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Preface

The stability considerations are extremely important and inevitable in the design of
many engineering structures compassing aeronautical engineering, civil engineering,
mechanical engineering, naval architecture and applied mechanics wherein a designer
is confronted by numerous stability problems. Most of the national standards have
based their design codal provisions on the stability criteria, especially in design of
steel structures. In view of making the engineers appreciative of limitations associated
with many structural design codal provisions, most of the engineering colleges and
universities offer the course on the subject as a part of curriculum.

A number of books on the subject are available in the market, which had been writ-
ten before mid-eighties and treated the problems normally encountered in engineering
mainly by classical techniques. In view of rapid advancements and improvements in
the methods of analysis and in the computing environment, stiffness methods sup-
ported by numerical techniques are being extensively applied to relatively complex
real-life problems. The later approach is emphasized in the present book.

The text is specially designed to cater to the classroom or self-study needs of stu-
dents at advanced undergraduate and graduate level in structural engineering, applied
mechanics, aeronautical engineering, mechanical engineering and naval architecture.
Although the special problems pertaining to these disciplines differ philosophically
but analytical and design principles discussed in the text are generally applicable to
all of them. The emphasis is on fundamental theory rather than specific applications.

The text addresses to the stability of key structural elements: rigid-body assem-
blage, column, beam-column, beam, rigid frame, thin plate, arch, ring and shell.
The text begins with introduction to general basic principles of mechanics. This is
followed by a detailed discussion on stability analysis of rigid-body assemblage,
column, beam-column, beam, rigid frame, plates, arch and shell arranged in different
chapters from 1 to 9. In Chap. 10, the elastic theories of buckling have been extended
to the inelastic range. Where as in Chap. 11 on the design for structural stability, the
American national standard, Australian standard AS: 1250-1981, British code BS:
5940-1985 (Part-I) and Indian code of practice IS: 800-1984 have been compared
for the provisions related to stability considerations and number of design illustra-
tions have also been given. Each chapter contains numerous worked-out problems
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to clarify the discussion of practical applications that will facilitate comprehension
of basic principles from the field of stability theory. Wherever possible alternate ap-
proaches to the solution of important problems have been given. Tables and formulae
are devised in the form suitable for the use in the design office. Thus the book would
also prove useful to the practicing engineers engaged in actual design. In addition
exercise problems designed to support and extend the treatment are given at the end of
each chapter. For more important ones answers have also been given. The illustration
problems have been treated by the practical methods, which are best suited. There is
conscious effort to present results in non-dimensional form to render the subject mat-
ter independent of system of units. These non-dimensional parameters facilitate the
application of results to different materials and structural configurations encountered
in practice. A large amount of practical data in tabular form and simplified formulae
are given to make them suitable for the use in the design of various components.

It is the opinion of the author that the undergraduate students should study first
six chapters as a part of their required program of study. The remaining chapters
can be studied at the graduate level. To make the fundamentals of stability analysis
more understandable and meaningful, this text should be used at the level when the
student has attained the basic knowledge of statics, solid mechanics or strength of
materials and calculus. Only a minimum knowledge of calculus, Fourier series and
Bessel functions is assumed on the part of reader. However, for reference necessary
background information needed to deal with problems involving differential equations
and Bessel functions is given in the appendix. The subject matter and its presentation
sequence has been class tested over the past two decades. In the process students have
made valuable suggestions for which author is grateful.

The author wishes to express his sincere gratitude to the authors of various
books on the subject who have been an inspiration to developing this text. The
author thanks all those who have assisted in various ways in preparation of this
text. Particularly, he wishes to acknowledge the assistance rendered by Dr. Puneet
Gambhir, Er. Mohit Gambhir and Er. Neha Gambhir in preparation of manuscript.
The author is extremely grateful to his wife Ms Saroj Gambhir for the patience she
has shown while he was busy completing this job. The assistance and advice received
from Dr. Thomas Ditzinger and Ms. Gaby Maas, the Editor, of Springer-Verlag is
gratefully acknowledged. The author welcomes suggestions from the readers for
improvement in the subject matter in any manner.

Patiala, India M. L. Gambhir
May 12, 2004
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Introduction

A structure is meant to withstand or resist loads with a small and definite deform-
ation. In structural analysis problems, the aim is to determine a configuration of
loaded system, which satisfies the conditions of equilibrium, compatibility and force-
displacement relations of the material. For a structure to be satisfactory, it is necessary
to examine whether the equilibrium configuration so determined is stable. In a prac-
tical sense, an equilibrium state of a structure or a system is said to be in a stable
condition, if a disturbance due to accidental forces, shocks, vibrations, eccentricities,
imperfections, inhomogeneities or irregularities do not cause the system to depart
excessively from that state. The usual test is to impart a small disturbance to the
existing state of the system, if the system returns back to its original undisturbed state
when the cause of disturbance is removed, the system is said to be stable.

There are two types of failures associated with a structure namely material failure
and form or configuration failure. In the former, the stresses exceed the permissible
values which may result in the formation of cracks. In the later case, even though
the stresses are within permissible range, the structure is unable to maintain its
designed configuration under the external disturbances (or applied loads which could
be tensile and/or compressive). The loss of stability due to tensile loads falls in the
broad category of material instability, whereas the stability loss under compressive
load is usually termed structural or geometrical instability commonly known as
buckling.

A buckling failure is potentially very dangerous and may trigger the collapse
of many types of engineering structures. It may take the form of instability of the
structure as a whole or the localized buckling of an individual member or a part there
of, which may or may not precipitate the failure of the entire structure. It is to be
emphasized that the load at which instability occurs depends upon the stiffness of the
structure or portion there of, rather than on the strength of material.

M. L. Gambbhir, Stability Analysis and Design of Structures
© Springer-Verlag Berlin Heidelberg 2004



2 1 Introduction
1.1 Definitions of Stability

As discussed in the previous section, buckling is a phenomenon encountered in
engineering structures under predominantly compressive forces. The requirement that
a body should be in equilibrium seems insufficient even from purely practical point
of view. For a sound structure, it is desirable that it is in stable state of equilibrium.
The stable state of equilibrium is defined as the ability of the structure to remain
in position and support the given load, even if forced slightly out of its position by
a disturbance. The question of stability can be posed in three different ways. The
first way of posing the stability question is: if there is a possibility of existence of
another adjacent configuration beside straight configuration for which the structure
can assume equilibrium for P > P.

There are indeed two possible equilibrium states, the straight and the bent one.
For illustration consider an initially straight vertical flag-post column of uniform
cross-section subjected to a concentrated force (load) P acting along its centroidal
axis. As the load P is continuously increased from zero to a particular critical value
of the load P, for which the straight member sustains the load in the laterally bent
configuration as shown in Fig. 1.1a.

At this value of load P called critical or buckling load, the member either remains
in straight position or in the laterally deflected configuration. Below this critical value
of the load the member will be straight and above it will be in bent position. Thus at
critical value P, two adjacent equilibrium positions are possible for the same external
force-called condition of bifurcation or branching. Moreover, the configurations
of deformation for these two cases are totally different. Buckling, a condition of
bifurcation, constitutes one of the ways in which the structural member becomes
unstable. The load deformation curves P versus A, and P versus y are shown

b
I

e
I

A
/ Ultimate Strength Ultimate Strength
// AN o~

o Por N Por N

/ Buckling \Buckling

/

I
/
[

o — Y (0] L AN 0 » Y

(@) (b) ©

Fig. 1.1a—c. Load-deformation behaviour of cantilever subjected to axial compression. a Lat-
erally deflected shape, b P-A curve, ¢ p-y curve
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in Figs. 1.1b and 1.1c., respectively. Normally the buckling does not necessarily
correspond to the ultimate load carrying capacity of the member, it may indicate
considerable strength above the buckling load, though deformations associated with
increased load may be appreciable. As P is increased a stage is reached beyond which
further increase is impossible and the member continues to deflect progressively. Such
a situation also describes a condition of general structural instability. Thus it may be
stated that the instability occurs when two or more adjacent equilibrium positions
correspond to fundamentally different deformation modes.

The second way of posing question for stability investigation is that: if the column
is given slight disturbance or perturbation causing it to vibrate, would the amplitude
of vibration diminish or increase with the passage of time. This definition of stability
is much more powerful than the preceding one since it puts the problem in wider
context of dynamics. For P > P, the system is dynamically unstable.

The third way to pose the question is: if there is a value of P for which the total
potential energy of the system ceases to be minimum. This criterion is restricted to
conservative systems.

The above three criteria are termed Euler’s statical (non-trivial equilibrium state)
criterion, Liapunov’s dynamical criterion and potential energy stability criterion,
respectively. It will be seen that for a continuous and conservative elastic system
all these criteria are completely equivalent and within linearised analysis lead to
an eigenvalue determinant from which the eigenvalue of critical or buckling load is
retrieved.

In the above flag-post type vertical column illustration the effect of only axial
force has been considered. However, in practice the members are normally subjected
to lateral forces along with axial forces. To illustrate the influence of bending forces
on the axial deformations consider a simply supported beam subjected to a single
lateral load Q and compressive force P (< P) as shown in Fig. 1.2a. The moment
produces deflections which in turn cause additional moments along the member due
to increased eccentricity of load P resulting in still more deflections. Finally a stable
situation is reached where the deflections correspond to the bending moments due
to lateral and axial loads. It should be noted that the iterative process just described
actually need not be carried out to obtain a solution. The influence of axial force on
bending moment can be incorporated directly into differential equation

d?y

EI@ =—M, =—(My+ Py) (L.D)
where M, is the moment due to lateral forces, end moments etc. and the term Py
takes into account the added influence of axial force and deflection. If the axial force
and lateral loads increase proportionately and that the member deflects laterally in
the plane of applied loads, the two load-deformation curves will be as shown in the
Figs. 1.2a and 1.2b for P verses A, and P verses y, respectively. Here y corresponds
to lateral deflection at the point of application of lateral load. Unlike in flag-post type
column both axial and lateral deflections are observed from the outset of the load
application.
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Fig. 1.2a,b. Laterally loaded beam subjected to axial thrust. a P-A diagram, b P-y diagram

The concept of stability, and its counterpart instability, is often explained by
analogy to the behaviour of a rigid ball of some weight placed in position at different
points on a surface shown in Fig. 1.3 with zero curvature normal to the plane of figure.
The ball is assumed to be in equilibrium at the points of zero slopes as indicated.
However, the response of the ball to a slight disturbance or perturbation from these
positions is quite different. At position I of the ball positive work will be required,
and the ball returns to its original position upon removal of the disturbance. This
case corresponds to the points on the ascendancy sides of load-deformation curves
shown in Figs. 1.1b, 1.1c, 1.2a and 1.2b. This equilibrium position is stable. Case 1I,

Ball
@ Equilibrium
| o Ball
©)) Equilibrium

|
! I

Equilibrium | |

Fig. 1.3. Ball analogy for the bifurcation diagrams
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on the other hand represents a state of instability or unstable equilibrium since the
disturbance will result in the giving up of energy and ball will progressively move.
This corresponds to the points on descendancy portions of the load deformation curves
shown in Figs. 1.1b, 1.1c, 1.2a and 1.2b. In case III, the ball neither returns to its
original position nor continues to move on removal of disturbance. This state is termed
neutral equilibrium condition. This condition of neutral equilibrium is frequently
stated as the necessary condition for structural stability. This would be the case when
structural members buckle or when they reach their maximum load-carrying capacity.
Buckling can occur in both the elastic and inelastic ranges of material behaviour. For
real materials ultimate carrying capacity is realized in the inelastic range.

1.2 Structural Instability

The loss of structural stability is termed instability, which takes place in different ways
depending on the material properties, structural configuration and loading conditions.
The loss of stability in terms of structural behaviour can be expressed by the load-
deformation relationship. For continuous conservative elastic systems stability is
classified into three types of branching or bifurcations with distinct initial post-
buckling behaviour:

1. A symmetric bent upward post-buckling curve. This bifurcation is stable and
almost unaffected by imperfections,

2. A symmetric bent downward curve which is unstable and imperfection sensitive,
and

3. An asymmetric post-buckling curve with a slope at the bifurcation point which
is extremely sensitive even to a very small initial imperfection.

The first type shown in Fig. 1.4a is called symmetric stable branching, because
for the loads above the critical point, the characteristic deflection can be increased
only by increasing load P. On the other hand the second type Fig. 1.4b is termed

P

|
l \
|l
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P
A
i
1
| )
1 1
' '
1 b
\ S oo
N ’ - ! ~ \
. . < cr N
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- ’ Vel N N \
N , , . ~ N

N . VI . '

Ly '

t

1

P
A

v

\

@ | ®) 1k ©

=y

Fig. 1.4a—c. Points of static branching or bifurcation and points of imperfection. a Stable sym-
metric (positive curvature), b unstable symmetric (negative curvature), ¢ unstable asymmetric
(positive-negative curvature); perfect systems, — — — asymptotic imperfect systems




6 1 Introduction

P
]
@) NN (b)

A
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S P Snap C

A =y

©

Fig. 1.5a—c. Von Mises truss and an arch under external pressure (snap through buckling).
a Mises truss, b arch, ¢ P-y diagram; stable, — — — — unstable

unstable because the deflection increases, if the system is perturbed above the critical
point P, without increasing the load. In fact the load is to be reduced if an increase
in deflections y is to be attained.

The third type of branching point as shown in Fig. 1.4c is unstable for deflection
to the right hand side and stable for the left hand side. However, since the deflection
can occur in either direction, the point is regarded unstable for practical purposes. The
unavoidable imperfections such as crookedness of central axis makes the behaviour
of imperfect system (shown by dotted lines) asymptotic as regard to the ideal system.
The point at which the imperfect system turns, 1. e. the maximum of load-deformation
curve, is termed limit point instability and is similar to the snap-through buckling of
the mises truss or the flat arch under external pressure shown in Figs. 1.5a and 1.5b,
respectively. P-y relationship for mises truss is shown in Fig. 1.5c. If the load P
is increasing monotonically and reaches the value P, the point jumps to another
branch of the curve corresponding to a new geometrical form of the truss as shown
in the Fig. 1.5c. In these types of structures, the loss of stability consists in sudden
transition to a non-proximate form of equilibrium.

A mass less cantilever column subjected to a follower force P where the direction
of force P follows that of tangent at the free end i.e. the load is tangential load.
The stability of such a system, in general, can not be determined by non-trivial
equilibrium state approach, suggesting that buckling is impossible under such loading.
The preceding conclusion is correct only if the structure would be truly mass less,
which is of course, impossible in practice. A dynamical analysis is made possible
by the inclusion of, say, a small mass at the tip of the structure. The analysis shows
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Fig. 1.6a—c. Cantilevers subjected to follower and eccentric loads. a Follower or tangential
load, b eccentric load, ¢ P-y relationship for eccentric load; stable, — — — unstable

that the column is stable up to the load level P = P, and loss of stability occurs for
P > P, and column passes from state of rest to a state of motion.

Consider the case of a uniform cantilever column subjected to a compressive
force P acting at an eccentricity e as shown in Fig. 1.6b. This case is equivalent to
an imperfection due to crookedness in the centroidal axis. The load-deflection curve
consists of an ascending branch and a descending branch with a definite apex which
defines the maximum load carrying capacity of the member as shown in Fig 1.6¢. Un-
der monotonic loading ascending branch corresponds to a stable equilibrium state and
descending to an unstable equilibrium state. As the load approaches, P, unlimited
progressing growth of displacement occurs. The loss of stability of such imperfect
systems is due to transition to non-equilibrium states. Consider a thin-walled cylin-
drical shell subjected to axial compression. In the load-volumetric strain diagram
shown in Fig. 1.7b, the line OA represents the primary equilibrium path of unbuckled
configuration of the shell where as the line BC represents the secondary equilibrium
path of buckled non-cylindrical configuration of the shell. In such structures a finite
disturbance during the application of the load can force the structure to pass from pri-
mary equilibrium configuration to a secondary equilibrium configuration even before
the classical critical load is reached. This is due to diamond-shaped local buckling.
In such structures the loss of stiffness after local buckling is so large that the buckled
configuration can be maintained by returning to an earlier level of loading.

It must be noted that in each of types of loss of stability, a change in the geometry
or configuration results from either due to introduction of additional new forces or
due to the change in the nature of forces that existed in the un-deformed structure.
In terms of new forces that appear during the loss of structural stability a further
classification of instability can be provided as follows:

1. Flexural buckling,

2. Torsional buckling,

3. Torsional-flexural buckling, and
4. Snap-through buckling.
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Fig. 1.7a,b. Post-buckling behaviour of a thin walled cylindrical shell. a Cylindrical shell,
b post buckling behaviour; stable, — — — unstable

These instability modes may occur independently or in combinations. In order to
explain persistent large discrepancy between theoretical and experimental results of
eigenvalue buckling load, a study of post-buckling behaviour was suggested by Koiter.
Koiter was the first to realize the immense importance of post-buckling in connection
with imperfections as well as mode coupling phenomenon which combines two
harmless stable buckling modes to a catastrophic highly unstable one.

The explanation of above referred discrepancy lies not in linear eigenvalue analy-
sis but in post-buckling behaviour. The difference in the post-buckling behaviour lies
in the linearizing the analysis by ignoring non-linear terms (Fig. 1.7). An adequate
initial post-buckling analysis must in general consider up to fourth-order terms in
the energy functional while the buckling load depends only on second-order terms,
the slope of the post-buckling curve depends only on second- and third-order terms.
Finally, the initial curvature depends only on second-, third- and fourth order terms
unless the functional is symmetric in which case only fourth order terms have an
effect on the initial curvature.

1.3 Methods for Stability Ananlysis

Stability analysis consists in determining the mode of loss of structural stability and
corresponding load called critical load. The structure remains at rest before and after
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buckling except in the cases where loss of stability is due to transition from the state
of rest to a state of motion called kinetic or dynamical instability. Four distinctly
different classical methods available for the solution of buckling problems are:

1. Non-trivial equilibrium state approach,
2. Work approach,

3. Energy approach, and

4. Kinetic or dynamical approach.

The first of these, the so called statical equilibrium approach requires a second
infinitesimally near equilibrium position which will sustain the load. In the other
words it consists in determining the values of load for which a perfect system admits
two or more different but adjacent equilibrium states. By different equilibrium states
it is meant that the response of the structure is such that equilibrium can be maintained
with different deformation patterns. The condition of infinitesimally close or adjacent
equilibrium configuration renders the slope of deflection curve to be very small
compared to unity. This enables the expression for curvature of deflection curve
to be linearized. The method then requires the solution of governing differential
equations subject to some prescribed boundary conditions. It leads to an eigenvalue
problem. For a multi-degree-of-freedom system, the equations of equilibrium are
expressed in matrix form. The determinant of coefficients of unknown displacements
is termed stability determinant. For n degree-of -freedom system, the size of stability
determinant would be (n x n) which according to the rules of linear algebra must
vanish if the system of governing equations of equilibrium should have a non-trivial
solution. It should be noted that the stability determinant is identical to the so-called
Hessian of energy functional.

The second method known as work approach requires that zero force (load or
moment) causes the system to remain in the deformed position.

The energy approaches (virtual work, minimum total potential energy or station-
ary potential energy, minimum complementary energy) as defined in Chap. 2, can
also be used to establish neutrality of given equilibrium state. The method based on
the principle of minimum potential energy may be stated as: a conservative (holo-
nomic) system is in a configuration of stable equilibrium if, only if, the value of total
potential energy I7, is a relative minimum i.e. 3I7/9y = 0 (relative with respect to its
immediate neighourhood). Thus for stability /7 must be a minimumi.e. 8217/3y? > 0
and for instability T must be maximum i.e. 82JT/dy? < 0. The critical state is thus
given by vanishing of second variation i.e. 3>IT/dy* = 0. It is interesting to note that
within linearized buckling instability analysis using energy formulation, the above
criterion reduces to: IT = 0, 8IT = 0, §2IT = 0. It is stressed, however, that this
equivalence is only true for the linear eigen-value analysis.

In the kinetic or dynamic approach, the equations of motions are formulated and
the load is established which results in deformation with zero frequency of vibration
(A = 0). Thus the method consists in obtaining the so-called frequency equation. The
frequency A has both positive and negative real parts. If A has a positive real part, the
displacement increases as time ¢ tends to infinity and structure is regarded unstable.
On the other hand if A has a negative real part, the displacement vanishes as time ¢
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tends to infinity and structure must be regarded stable. Therefore, the critical state
is represented by vanishing of real part of A. In a case of multi-degree-of-freedom-
system, the frequency equation is obtainable from frequency determinant which is
the condition of non-trivial solution of equations of motion exactly as in the criterion
of non-trivial equilibrium. On the other hand, the condition that A should have zero
real part is identical to the condition that the decrement should vanish. The decrement
can be written in a determinant form. Thus in a dynamical investigation critical state
is marked by vanishing of two determinants, the frequency determinant and so-called
Burschart determinant. It should be noted in passing that the dynamical criterion
of buckling is frequently used for experimental investigation of critical loads. This
method is more general in the sense that the other approaches based on static concept
are special cases of this approach when inertia forces are neglected. Moreover, since
the dynamical method takes into account the inertia forces in its formulation, the
mass distribution of the elastic system becomes as important as elastic stiffness of the
system. The response of the system therefore becomes a function of both the space
and the time coordinates.

From the foregoing discussion it is evident, that the dynamical criterion for buck-
ling instability is the most general one. The energy method is restricted to conservative
systems and the equilibrium method is limited to buckling to an adjacent equilibrium
state and will thus fail in general to detect dynamical buckling. For a conservative
elastic system, all the three approaches are equivalent as far as determination of
critical load is concerned. All the three approaches lead to a stability or frequency
determinant, the vanishing of which leads to an equation for determining critical
parameters i.e. marginal stability.

In additional to classical approaches several approximate methods have been
developed to predict the load carrying capacity in very specific cases.

1.4 Summary

A structure is said to have a branching critical buckling load P, if for a loading
P > P, it has more than one equilibrium state. In case of an Euler strut, for instance,
these would be initial straight form and the slightly bent configuration. For a loading
P < P, the structure is said to be stable while for P > P, the structure is unstable,
There are three stability criteria associated with three methods of solution. The first
is non-trivial equilibrium state criterion which is based on equilibrium method. The
second is the dynamical criterion of stability which is based on vibrational analysis.
Finally, the potential energy criterion states that an equilibrium state given by §I7 = 0
is stable if the total potential energy is minimum i.e. the second variation 82IT = 0.
The state is unstable if 82/ < 0. Consequently, the critical state is gives by 61T = 0.
In the buckling analysis energy method plays an important role.

To explain discrepancy between theoretical and experimental results three types
of bifurcation with distinct post-buckling behaviour have been outlined. For post-
buckling analysis higher order terms in the energy functional must be considered.



2

Basic Principles

2.1 Introduction

In this chapter, the basic principles required to analyze the structural stability problems
are discussed. Emphasis is laid on energy methods. In the beginning of the chapter,
the idealization of the structures, equilibrium equations and rigid body diagrams have
been described. The subject matter on energy principles starts with the definition of
mechanical work for external and internal forces of an elastic system and establishes
relationship between the two.

2.2 Idealization of Structures

The primary objective of structural analysis is to determine the reactions, internal
forces and deformation at any point of given structure caused by applied loads and
forces. To obtain this objective it becomes necessary to idealize a structure in a simpli-
fied form emendable to analysis procedures. The members are normally represented
by their centroidal axes. This naturally does not consider the dimensions of the mem-
bers or depth of joints and hence there may be considerable differences between clear
spans and centre-to-centre spans ordinarily used in the analysis. These differences are
ignored unless cross-sectional dimensions of the members are sufficiently large to in-
fluence the results. The supports and connections are also represented in a simplified
form as illustrated in Fig. 2.1.

2.3 Equations of Equilibrium

For a stationary structure or a body acted upon by a system of forces which include
external loads, reactions and gravity forces caused by the mass of the elements, the
conditions of equilibrium are normally established with reference to a coordinate
system X, Y and Z. It is also convenient to replace all the forces by their compo-
nents along the chosen reference axes. The condition of equilibrium in X-direction

M. L. Gambbhir, Stability Analysis and Design of Structures
© Springer-Verlag Berlin Heidelberg 2004
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Fig. 2.1a,b. Idealization of structure. a Actual structure, b idealized structure

expresses the fact that there is no net unbalanced force to move the body in that
direction. Thus for static equilibrium, the algebraic sum of all the forces along the
co-ordinate axis X must be zero. Mathematically it can be expressed as ) F, = 0.
Similar conditions hold good along co-ordinate axes ¥ and Z. Three additional con-
ditions of equilibrium state that the structure or element does not spin or rotate about
any of the three axes due to unbalanced moments. The satisfaction of three force con-
ditions and three moment conditions establishes that the structure is in equilibrium
or stationary condition. The six equilibrium conditions can be expressed as

e Translational equilibrium

Y F,=0, ) F,=0 and » F,=0 (2.1)
e Rotational equilibrium
> M, =0, ) M,=0 and » M,=0 (2.2)
In the vector form they can be expressed as
FR=Fi+Fj+Fk=0 and Mp=Mi+M,j+Mk=0 (23)

For a planar structure lying in XY plane there is no force acting in Z-direction or
any moment about X- and Y-directions (axes). The moment M, represents moment
about an axis perpendicular to XY plane. Thus for a planar structure the equilibrium

conditions are:
D F=0, Y Fy=0 and » M,=0 (2.4)

The major application of equilibrium analysis is in the evaluation of reactions and
internal forces by representing a structure by a series of free body diagrams.
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2.4 Free-Body Diagrams

The analysis of all the structures is based on the concept that any part or the structure
is in equilibrium along with the structure as a whole. This concept is used to determine
the internal forces in a structure by drawing free-body diagrams for the parts of the
structure. The free-body diagrams are useful tools in structural analysis. These are
obtained by cutting the structure hypothetically or disengaging some connections
and supports. In constructing a free-body diagram, the correct depiction of all the
possible forces in the structure at the cuts and disengaged connections by appropriate
force vectors is of extreme importance. At this stage the correct direction of the
internal forces is not known. Once the values of these quantities are ascertained by
statics, the proper direction (sense) of each force component can be established. All
the external forces acting on the body in its original state must also be depicted on
the diagram. This procedure can be applied to each of the free-body diagrams into
which the structure has been discretised or broken down. However, in dealing with
the forces acting on the free bodies, the internal forces common to two free bodies are
double action forces denoted as equal but appositely directed force vectors. It should
be realized that the internal forces are the resultants of internal stresses which are
decomposed into components, normal to cross-section, termed normal (axial) force N
and tangent to cross-section shear force Q. In addition there are stress couples which
are termed bending moment M. To illustrate the discretization of a structure into
a number of free-bodies or elements consider the structure shown in Fig. 2.2a. The

P
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Fig. 2.2a—c. Free-body diagrams of the entire and discretized structure. a Structure, b free-body
diagram of entire structure, ¢ free bodies of individual parts
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free-body diagrams of the entire structure and of the parts are shown in Figs. 2.2b
and 2.2c, respectively.

To illustrate the application of equilibrium condition considers the loaded beam
shown in Fig. 2.3a. The free body diagram of the entire beam released from the
supports is shown in Fig. 2.3b. There are four unknown reaction components F,
Foy, Foy and M, acting on the free-body diagram of the entire beam. The free-
body diagrams of two parts disengaged at the hinge are shown in Fig. 2.3c. Three
equilibrium conditions for this planar beam along with fourth structural condition
that moment at the hinge 1 is zero, can be used to compute unknown reactions. The
equilibrium condition

Y Fi=Fu=0 gives Fu=0
Summation of moments at the hinge point 1, >~ M,
Fy,(2a) —2wa(a) =0 gives Fy, = wa
Summing up vertical forces

ZFy=Foy—|—F2y—2wa=0
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Fig. 2.3a—c. Free-body diagrams of the entire and discretized structure. a The beam and the
loading, b free-body diagram of entire beam, ¢ free-body diagrams of two parts separated by
the hinge
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Therefore
Foy + Fpy =2wa or Fyy = wa
> Mo, = My— M —2wa(2a +a+ a) + F3,(5a) =0
or My =M +8wa* — 5Fyya
substituting the value of F>, we obtain
My = M + 8wa* — 5(wa).a = (M + 3wa?)

The positive sign indicates that the directions of reactions assumed are the correct
directions.

2.5 Work of Externally Applied Forces

Consider a force F moving through a very small but finite distance dx along its
direction of action. The force will not change in magnitude appreciably during this
small movement éx and the elementary work is defined as

W, = F(6x) (2.5)

If the force has moved a total distance L the work done could be calculated by
dividing the distance L into a number of arbitrary small distances §x; = L/n and the
work would be approximated

n n
We=) 6We=) Fx (2.6)
i i

To be able to calculate exact value of W, the number of parts (n) must be infinitely
large. Thus in the limit §( ) tends to d( ), the summation (}_) tends to integral ( f )and
F; renders a continuous function of x. Thus the expression for the work done by F(x)
is

L
W, = / F(x) dx Q2.7)
0

In structural analysis problems F varies during displacement or deformation, e.g.
consider the very important case of linear relationship between the load F and the
displacement y i.e. F is linear function of y

F=cy

where c is a constant. Substituting this into (2.7)

y
1 2
We= [ (cy)dy = 5y
0
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Fig. 2.4a,b. Geometric representation of work w.r.t. load-deformation diagram. a Generalised
force-displacement curve, b load-deformation-work diagram

» y(6)

»X(y,0)

where y denotes the displacement or deflection of a point, and since F = cy, then
W, = %Fy

Here the loading F represents a single force, P or moment M, and the deformation x
represents the corresponding displacement and rotation, respectively. Thus F and x
are frequently referred to as generalized force and generalized displacement. The
curve F = f(x) would be in general some non-linear continuous curve as shown in
Fig. 2.4a. The work done expression f F(x) dx represents the area under the curve.
In the other words, the work can be interpreted geometrically as area under load-
deflection diagram. If the curve F' = f(x) becomes straight line i. e. there exist a linear
relationship between force and deformation, the area renders a triangle as shown in
Fig. 2.4b and we obtain

W.=1Py or 1M6 (2.8)

The area A which together with A forms rectangle is obviously numerically iden-
tical to A in the case of linear force-deflection relationship. The area A is termed
complementary work W,. Thus the complementary work is defined as

Wc=/ydP or /adM 2.9)

Equation (2.8) implies that translational and rotational work must be equivalent. To
illustrate this consider the hinged arm 0-1 as shown in Fig. 2.5 with a force applied
at the free end 1 which would move by a distance dy. The work done by the force is

We=/de=fPL(dL—y>
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Fig. 2.5. Equivalence of translational and rotational works

I

Here PL is the bending moment M acting on the arm and (dy/L) is the angle of
rotation df. Thus the work done can be expressed as

We=/Md9

2.5.1 Eigenwork and Displacement Works

Eigenwork is defined as the work done by a force moving along the deformation
caused by it. As an example consider the structure shown in Fig. 2.6a. The deflection
under distributed load w is y(x), at the point of concentrated load P is y; and at
the point of moment M is 6, (¥,_,,, where a prime (') denotes differentiation with
respect to x). The eigenwork of the loading in this case, with an assumed linear
force-displacement relationship is

(a) (W]

Fig. 2.6a,b. Eigenwork and displacement work. a Loaded beam and its deflection, b geometrical
interpretation of eigenwork and displacement work
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L

1 1 1
Weig = EP)’I + 3 / wy(x)dx + EMGZ (2.10)
0

In contrast to eigenwork, the displacement work is the work done by a force Py along
the displacement y; caused by another force P,. Thus force P; does not vary during
deformation and displacement work is consequently

Wais = / Prdy, = Piy; (2.11)

As an example consider the beam shown in Fig. 2.6b carrying multiple loads. In the
double subscripted quantities term y;; represents a displacement at the point i due to
force P; acting at the point j. Consider the force P; acting at point 1 which produces
eigenwork Wi = (P1y11)/2. Now suppose that another load P, is applied to the
beam at point 2. This load will cause additional displacements y», and y;, at the
points 2 and 1, respectively. Thus the eigenwork of load P,, Wiy = (P2 y22)/2.

The eigenwork of the external forces (loading) of the system is

2
1 1

Weig = E Wi=Wn+Wyp= §P1 Y+ §P2Y22

i=1

while the displacement work is

2
Wiis = Z Wij = Wi = Piypp (2.12)

ij
The displacement work wherein the load remains constant, could be interpreted as
virtual work which is the product of a constant load and an imaginary very small

displacement (virtual displacement). This concept of virtual work will be discussed
later in this chapter.

2.5.2 Linear Springs

There are two kinds of springs normally encountered in the idealized structures:
a normal force or extensional spring and a moment or rotational spring. A spring is
said to be linear when load-deformation relationship of the spring is linear.

Normal Force Spring

It is capable of carrying a normal force only, i. e. it has no bending, torsional and shear
stiffness. The elongation A of an ideal elastic spring subjected to a normal force P is
given by

A= Plk, (2.13)
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Fig. 2.7a,b. Concept of linear normal force and rotational springs. a Normal force spring,
b moment or rotational spring

where k, is spring constant termed spring stiffness (i.e. force required for unit
deformation).

The inverse (1/k,) is described as the flexibility of the spring. In the structural
analysis problems an ideal linear spring is represented symbolically as shown in
Fig.2.7b. Anelastic bar of length L, cross-sectional area A and modulus of elasticity E
carrying axial force 8 P, shown in Fig. 2.7b can also be modeled as a normal force
spring. The total elongation A of the member following Hooke’s law is given by:

=€ _(E) _(AE) T AE _ (EA/L)

Comparing this expression with the law of linear spring given by (2.13), the spring
constant k,, is given by

k, = (EA/L) (2.14)

Work of internal force of the spring which is stored as the energy due to elastic
deformation 8x can be computed as follows. The internal force N produced in the
spring due to 8 P is

N =8P = kyéx

The eigenwork of the internal forces is thus
1
—W; =/Ndx = fk,,axdx = 5k,,(ax)2

1
=3 (spring constant) (elongation)?
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The strain energy U of the spring is thus

U= %k,,(&x)z (2.15)

Moment or Rotational Springs

A rotational spring is an idealized structure that is capable of resisting a rotation but
does not have an axial stiffness. For an ideal linear rotational spring, the moment is
directly proportional to the deformation which in this case is the angle of rotation 6.
The law of a linear rotational spring is thus

M =k0

where k, is the moment stiffness i.e. the moment required for unit rotation and
its inverse (1/k;) is the spring flexibility. An ideal rotational spring is symbolically
represented as in Fig. 2.7b. The eigenwork of the internal forces in the moment spring
is
1
—Win=W; = fSMdG = /(k,69) do = ik,(ée)2
= 1/2 (spring constant) (angle of rotation)? (2.16)

In general, however, both ends of the spring will move, the relative rotation of the
spring would be the net difference between the end rotations. The spring law should
be stated more precisely as

SM = k(62 — 61) = k.86
and the strain energy is thus

U = k(60)%/2 . 2.17)

2.5.3 Virtual Work
Virtual Work and Complementary Virtual Work

The equilibrium condition states that for a body to be in equilibrium, the sum of all
the forces acting on the body must be zero (3 P; = 0). Suppose now that a rigid
particle acted upon by several forces P; has moved an arbitrary small distance A
which is compatible with the constraints on the particle. Then the work done by this
force system would be given by the vector equation

W, = (P, cosf; + P,cos6 + P3cosbs +...)8A = Z PSA (2.18)

which is nothing more than multiplying an equilibrium conditions by A. This for-
mulation of equilibrium conditions has several computational advantages, €. g. the
reactions of fixed supports drop out from the equations because they do not work.



2.5 Work of Externally Applied Forces 21

In the preceding calculation, the virtual work has been defined as the product of
a real force moving through a virtual displacement. In this form the principle is re-
ferred to more accurately as principle of virtual displacement. However, the principle
of virtual work can be stated in another form known as principle of complementary
virtual work. Here, the virtual work is defined as the product of virtual force moving
through a real displacement. This principle thus states that if the system is in equi-
librium, then the sum of all virtual complementary works is zero for compatibility or
geometric continuity (e. g. zero slope at point of fixation in case of fixed support, and
members meeting at a rigid joint have same absolute rotation). Thus, the principle of
virtual work (or virtual displacement principle) assumes compatibility and leads to
equations of equilibrium while the principle of complementary virtual work assumes
equilibrium and leads to equations of compatibility.

To illustrate the dual character of these two fundamental principles of mechanics
consider the model shown in Fig. 2.8.The model is discrete frame structure consisting
of rigid-bars supported by rotational springs capable of activating reaction moments
at the supports.

(1) Principle of virtual work
Give the system a virtual rotation 80 as shown in Fig. 2.8a. The virtual works of
various forces are
SWex = P(84)
—6Wi, = M1660, + M»66,

For compatibility 86, = 86, = 86 = §A/h, then

sA sA\ 1
~8Win = My (= | + Mz (- ) = L (M1 + Ma)s4

8A |
P. o 7 7 &P '
. ' 9, 0.
3 =~ .
, 50 .
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Fig. 2.8a,b. Concept of virtual displacements and virtual forces. a Virtual displacements,
b virtual forces
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From the principle of virtual work
1
dWex + 6Wip = [P - Z(Ml + M2)] sA=0

Since 8 A is arbitrary but non-zero, then
Ph =M + M,

which is equilibrium condition. Noting that M; = k;6;

0 = (Ph)/(kr1 + ki2)
(2) Principle of complementary virtual work
Apply on the system a virtual force § P. The virtual work done by various forces are

§We.ex = AGP)
—8Wein = 0(6M1) + 0(8M>) = (M + 5M>)

For moment equilibrium:

dMy + My = (8P)h .
Therefore

—8Wein = O P)h
From the principle of complementary work
IWeex + 6Wejn = (A —hOSP =0
Since 8 P is arbitrary but non-zero,
A =ho

which is the compatibility condition.

2.5.4 The Principle of Superposition of Mechanical Work

An important property of linear deformation is the validity of principle of superposi-
tion which means that: if a force F produce a deformation r; and F; produces another
deformation ry, then deformation due to F (= F; + F») is r (= r; + rp). However,
as far as mechanical work is concerned the principle of superposition can be applied
to the displacement work component but it is not valid for eigenwork component.
It can be noticed that in the case of eigenwork relationship between work W;; and
displacement §;; is parabolic and therefore principle of superposition does not hold
good, while in case of displacement work, the relationship is linear and the principle
of superposition is thus valid.
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Fig. 2.9a—c. Basic features of Betti’s and Maxwell theorems. a Loading sequence — case I,
b loading sequence — case II, ¢ Maxwell theorem

Theorems of Betti and Maxwell

Consider the beam shown in Fig. 2.9a subjected to load systems P; and P; at points i
and j, respectively. Suppose the load system P; is applied first and then subsequently
the load system P;. The work done by the forces is

Wi = Wi+ (W; + W) (2.19)

where W;; and W); are eigenworks of P; and P;, respectively, and Wj; is the displace-
ment work of P; due to P;. Now let the order of loading be reversed by bringing the
load P; first and then the load P; as shown in the Fig. 2.9b. The work done by the
forces in the second case is

Wiy =Wj + Wi+ W) (2.20)

where W; is the displacement work done by P; due to P;. Since the total work done
is independent of sequence of loading, W; must be equal to Wy;.
Thus

Wi+ Wi + Wi = Wj; + Wi + Wj
or
Wy=Wi or Y Pyj=) Py @.21)

This theorem is known as Betti’s theorem and may be stated: for a linearly elastic
structure, the work done by a set of external forces P; acting through the displace-
ments y;j produced by another set of force P; is equal to the work done by the later
set of external forces P; acting through the displacements yj; produced by force P;.
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Consider both the load systems P; and P; to be consisting of single load P (having
the same magnitude but not necessarily in the same direction), then

Pyjj = Pyji or y;=yji (2.22)

This is known as Maxwell’s theorem of reciprocal deflection and states that: the
deflection of point j due to force P at point i is numerically equal to the deflection
of point i due to force P applied at point j. It should be noted that deflections
are measured in the direction of the forces. Here force means a generalized force
(including moment).

2.5.5 Non-Linearities

While computing the work, it is essential that distinction be made between linear and
non-linear force-deformation relationships. In a statical structural system, there are
three main types of non-linearities: physical, geometrical and loading configuration
non-linearities.

Physical Non-Linearity
This type of non-linearity is due to the physical properties of material used in the
structure. All materials exhibit non-linearities to different degrees.

Geometrical Non-Linearity

This non-linearity is associated with the change in the geometry during deformation.
To illustrate this type of non-linearity consider the model shown in Fig. 2.10. The

=asinf=ab
P y
l P

[WA =a(l-cos8) = (1/2)a0?

acos

(a) (®)

Fig. 2.10a,b. Geometric and loading configuration nonlinearities. a Geometric nonlinearity,
b loading configuration nonlinearity
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exact value of maximum bending is given by

93
Mmax=Pasin9=Pa<9—§+—-~-> (2.23)
using Taylor series expansion.

If the expression is linearized i.e. all non-linear terms in 6 are ignored, the
equation reduces to

Mpax = Pab

This is valid only when deflection is small. Large errors would result from using this
simplification, if the structures are very flexible and tend to display large deformation.
The classical theory based on small deflections ignores this type of non-linearity.

Loading Configuration Non-Linearity

This type of non-linearity is due to the effect of applied axial force on the deformed
structure. Once a deformation has occurred, however small, the axial force will add
to the bending moments and consequently to the deflection and so on. To illustrate
this type of non-linearity consider the model shown in the Fig. 2.10b. In the initial
equilibrium state, the maximum bending moment is M, = Qa. This value of moment
is based on ignoring the change in the length of lever arm from a to a cos 8. But due
to the presence of axial force, the bending moment will be amplified to

M=M,+ Py + Py +... (2.24)

where y; is the deflection due to M,, y; is that due to secondary moments Py; and
so on. Thus, the presence of axial load introduces non-linearity to the system. In the
stability analysis of structures under static loading normally the equilibrium equations
are written with respect to deflected configuration of the system. Such an analysis is
termed linearized theory analysis and leads to eigenvalue problems. In the absence
of lateral force Q, the equilibrium equation of deflected system shown in Fig. 2.10b
is

k0

Pasind =kb6 or P=—
asin®

2.25)

For small deflection theory, sin 6 is linearized to 6 and P becomes independent of 6,
ie.

P = (k/a) .

2.6 Work of Internal Forces: Strain Energy

One-dimensional continuous elastic bodies will be discussed in detail in the following
sections. Internal forces are the resultants of internal stresses which are resolved into
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component normal to cross-section, termed normal force N, and another tangential
to the cross-section, termed shear force Q. In addition there are stress couples which
are termed bending moment M. In case of 3-D or space structures there is another
kind of internal force, called torsion moment M;. All these internal forces are double
action forces. They are different from the fixation or reactions at a support.

Ignoring, out of plane and shear deformations, a one-dimensional elastic body or
say a rod can be imagined to be consisting of a number of discrete rigid elements
of length Ax connected by perfectly elastic hinges, which are basically frictionless
hinges with rotational spring devices simulating the bending flexibility of the rod.
Such a discrete elements chain is shown in the Fig. 2.11a.

The strain energy of bending of such a chain model is defined as the sum of the
energy stored in all the elastic hinges. Denoting the elastic hinge constant k. the
strain energy stored in one spring (hinge) shown in Fig. 2.11c is

1 1
38U, = 2 (moment in the spring) (rotation at the hinge) = E(SM) (56

= %(krw)(&‘)) = %kr((w)2 = —8W; (2.26)

56

) ©

S5x Su
N oo N
« VWWWWWWW L >
kK, — 1

@

Fig. 2.11a—d. Deflection curve modeled by discrete rigid elements chain with bending and
extensional flexibilities. a Discrete element chain, b extension flexibility, ¢ elastic rotational
hinge, d extension of an element



2.6 Work of Internal Forces: Strain Energy 27

where 86 is the change in the angle between two adjacent elements. The total energy
of bending for a chain of n elastic hinges is thus given by

n
b=t =3 Sk = W, @27)
In order to include extensibility of middle axis of the rod imagine the small elements
of length 8x to be rigid but extensible. The extensibility is incorporated by internal
extensional springs of spring constant &, as shown in Fig. 2.11b by telescopic ar-
rangement. If elongation of each element is du then the energy of internal forces due
to stretching is given by

8U, = %(8N)(3u) = %(k,,c?u)(Su) = %k,,(&u)z

The stretching energy of the system is thus
n
1
Up=) Uy = le ~Kn(Bui)? = —Wiy (2.28)

Using the principle of superposition, the total strain energy U; of the discrete me-
chanical model is therefore
2T 1
Ui = ; [Ekr(sei)z + z""(‘”"')z]
Since, 86; = (8M; /k;) and du; = (6N, /k,), U; can be expressed as

N [1eM)® 1N
U,_;[z T | Wi (2.29)

The above expression can be used to derive the corresponding expression for a con-
tinuous one-dimensional elastic structure. Noting the relationship from strength of

material
d?y do 80
M=EI{—)|=EI|— )=EIl —
(dx2> (dx) " (ax>
86 EI
~ EI (_> =—_—80 (2.30)

where 86 is the change in angle 6 of the tangent to the line of deflection. Comparing
the formula with the law of linear moment springs M = k. (86), it is seen that
k. = EI/(6x). Substituting this value in (2.27)

1 , 1 (EI )
U=) k6’ =) > (g) (86,)
i=1 !

i=1

n
EI
= Z —2——(89,-)23x,~ (2.31)
i=1



28 2 Basic Principles

For a continuous body n — 0o, summation ) can be replaced by | and difference
expression by differential expression. Thus

1
U, = / EEI(G’)zdx (2.32)
Using the geometrically linear approximation ' = y” where y is deflection, we
obtain
1 1 (dy\*
U= | -EI ”de=/—E1— dx :
r f2 o) SE (T 2.33)

substituting the relationship M = EIy”, the relationship of (2.33) reduces to

1 [ M?
U = f —{—] dx
2\ EI
The subscript ¢, indicates that it is complementary strain energy connected with
complementary work. In a similar manner

N = EAe = EAu' = EA(Su/5x)

Here EA is the axial stiffness, € is the axial strain and u is the axial displacement
component. Therefore elongational energy is

U,,=f ~EAe’dx = fEA 2dx = /mdx Unc (2.34)

The total strain energy of an initially straight rod which is equivalent to the work of
internal forces is thus

Ui=U+ U= / %[El(y")2 + EAW)’ ] dx = —(Wir + Win) (2.35)
A small change in Uj; defined as the first variation §U; is
8U; = / %[EI(Zy”)By" + EAQu")8u'] dx
= / (EIy'8y" + EAu'8u’) dx (2.36)
Since EIy” = M and EAu’ = N, the expression for §U reduces to
8U; = /(MSy" + Néu')dx = /(MSO’ + Née) dx

= Virtual work of internal forces = W; (2.37)

Thus small change in U defined as first variation U is nothing else but the virtual
work of internal forces.
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2.7 The Work Equation

According to the law of conservation of energy, there is no gain or loss of energy
in a conservative system during deformation under external loads. It means that the
change in energy of applied load (i.e. external work done) is equal to the increase
in stored or strain energy (i.e. the work done by the internal forces). This statement
that the work of internal forces is equal to the work of external forces is valid for
both eigenwork and displacement work. In a perfectly elastic closed system the work
done by a load (stored as strain energy) will be released back completely when the
load is removed in the absence of thermal dissipation or frictional or damping losses.
Systems not following these conditions are commonly referred to as non-conservative
systems. Thus we have

—Win = Wex (238)

This work balance equation is equivalent to equilibrium conditions as has been
shown earlier in Sect. 2.5.3. Using the principle of virtual work which is an axiom of
equilibrium.

W, = 6Wex + Wiy, =0 or
W, — Wi, = 6W (2.39)

which means that change in the energy of applied loads is equal to the increase in
the stored energy. The work balance equation (2.38) can be used directly in solving
problems in structural analysis. For illustration consider the cantilever, and simply
supported beams of bending stiffness EI loaded by a concentrated load acting at the
free end, and at a distance a from support O, respectively, as shown in Fig. 2.12. It is
required to determine the deflections at the loaded points.

p
l Y,
EI ! ’ I .
: a

L
|— --[-i‘ﬁ:— X __! Pab/L
! / Pax/L
(_px} Pbx/L
PLUG/'/ | L |
X | 0 | o ™
dx dx

(@ (b)

Fig. 2.12a,b. Cantilever and simply supported beams with b.m. diagrams. a Cantilever and its
b.m. diagram, b simply supported beam and b.m. diagram
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(a) Deflection of cantilever beam

Assuming linear small deflection theory, external work is
Wex = 3 Py1

where y; is the deflection of the beam. The internal work can be easily determined
in terms of bending moment. Thus

L L
M? (—Px)? P13
i [ 2EI 2EI 6EI
0 0
From work equation — Wy, = W
1P P’
2" T ED
we find that
_ P (2.40)
M= 3ET '

(b) Deflection of simply supported beam
External work assuming linear small deflection theory is
Wex = %Py 1

where y; deflection of beam at the load point. The internal work can be computed
in two parts 0-1 and 1-2, since the bending moment diagram is discontinuous at the
load point 1. Thus

3% [ 1 (P \? F 1 (Pa \?
a
W= | 751 /2151 ( Lx) +/2E1<Lx)

0 0 0
Thus
P2b2a3 P2a2b3 P2L12b2 P2a2b2
—W’l = —+ 5 = ) (a —+ b) =
6EIL? 6EIL 6EIL 6EIL

It should be noted that for the computation of internal work in the part 1-2 of the
beam, the point 2 has been taken as the origin for simplification. Finally from work
equation

1 p*a’b? Pa’p?
ZPy = = (&2 241
=g N (3E1L 241
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(@ (®)

Fig. 2.13a,b. The truss and its deflection. a Pin-joint truss, b exaggered deflection of the truss

For multiple load system above method becomes complex. An alternate method
using a trial shape function is suitable. The work equation is equally applicable to
structures carrying axial loads. For illustration consider the truss shown in Fig. 2.13a.
It is required to find the deflection of point 1.

An exaggerated deflection of the truss is shown in Fig. 2.13b for clarity. An
assumption of small deflection theory for load-deflection relationship implies o = 60°
and 8 = 30°. The external work done is

Wex = %P Y1
The strain energy stored in the members of axial stiffness EA is given by

W — U= 1 FPL;
mee —~ 2 (AE);

sl ()] 5 (o)

equating external work done to internal energy stored

1o _ PL L,
2T AE\ A

(G (2

Therefore
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P

A=L(l1-cos9)

Fig. 2.14. Rigid column supported by a rotational spring

To illustrate the application of work balance equation to determine critical load
consider a rigid (stiff) column hinged at the bottom and supported at the hinge by
a rotational (moment) spring of stiffness k; as shown in Fig. 2.14. When the P attains
critical value P, (buckling load), the system moves from unbuckled to a buckled
state. However, load remains constant. The work done by the load is thus

W = PA (2.42)

where A is the descent or vertical movement of the load and can be easily found from
the geometry of deformation as

A=L(1—cos0)=L[1—(1——%92+...)]%L(%92> (2.43)

In the Taylor series expansion of cos & only first two terms have been retained. Thus

Wy = P 1L62
ex — 2

The internal work, on the other hand, is equal to the internal work of rotational spring
1
—Win = 5k’

Equating both the works we get

1 1
3 L0 = Ek,ez ie. Py= (k/L) (2.44)
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As long as P < (k;/L) the system is stable and any sideway perturbation will cause
the system to spring back to unbuckled state (after vibrating for sometime). However,
for P > (k;/L), any perturbation will make the system to move from a vertical
unbuckled state to a no return position.

For most of the beams and frames, axial and shear deformations can be ignored
in determining deflection of central axis. On the other hand large axial force de-
formations in arches, suspension bridges and trusses have to be taken into account.
Similarly, for deep beams shear deformation can reach large values. To determine
the order of magnitude of contribution of shear force in the deflection, consider the
maximum deflection due to load P applied at the free end of elastic cantilever of
rectangular cross-section. The cross-section and magnitude of modulus of elasticity
are assumed to be constant along the entire length of cantilever of Fig. 2.12a. The
eigenwork of internal forces namely bending moment and shear force is

L

L

M?dx 0?

Win = = K X _dx 4

" 2EI + f 2GA (2.45)
0 0

where K is a constant depending upon the shape of cross-section termed shape factor.
The value of K for a rectangular cross-section is 1.2. Thus

L L
(—Px)’dx P2dx P2L3 6 P’L
Wi = [ o + 122 = +
2EI
0

2GA  6EI ' 10 GA
0

The external eigenwork done during the displacement yy.x is

Wex = Pymax/2
Equating external work to the eigenwork of internal forces i.e. Wex = — W,
PL3 6PL
Ymax = EE_I + ga = Ybend + Yshear
= PL’ 1+ 3E (B (2.46)
"~ 3EI 10G \ L? ’

where # is the height of the cross-section. The relationship between material con-
stants E and G is given by

£ 2(1+v)
_— = ")
G

Taking v = 0.2 a typical value for concrete, the ratio £/G becomes 2.4. The total
deflection

Ymax = [1+ 0.72(h%/L?) ] ypend (2.47)
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For a very short or deep beam say L/h = 1, the total deflection is 1.72 times that due
to bending alone. Hence shear deformation are important. On the other hand for long
or slender typical beam with L/h = 15, the deflection due to shear is 0.32 per cent.
However, it should be realized that this is not always the case. For an I-beam with
strong flanges and very thin web the shape factor can become up to ten times larger
than rectangular section and shear force Q could not be ignored.

In the situations where the loading configuration is difficult to treat using standard
methods of structural analysis or where the system is highly statically indeterminate
due to complicated support and boundary conditions, the work method is viable
alternative method to the classical integration of differential equation.

Differential Equations

The differential equation of a problem can be obtained by using standard equilibrium
procedure. Consider an element dx isolated from the structure and carrying constant
distributed load w(x) within the element. Due to this loading force components, N,
Q and M will generally vary as shown in the Fig 2.15b. The equilibrium conditions
are

Zszo, N—(N+dN) =0

dividing by dx we obtain
dN/dx =N'=0
w(x)_—‘ -

J oy T FEERTRY
= T -
(@

Q

w(x) Q+dQ
tiivvvvvv ey

(b)

Fig. 2.15a,b. Forces acting on an isolated element. a Loaded structure, b internal forces acting
on an element
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i.e. N is constant

> F,=0, Q-(2+d0)-w®xdx=0 (2.48)
dividing by dx we obtain
dQ/dx +wx) = Q' +wx) =0 or Q =—-w(x) (2.49)

This means that the rate of change of Q with respect to x is equal to the negative of
loading w(x). The condition Y M = 0 about the left end of element gives

—M + [(Q +dQ) dx] + [w(x) dx] <5‘2f) +(M+dM) =0

On simplification and dividing by dx we obtain

dx dM
—+—=0 2.50
0+ w(x) >t % (2.50)
In the limit dx, the second term vanishes
Q+M =0 or Q=-M (2.51)

This means that the rate of change of M with respect to x is equal to the shear force Q.
Differentiation of (2.51) and substitution in (2.49) gives

M = w(x) (2.52)

This means that differentiating bending moment twice is equal to the loading. In
other words, integration of loading as a function of x twice, gives the bending
moment. However, for determining the constants of integration two moment boundary
conditions are required which may not be obvious. It is advantageous to express the
differential equation in terms of lateral displacement y(x). This can be accomplished
by using standard linear relationship

M = (EI/R) = EIY" (2.53)
Thus the differential equation of elastic beam in the displacement form is
EL" —wx) =0 (2.54)

This is an ordinary linear differential equation of fourth-order and therefore requires
determination of four constants of integration from the four displacement boundary
conditions.

A shape functions of y(x) which looks as close as possible to the expected one
can be assumed. Such a assumed function is termed trial or test function. This trial
function should in general approximate the deflection curve as far as possible but
must satisfy all the boundary conditions related to deflection and slopes (y and y’).
The internal work in terms of differential equation is given by
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P
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Fig. 2.16a—c. Virtual work method for calculation of displacement. a Displaced structure under
load, b displacement due to virtual load P, ¢ displacements due to loads P and P

L
—W,, = / %El(y”)zdx (2.55)
0

In this case trial function could be a second-order parabola or even simply a half
sine wave. However, trial function should adapt to the boundary conditions of the
problem. The work-balance approach used in the foregoing illustrations is limited to
the determination of deflection caused by a single force at the point of application. In
case of multiple loads more than one value of deflection will appear in the expression
for external eigenwork, the resulting equations can not be solved. Due to these
limitations, the method of real work is not widely used for deflection analysis. The
principle of virtual (displacement) work may be utilized to solve this problem. This
method is one of the most important methods used to calculate displacement of elastic
structures and also forms the basis of force or flexibility method for the analysis of
statically indeterminate systems. For illustration consider the simply supported beam
shown in Fig. 2.16a. The beam supports load P at point 1. It is required to determine
vertical displacement at point 2. Let the load P be removed temporarily from the
beam and virtual load P of arbitrary magnitude be applied at point 2 in the direction
of desired deflection as shown in Fig. 2.16b.

Now load the beam with the real load P, producing additional displacements y;
and y, under loads P and P, respectively, as shown in Fig. 2.16¢c. From the principle
of energy balance that the external virtual work is equal to internal virtual work we
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have
Wex = —Win s Wex = 13)’2

(i.e. product of virtual force P and real displacement).

The internal work is due to moment M caused by P acting through bending
deformation dé produced by real load P. The deformation d@ is defined by Mdx/FE1,
where M is due to real load P. Thus

{ M dx
e (22
0

Equating Wex and —Win
L _ L _
ne [ om0
EI EI
0 0
Since P is arbitrary and moment M is a linear function of P, P can be replaced by

a unit load and M by m,
[ M
m
= — )} dx 2.56
» f ( 5l ) (2.56)
0

where m is moment caused by unit load applied in place of P. Thus, an application of
unit external virtual force directly gives the desired displacement. This unit external
force can be in the form of either a force or a moment depending upon the type of
displacement to be determined.

The value of integral could be easily evaluated by numerical integration in tabular
form. However, since m is always a linear quantity, the above integral reduces to
following simple expression

"Ul]'-‘

mM M
= | —dx = f .
y / 7 dx Xf (EI) dx = X (Areaof M/EI diagram) 2.57)

where X is the value (ordinate) of m diagram at the location of centre of gravity of
corresponding smooth (continuous) part of (M/EI) diagram as shown in Fig. 2.17.
The method called area centre-of-gravity method is due to Otto Mohr, and is ap-
plicable to structures made up of straight members. For a rigid frame consisting of
a number of discrete elements or members

A1X1  AX, AX
- R — 2.58
Y E L + E L + Xi:(EI)i 259)

By an analogous treatment it can be shown that deflections due to axial forces, shear
forces and torsional moments are

nN qQ tT
W= | —dx, =[] =dx and yo = [ —dx 2.
% _/ EA Ve / GA ’ f GI, (2.59)

respectively, where G is modulus of shear and I, is polar moment of inertia.
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®

Fig. 2.17a,b. Computation of deflection by area centre of gravity method. a M/EI diagram,
b m diagram

The virtual work unit load method can also be used for determining the deflection

of a truss. Since bending moments in a pin-jointed truss are by definition all zero, the
virtual work formula in this case is

nN

Noting that N and n are always constant over the whole length, the internal virtual
work of a discrete member of length L is

L
- nN nNL
AWy = — [ dx = ——
dWin EA/ AE
0

For a complete truss containing m members, the virtual work expression becomes

_ Z. (nNL
“Wa=2 (nAE >i

i=1

Equating external virtual work Wy (= 1.y) to internal virtual work — Wi,

Z. (nNL
y=Y (”AE )i (2.60)
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1/4 3/4

(@ (b)

Fig. 2.18a,b. Pin jointed truss with real and virtual forces. a Pin jointed truss and real forces,
b virtual forces

The following example illustrates the procedure for evaluating deflections of the
truss joints. Consider the pin jointed truss shown in Fig. 2.18a and let it is desired
to determine vertical component of deflection at the joint 2. AE is same for all
the members. The real and virtual forces in the members of truss are shown in the
Figs. 2.18a and 2.18b, respectively. The vertical displacement is

LE[(JP' 2}) (2; 4}) (% 2—)+(\%2lﬁ)

P 1 P 3 P 3 32Pa
+(_3'7)+(2f 4) (T 7)] 24AE

2.8 Energy Theorems of Elastic Systems

In this section some of the important theorems of elastic systems will be discussed.
As mentioned in the earlier section eigenwork could be used in conjunction with
the work equation to determine the deflection at the point of application of a load.
However, eigenwork could be generalized to calculate deflections. Consider for ex-
ample a simple beam shown in Fig. 2.19a subjected to a system of loads P (Py, P,
Ps, ..., P,) applied gradually. The beam undergoes deformation and strain energy,
which is a function of external loads and is equal to external work done, is stored in
the system, therefore,

CX_¢(P15P23P35---5P)=U
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()

Fig. 2.19. a Deflections due to the load system, b additional deflections due to § Py

Now, if any one of the loads, say P is increased by a differential amount & Py, the
strain energy of the system will change by an amount (8U/3Px)é P. The expression
for total strain energy reduces to

U =U+ oU P, =W, —U+Zn:Pd +15Pd
t = 9P, k= Wext = - i AYyi ) k QY

Neglecting the last term as being the product of two differential quantities, we have

n
U=U+)_ Pdy (2.61)
i=1
If the sequence of loading is reversed i.e. § Py is applied first and then the system of
loads P as shown in Fig. 2.19b the total work done is

1
Wext =U=U + (—2-8Pkdyk) + 8 P yi

The term (6 P, dyx/2) being of second order can be neglected. Consequently expres-
sion of work done reduces to

U, = U + 8Py (2.62)

Since the order of application of loads is immaterial, the total work done or total
internal strain energy in both the loading sequences must be equal. Therefore

au
U+ —8Pk=U+6Pyr or
P

aU _ W A(We) _ A(=Win)

ap, 2k % T 5p. T Top, 3P,

(2.63)
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The above expression can be generalized to

W) g 6 = (=Win) 2.64)

= "3p ToM,

where, W;, is the internal work of the system. In the other words, for a linearly elastic
structure, partial derivative of the total strain energy with respect to a typical load Py
gives the deflection due to this load in its direction. This is Cotterill-Castigliano’s
second theorem.

Now, if one of the displacements, say y, is changed by an infinitesimal amount
dy; while all other displacements are kept unchanged, the corresponding change in
the strain energy would be (8U/dy;)dy;. During such a change the force Py is the
only one which does work amounting to P; dy,. Equating the change in the internal
energy to the additional work done

<8U) dyk Pk dyk i.e. & = Pk (265)
Yk Ak

This is known as Cotterill-Castigliano’s first theorem. It states that the partial deriva-
tive of strain energy of a system with respect to any one of the displacements at
a certain point gives singular force at the same point. It should be noted that this
theorem do not place any restriction on the relationship between deformation and
force being linear.

To apply Cotterill-Castigliano’s second theorem for determining deflections, the
strain energy must be expressed in terms of external loads. Consider, for example,
the flexural system where the internal strain energy is due to bending. The expression
for deflection is

o

a 2
o = / (M,)*/QEI) dx

Yk =

Itis much easier to first differentiate the quantity under integral sign and then evaluate

the integral i.e.
L
dx .
w=[ (&) () 259
0

Similar expression can be developed for trusses where internal energy is due to axial
strains. The expression for deflection of a truss point is

)’k=Z(E

Px) oP; L 2.67
=) (55 ) 2 @6

It must be noted that if a deflection component is required at a point where no action is
applied or if an action exists at that point but not in the direction of desired deflection,
then an imaginary action is assumed until the partial derivative for the total strain
energy has been computed. In the resulting expression, the imaginary action is then
reduced to zero.
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The Cotterill-Castigliano’s second theorem can be advantageously used for the
calculation of redundant actions in statically indeterminate systems, The procedure
consists in making the system statically determined by removing the redundant
supports and replacing them with unknown redundant actions. Thus, the system
under the given loading would have deflections at the location and in the direction
of support reactions. The work is expressed in terms of external known loads and
unknown redundant actions. The partial derivatives with respect to redundant actions
(R;) give deflection at their location and directions. However, the deflections are
suppressed by the support that makes the system statically indeterminate in the first
place. Thus

Wi

R . i=1,2...,n (2.68)

where n is the number of redundant actions. Suppose R; is equal to unity, then we
would have a unit deflection y;. Thus

YRi = Ry
Since yr must be equal to the prescribed deflection y,;, thus the net deflection
yi = Riyi — ypi

However, from Cotterill-Castigliano’s second theorem

Wiy
(- ok; ) = Riyi — Ypi

Differentiating the equation with respect to R;, we obtain

_ ¥ Wi
OR?

=y >0 (2.69)

that is y; must be positive. Thus (2.68) is the necessary condition that the —Wj, is
an extremum. While (2.69) says that extremum is minimum. Thus statically inde-
terminate redundancy takes a value that makes the work of internal forces —W;
a minimum i. e.

8(~Win) =0 and 8*(—Wi) >0

The Cotterill-Castigliano’s first and second theorems lead to the formulation of
stiffness and flexibility methods.
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2.9 Potential Energy

The word potential means ability or capability of achieving a particular goal. The
ability of the load to do work is termed load potential which is very similar to the
position energy of the load. In the structural mechanics the potential energy is always
referred to an arbitrary datum. To establish basic concept, consider the surface profile
shown in Fig. 2.20 which represents potential variation in terms of energy hills and
valleys. It is evident that a particle or a ball on the surface could not be in equilibrium
except at the top of a hill, at the bottom of a valley or at a point of inflection (or flat
surface). As explained in Chap. 1, these are the points of local maximum, minimum
or minimax on the energy surface where tangents are horizontal or have zero slope
i.e. dV/9y = O. Mathematically, these points are termed stationary points (called
equilibrium points in structural mechanics). At an equilibrium position corresponding
to the minimum energy point 2, an infinitesimal displacement or perturbation of the
ball requires positive energy which raises the energy level of the load, V(y). This can
be represented as

V(y2 = 8y) > V(y2) < V(y2 +8y) (2.70)

On removal of perturbational force the ball roll backs to its position of minimum
potential energy. This is termed as stable equilibrium position. Thus for a stable
equilibrium which has minimum potential energy it must be ensured in addition to
dV/dy = 0 that 8?V/dy? > 0. Therefore, the principle of stationary potential energy
may be stated as: if a system is in static equilibrium, the total potential energy of the
system has a stationary value.

The positions corresponding to maximum and inflection points on the energy
surface indicate unstable and neutral equilibrium conditions, respectively. In case of
ball resting on a point of maximum potential energy, a perturbation makes the ball to
roll down to lower energy levels. This is termed unstable equilibrium given by:

V(i — Ay) < V(y1) > V(y1 + Ay)

Equilibrium

V()

Equilibrium

|
|
|
|
L
y

3 Ya

Fig. 2.20. Potential energy profile
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Mathematically this condition is represented by
3’V/ay* < 0 (2.71)

On the other hand at the point of inflection (i. e. at a flat surface), a perturbation makes
the ball to stay back in the new position. There is no change in the energy level. This
state is termed neutral equilibrium given by:

V(ys = Ay) < V(y3) < V(y3 + Ay)

Mathematically such a condition can be represented by
#V/ay* = 0 (2.72)

It is clear from Fig. 2.20, that the constant V4 could not effect the equilibrium on the
surface since the relative heights are relevant and it does not matter if the surface is
raised or lowered uniformly or the datum is changed arbitrarily.

2.9.1 Total Potential Energy of a Deformable Body

As explained in the preceding section, the potential of a rigid system is a function
of loads and displacements which on extremizing gives state equation which may be
equilibrium equation, equation of motion or any other governing equation. The total
potential energy of a deformable body comprises of two components namely:

1. Potential energy of external load or force system i.e. load potential, and
2. Potential ability of internal forces to do work.

Potential of External Forces

As has been discussed earlier in Sect. 2.5, that when the point of application of
a force acting on a system moves it does work equal to the product of the force and
the linear displacement of the point of application in the direction of the force. Here
the words force and displacement have been used in generalized sense. This potential
of loads for doing work is termed load potential or potential energy of the external
load system. This quantity has been previously defined as external work, W, = PA.

Timoshenko has defined the potential of a system in a deformed configuration as
the work done by acting forces in moving from this configuration to some reference
configuration. For static problems, it is convenient to take the shape of unloaded
structure as the reference configuration. Thus the potential energy of the load system
is the work done by all the acting forces when the structure is moved from its deflected
loaded configuration along with the loads to its unloaded position. This process is
known as backing up process. Due to negative work done by the loads during backing
up process the potential energy of external loads is negative. For example for an
elastic structure carrying a number of singular loads Py, P, Ps, ... , P,, the potential
energy due to loads is: Wex = — ) i, Piy;. This expression of load potential can
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be interpreted as virtual displacement work. However, it should be noted that during
loading process (forward process) the loads are gradually increased from zero to their
final values and the eigenwork done is % > Piy;. Thus in the forward process load
should have full value to start with. This is not necessary in Timoshenko’s concept
of potential energy.

In case of vibration problems the mean position about which the mass oscillates
is taken to be the reference position.

Potential of Internal Forces

As discussed earlier in the chapter, the internal work which is stored as strain energy
of the system is always positive quantity. Therefore energy of internal forces is equal
to the strain energy U. The total potential energy of a deformable structure designated
by IT and is defined as the difference between strain energy U i.e. elastic work of
internal forces (—Wj,) and the potential of external forces Wex (= V). Therefore

N=U—-(-Wx)=U+V (2.73)

Thus the total potential energy functional of a system is computed as a function of
displacements and deformations.

2.9.2 Principle of Stationary Potential Energy

The potential of the external forces which is defined as the work of external forces
due to the displacement of the structure can be interpreted as a virtual work if the
deflection is very small. The virtual work in turn can be written as an elementary work
P dy = dW. Similarly the virtual work of the internal forces can be interpreted as
an elementary work of the internal forces, dU = —dW,,. The elementary potential
function is thus given by

dfl = dU —dV = —dW;, — dW,

However, for equilibrium —dWj, = dW,,. Thus for equilibrium d/7 = 0. Since the
loading is kept constant, the displacements (y) and strains are the only variables; the
principle can be stated in the following form

oIl
—=0 2.74)
dy

The elementary potential dI7 could also be expressed in the form

P d
dIT = —dy = ——(Win)dy — —(Wer)dy = 0
dy dy dy

and since dy is very small but not zero, 91;7 = 0 for equilibrium. Thus the principle
of virtual displacement can be stated that a deformable system is in equilibrium only



46 2 Basic Principles

if the first variation of the total potential energy of the system is zero for every virtual
displacement consistent with constraints.

The variational principle of minimum total potential energy as derived from
virtual work can be stated that: for equilibrium the first derivative or more generally
the first variation vanishes (§/1 = 0). Here only the displacement field is subjected
to variation. In case of discrete systems represented by generalized co-ordinates y;,
the principle reduces to a simple form % = 0 for equilibrium. This forms a set of
algebraic equations of equilibrium. The principle 81T = Ois anecessary and sufficient
condition for equilibrium. Also in analogy with differential calculus, this stationary
point can be shown to be minimum (which implies stability) if the second variation
is larger than zero. Thus for stability we must have

8’1 >0 (2.75)

It must be noted that within linear theory of small displacements, stationary point
of IT is always minimum.

2.9.3 Applications of Total Potential Energy Principles

The Cotterill-Castigliano’s theorems can be derived from the principles of total
potential energy. The principle of stationary total potential energy can be applied
to the determination of deflection of structures, and buckling of struts of different
boundary conditions. It is extensively used in the generation of differential equation
i.e. the Euler-Lagrange equation of the problems. The variational principle can be
used directly to solve the problems. The classical form of the direct method is the
Rayleigh-Ritz procedure wherein a trial shape function termed Rayleigh-Ritz function
satisfying at least all the geometric boundary conditions is used in computation of I7.

Deflection Problem

For illustration consider a 3-hinged bars system shown in Fig. 2.21. The bars have
same cross-sectional area. For writing the expression for total potential energy of
the system the first step is to write the strain energy of stretching of the members
due to deflection of the point of application of the load. The axial deformations of
various members are computed in terms of vertical and horizontal components of the
deflection y, and yy of load point as shown in Figs. 2.21b and 2.21c, respectively.
The deformations taking the elongation to be positive are

1
A = (yyc0s 30 + yp cos 60) = E(ﬁyv + )
Az =Yy

1
Azp = (yycos 60 — yn cos 30) = E(yV —V3wm)
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Fig. 2.21a—c. Deformation in the 3-hinged bar system. a 3-bar truss, b stretching due to yy,
c stretching due to yn

The elastic strain energy U is

AE ,
AE [ /3
2a 2
AE

16a
AE

16a
and the load potential,

1 1 1
(3yy + )’h)zz + W)+ 5OV = ﬁvh)zz:'

V33y? + ¥ 4243y ) + 8y2 + (02 + 3y — 2~/§yvyh)]

(9 +3v3)y2 + 3+ V3)y2 + (6 — 2«@)yvyh]

Therefore, the total potential energy of the system is

n=u+Vv
= (E) [©+3+/3)y% + B+ V3)yE + (6 — 2v/3)y y]~—'?(y + )
16a M h vu V2 v
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Taking the variations of IT with respect to y, and yy

oI art
8[l=—-8y,=0 and 6l =— -6y,=0
dyy yn
On performing the above operations and noting that §y, and éy, are arbitrary or

virtual displacements, following equations are obtained

AE P
(E) [209 + 3v3)yy + (6 — 2v/3)y] — =0

AE P
(@) [2B + V3)yn + (6 — 2V/3) ] — =0

These equations can be arranged in the matrix form as

()62 6wl =5l

This is well known structure equilibrium equation encountered in the stiffness method.
It should be noted that same result is obtained by using Cotterill-Castigliano’s first
theorem. On solving the above equations

lﬁh} - % (@+—%> {(2 +1ﬁ)}

Consider the structure shown in Fig. 2.22 which carries an axial load P. The critical
load of this so-called strut is P, = w2EI/L?. To compute the value of critical load
using total potential energy method, IT can be expressed as

L

1
N=U+V= / EEI(y")de — PA
0

where the end shortening A can be expressed in terms of lateral deflection y by noting
that

Buckling Problem

L
1
Azifoym
0

Thus,
L L

1 1
1= [ 3157 a = p [ S0

0 0
Assuming trial function y = asin(zx/L). Substituting this value in I7, integrating
and then differentiating with respect to the only coordinate a and equating to zero
gives

Py = m?EI/L?

This is the exact solution just because the trial function happens to be the exact
solution of the corresponding differential equation.



2.10 Methods of Solution 49

P P
7 T
— ol
L
S |
>
P P
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Fig. 2.22. Buckling of strut carrying axial load

2.10 Methods of Solution

Sometimes, the structural systems are not amenable to exact solution or are difficult
to analyze, we take recourse to approximate solution using stationary potential en-
ergy procedures. As mentioned earlier, the total potential energy of a system can be
expressed as the function of its joint displacements. In case the joint displacements
which are also known as degrees-of-freedom are too many in number, it is possi-
ble to define true deflected shape by an approximate profile called shape function
This may contain one or more undetermined parameters. An assumed shape func-
tion must satisfy all the geometric or kinematic boundary conditions. Such shape
functions are called kinematically admissible shape functions. The method using
assumed displacement function is also termed trial or coordinate function method.
The geometrical compatibility or boundary conditions associated with assumed dis-
placement function are the deflection (y) and slope (y’). Other boundary conditions,
the so-called dynamical or force boundary conditions, associated with the bending
moment and shear, and thus indirectly with y” and y™ are optional.

2.10.1 Method of Trial Functions

The method of trial function which is coherently connected to the minimum potential
energy method is described in details in this section. As pointed out earlier, the
minimum or stationary potential energy theory is based on the principle of virtual
displacements and has all the advantages and limitations of that principle. It replaces
the equations of equilibrium but it does not guarantee geometrical compatibility of
assumed deflected shape with prescribed geometrical conditions of the system. This
is taken care of by using kinematically admissible functions.
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The total potential energy associated with flexural action can be defined as

L L
1 1
M= Wi — Wex = 5 f EI(y")*dx — EP/‘()/)2 dx (2.76)
0 0

Here I, the moment of inertia of the member section has been assumed to be variable.
If the trial function is assumed to be represented by

~

YEY=a191 + a0 +azps + - - + ape, (2.77)

where @1, 2, @3, ... , ¢, are admissible functions of x, and a; are the free coefficients
representing the degrees-of-freedom or generalized co-ordinates which enable the
function to take the best shape to extremize the potential energy. Substitution of
(2.77) into (2.76) yields

H = F](alaa2aa3a e 7an)+ P'F2(alaa2aa3a »an) (2~78)

The functions F) and F, are quadratic functions of independent arbitrary free coeffi-
cients a;. This means that principle of the minimum total potential energy is satisfied
by minimizing a function rather than the integral of a function. This offers consider-
able simplification, and becomes nothing more than an ordinary maximum minimum

problem with respect to independent variables a1, a3, as, . .. , a,, that is
oIt 0 .
— = — (Win — W) =0 wherei=1,2,3,...,n 2.79)
361,' aa,‘

Since the first derivatives of a quadratic function are linear functions, (2.79), will
represent a set of linear, homogeneous equations in terms of unknown independent
variables ay, az, as, ... , a, as follows.

pra1 + ¢1ax + gi3az + - P1aa, =0

@2a1 + @naz +@naz + - @ua, =0
. (2.80)

On1a1 + Pn2a2 + Y303 + - - Pupay = 0

The terms ¢’s contain P, EI and L as well as numbers. For a non-trivial solutions,
the determinant of coefficient must vanish, i.e.,

11 P12 P13 ... Pin
$21 Y22 Y23 .. Qo

) . . . |=0 (2.81)
®n1 ©¥n2  $n3 v ©nn

The expansion of determinant results in an n™ order polynomial equation which
is solved for the smallest value. This method of solution is generally known as
Rayleigh-Ritz or Ritz method.
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Determination of Trial Function

A sound judgment, experience and a feel of physical behaviour of the structure
facilitates determination of a trial function, which may be a polynomial expansion or
a Fourier expansion displacement function.

(a) Polynomial trial-function

To find polynomial trial function the following procedure may be adopted.

1. Assume a polynomial trial function of an order one higher than the number of
geometric boundary conditions that must be satisfied, e. g., if m is the number
of boundary conditions then a polynomial of the order # (= m + 1) need be
assumed.

2. Using m boundary conditions, n constants can be expressed in terms of the
(n — m) constants.

For illustration consider the case of fixed-simply supported strut shown in Fig. 2.23a.
The geometrical boundary conditions of structure

y(0) =y (©) =0 and y(L)=0 (2.82)

thus there are three boundary conditions, therefore a polynomial chosen to approxi-
mate the buckled form should have four constants at least. The polynomial is thus

y=ap+ax+ ax® + azx> (2.83)

- g e
I L
(b) al y=a[(i)_§[f]]
(C)W y=asin™ ory=4a [(%]_ (%ﬂ
et el 4]

Fig. 2.23a—d. Deflected shapes of beams with different support conditions and corresponding
trial functions
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The conditions y(o) = 0, and y'(0) = 0 give ap = a; = 0. Finally, the condition
y(L) = 0 gives a; = —as L. The one-degree-of-freedom trial function obtained is

y = —a3Lx* + asx® = a3 (x> — Lx?) (2.84)

Setting for convenience, a; = a, the trial function can be written as

x\3 x\2
=a*|(2) = () 2.85
y=a [ I 7 (2.85)
If the dynamic boundary condition that the moment at the hinged end is zero, i.e.,

M(L) = EIy"(L) = 0 or y"(L) = 0 is also to be satisfied, there are four boundary
conditions and the polynomial must therefore have five constants

y=ap+ax+ a2x2 + agx3 + 1/14x4 (2.86)
satisfying the four boundary conditions,
¥(0) =Y (0) =0 giveag=a; =0
VL) =0: al®+a;l®+al*=0,
Y'(L)y=0: 2a,+6asL +12a4L?> =0
Setting for convenience a4L* = a the solution of two equation gives
a=(3/2(/L?) and a3 =(-5/2)(@a/L?)

The one-degree-of-freedom trial function obtained is thus

x\* 5/x\3 3 /x\2
y”[(z) -3(2) +3 (z)] @87
For a fixed-free strut shown in Fig. 2.23b, the deflected configuration can be repre-
sented by the polynomial

y=ap+aix + ax® + asx’® (2.88)

The geometric boundary conditions y(0) = y'(0) = 0 give ap = a; = 0, and the
deflection trial function reduces to a two-degree-of-freedom function.

y = a2x2 + agx3

If the dynamic boundary (moment) condition y”(L) = 0 is also satisfied the trial
function reduces to a one degree-of-freedom function

r=e @ 5@ @rea e

For the fixed-fixed strut shown in Fig. 2.23d due to symmetry the geometric boundary
conditions are: y(0) = 0, y'(0) = 0 and y'(L/2) = 0. The trial function obtained
holds good for both the half portions with origin taken at the ends.
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1 /7x\2 1 /x\3
“a[3 (5 -1
Y= [4 L) " 3\L (290)
Similarly for a pin-ended (or simply supported) symmetrical strut the one-degree-

of-freedom trial function is assumed to be y = ag + a;x + a,x?. From boundary
conditions ag = 0 and a; + a, L = 0, the equation reduces to

X x\2
=4 (—) - (—) 291
y=4a [ 2 i3 (2.91)
However, it should be noted that the dynamic boundary conditions at the two ends
are not satisfied.

Suitable trial functions can also be obtained by using Fourier expansion instead
of polynomial expansion of exact function of y.

(b) Fourier trial-functions

The deflected configuration can be approximated by sine or cosine series. For example
the one-degree-of-freedom trial function for a simply supported strut may be assumed
to be

y = asin (%) 2.92)

which satisfies both the geometric and dynamic boundary conditions. Therefore this
trial function is superior to the polynomial function given by (2.91). The trial function
for a fixed-fixed strut may be assumed as

2
y= g (1 — cos —g—{) (2.93)

For a fixed-free strut one degree-of-freedom trial function with co-ordinate system
passing through the free end of the deflected strut can be assumed as:

X

y = acos (EZ) (2.94)

When solving buckling problems by Rayleigh-Ritz method, it is useful to consider
the trial function in the following general form:

Y@ =Y an fx)x" (2.95)
n=0

where f(x) is a specifically chosen function which satisfies the geometric boundary
conditions and ) _ a,x" is a power series

End conditions Function, f(x)
Fixed-free strut flx) = x?
Hinged-hinged strut fx) =x(x—- L)
Fixed-hinged strut fx) =x*(x = L)
Fixed-fixed strut  f(x) = x*(x — L)? (2.96)
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Fig. 2.24a,b. Trial functions for simply supported stepped beams. a Beam stepped at the centre,
b beam stepped at the end

It must be noted that the polynomial trial functions given by (2.87), (2.89), (2.90)
and (2.91) are simplest possible forms which satisfy (2.95).

Consider the case of a simply supported strut with variable moment of inertia as
shown in Fig. 2.24. Because of discontinuity in the moment of inertia the potential
energy must be written in the form

IT = strain energy — load potential = U — V

L/4 3L/4 L L
EI 71N2 4EI 17\2 EI N2 P N2
= | —0")dx+ —— O dx+ —O)dx — | =0 dx
2 2 2 2
0 L/4 3L/4 0

The trial function suitable for a simply supported symmetrical strut is given by
y = ay sin(;rx/ L) which satisfies all the boundary condition of the problem. However,
due to higher moment of inertia at the central portion the deflected curve is flatter
than that for a uniform moment of inertia case, therefore another term as sin(37x/L)
with three half sine waves satisfying all the geometric boundary conditions may
be added to the above trial function. This inclusion of additional term will make
the deflected shape flatter in the central portion. Thus a two-degree-of-freedom trial
function recommended for this case is

y = a; sin(x/L) + a3 sin(3nx/L)
Substituting y, (y)? and (y”)? in the strain energy and load potential expressions
2

L
P 7 X 37x\1? Pr
V==— l:al cos (T) + 3as3 cos (T)] dx = ZL——(a% + 9a§)
0

Elx*

U = —5-(0.864a; — 4.320a,a3 + 44.06443)
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The equilibrium conditions are given by: dI7/da; = 0 and 3I7/da; = 0

PL?
1.728 — ——
( 2n2El

9PL?
—4.320 88.128 — =0
at ( 2n2E1) s

)a1 - 4.320613 =0 and

For non-trivial solution of these linear homogeneous equations, the determinant of
coefficients should vanish i.e.

(1728 —a) —4320 | 0
—4.320 (88.128 — 9a)|
where
PL? 2 _11.520a + 14.847 = 0
o= — or o — . . =
2m2El «

The smallest root o = 1.4786 gives critical load P.; = 2.9577% EI/L? which is about
13.7 per cent larger than the exact value of 2.60072EI/L?.

If only the first term of the trial-function is adopted i. e. a3 = 0, the total potential
energy expression reduces to

Elt* Pr?
The equilibrium condition dI1/da; = 0 gives

1.728EIx*  Prn?
L3 2L

For non-trivial solution

1.728EIz*  Prn?
L3 2L

Thus,
Per = 3.4567*E1/L?

This is far less accurate having an error of 32.9 per cent compared to the exact
value. For asymmetrically stepped beam of Fig. 2.24b, a two-degree-of-freedom trial
function shown in the figure will give better results.
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Different Versions of the Rayleigh-Ritz Method

As explained earlier for stationary potential 3/7/da = 0 and the method is referred
to as equilibrium method. However, for IT to be maximum representing unstable
equilibrium 82I7/3a®> < 0, and to be minimum representing stable equilibrium
8%11/3a® > 0, the critical situation must be given by 92I7/da* = 0 which gives
the critical or buckling load and method is referred to as stability method. On the
other hand the work-equation interpreted as equating the work of internal forces with
that of external forces gives /T = 0. From (2.76)

|:E1 f(y//)de]
0

[Z (y’)zdx]

where y is the trial function. This expression is known as Rayleigh quotient. Another
version of Rayleigh quotient due to Timoshenko is obtained by substituting the
relationships

P = 2.97)

EI(Y")* = M*/EI = P*y*/EI (2.98)

in the Rayleigh quotient as

L L

[(P2y*/EID) dx [f EI(y’)zdx]

0 0
P="—F— o P=t"p—u= (2.99)

JO)*dx |:f yzdx:l
0 0

It should be noted that the order of differentiation in this quotient is lower than that in
the Rayleigh quotient. Since the error in using an approximate expression is increased
in the process of differentiation, the Timoshenko quotient yields more accurate results
compared with that of Rayeigh quotient. The Rayleigh-Ritz method could also be
used in conjunction with the principle of minimum complementary energy a1, = 0.
The complementary energy function of the problem is

L L
_ M2 P(y/)2 _ M2 (M/)2
nc_/{m— > ]dx_/[m— 2P}dx (2.100)
0 0

(since Py = M and hence y = M’/P as P will remain constant and only M is
subjected to variations). In terms of complementary work principle setting /1. = 0,
a quotient termed as complementary energy quotient is obtained

_ [ EI(M))%dx

P= T M (2.101)
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On replacing M by Py the quotient reduces to Timoshenko quotient. Observing the
relationship M = EIy” from which we obtain

M

where ¢ is an integration constant determined by geometric boundary conditions.
Substituting this in the expression of 1. given in (2.100).

L
M> P 2
M=||—-2 dx 2.1
/[2151 2(E1dx+c>:| (2.103)

0

Setting 1. = 0, a new significant version of complementary energy quotient is
obtained

L L
f (M%/ED) dx / / [((M/ED dx + c]*dx (2.104)
0 0

Since this quotient involves no differentiation at all, it yields more accurate results
than that obtained by using any other quotient. Trial functions satisfying moment
boundary conditions can lead to better approximate solutions. Sometime these trial
functions are more convenient to use than displacement trial functions.

The fourth-order governing differential equation can also be obtained from the
total potential energy functional which is generally a function of y”, y’, y and x,
ie. 1= OL I1(y", ¥, y, x)dx. As explained earlier, the functional I7 is stationary
if 811 = 0 which is necessary and sufficient condition for equilibrium. For the
stationary point to be minimum the second variation should be greater than zero i.e.
8217 > 0. However, within the linear theory of small displacement, the stationary
point is always minimum.

L
an:afﬁ(y”,y’,y, x)dx = /aﬁdx

L ~ ~

aIT oI oI

= 38y’ — 38y ) dx 2.105

/(ay,,y+8,y+a y) ( )
0

Rewriting the terms containing 8y” and 8y’ into the forms containing only 8y using
the integration by parts twice for the first and once for second term

[()or = (2)or- () o] ] () o
[C)s-[(] -] () »
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Thus the variation of functional §I7 can be expressed as

L - . -
olT oI7 oI7
o= | [(‘37) —(a—y,) +(a—y)]‘”d"
0
It oy 1 It L
ay// ay// 0 ay/ 0

The first terms is the governing equation of the problem and the last two terms are
boundary conditions. For 81T to vanish the governing expressions and expressions for
boundary conditions must vanish. Thus the governing differential equation is given

by
FlramN (o (af/
— ] —{—=) +[=—)|sydx=0 2.107
([[(W) <3y’) \ay)] ’ @107

Since 8y is arbitrarily small but non-zero, the differential equation reduces to

afT\" [of1\' (oIl
(ay,,) —(3—y,) +(7y‘)=° (2108)

This is also called Euler-Lagrange equation. The general form of this equation is

9" (oIl
D"y (W) =0 (2.109)

The total potential energy functional of a flexural system is given by

L
— EI_ //2_5 N2
H—/[zm 2(y)]dx 2.110)
0

Applying the criterion §IT = O through (2.107):

EI , 0% (" ay _
0/[ “ )3x2(y)__(_ )_<3y )]dx_o @1

/(Ely//// + Py//)dx — 0

"

i.e.

Thus fourth-order governing differential equation can be obtained by Langrangian
multiplier method, and by equilibrium method. The most important application is in
establishing an approximate solution. This is achieved by assuming an expression for
the elastic curve of deflection

y=aiy1t+ay: +azy;+ ...

where y; are admissible functions which can be admitted in making IT stationary
and make the boundary terms vanish as discussed earlier. These terms are called
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geometrical boundary conditions. The independent coefficients a; are then determined
in such a way that potential functional [T is rendered stationary. The substitution
of y in the functional IT reduces it into simple quadratic function with independent
variables, so called generalized coordinates ;. For equilibrium we must have

o _om_om _ @2.112)

3611 Baz 8a3 aa,»
The equations 0I1/da; are a linear system of algebraic equations in a. This method
is called Rayleigh-Ritz method, which is discussed later in this chapter. A different
version of this method based on above differential equation called Galerkin method
will be described subsequently. As an application of the method of analysis using
function in conjunction with Hellinger-Reissner functional ITg. Consider fixed-fixed
elastic strut. To account for the symmetry of the problem consider the region 0 <
IT < L/2 and functional reduces to

L2

Mg =2 (E—M” f’z]dx
R = f[2EI y)+2(y)

L/2 L/2

M?
f E— -2 f My'dx + P f (y')?dx
0 0

Consider two different trial functions for M and y as follows

L2
M =a, +ax and y=a3(x2——21—>

where aj, a; and a3 are independent coefficients. The derivatives of y are

L2 2
y = 4azx <x2 - —4—) and y" =4a; <3x2 - LT)

Substitution in various terms of the functional and integration gives

L/2 2

EI T 24E]
0

——[12a}L + 6a1a, L% + a3 L°]
L)2
1
2/ My'dx = §(a2a3L4)

N2 -
Pf(y)dx‘los(" 7

The function is thus reduced to a quadratic function of a;, a, and a3

1 P
My = ———(12a3L + 6aja L + a3 L3) — —(a2a3L4) + ﬁ(a3L7)
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The application of extremizing conditions gives

8IlR

— = 5o 2ALan + 6L%ay) =0 or 4a;+Lay =0

1

811 1 L4

525 = m@Lzal +2L%,) — S @ =0 or 6a+2La - 3EIL%a; =0

817, L* 2PL7

_S—R — _?@ + W% =0 or —105a; 4+ 16PL%a3 =0
as

These equations have a non-trivial buckled form solution, if and only if, the determi-
nant of coefficients a;, a; and aj i.e. stability determinant vanishes.

4 L 0
6 2L —3EIL?| =32PL*—1260EIL* =0
0 —105 16PL?

The critical load is

Py = 39375 EI/L?

The exact value is 39.48 EI/L?. It should be noted that Reissner’s principle is a very
powerful method for obtaining accurate approximate solution. However it should be
noted that in contrast to Raleigh’s principle Hellinger-Reissner principle gives lower
bound solution i.e.

Pcr S Pcr,exact

2.10.2 Galerkin Method

This method is also based on the assumption of trial functions and gives identical
solution for a conservative system as given by Ritz method, if same trial function is
used. However the trial function in case of Galerkin method must satisfy both the
kinematic (related to the geometry of the system) and the dynamical (i.e. related to
the moment and shear force) boundary conditions. The solution procedure consists
in formulating the Galerkin equations of problem. This can be done by writing the
governing differential equation EIy"” 4+ Py’ = 0 in terms of the trial function,
multiplied by its variation and then integrating over the domain of the independent
variable. The equilibrium equations are then found from extremizing the galerkin
equations with respect to the coefficients of the trial functions. Next step is to find
the stability determinant and the eigenvalue equation of the buckling load. As an
illustration consider the case of a fixed-hinged strut using a single degree of freedom
trial function satisfying both the geometrical and dynamical boundary condition as

y= a1(3L2x2 —5L3 + 2x4) = a1y

The Galerkin equation is obtained by replacing y by y; in the governing differential
equation and multiplying the resulting equation by y; and integrating. Thus
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L
G= fal(EIyg”’ + Py)y1dx =0 (2.113)
0
The various derivatives of trial function are
y] =6L* —30Lx +24x* and y" =48

The integration of various terms of Galerkin equation is

L
36EI
EIf48(3L2x2 —5Lx® + 2xY)dx = (T) LS

L
12P
P / (6L% — 30Lx + 24x*)(3L*x* — 5Lx> + 2x*) dx = — (?5—) L’
0

Thus the Galerkin equation reduce to

36EI 12PL? p
a| ———— L°=0
5 35

From which critical load is given by P, = 21 EI/L?. The exact solution is
20.19 E1/L?. The error is only 4.0 per cent. Same procedure can be followed while
using higher degree of freedom trial function. For example for the trial function
having two-degree-of-freedom i.e. a1 y; + a2y, the Galerkin equations are:

L

G = / [El(aly/{” +ayy") + Playy] + azyé/)]yl dx=0

0
L

G = / [Elay]" + a2y;") + Plary] + a2y} ]y, dx = 0
0

These are two linear algebraic homogeneous equations. The most of the solution
then follows the standard stability investigation procedure which consists in finding
stability determinant and eigenvalue equation of the buckling loads. The smallest root
will correspond to the smallest critical load. The Galerkin method is also applicable to
non-conservative system where no potential energy in classical since exists. It should
be noted that the terms in the Galerkin equations have dimensions of work. Thus
the differential equation is force equilibrium condition for an assumed displacement
trial function and moment equilibrium condition in case of an assumed moment or
rotational function.

2.10.3 Finite Difference Method

As discussed earlier the critical equilibrium of flexural or bending elements is ex-
pressed in terms of second-order or fourth-order linear differential equations. In some
cases it is difficult if not impossible to perform formal integration to define deflected
shape of the member. This is especially true when the cross-section of the member
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varies along its length. In such case a procedure called finite difference or colloca-
tion method can be used to convert the governing differential equations into a set of
linear simultaneous algebraic equations i.e. the differential equations are replaced
by appropriate difference equations. The method consists in application of govern-
ing differential equation in finite difference form at pre-selected locations along the
member. This method presumes that within a given interval the function represent-
ing deflected shape can be expressed by a polynomial of order n. In this section an
extremely short account of finite difference method is given to enable the reader to
solve simple problems.

Consider the deflection curve modelled by a function y = f(x) divided into a set
of n equal divisions, with ordinate at a point x; denoted by y; as shown in Fig. 2.25
being represented by a polynomial of order n, i.e.,

y = f(x) = ax" + a1 xX" '+t axttaix+ ag 2.114)
A second-order approximation passing through three points, for example, would be
y= a2x2 +aix+ag

Using local coordinates system shown in the Fig. 2.25 and assuming expansion about
the reference point i, the coefficients of the polynomial are

ap =Yi

1
ai = ﬂ(‘)’i_l + Yit1)

1
a2 = oo (i1 = 29i + Yivt)
An approximation to first and second derivatives of y with respect to x are
dy
— =y Z2mx+a
dr y 2 1
y
Yi y=f(x)
P B A
Yia - ‘\
~ Yis2 -
~ - Ji2 - =
Node point
" > X
(i-2) @i-1) @) (i+1) (i+2)
[ -h I P +h

Fig. 2.25. Deflection curve divided into a set of equal increments
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and
d2 y
dx?
At the node point i, the values of derivatives are

y// = 2612

] o~ 1
y=a = ﬂ(*)’i—l + yit1)
and
1"~ 1
yi E2ay = ;13()’1'—1 =2y + yiv1) (2.115)

These expressions are referred to as first difference and second difference, respec-
tively. This type of finite difference expression that uses the pointi — 1 and i 4+ 1 is
called central finite difference. The other finite difference expressions using points i,
i+1,i+2;andi,i—1,i—2 are known as forward finite difference and backward finite
difference, respectively. It should be noted that these finite difference expressions are
inadequate for the fourth-order differential equation. For the fourth-order case it is
necessary to presume a fourth-order polynomial at the outset

y= a4x4 + a3x3 + a2x2 +a1x + ap (2.116)

requiring five reference points for its evaluation. Assuming these to be symmetrically
placed about the central node point i, the resulting difference expressions for various
derivatives can be obtained as

Y=
1

dy
{= st g - i—2 — 8 [ — 8 ] —V¥i
Vi (] )i 12h(y 2 — 8yi-1+ 8yiy1 — yiy2)

"o d2y ~ 1 (—yip+ 16 30y; + 16 )
Y = xZ i— 1212 Yi—2 Yi—1 Vi Yi+1 — Yi+2

Yi =\ 33 =T Yi—2 +2yi-1 — 2yi01 + Yit2)
" __ ﬂ 2_1_( — 4v: +6._4‘ . ) 2117)
yi = et ,‘_ e Yi-2 Yi-1 Yi Yitl + Yig2 (2.

The finite difference expressions for the fourth-order differential equation can also be
obtained from the first and second difference expressions of second-order differential
equation.

"

’ 1 ’
W= 00 =3 0l = 2+ i)
1 1 1 1
=12 ‘2—h('“}’i—2 +y)—2- E(_)’i—l +yit) + E(_Yi + Yit2)

1

= 5}73‘[_}’i—2 +2yi-1 = 2yip1 + Yis2]
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Similarly,

"

1
= O = 501 =250+ 51
1[1 1
=2 ﬁ()’i—z = 2yi-1+yi) —2- ZE(}’i—l = 2yi + Yiy1)
=i =2y + yi+2)]

= — iz —4yi—1 + 6y —4yiqa + yit2)

However, it should be noted that depending on the problem, the boundary conditions
also may need to be expressed in their expanded fourth-order form.

To demonstrate the methods consider the simply supported strut of uniform cross
section as shown in the Fig. 2.26a. The governing differential equation for a simply
supported strut is

y' +(P/ED)y=0 fortherangeO0 <x <L

The displacement boundary conditions are: at x = 0, y = O0Oand x = L, y = 0.
The differences equation corresponding to this differential equation is obtained by
substituting the value of derivatives. Figure 2.26a illustrates an example where the
domain is subdivided into three equal increments of size h = L/3 (i.e. four nodes

P —3{ J=<—p
L/3 L/3 L/3
@ RO, @ ®
Y1 Y2

(2)

P P
1 |
2 | I, | ! 4
AL
\tyl\yz Y3

Fig. 2.26a,b. Nodes sub-dividing the deflection curves into equal increments. a Uniform simply
supported strut, b stepped simply supported strut

(b)
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including the ends) are used. The unknown values of y at each of the interior node
points are y; and y; as indicated. For a node i the differential equation becomes.

T+ P '_1(' 2y; + vi+1) + P ;=0
Yi EI )’z—hz Yi—1 Yi Yi+1 E] Yi =
or
Yic1 = 2Yi + Yis1 + &’y =0

where o> = (Ph?/EI). The application of this difference equation to each of the
interior nodes 1 and 2 furnish the following linear simultaneous equations in terms
of unknown displacement values y; and y,

at node 1: (0—=2y;+ ) +a?y; =0
at node 2: (1 —2y2+0)+a?y, =0

It should be noted that due to symmetry y, = y; and only one equation need to be
considered. For a non-trivial solution

Ph? EI 9EI
2 _ — _ —
o <— EI) =10 or P,= 7w = I

If the simply supported strut of the above problem is subdivided into four and
five equal increments, the values of the critical load P, will be 9.38 EI/L? and
9.55 EI/L?, respectively. Thus it would be seen that greater accuracy is achieved by
assuming more interior node points.

To illustrate the application of the method to the cases where cross-section of
strut is variable, consider the simply supported stepped strut shown in Fig. 2.26b. In
such cases at the nodes 1 and 3 where the cross-section changes, an average value of
M/ EI can be adopted as an approximation. Average value of M/EI at nodes 1 and 3

is:
M MJ1 171 M 2L 1
=—=|—+ where [, =

ElI_E|L  L|2 EL L+h
Application of difference equation to the interior nodes
at node 1: 0 —2y1 + y2) + (@)*y1 =0
atnode2:  (y; — 2y + y3) + (@2)*y, =0
or
Q2y1 —2y2) + (@2)’y, =0 since y3 =y
Rearrangement of these equations gives

@~y +y, =0
2y1+ (@3 — 2y, =0



66 2 Basic Principles
For a nontrivial solution, the determinant of the system of equations must vanish i. e.

2__
(aaz ? (2 1_ | =4- 2z +@3) + (@) (e3) —2=0

As a typical case consider I; = I and I, =41 i.e.

2L 2(D@4D 81

T L+L  I+4I T 5

a

Therefore,

. Ph* 5ph*  , PR®  Ph’
o, = = —, (12 = — = —
* EI, B8EI EL  4EI

Substituting the values of &2 and o3
5 1\ [Ph?\ 5 1
2-2(Z+-) (== )+=2-
(8+4)<E1>+8 4\ EI
PR*\* (56 ( Ph? () o
EI 5 )\ EI 5)

The smallest root of quadratic equation is Ph?/EI = 1.2919. Thus the smallest
critical load for the stepped strut is

1.2919 EI  20.67EI
cr =— h2 = 72

which is 19.5 per cent less then the exact solution P, = 25.66 EI/ L2,

2.10.4 Numerical Integration

Sometimes the function to be integrated may vary in a complex manner such that
classical integration is not suitable. For example in the beams with sudden change
in cross section (stepped beams) or where the cross section is continuously variable,
the moment of inertia I can not be expressed as a simple function of x, the distance
along the beam. In such situations even the finite difference method discussed in
the previous section is not convenient due to reduced accuracy of the estimation.
A numerical integration technique provides a powerful method to handle all the cases
of loads and cross-section variations. Of all the methods available for numerical
integration, the Newmark’s method (1943) appears to be most convenient for the
purpose.

The method consists in selecting specific points along the length of the members,
known as node points, and then relating the loads, moments and deflection to these
points. The domain of the member is thus subdivided into a number of increments or
segments, and the position of the nodes and thus the segment lengths are selected to
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suit the problem so that solution thus obtained will be either exact or accurate enough.
The position of the node points have to be chosen in such a manner that the important
features of both loading and cross-section variation are properly accounted for. All
the calculations deal with the discrete values of loading, moment, curvature, slope
and deflection at the node points only, from these discrete values the corresponding
diagrams can be drawn. The method described is a forward integration procedure,
the integration being carried forward in a step-by-step manner from one node point
to next.

Computation of Deflection

The integration to obtain deflection starts with the curvature M/EI produced at any
point in a member. For small values of dy/dx (= y’, the slope of the member due to
bending), the curvature can be taken as d>y/dx? (= y”). Thus,

curvature, y’ = M/EI (2.118a)
, M
slope, Yy = —dx+ A (2.118b)
EI
. , M
deflection, y = | y'dx = de dx + Aix + A (2.118c)

The constants of integration A; and A; can be obtained from the boundary conditions
for slope and deflection. A; is the value of slope at x = 0, and if this is unknown and
is guessed incorrectly, the effect of this error will appear in y curve in terms of Ay x.
Thus correction to y is linear. A, is the value of deflection at x = 0.

The first step of the procedure for computing deflections from a known or trial
curvature distribution, is to evaluate concentrated values for curvature at N discrete
node points x; = xj, X3, ... , X, at an interval Ax. The slope is then computed by
numerical integration of the curvature

i
y = /y”dx = Zy,'gAx (2.119)

k=1

In this integration the slope at the starting end is assumed to be zero i.e. y; = 0,
although this may not be the true boundary condition. The deflection y. can now be
computed by numerical integration of the slope ¥’ as follows:

Vei = / Ydx =)y Ax (2.120)
k=1

with initial boundary condition of y, = 0.

If the computed deflected shape y4 does not conform to the end boundary condi-
tion, a linear correction is applied to the deflection values to make them conform to
the true deflection condition. The correct deflection (Fig. 2.28f) is given by

l
—YeN (2.121)

yizyci_N
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Boundary or End Conditions

In computation of deflection from discrete curvature values two known end conditions
are required relating to slope and deflection. These may be either one slope or
one deflection conditions-and in most cases these will be known locations of zero
slope and deflection-or two deflection conditions, often two known locations of
zero deflection. These known boundary conditions are essential for integration from
curvature to slope and from slope to deflection. They are related to constants of
integration and generally come directly from end conditions of the beam or the way
the beam is supported. In case of two known deflection conditions, the computation
of slope from curvature is not direct due to the lack of a slope condition, it require
the computation of trial slope value and a subsequent linear correction to deflection.
This can be achieved by assuming a value for slope at some suitable point as a basis
for completing the calculations for slope and deflection, and then to apply a simple
linear correction to the deflection values to make them conform to the two known
deflection conditions. Any small error in the trial value of slope results in a constant
error in the slope line and this in turn produces a linear error in the deflection line
as can be seen from constants of integration of differential equations of slope and
deflection.

Curvature Diagram

The curvature or M/ E 1 diagram is a necessary bridge between calculation of moments
and of deflections. The plot of the curve showing variation in M/EI is important
if the cross section i.e. I of the beam is variable. The process of computation of
moments normally provides values at the nodes. The shape of curvature (or moment)
diagram passing through these points is important in the sense that it controls the
concentration of curvature values at the node points. According to the shape of
curvature y” (i.e. M/EI) diagram various concentration formulae will be used to
lump y” at the node points. To ensure correctness of this step, moment diagram
should be sketched through the spot values of M, the M/EI diagram should also be
sketched in the cases where there is variation in I value.

Beams of Variable Cross-Section

The beams with variable I are very common in structural design. A variable
means that the shape of curvature diagram is different from that of moment diagram.
However, as long as the general form of M/EI diagram is known and its values are
available at every node point, the variation of I does not pose any difficulty in this
numerical integration procedure. The accuracy of the numerical solution depends on
how well the spot values of M/E1 at the nodes define the total M/EI curve i.e. on
the accuracy of the concentration formula. The discontinuity in y” often lowers the
overall accuracy of solution
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Concentration of y” Values at the Nodes

A continuously varying curvature (y”) curve can be concentrated at the node points
for the purpose of numerical integration for calculating slopes (y) and displacements
(). A function or a curve in general can be defined in terms of power series

oo

V' = f(x) =ap+aix +ax* + ... +ax* = Zakxk (2.122)
=0

where ag, a1, a, etc. are constants that specify the amount of x°, x!, x, etc. in the
function. ay is always the spot value of function at the origin of curve where x = 0,
other constants have to be determined from the known nodal values of f(x).

The procedure for concentrating y” curve at the node points in the form of ¥”
values i.e. angle changes between adjacent rigid chords, depends on the variation of
y” curve. A linear or trapezoidal variation is defined by first two terms of the series and
a parabolic variation is defined by first three terms. In case of trapezoidal variation
the curve varies linearly between two known points whereas in case of parabolic
variation the curve passes through three known points usually equally spaced along
X-axis.

Consider the curve f(x) shown in Fig. 2.27 passing through the values f;_1, f;
and f;;; at three equally spaced nodes i — 1, i and i + 1, respectively, with origin
being taken at node i and hence at nodes i — 1, and i + 1, x = —h and x = +h,

Fig. 2.27. Concentration of curvature values f (= y”)
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respectively. At any point x the value of function is f, thus the total change over
a short length dx at x is fdx. The effect due to this change at the nodes i and i + 1
are fdx(h —x)/h and fdx(x/h), respectively, such that c.g. of shaded area under the
curve over chord i, i 4+ 1 remains unchanged. Thus the concentrations at the nodes
iand i+ 1 are

h
Fiiy1= ;11- / Sf)(h — x) dx (2.123)
0
and
h
mM:%/ﬂAMx (2.124)
0
Similarly,
h
Fii1= /f(x)(h —x)dx (2.125)
0

Total concentration at the node i is
Fi=Fiin1+ Fiina
These general expressions can be used for any form of curve.
(i) Linear or trapezoidal variation
In this case the general equation for f retains first two terms only
fx) =ag+a1x (2.126)
Applying the known node conditions
atx=0  f; =ap+a1(0)
atx =h fix1 =ao+ ai(h)
From which, ap = f; and a; = (fi+1 — fi)/h. The equation for f(x) reduces to
f@) = fi + [(firr — f)x/h] (2.127)
Substituting this in (2.123) and (2.124)

h
1 iv1— fi
Fi,i+1:Z/|:fi+(—f+lh f)x] (h — x)dx

=hQ2fi + fir1)/6 (2.128)
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h
Fi+1,i=—/|:ft (fz+1h 1) ] dx

o

and

=hQ2fiy1 + f)/6 (2.129)

In the particular case where function f(x) also has trapezoidal shape between nodes
i — 1 and i with chord i — 1, i being of same length as i, i + 1 and f; being common
to both the chords.

Fiici=hQfi + fi-1)/6 (2.130)
Thus the total concentration at the node i is
Fi=Fiinn+ Fiici=h(ficr +4fi + fir1)/6 (2.131)

(ii) Parabolic variation

In this case the variation of function f(x) is parabolic passing through three known
points f;_i, f; and f;+;. The nodesi — 1, i and i + 1 are equally spaced. The power
expression for f(x) retains only three terms

f(x) = ap + a1x + arx? (2.132)
Substituting the known values at the node points
x=—h  fioi=a+ai(=h) +a(=h)’
x=0 fi = ap + a1(0) + a2(0)*
x=h firt = a0+ ar(h) + az (h)?
The values of constants are obtained as
ao=fi, a1 =(fiq1— fi-1)/2h)
and
ay = (fir1 = 2fi + fir1)/ (2h?)
Therefore, the function given by (2.132) can be rewritten as
f@) = fi + [(fir1 = fie0/COx + [(fics = 2fi + fir)/@RH ] (2.133)
Substituting this expression for f(x) in (2.123) and (2.124)

Fiiv1 =h@fiq1 +10f; — fi-1)/24 (2.134)

Fipri =h(fipi +6fi — fi-)/24 (2.135)
The equivalent expression for F; ;_; can be written as

Fiioy =hQ@fi-1 +10fi — fiy1)/24 (2.136)

The total central concentration at the node i is give

Fi=Fii1+ Fiiy1 =h(ficr +10fi + fiz1)/12 (2.137)
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Computation of Y” Values at the Discontinuity

If the slope discontinuity in M/ E1 curve is caused by a point load W; acting at i and
beam cross-section is constant, the problem can be treated by adding a term W;h to
the concentration Y}’ to account for the slope discontinuity.

Y/ = 1h—2EI(M,~_1 + 10M; + M1 + W;h) (2.138)
where M;_1, M; and M, are total computed moments at the nodesi —1,iandi +1,
respectively. However, it should be noted that this approach is applicable only if I is
constant. If I is variable and there are both distributed and point load systems acting,
the problem can be handled by keeping two effects separate up to Y” curve for best
accuracy.

The method provides an iterative procedure starting from a assumed deflected
shape or a trial function. The correct deflected shape is obtained by following the
steps outlined in Fig. 2.28:

1. Assume a suitable buckling mode or a trial function y,. The nearer this is to the
true mode, the less is work of computation.

2. Using the trial function assumed in the step 1, compute bending moment dis-
tribution M(x) = M(x) + Py,(x) in which M(x) represents primary bending
moment in the straight beam-strut and Py, is the disturbing moment due to P
acting on y,(x).

3. From the moment distribution obtained in the step 2 compute curvature distri-
bution y”(x) = M(x)/EI. For a strut with constant cross-section the shape of
vy’ (x) curve is same as M(x) curve.

4. Discretize the continuous curvature distribution curve by subdividing the struc-
ture into N equal chords and compute nodal curvature values y, . Obtain the angle
change at nodes given by Y” by concentrating the y” curve at the nodes by using
appropriate formula (trapezoidal or parabolic) based on the shape of y” curve
between the nodes under consideration.

5. From Y” values compute the derived deflection y4 by integrating twice by New-
mark’s method. The derived yq values provide a better approximation to the true
mode than y,.

6. Repeat the steps 1 to 5 using yq in place of y, to derive a new set of y4 values
until it converges to true buckling mode, i.e., y, = yg at all the node points to
the required accuracy. This condition indicates that the system is in equilibrium.

7. Compare y4 with y, at the end of final cycle with fully converged results. The ratio
of nodal values of two curves is unity for all the nodes for the stable configuration.
Obtain the value of critical load P, from this comparison.

Special Features

1. The higher the number of nodes chosen (i.e. the larger number of chords used)
the more accurate is the solution for P,.
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Fig. 2.28a-g. Computation procedure by Newmark’s integration method. a Structure, b as-
sumed buckling mode or trial function, ¢ bending moment distribution M(x), d curvature
distribution e slope computation, f computated deflections, g corrected deflections i.e. derived
deflections
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2. The type of result expected depends upon the number of nodes chosen or the

number of degrees-of-freedom given to the system. In the numerical solution,
the degree-of-freedoms of the structure are restricted to make it buckle in one of
a definite number of modes. Therefore one has to be certain that the first buckling
mode of the original structure is closely represented by one of the possible modes
of the discretized structure.

For a given discretization scheme i.e. a given number of nodes, the value of P,
for the first mode will be more accurate than that of second mode. This is
because, the higher the buckling mode the more complex is the deflected shape
and consequently a shorter chord length is required to model it accurately.

This iterative procedure known as a method of successive approximations is similar
to stodola’s method of finding fundamental frequency of beams.

To illustrate the procedure consider the simply supported stepped strut shown in

Fig. 2.29. The critical value of the load that will cause buckling, P, can be computed
by using the following steps:

1.

Assume trial displacement function or buckling mode y,. Since the strut is simply
supported at the ends, a buckling mode of the type y, = ax(L — x)/L? satisfying
boundary condition will be most suitable. The initial values at salient points are
taken as 0.0, 5.5, 9.0, 10.0, 9.0, 5.5 and 0.0.

Draw the moment diagram M(x) = — Py,.

Calculate M/ E1T values along the length of the strut. This is an important step as
it indicates the correct way to apply concentration formulae.

Select the positions of node points to follow the important features of M/EI
curve. In this particular problem, node points are required at the points of change

© 0 0 0 © 0 ©

P
I 21 a1 21 I
9 10 9 ,
5.5 55 Assumed buckling mode, y .
0 . 0
| et | | ] 1 ]
[ h | L h ! H I''n T h i
10
9 _ _ 9
55 & T~ 55 505
275 (M/EI) curve

+ - . :
1.375 225 25 2.25 1.375

Fig. 2.29. Assumed buckling mode, M/ EI curve of stepped strut
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of cross-section and one at the mid length. A scheme with N = 6 adequately
represents the important features of the problem and makes equal chord technique
possible. Calculate values of y” curve at the node points.

5. Compute Y” values. In order to use parabolic distribution formulae at the dis-
continuities the curves are imagined to continue beyond discontinuity. The ex-
trapolated portions of the curves are shown by dotted lines in Fig. 2.29 and the
extrapolated values are known as fictitious values. Due to discontinuity formulae
giving Y” at each side of the nodes are used. Thus

" h aP aPh
Yo = ﬁ[3(0) + 10(=5.5) — 1(—9)]75—1 = —46( )

24E1
P Ph

Y], = £[3(—4.5) +10(-2.75) — 1(0)]5— (;151)

Y= ! 73275 +10(-4.5) ~ 1(~ 9]y = 4. 25(225@)

aP aPh
Y. = —[3(=2.5) + 10(=2.25) — 1(—1.375)] — = —28.625
2 24[ (=2.5) +10( )~ I )] El (24EI)

., 2h aP aPh
Y; = 24[( 2.25) 4+ 10(=2.5) + ( 2.25)]EI = -59 (24EI)
Integrate Y” to compute chord slopes Y’ for which one slope value is required
to be known. By symmetry y; = 0, hence calculations are carried through from
right to left. Integrate y’ to calculate y from left where y, = 0.

6. Compare yq with y,. The simplest way to accomplish this is to scale down the yq
values so that the value at node 4 is as in y,. These form the new y, values for
the next cycle comprising of steps (2) to (5). When y4 and y, become close as
they do in the second cycle the iteration may be stopped.

7. Obtain the value of critical load P, by comparing y4 with y,.

At buckling:

407.191a Ph?

g L
Therefore,
0.5894 EI  2.157%El
cr = 2 = 12
The computations are given in Table 2.1.
At buckling: (40.646)(aPh?)/(24EI) = a or

Py = 21.256 EI/L* = 2.1547*EI/L? (as h = L/6)

(ash = L/6)

where (w2EI/L?) is buckling load for a simply supported strut of uniform cross-
section.

The values of P obtained by using Yy, Y y4/ Y. y3 is not necessarily an
overestimate, except in the particular case — where EI is constant when it becomes
identical with Rayleigh’s estimate.



Node 0 1 2 3 4 Multiple factor
Iteration #1
Assumed deflection, y,  0.00 5.6 8.9 10.0 8.9 a
Moment due to P, M(y) 0.00 -5.6 -89 —10.0 -89 aP
Curvature, y” = (M/EI) 0.00 —5.6 -2.80 —4.45 —-2.225 —2.50 —2.225 (aP)/(ED
—47.10 — 41.35 —47.9 —28.35
i " _ —_— —58. Ph)/(24
Change in slope, Y’ 8845 7625 58.90 (aPh)/(24ED)
Slope, y/ = YY" 223.60 135.15 58.90 0 (aPh)/(Q4ED
Deflection, y = 3 ' 0.00 223.60 358.75 417.65 (aPh%)/(24ED)
Derived deflection, ygq 0.00 535 8.59 10.00 8.59  (41.765)(aPh?)/(24EI)
Ratio ya/yq 1.04673 1.03609 1.000 -
From minimum and maximum values of (y,/yq): 20.687(EI/L?) < P,y < 21.654(EI/L?)
From Y ya/ Y ya (= 1.02957): Per = 21.299(EI/L%)
From Y ya Y ya/ Y. ¥} (= 1.02625): Per = 21.230(EI/L?)
Iteration #2
Ya 0.00 5.35 8.59 10.0 859 a
y’ 0.00 —5.35 -2.675 —4.295 —2.1475 —2.50 —2.1475 (@P)/(ED
—44.91 — 39.635 —45.975 — 27.6375
" —— - —_
Y 84545 736125 58.59 (@Ph)/(4ED
y 216.7475 132.2025 58.59 0 (aPh)/(24ED
y 0.00 216.7475 348.9500 407.5400 (ath)/(24EI)
Yd 0.00 5.32 8.56 10.00 (40.754)(aPh?)/Q4ET)
Iteration #3
Ya 0.00 5.32 8.56 10.0 856 a
¥y’ 0.00 —5.32 -2.66 —4.28 —2.14 —2.50 —2.14 (@P)/(ED
—44.64 —39.44 —45.78 — 27.57
Y” = _ —58. Ph)/(24E
—84.08 7335 58.56 (@Ph)/4ED
y 215.990 131.910 58.56 0 (aPh)/(24ED)
y 0.00 215.99 347.90 406.46 (aPh?)/(Q4ED
yd 0.00 5314 8.559 10.00 (40.646) (aPh?)/(24ED)
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Important Notes

1.
2.

3.

(a) Weighted average of P, value from

(b) An average value of P, (based on least square solution) from

or

For a converged solution the derived values yq4 will be of exactly the same shape
as y, and will equal y, at all the points.

If the assumed value y, happens to be the true value, the solution will be found
in one cycle, no convergence being necessary.

If the value of P, is calculated before the numerical procedure has converged
completely i.e. iteration is stopped before y,/ys = 1 at all the nodes (i.e. before
the governing equation of equilibrium is fully satisfied at all the nodes) a set of
differing values of P would be obtained by equating y, to yq at each different
node in turn. For example in the above illustration the second iteration has been
started with y, being 5.33, 8.59, 10.00, 8.59 and 5.33 and has produced yqy as
5.32, 8.56, 10.00, 8.56 and 5.32 (40.719 a Ph? /24 EI) after two iterations. If we
were to compute P, by making y, = yq4 at the nodes 1, 2, and 3 in turn this would
have given P, = 21.25, 21.29, and 21.22 (EI/ L?). The maximum value comes
from the situation at node 2. The value 21.29 (EI/L?) is upper bound to the fully
converged value of P, and the minimum 21.22 (E1/ L?) is lower bound. Thus in
any stability computation before complete convergence is attained, the values of
P, obtained from y,/yq ratio across the structure bound the true value of F:.
The P, values computed from y,/y4 = 1 at each node before complete conver-
gence is achieved, can be used to provide good estimate of true buckling load.
The following are commonly used methods of averaging.

LY _
Z Yd
P, =21.26 (EI/L%)

Zya)’d -1

>
D Yava
X

24 EI'\  (303.772 24 EI'\ )
Z y3 40.719 Ph2 ) ~ \303.152 ) \ 40.719 Ph2 ) ~
X

P, =21.262(EI/L?)

This value is the same as that obtained by Rayleigh’s method when E[ is constant.
The value obtained is always higher than the converged value. The later method of
averaging is much more accurate than the first one.

Forced Convergence

In the procedure using successive approximation, there is a simple relationship be-
tween errors in the assumed y, and derived y4 values which can be expressed as

errorin y,
——————— = constant (2.139)
error in yq
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If y,1, ya2 and y, 3 are three successive approximations for y. in the iteration
procedure where y, 2 is derived from y, ; and y, 3 from y, 2. Thus the errors in these
values being y. — ¥a.1, Ye — Ya.2 and ye — y,,3, respectively. From (2.139)

Ye = Ya,1 _ Ye = Ya,2

Ye = Ya2  Ye = Ya3
_ 0a)Wa3) — (0a2)?
¢ Ya,1 — 2.)’(/1,2 + Va3

(2.140)

In case y, 1, Ya,2 and y, 3 have close values, the value y. obtained may be doubtful,
but the problem can be circumvented by using the following procedure. If g1 is the
error in y, 1, then

Ya,1Ya,3 — yﬁ,z
Ya,1 — 2.)’(/1,2 + Ya,3

Ye = €1+ Va1 =

This reduces to

. 2
£ = — [ (ya,l ya,2) :| (2141)
Ya,1 — 2)’(1,2 + Va3

Equation (2.141) gives better results than (2.140) when successive values of y, are
close together. This process is called Aitken’s procedure. In the problem illustrated
in Table 2.1 the three successive values of y, at the nodes 1 and 2 are 5.6, 5.35 and
5.32, and 8.9, 8.59 and 8.56, respectively. Using these values in (2.140):

atnode 1 ye = [(5.6)(5.32) — (5.35)%1/[5.6 — 2(5.35) + 5.32] = 5.3159
atnode2:  ye = [(8.9)(8.56) — (8.59)2]/[8.9 — 2(8.59) + 8.56] = 8.5568

2.11 Orthogonality of Buckling Modes

If y,, and y, are two different modes in a buckling problem, and M,, and M,, are the
moments throughout the structure corresponding to these modes, then according to
the principle of orthogonality of buckling modes

L
/Mm (ﬁ) dx =0 (2.142)
El
o

or in numerical integration solution Z M, (M,/EI) =0.

X
Here the integration is with respect to x over the length L of the structure or the
summation is over all the node points. In the cases where E/ is constant the moments
M,, and M, will be orthogonal, and in case of pin-ended strut (where M = — Py),
the modes y,, and y, will be orthogonal i.e.
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L

[ smynds = mmn =0 (2.143)

%

In the relationship of (2.142) M,, can be considered as a generalized loading in the
mode m, and M, /EI = y, which is curvature in mode n, can be considered as the
corresponding generalized displacement in mode n. Equation (2.142) thus can be
interpreted that the work done by load M,, as it is displaced through y, is zero.

The orthogonality relationship in the bucking problem can be derived from the
general equation of stability written as

P
M’ + M =0 (2.144)

where M is understood M(x). Consider two buckling modes y,, and y, with associated
moment and load values being (M,,, P,,) and (M,,, P,), respectively. Therefore

1" Pm
M + EM,,, =0 (2.145)
and
P
M) “M, =0 2.146
+ = i M, ( )

Multiplying (2.145) and (2.146) by M,, and M,,, respectively.

17 Pm
M M, + —M,,,M,, =0 (2.147)
MM, + M WMy, =0 (2.148)
However, M, M, = (d/dx)(M, M,) — M;nM;I and MM, = (d/dx)(M,M,,) —
M M, . Subtractmg (2.148) from (2.147)
d M, M,
3 MMy = My My) = (Py = P) 21 2 (2.149)
Integrating (2.149) over the length of the strut between limits x = 0 and L
; M, M,
(M, M, — M,M,]§ = (P, — P») 21 Zdx (2.150)

0

It should be noted that M or M’ is always zero at an end. Hence left hand side of
equation must be zero. Further, as P, # P,

L
M, M,
EI

dx =0

0

This is the orthogonality relationship of buckling modes.
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2.12 Problems

Problem 2.1. The rigid cantilever frame shown in Fig. P.2.1 has constant flexural
rigidity (EI) and carries a concentrated load P at the free end. Using different
versions of energy approach determine displacements at the points B, C and D and
slope at the point D.

A ,’I— . -_ * o -B
| i
P
2a
' 1
D )_ C
a |

P21

3
[Ans. 85, = 40Pa>/3EI(}), 8w = 0; 8¢, = 2P2(1), Scp = S22 («-);

35Pa3 6Pa3 3 Pa?
Spy = —— = d 0Op =
Dv Al oo FoT; (<) an D= ry

Problem 2.2. Use Cotterill-Castigliano’s theorem to compute vertical deflection at
the point D of the beam shown in Fig. P.2.2.

(anticlockwise) ]

P

o

D

B
=
el

| |
a ¥ a ‘' a

A
AN
|
1

P.2.2

[Hint: Apply fictitious load W at the point D. The deflection at the point D is:
8p =3U/AW = / [Mx(aMx/aW) dx]/EI = Pa’/AEI(})]

Problem 2.3. A simply supported beam A B shown in Fig. P.2.3 having moment of
intertia of 27 at the central half portion and I for the remaining, is subjected to
a concentrated load P at the centre. Determine central defiection and end slopes.
[Ans. 8¢ = 3Pa®/AEI, 0p = 04 = 5Pa*/8EI]

Problem 2.4. A simply supported beam shown in Fig. P.2.4 is subjected to an end
moment My at the end B. Determine the end slopes and maximum deflection.

[Ans. 04 = M,L/6EI andO0p = M,L/3EI. The deflection at distance x from the end
is given by: 8, = M,L(x — x3/L?)/6EI. Maximum deflection occurs at x = L//3
and its magnitude is: 8max = MOLZ/(9\/§E1)]
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P

A l( &

| 2 1 E.

. | | | |

& @ g [al

A B

.& ‘Mg

—

Mg/L My/L
P.2.4

Problem 2.5. The free end of cantilever beam shown in Fig. P.2.5 is supported by an
inclined tie rod. The cross-sectional area of tie rod is A and the flexural rigidity of
cantilever beam is EI. Use strain energy method to determine vertical displacement
at the joint B and tension in the tie rod due to concentrated load P acting at B. E is
same for the beam and tie rod.

C %““&l 0
CAE > ~—7f
A §—L> - B
\ ) \
p=ety yP
L 1
P25

[Ans. U = {(AE sin? 8 cos 6/2L) + (8EI/2L3)}A2, where A is downward displace-
ment at the point B. A = P/{(AEsin®>6cos/L) + (3EI/L?)}]

Problem 2.6. In the rigid frame shown in Fig. P.2.6 determine the distance by which
the points A move closer under the action of force P acting at the points B. ET is
constant throughout.

P2.6

[Ans. Ay =2Pa’/EL]
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Problem 2.7. The square rigid frame with uniform cross-section shown in Fig. P.2.7
is subjected to diagonally opposite forces P at the points B and D. Ignoring axial
deformations determine the distance by which the points A and C move closer.

P
A B
’
’
e
e
s
s
s
/ a
’
s
e
e
e
DL/
C
—— a ——

P2.7

[Hint: Due to symmetry only half the frame ABD carrying load P/2 at the ends
B and D need be considered with roller supports such that movement is allowed
only along the diagonal BD i. e. presume the reference coordinate system along the
diagonals. Asc = Pa3/24EI.]

Problem 2.8. The three-bar pin-jointed frame in a vertical plane shown in Fig. P.2.8
is subjected to a vertical load P at the common point D. Use energy method to analyse
the frame. The bars are of constant cross-section.

3a e 3a — ‘
A B C

o 22

P.2.8

[Hint: Consider BD as the redundant member with force T,. The forces in
the other bars are T, and cos6 = 4/5, Y Vp = T1 + 2Th,cosf = P and
U= %‘IE {%le + é—Z(P — Tl)z}. Therefore, from the theorem of least work: T\ =
125 P/253.]
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Problem 2.9. While fabricating the pin-jointed plane frame shown in Fig. P.2.9, it
was found that member AC is fabricated A too short. Determine the forces in the
members after assembly. AE is same for all members.

P29

[Ans. Fg = 5—4_—2%(—4—1’—‘%) (tension), and F1 = F, = F3 = Fy = F5 = F6/\/§

(compression)]

Problem 2.10. All members of the truss shown in Fig. P.2.10 are of same cross-
section and material. Compute force in each of the members due to opposite forces P
acting at A and C.

>
{‘
la~]

P.2.10

[Hint: Consider only half the frame ABC as in problem 2.7.]

Problem 2.11. Analyze the continuous beam ABCD shown in Fig. P.2.11. The beam
is fixed at the end A and supported at B and C, and free at the end D. The beam
carries a concentrated load P at the free end.

3P 12P 16P
[Ans: Ry = 7(T) ; Rp= T(U ; Re= —T(T) and

Pa 2Pa
Map = - Mgs = Mpc = = andMcp = Mcp = —FPa
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P
A B ¢ lD

%WQMI

a |
P2.11

Problem 2.12. Analyze the rigid frame shown in the Fig. P.2.12. At the point C
a frictionless hinge is provided. E1 is constant throughout. Also calculate deflection
at the point C due to the concentrated load acting at the point B.

E
P
2a
lﬁ
B AN
|

a a

Ay .
|

I |
M 2a T 2a Ta !

P2.12

Problem 2.13. The governing differential equation of a hinged-hinged compression
member supported along its entire length by an elastic medium applying a force & per
unit length per unit deflection as shown in the Fig. P.2.13 is given by: EI(d*v/dx*) +
kv+ P(d*v/dx?) = 0. Determine the critical load using the finite difference technique
when: (i) the member is divided into two segments, and (ii) the member is divided
into three segments.

7% A

-~

P.2.13

8EI kL?\ .
Ans: Py =\ — + with two segments

2 4



2.12 Problems 85

Problem 2.14. Solve the problem 2.13 when the ends of the compression member
are fixed-fixed instead of hinged-hinged as shown in the Fig. P.2.14.

ST T

B |

P.2.14

Problem 2.15. Analyze the stepped compression member shown in Fig. P.2.15 by
using energy approach.

% Il

I
] 2
p—» T ——— =P

"7L1—+‘L2—’i

P.2.15

[Hint: Use the shape function: v(x) = A (1 — Cos ;t_z)]

Problem 2.16. Analyse the stepped simply-supported compression member shown
in Fig. P.2.16 by: (i) Rayleigh-Ritz method, and (ii) Galerkin technique.

4EI,

"‘ L/4 ; L2 V% L/4 4-{

P.2.16
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Rigid-Body Assemblages

3.1 Introduction

This section deals with the class of structures consisting of rigid-body-assemblages
wherein the elastic deformations are limited entirely to localized spring elements. In
these systems, the rigid bodies are constrained by the support hinges so that only one
type of displacement is possible. For the systems discussed here the formulation of
the stability problem differs from the classical Euler formulation due to its basically
discrete nature.

These systems can further be classified into single, two or multi-degree-freedom
systems. The degrees of freedom are generally referred to generalized coordinates
which represent the number of independent coordinates (displacements or rotations)
which must be known in order to define the position (configuration) of the system.
The word independent signifies that any of the generalized coordinates can be varied
freely while others remain unchanged.

3.2 Methods of Analysis

Analytical approaches to stability analysis described here are based on static concept
since the structure remains at rest before and after buckling. The methods are based on
the investigation of the system close to its position of equilibrium and are applicable
only if the external forces have a potential i.e. they are conservative. The aim is to
predict the mode of loss of stability and corresponding load under which the structure
gets into a critical state. The approaches discussed are:

1. Equilibrium approach, and
2. Energy approach.
3.2.1 Equilibrium Approach

This technique deals with the equilibrium configuration of the idealized perfect
system and is characterized by the fact that there exist discrete values of the load at

M. L. Gambbhir, Stability Analysis and Design of Structures
© Springer-Verlag Berlin Heidelberg 2004
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which additional equilibrium configurations (modes) appear in the neighbourhood of
trivial solution (initial equilibrium position). In the other words the method consists
in predicting the values of the loads for which a perfect system admits additional but
adjacent (close) equilibrium states with different deformation patterns called modes.
The assumption of an equilibrium configuration close to the initial one enables to
consider the slopes of deflected elements as small compared to unity.

3.2.2 Energy Approach

This technique is based on the principle of minimum potential energy which states
that a conservative system is in a configuration of stable equilibrium, if and only
if, the value of potential energy is relative minimum (relative with respect to its
immediate neighbourhood). A mechanical system is said to be conservative, if the
virtual work W (= Wi, + W) vanishes for a virtual displacement that carries the
system completely around any closed path. Here, Wex and Wi, are parts of virtual work
performed by internal and external forces, respectively, during virtual displacement.
Thus conservative system is in equilibrium when energy stored is equal to the work
done by external loads. This criterion enables to predict the critical load at which
response of the system ceases to be in stable equilibrium. The virtual displacement
referred here is an admissible displacement configuration satisfying geometric or
force boundary conditions.

When system deforms, the load point approaches the reference point and there is
loss of potential energy. At the same time restraining springs develop or store elastic
energy. The external virtual work done is given by

§Wex = —PA (3.1)

where A represents virtual displacement of the point of application of external force
projected along its line of action. If the strain energy due to internal work is represented
by §U, the principle of virtual work can be expressed as

83U =86Wg or 8U —6Wi =0 3.2)

Normally, the increment in external work due to virtual displacement is represented
as a change in potential energy as

8V = —§Wex
Thus (3.2) can be written as
SU+Vy=48(ID=0 (3.3)

Hence, U + V = IT = const.

The quantity /T (= U + V) is referred to as total potential or simply potential
of the system. Thus, if a system is in static equilibrium, the total potential energy
of the system has stationary value i.e. its first variation is zero (§/7 = 0). For small
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values of P, IT is positive in any non-trivial admissible configuration. For sufficiently
large value of P, IT is —ve making equilibrium configuration unstable. Thus the
instability problem reduces to determination of value of load for which total potential
of a perfect system ceases to be positive definite. For this case mathematically,

82 >0 (34)

for neutral equilibrium 82IT = 0 and for unstable equilibrium §2IT < 0.

The aim of above two approaches is to predict the smallest load for which
non-trivial equilibrium exists. For the types of systems considered here, the energy
approach is equivalent to the equilibrium method. One of the major advantages of
the energy approach is that in its formulation, definition of coordinate system and
sign convention is deemed unnecessary. Only expressions for strain energy and work
done by external loads are needed.

For illustration of above principles consider the rigid-bar system constrained or
supported by a linear and a rotational spring as shown in Fig. 3.1. The structure is
a single-degree-of-freedom system since only one displacement (i.e. rotation, ) is
required to be known to define its deflected position or configuration. Both equilib-
rium, and energy approaches can be used to predict the critical load. The system is
in equilibrium in undisturbed position under load P. To test its stability, the system
is displaced by a small rotation 6.

l

A=L(l-cos8)= LO2)

Fig. 3.1. Rigid-bar system with linear and rotational springs
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(a) Equilibrium approach

In the displaced position, the restoring force is provided by linear and rotational
springs. The destabilizing force producing displacement of the system is due to
axial load P. If P < P, the system will spring back to its original position, i.e.,
the restoring moment caused by spring forces is greater than the destabilizing or
overturning moment produced by external load. On the other hand, if the destabilizing
moment is greater than restoring moment, the equilibrium will be disturbed and the
system will collapse or fall down.

At critical load condition, P = P, i.e. at neutral equilibrium both the moments
balance, each other. At this stage disturbance will make the system merely stay in that
displaced position. The generalized coordinate in this case may be taken as rotation,
6. All other displacements can be computed in terms of 8. For equilibrium balance
the two moments about an axis passing through the point 1.

Destabilizing moment = Restoring moment
Py - LO = [ke(aB)]a + k.0
Therefore,

Py = (ke@® + k) /L 3.5

(b) Energy approach

The various forms of energy approach are:

1. Principle of virtual displacements
2. Law of conservation of energy, and
3. Principle of stationary potential energy.

According to the principle of virtual displacement, if a system which is in equilib-
rium under the action of set of forces is subjected to virtual displacement i.e. any
displacement compatible with the system constraints, the total work done by the
forces will be zero. This method thus consists of first identifying all the forces acting
on the system, and then imposing a small virtual displacement, corresponding to
each degree-of-freedom and equating the work done to zero. Let the system shown
in Fig. 3.1 is given small virtual displacement 6 from the equilibrium position, then

SWex = 68U

where W, = PA, in which A is descent or vertical movement of load P due to
rotation 6, given by

6? L6?
A=L—-Lcosé=L—-1L 1_?—}_"' %T (3.6)

Thus,

Lo?

Wy = P (T) (3.7
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and
1

1
8U = —k,0% + —kea’6*
U > + 3 e

Therefore,
1

1 1
EPcrLG"' = Ek,92 + Ekeaze2

Pe. = (k + kea®) /L

The buckling load can also be obtained by the application of law of conservation
of energy. According to this law the work done by external load W is equal to the
internal energy Wi, developed in the system. In the present case

We = PA = PLH*/2
1
Win = E[k,()z + kea®6?]

Thus, at critical load condition

1 1
EPc,w?- = E[k,e2 + kea’0?] giving Py = (k, + kea®)/L

The third approach of variation of energy namely the principle of stationary potential
is a versatile technique. According to this principle, if the system is in static equi-
librium, the potential energy IT of the system has a stationary value. Therefore for
stationary potential energy

8l =0

In the rigid-bar system of Fig. 3.1, due to rigid body displacement the bar does not
suffer any deformation, the restoring force is provided by springs and hence elastic
energy is stored only in the springs.

The potential of the system is given by

n=v+UuU
The potential energy due to external load can be expressed as
V = —PA = —P(L/2)6?
The strain energy stored in the springs is given by

1 1
= —k,0% + —ke(ab)?
U 5 +2e(a)

Thus the total potential energy of the system is

1= —(PL#*/2) + %[k,e2 + ke(a®6%)]
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For stationary energy
ol 1
811 = ¥86 = {—PLO + 5[k,(20) + kga2(29)]} 80 =0

Since 80 is any arbitrary virtual displacement, for non-trivial admissible configuration,
~PLO + (k; + k¢a®)0 = 0
or
Py = [k, + kea®)/L

In the following sections single- and multi-degree-of-freedom systems are discussed.

3.3 Single-Degree-of-Freedom Rigid-Bar Assemblages

A single-degree-of-freedom system or a structure which can be adequately idealized
by a single-degree-of-freedom system can be analysed by equilibrium and energy
approaches.

Example 3.1. In the two bar linkage with top end guided to move freely up and down
shown in Fig. 3.2a, the movements at the joints 1 and 2 are constrained by a linear
spring of stiffness k,; and rotational springs of stiffness k,; and k,, as shown in the
figure. The springs are un-stretched when linkage is vertical. Predict the maximum
load P for a stable equilibrium.

(@) ® ©

Fig. 3.2a—c. A SDOF rigid-bar assemblage with rotational and linear springs. a Two-rigid-bar
system, b displaced configuration, ¢ free-body diagram of rigid-bar 2-3
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The generalized coordinate of the system is taken to be the displacement y of
the joint 2. Since the linkage bars are rigid, they do not undergo any deformation
and hence no energy of any kind is stored when a vanishingly small displacement
is imposed on the system as shown in the Fig. 3.2b. However, potential energy is
stored in the linear and rotational springs due to stretching and relative rotations of
the springs.

(a) Equilibrium approach

Consider moment equilibrium of the forces shown in the free body diagram of
Fig. 3.2c about an axis passing through the joint 2.

Py — (Fa\az/L) — (Miaz/L) — M, =0

where F = kpy; M1 = ky1(y/a1); M = kyp(02) = kpp(0124-6023) = kay(1/a1+1/ay)
and L = a; + a;. On substitution the equilibrium equation reduces to:

aja a a+a
Py = (ky) (L) + (krll) (__2__> n [krzy( 1 2)]
arta a)\a1ta aa

Py = {ke(a1a2) + kri(az/ar) + k(a1 + @)*/(@1a2) } /(a1 + a2)

or

for typical case witha); = a; = a

Py = (kea® + ky1 + 4ky2)/(2a)

(b) Energy approach
Principle of stationary potential energy

The values of V and U with respect to displaced equilibrium configuration can be
computed as follows. The potential energy, V associated with the descent or vertical
displacement A [= (a10%, + a20%)/2] of the load towards base position is given by

’ri 1
V=P-4)=-PL [— + —]
2 aj ap

The potential energy associated with the deformations of linear and rotational springs

is given by
1 2 1 1\P
U= [key2 + k1 (1) + k2 [y (— + —)] }
2 a a ap
Potential,
1 2 1 1\ 11
n=v+VvV=g ’kzy2+k,1 (1> +k,z[y(—+—>] — Py’ (—+—)]
2 ai a a a a



94 3 Rigid-Body Assemblages
For potential to be stationary,

oIt
M =—38y=0
dy

1 2 1 1\ 1 1
oI = ~ {2ke)’+kr1 (%) + ko ,:2}’(—+—) }—ZPy<—+—>}5y=0
2 a; a  a a  a;

For non-trivial solution 8y # 0, and hence

y 1 1)? 1 1
ot (3) ke (24 LY - (L4 L) <o
aj ai ar a ar

aa; a 1 1 1\2
cr ¢ \a; + az) ! a+a /) a a ap

a1 + ap)? 1
= [ke(alaz) + kpi(az/ay) + kT2 ]
aa (a1 + ay)

or

Principle of virtual displacements

Let the system be given a virtual displacement y from the equilibrium position. The
virtual work performed by the conservative load P as it moves (descends) through
a distance A produced by virtual displacement is given by

1 2 2 y[1r 1
SWex = P(A) = PE (01912 + a2923) = PE- a + Z

The virtual work done by linear and rotational springs is

1 g 1, 1\P
8U = - {kgyz + ke (1) + ke [y (— + ~)] }
2 \a; ar @

From the principle of virtual displacements

SWex = U

1 2 + 2
Pcr = [kl + krl (‘") + kr2 (u) :| ‘ ( %2 )
a ayay a +ap

(a1 + a2)2:| 1

aiay (a1 + a2)

= [ke(alaz) +kn (%) +kr2
1

It can be seen that energy approach is advantageous in the sense that in its formulation,
definition of coordinate system and sign convention is not required.

Example 3.2. The rectangular rigid-bar-assemblage shown in Fig. 3.3 consists of
three rigid-bars interconnected by frictionless hinges. The displacement at the joint 3
and rotation at the joint 4 are resisted by linear and rotational springs, respectively.
The critical load for the systems is to be predicted.
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(@ (b)

Fig. 3.3a,b. SDOF 3-rigid-bar assemblage with rotational and linear springs. a Rigid-bar
assemblage, b displaced configuration

The generalized coordinate of this system is taken to be rotational angle 6.
All other displacements are computed in terms of this generalized coordinate. The
potential energy associated with the deformation of the linear and rotational springs
and due to displacement (descent), A of load P towards the base position, is given
by

n=v+U= P% (—ho?) + % [ke (h0)* + K (0)*] as A= (%h{#)

For stationary potential energy

a1
8 = gae = [—PhO + keh®6 + k0] 86 =0

For non-trivial solution
k,
—Ph + klhz +k =0 or Py = (klh) + ("h—)

The result can also be obtained by equilibrium approach. For example consider
moment equilibrium about an axis passing through point 1 of the system.

Disturbing moment = restoring moment due to spring actions
P(h) = ke(hO)h + k.6

giving,

k,
P, = (kllh) + (z)



96 3 Rigid-Body Assemblages
3.3.1 Modeling of Elastically Deformable Elements by Equivalent Springs

Sometimes it is convenient and conceptually simple to replace a flexible or elastically
deformable member by equivalent linear or rotational spring. The stiffness constant of
such a linear or rotational spring is defined as a force required for a unit deformation
and thus equivalent to the inverse of displacement or rotation due to unit load or
unit moment as the case may be. For illustration consider the simply supported beam
shown in Fig. 3.4a carrying a concentrated load P at the mid-span point. For small
deflection within elastic range, the displacement is proportional to the corresponding
load. This can be expressed as P = ky which is identical in form to the law of a linear
normal force spring. If P is made unity

l=ky or k=(l/y)=(48EI/L%)

The beam clearly behaves as a spring support for the load P as shown in Fig. 3.4b.
The beam can thus be replaced by an equivalent spring with stiffness k = (1/y), where
y is the deflection of the structure due to unit load acting at the same point where
the equivalent spring effect of the beam is to be determined. Similarly the horizontal
member of the structure shown in Fig. 3.4c can be simulated by computing rotation 6,
due to unit moment and its inverse (1/6,) is the required value of the spring constant
k; = 3EI/L. The following three examples illustrate the modelling or idealization
of flexible members by linear and rotational springs.

r P
Rigid element
l El

(a) (b)

—t-
]

©) @

Fig. 3.4a-d. Modelling of elastically deformable elements by equivalent springs. a Continuous
beam, b discrete model, ¢ structure, d simulated model
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ay

Wiy
(a) (b) ©)

Fig. 3.5a—c. SDOF rigid and flexible-bar assemblage. a Rigid and flexible-bars system, b ide-
alized rigid-bar system, ¢ deflected position

Example 3.3. The rectangular rigid and flexible bars assemblage shown in Fig. 3.5a
consists of two rigid bars 1-2 and 2-3, and one flexible member 3-4 with a given
EI value, interconnected by frictionless hinges. It is required to predict the critical
load for the system.

During deformation the flexible member 3-4 essentially behaves as a cantilever
which is a modelled as a linear normal force spring with a spring constant k;, =
(3E1/a3). The idealized model is shown in Fig. 3.5b. The generalized coordinate of
the model is taken as displacement y at the joint 2. The potential energy associated
with the descent, A of load P and deformation of linear spring is given by:

2 2
y 1, . alN,, @y
nN=V+U=P|— ~k A={—=1)0"=—| =
+ (2al)+ key [s1nce (2) > (01) :|

For stationary potential energy

oI1 P
8IT = —8y = (——y +key) 3y =0
ay a

For non-trivial solution,
P
2 b ky=0
a
Thus,
Py = keay = (3Elay/a3)

The equilibrium approach is equally applicable. Consider moment equilibrium about
the hinge 1.
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P(y) = (key)(ar)
or

P = keay = (3Elay/a3)

Example 3.4. The rectangular rigid and flexible bars-assemblage shown in Fig. 3.6
consists of three rigid-bars 1-2, 2-3 and 3-4 and one flexible axial member 3-5
interconnected by frictionless hinges. The end 4 of bar 3-4 is rigidly connected to
a flexible flexural member 4-6 as shown in the figure. It is desired to compute the
critical load for the system.

The flexible hinged member 3-5 is modelled by a linear normal force spring of
stiffness (£ A/a3) and the member 4-6 is modelled by a rotational spring of stiffness
(4E1/ay). The idealized rigid-bars system with concentrated spring actions is shown
in Fig. 3.6b. This reduced system is same as that given in Fig. 3.3. The generalized
coordinate of this system is taken to be rotation 8. The potential energy of the system
is given by

(a) (b)

©)

Fig. 3.6a—c. SDOF rigid-bar assemblage with flexural and axial action members. a System
with rigid and flexible bars, b idealized rigid-bar system, ¢ displaced configuration
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M=V 40U =3 (~Pab®) + 3 [k @6 + k6]

N =

for stationary potential energy

a1
8T = 80 = [(— Par0) + keal® + k6] 86 = 0

Therefore for non-trivial solution

—Pa; + k(a% +k =0

k, EA 4EI\ 1
Po=lkear+—)=|—|a+|—)—
a as as a

Example 3.5. A crane consisting of arigid bar 1-2 of length L hinged at 1 is supported
by an elastic cable 2-3 as shown in Fig. 3.7a. In the unloaded condition the bar is
inclined at an angle of 60° from the horizontal. If the load P is increased gradually
at what angle will the system become unstable.

and

The flexible cable or member 2-3 in this case can be modelled by a linear spring of
stiffness k, = (EA/a) as shown in Fig. 3.7b. The displaced equilibrium configuration
is given in the Fig. 3.7b. In the displaced position spring takes an inclined position.
However, for small displacement it may be assumed to act horizontally.

1
Extension of the spring = L cos @ — L cos 60° = L (cos@ — 5)

3
vertical descent of load P, A = Lsin60° — Lsind = L (% —sin 6)

Cable
§ 3 | 2
R (a,EA)

Rigid bar

(a) ()

Fig. 3.7a,b. SDOF rigid-bar and cable assemblage. a Rigid-bar cable system, b idealized
system with displaced configuration
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The values of V and U based on the equilibrium configuration are given by

V=—PA=PL (sin9 - «/5/2)

1 1\1?
U= —-ks|L{cosO— —
2 2

Total potential of the system
. r o, 1\?
H=V+U=PL(s1n9—\/§/2)+§keL cosd — >
From the principle of stationary potential energy
a1 2 1 .
8H=—8?89= PLcosO + kgL cosO—E (—sin6) |66 =0

Since 86 is an arbitrarily small virtual displacement

1
PL cos6 — k,L? (cosG - 5) $inf =0

1 EA 1
P=kiL{cosf@——)tand=|—)L|cosf — = )tanf
2 a 2

For a given load value of critical angle can be computed. This analysis can also be
accomplished by equilibrium approach. Consider moment equilibrium about an axis
passing through the hinge 1

Therefore,

1
PLcosO = k,L [(cos& — 5)] Lsin®
Giving,
1
P=kL (cos@ — E) tan 6

Thus, the value of P is dependent on 6. For critical value of P

dpP 1
w0 = kL (cos0 3 sec29> =0
or
3 1 : o
cos’ 0 = > ie. Oy =37.467
Therefore,

P =0.2251k,L

It should be noted that the assumption that the spring force is horizontal is not valid
and the analysis gives only a rough estimate of P,;.
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3.4 Two-Degree-of-Freedom Systems

The Examples 3.6 and 3.7 illustrate the application of foregoing principles to the two-
degree-of-freedom rigid-bar systems with concentrated linear and rotational springs.

Example 3.6. In the rigid-bar-assemblage shown in Fig. 3.8, three uniform rigid
bars of length a are interconnected by hinges at points 1 and 2 and their lateral
displacements are resisted by linear springs located at each hinge with values as
indicated. The assemblage is guided to move vertically by rollers at point 3 and
hinged at point O. It is desired to compute critical load of the assemblage.

(2) (b) ©

Fig. 3.8a—c. 2-DOF rigid-body assemblage with linear springs. a Rigid-bar assemblage, b de-
flected shape, ¢ buckling modes

Unlike the rigid-bar systems discussed earlier, this system has two degrees-
of-freedom since two generalized coordinates y; and y, are required to define its
displaced configuration. Depending upon the magnitudes and signs of these ordinates
the system has two buckling modes, and each mode has a corresponding critical load
value. The system can be analysed by equilibrium and by principle of stationary
potential energy approaches.

(a) Equilibrium approach

The angles of inclination of various rigid-bars are expressed in terms of displacement
coordinates y; and y; as follows
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tan 6y = 11—, tanf; = 27N
a a

and tanfy; = 22 (a)
a

The axial forces transferred through the bars are computed by considering equilibrium
in vertical direction. Equilibrium at

joint-0 Tycosf@y = P ie. T;=(P/cosby)
joint—l T1 Ccos 901 - Tz Ccos 912 =0 ie. Tz = T1 (COS 901/008 912) = (P/ COS 912)

joint-3 T3cosfr3 = P ie. T3 = (P/cosbas) (b)
Now consider equilibrium in the horizontal direction
at joint-1:
T1 sin 901 - T2 sin 912 = k1y1
Ptan6y — Ptan 6y, = kyy;
Thus,

P(Z)-r (u) —kiyi of QP—kia)yi—Py,=0  (c)
a a

at joint-2: Ptan6); + Ptan6,; = kyy;

p<u>+p(y2)=k2y2 or —Py1+Q2P—ka)y,=0 ()

a a
The linear homogeneous equations (c) and (d) are expressed as
Q2P —kia) —P n|l_1JO ©
—P (2P - kza) 2 - 0
for non-trivial solution i.e. non-vanishing values y; and y,

‘(2P—k1a) —P -0

—P 2P — kza)

Therefore,

4P* — 2(k; + kp)aP + kikpa®> — P2 =0
3P? —2a(k) + ko) P + k1kpa®* = 0

giving
Py = g {(kl + k) & [kt + ko) = 3kaks ]V 2} )

for computation of buckling modes consider either of the two equations (c) and (d)

y2_2P—k1a_ ) k1a
wnw P P
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Since the normalized modes have relative displacement values take y; = 1 and thus
y2 =[2 — (kia/P)] (e
As a typical case take k; = k and k; = 2k. From equation (f)
Pt = 0.4227ka  and  Peyp = 1.5773ka

The corresponding buckling modes or deformation configurations from equation (g)
are

Py = 0.4227ka, y; =10 and y, = —0.366
Pop = 15773ka, y; =10 and y, = 1.366

These modes are shown in Fig. 3.8c. Since the load will attain lower value first, P
gives critical load value. The readers will appreciate that this treatment is similar to
computation of eigenvalues.

(b) Stationary potential energy approach

For small values of displacements, tan6y; = 6p;, tan6y; = 61, and tan b3 = 6r3.
Due to rotation the downward movements of various bars are

Ag = (adyy/2) = (vi/2a)
Ap = (a65,/2) = (2 — y1)* /2a and
Ayy = (a83;/2) = (¥3/2a)

The total descent or movement of load point is

1
A=Ay + A+ Ay = 3 (661 + 67, +633) a

1
=5 [+ 02— 30" +7] (h)
a
The potential energy associated with the movement of the load P is V = — PA, and

the strain energy stored in the linear springs is given by
U = (kiyi +kay3)/2

Thus potential energy is given by

P 1
= V+U) = {—5 [+ 2 — y1)? + 3] + 5 (k1y? +k2y%)} @)

For stationary potential energy

a7 P
8l = — - dy1=1——L2y1 =202 —yD]l+ kiyiy éy1 =0
3)’1 2a
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and
P
3——3)’2 =1——Ry2— )+ 290+ ky2 {8y =0
37) 2a
—QP —kia)y1 + Py, =0
Py, — 2P —ka)y, =0 ()]

These equations are same as those obtained by equilibrium approach.

Example 3.7. Three uniform rigid-bars of lengths a;, a; and a3 are hinged together
at the points 1 and 2 as shown in Fig. 3.9a. The top end of the assemblage is guided
to move vertically up and down. Concentrated moment resisting elastic springs are
attached to adjoining members at the points 1 and 2 with stiffness as indicated in the
figure. It is desired to predict critical load for this assemblage.

P =0.908(k/a)

d

(@ (b) ©

Fig. 3.9a-c. A 2-DOF rigid-body assemblage with rotational springs. a Rigid-bar assemblage,
b deflected configuration, ¢ buckling modes

The generalized co-ordinates for this system are taken to be the displacements
of hinge points y; and y, as shown in the figure. Alternatively, the generalized co-
ordinates may be taken to be the rotations of the rigid bars. However, in this example
the former system is adopted, further it will be assumed that the displacements are
small so that small deflection theory is valid.
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(a) Equilibrium approach

For moment equilibrium at spring joints 1 and 2, the external moment should balance
the internal moment.

Atjoint-1: Py = (ky0;) = k1 (Go1 + 612) = kit [ﬂ L= yz]

a az
ko k k
(P__l“—l))’ﬁL(—l))’z:O (2
a a a
Atjoint-2: Py, = ko0 = kp(623 — 612) = ks [2 - }’2]
as a
k k k
(_Z)yl"L(P__z‘_z)yZ:O (b)
az a a
From equations (a) and (b), for non vanishing values of y; and y,
k_k k
P—z-2) P
by b k| =0 ©
E (P - ‘1_2 - 03)

From equation (a)

(/)
N a az az

As atypical case let a; = 4a, a; = Sa, a3 = 6a, k| = k and k, = 2k, substitute these
values in (c)

(P—x—2) £ . (T k>
=P (—=)P-(+ ©
2k (P — % _ 2k 60a 4a?
Sa Sa 6a

The solution of quadratic equation (e) gives two values for P, corresponding to the
first and second buckling modes

P =0.276(k/a) and 0.908(k/a)

The lower value of P i.e. 0.276(k/a) gives the critical load. The two buckling modes
are obtained by substituting these two critical loads separately into equation (d).

First mode Py = 0.276(k/a) y,/y1 = 0.87/1.0
Second mode Py = 0.908(k/a) y>/y1 = —2.29/1.0

The modes are shown in Fig. 3.9¢c.
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(b) Stationary potential energy approach

The downward movement or descent of the point 3 is
1
A=Ay +Ap+ Ay = 5 (01931 + 029122 + a39223)
1 2 _ 2 2
=z l:al (&> +a (_y1 yz) + a3 (2> :l
2 ay a \a3
1 1 1 1 1 2y1y>
=5[(—+—)y%+<—+—)y%— ®
a; a a as as

The potential energy of axial force, V = — PA.
Relative rotations of the bars at joints 1 and 2 are given by

- 1 1 1
61 =601 + 612 = <£ + —u) = [(— + —)y1 - (—)yz]
aj az ay ap ap
2 1™ W 1 1 1
o= (2-22) [ (2o (5 2)]
as as az a a3

The potential energy of the spring is

1 1
U= 5(k19%> + E(kzazz)

k 11 2k 11 2
=2 y(—+= SRy . »nl—+— -1 (€9)
2 a, a a 2 a a; a
Total potential energy of the spring and axial force, IT =V + U
1 1 1)\? 1 11
= —”:kl <—+—\ +k2(—2> —P(—+—):l N
2 a a) a; a a
1 1 1)\? 11
[ nlge) o (22
a; a as ap as
1 1 1 1 1 1 2P
oo (e D) (D) -2+ ) (1)« L)
ay [77) a; a as as as

For a typical case, let a; = a; = a3 = a. From stationary potential energy procedure

1 2P 1 P
l:a—z (4k1 + ko) — 7] 1+ [ﬁ (—4ky — 4ky) + ;] »=0

1 P 1 2P .
[ﬁ (—4ky — 4k2) + ;] i+ l:a—z (k1 + 4ky) — 7] y2=0 0

A non-trivial solution of equation (i) is possible only when assemblage buckles under
the action of axial force P, and this is indicated when determinant of the coefficients
matrix equals zero. The expansion of determinant and rearrangement of terms gives:



3.5 Discrete Element Method 107

(Pa)? — 2(k1 + ko) (Pa) + 3kik, =0

1
Po=— {(kl +ho) K+ A - klkz] @

Thus equation (j) gives two values of P, corresponding to first and second buckling
modes. The two mode shapes are found by substituting these two critical loads into
either of equations (i) and solving for one of the generalized coordinator in terms
of the other. The reader may note that in this particular example the equilibrium
approach is much simpler.

The procedures illustrated in Examples 3.6 and 3.7 are equally applicable to
higher degrees-of-freedom systems. However, the governing equations become pro-
gressively complicated with the increase in the degrees-of-freedoms.

3.5 Discrete Element Method

The method is similar to finite element method which idealizes a continuous struc-
ture by a finite degrees-of-freedom discrete model i. e. the method approximates the
structure as a chain made up of rigid straight bars connected together by friction-
less hinges. The bending rigidity in the model is accomplished by the provision of
rotational springs at the hinges.

The major difference in continuous and discrete models is that the deformation
of the continuous system is described by differential geometry while that of discrete
system by elementary geometry i. e. deformation is given by straight lines and all rela-
tionships are obtained from elementary geometry which lead to algebraic equations.
In the other words an approximation of a continuous deflection curve by a polygon
of straight lines, results in approximating the differential equation of equilibrium by
several algebraic equations which are easily solved. Thus this method is amenable to
matrix formulation and the method has great potential in solving statically determi-
nate structural problems.

To illustrate the basic idea of the discrete element method considers a simply
supported beam shown in Fig. 3.10 wherein the deflection curve is approximated
by two straight lines. These straight lines of deflection correspond to fictitious rigid
bars assemblage consisting of two rigid elements connected at an elastic hinge or
frictionless hinge with linear elastic rotational spring 1. The concept is thus equivalent
to replacing the original continuous beam by a fictitious discrete elements beam and
thus localizing the rotations at discrete nodal points. The elastic constants of these
fictitious springs can be obtained from the standard relation

d?y d [dy do
M=EI— =EI— -2 ) =EI-==EI¢ )
dx? dx (dx) dx (3.8)
Thus
o M
dx ~ EI
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Fig. 3.10. Approximation of deflected curve by two straight lines

which means

A0 M

m = —
Ax—0 AXx EI

If the limit to differential quotient is omitted we obtain

AB M A6 EI
— = _— or MZ _—EI=|—)A468 3.9)
Ax EI Ax Ax

Thus the bending moment at a hinge in a discrete element model is given by
M Z k(AH)

where A8 is the change in slope at the hinge. For the bending moment to be same in
both the discrete and continuous models

o~ A6
M=EI0 = EI <—) = k(A0) (3.10)
Ax

Thus we obtain k = (EI/Ax). In this expression Ax = L/n, where n is the number
of identical elements. The required expression for the constant of the fictitious spring
is

k=nEI/L (3.11)
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Fig. 3.11. A deflected cantilever approximated by n discrete elements

However, it is recognized that in general the fixed end of a structural system is
relatively more stiff. Thus a provision of a spring of greater stiffness than that of
common one k = (nEI/L) at the fixed end of discrete element model will lead to
more accurate results with fewer elements. To determine such a fixed end spring
stiffness consider a cantilever of length L subjected to a concentrated load at the free
end. Let the cantilever be divided into n equal discrete elements of length (L /n) as
shown in Fig. 3.11. The deflection at a node distant (L /n) from the fixed end is

P (LY L . _ P*(3L —x)
M= e (;) (3L - —n—) [smce y(x) = T:I (3.12)

Application of moment equilibrium equation ZMy = 0 at the node 0 gives

kobp = PL where 90 = %
and substituting for 6y and y; gives
f — 6n® (EI 3.13)
T 3m—1\ L '

Example 3.8. The deflection curve of the simply supported strut shown in Fig. 3.12
is approximated by three equal straight lines i. e. the system is divided into three rigid
elements which are connected at elastic hinges with the spring stiffness k. Due to
symmetry the system can be dealt as a single-degree-of-freedom system. From the
geometry of deformation curve shown in the figure
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1 2 3
0g o o ; P

e —
Vi A )

(b)
Fig. 3.12a,b. Three and four-element models of simply supported strut of Example 3.8. a Three-
element model, b four-element model

38

3EI
91— k1=k2:k:—

L’ L’
L
91 = 9()1 and A=2 (5) (1 —_ 008901)

The total potential energy in this case is

1 L
n=2 <§> k8% — 2P (3) (1 — cos fo1)
= k62, — (2PL/3)(1 — cosbo;)

The equilibrium or stationary potential energy equation 0/1/96y; = O gives

3k 9Elfy
a Lsin901 o L? sin901

cr

Expanding (sinfy;) ! and retaining up to second-order terms only, the initial post

buckling equation reduces to
9EI 1
P =5 (1 + gegl)
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where 6y, = 338/L and § is the maximum deflection, thus the buckling equation
becomes
9EI EI
P.= -7+ (13‘5)F82
The asymptotically exact equation is
n?EI EI
P = —5 + (1217 38

For a mere single degree-of-freedom discrete element analysis the result is remarkably
accurate both for buckling load (Pe; = 9EI/L?) and initial post buckling curvature
(P = 13.5EI/L*). The result will converge to the exact value as the number of
elements increase. As an illustration consider the structure to be approximated by four
element model as shown in Fig. 3.12b. Following the geometry of deformation shown
in the figure, the total potential energy of this approximation which is essentially a two
degree-of-freedom system due to symmetry is

1 1 1 L
=2 (§k1912> + 5/{2(92)2 - EP (Z) (631 + 6122) ©))

noting that
6, =601 — 02 and 6, =61y + 63 = 26015.
Thus,
IT = k(601 — 612) + 2ka6%, — [PL(BZ, + 6%) /4]

The equilibrium equations from stationary principle are given by

o7 PL
— =2k; Gy — O12) — | — (26, =0
%0, 1 (Bo1 — 612) l: ) ( 01)}

or
PL
<2k1 — 7) Oo1 — 2k1612 =0,
and
a7 PL
—— = —2k1 (Bo1 — 612) + 4k2012 — —(2612) =0
0012 4
or

PL
—2k1601 + <2k1 + 4ky — 7) 012=0

for a non-trivial solution

2k — a) —2k
2k (ki + 4k — )

o — 4k + ko) + 8kik, = 0

=0, where a= PL/2
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In the present case k; = ky = k3 = k = (4EI/L), consequently
o — 8ka + 8k* =0
which gives
«= 525 = 4k + Bk = (4% V8) <4%)
The buckling load with four element approximation is given by

Py = (4 — /8)(8EI/L? = (9.37EI/L?)

This indicates significant improvement over the value obtained with three element
approximation.

Example 3.9. To study the convergence of buckling load to its exact value consider
a cantilever strut or a column which is fixed at the base and free at the top and
subjected to an axial load in un-deformed equilibrium position. This is a standard
case and the exact value of buckling load is (w>EI/4L?) or 2.467E1/L?. Consider
two cases using one and two rigid element discretizations, respectively.

Case I: One-element model, Fig. 3.13b

The potential energy for computation of buckling load of this model with single
element is

1 1
= Ekoegl ~P (5) L&},

The equilibrium equation from stationary energy principle is

oIt
—— =kobo1 — PLOy1 =0
or 0601 01

from which critical load is found to be
P =ko/L

where kg = 3EI/L (a case of higher stiffness for spring at the fixed end).
Thus, P.; = 3EI/L?. As a first approximation the error is tolerable.

Case II: Two-element model, Fig. 3.13c
In this case

24EI 48EI 2EI
ko 37 an T
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P P P P
— ! n P
L Oor/
N ko |-
Ll L
(@ (b)
P P P P
B S K
i K L3 )
B %) k( ,’{ 2
k( 41 L/3 f
i . k(js1
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ko - 0 A(ﬁ)n
0
(@

©
Fig. 3.13a-d. One, two and three-clement models for a cantilever strut of Example 3.9.
a Continuous strut, b one-element model, ¢ two-element model, d three-element model

Thus the potential energy of the system is given by

1 1 1 L
n= 3 003, + Ek(elz —601)* — EP (E) (931 + 9122)

The equilibrium conditions 917/36; and 811/362 lead to two linear homogeneous
algebraic equations in 6y; and 6;;. These equations have non-trivial solution, if
the determinant of coefficients of 6y; and ), vanishes. Expanding determinant and

solution of resulting quadratic equation gives:

_1 2 21
Pcr— L (k0+2k) (k0+4k)

Substituting the values of kg and k
Py = 2.552EI/L?

The value is much more closer to the exact value. A model with three-element will
give still better result. It is evident that as the number of elements increase the result

converges to the exact value.
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3.6 Problems

Problem 3.1. Three identical rigid bars of length a are hinged together at the joints 1
and 2, and are supported by hinges at the points 0 and 3 as shown in Fig. P.3.1. The
assemblage is stabilized by a linear spring of stiffness k. A moment M is applied at
the mid-point of bar 1-2. Predict the critical value of moment M which will make the
system elastically unstable.

(a) (b)
P3.1

[Hint: Rotate the bar 0-1 by a small angle about the point o.
W, = Mo = M6? and W, = %(ka@) (ab) = k(ah)? /2. Equating W, to Wi, will give
M, = kaz/ 2]

Problem 3.2. Two rigid bars AB and BC are hinged together at the joint B. The
end A is hinged and end C is supported on a roller. Two linear springs of constant

P3.2
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k1 and k, are attached to the points 1 and 2, respectively, as shown in Fig. P.3.2.
Determine the critical value of the load P.

[Hint: The displacement of hinge B may be taken as the generalized co-ordinate, and
all other displacements are expressed in terms of it. P., = (27k1a/28) + (4kpa/21)]

Problem 3.3. Two identical rigid-bars 1-2 and 2-3 are hinged together at joint 2 as
shown in Fig. P.3.3 and supported by a hinge at a point 1 and a roller at point 3. The
movement at the roller end is resisted by a linear spring of constant k. Predict the
load at which the assemblage becomes unstable. Also calculate the angle  which the
bar makes with the horizontal.

[Ans. P, = (3+/2/4)ka and cos® 6 = (1/v/2)]

P33

Problem 3.4. Two uniform rigid-bars of length a are hinged together at joint 1 and
are supported by a hinge at point 0. The displacements at points 1 and 2 are resisted by
elastic springs having spring constants 3k and 2k, respectively, as shown in Fig. P.3.4.
A constant axial force P acts at the point 2. Determine the critical value of load P
that will hold the assemblage in equilibrium in displaced position.

[Ans. P,, = 1.0(ka) and 6.0(ka) and corresponding mode shapes can be obtained

from: (y2/y1) = P/(P — 2ka).]
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Problem 3.5. Two uniform rigid-bars of length a, 1-2 and 2-3 are hinged together at
joint 2 and supported by a hinge at point 1. Concentrated moment resisting elastic
springs of stiffnesses k; and k; are attached at the hinges 1 and 2, respectively.
A constant axial force act at the free end 3 as shown in Fig. P.3.5. Determine the
critical load and corresponding buckling modes.

[Hint: The potential energy of the assemblage is:

1 1 1
n= 5klef + ko 61 — 62)* — 5P (67 + 63),

1
and Po, = - [(k1 +2ky) + (2 + 442)" 2]

1 2 3
"-V/////////////////////////////////-’////////////////////////% P
Yk, k,

. .

P.3.5

Problem 3.6. Four uniform rigid-bars of lengths a, 2a, 2a and a are hinged together
at joints 1, 2 and 3 as shown in Fig. P.3.6 and are supported by a hinge at point 0
and roller at point 4. Concentrated moment resisting elastic springs of stiffness k are
attached to adjoining bars at hinges 1, 2 and 3. A constant axial force acts at the roller
end 4. Using small deflection theory determines the critical loads and corresponding
buckling modes.

[Ans. P., = 0.5(k/a), 1.0(k/a) and 4.0(k/a) with corresponding buckling modes as
(1,0,-1), (1,2, ) and (1, —1, 1)]

1 2 3 4
-W///M-W//////////W-W/////Wmimm P

o

4

a1 2a | 2a . a2 |
I | gl - T

Problem 3.7. For calculating the critical load, a pin-ended Euler column of length 6a
and stiffness ET is assumed to be divided into three equal segments of length 2a
each, with flexural stiffness of each segment k = EI/2a being concentrated at the
centre of the segment by a spring-hinge. The hinges are imagined to be connected
by rigid-bars. Determine the critical load and the percentage error introduced is this
idealization.
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[Hint: Refer to Problem 3.6, P, = EI/ (4a?), Euler’s load = w* E1/(36a?), percent-
age error = 8.81]

Problem 3.8. A column fixed at the base and hinged at the top carries an axial
load P in the un-deformed equilibrium position. Determine the buckling load by
considering one-, two- and three-rigid element discretizations. Also determine the
percentage error when exact buckling load is (20.19E1/L?).

Problem 3.9. A cantilever column with fixed base and free top is discretized with
three-rigid elements. The flexural stiffness of these elements is assumed to be lumped
or concentrated at the interconnecting hinges. Determine critical loads and the per-
centage error introduced in the idealization.

Problem 3.10. A fixed—fixed strut subjected to an axial load P is discretized with
two-and three-rigid elements. The flexural stiffness of these discrete elements is
considered to be concentrated at the interconnecting hinges. Predict the buckling
load for the models and percentage of error introduced in each of the models when
exact value of buckling load is 4w2EI/L?.
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Buckling of Axially Loaded Members (Columns)

4.1 Introduction

The classical critical load theory of perfect axial members assumes that the member
in question is initially straight, slender, of solid cross section with flexural stiffness
rigidity E1 being constant throughout its length and subjected to an axial compressive
force applied along the centroidal axis of the member. Moreover, it is presumed that
the material of the member is homogeneous, isotropic and perfectly elastic. The
assumption of small deflection theory of bending also holds good for the critical load
theory.

The critical value of the axial thrust for a centrally loaded member is generally
expressed in terms of that for an idealized column which is hinged at both the ends
and subjected to an axial compressive force. This column is known as Euler column
with the critical value of axial thrust being called as Euler buckling load which is
denoted as P..

4.2 Buckling Loads for Members with Different End Conditions

The buckling loads can be derived directly from the governing differential equations
obtained by considering the state of equilibrium of the member in its bend form
caused by a disturbance. In view of small deflection theory being used, the moment
curvature relation becomes linear and can be expressed as
d?y

M=-EI (Ex—i) 4.1)
where M is bending moment and / is second moment of area. For a deformed shape to
be in equilibrium, the internal resisting moment must balance the external disturbing

moment Py. Hence
d*y

M. L. Gambbhir, Stability Analysis and Design of Structures
© Springer-Verlag Berlin Heidelberg 2004
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or

d*y

a5+oﬂy=0 4.2)
where o> = P/(EI). Equation (4.2) is a linear homogeneous differential equation
with constant coefficients. It should be noted that since the buckling will occur in the
plane of minimum bending rigidity, minimum value of E/ is to be used in (4.2). This
is second-order formulation of the problem. The general solution is

y(x) = Asinax + Bcosax 4.3)

The arbitrary constants of integration A and B are evaluated from the prescribed
boundary conditions associated with the end supports. The application of the method
to the cases with standard boundary conditions is illustrated in the following section.

4.2.1 Hinged-Hinged Strut

Consider a strut hinged at both the ends as shown in Fig. 4.1. The boundary conditions,
would be y(0) = y(L) = 0. The first condition gives B = 0 and in order to satisfy
the second boundary condition

AsinaL =0 (4.4)

If A is set equal to zero, then y(x) = 0 everywhere along the length, meaning that
the initial straight configuration of the strut is the only equilibrium state under the

Deflected configuration
X

First mode

Second mode

Third mode

Fig. 4.1. Buckling modes of hinged-hinged strut
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force P and no bend equilibrium state is available. This is a trivial solution. Thus for
non-trivial solution second term must vanish i.e. sin oL = 0, for which it is necessary
that

al=nm n=1,2,3... 4.5)

Since o? = P/(EI), (4.5) can be written as

2.2
n“mEIl
o = 12 4.6)
The corresponding deflected shape is given by
nmx
= Asin — 4.7
y m— @.7)
The smallest P, value corresponds to the case where n = 1. Thus,
72E]
Pcr = Pe = T (48)

This smallest load P, at which the strut ceases to be in a stable equilibrium is known
as Euler load. The corresponding bent configuration called buckled mode shape is
given by y = Asin(wrx/L) which is shown in Fig. 4.1a. For n = 2,3, ... higher
values of critical load are obtained, the corresponding buckled modes of the strut are
defined by (4.7) and shown in Figs. 4.1b and 4.1c.

When the force P is different from the values defined by (4.6), then A = O i.e.
only trivial straight form of strut is available, but when force P takes on any of the
values defined by (4.6), the relation A sinaL = 0 is satisfied both with A = 0 and
A # 0. It means that at these values both straight and non-trivial bent equilibrium
states are possible. Hence these values are sometimes known as bifurcation loads.

The above procedure involving homogeneous differential equation of equilibrium
along with homogeneous boundary conditions forms a class of problems known as
eigenvalue problems.

4.2.2 Fixed-Free Cantilever Strut

Consider the cantilever strut shown in Fig. 4.2 acted upon by a compressive force P
at its free-end. The external bending moment at any cross-section in the bent config-
uration is

d2y
El <@) =-—M= P(yn—y)

or
d? y

3 Ty = 4.9)
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y

Deflected configuration

®)

Fig. 4.2a,b. Buckling modes of fixed-free strut. a First mode, b second mode

As explained in Appendix Appendix C the general solution to (4.9) is
y(x) = Asinax + Bcosax + y,

where y,, is the unknown deflection at the free end. The integration constants are
determined from the prescribed boundary conditions, namely y(0) = y'(0) = 0 at
the fixed end. From the first of these B = —y,, and from the second A = 0. Thus the
bent configuration of the strut is given by

Y(®) = ym(1 — cosax) (4.10)
The boundary condition at the free end, i.e. y(L) = y,, gives
Ym = Yym(1 —cosal) or ypcosalL =0 “4.11

The solution requires either y,, = 0 or cos@L = 0. The solution y,, = O represents
the initial straight form of the strut. Thus to ensure a non-trivial solution, cos¢L = 0
for which it is necessary that

oL =02n—-1n/2 n=12,3,...

or

_ @n — 1?72EI

e 4.12)

cr
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The smallest value of P, corresponds to » = 1, thus:
n*El _ n’El
402~ (2L)?
The corresponding buckled mode shape is defined by y(x) = ym[1 — cos (5)].

9x2El  2572El
4L2 > 412

. and the corresponding buckled modes are: y, = yp [1 — cos (§1L’5)], y3 =
Ym [1 — cos (3£)]. The first two buckled mode shapes are shown in Fig. 4.2a,b.

Pcr,l =Py = (413)

For n = 2,3,... higher values of critical loads obtained are

4.2.3 Fixed-Hinged Strut

The governing differential equation of equilibrium for the fixed-hinged strut shown
in Fig. 4.3 is
d?y
EI (@) =-M=—-0Q(L—x)— Py

where Q is shear force in the member. Differentiating this equation twice with respect
tox

d*y 2

P +a (&x—i) =0 4.14)
This is a fourth-order governing homogeneous differential equation for a general bend-
ing problem. As described in Appendix Appendix C, the general solution to (4.14) is

y = Asinax + Bcosax + C(x/L)+ D (4.15)

Deflected configuration

Fig. 4.3. Buckling mode of a fixed-hinged strut
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The boundary conditions to be satisfied are
¥(0) = y'(0) = y(L) = y"(L) =0

These requirements lead to four linear homogeneous algebraic equations in terms of
constants A, B, C and D as follows

OA + 1.0B+ OC+ 1.00D=0
(¢L)A + OB+ (1.00C+ @OD=0
(sinaL)A + (cosaL)B + (1.0)C + (1.0)D =0
(sinaL)A + (cosaeL)B+ (0)C+ (@O)D=0

If A= B = C = D = 0, the member will remain in the initial straight configuration
for all values of P which is a trivial solution. For non-trivial solution, the determinant
of coefficients must vanish, i.e.,

0.0 1.0 00 1.0
oL 0.0 10 0.0
singL cosaL 1.0 1.0
sinaL cosaL 0.0 0.0

or

tanal = aL 4.16)

The solution to transcendental equation (4.16) can be obtained either numerically or
graphically. The smallest root of (4.16) as obtained by trial and modification is 4.493.
Therefore, L = 4.493 or

20.19E1 n?El
L2 7 (0.7L)?

() = Asin 4.493x x +co 4.493x ]
yoo = asm 7 LT\ L

4.2.4 Fixed-Fixed Strut

Py = (4.17)

and

The fixed-fixed strut shown in Fig. 4.4 has four geometric boundary conditions hence
the fourth-order governing differential equation given by (4.14) is required. In this
type of strut both the ends of member are fixed against bending rotations and lateral
translations, the boundary conditions to be satisfied are

¥(0) =y'(0) = y(L) =y(L) =0 (4.18)
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(@)

n

Fig. 4.4a,b. Buckling of fixed-fixed strut. a Symmetric mode, b antisymmetric mode

(b)

The solution to governing differential (4.14) is given by (4.15) and must satisfy
boundary conditions given by (4.18). The stability condition or characteristic equation
of this case is given by

0.0 1.0 00 1.0
sinaL cosalL 1.0 1.0 0
aL 0.0 1.0 00|
aLcosal —qagLsinaLl 1.0 0.0
or
(L) sinaL 4+ 2(cosal — 1) =0 4.19)

This equation can be simplified to a form

w( @D () =] o

For the solution of this equation, either sin ("—‘ili) =0or ("‘—24) cos (%) —sin (%) =0.



126 4 Buckling of Axially Loaded Members (Columns)

(i) When sin (%) = 0, then (%) = n7,n = 1,2, 3, ... Therefore,

an*n’El
o = 0z 4.21)
The corresponding mode shapes are given by
2nmx
y(x) = B| cos 7 -1 4.22)
The first or minimum critical load for n = 1, is:
Am’El 2EI
T " 4.23)

ol =T T 0517
and corresponding mode shape is y(x) = B [cos (2£) — 1] and is shown in Fig. 4.4a.

L
(i) If (%) cos (%) —sin (%) =0

)

The lowest root of the stability or transcendental equation is given by

aL 80.75EI  m*EI
— ) =4.493 P.i = = 4.24
( 2 ) or Fel =773 (0.35)2 “24)

The critical load given by (4.23) is lower than that given by (4.24). The value given by
(4.24) corresponds to the first antisymmetric buckling mode as shown in the Fig. 4.4b.

4.2.5 Struts with Elastic Supports

The procedure described above is equally applicable to the struts with elastic supports.
To illustrate this generality of procedure, consider the problem of buckling of fixed-
partially restrained strut shown in Fig. 4.5 where the free end of the member is free
to rotate but constrained against lateral deflection by a spring of stiffness k,. As
the boundary condition at the partially restrained end of the member involves shear
which is a third-derivative consideration, the fourth-order differential equation must
be used to solve the problem, i.e.

dy +a? (dzy

P
‘d—xji a}E)ZO where (12=-—

El
The boundary conditions are
¥(0) =y'(0) = y"(L) =0, (4.25a)

and the boundary condition at the restrained end stipulates that the shear developed
in the strut at x = L is resisted by the force in the spring due to lateral deflection,
that is,
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jelf——P
7 EI constant
kﬂ
AANNNNNNNN
I : }
Fig. 4.5. Fixed-partially laterally restrained strut
d®y dy
EI(@)+PE =kny
or
i 2./ kn
" +a"y =YY= =0 where y = El (4.25b)
The substitution of the general solution i.e.
y=Asinax+Bcosax+C({—) + D 4.26)

into the boundary stipulations yields a set of four simultaneous homogeneous, linear
equations expressed in the matrix form as

0.0 1.0 0.0 1.0 A

alL 0.0 1.0 0.0 B

2 . 5 =0 4.27)
—a°sinal. —a“cosal 0.0 0.0 C
—yLsinaL —yLcosaL (@>—yL) (-yL) || D |

For a solution other than trivial one A = B = C = D = 0, the determinant
of coefficients must vanish. This condition yields following stability condition or
characteristic equation.

3
tanal = ol — (a_)
Y

El
tanaL = oL — (@L)? )
an o o (L) [knL?’] (4.28)
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L PL? Per (4.29)
OL = —— = e .
VE =~ "R

As a typical case consider k, = % and the characteristic equation reduces to

where

(aL)?
12

tanal = «L —

The smallest root obtained by trial and modification is L = 4.911304 and corre-
sponding critical load

72El

Pcr
If k, is infinitely large the buckling problem reduces to that of a fixed-hinged strut

with characteristic equation taking the form: tanaL = «aL, which is same as given
by (4.16).

4.2.6 Framed Columns

The column members of a frame are typical examples of elastically restrained
columns wherein elastic restraints are provided by connecting beams. The flexu-
ral or rotational stiffness k; of a beam is 4EI/L if its far end is fixed and 3EI/L
when the far end is hinged. The axial or extensional stiffness, k, (= EA/L) of the
beam member is taken to be infinitely large for simplification. For illustration con-
sider a column hinged at the lower end and connected to (i.e. elastically restrained
by) a beam at the upper end as shown in Fig. 4.6. The boundary conditions of the
idealized column shown in Fig. 4.6b for the end A are: y(0) = y”(0) = 0. At the
end B, they are y(L) = O and —EIy"(L) = k;y'(L) or y"(L) + yy'(L) = 0 where k;
is the rotational spring constant associated with the beam BC, and y = %‘7 As dis-
cussed earlier, the rotational stiffness &, is obtained by treating the beam BC hinged
at B and fixed at the end C and is given by:

4E]
k= ——t
L,

For this problem with four prescribed boundary conditions, the governing differential
equation is

dty =, (dy

which has general solution, y(x) = Asinax+ Bcosax+C (%) + D. On substituting
this solution into the boundary stipulations, following simultaneous homogeneous and
linear equations are obtained
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1,
L

(@ ()

Fig. 4.6a,b. Buckling of framed column with hinged base. a Framed column, b idealized
column with elastic support

B D=0

—-B =0
AsinaL BcosalL C p=o ¢
A(—a?sinaLl + aycosal) B(—a?cosal —aysinal) C (%) =0

From first three equations, B = D = 0, C = —A sinaL. Substituting these values in
the fourth equation yields

A [—a2 sin¢L + ay cosaLl — (%) sinaL] =0

For the non-trivial solution A # 0, the characteristic equation is

tana L dd oL
aL = =
a4+ (y/L)  (@L?/yL)+1
or
ol 1
cotel = — + — 4.33)
yL  «alL

This transcendental equation can be solved to obtain the smallest value of the root to
compute critical load. In a typical case where Iy = I and L; = L, (4.33) reduces to
4aL

tanol = m (4.34)
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The smallest root is: L = 3.83 and the corresponding critical load P, is given by

P (3.83)El _ n’El
T L2 T (0.82L)2

If 1; is infinitely large, (4.33) reduces to tan ¢ L = L and smallest root obtained by
trial and modification is «L = 4.493 and corresponding critical load is:

(4493)°ElI _ n?El
L2 T (0.7L)?

The effective length of the compression member A B increases from 0.7L to 0.82L
due to reduction in the rigidity of the beam. If BC is long with small [, then the
restraint B will tend to vanish and the member AB will revert to a hinged-hinged
column.

In another variation of the foregoing problem consider the case when member A B
is in the same line as BC, making the structure a two-span continuous strut shown in
Fig. 4.7a wherein the span A B is subjected to an axial force such that the axial force
in the span BC is presumed to be zero. The procedure and results of the foregoing
problem are also applicable to this case.

The column members of a symmetrical portal frame can also be modelled as
elastically restrained columns, the elastic restraint being provided by connecting
beam. The flexural or rotational stiffness of the beam depends upon the buckling mode
considered for the analysis. In most of the practical cases, the axial or extensional
stiffness (EA /L) of the beam member is taken to be infinitely large.

(4.35)

P, =o’El = (4.36)
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Fig. 4.7a,b. Two-span continuous strut. a Two-span continuous strut mode, b elastically sup-
ported strut model
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@ (b)

Fig. 4.8a,b. Portal frame with column hinged at the base. a Symmetric mode, b antisymmetric
mode

(a) Portal frame with columns hinged at the base

Consider the symmetrical portal frame with columns hinged at the base as shown in
Fig. 4.8. The portal may buckle either in a symmetric mode without sidesway or in
an antisymmetric mode with side sway. The buckling of the frame can be viewed
as buckling of column members with rotational restraint provided by horizontal
beam member. The elastically restrained column models for the symmetric and
antisymmetric buckling modes are shown in Fig. 4.8a and b, respectively.

(i) Symmetric buckling mode

The boundary conditions are:
y(0) = y"(0) = y(L) =0
and
EY'(L)+ky (L) =0 or y'(L)+yy(L)=0 4.37)
where y = % and k; is the rotational spring constant (stiffness) associated with

the connecting horizontal beam. For these four prescribed boundary conditions, the
fourth-order governing equation must be used

d'y o (&y
ot (m)=°

with its general solution as: y = A sinax + B cos ax + C (§) + D. The characteristic
equation is given by (4.33) or

tL—(‘-"-L_) (1 438
cotal = oL + &Z) (4.38)
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The smallest root of this equation represents the first critical load for buckling of

the portal frame. For the symmetrical buckling mode, the portal buckles in a manner

shown in Fig. 4.8a such that side sway is prevented. Thus &, = g—LE—lll

kL 2ELL n\ (L
yL = = =21 = — R
El L\EI I Ly

For a typical portal frame with /; = [ and L = L, yL = 2 and the characteristics

equation reduces to
aL 1
cotal = | — —_— 4.39
we=(7)+ (i) “

and the smallest root oL = 3.59. Therefore

(B.592EI 129EI 72El
PCl' —_ - p—t
L2 L2 (0.875L)2

(4.40)

(ii) Antisymmetrical buckling mode

In this case the side sway is permitted and the frame is assumed to buckle in an
antisymmetric mode shown in Fig. 4.8b. Here &, = 65—111 and where

L _ kL _6ELL _ (L) (L
Yo="Er T L,ET 7 )\1;

the boundary conditions are:

y(0) =y"(0) =0
y'(L)+yy'(L)=0
and y"(L) +a®y' (L) =0 4.41)

Using fourth-order governing differential equation with its general solution being
substituted in the boundary conditions yields

aLtanal = yL 4.42)

For the typical case % = % reducing yL to 6 and the characteristic equation reduces
to

6
tanal = — (4.43)
al

The smallest root obtained by trial and modification is L = 1.35. Therefore,
P (1.35*EI  1.823E _ #’El
T L2 T L2 T (2327L)

It must be noted that antisymmetric buckling is associated with the lower value of
critical load.

(4.44)
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@ ()

Fig. 4.9a,b. Portal frame with column fixed at the base. a Symmetric mode, b antisymmetric
mode

(b) Portal frame with columns fixed at the base

Consider the portal frame shown in the Fig. 4.9. As in the case of portal with hinged
columns, it may buckle either in a symmetric mode or in an antisymmetric mode.

(i) Symmetric buckling mode
The boundary conditions are:
y©0)=y(©0)=yL)=0 and y"(L)+yy'(L)=0 (4.45)

Substituting the general solution of fourth-order differential equation in the boundary
stipulations yields four linear algebraic homogeneous equations

B D=0

aA c(y) =0
_ (z) (4.46)

AsinaL BcosaL C D=0

A(aycosaL —a’sinal) —B(aysinaL +a?cosal) C(¥) =0

From first three boundary conditions
A(sinaL — aL) + B(cosaL — 1) =0
From second and fourth boundary conditions
A(ay cosaL — o sinaL — ya) — B(ay sinaL + a?cosal) =0
For non-trivial solution (A # 0 and B # 0), the characteristic equation is

aL(1 — yL)sinaL — 2yL + o*L*) cosaL + 2yL =0 (4.47)
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which can be solved for the smallest root of o L. Here

kL I L 2EI
yL=— =2 L) (= as k= !
El I Ly L,

For a typical case of portal frame with z—‘l = %, yL = 2. The characteristics equation
reduces to

aLsinaL + [4 + (@L)*]cosal = 4 (4.48)

The smallest root obtained by trial and modification method is «L = 5.018186.
Therefore,

(5.018186)’EI  25.182EI 72El
o= 12 T L7 T (0626L)2
It should be noted that if k; i.e. YL tends to zero, this elastically restrained column
reduces to a fixed-hinged column with P, = ((’)’égz and on the other hand if &, is

infinitely large (1/yL = 0), the column becomes fixed-fixed column with P, =
2E]
(g.SL)Z‘

(4.49)

(ii) Antisymmetrical buckling mode

In this case column buckles with a side sway as shown in the Fig. 4.9b. The boundary
conditions are:

¥(©0) =y(©0)=0
YLy +yy (L) =0
and y"'(L) + oy’ (L) =0

where
k. _ (6EL/Ly) _ 6(11/Ly1) 6(11/Ly)
y=—= = or )/L = —
El El 1 (I/L)
Substituting the general solution of fourth-order differential equation namely,

y(x) = Asinax + Bcosax + C(x/L) + D into the boundary conditions, following
characteristic equation is obtained for non-trivial solution

tanaL = — (2> - _ (%) 4.51)
Y yL

The behaviour of this elastically restrained column lies between that of fixed-free and
fixed-hinged columns. Thus the smallest root of characteristic equation lies between
(7/2) and m depending on the value of yL. Typically consider I;/L; = I/L i.e.
yL = 6.

The characteristic equation reduces to tan L = —(«L/6) and the smallest root
is given by L = 2.7165. Thus

__(27165°El _ 1.37194EI _ #’El
o L2 T L2 (1.156L)2

(4.50)

(4.52)
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4.3 Concept of Effective Length

In each of the above illustrations, the critical load has been expressed in the form P, =
m2EI/(KL)?* where K is termed effective length factor. This form of representation
enables to express the critical buckling load in terms of Euler load of a hypothetical
pin-ended member of length KL. Thus effective length factors could be obtained
from the expression

K =

Pe
— (4.53)
cr

The K values of simple cases are given in Table 4.1. When a compression member
is an integral part of a structure, its ends are connected to the other members. The
connected members provide rotational as well as translational restraint. To determine
the buckling load of a particular compression member in a given structure, the
engineers generally use their experience and judgment to estimate the effective length
factor K for a given design situation as regard to the members immediately connected
to the compression member in question. In most of the cases the effective length KL
is actually the distance between the points of contra flexure.
The corresponding critical stress is given by

Py T2E

A &L o= e

Ocr =
where A is the cross-sectional area and r is radius of gyration about an axis of the
cross-section which governs buckling. The ratio KL /r is referred to as the effective
slenderness ratio of the strut.

The classical procedure for computation of critical buckling load is equally appli-
cable to the columns connected to the rigid or flexible links or having internal hinges
as illustrated in Example 4.1.

Example 4.1. Structural members AB fixed at the base A and subjected to an axial
force through a rigid link bar BC as shown in Fig. 4.10. The link bar is connected to
the member by a hinge at B. Determine the critical buckling load of the system.

The deflected configuration and free-body diagrams are shown in Fig. 4.10b,c,
respectively. The member AB is subjected to an axial force P as well as lateral force
M, /(Ly + L,). From the moment equilibrium of the link BC

P =t | @
M= T+ Ly |

or

MyL,

m= Ly + Ly)P
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Table 4.1. Effective length factors

P = m2EI/(KL)? Remarks
Strut type Boundary conditions K
1. Rigid boundaries
(a) Standard cases
_I. R fixed free 2.00
'""'----..__‘____ l hinged slide 2.00
. """ hinged hinged 1.00
— - — fixed slide 1.00
N E— - fixed hinged 0.70
| — "
"l =___‘““~~H /_,.—--” —  fixed fixed 0.50
(b) Special cases
I — fixed internal hinge hinged 1.3495
'\--\___H‘ s -
S
—_— — E/ < hinged continous hinged 0.50
"H — ___/F- = = i" fixed continous fixed 0.33
2. Elastic boundaries
RS — ' hinged hinged with 082  k =4EI/L
I elastic spring 0.875 k =2EI/L
—*JI —_— e fixed hinged with
s~ elastic spring 0.626 k, =2EI/L
Jl «  fixed free with
translational spring 0.64 o =2EI/L?
bt

Equating the internal resisting moment to the external disturbing moment in the
cantilever flexural member AB

d2y Max
— )=-M=—|-Plyp,—y) — —2"
El(dﬂ) M [ Om =) (L1+L2)}

where y,, is the maximum lateral deflection at the top end B of the cantilever AB.

Therefore,

Py 2 M pxa? ) x
a4 = = 14+ — 4.55
5 +a’y aym+(Ll+L2)P a[ +L2}ym (4.55)
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(a)
i B

.
L,=0.6L | 1,=04L &

A,,

)

Fig. 4.10a,b. Column with internal hinge. a Column link system; from left to right: structure,
deflected configuration, idealized column, b fixed hinged column with interior hinge
The boundary conditions to be satisfied are

y©0) =yn, yLi1)=0 and y(L)=0 (4.56)

The general solution to the second order governing differential equation is

y = Asinax + Bcosax + ({—) Ym + ¥m
2

Substituting the general solution into the prescribed boundary conditions yields:

B+yy,=yn 1e.B=0

L
AsinalL; + BcosaL + yn (LJ) + ym =0
2

A= Li+L, Im
- L, sinaL

Aacosal; — BasinaL; + %’5’- =0
2

i.e.

and
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or

L L
1+ Lo .yma cosali + ym =0
L, sinaLq L,

Therefore,
tanaL; = a(L; + Ly).
As a typical case assume L| = L (= 0.5L) and characteristic equation reduces to
tan(aL;) = 2(aLy)

The lowest root of this transcendental equation obtained by trial and modification
procedure is given by: oL = 1.164. Hence,

_ (1.164)°EI  54196EI _ =°El
T L2 T L2 7 (1.3495L)2

(4.57)

If the rigid link bar BC is replaced by a flexible member of same cross-section as
the member A B, the structure reduces to a strut with internal hinge as shown in the
Fig. 4.10b. In this case the buckling failure may occur in two different modes. The
first is the buckling of length BC as an Euler strut with buckling load of 72 EI/(L,)>.
The second mode of failure is the buckling of complete structure with point B moving
laterally and the length BC acts as a link transmitting load from C to B. Thus it is
again a case of buckling of the cantilever AB due to force becoming inclined as B
deflects laterally. The lower of the two critical load values will provide the solution.

As a typical case consider L; = 0.6L and L, = 0.4L. The critical load for the
failure of this component.

7n?El _ n*El _ 61.685EI

P, = = =
L2 (0.4L)? L?

For the failure of entire structure, the characteristic equation tanaL; = a(L; + L)
reduces to

L
tanaL; = oL [1 + L—Z] = 1.667aL, (4.58)
1

By trial and modification, the smallest root is given by
aL; =1.0526

Therefore,

_ (1.0526)2EI _ 1.10797EI _ 3.078EI
“T 2 T o(oeL? T L2

(4.59)

Thus, the critical load for this fixed-hinged strut with an internal hinge is

__3.078EI _ n=°El
L2 (L791LY?
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4.4 Approximate Techniques

The method based on integration of classical differential equation used in the preced-
ing sections is suitable for the struts of uniform cross-section with relatively simple
boundary conditions. The procedure becomes complicated when the member cross-
section varies along its length or when the boundary conditions are complex. In such
a situation, approximate techniques, discussed in Chap. 2, based on work equation,
and fotal potential energy in conjunction with the trial displacement functions prove
to be extremely useful tools of analysis. The energy approach has inherent ability to
converge to the exact solution. On the other hand Newmarks numerical integration
technique is very powerful method giving accurate results.

The Rayleigh’s quotient method which is another form of energy method is
frequently used in determining the elastic flexural buckling load. As explained in
Chap. 2, the accuracy of the solution largely depends upon the accuracy of assumed
displacement trial function. Consider the buckling of a pin-ended strut of length L
with boundary conditions as y(0) = y(L) = 0. In Sect. 4.2.1, a single sine wave was
selected as the trial function which predicted exact critical load P, = n?EI/L?. Let
us consider a multi-degree-of-freedom trial function for deflected configuration

y(x) = a; sin (%) + assin (3%) ...= Zn:az,,_l sin [(2n _ 1)55] (4.60)

where n = 1,2, .... This equation satisfies all the geometric boundary conditions.
The first and second derivatives are
2n—1
Y = Zn:az,,_l [%] cos [(Zn _ 1)%] 4.61)
2n — 1)71]2 . X
=->a [7 sin[@2n - D] (4.62)
- L L
The integrals of the component of total potential energy can be expressed as
L P2 L e 0
n— mx
f )2dx = 373 > a5, ,@n— 1)2/0 [ ]dx
0 " 0
Pr? By 2 (1 272n—1x ¢
=" 2n—1)"{ = i
212 ;“2"“1( n=1) (2) [ 2n(2n DT L ]0

Pr? L Pr?
=7 > a3, 2n—1) (E) =, > a3, 2n—1)
n n
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For a member of constant cross-section throughout its length

L L

EI Elx* 2n—1

> / (")dx = == f a,_,2n—1)* / sin? [—( " )”x]dx
0 0

204 L
0
Eln* < , 1 L 2n(2n—1)x 7"
= 2n—D*( = )| x— i
208 21 2n=1) (2)[x men—1 T L ]0

n

Eln* ) .
=== a, ,@n-1)
AL3 &

Considering only three terms in the series, the total potential is given by:

n*El Pr?
N=U+V=—r (a7 +3%a5 + 5%a3) — vTA (a3 + 3%a3 + 5%a3) (4.63)
, (T*EI  Pn? , (3*n*El  3%Pn? , (5*n*El  5*Pn?
= —_— a - -
“\arr T A AVE aL ) TB\ T 4L

Differentiating the total potential energy with respect to each of the unknowns, aj,
a3 and as, and equating the resulting expressions to zero yields following three
independent equations.

ar a*El  Pr? ) m2El

— =2m —— ) =0 ie Py=—o

da; 413 4L L?

ar *rtEl 32Pn? ) 32r2El
———:2a3 — =0 i.e. Pcr=——

daz 413 41 L2

o 5*7*El  52Pr? 5% 72El

ol _ — =0 i P, = 4.64
das ( FYERY) ) ve TeT T @69

The smallest critical load at buckling is given by P, = w2 EI/L?. This is infact the ex-
act solution to the problem because the first term of assumed sine-series corresponds
identically to the true deflected shape of the member at the buckling. Moreover, it
should be noted that the partial differentiation with respect to a;, a3 and as did not re-
sult in a set of simultaneous algebraic equations. Rather, each differentiation resulted
in separate equation containing single unknown a; or a3 or as, and a parenthesized
containing P. This was because the chosen sets of functions are orthogonal over
the interval of integration. Due to the property of orthogonality the Fourier series are
frequently used for the Ritz solution.

In the foregoing treatment it has been assumed that the moment of inertia of the
cross-section is constant along the length of the member. However, if moment of
inertia varies along the length of the member, the total potential energy associated
with a flexural member can be defined as

L L
= %E f 1(y")*dx — %P f (y')?dx (4.65)
0 0
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@ (b)

Fig. 4.11a,b. Frame with columns having variable cross-section. a Frame, b idealized columns

Example 4.2. Estimate the critical load P, that will cause buckling of the complete
portal shown in Fig. 4.11. The columns are identical and change in cross-section from
I to I, at a height L, from the base. The horizontal beam is presumed to be rigid,
preventing rotation at the top of columns but does not restrain the structure against
side sway.

The idealized column is shown in Fig. 4.11b. The critical load corresponding to
the sway buckling mode will be the smallest. The boundary conditions are

y0)=y0)=y(L)=0 and y(L)=a (4.66)

A trial function satisfying these geometric or kinematic boundary condition is given
by
a X
=2(1- —) 4.67
y0) =3 (1 —cos 2 “67)

Substituting this trial function in the expression for the total potential energy given
by (4.65), The internal work done or strain energy term is:

Win=U E/ ar” 21c02(”x)dx
in = 2 ] \ar2 S\L
L
Ea’n? 5 (TX
Zar Y ax
( 8L4 )/IC"S (L)
L
Ea’m?* 27X
L
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L L
_ (Ean’ /1 14cos ZVax+ [1(14cos 5 ax
=\ Ter? ST ST

0 L

Ed’m* ies L g 2 LIH L L2 L
= — sin —— — sin ——
e )| ), TP T ),

14 L

+1; <(L —L)+ % [O —sin anLl ])]

ElLad*m* L L 2
(Sez )2 () () (- 7)o (52

ElLd*n* L L,
(5 ) [(2)+ () (2)

1 1 L\ . (2nL 468

#(30) (=7 = (7)) @

The load potential or external work done is given by:

a=v=4 [ ror=4 [P o

L

(55) [ (=)
o 2)[ (%)Sm(g?)L

LY\ . (2=L,
— ] sin
2 L
L —L)+ [ £ ) sin (2
Y 2n L
_ Pa’m?L _ Pa?m? 4.69
162 )T\ 16L @6
From work equation: —Wg = Wi,

Pi?n?  ENLd*m* [( L, L\ (L, 1 L\ . (2nL,
= — )+l =)+|=—)1—-=1]sin
16L 16L3 L I L 27 L) L

(%
(e
(e




4.4 Approximate Techniques 143

Therefore,

EL (L L 1 2L

Po=Z () e (2 (22 )+ (=) (1= 2)sin(Z22) | @70)
L2 L Il / L 2w L

As a typical case consider L, = L) = %

P 72EQ2)) 1+1 1+11_
=—— |zt s+ —zsinrw
°’ L? 22 2 272

_ L57?EI 148EI  n’El
T L2 T L2 T (0.816L)2

N|H

4.71)

If the top ends of the columns are free to rotate and sway, the geometric or kinematic
boundary conditions are:

y0)=y(0)=0 and y(L)=a

The trial displacement function satisfying these boundary conditions may be taken
as

y(x) = a (1 — cos ;—z) 4.72)

Substituting this trial function in the expressions for strain energy and external work

Win=U = / [%El (y”)z:l dx

Integrating over the column height
E11027T4 12 L 12 . 7TL1
mn=t——— 1| L L —J{1--= —_—
W ( 64L )[ 1+(11 2Tz ( Il)sm( L)
EIla L I L, 1 LY\ . (nl,
= -5 - 1-- — 4.
(i) [2+ () G)0-5) = (7)) em

The external work done is given by

L

~Wex = g f (%%)zsinz (57)x= 1:‘;122 (L) @.74)
0
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At critical load from work equation —We, = Wi,

_ EI]]TZ Ll 12 L2 1 12 . JTLI
r=(G) 2+ () (2)+ (2) (- 7) (7)) w9

Again as a typical case consider Ly = L; = % and I, = % =1.

T?EINT1 1 1 (4.4865)El 7?El
Py =|=—- §+—+— (4.76)

212 4 27 L? ~ (1.483L)2

However, to study the effect of more terms in the representation of displacement,
consider

x) = (1 csn)+ 1 co3m€ +
yx) =a 0 2L as 52L

2n — Dnx
- 1= = - 4.77
P [ 1 eos 222 0] @

[@Qn—Dn] . Cn—-1)
/ —
y = ;ah—l i 2L ]sm 2L X

en—Drx]>? @n-1)
d y = § \@pnt |
and y d -1 oL ] cos L X

wheren =1,2,3,....

L
P 2 2 2n—1
._Wexzif( )dx—g—LEX:az,l 1@2n—1) /sm( L )thdx

= 16L 2(2" V-1

L
1 / EI(y")*dx
2
0

L

1
E11 2n — Drx
=5 <2L) ;(Zn -1, , /0082 —2L———dx

0

L
Ip) , 2n — Dmx
+ (11) fcos L dx

Ly
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EL* 42 1 2n — Dnx
= 2n —1 (1 —_—
L ;( n - 1)"a3,_, /2 + cos 7 dx
0

L
L 1 2n — Dmx
+(T>f§(l+cos—L )dx

ELx* 42 L . (2n — DnL,
- 2n —1 L
64L% ;( n =1 R

L L _@n-DrL . @n-DaL
2V L —gin — 271
+<11)[ 2 == (Sm L YT )]]
ELn* 42 b
- Y @n-1 Li+(2)L
64L? n(” Vo | B\ ) L2

L I 2n —1
+—"—(1-2)sin (——’1———)71L1
Q2n - D= I L

Assuming only two terms in the series, the total potential energy of the strut is

T Wyt W= | P2 _ENT [ (BY LB g7l
ST Ve =86 T st |\ )P T I L

9P7? 81ELn* I L I 3nL,
2 .
+ i+ =)L+ —|1-=)sin
613[ 16L 64L4 { ! (I]) 2 377( I])Sl L }]

Differentiating the total potential energy with respect to each of the unknowns, a;
and a3, and equating resulting expression to zero yields:

ar1 ) ELm? [ (L L\ (L, 1 L\ . L
— =0 P.="" = =)= —f(1-= =
8a1 BIVES For 4L2 l:( L + 11 L1 + T 11 smr L
o1 . 9E1171,’2 L1 12 L2 1 Iz . Ll
— =0 P,=— = M2V —(1-=2 3z =L
da; BV TeT T [( A AAVVAVY AT )M\ T

For the case of uniform strut with L; = L, L, = 0 and I; = I, above expressions
reduce to

Eln? 9EIr?

Pcr = —— and Pcr = W (478)

P, = (w?EI/4L?) being the smallest value gives the solution to the problem. For the
typical case L} = L, = (L/2) and I, = (I,/2) = I, the critical load values reduce
to

(3,1 m*EQDT _ 44865EI  n’El
°’ 4 2m @L)? | L? T (1.483L)?

o (3 1){97;219(21)] 35.6661E1 _ 7EI
cc =\ = - = =

4 6w (2L)? L? " (0.526L)? (4.79)
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The assumed deflected configuration or the trial function can also be of polynomial
form as explained in Chap. 2. The following example will illustrate the use of
polynomial trial functions.

Example 4.3. Estimate the critical value of the load P acting along the centroidal
axis of the tapered strut shown in Fig. 4.12 that will cause its buckling. The strut is
clamped at the end A and pinned to a roller support at B. The moment of inertia of
cross-section of the strut reduces linearly from I at the fixed end to Iy at the hinged
end. The variation in the moment of inertia of the cross-section may be defined by
the relationship

X 1 1

Ix) = I [ﬂ — -1 (—)] where f = -

L Iy
The parameter 8 is a measure of magnitude of the taper of the member. 8 = 1
represents a prismatic member. For the fixed-hinged supported case, the single-
degree-displacement trial function is given by

@=al3(7) 3+ @)

yw=a1z\r) T2\L L

To facilitate computations a non-dimensional variable £ (= x/L) is introduced such
that 0 < &£ < 1. Thus the dimensional variables reduce to

1(§) = I[B — (B — 1)§] (4.80)
and
3 5
Y& =a [552 -8+ s“]
The first and second derivatives of y(§) with respect to £ are

(@) o]

I L |

I =T[B- B-1E] and & = xL

Fig. 4.12. Buckling of tapered strut
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and
¥ = (73) [3- 156 + 12¢7]

The total potential associated with flexural deformations in this case can be defined
as

1 1
E P
M= Wi = Wex = = f I(y"y’Ldg - ) /(y/)zLdé =0 (4.81)
0 0

Substituting y" and y” in the expression for I7

2L4

L
P2 15, 5]
‘(“2Lz>f[35"75 +4s] Lds
0

L
2
= (" E’“) f [B — (B — DEI3 — 156 + 12627 Ldk
0

or
a’El a*P
(—2—Z3—> (1.056 +0.75) — —27(0.0867) =0
Therefore,
P = 11.534(1.058 + 0.75)§L12—0 = 7(1;_11112 (4.82)
where

K? = 7% /[11.534 x (1.058 + 0.75)]
As a typical case consider I; = 5y i.e. B = 5. The critical load at buckling becomes

_69.20EL,  #’Ely
T L2 T (0.378L)2

For a prismatic member with [} = Ipie =1

EIO 2076EI() JTZEI()
P, = (11534 x 1.8)—2 = -
or = ( * 18T L2 (0.6895L)?

The exact solution for this case is (20.14E1y/ L?). As discussed earlier in Chap. 2, it
is advantageous to assume displacement function in the general form.

YE) =Y an f)x" (4.83)
=0
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where f(x) is a special function satisfying the prescribed geometrical boundary
conditions and )_ a,x" is a power series. For the present case of fixed-hinged strut
choosing f(x) = x*(x — L) with n = 1, the trial function becomes

y(x) = apx?(x — L) + a1x*(x — L)

In terms of non-dimensional variable £ (= x/L), the trial function in the range
0 < & < 1 can be defined as

y(€) = ao(€® — &) + a1 (8* — &) (4.84)

The first and second derivatives with respect to & are
1
Y= (Z) [a0 (387 — 28) + a1 (48 — 3€7))

1
y'(®) = (”ﬁ) [ao(6& — 2) + ay (128% — 68)]

Substituting the values of y" and y” in various terms of the total potential expression,
namely

L 1
E E
(5) / 100 () Pdx = (5) / 1OL OPLdE)
0 0

(2L4) / [B— (B — DElLao (6 —2) + a1 (1267 — 69’ Ldg

1
—(533) [18— 6= DelGRG6E +4 - 240 + ah1saet + 365 — 1448
O 4 2apa; (726° — 60£2 + 126)] dg

(ng) [a§(B +3) + a7 (0.68 + 4.2) + 2a0a1 (0.68 + 3.4)]

L 1
P P
2 [ora =1 [verea
0 0
p 1
= (ﬁ) / lao(3€% — 26) + a1 (48 — 38%)17d&
0

1
= (2_12.) /[ag(%“ +4E% — 128°) + af (16£° + 98* — 24°)
O+ 2apa; (128° — 176* + 6£7)]

_ (.2%) [a%, (%) +a (335) + 20 (110)]
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Therefore, total potential energy is given by

EIl 2 3
= (2—L‘;) {aé [(ﬂ +3) - (E) az] +ai [(0.6,3 +4.2) — (E) az]
+2apa; [(0.6/3 +34) — ('1'16> az] }

where o> = PL?/(Ely). The conditions of equilibrium are given by 9IT/day =
0 and 9I7/da; = 0. For a non-trivial solution i.e. a buckled form solution, the
determinant of the coefficients of ay and a; vanishes. This stability determinant
provides characteristic equation. The characteristic equation is given by:

(7.5B+3) —l7B+7) —a*] — (%) [(68+34)—a** =0 (4.85)
For a prismatic member 8 = 1.0 and the characteristic equation reduces to
[30 — &?][56 — &?] — (%) [40 — o> =0
or

ot — 12802 +2240 =0

The smallest root giving critical load is 20.92. Therefore,

El
o? =2092 or Py=2092 (—°>
L2
For the typical case of tapered column with B8 = 5, the characteristic equation
becomes

[60 — «%][84 — a?] — (—Z—) 64 —a*> =0

ot — 25602 + 11648 =0

The smallest root which corresponds to the critical load is a? = 59.181. Therefore,

P, =59.181 (%12—0) (4.86)
It should be noted that for a prismatic member the one-degree-of-freedom trial
function gives better results than two-degree-of-freedom trial function, because the
former satisfied both geometrical and dynamical boundary condition. However, for
tapered strut, later provided much better results.

The Newmark’s numerical integration technique as described in Chap. 2 is ex-
tremely useful tool for analysis of variety of strut problems. The following examples
will illustrate the versatility of the method. The example is a variation of Euler strut
illustrating the effect of end conditions on the solution.
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Example 4.4. A simply supported strut (Euler strut) has an overhang beyond the roller
support as shown in Fig. 4.13. An axial force is applied at the unsupported end C.
The load is free to deflect vertically with C while its line of action remains horizontal.

A buckled configuration is shown in Fig. 4.13c. It should be noted that any
configuration involving a displacement of P will produce support (vertical) reactions
which are to be taken into account while calculating moment M. To compute these
support reactions, equate moments at the pinned support to zero i.e. Y My = 0.

P
Y Mo=—RsBh)+ Pay =0 i.e. R3=—3—‘;—11
and
R _ R _ Pa1
0 — 3 = 3%

For convenience take a; = 3a at C. This will reduce values of reactions at the support
nodes 0 and 3 to convenient values of Pa/h and (— Pa/h), respectively.

The assumed deflection values of y, may be obtained by tracing the buckled con-
figuration on a graph paper with the help of a flexible elastic strip. It should be noted
that the deflected shape is similar to one obtained by application of a concentrated

©

2v°____3.0 ,——'4

@ 4 ' ™MD

Fig. 4.13a—d. Buckling of strut with overhang. a Coordinate system and loads to obtain
deflected configuration, b discretized strut, ¢ buckled configuration, d moment diagram
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vertical force at the overhang end C of the strut. The deflection due to a force Q
acting at C are given by

L
Yx = (6—%) (L_2> x(L% —x?) fortherange 0 <x <L,
1

= (%) x1(2QL1Ly 4+ 3L,x; —xf) fortherange 0 <x; <L,

Consider a typical case with L; = 0.6L and L, = 0.4L. The deflection are yy = 0;
y1 = 0.064, y, = 0.080, y3 = 0, y; = —0.204 and y5s = —0.480 (x2QL>*/18EI).
Since we are interested in the relative values, the displacement coordinates are scaled
such that ys = 3.00a.

Expressing the value of displacements in the form y; = &a. The coefficients §&;
are: 0.000; —0.400; = —0.500; 0.000; 1.275 and 3.000. For the portions A B and BC
the moments are given by (i —§;) and (&5 —&;), respectively. For an improved accuracy
at the node 3, the two M/ curves meeting at this node are extrapolated to the fictious
points 4’ and 2’, respectively. For extrapolation the effect of vertical reaction at the
enode 3 is ignored. The iterative procedure for computation of buckling load is given
in Table 4.2.

At buckling:

aPh?

3.000a = 138.284
12E1

Therefore,

_65083El  rm’El
TT L2 T (1.231L)2

As another variation of Euler strut consider the vertical displacement of the free
end C being restrained by a roller support such that the end is free to move horizontally.
Thus the overhang strut reduces to a two-span continuous strut which is a single-
degree indeterminate structure. The analysis of this strut is given in Example 4.5.

Example 4.5. Estimate the critical value of axial load P which will cause the two-span
continuous strut of constant cross-section shown in Fig. 4.14 to buckle. As a typical
case take L1 = 0.6L and L, = 04L.

The two-span continuous strut has a single-degree-of-indeterminacy. Consider
R; to be the redundant action. The analysis of basic structure obtained by ignoring
R3 will result in a displacement at the support B i.e. node 3. This will violate the
prescribed boundary condition of zero displacement at the node 3; hence a correction
in displacement need be applied in each cycle of numerical integration. The value of
R3 should be adjusted such that y3 = 0. Using triangular moment diagram (due to
R3) of arbitrary value, the form of correction y. to be applied to y to account for the
redundant force is computed. This can be achieved by means of thrust line concept.
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Table 4.2. Computation of buckling load for a strut with an overhang

Node # 0 1 2 3 4 5 Multiplier
1st Cycle
Ya=£ O —0.400 —0.500 0.000 1.275 3000 a
v |0 1.400 2.500 3.000 - (2.725) aP
£ =Y { (3.500) « 3.000 1.725 0.000
Y’ - 16.50 29.40 12387410008 20.25 —  aPh/(12ED
y (—20.80) —4.300 25.100 58.525 78.775 —do—
y 0 —20.800 —25.100 0.000 58.525 137.300  aPh?/(12ED)
yd 0 —0.454 —0.549 0.000 1.279 3.000 (45.767)aPh®
/(2ED
2nd Cycle
Ya 0 —0.454 —0.549 0.000 1.279 3000 a
Y 0 1.454 2.549 3.000 - (2.721)
y { (3.549) «~ 3.000 1.721 0000 aP
v - 17.189 29.944 1746315807 2021 —  aPh/(12ED)
y (—21.441)% —4.252 25.692 58.962 79.172 —do—
0 —21.441 —25.693 0.000 58.962 138.134  aPh?/(12EI)
yd 0 —0.466 —0.558 0.000 1.281 3000  (46.045)aPh?
J(12ED)
3rd Cycle
Ya 0 —0.466 —0.558 0.000 1.281 3000 a
Y 0 1.466 2.558 3.000 — (2.719)
y { (3.558) «3.000 1.719 0.000 aP
Yy - 17.218 30.046 17477415799 20.19 —  aPh/(12ED)
y (~21.494)3  —4.276 25.770 59.047 79.237 ~do—
y 0 —21.494 —25.770 0.000 59.047 138.284  aPh?/(12EI)
ya 0 —0.466 —0.559 0.000 1.281 3.000 (46.095)aPh?
J(12ED)

2 If the slope of the chord 0-1 is assumed to be (—6p), then the slopes of chords 1-2 and 2-3 are (—6p + 16.50)
and (—6p + 16.50 + 29.40), respectively. Starting with 0.000 displacement at the node 0, the displacement at the
node 3, y3 = [0.000 + (—6p)h + (=6 + 16.50)h + (—6p + 16.50 + 29.50)h = {—36p + 2(16.50) + 29.40}A.
However, the prescribed deflection at node 3 is zero, thus 6y = —20.80.

The thrust line is known to pass through the supports A and C (i.e. has zero
ordinate values) and must pass through the point of contra flexure. A computationally
convenient comparable value say 0.3a is selected at the point 3 as shown in Fig. 4.14.
The moment at any point in the strut is then P times the offset distance between the
deflected configurations of the strut y, and the thrust line. The thrust lines may be
extended to the points 2’ and 4’ for calculating fictitious moments for better accuracy.

At buckling:

Pah?

—1.00q = (—8.25) 2"
a = ( )2E]

Therefore, _ 36364EI _ mlEl

T L2 T (0.521L)2
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®)

Point of contraflexure

L — — T U vl thrust line
0.30 4
L Tral coefficient M)

©

Fig. 4.14a—-c. Buckling of a continuous two-span strut. a Strut with interior support, b moment
due to arbitrary value of Rp, ¢ buckled configuration

The analysis procedure as usual starts with the assumption of buckling configuration
Y. with a minimum number of poeints of contra flexure. The displacements in the
two spans are of opposite signs. The estimated values of displacements in assumed
configuration as obtained from a sketch drawn on a graph paper with the help of
flexible elastic strip are 0.00; —1.00; —0.95; 0.00; 0.42 and 0.00. The computations
are shown in Table 4.3.

The application of numerical technique to a stepped strut is illustrated in Ex-
ample 4.2. The procedure is equally convenient for strut with continuously variable
cross-section.

Example 4.6. Estimate the critical value of axial load P that will cause the propped
cantilever of continuously variable section shown in Fig. 4.15 to buckle.

As in the previous example the strut is a first-degree redundant structure. The
reaction Rp at the support B can conveniently be chosen as the redundant quantity.
With origin at B the moment M at a section is given by: M = —Py + Rpx. The
term Rpx is the effect of redundant and is represented in Fig. 4.15b by a triangular
moment diagram. The first term — Py is exactly the same as in Euler strut problem. The
analysis of basic structure neglecting the second term will result in a displacement at
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Table 4.3. Computations of buckling load for a continuous two-span strut

Node# 0 1 2 3 4 5 Multiplier/
remarks

1. Correction for arbitrary value of redundant, R3

M 0 -1.0 -2.0 -3.0 -1.5 0 Fig. 4.14b

Y’ - —6.0 -12.0 % -9.0 - Trapezoidal
formula

y (8.0) 2.0 —10.0 —25.5 -34.5

Ye 0 8.0 10.0 0.0 -25.5 —60.0

I1. Computation Table

1st Cycle
Ya 0.0 —-1.00 —-0.95 0.00 0.42 000 a
v, [00 0.90 0.75 —0.30 > (—0.82) Pa/EI
£ =Y { (0.50) <« —0.30 —0.57 0.00
Y” - 9.75 8.10 004261 —6.00 - Pah/(12EI)
y (—9.20)% 0.55 8.65 6.08 0.08 —do—
y 0.0 —9.20 —8.65 0.00 6.08 6.16  Pah?/(12ED
Ye 0.0 0.82 1.03 0.00 -2.62 —6.16 —do—
¥d 0.0 —-8.38 -7.62 0.00 3.46 0.000 Pah?/(12EI)
ya=ya 00 -1.00 —0.91 0.00 0.41 0.000 (8.38) Pah?
/(12ED)
2nd Cycle
- [ 0.00 0.90 0.71 —0.30 > (=0.81)
(0.46) « —0.30 —0.56 000 Pa/EI
Y” - 9.71 7.70 003251 -5.90 - Pah/(12ED)
y (—9.04)% 0.67 8.37 5.83 -0.07 —do—
y 0.0 —9.04 —8.37 0.00 5.83 576  Pah?/(12EI)
e 0.0 0.77 0.96 0.00 —2.45 —5.76 —do-
Yd 0.0 —-8.27 —7.41 0.00 3.38 0.000 Pah?/(12ED
ya=ya 00 —1.00 —-0.90 0.00 0.41 0.000 (8.27) Pah?
/(2ED)
3rd Cycle
. [0.00 0.90 0.70 —-0.30 > (=0.81)
Y { (0.45) « 030 ~0.56 000 Pa/EI
Y’ - 9.70 7.60 0.04-2.56 -5.90 - Pah/(12ED)
y (=9.00)4 0.70 8.30 5.78 -0.12 ~do—
y 0.0 —9.00 —-8.30 0.00 5.78 566  Pah?/(12EI)
Ye 0.0 0.75 0.94 0.00 —2.41 —5.66 ~do-
a 0.0 —8.25 —-7.36 0.00 3.37 0.000 Pah?/(12ED
ya=Ya 0.0 -1.00 —0.89 0.00 0.41 0.000 (8.25)Pah?
J(12EI)

@ See note at the end of Table 4.2
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3.00 2.5, 2,01, 1.51, I, B

@

(b)

©

Fig. 4.15a—c. Buckling of propped cantilever of continuously variable section. a Propped
cantilever of variable cross section, b moment diagram due to arbitrary redundant, ¢ buckling
configuration

the support B. The effect of second term represented by a triangular moment diagram
of arbitrary value is added in such a way that all boundary conditions are satisfied. By
neglecting Rpx completely and taking M = — Py, produces convergence problem.
It should be noted that the moment diagram has a point of contra flexure where Py,
and Rpx components of M, cross over. Making a guess for this position of C will
make the M values quite accurate resulting in a much faster convergence. The line
joining points of zero moment namely BC is termed thrust line. The moment at any
point in the strut is then P times the offset distance between deflected configuration
of the strut and the thrust line. To illustrate the efficiency of the procedure, assume

L
applicable to a strut of uniform cross-section and corresponding trial value of thrust
line ordinate is 0.8a. The relative values of y, are: 0.00; —0.33; —0.89; —1.00 and
0.00. The computations are given in Table 4.4.

that the deflected shape is given by trial function y(x) = a [(%)3 - (1)2] which is

At buckling:
P 2
—1.000a = —4.919- 2"
12E1,
Therefore,
_ 39.032E1,

cr —

L2
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Table 4.4. Computations of buckling load of a redundant strut
Node # 0 1 2 3 4 Muitiplier/remarks
L Correction for arbitrary value of redundant, Rp
M 4.000 3.000 2.000 1.000 0.000
M/EY =y" 1.333 1.200 1.000 0.667 0.000
Y’ 7.767 14.333 11.867 7.670 - Parabolic variation
y 7.767 22.100 33.967 41.637
Ye 0.000 7.767 29.867 63.834 105.471
II. Computation Table
1st Cycle
Ya 0.000 —0.330 —0.890 —1.000 0.000 a
M —0.800 -0.270 0.490 0.800 0.000 aP
Y’ —0.267 —0.108 0.245 0.533 0.000 aP/Ely
Y” —1.136 -1.102 2.875 5.575 - aPh/(12E]p)
y —1.136 —2.238 0.637 6.212 —do-
y 0.000 —1.136 -3.374 —2.737 3.475 Pahz/(12E[o)
Ye 0.000 —0.256 —0.984 —2.103 —3.475 —do-
Y4 0.000 —1.392 —4.358 —4.840 0.000 aPh?
/(12E1p)
2nd Cycle
ya=ya  0.000 —0.288 —0.900 —1.000 0.000  a=(4.840)aPh?
/(12EI)
M —0.800 -0.312 0.500 0.800 0.000 aP
Yy’ —0.267 —0.125 0.250 0.533 0.000 aP/Ely
Y” —1.185 —-1.267 2.908 5.580 . aPh/(12E1)
y —1.185 —2.452 —0.465 6.036 —do—
y 0.000 —1.185 —3.637 —3.181 2.855 Pah?/(12E1y)
Ye 0.000 -0.210 —0.808 —1.728 —2.855 —do—
Y4 0.000 —1.395 —4.445 —4.909 0.000 aPh?/(12Elp)
Ya=d 0.000 —0.284 —0.905 —1.000 0000  a= (4.909)aPh?
/(12ED)
3rd Cycle
M —0.800 -0.316 0.505 0.800 0.000 aP
Yy’ —0.267 —0.126 0.253 0.533 0.000 aP/Ely
Y” —1.186 —1.274 2.937 5.583 - aPh/(12E1y)
y —1.186 —2.460 0.477 6.06 —do-
y 0.000 —1.186 —3.646 —3.169 2.891 Pah? /(12EIp)
Ye 0.000 -0.213 —0.819 —1.750 —2.891 —do—
¥ 0.000 —1.399 —4.465 —4.919 0000  aPh?/(12Ely)
Yd 0.000 —0.284 —0.908 —1.000 0.000 a = (4.919)aPh?

/(12EIp)
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4.5 Large Deflection Theory

The classical expressions for linear theory based on small deflection used in the pre-
ceding sections are not applicable to the geometrically non-linear problems involving
large deflections. In classical linear theory, the presumption that the deflections are
small renders the moment-curvature relation linear. They are based on un-deformed
form of the structure. Moreover, the magnitude of deflections at the post-buckling
stage remains undetermined. To determine these deflections accurate expression for
the curvature of buckled strut is required. Consider an element of strut shown in
Fig. 4.16.
dy dy

inf = — ~ -— =
sin ds dx y

Thus the slope # = (sin~! y’). Since the curvature is the rate of change of slope

1 d y//
—=60=—(Ginly)= ————
R A T I
Noting that the radius of curvature of an element before deflection is infinity i.e.
curvature, % = é = 0. Hence change in curvature
1 1 y” 17 7 - 1
- =——— =y - ()2 (4.87)
R R -y
P
g
y 3
2 5
..g =]
- 7 >
= =
3, =

stable stable

small deflection

v —0

@ )

Fig. 4.16a,b. Equilibrium position of Euler strut and its bifurcation diagram. a Equilibrium
position, b bifurcation diagram
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A discerning reader will notice that this expression is different from that encountered
in theory of elasticity namely, 1/R = y”/[1 — (y)?]>/2. The difference in the two
expressions is due to the difference in the co-ordinate system adopted. In the former
the coordinate axis is along the deflected shape while in the later the co-ordinate axis
is along the un-deflected strut.

The displacement or movement of the load A can be expressed from geometrical
considerations as

(ds)? = (dx — du)? + (dy)?

(&) -(=5%) (%)

1=(1-u)+)? or (1-u)=[1-(@)"

Divide by dx:

Noting that ds =~ dx

Thus

du / /

o =1 0=0YY% or du={1-[1-()1")dx
Integrating both sides

L L
/du =A= /[1 — (1 =y dx (4.88)
0 0
The total potential energy of the strut IT = (U — V) is given by:

11

{(%) EIG)* 1 —y»H ™' = P[1—(1 - y’2)1/2]} dx

O —r O~

[ B Pa+y?+. - P ()= @)y + .. }ax
Retaining terms upto fourth-order only:

L
H=/.{(%) EI(y”)z—(%) Py'z}dx+ [(%)Elylzyuz_'_(%) Py/4]dx (4.89)
0

O ~—n

It must be noted that there are no constant terms. The first term is quadratic form
of classical eigenvalue problem of a buckled strut and corresponds to the linearized
differential equation of Euler strut: y”” 4+ a2y” = 0.
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To illustrate the significance of the results consider a perfect simply supported

strut under the action of an axial load P. The equilibrium configuration is assumed
to be given by a trial function:

y(x) = asin (;_sz)

Substituting y(x) in the expression for IT given by (4.89).

m=3(2)(3)2[(F)-]+3 (7)) [(F) - ()]

From
aI7
— =0 (4.90)
da
n?El (1) (#*EI\ ,
P, = 3 2l 4.91)

where terms up to a” are considered.

This equation is normally referred to as initial post-buckling equation. A plot
of P versus mid-point displacement a is shown in the Fig. 4.16b. The curve starts
at a constant first term (w2 EI/L?, the Euler critical load of a hinged-hinged strut).
The curve has a horizontal tangent at P.,. The local curvature of P is equal to
the coefficient of a?/2. The critical load obtained is exact one because the trial
function used happens to be the exact solution of the linearized eigen-value differential
equation y” + a?y = 0.

4.6 Problems

Problem 4.1. Compute the critical load for the uniform strut clamped at one end and
constrained at the other end such that it is free to move or slide laterally without
rotation as shown in Fig. P4.1.

El N
P—>§ %*—P
\IA |

{ 1
P4.1

Problem 4.2. A strut of uniform cross-section is hinged at one end and restrained at
the other by a rotation spring of stiffness k; as shown in Fig. P.4.2. Determine the
flexural buckling load of the strut as a function of L, EI and k,. Describe graphically
the variation of effective length factor K as a function of ratio k,/EI.
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r EI constant
P T-——— P

l L

! !
P4.2

Problem 4.3. A strut of uniform cross-section is fixed at one end and at the other
end it is restrained against bending rotation by a spring of stiffness &, as shown in
Fig. P.4.3. Determine the flexural buckling load of the strut as a function of L, EI
and k;. Describe graphically the variation of effective length factor K as a function
of the ratio k;/E1.

§ EI constant
N

- |

P4.3

Problem 4.4. In a column and beam structure shown in Fig. P.4.4. The upper end
of the column is free and the lower end is rigidly connected to a horizontal beam.

2~

 wlp——————————
S ‘ =
<<
~
m
—




4.6 Problems

The column carries an axial thrust P. Determine the flexural buckling load of the

structure.

[Hint: k, = 3EI,/L,. The characteristic equation is aL tanaL = k,L/(EI).]

Problem 4.5. In the column and beam structure of Fig. P.4.5, the lower end A of the
column is hinged and the upper end is rigidly connected to a horizontal member BC
with the end C: (i) roller supported, (ii) fixed and (iii) hinged. The column carries
axial thrust P. Determine the flexural buckling load of the structure.

ja]

El, ;;
y

AN
DR

P4.5

[Ans. The characteristic equations are:

(i) aLt (L)—3(i) 5)
i) aL tan(aL) = I, (1,

B 3aL

(ii) tana L = (—aL-)m and
4oL

(lll) tanal = ml

Problem 4.6. In a rigidly connected column and beam system shown in Fig. P.4.6,
the base of the column is fixed and the far end of the beam is: (i) roller supported and
(ii) fixed. The column is subjected to an axial force P. Determine the critical value

of the load.

[Ans. Characteristic equations is: (L) cot(aeL) = —3 (
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P
C
B 2
El,, L, ; ;
"’
EL, L
A
T2
}4— Lj———

P4.6

Problem 4.7. A strut of constant cross-section is fixed at one end, and at the other
end it is free to rotate but is constrained against translation by a spring of stiffness
k, as shown in Fig. P.4.7. Determine flexural buckling load of the strut as a function
of L, EI and k,. Describe graphically the variation of effective length K as a function

of the ratio (k,L>/EI).

§ p
R EI

I
—

AAMAAA
VVWW
=
£

|

P4.7

[Hint: K = /(«xL). The characteristic equation is:

keL* [ (aL)®
EI = |oL —tanal |’

Assume values of ratio k,L3 J(EI) as 0.0,5.0, 10.0, 15.0, etc. and calculate corre-
sponding aL and hence K. Plot K versus k,L3/(EI).]
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Problem 4.8. A continuous strut of constant cross-section and of length L (= L +
L,) is subjected to an axial load P as shown in Fig. P.4.8. If the strut is fixed at A
and constrained against lateral deflection at a point B distant L; from A, determine
(a) the effective length factor of segment A B as function of the ratio L,/L,, and

(b) the effective length factor of segment BC as function of the ratio L;/L,.

A B C
[§) ': P

P4.8

Problem 4.9. If the strut of Problem 4.8 were hinged at the end A, what would be
the corresponding effective length factors as functions of L/L,?

Problem 4.10. The lateral displacement at the mid-point of a hinged-hinged strut is
restrained by a spring of stiffness k, attached at the point as shown in Fig. P.4.10.
Determine the buckling load. What would be the critical load for the second mode of
buckling?

P—»q (00 3 P
7@7 EI EI
’ . 3
1 ) -l |
[ L2 i L2 ]
P4.10

Problem 4.11. An axially loaded strut is supported by two translation and two rota-
tion springs as shown in Fig. P.4.11. The boundary conditions of the strut are:

At x=0:y"(0) =y1y(0) and y”(0)+a’y'(0) = yuy(0)
At x=L:y'(L)=y2y (L) and y"(L)+a®y(L)= yuy(L)

where yi1 = ki /(ED, Yo = kn/(ED, yn = 21/(ED) and yno = knp/(ED). Deter-
mine the critical load of this elastically supported strut.

[Hint: Substitute the general solution to the governing differential equation i.e.
y(x) = Asinax + Bcosax + C (£) + D in each of the boundary conditions. Equate
determinant of coefficients to zero. That is,

0 ~¥Yn1L a2 —¥Yn1L

—ay o? —yn/L 0
(—Vn2LsinalL) (—¥n2Lcosal) (@ = ¥n2L) (—¥n2L)
—(aypcosal + o?sinaL) —(ayp sinal — o2 cos al) —ynlL 0

=07
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X o
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L |

P4.11

Problem 4.12. A strut of uniform cross section is hinged at one end and free at the
other. The lateral displacement at a point distant L; from hinged end is restrained by
an elastic spring of stiffness k, as shown in Fig. P4.12. Determine the critical load
of the strut.

P— g c—P

AN Hl :
v ==

AAA

P4.12

Problem 4.13. A tapered propped cantilever strut shown in Fig. P.4.13 is subjected to
an axial load P. The moment of inertia of the cross-section varies linearly from I, at
the propped hinged end to 51 at the fixed end. Use Newmark’s numerical integration
technique with four divisions to estimate the critical load P,.

[Ans. P.. = 54.18EIy/L?]

v, 510 IO

P4.13
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Problem 4.14. Use Newmark’s numerical integration technique with four divisions
to estimate the first critical value of the thrust P that will cause the buckling of the
stepped strut shown in Fig. P4.14.

5Io

IO IO
P :ﬁ——
| " o2t | 0L | o2
| | |

P
“
-
P4.14

[Ans. Py =33.45E1y/L?]

Problem 4.15. Estimate the critical load that will cause the buckling of the simply
supported tapered strut of continuously variable cross-section as shown in Fig. P4.15.
The strut has maximum moment of inertia of Iy at the mid-point. The moment of

X

2
inertia at distance x from the mid-point is given by: I(x) = Iy [1 -2 (Z)z] )

I, Ix)=I[1-2(x/L)*1*

P4.15

Problem 4.16. A simply supported strut of uniformly varying rectangular cross-
section of constant width is subjected to a compressive load P as shown in Fig. P4.16.
Estimate the first critical load of the strut.

| | Ix = To (dx/do)°
| 0.5L 0.5L

P4.16

[Ans. Py = 6.46EIy/L?]
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Problem 4.17. Estimate the first critical weight per unit length of vertical unsupported
mast of constant cross-section fixed at the base that will cause the mast to buckle
under its own weight. Use numerical integration with four divisions.

-

[Ans. Py = 1.84EIy/L?]
Problem 4.18. Use Rayleigh-Ritz technique to estimate the critical load for a non-
uniform simply supported strut shown in Fig. P.4.18. The variation of moment of

inertia may be assumed to be: I(x) = I [1 + (%) sin (%)] As a typical case

L _

estimate P, for the strut with n

Iy Ie= Io[1+ (Ii/Ig-1) sin(mx/L)]

P4.18

Problem 4.19. The linearly tapered cantilever strut shown in Fig. P.4.19 is subjected
to an axial thrust along its centroidal axis. The moment of inertia of the strut is given
by I(x) = Ip[1 + Bx], where Iy is moment of inertia at x = 0 and B is a measure of
magnitude of the taper of strut and is defined by: B = [(11/1p) — 1]/ L. For a prismatic
member 8 = 0.

[Ans. For 8 = 2, Py = 2.12EIy/L?.]
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P4.19

Problem 4.20. The cantilever strut of stepped cross-section shown in Fig. P.4.20 is
subjected to an axial thrust. Determine the critical load which will cause the cantilever
to buckle. Use appropriate trial displacement function and

(a) Rayleigh-Ritz method

(b) Energy method

(c) Galerkin’s Technique, and

(d) Newmark’s numerical integration technique.

I =2,

0.5L | 05L

- |
P.4.20

T

[Ans. P, = 4.1EI,/L? (approximate). Different procedures will provide critical load
values to different degrees of accuracy.]

Problem 4.21. A strut is supported by a translation and a rotation springs at each of
its ends as shown in Fig. P.4.21.The stiffness of translation and rotation springs is &,
and k;, respectively. The boundary conditions for the strut are:

Shear force, Q = k,y and moment, M = k;y’ at x = 0 and x = L. Obtain
the equation of equilibrium for the strut from the variational principle of stationary
potential energy:

L

L
1 1 1
S =8| 3 / [EI(Y")* — P(y)*dx — (Ekny2 - Ekxy’)Z) =0
0 0

[Hint: L
SIT(y) = / (8" EIY" — 8y Py 1dx — [8ykny — 8y'ke(y)IE
0
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X

P4.21
Integrate the first part twice:
L
[ oty + py'iax — y(EY + Py
0

+ [8Y EIY"15 — [8yk,y — 8y ,y’](’; .

Since at the boundaries x = 0 and x = L, Q = k,y = —{(EIY"Y + Py'} and
M = k;y' = —EIy". Thus all boundary values [ 1§ vanish. Thus

L
amw=fmwww+mmm
0

From the stationary condition 8I1(y) = O, the equilibrium equation obtained is:
(Ely//)ll + Pyll p— 0]

Problem 4.22. Show that a cantilever strut is in a stable equilibrium at bifurcation
point of P, = 72 E1/(2L)>.

[Hint: Assume the deflection shape function, y(x) = a [1 — cos ’2—%] ]

Problem 4.23. Solve Problem 4.17 by Rayleigh-Ritz method.

[Hint: As a trial function take two-degree-of-freedom function,

3
y(x) = a; [1 — cos %] +az [1 — COos —:1}
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and substitute this in the energy functional
; 1 1
= / I:EEI(y”)z —Fwl -~ x)(y')z] dx
0

and integrate. Obtain equations of equilibrium gTIZ = gTZ = 0 and corresponding

stability determinant. Solve the characteristic equation for smallest root, P,, =
6.87EI1/L3.]
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Stability Analysis of Beam-Columns

5.1 Introduction

The primary objective of this chapter is to develop methods for predicting the defor-
mation response of individual slender members or simple frames composed of such
members subjected simultaneously to axial force and bending moment. Such struc-
tural members are termed beam-columns. In this chapter we are mainly concerned
with lateral deformations i.e. deformations perpendicular to the longitudinal axis
of the member. The analysis procedures are based upon the solution of appropriate
differential equations.

It is recognised that the influence of axial force on bending deformations is
one of the most important aspects of the structural analysis and design. The lateral
loads and/or end moments cause deflections which are further amplified by axial
compression causing moment, Py along the member. These additional deflections
add significantly to the moments, which may result still further deflections. Finally,
a stable situation is reached where deflections correspond to the bending moments
due to both lateral load and Py. Because of this interaction between the axial force
and the moments, the general superposition procedures are inappropriate. However,
as the bending moment approaches zero, the member tends to become axially loaded
strut, a problem that has been treated in details in Chap. 4. On the other hand, if the
axial force vanishes, the problem reduces to that of a beam.

5.2 Derivation of Basic Equations

The iterative process described above actually need not be carried out to obtain
a solution. The influence of axial force on the bending moment can be incorporated
directly into the governing differential equation:

d?y
El (@) = —M, = —[Mo(x) + Py®)] (5.1)

M. L. Gambbhir, Stability Analysis and Design of Structures
© Springer-Verlag Berlin Heidelberg 2004
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where My(x) is the moment due to lateral forces, end moments, or from a known
eccentricity of axial force at one or both ends and Py(x) takes into account the added
influence of the axial force and deflection. The moment My(x) may vary along the
length of the member. The moment-equilibrium equation (5.1) can be expressed in
the standard form for the case when E! is constant.

@y\ Py My d%y 2 My(x)
(@)“LE“— 1 (@ TOY=Tg (5:2)

where o? = %. As described in Chap. 2, the shear force equilibrium expression of

beam-column elements can be obtained by differentiating the moment-equilibrium
relation given by (5.1) with respect to x, i.e.

_d d%y dy
0w =1 (51@) +p (a) .

@ d
(Ex%) +a? (ay) = QE(;) (53)

Similarly, a second differentiation of (5.1) yields the equilibrium equation for lateral

loads, i.e.
d? d? d?
< (El—y> +P (J) = w(x)

If EI is constant

dx? dx? dx?

For the case when E[ is constant.

d &
(ﬁ) +o? (aﬁ) - % (5.4)

where w(x) is the intensity of load at a point on the element.

5.3 Analysis of Beam-Columns

Beam-column being the basic component of a rigid frame will be treated first, and
then the analysis will be extended to the rigid frame. If E/ is constant, the general
solution of (5.4) has the form

y(x) = Asinax 4+ Bcosax + Cx + D + f(x) 5.5

where a> = £ and f(x) is a particular solution of lateral load w(x). The integra-
tion constants A, B, C and D are to be determined from the prescribed boundary
conditions. The boundary conditions of a beam-column with uniform cross-section
encountered in practice are:
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M = —EIy" = Eloa*(Asinax + Bcosax) — EI f"(x)

deflection, y(x) = Asinax + Bcosax + Cx + D + f(x)
slope, y = a(Acosax — Bsinax) + C + f'(x)
moment,

= P(Asinax + Bcosax) — EI f"(x)
shear force,

Q= —EIy" =—aP(Acosax — Bsinax) + EI f"(x)

(5.6)

To obtain the general solution given by (5.5) it is required to find f(x) which depends
on the lateral loading and to determine constants A, B, C, and D that satisfy the

prescribed boundary conditions.

5.3.1 Beam-Column with Concentrated Loads

Consider the simply supported beam-column member of length L with constant EJ
subjected to a single lateral load W shown in Fig. 5.1. Because of the discontinuity
at W, the problem is treated in two parts: one considering the beam to the left of W
(0 < x < L — 2); and other to the right (L — z < x < L). The moment equilibrium
is defined by taking moment about an arbitrary point at a distance x from the left

A

P —

due to W
L-z

(@

A e - __ ________________ - w (L - Z) /Il
Wz/L Deflection Additional % ’

deformation due to P

(®)

Fig. 5.1a,b. Simply supported strut with concentrated loads. a Equilibrium of a beam-column
member, b beam-column with a number of concentrated loads
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support of the member. Thus, for the left-hand part of the beam.

d%y Wz
EI(@)+Py(x):_(T>x’ O0<x<L-z

For the right-hand portion

d?y W(L — z)(L — x)
EI(@>+Py(x)=—————L——, L—-z<x<L
Substituting o> = %, the equations reduce to

Wz
” 2., _ _
Y +a'y= (—E1L>x

W(L —
w+¥y=—(iaf9)@—m

The solutions are:

W.
y(x)=Asinax+Bcosax—<P—Z)x, O<x=<L-z

WL — 2)(L -
y(x)=Csinax+Dcosax—[%x—)] , L—z=<=x=<L

The boundary conditions for evaluation of constants A, B, C and D are y(0) =
y(L) = 0giving B = 0and C = — D cotaL and at the point of application of load W

the matching conditions are
Vert(L — 2) = yright(L —z) and y{eft(L —2z)= y:—ight(L —2)

The constants of integration are therefore

A Wsinaz B=0
"~ Pasinal’ h
C= _Wsina(L—z) and D — Wsina(L — z)
PatanalL Po

Thus, the equations for the elastic curve are

Wsinaz Wz
= (2% ) sinax — (=2 )x, 0<x<(L-—
y() (PasinaL)smax (PL)X sx=(L-2

_( Wsina(L =2)Y . _
y(x) = (W) sina(L — x)
_[W@—a@—w]

L—2)<x<L
PL ( 7)) <x<

5.7
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From the differentiation of (5.7)

, Wsinaz Wz

= _— O0<x< (L -
Y= Peinal T PL sx=(-2
, Wsina(L — z) W(L —2)
= _Wsmalh—2) L-x0+2="2 (L-—p<x<L (58
PsinaL cos a( X+ PL ( D=xs 8
and
i Warsinaz sinax 0<x<(L-2)
= —— 5 s —
Y Psinal =r=iETe
Wa si L—
po Wesmal —2) o vL—x. L-9<x<L (5.9)
PsinalL

If the load W is applied at mid-span i.e. z = L/2, the elastic curve is symmetrical
and only one portion of the member need be considered. The mid-spani.e. x = L/2,
deflection will be the maximum.

w oL oL
Y(L/2) = Ymax = m [:tan (7) - (7)]
B wL3 3 . aL aL
= BEI [(aL/2)3] {an (7) - (T)J

L P
because P = o> EI. Substituting ¥ = T
2 2V P

_wL? _ 3(tany —9)
Ymax = 7o n(¥)  where  n(y) = —

The parameter ¥ depends on the ratio (P/ P.). It should be noted that the first term of
the equation represents the deflection which is obtained by lateral load acting alone.
The second term represents the influence of axial force P. For small values of P, the
quantity v is also small and the factor n(y) reduces to
3 ¥ -
ny) = E [(x/f+ 3 +) w] ~ 1.0
On the other hand, if P approaches P, i.e., ¥ tend to 7r/2, n(v) becomes infinite and
structure becomes instable. Thus when the axial compressive force approaches the
limiting value P, even the smallest lateral load will produce considerable deflection.
It should be noted that the deflection varies linearly with the lateral load W but not
with the axial compression P.
The maximum slope (at the ends of the centrally loaded member) is

(5.10)

o WL? [2(1 — cos )
e 16EI[ Y2cos ¥ ]
_ w2 _ [20 —cosy)
= 16E1¢(1ﬁ) where  @(¥) = [W] (5.11)
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The maximum moment at the mid-span is given by

d2y> WL (tam/;)
My = EI| — = — 5.12
(dxz x=L/2 4 14 ( )

The proportionality of deflection to the lateral load enables to handle the case where
the beam-column member is subjected to several concentrated lateral loads by using
the principle of super-position. Consider the case of column-beam member subjected
to n lateral loads Wy, Wy, ... , W, acting at distances zy, 22, - . . , Z,, from the right
support, respectively, as shown in Fig. 5.1b, where z; < z3, ... < z,. The deflection
curve between the load W, and W, is obtained from (5.7).

sinax
y(x) = PusinaL Z W;sinaz; — — Z Wiz (5.13)

_,_M Z W;sina(L — z;) — (LP_LX) Z Wi(L —zi)

PasinaL )
=m+1 i=m+1

The expressions of the elastic curve of beam-column member subjected to concen-
trated load(s) given by (5.7) and (5.13) can conveniently be used to derive expressions
for the other load cases.

5.3.2 Beam-Column with an Interior Moment

Consider the simply supported beam-column member A B of Fig. 5.2 subjected to an
interior moment M at distance z from the end B. The moment M can be visualized
as a couple of two equal and opposite loads of magnitude W (= Mj/dz) acting at
distances z and z + 4z from the end B as shown in the figure. The deflection curve
for the portion to the left of the loads can be obtained from the (5.7).

57) —
Y®) = WIfz +82) — f()] = (Waz)f(z_+§%__@

where
sinaz X ]

fla) = [Pa sinaL smox = PL

In the limiting case when 8z approaches 0, the second term represents the derivative
of f(z). The product W8z remains finite and is equal to M. Consequently

MO [(cos oz

. x
5 )smax — Z] , 0<x=<(L-2 (5.14a)

) = sinaL

Similarly,

(L —x)
L

) = Mo [(cosa(L -2z

)\ .
P Sinal )sma(L—x)— :l, (L-2)<x<L

(5.14b)
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|

Fig. 5.2. Simply supported strut subjected to interior moment

In the typical case of a moment being acting at the mid-span of the member, the
deflection curve is antisymmetric about the mid-span, and

Ly _ (EY = (M) [oor () - 2
e o) (Ee() 5] e

5.3.3 Beam-Column Subjected to End Moments

The deflection curve for the simply supported beam-column member subjected to
a moment Mp at the right end B as shown in Fig. 5.3a can be obtained from the
expression of the interior moment case. To achieve this substitute z = Oand My = Mp
in (5.14a), i.e.

Mp r/sinax x
Y= P [(sinch) B Z] (5.16)

Equation (5.16) can also be derived by using the fundamental governing differential
equation:

d2y MB)C MBx
El— =—Py— —= "+ oty =
%) (y L) o YrTeY=En

where @> = P/EI and the boundary conditions are y(0) = y(L) = 0. The substitution
of general solution y = A sinax + Bcosax + Mpx/PL in the boundary conditions
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y

()

Fig. 5.3a,b. Beam-column subjected to end moments. a Beam-column with end-moment at
one support, b beam-column with end-moments at both supports

yields the values of constants and hence

0= [(Ger) - 7]

The end slopes 64 and 6 are given by

by Ma[_ @ 1]_MsL[3( 1 1
4=y )_T[SmaL L]_ 6EI [E (SinZIﬁ_Z/f_>

05 = y/(L) = Mp [ acosaLl 1 _ MpgL | 3 1 1 5.17)
BEYWI=""p | TsinaL LT " 3EI |29 \tan2y 2y '
MgpL MpL

It should be noted that the terms Z£r and ZZr are the angles produced by the
moment Mp acting alone. In (5.17) these terms are multiplied by the trignometrical
factors representing the influence of axial force P on the end rotations. Thus

MpL MgL
9A=(6—§I—)so1(vf> and eB=<3§I)so2<w>

_3(LL 1
‘Pl(\/f)—:/;(sinzl// 21//)

3 1 1
n) =5 (ﬁ - mw) (5.18)
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As P (i.e. ) approaches zero the factors ¢ (¥) and ¢,(¥) approach unity, and
increase infinitely as v approaches /2.

If the member is subjected two moments M4 and Mp at the ends A and B as
shown in Fig. 5.3b, the elastic curve can be obtained by superposition

_ My [sina(L—x) (L—x) Mp\ rsinax x
Y = P [ sinal. L :' + (T) [sinaL B Z] (5.19)

The angles 6,4 and 0y are obtained by using (5.17) and (5.18)

ML M3zl
04 = < 3BT )<p1(1/f)+<6E1 )<ﬂ2('/f)

MgL M4L
63=<3E1)¢1(¢)+(6E1)¢2(w) (5:20)

The end moments M4 and Mp in practice may appear as applied moments or as
two eccentrically applied compressive axial loads P. Substituting M4 = Pe,4 and
Mg = Peg in (5.19), where e4 and ep are, respectively, the eccentricities at the ends
A and B. Thus

sina(L — x) (L —x) sin ax <x)]
= - — = 521
yx) = ea [ sinaL ( L ):l tes [sinaL L 621
To illustrate the effect of axial thrust on bending consider the case wherein the member

is subjected to equal end moments to produce a single curvature type of deformation
i.e. My = —Mp = My as shown in Fig. 5.4a. The deflected shape is given by

_ Mo ol _ alL
y(x) = m [COS <7 - le) Ccos (7)

() ) [ 22) o]

The maximum deflection occurs at x = L/2 and is given by

= MoL? 5.23
ymax—(8E1>§0(¢) (5.23)

where ¢() is the multiplication or amplification factor. The end slopes and maximum
bending moment at the mid-span are:

MyL (tanys
Oy =0 =y (0) = — 5.24
A =0 =y(0) 2EI(1/J) (5.24)
and
My = —EIy"(L/2) = Mysecy
or

M, P
A;‘:‘ = secy = sec l:% 7 ] (5.25)
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y

(@)

(b)

Fig. 5.4a,b. Beam-column subjected to end moments. a End-moments producing single cur-
vature bending, b end-moments producing antisymmetric bending

where P, = m2EI/L?. For the case P/P. = 0.00, My, = Mj i.e. the maximum
moment is same as in the case of pure bending. The moment increases over that
at zero thrust by 50 per cent for P/P. = 0.287 and the increase is 200 per cent at
P/P. = 0.614. Finally at P/ P, = 1.0, the increase becomes infinite.

In case the end moments have same magnitude but opposite sense as shown in
Fig. 5.4b, i.e. My = Mp = M, (5.19) yields

2
sinaeL L (5.26)

My [sina(L — x) —sinax  2x
y(x)=——°[ ( ) +——1]
P
When the axial force P is very small, @ = 0 and the sine term reduces to

(ax)®
6

sinax = ax —
Thus (5.26) yields

(&) = 63‘;—1°L[x(x —D)@x—1L)]

which is identical to the solution of the beam subjected to end moment Mp. On the
other hand when the axial load P approaches the critical value P, = n2EI/L? or
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al = 7, the elastic curve becomes

y(x) = (%) [2 (%) —1+cos (ZL)ﬁ)] (5.27)

It should be noted that the elastic curve is always in two half waves no matter how
small the end moment M, is.

5.3.4 Beam-Columns Subjected to Distributed Loads

Consider a beam-column member with axial force P subjected to a uniform load of
intensity w over a portion or entire span as shown in Fig. 5.5.

(a) Uniformly distributed lateral load over a portion of the span

The load is applied over the portion extending from the point x = a to x = b from
the right end as shown in Fig. 5.5a. The uniformly distributed load can be considered
as a system of infinitely small concentrated forces and the method of superposition
used in case of concentrated loads can be extended to the case of distributed load

P ——— : & ——— P
7@% _"dzI‘_ aw%
P L,

(b)

Fig. 5.5a,b. Beam-column carrying uniformly distributed load. a Uniformly distributed load
over a portion, b uniformly distributed load over entire span
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by replacing summation (3 ") by integration (/ dx). Consider an infinitesimally small
element of length dz of continuous load at distance z from the right hand support. The
deflection produced by the elemental load w dz is obtained by treating it a concentrated
load acting at distance z from the right-hand support. The deflection due to total load
is then determined by integrating between the limits z = a to z = b. Thus the
deflection for the portion of the beam-column to the left of the load is given by (5.7).

b b
dz) si d
y(x) = Mﬂ'nax—xfwzz, 0<x<(L-b)
PasinaL PL
a a
_ wsinox WX 5, 5
= m(cos ab — cos aa) — ﬁ(b —a’) (5.28)

For the portion to the right of load

y(x) =

a

' (wdz) sina(L —x) . /IZ (wdz)(L — 2)(L — x)
- sina(L — 7) —
PasinaL PL

_ wsina(l —x) —a) - -
T Pa?sinal [cos (L — a) — cosa(L — b)]
2 Ly - (P -], L@ =L (529)
2PL ’ - |

For the deflection at any point over the loaded portion

L—x L—x

_ (wdz) sinaz . x(wdz)z
y(x) = / Pusingl Shox / PL (5.30)
b ) b
(wdz)sina(L —z) . f (wdz)(L — 2)(L — x)
- sina(L — x) —
PasinaL PL
L—x L—x

This equation can be used to obtain deflections for the case when beam-column
member carries uniformly distributed load over its entire length.

(b) Uniformly distributed load over the entire span

Consider the uniformly loaded simply supported beam-column member of length L
with constant ET as shown in Fig. 5.5b. The governing differential equation is

y//// 4 azy// _

=TI (5.31)

The boundary conditions are: y(0) = y”(0) = y(L) = y"(L) = 0.
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The particular solution is given by

x2 wx?

w
f(x) = 5P = %a2El (5.32)

From the boundary conditions the constants of (5.5) are determined to be

= (o) () - () [on (2] - () ()]

_ ww
- T o*ElI T o?P
_ wL _ wL
~ 222EI = 2P
The elastic deflection curve is therefore
x) ( d ) tan oL sinax + cos« Lo’ 1+ o’
xX)=\{—>5= —_ X X — - —_
4 2P 2 2 2
w \ [cos(aL/2 — ax) o?x
={—}|—-1—-—(U - 5.33
(aZP) [ cos(@L/2) ; L= (5-33)

It is evident from the above expression that deflection varies linearly with the lateral
load w but not with axial compression P. The maximum deflection at the mid-span
of the member (i.e. x = L/2) is given by

w al ) (wL)?
Ymax = 2P |\ 2 8

L\?
_ w 2 sec oL o o
204E1 2 2

wL?* ,
= mpsecx/f—z—y/]
_ SwL* [12Qsecy —2-y)] _ [ SwL?
T 384E]1 l: Sy ] = (384El> n(y) (5.34)
where
_aL_x [P
V=773 P,

Thus i depends upon the ratio ,%. The factor n(y) which is function of P, EI
and L is termed amplification factor. Thus the mid-span deflection is obtained by
multiplying the pure bending deflection by the factor n(y¥). When P approaches
P. = (n?EI/L?) or (aL) approaches 7 even smallest lateral load will produce
considerable lateral deflection. For the mid-point deflection of a simply supported
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beam-column member under symmetrical loading condition, the amplification factor
n(y¥) can be approximated by the expression

1

ny) ~ A=P/F)

provided that the ratio P/ P, is not large. For values of P/ P, less than 0.6, for example,
the error in this approximate expression is less than 2 per cent. This approximate
expression for estimating deflection at the centre of beam-column is frequently used
in design computations.

5.3.5 Rotationally Restrained Beam-Columns

Consider the case of a beam-column in which lateral translation is prevented at both
the ends and the end rotations are restrained by rotational springs as shown in Fig. 5.6.
The problem is equivalent to the beam-column of Fig. 5.3b where M4 = —k 464 and
Mp = —k.p6g. Substituting values of 84 and 65 in (5.20).

L L
My [k + <3E1>(P1(‘/f):l + Mp [<6E1)(pz(1/f)] =0 and

L 1 L
My [<6E1) <Pz(1/f)] + Mp [k—+ <3E1><P1(1/f)} (5.35)

For non-trivial solution of these two homogeneous linear equations, the determinant
of coefficients of M4 and Mp must vanish. The resulting stability condition or
characteristic equation is

1 L L L
[k— * <3E1) ‘01('/’)] [ (3E1> ‘p‘(‘/’)] [<6E1) ¢2(¢)] =0 (5.36)

As a typical case take krs = krp = ki, (5.36) reduces to

! L L =0 5.37
Z+(3E1)“’1("’) <6E1)¢z(w) (537)

Fig. 5.6. Beam-column with elastically restrained leads
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From first of (5.35):

s [+ (o () o]

The plus sign in (5.37) corresponds to the symmetric case (M4 = —Mp) and minus
sign to asymmetric case (M4 = Mp). Substituting the values of ¢ ({) and ¢, (¢) the
symmetric case becomes

2EI
tant/x:—l:kL:'w (5.38)

The value of i, lies between /2 and 7w depending upon the value of k;. When k;
approaches zero, Yr = % and P = n? EI/L?. For the antisymmetric case

The value of ¥, lies between 7w and 4.493. When k;, = 0, ¥, = =, and when
k; = 00, Yo = 4.493.

tany = (5.39)

5.4 Beam-Column with Elastic Supports

5.4.1 Differential Equation Method

As has been discussed in earlier chapters that a structural member connected to
an external spring system develops certain forces as it deflects and thus the free
movement of member is restricted to greater or lesser extent. The forces developed in
the springs depend on the amount of deformation produced in them due to deflection
of the member. This results in a type of variable loading. The invariable (constant)
lateral load on a strut causes initial eccentricity which introduces the stress problem,
but it does not alter the P. value of the system. Whereas in case of a spring, it results
in a deflection dependent lateral load and a restoring force (as does the member) as
deflection takes place. Thus the presence of spring affects the elastic stability value P,
and even small spring stiffness may cause a considerable increase in P..
There are two general types of translational elastic supports:

Translational springs

(i) Point elastic support, and
(i) Distributed elastic support.

The former is represented by an individual spring, and it applies a force of value Q
to the member as a point load; Q is dependent on the deflection y of the beam at that
point. For a linear spring of stiffness k, the force Q is proportional to deflection y,
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i.e. @ = —ky. The negative sign is introduced as the direction of Q is opposite to
that of the deflection.

On the other hand the distributed elastic support (medium) can be considered as
a series of point supports very close together. If a force §Q acts over an element of
length §x (direction x being normal to the direction of the springs), the intensity of
distributed force in the elastic medium is

50 dQ
ik 5 (5.40)
For a linear spring action ¢ = —ky, where k is the force per unit deflection per

unit length of the elastic medium. k is frequently known as the elastic modulus. The
stiffness of the spring affects the buckling load of the system considerably and it may
cause a complete change in the buckling mode.

Consider the case of Euler strut with an added central spring of stiffness k as
shown in Fig. 5.7a. The problem can be easily dealt with potential energy approach.
The total potential energy of the system is given by

= [ / %El(y”)2 dx + %ky? - / %P(y’)2 dx}

L2

7
S
!Lbl\‘”

(a)

Pcr/P 1 “
st
2
£6 —
= | 7 Antisymmetrical
5 3 2 buckling mode
&
= 2k
33 N
2 & 1 l—— Symmetrical buckling mode
£8
-t L// 1 1 1 1 -
-10 1 2 3 4 5
- | ———

negative B positive g
®)

Fig. 5.7a,b. Buckling of simply supported strut with an elastic support at mid-point. a Simply
supported strut with an elastic spring, b variation of P/ P with 8



5.4 Beam-Column with Elastic Supports 187

where y. is the deflection at the point of elastic support. Consider deflection trial
function y(x) = asin(wx/L), thus y. = a and

EI X EIn*a?
N2 = 2 (0 -
f( ) dx = f[y sm(L)]dx T
0

1 1
—ky? = —ka*
2 Ye = 5%

L L
L /(y/)2dx = L ﬁ cos® (E> dx = Pra?
2 2 L? L 4L
0 0

- | Er + L P\ | ,

Tl T2 aL ) |“

For neutral equilibrium, /7 = (d/1/da)da = 0. Therefore,
EIn* k Pn?

Therefore,

= =0
4L3 + 2 4L
2 2
n“El L 2kL
PCl‘ = 2 1 + 2 _2
L n°El kg
P, 2kL
=1 =1 541
or P |: + <n2Pe + B (5.41)
where B = 2kL/n*P, is dimensionless quantity relating k to P.1 and L. When
B = 0i.e. spring is inoperative, P,; = P. ;. With increasing positive values of S,

P, increases linearly, and there comes a point at which the symmetrical buckling
load equals the second critical load of the Euler strut problem, and the system could
equally well buckle anti-symmetrically with the spring becoming inoperative. This
would take place at 8 = 3 or P, = 4P, ; as shown in Fig 5.7b. Beyond this point no
increase will be obtained and the spring becomes unimportant.

On the other hand with increasing negative values of 8 (a disturbing force) there
comes a point at § = —1 where P, = 0. The stiffness of the system reduces to zero.
This value of 8 is called critical value 8 that alone will cause instability in the system.
Thus the presence of springs may make the buckling mode higher than expected. In
case of doubt about the true mode, both symmetrical and antisymmetrical modes will
have to be studied.

This procedure is equally applicable to the strut with a larger number of elastic
supports. Consider the problem of hinged-hinged strut of constant cross-section
supported on an elastic medium of constant modulus & as shown in the Fig. 5.8a. The
governing differential equation can be derived by following the standard procedure
for the moment equilibrium of an element of the member

d2

dx2

d?y
+P<dx2) +ky=0 (asw=—ky)
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(@)

)

Fig. 5.8a,b. Buckling of simply supported strut resting on an elastic medium. a Simply sup-
ported strut on an elastic medium of constant stiffness, b influence k& on P and buckling
mode

or d*y d?y d?y

The four boundary conditions are: y(0) = y(L) = y”(0) = y”(L) = 0. The general
solution to this equation is: y(x) = a, sin % where y(x) represents the buckling
mode and the value of n can be any integer as in the case of Euler strut problem. The

total potential energy of the system is given by
L

L
1 1 P
IT==EI | )dx+ =k | y?dx — — "2
5 f(y) +2 fy 2/(y)dx
0 0

n*n*El kL  Pn’n? )

== +5- @)
4L 4 4L

For neutral equilibrium, 67 = (dI1/da,)éa, = 0. Since 8a, is arbitrary, for no-trivial

solution (dfT/da,) = 0. Therefore

nEI[ , kL* P, , B
P =13 [" +(m)] P =[" +n_2] (5:42)
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where P.;; = w2 E1/L?, the Euler buckling load, and 8 = kL*/n*EI, a dimension-
less quantity relating k to the stiffness of the member and L. The different buckling
modes are given by n = 1, 2, 3, etc. The relation is shown in the Fig. 5.8b. As 8
is increased from zero, the mode changes from single to two half-waves buckling at
B = 4, and from two to three half-waves buckling at 8 = 36, etc. There is a series
of negative values of B each of which produces a state of neutral equilibrium for
P = 0. The first of these corresponding to single half-wave buckling mode occurs at
B1 = —1, the second at 8, = —16 and so on.

5.4.2 Numerical Procedure

The complexities in the loading system, in the beam cross-section, and in the elastic
supporting system can be conveniently handled by the numerical procedure discussed
in Sect. 4.4. However, it should be appreciated that while dealing with struts or beam-
columns with spring supports, the problem is somewhat different in that the member
is subjected to two opposing forces, a disturbing force (due to axial and transverse
loading) and a restoring force (due to the spring system). The beam is now not the
only system resisting deflection, the springs also resist movement and in some cases
they may even offer a stronger resistance than the beam.

In the problems where the resistance of the springs to deflection is small relative
to that of beam, the convergence of the iteration procedure is very fast. On the other
hand when the resistance of the springs to deflection is greater than that of the beam,
as in the case of a flexible beam on a stiff foundation, the iteration procedure may
diverge and the methods can become too unwieldy. In this type of problems it is often
easier to use classical or a solution based on energy consideration.

The numerical solution for the stability problems with the added effect of the
elastic supports as usual starts with a trial deflection y, for the buckling mode.
The values of the derived deflection y4 are made up of two components: (1) effect
of spring loading k, and (2) the effect of axial loading P. If yq; and yq , are the
derived deflection values due to k and P, respectively, the total derived deflection
corresponding to the initial trial y, is

Ya = Yax + Ya,p (5.43)

where for compressive axial load yq, , is positive and yq x is negative. It will be noticed
that in the iteration cycle, starting from a factor ‘a’ in y,, y4 x also has a single factor
of ‘a’ and yjy, , has a total factor of (a Ph?/EI). Thus to use (5.43), a guessed value
of P must be introduced in yq , so that both yg , and y4 & can be reduced to the same
factor ‘a’. The simplest way to do this is to satisfy the equation y, = Y4, + yax at
the point of maximum displacement and to scale all the y4 values in the proportion.
This procedure has been demonstrated in example 5.1.

Example 5.1. A simply supported beam of constant cross-section carries both lateral
load and an axial compression of value P = 0.472EI/L? as shown in Fig. 5.9.
Estimate the deflection at salient points.
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Fig. 5.9. Simply supported strut with lateral loads

This problem may be treated as a case of beam-column member subjected to
a compression load at an eccentricity y;. This initial eccentricity is due to lateral
loading on the member and is represented by the deflection of the member due to
lateral loading before axial forces are added. The compressive load P will tend to
increase initial eccentricity, the total value of deflection approaching infinity as P
approaches P 1, the first critical load in pure compression buckling. Thus P can not
be greater than P ;.

In the numerical solution the first step is to calculate absolute values of eccen-
tricity y; at the node points. The next step is to assume trial values of additional
deflection y, due to the compressive load P. Using the total deflection y = y; + y,
compute moments through the member due to P, and hence determine derived de-
flection values y4. As has been pointed out earlier, the closer the trial values y, to the
exact values of y., the lesser will be the computational effort. In most of the cases it
is good to assume the trial values based on the relation

P -1
a1 = yi[ ;1 - 1] (5.44)

The numerical procedure is given in Table 5.1. In the first part, the deflections due to
lateral loading have been computed in the absence of axial load P. This gives value
of initial eccentricity y; of P. In the second part the additional deflection y, due to
application of P are computed.

As P, for the simply supported beam-column member is Euler value n?EI/L?,
a good approximation is given by

Pe - 1 -
=¥|—= - =y|—~—-1[ =0. i
Va1l yl[ P 1} y[0.4 } 0.667y

Therefore, y = y; + ya,1 = 1.667y;
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Table 5.1. Computation of deflection of beam-column subjected to lateral loads

Node No. 0 1 2 3 4 Multiplier

I. Computation of initial eccentricity (deflection), y; due to lateral load

Load, W - —1.25 —0.50 0o w

Shear, Q 0.75 0.75 —0.50 —1.00 w

y'=M/EI 0 0.75 1.50 2.00 0 Wh/EI

Y” 9.00 (7.50 + 8.25) 11.5 Wh2/12E1
15.75

y (—17.5)¢ -85 7.25 18.75 Wh3 /12ET

Vi 0 —17.50 —26.00 —18.75 0 Wh12EI=a

11. Additional deflection due to axial load P
First iteration

y=166Ty; 0 -29.17 —4333 —31.25 0 a
y” 33.45 49.37 35.58 10aPh/(12E1)
y' (—58.66)¢ ~25.02 2429 59.63 10aPR2/(12E)
V4 0 ~58.66 —83.88 —59.73 0 -do-

Y 0 —12.06 —17.25 —12.28

Second Iteration

y=yi+ya 0 —29.56 —43.25 —31.03 0 a

Y’ 33.88 49.31 3535 10aPh/(12EI)
Y (—58.90)¢ —25.02 24.29 59.63 10aPh?/(12EI)
Y4 0 —58.90 —83.92 —59.63 0 —do-

Yd 0 —12.11 —17.26 -12.26 a

Third Iteration

y=Yi+ys O -29.61 4326 ~31.01 0 a

Y 33.94 49.32 3534 10aPh/(12ED)
y (—58.95)¢ —25.01 2431 59.65 10aPh?/(12E])
Vs 0 —58.95 ~83.96 —59.65 0 —do-

Y4 0 —12.12 ~17.26 —12.26 a

“Note: yor = (9 x 34 15.75 x 2+ 11.5)/4 = 17.5, where 4 is the number of panels.

The elastic curve ordinate at the mid span

Wh3 39.6 Ph?
y (26 + 8 )

~ 12EI 12E1
wL3 43.159P wL3 4WL3
= 26 = 26 + 17.26) =
768E1< P. ) 768EI( + ) 71EI

Example 5.2. A simply supported symmetrical strut of continuously variable cross-
section I, = Ip{l — 4.0[(x/L)> — (x/L)*]} shown in Fig. 5.10 carries an axial
compression of P. Estimate the first critical value of P that will cause its buckling.

If the strut has an initial eccentricity (at P = 0) measured as the off-set distance
between the axis and the line joining end points i.e. the thrust line, estimate the de-
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Fig. 5.10. Beam-column of variable cross section

flection due to an axial thrust of magnitude P = 0.572 EI/L?. The initial eccentricity
is given by y; = asinwx/L. The numerical integration for the buckling load is given
in Table 5.2.

Table 5.2. Buckling load of a strut of a continously variable cross-section

Node No. 0 1 2 3 Multiplier and remarks

I, 0.5 0.7 0.9 1.0 Iy

First Iteration Half strut is considered

Ya 0.0 5.0 8.7 10.0 a y(x) = asin(nx/L)

y'=M/EI 00 -7.1 —9.67 -10.0 Pa/Ely

Y” —80.67 —113.77 -119.34 Pah/(12EIp)

y 254.11 173.44 (59.67) 0.0 Pah?/(12Ely)

Y4 0.0 254.11 427.55 48722 —do-

Yd 0.0 522 8.77 10.0 (48.72)[ Pah? /(12EIp)]

Second Iteration

Ya 0.0 522 8.77 10.0 a

¥y’ 0.0 —7.45 —9.74 —-10.0 aP/Ely

Y” —84.24 —114.85 —119.48 aPh/(12Ely)

y 258.83 174.59 (59.74) 0.0 Pah? /(12Elp)

Y4 0.0 258.83 433.42 493.16 —do—

Yd 0.0 5.25 8.79 10.0 (49.32)[Pak?/(12E1p)]

Third Iteration

Ya 0.0 5.25 8.79 10.0 a

y" 0.0 —17.50 -9.77 -10.0 aP/Ely

Y” —84.77 —115.25 —119.54  aPh/(12El)

y 259.79 175.02 (59.77) 0.0 aPh?/(12Elp)

Y4 0.0 259.79 434.81 49458 -do-

Yd 0.0 5.25 8.79 10.0 (49.46)[aPh?/(12E1p)]
At buckling: aPh?

10.00a = 494.58

12EI,
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Therefore,
8.73EI,

cr,l = 12

The estimation of deflection due to thrust of value P = 0.572EI/L? i.e. P =
4.935E1/L? is given in Table 5.3.

Table 5.3. Deflections of the eccentric strut of variable cross-section

Node No. 0 1 2 3 Multiplier and remarks

Initial eccentricity Half strut is considered

¥i 0.00 0.50 0.87 10 a

I 0.50 0.70 0.90 1.0 Iy

First iteration Ya1 =[Pt /P) = 1170
= 1.30y;

Ya 0.00 0.65 1.13 130 a

y=yi+ya 0.00 1.15 2.00 230 a

y'=M/EI 0.00 ~1.64 —-2.22 —-2.30 aP/ED

Y’ —18.62 —26.14 —27.44 aPh/(12Ely)

y 58.48 39.86 (13.72) 0.0 Pah?/(12E1)

Y4 0.00 58.48 98.34 112.06 Pah?/(12Elp) = 0.01142a

yd 0.00 0.67 1.12 128 a

Second iteration

Ya 0.00 0.67 1.12 128 a

y=yi+ya 0.00 1.17 1.99 228 a

Y’ 0.00 —1.67 —2.21 —228 aP/El

Y’ —18.91 —26.05 —27.22 aPh/(12El)

y 58.57 39.66 (13.61) 0.0 Pah?/(12E1Ip)

Y4 0.00 58.57 98.23 111.84  Pah?/(12Ely) = 0.01142a

yd 0.00 0.67 1.12 128 a

The maximum deflection at the mid point is given by:
y=yi+ya=228a

Example 5.3. A hinged-hinged strut of constant cross-section shown in Fig. 5.11 is
supported by an elastic medium of constant stiffness k = 50E1/ L*. Estimate the first
critical value of the axial thrust P.

EI
— S —
P TTTTTT 77 P
7%,7, k = 50evL’ 7/@
| L _l

| |

Fig. 5.11. Simply supported strut on elastic medium
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Since the value of k is less than —k; = By7*EI/L*, the numerical solution is
within the range of convergence. The numerical integration is given in the Table 5.4.
Due to symmetry only half portion of the strut is considered for the first symmetrical
mode.

Table 5.4. Buckling of hinged-hinged strut supported on uniform elastic medium

Node No. 0 1 2 3 Multiplier and remarks
First iteration Consider
y(x) =asinnx/L

Ya 5.0 8.67 10.0 a
L Effect of k
q = —ky 0 -5.0 —8.67 —10.0 ak
w 0 —58.67 —101.17 —117.34  akh/12
1) 218.51 159.84 (58.67) —do—
M 0 218.51 378.35 437.02  akh?/(12)
Y’ 256.34 443.90 512.69  10akh3/(12)2EI
y —956.59 700.25 (—256.35) —do-
Ya 0 —956.59 1656.84 1913.19  10akh*/(12)2EI
Ydx 0 —2.563 —4.444 —5.126 a
L Effect of P
M 0 -5.0 —8.67 -10.0 aP
Y” —58.67 —-101.17 —117.34  aPh/12EI
y 218.51 159.84 58.67 —do-
Va 0 218.51 378.35 43702  aPh?/12EI
Ydk 0 7.563 13.905 15.126 a
Y =Ydk + YdP 5.00 8.66 10.00 a

At buckling:

15.126a = 437.02a Ph?/12E1

Therefore, P, = 14.952E1/L?

It should be noted that the solution has converged in one iteration because the
trial displacement function happens to be the exact one.

Example 5.4. Arigid frame shown in Fig. 5.12 is composed of two identical members
BA and BC each having uniform taper. They are rigidly connected at joint B and are
hinged to rigid supports at A and C. The moment of inertia / vary from 41, at the rigid
joint to I at the hinged supports. The horizontal member BC carries a concentrated
load W at the mid-span and the vertical member is subjected to an axial thrust P of
magnitude 15EIy/L?. Estimate the lateral deflections in the strut and draw bending
moment diagram.

For analysis the horizontal member A B is treated as simply supported beam with
moment My at the point B. The vertical member reduces to a hinged-hinged strut with
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Fig. 5.12a—c. Buckling of frame with tapered members. a Frame with variable section, b free
body diagrams ¢ isolated beam-column

moment My at the top end and carries an axial thrust P as shown in Fig. 5.12b. It is
required to estimate the deflected position of the member A B under joint action of M
and P. The deflection in the member A B due to M, before P is applied provides the
initial eccentricity to the load P. Since the two members are identical in all respects
(including boundary conditions), hence the deflections in two due to M, are same.
The calculations for displacement due to moment My are given in Table 5.5.

Table 5.5. Calculations of deformation due to end moment My

NodeNo.  0(B) 1 2 3 4(C)  Multiplier
I 4.00 325 2.50 1.75 1.0 I

M 1.0 0.75 0.50 0.25 0.0 My
y'=M/EI 02500 0.2308 0.2000 0.1429 0.0000 Mo/El

Y 1.4674 2.7580 23737 1.6290 . Moh/(12EIp)
y —5.130 (—3.6626)" —0.9046 14691 - 3.0981 —do—

a 0.0000 3.6626 ~4.5672 —3.0081 0.0000 Moh?/(12E1y)

Ely  ~T12EL

M
2°h 5.130 Mok

Vg = (=3.6626 — 1.4674) . _
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The stiffness;

Mo 12El, 9.357El,
K =K = — = =
B A T 5.130n L

Influence coefficient at node 2 for fixed-end-moment Mp

=-22 = _0.8903h.

VB

The fixed end moment due to load W alone, Mpc = —W(—0.8903h) = 0.2226WL.
The moment in the members BA and BC is 0.445WL each at the node B.

In the second part of analysis the effect of axial compression is taken into account.
The initial eccentricity due to My (produced by load W) before P is applied is taken
from the first part of analysis. For a good trial approximation for the additional
deflection due to P, the knowledge of the first critical load for the member BA under
compression will be helpful. The value of first critical load may either be computed
or assumed on the basis of average moment of inertia. For the present problem P ;
may be assumed to be

2E(Iy +41y)/2 El
_ TE(y +410)/2 —24.67 ( LZO)

PC,] - L2

The first trial approximation for y, may be taken as

P —1
ya=( ;‘ —1) % =155y

The computation of additional displacement on account of axial thrust is given in
Table 5.6.

Table 5.6. Calculation of additional deflection due to axial thrust

NodeNo. 0 1 2 3 4 Multiplier

Ir 4.00 3.25 2.50 1.75 1.00 Iy

Yi 0.000 —3.663 —4.567 -3.098 0.00 Moh?/(12EIp)
ya for first  0.000 —5.678 —7.079 —4.802 0.00 (ya,1 = 1.55y1)

iteration

Final Iteration

Ya 0.000 —5.458 —~8.320 —6.505 Moh?/(12EIy)
y=7Y+ya 0000 -9.121 —12.887 —9.603 —do-

y" = Py/EI 0.000 2.806 5.155 5.487 0.0 MyPh?/12(EL)?
Y 5.840 33.215 59.843 60.029 - Mo Ph3/12(Ely)?
y (—69.84)* —36.625 23218 83.247 —do-

¥4 0.000 —69.840 —106.465 —83.247 0.0 MoPh*/(12EL)?
ya 0.000 —5.456 —8.318 —6.504 00 MyPh?/(12EL)?

(Ph%/12ET = 0.078125)
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Moh Moh
= —5.943
12E1, 12EI,

Fga = [—5.456 — (5.840/12)]

Hence the total slope at B due to My and P is given by

_ Myh Myh
a = [—5.943 — 5.130 = —11.073
Yoa =1 Y2El 12E1,
Stiffness of member BA:
M El
kps = — = 43352
YBA L

It should be noted that stiffness of the member BA reduces considerably due to the
presence of axial thrust. However, the stiffness of the member BC remains unchanged
as computed previously in the first part of analysis. The moment distribution factors
at the joint B are:

Dpc = (9.357)/(9.357 4+ 4.335) = 0.6834

and
Dpa = (4.335)/(9.357 4+ 4.335) = 0.3166

From moment distribution

Mps = 0.2226 WL(0.3166) = 0.0705 WL

Example 5.5. A section of a vertical wall A B constructed monolithic with a horizontal
slab BC is shown in Fig. 5.13. The unit lengths of wall and slab have moments of
inertia I and Iy, respectively, in transverse bending. The structure is idealized as
being simply supported on continuous knife edges at B and C that can be assumed
as acting at centre line of member. A continuous vertical knife edge load p per unit
length (assumed concentrated) is applied at the centre of top of the wall. In addition
to the axial thrust P, the wall is subjected to a horizontal shear force Q as shown in
Fig. 5.13b.

The member AB is presumed to be an elastically restrained beam-column. The
governing differential equation is

y//// + k2y// — 0

which has solution y(x) = A sinax + Bcosax 4+ Cx + D with following boundary
conditions.

y(0)=y"(L) =0 and k' (0) = (EDY"(0)
In addition at the top end of the member AB i.e. at x = L, the end shear condition is:

0+ Py +(EDYy"=0.



198 5 Stability Analysis of Beam-Columns

p and q are per unit length

(2)

es]
i
@]

(b) ©
Fig. 5.13a—c. Wall-column monolithic with horizontal slab. a Structure, b idealized supports,

¢ idealized wall-column

Substitution of the general solution in each of these boundary conditions yields the
following set of simultaneous equations.

0)A +1.0B +OC +1.0D=0
(@A  +@)B  +WC +©OD =0
(sinaL)A + (cosaL)B + (0)C + (0D =0
®A + (0)B +(1.0C+OD =-9Q/P

where y = k;/EI. The spring constant due to bending of horizontal member k, =
3EI/L,. The moment My at the rigid joint B is of special interest

Mg = M(0) = (EDy"(0) = —Ela*(B) = — P(B)
The constants can be computed as
C=-Q/P, D=-B, A= (—cotal)B

and thus

B o y sinaL
o P ) | a(ycosal —asinaL)



5.5 Strut with Initial Eccentricity 199

Thus the moment at the rigid joint is given by

Me = QoL sinaL
B= oL cosaL — (¢L/yL)sinaL

Mp _[ (sinaL)/aL ]

—Q_L - cosaL — (¢L/yL)sinaL

L Pana yp=3(0/k

aL=m 2 and yL = (I/L)‘

As a typical consider I; /L = I/L and thus yL = 3. For P/ P, = 0, the problem re-
duces to one of pure bending with Mg = QL. At P/P. = 0.1, Mp = 3.14 QL, which
corresponds to an increase in moment over that at zero axial thrust of 214 per cent.
From this example it is clear that axial force can have a profound effect upon maxi-

mum moment at the base of the column. At P/ P, = 1.0, the axial load multiplying
factor becomes infinitely large.

where

5.5 Strut with Initial Eccentricity

In the discussions so far the column has been assumed to be perfectly straight and
the axial thrust is assumed to pass through the centroidal axis. However, in practice
both the lack of straightness (i.e. imperfection of shape) and small eccentricity of
load may be present in the structure. This type of problems can be easily handled
by classical and numerical techniques. The numerical procedure is a powerful tool
to estimate deflection. Irrespective of value of initial eccentricity y; and value of end
thrust, the numerical procedure converges to a set of values y. which along with y;
will give the final equilibrium position of the structure.

For illustration consider the behaviour of hinged-hinged strut with initial eccen-
tricity y; measured from the position of thrust line as shown in Fig. 5.14a. Let the
displacement of final deflected shape measured from the straight configuration is
represented by y(x). As in case of displacement functions, the initial eccentricity y;
can also be expressed in the form of a polynomial or trignometrical series. In the
present case consider a trignometrical series

o0

. hmx
Y= ansin— (5.45)

n=1

Thus the internal resisting moment is

(5.46)

20y — v
M:_El[d (& yt):l

dx?
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y; = initial eccentricity

(a)

¥.= additional deflection due to P

()

Fig. 5.14a,b. Strut with initial eccentricity. a Initial eccentricity y; at P = 0, b equilibrium
configuration after application of P

which is balanced by external disturbing moment, i.e., Py = M. Therefore,

EI (:3) + Py=EI (%) (5.47)
Substituting for y; from (5.45).
d? 2 nix
EI (dxz) 4+ Py=—EI nZ}a,, (T) sin (5.482)
Y +aly = —ian (fo) sm% (5.48b)
n=1

where o> = P/EI.
The general solution to the governing equation is

y(x) = Asinax + Bcosax + yp

Let the particular solution yp is given by

yp = Z Y, sin @ (5.49)

Substituting yp from (5.49) in (5.48b)

00 00
nw 2 nmwx nm\2 , nnx
—nE_l Yn (—L—) sn— +a E Y sin — L - E an, (—Z—) SIHT

n=1
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Consider the n'h term

an an

Y, = = 5.50
"= T @Lnm? = (B/PY /] 30
where P, = —”z# The total deflection can thus be written as
. a . nmx
= Asinax + Bcosax + sin — (5.51)
Y 2 [[1 - (P/Pe><1/n2>]] L
From the boundary conditions
y0) =0, gives B=0 and y(L)=0, yields A=0
Thus,
an . nix
= —_ 5.52
() Z:[[1 _ (P/Pe)(l/nz)]]sm( L ) (5-52)

Considering a single term representation for elastic deflected curve, the mid-point
deflection of the strut is given by

p!
WL/2)=a [1 — —] (5.53)
Pe
As the thrust P approaches P. the mid-span deflection tends to infinity. Sometimes
this is known as imperfection approach to determination of critical load. According
to this approach, the critical load of perfect column is defined as the load at which
imperfect column develops an infinite displacement. It should be noted that the
problem of an initially bent strut is not an eigenvalue problem since for every load
there is a definite displacement.

5.6 Interaction Equation

In general the beam-columns are subjected to two basically different kinds of loading:
axial thrust and bending moment. An expression relating these two, called interaction
equation, gives areasonable prediction of structural strength. It has been noticed in the
preceding sections that the axial thrust significantly increases the primary moments,
i.e. those which result from lateral loads and applied end moments etc. If limited
allowable normal stress is the design criterion, the limited stress can be related to
the axial thrust and bending moment by the equation.
P My

Omax = Oall = A + 7 (5.54)
where A and Z are area and section modulus of the cross-section of the member,
respectively. Since P is constant along the member, the stress depends on the location
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and magnitude of maximum bending moment. It is to be recognized that at a cut
section of the member, the axial thrust acts through the centroid, and the bending
moment is about an axis which passes through that point.

In case the allowable normal stress is the yield stress in the material, then

P My P M@
Atz T " ety T

1.0 (5.55)

where Py = Aoy, the maximum yield value of the yield thrust when bending moment
is zero; and My = Zay, the initial yield value of the bending moment when axial
thrust is zero.

Consider the case of a strut subjected to the equal and opposite compressive loads
applied at eccentricities e and Be at the ends, A and B, respectively. The deflection
curve for this case is from (5.21).

_ sinax X sina(L — x) _ L—x
Yo = e[ﬁ(sinaL L) T SneL ( L )] (5:36)

The moment at a section is

2

o
sinaeL

M=—-EIy' = Ele( ) [B(sinax) + sina(L — x)] (5.57)

The maximum moment occurs at the section where IM/dx = 0, i.e.

Bcosax —cosa(L —x) =0
cosa(L — x)

or = ——— (5.58a)
COS ax

Alternatively,
. P
sinaL (sm Ty E)

corax B—cosal (B —cosn/P/P;) ¢ )

However, it must be understood that for a given value of B, if (5.58a) or (5.58b)
predicts a location of maximum moment that is off the end of the member (0 > x >
L), the maximum value occurs at the end.

As an illustration consider the case where 8 = +1.0, i.e. the strut is subjected
to a compressive load applied at a eccentricity e at each end resulting in a single-
curvature type primary bending moment. The maximum bending moment occurs at
the mid-span (x = L/2) and its value is obtained from (5.57) as

Y (Ela®)e sin alL + sin aL Pe 2 sin aL
= 1. — —_— = 1 —_—
max sinaL 2 2 sinaL 2

_ Pe2sin@L/2)] ~
= Zsin(@L/2) cos@Ly2) _ e sec@h/Al = Mo(@) (5.59)
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From (5.55)

P Pesec(eL/2) P ec
P, T TAr/oe, B, 1+ 2 seclel/ )]

[as My = Z.oy = (I/c)oy = (Ar2/c)ay]

P
or == % = % (5.60)

A ec alL L /P

[1+,zSCC 2] [1+f—§sec(—2—7;‘/ﬁ
where r is the radius of gyration of the cross-section about the centroidal axis, and
c is the distance from the centroid to the extreme fibre of the cross-section. The

relation given by (5.60) is usually termed as secant formula. As mentioned earlier,
the amplification or magnification factor { can be conservatively approximated as

¢ 1
approx. = —P
(1-%)

It is to be recognized that the interaction relation given by (5.55) presumes initial
yielding of extreme fibre. However, in practice the allowable values concept is more
commonly used. Defining the desired allowable values as

(5.61)

P, =C,P, = Cp(Ac,) and M, = CoM, = Cy(Zoy) (5.62)

where C,, and Cy, are prescribed factors to provide sufficient margin of safety against
yielding, the modified interaction equation reduces to

P My _

1.0 5.63
P, + M, (5.63)

Alternatively in terms of allowable stresses (5.63) can be expressed as

fa fb(f) _
Fa+ F

1.0 (5.64)

where f, and f;, are actual compressive stress (P/A) and bending stress (M/Z),
respectively, and F, and F, are corresponding allowable stresses when each one is
acting independently.

It should be noted that the term («L) appears in all of the beam-column problems.
This term can conveniently be expressed in a meaningful non-dimensional form

[P \/?
ol =L,/ —=n_[|—
El P.
P_(P\(R\_(P\[_Aw 1_(P\[_@m’
7=(2)3) =G el - (7)) o

and
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where the ratio (L/r) is referred to as slenderness ratio. For smaller values of L/r
the axial yield value governs. For larger values, the buckling occurs. For the known
bending and axial forces the suitable cross-section for the beam-column can be
determined by trial and modification.

Example 5.6. A wide flange rolled steel section (SC series) of length 3.75m is to be
selected to support an axial compressive force of 525kN and a single-end bending
moment (8 = 0) of 5.0kNm. Assume the effective length coefficient K = 0.8.
The material has yield strength and modulus of elasticity of 250 MPa and 200 GPa,
respectively. It is specified that the allowable axial stress (in absence of bending)
should be (0.55 fy), and the allowable stress in bending (in absence of axial force)
should be 0.66 fy, i.e.,

P, = CpAf, = (0.55)(250)A
M, = CyZf, = (0.66)(250)Z

From the interaction equation

1.0

Pa Ma

P M© _

where amplification factor ¢ depends upon P/ P, ,

P P
P.a.  0.55[72(200000)1/(0.8 x 3750)2]
_ (525 x 10%) 432205
"~ 0.55[72(200000)1/(0.8 x 3750)2] ~— [

The suitable section can be determined by trial and modification. Various trials are
listed in Table 5.7. The terms in the last column of table are the sum of the two terms
of the left-hand side of the interaction equation. The section whose value is closest
to 1.0 (but slightly less) will be the most desirable section. For this example the most
appropriate section in SC 150.

Table 5.7. Interaction values for the trial sections

Section A I Z, P/P., ¢ Mo(2)/ M, P/ P, M+ ®

(¢Y] @) 3) 4 ) (6) @) 8 )]
x10* x10°

SC140 4240 1470 211 0.296 1.421 0.204 0.901 1.105

SC150 4740 1970 259 0.221 1.284 0.152 0.805 0.955

SC160 5340 2420 303 0.180 1.219 0.122 0.715 0.837
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Example 5.7. A structural aluminium round tube of 125 mm external diameter and
8 mm thickness is subjected to an eccentrically applied compressive axial load of
SkN. At one end of the member the eccentricity is e while at the other end it is zero
(i.e., B = 0). The yield strength of the material is 25 N/mm?. Determine the limiting
value of eccentricity that can be accepted over a length of 2.4 m with a load factor of
safety of 1.9 against attainment of yield strength. Take E = 6.0 kN/mm?.

For the given section:

Area of cross-section, A = 2940.53 mm? .
Second moment of area, I = 5055.14 x 10> mm*
Section modulus, Z = 80.88 x 10° mm®
Radius of gyration, r =41.46 mm

Distance of extreme fibre, ¢ = 62.50mm

The form of interaction equation involving eccentricity is given by (5.60).

AIC R ERE e
(3 (2)=(342)

To ensure the stipulated load factor of safety, the applied load of 5 kN will be increased
to 9.5 kN and the analysis is carried out at that prorated value.

1 P 1 P
—/—1=0. — — ) = 1.
(2r EA ) 0.00028 and cos (2r FA ) 0

Py 25 x 2940.53

Therefore,

P osxip 738
Thus,
(41.46)2
= (7. -1 )= . .
e=(7738-1) [ 3 (1) = 185.32mm

5.7 Problems

Problem 5.1. A beam-column is subjected to two loads of equal magnitude W acting
at distance d from either support as shown in Fig. P.5.1. Determine the equation of
the elastic curve and the end rotations.
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w

P — 3t ——p

2
L 7
[

P51

[Ans.

y(X s€C — COoS OlL -~ — = sinax ax () < < d
a / , ¥

w L 1 d
04 =05 =y (0) = (—F) seca?cosaL (5 - 5) -1 ]

Problem 5.2. A simply supported beam with an over-hang is subjected to an axial
compressive force P, and a lateral load W at its free end as shown in the Fig. P.5.2.
Determine the equation of the elastic curve and rotations at the support.

I

p —— i e
_ _ J
!

P

2L/3

P.5.2

Problem 5.3. A cantilever beam of length L, bending stiffness EI, and cross-
sectional area A is subjected to a lateral loadW at the free-end. In addition it carries
(1) an axial thrust, and (ii) an axial tensile force. Derive the equations of elastic curve.
If ymax is the deflection at the free end of the cantilever, plot the variation of yy.y as
a function of P/W.

Problem 5.4. A simply supported beam of length L and bending stiffness E[ is
subjected to an axial thrust P, and a concentrated load W at the mid-span as
shown in Fig. P.5.4. Obtain approximations for the elastic curve using the series
y(x) =Y a,cos(nrx/L),n =0,1,2,... (origin at mid-span) with the principle of
minimum potential energy.
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L2

P54

Problem 5.5. A simply supported beam of length L, bending stiffness E1 is subjected
to an axial thrust P, and two end moments My and SM, at the left and right supports,
respectively, as shown in Fig. P.5.5. Using the series y(x) = ) a,sin(nmx/L),
n = 1,2,3,... obtain approximations for the elastic curve based on principle of
minimum potential energy.

y
Mo . BMy
P P
EI ; ;
L
= =1
P.5.5

Problem 5.6. A simply supported beam of length L, bending stiffness E/ is subjected
to an axial thrust P, and a uniformly varying distributed load w, = wq(x/L) as shown
in Fig. P.5.6. Derive the expressions for elastic curve, maximum deflection and end
slopes.

Problem 5.7. Estimate the first critical value of the axial thrust in the cantilever of
constant cross-section with elastic supports as shown in Fig. P.5.7.
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y

wx = Wo(x/L)

Wo
[
P P
EI
L
P.5.6
/
EI
——— p
/, (ko =3EIL?)
12k¢ 6ko ko
\ L3 \ L3 \ L3
— - - =
P5.7

Problem 5.8. Estimate the first critical value of end thrust P in a fixed-hinged strut

of constant cross-section supported by an elastic medium of constant stiffness, k =
a*EI/3L* as shown in Fig. P.5.8.

[Hint: The problem is first degree redundant with critical negative modulus value of
—237.8EI/L*].

/
El ,
7 7 /4 /4 /& &k
\—k=1t4EI/3L4 !
L L
|

A

P.5.8
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Problem 5.9. Calculate the first critical negative value of k for the beam of constant
cross-section supported on a continuous elastic medium with end conditions as:
(i) fixed-free, and (ii) fixed-fixed.

[Ans. (i) k; = —123.6 EI/L*, and (ii) k; = —500.5 EI/L*].

Problem 5.10. Estimate the first critical value of the axial load P acting on a can-
tilever of constant stiffness EI which is supported on an elastic medium whose
modulus varies linearly from O at the free-end to a maximum of 170 EI/L* at the
fixed end as shown in Fig. P.5.10. Use (i) Energy method, and (ii) Numerical integra-
tion for solution.

[Ans. 6.0 EI/L?].

kx = (170EV/LY)[1 - (x/L)]
P.5.10

Problem 5.11. In the cross-section of part of idealized structure shown in Fig. P.5.11,
the wall 0-1 is built monolithic with the horizontal slab of thickness d with moment
of inertia of /. The thickness of wall is reduced uniformly from d at the junction with
the horizontal slab to d/2 at the top with outside face being vertical. The structure is
idealized as simply supported on the continuous knife edges at 0 and 2 and assumed
to be acting at the centre line of the members. A continuous vertical knife edge load
of value w = Ely/2L? per unit length is applied at the centre of the top of the
wall. Estimate the transverse deflections in the wall and draw the bending moment
diagram.

[Hint: This is a case with initial eccentricity which vary from 0 at the top of the wall
to d/4 at the base. The first critical value of w1 = 1.19 EIo/2L2 and y; = 2.28a]

Problem 5.12. A rigid frame shown in Fig. P.5.12 consists of two identical members
0-1 and 1-2, each having same uniform taper. The moment of inertia varies from I, at
the hinged-end to 51/ at the rigid-joint 1. Estimate the first critical value of the axial
thrust P.
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w = EI/(2L2)

1= (1,/8)

P5.11

[Hint: Treat the tapered horizontal member 1-2 as simply supported with a moment
My acting at the joint 1].

Problem 5.13. A SC200 rolled steel beam-column of length 9 m, pin-connected at
the ends is laterally supported against weaker direction of bending. In addition to an
axial compressive force P applied through the centroid of the section at the ends, the
member is subjected to an end-moment My at one end of the member. Determine
the value of My for P = S0kN. Assume E = 200kN/mm?, f, = 250 N/mm? and
desired factor of safety of 1.05.

Problem 5.14. Design a beam-column member of length 3.75 m subjected to an axial
force of 800kN, and end moments M, = 2.5kNm and My, = 2.5kNm. Assume
effective length coefficient K = 0.7 and F, = 250 N/mm?.

[Ans. SC200 section is adequate].

Problem 5.15. A column of length 3.5 m in a multistorey non-sway building frame
is subjected to an axial force of 725kN and a major axis moment M, of 80kNm
at both the ends. At the top and bottom joints of the column ) k. and ) k; values
are 6, 20 and 6, 18, respectively. If the section HB300 is readily available, check its
adequacy for the present situation.
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P5.16
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Problem 5.16. A vertical cantilever column of constant cross-section is strengthened
by a horizontal beam at its mid-point as shown in the Fig. P.5.16. Estimate the first
critical value of axial compression in the column for buckling of the column in the
plane perpendicular to the one containing column and the beam, when the horizontal
beam is (i) simply supported, and (ii) fixed at the ends.

[Hint: The beam will act as an elastic support of stiffness k at the mid-point of the
column. k is equal to (i) 48 EI/L? and (ii) 192 EI/L3.]
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Stability Analysis of Frames

6.1 Introduction

In the previous chapters the stability of column, and beam-column was examined
by treating them as independent or isolated members with appropriate boundary
conditions. The simple frames have been treated as struts or beam-columns with
elastically restrained ends wherein the effect of the connecting members has been
modelled by end springs. However, in practice the columns, beams, and beam-
columns are normally rigidly joined together to make skeletal structure called a frame
in which the total structure is called upon to withstand the applied loads. In these
rigid-jointed frames, the end conditions of a member and hence its effective length
depends upon the relative stiffness of the members meeting at the ends and that of
member itself. Moreover, in a frame the deflection even in a single member due to
buckling causes distortion in all the members. Thus, the response of the frame needs
be examined in its totality wherein actual buckling of total frame is considered. In
this chapter the stability analysis of the frames using classical differential equation
method, semi-geometrical method, matrix method and modified moment distribution
method etc. has been described.

6.2 Classical Approach

In this section classical differential equation method has been used to obtain char-
acteristic or stability equations for continuous columns, beam-columns, and frames.
The solution to these equations yields the critical loads.

6.2.1 Continuous Columns and Beam-Columns

Continuous columns and beam-columns are the simplest forms of a rigid-jointed
frame. For illustration consider two-span continuous column A BC shown in Fig. 6.1
which is statically indeterminate to the first degree. The bending moment at the
M. L. Gambbhir, Stability Analysis and Design of Structures
© Springer-Verlag Berlin Heidelberg 2004
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y

(b)

Fig. 6.1a,b. Two-span continuous beam-column, with both spans loaded. a Structure and its
buckling mode, b both spans considered simply supported

rigid intermediate support is taken to be the redundant action. The sagging moment
producing compression on the top is considered positive and the angle of rotation in
the direction of positive moment is taken to be positive. The axial thrust and flexural
rigidity remain constant within each span but are allowed to vary from span to span.

The continuity or compatibility condition to be satisfied by the moment M at the
interior support B is

05 =6, or 05—6,=0 (6.1)

where 6 and 67 are the angles of rotation at the support B obtained by treating each
of the spans AB and BC to be simply supported beam-column with an end-moment
as shown in Fig. 6.1b. The expressions for 8z and 6} are given by (5.18).

_ ML,
Op = (ﬁ) o)

where

Similarly
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where

Substituting in (6.1)

(e ) [ro+ (2) (2 0] -

Since (ML,/(3EI)) # 0 the characteristic equation obtained is
L L
oY1) + ( ) ( 2) o(¥2) =0 62)

Let P, = A P; where A is a known constant. Then

172
e s v=(2) (1)

Using these substitutions in (6.2), the characteristic equation reduces to

I L
o(¥1) + (1—1) (L_2> o(r¥1) =0 (6.3)
2 1

The roots of this equation provide the critical loads for buckling by flexure of the
two-span continuous beam-columns. As a typical case consider L, = L; = L,
12=11=IandP2=P1=Pi.e.A:1.

In this case the member will buckle as shown in Fig. 6.1a and the bending
moment at the middle support will be zero and each of the spans can be treated as
hinged-hinged strut. Therefore,

n’EIl
L2
As a variation consider the case of a typical continuous beam with unequal spans of

Li=@2/3)L,=L, L=I=1 and A=1.

= (s r=()

The Eqgs. (6.3) and (5.18) give
o+ (3)0(F) =0
3 1 1 3 3 1 1
[ﬁ (Zp’ B m) i (5) (ﬁ) (ﬁ B m)] -
1 1 1 1
[(ﬁ N tanzw) * (@ B tansw)] =0

Py =

Therefore,
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Using trial and modification procedure the smallest root obtained is 2y = 2.427.
Therefore, 2y = oL = 2.427 or

Po— (5 89)E1 _ 72El
CTTTILY T (1.294L)2

In another case consider the same two-span member with P> = 0 i.e. only the
span A B is subjected to the axial force P;. The rotations at the interior support B in

this case are:
ML] MLZ
O0p = —— d 6,=—
B (3Eh><p(¢1) and Oy (3E12)

Substituting these expressions in (6.1),

)l ()]

Since M # 0, the characteristic equation becomes

L\ (L2 _
(Y1) + (1—2> (L—1> =0 (6.4)

Substituting (5.18) in (6.4)

1 (L) (L) (L 2_
2 cot 29y = 1+ (3) (12) (Ll)(zwl) =0 6.5)

The solution of (6.5) provides the critical load.
As a typical case consider L1 = 2L,/3 = L, and I; = I} = I. Equation (6.5)
reduces to

241 cot 2y = 1 + (1/2)(2y1)* (6.6)

Using trial and modification procedure the smallest root of (6.6) is given by

P
29, = a1l =3.5909 where o) = |——
ElL

_ mEl
~ (0.875L)?2

Therefore,
El
P, = (12.895) 7

It should be noted that the adjoining uncompressed member restrains the collapse of
loaded span.

The procedure can be extended to a continuous beam-column having any num-
ber of spans. Consider a n-span continuous beam-column supported on n + 1 rigid
supports 1,2,3,...,n + 1 with spans of length L, Ly, L3, ..., L, and flexural
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i-1 i I i PH—I

2 & &7

(i-1) Lig L; @i+1)

Fig. 6.2. Two consecutive spans of a continuous beam-column

rigidities of EI,, EL,, ELs, ... , El,, respectively. The moments at the supports are
denoted by My, M), M3, ..., M,;1. Consider two consecutive spans between sup-
portsi — 1, i and i 4+ 1 as shown in Fig. 6.2. The continuity or compatibility condition
at the intermediate support i requires the deflection curves of two spans to have the
same tangent i.e. 6; = 6;, where

= b+ (ML) ) + (ST g g
i 0i 6EI,' ) 2\¥i-1 3E1i ) P1(V¥i-1

, ’ ML t+l i
and 0,-:—00,-—(3E1> 1(10;)—( 6L )fpz(llfz)

Here, 6p; and 6); represent the rotations at the intermediate support i in the two
adjacent spans due to lateral loads. The continuity condition 6; = 6/, gives

2M; L) (1) gy,
t 1¢2(¢t l) + (01(1//; 1) + <L1—1> ("Il_/ (01(1lfz)

L; I_
+ M [('L—_l) (Tl> <P2(1/’i)]

6El;_ ,
= ( . 1) (B0i + 6;) (6.7)
i—1

Equation (6.7) is the general form of the three-moment equation at the interior sup-
port i. The moment quantities are positive when they cause compression at the top
fibres of the beam-column. In applying the three-moment equation to a particular
beam-column, the interior supports, such as 2, 3, 4, etc. are located successively and
as many equations as the unknown redundant support moments are written. A si-
multaneous solution of the equations for the unknown moments yields the required
result. The application of the method is illustrated in the following examples.

Example 6.1. A two-span continuous beam-column A BC of constant cross-section
shown in Fig. 6.3 supports a uniformly distributed load of intensity w over the
span BC. Estimate the moment at the support B, if the member is subjected to an
axial thrust of magnitude 4EI/L?.

For this problem M;_; = M;;; = 0 and M; = M. The quantities pertaining to
the spans AB and BC are represented by the subscripts 1 and 2, respectively. Thus
for the span AB,
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w/unit length

A c
P B \ Y ) P(=4EI/12)
[

L 1.5L

Fig. 6.3. Two-span continuous beam-column

oL 1w [P a[ @EI/LY)
272 Ezi[(ﬂEl/U)] =10
3 1 1
= (53,) |27 ~ | =195

Similarly for the span BC

6op =0 and Y =

[ @Eyry 1"
v2=7 [[anI/(l.SL)Z]] =13

, [w@5L)*[3(tanyy — )| _ [w(1.5L) B wL3
OB_[ 5B ][ . ]_[ SAE] ](11.201)_1.5751[71—]

3 1 1
1{, — I —_— p— 7 4
v1(42) (21//2) |:21//2 tan2t/fz] 3486

Substituting these values in (6.7)

L5LN (1 6EI (1.5751wL?
2M [(1.4365) + (T) (7) (7.3486)] == (__ET_)

Therefore, M = (0.3793)wL?
The value of support moment in the absence of axial thrust is 0.1125wL2. Thus
the support moment increases by 237.16 per cent due to the presence of axial force.

Example 6.2. A two-span continuous beam-column is clamped at the end C and
carries an axial thrust P as shown in Fig. 6.4. Determine P, the first critical value
of P that will cause the beam-column to buckle.

In this case there are two redundant moments Mp and M¢ which require the
application of three moment’s equation at B and C.

o oo+ () () o] [ (5) ()]

6E1
= _L_ll (903 + %B)

6EI,
Mgy (¥n) + 2Mcp1(¥2) = — (L—z) foc
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Fig. 6.4. Two-span continuous beam-column with clamped end

In the matrix form these equation can be expressed as

L
e G Eonl] 1) E ol
{oe]
©2(¥2) 201(¥2)

(903 + 92)3)
_ 1 (6.8)

6EL

At critical load the redundant moments approach infinity i.e. the determinant of
matrix of coefficients on left hand side of (6.8) must vanish. Therefore,

2 [‘”1("") * [(%) (%) q)l(%)” [(%) (%> ‘02('/’2)} =0 (69

©2(¥2) 2¢01(¥)

The expansion of determinant gives the characteristic equation. It should be noted
that the critical load is independent of lateral load acting on the beam-column. As
a typical case consider

Ly=2L/3=L; L =L=1 and Pi=P,=P

Therefore,

L I 2 P
(E)E-r5 n2es o

The characteristic equation obtained by the expansion of determinant is:

4or1(¥) + 1.501(1.5%)] 1 (1.5¢) — 1.5[p2(1.5¢)]* = 0

Substituting (5.18) and by trial and modification the smallest root of the characteristic
equation is 2y = 5.499. Therefore,

29 = aL = 5.499
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Hence, EI 7lEl
Py= (54992 = ——
or = ( ) L2 7 (0.571L)2

6.2.2 Rigid-Frames

The buckling of a rigid-jointed frame implies the buckling of its compression mem-
bers. In simple cases, the beam-column members with end moments can be easily
isolated. The results for the beam-column derived in Chap. 5 can be readily applied
to determine the critical load at the buckling for this isolated framed member. For il-
lustration consider the rigid frame A BC D shown in Fig. 6.5a. The free-body diagram
of the isolated member AB is shown in Fig. 6.5b. This member can be treated as
a beam-column subjected to an end moment My and axial thrust P at an eccentricity
e as shown in Fig. 6.5b. Using results derived earlier in (5.17), the rotation 6 at the
joint B is given by (6.9).

M,
0 = %(aL cosecal — 1) + P—Lo(aL cotaL — 1) (6.10)
For the beam element BC
2EL
My = =g, 6.11)
Ly

Eliminating M, from (6.10) and (6.11)

_ (e/L)(aL cosecalL — 1)
" (1/PLYQEIL/L))(1 —aLcotaL) + 1

6o (6.12)

Pe+M,

Mc=Mg=Mo

(@) ®)

Fig. 6.5a,b. Rigid frame subjected to end moments and axial thrust. a Frame, b isolated
beam-column
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At the buckling of the frame rotation becomes very large i. e. it tends to infinity. This
occurs when the denominator of (6.12) vanishes, that is

oot = () [(2) ()]
-tus[(£) ()

alLcotal =1+ ~ (aL)2 [(11> (LL‘)] (6.13)

For a typical case where I/L = I; /L3, (6.13) reduces to

Thus

tal = — 4 2L (6.14)

cotol = — + — .
ol 2

By trial and modification, the lowest root of transcendental equation is given by

oL = 3.59. Therefore,

m2El

Pe = (3.59)? —
= )L2 (0.875L)2

In another variation of the above problem consider the symmetric closed frame shown
in Fig. 6.6 wherein lateral joint movement is prevented. When the axial thrust attains
the critical value, the columns AB and CD tend to deflect laterally as shown in the
figure, resulting in bending of the beams AC and BD which in turn apply restraining
moments at the column ends. Thus these compression members may be treated as
columns with elastic restraints. The rotation at the ends of the columns are given by
(5.20)

MglL
A = 3EI o1 (¥) + 6EI‘P2(1/f) and
MgL
B = 6EI §02('/f)+ AE o1 (¥) (6.15)

where

31 ;
¢1(1/f)—2—l/;(zl; tan2w> an

6 1 1
@) =5 (Sinw - ﬁ)

In which 2¢ = aL = n/P/P, and P, = n2EI/L?. In the present problem due to
symmetry Mp = —M4 = Mp and 6 = —0,4 = 6. For compatibility, the rotation 6,
of the column must be the same as that of horizontal member which is given by
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(@ ()

Fig. 6.6a,b. Non-sway buckling mode of closed frame. a Closed frame, b isolated beam column

MoL,

6y =
0 2EI

Substituting this value of y in any one of (6.15) e. g,

MoLi _ MoL
~3EL = GEl [201(¥) + o2(P)]

_ (ML) (6 ( 1 1
B (E—ET) (ﬁ) sin 2y - tan2:/;>
L(_ L __L\__If(L)(L
2y (Sin21// - tan2¢> ) [( L ) (11)] (6.16)

For a typical case where the members of the frame are identical i.e. L; = L and
I, = I, (6.16) reduce to:

b0 =

or

1 1 B 1 1
29 (sin21/f tan2x//) T2
or tany = —y 6.17)
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The lowest root of this transcendental equation is given by
¥ =al/2=2.02916
Therefore,

_ (4.0583)°El _ 1647EI _ m?EIl
o L2 — L2 (0.774L)2

In the preceding discussion the lateral joint displacement of the structures analysed
has been prevented. The following example will illustrate the procedure to determine
the buckling load of the frames undergoing lateral displacement or sway.

Example 6.3. The portal frame shown in Fig. 6.7 is subjected to axial load P. Deter-
mine the critical value of load P if the joints B and C are allowed to undergo lateral
movement (sway). The deflected configuration is shown in the figure.

The governing differential equation for the vertical member can be written as
d?y
EI(EZ) =P6—-—y—-M

dzy
or EI 2 +Py=Ps—M (6.18)

B C
(EI,Ly)
(ELLL) (ELL)
A D
77}7Z 7777

(@ ()

Fig. 6.7a,b. Buckling of a fixed base portal frame. a Symmetrical portal, b sway buckling
mode
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This is second-order non-homogeneous ordinary differential equation with constant
coefficients. Its solution can be expressed as

M
y = Asinax + Bcosax + (6—— F) (6.19)

where o> = (P/EI). The boundary conditions at x = O1i.e. y(0) = 0 and y'(0) = 0
give

M
B=—|6d—-— and A=0
P
Thus the elastic curve is given by

M
y= [6 — F:l (1 — cos ax) (6.20)
The unknown & and M can be evaluated by the additional boundary conditions at
x=1L
ML,

L=5 d /Lz————
y(L) and y'(L) 6E1,

These conditions lead to

M
dcosal + F(l —cosal)=0

6EL

For non-trivial solution, the determinant of coefficients of § and M/ P must vanish.
That is

. M ) L,P
and dasinal — 7 asinal + =0 (6.21)

cosaL (1 —cosal)
. . L,P\|=0
asinel. —\{asingl + ——
6EL

tanaL_ 1 1 L,
o S =al()(7) 2

For the given geometry, the transcendental equation can be solved for the critical load
at buckling. For the typical case where (L;/1;)/(L/I) = 1.0, (6.22) reduces to

tanaLl 1

al. 6
By trial and modification the smallest root obtained is L = '5.53783 and the first
critical load is given by:

_ (5.53783)El  30.668EI _ m’EIl
o L? T L2 (0.5673L)?

The following example will illustrate the application of the method to a hinged base
portal frame.
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Example 6.4. A symmetrical portal frame hinged at the base is subjected to an axial
thrust P as shown in Fig. 6.8a. Determine the critical value of load P at the buckling
of the frame.

In view of the symmetry of the structure and loading, the frame has been analysed
for both the symmetric and antisymmetric buckling modes.

(1) Symmetric mode: In this mode, the joints B and C do not move but undergo the
rotations. The rotations and hence the moments at these joints are equal in magnitude
and cause compression at the top of the beam i.e. Mg = —M = M. As the ends
A and D are hinged the support moments are zero.

Application of (6.7) to the members AB and BC yields

oo () (2o [(2) (1) ] =

L 1
Mo (Y) + [(—Ll) (71)} Roi(¥) + ()] M =0 (6.23)

Application of (6.7) to the members BC and CD results in the same (6.23) since the
structure is symmetric. Further as M # 0, for non-trivial solution (6.23) reduces to

L I
201 () + [(f) (,—1)] [201(¥1) + ¢2(¥1)] = 0 (6.24)
As there is no axial load in the member BC, ¢y = % P/P. = 0 and hence

e1(¥1) = @2(y¥1) = 1.00, and (6.24) gives

2 (2 )2 (E) ()] =0 (6.25)

2¢ \2¢  tan2y 2(\L/\n/| '
For the given geometry of frame P, can be obtained from the transcendental equation
(6.25). For the typical case where [(L1/L)(I/1})] = 1.0, 2¢y = 2.59. The critical

(a) (b) ©

Fig. 6.8a—c. Buckling of a portal frame hinged at the supports. a Symmetrical portal frame,
b symmetrical buckling mode, ¢ anti-symmetrical buckling mode
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load, P is given by

(2.539)%E1 72El
Py = 5 = 5
L (0.875L)

(ii) Antisymmetric Mode: In this mode, the joints B and C undergo lateral displace-
ment and hence the vertical members AB and CD undergo rigid body rotation 6, as
shown in Fig. 6.8c. Further, the moments at B and C are same, M. The application
of (6.7) to the members AB and BC gives

o () (1) oo () ()]

6EI
- (T) 8o (6.26)

Consider the equilibrium of vertical member AB as a free body
Mp =PLOy or 6y= (Mp/PL)

Therefore,

L 1 6E1I
M [2%(1//) + [ (f) (1—1>} 2011 — e2(y)) — (%)] ~0

For non-trivial solution

L I 6EI
200(¥) + {(TI) (1—1)} {201(¥1) — (Y1)} — (m) =0 6.27)

Here
6El 6 ((@*El/LH)\ (6 P\ 6 e 2y — P
- ()= (3) (5)-atp (= =e

As there is no axial force in the member BC i.e. ¥y = 0 and hence ¢,(¥)) =
@2(¥1) = 1.0. Equation (6.27) reduces to

v (3 may) *[(2) (7)) - =
ﬁ(ﬁ_tanw L)\ @2

cot2¢ 1T(Li\(1\]_

v al(2) ()]0 28

This transcendental equation can be used to determine the critical load at the buckling.
For a typical case when [(L;/L)(I/I;)] = 1, the lowest root of the equation is:
2y = 1.35. Therefore

_ (1L35%EI _ 1.822EI  n’El
L2 T L2 T (2327L)?

Per
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6.3 Semi-Geometrical Approach

This approach suggested by Haarman, uses the knowledge of buckled configuration
of the frame structure made up of axial loaded straight members. The method is
based on the observation that the elastic curve of an axially loaded, originally straight
member can be described by a sine curve with respect of a rectangular coordinate
system having origin at one flex point and one axis directed through the other flex
point. Application of boundary or compatibility conditions will provide the critical
value of the load that will cause the structure to buckle.

Consider the case of a fixed-hinged strut A B shown in Fig. 6.9. One flex point is
at the hinged support A and the other C is in the column at distance kL (i. e. effective
length of the strut). With point A as origin, direct the x-axis through the point C
making an infinitesimally small angle 6 with initial strut axis. x-axis makes an offset
of § at the fixed support. The y-axis is assumed to be normal to x-axis.

With the increase in value of axial load P, the strut starts deflecting and at buckling
the resultant force on the strut P, becomes inclined since the line of action P must
pass through the two flex points. For infinitesimal deformation P = P, the equation
for the elastic curve between the points A and C can be expressed as

. (TX
y(x) = Asin (k—L) (6.29)
and hence
Arm X
/ — N -
yx) = (kL ) cos (kL) (6.30)
The geometric boundary conditions are
/4 )
Ly=—-§=Asin({— ie. A=— 6.31
(L) s (k) Le sin(zr/k) (6.31)

V(L) =—6 = — (-‘SL-) - (%) cos (%) (6.32)

(%)

Substituting (6.31) into (6.32)

% == (%) cos (%) = sin(fr/k) <le) €08

\
1rh>{>
= ="
[oo]
RN\

@ (b)
Fig. 6.9a,b. Buckling load by Haarman method. a Fixed-hinge strut, b buckling mode
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By trial and modification (;r/k) = 4.4934 or k = 0.6992 = (.7. Therefore,

T2El 20.191 EI

070?12

cr

The method is equally applicable to rigid frames.

Example 6.5. In the symmetrically loaded portal frame shown in Fig. 6.10, the
columns have same area of cross-section which is different from that of beam. Deter-
mine the critical value of load P that will cause the frame to buckle. Use Haarman’s
semi geometrical method.

The frame can buckle in two different modes namely, symmetrical mode without
side sway and antisymmetrical mode with side sway.

(1) Symmetrical Mode: The symmetrical buckling configuration is shown in
Fig. 6.10a where B’ and C’ represent the flex points. The elastic curve AB’ can
be represented by

A
y(x) = Asin (Z—z) and y'(x) = (7(%) cos (Z—z) (6.33)
P P
ELL) ¥,
(ELLL) (EL L)
]
D
7777

®)

Fig. 6.10a,b. Buckling of a portal hinged at the support. a Buckling without sidesway, b buck-
ling with sidesway
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The boundary conditions are
y(L) = Asin (-’]E) =5

and Y(L)=-0—06p= A cos (Z)

kL k
where
8 A
f=—=——sin (£> and thus
L L k
A A A
Op = —60 — 2 cos (Z) = —sin (£> - cos (£> (6.34)
kL k L k kL k
For the horizontal beam with two end moments (M¢ = —Mp)
MgL .
05 = 22111 with Mg = P8
Therefore,
5 = P.6L4 _ P.LiAsin(m/k) 6.35)

2EL, 2EIL
Equating 6p from (6.34) and (6.35),

_PC,LlA sin(r /k) _ ésin (z) A (Jr) or

2EL L\%) T O \%

T T 1 (n? 1 L, . 72E]l
(7{‘) cot (7(—) =1+ E (k—z) [(Z) (1—1)] since Py = m (636)

For a typical case with I; = I and L; = L, i.e. (IL1/I;L) = 1, the characteristic

equation reduces to
(EYeot (T =145 (%) (637)

By trial and modification, (7r/k) = 3.591,i.e. k = 0.8749 and

P n?El  12.895El
7 .8749L)2 — L2

(ii) Antisymmetrical Mode: The antisymmetrical buckling configuration is shown in
Fig. 6.10b. For the beam with two end moments (M¢c = Mp)

g, — ML) _ (Pad)Lyi _ m*EI[ 8Ly
B=76ElL, ~ 6EL | (kL)*]|l6EL

()
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The equation to elastic curve is assumed to be
Asi (nx)
= Asin{—
Y kL
For the column the boundary conditions are
LT
y(L) = 8 = Asin (;)

= (4 =0 6.39
¥ )—(E)cos(;)— 5 (6.39)

Equating 65 from (6.38) and (6.39)
e (D=0 (5 [(&) = ()]
(3)=(3) (1) (12)

For the typical case I;/Ly = I/L i.e. IL;/(I;L) = 1, the characteristic equation

reduces to
w(-()@

By trial and modification, 7/k = 1.3495 i.e. k = 2.328. Therefore,

p _ _TEI _ 1821EI
T (2328L)2 L2

Example 6.6. In the closed-frame shown in Fig. 6.11, the vertical members have the
same E1 values and are subjected to equal axial loads. The EI values of horizontal
members are different from columns as shown in the figure. Determine the critical
value of load P that will cause the frame to buckle when it is restrained from
undergoing any horizontal movement.

Due to the symmetry of the structure the beam end moments are equal and
opposite i.e. Mp = —M4 and M¢c = —Mp. Therefore,

_ Pedi Ly

PudyL
0, = and 6, = —o2~1

= 42
2EI 27 2El (6.42)

where

== () ()
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P P P P
El
BY 2 'C
L EI EI
EI
A ! D
L,
I i X
A b
(@) 0, (b)
3,
- B -y _
F
\
0,

X 1

kL i

|

|

- \ e1
~(L~x;) B\
3, AT T

©)

Fig. 6.11a—c. Nonsway buckling of a closed frame. a Closed frame, b nonsway buckling mode,
¢ geometry of elastic curve

The equation of elastic curve between two flex points E and F can be expressed as

— Asi (mc>
y = Asin =3
Therefore,

y = (2—;) cos (%) (6.43)

Hence, the offsets at the level of column supports A and B are

=-A {sin (%) cos (%) — cos (%) sin (%)} (6.44)

For small deformation, 8y = (8, — &1)/L. Therefore,

vt e n(E) s (es(Z)]

kL
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The slopes of the beams at the joints A and B are
b=y —L)+6 and 6 =-y(x)) -6 (6.46)

Substituting for y’(x) and 6y from (6.43) and (6.45) into (6.46):

=210 () -1 ()] ()
+[(%) cos (%) — sin (%)}cos (_7;_;6[1)] 6.47)
o= [[1-eos (s (F) + o () - (D)) ()] 69
Substituting §; and &, from (6.44) into (6.42)
0, = —-% [% (%)2 (Ii—llf) [sin (%) cos (%) — cos (%) sin (%)}] (6.49)
0, = —% B (3]:—)2 (i—i) sin (%)} (6.50)
Eliminating 6; and 6, from (6.47) to (6.50) and for a non-trivial solution i.e.
sin (%) = cos (%) #0
Following eigen value equation is obtained.
() () @ (B[ “F2] 0 - De=))
oo 5) /)]

As a typical case consider Ly = L and I, = I, = I, the characteristic equation
reduces to

1@ 2 - Qe D]+ G /G)]=r e
By trial and modification

(%) —=4.2098 andhence k= 0.74626

Therefore,

n?El 17.722E1

P, = =
7 (0.74626L)2 L2
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6.4 Stiffness Method

The classical differential equation and semi-geometrical approaches discussed in the
preceding sections are complex and can conveniently be used only for the analysis
of simple frames. The more general basic stiffness (or displacement) approach which
considers the equilibrium of forces or moments provides an extremely powerful tool
for the stability analysis of framed structures. The stiffness formulation normally used
in matrix form yields unknown nodal displacements which are frequently referred to
as kinematic redundant. For the purpose of this section it is presumed that the reader
has the basic knowledge of matrix stiffness or displacement method.

6.4.1 Criterion for Determination of Critical Load

Consider the rigid-jointed structure shown in Fig. 6.12a. The moment M, acting on
the joint O causes the joint to rotate by an angle 6. The stiffness of the joint 0 is given
by

ko = ko1 -+ koo + ko3 (6.53)

y
A (Dy,Fy) (Ds3.F3)
—
Aa Dy, F
(D1, F) (D4.Fo) [ A,
- X
[ |
I L ]

(®)

Fig. 6.12a,b. General displacements and signs convention. a Rotation at a rigid joint, b general
displacement and forces
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Therefore,
6o = My/ko

In the above discussion it is presumed that there is no axial load present in the
members of the structure. The effect of axial compression is to reduce the stiffness of
the member. As the applied loads on the structure increase, the member forces increase
and the overall resistance of the structure to any random disturbance decreases. At the
critical load, the structure offers no resistance to the disturbance and the configuration
of the structure is not unique i.e. any displaced position may be maintained without
additional load. In the above referred rigid-jointed frame, if the loading is increased
continuously, kg decreases and 6y continues to increase till at some multiple N, of
the working load (i.e. at critical load) the frame will collapse because of elastic
instability at the joint O. At this stage the rotation 6, becomes infinite. This suggests
a criterion for elastic instability, viz, that at the critical load displacements (rotation
in this case) increase infinitely. For this condition to take place, the stiffness of the
joint must reduce to a vanishingly small value.

For a structure with several rigid-joints, it is necessary to formulate the stiffness
matrix of the entire structure. However, it should be noted that the structure stiffness
matrix [K] for the structure in which members are subjected to axial load is different
from the conventional stiffness matrix [K]. The relationship of the externally applied
loading to the displacements can be expressed as

{F} = [K1{D}

or {D}=[R]"F}= [aﬁi’fl] (F) (6.54)

where

{F} = vector of joint loads
{D} = joint displacements and

[K] = structure stiffness matrix.

It should be noted that in the solution for displacement {D}, the denominator will
always be determinant of the stiffness matrix [ K]. For any displacement to become in-
finitely large, | K| must vanish and this condition means that every other displacement
in the frame must also tend to infinity. Therefore, for elastic instability the condition
is |[K| = 0 i.e. the stiffness matrix is singular. This equation usually referred to as
characteristic equation may admit several different solutions of elastic instability load
factor N, but smallest of these is of course, the value usually required. The higher
eigen-values correspond to different types of external restraints acting on the struc-
ture and are therefore invalid unless these restraints can exist. Therefore, a solution
should be checked to see if it implies any superfluous restraint.

As explained above the influence of compressive axial force is to reduce member’s
overall effective bending resistance and thereby to cause greater deformations. Zensile



6.4 Stiffness Method 235

forces on the other hand reduce deformations. For a constant value of axial force P
less than its critical value P, the stiffness can be defined including the influence
of axial thrust. Usually the expressions for the various bending stiffness coefficients
are expressed as the product of stiffness with no axial thrust present times the axial
correction or magnification factors. These correction or modification factors are
function of the ratio P/P. where P is the axial force in the member and P, is the
Euler’s buckling load with both ends of the member being presumed pinned.

6.4.2 Stiffness Matrix Including Axial Force Effects

In the application of stiffness matrix method the real structure is modelled or replaced
by a set of elements that are connected to one another at their node points. The
load-deformation characteristics of the elements are pre-determined and described
by element or member stiffness matrix [k]. As in the case of conventional analysis
any element of the matrix, say k;;, is defined as the force in ith direction due to unit
displacement in jth direction — with all other displacements maintained at zero, i.e.,
the subscript i refers to the resulting or imposed force and the j to the deformation
parameter. Thus the matrix equation that describes the equilibrium of an element AB
shown in Fig. 6.12b is given by

kll k12 k13 k14 Dl Fl
kot ko ki ko | ) D2 F,

= or [k{D}={F 6.55
kst k3 kiz kaa Ds F; [k{D} = {F} ( )
kar kay kaz kaa| | Ds Fy

where the subscripts 1, 2, 3 and 4 are the directions shown in the Fig. 6.12b. [k] is
local element stiffness matrix, { D} is displacement vector and {F'} the corresponding
externally applied force vector.

Consider an axially loaded member A B of uniform cross-section of length L and
having a bending rigidity EI as shown in the Fig. 6.13. For a member with no axial
force, the stiffness influence coefficients are given in Fig. 6.13a:

For D1(= AA) =1

g _ 6EI 12E1 6EI
n=-—3. kn=—5, kn=-—5, and ky= 7z (659
For Dy(=64) =1
6EI 4E1 6EI 2EI
ki = Iz ka = A k3 = Tz and ks = e (6.57)
For D3(= Ap) =1
12E1 6EI 12E1 6EI
ki3 = —5 o km=-pm k33 = TE and k43 = Iz (6.58)
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ki =12E11°

kyy = 6EI/L?
f ks, =6EI/L?
—————————— B

=176 3 .
l\_}] =12EI/L (l)

k»=6EI/12 Kj»=qEL2)
k4p=2EIL

Kgp=rc (EIL)

222 = I’(Flﬂ.}
kp=6EUL? (i) R

k33= 4EI/L

12E/L? . S(EILY)
q(EIL?)

q(ELL?)

12EIL} (iii) s (EI/LY)

6EVL q(EIN2)

r(EL/L)

B =1 6E/L? >iv) 0y=1 q(EIN1?)
(@) (b)

Fig. 6.13a,b. Stiffness influence coefficients. a Without axial load, b with axial load

For D4y(=6p) =1

6E1] 2EI 6E1 4E1
kyy=—, kyy=—— and ky= I 6.59)

ki = —— |
W= L L2

When axial force is also present, the stiffness influence coefficients as shown in
Fig. 6.13b can be expressed as
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_ El - EI - EI - El
kin=s 3 ) ki =¢q 77 ) k31 = —s & and k41 =g¢ Iz

. EI - EI - El - EI
ki3 =—s (F) , kiz=-—q (F) Jkaz=s (F) and k43 = —q (F)

(6.60)

and so on. Here the correction or modification factors r, rc, g and s are functions
of P, E, I and L, and are termed stability coefficients. The factors r and rc are
termed rotational coefficients, and g and s are the shear coefficients. Thus the force-
displacement relationship for an element in terms of stiffness matrix which is function
of P/ P, is given by

s g —5 ¢ Au/L OaL
EI - 0 M
ot q T q rc A _ A 6.61)
L —-s —q s —q| |As/L OsL
q rc —q r 6p Mp
The size of stiffness matrix can be reduced by letting O g = —Q 4 = Q and combining

the transverse displacements A4 and Ap into a relative term A (= As — Ap). Thus
we obtain

Oa e [f 14 1][AF
Myt = (T) q r rc 64 (6.62)
Mp q rc r g

The elements of stiffness matrix reduce to those of conventional stiffness matrix
when P = 0. The element stiffness matrices can be assembled into a structure
stiffness matrix [K] which can be used to determine the critical loading. The effects
of elastic supports can be considered by treating the springs as members while
formulating structure stiffness matrix. To illustrate the application of matrix approach
to the stability analysis problems, consider the continuous, two-span strut AC of
uniform EI shown in Fig. 6.14. The structure has three-degrees-of-freedom: one
lateral displacement A, and two rotations ; and 6,. The strut is discretized into two
elements AB and BC. The element stiffness matrices are obtained from the (6.61)
for the relevant degrees of freedom.

Element #1 Node 1 Node 2
e e e

A/L 6, AJL 6,
—q rc 01
= Ay/L
5 q 2/ }2
—q r 0,

s q

= (2) |
L/, S

(6.63)
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Element #2
Node 2 Node 3
e
Ay/L 6, As/L 65
s q —s q Ay/L } 5
- EI q r —q re 6,
[Kk]p = (——) (6.64)
L/, ~s —q| s —q | 4As/L } X
q re “'q r 03

Thus the structure stiffness matrix [K] = [k]; + [k], is given by

Node 1 Node 2 Node 3
—— — e e

At/L 6; AyJL 6, As/L 65

- s 4| 0 7 -
q ri O rc
s
[K]_g 0 0/0+00+4+0{ 0 o0 |_[(EI (rquc
“\L qg rc|l0+0 r+r| 0 0 "\ L 1
q rc 2r
0 0 0 o0
0 0 0 o0
(6.65)
For elastic instability:
IK|=0 ie ¢?>Qrc—3n+s[2r*— (@)1 =0. (6.66)

Use trial and modification procedure with values of the stability functions obtained
Jfrom table given in Appendix A.1 for various values of parameters, p = (P/P.). For

p=014: [K]=5.0397
p=0.16: [K]=—0.3543

By interpolation [K] = 0, when p = 0.1587. Therefore,
0.1587n%EI  1.5663EI
P, = 2 = P .

Let us consider the case when the end C is hinged instead of being fixed. With this
additional rotation the number of degrees-of-freedom increases to four. Following
the above procedure, equilibrium equations of the structure in this case would be:

s g g 0 A/L FL
EIN|g r rc O 01 M,

(T) q rc 2r rc 6 | M (6.67)
0 0 rc r 03 M3
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Fig. 6.14a,b, Formulation of structure stiffness matrix. a Continuous two-span strut, b degrees-
of-freedom of the elements. (i) element number, [i] node number

Due to the presence of hinge at the node 3, M3 = 0, hence from the fourth equilibrium

equation: rc, + rf3 = 0 or 63 = —cb,. Substituting this value of 63 in third
equilibrium equation, the force-displacement relation reduces to
El s q q A/L FL

— e r rc 0 } =M (6.68)
q rc 2r— rc? 6, M,

The quantity 2r —rc? = r+[r(1 —c?)] = r+r’. Thus, for this case, elastic instability
occurs when

s 4 9
Kl=|g r rc |=g2rc—Qr+]+slr+r)—(c)’1=0 (6.69)
q rc (r+r)

By trial and modification for
p=0.12: [K]=4.0863
p=014: [K]=-05316
Hence by interpolation for [K]=0, p=0.1377 and

2EI  1.359E1
2 12

P, = 0.1371 %
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It is evident that the matrix approach is a very powerful tool for analysis of structures
when used in conjunction with computers. However, in the following sections a more
direct approach is used.

6.5 Stability Functions

6.5.1 Member with No Lateral Displacement

For the structural element A B with the loading shown in the Fig. 6.13b-ii

.M .M
kii=—2 and ky=_-2 (6.70)
04 04

The carry-over effect is defined by the relationship

MR

C=— = = 6.71)
My ky

In the absence of lateral loads along the element, the governing differential equation

can be written as
d4y ) d2y

2 = %. The general solution to this fourth-order differential equation is

where o
. X
y=Asmax+Bcosax+C(Z) + D (6.73)

For an imposed unit rotation at the end A (i.e. 64 = 1) while the end B is fixed
against rotation, the boundary conditions to be satisfied at

x=0: y0)=0 and y©0) =1,
x=L: y(L)=0 and y(L)=0. (6.74)

On substitution of general solution in the boundary conditions the values of integration
constants are obtained as follows:

y0) =B+D=0 ie. D=-B

C C
/ =A — =1 i.e. —=1-
¥ (0) a+L 1.e 7 Ax
y(L) = AsineL + BcosaL +C+ D
= A(sineL — aL) 4+ B(cosaL — 1)+ L =0 (6.75)

C
Y (L) = aAcosal —aBsinaL + 7
= Aca(cosal — 1) — BasineL +1 =0 (6.76)
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Solving (6.75) and (6.76) for A and B

1 —aLsinal —cosal
- a2 —2cosal —aLsinal)
sinal —alL cosal
- a2 —2cosal — aL sinal)

6.77)

(6.78)

The end moments are given by

, ) (EI) [
My = —EIy'(0) = EI(@*B) = | —

L

aL(sinal —aL cosal)
2—2cosal —aLsinaL

El
=r(¥) (—L~> (6.79)

Mg = —EIy"(L) = Ele*(AsinaL + BcosalL)
_(EI aL(aL —sinal)
“\L 2—2cosal —aLsinaL

— re(d) (%) (6.80)

Since the forces M4 and Mp are due to unit rotation, they represent corresponding
stiffness influence coefficients. Thus

- El - El
kyy=r (T) , koy=rc <—i-) (6.81)

where

r_[ ¢(5—¢C)] rc_[ Y —9) }
le-2c-v9 |’ T lLR2=2C—-vS)

P
S=sinyy, C=cosy, 1//=aL=7r/—P—=7rﬁ (6.82)

Therefore, the induced bending moments at the ends A and B of the element due to
applied rotation 6,4 at A are given by

El El
MA =r(—> GA and MB =rc (—-) GA (683)
L L
Thus carry-over factor is defined as
M —
_Ms_ =9 (6.84)
)

The stiffness influence coefficient for an element A B hinged at the far end B can be
obtained by applying a moment —rc(EI/L)84 at the end B, thereby reducing the net
moment at B to zero i. e. reducing it to a hinged end-condition. This operation results
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in a carry-over moment of c[—rc(EI/L)64] to end A. Thus the total moment at the
end A becomes
EI 0 2 (EI 0
My=r|— —rct | —
A 7 )% 7 )

, (EI ,(EI
=r(l —c¢9) (—L—> Os=r (T) N (6.85)

where ' = r(1 — ¢?). The term r’ represents rotational stiffness influence coefficient
of a prismatic element when the far end is hinged.

The stiffness influence coefficients r, r’ and rc reduce to 4, 3 and 2, respectively,
when P = 0. This can be obtained by taking the limits ¢ — 0 using L’Hospital’s
rule four times and substituting ¢ = 0.

The moment equilibrium of the element as a free body about the right hand end
gives

Mjy+Mz—Q,L=0

EI EI ,
or r|\—)60a+rc|—)04—-Q4L=0 (6.86)
L L
Therefore, the end shear term can be defined from (6.86) as
, EI EI
QA = (r + rc) ﬁ GA =4q ﬁ GA (687)

where

T 9a-0
q‘[(z—zc—w]'

For the case when P = 0, i.e. ¥ = 0, g(¥y) = 6. It should be noted that the
simplifications in the stiffness values applicable to the prismatic elements with no axial
force are also applicable when these members constitute parts of the frame undergoing
buckling. For example a symmetric element subjected to end moments which are
equal in magnitude but opposite in sense i.e. 0 = —60,4 causing single curvature
bending, the effective stiffness is (2 EI/L), whereas for the one with antisymmetric
bending i.e. Op = 04, the modified stiffness is (6 EI/L). For the beam elements with
moment applied at one end only i.e. 8p = (64/2), the modified stiffness is (3EI/L).

6.5.2 Member Subjected to a Relative End Displacement A

Consider the case of a member AB subjected to a relative displacement A at the
ends while end rotations are prevented as shown in Fig. 6.13b-i. For an imposed unit
end displacement A = 1, the boundary conditions for determination of integration
constants of the general solution of governing differential equation are

yO =1, YO =y =0 and yL)=0 (6.88)
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Substituting the general solution, y = A sinax + Bcosax + (Cx/L) + D into the
boundary conditions given by (6.88):

y0O)=B+D=1

y(0)=aA+ (C/L)=0

y(L) =aAcosal —aBsinal + (C/L) =0

y(L) = AsinaL + BcosaL +C+ D =0

The values of the constants obtained are:

sinaL cosal —1

A=— , B=-— ; ,
(2 —2cosal —aLsinal) (2 —2cosal —aLsinal)

aL sinaL

C=—
(2 —2cosal —aLsinal)

and

1 —cosal —aLsinalL

D=
(2 —2cosal —aLsinal)

(6.89)

The end moments are given by

M4 = —EIY"(0) = «*B(EI)

2 —
_ _[ (@L)*(cosaL — 1) ] (ﬂ) —q (ﬂ) (6.90)

(2 —2cosal —aLsinal) | \ L? \ L2
Mg = —EIy"(L) = «*(AsinaL + BcosaL)(EI)

(@L)*(1 — cosalL) EI\ _ EI
- [(2 —2cosal —alL sinaL)] (F) =4 <ﬁ) (6.91)

The end shear in the element is given by

Qa=EIY"(0) = —El*A

(@L)?sinaL EI EI
= ) =s(Z 6.92
[(2—2005aL~aLsinaL)]<L3) S<L3) (6.92)
Qp = EIy"(L) = —Ela*(AcosaL — BsinalL)
(aL)3sinaL EI EI
—— )= s 2 6.93
[(2—2005aL—aLsinaL)](L3) s(m) (6.93)

Since M4, Mg, Q 4 and Q p are forces due to unit lateral displacement, they represent
stiffness influence coefficients. Thus

- EI _ EI _ EI B} EI
k13=Q(z5) , k23=q(ﬁ) , k33=s(—L—3> and k43=_s(ﬁ)

where
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where
S=siny, C=cosy, Yv=al=m/p.

The parameters r, rc, r’, g and s which are functions of p (= P/ P.) are termed stability
functions. The selected values of these functions are tabulated in Appendix A.1. For
intermediate values interpolation may be adopted.

The stability functions that have been developed for compressive forces can be
readily modified for axial tension. This is accomplished by replacing P by —P i.e.
substitute oi (= a+/—1) for a and ¥i (= ¥+/—1) for ¥. Since sin(iyy) = isinhy
and cos(iyy) = cosh ¢, the functions become

L WWC=8)  WS=W) 694
2-=-2C+yS) 2-=-2C+ ¢S

[ vic-1 ~ v3s

q‘[(2—2c+w5>] and s"[<2—2C+ws>] (699

where § = sinhy, C = cosh ¢y and ¥ = aL = m,/p. The selected values of the
stability functions for axial tension are listed in Appendix A.3.

To illustrate the application of these functions in the elastic stability analysis of
structure consider the symmetrical rigid-jointed plane frame subjected to loads P as
shown in Fig. 6.15. It is required to estimate the critical values of load P to produce
elastic instability of the frame. A possible buckled configuration of this two-degrees-
of-freedom system is shown in the figure. The applied loads are directly transferred
into the members 2-3 and 2’-3' as axial compressive forces and hence their stiffness
coefficients are expressed in terms of rotational stability function r. Since there is
no axial force in the members 1-2, 2-2" and 2'-1’, the usual stiffness and carry-over
coefficients (4EI/L) and (2EI/L) are used. With these modifications the stiffness
matrix [K] is formulated as in the case of conventional analysis [K]{A} = {F}

ko kzzf:‘ {92 } {0}
= 6.96
[kz'z koo | |6y 0 (6.96)

The stiffness matrix [K] is given by
4EI 4EI E(Q21) 2EI

L L L

[K]=
2EI 4E1 + 4E1 EQ21)
L L L T
EI\ |8 +2r) 2
_ <_) (6.97)
L 2 @+2r
For elastic instability the determinant of stiffness matrix must vanish, that s,
_ 8+ 2r) 2 5 5
K| = =0 or 8+2nN"—(2)*=0 (6.98)
2 8+2n

Therefore, (6 + 2r)(10 + 2r) = 0 giving r = —3.0 and —5.0
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P | P
P 2y [ Y2 iy
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I
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oo oo d TR
L | £ L |
[ T ]

(b)

Fig. 6.15a,b. Buckling of symmetrical frame. a Frame fixed at the base, b frame hinged at the
base

The lowest value of p (= P/P.) occurs for r = —3.0. Referring to the relevant
stability functions table in Appendix A.1 for r = —3.0, p = 2.730. Therefore,

2.7307%2E(21)  5.46m2ElI  53.888 EI
P = perPe = 12 = 12 = L2

The effective length Lg of member 2-3 (or 2’-3') is given by

72 EQI) 72EQI) .
—ng‘“’ = Per Iz L.e.

L
Leg = =0.605L

pCl’

Identical results are obtained directly by considering stiffness of only one joint 2 or 2’
because the frame has geometric and loading symmetry (8y = 6,). The stiffness of
joint 2 is equal to the sum of stiffness of members 2-1, 2-2" and 2-3. Thus

ky = kyy + koo + k3

4E1 2EI EQ2I
=7 + - +r [g] (k2or = 2EI/L due to symmetry)

L
=(6+2r (%)
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For elastic instability k; = 0, giving r = —3.0. From the stability functions table
given in Appendix A.1 for r = —3.0, p = 2.730. Therefore, P, = 53.888 EI/L2.

As a variation consider the case when the joints of the frame 3 and 3’ are hinged
as shown in Fig. 6.15b. This change makes the structure a four-degrees-of-freedom
system. However, due to perfect symmetry in geometry and loading, only half the
frame need be considered for stability analysis. The rotational stability functions for
the members 2-3 and 2’-3' with far ends hinged are represented by r’ [= (1 — ¢?)r].
Thus the stiffness of the joint 2 is given by

ky = ko + koo + ko3

_4EI 2EI _ ,JEQD] _ . (EI
=+ +r[ - ]—(6+2r)<L)

The condition of elastic instability, k = 0 gives r' = —3.0. From the stability

functions table given in Appendix A.1. For v’ = —3.0, p = 1.407. Therefore,

1.40772EQI) 27.773EI

cr

Example 6.7. Estimate P.;, the first critical value of the load P that will cause the
rigid jointed frame shown in Fig. 6.16 to collapse under the following conditions:
(i) load P is acting at the joint 1 only, (ii) each of the joints 1 and 2 carry load P.
(iii) joints 1 and 2 carry loads P and 2P, respectively, and (iv) beam member 1-2
only is subjected to compression. (EI/L) values are same for all the members. The
horizontal displacement or sway is prevented.

Since the sway is prevented the system has two-degrees-of-freedom 6; and 65.

(i) In this case the member 1-3 alone is subjected to axial thrust P; hence its
stiffness influence coefficients will be in terms of rotational stability function r. For
members 1-2 and 2-4 with no axial force, the usual influence coefficient (4E1/L) is
used. Therefore, the member terminal moments are

El El El
Mp=r{—16;, Mp=4{—1]6+2— )6
13 V(L>1 12 (L>1+ <L>2

EI El El
=4 = 2 (== d My=4(=—)6,.
M3, (L)92+ (L>01 an 24 (L)92

For the equilibrium of joints 1 and 2
Mi(= M2 + M13) _(_E_I) [(r+4) 2 ]{01}_{0}
My(= My +Myu)|  \ L 2 @+4]16] |0
For elastic instability, the determinant of matrix [K] must vanish i.e.

r+4 2
2 8

K| =

’=8r+28=0
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P
1 “) 2N
(r,rc)
case (i) L EI constant (@)
4
P P
) ) YA
.. EI constant
case (ii)
(r,rc) (r,rc)
3 4
T Vi
P 2P
4 3
. 4)
2
case (iii) EI constant
1, (10); 1,,(1c)
b b
1 (rre) 2 P
P
case (iv) @) EI constant @)
b b
@) (W]

Fig. 6.16a,b. Buckling of a fixed base portal with different loading conditions. a Loading
system, b buckling mode
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Thus r = —3.50. From the stability function table of Appendix A.1 for r = —3.5,
p = 2.8079. Therefore,

2.80797%EI 2771 EI
o = 12 = 12 .

For determination of corresponding buckling mode substitute r = —3.5 in any of the
equilibrium equations, e. g. consider the equation (r +4)6; +26¢, = 0. On substitution
this equation reduces to 0.56; + 26, = 0 i.e. 6, = —0.256;. This buckling mode is
shown in Fig. 6.16.

(ii) In this case both the columns carry axial thrust of magnitude P, hence their
stiffness influence coefficients involve rotational stability function r. The modified
stiffness matrix in this case would be

= _ (EIN[0r+D 2
w= ()30 2]

(r+4 2 |
2 r+4|

For elastic instability

K| = (r+2)(r+6)=0

Therefore, r = —2.0 and —6.0. From the stability functions table in Appendix A.1
for

r=-20: p=2551 andcorresponding P =25.177 EI/L?
r=—60: p=3095 and P, =30.546EI/L%.

The critical value of load at the buckling is given by smaller of these two values.
As usual the buckling modes can be easily determined from any of the equilib-
rium equations. For the first buckling mode at r = —2.0, the equilibrium equation
(r + 4)6; + 26, = 0 reduces to

201 +26, =0 ie 6, =-6

i.e. the rotations at joints 1 and 2 are equal in magnitude but opposite in sense i. €. the
buckling mode is symmetrical as shown in Fig. 6.16. Same result can be obtained by
using the second equilibrium equation. For the second buckling mode at r = —6.0,
the equilibrium equation reduces to

20, +20,=0 ie 6,=6,

Thus, the second buckling mode has anti-symmetrical configuration. It should be
noted that symmetric buckling mode gives lower value of critical load.

(iii) In contrast to the case (ii), the loads carried by two columns are different.
Hence the rotational stability function r has different values for the two columns; say
r1 and r; and the critical load cannot be determined directly. In this case

o (P/P) 1

2 (P/P) 2
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i.e. p1 and p; are in the ratio of 1:2. The stiffness matrix in this case would be
. EINN[(n+4 2
Kl=|—
K1 (L)[ 2 (a4

(rn+4 2 ’_
2 (r+4|

The load factor N, to cause the collapse can be determined by trial and modification.
As a first trial assume N, = 1.0,i.e. py = 1.0 and p» = 2.0. The corresponding
values of r as obtained from the stability functions table given in Appendix A.1 are
r1 = 2.467 and r, = 0.143, respectively. On substituting these values in equation (a),
the value of determinant reduces to

|K| = (2.467 +4)(0.143 + 4) — 4 = 22.79

For elastic instability

K| = (rni+4r+4-4=0 (@

Assume N, = 1.48 giving values of stability functions r; = 1.502 and r, = —4.673,
the corresponding value of determinant is

IK| = (1.502 + 4)(—4.673 + 4.0) = —3.70
Assume N, = 1.44 with corresponding r; = 1.591 and r, = —4.021
|K| = (1.591 + 4)(—4.021 + 4) = 0.117
By interpolation N, = 1.4412. Therefore
P
p1 = = 1.4412

€

Thus,

1.44127%E1 14224 EI
o — L2 = L2 .
(iv) In this case the beam 1-2 alone is subjected to axial thrust P and the columns are
free from axial compression. The instability condition is given by

@+r rc
rc @+r

Using stability functions table given in Appendix A.1, by trial and modification for
p=212: |K|=(4—-0.242)? — 13.987 = +0.1356
p=216: |K|=(4—0379)% - 14.582 = —1.4704

K| = =@+n’=(@c)?=0

By interpolation for |K| = 0, p = 2.12338. Therefore,

2.123387%EI  20.957EI
1z

and the corresponding buckling mode is shown in Fig. 6.15b.

Pcr=
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Example 6.8. A two span continuous strut of uniform cross section, shown in Fig. 6.17
is subjected to: (i) an axial force of P in the segment 1-2 with axial force in segment
2-3 presumed to be equal to zero, and (ii) an axial thrust P such that both the segments
1-2 and 2-3 carry axial compressive force P. Estimate the flexural buckling or critical
load for the strut. E7 is same for both the segments.

(i) In this case the segment 1-2 alone is subjected to an axial thrust P, hence its
stiffness influence coefficients are in terms of r and rc. For the segment 2-3, the usual
influence coefficients (4 EI/2L) and (2 E1/2L) are used. For this three-degrees-of
freedom structure, the force-displacement equation [K]{D} = {F} can be expressed
as

r rc 0 6,

0
EI
(T) re r+2) 1 6t =10

0 1 21 |6 0

For elastic instability
|K| = r[2(r +2) — 1] — rc(2rc) = 0
Using trial and modification procedure for

p=124: |K|=2.01D[22.011 +2) — 1] — 2(6.977) = 0.1672
o=128: |K|=(1.930)[2(1.930 +2) — 1] — 2(7.150) = —1.0602

(@)

1 5, (rc)y 2 1, (rc), 3
AR A
| L e 2L i
| il L
2 2 3

P PMP

Fig. 6.17a,b. Buckling of a two segment continuous strut. a Strut subjected to axial load in
one segment, b strut split into two parts

(d)
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By interpolation for |K| = 0, p = 1.2454. Therefore,

1.245472EI
«=—
(i1) In this case each of the segments 1-2 and 2-3 carry axial thrust P and hence
stiffness influence coefficients are in terms of r and rc. The stiffness values for

segments 1-2 and 2-3 have been identified by the subscripts 1 and 2, respectively.
Since the lengths of the segments are different

(w2EI/L?) ~ (m2EI/4L%)

p1: P2 = 1:4 (6.99)

Let p; = p and hence p; = 4p. The stiffness matrix in this case becomes

r (rc)1 0

[E]:(EL{) (re)1 (r1 +0.5r2) 0.5(rc)2
0 0.5(rc), 0.5r;

For elastic instability
|K| = ri[(r1 + 0.5r2)(0.5r2) — 0.25(rc)3] — (rc)1[(re)1(0.5r2)] =0

By trial and modification procedure, using stability functions from the table given in
Appendix A.1. For

p=036: r =3502, (rc)}=4549, rn=1591, (rc)3=7.930
and |K|= 14107

p=040: r =3444, (rc0)}=4.621, r=1224, (rc)3=28881
and |K|= —1.9256

By interpolation for |K| = 0, p = 0.3769. Therefore,

0.376972EI  3.72EI
a = L2 = L2 :

6.6 Frames with Sidesway

So far in this chapter structures with only rotational degrees-of-freedom have been
discussed. Lateral displacement of an axially loaded structural member without joint
rotations at the ends, and moments due to eccentric axial loads increase terminal
moments and member rotations. These effects must be included in the moment sway-
equation. The amplification effect could be covered by means of magnification or
modification factor and the sway problem could be analyzed by any of the available
methods.
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X

y
o -
Me =re(EIL) Mp=—-(M,+Mpg)¢’
L
1 Q Q" My =—(M,+Mp)¢'
M, =r(EI/L)
p P
(@) (b)

Fig. 6.18a,b. Behaviour of straight prismatic member. a Rotational stiffness, b sway or shear
stiffness

Consider an axially loaded, straight, prismatic member A B subjected to an end
rotation 64 = 1 as shown in Fig. 6.18a. The forces developed are shown in the figure.
For static equilibrium take moment about bottom end.

Mi+Mp+QL=0

/ (Ma+Mp) —r(1+c)(EI/L)
or Q = — =
L L

EI EI
=-r(l1+c¢) (zz—) = —q <?) (6.100)

where g = r(1 4 ¢) which is generally referred to as shear stiffness stability factor.

If the column is restrained against additional rotation and the end B is allowed
to sway by an amount v, the sway angle is given by ¢ = v/L. The restraining
moments M/, and M’ at the ends A and B are both equal to —(M4 + Mp)¢'. For
static equilibrium

M, +Mz+Q'L+Pv=0
or —2(My+ Mg)¢ + Q'L+ Pv=0 (6.101)

Defining the sway angle when P is absent in the above equation (but not from its
effect on M, and Mp) by ¢, the equation reduces to

—2(Ms + Mp)p+ Q'L =0 (6.102)
Subtracting (6.102) from (6.101)
—2(Ma + Mp)(¢ —¢) + PL¢' =0 (since v = L¢’) (6.103)
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Expressing the load P in terms of Euler’s load P, (= n2EI/L?)

p?El
L2

P =pP. =

Thus, (6.103) can be expressed as

n*El ,
—2r<1+c)( )(¢ ¢)+p[ . ]¢L=0
, _ pﬂ'2¢/
Therefore,
% = (6.105)

2
[l - 2r?1+c)]
The term m is defined as sway magnification factor. When P is absent and the joints
do not rotate, the equilibrium equation (6.102) gives

Q'L
My=Mp=—-r(l14+c¢) ¢ =— 5 (6.106)
With the effect of axial load taken into account
//L
M, =My ——r(1+c)< )d)-— (Q2 ) (6.107)

The above expressions can be used to determine the rotational stiffness at one end of
an axially loaded column when the other end is allowed to sway. If the shear force
is maintained zero, the corresponding rotational stiffness will automatically take into
account the effect of side sway. From (6.100) and (6.101).

My + Mg
S _ A4 78
Q= L

and Q" = [2(M4 + Mp)¢' — P(L¢)]/L
If the total shear is to vanish Q' + Q" =0 1i.e.
2(Ms + Mp)¢' — PLY' = My + Mg

where

EI EI 2EI
My =r(7) , Mp=rc <—L—) and P = an .
Therefore,

g
ofi- ]

2r(1+4c)

m
== (6.108)
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Thus the final moments are:

m 1 EI
=,[1 —a +0)3} (T =t(f) (6.109)

m7 (EI\ (EI
=r[c— a +c)3] (T) =t (T) (6.110)

The terms ¢ and ¢ are rotational stiffness factors for axially loaded compression
member undergoing transverse relative displacement. The negative sign is used with ¢’
because Mp is usually negative for varying p values, and hence positive values are
tabulated. For p = 0, = +1 and —# = —1 and thus Mg/M, = —t'/t = —1 and
the ratio is recognized as a carry-over-factor used previously.

For the case when the member carries axial tension (o = —p)

1
2

1+ I:Zr/()it+c)j]
The modified value of m is used in (6.109) and (6.110) to compute ¢ and ¢, re-
spectively. However, it shall be noted that parameters r and rc in this case should
correspond to member carrying axial tension. These values are also tabulated in
Appendix A.2.

To demonstrate the effectiveness of the procedure developed above considers the

continuous strut shown in Fig. 6.14 which has been previously analyzed by matrix
stiffness approach. The terminal moments in this case are

El EI E El
M, = —_— —t 0 s M =_t/ 0 4 o
12 t(L)91 (L)z 21 (L>1+ (L)z
EI
and M23=r(T)02

For the equilibrium of joints 1 and 2

EI ,
M=M=t T 6, —1t

0,
El E
M2=M21+M23=—t/<L)91+(t+r)(T

e Lal=(F)L o)l

For elastic-instability,

(6.111)

m =

t —t

— — — ()2 —
=1_y (4p| =EHN 07 =0
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Using trial and modification procedure. For
p=014: |K|=0.4882
p=0.16: |K|=—-0.0338

By interpolation for |K| = 0, p = 0.1587. Hence,

0.15877%EI
cr — L2 .

For further illustration, consider the hinged base portal frame shown in the
Fig. 6.19 with EI being same for all the members. An estimate of the critical value
of load P at which the frame will buckle is required for the conditions: (i) when
the frame is restrained from side sway movement at the beam level, and (ii) when
restraint is removed to allow the frame to sway.

() (b) ©)

Fig. 6.19a—c. Buckling of hinged base portal frame. a Hinged based portal, b non-sway
symmetrical mode, ¢ sway antisymmetrical mode

Case-I: Due to perfect symmetry in loading and geometry, the symmetrical buckling
mode will govern the critical value of the load. Thus 6, = 6 and 8,y = —6. The beam
2-2/ does not carry axial force and its effective stiffness is: 2(EI/2L) = (EI/L). The
members 2-1 and 2’-1" are hinged at the joints 1, and 1’, respectively, and hence their
stiffness is given by r'(EI/L) where r' = r(1 — ¢?). The terminal moments at the
joint 2 can be written as

El El
My=r[— 86 d My={—1]6
21 r(L) an 22 (L)

Therefore,
EI
My =My + My =0 +1) (T) 0
For elastic instability the stiffness of joint 2 must vanish, thatis 7’ +1 = Qorr = —1.

From the stability functions table given in Appendix A.1 for ¥’ = —1, p = 1.1748.
Therefore,
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1.17487%ElI  11.5948E1
or = L2 = L2 '

Alternatively, the terminal moments at the nodes 2 and 1 are

El EI
My =r (T) 0, +rc (T) 61
EI EI
My =r T 01+ rc T 0, and
EI EI
My =2 — )0, =|— )6
22 (ZL) p) (L) p)
Thus for the equilibrium of joints 2 and 1
My (= Mo+ Myp)| _ (EIN[G+1) rc][6:] _ [O
M, (= My) “\L e rlle |0

For elastic instability [K| = 0. Therefore,

r+1) rc
rc r

=0+ Dr—@e)?=rr(l =) + 1]

=rr+1)=0

where r’ = r(1 — ¢?). For non-trivial solution 7 + 1 = 0. This result is the same as
obtained directly.

Case-II: In this case there are four rotations and one translation resulting in
a five-degrees-of-freedom system. The elastic instability condition will require an
expansion of (5 x 5) order determinant. The solution will be cumbersome. However,
the existence of perfect symmetry in loading and geometry and the fact that anti-
symmetrical collapse mode occurs earlier than symmetrical collapse mode if there
is no restraint against it, can be exploited for simplifying the computations. Due
to the absence of lateral or side loading each column develops zero shears. With
a sidesway moment, the joint rotations are equal in magnitude on two sides of the
axis of symmetry. Thus using symmetry and no shear condition, the terminal moments

are
El EI
My=t{—)0,—¢({—=— )6
. (L)2 (L)l

EI El
Mp=t{— )0 —¢(— )6
=t )o-r(5)e

The beam moment allowing for anti-symmetrical deformations is

El 3EI
Myy =6 — |0 =|—— 106
2 <2L)2 (L)2
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Thus for equilibrium at the joints 2 and 1

El El
H{—16-1{—1}6,=0
(H—)(L)z (L)l
EI El
=)0 +t|{—]6=0
(F)e+e(F)=

=l

t+3 -1t
—t t

Therefore,

Thus for elastic instability

K| = =@+3)—-()=0

Using trial and modification procedure with value of ¢ and ¢ from the stability
functions table given in Appendix A.2. For

p=0.10: |K|=(0.647 + 3)(0.647) — (1.186)> = 0.953
p=0.12: |K|=(0.570 + 3)(0.570) — (1.229)> = 0.524
p=0.14: |K|=(0.491+ 3)(0.491) — (1.274)* = 0.091

By linear extrapolation for |K| = 0, p = 0.1442. Therefore

0.14427%EI  1.423EI
cr — L2 = L2 .

The following examples will illustrate the application of method to various types of
rigid frames.

6.6.1 Single-Bay Multi-Storey Frames

Example 6.9. A symmetrical two-storey one-bay frame with (EI/L) values being
equal for all the members shown in Fig. 6.20 is subjected to: (i) load P at the top of
each column, (ii) load P at the top and 2P at the lower beam level in each column.
Estimate the critical value of the load that will cause the frame to buckle.

Case-I: Frame subjected to loads P only at the top of columns:

(a) Non-sway symmetrical buckling mode

Because of perfect symmetry in loading and geometry, only half frame need be
considered with 8§y = —6;. The terminal moments for various members are the
following.
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P P P P
1
a1 2
i I I
L | . I
! 2P 2P \
—+2 : 2 Casel 2' Y2 Casell
21, 21
LI | I I I
4 ' 1 _1_ 1
[ | L 2L |
r | | =]

(b) ©

Fig. 6.20a—c. Buckling of symmetrical two storey one-bay frame. a Different loading cases,
b non-sway symmetrical mode, ¢ sway antisymmetrical mode

El El
Columns: Myp=r{—|0+rcl— )6,
L L
EI EI
M23 =r T 92 + rc T 93
EI
My =r T 62
EI El
Beams: Miyy =2 — )63 and My =2(— 16,
L L
For the static equilibrium of joints 2 and 3
El El
My = May + Moz + My =2(r + 1) (T) 6+ rc <T) 03

El
M3 = M3+ M3y =rc (T) 0 + (r +2)6s

2r+1)  rc 6, _ 0
rc r+2 {03}_{0}
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For elastic instability | K| = O that is

= [2r+ 1) rc

— _ 2 _
|K) re r+2) =2r+ DH(r+2)—(re)*=0

Using trial and modification procedure with values of stability functions r and rc
from the table given in Appendix A.1. Taking
p=172: r=0927 and (rc)>=9.739,
|K| = 2(1.927)(2.927) — 9.739 = 1.542
p=176: r=0823 and (rc)*=10.059,
|K| = 2(1.823)(2.823) — 10.059 = 0.234

By extrapolation for |K| =0, per = 1.7672. Therefore,

PaPEl  1.76727%ElI 1744 EI
P = L2 = 12 = L2

(b) Sway buckling mode

In this case due to antisymmetry 6, = 6; and the beam moments are (6 EI/L)6;. The
terminal moments are given by the following.

EI ,(EI
Column moments: My =t A 65 —t T 6,

My =1 ()6 - ()6
23—L2 L3

EI EI
Beam moments: Mzy =6 T 63 and My =6 T 6,

Therefore, for elastic instability

Q2t+6) —t
—t t+6

|K| = = +6)t+6)— () =0

Using trial and modification procedure for

0=050: r=-1.691 and ¢ =2792, thus
IR = [2(=1.691) + 6](=1.691 + 6) — (2.792) = 3.4857
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p=054: t=-2.099 and ¢ =3.120, therefore
|| = (—4.198 + 6) + (—2.099 + 6) — (3.120)% = —2.7048
p=052: t=-1.887 and ¢ =2949, thus

|K| = (=3.774 + 6)(—1.887 + 6) — (2.949)* = 0.459
For |K| = 0, by interpolation p.; = 0.5229 Therefore,

0.52297%EI  5.161 EI
Py = purPe = 12 = 12 .

(Since p = 1.00 for fixed-fixed column and 0.0625 for fixed-free column, this is
value of p = 0.5229 is quite reasonable).

Case-II: In this case the axial loads carried by the columns of top and bottom
storey are different. Axial force in members 3-2 and 2-1 are P and 3 P, respectively.

Since (EI/L) and hence P, is same for all the members, the values of p for the
columns are proportional to axial load carried by them, i.e. p3 = p and p12 = 3p.

(a) Symmetrical or non-sway buckling mode

The terminal moments are the following

El
Columns: My =rpp <T> 6,

EI El
My =3 (T) 6r + (rc)2s (T) 63

El El
M3 =13 (T) 03 + (ro) (T) )

EQI 2EI
B H M>y = |G =] ——}6
cams 2 [ 2L ] ? ( L ) ?

2EI
M33/ = T 03

For the equilibrium of joints 2 and 3
EI El
My = (ria+r3+2) (T) 62 + (rc)as (—L—) 63 =0

EI El
M3 = (rc)x (T) 02+ (r3 +2) (T) 03

0
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Thus for elastic instability

(riz+rs+2) (rc)s ~0
(rc)as (rz+2)

or (riz+r3+2)(rs3+2) — [(ro)l* =0

K| =

Trial and modification procedure is used to compute the critical value of the loads.
For p = 0.80, po3 = 0.80 and p;» = 2.40. Substituting the values of stability
functions r and rc from the stability functions table given in Appendix A.1.

|K| = [(~1.301 + 2.816 + 2)(2.816 + 2) — 5.502] = 11.426
For
p=100: p;3 =100 and p;, =3.00
|K| = [(—5.032 + 2.467 4 2)(2.467 + 2) — (6.088)] = —8.612
For | K| = 0, by interpolation

_ (—8.612)(0.80) — (11.426)(1.0)
o (—8.612) — (11.426)

=0.914

For

0=092: pp3=092 and p=276
IK| = [(=3.180 4 2.610 + 2)(2.610 + 2) — (5.839)] = 0.7533

By interpolation for |K| =0

_ (—8.612)(0.92) — (0.7533)(1.0)

= 0.9263
(—8.612) — (0.7533)

Therefore,

0.926372EI  9.14EI
cr — L2 = L2

(b) Antisymmetrical sway buckling mode (6;; = 6;)

For this case the terminal beam moments are

M—6E19 andM—6E10
2= 7 )% 33 = 7)o

The corresponding equilibrium equations can be expressed as

(2) [(t12 +034+6) —1 jl {92] _ [0]
L —té3 (trz+6)| |65 o
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For elastic instability

(ta+t3+6) —t3 | 0
. =
—Ip, (t3 + 6)

= (t12 + 23 + 6)(t23 + 6) — (£53)* = 0.

K| =

In this case also consider p;3 = p and p;p; = 3p.
Trial and modification procedure is used to estimate the critical value of p. For

p= 0.20: P23 = 0.20 and P12 = 0.60

|K| = (—2.842 + 0.235 + 6)(0.235 + 6) — (1.425)* = 19.125
p= 0.24: P23 = 0.24 and P12 = 0.72

|K| = (=5.173 + 0.049 + 6)(0.049 + 6) — (1.540)> = 2.927
p=026: p3=026 and p;» =0.78

|K| = (—7.217 — 0.050 + 6)(—0.050 + 6) — (1.603)> = —10.108

By interpolation for |K| = 0

_ (=10.108)(0.24) — (2.927)(0.26)
- (—10.108) — (2.927)

= 0.2445

The values obtained for the sway case are lower than that for the non-sway case and
hence are critical. Thus the critical value of P to produce elastic instability of the
frame is

0.24472ElI 2413 EI
= L2 = L2 .

cr

Example 6.10. A two-storey single-bay frame shown in Fig. 6.21 is subjected to
loads Pj at the top of the columns and P, at the mid-height as shown in the figure. If
the magnitude of the load P) is equal to 0.4 P., estimate the value of P, that will cause
the frame to buckle where P, = (z2EI/L?) and EI is same for all the members.

The frame has perfect symmetry in geometry and loading. The buckling mode
may be either symmetrical or antisymmetrical. In the symmetrical non-sway case
shown in Fig. 6.21b the moment equilibrium equations for the joints 1 and 2 can be
written as

M E) [(710+r12+4) (roiz ] {91 _ o
M\ L (rom (rz+4] 162 |0
For elastic instability

(ro+rz+4) (o2
o2 re+4)

K| = = (rio + riz + ) (riz +4) — [(rO)12)* = 0
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P, P,=0.4P,
2 2!
EI
L
P, P,
1 1
EI
L
0 0
- T T
L2
(a)

() ©

¢ sway mode

Fig. 6.21a—c. Buckling of two storey single bay frame. a Two-storey frame, b non-sway mode,

For the member

P
1-2: ppp = Fl =04, r;p=3444 and (rc)2 = 4.621
€
1-0: pio= hth =040+ p where p= &
€ Pe
Therefore, the characteristic equation reduces to
(rio+3.444 +4)(3.444+4) —4.621 =0 or rig= —6.823

From the stability functions table given in Appendix A.1 for rjp = —6.823, p1g =
3.1642. Therefore,

P
p=3.1642 — 0.40 = 2.7642 = F2

e

P, =2.7642 P,

For the sway antisymmetric buckling configuration (mode) shown in Fig. 6.21c, the
corresponding instability equation reduces to

IK| = (tio+ ti2 + 12) (112 + 12) — (£},)* =0,

. 12E1
since Myy = Mjy = ——6;
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For the member 1-2 with pj; = 0.4, t;; = —0.878 and 1|, = 2.172. Therefore,
(10 — 0.878 + 12)(—0.878 + 12) — (2.172)> =0

i.e. tjp = —10.698 and corresponding value of p;o from the stability functions table
is 0.8396. Thus, p = 0.8396 — 0.40 = 0.4396 and hence P, = 0.4396 P..

As a variation in the problem suppose that the force P, = 0.40 P.. It is required
to estimate the values of force P; which will cause the frame to buckle. In this case

P+ P,

P
= — d = = 0.40
P12 P and py0 P (p12 + )

For the symmetrical buckling mode, for instability
K|l = (rio+ri2+ 42 +4) = [(r)p* =0

Adopt trial and modification procedure using stability functions from table given in
Appendix A.1. For

pr2=1.00: |K| = (1.678 + 2.467 + 4)(2.467 + 4) — 6.088 = 46.59

piz =1.80: |K|=(—0.519 +0.717 + 4)(0.717 + 4) — 10.397 = 9.40

p12 =2.00: |K|=(—1.301+ 0.143 + 4)(0.143 + 4) — 12.424 = —0.6496
pi2 =1.96: |K| = (—1.133 + 0.264 + 4)(0.264 + 4) — 11.967 = 1.3836

Therefore by interpolation for |K| = 0, p; = 1.9872 and thus

1.9872n%E1

P = 19872 P, = ———

For antisymmetric buckling configuration
K| = (fio+ 12 + 12)(t2 + 12) — (1})* = 0
Using stability functions values from the table given in Appendix A.2. For

pr2 =020: |K|=(—2.842 + 0.235 + 12)(0.235 + 12) — (1.425)> = 112.89
pr2 =040 |K|=(—8.159 — 0.878 + 12)(—0.878 + 12) — (2.172)? = 28.237
pr2 =044 : |K|=(—10.725 — 1.174 + 12)(—1.174 + 12) — (2.392)* = —4.628
pr2=042: |K|=(=9.303 — 1.022 + 12)(~1.022 + 12) — (2.278)? = 13.199

By interpolation for |K| = 0, p12 = 0.4348 and thus

P; =0.4348 P, .
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6.6.2 Multi-Bay Rigid Frames

In case of multi-bay frames, the rotation degrees-of-freedom increase with the number
of bays, thereby increasing the size of stiffness matrix. However, certain frames can
be subdivided into a number of similar one-bay frames. This subdivision called the
principle of multiples is based on an application of super positioning to structural
properties. The super positioning depends upon the (EI/L) pattern for the entire
frame being such that it breaks down into a number of patterns B R, 2R etc. for
separate one-bay frames, where B, f,, etc. are constants for individual subsidiary
frames. The total loading P is also divided into (PB;/ > B;) components, so that each
frame carries load proportional to its overall stiffness coefficient S. In such a frame
satisfying the principle of multiples, all the joints at any particular beam level rotate
by the same amount and the column sways are also, of course, identical in each
storey. Therefore, the exact analysis of any of the subsidiary one-bay frames will lead
directly to the exact analysis of the entire frame. For illustration consider the two-bay
building frame shown in Fig. 6.22b along with its subsidiary one-bay frames. The two
one-bay frames clearly add up to the original frame, since deformations are identical
in each of the two subsidiary frames. Therefore, only one frame need be analysed.
The moments and forces occurring in the actual frame are obtained by direct addition
in the common interior columns.

P 2P P
’1_ L AL 9
o~ o~ 6
L EI EI
4 5 6
ko m AN\
L2 L2
(a)
P 2P P
2
1 p TEE
-
L EI 2EI EI
4 5 6
k3 7770007 T

L2 L2
(b)

Fig. 6.22. Buckling of single storey two-bay frame. a Frame with EI values same for all the
members, b frame with EJ of interior column being twice of the exterior
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Example 6.11. A single-storey two-bay (i.e. three columns) symmetrical frame is
loaded symmetrically as shown in the Fig. 6.22. Estimate the first critical value of the
load P that will cause the frame to buckle under following conditions: (i) E7 values
are same for all the members, and (ii) EI value for the interior column is twice that
of a exterior column.

If the frame is prevented from the side sway there are three rotational degrees-
of-freedom 0, 6, and 5. Here, the critical load has been determined without making
use of symmetry of the system.

Case-I
P and 2P 2
= == n = =
P14 = P36 (anI/LZ) 1Y P25 (2EI/L?) 1Y
For elastic instability
(r1 +8) 4 0
Kl=| 4 (n+16) 4 |=(1+8)[(2+16)(r1 +8) —32]
0 4 (r1+8)
(r1 + 8)°[(r2 + 16) — 32/(r1 +8)] =0
Two of the roots of the stability eigen-equation are apparent i.e. r; = —8 (i.e.

p = 3.2476). For the third root (r, + 16) — 32/(r; + 8) = 0. Using trial and
modification procedure, p = 1.727. Therefore,

1.7277%EI  17.045EI
o = 12 = 12
If the frame is allowed to sway the corresponding eigen-equation can be obtained by
replacing r by ¢. For t; = —8.00, p = 1.099 and for (t;, + 16) — 32/(t; +8) = 0,
p = 0.4252. Therefore,

_ 042527%El _ 4.197EI

cr L2 L2
Case-I1
= = P = and = 2P =
Thus r, = r; = r and for elastic instability
r+8 4 0
Kl=| 4 (@416 4 |=20+8)(@>+ 16r +48)
0 4 r+38)

=2+8)r+4)(r+12)=0
Therefore, r = —4.0, —8.0 and —12.0.



6.6 Frames with Sidesway 267

Alternatively, as the frame satisfies the criterion of multiplies, it can be split into
two single bay frames shown in Fig. 6.22b. Analysis of any one of these subsidiary
frames leads to the analysis of entire frame. For elastic instability of the frame shown
in Fig. 6.21b.

r+8 4 _
4  (r+8)|

K| = r+dHr+12)=0

Thus r = —4.0 and —12.0. The critical load P is governed by the lowest value
r = —4.0. From the stability functions table given in Appendix A.1 for r = —4.0,
p = 2.877. The critical value of the load is

2.87772 EI 28396 EI
P, = B =—7

For the sway buckling mode with anti-symmetric configuration the force-displacement
equation |K|{A} = {F} is given by

El t +8 4 61 _ F
L 4 n+8|tel  |B
For anti-symmetric mode 6, = 6; and the above equations reduce to (EI/L)(t; +

12)6; = F;. For elastic instability #; + 12 = O i.e. #{, = —12.0. From the stability
functions table for ; = —12.0, p = 0.854. Therefore,

0.85472EI 8.429EI
o — L2 = L2

Example 6.12. The vertical members (columns) of a multi-bay closed framed struc-
ture are subjected to compressive loads as shown in Fig. 6.23. Estimate the critical
values of the load that will cause the frame to buckle.

The critical loads predicted by non-sway symmetrical and anti-symmetrical buck-
ling modes are larger than those of sway modes, thus only sway modes will be
considered for the analysis.

The frame has seven degrees-of-freedom (one sway and six rotations) and hence
will involve operations with (7 x 7) determinant. However, a close scrutiny reveals
that the frame satisfies the criterion for multiples and hence can be split into two
single-bay closed frames. Consider the frame of Fig. 6.23b, the terminal moments
are:

6E1 3E] 6EQ2I) 6E1
= | — = —11]6 d My = G = —
My [2L]01 (L) 1 an 24 [ 7L ] /) (L)92

(Due to antisymmetry of the mode, 63 = 61 and 64 = 6;).
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(2)

(b)

Fig. 6.23a,b. Buckling of frame satisfying multiples criterion. a Multi-bay closed frame struc-
ture, b two single-bay subsidiary frames

Using rotational stiffness without shear coefficients, the terminal moments in the
columns are:
EI . (EI
My =t T 01—t T )

EI . (EI
and My =12 T 92-—1‘12 T 01

Thus for equilibrium of joints 1 and 2

(Ml =M12+M13) _ (ﬂ) [(t12+3) —th ] {91]
M, = My + Moy L —t, (2+6)]|6:

For elastic instability

(tz+3) 1)

K| =
X ~t, (t12+6)

= (ti +3)(tia +6) — (£),)* =0

Using trial and modification method with stiffness values from the stability functions
table. For

p=050: t;,=-1691, ¢,=2792 and |K|=-2.15
0=048: t;p=-1508, ¢,=2648 and |K|=—0.3098
p=046: t;,=-1336, t,=2515 and |K|= 14357



6.6 Frames with Sidesway 269
By interpolation for |K| = 0, p = 0.4764. Thus the critical value of the load P is:

0.476472EI  4.7018E1
cr — LZ = L2

6.6.3 Substitute Frame Method

The special methods taking advantage of symmetrical or anti-symmetrical structural
actions are dependent on both geometry and loading being symmetrical. The substi-
tute frame method consists in replacing the actual frame with geometrical symmetry
but unsymmetrical in its stiffness values by a symmetrical one-bay frame. The flexural
rigidity of the columns of the substitute frame is taken to be the average of the flexural
rigidities of the columns of the original frame. The flexural rigidity of the beam of
the substitute frame is taken to be the sum of flexural rigidities of the beams in the
original frame. The columns of the substitute frame are subjected to the loads, the
magnitude of which is average of loads acting on the original frame. The substitute
frame can now be analysed by any of the special methods to obtain a rough estimate
of the buckling load.

P 2P 2P P
\ Y \
T 1 I 1
L 1 1 1 1

(@)

3p U 3P

2 [
31
21 21
1 1
0% k4
f 2L -]

(b)

Fig. 6.24a,b. Substitute frame for a multibay frame. a Single-storey three-bay frame, b substi-
tute frame
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For illustration consider the single-storey multi-bay frame shown in the Fig. 6.24a.
E[ values are same for all the members. This frame does not satisfy the principle of
multiples. The corresponding substitute frame is shown in Fig. 6.24b. The E values
of various components of substitute frame are

Beam: (Ely)s = ) _ El, =3EI
Columns: (EL), = IZEI = 1E(I+I+I+I)—2EI
mns: s =3 ¢c=3 =

Load on each column of the substitute frame P; is given by
P = 1213— 1(P+2P+2P+P)—3P
T2 ) -

Thus the degrees-of-freedom reduce from 5 (four rotational and one sway) to 3 (two
rotations and one sway). The problem can further be simplified by invoking the
perfect symmetry of substitute frame in geometry and loading. As usual the critical
load is governed by the sway or anti-symmetric buckling mode.

In the sway mode, the terminal moments are

Mot — 1 2EI P
21 = 2 2

6E(3I) 9E1
M =[5 o= (7)o

For the equilibrium of joint 2:

EI
My =My + My =Q2t+9) (T) 6, =0
Therefore, for elastic instability
2t+9 =0 or t=-4.50
From the stability functions table given in Appendix A.l, for ¢t = —4.50, ps; =

0.6927. The ps value for each column of substitute frame is approximately given by

YP 6P P
= =2 _15p wh ==
~=5P " 4P, pwhere L=

Therefore,

P ( ps,cr) m*EI\ _ (0.6927\ (#n*EI\ _4.558EI
TS L2 ) \ 15 L2 )= L2
As a variation considers the case when EI values of interior columns is twice that

of exterior columns as shown in Fig. 6.25. In this case, the frame satisfies the prin-
ciple of multiples and hence can be split into three symmetrical subsidiary frames.
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®)

Fig. 6.25a,b. Splitting of multibay frame into single-bay subsidiary frames. a Multi-bay frame,
b subsidiary frame

Each of the subsidiary frames is perfectly symmetric in geometry and loading with
E] values being same for all the members. The critical load can be determined by
the consideration of any one of the subsidiary frames. For a sway or anti-symmetric
buckling mode

t+3=0 or t=-3.00
From the stability functions table for t = —3.00, p,; = 0.610, and hence

0.617?EI  6.02EI
o = 12 = 12

If the principle of multiples is not invoked, and frame is analysed by using the
substitute frame method

(Ely)s =) (El)» =3 EI

(EL)s = IZEI = 1E(I+2I—|—21+1)——3E1
CS_2 C'—2 -
and
P, =3P.

The terminal moments are

3EI 6EGI
L 2L L
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Thus, for elastic instability
3t+9=0 or r=-3.00

From the stability functions table for t = —3.00, o5 = 0.61. The p value for the
substitute frame columns is given by

P 6P - P
= = = W, T = —
=R T d+2+2+0R 7 P=F

Therefore,

n?EI\ 0.617’EI 6.02EI
Py = Ps,cr 12 = 12 = 12
It should be noted that for the frames satisfying the principle of multiples both the
methods give identical results.

6.7 Rigidly Connected Trusses

For triangular subset trusses (as opposed to vierendeel truss which are rectangular in
form) the relative displacements of the ends of the members other than those due to
axial shortening are zero. Thus in the stability analysis A will be zero. The following
examples will illustrate the application of stability functions to this class of structures.

Example 6.13. A two-barrigidly connected truss shown in Fig. 6.26 supports aload P.
Estimate the value of P to produce elastic instability of truss.

Fig. 6.26. Two-bar rigidly connected truss
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The primary forces in the members are obtained by assuming the joint 2 to be
hinged. These forces will be altered slightly by the moment induced by linear joint
displacements. However, this effect is neglected. Ignoring the linear displacement of
the joint 2, the only displacements to be considered are the rotation 6, and 65 at the
joints 2 and 3, respectively.

The force-displacement relationship [F] = | K|[A] is given by

0] _ (EI\[(1+2r) 2(ro)] |62
of (T 20c)y 22 | |65

For elastic instability |K| = Oi.e.

(r1 +2r2) 2(rc)

= —_ 2 = ! =
2r0), 2 | = rn+2n[l - () 1=r+2r,=0

This result can also be obtained directly by considering the stiffness of joint 2 with
member 2-3 being hinged at the far end.
The primary forces in the members are:

P=P = (P/«/g) .
Thus p values for the members are given by

P/V3 P/3

= IV and o= 1Y
=g M 22T 0 ED 2

or py = 2p and p; = p. The value of p;; to cause collapse must, however, be
determined by trial and modification.

From the stability functions table, by interpolation p = 1.0086. The critical value
of the load is

1.008672(2E1 34483 EI
Po= AP = V3| R CED | A

Example 6.14. A three-bar rigidly connected truss is subjected to a load P applied
symmetrically as shown in Fig. 6.27. ET and L values are same for all the members.
Estimate the critical value of loads P that will cause the frame to buckle.

The primary forces in the members are computed by assuming the joints to be
pinned. The force in each member is equal to (P/+/3). Therefore, p and rotational
stiffness values r and rc are same for all members. The system has three degrees-of-
freedom 6, 6, and 6;. For the equilibrium of joints

M (= My + Mp3) 0 El 2r rc rc 0,
My (=My+Mxy); =103 = (—L—) rc 2r rc 0,
M3 (= M3; + M3;) 0 re rc 2r| |63
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P

(i) First mode (ii) Second mode

EI and L are constant

() (W]

Fig. 6.27a,b. Buckling of three-bar rigidly connected truss. a Three-bar truss, b buckling modes

For elastic instability |K| = 0, i.e.

2r rc rc
re 2r rel=27A4+02-0%*=0
rc rc 2r

The first two roots of the eigen-value equation are given by: 2—c)? = 0Oi.e.c = 2.00.

This case corresponds to 6; = 0 and 63 = —6, = 6. From the stability functions
table for ¢ = 2.00, p = 1.5077.
The third root of eigen-value equation is given by: 1 + ¢ = 0 or ¢ = —1.00.

This case corresponds to 6; = 8; = 63 = 6. From the stability functions table for
c = —1.00, p = 4.00.
Therefore, the critical value of the load P is controlled by p = 1.5077 and hence

1.507772%EI 25777TEI
Py = ‘/g( 12 ) = 12

Example 6.15. Estimate the critical load factor N, against elastic instability of rigidly
connected truss shown in Fig. 6.28. EI and L are same for all members. The value
of P, for each member is V3P.

Treating the truss to be pin-jointed, the primary axial forces obtained in various
members are shown in Fig. 6.28. Since the P, is same for all the members, the o;;
(= P;j/ P.;j) values are proportional to the axial forces in the members i.e.,

p2=2p, p3=@0p, pir=p and p3=—p

where p = 1/3. Disregarding the linear displacements of the joints, only rotational
displacements at the joints 1 and 2 need be considered. Due to symmetry 6y = —0;,
92/ - —92 and 93 =0.
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P P

9

—-t—— 3 Compression
—» g Tension

El and L are the same for all the members

Fig. 6.28. Buckling of rigidly connected symmetrical truss

The terminal moments in the rigidly connected members meeting at joint 1 are:

EI El

My =ri2 (T) 01 — (ro)i2 <T> 62
El EI

Mz =ri3 (T) 01 — (ro)is (T) 03
El EI

My =nry (T) 61 — (ro)1r (T) 61

For moment equilibrium of joint 1

My =M+ M+ My
EI EI
= [ri2 +riz +rir — (ol (T) 01 — (ro)12 (T) 6, =0

(since 63 = 0 and 6y = 6;)
The terminal moments in the members meeting at joint 2 are:

EI El
My =ri2 <—L—) 0, — (ro)12 (T) 01

EI EI
Mys =ra3 (—E) 6> — (rc)ns (T) 03

Therefore, for the moment equilibrium of joint 2

EI 1
My = My + My; = —(rc)pp <T> 01+ (riz + rp3) <T) 0,=0

(since 03 = 0)
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For elastic instability

retrt+ry— @ - |
—(roi (riz +r23)

or |K|=[riz+ri+riv— ol +rs) — [(re)2? =0

K| =

The value of p to cause collapse is determined by trial and modification procedure.
Let p = 1.00, therefore, the required stability coefficients for various members are:
p12=2.00: rip=0.143, [(ron]? = 12.424
p1i3=0.00: r;3 =4.000
pir=100: ryy=2467, (ro)rr =2.467
p3=—1.00: ry3=5.175

and
|K| = (0.143 + 4.000 + 2.467 — 2.467)(0.143 + 5.175) — 12.424 = +9.608
For p = 1.10

p12=220: rp=-0519, [(ro))?=15.219
p13 = 0.00 : r13 = 4.000

piv =110:  rypy=2282, (o) = 2.535

o3 =—1.10: ry =15.278

and
|K| = (—0.519 4 4.000 + 2.282 — 2.535)(—0.519 + 5.278) — 15.219 = +0.143
For p =1.12
pr =2.24: rip=—0.665, [(rc)2)® = 15.904
p13 = 0.00: ri3 = 4.000
pir=112: ryp =2245, (ro)1r =2.550
3 =—1.12: ry =5.361
and

IB| = (—0.665 + 4.000 + 2.245 — 2.550)(—0.665 + 5.361) — 15.904 = —1.675

By interpolation for |K| = 0, p;; = 1.10157. The load factor at collapse,

1.10157
=P _ = 3.3047 .

p (1/3)

It should be noted that the member 1-2 in compression would be weakest if all joints
were pinned. If all joints were in this condition N, = 1.5 would produce collapse
of the member 1-2, and hence of entire structure. On the other hand if the truss is
rigid-jointed (fixed), N. = 6.0 will cause collapse. The N, obtained lies between 1.5
and 6.0 and hence is reasonable.

[
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6.8 Moment Distribution Method

In the preceding sections the stiffness influence coefficients of members subjected to
axial loads have been used in expressing terminal moments as superposition of end
moments caused by actual, unknown rotations and displacements. The equilibrium of
joints in terms of terminal moments in the members meeting at the respective joints
provided a set of simultaneous equations with displacements as unknowns. The matrix
of coefficients of displacements furnished the structure stiffness matrix |K| which
was used in computation of buckling load. A discerning reader will note that this is
nothing but the slope-displacement method if the terminal moment due to external
loads on the member with ends presumed to be restrained were superimposed on the
terminal moments due to end displacements. For example for a prismatic member A B
of length L with constant EI. The terminal moments are:

Myp=r (E )9A + rC(E )93 —q <—El) <—A) + Mg
L L L L
El El El A
Mgy =rc (——L )9A +r(—L—) ] —CI(T) (Z) + Miga (6.112)

where A is relative transverse displacement at the ends of the members, M4p and
M;p4 are fixed end moments due to transverse loads.

As in conventional analysis, the iterative moment distribution method can be
conveniently used for obtaining member end or terminal moments without actually
solving any equation. However, in addition to stiffness influence coefficients, the
procedure requires evaluation of fixed-end moments caused by transverse loads acting
on members subjected to axial forces. These moments are function of both lateral
and axial load. For a fixed-ended beam-column i-j of length L shown in Fig. 6.29
the fixed-end moments for a uniformly distributed load w over the entire span can be
obtained as follows.

Using second-order formulation of the problem, the governing equation is given
by:
d’y wLx  wx?

My =M;— —= +— —py (6.113)

El—
dx?2 2 2

w/unit length

HlHiiUHHHIH

Fig. 6.29. Fixed-end moments due to uniformly distributed loads
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where M, is bending moment at a point at distance x from i. Thus

dzy > Mi w 2
az“‘*‘()l y=—ﬁ+§—E~I(x —xL) (6114)

where o> = (P/EI). The general solution to (6.114) is

— Asinax + Beosax + o —xpy+ (M _ ¥ (6.115)
y= 2P P P '

The boundary conditions are
y(0) =0, and y'(L/2) =0 (duetosymmetry)

_ Mi w _ 1 2
y(O)——B+ —I;_W =0 or BZ—I—)E(—(XM,"FU))

y = aAcosax — aBsinax + 2—wI;(2x ~L)

L L L
y | =) =aAcos 22 _aBsin( L) =0
2 2 2
alL 1 aL
or A= Btan (7) = P —azMi + w) tan (7)
The fixed end moment My; is given by the condition y'(0) = 0
wlL al wL

o 2
y’(0)=aA———2—P—=W(—a M,~+w)tan ) ﬁz

Therefore,

M = M; = —wL? [tan(aL/Z) - (aL/2)]
i = ij =

(aL)? tan(aL /2)
= —wL? [%] = —wL?(mg,) (6.116)

The quantity within the parentheses is termed magnification factor ms,,. Following
the above procedure, the fixed-end moments for a concentrated load W acting at the
mid-span of a beam-column is obtained as

1 —cosy

8y sin

al 7 | P T
‘”=(T)=5/;e=5ﬁ-

My = —WL [ ] = —WL(m¢) (6.117)

where
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For the member subjected to axial tension the corresponding expressions for the
magnification factors are given by

Y — tanh
= — 6.118
" = 492 tanh o (6.118)
and
coshyr — 1
= 11
' 8¢ sinh ¢ (6.119)

For the selected values of p, these functions are tabulated in Appendix A.3.

The moment distribution method can be effectively used in determining the load
factor N, against elastic instability collapse of the entire structure. The method
consists in applying an external moment at one of the joints, and balancing all other
joints of the structure except the one to which moment is applied. If the carry over of
moments back to this joint exceeds the originally applied moment, it is apparent that
moments can not converge. On the other hand, when the collapse load factor N, has
been chosen correctly, the sum of the moments carried back to the joint considered
will just be equal to the moment originally applied there i. e. the moment at joint will
vanish. In the other words, it consists in finding the N, value to make any particular
joint have zero rotational stiffness. The following example will illustrate the principle.

Example 6.16. A pin-based single-span rigid portal frame shown in Fig. 6.30 is
subjected to two vertical concentrated forces P, each acting directly over columns
1-2 and 1’-2’. Determine the critical value of load P that will cause the frame to
collapse. E1 is constant throughout.

(1) For the symmetrical buckling mode

_ El - El
ky=r (T) , ki=rc (T)

with carry over factor c.

- El 2E] El
k / = ’ 1 _— I —_— = —— = . —_—
22 = 12y ( 022)( 2 )22/ 0.6L 3333(L )

The relative primary moments induced in the members due to unit rotation applied
at the joint 2 are

EI EI
MY =r (T) and MY, = 3.3333 (T)

There is no carry over to, and carry back from joint 2" as the modified stiffness of
the member 2-2’ has been used. The moment distribution procedure is shown in the
Fig. 6.30a.

Since for elastic instability, the total moment at the joint 2 must vanish i.e. sum
of applied moment and the moments carried back to the joint must equal zero.
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0,=1 Unit rotation at joint-2

+; 3.3333 Primary moments
cre Moment carried back from 1
\ e Moment carried from 2
—rc Balance joint-1
(@
A=1 Unit displacement at joint-2
t 10 Primary moments
—t)%t

Moment carried over from joint-1

t Moment carried from 2

-t Balance joint-1

)

Fig. 6.30a,b. Calculation of terminal moments taking into account the effect of axial forces by
moment distribution. a Symmetrical buckling mode, b antisymmetrical buckling mode

M, = [(r — rc?) + 3.3333] (%)

El (EI
= [r(1 — ¢ +3.3333] (—L—) = [r' +3.3333] (T) =0
i.e. ¥ = —3.3333. From the stability functions table given in Appendix A.1. For

r = —3.3333, p = 1.4351 and hence

1.435172E1 141639 EI
= 12 = 12 .
(2) For anti-symmetric buckling mode

- EI - EI
kyy =t (T) , ki =t ( I ) andc.of., c= t//t

: daen(E 6EI EI\‘
;=
2 =r(l+ )\ T by 06L

There is no carry over to, and carry back from the joint 2’ as the modified stiffness of
the member 22’ has been used. The relative primary moments induced in the members
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due to unit displacement (A = 1 i.e. the rotation of 1/L) applied at the joint 2 are:

EI EI
My =t (T) and My, =10 (T)

The moment distribution procedure is shown in Fig. 6.30b. For elastic instability the
total moment at the joint 2 must vanish i.e.

)7 (EI EI\ _ 2
[t— t](f)HO(T)_O or f(p) =1t +10)~ ()" =0

Using trial and modification procedure with stiffness values from the stability func-
tions table, for f(p) = 0, p = 0.2068. Therefore,

0.20687%EI  2.041E1
o = L2 = L2 ’

It should be noted that vanishing of total moment at a joint makes that particular joint
to have zero rotational stiffness. The following example will illustrate the application
of moment distribution method in computation of terminal moments in the frames
where the members also carry axial forces.

Example 6.17. A symmetrical portal frame hinged at the base is subjected to a load
system shown in Fig. 6.31. E[ is constant for all the members. Determine the variation
in the values of terminal moments when: (i) axial forces are taken into account, and
(ii) axial forces are ignored.

The unknown axial force induced in the beam is expected to be small and hence
no essential error is introduced by assuming py» = 0. In view of the symmetry of the
system, the stiffness of the beam kyy = 2E1/(0.6L) = 3.3333(E1/L). The basic or
fixed end moments in the beam are

0.6L)*
Mpy = __w(T)_ = —(30.0 x 1073)wL? = —Mpy,

The axial forces in the columns = [w(0.6L)/2] + P
To determine the variation in terminal moments let us consider the loading stage
when p = 0.20.

Case-I: When axial force is taken into account. From the stability functions table for

p =0.20
_ (EI EI

- El
kyy = 3.3333 (T)

The terminal moments obtained by moment distribution are shown in the Fig. 6.31b.
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(a) ®
.56 I
0.564 4 L 0.5263
0.436 | -30.00 r ™ +30.00{0.4737
+13.09 1691 -15.79| -14.21
13.09 | -13.09 14.21| -14.21
With axial force Without axial force

©

Fig. 6.31a—c. Calculation of terminal moments taking into account the effect of axial forces
by moment distribution. a Structure, b bending moment diagrams (x 10-3wL?), ¢ moment
distribution procedure

Case-II: When axial force is in the column is ignored. For this case p2; = 0 and

- El - El
k21 = 3.0000 (T) and kzz/ =3.3333 (T)

The moments obtained by moment distribution are given in the Fig. 6.31b.
The difference in terminal moments in two cases is
(14.21 — 13.09)
13.09

Columns: x 100 = 8.556 per cent

i.e. the column moment increases by 8.556 per cent when axial force is neglected.

The corresponding value for the mid-span moment in the beam is

(30.79 — 31.91)
3191

Beams: x 100 = —3.51 per cent

i.e. the mid-span moment in the beam decreases by 3.51 per cent when axial force in
the column is ignored.
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6.9 Problems

Problem 6.1. A continuous beam 1-2-3 of uniform cross-section has two segments
1-2 and 2-3 of equal length L as shown in Fig. P.6.1a. The strut is subjected to an
axial thrust P acting: (i) in the segment 1-2 and (ii) in the entire length 1-3. Estimate
the critical value of load P that will cause the strut to buckle.

Also estimate the critical value of load P when the joint 3 is fixed against both
rotation and translation as shown in the Fig. P.6.1b. Draw the buckling modes.

El 2 El

I')

L L

. 5::
- o
| -l
[ ]

(2)

1
p —» P
AT Fay v
l L | L |
| T |
(b)
P.6.1
[Ans. (a) (i) Eigen-equation is: r(r + 3) — (rc)?> = 0 or r(r’ + 3) = 0, Per = 1.408,

2.047;
(ii) Eigen-equation is: r*(r') = 0, pe = 1.00, 2.047.
(b) (i) Eigen-equation is: r(t' +4) = 0, per = 1.4853 and 2.047;
(ii) Eigen-equation is: r(r' + r) = 0, p; = 1.3143 and 2.047]

Problem 6.2. A single column rigidly connected frame shown in Fig P.6.2 is fixed
against both rotation and translation at the joints 2,3 and 3’. The member 1-2 of the
frame is subjected to axial compression P. Determine the critical value of load P
that will cause the frame to buckle. Also calculate the critical load when: (i) joint 2
is released against rotation, (ii) joint 3’ only is released against rotation (iii) joints 3
and 3’ both are released against rotations, and (iv) joints 2, 3 and 3’ are released
against rotations.
[Ans. (i) r = —8.0 and po = 3.2476;

(ii) r' = —8.00 and p, = 1.6748;

(iii) r = —7.00 and pe = 3.1776;

(iv) r = —6.00 and p., = 3.095, and

(v)r' = —6.00 and p., = 1.5984]

Problem 6.3. The member 1-2-1’ of the rigidly connected single column frame shown
in Fig. P.6.3 is subjected to an axial thrust P. Determine the critical value of load P
that will make the frame unstable when: (i) column base joint 3 is fixed, and (ii) when
the joint 3 is hinged.
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P.6.2
1 2 '
TR T T
L 2EI
3
TR
| -l
[ L L
P.6.3

[Ans. (i) ¥ = —4.0 and py = 1.4853,
(ii) ¥ = —3.0 and p, = 1.4066]

Problem 6.4. A two-column symmetrical system shown in Fig. P.6.4 is symmetrically
loaded. ET values are same for all the members. Determine the critical value of load P
that will make the system unstable when: (i) columns are fixed against rotation and
translation at the base, and (ii) columns are hinged at the base.

El

El

EI Q.;

-1
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[Ans. (i) for symmetrical buckling mode: r = —7.00 and pe = 3.1776 and for
antisymmetric buckling mode: t = —15.00 and p., = 0.880;

(i) for symmetrical mode: v’ = —7.00 and p.. = 1.640, for anti-symmetrical mode:
[t + 15) — (t)*] = 0 and p.; = 0.2198]

Problem 6.5. The single-bay, single-storey symmetrical frame shown in Fig. P.6.5a
is subjected to unsymmetrical loading. Determine the critical value of the load P.

2L

(@ (b)

P.6.5 a Symmetrical frame with unsymmetrical load, b Unsymmetrical frame with symmetrical
load

Problem 6.6. The unsymmetrical single-bay, single-storey closed frame shown in
Fig. P.6.5b is subjected to symmetrical loading. Determine the critical value of load P
that will cause the frame to buckle.

Problem 6.7. In the symmetrical closed frame shown in Fig. P.6.6a, each of the
columns 1-2 and 1’-2’ carries an axial thrust of 2 P. In addition the horizontal member
1-1’ is also subjected to an axial load P. Determine the load factor, Ne, at which the
frame will collapse.

Problem 6.8. The symmetrical closed frame shown in Fig. P.6.6b is symmetrically
loaded. Determine the critical value of load at collapse.

Problem 6.9. The members of multi-bay frame shown in the Fig. P.6.7 have (EI/L)
values given in the circles. Determine the critical value of load P at which the frame
will collapse.

[Hint: Use principle of multiples to split the frame into single-bay frames. |

Problem 6.10. Determine the load factor N, at which the two-bay, two-storey frame
shown in Fig. P.6.8a will buckle when: (i) 8 = 2 and P, = 2P, = 2P, (ii) when
ﬂ:landP2=P1=P.

[Hint: Use principle of multiples to split the frame into single-bay frames]
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Problem 6.11. The single-bay, two-storey symmetrical frame shown in Fig. P.6.8b
is symmetrically loaded. The frame is hinged at the base points 3 and 3’. Determine
the critical value of load P which will cause the frame to buckle.

Problem 6.12. Determine the critical load for the rigidly connected two-bar structure
shown in Fig. P.6.9a when: (i) I; = +/31; (ii) I, is very small compared to I;, and
(iii) 1; is very small as compared to I.

(I,1.25L)

2§ L) ll

(2) (b) P

P.6.9

Problem 6.13. The joints 2 and 3 of the cantilever bracket frame shown in Fig. P.6.9b
are hinged and fixed, respectively, and the joint 1 is rigid. The members of the frame
are of uniform cross-section. Determine the critical value of load P that will cause
the frame to buckle.

Problem 6.14. The column 2-3 of the portal frame shown in Fig. P.6.10a is inclined
at an angle of 60° from the horizontal. Determine the critical load when the portal is
subjected to the given load system.

(13D

4
T

(@) (b)
P.6.10
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Problem 6.15. The symmetrical single-bay portal frame shown in Fig. P.6.10b has
inclined columns which are hinged at the base. Determine the critical value of the
load which will cause the frame to collapse.

Problem 6.16. In the single-bay, two-storey symmetrical frame, the bottom storey
has inclined columns as shown in Fig. P.6.11a. Determine the load factor N, at
collapse.

P.6.11

Problem 6.17. The symmetrical A-frame mast shown in Fig. P.6.11b is subjected to
a load system shown in the figure. Determine the critical value of load P that will
cause the mast to collapse, when P, = P, = P.

Problem 6.18. The wide base single-bay, two-storey symmetrical frame shown in
Fig. P.6.12a has inclined columns and is subjected to a symmetrical loading shown
in the figure. Determine load factor N, against collapse when P, = 2P; = 2P.

Problem 6.19. The narrow base, single-bay, two-storey symmetrical frame shown
in Fig. P.6.12b has inclined columns. Determine the critical value of P when P, =
P, = P.

Problem 6.20. The members of two-panel rigid-jointed truss shown in Fig. P.6.13a
have constant ET and L throughout. The design is such that P, (= w2 EI/L?) of each
member equals 3+/3 P. Determine the load factor N, against collapse of entire truss.

Problem 6.21. The members of rigid-jointed Warren truss shown in Fig. P.6.13b have
constant ET and L throughout. The design of the frame is such that P, (= #2EI/L?)
of each member equals 2+/3 P. Find the load factor N, at which entire frame will
collapse.
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e

P.6.13

Problem 6.22. The symmetrical A-frame mast shown in Fig. P.6.14 is subjected to
a vertical load P at the apex. Determine the critical value of load P that will result
in the collapse of the mast, when it is: (i) hinged at the base points 3 and 3’; and
(ii) fixed at the points 3 and 3’. EI is constant throughout.

EI/L is constant

(0.3473L)

P.6.14
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[Ans. Py = 2(pg Pe) siny. In the symmetrical non-sway mode, the joint 1 does not
rotate.

(a)r +1' —5.7587 = 0 and p, = 0.3465, P, = 2(0.34657>EI/L?) sin 80°,

(b) r = —2.87935 or p,; = 2.7021 and so on.

In the anti-symmetrical or sway-mode assume the member 2-2' to be displaced in
such a way that upper part of the frame is rotated about the point 1 through unit
angle. Therefore,

(a) 12t + 17.276) — (t')*> = 0 or pe; = 0.2237

(b)t = —8.638 and p; = 0.8084 and so on.]

Problem 6.23. Analyze the continuous beam-column shown in Fig. P.6.15 by: (i) mo-
ment distribution method; and (ii) stiffness matrix method when: (a) the axial load P
is equal to zero, and (b) P = 0.4 P..

AT .
’ ZIL %”L TIL ’

|

| R
P.6.15

Problem 6.24. Analyze the rigid frame shown in Fig. P.6.16 by: (i) moment distri-
bution; and (ii) by stiffness matrix method when the load factor N, = 2.0.

i (P/4L) per unit length 5
. ARTERERERETERRNIIN ¥

P.6.16
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Buckling of Members Having Open Sections

7.1 Introduction

Many flexural members are braced by other elements of the structures in such a man-
ner that they are constrained to deflect only in the plane of applied transverse loads,
e.g. slab-beam floor systems are extremely rigid in their own plane and the beams
can deflect only in a plane perpendicular to the slab. The horizontal and rotational
displacements are prevented by the floor system. On the other hand there are nu-
merous instances where the members have no lateral support or bracings over their
lengths and members can buckle in lateral direction under transverse loads. Similarly
open column sections having only one or no axis of symmetry e. g. a channel section,
and T-section or an angle section when subjected to axial compression; simultane-
ously undergo lateral displacement and rotation. This type of failure occurs because
of low torsional rigidity of such sections. Further, in such sections, the critical load
lies between the critical load for the torsional mode and that of pure flexural mode.
A pure flexural mode exists when the centroidal axis coincides with shear centre
axis. Therefore, a member subjected to an axial compressive force can also undergo
lateral buckling.

7.2 Torsional Buckling

7.2.1 Member Subjected to Torque

When slender members are subjected to moments about their longitudinal axis, tor-
sional shear stresses develop. In circular cross-sections the shearing stresses at every
point in the plane of cross-section act in the direction perpendicular to a radius vec-
tor. On the other hand in non-circular forms, the shearing stress has components
both perpendiculars to radius vector and in the direction of radius vector. This extra
shearing force results in a shearing strain both within the plane of cross-section and
normal to it. Since, the shearing force components vary from point to point, the

cross-section does not remain flat and undergoes out of plane distortion which is
M. L. Gambbhir, Stability Analysis and Design of Structures

© Springer-Verlag Berlin Heidelberg 2004
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called warping. The warping is predominant in the members having thin walled open
cross-sections such as an I shape or a channel or an angle. In the cases where warp-
ing displacements are restrained, very high normal stresses called warping normal
stresses develop. However, it is to be understood that the warping normal stresses oy
are self equilibrating i.e. their integrated effect over the cross section in zero. There
are two approaches namely equilibrium approach, and energy approach which are
commonly used for the analysis of such sections.

L. Equilibrium approach
(a) Rectangular sections

The stresses developed in a non-circular cross-section subjected to a torque can be
divided in two categories. The first of these referred to as St. Venant or uniform
torsional stresses and the second as non-uniform or warping stresses. If the warping
is unrestrained, then the applied torque is resisted completely by St. Venant shear
stresses. On the other hand if the member is restrained from warping, then the torque
is partly resisted by St. Venant shearing stresses and partly by the stresses produced
due to constraint on warping. The St. Venant shearing stress in a rectangular cross
section which is parallel to the edges is normally represented in the same form as
used for a circular shaft i.e.

M, =GJ(dB/dx) (7.1)

where M, 5, J and 8 are torsional moment, the St . Venant torsional constant and
total angle of twist, respectively. G is the shear modulus of rigidity and X-axis is
along the centroidal axis of the member.

The corresponding maximum shearing stress is given by

M d
Tsy,max = Jx’st = Gtaﬂ

where ¢ is thickness (smaller dimension) of the rectangular cross-section. It should
be noted from Fig. 7.1b that in Y- and Z-coordinate directions, the shearing stresses
are parallel to the outside surface of the members and vary from zero at the centre of
the member to a maximum at the surface. t;, max Occurs at the centre of longer side
as shown in Fig. 7.1a. The shearing stresses due to St. Venant type torque at the four
corners of the cross-section equal zero.

For a rectangular cross-section where aspect ratio (b/t) is large, the torsional
constant J can be approximated as

7.2)

1 3
]~ 3bi (7.3)

For open cross-sections consisting of several thin plate elements rigidly attached to
one another to form a thin walled shape as shown in Fig. 7.1¢, J is taken as

n n
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T sv, max

T sV, max
"—_—
[P S ——
(@) ®)
n— T

i "

(©)

Fig. 7.1a—c. St. Venant shearing stresses in a rectangular- and I-cross sections due to torsional
moment
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where i refers to a typical of n connected plate elements. The values of J for some
typical sections are given in Table 7.1. However, in practice J is modified by a factor

o as
n n l
J=aZJ,»=aZ§b,~t,.3 (7.4)
i=1 i=1

where @ = 1.3 for I-sections, 1.12 for channels, 1.00 for angles, and 1.5 for welded
beams with stiffening ribs welded to the flange. For riveted beams oo = 0.50.
For the I-section shown in Fig. 7.1c, J is given by:

1.3
J= —3—(b1tf + bot3 + b3t3)

Consider three cases of I-shaped wide flange cross-section loaded as shown in Fig. 7.2.
In the first case the torque is applied at the ends and rotation about X-axis is allowed
i.e. the member is not restrained against warping displacements and hence no warping
stresses will develop and the flanges will remain straight. This is a case of uniform
torsion inducing only St. Venant stresses. In practice this case arises when a simply
supported member is twisted at its ends by other members.

On the other hand in the case (b) shown in Fig. 7.2b the member is not free to
rotate about the X-axis at the ends and hence the flanges do not remain straight i.e.
warping stresses develop. However, due to symmetry all warping displacements are
eliminated at mid point. In this case contribution of uniform torsional strength is
maximum at the ends and decreases towards the centre. While warping strength is
maximum at the centre and decreases towards the ends.

The beam in case (c) represents one-half the beam of case (b). In general, the
applied torques are resisted by the sum of uniform (St. Venant) torsional resistance
and the warping resistance i.e.

M, = Mx,s + Mx,w (1.5)

I 1

I-1 II-11
: I
.,...m|IIIIIIII|ll|||||l||||m|u.n.. = \Z‘ I
| L |1
1-I II-I1

I [—-![

s PRSI

I-1 II-11

Fig. 7.2. Rotations of wide-flange member due to torsional moment
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Table 7.1. Properties of some typical sections

295

Shape of cross section Location J=3 U Iy
of shear centre, S i=1
Axis of symmetry yo = —e J=NL+ ) % = {441
0 = 0 J1 = %st
> b= 1b
Z
b
Y Yo =—e J=h+h LG+
I =1b?
= —b2t3
353 333
yo=—e J=h+h Se+ig
z20=0 J = %dta,
Jp = bt}
- Y 42a 2 2
Axis of symmetry l y0=e(1 + ) J=251+ 7 —4—[Iz+e A
2
tw | 20=0 n=4  x(1-44)]

N
— b =tdr

< o,ﬁl ’ tb
—o—]
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Table 7.1. (continued)
n
Shape of cross section Location J=>1U I,

of shear centre, S i=1

Yo=20=0 J=25i+1 £y,
Jy =36}
By = 3dt]

yo = 2psili e J=h+h+7] a2 1k

20=0 ho=1b18
Jr = §byt},
By =Lar

Yo=20=0 J=2N+h L,b
Jy = 3bi}
B =1d}

2 11 and I, are the moments of inertia of the top and the bottom flanges, respectively, with
respect to the Y-axis

b 1, is the moment of inertia of the cross-section with respect to the centerline a-a of the
web
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Their relative magnitudes depend on the geometry of the cross-section and the ratio
of elastic modulus E to shear modulus G, i.e. E/G.

(b) Warping of I and wide flange sections

In the following treatment it is assumed that the twist is small and the relative geometry
of the cross-section does not change as member rotates. The warping effects can be
described by considering lateral bending of members due to twisting. Consider a [
or wide flange section subjected to twisting moment M, as shown in Fig. 7.3a. Since

Y
4
Z =T
L
X
MX
()
2P vy
Y “ u
A
= [ —1 dr2
dn2
2 / } a2
d \_, 24 M,
Vf
e

(b) (©)

Fig. 7.3a—c. Warping of wide flange section due to twisting moment. a Beam subjected to
twisting moment, b typical cross-section, ¢ rotated cross-section
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the section is not allowed to rotate at the support (i.e. warping deformations are
constrained) it results in a differential lateral displacement of the top and bottom
flanges, one bending to right and one to left as shown in Fig. 7.3c. This differential
translation of the flanges accounts for primary warping and the rotation corresponds
to St. Venant effect. The shear forces V¢ in the flanges form a couple referred to as
warping torsion, M, (= V¢d). The moment My induced in the flange about Y-axis
due to lateral (horizontal) deformation u is given by
d%u
M; = —Elfw (7.6)

where I is the second moment of area of flange plus half the web section, about Y-
or vertical axis.

For small angle of rotation 8, displacement u can be expressed as: u = B(d/2).
Therefore, from (7.6)

d\ [d*B
Mi=(—El)|=||— 7.7
¢ = (—E) (2) ( : 2) (7.7)
The shear force in the flange is given by:
dM; d\ (a8
Vi=—=—(ER|z||— .
P~ ( o(z)(”) (1.8)

where d is the depth of cross-section centre to centre of flanges. The warping resistance
of the cross-section resulting from the couple formed by two equal and opposite flange
shear forces V; is given by

a\ (&
Mx,w = - (EIf) (_2—> (af)

For an /-shaped cross section, /r may be approximated by I,/2 of the total cross-
section. Therefore,

d2 d3 I3 d3 /3

Mx,w = - (EIy) (T) (E) = —(Ely) a—);g (79)
where I, is referred to as warping constant of the cross-section. Warping constants
for some of the typical sections are given in Table 7.1. Equation (7.9), though derived
specifically for I or wide flange section, is also valid for thin walled open cross-
sections with approximate value of I,,. Substitution from (7.1) and (7.9) into (7.5)
gives twisting equilibrium equation

dg &g

My = Mys+ My = GJ— — Ely— (7.10)
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Defining distributed variable torque as

dM d’g d
my dxx =GJ@_EIWE€ or
d GJ\ &
46 _ (ST _ _m (7.11)
dx4 El, ) dx2 EI,

Thus the stresses produced in thin walled type open cross-sections subjected to torque
are

(a) St. Venant shearing stress,
Tsy,max — Gt(dﬂ/dx) (712)

and occurs on the surface at the mid point of thickest part.
(b) Warping normal stress,
Mib  Mip  Edbd’B

_ _ Ao _ _EdIp 7.13
Twmax = 00,2) 1, 4 dx? (7.13)

where b is the flange width.
(c) Warping shearing stress,

_ ViAy) _ Ed(Ay) (93_/3 )
o Ists - 2t dx3

At the centre of flange Ay is maximum and is given by Ay = b?#/8. Hence

_ (Ed*\ &£B (7.14)
i AT T '

7.2.2 Member Subjected to Axial Force

Consider a column with double symmetric cross-section subjected to an axial load P.
Such a section where shear centre coincides with the centre of gravity can have pure
flexural modes in X-Y and X-Z planes depending upon the axis about which second
moment of area is minimum. It can also have a pure torsional mode simultaneously.
In a buckled condition, the axial load P acts on a slightly rotated cross-section. A fibre
element of length dx and cross-sectional area zdr located at a distance r from the
axis undergoes a transverse or lateral displacement & (= Br) as a result of rotation
(without translation or distortion). This element can be treated as column under axial
load dP (= otdr) which has undergone a lateral displacement, £. This deformed
elemental column is equivalent to a beam element subjected to a transverse fictitious
load of magnitude g(x) given by

2

a?M; &
9() = —3 = 75 (AP =dP

3
dx?
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or
d2
q(x) = ot dr)@

Substituting for &

2
q(x) = otr dr% (7.15)

where B is a function of x alone.
Since the load g(x) is acting at distance r from the axis of column it causes

a moment g(x)r about Z-axis. This moment is very small if the width of the flange is

small. Summing up the entire moment over the cross-section at distance x along the

column axis.

&

dx2dx

d
mxdx—adxdxfftr dr =ol,
A

where I, is the polar moment of inertia of the cross-section about the shear centre.
Thus the torque generated per unit length can be written as:

&g P d d’g
my = ol,— o3 = XI”@ = Prgaﬁ (7.16)
where 0 = P/A with A being the area of cross-section. Using (7.11) the torsional
behaviour of a uniform cross-section member subjected to axial compressive load P

is governed by differential equation:

&5 PE-GIop

dx* El, dx?
The polar radius of gyration, r, of the section about the centroidal axis is given by

ol _ bl
A A

In contrast to doubly symmetrical cross-sections, in singly- or un-symmetrical section
the centroid of the cross-section does not coincide with the shear (elastic) centre. If

the distances of shear centre from the centroid are given by (y, and z,) the radius of
gyration is given by

=0 (7.17)

I, L+,
r2——£ +

0T AT T A + + z
Equation (7.17) can be expressed in the standard form
d* d?
dx’f + def =0 or B”+a*8" =0 (7.18)

where o = (Prg — GJ)/EI. Equation (7.18) has a general solution of the form
(Appendix Appendix C):

ﬂ=Asinax+Bcosax+C(%)+D (7.19)
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Case I: Consider a column with simple end supports. The boundary conditions to be
satisfied are

(i) at x = 0: B(0) = B"(0) = 0.

This condition provides D = B = 0, and the condition
(iDatx=L:B(L)y=p"(L)=0

gives C = 0and AsinaLl =0 (7.20)

Thus for a simply supported column with doubly-symmetric cross-section, the tor-
sional buckling load is given by

o 712E1w+GJ A
RN Iy + L)

As noted earlier, in addition to torsional mode, there are two pure flexural modes.
The buckling load will be the minimum of three loads corresponding to these modes.
The other two buckling loads due to flexure are:

(n=1) (1.21)

Py =n?EL/L* and P, =n’EL/L?

It should be noted that these buckling modes are uncoupled.

Case II: Consider a column having built-in ends such that rotation and warping are
prevented. The boundary conditions to be satisfied are:

BO) =0 =pL)=p(L)=0

Incorporating these boundary conditions in the general solution given by (7.19) and
vanishing the determinant of the coefficients of constants A, B, C and D for non-
trivial solution provides characteristic equation

L (oL L L
2(cosaLl — 1)+ aLsingL =0 or sin i a—cosa— — sin ) = 0
2 2 2 2
(7.22)

This characteristic equation provides two solutions:

L 4n2ElL,\ A
@) sin “7 — 0 giving Pyo = <GJ + ”—Vi>

7)1 (for n=1) (7.23)

L oL L
(i) tan 2= = %= with lowest root “— = 4.4928,
2 T2 2
and therefore

80.75E1 A
Px,cr = (G-] + ———W)

— 7.24
L2 I, (7.:24)
This load is higher than the former and corresponds to antisymmetric mode of
buckling.
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I1. Energy Solutions
Internal Potential Energy

As discussed in Chap. 2, the total potential IT of a member consists of two parts:
strain energy U of the deformed member and potential energy V of the external loads.
In the case under consideration, U can be divided into parts: U; due to longitudinal
direct stresses and U, due to shear stresses. The strain energy due to direct stresses
is given by

1 2 2 2
Ui =5 [EL,(")* + EL,(v")* + EA€’] dx (7.25)

The strain energy due to St. Venant shear stress is given by

1 d 1 g\ d
Uz,lzifoaﬂdxzzf(—GJaﬂ>Hxédx

_ 1 dﬂ 2 _ 1 N2
“_E/GJ (Ex—) dx_—E/GJ(ﬂ) dx (7.26)

The component of strain energy due to warping stresses can be expressed as

Uro=3 f EL(8"Y dx (7.27)

Thus, the total strain energy in a member is given by

U=U+U;=U+ (U1 + Us»)

L
f [EL,")* + EL(v")* + EI(B")* — GJ(B)* + EA€’] dx  (7.28)
0

N =

The evaluation of the term [ E A€’ dx can be avoided, if the potential energy is reck-
oned from the value (zero) for the fully compressed but un-deflected (pre-buckled)
state of column and potential energy of external loads is determined on the same
basis. As the potential energy is zero for the straight column carrying its critical
compressive load, potential energy in post-buckled state is expressed by first four
terms of (7.28)

U =

L
5 [ [BLGY + ELOY + ELEY - GIgY] & (29)
0
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External Potential Energy

As explained earlier in Chap. 2, the potential energy of external loads, V is equal
to the sum of negative products of external forces and the displacements of their
points of application in the direction of forces. Reckoning V from zero for the fully
loaded but un-deflected column, V' will therefore represent change in potential due
to lateral bending and twisting only. For an axially or centrally loaded column shown
in Fig. 7.4 the compressive stress, o, = P/A is uniformly distributed on the end
surfaces. As the member buckles the stress o, changes to o, + do,. The work done
by do, may be neglected in comparison to work done by the stresses o.

For computation of work done by o, consider a fibre column of area dA shown
in Fig. 7.4b carrying a load o, dA at each end. The change in potential energy is
dV = —o,dAA, where A is relative displacement of the top w.r.t. bottom of the
column

A=A+ A,

where A; and A, are the contributions of curvature of fibre and the change in axial
stress do, in the post-buckled stage. Thus
) L
dW, = —0, dAA = —0,dA | A, + E/ do, dx
0

(@) ®)

Fig. 7.4a,b. Column subjected to uniformly distributed compressive stress, o, = P/A.a Actual
column under axial load, b fibre column
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X
A Original fibre column s'a"sin(y +B)
§

Y
: B M
~— Displaced N
. fibre column o
° : { /—\Q\ \
an\ oLt

(4 pd a ./ Ay $

A ; dA %, .
o . ( A\ . Yo
< AR
) / z dA 7 - P ﬂf >
s'a"cos(y+P) Az
(@) (®)

Fig. 7.5a,b. Movements Ay and Az of fibre column of area dA. a Displacements of fibre
column, b displacement of the cross-section

For the entire column cross-section

We = — /A dA——/fdaxddi

= —0y f A dA — f f do,dA | dx (7.30)
A 0 La
The integral in the parentheses in (7.30) is the component of resultant of additional

stress do, in X-direction, which must vanish because the external load does not
change. Therefore,

W, = —GX/AC dA (7.31)
A

Taking the coordinate axes X, Y and Z to pass through the centroid of the cross-
section with the location of shear centre, s, being represented by yp and zp and the
displacements by v, u and B as shown in Fig. 7.5. Consider a fibre column of area
dA at the point (y, z) before deformation. Owing to deformation the new position of
the fibre column is given by (y + Ay, z + Az), where Ay and Az are functions of x.

For small deformation: cos 8 = 1 and sin 8 = B. Therefore Ay and Az are given
by:

Ay=v— (20— 2)sinf=v—(z0—2)8, and
Az=u+ (o —y)sin=u+ (yo—y)B (7.32)
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The movement of the load in X-direction, A, for bi-planar deformation can be
obtained by extending the uni-planar deformation given by (3.6):

L
1 day\? | (dAz)\?
Ac—zf [(E) +(‘a) ] dx (7.33)
0

Substituting for Ay and Az from (7.32) into (7.33):

L

1
Ac=3 [ { [@)* + ()] + 2y0u' B’ — 2yu'B' — 2200/ B/
0
+ 2208 + [0 = »? + (20 — ] (B)?] dx (7.34)

Using the geometrical relations:

/dA:A,/ydA:O,/sz:O and f[(yo—y)2+(20—z)2] dA = I,

A A A A
the potential energy of external loads can be expressed as
1
2

L
V=-W. =0, / AcdA = / {O'XA [(u’)2 + (v’)z] + 20, Ayou’

A 0
— 20, AzgV' B + ox1p(ﬂ’)2} dx (7.35)

where I, is the polar moment of inertia of the cross-section with respect to the shear
centre. The complete expression for potential IT (= U + V) of beam is sum of (7.29)
and (7.35)

L
= % / {ELW")? + ELQ")* + EL,(B")* — GJ(B)* + P[)? + (v)?]
0

+2Pyou' B — 2Pzov' B + ;Ip(ﬂ’)z} dx (7.36)

Governing Differential Equations of Buckling

The total potential of member IT is a function of three variables u, v and 8. From
stationary potential principle, IT will be stationary if the following Eulerian equations
are satisfied
ElLu" + Pu" + PyyB’ =0 (7.37a)
EIZv//// + Py — PZO/S” =0 (737b)

1
Pyou” — Pzov” + EL,B”" + (PZp - GJ) B =0 (7.37¢)
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Equations 7.37 are in their most general form and are applicable to any type of
boundary conditions which can be expressed without contradiction in terms of vari-
ables u, v, B and their derivatives. Depending upon the properties of cross-section
the results can be simplified considerably.

1. Column having cross-section for which shear centre coincides with the centroid

For the cross-section having two axes of symmetry, the shear centre lies at the centroid
i.e. zo = yo = 0 and the Eulerian governing buckling equations reduce to
ELu" + Pu" =0 (7.38a)
ELV" + Pv" =0 (7.38b)

1
ELS" + (PXP - GJ) B =0
or
ELB" + (0:I, —GJ)B" =0 (7.38c)

It should be noted that these buckling equations are uncoupled. The first two equations
are identical in form with the differential equations for buckling of columns subjected
to bending moment about Y- and Z-axes, respectively. The third equation describes
buckling of column by twisting.

Example 7.1. A straight I-section column with the end cross-sections prevented from
twisting but the flanges at the ends are free to rotate in their own planes, is subjected
to a twisting moment about its centroidal axis, determine the value of the stress at
which buckling takes place.

The governing differential equation for this case is:
EIB" + (0xl, —GJ)B" =0 (7.39)

Boundary Conditions. As the column is twisted about its centre line the displacement
of the flanges in their own planes are: u = B(d/2). Since the flanges are free to rotate
at the ends, the bending moment in the flanges (i.e. curvature, u”) must be zero i.e.
B” = 0, and in addition as the ends of column are prevented from twisting, 8 = 0.
Thus the four boundary conditions are:

BO) = B"(0) = B(L) = B"(L) =0

The displacement function satisfying these boundary conditions is given by:

B = Asin =~ (7.40)
L
where A is an arbitrary constant and r an integer. Substitution of B from (7.40) into
(7.39) provides
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n*r* | nmx n*n? . nmx
EI, (A_LT sin T) + (opl, — GJ) (—A?— sin —L—> =0

2.2 2.2
n°mw n-mw . hnix
[EIW (7> — (oply — GJ)] (—ZZ—A sin T) =0

For a non-trivial solution

n27'r2
EI, <_LZ—> —(0pl, —GJ) =0

T E[ ,(L\ L*(GJ
- . T b 7.41
o= [ (5) = ()] o4

where I, I, and J are the cross-sectional properties. The polar moment of inertia
I, is referred to the shear centre of cross-section. The lowest stress og, at which
buckling occurs corresponds to n = 1. Therefore,

TlEA T/ I, L? (GJ
A = P = —— —_— _— _—
oper per L2 [<1p> " n? (E1p>]

72EA

= — " 7.42
(L/rp)? (742

where rg which has dimension of length is an equivalent radius of gyration and
depends upon shape of the cross-section and length of the beam-column and is

expressed as
W, L2 (G 12
rg=1||— | =
g L) " 72 \EL

Therefore, a column will be torsionally unstable at a critical stress o Which is
equal to the critical stress for lateral buckling of an equivalent column having the
slenderness ratio (L /rg). The critical stress of the column will be lowest of the three
SUIESSES Oy, cr, O7,cr and g ¢r, and it will correspond to the smallest radii of gyration
ry, r; and rg.

For the end conditions other than simply supported or hinged

m’E

Ocr = E‘m (7.43)

where KL is the effective length of the beam-column. In the case of fixed-ended
column or fixed-free column, for torsional buckling the slenderness ratio considered
is KL /rg where rg is given by

I, K2L? (GI\T"? -
rg=|[— — .
? I, 72 \El, (749
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For rolled I-beam sections, I, = I, + I; and I, = [(d? /4 1,]. The equivalent radius
of gyration is given by

AV <3 5l 2 12 (7145)
rg=1|— .
A 4)1,+1, = |EU,+1)

For most of the standard steel beam sections rg is larger than r, and hence columns
buckle laterally; only columns of short length with very wide flange have rg values
slightly smaller than ry and such column will buckle torsionally.

2. Column with one axis of symmetry

If the cross-section has an axis of symmetry, say the Y-axis, then zg = 0 and (7.37)
reduce to

ELu" + Pu" + Pyf" =0 (7.462)
ELY" + PV =0 (7.46b)

i
Pyou” + EIB" + (PKP - GJ) g =0 (7.46¢)

The second equation is uncoupled and is the usual differential equation of flexural
buckling in Y-direction. For pin-ended column the critical stress is

_ n’E
(L/rp)?
The first and third equations involve coupling between buckling in Z-direction and

twisting. For a pin-ended column with twisting prevented, the boundary conditions
are

(7.47)

Oy,cr

u(0) = B(0) = u"(0) = p"(0) =0
u(L) = B(L) =u"(L) = p"(L) =0

The displacement functions satisfying these boundary conditions are given by

14
u=Asinn—f and ﬂ=BsinﬂTi
L L

Substituting these deflection modes in the governing differential equations; two ho-
mogenous equations are obtained in terms of constants A and B. For non-trivial
solution (A # 0, B # 0) the determinant of coefficients must vanish. The lowest
critical load occurs for buckling in one half wave i.e.n = 1

r2
(Py — Py) —Ler)o (é - ) —Yo 0
2 T, = =
— e Yo [H_LE2AV' - (Pcr]!z - GJ)] _— __%E [1 _ :_é]
2 (A%
(Pcr — Py) (Pcr - Pﬁ) - P; T =0 (7.48a)
p
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or
2 2
A N R A T
ré re b
where
I L? (GJ EA
A=)+ (Z)] and Po=T"2, (7.48b)
L) m* \EIL (L/re)?

and r, is an equivalent radius of gyration determined from the quadratic equa-
tion (7.48). Thus the critical load for buckling by torsion and flexure will therefore
be the same as critical load in the ordinary column theory of an equivalent column
having slenderness ratio L/re.

Equation (7.48) always has two positive roots of r., one of them is smaller than
both ry and rg. Thus the column in question will buckle at a load corresponding
to smaller of the values r, and r.. If r, is smaller, the column will buckle in the
Y-direction without twisting; if the root r, is smaller than r,, the column will deflect
in the Z-direction and twist simultaneously. Since, r. is always smaller than ry, the
critical load is smaller than that given by conventional column theory for buckling in
the Z-direction.

3. Column with a cross-section with no axis of symmetry

This is the most general case with three coupled Eulerian governing equations given
by (7.37). In this case both flexural and torsional displacements occur at the instant
of buckling. For illustration consider a beam-column with simply supported end
conditions. As in the previous cases the deformation functions may be assumed in
the form:

u=Asin(zx/L), v=Bsin(nx/L) and B = Csin(rx/L)

For a non-trivial solution (A # 0, B # 0 and C # 0), vanishing the determinant of
coefficients of constants A, B and C provides the characteristic equation as follows:

(Pz - Pcr) 0 Py zo
0 (Py_Pcr) —fer)o =0
2
Pz — LYo [n:;lw - (pcr%p - GJ)]
(Per — Pz)(Pcr_Py)(Pcr_Pﬂ)
Az} Ay?
~P (P — Py) (1—") — PL(Pa— P,) (%) =0 (7.49)
P P

ry r 3 R\ (A% 2\ (A%
re re re re IP re IP

I, L2 GJ ﬂzEA
2 w |
P, = 7.
where ’ﬁ = ‘ (——p) + — ( p) and or = ( / 3)2 ( 50)
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The equivalent radius of gyration, r. can be obtained from the cubic equation (7.50).
The smallest of the roots of (7.50) will provide critical buckling load for the column
in question.

Example 7.2. A 7.0 m long member consisting of MB 400 @0.616 kN/m rolled steel
section is to be used as a column. It is specified that all the end conditions of the
member are of simple support type. Compute the buckling load of the column.

For the given cross-section of the column in which the shear centre coincides
with the centroid, the flexural and torsional buckling modes would be uncoupled.
The properties of the member are:

Length, L = 700cm; area, A = 78.4 cm?; depth, d = 40cm; flange width, b =
14 cm; flange thickness, f = 1.6cm; web thickness ¢, = 0.89cm; I, = 622 cm*;
I, = 20500 cm*; E = 20000kN/cm?; G = (3/8)E and I, = I, + I, = 21122 cm®.

1 2 1 2 1
7=y §bit,? = 5bt? + gdtf, =3 x14x 1.6° + 3 %40 0.89° = 47.63 cm*

The three independent elastic buckling loads of the column are:

n2EIL,  m* x 20000 x 622

P, . = = = 250.57kN
yoer L? (700)2
b m2El,  m* x 20000 x 20500 8258 24 KN
s o2 (700)2 B '
P 72EA
P (L /rp)?
where,
= (1) ()= (%)
rﬁ = — - + _—2— —
4 J\1,) " =2 \EL
402 622 700\% /3 47.63
= =) (== Y (2 x == ) =53.76cm?
( 4 )(21122)l +( e ) (8 x 21122) cem
or
rg =7.332cm
Therefore,

2 x 20000 x 78.4
Poor = = 1697.90kN
B (700/7.332)2

The critical condition is that of flexural buckling about minor axis of the member at
a value of axial thrust of 250.57 kN. The associated stress is 31.96 MPa (= 250.57 x
10%/7840), which is well within elastic limit. If the column in question had been
supported in Z-direction such that bending about Y-Y axis was prevented, but twisting
about longitudinal axis was allowed, then the column would buckle torsionally at the
next higher critical value, Pg ., = 1697.90kN with critical stress of 216.57 MPa.
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The foregoing procedures are equally applicable to clamped and free bound-
ary conditions. In the following example application to clamped end conditions is
illustrated.

Example 7.3. Determine the critical load at which a uniform column having a cross-
section with one axis of symmetry (e.g. a channel section with symmetry about
Z-axis) will buckle. The column has clamped end conditions. It is restrained from
warping and is not allowed to rotate about its longitudinal X-axis.

As the section is symmetrical about Z-axis, yo = 0 and governing Eulerian
equations (7.37), reduce to:

d*u d’u
d4 d2 d2
EI, Sy + P-d—x—2 — P(— zo) ﬂ =0 (7.51b)
4 2 2
a'g d*g d®v
w P — P =0 51
Ely— (GJ A) o2~ P (1.51c)

The first of these equations contains the displacement u only and is the usual differ-
ential equation of flexural buckling about Y-axis. Therefore, for clamped columns
the critical load is given by

The second and third equations contain both v and 8 but not u. This indicates that the
equations are coupled, and that the buckling in Y-direction and twisting will occur
simultaneously. Due to this coupling the equations need be solved simultaneously.
However, since these equations are of even order with constant coefficients, a variable
separable type solution can be used. This implies that the mode shapes v and B are
not significantly affected by coupling because they are of second order, and hence
can be neglected.
For the flexural mode the boundary conditions for clamped ends are

w0 =) =ull)=u'(L) =
v(0) = (0) =v(L) =v (L) =0

For the torsional mode the boundary conditions stipulate that the column is restrained
from warping and can not rotate about X-axis at the ends. These can be expressed
mathematically as

BO) =B 0) = (L) = B'(L) =
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The shape or displacement functions for u, v and 8 satisfying above boundary con-
ditions may be taken as

2
u=A (1 — cos —”’5> (7.52a)
2
2
v=8 (1 —~ cos ﬂ) , (7.52b)
L
2
g=C (1 ~ ¢0S %) (1.52¢)

Substituting (7.52a) in (7.51a)

27 \* 2m\? 2mx
—EIy T + Pcr —E ACOST =0

For non-trivial solution, A cos(2w/L) 7 0 and hence

_ 4n’El,  n’El,
PET L2 T (0.5L)?

This expression is identical to one written directly earlier.
Substituting (7.52b) and (7.52c¢) in (7.51b) and (7.51c)

[ (1)« (5) Joe () =0
() o () (01 ) () Je-o

For non-trivial solution (B # 0, C # 0), the determinant of coefficients of B and C
must vanish, that is

(Pcr - Pz) PchO
Pazo (£) (Pu— Py)

Az}
= (1 - -I—O) Pczr —(P;+ Pg)Py+ P,Pg =0 (7.53)
P

where,

P An?El,  m’El
T2 T (0.5L)?

p= A (g +6r) =2 mEly +(GJ)
F= [ T I, L(0.5L)2
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These results can also be obtained from the case of simply supported boundary
conditions by substituting KL for L where K is the effective length factor. For
a given cross-section P, and Py are known quantities, the roots P,; and Py of
the quadratic characteristic equation can be computed. The first critical load will be
given by smaller of P 1 and Py, where Py < Pep. If Py is minimum, a pure
flexural mode will control the critical load; on the other hand if P ; is minimum
a torsion-flexural mode will provide the buckling load.

It should be noted that the problem of evaluating critical load is equivalent to that
of finding the deflected configuration for which the system is in equilibrium. This
can also be achieved by stationary potential principle using Rayleigh—Ritz technique.
The procedure is illustrated in the following example.

Example 7.4. A uniform column having channel cross-section is clamped at one end
and is completely free at the other. Estimate the critical load at which buckling will
occur.

Since the boundary conditions at the ends of the column are not symmetric the
analysis using Eulerian differential equation approach is difficult. The problem can
be handled easily by stationary potential principle using Rayleigh-Ritz technique.

As the cross-section has axis of symmetry about Z-axis, yo = 0. The geometric
boundary conditions at the column ends are:

For the clamped end:

u(0) = v(0) = B(0) = u'(0) = v'(0) = B'(0) =0
For the free end

W'(Ly=v"(L)y=8"(L)=0 and
u///(L) 7+_ 0, 'UW(L) 7+_ 0, ﬂ”/(L) 7+_ 0

The shape functions satisfying the above boundary conditions may be assumed to be
u=Afx); v=Bf(x) and B=Cf(x)
where,
fx) = BLx* — x3) (7.54)

The potential functional I7 given by (7.36) contains the first and second derivatives
of shape functions and thus requires following integrations:

L L
/[f’(x)]zdx = / [6Lx —3x?] dx = (25—4) L’
0 0
L L

f L7 (x0))Pdx = / [6L — 6x]%dx = 121> (7.55)
0 0
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Substituting for the shape functions u, v and B from (7.54) into (7.36) and for
stationary potential, the derivatives of IT w.r.t. A, B and C must vanish i.e.

L L

/ EL(f")*dx — f P(fH)*dx |A=0

0 0

ol
9A

This equation represents an uncoupled flexural-mode. For non-trivial A # 0 solution

L
EI 4 2dx
{ (9 s 5 25EI,  =*El, =2EI,
Py = ————— = (EI))(12L") = = =
' L 2413 L? (1.98L)2 (KL)?
JS(f)*dx
0
where K = 1.98. The exact value of K is 2.0. Vanishing other variations of I7
L L
oIl 11N2 N2 N2
5= EL(f")*dx — | P(f)*dx | B+ Pzo(f)dx [C=0
0 0
2.5EI
or [ B . P:' B+ (P;)C =0 (7.56a)
o1 [
3 = f Pzo(f)’dx | B
0
4 fEI " dx+/GJ(f)2dx /( ) tn(sax | € =0
0 0
2.5EI, A
or (Pz0)B + — i [( Iz + GJ) T~ PT C=0 (7.56b)
P J
For non-trivial (B = C # 0) solution of (7.56)
(Z.iglz _p Pz L

lf) [ ei) -]

AZD\ ,
1= =20) P~ (P, + Py)P+ PPy =0
P

where

2.5EI, n’El, A\ [ =*EL,
- — d P GJ 757
T T T aosrye M e aosne T (.57

The quadratic characteristic equation (7.57) can be solved for its roots P, ; and Py .
The minimum of three i.e. Py ; Pe,1 and P, will provide the critical load.
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7.3 Lateral Buckling of Beams

In the preceding sections the discussion was mainly confined to the stability analysis
of centrally and eccentrically loaded columns. In this section more complex buckling
problems of open thin walled sections will be discussed. An /-beam supported at
the ends and loaded longitudinally and transversely in the plane of web may buckle
side ways if it is laterally unsupported at the supports. If the flexural rigidity of the
beam in the plane of web is many fold its lateral stability, the beam may buckle and
collapse long before bending stresses due to transverse load reach the yield point.

7.3.1 Torsional Buckling due to Flexure

Consider an 7- or wide flange type simply supported beam subjected to planer moment
as shown in Fig. 7.6a. The top flange of the beam is under uniform compression and
would tend to buckle in weaker (i.e. downward) direction but the web prevents the
same and hence the flange has tendency to buckle laterally (i.e. horizontally). On
the other hand the bottom flange being in tension tends to remain straight. Thus the
top flange bends farther than the bottom flange and in consequence the entire cross-
section twists. This also holds good for planar rectangular beam. At the critical value
of bending moment, M,, ., the member becomes unstable and warps i. e. undergoes
rotation and lateral deflection which may cause collapse.

e v [

A

(] ©

Fig. 7.6a—c. Lateral-torsional buckling of beam subjected to end moments. a Beam subjected
to end moments, b deflected shape of beam, ¢ deflections of cross-sections
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In the following analysis it is presumed that the cross-section of the beam is
constant and the fibre stresses due to external load do not exceed proportionality limit
at the instant of buckling. Moreover, the distortion in the plane of cross-section is
considered to be negligible such that section does not change shape. The displace-
ments are also considered to be small such that secondary effects of displacements
are ignored. Based on these assumptions, the lateral displacements of flanges are
taken to be caused primarily by bending of flanges about Y-axis.

As defined in previous sections, Z- and Y-axes are principal axes of /-section
which may have unequal flanges; the coordinates of the shear centre are generally
represented by yo and zo; v and u are the components of displacement of shear centre
parallel to the rotated (variable or displaced) axes Y'- and Z’-; 8 is the angle of twist
(rotation of axes) with respect to longitudinal axis X as shown in Fig. 7.6b. Normally
the bending rigidity of /- or rectangular-beam cross-section about Z-axis (major axis)
is quite large when compared to that about Y-axis. Thus deflection v in the plane of
applied moment is small as compared to lateral displacement u and angle of twist, 8.
The buckling problem can be treated both by classical differential equation method
and stationary potential energy principle.

Beams with Symmetric Cross-Section
For a doubly symmetric cross-section: yg = zo =0
1. Differential equation solution

Three differential equations can be written by considering the problems of warping
without translation, bending without warping, and that of constant torque using small
displacement theory. Applicability of linear superposition of effects is presumed.

The lateral displacements of the top and bottom flanges u, and u; can be related
to u and 8 which are the lateral displacement and angle of twist of shear centre with
respect to longitudinal axis, respectively, of cross-section.

d
u,=u+u'=u+,3<§)

and up=u—u=u—p (t—zi) (7.58)

where 1’ is the displacement of center of flange with respect to the centroid of the
cross-section and d is the depth. In the deflected configuration of beam the components
of the applied moment M,,, with respect to displaced or variable axes X', Y’ and Z’
can be obtained from Fig. 7.6c.

My = My, cos B = Mo;
My’ = M, sin B = M.,

du
My =|— )M, 7.59
and (dx) (7.59)
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Since sin 8 &~ B and cos 8 ~ 1.0. The resistance of beam to these components can
be expressed as:

d%v d’u
MZ/ = EIZ@, My/ —_ Elya—x—z (760)
M, = torque developed by transverse shear in flanges i.e. warping torsion +

St. Venant or pure torsional resistance = My, + My.
Transverse shear in the flange,
dM f d3u’
e=m e
where Mg is the bending moment in the flange about Y-axis and It (% I,/2) is the
moment of inertia of the flange w.r.t. Y-axis. Thus

d &8
Vf = Elf (5 X Ex—3>
Then torque developed is given by
1 5, &g g
where,
1
I, = Elfdz
Therefore,
d’p dg
My = EIWd—xg - GJ (Ex—) (7.61)
Thus the equilibrium equations are:
dv
Elzai —M,, =0 (7.62a)
dZu
Elyd—xi —BM,, =0 (7.62b)
d3g dg du
EIW (@) - GJ (a) - MOZ (a) =0 (762C)

The first equation describes bending about major axis of the cross-section and is
independent of lateral and torsional displacements. The last two equations, however,
are coupled and must be solved simultaneously. Eliminate (d%u/dx?) term from these
two equations:

d4ﬂ d2,3 M2
El,— —-GJ— — o = .
v 2 ( 7 Iy) =0 (7.63a)
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which is of the form: 8" — 18" — A, 8 = 0 where

=20 and s, = M, (7.63b)
'TEL >~ \(EL)(EL,) '

This is governing differential equation with general solution in the form

B = Asinha;x + Bcoshajx + Csinayx + Dcosazx (7.64)
where
172 1/2
)»1+‘/)\,%+4)\,2 —)»1-}-‘/)»%'*‘4)»2
gq=f— and o = (7.65)

2 2

with boundary conditions for simply-supported ends
BO) =B(L) = p"(0) = g"(L) =0

Substituting the general solution into the boundary conditions and for non-trivial
solution (A # B # C # D # 0) the determinant of coefficients of these constants
must vanish i.e.

(o8 + a%)z sinha;LsinayL =0

Since the term in the parentheses is sum of two positive numbers, hence can not be
zero. On the other hand sinha ) L can be zero only when (@ L) = 0, which is a trivial
solution. Therefore, for a solution: sinay L = 0.

22
, n°m

awl=nr or o= 2

substituting the value of «; from (7.65).

—AM+JA2+4Ah 22

2 L2

by .-1 ﬁ+k 2_)} = fl_“ﬂ_“_k@)L
2T |\12 ! S A ZE P

where A1 and X, are given by (7.63b). Therefore,

or

nmw n?n2El
Moz,cr = T (Ely)(GJ) l:l + W}

GJL?
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For the smallest value of critical moment, n = 1 and hence

T w2El,
Moper = (Z) \/ (EL)(GJ) + EI, (_LT) (7.66)

The warping constant Iy, is negligibly small for a rectangular cross-section and hence
can be reasonably neglected i.e.

Moper = (%) VELGJ (1.67)

2. Energy method

At buckling, the shortening and stretching of longitudinal fibres of the flange due to
lateral displacement are

L L
1 1
24, = Ef(d“’) dx and 24, = 5/(‘1’”) (7.68)
0 0

The angle of rotation 8 through which M, travels as obtained from Fig. 7.7 is:
du; duy
dx
(&) ()]
ds 1 ; ds
dx = - — dx (7.6
5 (@) @)= [ (@) (&) o 0o
0

A, 1
g2 b
4d

1
= 4d

/
/

Fig. 7.7. Flexural member in laterally buckled mode
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The external potential due to applied end moment is therefore,

L
V= _ du (9p
We =V = My,(20) = MOZ/ (dx) (dx) dx (7.70)
0

The internal potential (strain energy) due to combined lateral and torsional displace-

ments are:
1 i d2
nes=bi [ () o [ (8
2
S(EL) / (d i ) e

Therefore, the total potential associated with buckled configuration is from (7.70)
and (7.71)

L L
M=U+V= %(Ely)/w”)zdx + %(th(ﬁ’)zdx
0 0

L
1
+ 5(EL) f (B dx — Mo / WB)dx (72
0 0

For illustration consider the case of a member with simply supported end conditions.
Using Rayleigh—Ri