 4.000 

rn' = 2.467 , 

rz3 = 5.175 

[(rc)12f = 12.424 

(rchl' = 2.467 

IKI = (0.143 + 4.000 + 2.467- 2.467)(0.143 + 5.175)- 12.424 = +9.608 

For p = 1.10 

and 

P12 = 2.20: 

Pt3 = 0.00: 

r12 = -0.519 , [(rchd = 15.219 

r13 = 4.000 

Pn' = 1.10: rn' = 2.282, (rcht' = 2.535 

P23 = -1.10: r23 = 5.278 

IKI = (-0.519 + 4.ooo + 2.282- 2.535)(-0.519 + 5.278)- 15.219 = +0.143 

For p = 1.12 

and 

Ptz = 2.24: 

P13 = 0.00: 

r12 = -0.665 , [(rc)12]2 = 15.904 

r13 = 4.000 

Pll' = 1.12: rtl' = 2.245 , (rc)n' = 2.550 

P23 = -1.12: rz3 = 5.361 

IKI = ( -0.665 + 4.000 + 2.245 - 2.550)( -0.665 + 5.361) - 15.904 = -1.675 

By interpolation for IKI = 0, Per= 1.10157. The load factor at collapse, 

_ Per _ 1.10157 _ 3 304 
Ne- p - (1/3) - . 7. 

It should be noted that the member 1-2 in compression would be weakest if all joints 
were pinned. If all joints were in this condition Ne = 1.5 would produce collapse 
of the member 1-2, and hence of entire structure. On the other hand if the truss is 
rigid-jointed (fixed), Ne = 6.0 will cause collapse. The Ne obtained lies between 1.5 
and 6.0 and hence is reasonable. 
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6.8 Moment Distribution Method 

In the preceding sections the stiffness influence coefficients of members subjected to 
axial loads have been used in expressing terminal moments as superposition of end 
moments caused by actual, unknown rotations and displacements. The equilibrium of 
joints in terms of terminal moments in the members meeting at the respective joints 
provided a set of simultaneous equations with displacements as unknowns. The matrix 
of coefficients of displacements furnished the structure stiffness matrix I K I which 
was used in computation of buckling load. A discerning reader will note that this is 
nothing but the slope-displacement method if the terminal moment due to external 
loads on the member with ends presumed to be restrained were superimposed on the 
terminal moments due to end displacements. For example for a prismatic member A B 
oflength L with constant El. The terminal moments are: 

MAB = r ( ~[) 8A +rc ( ~) 8B- q ( ~[) (~) + MrAB 

MBA= rc( ~)eA +r ( ~)eB -q ( ~[) (~) +MrBA (6.112) 

where Ll is relative transverse displacement at the ends of the members, MrAB and 
MrBA are fixed end moments due to transverse loads. 

As in conventional analysis, the iterative moment distribution method can be 
conveniently used for obtaining member end or terminal moments without actually 
solving any equation. However, in addition to stiffness influence coefficients, the 
procedure requires evaluation of fixed-end moments caused by transverse loads acting 
on members subjected to axial forces. These moments are function of both lateral 
and axial load. For a fixed-ended beam-column i-j of length L shown in Fig. 6.29 
the fixed-end moments for a uniformly distributed load w over the entire span can be 
obtained as follows. 

Using second-order formulation of the problem, the governing equation is given 
by: 

(6.113) 

w /unit length 

p 

lM· 
wU2~~---~-----------------L~----------------~ 

Fig. 6.29. Fixed-end moments due to unifonnly distributed loads 
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where Mx is bending moment at a point at distance x from i. Thus 

d2y 2 M; w 2 
dx2 +a y = EI + 2EI(x -xL) 

where a2 = (P/ EI). The general solution to (6.114) is 

w (M· w) y=Asinax+Bcosax+ 2p(x2 -xL)+ j- Pa2 

The boundary conditions are 

y(O) = 0, and y'(L/2) = 0 (due to symmetry) 

Y(O) = B + (M;- ~) = 0 or B = - 1-(-a2M· + w) 
p fu2 fu2 l 

y' = aAcosax- aBsinax + ~(2x- L) 
2P 

y' ( ~) = aA cos (a~) - aB sin ( ~L) = 0 

or A=Btan(a~) = p~2 (-a2M;+w)tan(a~) 

The fixed end moment Mr;j is given by the condition y' (0) = 0 

, wL a 2 aL wL 
y(O)=aA--=-(-a M-+w)tan---=0 

2P Pa2 ' 2 2P 

Therefore, 

M; = Mfi" = -wL2 [tan(aL/2)- (aL/2)] 
1 (aL)2 tan(aL/2) 

2 [tan1j!-1j!J 2 = -wL 2 = -wL (mrw) 
41/1 tan 1j! 

(6.114) 

(6.115) 

(6.116) 

The quantity within the parentheses is termed magnification factor mrw· Following 
the above procedure, the fixed-end moments for a concentrated load W acting at the 
mid-span of a beam-column is obtained as 

Mf·· = -WL = -WL(mc) [ I -cos 1/1 J 
'1 81/1 sin 1j! 'c 

(6.117) 

where 



6.8 Moment Distribution Method 279 

For the member subjected to axial tension the corresponding expressions for the 
magnification factors are given by 

(6.118) 

and 

cosh 1/1- 1 
m~- --'---

•c - 81/f sinh 1/1 (6.119) 

For the selected values of p, these functions are tabulated in Appendix A.3. 
The moment distribution method can be effectively used in determining the load 

factor Ne against elastic instability collapse of the entire structure. The method 
consists in applying an external moment at one of the joints, and balancing all other 
joints of the structure except the one to which moment is applied. If the carry over of 
moments back to this joint exceeds the originally applied moment, it is apparent that 
moments can not converge. On the other hand, when the collapse load factor Ne has 
been chosen correctly, the sum of the moments carried back to the joint considered 
will just be equal to the moment originally applied there i. e. the moment at joint will 
vanish. In the other words, it consists in finding the Ne value to make any particular 
joint have zero rotational stiffness. The following example will illustrate the principle. 

Example 6.16. A pin-based single-span rigid portal frame shown in Fig. 6.30 is 
subjected to two vertical concentrated forces P, each acting directly over columns 
1-2 and 1'-2'. Determine the critical value of load P that will cause the frame to 
collapse. EI is constant throughout. 

(1) For the symmetrical buckling mode 

- (EI) k21 =r L , - (EI) k12 = rc L 

with carry over factor c. 

k22' = r22'(1- c22') - = -- = 3.333 -- (EI) 2EI (EI) 
L 22, 0.6L L 

The relative primary moments induced in the members due to unit rotation applied 
at the joint 2 are 

There is no carry over to, and carry back from joint 2' as the modified stiffness of 
the member 2-2' has been used. The moment distribution procedure is shown in the 
Fig. 6.30a. 

Since for elastic instability, the total moment at the joint 2 must vanish i.e. sum 
of applied moment and the moments carried back to the joint must equal zero. 
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p p 

(a) 
p p 

2' 

(b) 

-rc 

10 

Unit rotation at joint-2 

Primary moments 

Moment carried back from 1 

Moment carried from 2 

Balance joint -1 

Unit displacement at joint-2 

Primary moments 

Moment carried over from joint-1 

t' Moment carried from 2 

-t' Balance joint-1 

Fig. 6.30a,b. Calculation of terminal moments taking into account the effect of axial forces by 
moment distribution. a Symmetrical buckling mode, b antisymmetrical buckling mode 

M2 = [(r- rc2) + 3.3333] ( ~/) 

= [r(1- c2) + 3.3333] ( ~/) = [r1 + 3.3333]. ( ~/) = 0 

i.e. r1 = -3.3333. From the stability functions table given in Appendix A.l. For 
r1 = -3.3333, p = 1.4351 and hence 

Per= 
1.435l7r2 E I 

£2 
14.1639 EI 

L2 

(2) For anti-symmetric buckling mode 

- (E/) 
k21 = t T , - 1 (£/) k12 = t T and c.o.f., c = t1 jt 

- I (E/) 6EI (EI) k221 = r221(1 + c22) - = -- = 10 -
L 221 0.6L L 

There is no carry over to, and carry back from the joint 21 as the modified stiffness of 
the member 221 has been used. The relative primary moments induced in the members 
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due to unit displacement ( L1 = 1 i. e. the rotation of 1 I L) applied at the joint 2 are: 

~1 =t(~) and Mg2,=10(~) 
The moment distribution procedure is shown in Fig. 6.30b. For elastic instability the 
total moment at the joint 2 must vanish i.e. 

Using trial and modification procedure with stiffness values from the stability func­
tions table, for f(p) = 0, p = 0.2068. Therefore, 

0.2068n2E/ 2.041£/ 
Per = = ---=--L2 L2 

It should be noted that vanishing of total moment at a joint makes that particular joint 
to have zero rotational stiffness. The following example will illustrate the application 
of moment distribution method in computation of terminal moments in the frames 
where the members also carry axial forces. 

Example 6.17. A symmetrical portal frame hinged at the base is subjected to a load 
system shown in Fig. 6.31. E I is constant for all the members. Determine the variation 
in the values of terminal moments when: (i) axial forces are taken into account, and 
(ii) axial forces are ignored. 

The unknown axial force induced in the beam is expected to be small and hence 
no essential error is introduced by assuming P22' = 0. In view of the symmetry of the 
system, the stiffness of the beam k22' = 2Elj(0.6L) = 3.3333(El/ L). The basic or 
fixed end moments in the beam are 

w(0.6L)2 3 2 
Mfl.2' = - = -(30.0 x 10- )wL = -Mfl.'2 

12 

The axial forces in the columns= [w(0.6L)/2] + P 
To determine the variation in terminal moments let us consider the loading stage 

when p = 0.20. 

Case-I: When axial force is taken into account. From the stability functions table for 
p = 0.20 

- , (E/) (E/) k21 = r L = 2.5808 L 

- (E/) k22' = 3.3333 T 

The terminal moments obtained by moment distribution are shown in the Fig. 6.31b. 
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p 

2 

El is con tant 
L 

(a) 

+13.09 16.91 

13.09 -13.09 

With axial force 

(c) 

p 

2' 

I' 

13.09 

With axial force 

(b) 

14.21 

I Without axial force 

-15.79 -14.21 

14.21 -14.21 

Without axial force 

Fig. 6.31a-c. Calculation of terminal moments taking into account the effect of axial forces 

by moment distribution. a Structure, b bending moment diagrams (x l0-3 wL2), c moment 

distribution procedure 

Case-II: When axial force is in the column is ignored. For this case pz1 = 0 and 

- (El) k21 = 3.oooo T - (EI) and kzz' = 3.3333 L 

The moments obtained by moment distribution are given in the Fig. 6.3lb. 

The difference in terminal moments in two cases is 

Columns: 
(14.21 - 13.09) 

13.09 x 100 = 8.556 per cent 

i.e. the column moment increases by 8.556 per cent when axial force is neglected. 

The corresponding value for the mid-span moment in the beam is 

Beams: (30.79- 31.91) 100 3 51 
--3-1.-9-1-- x = - . per cent 

i.e. the mid-span moment in the beam decreases by 3.51 per cent when axial force in 

the column is ignored. 



6.9 Problems 283 

6.9 Problems 

Problem 6.1. A continuous beam 1-2-3 of uniform cross-section has two segments 
1-2 and 2-3 of equal length L as shown in Fig. P.6.1a. The strut is subjected to an 
axial thrust P acting: (i) in the segment 1-2 and (ii) in the entire length 1-3. Estimate 
the critical value of load P that will cause the strut to buckle. 

Also estimate the critical value of load P when the joint 3 is fixed against both 
rotation and translation as shown in the Fig. P.6.1 b. Draw the buckling modes. 

± EI 2 EI 3 
p 

l1 ~ 
p 

I· 
L L ·I • I I 

(a) 

I EI 2 EI 31· p z ~ 
p 

I· L ·I· 
L ·I 

(b) 

P.6.1 

[Ans. (a) (i) Eigen-equation is: r(r + 3)- (rc)2 = 0 or r(r' + 3) = 0, Per= 1.408, 
2.047; 

(ii) Eigen-equation is: r2(r') = 0, Per = 1.00, 2.047. 
(b) (i) Eigen-equation is: r(r' + 4) = 0, Per = 1.4853 and 2.047; 

(ii) Eigen-equation is: r(r' + r) = 0, Per = 1.3143 and 2.047] 

Problem 6.2. A single column rigidly connected frame shown in Fig P.6.2 is fixed 
against both rotation and translation at the joints 2; 3 and 3'. The member 1-2 of the 
frame is subjected to axial compression P. Determine the critical value of load P 
that will cause the frame to buckle. Also calculate the critical load when: (i) joint 2 
is released against rotation, (ii) joint 3' only is released against rotation (iii) joints 3 
and 3' both are released against rotations, and (iv) joints 2, 3 and 3' are released 
against rotations. 
[Ans. (i) r = -8.0 and Per= 3.2476; 

(ii) r' = -8.00 and Per = 1.6748; 
(iii) r = -7.00 and Per= 3.1776; 
(iv) r = -6.00 and Per= 3.095, and 
(v) r' = -6.00 and Per= 1.5984] 

Problem 6.3. The member 1-2-1' of the rigidly connected single column frame shown 
in Fig. P.6.3 is subjected to an axial thrust P. Determine the critical value of load P 
that will make the frame unstable when: (i) column base joint 3 is fixed, and (ii) when 
the joint 3 is hinged. 
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3 
EI 

L 

L 

L 

[Ans. (i) r' = -4.0 and Per= 1.4853, 
(ii) r' = -3.0 and Per = 1.4066] 

p 

3' 

El 

2EI 

2 

L 

P.6.2 

L 

P.6.3 

Problem 6.4. A two-column symmetrical system shown in Fig. P.6.4 is symmetrically 
loaded. El values are same for all the members. Determine the critical value ofload P 
that will make the system unstable when: (i) columns are fixed against rotation and 
translation at the base, and (ii) columns are hinged at the base. 

p p 

2 2' I' 

EI EI El 

EI El 

3 3' 

I· 2L ·I· L • I • 2L ·I 
P.6.4 
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[Ans. (i)for symmetrical buckling mode: r = -7.00 and Per= 3.1776 and for 
antisymmetric buckling mode: t = -15.00 and Per= 0.880; 
(ii)for symmetrical mode: r' = -7.00 and Per = 1.640, for anti-symmetrical mode: 
[t(t + 15) - (t')2] = 0 and Per= 0.2198] 

Problem 6.5. The single-bay, single-storey symmetrical frame shown in Fig. P.6.5a 
is subjected to unsymmetrical loading. Determine the critical value of the load P. 

2P p 
p p 

r--+-..,.......r---i2 

(a) (b) 

P.6.5 a Symmetrical frame with unsymmetrical load, b Unsymmetrical frame with symmetrical 
load 

Problem 6.6. The unsymmetrical single-bay, single-storey closed frame shown in 
Fig. P.6.5b is subjected to symmetrical loading. Determine the critical value ofload P 

that will cause the frame to buckle. 

Problem 6.7. In the symmetrical closed frame shown in Fig. P.6.6a, each of the 
columns 1-2 and 1'-2' carries an axial thrust of2P. In addition the horizontal member 
1-1' is also subjected to an axial load P. Determine the load factor, Ne, at which the 
frame will collapse. 

Problem 6.8. The symmetrical closed frame shown in Fig. P.6.6b is symmetrically 
loaded. Determine the critical value of load at collapse. 

Problem 6.9. The members of multi-bay frame shown in the Fig. P.6.7 have (EI/ L) 
values given in the circles. Determine the critical value of load P at which the frame 
will collapse. 

[Hint: Use principle of multiples to split the frame into single-bay frames.] 

Problem 6.10. Determine the load factor Ne at which the two-bay, two-storey frame 
shown in Fig. P.6.8a will buckle when: (i) f3 = 2 and Pz = 2P1 = 2P, (ii) when 
f3 = 1 and Pz = P1 = P. 
[Hint: Use principle of multiples to split the frame into single-bay frames] 
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Problem 6.11. The single-bay, two-storey symmetrical frame shown in Fig. P.6.8b 
is symmetrically loaded. The frame is hinged at the base points 3 and 3'. Determine 
the critical value of load P which will cause the frame to buckle. 

Problem 6.12. Determine the critical load for the rigidly connected two-bar structure 
shown in Fig. P.6.9a when: (i) h = -/3h; (ii) his very small compared to h. and 
(iii) / 1 is very small as compared to h 

p 
3 

4 

(II,J3L) 

(I,L) 
2 

(a) (b) p 

P.6.9 

Problem 6.13. The joints 2 and 3 of the cantilever bracket frame shown in Fig. P.6.9b 
are hinged and fixed, respectively, and the joint 1 is rigid. The members of the frame 
are of uniform cross-section. Determine the critical value of load P that will cause 
the frame to buckle. 

Problem 6.14. The column 2-3 of the portal frame shown in Fig. P.6.10a is inclined 
at an angle of 60° from the horizontal. Determine the critical load when the portal is 
subjected to the given load system. 

p p 
p p 

(1,2L) 
l------~2 

(I,J3L) 

4 

L 

(a) (b) 

P.6.10 
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Problem 6.15. The symmetrical single-bay portal frame shown in Fig. P.6.10b has 
inclined columns which are hinged at the base. Determine the critical value of the 
load which will cause the frame to collapse. 

Problem 6.16. In the single-bay, two-storey symmetrical frame, the bottom storey 
has inclined columns as shown in Fig. P.6.11 a. Determine the load factor Ne at 
collapse. 

p 

l•u2·1· L 

(a) 

p 

L/2 
·1· ·I 

(b) 

P.6.11 

Problem 6.17. The symmetrical A-frame mast shown in Fig. P.6.llb is subjected to 
a load system shown in the figure. Determine the critical value of load P that will 
cause the mast to collapse, when P2 = P, = P. 

Problem 6.18. The wide base single-bay, two-storey symmetrical frame shown in 
Fig. P.6.12a has inclined columns and is subjected to a symmetrical loading shown 
in the figure. Determine load factor Ne against collapse when P2 = 2P1 = 2P. 

Problem 6.19. The narrow base, single-bay, two-storey symmetrical frame shown 
in Fig. P.6.12b has inclined columns. Determine the critical value of P when P2 = 
PI =P. 

Problem 6.20. The members of two-panel rigid-jointed truss shown in Fig. P.6.13a 
have constant E I and L throughout. The design is such that Pe ( = :rr2 E I 1 L 2) of each 
member equals 3../3P. Determine the load factor Ne against collapse of entire truss. 

Problem 6.21. The members of rigid-jointed Warren truss shown in Fig. P.6.13b have 
constant EI and L throughout. The design of the frame is such that Pe (= :rr2 Elf L2) 

of each member equals 2../3P. Find the load factor Ne at which entire frame will 
collapse. 
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P.6.12 

2P 

p p 

p p 
p 

P.6.13 

Problem 6.22. The symmetrical A-frame mast shown in Fig. P.6.14 is subjected to 
a vertical load P at the apex. Determine the critical value of load P that will result 
in the collapse of the mast, when it is: (i) hinged at the base points 3 and 3'; and 
(ii) fixed at the points 3 and 3'. El is constant throughout. 

p 

EIIL is constant 

P.6.14 
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[Ans. Per = 2(PerPe) sin y. In the symmetrical non-sway mode, the joint 1 does not 
rotate. 
(a) r + r'- 5.7587 = 0 and Per= 0.3465, Per= 2(0.3465rr2 El/ L2) sin 80°, 
(b) r = -2.87935 or Per= 2.7021 and so on. 
In the anti-symmetrical or sway-mode assume the member 2-2' to be displaced in 
such a way that upper part of the frame is rotated about the point 1 through unit 
angle. Therefore, 
(a) t(2t + 17 .276) - (t')2 = 0 or Per = 0.2237 
(b) t = -8.638 and Per= 0.8084 and so on.] 

Problem 6.23. Analyze the continuous beam-column shown in Fig. P.6.15 by: (i) mo­
ment distribution method; and (ii) stiffness matrix method when: (a) the axial load P 
is equal to zero, and (b) P = 0.4 Pe. 

2P 

(PIL) per unit length 

P.6.15 

Problem 6.24. Analyze the rigid frame shown in Fig. P.6.16 by: (i) moment distri­
bution; and (ii) by stiffness matrix method when the load factor Ne = 2.0. 

2P 

(P/4L) per unit length 

(2I,2L) 

(I,L) 

z 

P.6.16 
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Buckling of Members Having Open Sections 

7.1 Introduction 

Many flexural members are braced by other elements of the structures in such a man­
ner that they are constrained to deflect only in the plane of applied transverse loads, 
e. g. slab-beam floor systems are extremely rigid in their own plane and the beams 
can deflect only in a plane perpendicular to the slab. The horizontal and rotational 
displacements are prevented by the floor system. On the other hand there are nu­
merous instances where the members have no lateral support or bracings over their 
lengths and members can buckle in lateral direction under transverse loads. Similarly 
open column sections having only one or no axis of symmetry e. g. a channel section, 
and T-section or an angle section when subjected to axial compression; simultane­
ously undergo lateral displacement and rotation. This type of failure occurs because 
of low torsional rigidity of such sections. Further, in such sections, the critical load 
lies between the critical load for the torsional mode and that of pure flexural mode. 
A pure flexural mode exists when the centroidal axis coincides with shear centre 
axis. Therefore, a member subjected to an axial compressive force can also undergo 
lateral buckling. 

7.2 Torsional Buckling 

7.2.1 Member Subjected to Torque 

When slender members are subjected to moments about their longitudinal axis, tor­
sional shear stresses develop. In circular cross-sections the shearing stresses at every 
point in the plane of cross-section act in the direction perpendicular to a radius vec­
tor. On the other hand in non-circular forms, the shearing stress has components 
both perpendiculars to radius vector and in the direction of radius vector. This extra 
shearing force results in a shearing strain both within the plane of cross-section and 
normal to it. Since, the shearing force components vary from point to point, the 
cross-section does not remain flat and undergoes out of plane distortion which is 

M. L. Gambhir, Stability Analysis and Design of Structures
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called warping. The warping is predominant in the members having thin walled open 
cross-sections such as an I shape or a channel or an angle. In the cases where warp­
ing displacements are restrained, very high normal stresses called warping normal 

stresses develop. However, it is to be understood that the warping normal stresses aw 
are self equilibrating i.e. their integrated effect over the cross section in zero. There 
are two approaches namely equilibrium approach, and energy approach which are 
commonly used for the analysis of such sections. 

I. Equilibrium approach 

(a) Rectangular sections 

The stresses developed in a non-circular cross-section subjected to a torque can be 
divided in two categories. The first of these referred to as St. Venant or uniform 
torsional stresses and the second as non-uniform or warping stresses. If the warping 

is umestrained, then the applied torque is resisted completely by St. Venant shear 
stresses. On the other hand if the member is restrained from warping, then the torque 
is partly resisted by St. Venant shearing stresses and partly by the stresses produced 

due to constraint on warping. The St. Venant shearing stress in a rectangular cross 
section which is parallel to the edges is normally represented in the same form as 
used for a circular shaft i. e. 

Mx,s = GJ(d{Jjdx) (7.1) 

where Mx,s. J and f3 are torsional moment, the St. Venant torsional constant and 
total angle of twist, respectively. G is the shear modulus of rigidity and X-axis is 
along the centroidal axis of the member. 

The corresponding maximum shearing stress is given by 

Mx,s d{J 
Tsv,max = Jt = Gt dx (7.2) 

where t is thickness (smaller dimension) of the rectangular cross-section. It should 
be noted from Fig. 7.lb that in Y- and Z-coordinate directions, the shearing stresses 
are parallel to the outside surface of the members and vary from zero at the centre of 
the member to a maximum at the surface. rsv,max occurs at the centre of longer side 
as shown in Fig. 7 .la. The shearing stresses due to St. Venant type torque at the four 
comers of the cross-section equal zero. 

For a rectangular cross-section where aspect ratio (bjt) is large, the torsional 
constant J can be approximated as 

(7.3) 

For open cross-sections consisting of several thin plate elements rigidly attached to 
one another to form a thin walled shape as shown in Fig. 7.1c, J is taken as 
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z ~-~-~ ---0 't sv.max 

(a) (b) 

I· -I T 
(c) 

Fig. 7.1a-c. St. Venant shearing stresses in a rectangular- and 1-cross sections due to torsional 
moment 
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where i refers to a typical of n connected plate elements. The values of J for some 
typical sections are given in Table 7 .1. However, in practice J is modified by a factor 
a as 

n n 1 
J =aLl; = a L 3b;t[ 

i=l i=l 

(7.4) 

where a = 1.3 for !-sections, 1.12 for channels, 1.00 for angles, and 1.5 for welded 
beams with stiffening ribs welded to the flange. For riveted beams a = 0.50. 

For the !-section shown in Fig. 7.1c, J is given by: 

1.3 3 3 3 
J = 3(b)t) + b2t2 + b3t3) 

Consider three cases ofl-shaped wide flange cross-section loaded as shown in Fig. 7 .2. 
In the first case the torque is applied at the ends and rotation about X -axis is allowed 
i.e. the member is not restrained against warping displacements and hence no warping 

stresses will develop and the flanges will remain straight. This is a case of uniform 

torsion inducing only St. Venant stresses. In practice this case arises when a simply 
supported member is twisted at its ends by other members. 

On the other hand in the case (b) shown in Fig. 7 .2b the member is not free to 

rotate about the X -axis at the ends and hence the flanges do not remain straight i.e. 
warping stresses develop. However, due to symmetry all warping displacements are 

eliminated at mid point. In this case contribution of uniform torsional strength is 
maximum at the ends and decreases towards the centre. While warping strength is 
maximum at the centre and decreases towards the ends. 

The beam in case (c) represents one-half the beam of case (b). In general, the 
applied torques are resisted by the sum of uniform (St. Venant) torsional resistance 
and the warping resistance i.e. 

Mx = Mx,s + Mx,w (7.5) 

M, ~II Mx I 1---.& r 
(a) 

ll 
1-1 11-11 

M, 

~II -- :r I li A (b) II 

I t. 1-I 11-11 

I r-n 
I I_.., ~II ~ ~ L (c) 

I-I II-II 

Fig. 7.2. Rotations of wide-flange member due to torsional moment 
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Table 7.1. Properties of some typical sections 

f 
d 

Location 
of shear centre, S 

YO= -e 

zo =0 

Yo= -e 

zo =0 

Yo= e(l + ~~:) 
zo =0 

1=1J+]z 

1t = j-bt3 

]z = j-bt3 

1 = 1t + 12 

1t = j-btt3 

]z = j-b2t3 

1 = 1t + ]z 

1t = j-dt~ 
h = ~bt{ 

1 =2ft+ 12 

1t = j-bt{ 

h = j-dt~ 

{[lz +e2A 

X ( 1- ~~~)] 
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Shape of cross section 

tr y 

0 
z-----!:lS 

y 

Table 7.1. (continued) 

Location 
of shear centre, S 

Yo= zo = 0 

_ ezlz-eill a 
Yo- I,+Iz 

zo = 0 

Yo=zo=O 

n 

J = "£.'; 
i=l 

J =21J +h 

J, = lbtf 

h = ldt~ 

J = J, + lz + h 

J, = lb,tf, 

lz = lbztb 

h = ldt~ 

J =2h +h 

h = lbtf 

h = ldt~ 

£I b 4 a 

a I 1 and [z are the moments of inertia of the top and the bottom flanges, respectively, with 
respect to the Y -axis 

b Ia is the moment of inertia of the cross-section with respect to the centerline a-a of the 
web 
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Their relative magnitudes depend on the geometry of the cross-section and the ratio 
of elastic modulus E to shear modulus G, i.e. E j G. 

(b) Warping of I and wide flange sections 

In the following treatment it is assumed that the twist is small and the relative geometry 
of the cross-section does not change as member rotates. The warping effects can be 
described by considering lateral bending of members due to twisting. Consider a I 
or wide flange section subjected to twisting moment Mx as shown in Fig. 7.3a. Since 

y 

X 

(d/2)~ y 

y 

d/2 

z 
d 

(b) (c) 

Fig. 7.3a-c. Warping of wide flange section due to twisting moment. a Beam subjected to 
twisting moment, b typical cross-section, c rotated cross-section 
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the section is not allowed to rotate at the support (i. e. warping deformations are 
constrained) it results in a differential lateral displacement of the top and bottom 
flanges, one bending to right and one to left as shown in Fig. 7 .3c. This differential 
translation of the flanges accounts for primary warping and the rotation corresponds 
to St. Venant effect. The shear forces Vr in the flanges form a couple referred to as 
warping torsion, Mw (= Vrd). The moment Mr induced in the flange about Y-axis 
due to lateral (horizontal) deformation u is given by 

d2u 
Mr=-Efr­

dx2 
(7.6) 

where Ir is the second moment of area of flange plus half the web section, about Y­
or vertical axis. 

For small angle of rotation {3, displacement u can be expressed as: u = {J(d/2). 
Therefore, from (7 .6) 

Mr = (-Elr) (~) (~) (7.7) 

The shear force in the flange is given by: 

dMr (d) (d3fJ) Vr = dx = - (Efr) 2 dx3 (7.8) 

where dis the depth of cross-section centre to centre of flanges. The warping resistance 
of the cross-section resulting from the couple formed by two equal and opposite flange 
shear forces Vr is given by 

For an /-shaped cross section, Ir may be approximated by ly/2 of the total cross­
section. Therefore, 

(7.9) 

where lw is referred to as warping constant of the cross-section. Warping constants 
for some of the typical sections are given in Table 7 .1. Equation (7 .9), though derived 
specifically for I or wide flange section, is also valid for thin walled open cross­
sections with approximate value of lw. Substitution from (7.1) and (7.9) into (7.5) 
gives twisting equilibrium equation 

d{J d3 f3 
Mx = Mx,s + Mx,w = GJ dx - Elw dx3 (7.10) 
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Defining distributed variable torque as 

dMx d2 {3 d4 {3 
m = -- = GJ-- El - or 

X dx dx2 W dx4 

(7.11) 

Thus the stresses produced in thin walled type open cross-sections subjected to torque 
are 

(a) St. Venant shearing stress, 

isv,max = Gt(d{3jdx) 

and occurs on the surface at the mid point of thickest part. 
(b) Warping normal stress, 

Mrb Mrb Edb d2{3 
a ------------

w,max - 2(/y/2) - ly - 4 dx2 

where b is the flange width. 
(c) Warping shearing stress, 

rw = Vr(AY) = _ Ed(Ay) (d3{3) 
lrtr 2tr dx3 

(7.12) 

(7.13) 

At the centre of flange Ay is maximum and is given by Ay = b2trf8. Hence 

r = _ (Edb2
) d3{3 

w,max 16 dx3 (7.14) 

7 .2.2 Member Subjected to Axial Force 

Consider a column with double symmetric cross-section subjected to an axial load P. 
Such a section where shear centre coincides with the centre of gravity can have pure 
flexural modes in X-Y and X-Z planes depending upon the axis about which second 
moment of area is minimum. It can also have a pure torsional mode simultaneously. 
In a buckled condition, the axial load P acts on a slightly rotated cross-section. A fibre 
element of length dx and cross-sectional area tdr located at a distance r from the 
axis undergoes a transverse or lateral displacement ~ ( = f3r) as a result of rotation f3 
(without translation or distortion). This element can be treated as column under axial 
load dP (= atdr) which has undergone a lateral displacement, ~·This deformed 
elemental column is equivalent to a beam element subjected to a transverse fictitious 
load of magnitude q(x) given by 

d2M d2 d2~ 
q(x) = dx/ = dx2 (d.Pg) = dP dx2 
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or 

Substituting for ~ 

where f3 is a function of x alone. 

d2~ 
q(x) = a(t dr) dx2 

d2{3 
q(x) = atr dr dx2 (7.15) 

Since the load q(x) is acting at distance r from the axis of column it causes 
a moment q(x)r about Z-axis. This moment is very small if the width of the flange is 
small. Summing up the entire moment over the cross-section at distance x along the 
column axis. 

d2{3 I 2 d2{3 
mx dx =a dx dx2 tr dr = a/0 dx2 dx 

A 

where / 0 is the polar moment of inertia of the cross-section about the shear centre. 
Thus the torque generated per unit length can be written as: 

d2 f3 p d2 f3 2 d2 f3 
mx = a/0 dx2 = A/0 dx2 = Pr0 dx2 (7.16) 

where a = P/ A with A being the area of cross-section. Using (7.11) the torsional 
behaviour of a uniform cross-section member subjected to axial compressive load P 
is governed by differential equation: 

d4 {3 Pr;- GJ d2{3 
dx4 + Elw dx2 = O (7.17) 

The polar radius of gyration, r 0 of the section about the centroidal axis is given by 

2 lp ly+lz 
r=-= 

0 A A 

In contrast to doubly symmetrical cross-sections, in singly- or un-symmetrical section 
the centroid of the cross-section does not coincide with the shear (elastic) centre. If 
the distances of shear centre from the centroid are given by (Yo and zo) the radius of 
gyration is given by 

2 lp ly + lz 2 2 
ro = A = -A-- +Yo + Zo 

Equation (7 .17) can be expressed in the standard form 

d4 f3 + a2 d2 f3 = 0 or f3"" + a2 {3" = 0 
dx4 dx2 

(7.18) 

where a 2 = (Pr?;- GJ)/ Elw. Equation (7.18) has a general solution of the form 
(Appendix Appendix C): 

f3 = A sin ax + B cos ax + C (f) + D (7.19) 
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Case 1: Consider a column with simple end supports. The boundary conditions to be 
satisfied are 

(i) at x = 0: {3(0) = f3" (0) = 0. 

This condition provides D = B = 0, and the condition 

(ii) atx = L: f3(L) = f3"(L) = 0 

gives C = 0 and A sinaL= 0 (7.20) 

Thus for a simply supported column with doubly-symmetric cross-section, the tor­
sional buckling load is given by 

p - -- GJ ( rr2Eiw ) A 
x,cr - L2 + (/y + fz) 

(n = 1) (7.21) 

As noted earlier, in addition to torsional mode, there are two pure flexural modes. 
The buckling load will be the minimum of three loads corresponding to these modes. 
The other two buckling loads due to flexure are: 

Py,cr = rr2Eiy/L2 and Pz,cr = rr2Eiz/L2 

It should be noted that these buckling modes are uncoupled. 

Case II: Consider a column having built-in ends such that rotation and warping are 
prevented. The boundary conditions to be satisfied are: 

{3(0) = {3'(0) = f3(L) = f3'(L) = 0 

Incorporating these boundary conditions in the general solution given by (7.19) and 
vanishing the determinant of the coefficients of constants A, B, C and D for non­
trivial solution provides characteristic equation 

. aL (aL aL . aL) 2(cosaL- 1) + aL sinaL= 0 or sm T 2 cos2 - sm T = 0 

(7.22) 

This characteristic equation provides two solutions: 

. . aL . . ( 4rr2Eiw) A 
(1) sm T = 0 gtvmg Px,cr = GJ + L2 lp (for n = 1) (7.23) 

.. aL aL . aL 
(n) tan T = T wtth lowest root T = 4.4928, 

and therefore 

( 80.75£/w) A 
Pxcr = GJ + 2 -

' L lp 
(7.24) 

This load is higher than the former and corresponds to antisymmetric mode of 
buckling. 
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II. Energy Solutions 

Internal Potential Energy 

As discussed in Chap. 2, the total potential II of a member consists of two parts: 
strain energy U of the deformed member and potential energy V of the external loads. 
In the case under consideration, U can be divided into parts: U1 due to longitudinal 
direct stresses and U2 due to shear stresses. The strain energy due to direct stresses 
is given by 

The strain energy due to St. Venant shear stress is given by 

U2 1 = ~ f M d/3 dx = ~ f (-Gld/3) d/3 d.x 
' 2 xdx 2 dx dx 

1 d/3 1 1 2 ( )
2 

= -2 f GJ dx dx = -2 f Gl(/3) dx 

The component of strain energy due to warping stresses can be expressed as 

1 f II 2 U2,2 = 2 Elw(f3 ) dx 

Thus, the total strain energy in a member is given by 

U = U1 + U2 = U1 + (U2.1 + U2,2) 

L 

(7.25) 

(7.26) 

(7.27) 

= ~ f [ Ely(u")2 + Elz(v")2 + Elw(/3")2 - Gl(/3')2 + EAE2] dx (7.28) 

0 

The evaluation of the term J EAE2 dx can be avoided, if the potential energy is reck­
oned from the value (zero) for the fully compressed but un-deflected (pre-buckled) 
state of column and potential energy of external loads is determined on the same 
basis. As the potential energy is zero for the straight column carrying its critical 
compressive load, potential energy in post-buckled state is expressed by first four 
terms of (7 .28) 

L 

U = ~ J [ Ely(u")2 + Elz(v")2 + E/w(/3")2 - Gl(/3') 2] dx 

0 

(7.29) 
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External Potential Energy 

As explained earlier in Chap. 2, the potential energy of external loads, V is equal 
to the sum of negative products of external forces and the displacements of their 
points of application in the direction of forces. Reckoning V from zero for the fully 
loaded but un-deflected column, V will therefore represent change in potential due 
to lateral bending and twisting only. For an axially or centrally loaded column shown 
in Fig. 7.4 the compressive stress, ax = P/ A is uniformly distributed on the end 
surfaces. As the member buckles the stress ax changes to ax + dax. The work done 
by da x may be neglected in comparison to work done by the stresses ax. 

For computation of work done by ax consider a fibre column of area dA shown 
in Fig. 7.4b carrying a load ax dA at each end. The change in potential energy is 
dV = -ax dA.1, where .1 is relative displacement of the top w.r.t. bottom of the 
column 

.1 = <1c + <1a 

where .10 and <1a are the contributions of curvature of fibre and the change in axial 
stress dax in the post-buckled stage. Thus 

dW, ~-a, dA.1 ~ -a,dA [ .1, +~Ida, dx] 

p 

crx =PIA 

p 

(a) 

6 

~II 

(b) 

II 
II 

cr, dA 

L 

Fig. 7.4a,b. Column subjected to uniformly distributed compressive stress, ax = P/ A. a Actual 
column under axial load, b fibre column 
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X 

Original fibre column 

' 
;....__ Displaced 
' fibre column 

y 

(a) 

y 

y 

Z~----~~~0-4--~-------~--L 
--Ju zo z 

(b) 

s' a" cos("ljl + ~) !'>.z 
I• •I• •I 

Fig. 7.5a,b. Movements Lly and Llz of fibre column of area dA. a Displacements of fibre 
column, b displacement of the cross-section 

For the entire column cross-section 
L 

We= -ax I LlcdA- ~I I daxdxdA 

A A 0 

=-ax I LlcdA- ~ J [1 daxdA] dx 
A 0 A 

(7.30) 

The integral in the parentheses in (7 .30) is the component of resultant of additional 
stress dax in X-direction, which must vanish because the external load does not 
change. Therefore, 

We= -ax I LlcdA (7.31) 

A 

Taking the coordinate axes X, Y and Z to pass through the centroid of the cross­
section with the location of shear centre, s, being represented by Yo and zo and the 
displacements by v, u and f3 as shown in Fig. 7.5. Consider a fibre column of area 
dA at the point (y, z) before deformation. Owing to deformation the new position of 
the fibre column is given by (y + Lly, z + Llz), where Lly and Llz are functions of x. 

For small deformation: cos f3 = 1 and sin f3 = {3. Therefore Lly and Llz are given 
by: 

Lly = v- (zo- z) sin/3 = v- (zo- z)/3, and 

Llz = u +(yo- y) sin/3 = u +(yo- y)/3 (7.32) 
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The movement of the load in X -direction, .de for hi-planar deformation can be 
obtained by extending the uni-planar deformation given by (3.6): 

Substituting for .1y and .1z from (7.32) into (7.33): 

L 

.de = ~ J { [ (u')2 + (v')2] + 2you' f3'- 2yu' f3'- 2zov' f3' 

0 

+ 2zv' !3' + [(yo - y)2 + (zo - z)2] (/3')2 } d.x 

Using the geometrical relations: 

(7.33) 

(7.34) 

fdA= A, f ydA = 0, f zdA = 0 and 

A A A 

j [<Yo- y)2 + (zo- z)2 ] dA = lp 

A 

the potential energy of external loads can be expressed as 

L 

V = -We =ax J .de dA = ~ J {ax A [ (u')2 + (v')2] + 2axAyou' {31 

A 0 

- 2axAzov' /3' + axlp(/3')2 } d.x (7.35) 

where /p is the polar moment of inertia of the cross-section with respect to the shear 
centre. The complete expression for potential ll ( = U + V) of beam is sum of (7 .29) 
and (7.35) 

L 

ll = ~ f { Ely(u") 2 + Elz(v")2 + Elw(f3")2 - Gl(/3')2 + P [ (u')2 + (v')2] 

0 

+2Pyou'f3'-2Pz0 v'f3' + ~/p(/3')2 } d.x 

Governing Differential Equations of Buckling 

(7.36) 

The total potential of member n is a function of three variables u, v and {3. From 
stationary potential principle, ll will be stationary if the following Eulerian equations 
are satisfied 

Elyu"" + Pu" + Pyof3" = 0 

Elzv"" + Pv"- Pzo/3" = 0 

Pyou"- Pzov" + Elwf3"" + (p~- GJ) f3" = 0 

(7.37a) 

(7.37b) 

(7.37c) 
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Equations 7.37 are in their most general form and are applicable to any type of 
boundary conditions which can be expressed without contradiction in terms of vari­
ables u, v, f3 and their derivatives. Depending upon the properties of cross-section 
the results can be simplified considerably. 

1. Column having cross-section for which shear centre coincides with the centroid 

For the cross-section having two axes of symmetry, the shear centre lies at the centroid 
i. e. zo = Yo = 0 and the Eulerian governing buckling equations reduce to 

or 

E1yu"" + Pu" = 0 

E1zv'"' + Pv" = 0 

Elwf3"" + (p~- GJ) {3" = 0 

Elwf3"" + (uxlp- GJ} {3" = 0 

(7.38a) 

(7.38b) 

(7.38c) 

It should be noted that these buckling equations are uncoupled. The first two equations 
are identical in form with the differential equations for buckling of columns subjected 
to bending moment about Y- and Z-axes, respectively. The third equation describes 
buckling of column by twisting. 

Example 7.1. A straight I -section column with the end cross-sections prevented from 
twisting but the flanges at the ends are free to rotate in their own planes, is subjected 
to a twisting moment about its centroidal axis, determine the value of the stress at 
which buckling takes place. 

The governing differential equation for this case is: 

(7.39) 

Boundary Conditions. As the column is twisted about its centre line the displacement 
of the flanges in their own planes are: u = {J(d/2). Since the flanges are free to rotate 
at the ends, the bending moment in the flanges (i.e. curvature, u") must be zero i.e. 
{3" = 0, and in addition as the ends of column are prevented from twisting, f3 = 0. 
Thus the four boundary conditions are: 

{3(0) = {3"(0) = fJ(L) = fJ"(L) = 0 

The displacement function satisfying these boundary conditions is given by: 

R • nnx 
p=AsmL (7.40) 

where A is an arbitrary constant and n an integer. Substitution of f3 from (7 .40) into 
(7 .39) provides 
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For a non-trivial solution 

(7.41) 

where lw, lp and J are the cross-sectional properties. The polar moment of inertia 
lp is referred to the shear centre of cross-section. The lowest stress ap,cr at which 
buckling occurs corresponds to n = 1. Therefore, 

ap,crA = Pp,cr = 1r~~A [ ( ~:) + ~~ (~~)] 
rr2EA 

= (L/rp) 2 
(7.42) 

where r fJ which has dimension of length is an equivalent radius of gyration and 
depends upon shape of the cross-section and length of the beam-column and is 
expressed as 

Therefore, a column will be torsionally unstable at a critical stress ap,cr which is 
equal to the critical stress for lateral buckling of an equivalent column having the 
slenderness ratio (L/rp). The critical stress of the column will be lowest of the three 
stresses ay,cr. Uz,cr and ap,cr. and it will correspond to the smallest radii of gyration 
ry, rz and rp. 

For the end conditions other than simply supported or hinged 

rr2E 
a----
cr- (KL/rp) (7.43) 

where K L is the effective length of the beam-column. In the case of fixed-ended 
column or fixed-free column, for torsional buckling the slenderness ratio considered 
is KL/rp where rp is given by 

(7.44) 
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For rolled /-beamsections, /p = ly + lz and lw = [(d2 /4)Iy]. The equivalent radius 
of gyration is given by 

rp= {(~) ly~lz + K~;2 [E(/~~/z}]r/2 (7.45) 

For most of the standard steel beam sections rp is larger than ry and hence columns 
buckle laterally; only columns of short length with very wide flange have rp values 
slightly smaller than r y and such column will buckle torsionally. 

2. Column with one axis of symmetry 

If the cross-section has an axis of symmetry, say the Y -axis, then zo = 0 and (7 .37) 
reduce to 

Elyu"" + Pu" + PyofJ" = 0 

Elzv"" + Pv" = 0 

Pyou" + ElwfJ"" + (p~ -GJ) {J" = 0 

(7.46a) 

(7.46b) 

(7.46c) 

The second equation is uncoupled and is the usual differential equation of flexural 
buckling in Y -direction. For pin-ended column the critical stress is 

rr2E 
a ---7 

y,cr - (L/rz)2 (7.47) 

The first and third equations involve coupling between buckling in Z-direction and 
twisting. For a pin-ended column with twisting prevented, the boundary conditions 
are 

u(O) = {J(O) = u"(O) = {J"(O) = 0 

u(L} = {J(L) = u"(L) = {J"(L) = 0 

The displacement functions satisfying these boundary conditions are given by 

. nrrx . nrrx 
u = Asrn-- and {J = Bsrn-

L L 

Substituting these deflection modes in the governing differential equations; two ho­
mogenous equations are obtained in terms of constants A and B. For non-trivial 
solution (A =/= 0, B =/= 0) the determinant of coefficients must vanish. The lowest 
critical load occurs for buckling in one half wave i.e. n = 1 

-PerYO 1- (~-1) -yo 

[ rr
2J/w- (Per~- Gl)] - -yo _!£_ [1-1] 

A rl 
-PerYo 

(Per- Py) (Per- Pp)- P.; ( AZ5) = 0 (7.48a) 



or 

where 

r2 = [(lw) L2 (GJ)] 
fJ I + n 2 EI p p 
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n 2EA 
and P ---­er - (L/re)2, (7.48b) 

and re is an equivalent radius of gyration determined from the quadratic equa­
tion (7.48). Thus the critical load for buckling by torsion and flexure will therefore 
be the same as critical load in the ordinary column theory of an equivalent column 
having slenderness ratio Lfre. 

Equation (7.48) always has two positive roots of re, one of them is smaller than 
both ry and rp. Thus the column in question will buckle at a load corresponding 
to smaller of the values rz and re. If rz is smaller, the column will buckle in the 
Y-direction without twisting; if the root re is smaller than rz, the column will deflect 
in the Z-direction and twist simultaneously. Since, re is always smaller than ry, the 
critical load is smaller than that given by conventional column theory for buckling in 
the Z-direction. 

3. Column with a cross-section with no axis of symmetry 

This is the most general case with three coupled Eulerian governing equations given 
by (7.37). In this case both flexural and torsional displacements occur at the instant 
of buckling. For illustration consider a beam-column with simply supported end 
conditions. As in the previous cases the deformation functions may be assumed in 
the form: 

u =A sin(nx/ L) , v = B sin(nx/ L) and f3 = C sin(nx/ L) 

For a non-trivial solution (A =!= 0, B =!= 0 and C =!= 0), vanishing the determinant of 
coefficients of constants A, Band C provides the characteristic equation as follows: 

(Pz- Per) 0 PerZO 

0 (Py-Per) -Per YO =0 

PerZO -PerYo [ rr2i/w - (Perf - G 1)] 

(7.49) 

or ( 1 - :~) ( 1 - :i) ( 1 - :~) - ( 1 - :~) ( ~:6) -( 1 - :i) ( A~6) = 0 

where r~ = [ ( ~:) + ~~ (~~) J and (7.50) 
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The equivalent radius of gyration, re can be obtained from the cubic equation (7.50). 

The smallest of the roots of (7 .50) will provide critical buckling load for the column 

in question. 

Example 7.2. A 7.0mlongmemberconsistingofMB400 @0.616kN/mrolledsteel 

section is to be used as a column. It is specified that all the end conditions of the 

member are of simple support type. Compute the buckling load of the column. 

For the given cross-section of the column in which the shear centre coincides 

with the centroid, the flexural and torsional buckling modes would be uncoupled. 

The properties of the member are: 
Length, L = 700cm; area, A = 78.4cm2 ; depth, d = 40cm; flange width, b = 
14 em; flange thickness, tt = 1.6 em; web thickness tw = 0.89 em; Iy = 622 cm4 ; 

lz = 20500cm4 ; E = 20000kNjcm2 ; G = (3/8)£ and lp = ly + /2 = 21122cm4 • 

1 2 1 2 1 
J = L 3b;t( = 3btj + 3dt~ = 3 x 14 x 1.63 + 3 x 40 x 0.893 = 47.63cm4 

The three independent elastic buckling loads of the column are: 

rr2 El rr2 x 20000 x 622 
Py,cr = -L-2-y = (700)2 = 250.57 kN 

rr2 EI rr2 X 20000 X 20500 
Pz,cr = -L-2 -2 

( 700)2 = 8258.24kN 

rr2 EA 
p, - ---;:-

/-'ocr- (L/r{J)2 

where, 

r2 = (d2
) (Iy) L2 (GJ) 

f! 4 I + rr2 EI p p 

( 402) ( 622 ) (700)2 (3 47.63) 2 = - -- + - - x -- = 53.76cm 
4 21122 7r 8 21122 

or 

rp = 7.332cm 

Therefore, 

1r2 X 20000 X 78.4 
Pp,cr = (700j7.332)2 = 1697.90kN 

The critical condition is that of flexural buckling about minor axis of the member at 

a value of axial thrust of 250.57 kN. The associated stress is 31.96 MPa ( = 250.57 x 

103 /7840), which is well within elastic limit. If the column in question had been 

supported in Z-direction such that bending about Y-Y axis was prevented, but twisting 

about longitudinal axis was allowed, then the column would buckle torsionally at the 

next higher critical value, PfJ,cr = 1697.90 kN with critical stress of 216.57 MPa. 
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The foregoing procedures are equally applicable to clamped and free bound­
ary conditions. In the following example application to clamped end conditions is 
illustrated. 

Example 7.3. Determine the critical load at which a uniform column having a cross­
section with one axis of symmetry (e. g. a channel section with symmetry about 
Z-axis) will buckle. The column has clamped end conditions. It is restrained from 
warping and is not allowed to rotate about its longitudinal X -axis. 

As the section is symmetrical about Z-axis, Yo = 0 and governing Eulerian 
equations (7.37), reduce to: 

(7.51a) 

(7.5lb) 

(7.5lc) 

The first of these equations contains the displacement u only and is the usual differ­
ential equation of flexural buckling about Y -axis. Therefore, for clamped columns 
the critical load is given by 

4n2 Ely p - ----,--...::... 
y,cr- L 2 (0.5£)2 

The second and third equations contain both v and f3 but not u. This indicates that the 
equations are coupled, and that the buckling in Y -direction and twisting will occur 
simultaneously. Due to this coupling the equations need be solved simultaneously. 
However, since these equations are of even order with constant coefficients, a variable 
separable type solution can be used. This implies that the mode shapes v and f3 are 
not significantly affected by coupling because they are of second order, and hence 
can be neglected. 

For the flexural mode the boundary conditions for clamped ends are 

u(O) = u'(O) = u(L) = u'(L) = 0 

v(O) = v'(O) = v(L) = v'(L) = 0 

For the torsional mode the boundary conditions stipulate that the column is restrained 
from warping and can not rotate about X -axis at the ends. These can be expressed 
mathematically as 

{3(0) = {3'(0) = {J(L) = f3'(L) = 0 
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The shape or displacement functions for u, v and f3 satisfying above boundary con­
ditions may be taken as 

( 2rrx) u=A 1-cosL (7.52a) 

( 2rrx) v=B 1-cosL, (7.52b) 

( 2rrx) f3=C 1-cosL (7.52c) 

Substituting (7.52a) in (7.5la) 

[ ( 2rr) 4 (2rr)2
] 2rrx -Ely L +Per L AcosL = 0 

For non-trivial solution, A cos(2rr I L) =/= 0 and hence 

This expression is identical to one written directly earlier. 
Substituting (7.52b) and (7.52c) in (7.51b) and (7.51c) 

[ (2:7l')4 (2:7l')2] (2:7l')2 -Eiz L +P L B+Pzo L C=O 

Pzo ( 2;y s + [ -Eiw ( 2;y-( a1- p~) (2;YJ c = o 

For non-trivial solution (B =/= 0, C =/= 0), the determinant of coefficients of B and C 
must vanish, that is 

I 
(Per- Pz) PerZO I 
PerZo ( *) (Per- PfJ) 

(7.53) 

where, 

4rr2 Elz rr2 Elz 
Pz = L2 = (0.5L)2 

PfJ = ~ ( ~22 Elw + GJ) = ~ [~~::;2 + (GJ) J 
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These results can also be obtained from the case of simply supported boundary 
conditions by substituting KL for L where K is the effective length factor. For 
a given cross-section Pz and Pp are known quantities, the roots Per,! and Per,2 of 
the quadratic characteristic equation can be computed. The first critical load will be 
given by smaller of Per, I and Py,er• where Per, I < Per,2· If Py,er is minimum, a pure 
flexural mode will control the critical load; on the other hand if Per, 1 is minimum 
a torsion-flexural mode will provide the buckling load. 

It should be noted that the problem of evaluating critical load is equivalent to that 
of finding the deflected configuration for which the system is in equilibrium. This 
can also be achieved by stationary potential principle using Rayleigh-Ritz technique. 
The procedure is illustrated in the following example. 

Example 7.4. A uniform column having channel cross-section is clamped at one end 
and is completely free at the other. Estimate the critical load at which buckling will 
occur. 

Since the boundary conditions at the ends of the column are not symmetric the 
analysis using Eulerian differential equation approach is difficult. The problem can 
be handled easily by stationary potential principle using Rayleigh-Ritz technique. 

As the cross-section has axis of symmetry about Z-axis, Yo = 0. The geometric 
boundary conditions at the column ends are: 
For the clamped end: 

u (0) = v(O) = {3(0) = u' (0) = v' (0) = f3' (0) = 0 

For the free end 

u" (L) = v" (L) = f3" (L) = 0 and 

u"'(L) f= 0, v"'(L) f= 0, f3"'(L) f= 0 

The shape functions satisfying the above boundary conditions may be assumed to be 

u = Af(x); v = Bf(x) and f3 = Cf(x) 

where, 

(7.54) 

The potential functional II given by (7 .36) contains the first and second derivatives 
of shape functions and thus requires following integrations: 

L L f [f' (x)]2dx = f [ 6Lx- 3xz]2 dx = (254) L5 

0 0 

L L J [f"(x)fdx = J [6L- 6xfdx = 12L3 (7.55) 

0 0 
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Substituting for the shape functions u, v and f3 from (7 .54) into (7 .36) and for 
stationary potential, the derivatives of II w.r.t. A, Band C must vanish i.e. 

~~ = [/ EI,U")2dx- I P(J')2dx] A= 0 

This equation represents an uncoupled flexural-mode. For non-trivial A =f. 0 solution 

L 

f El (f")2dx 
o y 3 ( 5 ) 2.5Ely n 2 Ely n 2 Ely 

Py,cr = L = (Ely)(l 2L ) 24L3 = -v = (1.98L)2 = (KL)2 
j(f')2dx 
0 

where K = 1.98. The exact value of K is 2.0. Vanishing other variations of II 

:~ = [/ EI,(f")2dx- f P(j')2dx] B + [/ Pz0(/')2dx] C = 0 

or 

or 

an 
ac 

[ 2.5Elz J -u - P B + (Pzo)C = 0 (7.56a) 

[/ ~(/')2dx] B 

+ [J Elw(f")2dx + J GJ(f')2dx- J (~) lp(f')2dx] C = 0 
0 0 0 

lp [(2.5Elw ) A J (Pz0)B + A -----u- + GJ lp - P C = 0 (7.56b) 

For non-trivial (B = C =f. 0) solution of (7.56) 

=0 

where 

and P = - GJ (A) [ n 2Elw J 
f3 lp (1.98L)2 + (7.57) 

The quadratic characteristic equation (7 .57) can be solved for its roots Per, 1 and Pcr,2. 

The minimum of three i.e. Py,cr; Pcr,l and Pcr,2 will provide the critical load. 
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7.3 Lateral Buckling of Beams 

In the preceding sections the discussion was mainly confined to the stability analysis 
of centrally and eccentrically loaded columns. In this section more complex buckling 
problems of open thin walled sections will be discussed. An I -beam supported at 
the ends and loaded longitudinally and transversely in the plane of web may buckle 
side ways if it is laterally unsupported at the supports. If the flexural rigidity of the 
beam in the plane of web is many fold its lateral stability, the beam may buckle and 
collapse long before bending stresses due to transverse load reach the yield point. 

7.3.1 Torsional Buckling due to Flexure 

Consider an I- or wide flange type simply supported beam subjected to planer moment 
as shown in Fig. 7 .6a. The top flange of the beam is under uniform compression and 
would tend to buckle in weaker (i.e. downward) direction but the web prevents the 
same and hence the flange has tendency to buckle laterally (i.e. horizontally). On 
the other hand the bottom flange being in tension tends to remain straight. Thus the 
top flange bends farther than the bottom flange and in consequence the entire cross­
section twists. This also holds good for planar rectangular beam. At the critical value 
of bending moment, Moz,cr• the member becomes unstable and warps i.e. undergoes 
rotation and lateral deflection which may cause collapse. 

Moz C[ _ __.____J.) Moz m 
L 

(a) y 
Y' 

Y' c:::~;:::J 

sc:: z - ---t---L. 
-v 

u 

(b) (c) 

Fig. 7 .6a-c. Lateral-torsional buckling of beam subjected to end moments. a Beam subjected 
to end moments, b deflected shape of beam, c deflections of cross-sections 
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In the following analysis it is presumed that the cross-section of the beam is 
constant and the fibre stresses due to external load do not exceed proportionality limit 
at the instant of buckling. Moreover, the distortion in the plane of cross-section is 
considered to be negligible such that section does not change shape. The displace­
ments are also considered to be small such that secondary effects of displacements 
are ignored. Based on these assumptions, the lateral displacements of flanges are 
taken to be caused primarily by bending of flanges about Y -axis. 

As defined in previous sections, Z- and Y -axes are principal axes of I -section 
which may have unequal flanges; the coordinates of the shear centre are generally 
represented by Yo and zo; v and u are the components of displacement of shear centre 
parallel to the rotated (variable or displaced) axes Y'- and Z'-; {J is the angle of twist 
(rotation of axes) with respect to longitudinal axis X as shown in Fig. 7 .6b. Normally 
the bending rigidity of I- or rectangular-beam cross-section about Z-axis (major axis) 
is quite large when compared to that about Y -axis. Thus deflection v in the plane of 
applied moment is small as compared to lateral displacement u and angle of twist, {J. 
The buckling problem can be treated both by classical differential equation method 
and stationary potential energy principle. 

Beams with Symmetric Cross-Section 

For a doubly symmetric cross-section: Yo = zo = 0 

I. Differential equation solution 

Three differential equations can be written by considering the problems of warping 
without translation, bending without warping, and that of constant torque using small 
displacement theory. Applicability of linear superposition of effects is presumed. 

The lateral displacements of the top and bottom flanges u1 and ub can be related 
to u and {J which are the lateral displacement and angle of twist of shear centre with 
respect to longitudinal axis, respectively, of cross-section. 

and 

Ut = u + u' = u + {J (~) 

Ub = u- u' = u- {J (~) (7.58) 

where u' is the displacement of center of flange with respect to the centroid of the 
cross-section and dis the depth. In the deflected configuration of beam the components 
of the applied moment Moz with respect to displaced or variable axes X', Y' and Z' 
can be obtained from Fig. 7.6c. 

and 

Mz' = MozCOS{J = Moz; 

Mt = Moz sin{J = fJMoz 

Mx' = (:) Moz (7.59) 
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Since sin .B ~ .B and cos .B ~ 1.0. The resistance of beam to these components can 

be expressed as: 

(7.60) 

Mx' = torque developed by transverse shear in flanges i.e. warping torsion + 
St. Venant or pure torsional resistance= Mw + Msv· 

Transverse shear in the flange, 

dMt d3u' 
Vt = dx = Eft dx3 

where Mt is the bending moment in the flange about Y-axis and It<~ ly/2) is the 

moment of inertia of the flange w.r.t. Y -axis. Thus 

Then torque developed is given by 

where, 

Therefore, 

M I= El d3.B- GJ (d.B) 
X W dx3 dx (7.61) 

Thus the equilibrium equations are: 

(7.62a) 

(7.62b) 

(7.62c) 

The first equation describes bending about major axis of the cross-section and is 

independent of lateral and torsional displacements. The last two equations, however, 

are coupled and must be solved simultaneously. Eliminate (d2ujdx2) term from these 

two equations: 

(7.63a) 
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which is ofthe form: {3""- )... 1{3"- A2f3 = 0 where 

and )... - oz ( M2 ) 
2 - (Ely)(Elw) 

(7.63b) 

This is governing differential equation with general solution in the form 

(7.64) 

where 

(7.65) 

with boundary conditions for simply-supported ends 

{3(0) = {J(L) = {3" (0) = {3" (L) = 0 

Substituting the general solution into the boundary conditions and for non-trivial 
solution (A f= B f= C f= D f= 0) the determinant of coefficients of these constants 
must vanish i. e. 

Since the term in the parentheses is sum of two positive numbers, hence can not be 
zero. On the other hand sinha1L can be zero only when (a1L) = 0, which is a trivial 
solution. Therefore, for a solution: sin a2L = 0. 

substituting the value of a2 from (7.65). 

-)... 1 + J)...i + 4)...2 n2n2 

2 L2 

or 

where )... 1 and )...2 are given by (7.63b). Therefore, 

nn 
Moz.cr = L 
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For the smallest value of critical moment, n = 1 and hence 

Moz,cr = (~) (Ely)(GJ) +Ely CT2~lw) (7.66) 

The warping constant lw is negligibly small for a rectangular cross-section and hence 
can be reasonably neglected i.e. 

Moz,cr = (~) JE!yGf (7.67) 

2. Energy method 

At buckling, the shortening and stretching of longitudinal fibres of the flange due to 
lateral displacement are 

1 !L (du 1 )
2 

2..11 = 2 dx dx 
1 !L (dub) 2 

and 2..1b = 2 d; dx (7.68) 

0 0 

The angle of rotation e through which Moz travels as obtained from Fig. 7.7 is: 

B ~ "' ~ "b ~ 4~ j [ ( ~ )' -( ~ )'] dx 
0 

Fig. 7.7. Flexural member in laterally buckled mode 
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The external potential due to applied end moment is therefore, 

L 

We= V = Moz(20) = Moz J (~) (~) dx (7.70) 

0 

The internal potential (strain energy) due to combined lateral and torsional displace­
ments are: 

-wi=U=~<Eiy) j (:~y dx+~<GJ) j (~Y dx 
0 0 

L 

+ ~(Elw) J ( ~) 2 
dx (7.71) 

0 

Therefore, the total potential associated with buckled configuration is from (7.70) 
and (7.71) 

L L 

ll = U + V =~(Ely) f (u")2 dx + ~(GJ) f (,8')2 dx 

0 0 

L L 

+ ~(Elw) J (,8")2 dx- Moz J (u')(,B') dx (7.72) 

0 0 

For illustration consider the case of a member with simply supported end conditions. 
Using Rayleigh-Ritz approach with the displacement function assumed as 

. (7rX) u =Asm L 

Noting that 

L L 

j sin2 (7rx/L) dx = j cos2 (1rxjL) dx = (L/2) 

0 0 

The application of stationary potential principle gives 
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For non-trivial (A f. 0, B f. 0) solution, the determinant of coefficients of A and B 
must vanish i.e., 

Eiy(Z~) -Moz 

-Moz Gl+Elw(Z~) 
=0 

The expansion results in the following characteristic equation 

(Elw)(Ely) (~:) + (Ely)(GJ) (~~)- (Moz)2 = 0 

Therefore, 

Moz,cr = (~) (Efw)(Efy) (~~) + (GJ)(Efy) (7.73) 

Equation (7.73) is identical to (7.66) obtained earlier by equilibrium approach. The 
first term under radical represents the contribution of flexural rigidity in the lateral 
plane and warping torsional rigidity. The second term represents the combined effect 
of lateral flexural rigidity and pure torsion. For a rectangular cross-section lw is 
negligibly small, therefore 

Moz,cr = (~) J(GJ)(Efy) (7.74) 

The critical moment obtained using either (7.73) or (7.74) corresponds to a member 
whose end supports are by definition, simply supported for both lateral bending and 
twisting. For the cases where supports are other than simple, the buckling load is 
greater, and critical moment can be expressed as 

M --( rr ) oz,cr- KyL (7.75) 

where Kx and Ky are effective length factors for twisting and lateral bending, respec­
tively. For the members supported at both the ends since rotation f3 about longitudinal 
axis or warping is restrained (u = u' = f3 = {3" = 0) the effective length factor Kx for 
twisting mode or warping is 0.5. For cantilever Kx is unity. The effective length factor 
K y for lateral bending of members with simple supports (u = u' = f3 = {3" = 0) at 
both ends and cantilever beams is taken as unity. 

It is to be noted that the solution obtained above is valid for the buckling of 
member subjected to uniform moment. However, in practice, in most of the cases the 
members carry transverse loading producing varying moments. Typical loadings on 
the beams are the distributed loads, the concentrated loads, the unequal end moments, 
etc. The elastic lateral buckling strength of beams subjected to transverse loads can 
be defined as 
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Case 

I 

II 

III 

IV 

v 

VI 

VII 

VIII 

IX 

7 Buckling of Members Having Open Sections 

Table 7 .2. Lateral buckling coefficients for various loadings 

Type of beam and loading 

Simply supported: 
Equal end moments 
(single curvature) 
Mx,max = M 

Simply supported: 
Uniformly distributed load, w 
Maximum moment, 
Mx,max = wL 2/8 

Simply supported: 
Concentrated load 
at the centre, W 
Mx,max = WL/4 

Simply supported: 
Moment at one end 
Mx,max = M 

Simply supported: 
Equal end moments 
(double curvature) 
Mx,max = ±M 

Clamped at both ends: 
Uniformly distributed load, w 
Mx,max = wL2/12 

Clamped at both ends: 
Concentrated load 
at the mid-point, W 
Mx,max = WL/8 

Cantilever beam: 
Concentrated load W 
at the free end, 
Mx,max = WL 

Cantilever beam: 
Uniformly distributed load, w 
Mx,max = wL2/2 

M -c-( 1f ) 
x,max,cr- KyL 

Boundary conditions Ky,Kx 

u = u" = fJ = {J" = 0 Ky = 1.00 
u = u' = fJ = {J' = 0 Kx = 0.50 

u = u" = fJ = {J" = 0 Ky = 1.00 
u = u' = fJ = {J' = 0 Kx = 0.50 

u = u" = fJ = {J" = 0 Ky = 1.00 
u = u' = fJ = {J' = 0 Kx = 0.50 

u = u" = fJ = {J" = 0 Ky = 1.00 
u = u' = fJ = fJ' = 0 Kx =0.50 

u = u" = fJ = {J" = 0 Ky = 1.00 
u = u' = fJ = {J' = 0 Kx = 0.50 

u = u" = fJ = {J" = 0 Ky = 1.00 
u = u' = fJ = {J' = 0 Kx = 0.50 

u = u" = {3 = {311 = 0 Ky = 1.00 
u = u' = fJ = {J' = 0 Kx = 0.50 

u = u' = fJ = {J' = 0 Ky = Kx = 1.00 

u = u' = fJ = {J' = 0 Ky = Kx = 1.00 

(...!!._)2 
(Ely)(Elw) + (ElyGJ) 

KxL 

c 
1.00 

1.13 
0.97 

1.35 
1.07 

1.75 

2.56 

1.30 
0.86 

1.70 
1.04 

1.30 

2.05 

(7.76) 

where C is a modification factor, which accounts for different conditions of loading. 
The value of C for a number of loading conditions is given in Table 7.2. The corre­
sponding critical stress can be obtained by dividing the critical maximum moment 
by the section modulus of cross-section about the stronger axis, Z. 
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The individual elements of the cross-section of plate girders may be so flexible 
that the members can not retain the cross-sectional form up to the calculated lateral 
buckling loads. In such cases the lateral buckling strength can be more reasonably 
predicted by assuming that the compression flanges act as column. The contribution 
of web portion is ignored. In such a case the critical value of end moment for lateral 
buckling will be 

(7.77) 

7 .3.2 Torsional Buckling due to Flexure and Axial Force 

For a beam-column with doubly symmetric cross-section subjected to an axial thrust 
P along with equal end-bending moments Moz applied about the stronger axis, the 
differential equation of equilibrium may be written as 

d2v 
Elz dx2 + Pv- Moz = 0 (7.78a) 

d2u 
Ely dxz + Pu- Mozf3 = 0 (7.78b) 

El d3{3- (GJ- Pr02) df3- M du = 0 (7 78 ) wdx dx ozdx . C 

where ro is the polar radius of gyration given by: r5 = (/y + lz)/ A. Equation (7.78a) 
represents in-plane beam-column bending behaviour and (7.78b) and (7.78c) govern 
the lateral-torsional behaviour of the member. As in the previous cases, the buckled 
configuration of a hinged-end or simply supported beam-column can be assumed to 
be represented by 

u = A sin(JTxj L) and f3 = B sin(JTxj L) 

Substitution in (7.78b) and (7.78c) yields 

[- cr~~ly- P) A- (Moz)B J (~:)sin rr; = 0 

[ ( JT2Elw 2) J (JT) . Jl"X (-M0 z)A- ----v- + GJ- Pr0 B L sm L = 0 

For a non-trivial solution the determinant of coefficients of A and B must vanish i.e. 

(7.79) 

where 

Pey = (JT2 Ely/ L 2) =Euler's buckling load in the weaker direction, 

and 

1 (JT2Elw ) . . · · P ex = 2 --2 - + G J = tors10nal buckling load under ax1al compress10n. 
r0 L 
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Equation (7.79) can be rewritten as 

Moz = roJ(Pey- P)(Pex- P) 

Following special cases may arise. 

(i) Moz is equal to zero i.e. member is subjected to an axial load only 

1 (rr2Elw ) and Pcr,2 = 2 --2 - + GJ 
r0 L 

The lower value will govern the buckling. 
(ii) P is equal to zero i.e. member is subjected to pure end moments 

Moz,cr = roJPeyPex 

= GJ (Ely)(GJ) + (~:) (Ely)(Elw) 

(7.80) 

(7.81) 

(7.82) 

The quantity under the radical in (7 .80) must be positive for Moz to have any realistic 
value i. e. P must be either greater than both Pey and P ex or less than both of them. 
That is lateral-torsional buckling load must be smaller than the individual buckling 
loads Pey and Pex. Equation (7.79) can also be written in non-dimensional form as: 

(7.83) 

7.4 Lateral Buckling of Beams with Transverse Loads 

The forgoing procedures are quite general and can be conveniently applied to the 
lateral stability analysis of beams with transverse loads. 

7.4.1 Lateral Buckling of a Cantilever Beam 

Consider a cantilever beam of span length L subjected to a concentrated load at the 
centroid of the end cross-section as shown in Fig. 7.8. The critical load Wcr• at which 
the beam will buckle by lateral buckling (i.e. by warping), can be determined easily. 

As explained earlier at a certain value of the load the planar mode of bending 
becomes unstable and the member buckles out of its plane accompanied by warping 
as shown in the figure. Consider a section at a distance x from the fixed end. The 
bending moments and torque on the deformed cross-section are given by (7 .59): 



z 

and 
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Fig. 7.8. Buckling of a cantilever beam loaded at its end 

My~ =-W(L- x)f3 

Mz' = -W(L- x) 

Mx' = W(o- u)- W(L -x) (:) 

(7.84a) 

(7.84b) 

(7.84c) 

where 8 is lateral displacement at the free end of the cantilever. The equilibrium 
equations for lateral bending and warping are given by (7.60) and (7.61), respectively: 

d2u 
Ely dxz = - W(L- x)f3 (7.85) 

and ~{3 ~ (~) EI --Gl-=W(o-u)-W(L-x) -
w dx3 dx dx (7.86) 

Eliminating u from these equations by differentiating (7.86) with respect to x and 
substituting for d2ujdx2 from (7.85): 

d4{3 d2{3 du [ d2u du] W2(L- x)2 
Elwdx4 -Gl(h=-W dx -W (L-x)dx2 - dx = El f3 

y 

(7.87) 

Introducing a new variables = L- x, (7.87) takes the form: 

(7.88) 
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Table 7.3. Lateral buckling coefficients for various loadings 

2 3 4 6 8 10 12 14 16 24 32 40 

Yl 44.3 15.7 12.2 10.7 9.76 8.68 8.03 7.58 7.20 6.96 6.73 6.19 5.87 5.64 

Since the moment term Ws is not constant, simple exact solutions do not exist and 
approximate solution may be used in the form of infinite series. The critical load Wcr 
can be represented in the form 

(7.89) 

where y1 is a dimensionless factor which depends upon the ratio L 2 ( G J 1 E I w). As the 
ratio L2 (Gl/ Elw) increases the factor Yl approaches the limiting value of 4.013 for 
the case when Elw is vanishingly small. This case corresponds to a beam of narrow 
rectangular section. For large values of L 2(Glj Elw). Yl can be approximated from 

(7.90) 

The values as computed by Timoshenko are given in Table 7.3. 
Once the value of W cr is determined, the corresponding critical stress is given by: 

(7.91) 

It should be noted that this stress must be below the proportional limit of the material 
for (7 .89) to be valid. Consider the case of a beam with narrow rectangular cross­
section of width b and depth d where lw is negligible. In this case (7.87) reduces 
to: 

or (7.92) 

Introducing L- x = s, (7.92) transforms to: 

dz{J wzsz{J 

ds2 + (GJ)(Ely) = O 

d2{J 
dsz + (aisz) f3 = 0 (7.93) 

where a 1 = W/ J(GJ) (Ely). Equation (7.93) can be reduced to an equivalent form 
of Bessel's differential equation as explained in Appendix Appendix C. The general 
solution in terms of Bessel functions is: 

(7.94) 
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where 11;4 and L1;4 represent Bessel's functions of the first kind of order 114 and 
-114, respectively. The arbitrary constants A and B are determined from the end 
conditions of the beam i.e., 

(i) at the built-in end, angle of twist is zero, i.e., at x = 0 or s = L; 

f3=0 (a) 

(ii) at the free end, torque Mx' is zero, i.e., at x = Lor s = 0; df3ldx = -df31ds = 0 

d/3 3/2 [ (a1s2) (a1s2)] ds = a1s Af_3/4 - 2- + Bh;4 l (b) 

since at s = 0, L 314 is infinite, the arbitrary constant A = 0 and from condition 
(a), 

]_1/4 ( a 1~2 ) = 0 (c) 

From the tableofzeroBesselfunctions, thelowestrootof(c) is (a1L2 12) = 2.006, 
hence 

_ 4.012 I _ 4.012Ely J(GJ) 
Wcr- --uv (GJ)(Ely)- L 2 Ely (7.95) 

It should be noted that (7.95) is valid within elastic region; beyond elastic region 
buckling occurs at a load which is smaller than that given by (7.95). The maximum 
bending stress is given by: 

Mmax WcrL 4.012J(GJ)(Ely) a - -- - --- - ---'--------'--
cr- Zz - (2/zld) - L(2lzlff) 

For a narrow rectangular section of size b x d deep 

ly = b3dll2; lz = bd3 112 and J = b3dl3 

Taking G = 0.4E (for steel), (7.96) reduces to: 

acr = 2.537(b2 ldL)E 

(7.96) 

(7.97) 

Therefore, for a material such as steel, buckling in the elastic region can occur only 
if the quantity b2 I dL is very small. Usually the lateral buckling is considered in the 
case of very narrow rectangular cross-section where bId is a small quantity. 

In the case of a uniform load of intensity q distributed along the length of the 
cantilever acting on its centroidal axis, critical value of q as obtained by Prandtl is 
given by: 

L = 12.85Ely J( G J) 
qcr L2 EI 

y 
(7.98) 

It should be noted that the critical value of the total uniformly distributed load is 
approximately 3.2 times the critical value of concentrated load acting at the free end. 
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7 .4.2 Lateral Buckling of a Simply Supported Beam 

Consider a simply supported beam subjected to a concentrated load W applied at the 
centroid of the mid-span cross-section as shown in Fig. 7.9. It is assumed that during 
deformation the ends of the beam can rotate freely with respect to the principal axes of 
inertia parallel to the Y- and Z-axes while rotation with respect to longitudinal X -axis 
is restrained. Thus lateral buckling is accompanied by twisting or warping of the beam. 

With origin of axes at the mid-span cross-section, consider a section on the 
portion of the beam to the right of cross-section, at distance x from the origin. The 
external forces acting on this portion reduce to a single force W /2 due to reaction at 
the support. Comparing this case with that of cantilever subjected to a concentrated 
load at a free end, the equivalent moment at the section under consideration would 
be (W/2)[(L/2) - x] instead of W(L - x) for the cantilever beam. The governing 
equation (7.87) becomes 

d4f3 d2f3 W2 [(L/2)-xf 
Elw dx4 - GJ dx2 - 4 Ely f3 = 0 (7.99) 

As in the case of cantilever introducing a new variables= [(L/2) - x] (7.99) takes 
the form: 

d4 f3 ( GI) d2f3 W 2s2 f3 
ds4 - Elw ds2 - 4(Elw)(Ely) = O 

(7.100) 

Timoshenko had integrated this equation by the method of infinite series and using 
boundary conditions obtained the critical Wcr in the form 

Wcr = Y2 ( jGJEly) jL2 (7.101) 

Typical values of the dimensionless buckling load factor (yz) are given in Table 7 .4. 

--...-... X 
W/2 -~ 

I· L ·I 
Fig. 7.9. Buckling of a beam with simple supports loaded at mid-span 
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Table 7.4. Values of the factor yz for a simply supported /-beam with concentrated load at 
mid-span 

L 2 (Gl/Elw) 0.4 4 8 16 24 32 48 64 80 96 160 240 320 400 

Yz 86.4 31.9 25.6 21.8 20.3 19.6 18.8 18.3 18.1 17.9 17.5 17.4 17.2 17.2 

For a narrow rectangular cross-section, omitting the term containing warping 
rigidity Elw in (7.99) 

d2f3 W2 [(L/2)- xf 
dx2 + 4(GJE!y) f3 = O (7.102) 

On substituting Ll2- x = s, (7.102) reduces to: 

dzf3 W2s2f3 dzf3 
dx2 + 4(GJEly) = 0 or ds2 + (a~s2) f3 = 0 (7.103) 

where az = (WI2)1 J(Gl)(Ely). 
The general solution in terms of Bessel functions is 

[ (a2s2
) (a2s2

)] f3 = ,JS Aft/4 - 2- + BLt;4 l (7.104) 

where ft;4 and Lt/4 represent Bessel functions of first kind of order 114 and -114, 
respectively. For a beam with simple supports, the boundary conditions are: 

(i) At the support angle of twist is zero i.e. at x = L 12 or s = 0, f3 = 0 giving B = 0 
(ii) At the mid-span, the torque is zero i.e. at x = 0 or s = L 12, df3 I dx = -df3 1 ds = 

0 where 

df3 3/2 (a2sz) - = Aa2s 1-3!4 --
ds 2 

Therefore, to satisfy second condition: 

L3;4 ( a~2 ) = 0 at 
L 

s=-
2 

From the table of zeros of Bessel function of order -3/4: 

azL 218 = 1.0585. 

[cwcrl2) IJ(Gl)(Ely)] (L2 18) = 1.0585 

Therefore, 

W. = 16.936J(GI)(Ely) = 16.936Ely j( GJ) 
cr £2 £2 E/ y 

(7.105) 
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If the simply supported beam carries a load uniformly distributed along the centroidal 
axis, the critical value of the load as obtained by Prandtl is given by: 

L = 28.3Ely .j(GJ) 
qcr £2 E/ 

y 

(7.106) 

Thus the total uniformly distributed load is approximately 1.67 times the critical 
value of concentrated load acting at the mid-span. 

The values of the critical loads can also be obtained from (7. 7 6) by using the lateral 
buckling coefficients given in Table 7.2. For illustration again consider the case of 
cantilever beam of narrow rectangular cross-section subjected to a concentrated load 
at the free end (Case VIII in Table 7.2). 

Mx,max,cr = WcrL = 1.3 (~) j(Ely)(GJ) 

1.3Jr J 4.08Ely .j( G J) 
Wcr = 0 (Ely)(GJ) = £2 Ely (7.107) 

The critical value of the load is fairly close to that given by (7.95). Similarly for 
a simply supported beam with a concentrated load at the centre 

WcrL 1.35Jr J Mx,max,cr = - 4- = -L- (Ely)(GJ) 

_ 4 x 1.35Jr .j( GJ) Wcr - 2 (Ely) -
L Ely 

= 16.96Ely .j( G J) 
L 2 Ely 

(7.108) 

The critical load given by (7.108) is in close agreement with that given by the (7.105). 

7.5 Problems 

Problem 7.1. Determine the critical load for a column of /-cross-section, if the 
column ends are simply supported such that the ends can rotate but cannot deflect 
about Y- and Z-axes. Further the ends are free to warp but cannot rotate about 
longitudinal X -axis. 

Problem 7.2. Estimate the buckling load for the column of Problem 7.1 by using 
Rayleigh-Ritz technique with shape or displacement functions u, v and fJ as: u = 
Af(x); v = Bf(x), and fJ = Cf(x), where 

f(x) = [ (if -2 ( i r + ( i) J 
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Problem 7 .3. A beam with clamped end conditions, such that the ends cannot rotate 
or deflect about Y- and Z-axes. Further the warping is constrained and the ends cannot 
rotate about X-axis. Using Rayleigh-Ritz method with displacement functions as 

( 2nx) u=A 1-cosy ( 2nx) and f3 = B 1 - cos L 

show that the characteristic equation for the lateral buckling due to uniformly applied 
moment Moz is given by: 

4Ely (~~) ( GJ +4Elw ~~)- M~z = 0 

Problem 7.4. Obtain the critical load for the beam of Problem 7.3 by considering the 
displacement functions as: 

Show that a better approximation to the exact solution can be obtained by considering 
two term representation for u, v and f3 as: 

( 2nx) ( 4nx) u=A1 1-cosy +Az 1-cosy 

( 2nx) ( 4nx) v = B1 1 -cos L + B2 1 -cos L 

( 2nx) ( 4nx) f3 = C1 1- cos L + Cz 1- cos L 

Problem 7.5. Derive relationship between the lateral buckling stress and aspect ra­
tio d/b for a simply supported beam of rectangular cross-section of size (b x d). 

What would be the aspect ratio when the critical buckling stress is limited to 
2ay/3? The effective span/depth ratio L/d can be assumed to be 25. The properties 
of the material of the beam are: E = 2 x 105 MPa; G = (3/8)£ and ay = 250MPa. 

Problem 7.6. If the geometric properties of a built-up /-shaped cross-section are 
approximated by 

and 

where b, d, tr and tw are flange width, depth of section, flange thickness and web 
thickness, respectively. Show that the critical stress corresponding to lateral buckling 
moment can be expressed as 
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[ k! ]
2 

[ k2 ]
2 

(Ldfbtt) + (L/r) 

where k1 and k2 are constants involving E and G; and r is radius of gyration about 

the Y -axis of compression flange of beam plus one-sixth of the web, and is given by: 

where At is the area of the flange, Aw = ~ (area of web). Take G = (3/8)£. 

Problem 7.7. Show that the energy due to axial constraint stress, a developed when 

warping is restrained is given by: 

Problem 7.8. A simply supported /-beam carries a uniformly distributed load of 

intensity w/unit length at a lateral eccentricity of e. Show that the angle of twist is 

given by: 

we [coshaL- 1 1 1 Lx x2 ] 
f3 = -- sinh ax - - cosh ax + - - - + -

(GJ) a 2 sinhaL a2 a 2 2 2 

where a= (GJ)/(Elw) 

Problem 7.9. A uniform straight member of length L with simple supports is sub­
jected to an axial load P and end torque Mx. The cross-section of the member has 

same moment of inertia for all central axes. Show that critical combination of P and 

Mx is given by: 

M2 p n2 
__ x_±-=-
4(£1)2 EI L 2 

where -ve value of P (i.e. tension) indicates the load required to prevent buckling 

for Mx > Mx,cr· 

Problem 7.10. A thin circular tube of length L, external diameter D and thickness t 

is subjected to a torque, show that the critical stress is given by: 

nED [ ( t ) 1 ( t )
2

] 
O's,cr = L(l - v) l - D + 3 D 

for helical buckling. 

Problem 7.11. A uniform straight column of length L having channel cross-section 

has clamped end conditions at the base and simple support conditions at its top. 

Using Rayleigh-Ritz method estimate the critical load at which the buckling will 
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occur. Assume displacement functions of the form: u = Af(x), v = Bf(x) and 
fJ = Cf(x) where f(x) = x 2(L- x). 

Show that a better estimate can be obtained by selecting displacement functions 
of the form 
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Elastic Buckling of Thin Flat Plates 

8.1 Introduction 

In the preceding chapters, elastic buckling of structures composed of one-dimensional 
members has been discussed wherein deflections and bending moments are assumed 
to be the functions of a single independent variable. On the other hand, buckling of 
plates involves bending in two planes, and thus deflections and bending moments at 
a point become function of two independent variables. Consequently, the structural 
behaviour of plates is described by partial differential equations, whereas ordinary 
differential equations were adequate to describe the behaviour of columns. Further, 
the number of boundary conditions was four in the columns whereas in plates there 
are two boundary condition on each of its edges. Another basic difference between 
a column and a plate lies in their buckling behaviour. Once a column has buckled, 
it cannot resist any additional axial load i.e. critical load of a column is also its 
failure load. On the other hand, the plates which are invariably supported at edges 
or are interconnected to other plate elements continue to resist additional axial loads 
even after the loads reach their buckling values. This additional load is sometimes 
as high as 10-15 times the initial elastic buckling load. Thus, for a plate element 
the post-buckling load is much higher than the initial buckling load. This fact is 
largely exploited in the minimum weight design of the structures. The components 
of open section columns with wide flanges behave more like plate elements. The 
plates making up a column may undergo a form of local failure, thus necessitating 
the consideration of instability of plate element. In order to enhance buckling load of 
a plate sometimes longitudinal and transverse stiffeners are provided. The inherent 
discontinuities in these stiffened structures make their analysis complex. 

In this chapter only thin plates have been considered for analysis. The plates are 
termed thin if their thickness is small as compared to the in-plane dimensions, and 
transverse shear deformations are negligible compared to bending deflections. In the 
following section idealization has been made to describe the two-dimensional plate 
behaviour by linear differential equations with constant coefficients. 

M. L. Gambhir, Stability Analysis and Design of Structures
© Springer-Verlag Berlin Heidelberg 2004
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8.2 Governing Differential Equations of Bending 

To determine the critical in-plane loading of a flat plate by the concept of equilibrium, 
it is essential to formulate equations of equilibrium of a plate element in a slightly 
displaced configuration. This plate element is acted upon by two sets of forces: in­
plane or membrane forces balancing the externally applied loads and shears resulting 
from transverse bending of the plate. The derivation of the governing differential 
equation for a thin plate undergoing lateral or transverse displacements is based on 
the following assumptions: 

1. The least lateral dimension of the plate is at least ten times the thickness i.e. 
it is a thin plate so that the effect of shear strains Yxz and Yyz are negligible 
and vertical plane of plate, which is perpendicular to the middle surface before 
bending remains perpendicular after bending. 

2. The normal stress, az and the corresponding strain ez are negligible for deflections 
less than the order of one hundredth of span length. The strains of middle surface 
are assumed to be negligibly small. Consequently the transverse deflection w at 
any point (x, y, z) is equal to the transverse deflection at the corresponding point 
(x, y, o) on the middle surface. 

3. The material of the plate is homogeneous, isotropic and elastic. 

The deflected configurations of a simply supported column and a rectangular plate 
are shown in Fig. 8.1. The stress resultants acting upon typical differential element 
of the plate are indicated on Fig. 8.2. The governing differential equation is obtained 
from the consideration of static equilibrium, namely. 

(i) L Fx = 0 ; (ii) L Fy = 0 ; (iii) L Fz = 0 ; 

(iv) LMx = 0 and LMY = 0 

Equilibrium of in-plane forces in X -direction gives 

"" ( apx ) ( aPyx ) ~ Fx = Px + ax dx dy - Px dy + Pyx + --ay dy dx - Pyx dx = 0 

or apx + apyx = 0 (8.1) 
ax ay 

Similarly, the condition of equilibrium of in-plane forces in Y -direction L Fy = 0, 
results in 

apy + apxy = 0 
ay ax 

(8.2) 

Equilibrium of moments of in-plane forces about Z-axis passing through o', L Mz = 
0 yields: 

(Pyx dx) dy - (Pxy dy) dx = 0 i.e. Pyx = Pxy 

(The second order quantities due to direct forces have been ignored). 

(8.3) 
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Py 

z 
P'--l':s;~-"""-,---_-_J,.w_-_-_-_-=---=~~,.,..-

y Py 
z 

(a) (b) 

Fig. 8.1a,b. Deflected configurations of a column and plate. a Deflection of a column (one 
dimensional case), b Deflection of simply supported plate (two dimensional case) 

y 

(a) 

y 

(b) 

X 

AL-----'._ p + dp X dx 
x dx 

dPxy 
pxy + --dx 

dx 

Q + dQX dx 
x dx 
X 

Fig. 8.2a,b. Element of the plate subjected to internal forces. a In-plane forces, b Shear forces 
and moments 

Due to slight curvature in the elements due to transverse deflection, the in-plane 
forces Px. Py. Pxy and Pyx will have components along Z-axis. The slopes at the 
edges x = 0 and x = dx are: 

(~:) and -+- - dx= -+-dx aw a (aw) [aw a2w J 
ax ax ax ax ax2 ' 
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respectively. In the view of small deformation assumption: 

sin ( ~:) ~ ~: and cos ( ~:) ~ 1 

The resultant component of in-plane forces Px and [Px + (a Px I ax) dx)] in the positive 

Z-direction is: 

( apx ) (aw a2w ) (aw) ( a2w ) Px + -dx - + -dx dy- Px - dy = Px-dx dxdy 
ax ax ax2 ax ax2 

(terms containing Px only are retained). 
Similarly the resultant component of forces Py and [py + (apyjay) dx] in the 

positive Z-direction is given by 

(Py ~:~) dydx. 

The resultant Z-component of in-plane forces Pxy and [Pxy + (aPxy/ax) dx] is: 

( Px + apxy dx) (aw + azw ctx) dy- Px (aw) dy ~ (Px azw dxdy) 
y ax ay axay y ay y axay 

(retaining only Pxy terms). Similarly Z-component of Pyx and [Pyx+ (aPyx/ay) dy] 

is: [Pyx + (a2wjayax) dy dx]. Therefore, the resultant of all the in-plane forces in 

Z-direction is: 

( a2w a2w a2w ) 
Px axz + Py ayz + 2pxy axay dx dy (since Pyx = Pxy) 

The component of shear forces along Z-direction is: 

[ ( Qx + a~x dx) dy - Qx dy J + [ ( Qy + a~y dy) dx - Qy dx J 
= (aQx + aQy) dxdy 

ax ay 

Equilibrium of forces along Z-direction i.e. L Fz = 0. From (8.4) and (8.5): 

aQx aQy ( a2w a2w a2w ) 
ax + ay + Px axz + Py ayz + 2Pxy axay = 0 

Moment equilibrium of transverse forces 

For equilibrium of moments about X -axis 

Mydx- (My+ a~Y dy) dx + ( Qy + a~Y dy) dxdy- QxdY (d;) 

( aQx ) (dy) ( aMxy ) + Qx + ax dx dy 2 - Mxy dy + Mxy + ~ dx dy = 0 

(8.4) 

(8.5) 

(8.6) 
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Ignoring second order terms, the equation reduces to 

aMxy _ aMy + Q = O 
ax ay y 

(8.7) 

For equilibrium of moments about Y -axis 

( aMx ) ( aQx ) (dx) - Mx dy + Mx + ax dx dy - Qx + ax dx dy dx + Qy dx 2 

( aQy ) (dx) ( aMyx ) - Qy + ay dy dx 2 - Myx dx + Myx + ay dy dx = 0 

Neglecting second order terms the equation reduces to: 

aMx aMyx 
-+---Qx=O 
ax ay 

(8.8) 

From (8.7) and (8.8) 

aQy = a2My aMxy 
ay ay2 - axay 

(8.9) 

aQx a2Mx a2Myx a2Mx a2Mxy 
ax = ax2 + axay = ax2 - axay since (Myx = -Mxy) (8.10) 

Substituting aQyjay and aQxfax from (8.9) and (8.10) into (8.6) 

a2 Mx a2 Mxy a2 My ( a2w a2w a2w) 
ax2 - 2 axay + ay2 + Px axz + Py ayz + 2Pxy axay = O (8.11) 

Equation (8.11) is the governing differential equation of buckling of plate. The mo­
ments Mx, My and Mxy can be expressed in terms of curvatures. Since a thin plate is 
essentially two-dimensional, the constitutive laws for an elastic plane-stress problem 
can be used. These are: 

E 
ax = 1 _ vZ (ex + Vey) 

E 
ay = 1 _ vZ (ey + Vex) 

E 
r - y xy - 2(1 + v) xy 

The strain-displacement relations for a linear problem are expressed as: 

au 
Ex=-; 

ax 
av (au av) 

ey = ay and Yxy = ay + ax 

(8.12) 

(8.13) 

where u and v are displacements along X- and Y -directions, respectively, at a dis­
tance z above the middle surface which remains unstrained during the transverse 
displacement, w, thus 
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aw 
u = -z- and 

ax 

aw 
v=-z­

ay 

Hence the strains Bx, By and Yxy can be represented by 

Substituting the strains expressed in terms of w from (8.15) into (8.12) 

Ez (a2w a2w) 
Cfx = -1- v2 ax2 + v ay2 

a _ -~ (a2w + v a2w) 
y - 1 - v2 ay2 ax2 

Ez a2w 
T ----·--
xy- 1 + v axay 

The stress resultants Mx, My and Mxy are expressed as 

t/2 

Mx = I axzdz = 

-t/2 

( a2w a2w) 
=-D -+v-

ax2 ay2 

and 

My= lt/2 a zdz = -D (a2w + v a2w) 
y ay2 ax2 

-t/2 
t/2 

Myx = -Mxy = I <xyzdz = D(l- v) a2
w 

axay 
-t/2 

Et3 
D = ---.,----=--

[12(1 - v2)] 

(8.14) 

(8.15) 

(8.16) 

(8.17a) 

(8.17b) 

(8.17c) 

(8.17d) 

where D is the flexural rigidity per unit length of the plate. This is analogous to the 

bending stiffness E I of a beam. The rigidity of the plate is 1 I ( 1 - v2) times that of 

a beam having the same width and depth as the plate. The plate is stiffer since each 

plate strip is restrained by the adjacent strips. 

Substituting the values of Mx. My and Mxy from (8.17) into the general governing 

differential equation 

( a4w a4w a4w) ( a2w a2w a2w) 
D ax4 + 2 ax2ay2 + ay4 - Px ax2 + Py ay2 + 2Pxy axay = 0 (8.18) 
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In terms of the operator, V2 = (a2 ;ax2) + (a2 ;ay2), first term on the left hand side 
of (8.18) reduces to 

D (~ + ~) (a2w + a2w) = DV2V2w = DV4w 
ax2 ay2 ax2 ay2 

Thus (8.18) can be written as 

(8.19) 

where Px and Py are compressive forces.lt is interesting to note the similarity between 
(8 .18) and fourth-order differential equation of the beam-column. 

8.2.1 Boundary Conditions 

The governing equation (8.18) or (8.19) is a fourth order partial differential equation 
in x andy, and thus for a unique solution it requires eight boundary conditions: four 
along X- and four along Y-edges. The commonly encountered boundary conditions 
for a typical boundary at x = a are as follows: 

(i) Simply supported or a hinged edge 

This refers to an edge which is restrained against displacement but is free to rotate 
i. e. moment is zero i. e. 

w(a, y) = 0 and 

[a2w a2w] 
Mx(a,y)=-D -a 2 +v-a 2 =0 

X Y x=a 

Thus, 

Since, a2wjay2 = 0 for a supported edge, (8.20) can be written as: 

(ii) Built-in or a clamped edge 

This type of edge is restrained both against displacement and rotation i. e. 

w(a, y) = 0 and _aw_(_a-', y_) = 0 
ax 

(8.20) 

(8.21) 
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(iii) Free edge 

This type of edge is characterized by zero moment and zero shear i.e. 

Mx(a, y) = -D [a2~ + v a2 ~] = 0 and 
ax ay x=a 

Qx(a, y) = D [a3w + (2- v) a3w J = 0 
ax3 axay2 x=a 

(8.22) 

8.3 Energy Approach 

8.3.1 Strain Energy of Plates 

In a two dimensional plane-stress problem, the stress at a point can be expressed in 
terms of ax, ay and Txy• where ax and ay are normal stresses in the direction of the X­
and Y -axes, respectively, and rxy is the shear stress in a section perpendicular to the 
plane of the plate cut parallel to the X- or Y -axis. The strain energy stored in a plate 
is given by: 

(8.23) 

v 

Using strain-displacement and strain-curvature relations from (8.15) and (8.16), re­
spectively, and carrying out the integration with respect to z over the total depth of 
the plate, (8.23) can be written as: 

1 !alb I (azw azw) 2 
U=- D -+-2 ax2 ay2 

0 0 

[( a2w) (a2w) ( a2w ) 2] I -2(1-v) - - - - dxdy 
ax2 ay2 axay 

The term inside the square brackets is known as Gaussian curvature (G.C.): 

( a2w) (a2w) ( a2w ) 2 

G.C. = ax2 ay2 - axay 

If the displacement function w(x, y) can be expressed in the form w(x, y) = f(x). 
¢(y) i.e. product of a function of x only and a function of y only with w = 0 at the 
boundaries, then integral of Gaussian curvature over entire plate surface equals zero. 
Under these conditions: 

(8.24) 

area 

Thus, for the rectangular plates with simply supported or built-in edges the conditions; 
w(x, y) = f(x). ¢(y) and w = 0 at boundaries hold and the strain energy can be 
determined from (8.24). 
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8.3.2 Potential Energy due to In-Plane Forces 

To compute potential energy due to in-plane force component Px• consider an ele­
mental strip of width dy along X-direction. The load acting on this strip is Px dy and 
potential energy of the strip due to this load is: 

1 Ja (aw) 2 
dWex = dVx = -2 (Px dy) ax dx 

0 

The potential energy of the entire plate can be obtained by integrating the elemental 
(strip) energy with respect toy. Thus 

Similarly the potential energy due to Py can be computed by considering an elemental 
strip of width dx in Y -direction. Thus 

b a 2 

Vx = -~ J J Px (~:) dxdy 
0 0 

For computation of potential energy due to shearing forces Pxy and Pyx consider an 
element dx dy. This element is subjected to shear strain of (awjay)(awjax) due to 
transverse displacement w. 

Thus, the potential energy of the plate due to Pxy is 

a b 

Vxy = -~ f f [Pxy (~~)(~;)+Pyx(~~)(~;) J dydx 
0 0 

a b 

= -~ J J 2Pxy (~~) (~:) dydx 
0 0 

Therefore, total work done or potential energy due to Px• Py and Pxy is 

The total potential of plate is given by: ll = U + Ve. 
From stationary potential principle, for buckling 

8ll = 8(U + Ve) = 0 (8.26) 
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8.4 Buckling Analysis of Rectangular Plates 

The buckling analysis of thin rectangular plates can be accomplished by using ei­
ther the governing differential equation or stationary potential principle. The most 
commonly used methods are: 

1. Exact analysis in which a function representing deformed or buckled configura­
tion of plate that satisfies governing and boundary conditions is known. 

2. Analysis seeking variables type solution wherein w is expanded into Fourier 
series and the solution is obtained in series form. 

3. Applications of principle of minimum potential energy using an assumed function 
for w which satisfies boundary conditions. When combined with Rayleigh­
Ritz method, and Galerkin 's technique, the method provides a powerful tool of 
analysis. 

4. Approximate numerical techniques using: (i) Finite differences, and (ii) finite 
elements. 

8.4.1 Governing Differential Equation Solution 

I. Buckling of Plates Subjected to In-Plane Load in One-Direction 

In this section a flat plate which is loaded on two simply supported edges b parallel 
to the Y-axis by a uniformly distributed load Px(= tax) is considered. The edges 
parallel to X-axis (edges a) may be supported in different ways: 

1. The plate is elastically restrained on both the edges a. This case includes as 
limiting cases simply supported and clamped edges. 

2. One edge a is elastically restrained; the other is free. This case also includes the 
two limiting conditions in which the supported edge is either free to rotate or is 
clamped. 

A solution to the partial differential equation (8.18) must satisfy the boundary con­
ditions on all four edges. The conditions of simple support on the loaded edges b 
require: 

W = 0 and 82wj8x2 = 0 at the edges X= 0 and X= a. (8.27) 

The smallest critical load for a plate subjected to a compressive load Px acting on the 
simply supported edges x = 0 and x = a with edges y = 0 and y = b being free, 
based on its analogy with column problem can be expressed as: 

2 2D/ 2 Px,cr = m rr a 

such a plate is called wide column. The plate with other boundary conditions on the 
edges y = 0, b is expected to carry higher loads i.e. Px,cr > m2rr2 D I a2. Conse­
quently, it can be expressed as: 

2 (mrr)2 Px,cr = k -;; D k>l (8.28) 
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Introducing the aspect ratio, f.L = ajb into (8.28) 

2 (mrr)2 (km) 2 rr2D Px,cr = Ux,crt = k D f.J,b = -; ~ (8.29) 

= l2 (1r2D) 
m b2 

where k~ = (kmj f.J,) 2• 

Substituting D = Et3 /[12(1- v2)] from (8.17d) into (8.29) 

a -12 -rr2E (t)2 
x,cr - m 12(1 - v2) b (8.30) 

It is convenient to select the buckled configuration w(x, y) of the form: 

w = f(y) sin(mrrxja) m = 1,2,3 ... (8.31) 

satisfying the differential equation (8.18) and boundary conditions (8.27), where 
the function f(y) is yet to be determined. The choice of function f(y) will be 
governed by the boundary conditions on the unloaded edges. Introducing the assumed 
function w(x, y) into the governing partial differential equation and canceling the term 
D sin(mrrxja) provides an ordinary differential equation of fourth order. 

d4 f(y) _ 2 (mrr)2 d2 f(y) + [(mrr)4 _ Px,cr (mrr)2] f(y) = 0 (8.32) 
dy4 a dy2 a D a 

In the above equation Px is replaced by Px,cr• the unknown critical longitudinal 
uniformly distributed force at which the plate buckles. 

Substituting the value of Px,crl D from (2.28) into (8.32), it assumes the form 

d4f(y) -2 (mrr)2 d2 f(y) + (mrr)4 (1- k2)f(y) = 0 (8.33) 
dy4 a dy2 a 

The general solution to the differential equation (8.33) is 

f(y) = A sinh ay + B cosh ay + C sin {3y + D cos f3y (8.34) 

where the parameters a and f3 are defined by: 

a2 = (maJrr (k+ 1) and {32 = (m:r (k-1) 

Substituting a = f.Lb, where f.L is the aspect ratio, in (8.35a): 

(ab)2 =(m:Y(k+1) and (f3b) 2 =(m:Y(k-1) 

(8.35a) 

(8.35b) 
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Thus the general solution to the partial differential equation takes the form: 

w =(A sinhay + Bcoshay + Csin,By + Dcos ,By) sin(m1rxja) (8.36) 

The constants A, B, C and Dare determined from four boundary conditions at the 
unloaded edges a. Special of these boundary conditions will be considered in the 
following sections. 

For analysis the plate buckling problems can be divided into two categories. First 
category deals with the plates having equal elastic restraints on both unloaded edges; 
this includes the cases where both the unloaded edges are either clamped or simply 
supported or free. In the second category unequal restraints exist on the unloaded 
edges of the plate; this includes the cases where two edges have different or mixed 
boundary conditions. 

Case-/. Plate simply supported on loaded edges, and elastically restrained on 
unloaded edges. 

For the type of problems involving plate elements with equal elastic restraints on 
both the unloaded edges, it is convenient to assume the origin of the co-ordinates 
X, Y at the mid point of the left edge as indicated in Fig. 8.3. Due to symmetry of 
boundaries, for smallest value of Px,cr• w is symmetric function of y and hence the 
terms A sinh ay and C sin ,By of solution (8.36) vanish. The solution reduces to 

w = (Bcoshay + Dcos,By) sin(m1rxja) (8.37) 

y ,w 
Px--~-~:~~--~---+----~----~:~4~---Px 

I , ----1-- I 

: Buckling in one half-wave 

I 

I~~ 1 
p --~--~~~----~w~~-r~~----~1 44-----P 

X I~ ~I X 

'--x---1 
Buckling in several half-waves 

My r~w· 
My 't ._ 

Restraining plate 

:t 
Restraining plate 

Fig. 8.3. Flat plate elastically restrained on unloaded edges a and simply supported on loaded 
edges b 
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The constants B and D can be determined from the boundary conditions at the 
unloaded edges, namely, the support conditions. 

(8.38a) 

i.e. the edges y = ±b /2 remain straight when plate buckles. The other condition 
is that of continuity stipulating that the angle of rotation w'(= awjdy) at the edge 
of buckling plate is equal to the angle of rotation of the adjoining restraining plate 
which is assumed to be rigidly connected. This can be expressed as 

, (aw) _, w- - -w 
ay y=±~ 

(8.38b) 

The restraining moment My per unit length that occurs along the unloaded edges 
when the plate distorts is proportional to the angle w' and is given by: 

My= -Tiw' (8.39) 

where 7j is elastic stiffness factor depending upon the properties of the restraining 
element. However, My is given by (8.17b) as 

[a2w a2w] (a2w) M--D -+v- --D -
y - ay2 ax2 - b - ay2 - b 

y-±:z Y-±:z 
(8.40) 

since a2wjax2 = 0 for a supported edge. Substitution of (8.40) into (8.39) furnishes 

From (8.38b), the boundary conditions take the form: 

[aw + D a2w] = O 
ay 7i ay2 y=± ~ 

(8.4la) 

It should be noted that the quantity D /Ti has dimension of length. Defining a dimen­
sionless parameter 2Dfb7j = TJ, which is constant along the edge and is a function of 
the dimensions of buckling and restraining plates. 11 which is referred to as coefficient 
of restraint can assume values from zero to infinity. When '1 = 0 (i.e. 7j = oo) it 
represents a completely fixed edge and when 11 = oo (i.e. 7j = 0) the edge is free to 
rotate i.e. it is a simply supported edge. 

Equation (8.4la) reduces to 

[aw + T}b a2w] - 0 
ay 2 ay2 y=±~ -

(8.4lb) 
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Substitution of solution (8.37) into boundary conditions given by (8.38a) and (8.41 b) 
results in the following homogeneous linear equations: 

ab f3b 
B cosh 2 + D cos 2 = 0 

Basmh-- Df3sm- + TJ- Ba2 cosh-- Df32 cos- = 0 ( . ab . f3b) b ( ab f3b) 
2 2 2 2 2 

For a non-trivial solution (i.e. B = D f. 0), the determinant of coefficients of B 
and D must vanish. This leads to the following characteristic equation or stability 
condition. 

or 

(8.42) 

Introducing abl2 and f3bl2 from (8.35b) into (8.42) 

(k + 1)! tanh [ ( ;; ) (k + 1) i J 

+ (k- 1)! tan [ ( ;; ) (k- 1)! J + TJ m:k = 0 (8.43) 

This general transcendental equation defines a relationship between parameters k and 
m I 11- and can be solved for k for a given value of m I M· To illustrate the application 
of (8.43) following special cases have been considered. 

(1) Plate simply supported along the unloaded edges 

This condition is obtained by introducing TJ = oo into (8.43) and knowing that the 
function tanh attains values only between+ 1 and -1, (8.43) reduces to 

The smallest root satisfying this equation is given by: 

- (k-1)~ =-(mn) 1 n 
2M 2 

or 

(8.44) 



8.4 Buckling Analysis of Rectangular Plates 349 

Substituting k2 in (8.29) yields 

(8.45a) 

or from (8.30) 

(8.45b) 

where 

Only unknown now left in (8.45) is m, which indicates the number of half-waves 
in which plate buckles in the X -direction. The value of m that corresponds to the 
minimum value of Px,cr is given by: 

or 

Thus, from (8.44) 

Therefore, 

1 

11 

4n2 D 
Px,cr= ~ 

i.e. m = 11· 

n2E (t) 2 
or a - -

x,cr - 3(1 - v2) b (8.46) 

The critical load given by (8.45a) is valid only when 11 is an integer i.e. plate buckles 
in 11 square waves in X -direction. For small values of 11. i.e. for sufficiently short 
plates, buckling will occur in one half-wave. Above a certain value of 11 two half­
waves will be formed. For the limiting ratio at which there is transition from one state 
of equilibrium to another, i.e., when both the cases are equally possible at the same 
buckling stress ax,cr. (8.45b) will yield same value of ax,cr whether m is 1 or 2. In 
general the limiting ratio Ji at which either m or m + 1 half-waves can occur is given 
by: 
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AI' 

Jl = aspect ratio = alb 

\~~ 
m = number of half-waves 

kl kz k3 k4 y 

\ I \ \ ' 
I 14.50 ' 

v ' 
I ' ' .... 

4.0 

\{= A ' ' ' I m=4 
~7 

, .... 
.... 
'~4.08 11',~ 

I 
Lm 

I Lm I I 
I 1=2 I =3 I I 
I I I I 
I I I I 
I I I I 

I -
0.0 1.0 .fi 2.0 .[6 3.0 ..m 4.0 

Fig. 8.4. Relationship between km and J-L for a plate simply supported on all the edges 

i.e. 
'jl m 'jl m+l 
-+-=--+--
m 'jl m+l 'jl 

or 1 
'jl = [m(m + l)P: for m = 1, 2, 3,... 7i = ../2, ../6, ../12, ... (8.47) 

Thus the buckling occurs in one half-wave up to 1-L = 1.414 (i.e. a= 1.414b), and 
from 1-L = 1.414 to 1-L = 2.449 in two half-waves and so on. For long plates the length 
of the half-waves approaches the width b. This dependence of k on aspect ratio J-L is 
shown in Fig. 8.4 in the form of a sequence of curves which correspond to harmonic 
number of buckling modes in the direction of loading, m = 1, 2, 3, .... It should be 
noted that curves form = 2, 3, ... can be readily drawn from the curve form = 1 
by multiplying the abscissa by 2, 3, etc. and keeping the ordinate unchanged. 

For the general buckling condition of elastically restrained plate, Bleich had 
proposed an algebraic relationship between k2 and ~-t/m, similar to the one given by 
(8.44) for the simply supported plate. 

(8.48) 

where p and q are parameters depending on the coefficient of restraint TJ and were 
computed by Bleich for various values of TJ from the characteristic (8.43). 

Substituting the expression (8.48) into (8.30) an equation for ax,cr which is valid 
for all possible values of elastic restraint. is obtained 

11:2E (t) 2 [(m)2 (/-L)2] 
ax,cr = 12(1 - v2) b J1, + P + q m 
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Introducing the notation 

(8.49) 

the equation for ax,cr assumes standard form 

a - 7r !_ k2 2E ( )2 
x,cr - 12(1 - v2) b m 

(8.50) 

where km is a non-dimensional parameter depending upon J.t and boundary conditions 
at unloaded edges. As in the case of simply supported plate, the limiting aspect ratio 
Ji at which either m or m + 1 half-waves can exist is given by 

(1)! I 
"ji = q [(m)(m + 1)]2 (8.51) 

The parameter q lies between 1 (for both unloaded edges simply supported) and 5 
(for both edges clamped). For clamped edges Ji = 0.6687[m(m + 1)]112 . Thus, the 
length of half-waves is appreciably shortened by clamping. The value /.to for which 
ax,cr becomes minimum can be based on 

Oax,cr O . -- = 1.e. 
a~.t 

and the corresponding k~ is given by: 

k~ = (p + 2,jq) (8.52) 

The parameters p and q are given by: 

For rJ = oo: p=2 and q=1 

For rJ = 0: p = 2.5 and q = 5.0 

For rJ > 1.6: 2 0 0.047 0.70 
p ~ . + and q ~ 1.0 + ---

0.73 + rJ 0.077 + rJ 
(8.53) 

The values of Ji for different number of half-waves that can exist for the case of plate 
with unloaded edges clamped (q = 5) are given by (8.51). 

For the analysis of plates with unequal restraints on the unloaded edges, an 
approximate technique based on the method outlined above for equal restraints on 
unloaded edges can be used. The technique consists of first using the coefficient of 
restraint 1/1 of one edge to find km,l and then using the other value 1}2 to find a plate 
coefficient km,2· The mean value (km,l + km,2)/2 provides a fairly good estimation 
of the exact value of km and can be used to obtain critical stress of the plate under 
consideration. 
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Number of half-waves, m Aspect ratio, It 

1 It< 0.945 
2 0.945 <It< 1.638 
3 1.638 <It< 2.316 
4 2.316 <It < 2.990 
5 2.990 < It < 3.662 

(2) Plate clamped along the nnloaded edges 

This condition is attained by introducing 1J = 0 into (8.43). The resulting character­
istic equation is: 

(k + 1)! tanh [ ( ~=) (k + 1) i J + (k- 1)! tan [ ( ~=) (k- 1)! J = 0 (8.54) 

As discussed above for an aspect ratio f.L up to 0.94 the minimum value of k and 
hence of axial load is obtained for m = 1 and for the ratios approximately between 
0.9 to 1.6, m = 2 and so on. For illustration consider a square plate (JL = 1) for 
which minimum critical stress will be given form = 2. By trial and modification the 
least value of km satisfying (8.54) is 2.77332. Therefore, critical load is given by 

k~rr2 D (2.77332)2rr2 D 
Px,cr= ~ = b2 

7.6913rr2 D 
(8.55) 

The values of k~ for various aspect ratios are tabulated in Table 8.1. 

Case-1/. Plate simply supported on the loaded edges, elastically restrained on one 
of the unloaded edges, and free at the other 

The origin of co-ordinate axes in this case is taken to coincide with a comer of the 
plate such that X-axis is along supported edge as shown in Fig. 8.5. Since there is 
no symmetry with respect to X -axis, the general solution of governing differential 
equation given by (8.35) is to be used i.e. 

w(x, y) =sin (m;x) (A sinhay + Bcoshay + Csin,By + Dcos,By) 

where a= (maT{) (k + 1)! and ,8 = c~T{) (k- 1)! (8.56) 

The constants A, B, C and Dare determined from four boundary conditions at 
the restrained or supported edge y = 0 and free edge, y = b: 
(i) The boundary conditions at the restrained edge are: 



8.4 Buckling Analysis of Rectangular Plates 353 

Table 8.1. Buckling Load Factor k~ for Rectangular Plates in Compression. (Loaded edges 
x = 0 and x =a are simple supports) 

Aspect ratio, 1-L {. 
Types of unloaded edges 

Type-I Type-II Type-III Type-IV Type-V 

Boundary condi- Clamped Clamped Clamped-free Simple Simple support-
tions of unloaded -clamped -hinged support- free a 
edges simple 

support 

Poisson's ratio~ v = 0.25 v = 0.30 v = 0.25 v = 0.30 

0.4000 9.4479 8.8619 6.7248 6.6608 8.4100 6.6148 6.5788 

0.6000 7.0552 5.9177 3.3342 3.2841 5.1378 3.1921 3.1502 
0.8000 7.3037 5.4099 2.1900 2.1437 4.2025 1.9894 1.9539 
0.8910 7.7986b 1.4342 
1.0000 7.6913 5.7402 1.6983 1.6525 4.0000 1.2269 1.4016 
1.1254 6.1862b 1.1334 1.1953 
1.2000 7.0552 5.9177 1.4669 1.4205 4.1344 0.9524 1.1022 
1.4000 7.0008 5.5118 1.3625 1.3151 4.4702 0.9424 0.9220 
.fi 5.4962 4.5ooob 0.9120 
1.5000 7.6912b 0.8353 
1.6000 7.3037 5.4099 1.3296 1.2811 4.2025 0.8052 
1.6300 1.3290 
1.6451 1.2804 0.7551 
1.8000 7.0552 5.5049 1.3420 1.2926 4.0446 0.7109 0.7253 
1.9487 5.6684b 0.6979 0.6811 
2.0000 6.9716 5.6056 1.3862 1.3358 4.000 0.6681 
2.2900 7.1578b 
2.3229 1.4947b 0.6236 
2.4000 7.0552 5.4099 1.5423 1.4908 4.1344 0.6169 0.5938 

./6 5.4140 4.1667b 0.5830 0.5871 
2.7556 5.5391b 0.5790 0.5531 
2.8000 7.0008 5.5118 1.7662 1.3151 0.5491 
2.9600 7.0835b 0.5630 
3.0000 7.0552 5.4312 1.9881 1.2912 4.000 0.5362 0.5331 
02 5.4547 4.0833b 0.5062 
4.015 1.3381b 

00 6.9716 5.4099 1.3290 1.2804 4.0000 0.4500 0.4250 

Wave length, 0.6667 0.8000 1.6300 1.6451 1.0000 a a 

A= 1-Lcrfm 

a Value of m is always unity i.e. wave-length is always equal to the length of the plate. 
b Indicates a point where slope discontinuity occurs due to change of the number of half-waves 
to the next higher one. Such points should not be used as intermediate points in interpolation. 
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0 X 

r Elastic support 

Free end 

y 

Fig. 8.5. One of the unloaded edge elastically restrained and other free 

w = 0 and [ aw- 'f}ba2w] =0 
ay 2 ay2 y=o 

(from ease-l) (8.57) 

(ii) The boundary conditions at the free edge are: 

M =-D[a2w+va2w] =0 
y ay2 ax2 y=b 

Transverse shear, Q = -D [a3w + (2- v) a3w J = 0 
y ay3 ax2ay y=b 

(8.58) 

Substitution of the solution (8.56) in the boundary conditions given by (8.57) yields 
the relations 

w = B + D = 0 or B = - D 

Aa+Cf3-rJ~(Ba2 -Df32)=0 or A=-c(~)-D'fJ~(a2 :f32 ) 
Therefore, solution (8.56) can be expressed as 

w(x, y) =sin (m;x) [ (sinf3y- ~ sinhay) C 

+ {cos f3y - cosh ay - ~ ( a 2 
: f3

2
) sinh ay} D J 

(8.59) 

Introducing this equation into two remaining boundary conditions given by (8.58) 

(li sin f3b + a: sinh ab) C + (fi cos f3b + a cosh ab + ya sinh ab) D = 0 

( af3 fif3 ) (af3 - - ) - --;;-- cos f3b + --;;-- cosh ab C + --;;-- sin f3b - f3 sinh ab - y f3 cosh ab D = 0 
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where 

2 (mn)2 2 (mn)2 a = a - v ----;;-- = f3 + (2 - v) ----;;--

- 2 (mn )2 2 (mn )2 f3 = f3 + v ----;;-- =a - (2- v) ----;;-

y = ( ~) ( a2 : {32) (8.60) 

For non-trivial solution, vanishing the determinant of coefficients of C and D, yields 
stability condition. 

2a{J + ( a2 + i) cosh ab cos fjb - [ ( ~) i - ( ~) a2 J sinh ab sin fjb 

+y [ a2 sinhabcos fjb- i (~) coshab sinfjb J = 0 (8.61) 

The parameters ab, fjb, a and 7J can be expressed as: 

ab = (:) (k + 1) ~ , ( mJT) 1 fjb = ----;;- (k- 1)2 

a= 2_ (mn)2 
(k+ 1- v) and 

b2 p., 
_ 1 (mn)2 
f3 = - - (k- 1 + v) b2 p., 

(8.62) 

The critical stress Ux,cr can be expressed in the form 

(T - - k2 n2E (t)2 
x,cr - 12(1 - v2) b m 

where 

(8.63) 

The parameters p and q are dependent upon coefficient of restraint '7· As in the ease-l, 
the limiting 7I at which either m or m + 1 half-waves can exist; i.e. 

7I = (~)! [(m)(m + 1)]~ (8.64) 

The ratio p.,0 corresponding to minimum value of Ux,cr is given by 

(8.65) 

and minimum 

n2E (t)2 
Ux,cr = 12(1 - v2) b (p + 2-y/q) (8.66) 

If one edge of the plate is simply supported or free to rotate, q = 0 and the plate will 
bulge in one half wave, regardless of its length. The following special cases arise. 
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1. The edge y = 0 is clamped i.e. 11 =y = 0, and the edge y = b is free. 

The characteristic equation given by (8.61) reduces to; 

'Iii "'P + ( ci + If) cosh ab cos {Jb 

- [ ( ~) If - ( ~) a2 J sinh ab sin {Jb = 0 (8.67) 

where a and "'P are defined by (8.62). 
Consider a square plate (/L = 1). The least value of km satisfying the stability 

condition given by (8.67) is 1.28550. Therefore, 

(1.28550)2112 D 1.6525112 D 
Px,cr = 

For other aspect ratios the values of k~ are given in the Table 8.1. 

2. The edge y = 0 is simply supported or hinged (i.e. 11 or y = oo) and the edge 
y =b is free. 

The characteristic equation for this case is obtained from (8.61) by substituting 
y = oo. Before affecting this substitution divide the equation by y. The characteristic 
equation reduces to 

a2 sinh ab cos {Jb - If ( ~) cosh ab sin {Jb = 0 

or 

fJ a k-1+v k+1 :! (-)2 2 I 
tanhabcot{Jb = ~ (:B)= [k + 1 _ v] (k=l) (8.68) 

To illustrate application of this equation consider a square plate (/L = 1) of a material 
having v = 0.3. For this problem the characteristic equation reduces to 

[k- 0.7 ] 2 (k + 1)! 
tanhab. cot{Jb = k + 0.7 k _ 1 

Using trial and modification procedure, the least value of km satisfying the equation 
is 1.18389. Therefore, critical load is given by 

(1.18389)2112 D 1.4016112 D 
Px,cr = = 

For various aspect ratios the values of k~ are given in the Table 8.1. 



8.4 Buckling Analysis of Rectangular Plates 357 

3. The edge y = 0 is clamped andy = b is simply supported or hinged 

Substitution of general solution given by (8.36) in the boundary conditions at the 
unloaded edges y = 0 and y = b: 

aty=O: w = 0 i.e. w = B + D = 0 or D = - B 

and 

( aw) =aA+fJC=O i.e. C=-(~)A 
ay y=o fJ 

at y=b: w =0 and My =0 

w = A sinh ab + B cosh ab - ( ~) A sin {Jb - B cos {Jb = 0 

and 

My = ( a2~) = a 2 A sinh ab + a 2 B cosh ab + a{JA sin {Jb + {J2 B cos {Jb = 0 
ay y=b 

For non-trivial solution, the determinant of coefficients of A and B must vanish that 
is: 

I sinh ab - ( ~) sin {Jb cosh ab - cos {Jb I = 0 
a 2 sinh ab + a{J sin {Jb a 2 cosh ab + {J2 cos {Jb 

The expansion of the determinant yields stability condition or characteristic equation 

tanhab- (~) tan{Jb = 0 (8.69) 

where ab and {Jb are defined in (8.35b) as 

( mrr) 1 ab = ----;;: (k + 1)1; ( mrr) 1 (-~)=(kk+_11 )i {Jb = ----;;: (k- 1)1 and JJ 

For a square plate, the minimum value of km satisfying (8.69) is 2.39587. Therefore, 

(2.39587)2rr2 D 5.7402rr2 D 
Px,cr = = 

For other aspect ratios f.L, values of "fn are given in Table 8.1. 
The stability conditions for the type-I plates with symmetric boundary conditions 

can also be derived directly using the co-ordinate system of type-IT problems. For 
illustration consider the plate with both the edges y = 0 and y = b clamped. The 
boundary conditions w = o and aw 1 ay = o at the edges y = o, b when transformed 
in terms of general solution provide 



358 8 Elastic Buckling of Thin Flat Plates 

at y = 0: 

B + D = 0 or D = - B 

aA + ,BC = 0 or C = -(aj,B)A 

at y = -b: 

(a) 

(b) 

A sinhab + B coshab- (a/ ,B) A sin ,Bb- B cos ,Bb = 0 (c) 

aAcoshab +aBsinhab- aAcos,Bb + ,BBsin,Bb = 0 (d) 

For non-trivial (A = B -:j:. 0) solution of simultaneous equations (c) and (d) the 
determinant of coefficients of A and B must vanish, i.e. 

I sinhab- (~) sin,Bb coshab- cos ,Bb I= 0 

a cosh ab - a cos ,Bb a sinh ab + ,B sin ,Bb 

The expansion of determinant leads to the stability condition or characteristic equation 

1 (,8 a) . h . b - --- (sm ab.sm,B) = (1-coshab.cos,Bb) 
2 a ,8 

1 (,82 _ az) 
- (sinhab. sin,Bb) + (coshab. cos ,Bb)- 1 = 0 
2 a,B 

-(k2 -1)-112(sinhab.sin,Bb) + (coshab.cos,Bb) -1 = 0 (8.70) 

where ab and ,Bb are defined by (8.35b). Though (8.70) differs from (8.54) due to 
difference in the origin of co-ordinate system, but they provide same results. Consider 
a square plate i.e. JL = 1. The least value of km satisfying the characteristic (8.70) is 
2.77332. Therefore, the critical load is given by 

k~n2 D (2.77332)2n 2 D 7.691n2 D 
Px,cr=~= = 

The above procedure can also be used for plates with unloaded edges y = 0 and 
y = b simply supported or hinged. The boundary conditions w = 0 and w" = 0 at 
the edges y = 0, b when transformed in terms of general solutions provide 

at y = 0: 

B + D = 0 or D = -B 

and 

a2B- ,B2 D = 0 or D = (a2 j,B2 )B 

These two conditions can be true only when D = B = 0 

at y = b: 

A sinhab + C sin,Bb = 0 

a2 A sinh ab - ,B2C sin ,Bb = 0 
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For non-trivial (A = C =I= 0) solution 

I sinh ab sin f3b I 
=0 

a2 sinh ab - {3 2 sin f3b 

-(a2 + (3 2 ) sinhab. sinf3b = 0 

The quantity in bracket is sum of two positive quantities and hence cannot be zero. 
On the other hand sinh ab is zero only at ab = 0, this is a trivial solution. Hence the 
only feasible solution is 

sin f3b = 0 or f3b = mr 

Therefore, from (8.35b): 

or 

k = 1 + n2 (~:) 
For minimum value of k, integer n = 1. Thus from (8.29) 

Px.cr = k2D (:;Y = [1 + (~) 2r (:Y (n~~) 
= [ (:) + (~) r (n~~) = k~ (n~~) 

(8.71) 

where f.L = ajb. This equation is identical to one derived earlier and given by (8.45a). 

II. Buckling of plates subjected to in-plane loads in two directions 

In this type of plate problems in addition to a uniform axial compressive force Px 
acting along the edges x = 0, a the plate is subjected to a uniform compressive force 
Py per unit length along the edges y = 0, b, i.e. the plates are subjected to in-plane 
loads in two direction as shown in Fig. 8.6. 

Here, since Pxy = 0 the governing partial differential (8.18) reduces to: 

(
a4w a4w a4w) a2w a2w 

D ax4 + 2 ax2ayz + ay4 + Px ax2 + Py ay2 = 0 (8.72) 

Consider a rectangular plate simply supported along its four edges as shown in 
Fig. 8.6. The conditions of zero lateral deflection and moment at the edges implies. 

w = a2 w I ax2 = 0 at X = 0 and X = a 

w = a2w;ai = 0 at y = 0 and y = b 
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0 X 

Py = rp, 

y 

Fig. 8.6. Rectangular plate compressed in two directions 

A typical series solution satisfying the above boundary condition is 

~~A . (m1rx) . (n1ry) w(x,y) = ~~ mnSlll -a- Sill b 
m=l n=l 

(8.73) 

where m and n are integers. For w(x, y) to be a buckled configuration, it should 
satisfy the governing differential equation, i.e., 

-- - -- - sm--sm--=0 Px (m1r)2 Py (n1r)2] . m1rx . nrry 
D a D b a b 

Such a sum in series form can vanish only when the coefficient of every term is zero. 
Thus, 

[ 4 (m2 n2)2 Px (m1r)2 Py (nrr)2] 
Amn 1r --;_;2 + b2 - D --;- - D -;; = 0 

Thus for a non-trivial solution 

(8.74) 

This stability or characteristic equation can lead to several cases of plate buckling 
problem. Some of them are given below: 
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1. Px and Py are proportional i.e. Px = !Per and Py = gper where f and g are 
specified fractions or ratios and allow Per to be evaluated. 

2. Px (or Py) has a fixed value and corresponding Py,cr (or Px,er) need be computed. 

For illustration consider the problem of rectangular plate where Py = rpx. The 
stability condition given by (8.74) reduces to 

(8.75) 

Equation (8.75) is sometimes referred to as interaction equation. For the given values 
of load ratio, r and aspect ratio, JL the values of m and n may be determined by trial 
and modification procedure or otherwise to obtain the smallest value of critical load. 

As a typical case of buckling under bi-directional in-plane loading consider 
a square plate (JL = 1.0) with r = 1 (py = Px). Equation (8.75) reduces to 

(
]'{2D) 2 2 

Px,er = lJ2 (m + n ) 

Obviously the lowest critical value is obtained for m = n = 1 

2]'{2D 
Px,er= ~ 

i.e., the critical load is just half of that for a square plate loaded only in one direction 
and buckling occurs with single half wave in each direction. 

If r = 0, i.e. plate is subjected to the load Px only, (8.75) reduces to 

P = (]'{2D) [m +n2JL] 2 
x,er b2 JL m 

The minimum value of Px,er corresponds to n = 1 and hence 

( ]'{2 D) [m JL ] 2 

Px,er = lJ2 JL + m 

This expression is identical to that given by (8.45a). 
For a square plate (8.75) reduces to 

(
]'{2 D) (m2 + n2)2 

Px,er = lJ2 (m2 + r n2) 

Px,er will again correspond to m = n = 1 so that 

Px,er = C : r) ( ]'{:~) 

(8.76) 

(8.77) 
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It should be noted that the buckling may occur even if one of the in-plane forces 
is tensile, although it retards the instability. The effect of unidirectional tension on 
retardation of buckling can be demonstrated by considering negative value of r in 
(8. 77). In many practical cases of unidirectional compression, the boundaries in the 
other direction, parallel to the direction of loading are restrained in middle plane. As 
the plate deflects, these boundaries develop tensile forces in the middle plane which 
retard or delay the onset of instability or increase the critical load as given by (8.77). 

8.4.2 Stationary Potential Principle 

As is seen in the preceding sections the calculations for obtaining critical load and 
corresponding buckling mode become involved for the plates with different boundary 
conditions at the edges. In such situations approximate methods like Ritz method, 
Galerkin 's method etc. prove to be useful. For illustration consider the case of a simply 
supported rectangular plate subjected to a uniform axial compressive force Px per 
unit length along the edges x = 0 and x =a. Let the displaced configuration w(x, y) 
is still given by (8.73) as: 

~ ~ . (mnx) (nny) w(x, y) = ~ ~ Amn sm -a- sin b 
m=I n=I 

(8.78) 

For this type of series displacement function with w(x, y) = 0 at all edges, the 
Gaussian curvature term of strain energy U reduces to zero, hence 

D JJ (!Pw azw) 2 
U=- -+- dxdy 

2 ax2 ay2 
(8.79) 

Substituting various derivatives of w(x, y) in (8.79) and after integrating, the strain 
energy of the plate is given by: 

(8.80a) 

Noting that Pxy = Py = 0, the potential energy Ve is given by (8.25): 

(8.80b) 

Thus the total potential of the plate is given by: 

(8.80) 
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The stationary potential condition, an I aAmn = 0 gives all the possible equilibrium 
configurations. For non-trivial (Amn f= 0) solution: 

_ n2 D (mb n2a) 2 
_ n2 D (m n2 J1, ) 2 

Px,cr - b2 + b - b2 + a m J1, m 
(8.81) 

For smallest Px,cr• n = 1. Hence, 

n2D (m J1,) 2 

Px,cr = T J1, + ;;; 

where a/b = Jl,, represents the aspect ratio. This equation is identical to (8.45a). 
Following examples will illustrate the application of stationary potential principle 

to the plates with different boundary conditions at the edges. The stability conditions 
of these plates have already been derived in the preceding sections by differential 
equation method. 

Example 8.1. Consider a rectangular plate clamped at all the edges and subjected to 
a uniformly distributed load Px at the edges x = 0 and x = a. 

Displacement function satisfying boundary conditions at the clamped edges may 
be taken in the form: 

( 2nmx) ( 2ny) w(x, y) = A 1 -cos -a- 1 -cosh (8.82) 

For evaluation of U and V following derivatives are required: 

~: = (2n:A) sin (2n:x) ( 1 _cos 2~y) 

a2w = (4n2m2A) cos (2nmx) (l-cos 2ny) 
ax2 a2 a b 

-- = -- 1-cos-- cos-a2w 4n2A ( 2nmx) 2ny 
a~ ~ a b 

Substituting these derivatives in the expressions for U and V given by (8.24) and 
(8.25), respectively, and on integration the potential II is given by: 

(8.83) 
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From stationary potential principle anjaA = 0, the stability condition is given by: 

4:rr2D [ (m)2 (/-t)2] Px,cr = -w 3 1-L + 2 + 3 m (8.84) 

where 1-L = afb. For smallest value of Px,cr 

apx,cr = 4:rr2 D ~ [3 (m )2 + 2 + 3 ( 1-L )2] = 0 
am 3b2 am 1-L m 

(8.85) 

6m 6~-L2 
/-t2- m3 =0 i.e. m=i-L 

Thus the absolute smallest value of Px,cr is 10.6667n-2 Dfb2 which is independent 
of 1-L· For a square plate 1-L = 1 and m = 1, k~ = 10.6667. The exact solution obtained 
by Levy using an infinite series for w(x, y) is 10.07:rr2D/~. It should be noted that 
the stationary principle yields an upper bound solution. Further, the displacement 
function assumes that at the critical load, a plate buckles with one half-wave along 
Y -direction. 

With one term the error is of the order 6 per cent. The error can be minimized by 
using more terms in the representation of w(x, y), e. g. with two terms 

( 2:rrmx) ( 2:rry) w(x,y) =A 1-cos-a- 1-cosh 

( 4:rrmx) ( 4:rry) + B 1 -cos -a- 1 -cosh (8.86) 

The values of Px.cr for different aspect ratios 1-L with one term solution are given in the 
Table 8.2. This example clearly demonstrates the advantage of using energy method. 
If the edges x = 0 and x = a are simply supported instead of being clamped, the 
displacement function satisfying boundary conditions at the edges may be assumed 
to be 

. m:rrx ( 2:rry) w(x, y) = A sm -a- 1 - cosh 

This displacement function is based on the observation that, in general, at the critical 
load a plate buckles with one-half wave along Y -direction. The derivatives of w 
required for computation of potential of the plate n = U + V are: 

-- =- - Asm-- 1-cos--a2 w ( m:rr ) 2 . m:rrx ( 2:rry) 
ax2 a a b 

-- =Asm-- -- cos--a2w . m:rrx [(2:rr)2 2:rry] 
ay2 a b b 
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Table 8.2. Buckling factor, k~ for various aspect ratios, f-L (Stationary Potential Principle) 

All edges Loaded edges: Loaded edges: All edges 

f-L=~ 
simply supported clamped simply supported clamped 

Unloaded edges: Unloaded Edges: 
Simply supported clamped 

m k2 
m m k2 

m m k2 
m m k2 

m 

0.4 8.4100 26.1200 1 9.7700 28.3067 
0.6 5.1378 12.3811 1 7.3644 15.2178 
0.8 1 4.2025 7.7300 1 7.6425 11.4767 
1.0 1 4.0000 5.7500 2 8.0000 1 10.6667 
1.2 1 4.1344 4.8578 2 7.3644 1 11.2044 
1.4 1 4.4702 4.5108 2 7.3208 1 12.5475 
1.6 2 4.2025 4.4825 2 7.6425 2 11.4767 
1.8 2 4.0446 4.6646 3 7.3644 2 10.8449 
2.0 2 4.0000 5.0000 3 7.2870 2 10.6667 
2.4 2 4.1344 2 4.8578 4 7.3644 2 11.2044 
2.8 3 4.2191 2 4.5108 4 7.3208 3 10.7429 
3.0 3 4.0000 2 4.4652 5 7.3644 3 10.6667 
4.0 4 4.0000 3 4.5833 6 7.2870 4 10.6667 
00 4.0000 4.4641 7.2855 10.6667 

Substituting these derivatives in Eqs. (8.24) and (8.25) and on integration 

_ D rr4A2b [3m4 4a4 2m2a2] 
U-2~ 4+b4+~ 

and 

V = -~(A 2m2rr2) ( p~b) (~) 
Equating variation an;aA of potential to zero and for a non-trivial (A =f:. 0) solution: 

(8.87) 

For a given aspect ratio JJ,, the value of m at which Px,cr will be smallest is given by: 

apx,cr = (rr2D) ~ [ 3 (m)
2 + 8 + 16 (Jl-)2] = O 

am 3b2 am J1, m 

6m 32JJ,2 
Jl-2 - --;:;;'3 = 0 i.e., m = 1.5197JJ, (8.88) 
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Substituting this value of m in (8.87), the absolute smallest value of Px,cr obtained is 
7.28547n2Djb2• For a square plate i.e.~-t = 1, m = 2 andk;, = 8.0000. Thus 

(8.89) 

This is upper bound to its exact solution 7.6913(n2 Djb2 ). 

For different aspect ratios, the ~ values are given with Table 8.2. Like all other 
plate problems analyzed by stationary principle, the values in the Table 8.2 are upper 
bound to their respective exact values. 

In the foregoing and other plate problems with symmetrical edge support con­
ditions, it is convenient to define the origin at the center of the plate. For example 
the displacement functions for the symmetrical edge support conditions shown in 
Fig. 8.7 are: 

1. All edges simply supported 

w(x, y) =A cos (m;x) cos (n;) 
2. Loaded edges simply supported, unloaded edges clamped 

( mnx) ( 2ny) w(x, y) = A cos -a- 1 +cos b 

3. All edges clamped 

( 2mnx) ( 2ny) w(x, y) = A 1 +cos -a- 1 +cosh 

a a - - -
r- ss 1-- -- c 

Px 
r-

0 
1- X r- ss 

r- ss 1- Px 
---- ss 0 --r- ss 1- -- c 

- - -

y y 
(a) (b) 

a a 

Px 

- - -
r- c 1-
r- 1-- X r- c 0 
r- cl- Px t- c 1-

- - -

-r 
b p 

_L 
- ss 
'-

0 
x: 

c 

:- ss 

y y 

(c) (d) 

Fig. 8.7a-d. Types of symmetrical edge support conditions 

(8.90) 

(8.91) 

(8.92) 

1--
1- X 

ss 1- Px 
1-

-
c - X 

- Px -
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4. Loaded edges clamped and unloaded edges simply supported 

( 2m]"(X ) ( ]"(y) w(x, y) = A 1 + cos -a- cos b (8.93) 

For illustration, consider the buckling problem of the plate clamped at the loaded 
edges and simply supported at the unloaded edges. The displacement function satis­
fying the boundary condition is given by (8.93). 

Following the procedure adopted in the preceding plate buckling problems, the 
value of critical load is given by: 

(8.94) 

For the smallest value of Px,cn m can be obtained from 

apx,cr = (]"(2 D) ~ [ 16 (m )2 + 4 + 3 ( 1-L ) 2] 
am 4b2 am 1-L m 

i.e., m = 0.6580!-L (8.95) 

Substituting m = 0.6580!-L in (8.94), the absolute minimum value of 12,;, obtained is 
4.4641. For a square plate, (i.e., 1-L = 1) m = 1 gives k~ = 5.75. This value again is 
upper bound to its exact value. For different aspect ratios values of k~ are given in 
Table 8.2. 

8.5 Buckling of Web Plates of Girders 

Thin web plates of girders under the action of compressive stress during bending are 
susceptible to buckling. In general a web panel of girder is subjected to a uniformly 
distributed shear forces Txyt along all the four edges and in addition it is loaded on 
the edges x = 0 and x = a by longitudinal forces axt linearly varying along these 
edges. In practice the shear stresses are parabolically distributed along the edges 
x = 0 and x = a and also vary along y = 0 and y = b. Furthermore, ax also varies 
along the span of girder with bending moment. The stability analysis of web plates 
is considerably simplified by assuming a loading condition with average values of ax 
and ixy· 

The web plates of the deep girders are in general too thin to develop a sufficiently 
high buckling strength for an economical design without a provision of stiffeners. 
Therefore, longitudinal and transverse stiffeners play an important role in the design 
of the web plates. In this section the stability analysis of both unstiffened and stiffened 
web plates under various loading and support conditions is discussed. 



368 8 Elastic Buckling of Thin Flat Plates 

8.5.1 Buckling of Rectangular Plate in Shear 

Consider a rectangular plate of length a, width band thickness t, simply supported 
along the four edges, subjected to uniformly distributed shear forces Pxy(-rxyt) along 
the edges as shown in Fig. 8.8. In the analysis principle of stationary potential is used. 
For this pure shear load problem, (Px = Py =0) with all the edges assumed to be 
simple supports, the Ritz solution to boundary conditions i.e. displacement w(x, y) 
can be represented by: 

00 00 (" ) (" ) 
. mx . pry 

w(x, y) = ~ L Aij sm -;;- sm b 
1=1 J=l 

(8.96) 

Substituting w(x, y) in the strain energy expression given by (8.24) 

(8.97a) 

The potential energy, V of the uniformly distributed forces Pxy(= 'fxyt), is expressed 
from (8.25) as: 

a b !! awaw 
We= V =- Pxy--dydx ax ay 

0 0 

= - ( :; ) j i Pxy 

0 0 

x t t AijAkl (i cos i:x sin j:y) ( i sin k:x cos i:y) dy dx 

k=l l=l 

where i, k, and j, i can assume values from 1, ... m and 1, ... n, respectively. Noting 
that: 

a f inx . knx 
cos-sm-dx =0 

a a 
0 2a 

= ---;- -(i..,-2 ---k--:2,.--) 

Thus expression for V reduces to 

when i + k is an even number 

if i + k is an odd number 

(8.97b) 

In which i, k and j, i are integers such that both ( i + k) and (j + i) are odd numbers. 
For illustration consider m = n = 2. Therefore i, j, k and i can therefore have values 
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X -_- Pxy 

-
a - t 

b ~ Pxy 

~ 
)IIIII"" )IIIII"" )IIIII"" )IIIII"" 

Pxy 

,, 
y 

Fig. 8.8. Rectangular plate in pure shear 

1 or 2 only. Equation (8.97) will thus have four terms in which combinations of values 
i, j, k and i satisfy condition that (i + k) and (j + i) are odd, as (1,1,2,2), (1,2,2,1), 
(2,1,1,2) and (2,2,1,1). Therefore, potential function II(= U + V) is given by: 

JT4D 
II= 8p)b2 [Ail (1 + p,2)2 + AI2(1 + 4JL2)2 +A~] (4 + 112)2 + A~2(4 + 4JL2)2] 

6 
- 9Pxy(A12A21 - AnAzz) (8.98) 

where JL =alb. The application of stationary potential energy principle oiiiaAn = 
0, a II Ia A J2, a II I aA21 and a II I aA22 yields following set of four linear homogeneous 
algebraic equations: 

r p(l ~"')' 

l Pxy 

0 0 
p(1 + 4JL2)2 -pxy 

-Pxy p(4+JL2)2 

0 0 

where p = 9JT4 DI(128JL3b2). For non-trivial solution, the determinant of the coef­
ficients A11, A12, A21 and A22 must vanish. The expansion of determinant leads to 
stability condition or characteristic equation. This equation of fourth degree in Pxy 
has four roots. 
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(8.99) 

The lowest value of Pxy,cr is given by Px,cr,l,2 i.e. by Pxy,cr,l or Pxy,cr,2· This implies 

that instability of plate does not depend upon the sense of Pxy· The critical load thus 

is given by 

(8.100) 

where k~ is the plate factor 

k2 = 9JT2 (1 + J.-L2)2 
m 32 J.-L3 

(8.101) 

For a square plate J.-t = 1, Pxy,cr = 11.1JT2 D/b2 . This is upper bound to exact value 

Pxy,cr = 9.34JT2 Djb2 . The computed value is 15.86 per cent higher than the exact 

value. Bleich has suggested a simple formula for design purposes 

2 4 
k = 5.34 + 2 for J.-t > 1 

J.-t 
(8.102) 

For validity of this relation 'a' must always be selected as the larger of the dimensions. 

The values of factor k~ for various aspect ratios are given in Table 8.3. This problem 

can also be analyzed by Galerkin 's method. The buckled configuration satisfying 

boundary conditions may be taken as 

JTX Jry 2Jrx . 2Jry 
w(x, y) = A1 sin- sin- + Az sin-- sm -b = A1g1 + Azgz 

a b a 
(8.103) 

Table 8.3. Buckling coefficient k~ for the plate under uniform shearing stress on all edges 

Aspect ratio. Case-I: Case-II: Case-III: 

M =alb All edges Two short edges simply supported All edges 
clamped and both long edges clamped simply supported 

1.0 14.710 12.280 9.338 

1.5 11.500 11.120 7.070 
2.0 10.340 10.210 6.590 

2.5 9.820 9.810 6.066 
3.0 9.620 9.610 5.890 
00 8.976 8.980 5.330 
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The Galerkin's equations are: 

i = 1, 2 (8.104) 

The equation within brackets is the governing differential equation. Substituting 
w(x, y) in (8.104) and simplification yields: 

(8.105) 

For non-trivial solution vanishing of determinant of coefficients of A 1 and A2 provides 

9rr4 D rr2 D 
Pxy,cr = """""8b2 = 11.10y (8.106) 

which is identical to the one obtained earlier by Ritz method. 
For the plates clamped at all four edges, Bleich has suggested a parabolic formula 

for approximating k~: 

k~ = 8.98 + 5"~0 
f-L 

(8.107) 

The values of k~ for plates with different boundary conditions for various f-L are given 
in Table 8.3. 

For the case of very long plate (t-L = oo) with short edges simply supported or 
clamped; one long edge simply supported and other clamped, k~ = 6.628. 

8.5.2 Buckling of Rectangular Plate due to Non-Uniform Longitudinal Stresses 

Consider a simply supported rectangular plate subjected to varying in-plane axial 
load due to bending along two opposite edges. The magnitude of the· force Px at 
a distance y from the upper edge of plate as shown in Fig. 8.9 can be expressed by 
a linear relationship: 

Px = Pl (1- ~) (8.108) 

where 17 = (Pl - P2) I Pl· The parameter 17 = 0 corresponds to uniformly distributed 
compressive load and 17 = 2 to pure bending, and 0 < 17 < 2 indicates combined 
bending and compression. 

As is seen earlier in the chapter that a plate in longitudinal compression buckles 
in X-direction in half-waves of equal length with straight nodal lines perpendicular 
to the X -axis. Thus each buckle represents a plate simply supported on its four edges 
and can as such be treated independent unit. The deflection w(x, y) can therefore be 
assumed in the following series form: 
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y 

(a) 

t----+---a ---~ 

b 

y 

(b) (compression) 

Px=P1(1-~) 
T\ = P1 - P2 

PI 

(bending) 

Fig. 8.9a,b. Non-uniform longitudinal stresses. a Linearly varying load, b special cases 

w(x, y) =sin (JTx) t Ai sin (iny) 
a i=J b 

(8.109) 

The strain energy U is obtained by substituting w(x, y) from (8.109) into (8.24). 

JT4 Dab n 2 ( 1 i2 )2 
U = --8- LA; a2 + b2 

i=J 

4D n 
= _n_ "A2 (1 + i2JL2)2 

8JL3b2 ~ l 

i=l 

The potential energy, V due to external forces is given by: 

Noting that: 

(a )2 ( 2) n n . . w 1T 2 JTX . my . J1TY 
- = - cos - "" A;A·sm-sm-ax a2 a ~~ J b b 

i=J j=J 

(8.110) 

(8.111a) 
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Substituting this expression into (8.111a): 

2 ab n n . . 

PI 1r !! ( Y) 2 1rx LL . my . J'lrY v = --- 1- TJ- cos - A;A. SID- SID -dydx 
2 a2 b a 1 b b 

0 0 i=l j=l 

(8.111b) 

Making use of following integration formula 

b { b2/4 I . i7ry . j7ry 0 

0 
ysiD -b sm -b dy = 

( 4b2) i' 
- ~ (iLJ2)2 

fori= j 
for i + j is an even number. 

for i + j is an odd number. 

Therefore, 

(8.111) 

where i assumes all values 1 ton, while j can have such values for which (i + J) is 
an odd number. 

The total potential n = U + V can then by obtained from (8.110) and (8.111 ). The 
stationary potential principle acu + V)jaA; = 0, (i = 1, 2, ... , n) yields a system of 
n simultaneous homogenous algebraic equations: 

[ (l + ;2f.L2)2 _ Pih2JL2 (t _~)]A-_ 8TJpib2JL2 ~ ijAi = O 
7r2 D 2 I 7r4 D 4--- (i2 - j2)2 

J=l 

i = 1, 2, ... n (8.112) 

The summation L is to extend only on those numbers j which satisfy the condition 
j 

that i + j is an odd number. A non-trivial solution exists only if the determinant 
of coefficients of A; vanishes. The stability condition ..1 = 0, then can be used to 
compute the value of the buckling factor k~. Timoshenko and Gere have computed 
k2 values for various TJ and f.L values. 

For illustration consider n = 2, i. e. a two term solution: 

[(1 + f.L2)2- Pib2f.L2 (t- ~)]AI- 16TJpib2f.L2 A2 = 0 
1r2 D 2 97r4 D 

(a) 

l6TJpib2f.L2 A + [(1 +4 2)2- Pib2f.L2 (1- ~)]A = 0 
97r4 D I f.L 7r2 D 2 2 

(b) 

For a square plate (JL = 1) with TJ = 2 i.e. for pure bending case, Eqs. (a) and (b) 
reduce to: 
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Table 8.4. Buckling coefficient k~ for the rectangular plate with all edges simply supported 
under linearly varying stress on two opposite edges. (Combined bending and compression) 

Aspect ratio. Coefficient, k~ 

/.L =alb 1]=2 TJ = 4/3 TJ = 1.00 TJ =4/5 TJ = 2/3 1]=0 
(pure (triangular (pure 
bending) load) compression) 

0.4 29.055 18.721 15.081 13.310 10.820 8.409 
0.6 24.076 12.890 9.725 8.265 6.439 5.167 
0.8 24.396 11.186 8.143 6.926 5.953 4.193 
1.0 25.603 11.064 7.778 6.561 5.831 4.005 
1.5 24.076 11.551 8.387 7.048 6.074 4.337 

For a non-trivial (At = Az f= 0) solution 

(32ptb2y- 100 = 0 45rr4D rr2D 
9rr4D 

i.e. Px,cr = 16 /ll = 27.758/ll (8.113) 

This value of k~ = 27.758 is upper bound to its exact value 25.6 and differ by 8.4 
per cent. Timoshenko and Gere have shown that exact value is obtained by taking 
n = 4 in the series representation for the displacement w(x, y). 

It is seen that minimum value of k~ occurs at t.t = 2/3 for 7J = 2 and at t.t = 1 
when 7J = 0. A very long plate, therefore buckles in half-waves of length A = 2b /3 
in case of pure bending. The wavelength increases as 7J decreases and approaches 
limiting value A = b in case of uniform compressive load. The values of buckling 
factor k~ for various values of aspect ratio t.t for different values of 7J are given in the 
Table 8.4. For the pure bending case (T/ = 2), third approximation i.e. n = 3 is used 
while for others second approximation i.e. n = 2 is used for calculating Px,cr· 

8.5.3 Buckling of Stiffened Plates 

There are numerous engineering applications where the thin plate elements are stiff­
ened by means of stiffeners or stringers to prevent buckling at lower loads. This 
increase in critical load is due to the increase in flexural rigidity of the plates. For 
a rectangular plate of specified aspect ratio, the critical flexural stress is proportional 
to t2 1 b2. Thus the stability of such a plate can be improved either by increasing t or 
by decreasing b. It is economical to achieve this objective by introducing stiffeners 
in the longitudinal direction, thereby decreasing b. The stiffeners placed transversely 
are not very effective in increasing the flexural buckling strength unless they are 
closely spaced. 

On the other hand critical stress in shear depends upon the ratio of width or 
smaller dimension of the plate (say b) to its thickness, t. The provision of transverse 
stiffener considerably reduces the width to thickness ratio, and the critical stress 
being inversely proportional to the square of this ratio, is substantially increased. 
Sufficiently rigid transverse stiffeners divide the plate into smaller panels which may 
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be considered approximately as simply supported. There exists a limiting value Io of 
moment of inertia of stiffener which ensures straight nodal lines at these stiffeners. 
If I is smaller than I 0 , the stiffener buckle and deflect together with the plate. With 
increasing flexural rigidity the buckling strength of stiffened plate increases until 
when I = Io. A further increase of I does not add to the buckling strength of the 
plate. When reinforced by stiffeners having moment of inertia Io, each plate panel 
can be considered as simply supported plate in shear and critical stress reaches the 
maximum possible value. 

1. Longitudinally stiffened plates 

In deep plate girders it is often economical to stiffen the web plate by longitudinal 
stiffeners at the locations where the longitudinal compressive stresses due to bending 
are high. If the stiffener is located at the longitudinal center line of web i. e. at neutral 
axis, it does not carry compressive force. Its effect is negligible for small aspect ratios 
f.L (= ajb), but becomes marked when f.L = 2/3. The increase of buckling strength 
amounts to only 50 per cent of the strength of the unstiffened plate. The stiffeners at 
the center line are therefore not very effective in improving the stability of web plates 
in case of pure bending. 

A larger effect is obtained when a stiffener is placed between compression flange 
and the center line. The problem can be analyzed easily by stationary potential 
principle by extending the analysis for unstiffened plate discussed in the preceding 
section by including the bending energy Us of the stiffener in the expression for the 
potential energy of the system. 

Consider a simply supported rectangular plate of uniform thickness t, length a and 
width b stiffened by a typical .eth longitudinal stiffener of cross-sectional area As and 
moment of inertia I8 , located at a distance Yt from the edge y = 0. The buckled 
configuration satisfying all boundary condition may be represented by a double 
Fourier sine series of the form: 

m n . . 

( ) '"' '"' A . mx . pry wx,y =~~ ijSm-sm-
i=l j=l a b 

(8.114) 

The strain energies of the plate and the .eth stiffener, Up and Ust. respectively, are 
given by 

4D m n 
U, = !!..____'"''"'A?. (i2 + f.L2 j2)2 

P 8f.l,a2 ~~ '1 
i=l j=l 

(a) 

a 2 2 
(Esis)t I (a w) Us~=-- - dx 

2 ax2 
0 l 

m ( )2 (Esis)t 4 ·4 . JrYt . 2.1l'Yl 
= --3 -Jr L:z Ailsm- +Ai2sm-- + .... 

4a i=I b b 
(b) 
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The potential energies due to compressive force Px acting on the plate and Pse on eth 
stringer are: 

Pse fa (aw) 2 

Vst = -2 ax e dx 
0 

Pse n a .2 . ny1 . 2nyl 2 m ( )2 
= -2 a2 (2) ~~ A;1 smb + A;2sm-b- + ... 

Defining following parameters 

Summing up over all stringers r in number. The stationary potential condition a(Up + 
Use+ Vp + V8e)faAin = 0 (i = 1, 2, .. . m) forms a system of m homogenous linear 
algebraic equations 

2D [ r · n k ] n ·2 2 ·2 2 . JlfYe ·4 . nye ~ A;j(l +JL J) +2Lyesm-b-.l LAmksm--
JL b i=l k=l b 

·2 . JlfYe ·2 . nye 
[ ( 

r · n k )] 
- Px.cr 1 A;j + 2 L 8e sm -b- .l L Amk sm -b- = 0 

f=l k=l 

(8.116) 

(i = 1, 2, 3 ... ). 

Equating to zero the determinant of system of equations provides characteristic 
equation. As discussed earlier minimum buckling load of plate is given by one-half 
wave along X -direction i.e., i = m = 1. On the other hand the values of n represent 
the number of half-waves along y-direction. 

As a typical case consider a plate stiffened by one stiffener (r = 1) located at 
y = b/2, i.e., at the centre line. In this case for even values of n(= 2, 4, 6, ... ) i.e. 
antisymmetric configuration, the stiffener does not contribute to the plate buckling 

load since for such values of n, the location of stiffener corresponds to the nodal line, 
and it remains straight. Each half of the plate behaves as a plate of length a and width 
b/2, simply supported on all four edges. No bending moment is carried over from 
one half to the other half due to the presence of inflection point at the nodal line. 
The buckling load of stiffener in this case reaches its maximum value. The critical 
stress for antisymmetric buckling is independent of y, but it is the critical stress of 
simply supported plate of width b /2. In the symmetric mode, i.e. for odd values of 
n, stiffeners deflects with the plate. For first approximation consider j = n = 1. 
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rr2 D [ 2 2 ] [ ] - 2 2 (1 + f.L ) + 2y, Au - Px cr(l + 28,) Au = 0 f.L b , 

Therefore, 

k2 = [ (1 + f.L2)z + 2y, J 
m [JL2 (1 + 28J)] 

where, 

(8.117) 

For better approximation consider j = n = 1, 3 and following equations are obtained: 

[(1 + JL2) 2 + 2y1 - (1 + 281) (kJL)2] A 11 - [2y1 - (281) (kJL)2] A13 = 0 (a) 

- [2y1 - (28J)(kJL) 2] A 11 + [ (1 + 9JL2) 2 + 2y1 - (1 + 281)(kJL)2] A13 = 0 (b) 

For definite values of y1, 81 and f.L, the determinant of coefficients of A 11 and A 13 

must vanish for non-trivial solution. The resulting characteristic equation will enable 
the computation of k~. The procedure is quite general and is applicable to any number 
of stiffeners. 

2. Transversely stiffened plates 

As has been discussed earlier, the provision of transverse stiffeners, subdivide the 
plate into smaller panels and there exists an optimum value /0 of moment of inertia 
of stiffeners which ensure straight nodal lines at these stiffeners, and panels may be 
considered approximately as simply supported in shear. Introducing ratio bjd, the 
maximum value of critical stress in the elastic range can be determined from pure 
shear plate problems. For f.L = djb _:::: 1, 

r - - k2 rr2£ ( 1 )2 
c - 12(1 - v2) b m 

where 

2 5.34 
km = 4.00 + (djb)3 (8.118) 

3. Both longitudinal and transverse stiffeners 

If the stiffeners are closely spaced, this type of arrangement can be conveniently 
handled by orthotropic plate theory. For illustration consider a simply supported 
rectangular stiffened plate of size a x b. The plate is stiffened with both longitudinal 
and transverse stiffeners. The stiffeners are of equal stiffness and are closely spaced. 
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Such a stiffened plate can be considered to be an orthotropic plate having two different 
flexural rigidities in two perpendicular directions. The moment curvature relations 
for such a plate are given by: 

M-- -+v-Elx (o2w o2w) 
x - 1 - Vx Vy ox2 y oy2 (8.119a) 

M-- Y -+v-EI (a2w a2w) 
Y - 1 - Vx Vy oy2 x ox2 (8.119b) 

Mxy = 2Glxy ( 02w) 
oxoy 

(8.119c) 

Substituting the expressions for Mx, My and Mxy given by (8.119) in the governing 
differential (8.11): 

(8.120) 

where, 

Dx = Elx/(1- VxVy), Dy = Ely/(1- VxVy) , Dxy = 2Glxy, 

G = E/[2(1 + FxVy}], Dt = [E(.JVxVY)lx]/(1- VxVy) 

and H = Dt + 2Dxy . 

If the plate is subjected to a uniformly distributed in-plane compressive load Px along 
the edges x = 0 and x = a, the governing (8.120) reduces to: 

~w ~w ~w ~w 
Dx ox4 + 2H ox2CJy2 + Dy oy4 + Px ox2 = 0 (8.121a) 

The procedure for obtaining the critical value of Px is exactly similar to one de­
scribed in the preceding sections for the isotropic plates. Considering the buckled 
configuration as 

00 00 

w(x, y) = L LAmn sinamx sintJnY 
m=l n=l 

where 

and tJn = mrfb 

Substituting (8.121b) in the governing equation (8.121a) 

Dxa~ + 2Ha~tJ~ + DytJ~ - a~px = 0 

or 

(8.121b) 

(8.121c) 
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Introducing (8.121c) 

(8.121d) 

where J-L is aspect ratio. Multiplying both the numerator and denominator by 
[DxDy]1!2 

_ n 2 .ji5;l5; [(m ) 2 ~x 2 H 4 ( J-L )2 !fiy] Px - - - + 2n + n - -
b2 J-L Dy JDxDy m Dx 

(8.12le) 

It is obvious that for the value of n = 1, Px will assume the minimum value, i.e., 
the plate will buckle along Y-direction as single half-wave. This makes (8.121d) and 
(8.121e) to assume the form: 

Px = Jr2~ [(~)2 {D: + 2 H + (J-L)2 {D;] (a) 
b J-L V J5; JDxDy m {D; 

= k~ ( ::) (8.121f) 

where 

The value of m i.e. the number of half-waves along X -direction can be obtained by 
minimising Px with respect tom. For the case when the aspect ratio J-L is an integer 
number 

apx akm 
-=-=0 am am 

or 

or 

gives: 
2m 2J-L2 
- 2 (Dx) = - 3 (Dy) 
1-L m 

4 4Dx 
1-L =m­

Dy 

( Dx) 114 
J-Lo = m -

Dy 
(8.121g) 
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with this J.L 0 , the critical compressive load Px.cr can be obtained from (8.121e) as: 

_ n
2JD;D; [~Y [fix 2H [fix~y] Px,cr - b2 D . D + fl5TlD + D D 

X y y' '--'X '--'y y X 

or 

2n2JD;D; [ H ] 2n2 ( ) 
Px,cr = b2 1 + JD;D; = ~ JDxDy + H 

For an isotropic plate, Dx = Dy = H = D and (8.121h) reduces to 

4n2D 
Px,cr= ~ 

(8.121h) 

The limiting value of aspect ratio 7I at which either m or m + 1 half-waves can exist 
is obtained as explained earlier 

Dx (: y + 2H + Dy (~ r = Dx ( m: 1 y + 2H + Dy ( m: 1 y 
i.e. /L4 = m2(m + 1)2 ( ~:) 

or 7I = [m(m + 1)]1/2 (~:) 1/4 (8.12li) 

The expression is similar to (8.51). The number m corresponding to a given value of 
the aspect ratio /L of the plate can be obtained on identical lines as done for isotropic 
case. For 

0 < /L 2 < 2 ( ~: y12 
' m = 1 

( Dx) 112 2 (Dx) 1
/
2 

2 - <J.L <6 -
Dy Dy ' 

m=2 

( Dx) 112 
2 (Dx) 112 

6 - < /L < 12 -
Dy Dy ' 

m=3 (8.121j) 

and so on. Alternatively, using trial and modification procedure the value of m is 
selected for a given aspect ratio J.L for the minimum value of Px· Following example 
will illustrate the above procedure. 

Example 8.2. A rectangular flat plate (slab) of size 2400 x 1000 x 20mm thickness is 
stiffened in the X -direction by ribs of size 6 x 28 mm at 50 mm c I c and in Y -direction 
by ribs of size 7.5 x 26mm at 80mmc/c. The slab which is simply supported at 
all the edges is subjected to a uniformly distributed in-plane compressive load Px in 
X -direction (i.e. at 1000 mm wide edges). Determine the critical value of Px at which 
the plate will buckle, if both the plate and the ribs are made of same material having: 
E = 2 x 105 MPa and v = 0.3. 
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The various parameters are: aspect ratio: JL = a/b = 2.4 and hence 112 = 5.76, 
stiffness coefficients: 

(2 X 105) X 203 8 
D= [ 2] = 1.4652x 10 Nmm 

12 1- (0.3) 

Dx = [ 1.4652 X 108 + 2 ~~05 c12 X 6 X 283) J =1.90424 X 108 N mm 

[ 2 X 105 
( 1 )] Dy = 1.4652 x 108 + 80 12 x 7.5 x 263 = 1.73983 x 108 N mm 

Since the plate (presumed isotropic) is cross stiffened by two sets of equidistant 
stiffeners 

H = D = 1.4652 x 108 Nmm 

Therefore, JDx/Dy = 1.0462 and JDxDy = 1.8202 x 108 Nmm. Since, 

6JDx/Dy(= 6.2772) > JL2, the number of half-waves in X-direction m = 2. 
From first form of (8.121fa) 

2 4 X 1.0462 2 X 1.4652 X 108 5.76 
k = + + = 3.7129 

m 5.76 1.8202 X 108 4 X 1.0462 

Hence, the critical load is: 

2 rr2 J DxDy 3.7129rr2 x 1.8202 X 108 3 
Px,cr = km b2 = (1000)2 = 6.67 X 10 N/mm 

Alternatively, (8.121f) can be used to obtain minimum value of k~ for the given 
aspect ratio by trial and modification 

k2 = 1.0462 m2 5.76 2 x 1.4652 
m 5.76 + 1.0462m2 + 1.8202 

= 7.2972 

= 3.7129 

= 3.8564 

for m = 1 

for m = 2 (minimum) 

for m = 3 

Thus, k~ becomes minimum for m = 2. This value is identical to one arrived at 
earlier. 

The orthotropic plate which is subjected to uniformly distributed compressive 
load Px on two simply supported edges 'b' parallel to Y-axis with the unloaded 
edges 'a' parallel to X-axis being supported in different ways, can be handled 
conveniently by selecting buckled configuration of the form given by (8.31) as: 
w(x, y) = f(y) sinamx where am = mrr/a. Substitution of this equation into the 
governing differential equation (8.121a) provides an ordinary differential equation of 
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fourth order. 

Dy/"" (y) - 2a~ Hf" (y) + [ Dxa! - Px,cra~] f(y) = 0 

The general solution to the differential equation (8.122a) is 

f(y) = A sinh ay + B cosh ay + C sin {Jy + D cos {Jy 

where a and f3 are defined by 

where am = (mnja). For an isotropic plate Dx = Dy = H 
reduces to 

since Px,cr/ D = k2a~ from (8.28): 

(8.122a) 

(8.122b) 

D and (8.122c) 

(8.122d) 

These values are identical to those given by (8.35a). The arbitrary constants A, B, 
C and D of (8.122b) can be evaluated from the prescribed boundary conditions at 
the edges 'a' i.e. at y = 0 and y = b. Satisfying two boundary conditions at each 
edge results in a set of four simultaneous equations. Vanishing the determinant of 
coefficients of constants A, B, C and D yields a transcendental equation which will 
finally lead to the critical load Px,cr for the orthotropic plate as in the case of isotropic 
plates. 

For the orthotropic plates subjected to in-plane compressive loads Px and Py in 
the X- and Y -directions, respectively, the governing differential equation is given by: 

~w ~w ~w (~w ~w) 
Dx ax4 + 2H ax2ay2 + Dy ay4 + Px ax2 + r ay2 = 0 (8.123a) 

where r = Py/ Px· For illustration consider rectangular orthotropic plate simply 
supported along its four edges with assumed buckling configuration as 

w(x, y) = Amn sinamx sinf3nY (8.123b) 

where am = mnja and f3n = nnjb. 
Introducing (8.123b), (8.123a) reduces to 
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Substituting for otm and f3n 

Px[(:)2 +r(~)2] =n2 [Dx(~f +2H(:;)2 +DyGf] 

Px (~)2 
[ 1 + rn2 (~) 2] = (~:) (::) [ (::) Dx + 2Hn2 + n4 (~:) Dy] 

or 

x [(m)2 {D: + 2Hn2 + (p,)2 n4 {D;] 
p, V D; JDxDy m fnx 

where p, =a/b. For minimum critical load n = 1. Thus, 

_ n 2 j15;t5; [ (m/ p,)2 jDJl5;, + 2H/ j15;t5; + (p,/m)2 ~] 
Px,cr- b2 1 + r(p,/m)2 

(8.124) 

For an isotropic plate Dx = Dy = H = D, (8.124) becomes 

(8.125) 

This expression is identical to one given by (8.75) for n = 1. 

8.6 Strength of Thin Plates in Compression 

During the experimental determination of ultimate strength of plates, it had been 
observed that the flat plates do not fail when the computed initial-buckling load is 
reached. The stress across the width of the plate is nearly constant prior to buckling. 
The post-buckling loads are very much higher than the initial-buckling load and 
the stress distribution is no longer constant across the width. The end strips of 
the plate carry higher stresses than the middle portion as shown in Fig. 8.10, i.e. 
the side portions are stiffer than the middle portion and are capable of resisting 
additional stresses. However, the change in the stress in the middle portion before 
and after buckling is almost negligible. The tensile stresses developed in the transverse 
direction at post-buckling stage are responsible for the post-buckling strength. If the 
unloaded edges are not supported, then the post-buckling load is much smaller than 
that for plate with supported edges. Thus at the time of collapse the two strips adjacent 
to the supported edges are stressed to the yield point and carry total load where as 
the heavily distorted middle portion is considered to be (relatively) unstressed. 
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1 
(a) 

I I 
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a 
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Fig. 8.10a,b. Schematic variation of stress across the width. a Stress distribution, b effective 
width 

The total effective width, be of the load carrying strips as given by Karman is: 

b - 27ft ~- ~ e- - -Ct -
Jl2(1 - v2) ay ay 

(8.126) 

where C = 1.90 (for v = 0.3) and ay is the yield strength. Hence the ultimate strength 
is given by: 

(8.127) 

However, later on it was noticed that coefficient C is not constant but is a function 
of a non-dimensional parameter (t/b)J E/ay and decreases with increase in this 
parameter. The coefficient C approaches 1.90 for wide thin plates (b/t > 100) and 
the ultimate load is nearly independent of the width of the plate. For a stress levels' 
lower than the yield point stress ay the effective width can be expressed as: 

be= CtJE/ay (8.128) 
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where the value of coefficient C is given by: 

c = 1.90 [ 1 - 0.475 ( i) ~] (8.129) 

For a plate supported on three edges and free on the fourth, C = 0.60 and the effective 
width, be can be approximated from the relation 

be= 0.60tJE/ay (8.130) 

Example 8.3. An aluminum sheet panel is stiffened by two longitudinal stringers as 
shown in the Fig. 8.11. The panel is simply supported along the loaded edges and 
free at the side edges. Determine the compressive load carrying capacity of the panel 
for the following stipulations: 

• plate size: a= 300mm, b = 210mm 
• area of each stringer = 80.00 mm2 

• thickness of sheet, t = 1.50 mm 

p 

I 'f I 
I I 

I I I j I I 

I I 

I I 

30 I 150mm I 30 
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I I 
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I ~~ I 

p 

(a) 

30 I 150mm I 30 I 1 1· T ~ . ___.l 
t::. ::;;;=ru~========~&=~ f 1.5mrn 

(b) 

Fig. S.lla,b. Stiffened-sheet panel. a Front elevation of sheet panel, b cross section of sheet 
panel 
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• elastic modulus, E = 58.80 GPa 
• yield strength of material, a y = 58.84 MPa, and 
• poisson's ratio, v = 0.30 

The central panel 1 may be considered as simply supported at the rivet lines, i.e.; 
this panel is simply supported on all sides and the side panels 2 and 3 are simply 
supported on three sides and free at the fourth. 

I. Initial critical stress: 

Panel #1 (p., = 2.0) 

k2n 2 E ( t ) 2 4 X n 2 X 58.80 X 103 ( 1.50)2 
a1 - - - - - 21 257 MPa ,cr - 12(1 - v2) b - 12(1 - 0.32) 150 - · 

Panels #2 and 3 (p., = 10.0) 

_ _ 0.425 X JT2 X 58.80 X 103 ( 1.50)2 _ 
a2,cr- a3,cr- 12(1 _ 0.09) 30 - 56.436MPa 

Thus the sheet between the stringers is first to buckle. Just prior to initial buckling 
the entire width of the plate is effective in supporting the load. Therefore, the load 
carried by entire cross-section is: 

P = acrA = 21.257 X [(30 + 150 + 30) X 1.5 + (2 X 80)] = 10097.07 N. 

II. Post-buckling stage 

Panel #1 

Thus, 

b1,e = CtJE/ay = 1.615 x 1.5 x .j58.80 x 103/58.84 = 76.58mm 

Panels #2 and 3: 

c = 0.60 

b2,3,e = 0.60 x 1.5 x j58.80 x 103/58.84 = 28.45 mm 

Effective cross-sectional area of sheet= [76.58 + 2 (28.45)] x 1.5 = 200.22 mm2. 
Compressive load carrying capacity = ay Ae = 58.84 x (200.22 + 2 x 80) = 

21195.345 N. It should be noted that the post-buckling load is 2.099 times the initial 
buckling load. 
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8.7 Plates Under Longitudinal Compression and Normal Loading 

The problem of plates subjected to longitudinal compression and carrying normal 
loads is encountered in the design of outer hull plating of vessels. In this section 
a simplified method of analysis is discussed. For the analysis of very thin plates 
occurring in aeronautical engineering more accurate solutions are required. In the 
absence of in-plane compression the plate can be analyzed by classical plate theory, 
which is valid up to deflections equal to one-half the plate thickness. But for larger 
deflections the classical theory estimates the deflections and stresses which are 10 per 
cent or more in excess of the actual values. In this section the well-known linearized 
theory which is linear in deflection as it is based on the presumption that the deflections 
are small enough to neglect their higher powers is considered. However, it should 
be remembered that as in the case of a beam in compression along with transverse 
loads, the deformations are not proportional to external loads and the principle of 
superposition is not valid. 

The differential equation of the linearized theory can be obtained from the differ­
ential equation of elastic buckling given by (8.18) by adding the transverse load term 

Po/D 

a4w a2w a4w Px a2w Po -+2--+-+--=­
ax4 ax2ay2 ay4 D ax2 D 

V4w + (Px) a2w =Po 
D ax2 D 

(8.131) 

This equation is linear in w and its derivatives but contains a product of load and 
deflection which makes it nonlinear. Both differential equation and energy methods 
will be used to derive approximate solutions of this plate problem. 

8.7.1 Governing Differential Equation Method 

Consider the rectangular plate shown in the Fig. 8.12 subjected to transverse or 
normal pressure Po and constant in-plane longitudinal load Px in the X -direction. 
The origin of the reference coordinate system has been assumed to lie at the comer 
of the plate. Let the displacement function is still given by (8.73) as 

00 00 • • 

( ) " " A . mx . pry w x,y = ~~ ijsm-sm-
i=l j=l a b 

(8.132a) 

where A;j is Fourier coefficient for displacement in general harmonics i and j. Thus 

(8.132b) 

(8.132c) 
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X 

Px = tcrx /unit length 

(a) 

p0 /unit area 

(b) 

Fig. 8.12a,b. Plate panel subjected to compression and normal pressure. a Plan of the plate 
panel, b cross section 

The uniform load can also be represented by Fourier series as: 

" " . inx . jny p(x,y) = ~~aijsrn-srn-
a b 

(8.132d) 

Substituting from (8.132b), (8.132c) and(8.132d) into the governing equation (8.131). 

Since this equation must be valid for all values of x andy, it follows 

1 aii 

Aii = """"4[) [ 2 ] 
1f (j2 + £..) - ....&... (i)2 

-;;'I b2 :n:2D a 

(8.133) 

The fourier coefficient aii for the applied transverse loading can be evaluated from: 

4 !alb (m'nx) (n'ny) am'n' = ab p(x, y) sin -a- sin -b- dy dx 

0 0 
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For the uniformly distributed load p(x, y) = Po 

4p0 !alb . (m'rrx) . (n'rry) 16po am'n' = - Sill -- Sill -- dy dx = - 2--
ab a b rr m'n' 

0 0 

where m' and n' are odd integers. am'n' = 0, if either m' or n' is even. Therefore, 
aij = 16p0 /{ijrr2) and from (8.133) 

A-·_ 16po 1 

'1 - rr6 D(ij) [(E.. £)2 _ ..E.!... (!:.)2] 
a2 + b2 :n:2D a 

for odd i and j 

=0 for even i and j 

Therefore, 

16po ~ ~ sin(irrx/a) sin(jrry/b) 
w(x, y) = -6- ~ ~ [ . 2 J rr D ._ ._ i2 i!:. ..E.!... i 2 .• 

•-1,3.5 ..... ;-1,3,5..... ( ;;2 + b2) - :n:2v (a) (zJ) 

(8.134) 

Thus under compressive force deflection is increased and if Px is tensile deflection 
is reduced from no in-plane load case. Critical value is for specific harmonics i = m 
and j = n for which the denominator of (8.134) vanishes and deflection becomes 
infinite. Thus 

or 

_ 2 (a)2 [m2 n2] 2 _ rr2D [ (b) n2 (a)]2 
Px,cr - rr D - 2 + b2 - -b2 m - + - -b m a a m 

(8.135) 

It is obvious from (8.135) that n = 1 will give lowest Px,cr• so that 

rr2D [m JJ,J 2 rr2D 2 
Px,cr = /}2 J-t + m = ykm (8.136) 

where JJ,(= a/b) is the aspect ratio and k~ = [(m/J-t) + (J-t/m)]2. Px,cr is the elastic 
buckling load for uniaxially compressed simply supported rectangular plate and is 
identical to that obtained earlier in (8.45a) and (8.91). It should be noted that Px,cr 

is unaffected by the presence of transverse load. Here, m represents the harmonic 
number of buckling modes in the direction of compressive loading. For the given 
harmonics 

_ 16po ~ ~ sin(mrrx/a) sin(nrry/b) 
w(x, y) - 6 ~ ~ [ 2 J rr D 2 2 2 

m=I n=l mn (!!!..._ + !!..._) - J!.L (~!!.) 
a2 b2 :n:2D a 

(8.137) 
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In the absence of in-plane compressive force, the deflection of the plate as obtained 
from (8.137) is given by: 

wo = 16po ~ ~sin(m11xja) sin(n11yjb) 

116 D ~ ~ ( 2 2 ) 2 
m=l n=l mn : 2 + ~ 

(8.138) 

Equation (8.137) can now be expressed as 

Wo Wo 

w(x,y)= 1-{~(~)2 /(~+~)2} = [1-JT~x~~2] 

(8.139) 

where 1/1 = 1/[1- (Px!Px,cr)] = 1/[1- (ux/D"x,cr)] is the magnificationfactor. It 
can also be written as: 

(8.140) 

The values of k2 for different support conditions of the plate can be obtained from 
the Table 8.1. 

8.7.2 Energy Approach 

Consider the rectangular plate shown in Fig. 8.12 subjected to normal pressure Po and 
longitudinal load Px in X -direction. Reckoning the change of potential energy with 
reference to a state in which the plate carries the longitudinal load Px but no normal 
load. If the normal load Po is added to this reference state the plate will deflect, and 
the change in the strain energy of bending of plate will be given by (8.24) 

(8.141) 

The change in potential energy V of external loads Po and Px is 

(8.142) 

The potential ll(= U + V) of the plate is therefore is given by: 

ll= - -+- -- - -p0 W dydx If [D (a2w a2w)2 Px (aw)2 ] 
2 ax2 ay2 2 ax (8.143) 
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Using single term Ritz-solution for the deflection w(x, y) of the plate 

w(x, y) = AqJ(x, y) (8.144) 

where A is an unknown constant and fP(X, y) is a function of x andy satisfying the 
boundary conditions. From the work-equation: W;n = Wex 

Po J J fP(X, y)dy dx 
A= 2 

D JJ ('iPfP + a2fP) dydx- Px If (afP)2 dydx 
2 ax2 ay2 2 ax 

(8.145) 

For the case of plate without Px, representing w and A by W 0 and A0 , respectively: 

W0 = AofP(X, y) 

Po f f qJ(X, y)dy dx 
Ao = -----!:..-"-------;:;---

D If (a2fP a2fP)2 d dx 
2 ax2 + ay2 y 

Dividing (8.145) by (8.147) following relation is obtained 

A= 1/rAo 

where 1/r is the magnification factor defined by: 

From (8.144), (8.146) and (8.148) 

w(x, y) = 1/rWo 

(8.146) 

(8.147) 

(8.148) 

(8.149) 

(8.150) 

that is the deflection w(x, y) of the plate is 1/r times the deflection W0 of the plate 
subjected to normal loads alone. The bending stresses in plate being proportional to 
the second derivative of w0 , the magnification factor 1/r can also be applied to these 
stresses. The maximum fibre stresses in X- and Y-directions of the plate are given 
by: 

ax,max = ax + 1/rax,b 

ay,max = 1/ray,b 

(8.151a) 

(8.151b) 

where ax,b and ay,b are bending stresses in the plate subjected to normal loads alone, 
in X- and Y -directions, respectively. Although the above treatment is based on single 
term Ritz solution but still it gives good approximation within following limits. 
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1. The maximum deflection computed by (8.150) must be less than half the thickness 
of plate. 

2. The longitudinal compressive stress, ax must be less than the proportional limit 
of the plate material, and 

3. The longitudinal compressive stress, ax must be less than critical buckling stress 
ax,cr of the plate. 

The magnification factor 1jf given by (8.149) can be expressed in the general form 
given by (8.150). 

Normal pressure causes a decrease in effective width at strains below the normal 
buckling strain and an increase in the effective width for strains somewhat greater 
than the normal buckling strains. 

8.8 Problems 

Problem 8.1. Using differential equation approach derive the characteristic equations 
or stability conditions for the rectangular plate of size a x b with the given support 
conditions assuming appropriate displacement functions. Considering the origin of 
the reference co-ordinate system to lie at the centre of the plate. The supports x = 
±a/2 are the loaded edges. 

(a) All edges clamped 

w(x, y) = ( 1 +cos 2:7rx) ( 1 +cos 2n;y) 
(b) All edges simply supported 

w(x, y) =(cos m;x) (cos n;y) 
(c) Loaded edges clamped and the longitudinal edges simply supported 

( 2mJrx) n1ry 
w(x, y) = 1 +cos -a- cos b 

(d) Loaded edges simply supported and the longitudinal edges clamped 

w(x, y) = (cos m;x) ( 1 +cos 2n;y) 
Problem 8.2. Use stationary potential principle to derive stability conditions for the 
plates of problem 8.1. 

Problem 8.3. A simply supported rectangular plate is subjected to in-plane end loads 
along the edges x = 0 and x = a. Derive the characteristic equation for obtaining 
critical load when the end load Px per unit length shown in Fig. P.8.3 is given by 

Px = P +Po sin(Jryjb) 
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0 7ty 
p+posm b 

P.8.3 Rectangular plate subjected to sinusoidal loading 

Problem 8.4. A simply supported rectangular plate is compressed along X -direction 
by a linearly varying load Px = p 0 (y/b) as shown in the Fig. P.8.4. Use Rayleigh-Ritz 
method to determine the critical load. 

a 
X 

b 
Px = Po(y/b) 

Po~---.+-~------------------~~--~ Po 

y 

P.8.4 

Problem 8.5. A simply supported rectangular plate shown in Fig. P.8.5 is compressed 
in two perpendicular directions by uniformly distributed loads. Determine critical load 
by using: (1) Rayleigh-Ritz method, and (2) Galerkin's Technique. 

Problem 8.6. Analyse the plate of problem 8.3 when the edges carrying compressive 
load are simply supported while the other two are clamped. 
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0 X 

Px Px=2p 

Py 

y 

P.S.S 

Problem 8.7. For analysis a bounded plate panel is modelled as a simply supported 
rectangular plate subjected to a varying in-plane axial load, Px(Y) = p0 [1 - a(yjb)] 
per unit length along its two opposite edges x = 0 and x = a. Determine the critical 
load for the panel. 

[Hint: A simply supported rectangular plate subjected to in-plane compression 
buckles into half-waves in X -direction with nodal lines perpendicular to X -direction. 
Each sub-panel may be treated to buckle as a plate simply supported on all its four 
sides. Take the buckled configuration of the type: 

w(x, y) =sin cry) t Ai sin (iJrx) 
b i=l a 

Use energy approach for its solution. 
Ans. For a rectangular plate of aspect ratio f.L = ajb and m = 1 

Px,cr = :rr2 D (f.L + ~) 2 /[b2 (1 - a/2)] ] 

Problem 8.8. A rectangular plate is stiffened by two transverse stiffeners at one-third 
points as shown in Fig. P.8.8. If the plate is uniformly compressed along the edges 
x = 0 and x = a, obtain the expression for critical load when: (i) all edges are simply 
supported, and (ii) all edges are clamped. Assume stiffeners to be of same material 
as the plate. 

Problem 8.9. The skin sheet of an aircraft wing of gauge 1.0 mm is stiffened by 
stringers and ribs spaced 125 mm and 600 mm, respectively. Determine critical stress 
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0 X 

a 

Px 

a/3 ---·~1 ·-- a/3 •I.. a/3 -----1 

P.8.8 

if the sheet panel edges are assumed to be simply supported between stringers and 
ribs. Take E = 70.63 GPa, uy = 62.78 MPa and v = 0.28. 

Problem 8.10. A sheet-stringer panel shown in Fig. P.8.10 is subjected to uniform 
axial compression. Determine the total load carrying capacity P assuming the sheet 
to be simply supported at the loaded ends and along the rivet lines. Each stringer has 
an area of 140mm2. Assume E = 70.63GPa, uy = 62.78MPa and v = 0.27. 

I• IOOmm=:£: 300mm =:±::lOOmm •j-t 
L, --~u--~----------..... u---.-----''-r-Omm 

P.8.10 

Problem 8.11. A rectangular plate with short edges b simply supported is compressed 
by two equal and opposite forces P acting at the mid points oflong edges a. Determine 
critical value of force Per at which the plate will buckle when: (i) the long edges are 
simply supported; and (ii) the long edges are clamped. 

[Ans. (i) 1.273n2 Dfb2 and (ii) 2.546n2 Dfb2,for afb > 2] 

Problem 8.12. A rectangular plate with simply supported edges is subjected to a com­
bination of pure shear with uniform longitudinal compression. Use energy method to 
determine the buckling load factor k? for computation of critical load. 
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Problem 8.13. Use: (i) differential equation method, and (ii) stationary potential 
principle, to derive stability conditions for a rectangular plate of problem 8.1 (a) if 
a polynomial of form: 

( 2)2( b2)2 
w(x, y) = A x2 - : i - 4 

is used to describe deflected configuration instead of double circular functions. 
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Stability Analysis of Arches, Rings and Shells 

9.1 Introduction 

Arches, rings and shells constitute a very important class of structures in themselves. 
An arch and a ring are usually considered to be the basic components of a more 
versatile shell structure. The classical stability analysis of these structures is cumber­
some. In general they can be conveniently analysed by finite element method. For the 
cases where the structure axis follows the pressure curve, shear forces appear only at 
the stage of collapse and the solution can be obtained in a simple manner by using 
corresponding differential equations e. g. for a circular curve, this situation is realized 
for a uniform pressure normal to the axis i.e. radial pressure. The following analysis 
of a flat arch may serve as simple illustration. 

p stable 

unstable 

L J 

per,! 
H 

e e 
' 

p 
/ 

' . / ' / pcr,2 ,. '-'if"/ 

·I G 
a ·I· 

a 

(a) (b) 

Fig. 9.1a,b. Buckling of fiat-arches (snap-through). a Flat-arch, b load-deflection curve 

M. L. Gambhir, Stability Analysis and Design of Structures
© Springer-Verlag Berlin Heidelberg 2004
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9.2 Arches 

9.2.1 Flat Arches 

Consider the flat arch consisting of two axially deformable bars of stiffness k 

(= AE/ L), hinged together at the crown and as well as in the foundation as shown 
in Fig. 9.1a. There is no shear force and hence bending in the bars. The two bars are 
of equal length and the distance between the two supports of the arch is 2a. The two 
bars initially make angle 8 with the horizontal and under the action of the load P, 

this angle diminishes by an infinitesimal quantity 1/f. 

Considering only symmetrical deformations the system has only one degree of 
freedom, and the strain energy of the arch can be expressed as: 

Using Taylor series expansion 

Similarly, 

1 1 
sec 8 = -- = -.=--------::;-

cos 8 [ 1 - ~ + ... ] -

ll ~ 1 2 
sec(u - 1/1) = 1 + - (8 - 1/1) 

2 

Substituting (9.2) into (9.1) 

U = !ka2 [82 - (8- 1/1)2] 2 = !ka2 1/f2(28- 1/1)2 
4 4 

The applied load, P moves downward by 8, therefore 

(9.2a) 

(9.2b) 

(9.3) 

-Wex = V =-Po= -P[atan8- atan(8 -1/1)] ~ -Pal/1 (9.4) 

The total potential energy of system II is therefore given by: 

(9.5) 

The equilibrium configuration is as usual given by a stationary value of II. Thus from 

aii;at = o. 

P = kal/1( 1/12 - 381/f + 282) 

= kal/1( 1/1 - 8) ( 1/1 - 28) (9.6) 

The load-deflection relation of the flat arch is shown in Fig. 9.lb. There exist three 
positions of equilibrium with P = 0, when 1/J = 0, 8, 28. Whilst the first and third 
represent conditions of stable equilibrium with connecting bars being unstressed, the 
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second one is the condition of unstable equilibrium represented by the configura­
tion with connecting bars being aligned and compressed. The critical points can be 
determined from aPja'tjf = 0 which gives: 

and therefore, 

1/F2 - 2()1/f + ~()2 = 0 
3 

1/Fc = () (1 ± ~J3) 
Introduction of 1/f c from (9. 7) into (9 .6) yields critical values of load 

for 1/Fcr,l = (1- ~J3) (), 2 3 
Per 1 = .j3ka() , 3 3 

for 'tfrcr,2 = ( 1 + ~J3) (), 2 3 
Pcr2 = - .j3ka() , 3 3 

(9.7) 

(9.8) 

These results could have arrived at directly from the energy stability criterion, that 
critical state is given by, a2 JJ 1 a1/f2 = o. 

Under slowly increasing load P, the portion 0 F of the load-deflection curve of 
Fig. 9.1 b is traversed in a stable manner until stationery point F is reached. As the load 
P is further increased, there is abrupt jump on the stable branch H J at the same load. 
This instability phenomenon which gives rise to a sudden change in configuration 
at constant load is termed snap-through. In the stable portion HJ the angle 1/f is 
much greater and corresponds to a configuration of the system which is inverted 
with respect to initial one as shown by dotted line on Fig. 9.1a. The phenomenon of 
snap-through can also develop in more complex cases of fiat arches and shells, so 
giving rise to sudden change of configuration. 

9.2.2 Circular Arches 

(a) Uniform radial pressure 

As mentioned earlier in the preceding section for a circular arch subjected to a radial 
pressure, the shear forces appear only at the stage of collapse and solution can be 
obtained by corresponding differential equation. Consider a circular arch compressed 
by a radial uniformly distributed load of intensity p. At a certain value of this load 
the circular form of the arch becomes unstable and the arch buckles. Consider an 
isolated elementary segment of length ds from the buckled arch with its local radius 
of curvature, r which is assumed to differ only slightly from its initial radius of 
curvature R. The initial and deformed positions of the segment ds are shown in 
Fig. 9.2. The change in curvature of the element is related to the moment M by the 
well known expression. 

(1 1) M --- = --
r R EI 

(9.9) 
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a'b'= ds + ~ds 

(a) (b) 

Fig. 9.2a,b. Initial and deformed geometry of an element. a An element of arch, b enlarged 
deformation 

where M is the bending moment in the cross-section and E I is the flexural rigidity 
of the arch. M is assumed to be positive if it reduces the initial curvature of the arch. 
From the geometry of the element: 

ds = Rde 
1 de 

or -=-
R ds 

(9.10a) 

The curvature of the deformed or the strained element is given by: 

1 de+ L1de 
= r ds + L1ds 

(9.10b) 

where 

(9.10c) 

It follows from the similar sectors Fig. 9.2a 

ds ds + L1ds 
= (9.10d) 

R R-w 

Substituting (9.10c) and (9.10d) into (9.10b) we obtain: 

or 

or (9.11) 
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With first degree of approximation w I Rr ~ w I R2 and introducing moment-curvature 
relation from (9.9): 

Therefore, 

d2w w M 
ds2 + R2 =- EI 

(9.12) 

This is the governing equation of bending of a curved beam in polar coordinates. 

Example 9.1. A two hinged high circular arch having central angle of 2¢ is subjected 
to a uniform radial pressure of magnitude p per unit circumferential length as shown 
in Fig. 9.3a. Determine the critical load at which arch will buckle. 

Buckled configuration 

R 

(a) (b) 

Fig. 9.3a,b. Circular two-hinged and fixed arches subjected to hydrostatic pressure. a Two­
hinged arch, b fixed or hingeless arch 

In this case the pressure curve coincides with the arch axis i.e. the bending 
moment caused by pressure on the arch axis is negligible. Thus, the normal pressure 
on each cross-section is P = p R. In the deformed configuration, the bending moment 
produced at a section is M = Pw = pRw and the governing differential equation 
(9.12) reduces to: 

d2w 
de2 + a2w = 0 

where a2 = 1 + (pR3 I El). The general solution to the above differential equation is 
given by: 

w =A sinae + Bcosae 

The application of boundary conditions that w = 0 at e = 0 and e = ¢ yield 

B = 0 and A sin a¢ = 0 
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For non-trivial (A =I= 0) solution a¢ = rr, 2rr ... Thus the minimum critical load is 
given by: 

whence, 

where k = rr/¢. For a semi-circular arch 2¢ = rr and 

Per= 3EI/R2 

(9.13) 

(9.14) 

If the above uniformly compressed arch is clamped instead of being hinged at the 
supports, due to inextensibility of the centre line of arch, it will buckle as shown in 
Fig. 9.3b by dotted line. The middle point C does not undergo any displacement after 
buckling and is acted upon by (horizontal) thrust Hand radial (vertical) shear V. The 
bending moment at a section at an angle () from the middle point is given by: 

M = Hw- VRsinO (9.15a) 

And the governing differential equation (9.12) becomes 

d2w R2 

d02 + w =-E/Hw- VRsinO) (9.15b) 

where H = pR. In terms of parameter a 2 = 1 + (p R3 1 E 1), equation (b) reduces to 

d2w 2 VR3 sinO 
d()2 +a w = EI 

The general solution of the equation (c) is: 

VR3 sinO 
w = A sin a() + B cos a() + -(a-::2:--_-1-) E-l 

(9.15c) 

(9.15d) 

There are three unknown quantities A, B and V, which can be determined by the 
boundary conditions. 

d2w 
(i) w = - = 0 at () = 0 (mid-point C) 

d()2 

giving B = 0 

( •• ) dw 0 n w=de= at () = ¢ (support) 

A sin a¢+ VR3 sin¢/[(a2 - l)EI] = 0, and 

Aa cos a¢+ VR3 cos ¢/[(a2 - 1)£/] = 0 
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For non-trivial (A f= 0, V f= 0) solution vanishing the determinant of A and V 

sina¢cos¢- acosa¢sin¢ = 0 

or 

atantj>cota¢ = 1 (9.15e) 

and the critical pressure Per is 

EI 2 
Per = R3 (a - 1) (9.15f) 

The values a for various values angle ¢ are 

¢(Degrees) 15 30 60 90 120 150 180 

17.243 8.621 4.375 3.000 2.364 2.066 2.000 

Thus value of Per is always greater than that obtained from (9.13). If the span L and 
height h of a circular arch is given the semi-central angle is given by: 

_ 1 ( L h) ¢=cot 4h-L (9.15g) 

Equations analogous to above arch equations can be obtained for bending of long 
cylindrical shells if the load does not change along the length of the shell. In such 
a case an elemental arch cut out of the shell by two cross-sections perpendicular to 
the length and unit distance apart is considered for analysis. The critical value of 
compressive force in such an arch (with rectangular cross-section 1 x t) is obtained 
by substituting E/(1 - v2) forE and t3 /12 for I. Thus, 

(9.15h) 

For practical use it is convenient to represent critical pressure as function of span L 
and rise h of the arch and the expression for Per takes the form: 

Per= yEI/L3 (9.16a) 

where the coefficient y depends on the ratio hI L and the number of hinges, e. g. 
hinge less, one-hinged, two-hinged and three-hinged. For a two-hinged circular arch 
from (9.13) 

(9.16b) 

and for a circular arch built-in at supports 

(9.16c) 
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Example 9.2. A uniformly compressed circular arch of span L and rise h = L/5 
is: (i) hinged, and (ii) built-in at the springing. Determine the critical value of the 
uniform pressure at which the arch will buckle. 

For the given arch geometry the rise to span ratio h 1 L is 0.20. Therefore, from 
(9.15), 

1(L h) o </> = coc - - - = 43.603 
4h L 

(i) For two-hinged arch, from (9.16a) and (9.16b) 

EI [(rr) 2 J (£/) EI Per = Y L 3 = 8 -;p - 1 sin3 </> L 3 = 42.096 £3 

(ii) For built-in or hinge less circular arch from (9.16a) and (9.16c) 

Per= 8(a2 - 1) sin3 </> ( ~;) 

where a is given by (9.15e); by trial and modification 

a = 5.96321 and hence 

Per = 8 [ (5.96321)2 - 1] (sin43.603)3 ( ~;) = 90.69 ( ~;) 

In the preceding discussion of buckling of circular arches it was assumed that during 
bucking, the external forces remained normal to the buckled configuration as in the 
case of hydrostatic pressure. But in practice sometimes forces retain their initial 
directions during buckling. The slight changes in the direction of forces during 
buckling have only small influences on the values of critical pressure. 

(b) Uniformly distributed load along the span 

The bending moments introduced by uniformly distributed load in the three-hinged, 
two-hinged and fixed arches are given in Fig. 9.4. A largest moment is introduced in 
a three-hinged arch at one-fourth span. These arches behave as two crescent-shaped 
half arches. In the two-hinged arch moments are distributed rather uniformly as shown 
by curve 2 in Fig. 9.4, thus they constitute the most preferred type. On the other hand 
in the fixed arches the moment in the middle half of the span is minimal and high at 
the supports requiring strong supports and foundations, thus not used frequently. 

The most efficient rise-to-span ratios, h/ L is approximately 1/6 to 1/5. An 
increase in the rise, h leads to reduction in axial force and increase in the moment, 
and vice versa. As in case of radial pressure, the most probable form of buckling 
configuration of an arch in the vertical plane is S-shaped curve with an inflexion 
point at the axis near the middle of arch length as shown in Fig. 9.3. The critical 
thrust can be approximately determined from the Euler-Yasinki formula 
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p 

L/4 

L/3 

L/2 L/2 

Fig. 9.4. Moments in the circular arches subjected to distributed load. I three-hinged arch, 
2 two-hinged arch, 3 clamped arch 

rr2 EI rr2 EI 
P. - -- - -,-----::-:-::--;;-
er- L~ - (KS/2)2 

(9.16d) 

where the effective length, Le = half arch length (S/2 = Rep) x effective length 
coefficient (K). 

The radius, R = ~ + i~ and¢ is given by (9.15g). The effective length coefficient 
K is given in Table 9 .1. The moment of inertia I of the arch section is taken at one­
fourth span length L. For the above formula to be valid, the ratio Per/ P must lie in the 
range 1.2 to 1.3, where P is the thrust induced by design loads. In case of parabolic 
arch subjected to a load p uniformly distributed along the span, it will be subjected 
to an axial compression and there will be no bending in the arch. For symmetrical 
arches of uniform cross-section the critical value of load intensity can be expressed 
as Per = yEll L 3 • Here again y depends on the ratio hf L. For flat parabolic arches 
(h/ L < 0.2) the value y differ only slightly from those for circular arches. 

Table 9.1. Effective length coefficient, K 

Type of arch Rise -to-span ratio, h/ L 

1/20 1/5 1/3 1/2.5 

Three-hinged 1.20 1.20 1.20 1.30 
Two-hinged 1.00 1.10 1.20 1.30 
Clamped 0.70 0.75 0.80 0.85 
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9.3 Stability of rings and tubes 

Consider the problem of stability of a ring compressed by a radial uniformly dis­
tributed load of intensity p (hydrostatic pressure). As in the case of arch isolate 
an elementary segment of length ds from the buckled ring, as shown in Fig. 9 .5b, 
with local radius of curvature r which is presumed to differ only slightly from the 
initial curvature, R. There are normal axial force and bending moment acting at 
a cross-section of the buckled ring. 

In the prebuckled state P0 is the axial normal force at the cross-section and there 
are no shear force and bending moment. The equilibrium condition is: 

Po=PR (9.17) 

The forces acting at the buckled element are shown in Fig. 9.5(b). The equilibrium 
conditions are: 
(i) In the direction of normal to the element (radial): 

pds + dQ- (P0 + P) ds/r = 0 

Substituting for P0 from (9.17): 

(9.18) 

Representing the change in curvature by {J, the moment in the element is given by 
well known curvature-moment relation 

M = EI ( ~ - ~) = E/{3 (9.19) 

~ M+dM 
\\~) P0 +P+dP 

Q+dQ 

(a) (b) 

Fig. 9.5a,b.A ring compressed radially by external pressure. a Buckled ring, b forces acting 
on an element 
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where EI is rigidity of the ring. Further noting that r ~ R, (9.18) reduces to 

1 dQ p 
-pf3+R_(J;- R2 =0 

(ii) In the direction of tangent 

dP Q 
-+-=0 
ds R 

(iii) Moment equilibrium 

dM 
~+Q=O 

Eliminating P and Q from (9.20a), (9.20b) and (9.20c): 

df3 1 d3M 1 dM 
p ds + R cJs3 + R3 ~ = 0 

On integration (9 .21) reduces to 

Putting M = E 1{3 

where 

PR3 
a 2 =1+­

EI 

The solution to the governing equation (9.22) is 

f3 =A sinaO + BcosaO + C (a~;/) 

(9.20a) 

(9.20b) 

(9.20c) 

(9.21) 

(9.22) 

(9.23) 

The critical load for the closed ring can best be determined from the condition of 
periodicity of the solution i. e. if the variable 0 is increased by 21l', the function f3 
remains unaltered. Hence a shall be changed by a multiple of 21l'. Thus, 

a(O + 21l') - aO = 21l'n or 21ra = 21l'n 

where n is an integer. Thus a= nor a2 = n2• Therefore, from (9.23) 

(n2 - 1)£/ 
Per= (9.24) 



408 9 Stability Analysis of Arches, Rings and Shells 

n=2 n=3 n=6 

j 

(a) (b) (c) (d) 

Fig. 9.6a-d. Buckled configurations (number of lobes, n) of closed ring under radial pressure. 
a 4 half-waves, b 6 half-waves, c 8 half-waves, d 12 half-waves 

The smallest non-zero value of Per occurs when n = 2, i.e. fJ undergoes two complete 
periods of change while passing around the ring. The ring will buckle into two 
lobes or four half-waves assuming an ellipse like shape as shown in Fig. 9.6a. The 
corresponding value of critical pressure is: 

3EI 
Per= R3 

This result is same as the obtained for a semi-circular arch in example 9.1. 

(9.25a) 

If the cross-section of the ring is b x t then I= bt3 /12 and (9.25a) reduces to 

Eb ( t ) 3 
( t ) 3 

Per = 4 R = 2Eb d (9.25b) 

where d is outer diameter of the ring. If the ring is stiffened by an even number 2n 
(n > 2) of equally spaced supports as shown in the Fig. 9.7a, the buckling occurs 
in the form of n lobes or 2n half-waves and value of Per is given by (9.24) for the 
given n. 

It should be noted that in deformed configuration of the ring, the portion between 
two successive contra flexure points is subjected to direct compression just as is each 
section of straight slender column under an axial load. For example, consider the case 
when n = 2 wherein the ring buckles in two lobes, at the four contra flexure points 
a, b, c and d the bending moments are zero. If the curvature of an arch portion (say 
a-b) is neglected and Euler's equation is applied: 

Perd T{2 EI 
Pa,er = l = (nd/4)2 

or 
_ 32EI _ 4EI _ 8Eb (!._) 3 

Per - J3 - R3 - 3 d 

where I= bt3 /12. This value is only approximate. The factor 8/3(= 2.67) compares 
to 2.0 for the exact value given by (9.25b). 
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(a) (b) 

Fig. 9. 7a,bStiffened ring and a very long pipe under radial pressure. a Stiffened ring (2n = 8), 
b long pipe 

The results obtained for a ring can readily be extended to the very long pipes 
subjected to external radial pressure q as shown in Fig. 9.7b. 

As discussed in Chap. 8 that for a two-dimensional plate element bending in two 
perpendicular planes, the moment in a direction (say X-) is given by (8.17) as 

( a2w a2w) Elx (a2w a2w) M--D -+v- ---- -+v-
x - ax2 ay2 - 1 - v2 ax2 ay2 

where lx = 1 X t3 /12. The terms a2wjax2 and a2wjay2 represent curvatures of the 
deflected plate in two right-angle transverse X-Z- and Y-Z-planes. For a long tube 
in longitudinal direction Z- (Y- in case of plate) 82wj8z2 = 0 and expression for 
moment becomes 

For the bending in one plane Mx = Elx! R. Thus E in the expression for pressure 
in the ring is replaced by E/(1- v2) for pressure in the long tubes i. e. the flexural 
rigidity, EI ofthe ring is replaced by that of plate/shell, i.e. EI = Et3 L/[12(1- v2)]. 

Moreover, in case of tubes p = qL thus, 

(n2 - 1)Et3 

qcr = 12(1 - v2)R3 

For smallest non-zero value of qcr• n = 2 i.e. 

E (t)3 2E (t)3 

qcr, min = 4(1 - v 2) R = 1 - v2 d (9.26a) 
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q 

(a) (b) 

Fig. 9.8a,b. Cylindrical curved panel subjected to radial pressure. a Panel geometry, b cross­
section 

since q = 2atjd 

E (t) 2 

acr = 1- v2 d (9.26b) 

where t is the thickness of pipe wall and d is the external diameter of the pipe. 
Similarly the elastic buckling pressure for a long cylindrical curved panel of radius 
r and central angle 2¢, with curved edges free and straight edges simply supported 
(i.e. hinged) as shown in Fig. 9.8 is given by replacing EI by Et3 /[12(1 - v2)] in 
(9.13). Thus, 

(9.27) 

If the straight edges are clamped instead of being simple supports the corresponding 
buckling pressure can be obtained from (9.15f) as follows: 

E(a2 - 1) (t)3 

Per = 12(1 - v2) ~ 

For various values of semi-central angle¢, a is given by (9.15e). 

9.4 Elastic Instability of Thin Shells 

(9.28) 

In Chap. 8, it is seen that a thin plate resists loads by two dimensional bending and 
shear. On the other hand a shell is a three-dimensional structure whose basic resis­
tance to loads is through in-plane or membrane forces i.e. tension and compression 
are predominant. A membrane resists the loads through in-plane tensile stresses but 
a thin shell must be capable of developing both tension and compression. However, 
the similarity between the behaviour of a shell and a membrane is not complete 
because of so called boundary disturbances which arise in the shells. These bound­
ary disturbances give rise to bending moments and shears which are localized in 
the region immediately adjacent to the boundary. Moreover, in contrast to general 
instability problem wherein entire shell buckles as a beam-column, local instabilities 
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are characterized by displacements of comparatively small wave-length. There are 
several possible approaches to the elastic instability analysis of shells. In one of the 
commonly used approaches, a general solution for the normal displacement due to 
transverse and in-plane loading is obtained, then the discrete values of P which cause 
the displacement to become excessively large are determined which are termed criti­
calloads for a perfect shell. It should be realized that critical load Per is independent 
of transverse loading. 

9.4.1 Governing Differential Equation 

For simplicity of treatment the flat plate theory in Cartesian coordinates will be 
extended to the buckling analysis of thin shallow shells. A flat plate differential 
element can be considered to be a special case of differential shell element with 
zero curvatures in two perpendicular X-Z and Y-Z planes. However, the nature and 
direction of forces acting on an undeformed shell element are similar to that on a plate 
element in the deformed state. 

Let the pre-buckled membrane state or in-plane forces in a shell be represented 
by Px0 , Pyo and Pxyo· In shells at transition point, the greatly increased normal 
displacement results in development of normal components of these in-planes forces 
or shear resultants. Such normal components may be treated as surface loading in 
n-direction. The determination of normal components of membrane state resultants 
for shallow shells can be based on the in-plane stress resultants of a plate. 

With transverse shear forces and in-plane loads omitted, the normal force qn can 
be expressed in cartesian coordinates from (8.4) as: 

iJlw a2w a2w 
qn = Pxo axz + Pyo ayz + 2Pxyo axay (9.29) 

In case of shallow shells that cover rectangular plan areas, if rise is smaller than 
one-fifth of smaller side of rectangle, the assumption of small displacement theory 
that (aw;ax) and (awjay) may be neglected in comparison to unity can be invoked 
and the radii of curvatures can be expressed as: 

and (9.30) 

In terms of orthogonal curvilinear co-ordinates(¢,()) shown in Fig. 9.9a the equilib­
rium equation for the shells can be expressed as: 

(9.31) 

where 
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X .... ~:----~~(~~-~-~~~-?~~~P:a~P_x~~~~~~-03\-a-7.--! 0 0 
I· L ·I 

(a) (b) 

Fig. 9.9a,b. Co-ordinate systems for shells. a Orthogonal curvilinear co-ordinates, b co­
ordinate system for cylindrical surfaces 

where £ is a stress function. For a shallow shell described by cartesian co-ordinates 
Rt/> and Ro are approximated by average values of Radii of curvatures Rx and Ry. 
respectively, i.e. Rt/> = Rx and Ro = Ry. and the cartesian coordinates equivalent of 
curvilinear coordinates are given by: 

Pt/> Po Px Py -+-=-+­
Rt/> Ro Rx Ry 

DV4w + v;£ = qn 

The operators V2 () and v; () are given by 

az az 
V2() - - + - and - ox2 oy2 

1 a2 1 a2 

v;o = Ry ox2 + Rx oy2 

(9.33) 

(9.34) 

(9.35) 

The stress function£ representing the in-plane stress resultants, Pt/>, Po and D = 
Et3 /[12(1 - v2)] is related tow by 

_!_V4£- V2w = 0 
Et * 

Defining a potential function G related to w and £ by 

w = V4G and £ = EtV;G 

The governing differential equation (9.34), therefore, reduces to 

or 

where 

DV4(V4G) + v;(EtV;G) = qn 

VsG + 12(1 - v2) V4G = qn 
t 2 * D 

qn 1 [ a2 4 a2 4 a2 4 J - =- Px0 - 2 (V G)+ Py0 2(V G)+ 2Pxy0 --(V G) 
D D ax ay axay 

(9.36) 

(9.37) 

(9.38) 

(9.39) 
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This equation can conveniently be applied to the stability analysis of shallow shells. 
In the following example its application to a spherical shell has been illustrated. 

Example 9.3. Determine the lowest buckling pressure for a pressurized spherical shell 
of radius r which is subjected to a uniform internal suction or external pressure, p. 

The spherical shell is axisymmetrically loaded due to the uniform pressure p, 
i.e., qn = -p. For a sphere of radius r, 

pr 
and Pq, = Po = - 2 (9.40) 

Therefore, Pxo = Pyo = -pr/2 and Pxyo = 0. Thus, the right hand side of (9.38) 
becomes 

qn pr [ a2 4 a2 4 ] pr 6 - = -- -(V G) + - (V G) = --(V G) 
D 2D ax2 8y2 2D 

(9.41) 

Therefore, in view of (9.40) and (9.41), (9.38) can be written as: 

VsG + [12(1- v2)] V4G + ( pr) V6G = 0 
t2r2 2D 

(9.42) 

Seeking the solution in the form V2G = aG, where a is an Eigenvalue related to 
Per· Equation (9.42) reduces to 

2 [ 2 (pcrr) 12(1- v2)] a a + -2 a+ 2 2 =0 
D t r 

For non-trivial (a i= 0) solution 

or 

For lowest value of Per: 

or 

2 (Pcrr) 12(1 - v2) a+ - a+ =0 
2D t2r2 

Per=- (2~) [a+ 12~t~2v2)] 

apcr = 0 = 1 - 12(1 - v2) 

aa a 2t 2r 2 

2J3(1- v2) 
a = ±--'----­

tr 

(9.43) 

(9.44) 

The negative root of a results in a positive value of Per which has already been defined 
as an internal suction or external pressure. Thus critical pressure for a spherical shell 
is 

2E (t) 2 
p - -

cr - J3(1 - v2) r 
(ideal case) (9.45) 
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The possible actual minimum is: 

0.365 Et2 

Per,l = --7-=-2 -

This expression is valid for complete sphere as well as spherical shells that have 
ideal membrane boundary conditions. For determination of displacement or buckling 
configuration consider (9.37): 

w = V4G = V2(aG) = aV2G 

For the computed value of a, the potential function G in turn can be determined from: 

V2G -aG =0 

Solution to this equation provides eigen-functions of the problem. Since the above 
analysis is based on a governing equation derived on the basis of simplest form of 
Cartesian coordinate system, the feasible solution to the equation is the one that 
satisfies kinematic boundary conditions, if the shell covers rectangular plan area. 
However, the solution is sufficient to estimate the buckling pressure. In this regard 
it should be noted that quite large factor of safety of the order 5 to 7 against elastic 
buckling are commonly specified for the design of thin shells. 

Example 9.4. A cylindrical shell of radius R; length L and thickness t is subjected 
to a uniformly distributed axial (longitudinal) load p acting along its periphery as 
shown in Fig. 9.10. Determine critical value ofload pat which shell will buckle. 

In this particular case Pxo = p, Pyo = Pxyo = 0, Rx = 0, Ry = R and 
v;o = [V2()]/ R. Thus governing differential equation (9.38) and (9.39) reduces to 

VsG + 12(1- v2)V4G + p V6G = 0 
t2R2 D 

If the solution is assumed in the form V 2G = aG where a is an eigenvalue related 
to p ( = Per), the above equation reduces to: 

For a nontrivial solution a f. 0 

For lowest value of Per: 

2 (Per) 12(1 - v2) _ 0 
a + D a+ t2R2 -

[ 12(1-v2)] 
Per= -D a+ at2R2 

2J3(1- v2) 
or a = ±---'----­

tR 
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p 

R L 

Fig. 9.10. Axisymmetrically loaded cylindrical shell 

Using negative root of a as it results in a positive Per· 

[
2y'3(1 - v2) 12(1 - v2) tR ] 

Per = D + 2 2 --;::===:= 
tR t R 2.y'3(1 - v2) 

4Dj3(1 - v2) 4Et3 j3(1 - v2) 

= tR = 12(1 - v2). tR = Ry'3(1 - v2) 
(9.46) 

= 0.605 Et2 I R for v = 0.3 

In case of axially compressed thin-walled cylindrical shells, the buckling defor­
mations remain confined to small portion of the shell surface. This phenomenon 
is referred to as localized buckling. The critical value of corresponding load is: 
Per= 0.323Et2 / R. 

This type of solutions may also be obtained for other geometries with some 
judicious geometric approximations. 

For shorter cylinders with (rrRj L)2 > (2Rjt)j3(1 - v2), Per= rr2 Et3 /[12(1-
v2)L2]. 

For long cylinders, Per= (rr2 ER2t)/(2L2). 

9.4.2 Energy Approach 

From the energy point of view, the transition between pre-buckled and post-buckled 
states may be represented by: (i) there is no bending prior to the onset of buckling, so 
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(a) 

w=AR 

(c) 

0 

j":R 
lA 
I 

re I 

(b) 

I 
I 

L 

Fig. 9.11a-d. Deformation of an axisymmetrically loaded cylindrical shell. a Cylindrical shell 
under axial pressure, b beam element (A-B), c deformation of ring element, d ring element 
(C-C) 

that total strain energy is due to in-plane stress resultants; (ii) at the onset of instability, 
there are additional contributions to the strain energy due to straining and bending 
of middle surface; and (iii) the increase in the strain energy as buckling occurs must 
be equal to the work done by the external loading and by components of in-plane 
forces that act through the normal displacements. This latter source of external work 
is analogous to the load components qn used in the differential equation method and 
is absent during infinitesimal deformation. 

Consider the case of axisymmetrical deformation of the cylindrical shell shown 
in Fig. 9.11 wherein the cylindrical surface is viewed as longitudinal beam strips 
resting on ring elements. For axisymmetrical (rotationally symmetric) deformation, 
the ring element can suffer uniform expansion or uniform contraction only. The 
longitudinal or beam elements, on the other hand, can bend freely but maintaining 
compatibility with uniform deformation of the ring elements. The deflection w of the 
beam elements is identical to the change in the radius of cylinder, ilR. Consequently, 
the ring elements are viewed to act as an elastic foundation for the beam elements 
and hence longitudinal elements may be treated as beams on elastic foundation. 

For a uniform contraction or expansion of a ring equal to ilR = ±w the circum­
ferential strain is given by: 
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2rr(R- L1R) - 2rrR L1R w 
S= =--=-

2rrR R R 

If the equivalent radial pressure on the ring is represented by p, then 

Hoop force, P = pR = EsA = E (~)A 

Therefore, 

p= (~~)w=Cw 

(9.47a) 

(9.47b) 

where C is the elastic constant of the imaginary elastic foundation. For a ring element 
with a unit width, A = (t)(1) where tis the thickness of the shell, C = (Etf R2). Each 
beam element can now be treated as a strut on an elastic foundation. To account for 
the continuity of beam elements, the bending stiffness EI of a unit beam element is 
replaced by EI = Et3 /[12(1 - v2)]. Using the preceding analogy, the total potential 
energy of the strut on an elastic foundation can be used for the analysis. However, in 
the following section total potential energy expression has been developed directly. 

In this treatment the pre-buckled state is designated by the subscript o when the 
bending and normal load components are absent. For the analysis of cylindrical shells 
the axes X and () are used for coordinate system (instead of </J and 0) as shown in 
Fig. 9.9b. The axial and corresponding circumferential strains just before buckling 
are: 

Bxo=-pcrfEt and Soo=-VSxo (9.48) 

At buckling the normal displacements w produce circumferential strains, as given 
by (9.47a) of magnitude sot = wf R. Total circumferential strain after the shell has 
buckled is therefore given by: 

w 
so = Boo + Sot = R - VBxo 

The longitudinal or meridional strain Bx can be obtained as: 

Bx = Bxo- VSot = Bxo- v(wj R) 

The change in curvature after buckling is: 

1 1 1 a2w a2w 
{J = Rxo - Rxt = oo - ax2 = - ax2 

Since Pxo = - Px,cr• Pyo = Pxyo = 0 

(9.49) 

(9.50) 

(9.51) 

(9.52) 

The strain energy of the cylindrical shell under axisymmetricalloading is given by: 

L 

Ue = J ~ { E(1)t(e; + s~ + 2vsxso) + D{J2 } (2rrR) dx 

0 

(9.53) 
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The change in the strain energy due to buckling is 

8U = Ue(ex, eo, {3) - Ueo(exa. eoo, 0) 

Substituting for ex, eo and {3, (9.54) reduces to 

8U=nR j {EtG}2 -Me," G) +D(~:~ndx 
0 

(9.54) 

(9.55) 

Third and higher order terms have been ignored. The work done by external loading 
and normal components of in-plane stress resultants during buckling is given by: 

8V = 8Ve + 8Vn 
L L =I -Pcr(ex- ex0 )(2nRdx) +~I (qnw)(2nRdx) 

0 0 

IL [ R a2w] = 2np vw- -w- dx 
cr 2 ax2 

0 

From the work equation: 

8V = 8U 

Consider one term Rayleigh-Ritz approximation for w as 

mnx 
w=AsinL 

Substituting (9.57) into (9.55) and (9.56) 

[
EtLA2 2vEtex0 A IL . mnx Dm4n 4 A2] 

8U = n R _2_R_2_ - R sm -L-dx + --2-L-=-3-
0 

and 

[ IL mnx Rm21r2 ] 
8V = 2JTPcr vA 

0 
sin Ldx + ----;u:--A2 . 

(9.56) 

(9.57) 

(9.58a) 

(9.58b) 

Noting that exo = - Pcr/(Et) and equating 8V and 8U (retaining only quadratic terms 
in A which control post-buckling behaviour). 

(9.59) 
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For the lowest value of Per, aPerfam = 0, giving 

(9.60) 

Therefore, 

1 

( Et ) 2 Et2 
Per 1 = 2D -- = ---;=====;:= 

' R2 D Rj3(1 - v2) 
(9.61a) 

The result is identical to one obtained earlier by equilibrium method. The length of 
buckled half-waves is given by 

]'(ffi r;:;-; 
------:-11-:-:4 ~ 1.73v Rt for v = 0.30 
[12(1-v2)] 

(9.61b) 

However, it should be realized that the smallest critical pressure has been obtained by 
differentiating Per with respect to m which assumes Per to be a continuous function of 
m, which is only true for moderately long to long cylinders. The characteristic term 
ffi plays an important role in development of bending stresses near the boundaries. 
The results are accurate only for very long tubes or cylinders, but are applicable if 
the length is several times as large as 1.73ffi. Tests indicate an actual buckling 
strength of between 40 to 60 per cent of the theoretical value or aer = 0.30E(t/ R) 
approximate I y. 

9.5 Problems 

Problem 9.1. The arches and rings have curvilinear axes which are considered to be 
inextensible and non-deformable in shear. Show that the general governing equation 
for this type of structures is given by: 

d4 w d2 w (R5 ) 
de4 + (1 +a2) de2 +a2w = c EI 

where various symbols have usual meaning. 

[Hint: Substitute the expression representing change in curvature f3 into the governing 
equation in terms of f3 ]. 

Problem 9.2. A shallow sinusoidal arch of rise h with simple supports (i.e. hinged 
at the ends) shown in Fig. P.9.2 is subjected to a sinusoidal loading represented by 
p = Po sin(]'(xj L) per unit horizontal run (span), where L is the span of the arch. 
The origin is at the left end of the arch. Determine the critical value of the load to 
cause buckling of the arch in its own plane. 
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y 
p =Po sin (1tx!L) 

P.9.2 

y 

Po /unit length 

P.9.3 

Problem 9.3. Determine the critical buckling load of the arch of Problem 9.2 when 
it is subjected to: (a) a uniform load of intensity Po per unit horizontal run shown in 
Fig. P.9.3 (b) central concentrated load P. 

Problem 9.4. If an axisymmetrically loaded cylindrical shell is modelled as longi­
tudinal-strips supported on closely spaced ring elements which act an elastic founda­
tion i.e. it is analogous to beams/struts on an elastic foundation, show that the total 
potential energy functional II can be written as: 

1 Et w Et 2 ,z 1 
L I [ 3 

11
2 ] I II = I 2 12(1 - v2 ) • 1 - w'2 + R2 w - p(l - w )'1 dx 

0 

[Hint: In the expression of potential of a strut on elastic foundation given by 

1 !L [ n2 ] II= 2 El 1 : w'2 +kw2 - p(l- w'2)i 
0 

where k is the elastic constant of the imaginary elastic foundation, replace the bending 

stiffness E/ of the unit beam element by Et3 /[12(1- v2)] to account for continuity 

and Poisson's ratio. The elastic constant can be shown to be k = Et/ R2 ]. 
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Problem 9.5. Using energy approach determine the buckling pressure for a spherical 
shell of radius r subjected to a uniform external radial pressure (hydrostatic pressure) 
p producing compressive stress a = pr /2t in the wall of shell of thickness t. 

Ans. Per= -[ 2£ (t) 2 

)3(1- v2) r 

Problem 9.6. Derive an expression for the critical uniform internal suction for 
a closed cylindrical shell of length L and radius r. 

Problem 9.7. Compute the value of critical density of material, y (force per unit 
volume) at which a hemispherical shell of thickness t and radius r would buckle 
under self weight. 

Problem 9.8. A high conical shell with semi-vertex angle¢ as shown in Fig. P.9.8 is 
subjected to an axial vertex load P. Determine the buckling load assuming that there 
are only membrane stresses in the post-buckled shell. 

p 

P.9.8 

[Ans. Per= 2nEt2cos2¢!)3(1- v2)] 

Problem 9.9. A very long tube of length L and radius r is subjected to a uniform 
lateral (radial) external pressure p. Compute the critical value of the pressure at which 
the tube will buckle. 
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Problem 9.10. A cylindrical curved panel of radius r, central angle 2(), with curved 
edges free and straight edges simply supported or hinged shown in Fig. P.9.10 is 
subjected to a uniform radial pressure p. Determine the critical value of p at which 
elastic buckling will occur. 

p 

s.s 

Simple support 

section 

P.9.10 

Problem 9.11. If the straightedges of the curved panel of Problem 9.10 are clamped, 
determine the external pressure Per at which elastic buckling will occur. 

(} 15" 30° 60° 900 no· Jso· Jso· 

k 17.243 8.621 4.376 3.000 2.364 2.066 2.000 

Et3(-t2-1) 
[Ans. Per= 12, 30_v2)' where k is given by the equation ktan()cosk() = 1 and has 
the values given in the table above.] 

Problem 9.12. A cylindrical curved panel of length L, width as measured on the arc 
band radius r shown in Fig. P.9.12 is subjected to a uniform longitudinal compression 
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p on the curved edges. Determine the critical values of Per at which buckling will 
occur. All the edges may be assumed to be simply supported. 

s.s 

p 

s.s 

I· L -I 
P.9.12 

Problem 9.13. If the curved panel of the Problem 9.12 is subjected to a uniform shear 
Pxo on all the four edges as shown in Fig. P.9.13. Compute the critical buckling shear 
stress, when (i) all edges are simply supported, and (ii) all edges are clamped. 

Pxe 

1- L -I 
P.9.13 

[Ans: (i) Pxo,cr = O.IOE(tjr) +5.0E(tjb)2 and (ii) Pxo,cr = O.IOE(tjr) + 1.5E(tjb)2] 
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Problem 9.14. A uniformly compressed circular arch of span Land rise h = 3L/10 
is: (a) (i) hinged, and (ii) built-in, at the supports. Determine the critical value of the 
uniform radial pressure at which the arch will buckle. (b) What will be the values 
when the rise is increased to 4L/10? 

[Ans. (a) (i) Per= 40.9EljL3, (ii) Per= 93.5EI/L3 ; (b) (i) Per= 32.8E/jL3 and 
(ii) Per= 80.8EI/L3] 

Problem 9.15. If the arch of Problem 9.14 is provided with a hinge at the crown. 
Determine the values of Per for elastic buckling. 

[Ans. (a) (i) Per= 34.9E/jL3, and (ii) Per= 52.0EI/L3 , (b) (i) Per= 30.2E/jL3, 
and (ii) Per= 46.0EI/ L3 ]. 



10 

Inelastic Buckling of Structures 

10.1 Introduction 

In the elastic stability analysis discussed in the preceding chapters, the material of 
the structure is presumed to behave according to Hooke's Law i.e. the stress in the 
structure does not exceed the initial yield stress in compression and the member 
undergoes configuration or shape failure. For many real structures the elastic analysis 
results in flexural buckling load estimation that exceeds the one associated with the 
yield stress or proportional limit stress of the material. This is especially true for the 
relatively short or stocky compression members in the framed structures. For this 
category of members the prorated design stresses based on safety factors, generally, 
fall in the range of plastic or inelastic behaviour. For steel framed structures many 
real designs occur in that range and most of the concrete framed structure columns 
are short. In these shorter columns the elastic limit is exceeded before the inception 
of buckling, and the modulus of elasticity E, hitherto constant, becomes a function 
of critical stress aer = Per/ A. 

10.2 Inelastic Buckling of Straight Columns 

For an idealized axially loaded compression member with presumed pin-ended con­
ditions, the flexural buckling load within elastic range of material behaviour is given 
by: 

(10.1) 

In terms of stress this would be: 

Per rr:2 E 
a:-----
er- A - (L/r)2 (10.2) 

where r = .jTfA is the radius of gyration of the cross-section, and (L/r) is the 
slenderness ratio. 

M. L. Gambhir, Stability Analysis and Design of Structures
© Springer-Verlag Berlin Heidelberg 2004
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Equation (10.2) gives a relationship between critical stress at elastic buckling 
and the slenderness ratio (Ljr) of the member. The equation is valid only as long as 
acr does not exceed elastic limit ay of the material i.e. modulus E does not change 
its value before buckling occurs. This condition restricts the applicability of (10.2) 
to the so called elastic range of buckling and confines the validity of this equation 
to a slenderness ratio (Ljr) above a certain limiting value which depends on the 
properties of the material. The condition for the applied load to reach Euler's load 
before axial stress exceeds the yield stress ay i.e. acr < ay is given by: 

(Ljr) > rr:/EJ(i:; (10.3) 

and is shown in Fig. 10.1. A compression member satisfying this condition is termed 
long or slender column and can be analysed by elastic analysis. On the other hand the 
axial stress in the columns with Ljr ratio less than that given by (10.3) called short 
columns will exceed the yield stress before the applied load reaches the critical load, 
Per· For example for a material with E value of 200 x 106 kN jm2 and average stress 
ay of27.0 x 104 kNjm2, Ljr ratio must exceed 86 for elastic limit not to be exceeded 
before inception of buckling. The shorter columns will not buckle in the elastic range 
but the material will yield first. The modulus of elasticity, which is constant in elastic 
range, now becomes a function of critical stress acr· Hence, the results are not valid 
for short columns and the load carrying capacity of such columns must be determined 
by taking into account the inelastic behaviour of the material. 

\ 

Inelastic buckling 
(Short columns) ..,.'---+-_..Elastic buckling 

(Long columns) 

Slenderness ratio, Ur 

Fig. 10.1. Variation of a vs. Ljr for an ideal axially loaded compression member 
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It should be noted that nonlinear stress-strain relationship is not unique but 
differs from material to material. For these reasons, an idealization of the stress­
strain relationship in the inelastic or plastic range is desirable in order to develop 
a reasonably simple inelastic theory. 

10.2.1 Stress-Strain Relationship 

An examination of the typical stress-strain relationship of a structural metal shown 
in Fig. 10.2, reveals that in the initial loading range from the origin 0 up to point A, 
the proportional limit, the material responds linearly to the imposed stresses i. e. the 
line 0-A is straight and the modulus E has a unique value within this elastic range. 
From the point A to the point B, the elastic limit, the curve is not straight but the 
state is still elastic i.e. strain is reversible. Thus on unloading from the point B, 
the unloading path will follow B-A-0 and no residual strain will remain. When the 
load is increased beyond the elastic limit point B, the strains increase at an ever 
increasing rate and have irreversible strain component (plastic strain). In this range 
strains become nonlinear function of stress. At the point C, the initial yield point, the 
plastic or irreversible strain increases appreciably. The point Din the Fig. 10.2a is 
the maximum stress point or the ultimate strength of the material. At this state, the 
stress and strain distributions in the cross-section cease to be uniform and the local 
instability called necking occurs at the critical section. Finally, the specimen breaks 
at the point F. If the same test results are plotted in terms of true stress ( = P 1 A) 
and true strain(= f dlfl) then the stress-strain relation will follow the curve A-B-C­
D-F', as shown in Fig. 10.2a. The true stress continues to rise until fracture occurs 
although the load drops. This is due to necking of the critical section. The metal 
continues to work harden. In the stress-strain relation for the mild steel (low and 
medium carbon structural steels) on the portion of curve drawn by dotted line in 
Fig. 10.2b, two yield points Cu and C1 are observed. At the upper yield point Cu. 
the elastic behaviour breaks down in an unstable manner and at the lower yield point 

D 

F 

strain£ 

(a) (b) 

Fig. 10.2a,b. Stress-strain relationships for structural metals. a High carbon steel, b low and 
medium carbon steels 
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C1 appreciable plastic deformation occurs at the almost constant load. Beyond the 
lower yield point cl plastic flow takes place i.e. strain increases while the stress 
remains constant. The upper yield point is not ordinarily observed. After large plastic 
strain, the stress starts to go up again which is known as strain hardening of the 
material. 

As mentioned above beyond elastic limit the strain become function of stress 
and for many materials the yield point is not observed clearly, hence an operating 
level of strain is required to determine the modulus. In such cases, the 0.2 per cent 
offset yield point i.e. the point at which a residual or permanent strain of 0.002 is 
produced, is often used as the definition of initial yield value. The differences among 
the proportional limit ap, the elastic limit ae and initial yield point are usually small. 
Thus a linear elastic stress-strain relationship called Hooke's law is assumed up to 
the yield point for convenience, 

a = Et: for a ::=;: ay 

in which the proportionality constant E is modulus of elasticity. Typical values 
of E for steel and aluminum are 207 x 106 kNjm2 and 73 x 106 kNjm2, respec­
tively. 

Beyond initial yielding, the stress-strain relation is nonlinear and slope of stress­
strain curve is not constant and depend upon the stress level. The slope of stress-strain 
curve da/de is called tangent modulus, E1 which is generally less than elastic mod­
ulus, E, thus 

E1 = da/de :::;: E for e 2: ey (10.4) 

This implies reduction in resistance of the material due to plasticity. In the plastic 
range, the elastic (reversible) and plastic (irreversible) strains exist simultaneously. 
Thus above the initial yielding, the slope E1 varies from E to a small value with 
increasing stress. Figure 1 0.3b is a plot of variation of £ 1 as a function of stress a. 

It is recalled that just prior to buckling an axially loaded member is subjected to 
a uniform distribution of the stress over the entire cross-section i.e. all longitudinal 
fibres of the member correspond to the same point on the stress-strain curve. Thus 
it seems reasonable to assume that in the elastic range of applied axial stresses, the 
member at buckling will respond as if it were composed of a material whose modulus 
of elasticity is tangent modulus, £ 1 at the stress level in question, i.e., 

JT2Et 
a ---­

cr,t - (L/r)2 (10.5) 

However, as elastic deformation occurs, bending moments develop and compressive 
stresses increase on the concave side and decrease on the convex side of the member. 
For increasing values of compressive stress, the changes due to bending are related to 
the bending strains by tangent modulus £ 1 and for the segments of the cross-section 
where unloading (or decrease in stress) occurs, the elastic modulus E governs the 
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Oyt-----

IJp - - - - - - - - - - - - - -

Average strain, Eav 
1.0 

(a) (b) 

Fig. 10.3a,b. Buckling stress as a function of the tangent modulus 

behaviour of each of the fibres. Thus the effective bending stiffness of the member 
which governs lateral bending deformations and therefore the buckling, is a function 
of both E1 and E. The effective bending stiffness of the member can be determined 
by the relationship 

M = Eeffl¢ or M!¢ = Erl (10.6) 

where Er is the reduced modulus for the cross-section and I is the moment of 
inertia about the weaker axis of the section. Thus, there are four basic values of direct 
compressive stress a in the longitudinal fibres of the member compressed by an axial 
load P. For an ideal pin-ended strut these are: 

Euler stress, 

initial yield stress in compression, 

tangent modulus stress, 

reduced modulus stress, 

Ucr,y = Uy 

Ucr,t = (7r2 Et)f(Ljr)2 

Ucr,r = (7r2 Er)/(Ljr)2 

The variation of various buckling stresses with slenderness ratio is shown in 
Fig. 10.4. Hence, in the nonlinear region of stress-strain curve for the range a :::; ay. 
Ucr,t < Ucr,r < Ucr,e· At the proportionality limit (a = ay). Ucr,t = Ucr,e· Therefore, 
there are four different stress ranges, and the buckling mechanism will depend upon 
the range which contains the yield stress. 
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Fig. 10.4. Buckling stress as a function of the slenderness ratio 

10.3 Theories of Inelastic Buckling 

200 

Based on the two different types of loading concepts discussed above there are two 
major theories in inelastic buckling, one is so called tangent modulus theory and the 
other is the reduced modulus theory. The reduced modulus theory assumed that strain 
reversal took place on the convex side and that such strain reversal relieved only 
elastic portion of the stress. The tangent modulus theory on the other hand assumes 
that no strain reversal takes place and that tangent modulus Et applies over the whole 
cross-section. 

10.3.1 Reduced Modulus Theory 

The reduced modulus theory is based on the assumptions that: (i) displacements are 
small relative to the cross-sectional dimensions, (ii) plane sections remain plane and 
normal to the centre-line after bending, (iii) the relationship between stress and strain 
in any longitudinal fibre is given by the stress-strain curve for the material, and (iv) the 
plane of bending is a plane of symmetry of the column section. 

Consider a perfectly straight member with symmetrical cross-section as shown 
in Fig. 10.5b subjected to an axial thrust P through the centroid causing a uniformly 
distributed normal stress, such that a1 (= P/ A) is greater than the proportionality 
limit. Consider the load to be further increased until member reaches the condition 
of unstable equilibrium. At this particular value of load, the member is assumed 
to buckle and therefore deflects laterally by an infinitesimal amount. In every cross­
section there will be an axis NA perpendicular to the plane of bending where the stress 
a developed prior to deflection remains unchanged. The bending due to deflection 
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Fig. lO.Sa-c. Stress distribution at the onset of bending-reduced modulus concept. a Straight 
and bent fibres, b cross section, c stress distribution 

will increase the compressive stress on concave side (top in this case) and reduce 
it on the convex (bottom) side. The rate of increase on the concave side will be 
proportional to E1, where £ 1(= da/dt:) is tangent modulus at the stress level a 1• On 
the convex side the superposition of bending stresses relieves only the elastic portion 
of the strain, thus the law of proportionality of stress and strain with constant E 
applies. The stress diagrams are different on the two sides as shown in Fig. 10.5c. 

If the curvature of centroidal axis lying at a distance d1 from the most highly 
compressed fibre is represented by 1/ R, and d¢ denotes the angle subtended by 
two originally parallel normal sections ds (::::::: dx) apart, then d¢ = ds/ R. From the 
standard pure bending relationship: M/ I= E/ R = ajy, 

E 
a= -y 

R 
(10.8) 

The total compression added and relieved on two sides of the neutral axis NA 
are JA 1 oa1 dA and JA2 oa2 dA, respectively. Thus for P to remain unaltered by 
deformation 

j 8a1 dA - j oa2 dA = 0 or Etf Ef R YI dA - R Y2 dA = 0 (10.9a) 

At A2 At A2 

or 

(10.9b) 
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For the moment equilibrium on the cross-section 

~~~+~M+~~~-~M=M=~ 
AI Az 

or 

or Et I 2 E I 2 [ Et I E I ] R y1 dA + R y2 dA + e R Yl dA - R Y2 dA = Py 
AI Az AI A2 

In view of (10.9a), the second term on the left hand side vanishes. Hence 

1 
-(Eth + EI2) = Py or 
R 

(10.10) 

(10.11) 

where h and [z are second moment of cross-sectional areas separated by the NA. 
The effective bending stiffness of the member can be determined by: 

or 

Comparing (10.11) and (10.12) 

Eeff = ~(Eth + EI2) = ~ [ ( i) h + [z J 

Eeff _ _ ( Et h [z) _ ( h [z) 
E - rJr - E I + I - rJ I + I 

(10.12) 

(10.13) 

where the ratio rJr = Eeff/ E and rJ = Ed E is termed modifying factor or plasticity 
reduction factor. I is the total moment of inertia of the cross-section about the 
axis through centroid. Eeff is the effective modulus which is also known as reduced 
modulus Er, or double modulus or the Von Kannan modulus. In the elastic range 
E1 = E and the formula yields Er = E as can be expected. It should be noted that the 
value of Er depends upon the shape of cross-section and properties of the materials. 
Like E, Er is also independent of the abscissa. Equation (10.12) has the same form as 
differential equation for perfectly elastic column in the state of unstable equilibrium. 
Thus (10.12) is valid in the elastic as well as in the inelastic range. In the inelastic 
range Er is variable and depends upon stress level a (= P/ A) while in elastic range 
Er becomes equal to E. Therefore, in the inelastic range, the bending rigidity is Eri 
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rather than EI. If the bending rigidity of a perfectly elastic column is replaced by 
reduced bending rigidity, then 

and 
rr2 Er 

a: --­
er,r - (Ljr)2 (10.14) 

Introducing the ratio TJr = Er j E, the fundamental governing equation assumes the 
form 

d2y 
ElTJr dx2 + Py = 0 

where TJr = ( i !J +If). From (10.14) 

1l'2 ETJr 
a: ---

cr,r - (Ljr)2 (10.15) 

The additional subscript r indicates that the values are calculated with respect to the 
reduced modulus. For E,j E < 1.0, the bracketed term of (10.13) is always less than 
1.0, since It + /z > I (as It and /z refer to an axis NA which does not coincide with 
the centre of gravity), and therefore Er is always less thanE but greater than tangent 
modulus £ 1• Thus the reduced modulus buckling load will always be greater than 
the tangent modulus buckling load. The actual magnitude of the increase depends on 
the stress-strain relationship, magnitude of average stress prior to buckling, and the 
cross-section of the member. 

10.3.2 Tangent Modulus Theory 

The tangent modulus theory is based on the presumption that there is no strain 
reversal when the compression member passes from a straight to a bent configuration 
and that the tangent modulus, £ 1 applies over the whole cross-section. In the other 
words it means that bending may proceed simultaneously with increase in the axial 
load. According to Stanley there is a continuous spectrum of deflected configurations 
corresponding to the values of axial load P between tangent modulus load Per,t and 
reduced modulus load Per,r· The deflection y associated with a load has a definite 
value and increases from zero to infinity when P varies from Per,t to P cr,r· The 
modulus corresponding to the stage where there is no strain reversal is the local 
tangent modulus. Thus the differential equation of the deflected centre line takes the 
form. 

d2y 
£ 1/ dx2 + Py = 0 

and upon introducing E,j E = TJ, the buckling load Per,t and hence critical stress, 
therefore, is defined by: 

Per,t rr2 ETJ 
a: -----

er,t - A - (Ljr)2 (10.16) 



434 10 Inelastic Buckling of Structures 

where rJ and consequently Pcr,t are not affected by the shape of the column cross­
section and depend only on elastic-plastic properties of the material. For commonly 
used metals rJ lies between 0.80 and 0.95. 

In general, in the inelastic range, the load corresponding to true buckling is 
somewhere between tangent modulus load Pcr,t and reduced modulus load, Pcr,r· In 
the elastic range, the Euler solution governs. However, the experimentally determined 
values of critical load from carefully conducted tests by Shanley provided a much 
greater degree of correspondence with the tangent modulus load than did with reduced 
modulus load. 

It is important to note the basic difference between elastic and inelastic buckling 
theories. For elastic buckling the bending stiffness of a member is constant and there 
is a unique buckling load associated with given bending stiffness and prescribed set 
of member geometrical parameters. On the other hand for inelastic buckling, the 
bending stiffness is reduced from that in elastic range, but the extent of this reduction 
depends upon the magnitude of applied load at the time of buckling. Thus for the 
prediction of inelastic buckling load at least one assumption has to be made in order 
to provide sufficient operating condition for the solution. Theoretically, an infinite 
number of inelastic buckling loads, all bounded by Pcr,t and Pcr,r can be determined 
depending upon the assumed strain distribution. 

The difference between tangent modulus and reduced modulus buckling loads is 
relatively small for most practical cases. Moreover, the inherent imperfections in the 
member namely lack of straightness, applied thrust not being precisely located along 
the centroidal axis tend to reduce the critical load of the member. Thus a prediction 
of buckling loads based on tangent modulus theory provides an adequate basis for 
the development of working load formulae. 

Equations (10.15) and (10.16) may be generalised to include effect of restraints 
at the ends of the member as: 

(10.17) 

where K L represents the effective length of the compression member. Following 
example will illustrate the dependence of Er on the cross-section of columns. 

Example 10.1. Determine the coefficient rJr required for the estimation of inelastic 
buckling load for an axially loaded column, when the cross-section is: (a) rectangle 
with width band depth d, and (b) an !-section with negligibly small web thickness. 

(a) Rectangular cross-section (shown in Fig. 10.6a). From (10.9b): 

Y2 
fydA jy(bdy) 2 2 

Et = rJ = A_z __ = o = (lf2)by~ = (Y2) 
E f ydA JYI (bd ) (1/2)byl Yl 

A1 y y 

(a) 

0 
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b 

I A/2 I 

d/2 Y1 
y 

d/2 

N 
A 

N A 

c 1--- ----A C-- r- --A 

d/2 
Yz y 

d/2 

- '--I A/2 I_ 
(a) (b) 

Fig. 10.6a,b. Reduced modulus for different cross sections. a Rectangular section, b !-section 
with thin web (idealized) 

In addition 

Yl + Y2 = d or Y2 = d - Y1 

From equations (a) and (b) 

d 
Y1 = 1 +~ 

and ~d 
Y2= 1 +~ 

From (10.13) 

where 

Therefore, 

by3 
/j=-1 3 , 

by3 
h=-2 

3 
and 

Substituting from equation (c) into equation (e): 

41) 
1Jr = ----=-

(1 + ~)2 
Substituting for 1) and 1Jr 

4EE1 
Er = --------=-

(v'£+~r 

bd3 
1=-

12 

(b) 

(c) 

(d) 

(e) 

(f) 
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(b) /-Section with negligible web thickness. In this case for simplicity half the 

cross-sectional area is assumed to be lumped at each flange and the area of the web 

is neglected as shown in Fig. 10.6b. From (10.9b) 

(A/2)y2 Y2 
1]= 

(A/2)yi YI 

In addition 

YI + Y2 = d 

From equations (a) and (b) 

d 1]d 
YI = 1 + 17 and Y2 = 1 + 17 

From (10.13) 

1Jr = ( 1J i + ; ) 

where h = (A/2)yi, h = (A/2)y~ and I= A(d/2)2. Therefore, 

Substituting from equation (c) 

- 2 [ 1J + 1]2 J -~ 
1Jr - (1 + ry)2 (1 + ry)2 - 1 + 1) 

Substituting for 1J and 1Jr 

2EEt 
E---­
r- (E + Et) 

10.4 Eccentrically Loaded Columns 

(a) 

(b) 

(c) 

(d) 

(e) 

In the eccentrically loaded column, the bending and direct stresses occur simultane­

ously from the start and grow together with increasing load P. Every cross-section 

will be subjected to stress a = ao + ab where ao represents the average stress 

(= P/ A), and ab denotes the stresses due to bending shown by shaded portion in 

Fig. 10.7 d. Consider an initially straight column of rectangular cross-section of width 

b and depth d loaded by compressive load P acting at an eccentricity of e from the 

centroidal axis of the cross-section. 
The conditions of equilibrium assume the form: 

Yl I ab dA - I ab dA = 0 or b I ab dy = 0 (10.18) 

A, Az n 
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(a) 

b 

p 

-.- -+ 
e 

c 

(b) 

,_ 

d/2 

-

d/2 

-

(c) 

~ 
I\ 

~p 
------11 ... • X 

Fig.10.7a-d. Stresses in eccentrically loaded column. a Eccentrically loaded member, b cross­
section, c strain diagram, d stress diagram 

and 
Y! 

b J abydy= P(e+w) (10.19) 

Y2 

where the deflection w refers to the centroidal axis of the column, and y1 and y2 are 
distances of extreme fibres from the a0-axis on concave and convex sides, respectively. 
In Fig. 10.7d, a 1 and a2 represent extreme fibre stresses including bending. If 8 1 and 
82 are strains corresponding to the stresses a 1 and a2 , respectively, then 

1 8J - 8z d2 w 8J - 82 
R d or - dx2 = d (10.20) 

Defining modulus E as 

Equation (10.20) reduces to: 

d2 w 

ci.x2 

The stresses a1 and az are given by: 

P Md 
a!=-+-

A 21 
and 

(10.21) 

Ed 
(10.22) 

P Md 
a2 =---

A 21 
(10.23) 
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where the bending moment Mat any section is equal to P( e+ w). Introducing (10.23), 
(10.22) reduces to 

If the shape of the deflected centre line is assumed to be: 

• JTX 
W= WmSlllL 

The curvature at the mid-length of the column may be expressed by 

Substituting (10.25) into (10.24) 

P(e+ Wm)L2 
Wm= 

or 
PeL2 e 

Wm= ==----= 
(n2EI- P£2) [~ -1] 

ao(Lfr)2 

where r is radius of gyration of the cross-section given by r = .jT[A. 

(10.24) 

(10.25) 

(10.26) 

The stresses in the extreme fibres (i.e. at y = ±d/2) at the mid-length of column 
are given by (10.23): 

at =ao 1 +-[ ed { 1 }] 
2r2 1 _ ao;~~)2 

(10.27a) 

and 

a2 =ao 1--[ ed { 1 }] 
2r2 1 _ ao;~~)2 

(10.27b) 

In (10.27) Ebeing the function of a1 and a2 (by definition) is unknown. If the stress­
strain curve for the material of the column and ao are given, an iterative procedure 
can be used to solve the problem. The procedure is based on assuming a value of 
E and computing a1 and a2 from (10.27) and hence Bt and e2 are estimated from 
the stress-strain curve. The new value of E is obtained from (10.21). The process is 
repeated until value of E is obtained to the desired accuracy. Once E is known, the 
deflection at the centre of column is obtained from (10.26). 

As pointed out earlier the design of compression member for its particular loading 
and end conditions is based on the elastic-plastic properties of the material of the 
member. Therefore, it is logical and convenient to base the design in all cases of 
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instability upon the ideal column curve representing the effect of elastic-plastic 
properties of the material on the strength of member controlled by slenderness ratio, 
Lfr. An inspection of the relationship between critical stress acr and slenderness ratio 
of an ideal column of structural steel reveals that the shape of the curve is controlled 
essentially by the modulus of elasticity E, which defines the Euler hyperbola, and 
proportional limit a P and yield point stress ay, marking the inelastic range. The curve 
of inelastic range derived from tangent modulus concept can be modelled by the 
quadratic parabola 

ay- ap (L) 2 

acr = ay- (L/r)~ -;: (10.28) 

The coefficient of second term is defined by aP, ay and by the slenderness ratio (L/r)p 
which corresponds to the critical stress acr = ap. This slenderness ratio is given by 

(10.29) 

Introduction of (10.29) into (10.28) results in 

_ ap(ay- ap) (L) 2 
acr- ay- 2 -

rr E r 
(10.30) 

Thus for a material with distinctly marked yield or inelastic zone with known E, ap 
and ay the column formula can easily be established. In practice the safe working 
stress of an ideal column can be obtained by dividing the ultimate average stress 
given by column formula acr by a factor of safety, n which takes care of accidental 
imperfections, unintentional eccentricities of the axial load etc. which vary over a wide 
range. The ultimate carrying capacity of compression members forming integral parts 
of structures is affected by continuity conditions at the ends connected to adjoining 
members, eccentricity due to member end moments from the frame, eccentric transfer 
of compression load from the adjacent members. These uncertainties are taken care 
of by the factor of safety. 

Equation (10.30) can be used to derive a simple analytical expression for the 
ratio 17 ( = Etf E) which plays an important role in the analysis of various buckling 
problems. Rewriting (10.30) in the form 

acr =A- B (~ r (10.31) 

where A and B are constants depending upon the characteristics ap, ay and E of the 
material. The critical stress acr can also be given by (10.16): 

rr2E17 
a---

cr - (L/r)2 

Eliminating (L/r) 2 from these equations 

acr(A- acr) 
11 = rr 2 EB (10.32) 
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Replacing A by ay and rr2 EB by ap(ay - ap) (10.32) leads to: 

(ay - acr)acr TJ = ____:. ______ _ 
(ay- ap)ap 

(10.33) 

For a given material with known ap and ay. 7J values can be tabulated. To account 
for the variations in the characteristics of materials supplied under the stipulated 
specifications, probability based minimum values of ap and ay are introduced. 

10.4.1 Analysis of Short Columns 

The relationship between carrying capacity of column acr and slenderness ratio (L jr) 
given in the preceding sections overestimates the buckling load for short columns. 
Based on large number of experimental investigations, a number of simple relation­
ships for a wide variety of materials are now available. Of these, most commonly 
used empirical relationship is power law of the form 

(10.34) 

where aco is the critical stress intercept at (Leff/r) = 0 and n is a parameter. Both 
the quantities depend upon the material properties and on the manufacturing or 
fabrication conditions of the member (residual stress etc.) The coefficient K is defined 
by bifurcation slenderness ratio ( Leff I r )b at which bifurcation of equilibrium position 
occurs. This bifurcation is considered to be the criterion of instability. At this point 
critical stress as obtained form (10.34) and that from Euler curve should be identical. 
Therefore, 

rr2E 
aco - K(Leff./r)~ = 2 

(Leff/r)b 
(10.35) 

and for tangential bifurcation equating the slopes of two curves 

n-1 2rr2E 
-Kn(Leff./r)b = - 3 

(Leff/r)b 

or 

2rr2E 
K= ----::-

n(Leff/r)~+2 
(10.36) 

Introduction of (10.36) into (10.35) leads to 

rr2 E [ 2] aco = 1 +-
(Leff/r)~ n 

(10.37a) 

or 

rr2E [ 2] (Leff/r)~ = - 1 + -
aco n 

(10.37b) 
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Substitution for (Lerr/r)b in (10.36) yields 

2n2E 
K = --------------~~~ 

[ J(n+2)/2 
nnn+2 a:o (1 + ~) 

Therefore, the basic relationship given by (10.34) reduces to 

Introducing non-dimensional parameters 

and 
(Lerr/r) 

a=----=== 
nJEfaco 

the basic column (10.39) reduces to 

[ 12 ( +2)-(0.5n+l)l ] f3 = 1- ;; ~ an = [1- can] 

h C 2 (n+2)-(0.5n+l) d d" . . b w ere = n n an correspon mg K IS giVen y 

(10.38) 

(10.39) 

(10.40) 

(10.41) 

For different values of n different relations can be obtained. The commonly used 
relations are: 

1. Straight line relationship (n = 1) 

f3 = 1 - 0.3849a 

and K = 0.1225J ag0 j E 

2. Johnson's Parabolic formula (n = 2) 

and 

f3 = 1 - 0.2500a2 

K = 0.0253a;0 / E 

3. Semi-cubic formula (n = 1.5) 

The Euler curve is 

f3 = 1 - 0.3027al.5 

K = 0.0544J a~0/ E 3 

(10.42) 

(10.43) 

(10.44) 

(10.45) 
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Straight line ( n= 1) 

0.0 1.0 2.0 3.0 
a 

Fig. 10.8. Variation of f3 with a 

These relations are shown in Fig. 10.8. The following example will illustrate the 
application of above relations. 

Example 10.2. A column of hollow circular cross-section with centre line diameter of 
30 mm and thickness of 1.2 mm supports an axial load over a length of 1120 mm with 
end fixity coefficient of 4. Estimate the critical stress at which it will buckle. For the 
material of the member E = 70GPa and column curve is: acr = 0.25- K(Lerrfr)u. 

For this problem a co = 0.25 GPa and for fixity coefficient of 4, the effective length 
of this column is 

Leff = L I .J4 = 560 mm. 

The radius of gyration is given by: r = D I .J8 (for very thin tubes) or 

r =/iTA= J(rr X 303 X 1.2116)1(rr X 30 X 1.212) 

= 10.607mm 

Slenderness ratio, Lefflr = 560110.607 = 52.795 
From (10.40) for n = 1.1, C = 0.3649 and 

a = Lefflr = 52.795 = l.0043 
rr ,J E I a co rr ../70 10.25 

Thus, {3 = 1.0- 0.3649al.l = 1.0- 0.3649 x (1.0043)1.1 = 0.6334. Therefore, 
critical stress at bifurcation acr = acof3 = 0.25 X 0.6334 = 0.1583 GPa. 



10.6 Lateral Buckling of Beams in the Inelastic Range 443 

10.5 Inelastic Buckling by Torsion and Flexure 

If the stresses in a member subjected to torsion and flexure exceed the proportional 
limit at the instant of buckling, the modulus of elasticity E and modulus of rigidity 
G in any element of the member will change into E1 and Gt. respectively, where E1 

and G1 are effective values according to the tangent-modulus theory. In Sect. 10.3.1, 
the tangent-modulus E1 is related to the elastic modulus E in the form E1 = TJE 
where 7J is dependent on the stress. On the other hand no information is available 
concerning tangent modulus of rigidity G1• However, due to similarity of definitions 
of E1 (=do/de) and G1 (= d-r/dy), it is possible to introduce relation G1 = 7JG. 
This definition results in a smaller value being used than the actual Gt. which leads to 
lower critical stresses and is thus on safer side. With this substitution the expression 
for the strain energy, U given by (7 .28) reduces to 

L 

u = ~ f ( TJEiy (u'Y + TJElz (v")2 + TJEiw (f3'Y + 71GI (f3')2]d.x (10.46) 

0 

and governing Eulerian equation (7 .37) reduce to 

TJElyu"" + Pu" + Py0 {311 = 0 

TJElzv"" + Pv"- Pzof3" = 0, and 

Pyou"- Pzo(v") + TJElwf3"" + (P~- 71Gl) /3" = 0 (10.47) 

The critical loads can be determined from (10.47) and the new values of critical load 
or stress will be values for the elastic buckling multiplied by TJ. Thus the value of 
critical stress will be acr!TJ where acr can be determined in the same manner as in case 
elastic buckling. For example, consider the case of tension buckling due to flexure in 
a member subjected to a pure end moment, Moz· 

The critical value of moment Moz,cr for elastic torsional buckling is given by 
(7.66). 

Moz,cr = (i) J(Ely)(GJ) +Ely (']"(2ElwfL2) 

Replacement of E and G by 71E and 71G yields 

Moz,cr = TJ (i) J(Ely)(GJ) +Ely (']"(2ElwfL2) (10.48) 

wherever the ratio ( G J IE I w) appears it remains unchanged due to presumption 
GTJ/ETJ = GjE. 

10.6 Lateral Buckling of Beams in the Inelastic Range 

Unlike the problem of inelastic buckling of a column, due to different stresses in 
different elements of the beam, E1 and G1 are also variable making the problem 
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complicated for a rational solution. However, replacement of E and G by E1 = 1JE and 
G1 = 1JG where 1J corresponds to the value applicable to the maximum compressive 
stress occurring anywhere in the beam, provides a lower limit for the critical load. 
Not only the critical stress obtained is a lower limit for actual critical stress, but the 
difference can not be very large because actual critical stress must necessarily be 
below the yield stress. The procedure, thus, will always result in conservative or safer 
values of the critical stress. 

As mentioned in the preceding section, the information on tangent-modulus of 
rigidity G1 is lacking. However, the effective or reduced modulii Er and G r have been 
reported to satisfy the relation ErIE = G rIG. 

10.7 Inelastic Buckling of Plates 

The governing differential equation (8.18) of thin plates derived in Chap. 8 is valid 
within the range of proportionality limit. If the stresses exceed the elastic limit before 
buckling stress is reached, the governing differential equation need be modified. There 
are two schools of thought. The first one is based on two-modulus concept that in 
the direction in which the stress exceeds the proportional limit the tangent-modulus 
E1 will be effective while in the direction in which stress is within proportional 
limit E remains valid. In the other words anisotropic behaviour of plate is assumed 
when critical stress frcr lies above the proportional limit, i.e. stretching of the plate 
beyond proportional limit in one direction does not materially affect the elastic 
properties in the perpendicular direction. The other school of thought presumes the 
plastic deformation of the material to be isotropic i. e. stretching of plate beyond the 
elastic limit in one direction produces yielding in all directions, and recommends 
replacement of E by Er, the reduced or effective modulus. However, the former 
approach has been reported to give results which are closer to the experimental 
results. In the following treatment former approximation is used. 

As explained earlier in the Chap. 8 that the rigidity, D of the plate is 11(1- v2) 

times the stiffness EI of a beam having same width and thickness. The plate is stiffer 
since each plate strip is restrained by adjacent strips. In the governing differential 
equation (8.18), the first term within parentheses D a4wlax4 is analogous to the 
differential equation of elastic curve of a typical bent strip (bar) under axial load Pxt 
i.e. Eld4wldx4 . Since these strips of the plate are stressed by longitudinal force Pxt, 
the factor E1 (= 1JE) must be substituted forE when ax exceeds the proportional 
limit and hence Dl] must be substituted for D. Thus the first term in the parentheses 
will be I]D a4w I ax4• In the same manner, the third term may be taken as bending 
term arising from the bending of strips running parallel to Y-axis. In the absence of 
external in-plane load in that direction, the normal stresses in that direction are small 
and the third term D a4wlay4 will remain unaffected. The second term represents 
interaction or coupling between the bending behaviour in the two directions and give 
rise to twisting moment. Since, the elastic-plastic behaviour in the two directions 
are different the coefficient is expected to take mean value between 1 and '7· For 
simplicity, ,.,jij is taken to be coefficient for the second term. Thus (8.18) assumes the 
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generalized form 

( a4w a4w a4w) a2w 
D TJ ax4 + 2..Jij ax2ay2 + ay4 + Px ax2 = 0 (10.49) 

The boundary conditions for the differential equation (10.49) are obtained by mod­
ifying the expressions for the support moments M and shears Q by introducing TJ 

or .jTJ in a similar manner. The expressions for transverse shear forces and moment 
curvatures given by (8.7), (8.8) and (8.17) change to 

(10.50) 

10.7.1 Plates Subjected to Uniaxial Loading 

The theoretical results derived in Chap. 8 for perfectly elastic plate could be applied in 
the inelastic range by replacing E by E1 ( = I] E) and D by D1 ( = TJD). The expression 
for critical load given by (8.29) reduces to 

Px.cr = ax,crt = ( k~m r (n:~D) 
or 

ax,cr = ( k~m y ( n:~D) = ( k~m r [ 12z12~Ev2)] ( i y (10.51) 

The general solution to the modified differential equation ( 10.49) satisfying boundary 
conditions on all four edges can be obtained by using the procedure followed in 
Chap. 8. For a fiat plate loaded on two simply-supported edges x = 0 and x = a 
by uniformly distributed compressive load, Px and having general conditions at the 
other two edges, (8.33) gets modified for inelastic range to 

d4f(y) (mn)2d2f(y) (mn)4 2 
~- 2..Jij -;;- "dY2 + TJ -;;- (1- ki)f(y) = 0 (10.52) 

with the general solution 

f(y) = A sinh ay + B cosh ay + C sin f3y + D cos J3y (10.53) 
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where 

(ab)2 = ( m: r ..,fi(k1 + 1) and ({Jb) 2 = ( m; r ..,fi(k1 - 1) (10.54) 

The constants A, B, C and Dare determined such that boundary conditions at two 
edges y = 0 and y = b are satisfied. The general stability condition given by 
transcendental equation (8.43) becomes 

(k1 + 1)1/2 tanh [ ( ;: ) ('7)1/4 (k1 + 1)1/2] (10.55) 

+ (k1 - 1)1/2 tan [ ( ;: ) ('7)1/4 (k1 - 1)1/2] + ~ ( ~~1) ('7)1/4 = 0 

Special Cases 

(i) Plate simply supported along the unloaded edges 

The expression (8.44) giving smallest root reduces to 

(10.56) 

The limiting ratio Ji at which either m or m + 1 half-waves can occur given by (8.47) 
becomes 

(10.57) 

Form = 1, 2, 3, 4 ... ; {Iii (77) 1/ 4 } = v'z, .J(), v'U, .JW ... 
In the elastic range when 17 = 1, the number of half-waves become independent 

of the nature of material. In the inelastic range 11 < 1, the waves become shorter. 

(ii) Plate elastically supported along the unloaded edges 

For elastically restrained edges the relation given by (8.49) can be expressed as 

(rn;1y =P= (:Y ..,fi+p+q(:f ~ (10.58) 

and equation for ax,cc assumes the standard form 

rr2 EP .ft ( t ) 2 

ax,cr = 12(1 - v2) b (10.59) 

where k is a non-dimensional coefficient that depends on the J.L, and on the boundary 
conditions at the unloaded edges. Equation (10.57) giving limiting value Ji assumes 
the form 

( )
1/4 

Ji = ~ [m(m + 1)]112 (10.60) 
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As explained earlier in Chap. 8, q is reported to lie between 1 and 5, q = 1 for simply 
supported edges a and q = 5 for clamped edges a. Therefore, 

for simply-supported edges, 7i = (17) 1/4 [m(m + 1)]112 

for clamped edges, 7i = 0.6687(1]) 114 [m(m + 1)]112 

The value I-to which makes ax,cr a minimum is given by 

( )
1/4 

i.e. I-to = m ~ 

and corresponding k2 is given by 

Here the expression (p + 2,.fii_) itself becomes independent of 11· 

(iii) Asymmetrical elastic supports 

(a) Elastically restrained at y = 0 and free at y = b 

(10.61a) 

(10.61b) 

(10.62) 

(10.63) 

With the origin of coordinate axes taken to be coinciding with the comer of plate 
such that X-axis is along the supported edge, the stability condition for the inelastic 
range can be obtained from that of elastic range condition given by (8.61). 

2a""P + (a2 + t) coshabcos {Jb- [ (~) t - ( ~) a2 J sinhab sin{Jb 

+ y [ a2 sinhabcos{Jb- t (~) coshabsin{Jb] = 0 (10.64) 

where ab = (mn I ~-t) (17) 1/4 (k1 + 1)1/2 and {Jb = (mn 1 /-L) (17)1/4 (k1 - 1)112 

and 

The critical stress is given by 

""P = _!_ (mn)2 (17)1/2 (k1- 1 + v) 
b2 1-L 

(10.65) 

n2 E~ ..(iJ ( t )2 
ax,cr = 12(1 - v2) b (10.66) 

where 
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The limiting value of aspect ratio Ji at which either m or m + 1 half-waves can exist, 
i.e. 

( )
1/4 

7i = ~ [(m + 1)m]112 (10.67) 

For minimum value of ax,cr 

( )
1/4 

Jl.o = m ~ (10.68) 

and 

(10.69) 

The half-wave length is A. = f3b(17)!. Here k2 is independent of 11· Thus, 

(b) Plate hinged at y = 0 and free at y = b 

It is evident from (10.68) that with decreasing q (i.e. elastic restraint) Jl.o increases 
steadily. In the limiting case of a simply supported edge y = 0, q = 0, the ratio Jl.o 

will be infinite indicating that plate buckles in one half-wave only. With increasing 
Jl.o the critical stress min ax,cr decreases asymptotically to the value 

. n 2E..fo (t) 2 

Mmax,cr = 12(1- v2) b p 

This value is absolute minimum. If one edge 'a' of the plate is free to rotate the plate 
will buckle in one half-wave regardless of its length. If one edge is elastically built, 
the plate will buckle in several half-waves for a long plate as is indicated by (10.67). 

10.7.2 Plate Subjected to In plane Biaxial Loading 

For a plate subjected to in-plane biaxial loading, the stresses along both X- and 
Y -directions may exceed the elastic limit. In such a case, a reduced modulus of 
elasticity is effective in both the directions, therefore, buckling load or critical stress 
in the inelastic range can be obtained by replacing E by Er (~ 17£) and D by Dr 
(~ 17D), in the values for elastic range. 

Example 10.3. A rectangular plate of size a x b is simply supported at the loaded 
edges x = 0 and x = a, and is clamped at the unloaded edges y = 0 and y = b. 
Determine the critical load in the inelastic range if 17 = 0.9. 
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The stability condition for this case is given by (8.70) as 

-(Jci -1)-112 (sinhab. sinf3b) + (coshab.cosf3b) -1 = 0 

where the parameters ab and f3b are defined by (10.65) as 

ab = ( m:) (17) 1/\k1 + 1)112 and 

f3b = ( m:) (1J)1f4(k1 - 1)1/2 

The critical load Px,cr is given by 

where 

k~ = (m:!Y 
the values k~ for various aspect ratios are given in Table 10.1. 

Table 10.1. Values of k~ for various aspect ratios 

Aspect ratio, f.L Plasticity reduction factor, 71 (= Etf E) 

1.00 0.95 0.90 0.85 

0.4 9.4479 9.5549 9.6719 9.8007 

0.6 7.0552 7.2170 7.3949 7.5916 
0.8 7.3037 7.5414 7.8037 8.0947 
1.0* 7.6913 8.9396 9.3102 9.7221 

(10.70) 

(10.71) 

(10.72) 

0.80 

9.9431 

7.8105 
8.4196 

10.1831 

*At f.L = 0.8910 (71) 1/ 4 , the buckling mode changes from one half-wave to two-half waves. For 
f.L = 1 the values listed in the table are not reliable. 

10.8 Inelastic Buckling of the Shells 

When a shell is not very thin, the buckling can occur at a stress that is beyond the 
proportionality limit. The critical load in this case can be obtained from (9.38) by 
substituting in the expression forD, the tangent-modulus Et instead of E as in the 
case of flat plates. For example for the spherical shells from (9.45) 

2Et (t)2 

Per = J3(1 - v2) ; 
(10.73) 
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In the case of cylindrical shell from (9.46) the critical load in inelastic range is given 
by: 

r2,[EE; 
Per = -R./1 =3 (=1 =-=v:::=2) 

(10.74) 

In this case of buckling beyond the proportionality limit, the half-wave length, ).. 
given by (9.61b) becomes 

L [ R212 ]1/4 [E ]1/4 
).. =- = rr 2 __! ~ 1.73JRt(EtfE) 

m 12(1- v) E 
(10.75) 

Thus the length of waves becomes shorter for buckling beyond the proportionality 
limit. If the mechanical properties of the material beyond the proportionality limit 
are the same in the axial and circumferential directions, (10.75) reduces to 

Ett2 
Per= [ ] RJ3(1- v2) 

(10.76) 

and ).. = 1.73#t (for v = 0.30). That is beyond the proportionality limit the 
wave-length remains unchanged. 

If the material has yield point, the value of £ 1 is zero at this stress and Per becomes 
equal to zero. Since £ 1 is function of O'er and hence of Per· The solution can be obtained 
by trial and modification. 

Example 10.4. A long cylindrical steel tube having outside diameter of 250mm is 
required to withstand an external pressure p = 20 MPa. Compute the thickness t of 
tube so as to take twice the pressure at buckling. The stress and strain diagram of the 
metal of the tube is shown in Fig. 10.9. Take v = 0.40. The tube is expected to buckle 
in the inelastic range, therefore, replacing E by £ 1 the critical pressure expression 
given by (9.26) becomes: 

£ 1 ( t )
3 

Per = 4(1 - v2) R 

Perd Et ( t ) 2 

O'er = 2t = (1 - v2) d 
Since £ 1 is function of O'er and hence of Per• the equation need be solved by trial and 
modification procedure. Therefore, 

£ 1 (2 x p)2 
( £ 1 ) (2 x 20) 2 

O'er = (1 - v2) 20'er = 0.84 20'er 

Using a and £ 1 relation shown in Fig 10.9 trial and modification procedure provides 
£ 1 = 3.45 x 1o4 MPa and a = O'er = 2.55 x 102 MPa satisfy the equation. Thus the 
thickness of the tube is 

t = pd = 2 x 20 x 250
2 = 19.60mm (say20mm) 

20'er 2 X 2.55 X 10 
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I 

Fig. 10.9. Tangent modulus for a metal not having a yield point 

10.9 Problems 

Problem 10.1. Obtain the reduced modulus Er for the sections shown in Fig. P.l 0.1. 

1.2mm 

t/5 

a 

H-section Tube section Channel section 

P.lO.l 
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Problem 10.2. Estimate the load carrying capacity of round alloy steel tube column 
of length 800 mm. The external diameter of the tube is 40 mm and thickness is 1.5 mm. 
The critical stress of the material a co is 1.05 GPa. The end fixity coefficient is 2.0. 

[Hint: Leff = Lj,.fi.] 

Problem 10.3. If the column curve for a material is represented by the equation: 
acr = aco- K(Lerrfr)l.65 . Determine the value of K at the bifurcations point. The 
Euler curve is given by: acr = rr2 Ej(Leff./r)2 . Further calculate the critical value of 
slenderness ratio (Leff./r) and corresponding value of acr· 

Problem 10.4. A column of hollow circular cross-section of size 30 mm mean diam­
eter and 1.2 mm thickness and of length 900 mm is subjected to an axial load. Obtain 
the buckling load by using straight line column formula with a co = 400 MPa, and 
E = 65 MPa. Take the end fixity coefficient as 1.5. 

Problem 10.5. A rectangular plate is subjected to an in-plane compressive force Px 
per unit length along the edges x = 0 and x = a. The edges y = 0 and y = b 
are unloaded. If all the edges are simply supported show that the minimum value of 
critical load in the inelastic range is given by: Px,cr = 4rr2 D ,fii I b2• 

Problem 10.6. A rectangular aluminum plate of size 1000 x 800 mm with thickness 
of 5 mm is simply supported on all the four edges. It is subjected to a uniform in 
plane compressive load in both the directions. Determine Px in the inelastic range 
when Py = 0.8Px· The material properties are: E = 60 GPa, v = 0.30 and TJ = 0.85. 

Problem 10.7. The channel section shown in Fig. P.lO.l is subjected to a uniform 
axial compressive stress. The loaded edges are assumed to be simply supported. The 
coefficient of restraint ~ is given by: 

where b = 120 mm; c = 300 mm; tc = 3 mm and t = 1.0 mm. Determine the critical 
load in the inelastic range when TJ = 0.90. 

Problem 10.8. Plot the interaction curve for the buckling of a rectangular plate of 
J-t = 1.2 in the inelastic range. The plate is simply supported on all the four edges 
and subjected to biaxial in plane compressive loads of magnitude of Py = 0.6Px· 

Problem 10.9. Determine critical stresses in the inelastic range for the web plate of 
a girder subjected to pure shear stress 'l'xy· The plate may be assumed to be simply 
supported on all the edges. 
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Structural Design For Stability Of Members 

11.1 Introduction 

In a narrow sense, structural design is an art that is concerned with determination of 
minimum cross-sectional geometries of structural members based upon the results 
of structural analysis using acceptable performance criteria such as allowable stress, 
ultimate strength, maximum deformation, stiffness or stability etc. For the stress or 
strength and deformation the design procedures are straight forward which ensure the 
realization of a particular desired state for given loading. It is very rare when stability 
is the controlling condition; therefore objective is to have more than a predetermined 
reserve in capacity to preclude possibility of instability at the given loading. In the 
other words a margin of safety has to be provided. When buckling is a controlling 
factor, the problem can be handled by adding supporting or bracing members or 
a sufficiently large cross-section can be selected thereby eliminating buckling as 
a real problem. The choice will be governed by economy and practicality of the 
solution. 

The performance limitations for practical design situations are given in national 
and international design codes and specifications. However, these manuals of ac­
ceptable design practice vary from region to region and from country to country. 
Moreover, they are updated from time to time. Therefore, in this chapter only basic 
concepts and procedures for stability design of structural members is dealt with. The 
Indian code of practice IS: 800 has mainly drawn on other national standards e.g. 
American Institute of Steel Construction Specifications (AISCS), British Standards 
Institution (BS: 5940), Australian Standards Association (AS: 1250) etc. In the fol­
lowing discussion, the specifications are restricted to the clauses pertaining to the 
stability of structures. 

11.2 Column Design Formula 

Most of the national codal provisions are based on the following basic column 
formula. 

M. L. Gambhir, Stability Analysis and Design of Structures
© Springer-Verlag Berlin Heidelberg 2004
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rc2E 
F.-------::­
e- (KLjr)2 

where K is the effective length factor and r is the radius of gyration of the cross­
section. The parameter (KL/r) is termed effective slenderness ratio and is almost 
universally used for column strength formula. The values of factor K are given in 
Appendix B for both uniform and stepped columns. 

AISCS 

The specifications have based the allowable axial compressive stress, Fa upon the 
limiting effective-slenderness ratio, Cc corresponding to Euler stress equal to 0.5Fy 
i.e. 

rc2E 
(KLjr)2 = 0.5Fy 

KL _ (2rr2E) 112 _ or - - Cc 
r Fy 

(11.1) 

(a) when KL/r _:::: Cc 

F. = Fy [ 1 _ (KL/r)2] 
a FS 2C2 

c 
(11.2) 

where Fy is the minimum guaranteed yield stress in tension, KL/r is the effec­
tive slenderness ratio and FS is a variable factor of safety for columns buckling 
inelastically and is given by 

5 3 (KLfr) 1 (KL/r)3 
FS - - + - - - ---=---

- 3 8 Cc 8 C~ 
(11.3) 

FS varies between 1.67 for KL/r = 0 and 1.917 (= 23/12) for KL/r = Cc. This 
increase in FS of 15 per cent takes into account the following factors: 

1. The increased sensitivity of long columns to variations in the effective length 
factor. 

2. The practical difficulty in determining effective length factor. 
3. Initial crookedness. 

(b) when 200 > KL/r > Cc 

where FS = 23/12 

rc2 E 1 
F.-------::­
a- (KL/r)2 FS 

(11.4) 

(c) when 200 > L/r > 120, (K is taken as 1.0) the allowable compressive stress for 
bracing and secondary members is given by: 

F. _ Fa given by (11.2) or (11.4) 
a - -=-1-.6-=----=:-[ (c-::-L-:-1 r....,..)--,/2::-:00:-::--] - (11.5) 
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BS: 449 

The allowable stress is given by: 

Fa= 2~S [ Fy + FeO + 17)- 2~S J[ (Fy + Fe(1 + 17) ]2 - 4FeFy] 

where 11 = 80 Bj(2r2), dimensionless imperfection parameter 

80 = mid-span deflection 

B = width of the member and 

Fe= Euler critical stress= rr2 Ej(Lefr)2 

(11.6) 

For thick members, Fa ~ Fy; for slender members, Fa ~ Fe. Equation (11.6) is 
infact Perry's formula for average stress in a column at failure. Subsequent British 
modification use following expression for 17: 

11 = 0.03(Le/100r)2 and FS = 1.7 (11.7) 

AS: 1250 

The Australian code formula for allowable compressive stress is the same as that of 
BS: 449 but with FS = 5/3 instead of 1.7. 

IS: 800 

Based on experimental observations, the relation for prediction of failure load is 
derived from the following reciprocal formula. 

1 1 1 
pn = pn + pn 

f p e 

(11.8) 

where Pr, Pp and Pe are failure load, fully plastic load, and elastic critical load, 
respectively. The factor n is exponential coefficient. For low slenderness ratio Lefr, 
Pr ~ Pp and for high Lefr value, Pr ~ Pe. In terms of corresponding stresses the 
formula can be expressed as 

1 1 1 
--=---+---
(AFr)n (AFyt (AFec)n 

or 

1 1 1 
pn=Fn+pn 

f y ec 

pnpn 
or pn- Y ec 

r-Fn+Fn 
ec y 

Therefore, 

(11.9) 
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The allowable stress Fae is obtained by dividing the failure stress Fr by the factor of 
safety of 1.67. Hence 

Fr 0.6Fy Fac = -- = ____ ..::.....__:-:-
1.67 [1+(Fy/Fecrf!n 

(11.10) 

where Fy and Fee [= rr2 Ej(Le/r)2 ] are yield stress and elastic critical compressive 
stress, respectively. For very short columns allowable axial compressive stress is 
Fae = 0.6Fy. The value of exponential coefficient n is determined by experimental 
results. The value of n lies in the range 1.0 to 3.0. IS: 800 adopts n = 1.4 and 
E = 2 x 105 MPa for all Indian rolled sections. Some national standards use multiple 
column design curves by varying n for different sections, like open rolled sections, 
built-up sections, tubular sections etc. 

When a column is likely to buckle about the weaker axis, it is laterally supported 
at certain intervals, so that the critical stress reaches yield stress and the column 
strength is not influenced by buckling, but depends on the yield strength. Whenever, 
a column fails in yielding, the allowable stress Fae = 0.60Fy. 

Example 11.1. DetermineallowableaxialloadthatarolledsteelMB 500@ 86.9kg/m 
section pin-ended column can sustain over an effective length of: (i) 1.75 m and (ii) 
5.25 m. The maximum compressive residual stress Fr is 0.30Fy. It is defined that the 
weak -axis flexural buckling will govern. Take Fy = 250 MPa and E = 2.1 x 105 MPa. 
Desired factor of safety is 1.95. 

For MB 500 section, A = 11100mm2, ry = 35.2mm. The proportional limit 
stress, Fp = Fy - Fr = 0.70Fy = 175 MPa. 

Case 1: For Le = 1.75 m, Le/ry = 49.716. 

Elastic buckling stress, 
rr2E 

Fee = 2 = 838.55 MPa. 
(Le/ry) 

which is considerably more than Fp. Therefore, the buckling will occur in the inelastic 
range. The allowable stress is given by (ref. 24 appendix-D) 

Fa= Fine,c = Fy [ 1 _ ( Fr) _!i_ (Le) 2
] 

FS FS Fy rr2E ry 

250 [ 0.7 X 250 2] =- 1- (0.30) x 2 5 x (49.716) = 120.18MPa. 
1.95 JT X 2.1 X 10 

And allowable axial load would be 

Pan= FaA= 120.18 x lllOO(xl0-3) = 1334kN. 

Case II: For Le = 5.25, Le/ry = 149.148 

rr2E 
Fee= 2 = 93.17MPa < 175MPa. 

(Le/ry) 
Elastic buckling stress, 
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Therefore, the load carrying capacity is based upon elastic buckling, and the allowable 
load is 

93.17 
Pa =--X 11100(x10-3) = 530.36kN. 

1.95 

The allowable axial load can also be determined by the method proposed by AISCS. 
From (11.1) 

(
2JT2 E) 112 

Cc = ----p; = 128.77 

Case 1: For KL/ry (= 49.716) < Cc, 

FS = ~ ~ (49.716) _ ~ (49.716) 3 = 1.8 
3 + 8 128.77 8 128.77 

Therefore, from (11.2) 

F = Fy [1- (KL/ry)2] = 250 [1- (49.716)2 ] = 128.537MPa. 
a FS 2C~ 1.8 2 X (128.77)2 

Fa with a FS of 1.95 = 128.537 x 1.8/1.95 = 118.65 MPa. 
Case II: For KL/ry (= 149.148) > Cc, from (11.4) 

JT 2 E 1 (12) JT2 X 2.1 X 105 

Fa= (KL/ry)2 FS = 23 (149.148)2 = 48·61 MPa. 

Pa = 48.61 X 11100(x10-3) = 539.58kN. 

11.3 Local Plate Buckling of Structural Members 

As discussed in the preceding section that when stability is a design consideration, 
the effective slenderness ratio is the most important parameter. The smaller the value 
of this ratio, the greater will be the load that the member can sustain. To achieve 
this objective, the cross-sectional shape is so selected that it provides largest radius 
of gyration about an axis perpendicular to the direction of anticipated buckling. 
The optimal form takes different shapes. The cross-sectional forms composed of 
thin elements provide cost effective solution. However, the load carrying capacity 
of the cross-section is noticeably affected by the local stability of its elements. The 
local stability depends on the slenderness ratio of flanges, webs or other elements. 
The slenderness ratio of these elements are determined by the ratio between their 
characteristical dimension (width of flange, depth of web, element width) and their 
thickness i.e. by b/t or hjt. Depending upon the loading, material properties and 
type of cross-section etc. of the element the slenderness ratio will reach a value 
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Fig. ll.la-c. Local buckling of beam web. a Loaded beam, b crippling, c buckling 

above which the cross-section fails to maintain its original form, and local wrinkling 
(crippling) or buckling of that individual element occurs much before the anticipated 
load is attained as shown in Fig. 11.1. In this section the objective is to develop 
criteria for prevention of local buckling of cross-sectional elements subjected to 
typical loading. 

The commonly used sections are composed essentially of flat plate elements 
which are welded, glued or intermittently connected by rivets, bolts etc. The wide 
flange or similar type built-up cross-sections are commonly used in Civil Engineering 
constructions. These elements are subjected to direct compression, bending, shear or 
any combination thereof. In particular situations where transverse loads are applied 
directly to the cross-sectional elements, stiffeners or cover plates etc. are introduced 
to ensure that the cross-section maintains its form. Away from these points, the 
individual plate elements of the cross-section are subjected to in-plane forces, and 
it is this loading condition that is of major concern in proportioning the various 
elements which constitute the cross-section. 

The built-up column buckling differs from the plate buckling described in Chap. 8 
in several ways. Firstly buckling strength of an individual column element is greatly 
influenced by the edge conditions along the length of the element. Secondly a con­
siderably larger post-buckling strength exists for plates than does for columns. This 
additional post-buckling strength is due to redistribution of stress at the critical load. 
For columns, the increase in the load carrying capacity beyond buckling load is neg­
ligibly small and hence tangent modulus load may be taken as criterion for design 
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y 

a 

b p I I I 1 1 X 

(u =0.30) min.k ; = 6.97 5.41 4.00 1.28 0.42 

(a) 
a 

p~ bl , I I I 1 1 
min.k ~ = 13.56 10.46 7.70 1.61 0.57 

(b) 
a 

] bl [ I I I 1 1 p 
min.k ~ = 39.6 24.48 23.90 2.15 0.85 

(c) 

Fig. 11.2a-c. Minimum values of plate buckling coefficients, k2 for various boundary con­
ditions at the unloaded edges of the plate. a Uniform compression-pure axial force case, 
b non-uniform longitudinal compression - no tension (axial force and bending combined) 
c non-uniform longitudinal compression-pure bending case 

purposes, while on the other hand post-buckling strength of plates must be taken 
into consideration for an efficient design. In the plate elements which have length, 
width and thickness, if the loading is in the direction of length (longer of the two 
plane dimensions), and length being at least several times the width, the buckling 
load is essentially independent of actual length, the buckling deformation will be of 
wave form. The elastic buckling of such a long element is primarily dependent on 
width-to-thickness ratio (bjt) and on the restraint conditions that exist along the lon­
gitudinal boundaries of the element. The critical buckling stress of flat plate elements 
in columns that are subjected to uniform compressive loads is given by (10.59) 

2 Jr2 E.,fii a -k ___ __,:...-_ ______,.. 
a,cr - 12(1 - v2)(bjt)2 

(11.11) 

where TJ = Et! E, vis possion's ratio, band t are width and thickness of the plate, 
respectively; and k2 is a factor depending upon the longitudinal boundary conditions 
shown in Fig. 11.2 and is given in Table 8.1. In a column composed of various 
connected flat plate elements, some elements may be more susceptible to buckling 
than the others. For such a case, the less critical parts provide edge constraint to 
the more flexible elements. An analysis based on the presumption that all elements 
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reach simultaneously their buckling point and provides no bending resistance to their 
adjacent connected elements, gives a lower bound solution. Simply supported or 
hinged (or free edges where exist) would then be presumed. 

To preclude the possibility of local buckling problem it is desirable to limit the 
value bjt. To this end many codes stipulate that the proportions of elements of 
a cross-section shall be such that an element is capable of reaching the yield stress 
of the material prior to attainment of the buckling load. It should be noted that such 
a requirement does not provide any additional safety factor, i.e. SF = 1.0. For such 
cases Fy :::: Gcr or 

b [ rr2 E ]I/2 
- <k 
t - 12(1 - v2)Fy 

or (~)max ::S: Ckj}F; (11.12) 

where Cis a numerical coefficient depending upon material properties. For commonly 
used structural steel withE = 2 x lOS MPa and v = 0.3, C = 425.16. For illustration 
consider the outstanding flange of !-section. If the outstanding flange or overhang is 
assumed to be hinged at its junction with the web and free at the other, the buckling 
coefficient k2 obtained from Table 8.1 or Fig. ll.2a is 0.420. 

Therefore, from (11.12): 

bjt:::: 17.426 (1l.l3a) 

On the other hand if the flange overhang is assumed to be clamped at the junction, k2 

from Table 8.1 or Fig. 11.2a is 1.2804 and the ratio bjt from (11.12) is: 

bjt:::: 30.427 (ll.l3b) 

In certain situations, some of the elements of cross-section are subjected to both 
compression and bending, e. g., web of an 1-shaped section beam-column. 

To account for the variation in the stress across the plate element following 
equation can be used: 

k2 rr2 E 
ab -

,cr- b 12(1 - v2)(bjt)2 
(11.14) 

The values of ~, the buckling coefficient, are tabulated in Table 11.1. When a plate 
element is subjected to a uniformly applied shear along the four edges, as shown in 
Fig. 11.3, the critical buckling stress can be computed from the relationship 

k2 rr2 E 
a -
s,cr- s 12(1 - v2)(b/t)2 

where k; is the shearing buckling coefficient given by: 

(i) For all edges simply supported case. 

t; = .J3 [5.34 + (4.00/ J.L2) J for IL ~ 1.0 

=.J3[4.00+(5.34/J.L2)] for J.L::S:l.O 

(11.15) 

(11.16) 
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(i) All edges simple supports 

k; = 5.34 + (4.0/!1 2) 

(ii) All edges clamped 

k; = 8.98 + (5.6/!1 2) 

Fig. 11.3Shearing buckling coefficients, kf for pure shear case 

(ii) For all edges fixed case. 

k; = J3 [8.98 + (5.6/ JL2)] for JL ~ 1.0 (11.17) 

where JL is the aspect ratio (JL = ajb, a ~ b). The critical shear stress, 'fer = 
as,crl ../3. Thus the web of a girder may buckle under vertical compressive stress, 
in pure flexure or in pure shear or combination thereof. Different codes require 
different bIt ratios for web and flanges. Some of the significant clauses are given 
below. 

11.3.1 Average Shear Stress 

AISCS 

(i) For stocky (stiffened or unstiffened) webs. When 

D 998 
-<--
tw- JF; 

Fs = 0.40Fy (elastic) 

The shear stress is based on overall depth, D. When 

h 998 
->--
fw JF; 

Fy 
Fs = 2_89 Cv :::; 0.40Fy (elastic) 

(11.18) 

(11.19) 

where Cv is defined by (11.23) and Fy is in MPa (Njmm2). Here shear stress is 
on clear distance between flanges, h. 

(ii) For slender unstiffened webs. 

For 
998 D 1440 
--<-<--
JF;- tw- JF; 

For 
1440 D 9600 
_J"F;_F_y :::; tw :::; -,j;=;F;=y (;=;:F;=y =+::::;171477) 

F. - 399JF; 
8 - (D/tw) 

F. - 574000JF; 
8 - (D/tw)2 

(11.20) 
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' \ 
' -~ ' 

' (a) (b) 

..c ] J 
a=d a 

" 
(c) 

Fig. 11.4a--c. Loss of local stability of web due to shearing stresses. a Buckling of web, b 
distorsion of an element of web, c stiffening of web 

(iii) For slender stiffened webs. 
Near the support the web of a beam is subjected to the action of large shearing 
stresses resulting in a distortion along the lines of shortened diagonals of the 
web which are under compression as shown in Fig. 11.4b. Along the extended 
diagonals the web is stretched under the action of tensile stresses. Thus, under 
the action of compression the web may buckle, forming waves inclined at an 
angle of about 45* to the axis of beam web as shown in Fig. 11.4a. To prevent 
buckling of web, vertical stiffeners (stiffening ribs) are provided that intersect 
possible buckling waves as shown in Fig. 11.4c. This arrangement divides the 
web into rectangles bounded on four sides by the flanges and the stiffeners. 
In this case shear force is resisted by the web as in the case of beam and is called 
beam shear action. Due to shear the web buckles in the direction perpendicular 
to the direction of principal compressive stress in the plane of web. After the web 
has buckled, a part of each web panel acts as a diagonal tension member and 
the stiffeners act as vertical compression members. This is called tension field 
action. Thus, both the beam shear action and tension field action contribute to 
shear strength of a stiffened slender web of the beam. The shear stress in the web 
is given by: 

F.= ___!i_ [cv + (1 - Cv) ] < 0.40F for ajh ::53 and Cv ::5 1.0 
FS../3 1.15-/1 + (ajh)2 - y 

(11.21) 
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where a is the clear spacing between transverse or vertical stiffeners and h is 
the clear height between flanges. The first term of (11.21) represents the shear 
(Vjht) due to beam action which is limited by shear buckling whereas second 
term represents the shear due to tension field action which is limited by yielding 
due to combined stresses present in the web-tension zone. For the webs with 
widely spaced stiffeners i.e. ajh > 3.0, second term becomes insignificant and 
(11.21) reduces to: 

Fy 
F, = 11 Cv ::; 0.4Fy for ajh > 3.0 and Cv > 1.0 

FSv3 
(11.22) 

For the factor of safety of 1.65 the term FS./3 = 2.89. The factor Cv is computed 
as follows: 

C _ Fs,cr _ k;rc2 E 

v- Fs,y - (Fy/../3) X 12(1- v2) (h/tw) 2 

313089k; 

[Fy(h/tw)2] 

(F;:: 560k, 

= V F;; = [(hftw) /Fy] 

when Cv ::; 0.80 

when Cv > 0.80 

The above computations are based on E = 2 x 105 MPa, and v = 0.30, and Fy 
is in MPa. The values adopted by AISCS (converted to SI units) are: 

310275 kv 
C - when Cv::; 0.80 

v - [ Fy(hftw)2] 

= (:;:) j ( ;: ) when Cv > 0.80 (11.23) 

Here kv = k; 
This equation governs elastic behaviour. The following equation governs inelastic 
behaviour: 

C _ Fs,cr _ ( 0.8 ) rc2 Ek'f 
v- F:,,y - Fy/../3 x 12(1- v2 )(hftw)2 

or Cv = 500k,j [(hftw) Fr] when Cv > 0.8 (11.24) 

If simply supported edge conditions are assumed, the buckling coefficient k; is 
given by: 

k; = 4.00 + [5.34j(ajh) 2 ] 

= 5.34 + [4.00j(ajh) 2 ] 

= 5.34 

when ajh ::; 1.0 

when ajh > 1.0 

when ajh > 3.0 (11.25) 
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where tw is web thickness in m; a is clear distance between intermediate transverse 
stiffeners in m, h is the clear distance between flanges at the section under 
investigation in m and Fy is in MPa. 

BS: 449 

The shear stress in a stiffened slender web is 

[ 
(b/t) ] 

Fs = 0.4Fy 1.3 - { 2 } < 0.40Fy 
250 + (bja) /2 -

(11.26) 

where a and b are clear panel dimensions with a > b. A load factor equal to 1.45 has 
been used in this equation. 

AS: 1250 

For stocky and slender unstiffened webs specifications are similar to those given by 
AlSC specifications. For slender stiffened webs 

[ 
(b/t).jF; ] 

Fs = 0.31Fy 1.3- { 1 2 } ::::: 0.31Fy 
4000 1 + 2(bja) 

IS: 800 

(a) Shear buckling of unstiffened beam webs 

The critical shear stress is given by 

where 

Us,cr = ~Jr2 Ej [12(1 - v2 )(djt)2 ] 

k; = 4.00 + (5.34/ f.1,2) 

= 5.34 + (4.00/ f.1,2) 

for f.L ::=:: 1.0 

for f.L > 1.0 

(11.27) 

(11.28) 

where f.L(= ajb) is the aspect ratio. For f.L = oo and as,cr ::=:: Fy/./3, ~ = 5.34. 
Therefore, from (11.28) for very long plate with E = 2 x lOS MPa, v = 0.3 and 
Fy = 250MPa 

~ < [5.34 X Jr2 X (2 X l<f) X ./3]1/2 = 81.78 ~ 82 (11.29) 
t - 12(1 - 0.32) X 250 

If the d/t ratio of web is more than 82, buckling due to shear occurs. The code 
stipulates that vertical stiffeners should be provided when (d/t) exceeds 85. 

In unstiffened web, allowable average shear stress 

Fs a = ( F;,) _l = ( F;,) x _l_ = 0.40Fy 
' v3 FS v3 1.44 

(11.30) 

where Fy./3 is yield stress in shear and factor of safety FS = 1.44. 
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(b) Shear stress in the stiffened webs 

If the web is stiffened with vertical or intermediate stiffeners the allowable shear stress 
is governed by panel dimensions a and d, thickness t and grade of steel. Here a is the 
spacing of the stiffeners in the horizontal direction and d is the other dimension of 
the panel in the vertical direction i.e. clear distance from tension flange to horizontal 
stiffener or to the compression flange (if horizontal stiffener is not provided). Two 
cases arise for computing the maximum permissible or allowable average shear stress, 

Fs,a· 

(i) The spacing of vertical stiffeners a is less than d i.e. a < d 

[ 
(ajt)/Fy ] 

Fs,a = 0.40Fy 1.3- { 2 } :S 0.40Fy 
4000 1 +!(;I) 

(11.31) 

(ii) The spacing a of vertical stiffeners is more than d i.e. a > d 

[ 
(djt)/Fy ] 

Fs,a = 0.40Fy 1.3- { 2 } :S 0.40Fy 
4000 1 +! (~) 

(11.32) 

The spacing, a, should not be less than d/3 and greater than 1.5d. 

11.3.2 Flexural Buckling of Webs 

The web of a beam being thin may buckle locally in the longitudinal direction due 
to bending compressive stress over a part of the depth of beam; it is called flexural 
or bending buckling. The web is strengthened by providing horizontal stiffeners. The 
bending critical stresses are given by: 

(11.33) 

where k~ is the plate buckling coefficient. k~ for simply supported and clamped edge 
conditions of a flat plate under bending are 23.9 and 39.6, respectively, as is shown 
in Fig. 11.2c. Therefore, 

(i) for simple supports with ab,cr :S Fy(= 250MPa), 

(ii) for clamped supports with ab,cr :S Fy( = 250 MPa), 

djt :s 131.5 

djt :s 169.2 

However, web flexure buckling being localized in nature does not reduce the ultimate 
strength of the beam and hence a reduced factor of safety is used in arriving at djt 
ratio. 

According to IS: 800 for unstiffened webs ddt ratio is limited to 85, where 
d 1 , is the clear distance between flanges or between inner toes of flange angles as 
appropriate. 
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For vertically stiffened webs d2ft ratio is limited to 200, beyond which a hori­
zontal stiffener has to be provided at 2/5th the distance from the compression flange 
to the neutral axis. This happens to be the most efficient location for single horizontal 
stiffener. When dz/t ratio exceeds 250 an additional horizontal stiffener is provided 
at the neutral axis. In any case dz/t ratio should not exceed 400. Here d2 is twice the 
clear distance from compression flange angles, or plate, or tongue plate to the neutral 
axis. 

11.3.3 Built-up Sections 

When the axial loads acting on columns are very large, it may not be possible to design 
a column with only rolled sections, it becomes necessary to use built-up sections. 
The various elements of the built-up section must be securely connected as shown in 
Fig. 11.5 so that they act together, rather than as individual components. The simplest 
built-up column type member is a rolled section with additional plates (called cover 
plates) attached to the flanges or two or more rolled sections at a distance apart are tied 
by lacing or battens. Various elements of a built-up column are so arranged that the 
moment of inertia about the minor axis is equal to that about the major axis making 
it equally strong about both the axes. To limit the lateral deflection i.e. to increase 
the lateral stiffness the size (lateral dimension of the column generally expressed in 
terms of its depth) is normally kept at 1/10 to 1/15 the height of the column for the 
yield stress of 250 MPa. Following example will illustrate the design procedure. 

Example 11.2. A 3.8m high column with both ends fixed is to support an axial 
load of 4200 kN. Design the column using SC series section with cover plates. The 
yield stress of structural steel is 250 MPa and E = 2 x 105 MPa. Depth of column 
~ 3800/15 = 253.33mm. 

Consider SC 250 @ 65.6 kg/m rolled steel section with cover plates. For SC 250 
section. 

A= 10.9 x 103 mm2 , lx = 125 x 106 mm4 , ly = 32.6 x 106 mm4 • 

rx = 107mm, ry = 54.6mm and K = 0.65 

Therefore, 

Le/rmin = 0.65 X 3800/54.6 = 45.24 

Fee = 1r2 E/(Le/rmin)2 = 964.46MPa 

Fa= 0.6Fy/[1 + (Fy/ Fec)L4] 1/1.4 = 135.66MPa 

Load carrying capacity of SC 250 section 

= (10.9 X 103)(135.66) X 10-3 = 1478.7kN. 

Balance to be carried by the cover plates 

= 4200- 1478.7 = 2721.3 kN. 
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Fig. 11.5. Approximate radii of gyration of some of the commonly used built -up sections 

The approximate radii of gyration for this arrangement of components are from 
Fig. 11.5: rx = 0.4D and ry = 0.21B. For the case rx = ry. B = 0.4Dj0.21 = 
0.4 x 250/0.21 = 476.2mm (say 520mm). Therefore, 

KL/r = 0.65 x 3800/(0.4 x 250) = 24.7 

and corresponding 

Fee = 7'(2 X (2 X 105)/(24.7)2 = 3235.46MPa 

Fa= 0.6Fy/[1 + (Fy/Fec)!.4] 1/!.4 = 147.10MPa 

Thickness of the plate, t = (2721.3 x 103)/(2 x 147.10 x 520) = 17.79mm. 
Consider 520 x 18 mm cover plates. 

• Total depth= 250 + (2 x 18) = 286mm. (OK) 
• Overhang projection = (520 - 250) /2 = 135 mm 
• Limiting overhang= 16t = 16 x 18 = 288 mm > 135 mm. (OK) 

fx = 125 X 106 + 2 X 520 X 18 X (125 + 9)2 = 461.14 X 106 mm4 

A= 10.9 X 103 + (2 X 520 X 18) = 29.62 X 103 mm2 

r = [(461.14 x 106)/(29.62 x 103)] 112 = 124.77mm 

KLjr = 0.65 x 3800/124.77 = 19.8 

Fee= 7'(2 x (2 x 105)/(19.8)2 = 5035.0MPa 

Fa= (0.6 X 250)/[1 + (250/5035)1.4] 111.4 = 148.42MPa 
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520 xl8 plate 

286 SC250@65.6 

520 xl8 plate 

250 

1- 520 

Fig. 11.6. Built-up columns cross-section for example 11.2 

• Load carrying capacity of built-up column 

Pu = (29.62 X 103) X 148.42 X 10-3 = 4396.2kN > 4200kN. 

Thus SC 250 rolled section with 2- 520 x 18 mm cover plates as shown in Fig. 11.6 
is adequate. 

11.4 Beam Design Formula 

11.4.1 Lateral Buckling of Beams 

As discussed in Chap. 7, in a laterally unsupported beam where minor axis moment of 
inertia is less than the major axis moment of inertia, there is likelihood of occurrence 
of lateral buckling. The compression flange deflects normal to the plane of loading 
besides bending in the plane of loading. Thus the beam gets twisted while undergoing 
vertical displacement, which is called flexural-torsional buckling. 

A simply supported beam having doubly symmetrical cross-section and an un­
supported compression flange, when subjected to equal end moments about the major 
axis (i.e. moment diagram is rectangular consequently compression flange is under 
uniform compression) buckles laterally beside bending in the plane of loading when 
the moment reaches its critical value. The critical moment is given by (7 .66) which 

can be expressed as: 

j( (n2EJ ) Mer= -j(ElyGJ) 1 + L~G; Le 

or Mer= 
n 2JElyElw l ( L~GJ) (11.34) 

L2 + n 2Elw e 
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However, this critical moment is influenced by following factors: 

1. The moment gradient. The critical moment given by (11.34) is applicable to 
uniform moment case when moment gradient is zero. Under other types of loads, 
beam buckles at a moment obtained from (11.34) multiplied by moment factor 
C which depends on the loading and boundary conditions as given in Table 7 .2. 
By ignoring the effect of moment factor, a conservative design is obtained. IS: 
800 adopts a value of unity for C. 

2. Load position. The derivation of (11.34) assumes the transverse load to act at 
the centroid of the section which is true for doubly symmetrical section where 
centroid coincides with the shear centre. If the load P is acting at a point above 
or below the shear centre at distance e and if it is free to move sideways with the 
beam it exerts additional torque Pe¢. This additional torque causes a decrease 
or increase in the resistance of the beam against lateral buckling, depending 
upon the type and position ofthe load; and torsional parameter (:rr2 Elw/ L~GJ). 
The bottom flange loading increases and top flange loading reduces the critical 
moment. These effects are taken care of by introducing factor C as given in 
(11.37). 

3. Adjacent spans. The critical moment is influenced by division of span into 
segments due to lateral supports within the span or by existence of adjacent 
spans. The adjacent spans, increase the critical moment due to their restraining 
effect. Since the presence of adjacent spans has a beneficial effect on the critical 
moment, most codes consider the effect indirectly by increasing the effective 
length of compression flange. 

4. Inplane deflections. In the derivation of (11.34), the effect of major axis deflection 
has not been considered. If this effect is included critical moment is obtained 
from the following equation: 

(11.35) 

or Mer=(~~) (11.36) 

where r = (1 - Iy/ lz). For a typical beam where Iy/ Iz is 1/5, the effect is an 
increase of 10 per cent on moment. For the beams of MB series where Iy « Iz, 
the effect is negligible. 

11.4.2 Effective Length of Compression Flange 

In order to consider the effect of boundary conditions, load position and restraint pro­
vided at the ends, the length of unsupported portion of compression flange is replaced 
by effective length of compression flange, which is the product of unsupported length 
of compression flange and the effective length coefficient of the compressive flange. 
Thus, a general equation for critical stress acr,c in the compression flange of a doubly 



470 11 Structural Design For Stability Of Members 

symmetric !-section subjected to major axis bending can be written in the following 
form: 

CrrJEiyG1 [ rr2 Elw 2 J C,rrffilw a - 1+--(C +1) +- -
cr,c- L Z L2G1 I L G1 

e z e e 
(11.37) 

where Ely, Elw and G 1 are minor axis flexural rigidity, warping rigidity and torsional 
rigidity, respectively. Z2 is section modulus about Z-axis, Le is effective length, C is 
coefficient which accounts for the beneficial effect of moment gradient along the 
beam axis; and C1 is the coefficient which accounts for the toppling or stabilizing 
effects due to load acting at the top or bottom flange of the beam. The last term should 
be added when load is applied at the bottom flange and subtracted when it is applied 
at the top flange. 

Example 11.3. A 30m long WB 600 @ 145 kg/m beam is laterally unsupported over 
its entire length, determine the maximum normal stress in the beam corresponding to 
lateral torsional buckling for each of the following loading and support conditions: 

(1) subjected to equal end moments M0 causing single curvature bending (uniform 
moment) with v = f3 = v" = {3" = 0 at both the supports; and 

(2) subjected to a concentrated load at the mid span with v = f3 = v' = {3" = 0 at 
both the supports. 

Consider the plane of web of the member to be in the plane of the applied bending 
moments. Neglect the weight of the beam itself. Assume Fy = 450MPa, E = 
2.7G = 2.1 x 105 MPa. 

The cross-sectional properties for WB 600 are: 

ly = 52.983 x 106 mm4 ; 

lw = ly(D2 /4) = 476.847 x 1010 mm6 ; 

Zz = 3.854 x 106 mm3 ; 

1 = 0.9BT3 = 0.9 X 250 X (23.6) 3 = 2.9575 X 106 mm4 • 

Case 1: For the uniform moment case, from (11.34) 

The maximum normal stress which occurs at the extreme fibres is 

fb = Mcr/Zz = 44.495MPa. 

This is less than the yield stress value minus any compressive residual stress. There­
fore, the member buckles in the elastic range. 

Case II: For the concentrated load case, the buckling moment can be determined 
using (11.37) and the values given in Table 7.2. In this case C1 = 0 and for 

Kx = Kz = 1.00, C = 1.70 
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Therefore, 

Mz,cr = 1.7 X 171.48 = 291.516kNm 

Assuming elastic behaviour, the maximum normal stress is: 

fx.b = 1.7 x 44.495 = 75.64MPa. 

For a maximum compressive residual stress, Fr = 0.50Fy, the proportional limit 
stress is: 

Fp = Fy - 0.50Fy = 0.50Fy = 225 MPa. 

The cross-sectional still remains in the elastic range. 

11.4.3 Codal Provisions 

AISCS: The allowable stresses in bending Fb (in MPa) are: 

1. For sections in tension, Fb = 0.60Fy 
2. For sections in compression, 

a) For J703 x 103Cb/ Fy ::: L/rr ::: J3516 x 103Cb/ Fy 

Fl - F [~- Fy(L/rT)2 J < 0 60F 
b - y 3 10550 X 103Cb - . y 

(11.38) 

b) For L/rT 2: J3516 x 103Cb/ Fy 

Fb = 1172 x 103Cb/(L/rT)2 ::: 0.60Fy (11.39) 

c) When compression flange is solid and rectangular with its area not less than 
tension flange. 

(11.40) 

where L, D and rT are unbraced length of compression flange (m), overall 
depth of girder (m) and radius of gyration of section comprising the com­
pression flange and one-third of compression web (m), respectively, Af is 
the area of compression flange. 

AISCS does not provide for any allowance for potentially dangerous condition of 
top flange loading. A loading condition other than pure bending is represented as an 
equivalent uniform moment, Meq multiplied by a factor Cb i.e. 

(11.41) 

The factor Cb depends upon the type of loading and is approximated as: 

Cb = 1.75 + 1.05(Mt/ M2) + 0.3(Mt/ M2)2 :f 2.3 (11.42) 

where M1 and M2 are smaller and larger end moments, respectively. The ratio Mtf M2 

is considered positive when the beam bends in reverse curvature (i.e. M 1 and M 2 

have the same sign). 
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BS: 449 

(a) For beams having flanges of uniform cross-section throughout or each being of 

uniform cross-section but where lye > lyt. Fb ::: 0.66Fy for parts in tension and 
compression. For a doubly symmetric 1-beam subjected to pure bending (11.34) can 
be written in the form: 

(11.43) 

Since lw = ly (D2 /4) for 1-section. Further using following approximations for the 
geometric and material properties: 

lz = 1.1BTD2 /2, Zz = l.lBTD, ly = B3 Tj6, J = 0.9BT3 . 

B = 4.2r y and E = 2.5G = 2 x 105 MPa, (11.43) reduces to: 

F. =(1675) 2
[ 1 __!__{(L/ry)l 2

]
112 

er L/ry + 20 (D/1) 
(11.44) 

(b) For beams having unequal flanges 

(i) For the section having flanges of equal moment of inertia i.e. /ft = Ire 

F. = ( 1675 ) 2 [l __!__ { (L/ry) }2
] 

112 

er L/ry + 20 (D/1) 
(11.45) 

(ii) If he > lft 

- ( 1675) 2 
[ Fer-

L/ry 
(11.46) 

where k2 = 2m - 1 form ::: 0.5, and (2m - 1)/2 form > 0.5, in which m 

is the ratio of moment of inertia of compression flange to moment of inertia of 
whole section about Y-axis. Both are calculated at the point of maximum bending 
moment. 

(iii) Ire < lft 

- (1675) 2 
[ Fer-

L/ry 
(11.47) 

where L, D and T are effective length, overall depth of girder, and effective 
thickness of flange, respectively; Ye and y1 are distances of compression and 
tension fibres from the neutral axis, respectively. r y is radius of gyration of whole 
section about Y -axis, at the point of maximum bending moment. The parameter 
k2 allows for inequality of tension and compression flanges that depends upon 
factor m. The allowance for the increased danger of top flange loading is provided 
by calculating Fer using 20 per cent increased length of compression flange. 
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AS: 1250 

The relations between critical stress Fer and allowable bending stress Fb in compres­
sion are: 

Fb = Fer [ 0.55 - 0.1 ( i;) J when Fer ::::: Fy, (11.48) 

F, = Fa [ 0.95 - 0.5ffl when Fer> Fy (11.49) 

The expressions for Fer are the same as proposed by British code and are given by 
Eqns (11.45) and (11.46), except for the factor (1675)2 which has been replaced by 
(1627.88)2 ~ 2650 x 103 i.e. 

k 2650 X 103 
F. - 1 ---,-;:--
cr- (L/ry)2 { 1 + _!_ (L T)2

} 
20 ry D 

(11.50) 

wherek1 = 0.2+0.8N f:.. 0.25. Thecoefficientk1 allowsforcurtailmentofthickness 
and/ or breadth of flanges between points of effective lateral restraint and depend upon 
N, the ratio of the area of both the flanges at the point of minimum bending moment 
to the area of flanges at the point of maximum bending moment. 

IS:SOO 

The critical stress for prismatic doubly symmetric sections given by following equa­
tion is modified to make it applicable to monosymmetric sections, angles, tees and 
non prismatic sections. The relation: 

2650 X 103 1 Ljry 2 [ ]
1/2 

Fer= (L/ry)2 1 + 20 (n;T) 
is replaced by: 

where 

Y = 2650 x 103 j(L/ry)2 and X= Y [1 + _!_ (L/ry)
2
]

112 

20 DjT 

(11.51) 

(11.52) 

• k1 =a coefficient depending on the ratio R1 of total areas of both flanges at the 
points of least and maximum bending moments, 

• k2 = a coefficient which depends on the ratio R2 of moment of inertia of com­
pression flange alone to that of the sum of the moments of inertia of flanges about 
their own axes parallel to Y -axis, 
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• c1, c2 = the lesser and larger distances of extreme fibres from the neutral axis of 
the section, 

• r y = radius of gyration of section with respect to Y -axis. 
• T = mean thickness of compression flange. 
• B, D =the breadth and overall depth of the cross-section, and 
• L = effective length of the compression flange. 

The coefficients k1 and kz are given in Table 11.1. The value of Fer given by 
(11.52) is increased by 20 per cent if T/t ::::; 2 and dift ::::; 1344/ JFy. 

The quantities, T, t and d, represent mean thickness of flange, thickness of web 
and unsupported width of web (distance between fillet lines for rolled beams). In 
order to predict critical stress at both elastic and inelastic stages, empirical relations 
of the type used for columns are recommended: 

Fer= Fy/[1 + (Fy/ Fert]lfn (11.53) 

The exponent n is taken as 1.4 for all Indian rolled sections. Using a factor of safety 
of 1.5 instead of 1.67 for columns, the allowable bending compressive stress Fbe is 
given by: 

Fbc = Fer = 0.66 Fy 
1.5 [1 + (Fy/Fer)n]ljn 

(11.54) 

where Fy and Fer are yield stress of the material and elastic bending critical stress. If 
the multiplying factor [1/[1 + (Fy/ Fer)n]Ifn] is less than one, lateral buckling occurs 
before material reaches the yield point. Thus, 

(i) Fbe ::::; 0.66Fy for no buckling case 

(ii) Fbe ::::; 0.66Fy/[1 + (Fy/ Fert] 1fn for buckling case 

(11.55) 

(11.56) 

The allowable bending stress is lesser of the two values for buckling and no buckling 
cases. 

where 

Table ll.lValues of coefficients k1 and kz 

k1 values for the beams with curtailed flanges 

l.O 0.9 0.8 0.7 0.6 0.5 
l.O l.O l.O 0.9 0.8 0.7 

0.4 
0.6 

0.3 
0.5 

0.2 
0.4 

kz values for the beams with unequal flanges 

1.0 0.9 0.8 0.7 0.6 
0.5 0.4 0.3 0.2 0.1 

0.5 
0.0 

0.4 
-0.2 

0.3 
-0.4 

sum of areas of both flanges at Mmin 
RI =----~--~~~~~--~~ 

sum of areas of both flanges at Mmax 

lye 
Rz = --'--­

lye+ lyt 

0.2 
-0.6 

lye. ly1 = ly of compression and tension flanges, respectively 

0.1 
0.3 

0.1 
-0.8 

0.0 
0.2 

0.0 
-1.0 



11.4 Beam Design Formula 475 

Example 11.4. A built-up girder of an industrial building is composed of a MB 300 
rolled steel section with MC 250 at the top flange and a cover plate of 220 x 16 mm 
at the bottom flange as shown in Fig. 11.7. The girder has a span of 5.25 m with an 
unsupported compression flange. The ends are simply supported with partial torsional 
restraint. Determine the allowable bending compressive stress and shear stress to be 
used in the design of girder. 

The girder cross-section is shown in Fig. 11.7. The sectional properties from 
metal tables are: 

MB300 

a= 5860mm2 

T=13.1mm 
t =7.7mm 
lz = 89.90 x 106 mm4 

ly = 4.86 x 106 mm4 

Rb = 14.0mm 

MC250 

a= 3900mm2 

T=14.1mm 
t =7.2mm 
lz = 38.80 x 106 mm4 

ly = 2.11 x 106 mm4 

Cy = 23mm 

Plate: 220 x 16 nun 

a= 3520mm2 

5860 X 157.2 + 3900 X 23 + 3520 X (300 + 7.2 + 8) 
Yc = 5860 + 3900 + 3520 = 159·67 mm = C] 

y1 = 300 + 7.2 + 16- 159.67 = 163.53 mm = c2 

For the whole section 

A= 13280mm2 

/ 2 = 89.90 X 106 + 5860 X (159.67- 157.2)2 + 2.11 X 106 

+ 3900 X (159.67- 23)2 + 3520 X (163.53- 8)2 = 250.04 X 106 mm4 . 

fy = 4.86 X 106 + 38.80 X 106 + 16 X 2203/12 = 57.86 X 6mm4 . 

140 ~I 

MC250 

159.67 c1 

N ---- A 

163.53 c 2 MB300 

220xl6 

Fig. 11.7. Cross-section 
of the girder of example 
11.4 
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Average flange thickness, T = (250 x 7.2 + 140 x 13.1)/250 = 14.54mm. Total 
depth, D = 300 + 7.2 + 16 = 323.2mm 

D/T = 323.2/14.54 = 22.27 

Effective length is increased by 20 per cent. Therefore, 

Le = 5250 X 1.0 X 1.2 = 6300 mm. 

ry = llJA = ../57.86 x 106/13280 = 66.00mm 

Therefore, Le/ry = 6300/66 = 95.44 and the ratio 

(Le/ry)/(D/1) = 95.44/22.27 = 4.29 

As the section is prismatic k1 = 1.0. For the compression and tension flanges 

fye = 38.80 X 106 + (13.1 X 1403 /12) = 41.80 X 106 mm4 . 

fyt = (16 X 2203 /12) + (13.1 X 1403 /12) = 17.19 X 106 mm4 . 

R2 = lyc/(/ye + ly1) = 0.71 

For R2 = 0.71, k2 = 0.21 
Parameters for critical stress: 

Y = 2650 x 103 /(95.44)2 = 290.93MPa. 

X= 290.93 x [1 + 4.292 /20] 112 = 403.14MPa 

Therefore, 

Fer= k1 (X+ k2Y)(c2jci) 

= 1.0 X (403.14 + 0.21 X 290.93) X (163.53/159.67) = 475.46MPa. 

Tft = 14.54/7.7 = 1.89 < 2.0 

ddt= [300- 2(13.1 + 14.0)]/7.7 = 31.9 < 85 

Hence, increase Fer by 20 per cent. Therefore, 

Fer = 475.46 X 1.2 = 570.55 MPa. 

For the Ratio, Fy/ Fer= 250.0/570.55 = 0.438 and n = 1.4 

Fbc = 0.66 x 250/[1 + (0.438)1.4] 111.4 = 135.69MPa. 

Allowable shear stress, F.= 0.4 x 250 = 100.00MPa. 

11.4.4 Bearing Compressive Stress 

High bearing compressive stress due to application of excessive load over a small 
length of beam may result in web crippling. In practice the bearing lengths b provided 
are usually large enough to prevent web crippling. The bearing stress requirements 
of various codes are given below. 
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AISCS 

Load dispersion through flanges has been taken to be 45° which provide a length of 
(b + k) or (b + 2k) for the end reactions and interior loads, respectively. The critical 
area for the stress, which occurs at the toe of fillet is given by (b + k)tw or (b + 2k)tw, 
and the permissible bearing stress Fp is equal to: 

1. For thick webs: 

Fp = 0.75Fy (11.57) 

2. For thin webs: (a) When compression flange is quite free to rotate about its 
longitudinal axis. 

[ (h)2
] 69000 . Fp = 2+4 - --2 (mMPa) 

a (hft) 
(11.58) 

(b) When the flange is restrained from rotating by rigid slab or some other means. 

[ (h)2
] 69000 

Fp = 5.5 + 4 -;; (hjt)Z (in MPa) (11.59) 

BS: 449 

(i) For thick webs load distribution is taken at 30° (from horizontal) through the 
flanges and bearing stress is equal to: 

Fp = 0.75Fy (11.60) 

(ii) For thin webs, the bearing stress is given by the axial load-carrying capacity of 
strut whose effective slenderness ratio and area are (h../3)/t and Bt, respectively, 
where B is the length of the stiff portion of the bearing plus additional length 
given by 30° dispersion as shown in Fig. 11.8. 

For concentrated load, B = b + 2../3k 

For support reaction, B = b + v'3k 

where k is the fillet depth or distance from the outer face of the flange to the web 
toe. h is clear depth of web between root fillets ( = D - 2k) and b is the bearing 
length of concentrated loads or reactions. 

AS: 1250 

The specifications are same as those given by the British code. 
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b 
(a) 

(b) 

Fig. ll.Sa,b. Dispersion through flanges and web for computing of bearing area. a Dispersion 
for web crippling, b dispersion for web buckling 

IS: 800 

The requirements are the same as those given by the British code. 

11.5 Stiffeners 

The web of a girder may buckle locally either under pure shear due to diagonal com­
pression, or under flexure due to bending compressive stress, or under concentrated 
loads due to bearing compressive stress. This local buckling of web is prevented by 
providing stiffeners, called intermediate vertical (transverse) stiffeners, horizontal 
stiffeners and bearing stiffeners. 

11.5.1 Vertical Stiffeners 

The vertical stiffeners divide the web into panels and enhance the buckling strength 
under diagonal compression due to pure shear. The recommended spacing is from 
one-third to one and a half times the clear distance between flanges or from the 
tension flange (farthest flange) to the nearest horizontal stiffener, if they exist. 
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AISCS 

According to these specifications intermediate stiffeners are required when the ratio 
(h/tw) is greater than 260 and maximum web shear stress is greater than permitted 
by (11.22). 

The moment of inertia of a pair of intermediate stiffeners, or a single intermediate 
stiffener Is w.r.t. an axis in the plane of the web shall not be less than (h/50)4 and 
the gross area of the stiffener is given by 

As = 1 - Cv [~ - (ajh)z ] YDht 
2 h Jt + (ajh)2 

The spacing of the stiffeners, a is governed by the equation: 

where 

a [ 260 ] 2 

h ~ (h/tw) and 3.0 

Y = ratio of yield stress of web steel to yield stress of stiffener steel, 

D = 1.0 for stiffeners provided in pairs, 

= 1.8 for single angle stiffeners, and 

= 2.4 for single plate stiffeners. 

BS: 449 

(11.61) 

(11.62) 

In order to ensure that the intermediate stiffeners effectively restrain the web plate 
and enable it to act as a rectangular plate supported at four edges. The minimum 
moment of inertia should be 

(11.63) 

where Is for a pair of stiffeners is about the centre of the web, and for single stiffener 
about the face of the web; a is the maximum permitted clear distance between vertical 
stiffeners, and h is unsupported web depth. 

The requirements for the vertical stiffeners in AS: 1250 and IS: 800 are the same 
as given in the British code. 

11.5.2 Horizontal Stiffeners 

The horizontal stiffeners in single or in pairs are provided between vertical stiffeners 
to prevent local flexural buckling of the web. 
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AISCS 

There is no provision for horizontal stiffener in the specifications. However, the United 
States Steel Handbook suggests provision of horizontal stiffeners in the compression 
zone of the web, preferably at 0.2h from the compression flange, to increase buckling 
strength. 

BS: 449 

For deep webs i.e. 200 < d2/t < 250, one horizontal stiffener is provided at 0.4 
(= 2/5) times the distance from the compression flange to the neutral axis with 
Is ~ 4 at3, where d2 is equal to twice the clear distance of compression flange or 
plate from neutral axis, a is actual distance between vertical stiffeners, and t is the 
minimum thickness of the web. 

When further stiffening of the web is desired, another horizontal stiffener is 
placed at the neutral axis of the girder. This stiffener serves exclusively to reduce the 
web panel dimensions and carries no significant load. Therefore, smaller Is = ht3 

is provided, where h = d2 as defined above. The requirements for the horizontal 
stiffener in AS: 1250 and IS: 800 are the same as given by British code. According 
to IS: 800 the outstand of a stiffener from the web to the outer unstiffened edge of 
the stiffener should not be more than 256t/ .[F; for rolled sections and 12t for flats 
where t is the thickness of the web or flat. 

11.6 Beam-Column Design Formulae 

In the preceding chapters various possible failure modes for the beam-columns have 
been discussed and procedures have been developed for determination of associated 
critical loads. In general, a beam-column is subjected to two different kinds of 
loading: axial thrust and bending moment. Based on the ratio P/ Pu and M/ M0 , 

a single interaction equation that provides reasonable prediction of structural strength 
is given by: 

p M 
-+-=0 
Pu Mu 

(11.64) 

where P and Pu are applied axial load, and the axial force carrying capacity of 
the member, respectively, when axial force alone exists. M and Mu are maximum 
bending moment due to applied transverse loading or applied end moments acting 
in the plane of symmetry, and the bending moment carrying capacity, respectively, 
when moment alone exists. Pu and Mu may be either elastic or inelastic. Pu depends 
upon the slenderness ratio and for very short columns it approaches the yield load i. e. 
Pu = ayA. Mu depends upon the lateral support conditions, for a laterally supported 
member, Mu will be the maximum bending moment that the cross-section can sustain 
i. e. fully plastic moment. 
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To include the effect of secondary moment due to axial thrust i.e. thrust times the 
deflection, on maximum bending moment M, an amplification factor 1/(1- Pj Pe) 
is introduced, and interaction equation (11.64) reduces to 

p M 
- + < 1.0 
Pu Mu(l - Pj Pe) -

(11.65) 

where Pe is the Euler buckling load of the member in the plane of applied bending 
moment. Equation (11.65) is valid for the cases when end moments are equal (/3 = 
1.0) i.e. the moment gradient is zero. To account for the moment gradient due to 
different loading and support conditions, a modification factor to Mu, Cm which is 
less than unity but greater than 0.40 is introduced. The interaction equation changes 
to: 

p M 
- + < 1.0 
Pu (Mu/Cm)(l - P/ Pe) -

(11.66) 

Equation ( 11.66) can be expanded to handle biaxial bending conditions. 

P M M - + X + y < 1.0 
Pu (Mux/Cmx)(1 - Pj Pex) (Muy/Cmy)(l - Pj Pey) -

(11.67) 

Here Pu is computed for the larger effective slenderness ratio of the member. The 
subscripts x andy refer to the two principal directions of bending. In terms of stresses 

Pu 
---F A(FS) - a. 

M Z =/be and 

where A, FS and Z are area of cross-section, factor of safety and section modulus, 
and 

• Fa = axial compressive stress that would be permitted if axial load alone existed, 
• Fbe = compressive bending stress that would be permitted if bending moment 

alone existed, 
• fa = computed axial stress, 
• /be = computed bending stress, and 
• Cm =a reduction factor used to modify the amplification factor 1/[1 - fa/(F;)] 

On substitution of values ( 11.67) reduce to 

/a + /bex [ Cmx ] + /bey [ Cmy ~ 1_0 
Fa Fbex 1 - /a/(F~) Fbey 1 - fa/(F~y)] 

(11.68) 

where Fex and Fey are elastic critical stresses w.r.t. principal axes of column. 
Fe and F~ are given by: 

(11.69) 
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11.6.1 Codal Provisions 

The approximate expression for combined stresses in a short beam-column subjected 
to an axial load and bending moments with respect to both the axes may be expressed 
as: 

/max=!_± (MxC!) ± (Myc2) 
A fx fy 

(a) 

The expression can be rewritten as: 

/max = fa+ fbx + /by (b) 

with the negative signs neglected (i.e. considering the absolute value), dividing both 
sides by f max 

1 = __/!____ + /bx + /by 

/max /max /max 
(c) 

For design application the above expression can be improved by introducing the 
applicable allowable stresses in place of !max' the following interaction formula is 
obtained. 

fa + /bx + /by < l.O 
Fa Fbx Fby -

(d) 

where the subscripts x and y indicate the axis of bending about which a particular 
stress applies. The interaction equations used in various national codes are described 
below. 

AISCS 

(a) Axial compression and biaxial bending 

If fa/ Fa < 0.15, the effect of compression on bending is relatively small and linear 
interaction formula is recommended. 

fa + /bex + /bey < l.O 
Fa Fbex Fbey -

(11.70) 

For fa! Fa 2: 0.15, the secondary moment due to member deflection may be of 
a significant magnitude which may be taken care of by the amplification factor 

1/ {1- [/e/ (F~)]} 

where F~ = Fe/ FS and FS = 23/12. Thus for the factor of safety FS = (23/12) 
(11.68) is expressed as: 

fa + Ibex Cmx + /bey Cmy < 1.0 
Fa Fbex [1 _ ~] Fbcy [1 _ 23/a J -

!2Fex !2Fey 

(11.71) 
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At the supports and points braced in the plane of bending. 

_A__ + /bex + /bey < l.O (11.?2) 
0.6Fy Fbcx Fbey -

These equations recommended for the design of beam-columns are essentially empir­
ical. The factor of safety depends partly upon the relation selected to define allowable 
stresses Fa and Fb. The quantity Fa varies with slenderness ratio Le/r and has a factor 
of safety varying from 1.67 to 1.92. On the other hand Fb normally corresponds to 
1 I 1. 67 of the plastic moment capacity of the section. Thus the real factor of safety for 
the beam-columns can not be determined from individual components. The reduction 
factor Cm is defined as: 

(i) A beam-column in a frame where computed moments are maximum at the ends 
and joint translations are permitted: Crnx, Cmy = 0.85. 

(ii) A beam-column in a frame that is subjected to end moments with joint translations 
prevented and transverse loading being absent: 

Cmx, Cmy = 0.6 + 0.4,8 =::: 0.40 

where ,8 is the end moment ratio (smaller end moment to larger end moment) 
< 1.0 in the portion unbraced in the plane of bending. ,8 is to be taken positive 
if the end moments tend to produce single curvature. ,8 is negative if double 
curvature is induced. 

(iii) A beam-column which is braced against joint translation and subjected to trans­
verse loading: 

Cm = 1 + l/lfa/ F~ and F~ = Fe/ FS 

where value of 1/1 depends upon the transverse loads and end restraints. 

1/1 = (rr280 Elx/ M 0 L 2) - 1 

(11.73) 

(11.74) 

where 80 and M0 are the maximum deflection and maximum bending moment 
between the supports, respectively, due to transverse loads. 

(b) Axial tension and biaxial bending 

_A__ + /bex + /bey < l.O 
0.6Fy Fbex Fbey -

(11.75) 

where Fbex = Fbey ::S 0.66Fy 

BS: 449 

(a) Axial tension and biaxial bending 

fa + /btx + /bty < l.O 
Fa Fbe -

(11.76) 
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(b) Axial compression and biaxial bending 

fa + /bex +/bey < 1_0 
Fa Fbc -

(11.77) 

where Fb is the appropriate stress for the member subjected to bending. The code has 
not differentiated between Fbx and Fby. they may be different. 

AS: 1250 

The specifications are identical to those of AISCS except that a factor of safety equal 
to 1.67(1/ FS = 0.6) has been used instead of 23/12. 

IS: 800 

Specifications are the same as those of AS: 1250. 

11.6.2 Design of a Beam-Column Member 

As noted earlier indeterminate structural design is basically an iterative process. To 
start the process, based on the judgement or limiting simplifications a cross-section 
is selected for examination. The selected cross-section is examined for its adequacy 
to sustain the imposed loading safely. Based on this examination another lighter or 
heavier cross section (as situation warrants) is selected for examination. The process 
is repeated till a cross-section with just adequate margin of safety is obtained. To 
help in the above procedure an approximation to the area of cross-section of a beam­
column can be arrived at from the interaction formula (11.68). Let in an extreme case 
Cmx, Cmy = 1.03; Therefore, 

( 1 - .....&_) Fbe = (~ to ~3 ) Fbe = Fa 
0.6Fe 4 

and the interaction formula becomes 

fa + /bcx + /bey = 1 · + +. +. F I.e. Ja + Jbex + Jbcy = a 
Fa Fa Fa 

or 
P Mx My 
-+-+-=Fa 
A Zx Zy 

A A 
or P + Mx- +My-= FaA= Peff 

Zx Zy 
(11.78) 

where P and Peff are actual and equivalent axial loads, respectively. 
For Indian rolled steel sections in the MB series in the practical range of the 

sections: A/ Zx = 0.01 and A/ Zy = 0.08; and for SC series in practical range: 
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A/Zx = 0.015 and A/Zy = 0.050. The area of cross-section can be estimated by 
making use of appropriate values for A/Zx and A/Zy in (11.78) 

A= [P+Mx~ +My~] /Fa 
Zx Zy 

(11.79) 

Alternatively, a compressive allowable stress Fa is assumed based on the slenderness 
ratio of column, and the area required on the basis of compression only is determined. 
The area is multiplied by a factor of 2 or more to account for the effect of moments 
acting on the column. The procedure has been illustrated in the following example. 

Example 11.5. Design a rolled steel SC series beam-column of 3.8 m length to resist 
an axial compressive load of 820kN and biaxial moments Mx of 2.90kNm and My 
of 1.95 kNm. The effective length factor for the column is 0.7. Fy for the column 
material is 250 MPa and E = 2 x 105 MPa. 

For SC Series section: 

A/Zx = 0.015; A/Zy = 0.050 and Fa= 132MPa (for assumed Le/r =50). 

Approximate area of the cross-section from ( 11. 79) 

A = (820 X 103 + 2.90 X 106 X 0.015 + 1.95 X 106 X 0.050)/132 

= 7280mm2 • 

Consider SC 200 @ 60.3 kgjm rolled steel section. For this section from metal tables: 
A= 7680mm2, B = D = 200mm, lx = 5530 x 104mm4, ly = 1530 x 104mm4, 
rx = 84.8mm, ry = 44.6mm, Zx = 553 x 103 mm3 and Zy = 153 x 103 mm3. For 
Lj B = 3800/200 = 19 < 23 (for the case when weaker axis is unsupported) 

Fbc = 0.66Fy = 0.66 x 250 = 165 MPa. 

The slenderness ratios are 

Therefore, 

Lefrx = 0.7 X 3800/84.8 = 31.37 and 

Le/ry = 0.7 X 3800/44.6 = 59.64 

Fex = 1r2 Ej(Lefrx)2 = 2005.86MPa. 

Fey = 1r2 Ej(Le/ry)2 = 554.95 MPa. 

From (11.10) for Lefr = 59.64 

Fa= 0.6Fy/ (1 + (Fy/ Fec)L4]1/1.4 = 0.6 x 250 
[1 + (250j554.95)1.4tl.4 

= 122.52MPa 
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The individual simple stresses are: 

fa= 820 x 103/7680 = 106.77MPa. 

/bex = 2.90 X 106 /(553 X 103) = 5.24MPa. 

/bey = 1.95 x 106 /(153 x 103) = 10.13 MPa. 

Moment amplifications factor due to axial thrust 

1 - [106.77 /(0.6 X 2005.86)] = 0.9113 

1 - [106.77 /(0.6 X 554.95)] = 0.6793 

Substituting the value in the interaction formula 

106.77 5.24 10.13 
122.52 + 0.9113 X 165 + 0.6793 X 165 = 0·997 < l.O 

The selected cross-section is adequate as it meets the specification interaction equation 
requirement. 

Example 11.6. A typical vertical member of a rigid multistory sway frame of height 
3.8 m is subjected toP= 200kN, Mx = 30kNm and My = 8 kNm. At the top and 
bottom of the member, the L kc and L kb values are 10, 25 and 16, 25, respectively. 
HB 300 @ 588 N/m section is readily available. Check the adequacy of the section. 
Fy and E for the material of member are 250 MPa and 2 x 105 MPa, respectively. 

For H 300@ 588Njm section: A = 5880mm2, rx = 130mm, ry = 54.1 mm, 
Zx = 836 x 103 mm3 and Zy = 175 x 103 mm3 . 

For the given member of the sway frame, the member end distribution factors are: 

Lkc 10 
fh = Lkc + (3/2) Lkb = 10 + (3/2) X 25 = 0'211 

16 
f)z = 16 + (3/2) X 25 = 0.299 

Since the beams bend antisymmetrical i.e. in double curvature during sway a factor 
3/2 has been used. For the sway case with fh = 0.211 and fh = 0.299 the effective 
length ratio from the effective length charts given in Fig. 11.9b is: K = 1.16 < 1.2. 

Therefore, K = 1.2. The slenderness ratios are 

Therefore, 

KLfrx = 1.2 X 3800/130 = 35.08 

KL/ry = 1.2 x 3800/54.1 = 84.29 

Fecx = rr 2Ej(KLfrx)2 = 1604.02MPa 

Fecy = rr2 Ej(KL/ry)2 = 277.83 MPa. 
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Fig. 11.9a,b. Effective length ratio curves for columns. a For columns in non-sway frame, b 
for columns in a sway frame 
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The permissible stresses are: 

Fa= 0.6Fy/ [1 + (Fy/ Fee)!.4fl 1.4 = 0.6 x 250/ [1 + (250/277.83)!.4f 1!.4 

= 96.19MPa 

/bex = Fbcy = 0.66Fy = 0.66 X 250 = 165 MPa. 

fa= (200 X 103)/5880 = 34.01 MPa. 

fbcx = (30 X 106)/(836 X 103) = 35.89MPa. 

/bey= (8 X 106)/(175 X 103) = 45.71 MPa. 

The moment amplification factors due to axial thrust are: 

1 - [34.01/(0.6 X 1604.02)) = 0.9647 

1 - [34.01/(0.6 X 277.83)) = 0.7960 

Substituting the values in the interaction formula 

34.01 35.89 45.71 
96.19 + (0.9647 X 165) + (0.7960 X 165) = 0·927 < l.O 

Minimum depth required = 3800/15 = 253.33 mm < 300mm (available). The 
available section is more than adequate. 

11.7 Optimum Design 

The cost of a structural element depends on its weight, which in tum is related to its 
cross-sectional area. The structural design procedure used in the preceding sections 
consists in selecting a cross-section and checking its adequacy to sustain applied 
loads. The process is repeated till a safe design is obtained. This procedure may not 
yield the most efficient cross-section. To illustrate the underlying principles consider 
the design of a beam of length L having rectangular cross section of size t x d. 

Most of the national codes take the lateral stability a design consideration. For 
the uniform moment case the critical moment is given by (11.35). The equation is 
rewritten here for the convenience. 

1T 
Mer=­

Le 
(11.80) 

For thin rectangular cross sections, the torsional parameter (n2 Elw!L~GJ) being 
small can be ignored hence ( 11.80) reduces to: 

1T 
Mer=­

Le 

(ElyGJ)lx 

Ux- fy) 
(11.81) 
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It may be seen from the quantity under the radical that as ly approaches lx (i.e., 
for squarish cross-sections) the denominator becomes small so that critical moment 
becomes very large, a disadvantageous proposition. 

Consider the beam to be subjected to an applied moment M which is constant 
over the length of the beam. The cross-section t x d of the beam should be such that 
the calculated stress in the beam does not exceed the allowable stress in the material 
Fb. Thus 

6M 6M 
or Fb > - 2 i.e. td > -

- td - dFb 
(11.82) 

For the cross-sectional area td to be as small as possible, d should be as large as 
possible. Therefore, replace the inequality in (11.82) by the equality: 

td = 6M/(dFb) (11.83a) 

Therefore, 

(11.83b) 

The maximum value of dis subject to a constraint based on (11.81). Thus using 
a factor of safety FS in this connection. 

M(FS) S (;J 
For the given section: 

lx = td3 /12, ly = dt3 /12 and J = dt3 /3 

Therefore, from (11.84) 

rr:,JEG ( t) [ 1 ]1/2 
M(FS) S ~ d 1 - (tjd)2 (td)2 

(11.84) 

(11.85) 

Since it is desired to minimize td and maximize d, replace the inequality sign by 
equality sign. As the square of tId is expected to be small compared to unity, 

Therefore, 

M(FS) = ~;:: m [~+ mT' (~' (11.86) 

Substituting from (11.83) into (11.86) 

M F _ rr:,JEG ( 6M) [1 ( 6M ) 2
]

112 
( 6M) 2 

( S)- 6Le d3 Fb + d3Fb dFb 
(11.87) 
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Further neglecting (tfd)2 in comparison to unity yields: 

- [7r(6M)2(EG)1/2]1/5 
d- 3 

(FS)LeFb 
(11.88) 

This equation can be used as a starting approximation for an iterative solution to 
the optimal depth of the cross-section. For illustration consider steel beam with 
E = 2.5G = 2 x 105 MPa, Fb = 200 MPa and FS = 1.67. From ( 11.88). 

= [11:(36) [(2 x 105)(0.8 x 105)fl2 M2]
115 = 1 1 (M2) 1/5 

d (1.67)(200)3 Le .O 38 Le 
(11.89) 

Equation (11.89) provides a reasonable approximation to the optimal depth of the 
cross-section. For the purpose of iteration (11.85) can be rewritten as: 

(11.90) 

Example 11. 7. A two metre long rectangular beam is laterally unsupported over its 
entire length. Design the beam for lateral torsional buckling when it is subjected to 
a uniform moment of 15 kNm. The design stipulations are: 

E = 2.5G = 2 x 105 MPa, Fb = 200MPa and FS = 1.67. 

With these stipulations the first approximation to the optimal depth of beam is given 
by (11.89) 

For iteration (11.90) becomes 

d = { [7r2(6M)4 EG]/[(FS)LeF~]2} 1/10 

1 - [(6M)f(d3 Fb)]Z 

= { 1.451165 X 1022 } 1110 

1 - (2.025 X 1011 I d6) 
(a) 

Substituting the value of d = 162.27 mm in the right hand side of (a) results in a value 
of d = 164.686. The latest value of d = 164.686 when resubstituted in the iteration 
equation (a) gives d = 164.670. Further iteration does not improve the value of d; 
hence the optimum depth d of the cross-section is 164.670 mm. The corresponding 
thickness t of the cross section can be obtained from (11.83b): 

Thus the optimum cross-section of the beam is 16.6 x 164.7 mm. It should be noted 
that (11.88) provides a reasonable first approximation to the optimal depth. 
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11.8 Problems 

Problem 11.1. A centrally loaded column, is simply supported about strong axis at 

both ends, and fixed about weak axis with warping free at the top and restrained at 

the bottom. Determine the axial buckling load if the column cross-section is MB500 

with slenderness ratio Lefrx: (i) 25 and (ii) 110. Take E = 2.5G = 2 x 105 MPa. 

[Hint: The boundary conditions are: 

(i) at the top: v = v" = u = u' = f3 = f3" = 0 
(ii) at the bottom: v = v" = u = u' = f3 = f3' = 0, Kx = 1.00, Ky = 0.5 and 

Kz = 0.70. 
Compute Pcr,x• Pcr,y and Pcr,z· Lowest value will give the critical load.] 

Problem 11.2. A typical welded built-up cross-section compression chord of a bridge 

is shown in Fig. P.ll.2. Determine the axial thrust that the member can sustain if its 

length is 5.75m, K = 1.00, Fy = 250MPa and FS is 1.8. For the welded cross­

section, maximum compression residual stress Fr may be presumed to be 0.50Fy. 

[Hint: Determine A, lx and ly of the built-up cross-section and hence the least radius 

of gyration and governing slenderness ratio to compute Fa by AISCS method.] 
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Problem 11.3. A beam-column member of length 3.8 m is subjected to an axial 

thrust of 750 kN and a moment of 5 kNm about the major axis. The weaker plane of 
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the member is strengthened by bracing. Design the member, if its effective length 
coefficient is 0.70. 

Problem 11.4. Design a member of length of 3.8 m if it is subjected to an axial load 
of 750 kN, a major axis moment of 5.0 kNm and a weaker axis moment of 2.0 kNm. 
The effective length coefficient is 1.2. The column is free to buckle in any plane. 

Problem 11.5. A simply supported beam of span of 5.4m carries a uniformly dis­
tributed load of 42kN/m and two concentrated loads of 100kN each at one-third 
points. Design the beam using an available rolled steel section MB400, if the beam 
is laterally supported throughout the span. 

Problem 11.6. A 6.2 m long simply supported beam has lateral supports at the ends 
only. The ends of the beam are free to rotate at the bearings and are torsionally 
restrained. The beam section is composed of MB300 rolled steel section with a 220 x 
16 mm plate attached to the top flange, determine the allowable bending stress. 



Appendix A 

Stability Functions 

A.l Stability Functions for Compression Members 

Non-sway Frames Sway Frames 
p 

r (rc)2 c r' q s m t t' 

0.00 4.0000 4.0000 0.5000 3.0000 6.0000 12.0000 1.0000 1.0000 -1.0000 

0.02 3.9736 4.0265 0.5050 2.9603 5.9802 11.7631 1.0168 0.9333 -1.0337 

0.04 3.9471 4.0535 0.5101 2.9201 5.9604 11.5260 1.0343 0.8648 -1.0690 

0.06 3.9204 4.0808 0.5153 2.8795 5.9405 11.2889 1.0525 0.7943 -1.1060 

0.08 3.8936 4.1086 0.5206 2.8384 5.9206 11.0516 1.0714 0.7218 -1.1448 

0.10 3.8667 4.1369 0.5260 2.7968 5.9006 10.8142 1.0913 0.6471 -1.1856 

0.12 3.8396 4.1656 0.5316 2.7547 5.8805 10.5767 1.1120 0.5701 -1.2285 

0.14 3.8123 4.1947 0.5372 2.7120 5.8604 10.3391 1.1336 0.4905 -1.2737 

0.16 3.7849 4.2244 0.5430 . 2.6688 5.8403 10.1014 1.1563 0.4083 -1.3213 

0.18 3.7574 4.2545 0.5490 2.6251 5.8200 9.8636 1.1801 0.3233 -1.3715 

0.20 3.7297 4.2851 0.5550 2.5808 5.7998 9.6256 1.2051 0.2351 -1.4245 

0.22 3.7019 4.3162 0.5612 2.5359 5.7794 9.3875 1.2313 0.1438 -1.4805 

0.24 3.6739 4.3479 0.5676 2.4904 5.7590 9.1493 1.2589 0.0489 -1.5398 

0.26 3.6457 4.3801 0.5741 2.4443 5.7385 8.9110 1.2880 -0.0498 -1.6027 

0.28 3.6174 4.4128 0.5807 2.3975 5.7180 8.6726 1.3186 -0.1527 -1.6694 

0.30 3.5889 4.4460 0.5875 2.3500 5.6974 8.4340 1.3511 -0.2599 -1.7402 

0.32 3.5602 4.4799 0.5945 2.3019 5.6768 8.1953 1.3854 -0.3720 -1.8157 

0.34 3.5314 4.5143 0.6017 2.2531 5.6561 7.9565 1.4218 -0.4894 -1.8961 

0.36 3.5024 4.5493 0.6090 2.2035 5.6353 7.7176 1.4604 -0.6125 -1.9820 

0.38 3.4732 4.5849 0.6165 2.1532 5.6145 7.4785 1.5015 -0.7418 -2.0738 

0.40 3.4439 4.6211 0.6242 2.1021 5.5936 7.2393 1.5453 -0.8781 -2.1723 

0.42 3.4144 4.6580 0.6321 2.0502 5.5726 7.0000 1.5922 -1.0219 -2.2781 

0.44 3.3847 4.6955 0.6402 1.9974 5.5516 6.7605 1.6423 -1.1741 -2.3919 

0.46 3.3548 4.7337 0.6485 1.9438 5.5305 6.5210 1.6962 -1.3357 -2.5148 

0.48 3.3247 4.7725 0.6571 1.8893 5.5093 6.2813 1.7542 -1.5076 -2.6477 

0.50 3.2945 4.8121 0.6659 1.8338 5.4881 6.0414 1.8168 -1.6910 -2.7918 

0.52 3.2640 4.8524 0.6749 1.7774 5.4668 5.8015 1.8846 -1.8875 -2.9487 

0.54 3.2334 4.8934 0.6841 1.7200 5.4455 5.5614 1.9583 -2.0986 -3.1199 

0.56 3.2025 4.9351 0.6937 1.6615 5.4240 5.3211 2.0387 -2.3264 -3.3075 

0.58 3.1715 4.9776 0.7035 1.6020 5.4026 5.0807 2.1267 -2.5733 -3.5137 

0.60 3.1403 5.0210 0.7136 1.5414 5.3810 4.8402 2.2234 -2.8419 -3.7414 

0.62 3.1088 5.0651 0.7239 1.4795 5.3594 4.5996 2.3304 -3.1359 -3.9941 

0.64 3.0771 5.1100 0.7346 1.4165 5.3377 4.3588 2.4491 -3.4592 -4.2758 

0.66 3.0453 5.1558 0.7456 1.3522 5.3159 4.1179 2.5819 -3.8172 -4.5918 

0.68 3.0132 5.2025 0.7570 1.2866 5.2941 3.8768 2.7311 -4.2162 -4.9485 

0.70 2.9809 5.2500 0.7687 1.2197 5.2722 3.6356 2.9003 -4.6645 -5.3541 
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Non-sway Frames Sway Frames 
p 

r (rc)2 c r' q s m t t' 

0.72 2.9484 5.2985 0.7807 1.1512 5.2502 3.3943 3.0935 -5.1725 -5.8190 
0.74 2.9156 5.3479 0.7932 1.0814 5.2282 3.1528 3.3165 -5.7540 -6.3571 
0.76 2.8826 5.3983 0.8060 1.0099 5.2060 2.9112 3.5766 -6.4273 -6.9865 
0.78 2.8494 5.4497 0.8193 0.9368 5.1838 2.6694 3.8839 -7.2174 -7.7323 
0.80 2.8159 5.5020 0.8330 0.8621 5.1616 2.4275 4.2526 -8.1592 -8.6295 
0.82 2.7822 5.5555 0.8472 0.7855 5.1392 2.1854 4.7032 -9.3032 -9.7285 
0.84 2.7483 5.6100 0.8618 0.7071 5.1168 1.9432 5.2664 -10.7253 -11.1051 
0.86 2.7141 5.6655 0.8770 0.6267 5.0943 1.7008 5.9904 -12.5445 -12.8784 
0.88 2.6797 5.7223 0.8927 0.5442 5.0718 1.4583 6.9556 -14.9591 -15.2467 
0.90 2.6450 5.7801 0.9090 0.4596 5.0491 1.2157 8.3069 -18.3264 -18.5672 
0.92 2.6100 5.8392 0.9258 0.3727 5.0264 0.9728 10.3336 -23.3606 -23.5541 
0.94 2.5748 5.8995 0.9433 0.2835 5.0036 0.7299 13.7113 -31.7284 -31.8742 
0.96 2.5392 5.9611 0.9615 0.1917 4.9808 0.4867 20.4663 -48.4298 -48.5275 
0.98 2.5035 6.0239 0.9804 0.0972 4.9578 0.2434 40.7308 -98.4647 -98.5138 
1.00 2.4674 6.0881 1.0000 0.0000 4.9348 0.0000 00 00 00 

1.02 2.4311 6.1536 1.0204 -0.1002 4.9117 -0.2436 -40.3255 101.4645 101.5141 
1.04 2.3944 6.2206 1.0416 -0.2035 4.8885 -0.4874 -20.0610 51.4286 51.5283 
1.06 2.3575 6.2889 1.0638 -0.3102 4.8652 -0.7313 -13.3060 34.7259 34.8762 
1.08 2.3202 6.3588 1.0868 -0.4204 4.8419 -0.9754 -9.9283 26.3561 26.5576 
1.10 2.2827 6.4302 1.1109 -0.5343 4.8185 -1.2196 -7.9016 21.3194 21.5725 
1.12 2.2448 6.5032 1.1360 -0.6522 4.7950 -1.4640 -6.5503 17.9491 18.2544 
1.14 2.2066 6.5778 1.1623 -0.7743 4.7714 -1.7086 -5.5851 15.5308 15.8889 
1.16 2.1681 6.6541 1.1898 -0.9009 4.7477 -1.9534 -4.8610 13.7074 14.1189 
1.18 2.1293 6.7321 1.2185 -1.0324 4.7239 -2.1983 -4.2978 12.2806 12.7459 
1.20 2.0901 6.8119 1.2487 -1.1690 4.7001 -2.4434 -3.8472 11.1312 11.6510 
1.22 2.0506 6.8935 1.2804 -1.3112 4.6761 -2.6886 -3.4785 10.1835 10.7584 
1.24 2.0107 6.9770 1.3137 -1.4592 4.6521 -2.9341 -3.1711 9.3869 10.0176 
1.26 1.9705 7.0625 1.3487 -1.6137 4.6280 -3.1797 -2.9110 8.7066 9.3936 
1.28 1.9299 7.1499 1.3855 -1.7750 4.6038 -3.4255 -2.6880 8.1174 8.8615 
1.30 1.8889 7.2394 1.4244 -1.9437 4.5795 -3.6714 -2.4947 7.6012 8.4029 
1.32 1.8476 7.3311 1.4655 -2.1204 4.5552 -3.9176 -2.3255 7.1441 8.0041 
1.34 1.8058 7.4249 1.5089 -2.3058 4.5307 -4.1639 -2.1762 6.7357 7.6547 
1.36 1.7637 7.5210 1.5549 -2.5006 4.5061 -4.4104 -2.0434 6.3677 7.3464 
1.38 1.7212 7.6195 1.6038 -2.7058 4.4815 -4.6571 -1.9246 6.0337 7.0729 
1.40 1.6782 7.7203 1.6557 -2.9221 4.4568 -4.9039 -1.8176 5.7286 6.8289 
1.42 1.6348 7.8237 1.7109 -3.1507 4.4319 -5.1510 -1.7208 5.4481 6.6103 
1.44 1.5910 7.9296 1.7699 -3.3929 4.4070 -5.3982 -1.6328 5.1888 6.4138 
1.46 1.5468 8.0383 1.8329 -3.6499 4.3820 -5.6457 -1.5523 4.9480 6.2363 
1.48 1.5021 8.1496 1.9005 -3.9233 4.3569 -5.8933 -1.4786 4.7231 6.0758 
1.50 1.4570 8.2638 1.9731 -4.2150 4.3317 -6.1411 -1.4107 4.5123 5.9301 
1.52 1.4114 8.3810 2.0512 -4.5269 4.3064 -6.3891 -1.3480 4.3139 5.7975 
1.54 1.3653 8.5012 2.1356 -4.8616 4.2809 -6.6373 -1.2900 4.1264 5.6768 
1.56 1.3187 8.6246 2.2271 -5.2217 4.2554 -6.8857 -1.2360 3.9486 5.5667 
1.58 1.2716 8.7512 2.3264 -5.6105 4.2298 -7.1343 -1.1858 3.7794 5.4661 
1.60 1.2240 8.8813 2.4348 -6.0320 4.2041 -7.3831 -1.1389 3.6179 5.3741 
1.62 1.1759 9.0148 2.5534 -6.4906 4.1783 -7.6321 -1.0949 3.4634 5.2900 
1.64 1.1272 9.1519 2.6838 -6.9919 4.1524 -7.8813 -1.0537 3.3150 5.2130 
1.66 1.0780 9.2928 2.8278 -7.5424 4.1264 -8.1307 -1.0150 3.1722 5.1426 
1.68 1.0282 9.4376 2.9877 -8.1502 4.1003 -8.3803 -0.9786 3.0344 5.0782 
1.70 0.9779 9.5864 3.1662 -8.8253 4.0741 -8.6302 -0.9442 2.9012 5.0195 

1.72 0.9270 9.7394 3.3667 -9.5800 4.0478 -8.8802 -0.9116 2.7720 4.9659 
1.74 0.8754 9.8968 3.5936 -10.4299 4.0213 -9.1305 -0.8809 2.6465 4.9170 
1.76 0.8233 10.0587 3.8524 -11.3949 3.9948 -9.3809 -0.8517 2.5244 4.8727 
1.78 0.7705 10.2252 4.1504 -12.5011 3.9681 -9.6316 -0.8240 2.4053 4.8325 
1.80 0.7170 10.3966 4.4969 -13.7828 3.9414 -9.8825 -0.7977 2.2889 4.7963 
1.82 0.6629 10.5731 4.9051 -15.2868 3.9145 -10.1336 -0.7726 2.1750 4.7638 
1.84 0.6081 10.7548 5.3929 -17.0776 3.8876 -10.3850 -0.7487 2.0634 4.7347 
1.86 0.5526 10.9419 5.9859 -19.2479 3.8605 -10.6365 -0.7259 1.9537 4.7090 
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Non-sway Frames Sway Frames 
p 

r (rc)2 c r' q s m t t' 

1.88 0.4964 11.1347 6.7223 -21.9352 3.8333 -10.8883 -0.7041 1.8459 4.6864 
1.90 0.4394 11.3335 7.6612 -25.3521 3.8059 -11.1404 -0.6833 1.7397 4.6668 

1.92 0.3817 11.5383 8.8990 -29.8466 3.7785 -11.3926 -0.6633 1.6349 4.6500 
1.94 0.3232 11.7496 10.6056 -36.0301 3.7510 -11.6451 -0.6442 1.5314 4.6360 
1.96 0.2639 11.9675 13.1087 -45.0844 3.7233 -11.8978 -0.6259 1.4291 4.6246 
1.98 0.2038 12.1923 17.1355 -59.6290 3.6955 -12.1508 -0.6083 1.3277 4.6157 
2.00 0.1428 12.4244 24.6841 -86.8644 3.6676 -12.4040 -0.5914 1.2272 4.6093 

2.02 0.0809 12.6640 43.9616 -156.3627 3.6396 -12.6574 -0.5751 1.1275 4.6052 
2.04 0.0182 12.9114 197.3863 -709.2395 3.6115 -12.9111 -0.5594 1.0284 4.6034 
2.06 -0.0455 13.1671 -79.8138 289.5707 3.5832 -13.1650 -0.5443 0.9298 4.6039 
2.08 -0.1101 13.4313 -33.2921 121.9015 3.5548 -13.4192 -0.5298 0.8316 4.6066 
2.10 -0.1757 13.7045 -21.0722 77.8328 3.5263 -13.6736 -0.5158 0.7337 4.6113 

2.12 -0.2423 13.9870 -15.4361 57.4874 3.4976 -13.9283 -0.5022 0.6360 4.6182 
2.14 -0.3099 14.2793 -12.1925 45.7629 3.4689 -14.1832 -0.4892 0.5385 4.6272 
2.16 -0.3786 14.5818 -10.0850 38.1320 3.4400 -14.4384 -0.4765 0.4409 4.6382 
2.18 -0.4485 14.8950 -8.6059 32.7650 3.4109 -14.6939 -0.4643 0.3433 4.6512 
2.20 -0.5194 15.2194 -7.5107 28.7813 3.3818 -14.9496 -0.4524 0.2456 4.6662 

2.22 -0.5916 15.5555 -6.6673 25.7044 3.3525 -15.2055 -0.4410 0.1476 4.6832 
2.24 -0.6649 15.9039 -5.9978 23.2542 3.3231 -15.4618 -0.4298 0.0493 4.7022 
2.26 -0.7395 16.2652 -5.4537 21.2552 3.2935 -15.7183 -0.4191 -0.0494 4.7231 
2.28 -0.8154 16.6400 -5.0027 19.5917 3.2638 -15.9751 -0.4086 -0.1486 4.7460 
2.30 -0.8926 17.0289 -4.6230 18.1845 3.2340 -16.2321 -0.3985 -0.2483 4.7709 

2.32 -0.9713 17.4328 -4.2988 16.9775 3.2040 -16.4895 -0.3886 -0.3487 4.7978 
2.34 -1.0513 17.8523 -4.0190 15.9298 3.1739 -16.7471 -0.3790 -0.4498 4.8267 
2.36 -1.1328 18.2883 -3.7750 15.0109 3.1436 -17.0050 -0.3697 -0.5517 4.8576 
2.38 -1.2159 18.7416 -3.5604 14.1977 3.1132 -17.2632 -0.3607 -0.6545 4.8906 
2.40 -1.3006 19.2131 -3.3703 13.4723 3.0827 -17.5216 -0.3519 -0.7582 4.9256 

2.42 -1.3869 19.7038 -3.2006 12.8204 3.0520 -17.7804 -0.3433 -0.8630 4.9628 
2.44 -1.4749 20.2148 -3.0484 12.2310 3.0212 -18.0395 -0.3350 -0.9689 5.0021 
2.46 -1.5647 20.7470 -2.9111 11.6949 2.9902 -18.2988 -0.3268 -1.0761 5.0435 
2.48 -1.6563 21.3018 -2.7865 11.2047 2.9591 -18.5585 -0.3189 -1.1845 5.0872 
2.50 -1.7499 21.8804 -2.6732 10.7543 2.9278 -18.8184 -0.3112 -1.2943 5.1332 

2.52 -1.8454 22.4841 -2.5695 10.3386 2.8964 -19.0787 -0.3036 -1.4057 5.1814 
2.54 -1.9430 23.1144 -2.4744 9.9534 2.8648 -19.3393 -0.2963 -1.5186 5.2321 
2.56 -2.0427 23.7728 -2.3869 9.5952 2.8330 -19.6001 -0.2891 -1.6332 5.2852 
2.58 -2.1447 24.4610 -2.3061 9.2607 2.8011 -19.8613 -0.2821 -1.7496 5.3409 
2.60 -2.2490 25.1808 -2.2312 8.9475 2.7691 -20.1229 -0.2752 -1.8679 5.3991 

2.62 -2.3557 25.9341 -2.1618 8.6533 2.7368 -20.3847 -0.2685 -1.9883 5.4600 
2.64 -2.4650 26.7230 -2.0971 8.3761 2.7044 -20.6469 -0.2620 -2.1107 5.5237 
2.66 -2.5769 27.5497 -2.0369 8.1142 2.6719 -20.9094 -0.2556 -2.2355 5.5902 
2.68 -2.6915 28.4165 -1.9805 7.8662 2.6392 -21.1722 -0.2493 -2.3626 5.6597 
2.70 -2.8091 29.3262 -1.9278 7.6308 2.6063 -21.4353 -0.2432 -2.4922 5.7323 

2.72 -2.9296 30.2815 -1.8784 7.4067 2.5732 -21.6988 -0.2372 -2.6245 5.8080 
2.74 -3.0533 31.2854 -1.8319 7.1931 2.5400 -21.9627 -0.2313 -2.7596 5.8871 
2.76 -3.1803 32.3413 -1.7882 6.9889 2.5066 -22.2269 -0.2255 -2.8976 5.9696 
2.78 -3.3108 33.4526 -1.7470 6.7934 2.4730 -22.4914 -0.2199 -3.0389 6.0558 
2.80 -3.4449 34.6234 -1.7081 6.6059 2.4393 -22.7563 -0.2144 -3.1834 6.1456 

2.82 -3.5828 35.8577 -1.6714 6.4257 2.4054 -23.0215 -0.2090 -3.3314 6.2394 
2.84 -3.7246 37.1601 -1.6366 6.2522 2.3713 -23.2871 -0.2037 -3.4832 6.3374 
2.86 -3.8707 38.5358 -1.6038 6.0849 2.3370 -23.5531 -0.1984 -3.6389 6.4396 
2.88 -4.0213 39.9901 -1.5726 5.9234 2.3025 -23.8195 -0.1933 -3.7987 6.5463 
2.90 -4.1765 41.5290 -1.5430 5.7671 2.2678 -24.0862 -0.1883 -3.9629 6.6578 

2.92 -4.3366 43.1591 -1.5149 5.6158 2.2330 -24.3533 -0.1834 -4.1318 6.7743 
2.94 -4.5019 44.8876 -1.4882 5.4690 2.1979 -24.6207 -0.1785 -4.3057 6.8960 
2.96 -4.6727 46.7223 -1.4628 5.3264 2.1627 -24.8886 -0.1738 -4.4847 7.0233 
2.98 -4.8492 48.6720 -1.4387 5.1878 2.1273 -25.1568 -0.1691 -4.6694 7.1564 
3.00 -5.0320 50.7463 -1.4157 5.0528 2.0917 -25.4255 -0.1645 -4.8599 7.2957 
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Non-sway Frames Sway Frames 
p 

r (rc) 2 c r' q s m t t' 

3.02 -5.2212 52.9557 -1.3937 4.9212 2.0558 -25.6945 -0.1600 -5.0567 7.4416 
3.04 -5.4174 55.3121 -1.3728 4.7927 2.0198 -25.9640 -0.1556 -5.2603 7.5943 
3.06 -5.6209 57.8285 -1.3529 4.6672 1.9836 -26.2338 -0.1512 -5.4709 7.7545 
3.08 -5.8323 60.5193 -1.3339 4.5444 1.9472 -26.5041 -0.1469 -5.6892 7.9225 
3.10 -6.0519 63.4008 -1.3157 4.4242 1.9105 -26.7747 -0.1427 -5.9156 8.0988 
3.12 -6.2805 66.4910 -1.2983 4.3063 1.8737 -27.0458 -0.1386 -6.1507 8.2840 
3.14 -6.5186 69.8101 -1.2817 4.1907 1.8366 -27.3174 -0.1345 -6.3952 8.4787 
3.16 -6.7669 73.3808 -1.2659 4.0771 1.7993 -27.5893 -0.1304 -6.6496 8.6836 
3.18 -7.0262 77.2287 -1.2508 3.9654 1.7618 -27.8617 -0.1265 -6.9148 8.8994 
3.20 -7.2971 81.3826 -1.2363 3.8556 1.7241 -28.1345 -0.1226 -7.1915 9.1269 
3.22 -7.5807 85.8752 -1.2224 3.7474 1.6862 -28.4078 -0.1187 -7.4806 9.3670 
3.24 -7.8779 90.7436 -1.2092 3.6407 1.6480 -28.6815 -0.1149 -7.7833 9.6206 
3.26 -8.1899 96.0299 -1.1965 3.5355 1.6096 -28.9557 -0.1112 -8.1004 9.8890 
3.28 -8.5178 101.7826 -1.1844 3.4317 1.5710 -29.2304 -0.1075 -8.4333 10.1732 
3.30 -8.8629 108.0569 -1.1729 3.3291 1.5321 -29.5055 -0.1039 -8.7834 10.4746 
3.32 -9.2269 114.9167 -1.1618 3.2276 1.4930 -29.7810 -0.1003 -9.1520 10.7948 
3.34 -9.6114 122.4357 -1.1512 3.1272 1.4537 -30.0571 -0.0967 -9.5411 11.1354 
3.36 -10.0183 130.6995 -1.1412 3.0278 1.4141 -30.3336 -0.0932 -9.9524 11.4983 
3.38 -10.4497 139.8079 -1.1315 2.9293 1.3743 -30.6107 -0.0898 -10.3880 11.8857 
3.40 -10.9082 149.8780 -1.1223 2.8316 1.3342 -30.8882 -0.0864 -10.8506 12.3001 
3.42 -11.3965 161.0474 -1.1135 2.7347 1.2939 -31.1662 -0.0830 -11.3428 12.7442 
3.44 -11.9178 173.4792 -1.1052 2.6385 1.2533 -31.4448 -0.0797 -11.8679 13.2211 
3.46 -12.4757 187.3678 -1.0972 2.5428 1.2125 -31.7238 -0.0764 -12.4294 13.7346 
3.48 -13.0745 202.9458 -1.0896 2.4478 1.1714 -32.0034 -0.0732 -13.0316 14.2888 
3.50 -13.7190 220.4940 -1.0824 2.3532 1.1301 -32.2835 -0.0700 -13.6794 14.8886 
3.52 -14.4149 240.3536 -1.0755 2.2591 1.0884 -32.5641 -0.0668 -14.3785 15.5397 
3.54 -15.1689 262.9423 -1.0690 2.1653 1.0465 -32.8453 -0.0637 -15.1356 16.2488 
3.56 -15.9890 288.7758 -1.0628 2.0719 1.0044 -33.1270 -0.0606 -15.9586 17.0239 
3.58 -16.8845 318.4967 -1.0570 1.9787 0.9619 -33.4093 -0.0576 -16.8568 17.8742 
3.60 -17.8668 352.9140 -1.0514 1.8857 0.9192 -33.6921 -0.0546 -17.8417 18.8111 
3.62 -18.9494 393.0567 -1.0462 1.7930 0.8762 -33.9755 -0.0516 -18.9268 19.8483 
3.64 -20.1492 440.2504 -1.0413 1.7003 0.8329 -34.2595 -0.0486 -20.1290 21.0024 
3.66 -21.4868 496.2245 -1.0367 1.6077 0.7893 -34.5441 -0.0457 -21.4687 22.2941 
3.68 -22.9879 563.2705 -1.0324 1.5151 0.7455 -34.8292 -0.0428 -22.9719 23.7493 
3.70 -24.6852 644.4737 -1.0284 1.4225 0.7013 -35.1149 -0.0399 -24.6712 25.4005 
3.72 -26.6208 744.0683 -1.0247 1.3298 0.6568 -35.4013 -0.0371 -26.6086 27.2898 
3.74 -28.8496 867.9886 -1.0212 1.2370 0.6120 -35.6883 -0.0343 -28.8391 29.4721 
3.76 -31.4449 1024.7578 -1.0180 1.1441 0.5669 -35.9758 -0.0315 -31.4360 32.0208 
3.78 -34.5066 1226.9671 -1.0151 1.0509 0.5215 -36.2641 -0.0288 -34.4991 35.0356 
3.80 -38.1745 1493.8426 -1.0125 0.9575 0.4758 -36.5529 -0.0260 -38.1683 38.6565 
3.82 -42.6506 1855.9180 -1.0101 0.8638 0.4297 -36.8424 -0.0233 -42.6456 43.0854 
3.84 -48.2381 2364.0441 -1.0079 0.7698 0.3834 -37.1326 -0.0206 -48.2341 48.6254 
3.86 -55.4130 3108.0245 -1.0061 0.6754 0.3367 -37.4234 -0.0180 -55.4100 55.7527 
3.88 -64.9691 4258.6957 -1.0045 0.5805 0.2896 -37.7149 -0.0154 -64.9669 65.2609 
3.90 -78.3349 6174.3571 -1.0031 0.4852 0.2422 -38.0070 -0.0127 -78.3333 78.5786 
3.92 -98.3675 9714.4644 -1.0020 0.3894 0.1945 -38.2999 -0.0102 -98.3665 98.5630 
3.94 -131.7337 17392.3511 -l.OOll 0.2930 0.1464 -38.5934 -0.0076 -131.7331 131.8806 
3.96 -198.4334 39414.6837 -1.0005 0.1960 0.0980 -38.8877 -0.0050 -198.4331 198.5316 
3.98 -398.4666 158814.7958 -1.0001 0.0983 0.0492 -39.1827 -0.0025 -398.4665 398.5158 
4.00 0.0000 0.0000 -1.0000 0.0000 0.0000 -39.4784 0.0000 0.0000 0.0000 
4.50 16.5908 322.3967 -1.0823 -2.8415 -1.3646 -47.1425 0.0579 16.6303 -17.9159 
5.00 7.4983 111.7156 -1.4096 -7.4004 -3.0712 -55.4905 0.1107 7.6683 -10.3996 
5.50 3.4609 76.8742 -2.5334 -18.7516 -5.3069 -64.8967 0.1636 3.8948 -8.3338 
6.00 0.2974 76.1659 -29.3489 -255.8395 -8.4299 -76.0775 0.2216 1.2315 -7.7932 
6.50 -3.1859 100.7494 3.1505 28.4371 -13.2233 -90.5991 0.2919 -1.2559 -8.1074 
7.00 -8.3ll5 181.7543 1.6220 13.5564 -21.7931 -ll2.6735 0.3868 -4.0963 -9.2664 
7.50 -19.3323 532.5795 1.1937 8.2164 -42.4100 -158.8420 0.5340 -8.0091 -11.7544 
8.00 -85.6372 7760.1380 1.0287 4.9793 -173.7288 -426.4145 0.8148 -14.8570 -17.3114 
8.50 54.6147 2850.6399 0.9776 2.4191 108.0060 132.1204 1.6350 -33.6783 -34.9016 
9.00 19.2650 371.1392 1.0000 0.0000 48.0000 7.1736 -6.5491 145.4326 145.4326 
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A.2 Stability Functions for Tension Members 

Non-sway Frames Sway Frames 
p 

r (rc)2 c r' q s m t t' 

0.00 4.000 4.0000 0.5000 3.0000 6.0000 12.0000 1.0000 1.0000 -1.0000 

0.04 4.0524 3.9482 0.4903 3.0781 6.0394 12.4735 0.9684 1.1283 -0.9371 
0.08 4.1042 3.8979 0.4810 3.1545 6.0785 12.9466 0.9390 1.2503 -0.8796 
0.12 4.1555 3.8491 0.4721 3.2293 6.1174 13.4192 0.9117 1.3668 -0.8268 
0.16 4.2063 3.8018 0.4635 3.3025 6.1562 13.8915 0.8863 1.4782 -0.7784 
0.20 4.2567 3.7559 0.4553 3.3743 6.1947 14.3633 0.8626 1.5850 -0.7337 

0.24 4.3065 3.7113 0.4473 3.4447 6.2330 14.8346 0.8403 1.6876 -0.6924 
0.28 4.3559 3.6680 0.4397 3.5138 6.2711 15.3056 0.8194 1.7865 -0.6542 
0.32 4.4048 3.6259 0.4323 3.5816 6.3089 15.7762 0.7998 1.8818 -0.6188 
0.36 4.4532 3.5850 0.4252 3.6482 6.3466 16.2463 0.7813 1.9739 -0.5859 
0.40 4.5013 3.5452 0.4183 3.7137 6.3841 16.7161 0.7638 2.0631 -0.5553 

0.44 4.5488 3.5065 0.4117 3.7780 6.4214 17.1854 0.7473 2.1495 -0.5268 
0.48 4.5960 3.4689 0.4052 3.8412 6.4585 17.6544 0.7317 2.2333 -0.5002 
0.52 4.6428 3.4323 0.3990 3.9035 6.4954 18.1230 0.7168 2.3148 -0.4754 
0.56 4.6891 3.3967 0.3930 3.9648 6.5321 18.5912 0.7027 2.3940 -0.4521 
0.60 4.7351 3.3620 0.3872 4.0251 6.5687 19.0591 0.6893 2.4712 -0.4303 

0.64 4.7807 3.3282 0.3816 4.0845 6.6050 19.5266 0.6765 2.5465 -0.4099 
0.68 4.8259 3.2953 0.3762 4.1430 6.6412 19.9937 0.6643 2.6199 -0.3907 
0.72 4.8707 3.2633 0.3709 4.2007 6.6772 20.4604 0.6527 2.6916 -0.3726 
0.76 4.9152 3.2321 0.3658 4.2576 6.7130 20.9268 0.6416 2.7618 -0.3556 
0.80 4.9593 3.2017 0.3608 4.3137 6.7486 21.3929 0.6309 2.8304 -0.3396 

0.84 5.0031 3.1720 0.3560 4.3690 6.7841 21.8586 0.6207 2.8975 -0.3245 
0.88 5.0465 3.1431 0.3513 4.4237 6.8194 22.3240 0.6109 2.9634 -0.3103 
0.92 5.0896 3.1148 0.3468 4.4776 6.8545 22.7890 0.6016 3.0279 -0.2968 
0.96 5.1323 3.0873 0.3424 4.5308 6.8894 23.2537 0.5925 3.0912 -0.2841 
1.00 5.1748 3.0605 0.3381 4.5834 6.9242 23.7180 0.5839 3.1533 -0.2720 

1.04 5.2169 3.0342 0.3339 4.6353 6.9588 24.1820 0.5755 3.2144 -0.2606 
1.08 5.2587 3.0086 0.3298 4.6866 6.9933 24.6457 0.5675 3.2744 -0.2498 
1.12 5.3003 2.9836 0.3259 4.7373 7.0276 25.1091 0.5598 3.3334 -0.2396 
1.16 5.3415 2.9592 0.3221 4.7875 7.0617 25.5722 0.5523 3.3914 -0.2298 
1.20 5.3824 2.9354 0.3183 4.8370 7.0957 26.0349 0.5451 3.4485 -0.2206 

1.24 5.4231 2.9121 0.3147 4.8861 7.1295 26.4974 0.5381 3.5047 -0.2118 
1.28 5.4634 2.8893 0.3111 4.9346 7.1632 26.9595 0.5314 3.5601 -0.2035 
1.32 5.5035 2.8671 0.3077 4.9825 7.1967 27.4213 0.5249 3.6147 -0.1955 
1.36 5.5433 2.8453 0.3043 5.0300 7.2301 27.8829 0.5186 3.6685 -0.1880 
1.40 5.5828 2.8240 0.3010 5.0770 7.2633 28.3441 0.5125 3.7216 -0.1808 
1.44 5.6221 2.8032 0.2978 5.1235 7.2964 28.8051 0.5066 3.7739 -0.1739 
1.48 5.6611 2.7829 0.2947 5.1696 7.3294 29.2657 0.5009 3.8256 -0.1674 
1.52 5.6999 2.7630 0.2916 5.2152 7.3621 29.7261 0.4953 3.8766 -0.1611 
1.56 5.7384 2.7435 0.2886 5.2603 7.3948 30.1862 0.4899 3.9269 -0.1552 
1.60 5.7767 2.7244 0.2857 5.3051 7.4273 30.6460 0.4847 3.9766 -0.1495 

1.64 5.8147 2.7058 0.2829 5.3494 7.4597 31.1055 0.4796 4.0258 -0.1440 
1.68 5.8525 2.6875 0.2801 5.3933 7.4919 31.5647 0.4747 4.0743 -0.1388 
1.72 5.8901 2.6696 0.2774 5.4369 7.5240 32.0237 0.4699 4.1223 -0.1339 
1.76 5.9274 2.6521 0.2747 5.4800 7.5560 32.4824 0.4652 4.1698 -0.1291 
1.80 5.9645 2.6349 0.2721 5.5228 7.5878 32.9409 0.4607 4.2167 -0.1246 
1.84 6.0014 2.6181 0.2696 5.5652 7.6195 33.3991 0.4563 4.2632 -0.1202 
1.88 6.0381 2.6016 0.2671 5.6072 7.6511 33.8570 0.4520 4.3091 -0.1160 
1.92 6.0745 2.5855 0.2647 5.6489 7.6825 34.3146 0.4478 4.3546 -0.1120 
1.96 6.1108 2.5697 0.2623 5.6903 7.7138 34.7720 0.4437 4.3996 -0.1082 
2.00 6.1468 2.5542 0.2600 5.7313 7.7450 35.2292 0.4397 4.4441 -0.1045 
2.04 6.1826 2.5390 0.2577 5.7720 7.7761 35.6861 0.4358 4.4882 -0.1010 
2.08 6.2183 2.5240 0.2555 5.8124 7.8070 36.1428 0.4320 4.5319 -0.0976 
2.12 6.2537 2.5094 0.2533 5.8524 7.8378 36.5992 0.4283 4.5752 -0.0944 
2.16 6.2889 2.4951 0.2512 5.8922 7.8685 37.0553 0.4247 4.6181 -0.0913 
2.20 6.3239 2.4810 0.2491 5.9316 7.8991 37.5113 0.4212 4.6606 -0.0883 



498 A Stability Functions 

Non-sway Frames Sway Frames 
p 

r (rc)2 c r' q s m t t' 

2.24 6.3588 2.4672 0.2470 5.9708 7.9295 37.9669 0.4177 4.7027 -0.0854 

2.28 6.3934 2.4536 0.2450 6.0097 7.9598 38.4224 0.4143 4.7444 -0.0826 
2.32 6.4279 2.4403 0.2430 6.0483 7.9901 38.8776 0.4110 4.7858 -0.0799 
2.36 6.4622 2.4273 0.2411 6.0866 8.0202 39.3326 0.4078 4.8268 -0.0774 
2.40 6.4963 2.4145 0.2392 6.1246 8.0501 39.7873 0.4047 4.8675 -0.0749 

2.44 6.5302 2.4019 0.2373 6.1624 8.0800 40.2419 0.4016 4.9079 -0.0726 
2.48 6.5640 2.3895 0.2355 6.1999 8.1098 40.6962 0.3986 4.9479 -0.0703 
2.52 6.5975 2.3774 0.2337 6.2372 8.1394 41.1503 0.3956 4.9876 -0.0681 
2.56 6.6310 2.3655 0.2319 6.2742 8.1690 41.6041 0.3927 5.0270 -0.0660 
2.60 6.6642 2.3538 0.2302 6.3110 8.1984 42.0578 0.3899 5.0661 -0.0639 

2.64 6.6973 2.3423 0.2285 6.3475 8.2277 42.5112 0.3871 5.1049 -0.0620 
2.68 6.7302 2.3310 0.2269 6.3838 8.2569 42.9644 0.3844 5.1434 -0.0601 
2.72 6.7629 2.3199 0.2252 6.4199 8.2860 43.4174 0.3817 5.1816 -0.0582 
2.76 6.7955 :1.3089 0.2236 6.4557 8.3150 43.8702 0.3791 5.2195 -0.0565 
2.80 6.8280 2.2982 0.2220 6.4914 8.3439 44.3228 0.3765 5.2572 -0.0548 

2.84 6.8602 2.2877 0.2205 6.5268 8.3727 44.7752 0.3740 5.2946 -0.0532 
2.88 6.8924 2.2773 0.2189 6.5620 8.4014 45.2273 0.3715 5.3317 -0.0516 
2.92 6.9243 2.2671 0.2174 6.5969 8.4300 45.6793 0.3691 5.3686 -0.0501 
2.96 6.9562 2.2571 0.2160 6.6317 8.4585 46.1311 0.3667 5.4052 -0.0486 
3.00 6.9878 2.2472 0.2145 6.6662 8.4869 46.5826 0.3644 5.4416 -0.0472 

3.04 7.0194 2.2375 0.2131 6.7006 8.5152 47.0340 0.3621 5.4777 -0.0458 
3.08 7.0508 2.2280 0.2117 6.7348 8.5434 47.4852 0.3598 5.5137 -0.0445 
3.12 7.0820 2.2186 0.2103 6.7687 8.5715 47.9362 0.3576 5.5493 -0.0432 
3.16 7.1131 2.2094 0.2090 6.8025 8.5995 48.3869 0.3554 5.5848 -0.0419 
3.20 7.1441 2.2003 0.2076 6.8361 8.6274 48.8375 0.3533 5.6200 -0.0407 

3.24 7.1749 2.1913 0.2063 6.8695 8.6552 49.2880 0.3512 5.6550 -0.0396 
3.28 7.2056 2.1825 0.2050 6.9027 8.6829 49.7382 0.3491 5.6898 -0.0385 
3.32 7.2362 2.1738 0.2038 6.9357 8.7106 50.1882 0.3471 5.7244 -0.0374 
3.36 7.2666 2.1653 0.2025 6.9686 8.7381 50.6381 0.3451 5.7587 -0.0363 
3.40 7.2969 2.1569 0.2013 7.0013 8.7655 51.0877 0.3432 5.7929 -0.0353 

3.44 7.3271 2.1486 0.2001 7.0338 8.7929 51.5372 0.3412 5.8269 -0.0343 
3.48 7.3571 2.1405 0.1989 7.0662 8.8202 51.9865 0.3393 5.8607 -0.0334 
3.52 7.3870 2.1325 0.1977 7.0983 8.8473 52.4357 0.3375 5.8942 -0.0325 
3.56 7.4168 2.1246 0.1965 7.1304 8.8744 52.8846 0.3356 5.9276 -0.0316 
3.60 7.4465 2.1168 0.1954 7.1622 8.9014 53.3334 0.3338 5.9608 -0.0307 

3.64 7.4760 2.1091 0.1943 7.1939 8.9283 53.7820 0.3320 5.9939 -0.0299 
3.68 7.5055 2.1016 0.1932 7.2255 8.9552 54.2304 0.3303 6.0267 -0.0291 
3.72 7.5348 2.0941 0.1921 7.2568 8.9819 54.6787 0.3285 6.0594 -0.0283 
3.76 7.5640 2.0868 0.1910 7.2881 9.0085 55.1268 0.3268 6.0918 -0.0276 
3.80 7.5930 2.0796 0.1899 7.3192 9.0351 55.5747 0.3252 6.1242 -0.0268 

3.84 7.6220 2.0725 0.1889 7.3501 9.0616 56.0225 0.3235 6.1563 -0.0261 
3.88 7.6509 2.0654 0.1878 7.3809 9.0880 56.4701 0.3219 6.1883 -0.0254 
3.92 7.6796 2.0585 0.1868 7.4115 9.1143 56.9175 0.3203 6.2201 -0.0247 
3.96 7.7082 2.0517 0.1858 7.4420 9.1406 57.3648 0.3187 6.2517 -0.0241 
4.00 7.7367 2.0450 0.1848 7.4724 9.1668 57.8119 0.3171 6.2832 -0.0235 

5.00 8.4169 1.9032 0.1639 8.1908 9.7965 68.9410 0.2842 7.0248 -0.0125 
6.00 9.0436 1.7990 0.1483 8.8447 10.3849 79.9873 0.2597 7.6953 -0.0070 
7.00 9.6272 1.7195 0.1362 9.4486 10.9385 90.9643 0.2405 8.3119 -0.0041 
8.00 10.1754 1.6568 0.1265 10.0126 11.4626 101.8820 0.2250 8.8858 -0.0025 
9.00 10.6937 1.6063 0.1185 10.5435 I 1.9611 112.7486 0.2122 9.4248 -0.0015 
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A.3 Stability Magnification Factors for Members 
with Lateral Load 

Nature of Axial Force 

p Compression 

mtw mtc mtw 

0.00 0.0833 0.0625 0.0789 

0.04 0.0839 0.0630 0.0828 
0.08 0.0845 0.0635 0.0823 
0.12 0.0850 0.0641 0.0817 
0.16 0.0856 0.0646 0.0812 
0.20 0.0862 0.0652 0.0807 

0.24 0.0868 0.0658 0.0802 
0.28 0.0874 0.0664 0.0797 
0.32 0.0881 0.0670 0.0793 
0.36 0.0887 0.0676 0.0788 
0.40 0.0894 0.0682 0.0783 

0.44 0.0901 0.0688 0.0779 
0.48 0.0908 0.0695 0.0774 
0.52 0.0915 0.0702 0.0770 
0.56 0.0922 0.0709 0.0765 
0.60 0.0929 0.0716 0.0761 

0.64 0.0937 0.0723 0.0757 
0.68 0.0944 0.0730 0.0753 
0.72 0.0952 0.0738 0.0749 
0.76 0.0960 0.0745 0.0745 
0.80 0.0969 0.0753 0.0741 

0.84 0.0977 0.0761 0.0737 
0.88 0.0986 0.0770 0.0733 
0.92 0.0995 0.0778 0.0729 
0.96 0.1004 0.0787 0.0726 
1.00 0.1013 0.0796 0.0722 

1.04 0.1023 0.0805 0.0719 
1.08 0.1033 0.0814 0.0715 
1.12 0.1043 0.0824 0.0711 
1.16 0.1053 0.0834 0.0708 
1.20 0.1064 0.0844 0.0705 

1.24 0.1075 0.0855 0.0701 
1.28 0.1086 0.0866 0.0698 
1.32 0.1098 0.0877 0.0695 
1.36 0.1110 0.0889 0.0692 
1.40 0.1122 0.0900 0.0688 

Tension 

mtc 

0.0625 

0.0620 
0.0615 
0.0610 
0.0605 
0.0601 

0.0596 
0.0591 
0.0587 
0.0583 
0.0578 

0.0574 
0.0570 
0.0566 
0.0562 
0.0558 

0.0554 
0.0550 
0.0546 
0.0543 
0.0539 

0.0536 
0.0532 
0.0529 
0.0525 
0.0522 

0.0519 
0.0515 
0.0512 
0.0509 
0.0506 

0.0503 
0.0500 
0.0497 
0.0494 
0.0491 



500 A Stability Functions 

Nature of Axial Force 

p Compression Tension 

mrw mrc mrw mrc 

1.44 0.1135 0.0913 0.0685 0.0488 
1.48 0.1148 0.0925 0.0682 0.0486 
1.52 0.1161 0.0938 0.0679 0.0483 
1.56 0.1175 0.0952 0.0676 0.0480 
1.60 0.1189 0.0966 0.0673 0.0477 

1.64 0.1204 0.0980 0.0670 0.0475 
1.68 0.1219 0.0995 0.0667 0.0472 
1.72 0.1235 0.1011 0.0665 0.0470 
1.76 0.1252 0.1026 0.0662 0.0467 
1.80 0.1269 0.1043 0.0659 0.0465 

1.84 0.1286 0.1060 0.0656 0.0462 
1.88 0.1304 0.1078 0.0654 0.0460 
1.92 0.1323 0.1096 0.0651 0.0457 
1.96 0.1343 0.1116 0.0648 0.0455 
2.00 0.1363 0.1136 0.0646 0.0453 

2.04 0.1384 0.1156 0.0643 0.0450 
2.08 0.1407 0.1178 0.0640 0.0448 
2.12 0.1430 0.1200 0.0638 0.0446 
2.16 0.1454 0.1224 0.0635 0.0444 
2.20 0.1479 0.1249 0.0633 0.0441 

2.24 0.1505 0.1274 0.0631 0.0439 
2.28 0.1532 0.1301 0.0628 0.0437 
2.32 0.1561 0.1329 0.0626 0.0435 
2.36 0.1591 0.1359 0.0623 0.0433 
2.40 0.1622 0.1390 0.0621 0.0431 

2.44 0.1655 0.1422 0.0619 0.0429 
2.48 0.1690 0.1456 0.0617 0.0427 
2.52 0.1726 0.1493 0.0614 0.0425 
2.56 0.1765 0.1531 0.0612 0.0423 
2.60 0.1806 0.1571 0.0610 0.0421 

2.64 0.1849 0.1614 0.0608 0.0419 
2.68 0.1895 0.1659 0.0606 0.0417 
2.72 0.1943 0.1707 0.0603 0.0415 
2.76 0.1995 0.1758 0.0601 0.0413 
2.80 0.2050 0.1813 0.0599 0.0412 

2.84 0.2109 0.1871 0.0597 0.0410 
2.88 0.2172 0.1933 0.0595 0.0408 
2.92 0.2239 0.2001 0.0593 0.0406 
2.96 0.2312 0.2073 0.0591 0.0404 
3.00 0.2390 0.2151 0.0589 0.0403 
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Nature of Axial Force 

p Compression Tension 

mfw mfc mfw mfc 

3.04 0.2475 0.2235 0.0587 0.0401 

3.08 0.2568 0.2327 0.0585 0.0399 
3.12 0.2669 0.2427 0.0583 0.0398 
3.16 0.2779 0.2537 0.0581 0.0396 
3.20 0.2900 0.2658 0.0580 0.0394 

3.24 0.3034 0.2791 0.0578 0.0393 
3.28 0.3183 0.2940 0.0576 0.0391 
3.32 0.3349 0.3105 0.0574 0.0390 
3.36 0.3536 0.3291 0.0572 0.0388 
3.40 0.3747 0.3503 0.0570 0.0386 

3.44 0.3989 0.3744 0.0569 0.0385 
3.48 0.4268 0.4022 0.0567 0.0383 
3.52 0.4594 0.4347 0.0565 0.0382 
3.56 0.4978 0.4731 0.0563 0.0380 
3.60 0.5439 0.5192 0.0562 0.0379 

3.64 0.6003 0.5755 0.0560 0.0377 
3.68 0.6707 0.6458 0.0558 0.0376 
3.72 0.7612 0.7363 0.0557 0.0375 
3.76 0.8819 0.8570 0.0555 0.0373 
3.80 1.0509 1.0258 0.0553 0.0372 

3.84 1.3042 1.2791 0.0552 0.0370 
3.88 1.7265 1.7013 0.0550 0.0369 
3.92 2.5709 2.5457 0.0549 0.0368 
3.96 5.1040 5.0787 0.0547 0.0366 
4.00 00 00 0.0545 0.0365 



AppendixB 

Effective Length 
of Stepped and Multiple Level Load Columns 

A column with steps i.e. having portions of different rigidity or a uniform column 
with loads at different levels is commonly encountered in practice. The stability 
analysis of such a column can be performed by means of differential equations, 
one for each segment of uniform rigidity with appropriate boundary conditions and 
continuity or matching conditions at the joints between the segments. These matching 
or compatibility conditions are the equality of displacements, slopes and curvatures 
etc. The steel stepped columns in the industrial buildings are normally fixed in their 
foundations by means of anchor bolts and hence may be treated as clamped at the 
foundation level. In single-span frames such a column may be considered as a separate 
column having free horizontal displacement at the top, i.e., shear force Q = 0. On 
the other hand when the frames cover two or more bays, the upper end of a column 
when determining the effective length can be considered as restrained, i.e., shear 
force at the upper end of the column Q =I= 0. 

For illustration of the procedure for computation of effective length, consider 
a single-stepped column clamped at the bottom and free at the top as shown in 
Fig. B.la. The governing differential equations for the two segments are: 

In the upper segment: M = Pt (81 - Yt) and the corresponding differential 
equation is: 

(a) 

In the lower segment: M = Pt (81 - Y2) + P2 (82 - Y2) and corresponding governing 
differential equation is: 

Ehy; + (Pt + P2)Y2 = Pt8t + P282 

The solution to (a) and (b) can be written in the form 

Yt =Asinatx+Bcosatx+8t 

Y2 = Csina2x + Dcosa2x + [(Pt8t + Pt8t)/(Pt + P2)] 

where 

(b) 

(c) 



504 Appendix B Effective Length of Stepped and Multiple Level Load Columns 

X 

t 

G) 
Lz EI 2 

(a) (b) 

Fig. B.la,b. Stepped columns with multiple level loads. a Fixed at the base and free at top, 
b simple supports 

The values of the unknown coefficients A, B, C and D can be determined by the 
following boundary, and continuity conditions at the joint between the two segments 

(i) Boundary conditions 

Atx = 0: 

y; = 0 i.e. Caz = 0 

x = (LI + Lz) = L : 

Y1=81 i.e. Asinai(LI+Lz)+Bcosai(LI+Lz)=O 

(ii) Matching or continuity conditions 

Atx = Lz: 

Yi = y; i.e. Aa1 cosa1L2- Ba1 sina1L2 = -Daz sinazLz 

YI = y~ i.e. - Aai sin a 1 Lz - Bai cos a1 Lz = - Da~ cos azLz 

For non-trivial solution the determinant of coefficients of A, B and D must vanish 
i.e. 

cosa1L2 

- sina1L2 

- sina1L2 

-cosa1L2 

0 

(azfai) sinazLz = 0 

(azfai) 2 cos azLz 
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The expansion of determinant provides the stability or characteristic equation 

(d) 

For illustration consider the typical case where 

P1 = P; P2 = 3P; h = h = I and L1 = L2 = L/2. 

This case corresponds to a uniform column, which is subjected to axial forces at 
different levels. Thus from (c) the stability parameters are 

The characteristic equation (d) reduces to: 

By the method of trial and modification, a 1L = 1.23096, whence 

Thus, the effective length factor K = 2.552. 
To study the effect of a step i.e. sudden change in the rigidity consider a typical 

single-stepped column with P1 = P; Pz = 0, h = /, h = 2/ and L1 = Lz = L/2. 
Therefore, from (c): 

The characteristic equation (d) becomes 

By trial and modification a 1L = 1.6442. Therefore, 

(1.6442)2 EI 
Per= L 2 (1.9107L)2 

The effective length factor K reduces to 1.9107. 
In the above analysis of stepped column it is assumed that the column reaches its 

critical state upon a simultaneous and proportional increase of the loads in both the 
segments. The procedure is equally applicable to stepped-columns with other bound­
ary conditions. For illustration consider the stepped column with simple supports as 
shown in Fig. B.l b. In this case horizontal reactions Q = P2 8 j L will be produced 
during buckling. 
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In the upper segment: 

or 

In the lower segment: 

Pz8 
M = -PtYt- -(L -x) 

L 
11 Pz8 

Eftyt + PtYt = -z:(L- x) 

P28 
M = -PtYz- -(L- x) + Pz(8- yz) 

L 

or 
II Pz8 

E/zy2 + (Pt + Pz)Yz = Lx 

Defining parameters: 

(e) 

(f) 

ai = Ptf Eft, a~= (Pt + Pz)/ E/z, a~= Pz/ E/z and a~= Pz/ Eft (g) 

The solution to the governing differential equations (e) and (f) can be written in the 
form 

8(L- x) (a4)2 
Yt =A sinatx + B cosatx- -

L at 

and 

. 8x (a3)2 
yz = Csmazx + Dcosazx +- -

L a2 

The arbitrary constants of integration A, B, C and D can be evaluated from boundary 
and continuity conditions. 

At x = 0 : Yz = 0 giving D = 0 

x=L: Yt=O i.e. AsinatL+BcosatL=O 

x=Lz: Yt=8 i.e. AsinatL2 +BcosatL2 - 8Lt(a4 )
2

=8 
L at 

yz = 8 i.e. CsinazLz + DcosazLz + 8L2 (a3 )
2 

= 8 
L a2 

From these conditions following values of A, B, C and D are obtained 

8(afL + a~Lt) 
A= 2 , B =-A tanatL 

at L(sinatLz- tanatL cos atLz) 

8(a~L - a~Lz) 
C = and D = 0 

a~L sinazLz 

Substituting these constants into continuity condition at x = Lz; y~ = y~ 

(h) 
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This transcendental equation can be used to obtain the critical loads. As a typical case 
consider following illustration. 

Example B. I. Consider a singly-stepped column having simple supports with: 
(a) P1 = P, P2 = 0; L1 = L2 = Lj2; Eh = EI and E/z = 4EI; and 
(b) P1 = P, P2 = P, L1 = L2 = L/2 and Eh = E/z = EI. 

Case (a): Defining Pj(4El) = a2. Thus 

2 p 2 
al =- =4a; 

El 
2 p 2 2 2 

a2 = - = a ; a3 = 0 and a4 = 0 
4EI 

On substituting these values the characteristic equation (h) reduces to: 

-a1 tan(a2L2) - a2 tan(a1L1) = 0 

-2 tan(aL/2) - tan(aL) = 0 

By trial and modification, the smallest root of this equationaL = 0.955317. There­
fore, 

(0.955317)2(4El) rr2 EI 
Per= L2 = (1.644L)2 

The effective length factor, K = 1.644. 
Case (b): Defining Pj El = a2• Thus 

2 p 2 
a 1 =-=a; 

EI 
2 p 2 

a4 =-=a; 
El 

On substitution the characteristic equation (h) reduces to: 

~L + =1 [ 1 1 J 
tan(aL/2) .J'itan(aLj.J'i) 

Using trial and modification procedure smallest aL = 2.55656. Hence, 

2 2 2 X (2.55656)2 
a2 = (P1 + P2)/ El= 2a = L2 

Therefore, 

13.0719E/ rr2 EI 
(P1 + P2)cr = --L--:2~- = 

(0.8689L)2 

The effective length coefficient, K = 0.8689. 
In the case where P1 = 0, the characteristic transcendental equation (h) is not 

applicable. In this case effective length factor can be determined by direct application 
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of differential equations. For example consider the above case with P1 = 0, i.e. 
a uniform hinged end column carries a longitudinal force at the mid-point. The 
differential equations for the two segments are: 

II 8P2 2 ( X) y1 = ---(L -x) = -8a4 1--
EhL L 

II 2 8~x 2(x) Y2 +a2y2 = -- = 8a2 -
EhL L 

The solutions to the equations are: 

Yl = -8a~ (x2 
- .::.:_) + Ax + B 

2 6L 

y2 = Csina2x + Dcosa2x + 8 (f) 
Using boundary and continuity conditions the arbitrary constants A, B, C and D can 
be determined and hence the critical load. The constants are 

8 8 [£2 L2 L3] 
A = - L1 + L1 a~ 3 - 22 + 6l 

B = ~L2a~- AL 
3 

C = 8Ld(L sina2L2) and D = 0 

The continuity condition y~ = y~ at x = L2 gives the characteristic equation or 
stability condition as: 

36- (aL)2 (aL/2)2 - 9 
cot (aL/2) = - 6(aL) = 3(aL/2) 

Using trial and modification method, the smallest root of this equation is aL/2 = 
2.160201. Therefore, 

(2.160201)2 X 4EI 
Per = -----::,-----

£2 
rr 2 EI 

P. - -----=­
cr - (0.7272£)2 

18.6659£/ 

£2 

The effective length factor K is 0.7272. It will be found that energy approach for the 
stability analysis of stepped columns is equally effective. 

The foregoing stability analysis for single-stepped columns subjected to two 
forces P1 and P2 provides stability condition or characteristic equation in terms 
of transcendental coefficients and two parameters. This analysis is not convenient 
for design purposes. The following simple procedure wherein the values of length 
coefficients are determined separately for the upper part of the column K 1 and lower 
part K2, is extremely useful for design purposes. The method consists in performing 
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' 
' 

EI 2 Q> ' 
L2 ' 

0 
_.!1_ 

PI p2 PI+P2 Per, I 

K21 K22 K2 

(a) (b) (c) (d) 

Fig. B.2a-d. Determination of coefficient K for single stepped column 

the analysis twice, first under the action of force Pt alone and determining critical 
force Per, I and coefficient Kzt for the lower part, and then under the action of force 
Pz alone and determining Pcr,2 and coefficient Kzz again for the lower part. 

When two forces are applied simultaneously, then the sum of the two ratios 
between applied forces and critical ones will characterize an area divided into stable 
and unstable parts as shown in Fig. B.2d. Each of the ratios Ptf Per, I and Pz/ Pcr,2 is 
less than or equals unity. If the end points of the convex curve of the stability condition 
are connected by a straight line, it will provide a margin of stability (safety). This 
limiting straight line can be written in the form: 

Pt Pz -+-=1 
Pcr,l Pcr,2 

(i) 

Assuming Per, I= rr2E/z/(KztLz)2, Pcr,2 = rr2E/z/(KzzLz)2 and (Pt + Pz)/ Pt = 
m or Pt = [Pz/(m- 1)]. Substituting in (i) 

p [ K~t + K~z J - 1 
2 (m- 1)rr2Ef2/L~ rr2 Elz/L~ -

G) 

Noting that Pt + Pz = mPz/(m -1) or Pz = (Pt + Pz)(m- 1)/m. Substituting this 
expression for Pz in G) and assuming that when both forces act simultaneously: 
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P, 

.. ",l""' 
(I/L 1) 

c,=--
{Iz!L z) 

EI 2 

(a) (b) 

Fig. B.3a,b. Parameters for length coefficient for Tables B.l and B.2. a Case I, b case II 

Therefore, 

(k) 

Fortheupperpartofthecolumns K1 = K2/c1 :::; 3. 
Thus the coefficient K 2 is determined as a function of K 21 , the length coefficient 

of lower part of column with P2 = 0, and of K22, the length coefficient of lower part 
with P1 = 0. The values of K21 and K22 as function of the ratio LJ/ L 2 = n and 
h / h = f3 are given in the Tables B.l and B.2 for the different values of parameters 
c1 and c2 which are defined as: 

and (~J (~~) (1) 

where L 1, I 1, P1 = height, moment of inertia and longitudinal force for the upper part 
of the column. L 2, h P2 = above quantities for the lower part of the column. 

Table B.l is for hinged and B.2 is for fixed connection of the collar beam to the 
column. The procedure outlined above predicts conservative values within two to 
eight per cent of the exact values. 

In the single-storey frames having single-stepped columns with the ratios 
LJ/ L 2 :::; 0.6 and P2 / P1 2: 3, the values of the length coefficient K can be taken 
from Table B.3, which differ slightly from mean values. The use of effective length 
tables is illustrated in the following example. 
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Table B.l. Length coefficients Kz for columns with top end free 

C[ 

cz 0 0.2 0.4 0.6 0.8 1.0 1.4 1.8 2.5 10.0 20.0 

0 2.0 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 
0.2 2.0 2.02 2.04 2.06 2.07 2.09 2.12 2.15 2.21 2.76 3.38 
0.4 2.0 2.08 2.13 2.21 2.28 2.35 2.48 2.60 2.80 
0.6 2.0 2.20 2.36 2.52 2.66 2.80 3.05 3.28 
0.8 2.0 2.42 2.70 2.96 3.17 3.36 3.74 
1.0 2.0 2.73 3.13 3.44 3.74 4.00 
1.5 3.0 3.77 4.35 4.86 
2.0 4.0 4.90 5.67 
2.5 5.0 6.08 7.00 
3.0 6.0 7.25 

Table B.2. Length coefficients Kz for columns with top end fixed against rotation 

C[ 

cz 0 0.2 0.4 0.6 0.8 1.0 1.4 1.8 2.5 10.0 20.0 

0 2.00 1.86 1.76 1.67 1.60 1.55 1.46 1.40 1.32 1.10 1.05 
0.2 2.00 1.87 1.76 1.68 1.62 1.56 1.48 1.41 1.33 1.11 
0.4 2.00 1.88 1.77 1.72 1.66 1.61 1.53 1.48 1.40 
0.8 2.00 1.94 1.90 1.87 1.85 1.82 1.79 
1.0 2.00 2.00 2.00 2.00 2.00 2.00 
1.5 2.00 2.25 2.38 2.48 
2.0 2.00 2.66 2.91 
2.5 2.50 3.17 3.50 
3.0 3.00 3.70 4.12 

Table B.3. Values of length coefficients K 2 for single-stepped columns of single storey indus­
trial buildings. 

Shear force Constraint For lower part, Kz with For upper 
at the top end of upper end part, Kt 

o.3::: g ::: o.1 0.1 2: ~ 2: 0.05 

Q=O Free end 2.5 3.0 3.0 
End fixed only 2.0 2.0 3.0 
against rotation 

Q :10 Immovable pin- 1.6 2.0 2.5 
supported end 
Immovable end fixed 1.2 1.5 2.0 
against rotation 
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Example B.2. A stepped column of21.0 m total height for a single-bay shop has crane 
runway part of height L 2 = 15.5 m and roof supporting part above the crane runway 
of height L 1 = 5.5 m. The effective axial loads in roof supporting part P1 and in the 
crane runway (lower) part P2 are 950 kN and 3050 kN, respectively. The column is 
clamped at foundation level and is pin connected to the collar at the top. 

For the investigation of the possibility of using Table B.3 for finding the effective 
length coefficients, the parameters required are 

L1 5.5 
- = - = 0.355 < 0.60 and 
L2 15.5 

p2 3050 
- = -- = 3.211 > 3.00 
pl 950 

Since these parameters satisfy the stipulations, Table B.3 can be used and the effective 
length coefficients are K1 = 3.0 and K2 = 2.5. The effective lengths for computing 
slenderness ratios of the upper and lower parts of the column are: 

Le.l = K1L1 = 3.0 X 5.5 = 16.5m 

Le,2 = K2L2 = 2.5 x 15.5 = 38.75 m. 

A similar approximate solution can be obtained for double-stepped columns as shown 
in Fig. B.4. The tables drawn up for solving single-stepped columns are used with 
moments of inertia averaged over the length of the parts of the columns. 

[z 
h =fh; and 

Pz 

(a) (b) (c) (d) 

Fig. B.4a-d. Stages for determination of coefficients K for double stepped columns 
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Table B.4. Coefficients for the columns fixed at the bottom K 1, K 2 and K 3. 

Shear force Upper end K1 K2 K3 
at upper conditions 
end 

Free end K1 =K2, K2 =2 K3 =2 
from Table B.l 

withc2 = _fj___J¥ Lz+L3 I1 
Q=O 

End fixed K1 = K3, K2 = K3, K3 = K3, 
only against from Table B.2 from Table B.2 from Table B.2 
rotation with c2 = _L_,_J¥ with c2 = 0 with c2 = 0 

Lz+L3 I1 

then the coefficient K 3 for the lower part will be 

-2 ( -2 -2) 2 I s3K3 + s2K2 +K1 (l+n2) J! 
1 + S2 + S3 

where 1mb = U2L2 + hL3)j(L2 + L3) is the mean value of the moment of inertia 
for the part of the column L2 + L3. The coefficients K ~, K 2 and K 3 are determined 
in the same way as for single-stepped columns according to the Fig. B.4b, c and d, 
using Table B.4. 

For the part L1 + L2 the value of lmt is found from the equation. 

hLI + hL2 
I----~ 
mt- LI + L2 

The length coefficient for the middle part of the column length is determined from 
the equation 

The length coefficient for the upper part of the column is determined from the 
expression 

The effective length factors, K for uniform columns with different end conditions 
subjected to end compressive load are given in the Table B.S. 
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Table B.S. Effective length factors K for axially loaded columns with various idealized end 
conditions 

-... -& ~,. ,, t ·v / •• Buckled shape of ( column / 
-I"" -~ 

""~ -~ -~ -~ "'* 
Recommended value of k 0.65 0.80 1.0 1.2 1.5 2.10 2.0 
for idealised end conditions 

T Rotation fixed Translation fixed 

r Rotation free Translation fixed 
End condition code ,. Rotation fixed Translation free 

? Rotation partially fixed Translation free 

i Rotation free Translation free 



Appendix C 

Mathematical Essentials 

C.l Linear Differential Equations 

The general linear differential equation of n1h order with constant coefficients is of 

the form 

dny dn-ly dn-ZY 
- +at--1 +az--2 + ... +any= X ctxn ctxn- ctxn- (C. I) 

where a1, az ... an are constants. In the symbolic form the equation can be written 
as: 

(C.2) 

where the symbol D stands for the operation of differentiation and is treated much the 

same as an algebraic quantity i.e., it can be factorized by ordinary rules of algebra and 
the factors may be taken in any order. The solution of equation consists of two parts 
viz complementary function (C.F.) Yc and particular integral (P.I.) Yp· The complete 

solution is y = Yc + Yp· 

1. Complementary Function 

An auxiliary equation is obtained by equating the coefficient of differential equation 
in symbolic form to zero i.e. 

Let mt, mz, ... mn be its roots. The complementary solution is given by: 

Following cases may arise: 

1. If some roots are equal. For example m3 = mz = m 1, then C.F. is 

Yc = (CtX2 + CzX + C3)em 1x + C4em4x + ... Cnemnx 

(C.3) 
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2. If one pair of roots is imaginary e.g. m 1 = f3 + iy, m2 = f3 - iy 

Yc = (CJ cos gx + c2 sin gx)ebx + C3em3x + 0 0 0 + CnemnX 

3. If two pairs of roots are imaginary. For example m2 = m1 = f3 + iy and 
m4 = m3 = f3 - iy, then 

Yc = [(CJX + C2) cos gx + (C3X + C4) singx] ebx + 0 0 0 + CnemnX 

2. Inverse Operator 

3. Particular Integral 

~x=Jxctx 
_l_X = eax f xe-ax dx 
D-a 

For the linear differential equation expressed in symbolic form, the particular integral 
is given by: 

1 
or --X 

¢(D2) 

Depending upon the type of X, various forms of particular integral are: 

1. where 

1 ax 1 ax 
Yp = f(D) e = f(a) e provided f(a) f. 0. 

If f(a) = 0, 
1 1 

--eax = x--eax 
f(D) f'(a) 

provided f' (a) f. 0 etc. 

2. when X= sin(ax +b) or cos(ax +b) 

1 0 1 0 

Yp = --2- sm(ax +b) = --2- sm(ax +b) provided ¢( -a2 ) f. 0 
¢(D) ¢(-a ) 

if¢( -a2 ) = 0, 

1 0 1 0 

--2- sm(ax +b)= x 2 sm(ax +b) provided ¢'(-a2) f. 0 
¢(D) ¢'(-a) 

3. when X = xm, m being a positive integer 

1 
y = --xm = [f (D)]-! xm 

P f(D) 

To evaluate it, expand [/(D)]-1 in ascending power of D by Binomial theorem 
as far as vm and operate on xm term by term. 
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4. when x = eax g(x) where g is a function of x. 

1 1 
y = --eax g(x) = eax g(x) 

P /(D) f(D +a) 

1 . 
Evaluate g(x) as m (1.), (2.) and (3.) 

f(D +a) 

4. Various types of linear differential equations encountered 

in the stability analysis of structures 

1 d2y 2 0. (D2 2) 0 
. dx2 + a y = 1. e. + a y = 

Its auxiliary equation is D2 + a2 = 0, thus D = ±ia The solution is: 

y = CJeiax + c 2e-iax 

= CJ (cos ax+ i sin ax)+ c2(cosax- i sin ax) 

= (CJ + c2) cos ax+ (ic1 - ic2) sin ax 

= A sin ax + B cos ax 

where A = i(c1 - c2) and B = (c1 + c2), are arbitrary constants. 

d2y 
2. dx2 +a2y = kx 

Yc = A sin ax + B cos ax 

1 1 [ (D)2]-I Yp = 2 2kx = 2 1 + - (kx) 
D +a a a 

= ]__ (1- D2) kx = kx 
a2 a2 a2 

Hence, y = Yc + Yp =A sin ax+ B cos ax+~ 

d3y dy 
3. dx3 + a2 dx = 0 or (D3 + a2 D) = 0 giving D = 0, +ia, -ia. 

Therefore, y = A sin ax + B cos ax + C. 

d4y d2y 
4. dx4 + a2 dx2 = 0 or D2(D2 + a2) = 0 giving D = 0, 0, +ia and -ia 

Therefore, y = A sin ax + B cos ax + Cx + D. 

d4y 2 d2y 
5. ctx4 +a ctx2 = k 
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kx2 
Thus, y = Yc + Yp = A sin ax + B cos ax + Cx + D + - 2 2a 
d2y 

6 - -a2y-O . dx2 -

y = Yc = C] eax + c2e-ax = A sinh ax + B cosh ax 

7. ~~ - a4y = 0 or (D4 - a4)y = 0 giving D = ±a, ±ia 

Hence solution is y = C] eax +c2e-ax +c3eiax +c4e-iax = A sinh ax+ B cosh ax+ 
C sin ax+ Dcosax 

d4y 
8.- -a4 y =k 

dx4 

Yc = A sinh ax + B cosh ax + C sin ax + D cos ax 

1 1 OJ k 
Yp = 4 4 k = k 4 4 e - - -4 D -a D -a a 

k 
Thus, complete solutionis: y =A sinhax+B coshax+C sinax+Dcosax- 4 a 

C.2 Bessel Functions 

The linear second order differential equation 

d2y dy 2 2 
x2-+x-+(x -n)y=O 

dx2 dx 
(C.4) 

where n is a constant, is known as Bessel's differential equation. Since n appears only 
as n2, n may be assumed to be either zero or a positive number without any loss of 
generality. Every value of the parameter n is associated with a pair of basic solutions 
of (C.4) called Bessel functions of order n. One of them which is finite at x = 0 is 
called Bessel function of the first kind and the other which has no finite limit (i.e. is 
unbounded) called Bessel function of second kind. 

Thus the general solution of the (C.4) is given by: 

y = Aln(x) + BYn(x) (C.5) 

where A and B are arbitrary constants and functions ln(x) and Yn(x) are Bessel 
functions of first and second kinds of order n, respectively. The function ln(x) is 
defined by the infinite series: 
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Table C.l. Values of Bessel functions of first kind of the order of 0 and 1. (For more extensive 

tables see [1] in Appendix D) 

X 

0.0 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 

1.0000 

0.9975 
0.9900 
0.9776 
0.9604 
0.9385 
0.9120 
0.8812 
0.8463 
0.8075 
0.7652 
0.7196 
0.6711 
0.6201 
0.5669 
0.5118 
0.4554 
0.3980 
0.3400 
0.2818 
0.2239 
0.1666 
0.1104 
0.0555 
0.0025 

-0.0484 
-0.0968 
-0.1424 
-0.1850 
-0.2243 

J,(x) 

0.0000 

0.0499 
0.0995 
0.1483 
0.1960 
0.2423 
0.2867 
0.3290 
0.3688 
0.4059 
0.4401 
0.4709 
0.4983 
0.5220 
0.5419 
0.5579 
0.5699 
0.5778 
0.5815 
0.5812 
0.5767 
0.5683 
0.5560 
0.5399 
0.5202 
0.4971 
0.4708 
0.4416 
0.4097 
0.3754 

X 

3.0 

3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 
4.1 
4.2 
4.3 
4.4 
4.5 
4.6 
4.7 
4.8 
4.9 
5.0 
5.1 
5.2 
5.3 
5.4 
5.5 
5.6 
5.7 
5.8 
5.9 

-0.2601 

-0.2921 
-0.3202 
-0.3443 
-0.3643 
-0.3801 
-0.3918 
-0.3992 
-0.4026 
-0.4018 
-0.3971 
-0.3887 
-0.3766 
-0.3610 
-0.3423 
-0.3205 
-0.2961 
-0.2693 
-0.2404 
-0.2097 
-0.1776 
-0.1443 
-0.1103 
-0.0758 
-0.0412 
-0.0068 

0.0270 
0.0599 
0.0917 
0.1220 

oo (x/2)n+2r 

ln(x) = L (-1)'-r!-JI-(n_+_r_+_1_) 
r=O 

J,(x) 

0.3991 

0.3009 
0.2613 
0.2207 
0.1792 
0.1374 
0.0955 
0.0538 
0.0128 

-0.0272 
-0.0660 
-0.1033 
-0.1386 
-0.1719 
-0.2028 
-0.2311 
-0.2566 
-0.2791 
-0.2985 
-0.3147 
-0.3276 
-0.3371 
-0.3432 
-0.3460 
-0.3453 
-0.3414 
-0.3343 
-0.3241 
-0.3110 
-0.2951 

xn oo (x/2)2' 
= "' ( -1)' ---'-------

2n r(n + 1) ~ r! [(n + 1) ... (n + r)] 
r=O 

X 

6.0 

6.1 
6.2 
6.3 
6.4 
6.5 
6.6 
6.7 
6.8 
6.9 
7.0 
7.1 
7.2 
7.3 
7.4 
7.5 
7.6 
7.7 
7.8 
7.9 
8.0 
8.1 
8.2 
8.3 
8.4 
8.5 
8.6 
8.7 
8.8 
8.9 

0.1506 

0.1773 
0.2017 
0.2238 
0.2433 
0.2601 
0.2740 
0.2851 
0.2931 
0.2981 
0.3001 
0.2991 
0.2951 
0.2882 
0.2786 
0.2663 
0.2516 
0.2346 
0.2154 
0.1944 
0.1717 
0.1475 
0.1222 
0.0960 
0.0692 
0.0419 
0.0146 

-0.0125 
-0.0392 
-0.0653 

xn [ x2 x4 J 
= 2n r(n + 1) 1 - 2(2n + 2) + 2 x 4 X (2n + 2)(2n + 4) · · · 

-0.2767 

-0.2559 
-0.2329 
-0.2081 
-0.1816 
-0.1538 
-0.1250 
-0.0953 
-0.0652 
-0.0349 
-0.0047 

0.0252 
0.0543 
0.0826 
0.1096 
0.1352 
0.1592 
0.1813 
0.2014 
0.2192 
0.2346 
0.2476 
0.2580 
0.2657 
0.2708 
0.2731 
0.2728 
0.2697 
0.2641 
0.2559 

(C.6) 

where T(n + r + 1) represents a Gamma function. When n is integer T(n + 1) = n!. 

On the other hand Yn (x) is defined as: 
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1. [ I,(x) cos r:rr - L,(x) J 
~~)= un ----~.~------

r-+n smr:rr 
(C.7) 

The function Ln(x) obtained from In(x) by replacing n by -n is a Bessel function 
of first kind of negative order n. If n is not an integer, the functions In (x) and Ln (x) 
constitute two linearly independent solutions of (C.4) and the solution is given by: 

(C.8) 

where C 1 and C2 are arbitrary constants. 
If n is an integer i.e. n = 0, 1, 2, 3 ... , then 

(C.9) 

and (C.8) reduces to 

(C.10) 

Therefore, In(x) does not any more represent an independent solution of (C.4). In 
this case the other independent solution is taken to be Yn (x) which is Bessel function 
of order n of second kind and general solution to (C.4) is given by (C.5). 

The functions In (x), Ln (x) and Yn (x) have been tabulated and behave somewhat 
like trigonometric functions of damped amplitudes. 

Special properties of some Bessel functions 

1. If the independent variable x is changed to AX where A is a constant, the general 
solution becomes 

y = Ain(Ax) + BYn(AX) (C.ll) 

2. If n is any real number then In (x) = 0 has infinite number of real roots. Difference 
between successive roots approach :rr as the roots increase in value. The roots of 
In (x) = 0 lie between those of In-1 (x) = 0 and In+1 (x) = 0. Similar remarks 
are applicable to Yn(x). 

3. For the particular case n = 0 (i.e. Bessel equation of zero order) 

y" + !yl +y =0 
X 

Taking derivative of left hand side of (C.12) 

d2y1 1 dy1 
( 1 ) 1 

dx2 + ~ dx + 1 - x2 y = 0 

where y1 = dyfdx and solution is: 

I dy 
y = dx = Alt(x) + BY1(x) 

(C.12) 

(C.13) 
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Table C.2. Values of Bessel functions of second kind of the order 0 and 1. 

X Y0 (X) Yt(x) X Y0 (x) Yt(x) X Yo(X) Yt(x) 

0.0 (-oo) (-oo) 2.5 0.498 0.146 5.0 -0.309 0.148 
0.5 -0.445 -1.471 3.0 0.377 0.325 5.5 -0.339 -0.024 
1.0 0.088 -0.781 3.5 0.189 0.410 6.0 -0.288 -0.175 
1.5 0.382 -0.412 4.0 -0.017 0.398 6.5 -0.173 -0.274 
2.0 0.510 -0.107 4.5 -0.195 0.301 7.0 -0.026 -0.303 

Table C.3. Zeros of Bessel functions 

(i) Typical Bessel functions of integer order 

Zero No. 1 2 3 4 5 

10 (x) 2.40483 5.52008 8.65373 11.79153 14.93092 

lt (x) 3.83171 7.01559 10.17347 13.32369 16.47063 
h(x) 5.13562 8.41724 11.61984 14.79595 17.95982 
J3(x) 6.38016 9.76102 13.01520 16.22347 19.40942 

(ii) First zero of typical Bessel functions of fractional order 

Ltj4(X) Ltj3(X) l-3j4(X) 

2.0063 1.8660 1.0585 

4. The zero of ln. Ln and Yn are approximately equal to the zeros of cos ifJ and 
sinifJ where ifJ = (rr/2) + mrr for zeros of ln, and ifJ = mrr (including m = 0) 
for zero of Yn. 

5. Zeros of typical Bessel functions are given in the Table C.3. 
6. Values of Bessel functions for various magnitudes of x: 

For small value x: lim ln(X) = xn j2n r(n) 
x--->0 

(C.14) 

The value of Ln (x), where n is non-integer, tends to oo as x ~ 0. Similarly 
Yn (x) also tends to oo as x ~ 0 for all values of n and therefore in most of the 
problems of practical interest the solution Yn (x) may be ignored. 
For large values of x: 

lim ln(x) = cos(x- rr/4- nrr/2) 
x->oo J(rrx/2) 

(C.15) 

1. Y. ( ) _ sin(x- rr/4- nrr/2) 
liD n X - -----=='==--'-

X-->00 .j(rrx/2) 
(C.16) 

i.e. for large values of argument x, Bessel functions behave like trigonometrical 
functions of decreasing amplitude. 
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ln(O) = 0 for n > 0 and 10 (0) = 0 

lt;2(x) = (If) sinx and L1;2(x) = (If) cosx 

d d 
-~kW=hW ~ -~~W=~W 

7. Recurrence relations: 

2n 
ln+l(x) = -ln(X)- ln-l(X) 

X 

Therefore, when n is half of an odd number e.g. n = 1/2 

J3j2(X) = (If) [S~X- COSX] and 

L3;2(x) = (If) [- co;x - sinx] 

xJ~(x) = nln(x)- xln+l(X) = xln-l(x)- nln(X) 

d 
~ [xnln(x)] =xnln-l(X) 

d [ n ] n ~ X- ln(X) = -x ln+l(x) 

ln-l(x)- ln+l(X) = 21'n(X) 

8. Equations with solutions in terms of Bessel Functions: 

(C.17) 

(C.18) 

(C.19) 

(C.20) 

(C.21) 

(C.22) 

(C.23) 

A large number of differential equations which are apparently not similar to the 
standard form of Bessel's differential equation given by (C.4), can be transformed 
into standard form by proper substitution and solved in terms of Bessel functions. 
Introducing independent variable x =asP in (C.4) 

d2y dy 2 2 2 
s2 - + s- + (fJ a s2P- fJ n2) y = 0 (C.24) 

ds2 ds 

Also changing the dependent variable as y = s-Yg(s), the (C.24) becomes 

~~ + C ~ 2Y): + { (fJasP-1) 2 + y2 ~tn2 } g(s) = 0 (C.25) 

The general solution of (C.4) given by y = Aln (x) + BYn (x) gets modified to 

g(s) = sY [Aln(asP) + BYn(asP)] (C.26) 

Equation (C.25) has four parameters a, {3, y and n. By comparing the given dif­
ferential equation with (C.25), the parameters can be assigned appropriate values 
and solution in terms of Bessel functions can be obtained. This transformation 
enables substantial simplifications in the analysis. 
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Typical Differential Equations Reducible to Bessel Equation 

1. d2y _ (2n - 1) dy + y = 0 
dx2 X dx 

(C.27) 

A comparison with (C.25) reveals that this equation is same as (C.25) for a = 

fJ = 1 andy = n. Hence general solution from (C.26) is: 

y = xn[Aln(x) + BYn(x)] ~ xnBn(x) 

where Bn(x) is symbolic representation of [Aln(x) + BYn(x)]. 

(C.28) 

2. d2y dy 1 
x dx2 + (1- n) dx + 4y = 0; a= 1; y = n/2 and n = n 

(C.29) 

(C.30) 

3. 

4. 

5. 

6. 

7. 

d2y (a) dy -+ - -+by=O 
dx2 X dx 

a= ../b; fJ = 1; y = (1- a)/2 and n = y = (1- a)/2 

. y = xY [ Aln (x..Jb) + BYn (x..Jb) J = xY Bn (x..Jb) 

where n = y = (1 - a)/2 and n is an integer. 

d2y 1 dy ( 1 ) 
dx2 + ~ dx + 1 - 9x2 y = 0 

a = 1, fJ = 1, y = 0 and n = 1/3 

y = Ah13(x) + Bl-1;3(x) 

d2y 
d.x2 + (k2x2) y = 0 

a= k/2; fJ = 2; y = 1/2 and n = 1/4 

Thus the solution is: 

(C.31) 

(C.32) 

(C.33) 

(C.34) 

(C.35) 

(C.36) 

(C.37) 
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8. 

2 1 
a=-; 

3 
n=-

3 

9. 

10. 

11. d2y dy 
x 2 dx2 + (2k + 1) x dx + (m 2x 2r + t2) y = 0 

y = x-Y [ Alt;r(mxr jr) + BYk;r(mxr jr)] 

where y = .Jk2 - t2 

(C.39) 

(C.40) 

(C.41) 

(C.42) 

(C.43) 

This equation can further be used in transforming a large number of equations in this 
form by assessing appropriate values to the constant k, m, rand t. 

C.3 Fourier Series 

1. Types of function 

The function f(x) is termed odd if f( -x) = - f(x) e.g. sinx, tanx, x, x 3 ... etc. 
are odd functions. Graphically an odd function is symmetrical about the origin. 
On the other hand if f( -x) = f(x), the function is termed an even function, e.g. 
cos x, sec x, x 2 , x 4 . .. etc. Even functions are symmetrical about Y -axis. An important 
property of these function is 

i f J f(x)dx = 2 J f(x)dx when f(x) is an even function. 

-f 0 

=0 when f(x) is an odd function. (C.44) 
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2. Fourier series expansion 

The Fourier series expansion of a periodic function defined in the range ( -l,l) is 
expressed as: 

00 00 

a0 '""' mrx '""' . mrx 
f(x) = 2 +~an cos -l- + ~bn sm -l-

n=l n=l 

where 

l i e 

ao = ~ J f(x)dx, 
1 f mrx an= e f(x)cos -l- dx, 

1 f . nrrx 
bn = e f(x) sm -l- dx 

-e -l -i 

(C.45) 

Following cases arise: 

Case I. When f(x) is an even function expansion contains only cosine terms i.e. 

00 

a0 '""' nrrx 
f(x) = 2 +~an cos -l-

n=l 

where 
( ( 2/ 2/ nn ao = e J(x) dx and an = e J(x) cosT dx (C.46) 

0 0 

Case II. When f(x) is an odd function the expansion contain only sine terms i.e. 

where 

3. Special properties 

Square values of f(x): 

00 

'""' nrrx f(x) = ~bn sin -l-
n=l 

l 

2 J . nrrx bn = e f(x) sm -l-dx 

0 

1. Full range Fourier series ( -l to l) 

00 

a0 '""' ( nrrx . nrrx) f(x) = - + ~ ancos- + bnsm-
2 n=l l l 

l {2 00 } £ (f(x)]2 dx = l ~ +?;(a~+ b~) 

(C.47) 

(C.48) 

(C.49) 
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l [f(x)J' dx ~ l {a; + ~ (<?. +b~) I 
2. Half range series of period 2l in the range (0 to l) for f(x) 

(a) Cosine series 

(b) Sine series 

4. Definite Integrals 

0 

0 

l 

00 

ji ~ . n:rrx 
(x) = L..,bnsm-e-

n=l 

(n "I= 0) 

when n is an even number and n "I= 0 

when n is an odd number 

I ( m:rrx ) ( n:rrx ) cos -e- cos -e- dx = o (m "I= n) 

0 

e 
(m =n) =-

2 
l 

(C. 50) 

(C.51) 

(C.52) 

(C.53) 

(C.54) 

(C. 55) 

(C.56) 

(C.57) 

I ( m:rrx) ( n:rrx) sin -e- cos -l- dx = o when m ± n is an even number 

0 

2ml 
when m ± n is an odd number. 
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l f sin (m;x) sin c;x) dx = 0 (m =/= n) (C.58) 

0 

.e 
= 2 

(m =n) (C.59) 

l 

j x sin (m;x) sin (n;x) dx = 0 when m =I= nand m ± n is an even number 

0 

when m ± n is an odd number. 

whenm = n (C.60) 

These integrals demonstrate the orthogonality property that greatly facilitates the 
evaluation of Fourier coefficients. 
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