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PREFACE 

 

In producing this fourth volume in the series on stability and strength of structures, we 
have continued the policy of inviting several expert contributors to write a chapter each, 
so that the reader is presented with authoritative versions of recent ideas on the subject. 
Sufficient introductory material has been included in each chapter to enable anyone with 
a fundamental knowledge of structural mechanics to become familiar with various 
aspects of the subject. 

Each of the ten chapters in the book highlights the techniques developed to solve a 
selected facet of frame instability. Thus the earlier chapters deal principally with the 
instability of entire frames, as influencing the design of multi-storey structures; the 
chapters which follow cover a wider range of instability problems, such as those 
connected with joints, braces, etc., as well as special problems associated with thin-
walled structures, arches and portals. The topics chosen for the various chapters reflect 
the diversity of problems within the general area of frame instability and the range of 
analytical tools developed in recent years. 

As editor, I wish to express my gratitude to all the contributors for the willing 
cooperation they extended in producing this volume. I sincerely hope that the many ideas 
and experimental data included in the book will meet the needs of the engineer and 
researcher alike, and provide a stimulus to further progress in our understanding of 
structural behaviour. 

R.NARAYANAN  
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Chapter 1  
FRAME INSTABILITY AND THE 

PLASTIC DESIGN OF RIGID FRAMES 

 
M.R.HORNE  

Formerly Beyer Professor of Civil Engineering,  
University of Manchester, UK 

SUMMARY 

Idealised approximations to material stress-strain relationships lead to corresponding 
idealised limit loads—in particular, the rigid-plastic collapse load and the least elastic 
critical load. The real behaviour, allowing for stability and change of geometry, causes a 
reduction of carrying capacity below the rigid-plastic collapse value. The extent of the 
reduction depends on the slendernesses of the members and may be related to the value 
of the elastic critical load. Justifications for the Merchant-Rankine load, and for the 
modification suggested by Wood, are discussed, and applications to unbraced multi-
storey frames show the usefulness of this procedure. An example of the design of a multi-
storey frame involving frame stability effects is given. Special frame stability problems in 
single-storey pitched roof frames are discussed, and safeguards are described and 
illustrated by reference to two design examples. 

NOTATION 
ai Coefficients applied to eigenvectors ƒ∆i 

D Minimum depth of rafter 

E Elastic modulus 

F∆ Deflection function of a frame 

F∆L Linear deflection function 

f∆i Eigenvectors for critical deflection modes 

f∆L Linear deflection function of a frame under unit 
load 

h Height of columns in a portal frame 

�



hi ith storey height in a multi-storey frame 

IC, IR In-plane second moments of area of columns and 
rafters in a portal frame 

L Span of a portal frame 

l Length of a member 

Mp Plastic moment of resistance 

m Bay width in a multi-storey frame 

py Specified design strength 

 Effective design strength 

R Axial force in a member 

S Plastic modulus 

s Displacement of frame in direction of an applied 
load 

U Total potential energy 

UE Elastic strain energy 

UN Modified total potential energy (including plastic 
work) 

UP Energy absorbed in plastic deformation 

UW Potential energy of applied loads 

ui Sway deflection within ith storey 

W Factored vertical load on a portal frame 

Wi Vertical loads applied to a multi-storey frame 

W0 Uniformly distributed vertical load capacity of a 
portal frame roof in absence of thrust 

x Sway deflection of a frame 

α Ratio of lowest critical load to factored applied load 
or to failure load 

β Rotation of any member in a rigid-plastic 
mechanism 

εy Elastic strain at yield 

εs Strain at beginning of strain-hardening 

θ Rotation of a member in a plastic collapse 
mechanism: angle of pitch of a rafter 

λ Load factor 

λC Lowest elastic critical load factor 

λCi ith elastic critical load factor 

λF Failure load factor 

λMR Merchant-Rankine load factor 
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λP Rigid-plastic collapse load factor 

λWMR Merchant-Rankine load factor as modified by 
Wood 

µ Deflection parameter 

ρ (IC/IR) (L/h) 

σL Lower yield stress 

σU Upper yield stress 

σult Ultimate yield stress 

Φ Hinge rotation 

Φi Sway index in the ith storey 

Φmax Maximum value of Φi 

Ω ‘Arching’ ratio in a portal frame 

1.1 INTRODUCTION: ELASTICITY, PLASTICITY AND 
STABILITY 

The stability and strength of a framed structure may be explored in relation to the various 
approximations that may be made to the real stress-strain behaviour of the material of 
which the structure is composed. Mild steel has a stress-strain curve in tension or 
compression of the form shown in Fig. 1.1(a), in which an elastic phase OA up to an 
upper yield stress σU and a strain εy=σU/E (where E is the elastic modulus) is followed by 
plastic deformation at a lower yield stress σL up to a strain εs of the order of 10εy. Beyond 
a strain of εs, strain-hardening occurs, the strain ultimately becoming non-uniform due to 
necking, leading to fracture at an ultimate stress σult some 25–40% above σL and at an 
elongation of some 30%. Within the range of structural interest, the idealised elastic-
plastic stress-strain relation in Fig. 1.1(b) is a sufficiently close approximation. 

With the aid of computers, it is possible to follow analytically the behaviour of entire 
structures on the basis of any assumed stress-strain relationship. However, even if the 
idealised elastic-plastic stress-strain relation of Fig. 1.1(b) is used, limits of computer 
capacity can soon be reached. Further idealisations of behaviour facilitate design and may 
be used if their respective limitations are recognised. Provided the effects of the 
deformations of the structure on the equations of equilibrium are neglected, the idealised 
elastic behaviour (Fig. 1.1(c)) leads to a linear relationship between intensity of loading 
and the deformations and stresses induced in the structure, and is the basis for many 
design procedures. However, the analysis is valid only up to the stage at which yield is 
reached somewhere in the structure—a point which has no consistent relationship to the 
ultimate strength of the structure. For this purpose, the rigid-plastic stress-strain 
relationship in Fig. 1.1(d), leading to the concept of plastic collapse mechanisms, gives 
for many structures a close estimate of the actual load at which collapse would occur. 
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FIG. 1.1. Idealised stress-strain 
relations. 

While such idealised analyses are useful, they can lead to significant errors when the 
deformations of the structure are sufficient to change significantly the equations of 
equilibrium. In elastic analysis, this leads to non-linear behaviour, resulting in 
theoretically indefinitely large deflections as the elastic critical load is approached. If 
deflections calculated by a full elastic-plastic analysis significantly affect the equations of 
equilibrium, then the rigid-plastic collapse load ceases to be a good estimate of the failure 
load, and needs to be modified for use in design. 

In arriving at an understanding of the strength and stability of real framed structures, 
the results of idealised perfectly elastic and of idealised rigid-plastic analyses can be 
combined to give a good estimate of the actual behaviour, even when change of geometry 
and stability effects are important. These idealised analyses will therefore first be 
discussed.  

1.2 IDEALISED ELASTIC BEHAVIOUR 

When instability and change of geometry effects are ignored, the deflections and stresses 
are linearly related to the intensity of loading. Under proportionate loading, characterised 
by a load factor, the deflection function F∆L is given by 

F∆L=λf∆L 
(1.1) 
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where ƒ∆L is the deflection function under unit load factor. Instability effects are 
introduced by the presence of axial load components in the members of the frame. If 
these axial loads are assumed to be proportionate to the applied loading (a reasonable 
approximation for most framed structures unless gross deformations are involved) there 
are directly calculable reductions in the stiffnesses of members carrying compressive 
loads. At certain successive critical load factors, λC1≤ λC2≤λC3…(the ‘eigenvalues’), the 
stiffness matrix vanishes, leading theoretically to the possibility of infinitely large 
deflections in the corresponding critical modes (the ‘eigenvectors’) at those load factors. 
If the eigenvectors are represented by respective deflection functions, ƒ∆1, ƒ∆2, ƒ∆3,…, 
etc., then these have orthogonal properties, and it is possible to express the linear 
deflected form ƒ∆L in terms of the eigenvectors as 

ƒ∆L=a1ƒ∆1+a2ƒ∆2+a3ƒ∆3+… 
(1.2) 

When instability and change of geometry effects (other than gross changes of geometry) 
are allowed for in a complete elastic analysis, the resulting deflection function F∆ under 
load factor λ differs from the linear function F∆L, and may be expressed as 

(1.3) 

Hence the deflections theoretically approach very large values as λ approaches the lowest 
critical value λC1. In practice, the structure will cease to behave elastically at some stage, 
usually well before the lowest elastic critical load is reached. Apart from this 
consideration, however, eqn (1.3) would become invalid at large deflections because of 
two main considerations: 

(1) When deflections become gross, it is no longer possible to express any deflected form 
in terms of the eigenvectors. 

(2) When deflections become large, the pattern of axial forces in the members changes, 
and the critical load factors λCi are no longer relevant. 

Nevertheless, for structural deflections within the limits of practical interest, eqn (1.3) 
retains fully sufficient accuracy. 

The calculation of the lowest critical load factor is important, both because it is the 
asymptotic value for very large elastic deflections and because it has particular 
significance in approximate methods for the estimation of elastic-plastic failure loads (see 
Section 1.5). While computer programs are available for the estimation of critical loads, 
they are neither so commonly available nor so easily applied and trouble-free as 
programs for linear analysis. For this reason, various approximate methods of estimating 
elastic initial loads have been proposed (Wood, 1974; Anderson, 1980). One of the 
simplest and most reliable is that due to Horne (1975), and uses the results of a linear 
elastic analysis, as follows. 

Considering any rigid-jointed frame (Fig. 1.2(a)), let the loads W1, W2, etc., represent 
the total vertical loads (live plus dead) acting on the structure under factored loading, and 
suppose it is desired to find the  
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FIG. 1.2. Approximate calculation of 
the critical load of a rigid frame. 

further common load factor α by which these factored loads are to be multiplied to 
produce elastic critical conditions. The loads Wi at any storey level i include the dead 
loads for the frame and the walls added at the level, as well as the dead and superimposed 
loads for the floor itself. 

A linear elastic analysis is now performed with horizontal concentrated loads Wi/100 
applied at each storey level i, as shown in Fig. 1.2(b), and the sway index Φi=ui/hi found 
for each storey (where ui is the sway at any one floor relative to the floor immediately 
below and hi is the storey height). Then, if Φmax is the maximum value of Φi, considering 
all storeys, 

 (1.4) 

This method can be applied to a frame with any number of bays or storeys, and is 
applicable to frames in which the number of bays and/or the number of internal columns 
varies with the height. A proof that it represents an approximate lower bound to the 
critical load is given by Horne (1975). 
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1.3 STABILITY AND PLASTIC COLLAPSE 

The plastic theory of structures is now well understood by engineers, and offers a 
straightforward means of assessing the ultimate load of a continuous structure. For many 
single-storey and low-rise frames, plastic design can form the basis of the design 
procedure, but it may be necessary to estimate the effect of instability on the plastic 
collapse load. The reason why instability affects the collapse load lies in the effect of 
deformation on the calculated internal forces—deformations either within the length of a 
member, or of the frame as a whole. The problem is therefore best introduced by 
considering the effect of deformations on plastic collapse loads. 

The fundamental theorems of plasticity refer strictly to rigid-plastic materials, that is, 
to materials with an infinitely high modulus of elasticity (Fig. 1.1(d)). The structure is 
assumed to have no deformations at the collapse load. In exploring the effect of the finite 
deformations induced by elastic behaviour before collapse occurs, it is instructive first to 
consider the effect of finite deformations in a rigid-plastic structure.  

 

FIG. 1.3. Simple plastic theory of a 
portal frame. 

The work equation at collapse, assuming infinitely small deformations, for the fixed base 
portal frame in Fig. 1.3(a) is derived from a general equation of the form 

λP∑Ws=∑MPΦ 
(1.5) 
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where the first summation is for all loads W (multiplied by the plastic collapse load factor 
λP) with their associated small displacements s, while the second summation is for all 
plastic hinges with full plastic moments MP and hinge rotations Φ. It follows for the 
numerical example in Fig. 1.3 that λP=1·60. Confirmation that the correct mechanism is 
that shown in Fig. 1.3(b) is obtained by constructing the bending moment diagram at 
collapse, Fig. 1.3(c). This shows that the condition of not exceeding the full plastic 
moment has been satisfied. The rigid-plastic load-deflection relation is OGH in Fig. 
1.3(d). If the elastic-plastic idealisation of the stress-strain relation is used to obtain a 
more accurate estimate of the true load-deflection curve for the structure, the curve OFJ 
is obtained, rising ultimately to meet the rigid-plastic line GH. 

Considering now the effect of finite deformation, we take a finite rigid-plastic 
deformation of the portal frame in Fig. 1.3 according to the collapse mechanism, the 
column AB having rotated through an  

 

FIG. 1.4. Plastic theory of portal frame 
allowing for effect of change of 
geometry. 

angle θ. The work equation for an incremental angle change ∆θ (Fig. 1.4(a)) is then 
obtained, so that the derived load factor λ will correspond to the equilibrium state of the 
structure in the deformed position. It may be shown (Horne, 1963) that, if loads λW 
produce an axial compressive load R in a member of length l, and the total rotation of that 
member in the deformed state of the structure is β, then 
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λ∑Ws+∑Rβ2l=∑MPΦ 
(1.6) 

The first and last summations in eqn (1.6) correspond to those in eqn (1.5), while the 
summation ∑Rβ2l extends over each rigid length of member between plastic hinges or 
joints. The quantities s, β and Φ are expressible in terms of the rotations θ of one of the 
members of the frame in the simple collapse mechanism (Fig. 1.3(b)). The axial loads R 
may be assumed proportional to the load factor λ, and may be derived from the axial 
loads appropriate to the simple collapse mechanism at λ=λP. 

The values of R at λ=1 for the portal frame in Fig. 1.3 are found to be 1/3, 5/3, 5/3 and 
5/3 for AB, BC, CD and DE, respectively (that is, 1/1·6 of the values appropriate to Fig. 
1.3(b)). Hence eqn (1.6) becomes 
λ{3(6θ)+2(6θ)}+λ{(1/3)(6θ2)+(5/3)(6θ2)+(5/3)(6θ2)+(5/3)(6θ2)}

=8{θ+2θ+2θ+θ} (1.7) 

and 

 
  

where x is the sway deflection. This gives the load-deflection relation GH in Fig. 1.4(b). 
There is thus a reduction of the load factor as the deflections of the structure increase, and 
this is generally true of all structures in which axial compressive loads preponderate over 
tensile loads. 

The interest of Fig. 1.4(b) lies in the fact that the elastic-plastic behaviour, as 
represented by OFJ, must have a peak value below the rigid-plastic collapse load, 
represented by point G. Hence the rigid-plastic collapse load is to be regarded only as an 
upper bound on the true failure load of the structure. The extent to which the failure load 
factor λF for elastic-plastic behaviour falls below the rigid-plastic load factor λP depends 
on the slenderness of the structure. The criterion by which one may ascertain the stage at 
which the peak load has been reached may be obtained by the consideration of 
‘deteriorated critical loads’. 

1.4 THE CONCEPT OF DETERIORATED CRITICAL LOADS 

Consider any elastic structure, Fig. 1.5(a), and suppose that at any given load factor the 
total potential energy U is calculated as a  
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FIG. 1.5. Elastic load-deflection curve 
for a rigid frame. 

function of some deflection parameter µ. T he total potential energy U is the sum of the 
potential energy UW of the external loads and the elastic strain energy UE of the structure, 
so that U=UW+UE. 

We now suppose that, as the loads on the structure are changed, the load-deflection 
curve takes the form OACB in Fig. 1.5(b). It is assumed that the structure remains elastic 
at all stages. Each point on the load-deflection curve represents a state of the structure in 
which the external loads are in equilibrium with the internal forces, and hence 

 (1.8) 

It may be shown that, on the rising part of the load-deflection curve OAC, the potential 
energy U is a minimum with respect to small deviations from the equilibrium state, 
whence 

 

  

as shown in Fig. 1.6(a). On the falling part of the curve the structure is unstable, 
∂2U/∂µ2<0 (Fig. 1.6(c)), while at the maximum load ∂2U/∂µ2=0 (Fig. 1.6(b)) and the 
structure is in neutral equilibrium for small displacements. The structure is then at its 
elastic critical load. 

Consider now the load-deflection curve OAFD (Fig. 1.7) for an elastic-plastic 
structure. We include in the total potential energy not only potential energy of their 
applied loads UW and the elastic strain energy UE, but also the energy absorbed in plastic 
deformation UP. The energy absorbed in plastic deformation depends on the loading path 
for the structure, and it is assumed that the path taken is that  
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FIG. 1.6. Stability criterion for elastic 
structures. 

 

FIG. 1.7. Load-deflection curve for an 
elastic-plastic structure. 

represented by the load-deflection curve. With this proviso, and denoting this modified 
total energy by UN, so that 

UN=UW+UE+Up 
(1.9) 

the condition ∂UN/∂µ=0 is satisfide at all points on the load-deflection curve. Moreover, 
∂2UN/∂µ2>0 before the failure load factor λF is reached, ∂2UN/∂µ2<0 on the falling part of 
the curve and ∂2UN/∂µ2=0 at the failureload. However, in the plastic zones of the 
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structure the stress is constant, whence ∂2UP/∂µ2=0, and hence the condition at failure 
becomes 

 
(1.10) 

Since the elastic strain energy in the plastic zones of the structure is constant, it follows 
that the failure criterion of the elastic-plastic structure is identical with the elastic critical 
load criterion for the same structure, but with parts of the structure—those that are 
plastically deforming—eliminated. The structure in this depleted condition is termed the 
deteriorated structure, and the corresponding elastic critical load is called the deteriorated 
critical load. If, for example, a plastic hinge has formed in an elastic-plastic structure, the 
hinge provides zero increase of resisting moment for an increase of rotation, and is to  

 

FIG. 1.8. Frame analysed by Wood 
(1957). 

be regarded as a pin joint when computing the deteriorated critical load. As the load on a 
structure increases and plastic zones spread, the deteriorated critical load factor decreases 
continuously until it is depressed down to the load corresponding to the actual load 
applied. It is at this stage that the structure becomes unstable and the failure load factor λF 
is attained. 
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The concept of deteriorated critical loads has been developed by Wood (1957), who 
gives the following example. The frame in Fig. 1.8 is composed of I-section members 
with webs in the plane of the frame, the ‘working’ values of the loads (in tons, load factor 
λ=1) being as shown. Wood obtained the following values for λC, λP and λF: 

 
Lowest elastic critical load factor λC = 12·9

Rigid-plastic load factor λP = 2·15

Elastic-plastic failure load λF = 1·90

The elastic critical load was calculated for beam loads equally divided between joints, as 
shown in Fig. 1.9. The rigid-plastic collapse mechanism is shown in Fig. 1.9(a), and the 
theoretical state of the  

 

FIG. 1.9. Behaviour of frame analysed 
by Wood (1957). 

elastic-plastic structure at collapse in Fig. 1.9(c). At the theoretical failure load factor of 
λF=1·90, plastic hinges had formed at positions 1, 2, 3 and 4, and a fifth hinge has 
practically formed at position 5. A certain amount of plastic deformation had also 
occurred at the other sections at which yield is indicated. 

Wood calculated the elastic critical loads of his frame with pin joints assumed at 
various sections, in order to obtain general guidance in his full analysis. Some of his 
results are shown in Figs. 1.10(a)–(e), the circles representing the positions of pin joints. 
The load factors λD quoted represent the elastic critical loads of these deteriorated 
structures for vertical loads applied at the joints, as in Fig. 1.9(b). None of the 
deteriorated structures correspond exactly to the deteriorated  
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FIG. 1.10. Deteriorated critical loads 
of frame analysed by Wood (1957). 

structure at the failure load in the full analysis (λF=1·90, Fig. 1.8(c)). A deteriorated 
structure intermediate between those in Figs. 1.10(d) and (e) is, however, seen to be 
appropriate (cf. Fig. 1.9(c)), and the deteriorated critical load factors 2·30 and 1·60 lie 
either side of the failure load 1·90. 

The concept of the deteriorated critical load clarifies thinking on the subject of elastic-
plastic instability of structures. Deteriorated critical loads are also of importance in 
elastic-plastic computer methods for analysis of structures up to collapse (Majid and 
Anderson, 1968; Majid, 1972). It is, however, only of very limited assistance in the actual 
calculation of failure loads, since the deteriorated structure cannot be obtained unless a 
full elastic-plastic analysis has in any case been derived. Moreover, if deteriorated critical 
loads are discussed in isolation from a complete analysis, misleading results may be 
obtained. Thus, it may be seen that, although ten hinges are required for the rigid-plastic 
collapse of the frame in Fig. 1.8, two hinges only are sufficient to halve the critical load 
(Fig. 1.10(b)). Despite this alarming reduction, the failure load was only 12% below the 
rigid-plastic collapse load. Hence a more reliable means of estimating approximately the 
effect of instability on failure loads is required, and this is discussed in the next section. 

1.5 EMPIRICAL APPROACHES TO THE ESTIMATION OF 
FAILURE LOADS: THE MERCHANT-RANKINE LOAD 

It has been seen that, if the material of a structure is assumed to be rigid-plastic, a 
drooping load-deflection curve GH is obtained (Fig. 1.7), descending from the rigid-
plastic collapse load factor λP. If ideal elastic behaviour is assumed, the load-deflection 
curve OBC rises to the elastic critical value λC. The actual behaviour OAFD follows the 
elastic curve up to the load factor λy at which yield first occurs, rising to a peak at F, 
before approaching the rigid-plastic mechanism line GH at large deflections. Merchant 
(1954, 1958) suggested that it might be possible to consider the failure load factor λF as 
some function of the load factors λy, λP and λC, and also of the purely abstract load factor 
λG (Fig. 1.7) obtained at the intersection of the elastic curve OAC with the rigid-plastic 
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mechanisms line GH. The advantage of such an approach is that these load factors are 
much easier to calculate than the failure load factor λF itself.  

Merchant (1954) tested, for a large number of theoretical structures, the following 
formula, which may be regarded as a generalisation of Rankine’s formula for struts. The 
failure load factor λF is approximated to by the Merchant-Rankine load factor λMR, where 

 (1.11) 

Since for many practical structures λC is large compared with λP, the requirement 
for such structures is satisfied. If λF/λP is plotted vertically and λF/λC 

horizontally, eqn (1.11) with λF=λMR is simply given by the straight line AB in Fig. 1.11. 
The points plotted on Fig. 1.11 were obtained theoretically by Salem (1958) for one- and 
two-storey frames loaded as shown. Lines corresponding to various ratios of λP/λC have 
been drawn, and it is readily seen that the Merchant-Rankine formula (eqn (1.11)) is most 
successful when λP/λC is small and the collapse load is close to the rigid-plastic collapse 
value. When λP/λC>0·3 the scattering of the points away from the Merchant-Rankine 
formula is considerable. Merchant suggested the formula as a safe (that is, lower) limit 
for the collapse load. Its theoretical significance has been discussed by Horne (1963).  

 

FIG. 1.11. The Merchant-Rankine load 
compared with the theoretically 
obtained failure load. 

Frame instability and the plastic design of rigid frames     15

�



1.6 MODIFICATION OF MERCHANT-RANKINE LOAD 

In a series of papers, Wood (1974) suggested a modification of the Merchant-Rankine 
load to allow for the minimum beneficial effects that must always be present from strain-
hardening and restraint provided by cladding. He suggested that, provided 

 (1.12) 

and when 

 (1.13) 

These proposals may be expressed graphically by the lines ACD in Fig. 1.12, and may be 
compared with the Merchant-Rankine relationship given by the straight line AB. 

When applying condition (1.12) to derive design requirements, we may note that the 
required minimum value of λF is that corresponding to the required factored loading. We 
may conveniently put 

 
  

The simple plastic collapse load λP is derived by using the design strength py of the steel. 
Suppose we express the required minimum failure load factor of the structure λF as a 
plastic collapse load factor,  

 

FIG. 1.12. Modified Merchant-
Rankine formula. 

Steel framed structures     16



using, instead of the specified design strength py, an effective design strength , so that 

 

  

whence 

 

  

On substituting the above values of and λC/λP in eqn (1.12), it is 
found that, in design, we may assume that when λC/λF>10, and when 

 (1.14) 

This proposal is the basis for the adoption of plastic design for continuous low-rise frame 
in the ‘Draft British Standard for the Use of Structural Steelwork in Building’ BS 5950 
(1983). When λC/λF<4·6, it is recommended that, if elastic-plastic methods of ultimate 
load design are to be employed, then a special analysis allowing for elastic-plastic 
behaviour and change of geometry effects should be undertaken. It will, of course, also 
be necessary to satisfy the deflection limits imposed by the provisions of the appropriate 
clauses in the Standard. 

It should be noted that, if the more conservative unmodified Merchant-Rankine load 
λMR (eqn (1.11)) is used in design rather than eqns (1.12) and (1.13), then a modified 
yield stress must always be used, where 

 (1.15) 

1.7 ACCURACY OF MERCHANT-RANKINE AND MODIFIED 
MERCHANT-RANKINE LOADS 

Numerical examples based on second-order elastic-plastic analyses led Merchant (1954) 
to the conclusion that the Merchant-Rankine load (eqn (1.11)) represented an 
approximate lower bound to the failure load. He did not claim it as a strict lower bound 
(see Fig. 1.11). However, if it is to be used as the basis for design, one needs some 
assurances that no serious error on the unsafe side will arise. Some evidence has been 
given emphasising the extent to which the Merchant-Rankine load is not a lower bound 
(Adam, 1979) and for this reason Anderson and Lok (1983) examined a number of 4-, 5-
and 10-storey unbraced frames. These frames were realistic in that they were designed 
economically for wind and floor loadings specified in codes, with sway deflections at unit 
factored wind loading limited to 1/300 of each storey height. Some of their results are 
summarised in Table 1.1. Two loading conditions are considered—one with maximum 
wind loading and the other with maximum vertical loading. Values are quoted for the 
ratios of the lowest elastic critical load factor λC, the Merchant-Rankine load factor λMR 
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and the modified Merchant-Rankine load factor λWMR to the accurately calculated 
‘second-order’ (i.e. allowing for change of geometry) elastic-plastic failure load factor λF. 
It will be seen that, without exception, the Merchant-Rankine load is a safe estimate of 
the failure load. Anderson and Lok found that only when the storey height exceeded the 
span of the beams, and when the wind loading was exceptionally low, was the Merchant-
Rankine load higher than the elastic-plastic failure load. Such frames are not realistic—
and if they occurred, would certainly be braced. 

Anderson and Lok recommend that the Merchant-Rankine formula should not be used 
when the bay width is less than the greatest height  

TABLE 1.1 
RESULTS OBTAINED BY ANDERSON AND 
LOK (1983) FOR UNBRACED MULTI-STOREY 
FRAMES 

Min. υertical-Max. 
wind 

Max. υertical-Min. 
wind 

Number of 
storeys 

Number of 
bays 

Bay width 
(m) 

  
2 7·5 9·15 0·96 1·07 5·75 0·91 1·00 
5 7·5 5·34 0·89 0.97 4·78 0·90 0·98 
2 5 11·38 0·95 1·03 6·56 0·89 0·98 

4 

5 5 5·34 0·95 1·03 3·19 0·86 0.93 
2 7·5 12·82 0.97 1·05 5·66 0·93 1·01 
5 7·5 5·06 0·93 1·01 4·36 0·90 0·97 
2 5 16·59 0·96 1·02 7·98 0·94 1·04 

7 

5 5 5·78 0·90 0·98 3·98 0·89 0·97 
2 7·5 15·33 0·97 1·04 6·02 0·95 1·04 
4 7·5 6·57 0·93 1·02 3·87 0·90 0·98 
2 5 14·90 0·95 1·01 8·07 0·91 1·07 

10 

4 5 8·23 0·96 1·06 4·56 0·90 0·98 

of one storey. For multi-bay frames with unequal bays, the average bay width should be 
compared with the storey height. 

The generally conservative nature of the Merchant-Rankine load for practical frames 
(Table 1.1) encourages the use of the modified Merchant-Rankine load, although in some 
cases the predicted load factor at collapse λWMR may exceed the elastic-plastic failure load 
λF. Anderson and Lok (1983) point out, however, that the cases were not very significant 
because the excess load capacity was small (not more than 7%), and the computer 
program used to calculate λF ignored the beneficial effects of strain-hardening and strong 
composite action (see Wood, 1974). For these reasons, and provided the restriction on 
bay width is observed, there would seem to be no case for not adopting the modified 
Merchant-Rankine formula for design. 
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1.8 EXAMPLE OF UNBRACED MULTI-STOREY FRAME 
DESIGNED WITH ALLOWANCE FOR FRAME STABILITY 

EFFECTS 

The four-storey frame in Fig. 1.13(a) is to be designed for the factored load combination 
shown in Figs. 1.13(b), (c) and (d), using grade 43 steel (py=245 N/mm2). Suitable 
sections, derived by applying simple plastic theory, are as shown in Table 1.2. The most 
critical combination of loads is for dead plus superimposed plus wind, and the plastic 
collapse mechanism is shown in Fig. 1.14. The factor λ is that by which the required 
factored loads are to be multiplied to cause collapse in the frame as designed, and this has 
the value 1·018. 

Applying Horne’s method to the calculation of the elastic critical load, the applied 
horizontal loads and resulting sway index values are given in Table 1.3. Hence 
Φmax=0·00137 and from eqn (1.4), 

 
  

and 

 
  

The effective design stress required to support the factored loads in Fig. 1.13(d) is 
245/1·018=241 N/mm2, so that some strengthening of the frame is required.  
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FIG. 1.13. (a) Four-storey frame; (b) 
equivalent factored dead plus 
superimposed vertical loads (kN); (c) 
equivalent factored dead plus wind 
load (kN); (d) equivalent factored dead 
plus superimposed plus wind loads 
(kN). 

By inspection of the collapse mechanism in Fig. 1.14, the best section to increase is that 
of the two-storey column length C02 on the right-hand side. This is therefore changed 
from 203×203 UC 52 to 254×254 UC 73, giving λ=1·110 in Fig. 1.14. Hence, the applied 
factored loads require a minimum effective design stress of 245/1·110=221 N/mm2, 
which is satisfactory compared with the attained value (from Horne’s method) of 226 
N/mm2. (Strictly speaking,  

TABLE 1.2 
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SECTIONS FOR FRAME IN FIG. 1.13, CHOSEN 
BY PLASTIC THEORY 

Member   Section   
A02 254×254 UC 89
A24 203×203 UC 52
B02 305×305 UC 118
B24 203×203 UC 52

Columns

C02 203×203 UC 52
AB1 533×165 UC 73
AB2 533×165 UB 66
AB3 610×178 UB 82
AB4 457×152 UB 52
BC1 533×165 UB 73

Beams 

BC2 356×171 UB 51

 

FIG. 1.14. Dead plus superimposed 
plus wind loads collapse mechanism. 

TABLE 1.3 

Frame instability and the plastic design of rigid frames     21

�



CALCULATION OF CRITICAL RATIO FOR 
FRAME IN FIG. 1.13 (HORNE’S METHOD) 
Storey 1% Vertical loads (kN) Sway index (10−3x)

1 14·97 1·37
2 11·74 0·87
3 7·80 1·15
4 5·12 0·50

the α values have been derived for the originally designed frame and are not applicable to 
the revised frame. However, this latter would give slightly higher α values than the 
original frame, so that the error is on the safe side.) 

1.9 OVERALL STABILITY PROBLEMS IN THE PLASTIC 
DESIGN OF SINGLE-STOREY FRAMES 

1.9.1 General Considerations 

The assumption has usually been made in the past that overall stability problems do not 
affect the design of single-storey frames, the argument being that the mean axial stresses 
in the columns are generally small. While this latter statement is correct, it is also true 
that such frames may be quite slender in the plane of bending, and this may bring down 
the ratio of critical load to plastic collapse load to an unacceptably low level. 

1.9.2 Single-Bay Frames 

In single-bay frames the usual deflection limitations when the frame is subjected to wind 
loading will usually ensure that overall stability is not a controlling factor. This is 
certainly the case when the horizontal deflections at the tops of the stanchions are limited 
to height divided by 300, under unfactored loads. However, if it can be shown that greater 
deflections would not impair the strength or efficiency of the structure, or lead to damage 
to cladding, then this deflection limit may be allowed to be exceeded, and there will 
undoubtedly be a desire to take advantage of this in many single-storey frames. A 
safeguard against deflections which could affect strength and safety is therefore needed, 
and is provided by the following requirement (see Horne, 1977). 

The horizontal deflection δ, in millimetres, at the top of a column due to horizontal 
loads applied in the same direction at the top of each column, and equal to 1% of the 
vertical load in the column due to factored loads, must not exceed 1·8h, where h is the 
height of the column in metres. In calculating δ, allowance may be made for the 
restraining effect of cladding. 

As a simple check on the requirement, the condition may be shown (Horne, 1977) to 
be satisfied, provided 

 
(1.16) 
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where 

 

  

and L=span of frame (m), D=minimum depth of rafter (m), h= column height (m), IC, 
IR=minimum second moments of area of columns and rafters, respectively for bending in 
the plane of the frame, py=design strength of rafter (N/mm2), θ=angle of pitch of a ridged 
portal, Ω=W/W0=arching ratio, W=factored vertical load on frame, Wo=maximum 
uniformly distributed load which could be supported by a horizontal roof beam of span L 
continuous with the columns with the same distribution of cross-section in plan as the 
actual rafter. 

In the above formula the assumption is made that the columns are rigidly fixed to the 
rafters, but it is assumed that they have pinned bases. If the columns are fixed-based, then 
the above treatment is conservative. 

1.9.3 Multi-Bay Frames 

It might at first be thought that the overall stability problems of multi-bay frames would 
be less than those of single-bay frames. It is, however, possible to reduce considerably 
the size of internal rafters by making use of the ‘arching effect’, whereby the plastic 
collapse of an internal rafter (Fig. 1.15(a)) is assumed to occur by beam mechanisms, 
each involving only a rafter to one side of a ridge. Moreover, the balancing of the rafter 
moments at the tops of the internal columns may allow them to become quite small in 
section—and even (although this is deprecated) allow them to become pin-ended struts. If 
such highly ‘competitive’ design is indulged in, or even approached, two  
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FIG. 1.15. (a) Propped frame with 
minimum internal members; (b) 
interior sway buckling; (c) interior 
snap-through buckling. 

forms of instability may arise, as shown in Figs. 1.15(b) and (c). The first is internal sway 
instability, and is liable to occur in multi-bay frames with slender internal columns. The 
second is ‘snap-through’ instability, and is particularly dangerous when considerable use 
is made of the arching effect with low-pitch rafters. 

Safeguards against both forms of instability have been discussed by Horne (1977), and 
this work has led to the following requirements being recommended for inclusion in the 
‘Draft British Standard for the Use of Structural Steel in Building’ (1983). 

Snap-through instability is safeguarded against by requiring that, for each internal bay 
of a multi-bay frame, 

 
(1.17) 

where the symbols have the same meanings as previously. It is assumed in general that 
the columns are pinned to the foundations and rigidly connected to the rafters. The same 
treatment may, however, be applied to frames with columns pinned to rafters, by 
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replacing IC by zero, but it is of course still assumed that the rafters are rigidly connected 
together above the columns. 

Sway instability is controlled by requirements similar to those for single-bay frames. 
The horizontal deflection at the top of any column due to 1% of vertical factored loads 
applied simultaneously in the same direction to the tops of all columns should not exceed 
1·8h (millimetres) where h (metres) is the height of the column. The algebraic limitation 
(eqn (1.16)) on the value h/D ensures the satisfaction of this requirement for columns 
rigidly connected to the rafters but wit ρ={IC/IR}{L/h}. 

1.10 EXAMPLE OF DESIGN OF SINGLE-BAY PITCHED 
PORTAL FRAME WITH ALLOWANCE FOR FRAME 

STABILITY EFFECTS 

Portal frames, at 6 m spacing and of span 12 m, have a height to eaves of 3 m and an 
angle of pitch of 22·5°. The total factored vertical load is 2550 N/m2. Establish a suitable 
design for a frame of uniform section, using grade 50 steel. 

Plastic analysis shows a required plastic moment of 99·4 kN  

Required plastic modulus  
Try 254×102 UB 25, S=305·3 cm3. 
The mean axial stress in the rafter is 15 N/mm2, and the effect on plastic modulus is 

negligible. 

 

  

where MP=plastic moment of resistance  

 

  

Hence 

 
  

 
  

Hence 
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But 

 
  

Hence frame is satisfactory for sway stability. 

1.11 EXAMPLE OF DESIGN OF MULTI-BAY PITCHED PORTAL 
FRAME WITH ALLOWANCE FOR FRAME STABILITY 

EFFECTS 

Multi-bay frames consisting of spans of 30 m have rafters of constant pitch 10° and 
columns of height 4 m, rigidly fixed to the rafters and pinned to foundations. The frames 
are at 9m spacing and support a total factored load of 2550 N m2. Establish whether or 
not it would be permissible to design the internal rafters to a minimum uniform section, 
derived by considering the plastic collapse of a single rafter member as a fixed-ended 
beam. 

Total factored load per frame is 

 
  

Load/rafter=344·2 kN   

 
  

 
  

Try 457×152 UB 52, S=1095 cm3. 
Ignoring effect of axial stress on MP, 

 
  

and 

 
  

IR=21345 cm4 and D=450 mm   

For the columns, a 254×254 UC 89 is found to give adequate stability against failure 
about the minor axis. This gives IC=14307 cm4. 

Considering snap-through stability, from condition (1.17), 
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Actual L/D=30000/450=66·7. 
Hence the frame cannot be designed to take full advantage of maximum arching action 

due to danger of snap-through instability. 
The large margin by which the permissible slenderness is exceeded indicates that 

plastic design is not ideally suited to this problem. It also indicates high sensitivity to 
non-uniform loading. If maximum assistance from arching action is desired, elastic 
design should be used, in conjunction with an elastic analysis using stability functions. 
Alternatively, the frame may be overdesigned plastically to the degree required for eqn 
(1.17) to be satisfied. 

Following this latter course, tey 610×178 UB 82 for rafters. 
S=2194 cm3   

 
  

 
  

Application of condition (1.17) gives , compared with actual L/D=50·2, so 
the section is satisfactory. 

1.12 CONCLUSIONS 

In order for plastic theory to be safely applied to the design of multi-storey frames and 
some slender single-storey portal frames, checks need to be made to see whether frame 
stability effects need to be taken into account. The Merchant-Rankine load, both in its 
original form and as modified by Wood, are suitable means of making allowance for 
frame stability effects. These approximate estimates of failure loads require approximate 
calculations of elastic critical loads. Hence, the rigid-plastic collapse load and the lowest 
elastic critical load are clearly established as the two most important theoretical quantities 
in the practical estimation of the ultimate carrying capacity of a rigid framed structure. 
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Chapter 2 
MATRIX METHODS OF ANALYSIS OF 

MULTI-STOREYED SWAY FRAMES 

 
T.M.ROBERTS  

Department of Civil and Structural Engineering,  
University College, Cardiff, UK 

SUMMARY 

The ultimate limit state design of plane multi-storeyed sway frames involves 
consideration of nonlinear effects induced by changes of geometry and the influence of 
member axial forces. In recent years, nonlinear matrix methods of analysis have been 
developed and it is now possible to analyse the complete loading history of such frames 
up to collapse. This chapter deals with the elastic linear, nonlinear and instability 
analysis of frames using matrix methods. Rigorous formulations of the problem are 
presented first so that the approximations frequently incorporated in such analyses can 
be identified. Approximate methods for determining elastic critical loads and the 
magnitude of the nonlinear effects are then presented. 

NOTATION 
A Cross-section area 

a Length of an element or a member of a frame 

c Stability function 

E Young’s modulus 

ƒ Shear force 

H Horizontal force 

I Second moment of area about centroid 

m Moment 

n Scalar 

P0 Base load 

Pi External force 



qi Displacements of external forces 

r Stability function 

s Stability function 

t Axial force 

U Displacement in global X direction 

UE Strain energy 

u Axial displacement in x direction 

ū Axial shortening of element or member 

V Potential energy 

V0 Initial value of V 

VP Potential energy for stationary external forces 

W Displacement in global Z direction 

w Bending displacement in z direction 

w0 Initial value of w 

 Sway of column or storey of frame (Figs 2.4 and 2.5) 

X, Z Global coordinate axes 

x,z Local element coordinate axes 

z Distance from centroid in z direction 

β Angle between global and local coordinates 

βi Ratio of second order sway displacement to linear elastic 
sway displacement 

γ Defined by eqn (2.42) 

δ First variation 

δ2 Second variation 

ε Axial strain 

εi Strain 

λ Load factor 

λcr Critical load factor 

ρ Uniformly distributed load 

ρE Defined by eqn (2.42) 

σ Axial stress 

σi Stress 

Matrices 

 
Geometric stiffness matrix for an element and for a 

complete structure (tangent stiffness) 

 
Linear elastic stiffness matrix for an element and for a 
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complete structure 

 
Secant stiffness matrix using stability functions for an 

element and a complete structure 

 
Geometric stiffness matrix for an element and for a 

complete structure (secant stiffness) 

 
Nodal force vector for element in local and global 

coordinates and for complete structure 

{p*} Equivalent element nodal force vector 

{pρ} Distributed nodal force vector for an element 

 
Nodal displacement vector for element in local and global 

coordinates and for complete structure 

{α} Polynomial coefficients 

[β] Coordinate transformation matrix 

2.1 INTRODUCTION 

Current design practice for structural steelwork (Horne, 1978) permits elastic analysis of 
plane, multi-storey sway frames provided that the analysis takes account of nonlinear 
effects due to changes of geometry and the influence of axial forces. If ordinary linear 
elastic analysis is used to calculate frame moments, a check should be made on the sway 
deflection at the factored load and an allowance made, if necessary, for the additional 
moments thereby induced. The columns are then designed in the usual way in terms of 
their effective lengths (Wood, 1974; Horne, 1978). 

Over the past 20–30 years, considerable research effort has been directed towards the 
analysis of the instability and nonlinear behaviour of frames (Merchant, 1955; Smith and 
Merchant, 1956; Bowles and Merchant, 1958; McMinn, 1962; Majid, 1972). This has 
been aided by the development of high speed electronic digital computers and matrix 
methods of analysis, which now enable problems of extreme size and complexity to be 
solved. Theories have been developed and computer programs written which are capable 
of analysing the geometrically nonlinear, elasto-plastic behaviour of frames up to 
collapse (Majid, 1968, 1972). 

This chapter describes the elastic linear, nonlinear and instability analysis of plane 
multi-storey sway frames using matrix methods. Element stiffness matrices are derived 
throughout in accordance with general energy principles (Washizu, 1968) and finite 
element procedures (Zienkiewicz, 1971) so that the approximations inherent in many 
other, probably more familiar, formulations can be identified. 

2.2 ENERGY PRINCIPLES 

The total potential energy V of a structural system (Washizu, 1968) can be defined by the 
equation 
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 (2.1) 

where Pi and qi represent the external forces and corresponding displacements, and σi and 
εi represent the internal stresses and corresponding strains. V0 is the potential energy of 
the system prior to application of external forces. The integrals in eqn (2.1) represent the 
work done by the external forces and the strain energy of the structure, which are equal. 
Therefore, along any equilibrium path, V is constant and hence the first and second 
variations of V along the equilibrium path, denoted by δV and δ2V, are zero. 

Assuming that V can be expressed in terms of a number of prescribed displacements, 
qi, δV and δ2V are defined as 

 
(2.2) 

Hence from eqn (2.1) 

 (2.3) 

(2.4) 

Since the structure as a whole, and individual parts of the structure, are in equilibrium, 
eqn (2.3) is valid for all δqi, not just variations along an equilibrium path. Equation (2.3) 
provides a basis for linear and nonlinear iterative analysis while equation (2.4) provides a 
basis for nonlinear incremental analysis. 

Variational principles can also be used to investigate the stability of structures. For 
equilibrium δV=0. Stability of the system requires that positive work be done to move the 
system from the equilibrium state and hence δV=0 corresponds to a minimum value. 
Conversely, if, as the system moves slightly from the equilibrium state, energy is given 
out, which can be manifest only as kinetic energy, the system is unstable. Hence for 
stable equilibrium, δV=0 and the second variation of V for stationary values of the 
external forces, denoted by δ2VP, is positive definite. From equation (2.4), δ2VP is given 
by 

 (2.5) 

Critical conditions occur when δ2VP changes from positive definite to zero, indicating a 
possible transition from stable equilibrium to instability. 

2.3 LINEAR ELASTIC ANALYSIS 

A typical beam column element is shown in Fig. 2.1. The external forces at the nodes A 
and B are denoted by f, m and t and the displacements in the local x and z directions are 
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denoted by u and w. The total axial strain ε (tensile positive) due to displacements u and 
w is given by 
ε=−zwxx+ux 

(2.6) 

In eqn (2.6), z is the distance from the centroid in the z direction and subscripts x and xx 
denote differentiation. The first variation of ε with respect to displacements u and w is 
simply 
δε=−zδwxx+δux 

(2.7) 

For linear elastic material having Young’s modulus E, the axial stress σ is related to the 
axial strain by 
σ=Eε 

(2.8) 

Substituting eqns (2.6)–(2.8) into eqn (2.3) and integrating over the  

 

FIG. 2.1. Element of a frame. 

area of the cross-section gives 

 (2.9) 

A is the cross-section area, I the second moment of area about the centroid and 
{P}T=[ƒAmAtAƒBmBtB] 

(2.10) 
{δq}T=δ[wAwxAuAwBwxBuB] 

(2.11) 

Following standard finite element procedures (Zienkiewicz, 1971), the stiffness matrix 
for an element can be derived from eqn (2.9) by assuming suitable displacement 
functions for w and u. Neglecting interaction between bending and axial displacements, 
the exact expressions for a member loaded by nodal forces only are 

w=[1 x x2 x3 0 0]{α} 
(2.12) 
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u=[0 0 0 0 1 x]{α} 
(2.13) 

The polynomial coefficients {α} are completely specified by the nodal values of w, wx 
and u. It is worth noting that these functions are in accordance with established 
convergence criteria in that they provide nodal continuity of derivatives of order one less 
than appears in the variational equation (eqn (2.9)). This validates assembly of elements 
which is equivalent to integration of the energy over the entire structure. 

Substituting the nodal coordinates of the element, length a, into eqns (2.12) and (2.13) 
gives 

(2.14) 

From eqn (2.14)  

(2.15) 

The derivatives of w and u can be expressed as 

 (2.16) 

Substituting in eqn (2.9) gives 

(2.17) 

Integrating over the length of the element, eqn (2.17) can be expressed simply as 
{δq}T{p}={δq}T[KL]{q} 

(2.18) 

[KL] is the linear elastic stiffness matrix for bending and axial displacements, which is 
given by 
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(2.19) 

Prior to assembly of the individual element stiffness matrices it is necessary to transform 
the element nodal forces and displacements to a global set of axes. From Fig. 2.2, {q} is 
related to global displacement {Q} by the equation 

(2.20) 

 

FIG. 2.2 Global and local coordinates. 

The same transformation matrix [β] relates {p} to the global forces {P}. Noting also that 
[β]−1≡[β]T, eqn (2.16) can be expressed in terms of global forces and displacements as 

{δq}T{P}={δq}T[β]T[KL][β]{Q} 
(2.21) 

Assembly of elements to form the overall structural stiffness matrix is simply a matter of 
superimposing the energy contributions of the individual elements. The {δq}T can then be 
cancelled since the resulting scalar energy equation is valid for all {δq}. Hence, the 
stiffness equations for the complete structure reduce to the form 

 (2.22) 
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After application of the prescribed boundary conditions, eqn (2.22) can be solved for the 
unknown displacements to give 

 (2.23) 

The member bending moments and axial forces m and t are then given by 
m=EIwxx=EI [0 0 2 6x 0 0][A]−1[β]{Q} 

(2.24) 
t=EAux=EA[0 0 0 0 0 1][A]−1[ β]{Q} 

(2.25) 

So far, only concentrated nodal forces have been considered. Beam members in frames 
are, however, often subjected to distributed loading, of intensity ρ per unit length. This 
can be incorporated in the analysis by equating the potential energy of the distributed 
loads to that of an equivalent nodal force vector {pρ} containing moments m and 
transverse forces ƒ only. Hence, for an element in local coordinates 

(2.26) 

2.4 NONLINEAR ELASTIC ANALYSIS 

Nonlinear elastic analysis of frames can be performed either incrementally or iteratively. 
Incremental analysis involves the determination of the incremental or tangent stiffness 

matrix relating small increments in external forces and corresponding displacements; this 
depends on the current geometry and state of stress. Complete solutions for the entire 
loading history can then be obtained by incrementing either forces or displacements 
(Roberts, 1970; Roberts and Ashwell, 1971). Incrementing displacements has the 
advantage that solutions do not break down at horizontal tangents on load-deflection 
curves, which is one form of critical load condition. 

Iterative solutions are based on the determination of a secant stiffness matrix, which is 
derived assuming that the current geometry and state of stress is known (Majid, 1972). 
The first cycle then gives new values for the current geometry and state of stress which 
are then included in the second cycle, and the sequence is repeated until the assumed 
values are consistent with the calculated values. 

In general, incremental analysis is theoretically more sound than iterative analysis. 
Incremental analysis follows the complete loading history and is able to detect 
bifurcations or branching points along equilibrium paths. This is not true of iterative 
solutions which may not converge to the lowest equilibrium path which is of interest in 
practice. However, for multi-storey frames, such complexities seldom exist and either 
form of solution appears satisfactory. Incremental analysis is considered first since it 
illustrates the full interaction between bending and axial displacements for individual 
elements and will help to indicate the approximations often made in iterative solutions. 
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2.4.1 Incremental Analysis 

The incremental stiffness matrix for a finite element of a frame can be derived as follows 
(Roberts, 1970). It is assumed that all displacements are small so that nonlinear strains 
can be related to the initial geometry; this is a satisfactory assumption for the majority of 
practical frames. For an element having an initial transverse imperfection w0, the 
nonlinear expression for the axial strain ε is (Timoshenko and Gere, 1961) 

 
(2.27) 

The first and second variations of ε with respect to displacements u and w are 
δε=−zδwxx+δux+wxδwx 

(2.28) 
δ2ε=0·5δwx.δwx 

(2.29) 

Substituting eqns (2.27)–(2.29) into eqn (2.4) and noting that δ2qi vanishes, since the 
nodal displacements qi are assumed to be linear functions, gives 

(2.30) 

Integrating over the area of the cross-section, eqn (2.30) can be arranged in matrix form 
as 

(2.31) 

Assuming suitable displacement functions for w, w0 and u (see eqns (2.12) and (2.13)) 
and proceeding as in Section 2.3, eqn (2.31) can be reduced to the form 

{δq}T{δp}={δq}T[[KL]+[KGA]]{δq} 
(2.32) 
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[KL] is as defined in Section 2.3 and [KGA] is referred to as the geometric stiffness 
matrix for incremental analysis. The derivation of [KGA] from the second integral in eqn 
(2.31), assuming w and w0 to be cubic polynomials, is complex. The derivation of [KGA] 
can be simplified however by assuming linear polynomials for w and w0, defined by the 
nodal values of w and w0 only (Roberts and Azizian, 1983). All terms in the second 
integral of eqn (2.31) then become constants and integration is simply a matter of 
multiplying by the length of the element. This procedure, as well as simplifying the 
derivation considerably, is advantageous for convergence of finite element solutions. 

After transformation to global coordinates and assembly of elements, the incremental 
equations for the whole structure take the form (see eqn (2.22)) 

 (2.33) 

Solutions can be obtained by incrementing either loads or displacements. The geometric 
stiffness matrix has to be reformed prior to each increment to account for the current 
geometry or state of stress and the total forces and displacements accumulated from the 
increments { } and { }. Stresses at any stage can be determined from eqn (2.27) 
and the accumulated displacements. 

The accuracy of incremental solutions will depend upon the size of each increment. 
Also, if the simple linearisation techniques described are not employed, it may prove 
necessary to use a large number of elements to model each member, beam or column, of 
the frame. 

2.4.2 Iterative Analysis 

Derivation of the secant stiffness matrix for use in iterative methods of analysis can be 
based on eqn (2.3). Assuming the nonlinear expression for the axial strain, as defined by 
eqn (2.27), and substituting in eqn (2.3) gives (Roberts, 1970) 

(2.34) 

Integrating over the area of the cross-section, eqn (2.34) can be arranged in matrix form 
as 

(2.35) 

Following the previously described finite element procedures, eqn (2.35) can be reduced 
to a form similar to eqn (2.32) with the last two terms contributing a constant column 
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vector on the right hand side. As in the previous section, eqn (2.35) indicates full 
interaction between axial and bending displacements. 

However, the major nonlinear influence in the behaviour of frames is the influence of 
axial forces on the flexure of members. Assuming, therefore, that the axial force t is 
simply EAux, as given by a linear elastic analysis, and assuming w0=0 for simplicity, eqn 
(2.35) reduces to the form (Chajes, 1974) 

(2.36) 

Equation (2.36) can be simplified further by linearising w when deriving the geometric 
stiffness matrix, as discussed in Section 2.4.1. 

Assuming suitable displacement functions for w and u, eqn (2.36) can be reduced to 
the form 

{δq}T{p}={δq}T[[KL]+[tKGB]]{q} 
(2.37) 

[KL] is as defined by eqn (2.19) and [tKGB] is the geometric stiffness matrix for iterative 
analysis. Assuming w to be a cubic polynomial 

(2.38) 

After transformation to global coordinates and assembly of elements, the secant stiffness 
equations for the complete structure take the form 

 (2.39) 

Solutions of eqn (2.39) can be obtained iteratively. For the first cycle [ ] is 
assumed zero and a linear elastic solution is obtained. The member axial forces given by 
the first cycle are then used to determine [ ] for the second cycle, and so on until 
the assumed and calculated member axial forces are consistent. Solutions of this type 
usually converge rapidly since the member axial forces do not vary much from those 
given by the first linear elastic analysis. 

2.4.3 Iterative Analysis Using Stability Functions 

An alternative way of expressing the influence of axial forces on the flexural behaviour 
of members is in terms of so-called ‘stability func- 

Steel framed structures     40



 

FIG. 2.3. Member of a frame. 

tions’ (Livesley and Chandler, 1956; Horne and Merchant, 1965). The differential 
equation governing the flexure of the member shown in Fig. 2.3 is 

m=EIwxx=ƒA.x−mA−tA(w−wA) 
(2.40) 

Solutions of eqn (2.40) subject to various boundary conditions lead to a secant stiffness 
matrix [KSC] of the form  

(2.41) 

In eqn (2.41) s, c and r are defined as follows (eqns (2.42)–(2.44)): 

 (2.42) 

For compressive axial forces 

(2.43) 

For tensile axial forces  

(2.44) 

In eqn (2.41), the terms relating axial forces and displacements are as for linear elastic 
analysis and terms which represent the interaction between flexural and axial 
displacements (see Section 2.4.2) are omitted. 

After transformation to global coordinates and assembly of elements, the secant 
stiffness equations for the complete structure take the form 
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 (2.45) 

Solutions of eqn (2.45) can be obtained iteratively as described in Section 2.4.2, noting 

that when member axial forces are assumed zero, . 

2.5 ELASTIC INSTABILITY 

As mentioned previously, the most significant nonlinear influence in the elastic behaviour 
of frames is the influence of axial forces on the flexural stiffness of members. Tensile 
axial forces can be considered as increasing the flexural stiffness while compressive 
forces decrease the flexural stiffness. If a set of compressive member axial forces is 
increased to the extent that the bending stiffness of the frame as a whole reduces to zero, 
the frame becomes unstable. 

There are a number of ways in which the elastic instability of frames can be analysed, 
many of which reduce to the solution of the same basic set of equations after simplifying 
assumptions are made. 

2.5.1 Vanishing of the Second Variation of Total Potential Energy 

The most general approach to the analysis of the elastic instability of structures is based 
on the vanishing of the second variation of total potential energy, defined by eqn (2.5) 
(Roberts and Azizian, 1983). Assuming that the nodal displacements qi are linear 
functions of displacement variables, δ2qi vanishes and critical conditions are defined by 
the equation 

 (2.46) 

Substituting the nonlinear expression for the axial strain ε defined by eqn (2.27) gives 
δ2VP={δq}T[[KL]+[KGA]]{δq}=0 

(2.47) 

δ2VP is identical to the right hand side of eqns (2.31) and (2.32) and is a complete 
quadratic form which changes from positive definite to zero, indicating critical 
conditions, when the determinant of [KL]+ [KGA] vanishes. Hence critical conditions for 
the complete structure occur when 

 (2.48) 

An alternative way of interpreting eqn (2.48) is that critical conditions occur when the 
incremental or tangent stiffness matrix becomes singular. 

Although eqn (2.48) is of general applicability, it requires a knowledge of the axial 
and flexural deformations at the critical points on the loading path. The analysis can be 
simplified if it is assumed that prior to the frame becoming unstable, only axial 
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deformations occur. The axial forces t are then simply equal to ux and eqn (2.46) reduces 
to 
δ2VP={δq}T[[KL]+[tKGB]]{δq}=0 

(2.49) 

δ2VP is now identical to the right hand side of eqn (2.37) if {q} is replaced by {δq}. 
Hence, critical conditions for the complete structure occur when 

 (2.50) 

In solving eqn (2.50) it is usually assumed that the critical set of member axial forces can 
be related to a base set, determined for example from a preliminary linear elastic analysis, 
by a scalar load factor λ, which is given a negative sign to denote compression. Equation 
(2.50) then takes the form 

 (2.51) 

Equation (2.51) represents a standard eigenvalue problem. The lowest eigenvalue defines 
the critical load factor λcr and the corresponding eigenvector defines the buckled mode. 

2.5.2 Singularity of Secant Stiffness Matrix 

The secant stiffness equations defined by eqns (2.39) and (2.45) are indeterminate when 
the secant stiffness matrix becomes singular. Critical conditions occur therefore when  

 (2.52) 

 (2.53) 

Equation (2.52) is identical to eqn (2.50) and can be reduced to the standard eigenvalue 
problem defined by eqn (2.51). Solution of eqn (2.53) is accomplished by assuming a 
load factor λ and evaluating the determinant. The process is repeated until the load factor 
at which the determinant vanishes is found. 

2.5.3 Horne’s Method 

Horne (1975) proposed an approximate method for determining the elastic critical loads 
of plane multi-storey sway frames, the only analytical requirement being that of 
performing a standard linear elastic analysis of the frame. The method can be illustrated 
by considering the instability of the column of length a shown in Fig. 2.4(a). 

Assuming that the column buckles into a state of neutral equilibrium, i.e. zero kinetic 
energy, the potential energy remains constant and the loss of potential energy of the 
external forces is equal to the increase in strain energy of the column. If, due to buckling, 
the end A of the column sways by with a corresponding axial shortening δū, the 
governing energy equation can be written 
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P.δū=UE 
(2.54) 

in which UE represents the change in strain energy of the column. 
To determine UE it is assumed that the buckled shape δw is the same as that produced 

by a concentrated horizontal force H as shown in Fig. 2.4(b). UE is then equal to 
and eqn (2.54) becomes 

 
(2.55) 

If the critical load Pcr is related to a base load P0 by a scalar load factor λcr and H is 
assumed equal to nP0 (n being a scalar load factor  

 

FIG. 2.4. Buckling of a column. 

less than unity) eqn (2.55) can be rewritten as 

 (2.56) 

or 

 (2.57) 

Two extreme cases are now considered for the buckled shape, as shown in Fig. 2.4(c) and 
(d). The first, which is a simple rigid body rotation, represents the case in which the 
columns of a frame are stiff compared with the beams. The second, which is a pure sway 
mode, represents the case in which the beams are stiff compared with the columns. 
Assuming simple polynomials to represent the buckled shape δw, the axial shortening is 
given by 

 (2.58) 

Steel framed structures     44



For the two extreme cases δū is given by 

 (2.59) 

Since these two values differ by only approximately 20% it is convenient to take the 
average, and substituting in eqn (2.57) gives 

 (2.60) 

The procedure can now be summarised as follows. Apply a horizontal force of nP0 to the 
end of the column and determine . The critical load factor is then given by eqn (2.60). 

Now consider the generalisation of this procedure for frames. The frame shown in Fig. 
2.5 has N=4 storeys. P0i represents the vertical loads applied at the ith storey and Hi=nP0i 
are the corresponding horizontal forces assumed applied to the frame. The governing 
energy equation for the frame (see eqn (2.56)) is then 

 (2.61) 

Assuming that the rth storey of the frame becomes unstable before all  

 

FIG. 2.5. Multi-storey sway frame. 

the others, eqn (2.61) can be simplified as 

 (2.62) 

The summation can now be cancelled to give 

 (2.63) 
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and proceeding as for the simple column 

 (2.64) 

The procedure for frames can now be summarised. Load the frame with horizontal forces 
at each storey Hi equal to nP0i. Determine the sway deflections and locate the storey for 
which is a maximum and assume equal to . The critical load factor is then 
calculated from eqn (2.63). 

2.6 SECOND ORDER EFFECTS AND ELASTIC CRITICAL 
LOADS 

Although considerable effort has been devoted to determining the elastic critical loads of 
plane multi-storey sway frames, elastic critical loads have found little direct application 
in practice. Sway limitations (Anderson and Islam, 1979; Majid and Okdeh, 1982) to 
prevent serious damage to non-structural cladding ensure that so-called ‘instability 
effects’ or second order nonlinear effects are relatively minor. Apart from this, elastic 
critical loads do not provide a direct measure of the magnitude of the second order effects 
and further complicated calculations are required to provide information of use to 
designers. 

Roberts (1981) proposed a procedure for estimating the magnitude of the second-order 
effects, based on a standard linear elastic analysis. The results can also be used to 
estimate, very simply, the elastic critical loads of frames if required. 

A linear elastic analysis of a plane, multi-storey sway frame gives displacement and 
member forces at all the joints of the frame. For any member, it is possible to deduce the 
displacements w, rotation wx, moments m, shear forces ƒ and axial forces t at the joints or 
nodes relative to the local coordinate axes of the member. 

Each member is in equilibrium, only in the absence of the axial forces which produce 
the second order effects. It is assumed that the member axial forces produce an additional 
transverse deflection δw of the member. The corresponding axial shortening δū is then 
given by 

 (2.65) 

In eqn (2.65) wx is as given by the linear elastic analysis. The work done by the axial 
forces t during the displacement δū is −tδū (t is tensile positive) and this is taken as equal 
to the work done by an equivalent set of nodal forces 

during the displacement δw. Hence 

 (2.66) 

Assuming w and δw to be represented by cubic polynomials, and proceeding as in Section 
2.3, gives 
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{δq}T{p*}=−{δq}T[tKGB]{q} 
(2.67) 

[tKGB] is as defined by eqn (2.38) and {q} is the nodal displacements given by the linear 
elastic analysis. 

The equivalent load vectors for each member of the frame can now be determined and 
a second linear elastic analysis performed with the frame loaded by all the member 
equivalent load vectors to give a first approximation for the second-order effects. Since 
this is only a first approximation, the final solution should ideally be obtained iteratively. 
A new set of equivalent loads should be calculated from member axial forces and 
displacements w+δw and the process repeated until the calculated values of w+δw are 
consistent with those assumed. An approximation to the iterative procedure can however 
be made as follows. Consider any of the non-zero displacements, for example the sway of 
the ith storey of the frame (see Fig. 2.5). Assuming that δw is proportional to w, the 
final value of , which is denoted by , is given approximately by 

 
(2.68) 

in which 

 (2.69) 

In practice, the series converges rapidly and only the first two or three 
terms need be considered. The complete solution corresponding to displacements 

can now be obtained by superposition. 
Equation (2.68) was expressed in terms of storey sway for a particular reason. 

Provided that the primary loading produces sway in each storey, an estimate of the sway 
critical load can be made using the principle (Horne and Merchant, 1965) that member 
axial forces at a load factor A have the effect of increasing the deformations 
corresponding to the lowest elastic critical load by a factor 1/(1−λ/λcr). If λ is taken as 
unity for the primary frame loads 

 (2.70) 

The storey for which is a maximum will be the storey in which elastic 
critical conditions occur first, and the elastic critical load for that storey can be calculated 
from eqn (2.70). 

2.7 ILLUSTRATIVE EXAMPLES 

Meaningful comparisons of the various nonlinear methods of analysis discussed are 
limited, since detailed solutions seldom appear in the literature and so-called ‘exact’ 
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solutions of nonlinear problems are often questionable. However, all the methods 
discussed have one aspect in common. After making certain simplifying assumptions, 
they all lead to a prediction of the elastic critical loads of frames and it is this aspect 
which will be used, herein, for comparison. 

Details of the frames analysed are shown in Fig. 2.6. A single element was used to 
represent each member (beam or column) of the frame and the axial forces in members 
were assumed either statically determinate or as given by a preliminary linear elastic 
analysis. With  

 

FIG. 2.6. Frame and loading details. 
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the exception of methods incorporating stability functions, improved accuracy is 
achieved by using more than one element to represent each member, due to the 
approximate displacement functions assumed in deriving the element stiffness matrices. 
In applying the method discussed in Section 2.6, the frames were also loaded with 
horizontal forces at each storey equal to 10% of the vertical load applied at that storey, to 
excite sway deformations. 

Results of the analysis discussed in Section 2.6 are presented in Table 2.1, in which βi 
values for each storey are given, the maximum from which the elastic critical load factor 
is calculated being underlined. Also given in Table 2.1 are critical load factors 
determined in accordance with Section 2.5.1 (eigenvalue solution), Section 2.5.2 
(stability functions) and Section 2.5.3 (Horne’s method).  

TABLE 2.1 
VALUES OF βi FOR EACH STOREY AND 
ELASTIC CRITICAL LOAD FACTORS λcr OF 
THE FRAMES SHOWN IN FIG. 2.6 

      Frame 
      1 2 3 4 5 6 
βi values for storey        
    1 0·097 0·390 0·034 0·052 0·175 0·069 
    2   0·056 0·125 0·183 0·103 
    3   0·070 0·266 0·196 0·116 
    4     0·213 0·134 
    5     0·231 0·131 
    6     0·250   
    7     0·267   
    8     0·272   
Elastic critical load factors λcr        
  λcr (Section 6) (Roberts, 1981) 10·3 2·57 14·3 3·76 3·68 7·44 
  λcr eigenvalues (Section 5.1) (Virgin, 1982) 10·8 2·68 15·6 3·99 3·49 6·47 
  λcr stability functions (Section 5.2) (Horne, 1975) 10·5 2·66 14·7 3·78 3·95 7·70 
  λcr Horne’s method (Section 5.3) (Horne, 1975) 10·9 2·73 14·5 3·74 3·60 7·36 

The results are reasonably consistent, which indicates that all the nonlinear methods of 
analysis discussed adequately represent the influence of axial forces on the flexural 
behaviour of frames. 

2.8 CONCLUDING REMARKS 

Matrix formulations for the elastic linear, nonlinear and instability analysis of frames 
have been presented. Nonlinear analysis can be performed either incrementally using the 
tangent stiffness matrix or iteratively using the secant stiffness matrix. Rigorous 
derivations of both the tangent and secant stiffness matrices indicate full interaction 
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between bending and axial displacements. Critical loading conditions occur when the 
second variation of the total potential energy changes from positive definite to zero, 
indicating a transition from stable equilibrium to instability, this condition being defined 
by the vanishing of the determinant of the incremental or tangent stiffness matrix. 

For practical multi-storeyed sway frames, sway limitations to prevent damage to non-
structural cladding generally ensure that nonlinear effects are of only minor significance. 
This enables simplifying approximations to be introduced in matrix analysis, the most 
significant of which is the assumption that member axial forces are either statically 
determinate or as given by a preliminary linear elastic analysis. This assumption is 
equivalent to considering only the influence of axial forces on the flexural behaviour of 
members and neglects axial shortening due to flexure. Based on this assumption, 
approximate methods of estimating second order effects and elastic critical loads can be 
established, and several alternative approaches for determining elastic critical loads 
reduce to the solution of the same set of equations. 
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Chapter 3 
DESIGN OF MULTI-STOREY STEEL 
FRAMES TO SWAY DEFLECTION 

LIMITATIONS  

 
D.ANDERSON  

Department of Engineering, University of Warwick, Coventry, UK 

SUMMARY 

Methods are described for the design of multi-storey steel frames to specified limits on 
horizontal sway deflection. Approximate methods for rectangular frames require only 
simple calculations, and their use is illustrated by a worked example. More general 
approaches are also given. These necessitate iterative calculation and take the form of 
specialised computer programs. Accurate allowance can then be made for secondary 
effects which are of particular significance in the design of very slender unbraced 
structures. 

NOTATION 
a Constant 

B Width of frame 

E Young’s modulus of elasticity 

F Shear in columns due to wind 

h Storey height 

I, I′ Moment of inertia of cross-section 

K Member stiffness 

k Distribution factors 

L Bay width 

M Parameter 

M [with suffix] Bending moment at end of member 

m Number of bays 



N Parameter 

n Power 

O Parameter 

P Axial forces in columns 

py Design strength 

r Ratio of bay width to storey height 

S Cladding stiffness 

 Non-dimensional cladding stiffness 

V Shear force in beam 

W Parameter 

X Parameter 

x Horizontal deflection 

Y Vertical distance 

Z Cost 

γf  Partial safety factor for loading 

∆ Sway deflection 

θ Joint rotation 

 Sway angle 

 Non-dimensional parameter 

3.1 INTRODUCTION 

Failure of a structure has been defined by Bate (1973) as ‘unfitness for use’, one possible 
cause being excessive deformation. This results in damage to the cladding or finishes of a 
building, hinders operations within, and may cause alarm or unpleasant sensations to the 
occupants. It follows that, when considering serviceability, the designer should calculate 
deflections under the working (unfactored) loads expected in normal use of the structure. 

In multi-storey steel building frames, beam deflections can readily be determined by 
analysis of a limited frame consisting of the member under consideration and the adjacent 
beams and columns (Joint Committee, 1971). The main problem relating to deflection 
concerns horizontal sway in unbraced frames. This form of deflection arises mainly from 
wind, and its control may govern the member sections. 

In the past, there has been no firmly established limit for the sway: height ratio to be 
used in design. One survey reported by the Council on Tall Buildings (1979) showed that 
the limiting value had varied from 1/1000 to 1/200, whilst the British code BS449 (BSI, 
1969) gave no recommendation for multi-storey structures. More recently, however, both 
British and European guides have settled on a value of 1/300 for calculations based on 
bare frames (BSI, 1977; ECCS, 1978). If the complete structure including cladding is 
considered, then the more restrictive 1/500 has been proposed (ECCS, 1978). 
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For adequate safety, ultimate strength is checked under enhanced values of loading, 
obtained by factoring the working loads. Under combined loading the factors range 
typically from 1·2 to 1·4. These values are sufficiently high to prevent significant 
plasticity at working load, and therefore deflection calculations are based usually on 
elastic behaviour. 

A number of approximate methods are available for the calculation of sway, some 
enabling direct design to specified limits. These methods are suitable for hand 
calculation, and are sufficiently accurate for medium-rise frames. If a given frame is to be 
analysed for sway, the charts produced by Wood and Roberts (1975) are most 
convenient. An alternative procedure is due to Moy (1974), which has the advantage that 
it also provides guidance on what changes will be required in section properties if 
deflections in a trial design are found to be excessive. However, if control of sway is 
likely to govern member sizes then equations due to Anderson and Islam (1979a) enable 
a suitable design to be obtained directly, without the need for a trial set of sections. 

For slender high-rise structures, it is most economical to provide a stiff core. However, 
if an unbraced frame is preferred for architectural or functional reasons, then secondary 
effects, particularly loss of stiffness due to compressive axial forces and sway due to 
differential axial shortening, should be considered. The former effect can be included in 
approximate methods without difficulty, but if axial shortening is significant it will be 
preferable to use a more accurate computer-based approach. If only analysis is required, 
many standard programs are available. Direct design by computer is also possible, as 
demonstrated by, amongst others, Anderson and Salter (1975) and Majid and Okdeh 
(1982). 

In order to choose the most convenient procedure in design, it is helpful to know at 
any early stage whether ultimate strength or the serviceability limit on sway will 
dominate the choice of sections. Guidance on this has been given recently by Anderson 
and Lok (1983), following a parametric study on medium-rise frames. Their work is 
described below, before proceeding to the design methods referred to above. 

3.2 GOVERNING DESIGN CRITERION UNDER COMBINED 
LOADING 

3.2.1 Design Studies 

The frames examined were rectangular in elevation, of four, seven and ten storeys in 
height, and from two to four or five bays in width. Two ratios of bay width to storey 
height r were considered, namely 1·33 and 2·0, although within a particular frame these 
two dimensions were constant. All bases were fixed. 

The unfactored loads are given in Table 3.1 together with the maximum and minimum 
basic wind speeds. For simplicity, the resulting horizontal wind pressure was taken as 
uniform over the height of the frame, although designers often use a reduced pressure on 
the lower storeys. On the other hand, no allowance was made for eccentricity of vertical 
loading arising from fabrication and erection tolerances, and no account was taken of any 
reduction in live loading permitted for the design of columns. In the studies, the 
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maximum value of floor loading was combined with minimum values of wind loading, 
and vice-versa. A number of other load combinations were examined also. 

The design strength of structural steel, py, was taken as 240 N/mm2, corresponding to 
the grade commonly used in medium-rise unbraced frames. Sway due to unfactored 
horizontal wind load was to be restricted to 1/300 of each storey height for the bare 
frame, in accordance with recent recommendations (BSI, 1977; ECCS, 1978).  

TABLE 3.1 
LOADING VALUES 

Loading Maximum Minimum
Dead on roof (kN/m2) 3·75 3·75
Imposed on roof (kN/m2) 1·50 1·50
Dead on floor (kN/m2) 4·79 4·79
Imposed on floor (kN/m2) 5·00 2·50
Basic wind speed (m/s) 50 38

Minimum sections were determined by designing against failure by beam-type plastic 
hinge mechanisms or by squashing, using partial safety factors γf of 1·4 and 1·6 on dead 
and imposed load, respectively (BSI, 1977). These sections were then increased, as 
appropriate, to satisfy the restriction on sway at working load. The method of Anderson 
and Islam (1979a) described below was used. Column sections were made continuous 
over at least two storeys, but beam sections were changed at each floor level if required. 
The designs were then subjected to a second-order elasto-plastic computer analysis 
(Majid and Anderson, 1968), with γf values of 1·4, 1·2 and 1·2 applied to dead, imposed 
and wind loads, respectively (BSI, 1977). If the factored load level was achieved before 
collapse occurred, then ultimate strength under combined loading was not the governing 
criterion for that particular frame. 

3.2.2 Results 

The results are summarised in Table 3.2. These are applicable to frames whose steel 
design strength is in the region of 240 N/mm2, such as British Grade 43 and European Fe 
360 material. The designer needs to determine the ratio of the sum of the column axial 
forces P to  

TABLE 3.2 
LIMITING VERTICAL: HORIZONTAL LOAD 
RATIO, P/F 

Frame Bay width: storey height Average P/F
Four-storey 2·0 40
Seven-storey 2·0 40
Ten-storey  2·0 40
Four-storey 1·33 75
Seven-storey 1·33 65
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Ten-storey 1·33 55

the corresponding total column wind shear F in each storey. P and F are calculated using 
the factored combined loads. The ratio is then averaged over all the storeys of the frame. 
Ultimate strength under combined load is not likely to be critical, provided the limits on 
P/F are not exceeded. 

3.2.3 Example 

Consider the six-storey two-bay frame shown in Fig. 3.1 which is subjected to the 
unfactored loadings shown in Table 3.3. The dynamic  

 

FIG. 3.1. Six-storey two-bay frame 
with factored combined loading. 

wind pressure has been calculated from a basic wind speed of 44 m/s. With frames 
spaced longitudinally at 4·5 m centres, the factored combined loads are as given in Fig. 
3.1, the corresponding values of P/F being stated alongside each storey. The average 
value is 31·5 and r=L/h=1·6. 

It is clear from Table 3.2 that ultimate strength will not be critical for design. The 
appropriate procedure is therefore to calculate first the  
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TABLE 3.3 
LOADING FOR SIX-STOREY TWO-BAY 
FRAME 

Loading Unfactored value (kN/m2) γf combined
Dead on roof 3·75 1·4
Imposed on roof 1·50 1·2
Dead on floor 4·80 1·4
Imposed on floor 3·50 1·2
Dynamic wind pressure 1·005 1·2

sections required to sustain the factored values applicable to dead plus imposed vertical 
load, and then to increase the sections as necessary in order to limit sway at working load. 
A final check analysis can then be undertaken to confirm adequate ultimate strength 
under combined loading. 

3.3 APPROXIMATE METHOD FOR DIRECT DESIGN 

When it is expected that the serviceability limit on sway will be dominant, the method 
due to Anderson and Islam (1979a, b) enables suitable section properties to be calculated 
directly for rectangular frames. The design equations are based on three assumptions: 

(i) Vertical loads have a negligible effect on horizontal displacements. 
(ii) A point of contraflexure exists at the mid-height of each column (except in the bottom 

storey) and at the mid-length of each beam. 
(iii) The total horizontal shear is divided between the bays in proportion to their relative 

widths. 

These assumptions render a frame statically determinate, except in the bottom storey, and 
enable each storey to be considered in isolation. Expressions relating the sway deflection 
over a storey height to the inertias of the corresponding columns and surrounding beams 
can then be derived. 

3.3.1 Intermediate Storey 

Figure 3.2 shows an intermediate storey of height h2 subject to horizontal load. By 
treating each bay individually, it can be shown that assumptions (ii) and (iii) result in zero 
axial load in the internal columns. It is also implied by the assumptions that the column 
inertias are related as follows 

 (3.1) 

where the symbols are defined in Fig. 3.2. The frame is m bays in width. Furthermore, the 
stiffnesses of the beams must vary according  
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FIG. 3.2. Intermediate storey. 

to bay width 

 (3.2) 

 (3.3) 

where I1,1, I1,2, etc. are the inertias of the upper beams in the storey, and I2,1, I2,2, etc. are 
those of the lower beams. The design equations are derived in terms of I1,2, I2,2 and I3,2 by 
analysing the subassemblage shown in Fig. 3.3. 

As the moment is assumed to be zero at C, the slope-deflection equations give 

 (3.4) 

where MBC is the clockwise bending moment acting on BC at B, and θB is the 
corresponding rotation. Let the shear at C be Vc, and F2 be the total horizontal shear in all 
the columns of the storey being designed; F1 and F3 are the total values in the columns of 
the storeys immediately above and below. The shear in the column at E is therefore 
F2(L1+L2)/(2B), where B is the total width of the frame.  
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FIG. 3.3. Sub-assemblage for 
intermediate storey. 

Taking moments about A for the region ABCDE it can be shown that 

 (3.5) 

As the left-hand sides of eqns (3.4) and (3.5) are equal 

 
(3.6) 

Similarly, from the region EGJHK 

 
(3.7) 

where θG is the clockwise rotation at G. For a point of contraflexure at mid-height, θB and 
θG must be equal. Hence from eqns (3.6) and (3.7) 

 (3.8) 

Let MGB be the clockwise end moment in BG at G. Equating the slope-deflection 
equation for MGB to the moment of the shear at E about G 

 (3.9) 
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where, in design, ∆ equals the allowable sway over the storey height h2. Equations (3.6)–
(3.9) now permit an expression for I2,2 to be derived 

 
(3.10)  

Equations (3.10) and (3.8) enable I2,2 and I1,2 to be determined once I3,2 known. The need 
to choose trial values can be avoided by introducing an element of optimisation into the 
design. 

The cost Z of an intermediate storey is represented by the product of inertia and length 
for each member. Thus 

(3.11) 

The factor of 0·5 is introduced so that the cost of the complete frame is the sum of the 
individual storey costs. It is assumed that a beam is equally effective in restraining the 
sways immediately above and below its own level, and the factor is therefore 0·5. 

Using eqns (3.1)–(3.3), (3.8) and (3.10), Z can be obtained in terms of I3,2 only. For 
minimum cost 

 (3.12) 

which gives 

(3.13) 

where 

 
(3.14) 

Once I3,2 is determined, the other inertias follow from eqns (3.10), (3.8) and (3.1)–(3.3). 
Usually, it will not be possible to use sections which correspond exactly to the 

required inertias. The beam inertias can be calculated using an effective value for I3,2 
based on the properties of the column sections actually adopted. From eqn (3.1), the 
effective value of I3,2 is given by 

(3.15) 

3.3.2 Intermediate Storey of a Regular Frame 
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It is common for the intermediate storeys to have a constant storey height h and bay 
width L. In this case, eqn (3.13) simplifies to the following expression for the inertia I3 of 
an internal column 

 (3.16) 

The inertia for an external column is taken as 0·5I3. Once column sections are chosen, 
the effective value of I3,2 to be used in beam design must be the lesser of the value 
actually provided for the internal column and twice the actual value of . 

3.3.3 Bottom Two Storeys of a Fixed Base Frame 

A separate analysis is required for the bottom two storeys because it is grossly inaccurate 
to assume a point of contraflexure at mid-height of a ground storey column. Design 
equations have been derived for pinned base frames (Anderson and Islam, 1979a, b), but 
such bases result in very high inertias for the bottom storey members, in comparison with 
elsewhere in the frame. Fixed bases are preferable for multi-storey frames, unless the 
need to minimise stress on the soil is of over-riding importance. The equations given 
below apply to fixed base conditions. 

The subassemblage is shown in Fig. 3.4. It is assumed that the fixity of the base and 
the avoidance of reverse column taper result in sections being governed by the sway ∆ of 
the storey next to the bottom. The column section is therefore continuous over the bottom 
two storeys. Anderson and Islam also derived equations applicable to fixed base frames 
when sway of the bottom storey governed design. This case can arise when the height of 
the bottom storey is much greater than that of the storey above. These special equations 
are avoided by checking bottom storey sway using the analysis method described later, 
and modifying sections if necessary. 

By comparing Figs. 3.3 and 3.4 it can be seen that eqn (3.6) still applies for the 
rotation θB. θG is obtained by deriving the sway  
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FIG. 3.4. Sub-assemblage for bottom 
two storeys. 

equation for GJ and considering equilibrium of moments at G, giving 

 
(3.17) 

Expressions for I1,2 and I2,2 are obtained by replacing eqn (3.7) by (3.17) 

 
(3.18) 

 
(3.19) 

The cost of the bottom two storeys is expressed as 

(3.20) 

Proceeding as before, differentiation leads to 

 (3.21) 
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with 

 
(3.22) 

Once column sections are chosen, an effective value of I3,2 may again be used for beam 
design, provided eqn (3.15) is satisfied. 

Anderson and Islam (1979a, b) also derived special equations to control sway of the 
top storey. However, experience has shown that strength under vertical loading will 
control the design of this region, and equations for sway are therefore unnecessary. 

3.3.4 Example 

The method is demonstrated by designing the six storey frame, discussed earlier, to a 
limiting sway index of 1/300 under unfactored wind loading. With a longitudinal spacing 
of 4·5 m, the resulting loads are as shown in Fig. 3.5(a). E is taken as 205 kN/mm2. 
Column sections will only be changed every second storey, to reduce fabrication costs. 
As a result, it is only necessary to design three storeys from the frame.  

 

FIG. 3.5. Designs for six-storey two-
bay frame: (a) initial design; (b) 
design. 

TABLE 3.4 
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MOMENTS OF INERTIA IN CM4 FOR SIX-
STOREY TWO-BAY FRAME 

Internal column External column Lower beam Upper beam Storey 
I3 required 

(cm4) 
I3 provided 

(cm4) 
required 
(cm4) 

provided 
(cm4) 

I2 required 
(cm4) 

I1 required 
(cm4) 

5 5672 6088 2836 4564 7252 3626 
7647 14447 10835 3 13234 14307 6617
6088 15993 11995 

2 16314 17510 8157 11360 16243 14862 

The sections shown in Fig. 3.5(a) are the minimum ones which withstand dead plus 
imposed vertical loading only, using γf=1·4 and 1·6, respectively. They are obtained by 
simple plastic theory, taking py=240 N/mm2, and selecting from the range of British 
Universal sections. 

Design for sway is commenced at the fifth storey, using eqn (3.16) to calculate an 
inertia for the internal column of 5672 cm4, as shown in Table 3.4. As can be seen from 
the sections in the Appendix, the nearest Universal Column (UC) is 203×203×60 kg/m 
(I=6088 cm4). This is adopted, as shown in Fig. 3.5(b). The required inertia for the 
external column is half that for the internal member. The lack of a UC with a suitable 
property necessitates the provision of a 203×203× 46 kg/m section (I=4564 cm4). The 
beam inertias are now calculated from eqns (3.10) and (3.8), taking the effective value of 
I3,2 as the value actually provided for the internal column (6088 cm4). The required beam 
inertias are given in Table 3.4, and the chosen sections in Fig. 3.5(b). The minimum beam 
section 305×127×37 kg/m is retained for the lower beam as its inertia is 99% of that 
required. 

A similar procedure is followed for the third storey, except that it is worth considering 
two alternatives for the external column. In the first case a 203×203×71 kg/m UC is 
chosen (I=7647 cm4). Beam desing is then based on an effective I3,2 of 14307 cm4 
corresponding to the actual section of the internal column. For the alternative, a 
203×203× 60 kg/m UC (I=6088 cm4) is proposed for the external column. As this is less 
than twice the inertia of 14307 cm4 provided for the internal column, an effective value of 
I3,2=2×6088=12176 cm4 must be used for beam design. When the required beam inertias 
in Table 3.4 are compared with the list of available Universal Beams (UB), it is found 
that the same sections are required in both cases. Hence it is more economical to choose 
the lighter section for the external columns, as shown in Fig. 3.5(b). 

The results for the second storey come from the use of eqns (3.22), (3.21), (3.19) and 
(3.18). After column sections are chosen, beam design is based on an effective I3,2 of 
17510 cm4. 

3.4 APPROXIMATE METHOD FOR ANALYSIS 

Provided secondary effects are not significant, the above method successfully provides 
section properties needed to satisfy limits on sway. Rarely, if ever, will these properties 
correspond exactly to available sections, but additional column stiffness can be offset by 
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reduced beam stiffness, and vice-versa. The use of eqns (3.1)–(3.3), though, precludes a 
similar trade-off between, for example, internal and external columns. A designer may 
wish, therefore, to use an analysis to modify slightly the sections, to achieve greater 
economy. Suitable methods are due to Wood and Roberts (1975) and Moy (1974). The 
former method has been included in ECCS recommendations (1978) and is described 
below. Such analyses can also be used to check deflections in the top or bottom storeys if, 
exceptionally, these could be critical. 

3.4.1 Derivation of the Analysis 

The analysis is based on the frame shown in Fig. 3.6 which acts as the substitute for an 
individual storey of a multi-bay frame. The relation- 

 

FIG. 3.6. Single-storey substitute 
frame. 

ship between the substitute and real structures is discussed in a later section of this 
chapter. Cladding may be included by a spring of stiffness S. Wood and Roberts (1975) 
used stiffness distribution (Wood, 1974) in their paper, but the same results can be 
obtained in a more straightforward manner by considering member and joint equilibrium. 

When the column sways by ∆, then for equilibrium 
Mt+Mb+(F−S∆)h=0 

(3.23) 

where S∆ is the restoring force exerted by the spring, and Mt and Mb are the moments 
acting clockwise on the top and bottom ends of the member. The moments can be 
expressed in terms of ∆ and the rotations θt and θb by slope-deflection 

 (3.24) 
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the expression for Mb being obtained by interchanging θt and θb. Substitution for the 
moments in eqn (3.23) then gives an expression for the required sway 

 
(3.25) 

The unknown rotations θt and θb are determined from joint equilibrium. To do this, a 
modified expression for column end moment is first obtained by substituting eqn (3.25) 
into (3.24). Hence 

 (3.26) 

where 
Kc=Ic/h 

(3.27) 

 
(3.28) 

 
(3.29) 

N=4−3M 
(3.30) 

O=−2+3M 
(3.31) 

For joint equilibrium at the top of the column 
Mt+Mbt=0 

(3.32) 

where Mbt is the moment in the top beam at the beam-column  
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FIG. 3.7. Sidesway deflection for 
unbraced frame: (a) values of = 
(∆/h)/(Fh/12EKc); (b) distribution 
coefficients. 
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junction. Mbt is given by slope-deflection as 

 (3.33) 

On substitution of eqns (3.26) and (3.33) into (3.32), an expression in terms of θt and θb is 
obtained. A second expression is derived from equilibrium at the lower end of the 
column. The two expressions can then be solved for θt and θb to give 

 (3.34) 

where 
Kbt=Ibt/Lt,      Kbb=Ibb/Lb 

(3.35) 

The expression for θb is obtained from eqn (3.34) by interchanging Kbt and Kbb. The sway 
can now be determined by substituting for the rotations in eqn (3.25). After 
rearrangement, the following nondimensional expression, given by Wood and Roberts 
(1975), is obtained 

(3.36) 

where kt and kb are the distribution factors 

 (3.37) 

To assist designers, Wood and Roberts presented their analysis in the form of charts, such 
as Fig. 3.7(a). The charts are constructed by selecting values for and kt, and solving 
eqn (3.36) for kb. 

3.4.2 Substitute Frame 

To use the analysis, each storey of the actual frame must be replaced by an equivalent 
structure having the form of Fig. 3.6. This is done by first transforming the actual frame 
into a substitute beam-column structure, as shown in Fig. 3.8 for the six storey frame. 
The basis of the substitute frame (Wood, 1974) is that: 

(i) for horizontal loading on the real frame, the rotations of all joints at any one level are 
approximately equal, and 

(ii) each beam restrains a column at both ends. 
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FIG. 3.8. Multi-storey substitute frame. 

Hence for a typical beam AB in the actual frame (Fig. 3.8), with end rotations θA=θB=θ, 
slope-deflection gives 

 (3.38) 

This compares with eqn (3.33) which applies to Fig. 3.6 and also to the beams of the 
substitute frame in Fig. 3.8. 

It can be seen, therefore, that to represent the equal end rotations of the real frame, a 
beam inertia in the substitute frame should be based on (6/4)Ib,=1·5Ib. It follows from (ii) 
that the total stiffness Kb of a beam in the substitute frame is 

 (3.39) 

For the substitute column 
Kc=∑(Ic/h) 

(3.40) 

In both cases the summation is over all the beams or columns in the real frame at the 
level being considered. 
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To allow for continuity of columns in a multi-storey structure, it is recognised that 
each floor beam restrains column lengths above and below its own level. Hence the 
distribution coefficients are modified to 

 (3.41)  

where Ku and K1 refer to the upper and lower columns (Fig. 3.7(b)). Note also that when 
calculating ∆ in a multi-storey frame, F is the total shear in the storey being considered. 

It remains to assign a value to the cladding stiffness, . Many designers will prefer to 
assign zero value, and then use the less restrictive limit of 1/300 recommended when 
calculations are made on the bare frame (ECCS, 1978). The assessment of is a topic 
requiring further research, and is outside the scope of this chapter. However, some 
guidance is given by Wood and Roberts (1975) on this subject. 

3.4.3 Example 

The frame shown in Fig. 3.8 is that designed in Section 3.3.4, using the method of 
Anderson and Islam (1979a, b). The resulting sway deflections are determined using Fig. 
3.7, the calculations being set out in Fig. 3.8 and Table 3.5. Comparison is also made in 
Table 3.5 with deflections given by a standard linear elastic computer program, including 
the effects of axial shortening. It will be observed that the values given by Wood and 
Roberts’ analysis are reasonably accurate, and that the method of Anderson and Islam has 
given a design which satisfies the deflection limit of 12·5 mm. However, storeys 1/2 and 
5/6 may be  

TABLE 3.5 
SWAY DEFLECTIONS FOR SIX-STOREY 
FRAME (FIG. 3.5(b)) 

kt kbStorey F (kN) Kc (cm3)
6 8·48 40·6

∆ (mm)∆ (computer) (mm)
0·48 0·53 2·5 3·0 4·7 

5 25·43 40·6 0·53 0·61 3·0 10·7 9·8      
4 42·38 70·6 0·61 0·54 3·0 10·3 11·0      
3 59·33 70·6 0·54 0·49 2·6 12·5 11·8      
2 76·28 107·3 0·49 0·54 2·6 10·6 10·8      
1 93·23 107·3 0·54 0 1·7 8·5 8·5      

overdesigned, because the maximum deflections are significantly below the permissible 
value. It is worthwhile, therefore, to consider some reduction in sections at these levels. 

It will be recalled that for an equal bay frame, the design method of Anderson and 
Islam ideally requires the inertia of an external column to be half that of the 
corresponding internal member. The analysis of Wood and Roberts (1975) enables the 
designer to avoid any such restrictions. It is proposed, therefore, that the internal column 
for storeys 5/6 be reduced to the same section as that for the external  
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FIG. 3.9. Final design for six-storey 
two-bay frame. 

members, namely 203×203×46 kg/m UC. For the bottom two-storeys, all columns will be 
reduced by one section, as shown in Fig. 3.9. The calculations for the resulting 
deflections follow the same procedure as those given earlier in Fig. 3.8 and Table 3.5. 
Using Fig. 3.7, it is predicted that the sway at storeys 2 and 5 will now be 12·4 mm and 
11·2 mm, respectively, which are both acceptable. For comparison, the linear elastic 
computer program gives values of 12·3 mm and 10·3 mm.  

3.4.4 Ultimate Strength 

The calculation of ultimate strength is outside the scope of this chapter. However, it 
should be noted that when the design of Fig. 3.9 is subjected to the factored loading (Fig. 
3.1), it is found to possess adequate strength. This confirms the prediction made in 
Section 3.2.3, that this criterion would not be critical for design. 

If it is expected that for a particular frame ultimate strength will be dominant, then the 
structure should be designed first to this criterion. The method of Wood and Roberts then 
provides a useful check for the sway at working load. If in fact some deflections are 
found to be excessive, Moy (1974) has shown that the most economical procedure is 
usually to increase the stiffness of the beams. 
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3.5 SECONDARY EFFECTS AND COMPUTER METHODS 

The simplified methods described above do not allow for the reduction in frame stiffness 
due to compressive forces, nor for the effects of axial shortening and unsymmetrical 
loading on sway. 

The reduction in stiffness can easily be included by using additional horizontal shears 
(Vogel, 1983). If Pu denotes the total vertical loading carried by the columns at storey 
level u, then the total shear at this level should be increased by 1·2Pu. . 

Moy (1977) has given an estimate of the sway due to differential axial shortening. 
This was derived for frames subject to uniform horizontal loading, with the floors 
assumed to be rigid and column cross-sectional areas varying linearly from the top level 
to the bottom. Anderson and Islam (1979b) used this approach on a 15-storey frame and 
found the accuracy to be reasonable. However, when sway due to differential axial 
shortening or unsymmetrical vertical loading is likely to be significant, then simplified 
methods become appropriate only to the initial design stage. The final design should be 
obtained using a standard elastic analysis program to examine trial sections, or from 
specialised programs, such as those of Anderson and Salter (1975) or Majid and Okdeh 
(1982). 

3.5.1 Use of Linear Programming  

A flow diagram for the procedure due to Anderson and Salter is shown in Fig. 3.10. Due 
to the non-linear relationship between deflection and stiffness, a number of iterations will 
usually be necessary before the  

 

FIG. 3.10. Flow diagram (Anderson 
and Salter, 1975). 
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deflection limits are satisfied. The method is based on standard routines for elastic 
analysis and linear programming, and therefore can be developed easily. The procedure is 
applicable to a wide variety of frames, and secondary effects are readily included. 

3.5.2 Minimum Cost Design 

The previous method aims to minimise cost by generating a light design, but no account 
is taken of the variations in price per tonne that exist in the supplier’s section catalogue, 
nor of the restricted number of sections available. The program developed by Majid and 
Okdeh (1982) overcomes these limitations by costing alternative selections of available 
sections using a supplier’s price list. This method also adopts an iterative procedure to 
avoid direct solution of the structure’s stiffness equations. The general procedure is 
explained with reference to the single storey fixed base frame of Fig. 3.11. For simplicity, 
axial deformations will be ignored, and the shear in each column will therefore be F/2, 
with equal rotations θ at B and C.  

 

FIG. 3.11. Single-storey frame. 

For equilibrium of AB 

 (3.42) 

where MAB and MBC are the clockwise moments acting on AB at A and B, respectively. 
Slope-deflection enables these moments to be expressed in terms of θ and the specified 
sway ∆. Substituting for the moments in eqn (3.42) leads to 

 (3.43) 

For equilibrium at B, the sum of the column and beam end moments must be zero. Using 
the slope-deflection equations for these moments enables the following expression to be 
obtained 

 
(3.44) 

A value of Ib is selected to correspond to a beam section, and an initial value assigned to 
θ, say zero. Ic is then calculated from eqn (3.43), and θ from eqn (3.44). This enables Ic to 
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be recalculated, using the value for θ just determined. Iteration continues until the 
required degree of accuracy is attained. A section is then selected for the columns. Other 
designs are initiated with different beam sections, and the various designs priced. 

For multi-storey multi-bay frames, expressions are derived for column inertias and 
vertical and rotational displacements by applying slope-deflection and axial stiffness 
equations at each joint in turn. To treat the sway at each storey as a known quantity, the 
horizontal deflection x is given by 

 
(3.45) 

with the vertical distance Y measured from the roof downwards. The constants a1−a3 are 
determined from the following conditions: 

(i) at the top of the frame (Y=0), dx/dY= , 
(ii) at ground level (Y=H), x=0, 
(iii) at ground level, dx/dY=0 due to fixity at the bases. 

Hence 

 (3.46) 

As n increases the frame becomes more flexible and the profile approaches a linear 
profile of slope . The value of n used in the calculations is therefore the highest integer 
value that does not give exponential overflow in the computer.  

It can be assumed that the column inertias satisfy eqn (3.1), but the economy of other 
relative values can also be investigated. Initial beam sections can be generated by rigid-
plastic design under vertical loading, or by use of the design equations due to Anderson 
and Islam. Other beam sections can also be specified in the search for further economy. 

Secondary effects are included in the method, which has been demonstrated on very 
large frames, up to 32 storeys in height with unequal bay widths. The results are 
generally satisfactory, although the form of the deflection profile may impose 
unnecessarily severe restrictions on sway of the bottom storeys. 

3.6 CONCLUDING REMARKS 

This chapter has described two approximate methods to design medium-rise unbraced 
rectangular frames in which sway deflections control the choice of sections. The method 
of Anderson and Islam has the advantage that it actually generates a design without the 
need for trial analyses. Provided secondary effects, particularly differential axial 
shortening, are not significant, the design will be satisfactory. The choice of sections can 
be refined by using the analysis due to Wood and Roberts. Both methods can be used by 
hand, or programmed for a micro-computer. The second method enables account to be 
taken of cladding stiffness. 
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If sway due to differential axial shortening is significant, as in very slender frames, 
then specialised computer methods are more appropriate. Two such methods have been 
described. 
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APPENDIX 

Major axis moments of inertia for Universal sections in cm4 for design of six-storey two-
bay frame. 

Universal beams Universal columns
254×146×31 4439 203×203×46 4564
305×127×37 7162 203×203×52 5263
356×171×45 12091 203×203×60 6088
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406×178×54 18626 203×203×71 7647
   254×254×73 11360
   254×254×89 14307
   254×254×107 17510

The complete range of Universal sections is given in the Structural Steelwork Handbook 
published by BCSA/Constrado, London, 1978.  
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Chapter 4 
INTERBRACED COLUMNS AND 

BEAMS 

 
I.C.MEDLAND and C.M.SEGEDIN  

Department of Theoretical and Applied Mechanics,  
University of Auckland, New Zealand 

SUMMARY 

Methods of determining the buckling load factor for regular interbraced sets of columns 
and beams are developed and detailed. The equations which allow the critical load factor 
for any specific case to be evaluated are set out and summary charts prepared using such 
values. Such charts link buckling load to brace stiffness and number of columns, also 
allowing for brace eccentricity in some cases. 

Basic in-plane buckling with linear elastic support is detailed and expanded to cases 
of flexural torsional buckling involving eccentricity of linear braces and the addition of 
rotational and torsional support. Beam systems are detailed for the cases of uniform 
moment and for uniform spread load applied at flanges. The charts included only present 
a sample of what might be assembled. The appendices contain the detailed composition 
of the 2×2 and 4×4 determinants from which the charts are assembled. The evaluation of 
these determinants by desk computer is straightforward. 

NOTATION 
A* A constant 

a Warping radius 

B, Bn,m, Bm Nodal slope (at node n,m) 

B* A general amplitude 

bj, b* Amplitude of jth component of 
initial deformity, adjusted value 

C Torsional constant 

�



C* A general amplitude 

c Carry-over factor 

D, Dn,m, Dm Nodal displacement (at node n,m) 

D* A general amplitude 

dp Scale factor involving number of 
bays 

E Young’s modulus 

e, e* Eccentricity of brace, 
nondimensional form 

F* A general amplitude 

ƒ Nondimensional brace stiffness 

I Second moment of area 

Iw Torsional section constant 

k EI/l 

kL Linear brace stiffness 

kR Rotational brace stiffness 

kT Torsional brace stiffness 

l Length of interbrace element 

M Number of columns in parallel, 
general beam moment 

M0 Basic critical moment of simply 
supported beam 

Mcr Actual critical moment of beam 

ML, MR End moments 

m Column identifier 

N Number of internal brace lines 

n Number of bays, brace line identifier

P, PE Axial force, Euler value 

p Angle, measure of axial force 

Q Shape function within beam-column

R Shape function within beam-column

s Fixed ended beam rotational 
stiffness factor 

t Angle, measure of axial force 

u, uI General lateral displacement, initial 
value 

Steel framed structures     78



VL, VR End shear forces 

υ Shear stiffness function 

x Lateral displacement 

y Lateral displacement 

z Longitudinal position measure 

α Factor involving axial force and 
torsional constants 

 
Nondimensional linear brace 

stiffness, modified values 

γ Nondimensional rotational brace 
stiffness 

δ, δL, δR Linear nodal displacements 

λ Factor involving axial force 

η Nondimensional torsional brace 
stiffness 

θ, θL, θR Nodal rotation angles 

θj Angle jπ/(N+1)  

ρ, ρcr Nondimensional axial force, critical 
value, critical value of beam 

moment 

 An angle 

 A general phase angle 

 Angle iπ/(M+1) 

4.1 INTRODUCTION 

Most structural forms include members for which elastic lateral or flexural-torsional 
buckling is a possible means of failure. The determination of the load level which would 
cause such a failure is a problem for the designer because it is one of the limits to overall 
load capacity. An estimate of this load must be made by determining an ‘effective 
length’, or in some other rational manner. Few members can be treated in isolation. Each 
component of a structure both draws support from and supports other members against 
buckling action. Bracing members are deliberately placed to provide such support. 

Light industrial construction in steel and aluminium provides many examples of 
compression members which are deliberately braced at intervals throughout their length. 
In many cases they are arranged as an interbraced set of parallel members. The skeletal 
structure illustrated in Fig. 4.1, for example, includes the set of interbraced compression 
chords of the roof trusses and also the sets of side columns, which are similarly linked. In 
such structures the purlins and girts which make up the brace lines are usually effectively 
anchored or founded at intervals by attachment to cross-braced bays. 
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In many cases, the bracing is attached eccentrically to the shear centre of the braced 
member and is often connected in a manner which allows rotational and torsional support 
to be provided to that member. However, it also causes the buckling mode to involve 
flexural-torsional displacements. 

In the idealised mathematical critical load problem it is assumed that the compressed 
member (or structure) remains perfectly straight and elastic until a critical load level is 
reached. At that level the member is capable of sustaining the load both in its perfect 
condition and in one  

 

FIG. 4.1. Industrial structure 
illustrating interbraced compression 
members. 

specific deformed shape, usually called the buckling or critical mode. This so-called 
‘bifurcation of equilibrium positions’ typifies the phenomenon. It represents a neutral 
equilibrium state. In present day mathematical terms it is an eigenvalue problem. The 
result applies only to small displacements. Most structural texts cover this phenomenon at 
least as it applies to columns. The two classical stability texts, Bleich (1952) and 
Timoshenko and Gere (1961), provide clear physically-based coverage of buckling 
theory for basic structural components. The buckling of the simply supported uniform 
section column under uniform axial load, the Euler column, provides a base for this 
approach. Its lowest buckling load is π2EI/l2 (known as the Eulerload) and the associated 
buckling mode has the shape sin πz/l. Simply supported beams under uniform moment 
and rectangular plates under uniform compression per unit width are comparable basic 
cases. All lend themselves to clean analytical solutions to their governing differential 
equations. 

The determination of the critical load of a structure which is composed of several such 
members connected in series, or in a framework configuration, would basically involve 
the simultaneous solution of the governing differential equations under the appropriate 
boundary and continuity conditions. To expedite this process, an adaptation of normal 
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matrix analysis of the structure is used. The basic rotational stiffness of a uniform beam, 
4EI/l, for example, is replaced by sEI/l. Similarly the moment carry-over factor is 
replaced by c. Both s and c are derived from the solution of the differential equation 

EIyiυ+Py″=0 
(4.1) 

which replaces the simple 
EIyiv=0 

(4.2) 

used to derive the factors 4 and for the non-axially loaded member. The basic beam 
element stiffness matrix equation 

 

(4.3) 

where 
k=EI/l 

(4.4) 

applies when P=0. For non-zero P, eqn (4.3) is replaced by one in which the numerical 
coefficients become functions of the axial force (in a nondimensional form) as developed 
by Livesley and Chandler (1956) and also discussed and tabulated in Horne and 
Merchant (1965). The other basic stiffnesses, such as shear stiffness factors, are 
combinations of s, c and ρ. The nondimensional axial force factor ρ is the actual 
compressive load P divided by the Euler load PE (=π2EI/l2 for a uniform column). In 
terms of these factors, the stiffness matrix (eqn (4.3)) is replaced, for the beam-column, 
by 
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(4.5) 

 

FIG. 4.2. Basic stiffness functions as 
functions of ρ. 
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FIG. 4.3. Basic displacements defining 
stiffness functions. 

in which the factor 
υ=2s(1+c)−π2ρ 

(4.6) 

The variation of s, c, s(1+c) and υ with ρ is illustrated in Fig. 4.2, and the basic 
displacement cases used in their definition are shown in Fig. 4.3. 

In the use of the matrix approach, the emphasis is changed from the solution of 
differential equations, using displacement compatibility, to the stiffness or resistance of 
the complete structure to a set of loads. The structure is stable if it can resist the applied 
loads. A measure of this corporate stiffness is a number known as the determinant of the 
structure matrix. The determinant decreases as the compressive axial loads increase. One 
reason for this decrease can be seen clearly in the definition of υ (eqn (4.6)), where the 
term π2ρ is subtracted from a direct stiffness term on the matrix leading diagonal. 
Relative to this effect, the change in s and c with ρ is small. The function υ measures the 
resistance to pure sway displacement within a column, as shown in Fig. 4.3(b). The shear 
force is υkδ/l2 and the second component of this when expanded using eqn (4.6) is 

 (4.7) 

This embodies the so-called P−δ effect, the overturning moment so destructive to the 
lateral stiffness of columns which are free to sway, and their dominant axial load effect. 
This dominance is further illustrated in the difference between the plots of υ and s(1+c) in 
Fig. 4.2. 

The shapes into which the basic components (beams, columns) of a structure buckle 
are combinations of sinusoidal and linear forms. The single uniform column, for 
example, obeys the general differential equation (eqn (4.1)), for which the solutions have 
the basic form 

y(z)=A* sin λz+B* cos λz+C*z+D* 
(4.8) 
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or 

 
(4.9) 

where 

 (4.10) 

Any sufficient set of end conditions allows the four constants F*, , C* and D* in eqn 
(4.9) to be evaluated. It is also clear that the shape  

 

FIG. 4.4. Column supported by 
rotational springs at each end. 

relative to the line joining the ends is sinusoidal with a half wave length l/√ρ, the 
‘effective length’ of the column. This is illustrated in Fig. 4.4, where a section of a no-
sway column having general elastic-rotational end restraint is shown relative to its 
prebuckling position. A sketch of the anticipated buckled form, incorporating its 
sinusoidal nature and the end support estimates, can often be used as a quick guide to the 
effective length. In sway cases, where the effective length is usually greater than l (i.e. 
ρcr<1·0), this procedure is likely to be less accurate but may still furnish a reasonable 
estimate to be used, say, for initial sizing. Charts and tables from which effective lengths 
may be estimated under a range of end support conditions are incorporated in many codes 
of practice. 

4.2 SHAPE FUNCTIONS 

The deformed shapes illustrated in Fig. 4.3 are two of the four basic shape functions 
which can be used to describe the deformed shape of a general uniform section beam-
column interbrace length. As mentioned, the basic solution form of eqn (4.8) implies a 
linear combination of sine, cosine and linear terms in z, involving four constant scale 
factors for the components. In the case of a beam-column, it makes good physical sense 
to use the two end displacements y and the two end slopes y′ (Fig. 4.3) as those 
parameters. This follows normal structural practice. Since the same forms arise for either 
x- or y-direction displacements in the case of the doubly symmetric member, the symbol 
u(z) will be used to describe the general shape function forms within a member. 
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4.2.1 Basic Function Components 

Two function forms are required to describe the type of shape function shown in Fig. 4.3:  
Q(z) where Q(l)=1,      Q(0)=Q′(0)=Q′(l)=0   

R(z) where R′(l)=1,      R′(0)=R(0)=R(l)=0   

The functions 

 

(4.11) 

 

(4.12) 

in which 
t=λl 

(4.13) 

satisfy the above boundary conditions and a general solution to the original governing 
differential equation (eqn (4.1)) can be written 

u(z)=Q(z)u(l)+R(z)u′(l)+Q(l−z)u(0)+R(l−z)u′(0) 
(4.14) 

Obviously Q and R are linear combinations of the components of the solution to eqn (4.1) 
as shown in eqn (4.8), the combinations being arranged so that their end values are zero 
or unity. The formulae for the basic s and c functions, for instance, are derived directly 
from these using the end curvatures and slopes of R. 

Similar forms may be developed for the flexural-torsional buckling problems 
discussed in later sections. 

4.3 MULTIPLY BRACED COLUMNS 

4.3.1 Non-uniform Section, Bracing and Compression 

Consider a column pinned at each end and braced at intervals along the length by elastic 
linear braces, as illustrated in Fig. 4.5. In such a case the buckling displacements are 
assumed to take place in the x−z plane. If the braces are irregularly spaced, the buckling 
load will continue to rise with the brace stiffness, though not necessarily steadily. The 
mode of buckling with very weak braces would be close to the half sine wave form into 
which the unbraced column would buckle. As the braces are stiffened the effective length 
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decreases, until at some stage the mode associated with the lowest buckling load will 
involve two (distorted) half waves. The practical way to determine the buckling  

 

FIG. 4.5. Column supported by 
irregularly spaced elastic braces. 

 

FIG. 4.6. Column supported by a 
single elastic brace at one third length. 

 

FIG. 4.7. Buckling load of column in 
Fig. 4.6 in three modes; lower bound 
to curves. 
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FIG. 4.8. Typical truss loaded at each 
panel point. 

loads is to find the load factors at which the stiffness matrix of the structure, assembled 
using s and c functions, has a zero determinant. This is further illustrated by examining 
the simpler, but nonsymmetrical, case shown in Fig. 4.6. The initially straight uniform 
column would have a buckling load of π2EI/l2, i.e. PE, if unbraced and other natural 
modes of the unbraced column would occur at 4PE, involving two half sine waves with 
the length, 9PE involving three half sine waves, etc. The brace shown would interfere 
with the pure first mode and would cause the first critical load to rise above PE 
continually as the brace stiffness increases. The same would occur with the second mode, 
but the three half sine wave mode form naturally has a node at the brace point and will 
not cause the brace to be strained. This buckling load, 9PE, effectively represents an 
upper limit to the column axial compression capacity. A plot of buckling load versus 
brace stiffness would take the form shown in Fig. 4.7. The three regimes correspond to 
the first, second and third modes of buckling, the lower envelope being the effective 
critical value for the associated brace stiffness. Specific nondimensional design charts can 
be prepared and some are presented later in this chapter. 

The compression chords of trusses, such as that shown in Fig. 4.8, constitute a 
particular case within this general class of irregular compression members. The panel 
lengths are usually equal, the braces equally spaced, but the compressive force in each 
chord section is different, varying in a stepped parabolic manner within a simply 
supported truss. Braces (purlins) are not always attached to each panel point of the chord. 
This class of structure is discussed in detail by Medland (1977), where the critical load 
levels are related to brace stiffness and spacing in a series of nondimensional charts, such 
as Fig. 4.9. This figure relates the maximum panel ρ value within the chord at buckling 
(ρcr) to the brace stiffness factor ƒ. This nondimensional factor is the actual linear brace 
stiffness divided by 12EI/l3, the shear stiffness of a panel chord. In Fig. 4.9 the four 
curves relate to cases where only two brace lines are attached (at the 1/3 points) but the 
number of load points is varied. In this nondimensional form the three distinct segments 
of the plots corresponding to the single, double and finally triple ‘half sine wave’ modes 
of buckling are apparent and the ρcr value rises with the number of load points. This rise 
is a result of a lesser proportion of the chord length being at peak compression. It is also 
apparent that the critical load factor continues to rise if the number of load points is 
greater than two, in this two brace case. This is a  
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FIG. 4.9. Maximum panel compressive 
ρ: brace stiffness for parabolic 
compression chord load distribution. 

 

FIG. 4.10. Schematic of a set of 
interbraced truss compression chords. 
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consequence of the non-uniformity in the axial compression within the chord. No finite 
brace stiffness will force the chord into a mode which does not involve displacement at 
some brace. 

The same general analysis applied to a structure comprising a number of trusses in 
parallel, their compression chords interbraced by equally spaced lines of braces as shown 
schematically in Fig. 4.10, indicates that the curves shown in Fig. 4.9 remain relevant if 
the nondimensional brace stiffness factor ƒ is divided by the empirically derived factor 

dp=0·425n2+1·275n+1·0 
(4.15) 

In eqn (4.15), n is the number of bays (number of columns −1). The one set of curves 
covers all n. A very similar factor applies to chords under uniform compression 
throughout their length. 

Figure 4.11 further illustrates the type of design chart which can be prepared from 
such analyses. In this case it is assumed that every  

 

FIG. 4.11. Maximum panel 
compressive ρ: brace stiffness for 
every second panel point braced. 
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second load point of the chord is braced. As the number of braces (and panels) is 
increased the curves become smoother and lower, crowding towards a ρcr value of 1.0 for 
large brace stiffnesses. The broken line indicates the lower bound curve for the special 
case of column sets under uniform compression. This curve can be seen to be a not too 
conservative lower bound for the stepped parabolic cases, and the results of a more 
complete study allow such lower bound design curves to be calculated efficiently. 

4.3.2 Uniform Section, Bracing and Compression 

Figure 4.12 illustrates a highly regular set of parallel, pin-ended, uniformly compressed 
columns interbraced at equal intervals by equal stiffness braces. As stated above, this 
case provides a conservative estimate for some less regular cases. The interbraced 
column length (element) of column number m between brace lines n and n+1 is 
designated element n,m. There are N internal brace lines and N+1 column elements. 

The displacements within column element n,m are governed by the basic differential 
equation (eqn (4.1)), arranged here in the general  

 

FIG. 4.12. Schematic of interbraced 
pin-ended columns. 

form 

 
(4.16) 
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for which a basic form of solution is given in eqn (4.14). It is reiterated that the functions 
Q and R are such that, at an end, one of them will have a value of 1.0, the other zero. The 
same applies to their derivatives. 

4.3.3 Single Column Example 

Consider initially the single column shown in Fig. 4.13. The linear springs brace each 
point to a solid foundation on each side. When buckling occurs under the uniform axial 
compression, the displacement, slope, moment and shear must be continuous at each 
brace point. Using the displacement form of eqn (4.14), and capitalising on the special 
forms of Q(z) and R(z), the continuities of one brace point provide a general relationship. 
At node n,m joining elements n−1, m and n,m the four continuities in the above order are 
written 

un−1,m(l)=un,m(0)=Dn,m (say) 
(4.17) 

 
(4.18) 

(4.19) 

(4.20) 

in which 

 
(4.21) 

 

FIG. 4.13. Single multiply braced 
column. 

Equations (4.19) and (4.20) provide two relationships between the B and D parameters. If 
the substitutions 
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(4.22) 

are made in eqns (4.19) and (4.20), those equations are condensed to 

 (4.23) 

and 

(4.24) 

The form of eqns (4.22) simply recognises the recurrent form (physically and, hence, 
mathematically) of the structure and buckling modes. Equations (4.22) state that the 
distribution of brace point displacements Dm within the length of the column is 
sinusoidal, while the distribution of slopes Bm at those points is cosinusoidal. This implies 
pinned support at nodes 0 and N+1. The number of half sine waves within the length is 
obviously j. The detail of the approach is treated in Segedin and Medland (1978) and 
Medland (1979), and draws on a recurrence approach put forward for a vibration problem 
by Miles (1956). 

Equations (4.23) and (4.24) constitute a pair of homogeneous linear equations in Bm 
and Dm, the slope and displacement amplitude factors. In the manner of all buckling 
problems, no unique solution is available. Apart from the trivial Bm=Dm=0 solution, a 
range of proportions Bm: Dm are able to be found and each corresponds to an axial force 
(represented in t through λ) which causes the 2×2 determinant of the coefficients in eqns 
(4.23) and (4.24) to become zero. While the form of the development of the two basic 
equations may appear complicated, the evaluation of the 2×2 determinant at a set β and θj 
and increasing trial values of t is almost trivial once programmed into a desk computer or 
calculator. 

4.3.4 Multiple Column Case 

The effect on the above development of there being M columns in parallel, as shown in 
Fig. 4.12, is confined to the fact that each spring at a node is extended by the relative 
displacements of the columns. As a result, the third component of eqn (4.20) becomes 

(4.25) 

and eqn (4.24) becomes 
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(4.26) 

Equations (4.23) and (4.26) now govern the buckling behaviour of the system. The 
substitution of 

 
(4.27) 

into the modified eqn (4.24) (using eqn (4.25)) and into eqn (4.26) results in the further 
compacted forms 

 (4.28) 

(4.29) 

As discussed with respect to eqns (4.23) and (4.24), the determinant of the coefficients of 
eqns (4.28) and (4.29) will be zero at a buckling load. Clearly the factor 
is the effective linear brace stiffness for the multi-column case. The value of will 
depend upon the outside foundation conditions for the brace lines (m=0, M+1). If both 
ends are fixed in position then 

 
(4.30) 

For a given physical system, the critical load will be determined by finding the lowest 
load value for which the determinant of the coefficients of eqns (4.28) and (4.29) 
becomes zero having selected a specific j, the number of half sine waves within each 
column length, and i, the  
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FIG. 4.14 Nondimensional summary of 
effective stiffness of a set of multiply 
interbraced columns. 

number of zero displacement points within a brace line. The determinant of eqns (4.28) 
and (4.29) is shown in Appendix 1 with a summary of other details. 

The lower envelope to the relationships between the effective brace stiffness and axial 
load can be very closely approximated by a quadrant of a circle if the nondimensional ρ is 
used instead of t and if the spring stiffness is represented using the factor 

 
(4.31) 

Figure 4.14 shows the relationship between true and approximate representations of this 
lower bound. 

4.4 FLEXURAL-TORSIONAL BUCKLING OF COLUMNS 

A uniform, doubly symmetric cross-section member under axial compression can buckle 
in three distinct forms. The lowest buckling load would normally involve bending about 
the minor axis in a simple Euler manner, at a load dictated by the section properties and 
end support conditions. If this mode is prevented, or considerably restrained by outside 
influence, both Euler buckling about the major axis and pure twist buckling about the 
longitudinal axis through the shear centre of the cross-section are possible. If the section 
has only one degree of  
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FIG. 4.15. Illustration of flexural-
torsional buckling displacements. 

symmetry (e.g. a channel section, an equal leg angle or an I-section with unequal flange 
widths) the shear centre will not coincide with the centroid and the buckling mode will be 
either pure displacement in the plane of the axis of symmetry or combined ‘lateral’ 
displacement and twist. If no symmetry exists, the buckling mode contains components 
of both lateral displacements as well as twist, as illustrated in Fig. 4.15. A doubly 
symmetric member on which the axial compression stress is not symmetrically disposed 
over the cross-section will behave in a similar manner. These latter cases are generally 
referred to as undergoing flexural-torsional buckling. Given simple support conditions at 
each end against each form of displacement, the buckling component forms will all vary 
sinusoidally within the length, each having its own amplitude dependent on its inherent 
stiffness in that mode. 

In the following, such combined modes occur not as a result of the section properties 
(which are doubly symmetric) but because the elastic constraints (braces) are attached 
eccentrically to the compression member. As mentioned earlier, such eccentric 
attachments precipitate flexural torsional buckling but often provide some restraint to 
those movements in compensation. 

 

FIG. 4.16. Torsional displacement: (a) 
free-to-warp; (b) warp restrained. 

In members which are subjected to torsion, warping occurs. The torsional shears cause 
the basic ‘plane-sections-remain-plane’ assumption to be violated in all but circular 
cross-section members. If this distortion is resisted by a stiffening attachment or, more 
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subtly, by there being non-uniform torsion or torsional resistance within the member, 
additional local stresses are engendered. Resistance to warping considerably enhances the 
torsional stiffness of the member, particularly for I and channel shapes, but the resulting 
stresses can cause local problems. Figure 4.16(a) illustrates the distortions involved in the 
free twisting of an I-section member, while Fig. 4.16(b) shows the extra distortion and 
consequently torsional resistance and energy absorption which accompanies the twist 
where warping is resisted. The figure illustrates how the warping effect in a flanged 
member is dominated by the flanges moving out of plane with one another. 

4.4.1 Interbraced Columns in Flexural-Torsional Buckling 

In most interbraced structures of the type discussed in Section 4.3.4, the bracing members 
are not simply tension-compression members but, like girts and purlins, have 
considerable bending resistance themselves. The connection with the braced member is 
often eccentric to the shear centre of that member and is also capable of transferring 
rotational forces in the plane of the structure. In such cases the brace may provide 
torsional, rotational and warping support as well as the basic lateral, and at the same time 
causes the buckling mode of the braced member to involve those four components. 
Figure 4.17 illustrates a typical connection within a grid and the associated support 
forms. 

Since out-of-plane displacement is assumed to be zero in the buckling modes, the four 
further continuity equations of twist , rate of change of twist , torsional moment and 
warping moment must be satisfied. As an example, the torsional moment continuity 
across a  

 

FIG. 4.17. Brace connection providing 
lateral, rotational and warping 
constraint. 

brace point at which the effective stiffness resisting torsion is KT (moment per unit twist), 
the linear in-plane spring stiffness is KL and the eccentricity of that brace from the shear 
centre is e, can be written 

(4.32) 

Steel framed structures     96



The coefficient of KT contains the direct and carryover twist effects, while the other two 
involve the contributions due to the net extension of the linear spring, attached 
eccentrically, by the amount e. The sign convention for displacements and forces is 
shown in Fig. 4.18. The form selected for is the same as that for un,m in eqn 
(4.14). The with different coefficients and using α instead of λ. The full set of continuity 
equations across the general brace point can be written. These are presented in detail by 
Medland (1979). The factor α represents the axial load and is defined by 
α2=(PI0/A−C)/C1 

(4.32) 

Upon substitution of eqns (4.22) and (4.27), the set of four equations which are the four 
degrees of freedom equivalent of the pair of equations (4.28) and (4.29) may be written 
and their 4×4 determinant evaluated at increasing levels of axial force until it becomes 
zero at the  

 

FIG. 4.18. Sign convention for forces: 
axial, shear, minor axis bending and 
warping. 

critical level for the system. That determinant is shown in detail in Appendix 2. 

4.4.2. Nondimensional Factors 

While it is not possible to completely nondimensionalise the system, it is useful to 
employ the factors 

 
(4.34) 
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and 

 (4.35) 

 
(4.36) 

 
(4.37) 

 
(4.38) 

for a given column member (assumed doubly symmetric). Charts can be prepared to 
relate critical ρ levels to elastic support stiffnesses. The  

 

FIG. 4.19. Effect of linear brace 
eccentricity on flexural-torsional 
buckling of columns. 
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FIG. 4.20. Effect of added torsional 
bracing of columns. 
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FIG. 4.21. Effect of added rotational 
bracing of columns. 

fact that column members exist which have very similar areas and minor axis I-values but 
very different warping constants (for example) is the reason for the lack of further 
nondimensionalisation. Figure 4.19 illustrates the effects of linear brace eccentricity on 
critical ρ value for two columns of similar area and flange width but different torsional 
properties. Figures 4.20 and 4.21, respectively, indicate the effect of adding torsional and 
rotational bracing to a basic eccentric linear braced system. As values of the 
nondimensional torsional and rotational brace stiffnesses are raised, the critical ρ values 
associated with a given linear support stiffness rise, compensating in some measure for 
the eccentricity of the linear braces. The broken curve on each figure is the ρcr: β plot for 
a zero eccentricity four linear brace datum case. For realistic cases, in-plane rotational 
braces are, not surprisingly, relatively inefficient in compensating for what is basically a 
torsional effect. The scale of the nondimensional rotational stiffness factor γ is small 
compared to β and η. Specific cases selected to illustrate the sensitivities are presented in 
Medland (1979). 

4.5 BUCKLING OF INTERBRACED BEAMS 

Flooring systems comprising parallel beams linked together by lateral members have the 
same general features as the column sets discussed previously. The lateral bracing 
members will normally be eccentric and may provide rotational, torsional and lateral 
bracing. The beams, however, will always buckle in a flexural-torsional mode. The 
governing differential equations for an interbrace beam length under uniform moment M 
are 

 
(4.39) 

 
(4.40) 

and the critical uniform moment value of the simply supported element is 

 (4.41) 

The nondimensional eccentricity factor e* is again used for any attached bracing and 
plots of ρcr(=Mcr/M0) against brace stiffness and eccentricity can be assembled as in Fig. 
4.22. The effect of adding a  
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FIG. 4.22. Effect of eccentric lateral 
bracing on the buckling of beams. 

 

FIG. 4.23. Effect of added torsional 
bracing on beams. 
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FIG. 4.24. Effect of added rotational 
bracing on beams. 

 

FIG. 4.25. Critical moment: the effect 
of aspect ratio a/l. 
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torsional brace at the shear centre of the section is illustrated in Fig. 4.23, while the effect 
of rotational bracing with eccentric linear is shown in Fig. 4.24. To determine any 
specific value on such charts involves the evaluation of the determinant of a 4×4 system 
of linear equations in the same way as the flexural-torsional braced column cases were 
handled. The detail of the component factors is contained in Medland (1980). The 
detailed set of equations whose determinant is zero at a buckling load is shown in 
Appendix 3, with explanatory notes. 

For any buckling involving torsion, the geometry of the cross-section has a marked 
effect. The a/l ratio is a means of categorising this effect. Figure 4.25 indicates this 
sensitivity by comparing the critical uniform moment values of torsionally constrained 
members at different a/l ratios. 

The case where the loading of the beam is due to a uniform spread load is more 
common than that of a uniform moment. Such loading is  

 

FIG. 4.26. Beam stability as affected 
by position of spread load application. 

not often applied through the shear centre, normally being placed on or above the 
compression flange. This results in a further destabilisation effect. Figure 4.26 presents 
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an example where top flange loading is applied. A finite element analysis (Barsoum and 
Gallagher, 1970; Davidson and Medland, 1974) was used to determine these values as the 
use of a recurrence technique is not suited to such variable moment cases. 

4.6 BRACE STRENGTH CONSIDERATIONS 

While the elastic critical loads, the determination of which has been the subject of 
Sections 4.1 to 4.5, are important parameters for the designer, a means of estimating the 
strength required of the braces must also be found. To determine the critical loads, only 
the brace stiffness needs to be considered. Strength is required if the braced members 
deform. Some bracing systems are primarily designed to carry loading to a foundation 
and will be designed accordingly. If a brace is placed basically to prevent buckling, it 
theoretically needs no strength until buckling occurs. In practice the compression element 
being braced (strut, compression flange, etc.) is not perfectly straight and is subjected to 
secondary loading which pushes it off line. This results in the braces being strained when 
the strut is loaded. 

In this section the compression members are assumed to have a specific crookedness 
before axial loading is applied. In general, such an initial shape between the ends of the 
member can be expressed as a Fourier sine series which, in the case of a pin-ended 
column, can be regarded as a series containing the successive buckling mode shape 
functions, say 

 (4.42) 

Upon application of a compressive force P, the jth component of the series is magnified 
by division by a factor 

 (4.43) 

The differential equation governing the interbrace elements of the system is  

 
(4.44) 

which can be arranged in the form 

 
(4.45) 

The general solution of eqn (4.45) can be expressed as 

(4.46) 

in which 
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(4.47) 

 (4.48) 

Displacement, slope, moment and shear must still be continuous across a brace point. The 
first two are automatically so by the form of the Q and R functions and of sin (n+z/l)θj. 
Moment and shear continuities provide two further equations, the moment one being  

 

FIG. 4.27. Non-dimensional brace 
force related to brace stiffness. 

homogeneous because no rotational springs are attached. The linear springs are stretched 
by the amount (u−uI) at each brace point and the uI component makes that equation 
nonhomogeneous. A specific ‘magnified’ initial displacement set is defined by the 
solution of these two simultaneous equations under any applied axial force. If that force 
reaches any one of the basic critical loads of the original perfectly straight system the 
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displacements become infinite. Obviously the applied axial force must remain below the 
lowest critical load of the system. 

A detailed derivation of the relationship between the forces in the braces and the 
spring stiffnesses at a given axial force level for the type of structure shown in Fig. 4.23 
is presented by Medland and Segedin (1979). Figure 4.27 illustrates the type of 
nondimensional chart which can be prepared from such an analysis. The factor 
represents the brace force as a percentage of the axial column force P, divided by the 
number of columns in parallel M. The symbol is the actual brace stiffness K, divided by 
the nondimensionalising factor 12EI/l3 and further divided by 2(1−cos θi) which 
incorporates the form of the initial displacements. 

4.7 SUMMARY AND CONCLUSIONS 

A coordinated approach to the problem of elastic lateral and flexural-torsional buckling in 
multiply braced column and beam members has been summarised. In very regular 
systems (e.g. uniform axial compression or moment) the calculation of the buckling load 
factor is reduced to the evaluation of 2×2 or 4×4 stiffness determinants at increasing load 
factors until the determinant becomes zero. This may have to be repeated for two or three 
trial modes of buckling. 

Relationships between brace stiffness and column properties for any number of 
equally spaced brace lines and columns (or beams) are summarised in these determinants. 
In less regular cases (e.g. stepped parabolic axial compression) a larger, but sparse, 
matrix determinant is involved. For some of these cases it has been established that the 
corresponding uniform case provides a safe and not too conservative bound. For beams 
under uniform spread load a mixed analysis involving a beam-column finite element and 
some recurrence capitalisation is used. Eccentricity of load and bracing is covered in the 
analyses. By assuming initially deformed members, formulae and charts for brace 
strength requirements are put forward.  
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APPENDIX 1 

To determine the critical axial load of the interbraced set of columns shown in general 
form in Fig. 4.12, find the level of t at which the determinant 

 

  

where 

 
  

APPENDIX 2 

The flexural-torsional cases involve the four basic displacements, those of lateral 
displacement and slope, twist and rate of change of twist. A 4×4 determinant governs the 
critical load. Let the elements be designated gij. Those not listed are zero. 
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APPENDIX 3 

The beam buckling also involves four continuities, those of minor axis bending moment 
and lateral shear force, torsional moment and warping bimoment. The determinant 
components are designated qij and any which are zero are not included. 

q11=−(1–cos θj)   
q12=[(t1−sinh t1) cos θj+(sinh t1−t1 cosh t1)]T2   

q14=[(t2−sin t2) cos θj+(sin t2−t2 cos t2)]T1   

q22=q12/T2   
q23=q11   

q24=q14/T1   
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q44=q34/T1   

   

 

  

In this beam under uniform moment case, the usual form of shape function (eqns (4.11) 
and (4.12)) is used with µ2, while with µ1 the transcendental functions are replaced by 
hyperbolic functions.  
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Chapter 5 
ELASTIC STABILITY OF RIGIDLY 
AND SEMI-RIGIDLY CONNECTED 

UNBRACED FRAMES 

 
G.J.SIMITSES and A.S.VLAHINOS  

School of Engineering Science and Mechanics,  
Georgia Institute of Technology, Atlanta, USA 

SUMMARY 

The nonlinear analysis of plane elastic and orthogonal frameworks is presented. The 
static loading consists of both eccentric concentrated loads (near the joints) and 
uniformly distributed loads on all or few members. The joints can be either rigid or 
flexible. The flexible joint connection is characterised by connecting one member to an 
adjoining one through a rotational spring (with linear or nonlinear stiffness). The 
supports are immovable but are also characterised with rotational restraint by employing 
linear rotational springs. The mathematical formulation is presented in detail and the 
solution methodology is outlined and demonstrated through several examples. These 
examples include two-bar frames, portal frames as well as multi-bay multi-storey frames. 
The emphasis is placed on obtaining sway buckling loads and prebuckling and 
postbuckling behaviours, whenever applicable. Finally, some general concluding 
remarks are presented on the basis of the generated results. 

NOTATION 
Ā Constant in the moment-relative rotation expression 

Ai Cross-sectional area of bar i 

Aij Coefficient of general solution to equilibrium differential 
equation of bar i 

 
Coefficient of general solution to buckling differential 

equation of bar i 

EIi  Bending stiffness of bar i 

 Load eccentricity near xi=0 

�



 Load eccentricity near xi=Li 

ēi ei/Li 

ki  

 ki on primary equilibrium path 

Li Length of bar i 

Mi Bending moment in bar i 

Pi Axial force in bar i 

 Additional Pi corresponding to u* and w* 

 Concentrated load applied on bar i at  

 Concentrated load applied on bar i at  

Qcl Critical load obtained by linear theory for special 
geometries 

  
qi Uniformly distributed load on bar i 

  

  
qt Total load carried by frame (  multiplied by number of 

contributions) 

Ri Li/L1 

Si EIiL1/EI1Li 

Ui ui/Li 

 Kanetically admissible variation of Ui 

ui Axial displacement component along bar i 

Vi Shearing force of bar i 

Wi wi/L 

 
Wi on primary equilibrium path 

 Kinematically a dmissible variation of Wi 

wi In-plane normal displacement component along bar i 

Xi xi/Li 

xi Axial coordinate of bar i 

Z Semi-rigid connection factor (=1/0β) 

zi Normal coordinate of bar i 

 Rotational spring stiffness near x=0 
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 Rotational spring stiffness near x=Li 

0β Initial slope of the moment-relative rotation curve 

λc Q/Qcl 

λi  

  

5.1 INTRODUCTION 

Plane frameworks, composed of straight slender bars, have been widely used as primary 
structures in several configurations. These include one- or multi-storey buildings, storage 
racks, factory cranes and off-shore platforms. Depending on characteristics of geometry 
(symmetric or asymmetric and various support conditions) and loading (symmetric or 
asymmetric transverse and horizontal), plane frames may fail by general instability (in a 
sidesway mode or a symmetric mode) or they may fail by a mechanism or a criterion 
other than stability (excessive deformations and/or stresses, etc.). For example, a 
symmetric portal frame subjected to a uniformly distributed transverse load is subject to 
sway buckling. On the other hand if, in addition to the transverse load, a concentrated 
horizontal load is applied, excessive deformations and stresses will occur without the 
system being subject to instability (buckling). 

The various frame responses, associated with the various geometries and loadings, 
have been the subject of many studies, both in analysis and in synthesis (design). A brief 
description and critique of these studies is presented in the ensuing chapter. 

5.1.1 Rigid-Jointed Frames: Linear Analyses 

The first stability analyses of rigid-jointed plane frameworks may be traced to 
Zimmermann (1909, 1910, 1925), Müller-Breslau (1908) and Bleich (1919). They only 
treated the problem for which a momentless primary state (membrane) exists and 
bifurcational buckling takes place through the existence of an adjacent bent equilibrium 
state (linear eigenvalue problem). Prager (1936) developed a method which utilises the 
stability condition of a column with elastic end restraints. The first investigation of a 
problem for which the primary state includes bending moments (primary moments) is due 
to Chwalla (1938). He studied the sway buckling of a rigid-jointed one-storey symmetric 
portal frame under symmetric concentrated transverse loads, not applied at the joints of 
the horizontal bar. In obtaining both the primary path and the bifurcation load, Chwalla 
employed linear equilibrium equations and assumed linearly elastic behaviour. In more 
recent years, similar problems have been studied by Baker et al. (1949), Merchant (1954, 
1955), Chilver (1956), Livesley (1956), Goldberg (1960), Masur et al. (1961) and Horne 
(1962). The last two consider the effect of primary moments, which cause small 
deflections prior to instability, in their buckling analysis of portal frames. Many of the 
aforementioned analyses have been incorporated into textbooks, such as those of Bleich 
(1952), McMinn (1962), Horne and Merchant (1965) and Simitses (1976). Other 
investigations in this category include the studies of Halldorsson and Wang (1968) and 
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Zweig and Kahn (1968). It is also worth mentioning the work of Switzky and Wang 
(1969), who outlined a simple procedure for designing rectangular rigid frames for 
stability. Their procedure employs linear theory and is applicable to load cases for which 
the primary state is a membrane state (free of primary moments). 

5.1.2 Rigid-Jointed Frames: Nonlinear Analyses 

The effects of finite displacements on the critical load and on the postbuckling behaviour 
of frameworks have only been investigated in the last 20 years or so. Saafan (1963) 
considered the effects of large deformations on the symmetric buckling of a gable frame. 
Similar effects were also considered by Britvec and Chilver (1963) in their studies of the 
buckling and postbuckling behaviour of triangulated frames and rigid-jointed trusses. The 
nonlinear behaviour of the two-bar frame was studied by Williams (1964), Roorda 
(1965), Koiter (1966), Huddleston (1967) and more recently by Kounadis et al. (1977) 
and by Simitses et al. (1977). Roorda’s work contains experimental results, while 
Koiter’s contribution employs his (1945) rigorous nonlinear theory for initial 
postbuckling behaviour, applicable to structures that exhibit bifurcational buckling. The 
studies of Kounadis and Simitses employ nonlinear kinematic relations (corresponding to 
moderate rotations) and assume linearly elastic material behaviour. Huddleston’s 
nonlinear analysis is based on equations of the Elastica. A similar approach (Elastica-type 
equations) was outlined by Lee et al. (1968) for studying the large deflection buckling 
and postbuckling behaviour of rigid plane frameworks loaded by concentrated loads. 
They demonstrated their procedure by analysing a two-bar frame and a portal frame, and 
they used a modified Newton-Raphson procedure to solve the nonlinear equations. More 
recently, Elastica-type equations were employed by Qashu and DaDeppo (1983) for the 
analysis of elastic plane frames. They used numerical integration of the differential 
equations and their examples include one- and two-storey elastic rigid frames. Besides 
the inherent assumptions of Elastica-type equations, that make them applicable to very 
slender members, the difficulty of solving the highly nonlinear equations in a 
straightforward manner further limits the applicability of this approach to frames with a 
relatively small number of members. On the other hand, the nonlinear methodology, 
described herein, as developed by Simitses and his collaborators (Simitses et al., 1977; 
Simitses and Kounadis, 1978; Simitses et al., 1981; Simitses and Giri, 1982; Simitses and 
Vlahinos, 1982) employs first-order nonlinear kinematic relations (moderate rotations) 
but can be used, with relative ease, in analysing the large deformation behaviour 
(including buckling and postbuckling) of multi-storey multi-bay elastic, rigid-jointed, 
orthogonal, plane frameworks, with a large number of members. 

The interested reader is referred to the book by Britvec (1973), which presents some of 
the nonlinear analyses of frames. Moreover, those who are interested in the design of 
elastic frames are referred to the Design Guide of the Structural Stability Research 
Council (see Johnston, 1976). 
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5.1.3 Semi-Rigidly Connected Frames 

All of the previously discussed analyses are based on the assumption that the bars are 
rigidly connected at the frame joints. This means that the angle between connected 
members, at the joints, remains unchanged during deformations. 

Since the 1930s, there has been considerable interest and research into the behaviour 
of beam structural connections. A number of experimental and analytical studies have 
been carried out to measure the moment-relative rotation characteristics of various types 
of metal (primarily steel) framing connections. Various methods of analysis (moment 
distribution, slope-deflection, elastic line) have been employed, by Batho and Rowan 
(1934), Rathbun (1936) and Sourochnikoff (1949), in order to account for the flexibility 
of the connections. Moreover, some efforts have been made recently to account for the 
effect of flexible connections in frame design. DeFalco and Marino (1966) modified the 
effective column length used in frame design by obtaining and employing a modified 
beam stiffness, which is a function of the semi-rigid connection factor Z (slope of the 
relative rotation to moment curve at the origin) proposed by Lothers (1960). Frye and 
Morris (1975) presented an iterative procedure which incorporates the effects of 
nonlinear connection characteristics. They assumed linearly elastic material behaviour 
and developed equations that depict moment-relative rotation relations for a wide range 
of frame connections. More recently Moncarz and Gerstle (1981) presented a matrix 
displacement method for analysing frames with flexible (nonlinear) connections. The 
effect of flexible joints on the response characteristic of simple two-bar frames which are 
subject to limit point instability (violent buckling) has been reported by Simitses and 
Vlahinos (1982). This subject will be further explored in a later section of this chapter. 
Finally, a brief summary of recent research on the effect of end restraints on column 
stability has been presented by Lui and Chen (1983). 

In closing, it is worth mentioning that the analysis of plane frameworks, including 
stability studies, postbuckling behaviour and the study of the effect of flexible 
connections, has been the subject of several PhD theses, especially in the United States. 
Of particular interest, and related to the objective of the present chapter, are those of 
Ackroyd (1979) and Vlahinos (1983). Moreover, there exist a few reported investigations 
in which the frame has been used as an object of demonstration. In these studies, the real 
interest lies in some nonlinear numerical scheme, especially the use of finite elements. 
These works include, but are not limited to, those of Argyris and Dunne (1975), Olesen 
and Byskov (1982) and Obrecht et al. (1982). 

5.2 MATHEMATICAL FORMULATION 

5.2.1 Geometry and Basic Assumptions 

Consider a plane orthogonal rigid-jointed frame composed of N straight slender bars of 
constant cross-sectional area. A typical ten-bar frame is shown in Fig. 5.1. Each bar, 
identified by the subscript i, is of length Li, cross-sectional area Ai, cross-sectional second 
moment of area Ii, and subscribes to a local coordinate system, x, z, with displacement 
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components ui and wi, as shown. The frame is subjected to eccentric concentrated loads 
and and/or uniformly distributed loadings qi. For the concentrated loads, the 

superscript 0 implies that the load is near the origin of the ith bar (x=0), while the 
superscript 1 implies that the load is near the other end of the ith bar (x=Li). The  

 

FIG. 5.1. Geometry and sign 
convention of a multi-bay multi-storey 
frame. 

concentrated load eccentricities are also denoted in the same manner as the concentrated 
loads (  and ). Moreover, these eccentricities are positive if the loads are inside the x-
interval of the corresponding bar and negative if outside the interval. For example, in Fig. 
5.1, is a positive number. But this same eccentricity (and therefore the corresponding 
load too) can be identified as , in which case its value is negative. This is used 
primarily for corner overhangs (joint 7 or 9 with concentrated loads off the frame). The 
supports are such that translation is completely constrained, but rotation could be free. 
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For this purpose, rotational linear springs are used at the supports (see Fig. 5.1, support 
3). When the spring stiffness β is zero, we have an immovable simple support (pin). On 
the other hand, when β is a very large number (→∞) we have an immovable fixed 
support (clamped, built-in).  

For clarity, all limitations of the mathematical formulation are compiled, in the form 
of assumptions. These are: 

(1) The frame members are initially straight piecewise prismatic and joined together 
orthogonally and rigidly (this assumption can be, and is, relaxed later on). 

(2) The material is homogeneous and isotropic and the material behaviour is linearly 
elastic with an invariant elastic constant, regardless of tension or compression. 

(3) Normals remain ‘normal’ to the elastic member axis and inextensional (the usual 
Euler-Bernoulli assumptions). 

(4) Deformations and loads are confined to the plane of the frame. 
(5) The concentrated loads are applied near the joints (small eccentricities). This 

assumption can easily be relaxed, but it will lead to an increase in the number of bars. 
A concentrated load at the midpoint of a bar is treated by considering two bars and an 
additional joint at, or near, the location of the concentrated load. 

(6) The effect of residual stresses on the system response (critical) load is neglected. 
(7) The nonlinear kinematic relations correspond to small strains, but moderate rotations, 

for points on the elastic axes (first order nonlinearity). 

On the basis of the above, the kinematic relations are 

(5.1) 

Furthermore, the axial force Pi and bending moment Mi in terms of the displacement 
gradients are 

 
(5.2) 

where E is the Young’s modulus of elasticity for the material. Similarly, the expression 
for the transverse shear force is 

Vi(x)=−EIwi,xxx+Piwi,x 
(5.3) 

5.2.2 Equilibrium Equations: Boundary and Joint Conditions 

Before writing the equilibrium equations and the associated boundary and joint 
conditions, the following nondimensionalised parameters are introduced 
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(5.4) 

The expression for the internal forces, in terms of the nondimensionalised parameters, are 

 
(5.5) 

where the top sign holds for the case of compression in the bar and the lower for the case 
of tension (the axial force Pi is positive for tension and negative for compression; thus 
is always positive). 

The equilibrium equations for the frame are (in terms of the nondimensionalised 
parameters) 

 
(5.6) 

where N is the number of bars, and the top sign holds for the compression case. The 
general solution to the equilibrium equations is given by 

(5.7) 

where Aij and ki (i=1, 2,…, N; j=1, 2,…, 5) are constants (for a given level of the applied 
loads) to be determined from the boundary and joint conditions. For an N-member frame, 
the number of unknowns is 6N. Therefore, 6N equations are needed for their evaluation. 

These equations are provided by the boundary conditions and the joint conditions. At 
each boundary, three conditions must be satisfied (kinematic, natural or mixed: typical 
conditions are listed below). At each joint, three force and moment equations 
(equilibrium of a joint taken as a particle) and a number of kinematic continuity equations 
must be satisfied. This number depends on the number of members coming into a joint, 
and the equations represent continuity in displacement and continuity in rotation (typical 
conditions are listed below). For a two-member joint, we have three kinematic continuity 
conditions; two in displacement and one in rotation. For a three-member joint the number 
is six, and for a four-member joint (largest possible) the number is nine. 

A quick accounting of equilibrium equations, and boundary and joint conditions, for 
the ten-bar frame, shown in Fig. 5.1, yields the following: 

(i) The number of equilibrium equations is 60 (6×10). 
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(ii) The number of boundary conditions is nine (three at each of boundaries 1, 2 and 3). 
(iii) The number of joint conditions is 51; of these, 18 are force and moment equilibrium 

conditions (three at each of the six joints 4, 5, 6, 7, 8 and 9) and 33 kinematic 
continuity conditions (three at each of joints 7 and 9, six at each of joints 4, 6, and 8 
and nine at joint 5). 

Therefore, the total number of available equations is 60. Here, it is implied that the 
loading is of known magnitude. 

For clarity, typical boundary and joint conditions are shown below, with reference to 
the frame of Fig. 5.1 (in nondimensionalised form). 

Boundary 3 

 
(5.8) 

Joint 5 

(5.9a) 

(5.9b) 

(5.9c) 

 
(5.10) 

Joint 7 

 (5.11a) 

 (5.11b) 

 (5.11c) 

 
(5.12) 
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Note that, in these expressions as well, the top sign corresponds to the compression case 
and the bottom to the tension. 

5.2.3 Buckling Equations 

The buckling equations and the associated boundary and joint conditions are derived by 
employing a perturbation method (Bellman, 1969; Sewell, 1965). This derivation is based 
on the concept of the existence of an adjacent equilibrium position at either a bifurcation 
point or a limit point. In the derivation, the following steps are followed: (i) start with the 
equilibrium equations (eqns (5.6)) and related boundary and joint conditions, expressed 
in terms of the displacements, (ii) perturb them by allowing small kinematically 
admissible changes in the displacement functions and a small change in the bar axial 
force, (iii) make use of equilibrium at a point at which an adjacent equilibrium path is 
possible and retain first order terms in the admissible variations. The resulting 
inhomogeneous differential equations are linear in the small changes. Replace Ui and Wi 
in eqns (5.6) by and , respectively. Moreover, replace by 

, where is the change in the nondimensionalised axial force (
) and it can be either positive or negative, regardless of tension or compression in the bar 
at an equilibrium position. The bar quantities denote parameters at a static primary 
equilibrium position and the star quantities denote the small changes.  

The buckling equations are 

 
(5.13) 

The related boundary and joint conditions are presented, herein, only for the same 
boundaries and joints as those related to the equilibrium equations (eqns (5.9)–(5.12)). 

Boundary 3 

 
(5.14) 

Joint 5 

(5.15a) 

(5.15b) 
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(5.15c) 

 

(5.16) 

Joint 7 

(5.17a) 

(5.17b) 

 
(5.17c) 

 
(5.18) 

The solution to the buckling equations is given by 

(5.19) 

Here also the top sign and expression correspond to the compression case (the ith bar is in 

compression at equilibrium) and the bottom to the tension case. Note that , Ai1 and Ai2 
are the values of the constants (see eqns (5.7)) on the primary path (equilibrium). On the 
other hand, the star parameters are 6N in number (60 for the ten bar frame). Moreover, 
the boundary and joint conditions associated with the buckling equations are also 6N in 
number and they are linear, homogeneous, algebraic equations in the 6N star parameters. 
Thus, the characteristic equation, which leads to the estimation of the critical load 

condition, is obtained by requiring a non-trivial (all and are not equal to zero) 
solution of the buckling equations to exist. 

5.2.4 Semi-rigid Joint Connections 

The mathematical formulation presented so far is based on the assumption of rigid-
jointed connections. In the case of semi-rigid connections, the only difference lies in 
some of the joint conditions. Two types of non-rigid connections are treated herein. Both 
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come under the general but vague term of semi-rigid connections. The first corresponds 
to the case where a member, at a given joint, is connected to the remaining members 
through a linear rotational spring (type A). The second corresponds to the case of realistic 
flexible connections at frame joints (type B). In this latter case, especially for steel frame 
construction, the connections are usually bolted with the use of various connecting 
elements (top and bottom clip angles, end plates, web framing, etc.). In this case the 
bending moment-relative rotation curve (for a member connected to a group of members 
at a joint) is nonlinear. Initially, the slope is not infinite, as assumed in the case of rigid 
joints, but a very large number, which primarily depends on the beam depth and the type 
of connection (see Tables I–IV of DeFalco and Marino (1966)), but the slope decreases 
as the moment increases. In this latter case we may still employ the idea of a rotational 
spring, but with nonlinear stiffness. 

The required modification in the mathematical formulation is treated separately for 
each case (types A and B). 

Type A 
The only difference, from the case of rigid connections, is to modify the condition of 
kinematic continuity in rotation. For example, if member 7 is connected to member 4 
through a rotational spring of linear stiffness β7 (see Fig. 5.1), then the last of eqns (5.12) 
needs to be modified. Instead of 

W4,x(1)=W7,x(1)   

one must use 

 (5.20) 

where is the stiffness of the rotational spring that connects member 4 to joint 7 (see 
Fig. 5.1) in a nondimensionalised form, or 

 (5.21) 

Note that is the rotational stiffness associated with member i. If m=1 the spring is at 
X=1 of the member, while if m=0 the spring is at X=0. Furthermore, note that eqn (5.20) 
relates the member 4 end moment to the relative rotation (of member 4 to member 7). 

Moreover, for a rigid-jointed frame tends to infinity (for calculations a very large 
number is used). On the other hand, when tends to zero (pin connection), eqn (5.20) 
implies that no moment is transferred through the pin. 

Type B 
For the case of realistic flexible connections, the member end moment Mi(1 or 0) is 
related to the relative rotation curve in a nonlinear fashion. 

Again, if the same example is used as for type A, then 
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 (5.22) 

where ƒ(φ4) is a nonlinear function of φ4, and φ4 is the relative rotation of member 4 to 
member 7 at their joint (for a multi-member joint, one member is considered immovable 
and φi is the relative rotation of the other members with respect to the immovable one) 

 
(5.23) 

One possible selection for the nonlinear function ƒ(φ4) is a cubic relation, or 

 
(5.24) 

where denotes the slope of the member end moment to the relative rotation curve at 
the origin (or before the external loads are applied) and is a constant, which can be 
obtained from experimental data. 

In order to employ the same equations as for type A (linear spring) connections and 
therefore the same solution methodology (instead of increasing the nonlinearity of the 
problem) the following concept is introduced. First, solutions for the frame response are 
obtained by starting with small levels for the applied loads and by using small 
increments. Then, eqn (5.24) at load step (m+1) can be written as 

 
(5.25) 

This implies that for small steps in the load, the relative rotation experiences small 
changes. Thus, the required joint condition, eqn (5.24), becomes 

 (5.26) 

where is evaluated at the previous load step by 

 (5.27) 

Clearly then, the solution scheme for type B connections is the same as the one for type A 
connections and the nonlinearity of the problem is not increased. 

5.3 SOLUTION PROCEDURE 

The complete response of an N-member frame is known, for a given geometry and level 
of the applied loads, if one can estimate the values of the 6N unknowns that characterise 
the two displacement functions U(X) and W(X) (eqns (5.7)). The 6N equations required 
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are provided from satisfaction of the boundary and joint conditions. Furthermore, the 
estimation of the critical load condition requires the use of one more equation. This is 
provided by the solution to the buckling equations (eqns (5.13)). As already mentioned, 
satisfaction of the boundary and support conditions for the buckling solution leads to a 

system of 6N linear, homogeneous, algebraic equations in and (i=1, 2,..., N, j=1, 
2,..., 5; these constants characterise the buckling modes). For a nontrivial solution to 
exist, the determinant of the coefficients must vanish. This step provides the necessary 
additional equation, which is one more equation in and Aij, and it holds true only at the 
critical equilibrium point (either bifurcation or limit point). 

A solution methodology has been developed (including a computer algorithm) for 
estimating critical conditions, prebuckling response and postbuckling behaviour. The 
scheme makes use of the following steps. 

(1) Through a simple and linear frame analysis program, the values of the internal 
axial load parameters are estimated, for some low level of the applied loads. This can 
be used as an initial estimate for the nonlinear analysis, but most importantly it tells us 
which members are in tension and which in compression. Note that the solution 
expressions (eqns (5.7)) differ for the two cases (compression versus tension). Such a 
subroutine is outlined by Weaver and Gere (1980). 

(2) Once the form of the solution has been established (from step 1 we know which 
members are in tension and which in compression), then through the use of the boundary 
and joint conditions one can establish the 6N equations that signify equilibrium states, for 
the loa level of step 1. 

In so doing, it is observed that 5N, out of the 6N, equations are linear in Aij and 
nonlinear in . Two important cons equ directly related to this observation. First, 
through matrix algebra the 5N equations are used to express Aij in terms of the , and the 
substitution into the remaining equations yields a system of N nonlinear equations in . 
Secondly, if the values are (somehow) known, then the 5N equations (linear in Aij) can 
be used to solve for Aij. 

(3) The N nonlinear equations are solved by employing one of several possible 
nonlinear solvers. There exist several candidates for this. 

For the two-bar frame and for the portal frame (small number of nonlinear equations) 
the nonlinear equations ƒi=0 (j≤3) can be solved by first defining a new function: 

 
(5.28) 

Then, one recognises that the set of ki that minimises F (note that the minimum value of 
F is zero) is the set that satisfies the nonlinear equations, ƒi=0. The mathematical search 
technique of Nelder and Mead (1964) can be used for finding this minimum. This 
nonlinear solver was employed by Simitses and co-workers (Simitses, 1976; Simitses et 
al., 1977; Simitses and Kounadis, 1978; Simitses et al., 1981; Simitses and Giri, 1982; 
Simitses and Vlahinos, 1982) for the two-bar and portal frame problems. 
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For multi-bay multi-storey frames (N≥5) the nonlinear equations ƒi=0 (j≥5), can be 
solved by Brown’s (1969) method (see also Reinholdt (1974)). This method was 
employed by Vlahinos (1983) in generating results for all frames. 

Regardless of the nonlinear solver, the values obtained from step 1 are used as 
initial estimates. 

Note that through steps 1−3, one obtains the complete nonlinear response of the 
system at the low level of the applied loads. Furthermore, note that low here means not 
necessarily small loads, but loads for which the linear analysis yields good estimates for 

, to be used as initial points in the nonlinear solver. 
(4) The load level is step-increased and the solution procedure of steps 1–3 is repeated. 

Another possibility is to use small increments in the load and employ the values of of 
the previous load level as initial points for the nonlinear solver. In this case, step 1 is used 
only once for a truly low level of the applied loads. 

(5) At each load level, the stability determinant (see Section 5.2.3) is evaluated. If 
there is a sign change for two consecutive load levels, then a bifurcation point exists in 
this load interval. Note that the bifurcation point can be located, with any desired 
accuracy, by adjusting the size of the load increment. In the case of a limit point, the 
procedure is the same, but the establishment of the limit point requires special care. First, 
if the load level is higher than the limit point, the outlined solution steps either yield no 
solution or the solution does not belong to the primary path (usually this is a physically 
unacceptable solution for deadweight loading). If this is so, the load level is decreased 
until an acceptable solution is obtained. At the same time, as the load approaches the 
limit point the value of the determinant approaches zero. These two observations suffice 
to locate the limit point. Note that, when a non-primary path solution is obtained, the 
value of the buckling determinant does not tend to zero. 

(6) Step 4 is employed to find postcritical point behaviour. The establishment of 
equilibrium points on the postbuckling branch is numerically difficult. The difficulty 
exists in finding a point, which then can serve as an initial estimate for finding other 
neighbouring equilibrium points. 

(7) The complete behaviour of the frame at each load level, regardless of whether the 
equilibrium point lies on the primary path or postbuckling branch, has been established if 

one has evaluated all Aij and . Equilibrium positions can be presented, graphically, as 
plots of load or load parameter versus some characteristic displacement or rotation of the 
frame (of a chosen member at a chosen location). 

Before closing this section, it should be noted that the procedure for the analysis of 
flexibly jointed frames is the same, with one small exception: the load increment must be 
small and the required spring stiffness at the (m+1)th load step is evaluated from the 
solution of the mth load step (see eqn (5.27)). 

5.4 EXAMPLES AND DISCUSSION 

The results for several geometries are presented and discussed in this section. The 
geometries include two-bar frames, which can be subject to limit point instability, as well 
as portal and multi-bay multi-storey frames, which for linearly elastic behaviour are 
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subject to bifurcational (sway) buckling with stable postbuckling branch. The results are 
presented both in graphical and tabular form and they include certain important 
parametric studies. Each geometry is treated separately. 

5.4.1 Two-Bar Frames 

Consider the two-bar frame shown in Fig. 5.2. For simplicity, the two bars are of equal 
length and stiffness and the eccentric load is constant-directional (always vertical). 
Results are presented for both rigid and flexible connections. These results are presented 
and discussed separately. 

5.4.1.1 Rigid Joint Connection 

Results are discussed for the case of an immovable pin support at the right-hand end of 
the horizontal bar. For this geometry there are two important parameters that one must 
consider in generating results; first is the load eccentricity ē, and second the member 
slenderness ratio λ.  

 

FIG. 5.2. Geometry of a two-bar frame. 

Note that for this geometry L1=L2=L and λ1=λ2=λ. 

 
(5.29) 

Note that the positive eccentricities correspond to loads applied to the right of the elastic 
axis of the vertical bar, while the negative ones correspond to the left (load applied, if 
needed, through a hypothetical rigid overhang). 

For this configuration, it is clear from the physical system that, as the load increases 
(statically) from zero, with or without eccentricity, the response includes bending of both 
bars and a ‘membrane state only’ primary path does not exist. Therefore, there cannot 
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exist a bifurcation point from a primary path that is free of bending. The classical (linear 
theory) approach, for this simple frame, assumes that the vertical bar experiences a 
contraction without bending in the primary state, while the horizontal bar remains 
unloaded (zero eccentricity is assumed). Then a bifurcation exists and a bent state 
(buckling) is possible at the bifurcation load Qcl, which is the critical load (see Simitses 
(1976) for analytical details) 

 (5.30) 

Results are presented graphically in Figs 5.3 and 5.4. In Fig. 5.3, the load parameter λc 
(=Q/Qcl) is plotted versus the joint rotation W1,x (1) for several eccentricities and λ=80 
(slenderness ratio). The response  

 

FIG. 5.3. Load-deflection curve; 
hinged two-bar frame with rigid joint 
connection. 
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for different values of λ is similar, and thus no other load-(characteristic) displacement 
curves are shown. It is seen from Fig. 5.3 that the response, regardless of whether it is 
stable (to the right) or subject to limit point instability (to the left), seems to be 
approaching asymptotically a line (almost straight) that makes an angle with the vertical 
and intersects it at λc=1·00. Moreover, the horizontal bar could be either in tension or in 
compression, regardless of the character of the response. Not shown in Fig. 5.3 are 
equilibrium points which belong to curves above the asymptote. These equilibrium paths 
cannot be attained physically under deadweight loading. In Fig. 5.4, limit point (critical) 
loads are plotted versus eccentricity for various λ values. Also, the experimental results of 
Roorda (1965), corresponding  

 

FIG. 5.4. Effects of eccentricity and 
slenderness ratio on critical loads (two-
bar frame). 

to λ=1275, and the analytical results of Koiter (1966), based on his initial postbuckling 
theory, are shown for comparison. On the basis of the generated results, a few important 
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observations and conclusions are offered. Depending on the value for the slenderness 
ratio, there exists a critical eccentricity which divides the response of the frame into two 
parts; on one side (see Fig. 5.3, on the right) the response is characterised by stable bent 
equilibrium positions for all loads (within the limitations of the theory), while on the 
other side the response exhibits limit point instability. The maximum limit point load, for 
each slenderness ratio value, corresponds to a specific eccentricity value (see Fig. 5.4) 
and is identical in value to that predicted by linear theory. The results also show that this 
two-bar frame is sensitive to load eccentricities (for ē=−0·01, λc≈0·89) and it might be 
sensitive to initial geometric imperfections. Details and more results (depicting the effect 
of the right hand support (movable along a vertical or a horizontal plane versus 
immovable) on the response) are found in Kounadis et al. (1977) and in Simitses et al. 
(1978). 

5.4.1.2 Semi-rigid Joint Connection 

Consider the two members connected at the joint through a rotational spring (Fig. 5.2). 

First, a linear spring is used at the joint and the nondimensionalised spring stiffness, , is 
varied from zero (pin connection) to 105 (rigid connection). Partial results are presented 
in graphical and tabular form, but the conclusions and observations are based on all  

Elastic stability of rigidly and semi-rigidly Connected unbraced frames     129

�



 

FIG. 5.5. Typical load-deflection 
curve; hinged two-bar frame with 
flexible joint connection. 
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FIG. 5.6. Effect of joint spring 
constant on the critical load (hinged 
two-bar frame). 

generated data (a wide range of eccentricities and slenderness ratios were used). Figure 
5.5 depicts the response of the two-bar frame for and λ=80. For the sake of 
economy and brevity, no attempt was made to find the critical eccentricity value for each 

and λ. It is seen from Fig. 5.5 that the response for is similar to that for 

(Fig. 5.3). Figure 5.6 is a plot of (limit point load) versus for ē=−0·01. For very 
small values of , , which is the critical load of a column pinned at both ends 
(Euler load), while for very large values it approaches the value corresponding to 

(see Fig. 5.3, . Note that for ē>−0.01, 
similar curves can be obtained. For instance, for ē=0 the curve would start from the value 

of π2 for extremely small values of , and approach the value of 13·54 for 
. The influence of the slenderness ratio, for various values, on the 

critical load is shown in Table 5.1. 
For the case of realistic flexible connections, three depths of type II connections are 

considered (see Table 5.2). The required values are taken from DeFalco and Marino 
(1966) and the bars are assumed to be steel I-beams. The value of Ā (nonlinear flexible 
connection) is varied in accordance with the limitations presented in the mathematical 
formulation, and its effect, for all three cases, on the limit point loads for ē=−0·01 and 
λ=100 is shown in Table 5.3. An important conclusion here is that, for type II 
connections, the degree of nonlinearity of the rotational spring has negligibly small effect 
on limit point loads for a fixed eccentricity and bar slenderness ratio. For more details see 
Simitses and Vlahinos (1982).  
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TABLE 5.1 
INFLUENCE OF SLENDERNESS RATIO ON 
THE CRITICAL LOADS OF THE TWO BAR 
FRAME (ē=−0·01) 

   
λ 80 120 1000 

0·1 9·902 8 9·904 5 9·905 1
1·0 10·681 7 10·686 8 10·690 8

10 11·950 4 11·963 8 11·974 4
100 12·293 1 12·308 9 12·321 6
∞ 12·337 6 12·353 8 12·366 7

TABLE 5.2 
DEPTH AND STIFFNESS OF FLEXIBLE 
CONNECTIONS (TYPE II) 

Geometry Depth 
(in) 

Z×105 (rad/kip-
in) 

0β×10−8 (lb-
in/rad 

Ai 
(in2) 

Ii (in4)  Ā range 

1 8 0·046 0 21·739 6·71 64·20 361·17Ā≤(7.5)×1010 
2 18 0·015 0 66·667 20·46 917·70 167·79 Ā≤(6)×109 
3 36 0·005 4 185·185 39·80 7 

833·65
114·36 Ā≤(2.1)×109 

TABLE 5.3 
EFFECT OF Ā (NON-LINEAR FLEXIBLE 
CONNECTION) ON THE CRITICAL LOADS 
(e=−0·01, λ=100) 
Geometry 1 

 
Geometry 2 

 
Geometry 3 

Ā  Ā  Ā  
0 12·752 9 0 12·763 1 0 12·721 6
1·0 ×106 12·752 9 1·0 ×105 12·736 1 1·0 ×103 12·721 6
1·0 ×107 12·752 7 5·0×105 12·735 9 1·0 ×104 12·721 6
5·0 ×107 12·751 5 1·0 ×106 12·735 7 1·0 ×105 12·721 4
1·0 ×108 12·749 4 1·0 ×107 12·729 8 1·0 ×106 12·719 3
1·0 ×109 12·745 6 1·0 ×108 12·720 6 1·0 ×107 12·699 1

5.4.2 Portal Frames 

Consider the portal frame shown in Fig. 5.7. The loading consists of both eccentric 
concentrated loads near the joints and of a uniformly distributed load on bar 3. 
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When vertical concentrated loads are applied at joints 3 and 4 without eccentricity, 
and the geometry is symmetric (EI1=EI2=EI, L1=L2=L, β1=β2=β but β=0 or ∞), a primary 
state exists and beam-column theory can be employed to find critical loads for sway 
buckling, or for symmetric buckling (sideways prevented) and for antisymmetric 
buckling. Such analyses can be found in texts (see Bleich (1952) and Simitses (1976)). 

For example, if the horizontal bar has the same structural geometry as the other two 
members (EI3=EI and L3=L), then the critical load for sway buckling (referred to herein 
as classical) is given by 

 (5.31) 

 (5.32) 

Results for loading that induces primary bending, and parametric studies associated with 
the effect of various structural parameters on the frame response, are presented below for 
rigidly connected portal frames. Moreover, some results corresponding to semi-rigidly 
connected portal frames are also presented.  

 

FIG. 5.7. Portal frames: geometry and 
loading. 

5.4.2.1 Rigid Joint Connection 

Partial results are presented both in graphical and in tabular form, but the conclusions are 
based on all available results. 

Figures 5.8 and 5.9 deal with the effect of load eccentricity on the response 
characteristics of a square (structurally; EIi=EI, Li=L) symmetric ( ), rigid-
jointed frame. Figure 5.8 shows primary path and postbuckling equilibrium positions for 
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two symmetric eccentricities ( ). The value of the slenderness ratio (λi=λ) is 
taken as 1000, but the effect of slenderness ratio on the nondimensionalised response 
characteristics is negligibly small. The rotation of bar 1 at joint 3 is chosen as the 
characteristic displacement for characterising equilibrium states in this Figure. As seen 
from Fig. 5.8, bar 3 is in compression in the postbuckled branches and initially in the 
primary paths. As the eccentricity increases the sway buckling load decreases, but only 
slightly. This observation is in agreement with Chwalla’s (1938) (see also Bleich (1952)) 
result, which was that the critical load when the eccentricity is one-third (ē=0·333) is 
equal to  

 

FIG. 5.8. Symmetrically and 
eccentrically loaded symmetric hinged 
portal frames (Si=Ri=1). 
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FIG. 5.9. Asymmetrically and 
eccentrically loaded symmetric hinged 
portal frames (Si=Ri=1). 

1·78EI/L2. It is also observed that the primary path curves approach asymptotically the 

value of corresponding to symmetric buckling of the portal frame (see Simitses 
(1976), Chapter 4, eqn (66)). This value, as computed from the said reference, is equal to 
12·91EI/L2. Figure 5.9 shows similar results but with antisymmetric eccentricity 
( ). Clearly for this case (ē≠0), there is a stable response that includes 
bending from the onset of loading. Moreover, this response approaches asymptotically a 

horizontal line corresponding to (eqn (5.30)) and not the postbuckling branch 
(ē=0). Furthermore, for asymmetric eccentricity bar 3 is in tension. 

Table 5.4 presents sway buckling loads of a symmetric simply supported portal frame 
loaded by a uniformly distributed load on bar 3, for a wide range of horizontal bar (3) 
geometries. The value of λ1=λ2 is taken to be 1000 and the value of λ3 varies according to 
the changes in I3 and L3 by keeping the cross-sectional area, A3, constant. This results in 
50≤λ3≤4242. Note that q* is given in Table 5.4, instead of . This is done because L3 is a 
variable. Moreover, if one is interested in comparing total load, q* must be multiplied by 
L3/L1. Thus, the first row becomes 3·52 (L3/L1=0·5), 2·77, 2·27, 1·92, 1·65  
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TABLE 5.4 
EFFECT OF HORIZONTAL BAR GEOMETRY 
ON CRITICAL LOADS (HINGED PORTAL 
FRAMES) L1=L2, EI1=EI2  

EI3/EI1 L3/L1 

 
   7·035 2·772 1·518 0·960 0 0·659 8 0.480 93

0.5  1·326 144 1·177 312 1·066 970 0.979 798 0·908 143 0.849 350

   0·204 301 0.586 181 1·040 636 1·548 835 2·128 032 2·922 292

   8·142 3·522 2·075 1·394 1·011 0.776 9

1·0  1·426 682 1·327 027 1·247 465 1·180 678 1·123 931 1·079 532

   0·128 840 0·410 684 0·778 291 1·212 997 1·725 474 2·412 621

   8·879 4·075 2·523 1·772 1·338 1·064

2·0  1·489 896 1·427 337 1·375 482 1·331 290 1·293 368 1·263 309

   0·074 499 0·258 365 0.517 961 0·840 184 1·227 140 1·709 590

   9·166 4·309 2·721 1·945 1·491 1·200

3·0  1·513 758 1·467 748 1·428 456 1·394 528 1·365 357 1·341 829

   0·052 459 0·189 001 0·389 313 0.643 696 0.951 338 1·324 863

   9·640 4·714 3·079 2·266 1·782 1·462

10·0  1·552 238 1·535 271 1·519 604 1.505 210 1·492 379 1·481 047

   0·017 124 0·066 005 0·143 481 0·247 198 0·375 752 0·528 868

   9·865 4·909 3·266 2·444 1·951 1·622

100·0  1·570 430 1·566 634 1·564 618 1·563 342 1·561 408 1·559 621

   0·002 500 0·007 062 0·015 835 0·028 044 0·043 648 0·062 619

and finally 1·44. Note also that the last row becomes 4·93, 4·91, 4·90, 4·89, 4·88 and 4·87, 
or all of them approximately equal to 2 (π2/4). This load is the buckling load of the two 
vertical bars, which are pinned at the bottom and clamped at the top to a very rigid bar 

that can move horizontally. Finally, and are measures of the axial compressive 

force in the vertical bars ( ) and the horizontal bar, respectively. 
The final result is shown in Fig. 5.10. This Figure shows the effect of small variations 

in the length of bar 2 on the response characteristics of a uniformly loaded frame. 
Clearly, the change in L2 provides a geometric imperfection and the response, 
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accordingly, approaches asymptotically the ‘perfect geometry’ response. The same can be 
said if an imperfection in bending stiffness exists such that the resulting  

 

FIG. 5.10. Effect of variable vertical 
column length on the portal frame 
response (R3=1; Si=1). 

geometry becomes asymmetric. Details and more results can be found in Simitses et al. 
(1981) and Simitses and Giri (1982). 

5.4.2.2 Semi-rigid Joint Connection 

As in the case of the two-bar frame (Section 5.4.1.2), the horizontal bar is connected to 
the vertical bars through rotational springs. First, a linear spring is used, and its stiffness, 

, is varied from zero (10−1) to infinity (105). Results are presented in tabular and 
graphical form for symmetric eccentric loading. Table 5.5 shows the effect of slenderness 
ratio for a square symmetric portal frame on the sway buckling load  

TABLE 5.5 
EFFECT OF SLENDERNESS RATIO A ON 
SWAY-BUCKLING LOAD (SYMMETRIC 
LOADS, ē=0·001) 

λ 40 100 1000
1 0·659 0·659 0·660
5 1·355 1·355 1·360
100 1·781 1·787 1·790
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1000 1·807 1·813 1·814

 

FIG. 5.11. Effect of joint rotational 
stiffness on critical loads (eccentrically 
loaded symmetric portal frame). 

(ē=0·001) for various values of rotational spring stiffness (same at both joints). It is seen 
from Table 5.5 that this effect is negligibly small, as is the case for rigid connections. 
Figure 5.11 shows the effect of spring stiffness on the sway buckling load for various 

load eccentricities. For very small values, the frame becomes unstable at very low load 
levels. Note that for the frame becomes a mechanism. As the rotational stiffness 
increases, the critical load approaches that of a rigid-jointed portal frame 

( ). 
Next, results are presented for flexibly connected portal frames using the same type II 

connections as for the two-bar frame (see Table 5.2). For the portal frame also it is 
concluded that the degree of nonlinearity of the rotational springs has a negligibly small 
effect on sway-buckling loads, for each specified geometry (see Table 5.6). From these 
and other studies (Vlahinos, 1983), it is concluded that nonlinearity in the rotational 
spring stiffness (variations in Ā) has a negligibly small effect on the response 
characteristics of portal frames. In all generated results, it is required that the slope to the 
moment-relative rotation curve, for the flexible connection, be positive. This  
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TABLE 5.6 
EFFECT OF Ā (NONLINEAR FLEXIBLE 
CONNECTIONS) ON CRITICAL LOADS 

(SYMMETRIC CASE; ē=0·01) 
Geometry 1 Geometry 2 

 
Geometry 3

 
Ā Ā  Ā 

0 1·807 0 1·798 0 1·790
1×105 1·807 1×105 1·798 1×105 1·790
1×108 1·807 1×108 1·798 1×108 1·790

3×1010 1·807 1×109 1·798 1×109 1·788
5×1010 1·806 3×109 1·797 1·75×109 1·785
7×1010 1·803 5×109 1·795 2×109 1·782

7·5×1010 1·801 6×109 1·793 2·1×109 1·781

requirement is not only reasonable, it is also necessary for a good and efficient 
connection. Because of the above observations and those associated with the two-bar 
frame (Section 5.4.1.2), no further results are generated for flexibly connected frames. 

5.4.3 Multi-bay Multi-storey Rigid-Jointed Frames 

Several results are presented and discussed here. 
First, results are presented for symmetric two-bay frames loaded transversely by 

uniformly distributed loads (Table 5.7). In this table, the length of the horizontal bars is 
varied (L4=L5=Lh; L1=L2=L3=Lv) as well as the stiffness. Here also, as in the case of portal 
frames, the slenderness ratio for the vertical bars is taken as 1000 (λ1=λ2=λ3= 1000) and 
the value of λh (=λ4=λ5) is varied accordingly, as Ih and Lh vary, but the cross-sectional 
area is kept constant. The critical loads represent sway-buckling loads. The total load 
for the tow-bay frame is obtained by multiplying q* by 2Lh/Lv. The factor of two is 
needed because of the two bays. In comparing the results of this table with those for the 
portal frame (Table 5.4) one observes that, by adding one bay (two bars; bars 5 and 3), 
the total sway-buckling load is increased by 50% or more, depending on the two ratios. 
The increase is larger with larger values for Lh/Lv and smaller values for EIh/EIv. The 

values for , are measures of the axial loads (compressive 
for this case) in the five bars. Because of the distribution, the middle vertical bar carries 
more load than the other two, as expected. In spite of this, as the bending stiffness of the  

TABLE 5.7 
EFFECT OF HORIZONTAL BAR 
GEOMETRY ON CRITICAL LOADS 
(HINGED SYMMETRIC ONE-STOREY TWO-
BAY FRAMES) 
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Lh/Lv 0.5 

 

1 

 

2 3 

 
   5·474 2·243 0·822 0.425

0.5  1·079 615 1·001 068 0·872 701 0·768 667

   1·773 156 1·575 093 1·328 265 1·169 728

   0·152 456 0.467 452 1·302 599 2·342 564

   6·190 2·739 1·124 0.635

1  1·121 867 1·072 490 0·999 675 0·926 334

   1·916 465 1·774 246 1·580 063 1·447 954

   0·090 564 0·304 997 0.944 516 1·787 473

   6·887 3·258 1·487 0·921

3  1·155 458 1·138 553 1·108 115 1·079 077

   2·049 744 1·980 715 1·868 985 1·787 660

   0·034 894 0·129 310 0.455 144 0.925 647

   7·221 3·530 1·703 1·101

10  1·167 638 1·162 379 1·151 948 1·142 422

   2·120 247 2·087 248 2·039 06 1·998 682

   0·011 611 0·043 027 0·164 391 0·353 992

Lh=L4=L5, Lv=L1=L2=L3; ; EIh=EI4=EI5, EIv= EI1=EI2=EI3.

horizontal bars approaches infinity the total sway-buckling load approaches 3(π2/4). Note 
that for the portal frame the total load is 2 (π2/4). Thus, for this particular case (EIh→∞) 
the increase in buckling load from a single bay to a two-bay frame is 50%, regardless of 
the ratio of Lh/Lv. 

Limited results are also presented for a single-bay multi-storey frame and a two-bay 
two-storey frame. These results are generated only for special geometries. All lengths and 
all stiffnesses are taken to be equal and the loading is a uniformly distributed load of the 
same magnitude on every horizontal bar. The boundaries are simple supports and the bar 
slenderness ratio is taken to be 1000. Note, that for portal frames the effect of slenderness 
ratio on the nondimensionalised response is found to be negligibly small. This is found to 
be also true for two-bay one-storey, and one-bay multi-storey frames that were checked 
randomly. The value of λi was changed for a few geometries  
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FIG. 5.12. Critical loads for hinged 
multi-bay, multi-storey frames (Ri=Si= 
1). 

and this change did not affect the response appreciably. The results for the additional 
geometries are presented schematically in Fig. 5.12, by giving the total sway-buckling 
load next to a sketch of the frame. From this figure it is clearly seen that the sway-
buckling load is increased appreciably by adding bays but the change is insignificant 
when storeys are added. 

Another important result is related to the following study. A two-storey one-bay 
frame, with Li=L and EIi=EI (for all i), is loaded with uniformly distributed loads on the 
horizontal bars. The uniform loading is distributed in various amounts over the two 
horizontal bars. It is found that the total sway-buckling load does not change appreciably 
with this variation. When only the top horizontal bar is loaded (top 100%, bottom 0%) 
the total sway-buckling load is 3·677. When the top and bottom are loaded by the same 
amount, the total sway-buckling load is 3·688 (see Fig. 5.11). Finally, when the top is 
loaded by an amount which is much smaller than the bottom (top 5%, bottom 95%), the 
total sway-buckling load is 3·696.  

When designing two-bay (or multi-bay) frames to carry uniformly distributed loads, 
inside columns must carry more load than outside columns. Because of this, inside 
columns are usually made stiffer. One possible design is to make the inside column(s) 
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twice as stiff (in bending) as the outside one(s). Sway-buckling results for such a two-bay 
geometry are presented in Table 5.8. The lengths of all five members are the same, but 
the bending stiffness of the horizontal bars is varied. Axial load coefficients for all five 

bars are also reported in Table 5.8 (  and ). Moreover, the total 
(nondimensionalised) sway-buckling load is given for each case. It is seen from Table 5.8 
that as the stiffness of the horizontal bars increases, the total load increases. Moreover, a 
comparison with the results of Table 5.7, 

TABLE 5.8 
EFFECT OF HORIZONTAL BAR STIFFNESS 
ON CRITICAL LOADS FOR HINGED ONE-
STOREY TWO-BAY FRAMES (WITH MIDDLE 
COLUMN STIFFNESS DOUBLED) 

EIh/EIv 1 2 3 10 
 3·599900 4·164400 4·391500 4·655000

 1·235737 1·299518 1·320376 1·334522

 1·439725 1·573468 1·627115 1·695136

 0·346890 0·207330 0·147837 0·048834
7·199800 8·329880 8·783000 9·310000

corresponding to Lh/Lv=1, reveals that by doubling the bending stiffness of the middle 
column the total sway-buckling load is increased by approximately 33%, regardless of 
the relative stiffness of the horizontal bars. Another important observation is that the ratio 

of axial forces (inside to outside, P2/P1; ) is not affected appreciably by 
the doubling of the bending stiffness of the middle column. This ratio varies (increases) 
with increasing bending stiffness of the horizontal bars. 

All of the above observations indicate that there exists an optimum distribution of 
bending stiffness, in multi-bay multi-storey orthogonal frames which are subject to sway 
buckling, for maximising their load carrying capacity.  

5.5 CONCLUDING REMARKS 

From the several studies performed on elastic orthogonal plane frameworks, some of 
which are reported herein, one may draw the following general conclusions.  

(1) The effect of flexible joint connections (bolted, riveted and welded connections are 
flexible rather than rigid) on the frame response characteristics is negligibly small. 
Hence, assuming rigid connections in analysing elastic plane frameworks will lead to 
accurate predictions. 

(2) Eccentrically loaded two-bar frames lose stability through the existence of a limit 
point and do not experience bifurcational buckling. For these frames, the slenderness 
ratio of the bars has a small but finite effect on the critical load. Moreover, depending on 
the value for the slenderness ratio, there exists a critical eccentricity which divides the 
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response of the frame into two parts. On one side the response is characterised by stable 
equilibrium positions and on the other side it exhibits limit point instability (within the 
limitations of the theory, ). 

(3) Unbraced multi-bay multi-storey frames (including portal frames) are subject to 
bifurcational (sway) buckling with stable post-buckling behaviour. Sway buckling takes 
place when the frame is structurally symmetric and the load is symmetric. Because of 
this, the frame is insensitive to geometric imperfections regardless of the type (load 
eccentricity, variation in geometry: length, stiffness, etc.). In many respects, the 
behaviour of these frames is similar to the behaviour of columns, especially cantilever 
columns. 

(4) The effect of slenderness ratio on the nondimensionalised response characteristics 
of plane frameworks (except the two-bar frame) is negligibly small. 

(5) Starting with a portal frame, addition of bays increases appreciably the total sway-
buckling load, while addition of storeys has a very small effect. 

(6) For multi-storey frames, distributing the load in various amounts among the 
different floors does not alter appreciably the total sway-buckling load. In all cases, the 
first storey vertical bars (columns) carry the total load. 
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Chapter 6 
BEAM-TO-COLUMN MOMENT-

RESISTING CONNECTIONS 

 
W.F.CHEN and E.M.LUI  

School of Civil Engineering, Purdue University,  
West Lafayette, Indiana, USA 

SUMMARY 

In a moment-resisting frame, the lateral stiffness is provided by the beams and columns 
connected together by moment-resisting connections. Experimental investigations on the 
behaviour of these connections under static and seismic conditions are presented. 
Current design practices are reviewed and improvements are suggested in the light of the 
experimental data. 

NOTATION 
Af Area of one flange of beam 

Aw Area of beam web 

bc Width of the column flange 

C1 Ratio of beam flange yield stressto column web yield 
streass 

db Depth of beam 

dbl Depth of the left beam 

dbr Depth of the right beam 

dc Depth of the column 

 Depth of column web clear of fillets 

Fyb Beam flange yield stress 

Fyc Column web yield stress 

G Shear modulus 



kc Distance from outer face of flange to web-toe of 
fillet 

L Length of beam 

M Moment 

Ml Moment of the left beam 

Mp Plastic moment 

Mpl Plastic moment of the left beam 

Mpr Plastic moment of the right beam 

P Axial load 

Pa Axial load from top column 

Pb Axial load from bottom column 

Py Yield load 

T Beam flange force 

tb Thickness of the beam flange 

tc Thickness of the column flange 

V Shear force 

Va Shear force from upper column 

Vb Shear force from lower column 

Vcol Average column shear 

Vmp Shear yielding force at critical section 

Vp Shear yielding force 

wc Thickness of the column web 

∆b Beam deflection due to bending deformation 

∆s Beam deflection due to shear deformation 

 Beam deflection due to rigid body rotation of the 
beam induced by the connection panel zone 

deformation 

σy Yield stress 

 Shear yield stress 

6.1 INTRODUCTION 

Two of the most commonly used steel framing systems to resist lateral forces are the 
moment-resisting frames and braced frames. In a moment-resisting frame, the lateral 
stiffness is provided by the flexural rigidities of the beams and columns, which are 
connected by moment-resisting connections. These beam-to-column moment connections 
must have sufficient strength and ductility to ensure satisfactory performance of such 
frames. 
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Braced frames are those in which the lateral forces are resisted by braces. According 
to how the braces are connected to the frames, two types of braced frames can be 
identified: 

(1) Concentrically braced frames—frames in which the centrelines of the braces, beams 
and columns all coincide at the joints. Lateral integrity of this type of frame is 
provided by  

(2) Eccentrically braced frames—frames in which the line of action in a brace is offset 
from the joint or the intersection point of the centrelines of the beams and coulmns. In 
this type of braced frame, the vertical component of the axial force in the brace is 
transmitted through shear in the beam. 

The obvious advantage of a moment-resisting frame over a braced frame is that there is 
more flexibility in architectural planning. However the detailing of a moment-resisting 
connection in such a frame may be expensive. Furthermore, since the lateral stiffness 
depends on the flexural rigidities of the beams and columns, larger beam and column 
sections may be needed, resulting in a larger panel zone size. Distress of this panel zone 
may lead to early buckling and yielding. In addition, fracture has to be avioded. 

The objective of this chapter is to invesigate the behaviour of these beam-to-column 
moment-resisting connections. In perticular, the behaviour of three types of moment 
connections—static flange moment connections, static web moment connections and 
seismic moment ments on these types of connections will be presented. Improved 
methods for analysis and design will also be given. 

6.2 DESIGN CRITERIA FOR MOMENT-RESISTING 
CONNECTIONS 

The principal design certeria for these connections are:  

(1) sufficient strength,  
(2) adequate deformation capacity,  
(3) adequate overall stoffness in the working load level, and 
(4) economical fabrication and ease of erection 

A moment resisting connection must have sufficient strength so that the full plastic 
moment of the adjoining members can be develop. The connection must posses dictilityor 
deformation capacity to allow moment redistribution. Moment redistribution is essential 
for a mechanism to develop in plastically designed steel frames. Ductility is also 
important in seismically designed steel frames to absorb and dissipate energy from cyclic 
loadings. Adequate overall elastic stiffness of a moment connection under working load 
is essential to maintain the relative positions of all structural members and to prevent 
excessive drift. Since the cost of a moment-resisting framing system is highly influenced 
by the cost of the connections, economical fabrication and ease of erection of these 
connections are essential in reducing the cost of the construction. 

A properly designed static moment-resisting connection should exhibit the behaviour 
of Curve A in Fig. 6.1. It not only has sufficient stiffness and enough strength to carry the 
plastic moment of the connecting members, but also possesses the adequate rotation 
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capacity required for moment redistribution. Connections that exhibit the behaviour of 
Curve C are called unstiffened connections: they possess adequate deformation capacity 
but fail to develop the necessary stiffness and the full strength, or plastic moment 
capacity, of the adjoining members. As a result, plastic hinges with reduced moment 
capacity may form in these connections. The cost of these unstiffened connections is less 
than their stiffened counterparts. However, the use of larger beam sections may be 
necessary. This gives the designer the opportunity to balance the material cost of the 
beams against the labour cost of the connections in arriving at an optimum design. A 
more thorough discussion of these unstiffened connections is given elsewhere (Witteveen 
et al., 1982). Connections that exhibit the  

 

FIG. 6.1. Moment-rotation curves for 
static moment connections. 

behaviour of Curves B and D are unacceptable as they lack the required deformation 
capacity. The discussion of static moment connections in the following two sections will 
be focused on stiffened connections, i.e. moment-resisting connections that exhibit the 
behaviour of Curve A in Fig. 6.1. 

6.3 STATIC FLANGE MOMENT CONNECTIONS 

A flange moment connection is a connection which joins a beam to the flange of the 
column. Thus, bending about the strong axis of the column will result, upon application 
of the beam loads. Another feature of a flange moment connection is the presence of a 
panel zone. The behaviour of this panel zone has a strong effect on the behaviour of the 
connection. In other words, the performance of such a connection is controlled to a large 
extent by the strength and stiffness of the panel zone. 

The behaviour of a flange moment connection is also influenced by the types of 
connecting media. Fully-welded connections are regarded as ‘ideal’ connections, as they 
provide full continuity between the adjoining members. However, this type of connection 
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is quite expensive. In order to reduce the cost of field welding, flange-welded web-bolted 
connections are often used to replace fully-welded connections in plastically and 
seismically designed structures. In most cases, it has been found that these flange-welded 
web-bolted connections give satisfactory performance in terms of strength and ductility. 
Connections which utilise moment plates and high strength bolts to connect the flanges of 
the beam to the flanges of the column are called fully-bolted connections. Fully-bolted 
connections usually exhibit sufficient moment and rotational capacities. However, bolt 
slip at working load for a moment plate designed as a bearing-type joint reduces the 
elastic stiffness of the connection, which may not be desirable. The reduction in stiffness 
can be alleviated by designing the moment plate as a friction-type joint. This, however, 
requires the use of larger moment plates and more bolts. 

6.3.1 Behaviour of Flange Moment Connections 

The study of the behaviour of this type of connection is exemplified by an experimental 
setup shown in Fig. 6.2. This setup resembles an interior joint of a moment-resisting 
frame. The performance of this  

 

FIG. 6.2. Test setup for static flange 
moment connections. 

joint is represented by the load-deformation behaviour of the connection. The load-
deformation behaviour can be predicted satisfactorily by simple plastic analysis if the 
connection is subjected to a shear force of less than 60% of the shear force at yield 

, where Aw is the area of the beam web and is the shear stress at yield. 
is taken to be σy/√3 if the Von Mises yield criterion is used, in which σy is the yield stress 
of the beam web. The procedures for using this simple plastic analysis to predict the load-
deformation behaviour of the connection are shown schematically in Fig. 6.3. Figures 
6.3(a) and (b) show a loading condition and the resulting moment distribution of the 
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subassemblage, respectively. By using the stress-strain relationship in Fig. 6.3(c), the 
curvature diagram can be constructed taking into consideration the property of the 
member cross-section. Finally, the moment-rotation curve and load-deflection curve can 
be obtained by the moment area theorems I and II, respectively. Two predicted curves are 
shown in Fig. 6.3(e). Curve A corresponds to elastic/perfectly plastic stress-strain 
behaviour, whereas Curve B corresponds to an elastic-plastic strain-hardening stress-
strain relationship. 

 

FIG. 6.3. Procedures for simple plastic 
analysis. 

A comparison between the predictions using simple plastic analysis and test results of 
two connections, designated as C1 and C10, is shown in Fig. 6.4. These connections 
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represent two of the twelve full-sized specimens tested at Lehigh University in the early 
seventies (Huang et al., 1971). In this test series, A572 Grade 55 steel having a nominal 
yield stress of 55 ksi (379 MPa) was used. C1 is a flange-welded web-bolted connection 
and C10 is a fully-welded connection. Joint details for these two connections are shown 
in Figs 6.5 and 6.6, respectively. Both connections are experiencing a shear force less 
than 60% of the shear force at yield during the tests. It can be seen that there is a good 
correlation between the predictions and test results for the stiffness and moment 
capacities of these connections. 

For connections that experience a shear force higher than 60% of  

 

FIG. 6.4. Load-deflection curves of 
tests C1 and C10 using A572 Grade 55 
steel (W14×74 beam, W10×60 
column). 

Vp, a more elaborate method of analysis should be used (Huang and Chen, 1973; Huang 
et al., 1973). By using the assumption that, at the plastic limit load, the bending moment 
is carried only by the beam flanges while the shear force is solely resisted by the beam 
web, the total deflection ∆ at the end of the beam can be expressed as the sum 

 
(6.1) 

where (see Fig. 6.7) ∆b=deflection of beam due to bending deformation, ∆s=deflection of 
beam due to shear deformation, =deflection of beam due to rigid body rotation of the 
beam induced by the connection panel zone deformation. 
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The bending deflection ∆b is obtained by first assuming that the entire section is 
effective in the elastic range up to the initial yield moment My, and then that when the 
bending moment exceeds My, the total bending moment is carried only by the two flanges 
but the material in the flanges is assumed to be in the strain-hardening range. This 
assumption is shown schematically in Fig. 6.8, in which the non-dimensional moment-
curvature relationship is plotted. With this moment-curvature relationship, the bending 
deflection ∆b can be obtained by integration.  

 

FIG. 6.5. Joint details of connection 
C1 (1 in.=25·4 mm, 1 ksi=6·895 MPa). 

The deflection of the beam due to shear deformation ∆s can be evaluated by 
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 (6.2) 

where V=shear force in the beam, L=length of the beam, Aw=area of the beam web, 
G=shear modulus.  

 

FIG. 6.6. Joint details of connection 
C10 (1 in.=25·4 mm, 1 ksi= 6·895 
MPa). 

Equation (6.2) was written under the assumptions that (a) only the beam web is effective 
in resisting the shear force, (b) the shear stress distribution is uniform in the beam web, 
and (c) beam web buckling is precluded. 
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The deflection of the beam due to deformation of the panel zone can be calculated 
by considering the four stages illustrated in Fig. 6.9.  

 

FIG. 6.7. Deflection components. 
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FIG. 6.8. Non-dimensional moment-
curvature relationship (A572 Grade 55 
steel, W27×94). 

 

FIG. 6.9. Model for the prediction of 
panel zone deformation. 
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FIG. 6.10. Comparison of predicted 
and actual load-deflection behaviour of 
test C12 (1 kip=4·448 kN, 1 in.=25·4 
mm; A572 Grade 55 steel, W27×94 
beam, W14×176 column). 

In the elastic range OA, the panel zone is modelled as a system of elastic springs 
supporting the column flanges. The deformation of the panel zone is thus predicted by the 
analysis of the bending of the continuous beam (column flange) on an elastic foundation 
(column web). When yielding in the column web spreads to a width of (tb+5kc), where 
tb=thickness of the beam flange and kc=distance from outer surface of column flange to 
web-toe of fillet, the column flange is modeled by a two-span continuous beam, with 
ends fixed at a distance of (tb+7kc)/2 away from the application of load. The load-
deformation behaviour of this model is shown as stage AB in the figure. The subsequent 
load-deformation behaviour is obtained according to simple plastic analysis by first 
considering the formation of plastic hinges at the two fixed-ended supports (stage BC) 
and then at the load points (stage CD). The ultimate load is said to have been reached 
when a mechanism is developed in the model. 

The three computed deflection components are plotted in Fig. 6.10 together with the 
test result of a full-sized specimen C12. This connection is a fully-welded joint with no 
stiffening in the panel zone (Fig. 6.11). High shear force (>60% Vp) was experienced by 
the connection at the plastic limit load. It can be seen that there is a good correlation 
between the predicted load-deflection curve and the test results. 
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The above procedure is also applicable to flange-welded web-bolted connections. 
Figure 6.12 shows the load-deflection curves of two flange-welded web-bolted 
connections C2 and C3, together with the prediction curve (labelled ‘Theory’) and their 
control specimen C12, which is a fully-welded joint. The difference between connection 
C2 and C3 is that the shear plate which connects the beam web to the column flange has 
round holes for C2 and slotted holes for C3 (Figs 6.13 and 6.14). Both C2 and C3, like 
their control C12, were under high shear force at failure. 

Several observations can be made from Fig. 6.12: 

(1) The behaviour of flange-welded web-bolted connections is satisfactory, compared to 
that of fully-welded connections. 

(2) The use of slotted holes in the shear plate is justified, as the performance of 
connection C3 is comparable to that of connection C2. 

(3) The procedure outlined above, to predict the load-deflection behaviour for 
connections under high shear force, can be used for flange-welded web-bolted 
connections as well as fully-welded connections. 
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FIG. 6.11. Joint details of connection 
C12 (1 in.=25·4 mm, 1 ksi= 6·895 
MPa). 
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FIG. 6.12. Load-deflection curves of 
tests C12, C2 and C3. 

Observations (1) and (2) provide the designer with the possibility of cost optimisation, 
because the use of bolting in place of field welding to connect the beam web to the 
column flange means an economy in fabrication, and the use of slotted holes instead of 
round holes means an ease of erection in the field. Both measures will tend to reduce the 
cost of the construction. For a more detailed discussion of these flange-welded web-
bolted connections, readers are referred to the paper by Huang et al. (1973). 

Another measure which a designer can consider in order to reduce the cost of 
construction is to use the beam seat to carry the shear. However, care must be exercised 
to prevent the buckling of the beam web. Beam web buckling can be prevented by the use 
of beam web stiffeners. 

The use of flange-welded-only connections to carry both the shear and moment is not 
advisable due to the high possibility of excessive deformation and premature failure 
(failure before the attainment of the plastic limit load) of this type of connection.  
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FIG. 6.13. Joint details of test C2 (1 
in.=25·4 mm, 1 ksi=6·895 MPa). 
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FIG. 6.14. Joint details of connection 
C3 (1 in.=25·4 mm, 1 ksi= 6·895 
MPa). 
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FIG. 6.15. Load-deflection curves of 
tests C11, C8 and C9 (1 kip=4·448 kN, 
1 in.=25·4 mm). 
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FIG. 6.16. Joint details of connection 
C8 (1 in.=25·4 mm, 1 ksi= 6·895 
MPa). 
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FIG. 6.17. Joint details of connection 
C9 (1 in.=25·4 mm, 1 ksi= 6·895 
MPa). 

For some constructions, it is desirable to use fully-bolted connections. The behaviour 
of two fully-bolted connections C8 and C9, as well as their fully-welded control 
specimen C11, is shown in Fig. 6.15. Connection C8 was designed as a friction-type 
connection, having oversized holes in the moment plates and slotted holes in the shear 
plate (Fig. 6.16). Connection C9 is similar to Connection C8, with the only difference 
being that this connection was designed as a bearing-type connection with standard size 
round holes in the moment plate (Fig. 6.17). 
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The behaviour of a fully-bolted connection differs from that of its fully-welded 
counterpart in that a distinct shallower second slope is observed. This reduction in 
stifiness is due to the slippage of bolts into bearing. This phenomenon is more 
pronounced for a bearing-type connection (C9) and less significant for a friction-type 
connection (C8). The reduction of stiffness at loads less than the plastic limit load of the 
beam may be an important factor in affecting the stability of frames. 

Insofar as the moment capacity and deformation capacity are concerned, fully-bolted 
connections are comparable to fully-welded connections. Some fully-bolted connections 
may show an increase in plastic moment capacity due to the strengthening effect of the 
moment plates needed to connect the beam flanges to the column flanges. Because of the 
added plate material in the lap area, plastic hinge may form at or beyond the end of the 
moment plates rather than at the face of the column. A more thorough discussion of these 
fully-bolted connections is given elsewhere (Standig et al., 1976). 

6.3.2 Moment Capacity of Flange Moment Connections 

The moment capacity of a flange moment connection is said to have been reached when 
one or more of the following regions in the connection become critical. 

(1) Yielding, buckling or crippling in the compression zone of the column web. 
(2) Yielding of fracture in the tension zone of the column web and column flanges. 
(3) Shear yielding due to the shearing effect in the panel zone. 

6.3.2.1 Compression Zone 

In analysing the compression region of the flange moment connection, the beam flange 
force T, which is calculated by dividing the beam  

 

FIG. 6.18. Internal forces of an internal 
beam-to-column connection under 
symmetrical loads. 
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moment M at the column face by the beam depth db (Fig. 6.18), is assumed to be 
distributed on a 2·5:1 slope from the point of contact to the column ‘k-line’. As a result, 
the beam flange force is resisted by a width of column web equal to (tb+5kc) at the 
column ‘k-line’, in which tb=thickness of the beam flange and kc=distance from outer 
face of flange to web-toe of fillet of rolled shape, or equivalent distance on welded 
section (Fig. 6.19). In order to prevent yielding, the resistance  

 

FIG. 6.19. Assumed force distributions 
on column k-line due to beam moment. 

of the effective area of the column web must equal, or exceed, the applied concentrated 
force of the beam compression flange, i.e. 

 
(6.3) 

Rearranging 

 (6.4) 

where wc=thickness of the column web, C1=ratio of beam flange yield stress Fyb to 
column web yield stress Fyc, Af=area of one flange of the beam. 

To avoid column-web buckling, the following criterion (Chen and Newlin, 1973) must 
be satisfied 

 
(6.5) 
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where Fyc is in MPa, wc in mm, Af in mm2 and is the depth of column web clear of 
fillets, in mm. 

If either of eqn (6.4) or (6.5) is not satisfied, stiffeners should be provided on the 
column opposite to the compression flange of the beam. 

An interaction equation integrating the strength and stability requirements to 
determine whether stiffeners are required was proposed by Chen and Newlin (1973) as 

 
(6.6) 

where Fyc is in MPa, in mm and Af in mm2. 

6.3.2.2 Tension Zone 

To prevent yielding in the tension zone, the following criterion must be satisfied 

 (6.7) 

where the nomenclature is defined as in eqn (6.4). 
To prevent fracture between column web and column flange, the following criterion 

for minimum thickness of column flange needs to be satisfied 

 
(6.8) 

where tc=thickness of the column flange in mm, Af=area of one flange of the beam in 
mm2. 

Equation (6.8) was developed by Graham et al. (1959) using the yield line theory, 
under the assumption that the beam flange tensile force is carried by the column flange 
through (a) a direct resistance over the middle portion of the column flange, and (b) a 
bending resistance of the column flange plate. 

If either eqn (6.7) or (6.8) is not satisfied, stiffeners should be provided on the column 
opposite to the tension flange of the beam. In most cases, eqn (6.8) will govern, and so it 
furnishes the prime criterion to determine whether or not stiffeners are needed. 

6.3.2.3 Shear Stiffening 

Figure 6.20 shows the possible system of forces acting on an interior beam-to-column 
flange moment-resisting connection. Under an antisymmetrical loading, shear 
deformation of this connection will result. This deformation may lead to shear yielding. 
In order to avoid yielding in shear, the following criterion needs to be satisfied 

 
(6.9) 
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where wc=thickness of column web in panel zone, Fyc=yield stress of column web in 
panel zone, dc=depth of column, db=depth of beam, Mr, M1, Vav=(Va+Vb)/2 are as defined 
in Fig. 6.20. 

Equation (6.9) was developed by ignoring the effect of the column axial loads Pa and 
Pb on the shear yield stress of the web panel. If eqn (6.9) is not satisfied, then shear 
stiffening must be provided in the panel zone. 

The inclusion of the effect of axial force on the shear capacity of the joint panel, to 
determine whether or not shear stiffening is required, was proposed by Fielding and 
Huang (1971). By using the Von Mises yield criterion for biaxial stress state in the panel 
zone and defining P=(Pa+Pb)/2, the criterion for providing shear stiffening is given as 

 

(6.10) 

where Py is the yield load of the column. The other symbols are  

 

FIG. 6.20. Forces in the panel zone of 
an interior static flange moment 
connection under antisymmetric loads. 
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defined as before (eqn (6.9)). Equation (6.10) specifies the column web thickness wc 
required to prevent general yielding under the action of antisymmetrical beam moments 
Mr and Ml and column load P. 

6.3.3 Concluding Remarks 

(1) A properly designed and detailed flange moment connection should have sufficient 
strength and ductility. 

(2) Fully-welded connections are considered to be ‘ideal’ as they provide full 
continuity between the beams and the columns. 

(3) The use of flange-welded web-bolted connections with round or slotted holes in 
the shear plate is justified, as they provide sufficient strength and ductility that is 
comparable to fully-welded connections. 

(4) Insofar as strength and ductility are concerned, fully-bolted connections designed 
as bearing or friction-type give satisfactory performance under static load. However, the 
reduction of stiffness at working load due to bolt slip may be undesirable. 

(5) The load-deflection behaviour of fully-welded and flangewelded web-bolted 
connections can be predicted using simple plastic analysis if the shear force V is no more 
than 0·6Vp. For V>0·6VP, a more sophisticated procedure, outlined in Section 6.3.1, needs 
to be used. 

(6) The most critical region of a flange moment connection is the panel zone. 
Therefore, proper stiffening has to be provided to ensure satisfactory performance. 

(7) The adequate performance of Connection C3 (flange-welded web-bolted 
connection with slotted holes in the shear plate) demonstrates the assumption that the 
flanges alone are able to develop the full plastic moment capacity of a wide-flange shape 
by strain-hardening (Fig. 6.8), provided that precautions are made to avoid beam-flange 
local buckling. 

6.4 STATIC WEB MOMENT CONNECTIONS 

A web connection is one in which the beam is attached to the column perpendicular to the 
plane of the column web. Upon application of the beam load, the column will bend about 
its weak axis. Because of the space restrictions imposed by the column flanges, the beam 
is usually connected to the column through flange connection plates. There are several 
ways by which the flange connection plates can be attached to the column. They are; 

(a) the flange connection plates are welded to the column web as well as the inner face of 
the column flanges (Fig. 6.21(a)), 

(b) the flange connection plates are welded to the inner face of the column flange only 
(Fig. 6.21(b)), 

(c) the flange connection plates are welded to the column web only (Fig. 6.21(c)). 

In order to investigate the behaviour of these different types of attachments, a programme 
designated as the pilot test programme was initiated at Lehigh University. In this test 
programme, eight simulated  
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FIG. 6.21. Web connection types. 

tests on web connection details were performed. The objective of this test programme is 
threefold. 

(1) To investigate the behaviour and ultimate strength of the column web using 
different types of attachment details. 

(2) To study the requirements for column web stiffening. 
(3) To gain knowledge to attain the proper design of full-scaled specimens. 
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6.4.1 Pilot Test Programme 

The setup for this test programme is shown in Fig. 6.22. Pairs of steel plates are welded 
to the column to simulate the tension and compression flanges of a beam. This tension-
compression couple will simulate the bending moment of the beam. It can be seen in Fig. 
6.22 that two tests were performed in one setup. Since the column (which was tested as a 
beam in the test setup) was not loaded axially, only the effect of bending delivered by the 
pair of tension-compression plates was considered. The effects of axial load and shear 
were not considered in these tests. 

A total of eight tests were performed. Two different column sections were used 
(W12×106 and W14×184). Each was tested with four  

 

FIG. 6.22. Pilot test setup. 
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FIG. 6.23. Connection geometries of 
pilot tests. 

different connection details, as shown in Fig. 6.23. These tests were designated as 12A, 
12B, 12C, 12D and 14A, 14B, 14C, 14D. The numbers 12 and 14 refer to the column 
sections W12×106 and W14×184, respectively, and the letters A, B, C, D correspond to 
the connection details of Fig. 6.23. 

For tests A and B (see Fig. 6.23), the plates were welded to the column web only by 
full penetration groove welds. The difference between them is that in test B, the width of 
the plates is equal to the clear distance between the column fillets, whereas in test A, the 
width of the plates is less than the distance between the column fillets. Thus, a yield line 
type of mechanism is expected of test A but not test B. 

For test C, the plates were fillet welded to the column web as well as both the inner 
faces of the column flanges. 

For test D, the plates were fillet welded to the inner faces of the column flanges only. 
Therefore, all the plate forces will be delivered to the column flanges. 

The results of these tests (Rentschler et al., 1982) indicated that both tests 12A and 
14A failed to attain the predicted yield line load to initiate the yield line mechanism in the 
column web. Also, tests 12B and 14B failed to attain the predicted plastic limit load 
required to form a plastic hinge in the column. This is because all these connection details 
failed prematurely, by fracture of the column web near the edges of the tension plate. 
This fracture is caused by stress concentration near the edges of the tension plate. This 
stress concentration can be explained from the viewpoint of flexibility of the column 
web. Due to the constraint offered by the column flanges, the column web stiffness 
increases significantly near the column flanges in a phenomenon known as shear lag. 
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This high stress concentration will cause yielding and finally lead to fracture of the 
material. 

In addition to stress concentration, the out-of-plane deformation of the column web 
and flanges is quite substantial for tests 12A, 12B and 14A, 14B. This is attributed to the 
considerable flexibility to this type of web connection. This deformation, if coupled with 
a high axial force in the column, will easily cause local buckling of the column. 

Insofar as stiffness and strength are concerned, connection details 12C, 12D and 14C, 
14D are adequate. The load which corresponds to the formation of plastic hinge in the 
column was reached. No significant out-of-plane deformation of the column web and 
flanges was observed. The comparable performance of tests C and D is due to the fact 
that only a small portion of the plate forces is delivered to the column web, a large 
portion of the plate forces is carried by the column flanges. An elastic finite element 
analysis (Rentschler, 1979) has shown that the maximum force reaching the column web 
is approximately 10% of the total plate force being delivered to the column. Thus, the 
presence of a weld between the flange plate and the column web for test C does not 
attract an appreciable amount of the total flange plate force, and so the behaviour of test 
C is similar to test D, in which the flange plates were connected only to the column 
flanges. 

Although the performance of tests C and D was adequate, the non-uniformity of stress 
distribution in the flange plate requires attention. The high stress concentrations at the 
edges of the flange plates that are connected to the column flanges may cause shear 
yielding of the flange plate adjacent to the flange weld. This shear yielding may cause 
problems in these types of connection details. 

Based on the information obtained in these pilot tests, four full-sized specimens were 
designed and tested (Rentschler et al., 1980). The results of these tests are discussed in 
the following section. 

6.4.2 Behaviour of Web Moment Connections 

The four specimens were designated as 14–1 to14−4; 14–1 and 14–2 are flange-welded 
web-bolted connections, 14–3 is a fully-bolted connec- 
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FIG. 6.24. Web connection test setup. 

tion and 14–4 is a fully-welded connection. The test setup for these specimens is shown 
in Fig. 6.24. The connection assemblages were designed in such a way that, at the 
predicted plastic limit load, the beam would resist a beam plastic moment Mp and a beam 
shear V approximately equal to 0·81 Vp, whilst the column would resist an axial load P 
approximately equal to 0·50Py. The material used for these tests was A572 Grade 50 steel 
(Fy=55 ksi (379 MPa)). 

Figures 6.25 and 6.26 show the joint details of tests 14–1 and 14–2, respectively. In 
connection 14–1, the beam flanges are groove welded to the flange moment plates which 
in turn are fillet welded to the  
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FIG. 6.25. Joint details of connection 
14–1 (all dimensions in mm). 

column flanges and web. The beam web is connected to a shear plate by seven 7/8-in (22 
mm) diameter A490 high strength bolts. This shear plate is attached to the column web 
and flange moment plates by fillet welds. 

For connection 14–2, the beam flanges are groove welded directly to the column web 
and the beam web is connected to the column web by  
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FIG. 6.26. Joint details of connection 
14–2 (all dimensions in mm). 

two structural angles of size (89 mm×89 mm× 9·5 mm). These 
angles are fillet welded to the beam web and bolted to the column web by eight 3/4-in (19 
mm) diameter A490 bolts. 
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The load-deformation behaviour of these two connections is shown in Figs. 6.27 and 
6.28, respectively. From Fig. 6.27, it can be seen that although connection 14–1 possesses 
the required strength and stiffness,  

 

FIG. 6.27. Load-deflection curve of 
flange-welded web-bolted connection 
14–1. 

 

FIG. 6.28. Load-deflection curve of 
flange-welded web-bolted connection 
14–2. 
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it lacks ductility due to fracture of the tension flange moment plate near the groove weld 
that joins with the tension beam flange. From Fig. 6.28, it is clear that connection 14−2 
lacks both strength and ductility. This is attributed to the severe out-of-plane deformation 
of the column web and flanges. The stress concentration that builds up in the beam 
tension flange finally causes fracture of the column web. In order to reduce the out-of-
plane deformation and to alleviate the stress concentration, back-up stiffeners and 
moment plates can be used. It has been shown (Rentschler, 1979) that the presence of 
back-up stiffeners on the other side of the column can reduce the column web 
deformation substantially and alleviate stress concentration as they attract forces from the 
beam. The use of moment plates alleviates the problem by delivering the beam forces to 
the column flanges as well as the web, so that both the column flanges and web can take 
part in resisting the beam forces. 

In these figures, the symbol Vmp is the shear force required to produce the plastic 
moment Mp in the beam. Vmp at the critical section is not always equal to Vmp at the 
column web centreline, because the critical sections of these connections do not 
necessarily coincide with the column web centrelines. The critical section for connection 
14−1 is at the juncture of the beam and the moment and shear connection plates. The 
critical section for connection 14−2 is at the column web. Therefore, Vmp (critical section) 
and Vmp (column web) have the same value for connection 14−2, but have different 
values for connection 14−1. 

Connection 14−3, which is a fully-bolted connection, is shown in Fig. 6.29. In this 
connection, the beam is connected to the moment and shear connection plates by high 
strength bolts. The moment connection plate is connected to the column web and flanges 
by fillet welds, and the shear connection plate is connected to the column web and to the 
top and bottom moment plates also by fillet welds. The critical section of this connection 
is at the outer row of flange bolts. 

The load-deformation behaviour of this connection is shown in Fig. 6.30. Note that 
two distinct elastic slopes are observed. The occurrence of the second shallower slope is 
due to bolt-slip into the bearing. After this second slope, the connection starts losing its 
stiffness due to local yielding of the assemblage elements. Failure of this connection is 
again due to fracture at the tip of the tension flange connection plate. 

This fully-bolted connection is not proper for a plastically designed  
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FIG. 6.29. Joint details of connection 
14−3 (all dimensions in mm). 

Steel framed structures     180



 

FIG. 6.30. Load-deflection curve of 
fully-bolted connection 14−3. 

structure, because of the significant reduction in stiffness in the working load range due 
to bolt slip, and the inadequate ductility due to fracture in the tension flange connection 
plate. However, these shortcomings can be remedied by designing the joint as a friction-
type connection and by using an extended moment flange connection plate. This bolt-slip 
phenomenon is less significant in a friction-type joint and the use of an extended moment 
plate will reduce the high stress concentration at the beam tension flange adjacent to the 
tips of the inner faces of the column flanges. 

Figure 6.31 shows the joint details of the fully-welded connection 14−4. The beam 
flanges and web are groove welded to the moment and shear connection plates, which in 
turn are connected to the column by fillet welds. The critical section for this connection is 
at the column flange tips. 

Figure 6.32 shows the load-deflection behaviour of this connection. It can be seen that 
this connection possesses the required stiffness and strength. Although local buckling of 
the beam compression flange and cracks in the area of the groove weld joining the 
tension flange of the beam to the flange moment plate were observed, the connection 
exhibited sufficient ductility and no fracture occurred.  
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FIG. 6.31. Joint details of connection 
14−4 (all dimensions in mm). 
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FIG. 6.32. Load-deflection curve of 
fully-welded connection 14−4. 

6.4.3 Concluding Remarks 

From the above discussions, it is clear that fracture at the junction of the tension beam 
flange and the moment plate near the tip of the column flange is the main problem which 
limits the ductility of a web moment connection. Fracture occurs as a result of a triaxial 
tensile stress state that develops there. Figure 6.33(a) shows that the longitudinal stress 
across the width of the beam flange at section A-A is highly non-uniform. This non-
uniformity arises as a result of shear lag. The part of the moment plate that joins the inner 
face of the column flange is, relatively, stiffer than the part in the middle. Thus, stress 
tends to migrate to the edges of the moment plate. At section B-B (Fig. 6.33(b)), the 
stress is fairly uniform because the stiffness across the width of the beam flange is more 
or less constant. The shear stress along section C-C is also non-uniform (Fig. 6.33(c)). 
When a tensile force is applied to the moment plate, transverse and through-thickness 
strains will be induced due to the Poisson effect. However, because of the constraint of 
the column flanges, these strains can not be released along the welds of the moment plate 
and the column flanges. Consequently, a triaxial tensile stress state will develop there. 
This undesirable stress state, compounded by the high stress concentration at section  
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FIG. 6.33. Stress distributions (a) 
longitudinal stresses on section A-A; 
(b) longitudinal stresses on section B-
B; (c) shear stresses on section C-C. 

A-A and aggravated by the shear stress at section C-C, will ultimately cause fracture at 
the intersection of A-A and C-C. 

To remedy this problem and to improve ductility for these types of web moment 
connections, the following suggestions were made (Driscoll and Beedle, 1982). 

(1) Use oversized moment plates (Fig. 6.34(a)) to reduce the non-uniformity of tensile 
stresses across the width of the plate. 

(2) Use a back-up stiffener (Fig. 6.34(b)) to reduce stress concentration at the column 
flange tip. 

(3) Use an extended connection plate (Fig. 6.34(c), (d) and (e)) to avoid intersecting 
beam flange butt welds with the column flange fillet welds.  
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FIG. 6.34. Possible approaches, for use 
individually or in combination, for 
improving performance of tension 
flange connections to column web 
(Driscoll and Beedle, 1982). 

(4) Use a tapered moment plate (Fig. 6.34(d)) or a moment plate with reduced width (Fig. 
6.34(e)) to move the beam flange-moment plate juncture away from the critical section. 

A test programme using the above suggested web connection details is now underway 
at Lehigh University. The results of these tests will give the designer more insight into 
the behaviour of web moment connections. 

6.5 SEISMIC MOMENT CONNECTIONS 

A seismic moment connection differs from a static moment connection in the following 
aspects: 

(1) A seismic moment connection must be detailed to withstand forces which act in either 
direction.  
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(2) The problem of low cycle fatigue, which is associated with cyclic loadings at large 
plastic strain, becomes a factor to be considered in a seismic moment connection. 

(3) Since seismic loadings are random in nature, a probabilistic rather than a deterministic 
approach of analysis is necessary to assess the behaviour of a seismic moment 
connection. 

In order to warrant a probabilistic approach of analysis, a large amount of data is needed. 
Unfortunately, experimental data gathered up to the present time are not sufficient. 
Therefore, a quantitative evaluation of the reliability of seismic moment connections 
based on probabilistic concepts is not possible. Furthermore, as many of the experiments 
were carried out on small-scale samples under load or displacement control cyclic 
loadings, a direct correlation to full-size connections used in practice under random 
ground motions is questionable. In view of these difficulties, the discussion of seismic 
moment connections in the following sections will be confined to a qualitative rather than 
a quantitative description of connection behaviour. In particular, the behaviour of 
connections in a ductile moment-resisting frame will be discussed. 

In a ductile moment-resisting frame, the members and joints are detailed to be capable 
of deforming well into the inelastic range without local failure or frame instability. In 
designing such frames, it is common practice to proportion the connections and the 
adjoining members in such a way as to confine plastic hinges to be developed in the 
beams. Although inelastic deformation in the panel zone of a connection is sometimes 
advisable, such deformation must be controlled so that deterioration, i.e. loss of strength 
and stiffness, of the connection is not significant. 

6.5.1 Behaviour of Seismic Moment Connections 

The behaviour of a seismic moment connection is represented by its hysteresis loops. An 
adequately designed moment connection should possess sufficient strength and ductility 
and should be strong enough to allow large rotation in the beams so that plastic hinges 
can be formed, providing ductility to the frame. Ductility is very important in seismic 
regions, to absorb and dissipate energy as well as to dampen the vibrations generated by 
ground motions. The area under the hysteresis loop is a measure of the ductility of the 
connection assemblage. Figure 6.35(a)–(d) shows four different stable hysteresis loops 
for a connection  
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FIG. 6.35. Hysteresis loops of seismic 
moment connections. 

assemblage. Connections which exhibit the behaviour of hysteresis loop A are desirable, 
whereas connections which exhibit the behaviour of hysteresis loops B, C and D are not 
desirable, due to lack of ductility, strength or stiffness. 

The cyclic behaviour of moment-resisting connections and subassemblages was 
reported by Popov and Pinkney (1968, 1969), Popov and Stephen (1972), Bertero et al. 
(1972), Carpenter and Lu (1973), Krawinkler (1978) and Krawinkler and Popov (1982). 
Since most of the experiments were carried out on reduced-scale models, in which details 
of connections used in practice could not be simulated, the qualitative discussion of 
seismic moment connection behaviour will be drawn principally from the full-size 
specimens tested by Popov and Stephen (1972). 

Figure 6.36 shows the joint detail and the hysteresis behaviour of a connection 
assemblage consisting of a W24×76 beam section. The connection is fully-welded. The 
beam flanges were connected to the column flange by full penetration welds and the 
beam web was connected to a shear plate, which was fillet welded to the column flange. 
A36 steel with a yield stress of 36 ksi (248 MPa) was used. It  
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FIG. 6.36. (a) Joint details and (b) 
hysteresis loops for a fully-welded 
connection (1 in.=25·4 mm, 1 
kip=4·448 kN). 

Steel framed structures     188



 

FIG. 6.37. (a) Joint details and (b) 
hysteresis loops for a flange-welded 
web-bolted connection (1 in.=25·4 
mm, 1 kip=4·448 kN). 

Beam-to-column moment-resisting connections     189

�



can be seen from the figure that adequate strength and good ductility are observed. The 
strength of the connection exceeded the plastic strength determined from simple plastic 
theory because of strain hardening of the steel. 

Figure 6.37 shows the connection detail and the hysteresis behaviour of a flange-
welded web-bolted connection assemblage. For this connection, the beam flanges were 
groove welded to the column flange. The beam web was attached to the shear plate with 
A325 high-strength bolts. Again, adequate strength and satisfactory ductility are 
observed. Although the ductility of this type of connection is somewhat inferior to that of 
a fully-welded connection, flange-welded web-bolted connections are favoured in 
practice for reasons of economy in fabrication and ease of erection. 

Limited small-scale tests were performed on weak axis connections (Popov and 
Pinkney, 1967). In these connections, the beam flanges were butt-welded to horizontal 
column stiffeners and the beam web was fillet welded to vertical splice plates. The results 
of these tests showed a considerable variation in the deformation capacity between 
individual tests. The ductility of these web moment connections was significantly lower 
than that of flange moment connections due to stress concentration at critical sections, 
which ultimately led to fracture. In general, web moment connections are less reliable 
than flange moment connections under cyclic loadings. 

6.5.2 Strength and Stiffness of Panel Zone Under Cyclic Loadings 

Figure 6.38 shows the system of forces that acts on the panel zone of an interior beam-to-
column seismic moment connection. Note that the forces act in either direction. 
Therefore, the column stiffeners must be capable of resisting both tensile and 
compressive forces. Furthermore, high shear force may develop in the panel zone which 
may cause excessive shear deformation. If that is the case, shear stiffening must be 
considered. 

Shear stiffening of the panel zone is necessary for the following reasons. 

(1) To strengthen the connection so that plastic hinges can be formed in the beams 
without premature failure in the connection. 

(2) To limit the deformation of the panel zone so that drift and instability can be 
minimised. 
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FIG. 6.38. Forces in the panel zone of 
an interior seismic flange moment 
connection. 

In seismic moment connections, shear stiffening of the panel zone is usually provided by 
doubler plates. The suggested criterion for providing stiffeners was given by Krawinkler 
and Popov (1982). 

If 

(6.11) 

then stifieners shall be provided. 
In eqn (6.11), the symbols used are defined as follows: Mpl=plastic moment of the left 

beam, Mpr=plastic moment of the right beam, dbl=depth of the left beam, dbr=depth of the 
right beam, Vcol= average column shear=(Vct+Vcb)/2, Fyc=yield stress of the column 
material, dc=depth of the column, wc=thickness of the column web, bc=width of the 
column flange, tc=thickness of the column flange, db=depth of the beam. 

The design shear force (left hand side of eqn (6.11)) was calculated by assuming that 
the full plastic moment capacities of both the beams were developed under the most 
severe loading case, i.e. the moments on both sides of the connection are acting either 
both clockwise or both anti-clockwise. This assumption may be over conservative as 
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there are cases where the development of two plastic hinges in the beams at the joints is 
not needed for the realisation of a mechanism motion, even in the severest earthquake. 
The shear capacity (right hand side of eqn (6.11)) was assessed by considering the 
contribution of the flexural resistance of the column flanges to the shear strength of the 
panel zone. The use of this shear capacity is valid if P/Py is less than 0·5. It has been 
shown (Krawinkler, 1978) that this shear capacity is in good agreement with 
experimental results for joints with thin to medium thick column flanges. 

In a series of experiments conducted by Bertero et al. (1973), it was found that in 
order to provide a more effective form of shear stiffening, the doubler plates should be 
placed as close to the column web as possible. 

6.5.3 Fatigue Behaviour of Seismic Moment Connections 

Deterioration of welded connections is usually a consequence of critical crack growth at 
welds under high stress concentrations. When a crack has grown to its critical size, 
fracture will occur. Therefore, an evaluation of the safety of these connections is a 
problem of low cycle fatigue (large plastic strain amplitudes) and elastic-plastic fracture 
mechanics. Because of the randomness of the applied loads and the strain history, a 
probabilistic approach should be used in assessing the safety of these connections. 
Unfortunately, due to the lack of a sizeable amount of data, a quantitative evaluation of 
the safety of connections is not possible. Nevertheless, the reader should bear in mind 
that fatigue crack growth will cause failure in seismic moment connections and so proper 
care must be exercised in designing and detailing these connections.  

6.5.4 Concluding Remarks 

The design of moment-resisting frames in seismic regions is usually based on two 
principles: serviceability under moderate earthquakes and safety under strong 
earthquakes. In order to satisfy these two criteria, the moment-resisting connections used 
in these frames should be detailed in such a way that they are strong enough to withstand 
deformation without loss in stiffness, and ductile enough to undergo inelastic deformation 
without premature failure. Based on experiments, it was found that fully-welded flange 
connections and flange-welded web-bolted flange connections were adequate as far as 
strength and ductility are concerned. Fully-bolted flange connections and web 
connections are not very reliable and so extra care should be exercised in their use. 

In many cases, high shear force may develop in the panel zone of a seismic flange 
moment connection. As a result, shear stiffening must be considered. 

An evaluation of the safety of these seismic moment connections should be based on 
probabilistic models because of the randomness in nature of the applied loads and strain 
history. However, a probabilistic approach is not justified at the present time because of 
the lack of experimental data. Further research, therefore, is needed in this respect. 

6.6 SUMMARY AND CONCLUSIONS 
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A qualitative examination of the behaviour of moment-resisting beam-to-column 
connections under static and seismic loadings has been presented in this chapter. Based 
on full-sized connection tests, it was found that flange-welded web-bolted flange moment 
connections would give comparable performance to fully-welded connections. For static 
loadings, the use of slotted holes in the shear plate is satisfactory. For fully-bolted 
connections, bolt-slip at or under working load will decrease the stiffness of the 
connection and will affect the overall stability of the frame. 

Web moment connections under static or seismic loadings are not very reliable and so 
further research is needed. 

The evaluation of the safety of seismic moment connections should be based on 
probabilistic models, since the applied loads and strain histories are random in nature. In 
order to accomplish this, more experimental data are needed. Consequently, more 
experiments should be conducted before a quantitative analysis of the behaviour of these 
connections can be made. 
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Chapter 7 
FLEXIBLY CONNECTED STEEL 

FRAMES 

 
KURT H.GERSTLE  

Department of Civil Engineering, University of Colorado,  
Boulder, USA 

SUMMARY 

After reviewing the historical practice, this chapter discusses the effects of connection 
flexibility on frame behaviour; in general it seems advantageous to assume linear elastic 
behaviour under working loads for computational purposes. 

The extent to which the moments on the beams and columns are affected by connection 
flexibility is explored by studying a number of examples; it is shown that the neglect of 
connection rotation leads to serious underestimation of frame deflections. 

A nonlinear analytical procedure is suggested, but appears to be unsuitable for 
routine design office practice; however, computerised design of flexibly connected 
building frames is possible and appears useful in the design office. 

NOTATION 
A Cross-sectional area of beam flange 

Ci Connection coefficients (Frye and Morris, 1975) 

d Beam depth 

EI Flexural beam stiffness 

Fv Yield strength 

K Structure stiffness; Moment scaling factor (Frye and 
Morris, 1975) 

k Rotational connection stiffness 

ki Characteristic connection stiffnesses 

ki Stiffness of ith element 

L Beam length 



l Fictitious connection element length 

M Moment applied to connection 

Mel, Mpl, Mu, My Characteristic connection moments 

p Dimensionless load parameter 

Q Dimensionless stiffness coefficient 

S Member force 

U Ultimate load 

w Uniform beam load 

X Nodal force 

XF Fixed-end force 

∆ Nodal displacement 

θ Connection rotation 

 Dimensionless connection stiffness parameter 

7.1 INTRODUCTION 

7.1.1 Effects of Connection Flexibility on Frame Behaviour 

Beam-to-column connections are flexible, ranging in stiffness from those almost rigid to 
some types close to pinned. This connection flexibility can be characterised by the 
moment-rotation curves shown in Fig. 7.1 (Frye and Morris, 1975) in which the slope of 
the curve represents the rotational stiffness k of the connection. Conversely, 1/k indicates 
its rotational flexibility.  

 

FIG. 7.1 Connection moment-rotation 
curves. 
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FIG. 7.2 Effect of connection 
flexibility on frame sway and column 
moments. 

To illustrate the effects of connection flexibility on the behaviour of unbraced multi-
storey frames, we consider a four-storey, single-bay frame under lateral load (Kahl, 
1976), as shown in Fig. 7.2(a). Figures 7.2(b)–(e) show column moments and deflected 
shapes of the frame, for four different girder-column connection stiffnesses ranging from 
near-pinned to near-rigid. As the connections increase in stiffness, the frame response 
changes from flexural cantilever behaviour to the shear-type response generally 
associated with rigid frames. It is apparent that the assumption of perfectly rigid joints 
may lead to serious underestimation of both column moments and frame sways. 

The effects of this rotational connection flexibility on unbraced frames are thus 
twofold: 

(1) The joint rotation contributes to the overall frame deformations, in particular the 
frame sway under lateral loads. This reduction in frame stiffness will also affect the 
natural period of vibration and, therefore, the dynamic response to earthquake motions. 

(2) The joint rotation will affect the distribution of internal forces and moments in 
girders and columns. An analysis which neglects connection deformation may thus be 
unable to arrive at realistic predictions of stresses and deflections. 

7.1.2 Historical Review and Current Practice 

Early analyses of frames with flexible connections were carried out by Batho and Rowan 
(1931), Rathbun (1936), Lothers (1960) and others. Modern matrix analysis was applied 
by Goble (1963), Romstad and Subramanian (1970) and many others. Although relatively 
straightforward, flexibly-connected frame analysis by matrix methods has rarely been 
used in practice, possibly because of lack of appropriate computer programs and 
insufficient information about actual connection stiffnesses. 

Current US practice is summarised in the Specifications of the American Institute of 
Steel Construction (AISC, 1980). Section 1.2 of these specifications lists three ‘Types of 
Construction’ (which should, more appropriately, be called ‘Types of Analysis’). 
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Type 
1, 

or ‘rigid frame’ analysis; this has traditionally been considered the ‘exact’ method in 
structural practice. 

Type 
2, 

or ‘simple framing’, which accounts for the effects of connection flexibility in an 
approximate sense by assuming the girders simply supported under gravity loads, while 
assuming rigid girder-column connections for lateral loads. 

Type 
3, 

or ‘semi-rigid framing’, which calls for rational analysis including the effects of connection 
rotation. 

Type 1 and Type 2 procedures have been widely used and have resulted in serviceable 
building frames, but of unknown stiffness, strength, and economy. Type 3 analysis, 
extending over the elastic and inelastic ranges, is needed to answer questions regarding 
these factors. 

7.1.3 Outline of Approach 

In this chapter, we will present analysis and design methods capable of realistic 
predictions of unbraced frame response with flexible connections, and attempt to 
delineate conditions under which connection flexibility should be included in analysis. 
Modern methods of analysis allow consideration of connection flexibility without placing 
an undue burden on the designer. 

Accordingly, the sequence will be to present in the next section some information 
about connection properties, followed by a simple linear matrix method for computer 
analysis to predict frame response under working loads, following traditional working 
stress approaches. 

Determination of frame strength requires more refined analyses which consider both 
material nonlinearity (plastification) and geometric nonlinearity (frame or member 
instability). Such analyses are probably beyond office routine; we will discuss them only 
shortly and present some results, along with experimental verification. Lastly, the 
possibilities of automated design procedures for optimised, flexibly-connected unbraced 
building frames will be discussed. The entire presentation is intended for the professional 
designer with the aim of allowing more rational predictions, which, when verified 
experimentally, may lead to more reliable design procedures and more economic frames. 

Significant Conclusions 

Connection flexibility has significant effects on frame behaviour. For realistic 
predictions, it should be induded in analysis and design. 

7.2 CONNECTION BEHAVIOUR 

7.2.1 Available Data 

It is interesting to note that in spite of various attempts (Frye and Morris, 1975; 
Krishnamurthy, 1979) no reliable method for prediction of connection response has been 
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accepted by the profession. It provides food for thought that in spite of all analytical 
progress of recent years, such a basic problem still escapes our understanding. 

In the absence of analytical solutions, reliance must be placed on test results; 
connection testing has been carried out only sporadically since the 1930s (Batho and 
Rowan, 1931; Hechtman and Johnson, 1947; Chesson and Munse, 1958). Complete, 
systematic test programmes of specific connection types covering a full range of sizes 
and conditions are rare (Krishnamurthy, 1979). In particular, experimental data on the 
behaviour of modern high-strength bolted connections are sadly lacking. Some of the 
data which form the basis of Figs. 7.1 and 7.3 are of riveted joints! New connection 
research is needed to establish reliable stiffiiess data for use by analysts. 

7.2.2 Nonlinear Moment-Rotation Behaviour 

Figure 7.1 shows the typical nonlinear moment-rotation behaviour of several connection 
types. To be used in analysis, these curves must be represented analytically. 

Frye and Morris (1975) used experimental results from all available investigations to 
represent all of the curves in Fig. 7.1 in the form of a power series relating the rotation θ 
to the scaled moment KM 
θ=C1(KM)+C2(KM)3+C3(KM)5   

The coefficients Ci are specified by Frye and Morris (1975) for the different connection 
types considered. The scaling factors K are also given as a function of connection and 
fastener size, proportion and material thickness. 

While a thorough documentation of the accuracy of this representation is still 
outstanding, it appears at this time to provide the best tool for prediction of the response 
of a wide variety of connection types to monotonic loadings. 

7.2.3 Linearisation of Connection Behaviour 

It has been observed that after loading of connections along the nonlinear path shown in 
Fig. 7.1, unloading and moderate moment reversal will take place along a linear path, of 
slope similar to the initial stiffness of the loading curve, and that thereafter the connection 
response to load variations at the working level will proceed elastically; that is, the 
connection will ‘shake down’ to the elastic state. Thus, the choice of the initial elastic 
stiffness for linear representation of the connection response seems appropriate. 

An alternative choice for the linear connection stiffness (as, for instance, taken in Fig. 
7.11(b)) is the secant stiffness from the origin to the point on the curve representing the 
working, or allowable, connection moment. Because of variability of actual connection 
behaviour, and the inevitable scatter due to fabrication practices, extreme care in the 
choice of linear stiffness appears unjustified; a fair approximation is probably sufficient. 

The validity of such linearisation will be documented later in this chapter. 

7.2.4 Strength-Stiffness Relations 

While the Frye and Morris representation of the connection response enables 
determination of its stiffness once it has been selected, the structural designer should be 
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able to anticipate this stiffness during the preliminary design phase. For this purpose, it 
seems desirable to relate connection stiffness to the required connection strength. 

To do this, we consider an idealised moment-resistant connection with effective cross-
sectional area A concentrated at each girder flange; for a girder depth d, the ultimate 
moment capacity Mu is approximately 

 
  

 

FIG. 7.3. Relation between connection 
strength and stiffness. 

and the linearised bending stiffness is proportional to the square of the depth 
k≈A.(d/2)2   

Eliminating A, we obtain the proportionality 

 

  

This relationship between strength and stiffness, as inferred from available experimental 
results (Ackroyd and Gerstle, 1977) for several connection types, is shown in Fig. 7.3, 
which allows estimation of connection stiffness once the required moment and girder 
depth is known. This enables the designer to include the connection stiffness in refined 
analysis as soon as an estimate of the joint moments is available during preliminary 
design. 
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7.2.5 Moment-Rotation Behaviour under Load Cycles 

Systematic connection tests under load cycles are even scanter than those under 
monotonic loading, but some information is available (Popov and Pinkney, 1969; Marley, 
1982) on the basis of which the  

 

FIG. 7.4. Connection behaviour under 
load cycles. 

characteristics shown in Fig. 7.4 may be assumed (Moncarz and Gerstle, 1981). 
The following information can be obtained from connection tests under monotonically 

increasing moment: (1) initial modulus kel, (2) proportional limit Mel, (3) shape of 
nonlinear portion of curve, and (4) asymptotic linear strain-hardening envelope. 

For prediction of the response under load histories, these additional assumptions can 
be made, based on experimental curves (Marley, 1982): (5) elastic unloading with 
modulus kel, (6) constant elastic range of extent 2Mel, (7) equal positive and negative 
strength envelopes. A moment-rotation curve following these assumptions is shown in 
Fig. 7.4. 

7.2.6 Experimental Verification 

A test program was carried out to confirm the validity of the above formulation (Marley, 
1982) for the particular case of top-and-seat angle connections under load cycles. Figure 
7.5 shows measured and analytical moment-rotation curves for a pair of 

(102×102×13mm) angles, 5 in (127mm) long, connected by (19 
mm) diameter A-325 bolts to W5×16 members (i.e., 127 mm deep weighing 23·7 kg/m). 
This plot shows excellent coincidence between test results and the piecewise-linear 
formulation to be presented later, which follows the above hypotheses. It is also observed 
that linearly-elastic behaviour can be assumed with fair accuracy up to an applied 
moment equal to about one-half of the ultimate strength; that is, over most of the service 
range of the connection. 
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These results cannot necessarily be extrapolated to other connection  

 

FIG. 7.5. Analytical and experimental 
connection response to load cycles. 

types, or to situations in which member distortion contributes significantly to the rotation. 
For such cases, the proposed formulation can only be considered to be a hypothesis in the 
absence of further test results. 

7.2.7 Effects of Panel Shear (Kato et al., 1984) 

In addition to connection rotation, which is of importance in lightly welding or field-
bolted joints, distortion of the column web due to shear yielding, as shown in Fig. 7.6(a), 
should be considered. Figure 7.6(b) (Kato et al., 1984) indicates that such distortions are 
significant only after the shear stress in the panel zone has attained its yield value. 
Therefore, if this panel zone has been properly designed by providing adequate stiffeners 
and web thickness (possibly by doubler plates), panel distortion is not important under 
working loads. Little is known about its effects on frame strength, and we will not 
consider it any further. 

Significant Conclusions 

(1) Insufficient connection information is available at this time. 
(2) Linearly-elastic connection behaviour may be assumed for prediction of frame 

behaviour under working loads. 
(3) Joint panel distortion can be neglected in frame design. 
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FIG. 7.6. Effects of panel shear: (a) 
joint distortion; (b) panel shear stress-
strain curves. 
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7.3 FLEXIBLY-CONNECTED FRAME ANALYSIS—LINEAR 
APPROACH 

7.3.1 Introduction 

Since connection flexibility in unbraced multi-storey building frames can be a primary 
determinant of both deformations and internal force distribution, it appears important for 
professional designers to have the capability of analysing flexibly-connected frames. The 
linearly-elastic method outlined in this Section appears well suited for current office 
practice, since it requires only minor modifications of commonly used procedures, and 
can be understood by anyone familiar with modern matrix methods of structural analysis. 

In common with other linearly-elastic analyses, this approach can only predict the 
response of the structure working level with confidence. In order to predict strength and 
conditions of failure, nonlinear analyses are required which consider the effects of 
nonlinear connection behaviour, member plastification and second-order deformations 
leading to buckling. Some of these nonlinear effects, whose rational analysis is probably 
beyond routine office capability, will be considered in a further section. 

7.3.2 The Displacement Method 

The displacement method states that the forces {X} applied to numbered nodes of the 
structure are balanced by those associated with the nodal displacements {∆}, [K]{∆}, and 
those due to loads acting on fixed-ended members {Xf}: 

{X}=[K]{∆}+{Xf} 
(7.1) 

The structure stiffness matrix [K], a square matrix equal in order to the number of 
degrees of freedom of the structure, is assembled from the stiffness matrices [ki] of the 
individual elements. 

Equation 7.1 is solved for the unknown displacements {∆}, which are then used to 
determine the forces {S} on each individual element; for the ith element, for instance, the 
member end forces {Si} are given by 

{Si}=[ki]{∆}−{Xfi} 
(7.2) 

thus completing the analysis. 
This method is described in many texts (Gerstle, 1974; Weaver and Gere, 1980) and 

displacement method software constitutes the mainstay of structural analysis in modern 
office practice. Most of these programs are intended for rigid-frame analysis and do not 
permit the inclusion of connection flexibility without modifications. As outlined in the 
following, such modifications are reasonably straightforward and would enhance the 
analytical capabilities of offices engaged in steel frame analysis considerably. 
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7.3.3 Element Stiffness and Fixed-End Moments 

The effects of connection flexibility are modelled by attaching rotational springs of 
moduli k1, k2 to the girder ends, as shown in Fig. 7.7(a). By classical methods, the 
following girder stiffnesses are obtained (Moncarz and Gerstle, 1981) 

(7.3) 

The remaining stiffnesses can be found by statics and by symmetry of the stiffness 
matrix. 

The fixed-end forces on the member ends due to a uniform downward load w are 

(7.4) 

The remaining fixed-end forces can be found by statics.  
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FIG. 7.7. Connection flexibility as 
girder end effect: (a) beam element 
with flexible connections; (b) effective 
range of connection flexibility. 

Equations 7.3 and 7.4 are for the general case of unequal connection stiffnesses k1 and k2. 
Usual steel building frames will have identical connections at both girder ends (although 
exterior and interior connections may act differently), and the analysis will then deal with 
equal stiffnesses k1=k2=k, in which case the element stiffnesses and fixed-end forces 
under uniform load simplify to 

 (7.5a) 

 (7.5b) 

 (7.5c) 

 (7.6a) 
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(7.6b) 

 

FIG. 7.8. Rexible connections as beam 
haunches. 

in which 

 (7.7) 

Thus, rigid-frame analysis programs can be enhanced by replacing the standard 
stiffnesses and fixed-end forces by these modified values. The only additional input 
information in this case is the appropriate connection moduli k. 

The connection flexibility can also be included in computer programs for rigid frames 
with prismatic members, by simulating the flexible connection as a short, fictitious, soft 
elastic beam element of length and stiffness EIcon, as shown in Fig. 7.8. The total 
rotational stiffness of the soft element is to be equal to the rotational connection stiffness 
k 

 (7.8) 

The element should be short, and its shear stiffness should be set very large. One 
additional node is then needed for each flexibly-connected girder end. 

Significant Conclusions 

(1) Inclusion of connection ftexibility in linearly-elastic frame analysis is conceptually 
and computationally simple. 

(2) At some computational expense, rigid-frame computer programmes can be used 
for the analyses of flexibly-connected frames. 

7.4 BEHAVIOUR OF FLEXIBLY-CONNECTED FRAMES UNDER 
WORKING LOADS 
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7.4.1 Introduction 

The validity of the linearly-elastic approach will be documented in the next section by 
comparison with nonlinear analysis results. Pending this validation, we will use linear 
analysis including connection flexibility to explore how these connection rotations affect 
the frame response under working loads. 

7.4.2 Range of Effective Connection Flexibility (Ackroyd and Gerstle, 
1982) 

Equations 7.5–7.7 show that element stiffnesses and fixed-end forces reflect connection 
flexibility through only one non-dimensional parameter, EI/kL, which may be interpreted 
as the ratio of rotational member stiffness to the rotational connection stiffness. 
Accordingly, this ratio can serve as an index to determine the importance of connection 
flexibility in structural analysis. 

Figure 7.7(b) plots the ratios of the stiffnesses k33 and k44, and that of the fixed-end 
moment of the flexibly-connected member to those of the corresponding rigidly-
connected member, as a function of the parameter EI/kL. These ratios vary from zero for 
very soft connections to unity for rigid connections. For values of EI/kL<0·05, the values 
of these quantities will be within 20 per cent of those for rigid joints, and connection 
flexibility can reasonably be neglected. For values of EI/kL>2·0, these quantities will be 
within 20 per cent of those for the ideal pin-end, so that this condition can well be 
assumed. 

It follows that the effects of connection flexibility should be considered for cases in 
which the ratio of girder to connection stiffness falls within the range 

0·05<EI/kL<2·0 
(7.9) 

A review of typical building frame designs (Ackroyd and Gerstle, 1977) indicated that 
the range of girder stiffnesses EI/L is from 0·5×105 to 1·0×105 in-kips/radian. The range 
of connection stiffnesses typically found in field-bolted frames is from 2·0×105 to 
10·0×105 in-kips/radian, while for welded frames the range is from 10·0×105 to 50·0×105 
in-kips/radian. These ranges translate into stiffness ratios of 

0·05<EI/kL<0·5      for bolted frames   

0·02<EI/kL<0·1      for welded frames   

It appears that field bolted, or lightly welded, frames should be analysed as flexibly-
connected, but frames with reasonably heavy welded connections might be assumed rigid 
with fair accuracy.  

7.4.3 Internal Moments in Flexibly-Connected Frames 

To explore the extent to which column and girder moments are affected by connection 
flexibility, a series of frames was designed according to common US office practice 
(Ackroyd and Gerstle, 1977). A preliminary Type 2, or ‘simple framing’ analysis 
(according to Section 1.2 of the AISC Specifications) was carried out for an extensive 
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series of building frames of various proportions subject to specified floor- and wind-
loads, and members were sized in accordance with AISC specifications. Connection 
stiffnesses for the specified type of joint were selected from Fig. 7.3. 

With member and connection stiffnesses known, linear analyses including the effects 
of connection flexibility were performed and critical moments in girders and columns 
were determined (this analysis will be called ‘rigorous’ or Type 3). The assumption of 
various connection types, ranging from floppy to rigid, permitted assessment of both the 
validity of preliminary analysis methods as well as the effects of connection flexibility. 

Of the numerous results, only those for a three-bay, five-storey, unbraced frame of 
storey height 12 ft, bay width 20 ft, spaced at 30 ft centres, will be presented; these data 
are quite representative of the totality. Three feasible connection types were considered; 
very soft top-and-seat-angle-connections, fairly rigid flange plate connections, and, 
finally, perfectly rigid joints representing fully-welded connections, leading to results as 
would be obtained from classical rigid-frame analysis. 

Figure 7.9 shows results in non-dimensional form. The moments  

 

FIG. 7.9. Ratio of preliminary to exact 
design moments for five-storey frame. 

from preliminary Type 2 analysis, which were used to size the members, were divided by 
the critical moments obtained from rigorous analysis, and entered along the abscissas of 
Fig. 7.9; storey level was plotted along the ordinate. Positive girder moment ratios (due to 
gravity load), and moment ratios for exterior and interior columns (due to gravity and 
lateral loads) are plotted separately in this figure. A moment ratio Mprel/Mrigorous of 1 
would indicate perfect agreement between preliminary and rigorous analysis; values less 
than 1 indicate unconservative, and greater than 1 overconservative, member sizing. 

The results indicate that girder design moments are highly sensitive to connection 
flexibility; column moments are much less dependent on connection behaviour. Type 2 
analysis consistently overestimates girder moments and underestimates column moments. 
A ‘Type 2 frame’, therefore, is characterised by girders which are too large, and columns 
that are too small, when checked by Type 3 analysis methods. 
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7.4.4 Sway of Flexibly-Connected Frames 

The top-storey sways of the family of frames, which ranged in height from five to 
twenty-five 12-ft storeys, were among the primary results of the linear analyses which 
included connection flexibility (Ackroyd and Gerstle, 1982). They are shown in non-
dimensional form in Fig. 7.10. The ordinates represent the ratio of top-storey drift to 
building height, while the abscissae represent the aspect ratios or slenderness of the 
building. Three different connection types are considered, the stiffnesses of which were 
taken from Fig. 7.3 for the corresponding design moments; floppy top-and-seat angle-
connections, fairly stiff flange plates, and perfectly rigid joints representing fully welded 
joints. 

The curves of Fig. 7.10 indicate the importance of the effect of connection flexibility 
on frame sway; when moderately flexible flange plates are used, the sway will increase 
about 40 per cent over that predicted by rigid-frame analysis; when softer top-and-seat 
angles are used, the sway can exceed that of a rigid frame by from 100 to 200 per cent; 
that is to say, connection rotations account for one third-two thirds of the total sway; 
elastic member distortions may be responsible for only a minor amount of the total 
deflections. 

By drawing a horizontal line in Fig. 7.10 opposite the specified maximum sway ratio, 
the permissible slenderness can be obtained for unbraced frames with various types of 
joints. However, it may well be that the widely-used sway ratio of 1/400 was adopted in 
full realisation that actual sway might exceed that predicted by rigid-frame analysis; it  
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FIG. 7.10. Frame drift versus frame 
slenderness for different connection 
flexibilities. 

is quite likely that with more realistic analysis, these maximum allowable sway ratios 
may be increased, say to 1/300 or more. 

Significant Conclusions 

(1) The ratio of rotational connection to girder stiffness offers a useful criterion for 
assessing the importance of connection flexibility. 

(2) Internal member forces may be strongly affected by connection rotations. 
(3) Neglect of connection rotation may lead to serious underestimation of frame 

deftections. 
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7.5 FLEXIBLY-CONNECTED FRAME ANALYSIS—NONLINEAR 
APPROACH 

7.5.1 Introduction 

The nonlinear approaches discussed in this section are probably well beyond routine 
office practice. The results of such analyses, however, can be useful in assessing the 
range of validity of the simpler analysis methods, to understand the importance of various 
secondary effects and to determine strength and failure modes of structures. 

Here, we will shortly outline an analytical approach, and then discuss its application to 
three different nonlinear effects; those of connection nonlinearity and response to load 
cycles, those of member plastification, and those of geometric nonlinearity leading to 
member and frame instability. 

Because it is unrealistic to expect such analyses to be performed routinely, it is 
important that available results be cast in such form that general conclusions may be 
drawn for design. We will attempt to summarise some of the available results in such a 
fashion in subsequent sections. 

7.5.2 Analytical Approach (Ackroyd and Gerstle, 1983; Cook, 1983) 

A powerful way of analysing nonlinear structural behaviour is by means of the step-by-
step, or piecewise-linear, approach. The load is applied in suitably small increments; at 
the beginning of each load increment, the current stiffiness of each element of the 
structure and the current structure displacements, which may include second order or 
time-dependent contributions, and, in the case of dynamic analyses, accelerations, are 
known from the preceding load step; these are used to carry out a linear analysis for the 
additional forces and displacements occurring during the current load increment, to be 
added to those carried forward from previous load steps. Iterations may be carried out to 
improve solutions and, in most cases, any chosen accuracy can be attained by suitable 
choice of step size and iteration scheme. 

Such calculations, consisting of a large number of sequential analyses, are demanding 
of computer storage and time. Furthermore, such highly specialised analyses require 
custom-made programs unavailable in professional practice, and the interpretation of 
results may be by no means straightforward. At this time, no nonlinear analysis can be 
considered a routine operation in the sense of linearly-elastic analysis. In fact, all 
nonlinear results presented here have been obtained in the course of research done in a 
university setting. 

7.5.3 Effects of Connection Nonlinearity (Moncarz and Gerstle, 1981) 

As discussed earlier, the relation between applied moment and resulting rotation of 
connections is, in general, curvilinear, as shown by the smooth curves labelled 1 and 3 in 
Fig. 7.11(b), which are those obtained by Hechtman and Johnson (1947) for their top-
and-seat angle specimens 25 and 23. These were used for the lower, and upper, beam-to-
column connections of the single-bay, two-storey, flexibly-connected frame shown in 
Fig. 7.11(a). 
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As a simple example of a piecewise-linear analysis, these M–θ curves were tri-
linearised, as shown by the solid straight-line segments of Fig. 7.11(b), labelled 1 and 3. 
A small-deformation analysis of the frame response to loads shown in Fig. 7.11(a), 
increasing monotonically, was carried out in the way described in the preceding section, 
and, among other quantities, the maximum girder moment was determined under 
increasing lateral load w; it is plotted versus lateral load in Fig. 7.12(a) under the label 
‘Real connections’, up to w=40 lb/ft2. Similar results are plotted in Fig. 7.12(b) for the 
column design moments. 

The same frame was also analysed using small-deformation theory according to three 
other assumptions, the results of which are also plotted in Figs. 7.12(a) and (b): 

(1) As a flexibly-connected frame with linearly-elastic connections of the stiffnesses 
shown by the dashed and dash-dotted lines labelled 2 and 4 in Fig. 7.11(b). 

(2) As a rigid-jointed frame. 
(3) According to AISC Type 2 analysis, which assumes pinned connections under 

gravity loads, but moment-resistant connections against lateral loads. 
A comparison of these results sheds light on the validity of some of the engineering 

simplifications used in practice (girder moments appear nonlinear only because of 
shifting critical location): 

(1) Rigid frame analysis underestimates the girder moments, but overestimates the 
column moments.  
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FIG. 7.11. (a) Rexibly-connected 
frame; (b) connection flexibilities. 
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FIG. 7.12. Comparison of flexibly-
connected frame analysis methods: (a) 
girder design moments versus lateral 
load intensity: (b) column design 
moments versus lateral load intensity. 

(2) Type 2 analysis overestimates the girder moments, but underestimates the column 
moments. 

(3) The assumption of linearly-elastic connection behaviour leads to design moments 
which are very close to the more exact values based on nonlinear connection behaviour. 

(4) Point 3 confirms the validity of the results obtained earlier by linearly-elastic 
analysis for the working load behaviour of flexibly-connected steel frames. 

The piecewise-linear analysis was extended to explore the frame response under cyclic 
load applications, and in particular the stabilisation of connection behaviour to the elastic 
state which had been hypothesised in justification of the validity of Type 2 analysis 
(Disque, 1975). To this end, the cyclic connection moment-rotation curves shown in Fig. 
7.4 were piecewise-linearised as shown in Fig. 7.13, and applied to a flexibly-connected 
subassemblage shown in Fig. 7.14 that had been discussed earlier by Disque (1975). The 
assumed behaviour of the connections in this frame is shown in Fig. 7.14(b). The 
calculated sway under successive cycles of applied working loads is shown in Fig. 
7.15(a), and the behaviour of one connection in Fig. 7.15(b). The following conclusions 
can be drawn from these Figures for this particular structure: 

(1) The storey sways stabilise; deflection stability (shakedown) occurs.  
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FIG. 7.13. Tri-linearised moment-
rotation curve under load cycles. 
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FIG. 7.14. (a) Disque’s 
subassemblage; (b) assumed 
connection behaviour. 

(2) While the connection behaviour consists of stable loops, alternating plasticity may 
take place in the connections. 

These conclusions are probably conservative because it will be shown in the next 
Section that repeated cycles at design load levels are very unlikely to occur during the 
lifetime of the structure. Strain-hardening may also play a beneficial role in the 
connection. 

7.5.4 Likelihood of Occurrence of Nonlinear Connection Cycling 
(Cook and Gerstle, 1981) 

The connection and frame behaviour under nonlinear load cycles, as shown in Figs. 7.4 
and 7.13, appears complex. However, a probabilistic study based on statistical data on 
live load distribution and wind loads occurring in the US and their combinations, has led 
to the conclusion that, for frames designed according to current US practice, the likeli-
hood of reversed connection plasticity during the postulated 100-year lifespan of a 
structure is extremely slight. Figure 7.16 (Cook and  
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FIG. 7.15. Results of frame cycling: 
(a) first-storey sway under load cycles; 
(b) moment-rotation history for 
windward connection. 

Gerstle, 1981) shows the results of this study; one load reversal may be expected at levels 
about equal to the working stress design load. Two or more load reversals are likely to 
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occur only at even lower loads, well below any values resulting in reversed plasticity in 
the connections. 

Excluding seismic events, we can therefore conclude that cyclic connection plasticity 
is not of importance in assessing either frame  

 

FIG. 7.16. Probability of load cycles at 
various intensities. 

response to working loads, nor the frame strength under extreme loads. Consideration of 
the connection and frame behaviour shown in Figs. 7.4 and 7.13 is thus not necessary in 
the design of steel frames, unless earthquake resistance is required. 

7.5.5 Strength of Flexibly-Connected Frames (Ackroyd and Gerstle, 
1983; Cook, 1983) 

Accurate determination of the strength of structures requkes nonlinear analysis, because 
collapse usually occurs only after members and connections have plastified and after 
second-order deformations have led to buckling instabilities of members or frames. 

In particular, the connection flexibility in steel frames affects both the moment transfer 
into the column, as well as the column restraint or effective length. The axial forces and 
moments in the column, in conjunction with the initial stress, may lead to partial member 
plastification, which will in turn diminish its buckling strength. Similarly, connection 
flexibility, which according to the nonlinear M–θ curves shown earlier may diminish 
radically under increasing moment, may rob the column of its rotational support, thus 
increasing its effective length. Lastly, stability of unbraced frames is strongly affected by 
connection stiffness and must be investigated. 

Several recent studies have included these factors in a nonlinear, computer-based 
analysis, in order to predict the strength of a family of multi-storey, flexibly-connected 
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steel frames designed according to commonly used Type 1 and Type 2 analyses. The 
following assumptions and formulations were made: 

(1) Initial stresses of realistic magnitude in the columns. 
(2) Elastic behaviour in girders. 
(3) Nonlinear connection behaviour, according to Frye and Morris. 
(4) Plastification of columns under combined axial load and bending (material 

nonlinearity). 
(5) Column instability effects are included by basing equilibrium on the deformed shape 

of the discretised column (geometric nonlinearity). 

The element stiffnesses, which would vary from load step to load step, were calculated, 
assembled for each load step, and solved for incremental forces and displacements by the 
direct stiffness method. Instability was indicated when the determinant of the structure 
stiffness matrix approached a value of zero. 

A series of unbraced steel building frames, ranging in height from three to four 12-foot 
storeys and in width from two to four 20-foot bays, was designed according to Type 2 
methods and checked for strength using the nonlinear analysis outlined above (taller 
frames were eliminated as too flexible in sway). Joints were designed with top-and-seat 
angle, or header plate, connections of appropriate size to resist the girder end moments, 
using standard practice. Both strong-and weak-axis orientation of the columns was 
considered. 

To represent the great variety of possible gravity and lateral load combinations, three 
load paths were selected for analysis, shown in Fig. 7.17. All load paths begin with 
proportional gravity and wind  

 

FlG. 7.17. Strength envelope of three-
storey, two-bay frame with flexible 
connections. 

loading to 75 per cent of their AISC working load values (point A). Thereafter, path 1 
consists of increasing gravity load to failure under constant wind load; for path 2, gravity 
and wind loads increase in proportion to failure; in path 3, only the wind load increases to 
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failure. The end points of these three paths denote failure loads which serve to define an 
actual strength envelope for the frame under analysis, to be compared to Part 2 (plastic 
design) of the AISC Specifications. 

Figure 7.17 indicates the results for a three-storey, two-bay frame in strong-axis 
column bending, which are representative of all results. Envelope E–F–G represents the 
strength required by AISC, Part 2 

U=1·7×gravity load   
U=1·3×(gravity+lateral load)   

(Points E and G are a conservative extrapolation of these criteria.) Any frame whose 
predicted strength exceeds Envelope E–F–G is considered safe. 

The calculated strength of this frame, considering both material and geometric 
nonlinearities as outlined above, is given by Envelope B–C–D. The P–∆ effect due to 
frame sway is included among the geometric nonlinearities. If this effect were neglected, 
the apparent strength of the frame would be as shown by Envelope B′–C′–D′, a 
considerable overestimate. Because of the considerable sway of the flexibly-connected 
frame, the P–∆ effect at failure becomes significant even for these relatively low frames. 

In any case, it appears from these and other comparisons that the predicted frame 
strength is greater than required by these specifications by a factor of from 10 to 40 per 
cent. It follows, assuming sway can be held to a permitted value, that considerable 
savings can be effected by rational analyses which include actual connection behaviour. 

7.5.6 Effect of Connection Flexibility on Frame Strength (Ackroyd and 
Gerstle, 1983) 

In the light of the complex interactions affecting frame strength which were discussed in 
the preceding section, questions arise regarding the effect of connection flexibility on 
frame strength—specifically, can overstiff connections lead to a decrease of frame 
strength? 

To answer this question, a number of subassemblages representing critical portions of 
typical unbraced multi-storey steel frames, each  
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FIG. 7.18. Effect of connection 
stiffness on frame strength. 

with three different flexible connections, were analysed. In particular, the effect of 
different connection stiffnesses on the frame strength was studied. Results are, in part, 
summarised in Fig. 7.18, which documents the effect of variation of connection stiffness 
on frame strength. A non-dimensional strength parameter p=(total load/total Euler 
buckling load) is plotted along the abscissa, as a function of a nondimensional frame-
loading-connection parameter 

 

  

plotted along the ordinate. This parameter depends not only on the connection stiffness 
k0, but also on the relative stiffness of the frame components (IG/IC), on the frame aspect 
ratio (l/h), column slenderness (r/h), and relative magnitude of gravity to lateral loads 
([PL/Mw]+ Qh). The total Euler buckling load is the sum of the buckling loads of all 
columns of the floor under consideration.  

It is observed from Fig. 7.18 that, in general, the frame strength increases with 
increasing connection stiffness k0, other quantities remaining constant. Only for 
conditions of high values of , as might arise in long-span frames, only a few storeys 
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high, frame strength might be reduced by providing overstiff connections. However, this 
effect appears to be so slight that it can probably be neglected in practice. 

7.5.7 Experimental Verification 

An extensive series of two-bay, single-storey, and single-bay, two-storey frames, 
flexibly-connected with top-and-seat angle connections, was tested to verify the validity 
of the proposed frame analysis (Stelmack, 1983). No column instability, out-of-plane 
action, or large deflections were included in either analysis or tests, so that the results 
give information only about the effects of connection nonlinearity. 

Figure 7.19 presents analytical predictions and measured sway for one of the two-
storey frames with 1/2 in (13 mm)-thick top-and-seat angle connections. The proposed 
formulation and analysis appears to capture the basics of the frame behaviour 
satisfactorily for cyclic loads up to failure. No testing seems to have been carried out on 
flexibly- 

 

FIG. 7.19. Analytical and experimental 
response of frame to load cycles. 

connected frames, in which failure is initiated by member or frame buckling. 

Significant Conclusions 

(1) Nonlinear frame analysis is a complex procedure not suitable for routine design 
practice. 

(2) Linear analysis of flexibly-connected frames is suitable for working-stress analysis 
and design. 
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(3) Type 2 design of flexibly-connected frames will lead to strengths in excess to those 
required by US specifications. 

(4) In general, frame strength increases with increasing connection stiffness. 
(5) Load histories leading to inelastic stress reversals are unlikely to occur during the 

lifetime of steel building frames, barring earthquakes. 

7.6 AUTOMATIC DESIGN OF FLEXIBLY-CONNECTED STEEL 
FRAMES (Ackroyd, 1977) 

In the preceding Sections, analysis of flexibly-connected steel frames has been discussed. 
A much more difficult, and potentially more rewarding, problem is a procedure which 
will permit efficient, rational design of such frames in a professional environment. In the 
following, a computer-based, iterative design program for unbraced frames is outlined to 
this end. 

This program follows essentially the sequence which would be followed in 
conventional longhand design: 

(1) A preliminary, ‘quick and dirty’ analysis is carried out, requiring nothing more 
than frame geometry and loads for input. 

(2) Members and connections are sized to resist the internal forces resulting from this 
preliminary analysis, and their stiffnesses recorded. 

(3) The member and connection stiffnesses of step 2 are used for a more exact, 
linearly-elastic analysis. 

(4) Members and connections are resized, based on the internal forces of step 3, and 
the process continued to convergence. 

Such a program requires a number of key subroutines; preliminary and exact analyses, 
column and girder sizing according to current specifications, determination of connection 
stiffnesses, and a list of available member sizes and properties, all interconnected by a 
logic permitting analysis-design iterations. 

A program of this type is available (Ackroyd, 1977). The required  

TABLE 7.1 
RESULTS OF ITERATIVE DESIGNSa 

 
    Type 1 construction Type 2 construction 
      Fully welded   Flange plates T+S angles 
Storey Member Preliminary Iteration 

1 
Iteration 

2 
Preliminary Iteration 

1 
Iteration 

2 
Iteration 

1 
Iteration 

2 
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Ext. 
column 

W14×68 W14×68 W14×74 W14×61 W14×68 W14×74 W14×74 W14×74 

Int. 
column 

W14×78 W14×78 W14×84 W14×78 W14×84 W14×84 W14×87 W14×87 1 

Girder W21×44 W18×40 W18×40 W21×49 W18×40 W18×40 W21×44 W18×40 
Ext. 
column 

W14×61 W14×61 W14×61 W14×53 W14×53 W14×61 W14×61 W14×61 

Int. 
column 

W14×68 W14×68 W14×68 W14×68 W14×68 W14×68 W14×68 W14×68 2 

Girder W18×45 W14×40 W18×40 W21×49 W18×40 W18×40 W21×44 W18×40 
Ext. 
column 

W14×53 W14×48 W14×48 W14×30 W14×38 W14×43 W14×38 W14×43 

Int. 
column 

W14×61 W14×48 W14×48 W14×61 W14×53 W14×53 W14×53 W14×53 3 

Girder W18×40 W18×35 W18×35 W21×49 W18×40 W18×35 W21×44 W21×44 
Ext. 
column 

W14×43 W14×38 W14×34 W14×30 W14×34 W14×34 W14×34 W14×34 

Int. 
column 

W14×30 W14×34 W14×34 W14×30 W14×34 W14×34 W14×34 W14×34 4 

Girder W16×36 W18×35 W18×35 W21×49 W18×40 W18×35 W21×44 W21×44 
Ext. 
column 

W14×30 W14×34 W14×34 W14×30 W14×34 W14×34 W14×34 W14×34 

Int. 
column 

W14×30 W14×34 W14×34 W14×30 W14×34 W14×34 W14×34 W14×34 5 

Girder W16×36 W18×35 W18×35 W21×49 W18×40 W18×40 W21×49 W21×44 
Total weight 
(Ib) 

24588 23364 23556 26004 24000 23856 25908 25248 

a In all cases, the members are specified by using two numbers, the first denoting the depth and the 
second the weight; e.g. W16×36 denotes a member 16 in deep weighing 36 lb per foot. (Note: 1 in=25·4 
mm, 1 lb=0·454 kg.) 

input information is identical to that needed to carry out any conventional design, with 
the additional specification of the connection type to be used. 

After a moderate number of iterations, usually no more than three, a design is obtained 
in which all members and connections are stressed to the same factor of safety within the 
scope of Part 1 (working-stress design) of the AISC Specifications. 

The technique provides the option of a Type 1 (rigid-frame) or Type 2 (simple-
framing) preliminary analysis. In the former case, the resulting design will converge on a 
big column-small girder combination; in the latter case the result will be the converse. 
Floor, wall and wind loads can be accommodated, and the AISC reduction for gravity-
wind load combinations is incorporated. Automatic frame mesh generation is also 
provided for regular frames. Candidate member groups can be specified selectively. 

An example will demonstrate the details, nature of output and potential of the method. 
Table 7.1 shows the three-bay, five-storey unbraced, flexibly-connected frame to be 
designed. It is subjected to specified floor, wall and wind loads. Girders are to be selected 
from among the W14–27 series (i.e. 356–675 mm deep), columns from among the W14 
series (356 mm deep). Three different concepts were explored; fully-welded connections, 
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with type 1 preliminary analysis, and flange plate connections and top-and-seat angle 
connections, both with type 2 preliminary analysis. 

Input for the design according to one of these alternatives consisted of 33 punch cards. 
The output is summarised in Table 7.1, showing member sizes for each iteration for each 
alternative, thus permitting easy comparison. Of particular interest are the total weight 
figures for one frame; fully welded construction would save about 7 per cent steel over 
the top-and-seat angle alternative. For the flange plate alternative, about 8 per cent of 
steel is saved by carrying out a linearly-elastic ‘exact’ analysis over the preliminary Type 
2 design; this is pure savings since no extra connection expense is involved. 

The potential of such a design tool seems impressive. 

Significant Conclusions 

(1) Computerised design of flexibly-connected building frames is possible and appears 
useful for design practice. 

(2) Such computerised design can lead to increased economy in steel building design. 
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Chapter 8 
PORTAL FRAMES COMPOSED OF 

COLD-FORMED CHANNEL- AND Z-
SECTIONS  

 
G.J.HANCOCK  

School of Civil and Mining Engineering, University of Sydney,  
New South Wales, Australia 

SUMMARY 

The mode of failure of portal frames composed of cold-formed members generally 
involves inelastic local buckling. A method of analysis based on the finite strip method is 
presented for calculating the inelastic local buckling loads of thin-walled sections. 

A method of matrix displacement analysis of thin-walled structures is presented which 
accounts for non-uniform torsion, monosymmetric and asymmetric thin-walled sections, 
eccentric restraints and joints peculiar to thin-walled structures. The analysis is applied 
to a study of pitched roof portal frames composed of channel- and Z-section members 
and subjected to vertical load. The stresses and deformations of structures of this type 
are described. 

Simple design methods for Z- and channel-section portals based on plane frame linear 
elastic analyses are described. 

NOTATION 
A Area of cross-section 

ax, ay Coordinates of shear centre 
relative to origin 

Bz Bimoment calculated with respect 
to shear centre axis 

Bz′  Bimoment calculated with respect 
to origin 

bx, by Coordinates of centroid relative to 
origin 



C Section constant in cross-section 
transformation matrix 

E Young’s modulus 

Et Tangent value of E in yielded 
zones 

[ER] Eccentric restraint matrix 

eX, eY, eZ Distances in X, Y and Z directions, 
respectively, of point of eccentric 
restraint relative to origin of joint 

FR Force acting at an eccentric 
restraint 

Fx, Fy, Fz Forces in x, y and z directions, 
respectively 

ƒ Longitudinal (normal) stress 

G Shear modulus 

Gy Value of G in yielded zones 

[G] Cross-section transformation 
matrix 

Iw Warping section constant 

Ix, Iy Second moment of area of cross-
section 

J Torsion section constant 

[K] Frame stiffness matrix 

[KmX′] Member stiffness matrix for one 
member in member origin 

coordinates 

[Kmx] Member stiffness matrix for one 
member in principal axis 

coordinates 

L Length of an element or member 

Mx, My, Mz Moments about x, y and z axes, 
respectively 

s Distance along centreline of a 
cross-section 

us, υs Displacement of shear centre in x-
, y-directions, respectively 

W Total vertical load on one rafter 

{W} Vector of joint loads 

{WmX′} Vector of loads acting on the end 
of a member in member origin 

coordinates 
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{Wr} Vector of joint loads at an 
eccentric restraint 

w Displacement of centroid in z-
direction 

X, Y, Z Frame or global axes 

X′, Y′, Z′ Member origin axes 

x, y Member principal axes (located in 
cross-section) 

z Centroidal axis along member 

α Orientation of member principal 
axes with respect to member 
origin axes (see Fig. 8.4(a)) 

αw Sectorial coordinate in the web of 
a Z-section 

αz Sectorial coordinate defined with 
respect to the shear centre axis 

αz0 Value of αz at s=0 

αz′ Sectorial coordinate defined with 
respect to the member origin axis 

Z′ 

{δ} Vector of joint deformations in 
frame coordinates 

{δmX′} Vector of joint deformations of 
the end of a member in member 

origin coordinates 

{δR} Vector of joint displacements of 
an eccentric restraint 

δXR, δYR, δZR Displacements in X, Y and Z 
directions at an eccentric restraint

δx, δy, δz Displacements in x, y and z 
directions, respectively 

θXR, θYR, θZR Rotations about X, Y and Z axes, 
respectively, at an eccentric 

restraint 

θx, θy, θz Rotations about x, y and z axes, 
respectively 

 Twist rotation per unit length 
about z axis 

ρZ′ Perpendicular distance from Z′ 
axis to tangent to centreline of a 

cross-section 

ρz Perpendicular distance from shear 
centre axis to tangent to centreline
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centre axis to tangent to centreline 
of a cross-section 

All moments and rotations are right hand rule positive. 
Subscripts 

A and B refer to the ends of an element or member. 

8.1 INTRODUCTION 

A recent development in metal structures has been the manufacture of rigid-jointed portal 
frames composed of cold-formed members. Structures of this type are inexpensive to 
fabricate, transport and erect, thus producing considerable economies in labour. Many 
designers have chosen to use cold-formed channels attached back-to-back. However, 
despite the more severe analytical difficulties, structurally efficient portal frames can be 
produced using single channel- or Z-section members. The designer of such a structure 
requires a knowledge of both the stiffness and strength of structural systems of this type. 
This chapter presents methods for analysing and designing structural systems composed 
of thin-walled channel- and Z-section members.  

A method of structural analysis which includes the effects of cross-section 
monosymmetry or asymmetry, non-uniform torsion, eccentric restraints as well as joint 
types peculiar to thin-walled members is required. The most important contributions to 
the theory of bending, torsion and buckling of thin-walled elastic members of open cross-
section have been made initially by Timoshenko (1945), who studied non-uniform torsion 
of an I-beam, and by Vlasov (1959) who extended the concept, resulting in a consistent 
general theory for the behaviour of thin-walled members. Renton (1962), Krahula (1967) 
and Krajcinovic (1969) have produced versions of the matrix displacement method which 
incorporate non-uniform torsion. In all three cases, the stiffness matrices used in the 
method were based on the solution of the differential equations rather than using the 
approximate Rayleigh-Ritz method. This latter approach has been used by Barsoum and 
Gallagher (1970), and Bazant and El Nimeiri (1973). It has the disadvantage that it 
requires subdivision of thin-walled members into elements to achieve an accurate 
solution for non-uniform torsion. 

Cross-section monosymmetry and asymmetry have been incorporated in the matrix 
displacement analysis by Bazant and El Nimeiri (1973), Rajasekaran (1977), and Baigent 
and Hancock (1980, 1982a). Lateral restraint positioning, eccentric from the shear centre, 
and the specific nature of joint connections have also been included by Baigent and 
Hancock (1980, 1982a) and confirmed by testing of channel-section portal frames. A 
matrix displacement analysis of frames composed of thin-walled members, which 
incorporates all of the phenomena described above, is presented in Section 8.2 of this 
chapter. The method is then applied to determine the stress-resultants, stresses and 
deflections of pitched roof portal frames composed of Z-and channel-section members in 
Section 8.3 of this chapter. 

The results of the elastic analyses just cited produce estimates of stress and deflection 
in thin-walled structures. However, they provide no real estimate of the ultimate load or 
collapse behaviour of a structure. The most significant contribution towards the 
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prediction of the inelastic collapse loads of steel frameworks composed of hot-rolled 
members was made by Baker and his associates at Cambridge and has been reported in 
The Steel Skeleton, Vol. II by Baker, Horne and Heyman (1956). Structures composed of 
cold-formed members are not likely to develop complete collapse mechanisms of the type 
described for structures composed of hot-rolled members, as a result of the instability of 
the thin-plate elements forming the sections.  

However, after first yield, they may carry a substantial increase in load before failure 
if the plate elements are not too slender. In this case, inelastic local buckles develop at 
critical cross-sections in the frame. Baigent and Hancock (1982b, 1982c) have described 
methods of predicting this phenomenon. However, at this time, design codes do not 
permit utilisation of this additional capacity, unless the plate slenderness is sufficiently 
low to satisfy those for a compact section, defined in Section 3.9 of the most recent 
edition of the AISI specification (1980). In this case, some plasticity is permitted. A 
method for determining the inelastic local buckling capacity of thin-walled sections, 
using the finite strip method of analysis developed by Cheung (1976), is described in 
Section 8.4. 

Designers do not generally have access to computer programs which can perform 
structural analyses of portal frames composed of cold-formed members. Hence, a 
simplified procedure based on a plane frame linear elastic analysis is required. A method 
has been described by Hancock (1983) for Z-section portal frames and is summarised in 
Section 8.5. It produces conservative estimates of first yield in Z-section portal frames. A 
simplified procedure for channel section portals is also described and discussed in 
Section 8.5. 

8.2 MATRIX DISPLACEMENT ANALYSIS OF FRAMES 
COMPOSED OF THIN-WALLED MEMBERS 

8.2.1 Member Stiffness Matrix 

In the matrix displacement method, a set of equations is derived to relate the 
displacements of the joints of a structure to the forces applied at the joints. The equations 
are based on the assembly of the stiffness equations for the individual members or 
elements of the structure, using the equations of equilibrium and assuming compatibility 
at the joints. The resulting stiffness equations can be solved to determine the 
displacements of the joints. The displacements are then substituted into the member 
stiffness equations to derive the stress resultants for the members. The analysis of 
prismatic structures using the matrix displacement method is extended to include 
structures composed of thin-walled elements, as follows. 

There are seven actions with corresponding displacements at each end of a thin-walled 
element. They include the three forces (Fx, Fy, Fz) and the three moments (Mx, My, Mz) 
shown in Fig. 8.1(i) and normally  
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FIG. 8.1. Actions aligned with 
principal and member origin axes. 

used in the analysis of prismatic member structures. In the case of thin-walled elements, 
they do not necessarily act through a common point. The shear forces (Fx, Fy) act through 
the shear centre (S) in directions parallel with the principal axes, as shown in Fig. 8.1(i). 
However, the axial force (Fz) acts along the centroidal axis (z). The moments (Mx, My) act 
about the principal axes (x, y) but in planes containing the shear centre. The double 
headed arrows representing the moments Mx, My in Fig. 8.1(i) are located such that the 
moments lie in planes perpendicular to the directions of the arrows and located at their 
tips. The torque (Mz) acts about the shear centre axis. 

For a thin-walled member, a bimoment (represented by the triple headed arrow on the 
shear centre axis in Fig. 8.1(i)) can also be applied at each end of a thin-walled element. 
Vlasov (1959) defined the bimoment (Bz), calculated with respect to the shear centre axis, 
as the product of the longitudinal stress (ƒ) with the sectorial coordinate (αz) integrated 
over the area of the cross-section. 

 (8.1) 
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The sectorial coordinate (αz) is the longitudinal warping displacement resulting from unit 
negative twist ( ) about the shear centre axis. It is calculated from 

 (8.2a) 

and 

 (8.2b) 

where ρz is the perpendicular distance from the shear centre axis to the tangent to the 
centreline of the cross-section at an element ds located an arc distance s along the 
centreline of the cross-section. The sectorial coordinates (αz) for a channel- and a Z-
section are shown in Fig. 8.2. 

The longitudinal stress distribution resulting from a bimoment (Bz)  

 

FIG. 8.2. Sectorial coordinate (αz). 

acting at a section in a thin-walled member can be calculated from the sectorial 
coordinate using 

 (8.3a) 

and 
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 (8.3b) 

where Iw is the section warping constant. From eqn (8.3a), it can be seen that the 
bimomental stress distribution has the same pattern in the cross-section as the sectorial 
coordinate. Equation (8.2b) ensures that the stress distribution equivalent to a pure 
bimoment produces no net axial force when integrated over the section area. 

The stiffness matrix for the thin-walled elements shown in Fig. 8.1(i) can be 
developed by considering the stiffness relationships between the actions shown in Fig. 
8.3, which are aligned with the principal axes  

 

FIG. 8.3. End actions and 
displacements aligned with centroidal 
and shear centre axes. 

(x, y), the centroidal axis (z) and the shear centre axis, and the corresponding 
displacements of these axes as shown in Fig. 8.3. Since the differential equations 
describing the linear axial, flexural and torsional behaviour are uncoupled when referred 
to the axes shown in Fig. 8.3, then the stiffness relationships will be uncoupled. 
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The axial forces at ends A and B (FzA, FzB, respectively) can be related to the axial 
displacements of the centroidal axis at A and B (δzA, δzB, respectively) by linear stiffness 
relationships. These relationships are simply derived by integrating the axial differential 
equation (eqn (8.4)) accounting for end conditions. 

 (8.4) 

The stiffness relationships are given in Appendix 1(a). 
The forces and moments (FxA, MyA, FxB, MyB), associated with flexure of the shear 

centre axis in a plane parallel with the x–z plane, can be related to the corresponding 
displacements and rotations (δxA, θyA, δxB, θyB) of the shear centre axis at ends A and B by 
the stiffness relationships developed by Livesley (1956). These relationships are simply 
derived by integrating the flexural differential equation (eqn (8.5)) accounting for end 
conditions. 

 (8.5) 

Similarly, the actions (FyA, MxA, FyB, MxB), associated with flexure of the shear centre axis 
in a plane parallel with the y–z plane, can be related to the corresponding displacements 
and rotations (δyA, θxA, δyB, θxB) of the shear centre axis at ends A and B by the stiffness 
relationships derived by integrating eqn (8.6) accounting for end conditions. 

 (8.6) 

The stiffness relationships are given in Appendix 1(b). 
The torques and bimoments (MzA, BzA, MzB, BzB) associated with torsion about the 

shear centre axis can be related to the corresponding torsional rotations and negative rate 
of change of angle of twist about the shear centre axis ( ) by 
the stiffness relationships developed by Krahula (1967). These relationships are simply 
derived by integrating the torsion differential equation (eqn (8.7)) accounting for end 
conditions. 

 (8.7) 

The stiffness relationships are given in Appendix 1(c). In eqns (8.4)– (8.7), EA, EIy, EIx 
and GJ are the axial, y-flexural, x-flexural and torsional rigidities, respectively. In solving 
eqn (8.7), the equation (eqn (8.8)) derived by Vlasov for relating the bimoment (Bz) to the 
twist angle (θz) is required. 

 (8.8) 

where EIw is the warping rigidity. 
The stiffness relationships in Appendix 1 are represented in matrix notation by 
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{Wmx}=[Kmx].{δmx} 
(8.9) 

where [Kmx] is the thin-walled member stiffness matrix. The vectors {Wmx} and {δmx} 
represent the end actions and end displacements, respectively, of the element. 

8.2.2 Cross-Section Transformations 

The forces and displacements shown in Fig. 8.1(i) can be transformed to a common 
member axis system (X′, Y′, Z′) called the member origin axes. These axes can be chosen 
arbitrarily, but are generally located on that flat element of the cross-section which is 
used for connection at a joint. In the case of the channel- and Z-sections shown in Fig. 
8.1, the member origin axes are located on the centre of the web and are aligned parallel 
with, and perpendicular to, the web, as shown in Fig. 8.1(ii). The stifiness matrix for a 
thin-walled member relating the loads {WmX′} aligned with the member origin axes to the 
corresponding displacements {δmX′} is given by 

{WmX′}=[KmX′].{δmX′} 
(8.10) 

A cross-section transformation matrix [G] transforms the end actions aligned with the 
principal axes, centroidal axis and shear centre axis to those actions aligned with the 
member origin axis system within the cross-section (Fig. 8.1). The cross-section 
transformation matrix is derived for the general cross-section shown in Fig. 8.4, as 
follows.  
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FIG. 8.4. Cross-section forces and 
moments. 

Using force equilibrium, the three forces FX′, FY′ and FZ′ aligned with the member origin 
axes are related to the forces Fx, Fy and Fz aligned with the centroid and shear centre 
axes. The relationships are given by: 
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FX′=Fx cos α−Fy sin α 
(8.11) 

FY′=Fx sin α+Fy cos α 
(3.12) 

FZ′=Fz 
(8.13) 

The moments MX′, MY′ and MZ′ are related to the forces Fx, Fy, Fz, the moments Mx, My, Mz 
and the distances from the member axis system origin to the shear centre and centroid (ax, 
ay) and (bX′, bY′), respectively, using moment equilibrium. The expressions are given by: 

MX′=Mx cos α−My sin α+Fz.bY′ 
(8.14) 

MY′=Mx sin α+My cos α−Fz.bX′ 
(8.15) 

MZ′=Mz−αy.Fx+ax.Fy 
(8.16) 

In addition, the bimoment BZ′ defined with respect to the member origin axis Z′ can be 
expressed in terms of the bimoment Bz defined with respect to the shear centre axis, the 
moments about the major principal axes of the cross-section (Mx, My) and the axial force 
(Fz), by 

BZ′=Bz+αx.Mx+ay.My+Fz.C 
(8.17) 

where 

 (8.18) 

Equation (8.17) was derived by Vlasov to transform a bimoment from one axis system to 
another. Equation (8.17) can be derived by substituting the equation for longitudinal 
stress 

 (8.19) 

and the equation derived by Vlasov for transforming the sectorial coordinate 
αZ′=αz+ax.y−ay.x+C 

(8.20) 

where 

 (8.21) 
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into eqn (8.18). In eqn (8.21), ρZ′ is the perpendicular distance from the member origin 
axis (Z′) to the tangent to the centreline of the cross-section at an element ds. The 
constant C is so chosen that the value of αz′ is zero at the member origin O. For the 
channel-section αz (Fig. 8.2(a)) ax.y and ay.x are all zero at O, hence C is zero. However 
for the Z-section, although ax.y and ay.x are zero at O, αz is equal to −αw (Fig. 8.2(b)) and 
hence C equals αw. 

Equations (8.11)–(8.18) are represented in matrix notation by 
{WmX′}=[G]{Wmx} 

(8.22) 

The matrix [G] is given in Appendix 2.  
A corresponding set of displacement transformations can be derived to transform the 

end displacements associated with the principal, centroidal and shear centre axes 
( ) to those associated with the member origin axes (δX′, 
δY′, δZ′, θX′, θY′, θZ′, ) as 

{δmx}=[G]T{δmX′} 
(8.23) 

These relationships are simply the transpose of those in eqn (8.22) as a consequence of 
Maxwell’s reciprocal theorem of structural analysis. Elimination of {Wmx} and {δmx} from 
eqns (8.9), (8.22) and (8.23) produces 

[KmX′]=[G][Kmx][G]T 
(8.24) 

For the channel-section in Fig. 8.1, α, C, ay and bY′ are all zero, and only ax and bX′ are 
non-zero. For the Z-section shown in Fig. 8.1, ax, ay, bX′, bY′ are all zero, and only α and C 
are non-zero. 

8.2.3 Frame Stiflness Matrix 

The 14 end actions defined by {WmX′} and the 14 end displacements defined by {δmX′} are 
aligned with the member origin axes (X′, Y′, Z′) of the thin-walled element. Before these 
actions can be included in the analysis of equilibrium at a joint (node) within a frame, 
they must be transformed to be parallel with the frame (global) axis system (X, Y, Z). The 
transformation of the forces and moments from the member origin axes to the frame axes 
simply involves a rotation of the actions from one axis system to another. The 
transformation of the forces and moments at one end of a member has been described in 
detail by Harrison (1980) using an Eulerian transformation. 

Bimoment equilibrium and warping compatibility at a joint depend on the geometry of 
the joint. A detailed discussion follows in Section 8.2.4. In general, however, the 
bimoment is not transformed but is regarded as being continuous at a node within a thin-
walled member unless constrained. 

The stiffness matrix for the complete frame can be derived by summing the actions 
from all the members or elements at each joint or node after transforming to the global 
axis system. The resulting set of linear equations is expressed by 
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{W}=[K]{δ} 
(8.25) 

where [K] is the frame stiffness matrix and {W} and {δ} are the vectors of joint forces and 
displacements for the complete system.  

8.2.4 Joints 

Joint details for thin-walled structures fall into two main categories. The first includes the 
case where all component plate elements of one member are attached to the other. An 
example of this type of joint is shown in Fig. 8.5(a). The second type of joint detail 
involves only a partial attachment of the member and this detail is shown in Fig. 8.5(b) 
for the case of a joint in which channel-sections are connected through the webs by a 
stiffened plate. 

The most common type of joints in rigid-jointed structures belongs to the first 
category. Several authors have discussed the effect of warping continuity at these joints. 
Vacharajittiphan and Trahair (1974) carried out a thorough study to relate the warping at 
joints to the distortion at joints. They included the effect of joint angle and different types 
of stiffeners at joints. However, their work was generally confined to the effect of the 
stiffener configuration on the warping of the member and did not consider the transfer of 
member forces across the joint. Morrell (1980) carried out an experimental investigation 
into the influence of joint detail on the torsional behaviour of axially discontinuous 
structures. He concluded that warping effects are transmitted around an axially 
discontinuous structure, regardless of joint angle. He also recognised that the detail of the 
joint influenced both the magnitude and the sign of the transmitted bimoment. 

The second category of joint construction was not common until the recent 
introduction of framed structures composed of cold-formed members. As shown in Fig. 
8.5(b), the members are attached by the web to a stiffened joint plate. For this type of 
joint, the flanges are free to warp with respect to the web of the member and the 
bimoment is discontinuous across the joint. For the analysis of structures in which these 
joints are used, it is possible to assume that the joint plates are prismatic members. 
Hence, the joint plate cannot transmit a bimoment  

 

FIG. 8.5. Joint types: (a) complete 
attachment; (b) partial attachment. 
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and all of the torque is transmitted by pure torsion. Consequently, the bimoment on the 
end of the channel calculated with respect to the X′, Y′ and Z′ axes is zero. Using eqn 
(8.17), combined with the fact that BZ′ is zero, leads to the expression 

Bz=−ax.Mx 
(8.26) 

Therefore a bimoment Bz calculated with respect to the shear centre of the cross-section is 
equivalent to the major-axis moment multiplied by the distance from the shear centre to 
the plane of the moment. 

Similarly, the bimoment is zero on the end of a Z-section bolted by its web to a 
stiffened plate and calculated with respect to the X′, Y′, Z′ axes located on the web. Using 
eqn (8.17), combined with the fact that BZ′ is zero, leads to the expression 

Bz=−Fz.C=−αw.Fz 
(8.27) 

Therefore, a bimoment Bz calculated with respect to the shear centre of the cross-section 
is equivalent to the axial force multiplied by the sectorial coordinate at the centre of the 
web. 

8.2.5 Restraints 

For a general matrix displacement analysis of thin-walled structures, a total of seven 
restraining actions may be applied at any particular joint. The restraining actions take the 
form of displacement restraints in three directions, rotation restraints about the three axes 
and a warping restraint. 

In most structural analysis problems, the restraint is usually located at the centreline of 
the joint between interconnecting members. The action of the restraint may constrain one, 
or any combination of, the three displacements, three rotations and warping deformation 
at that joint. Hence, the frame stiffness matrix [K] may be reduced by equating the 
relevant joint displacements to zero. 

However, in some framed structures, the restraint positions are eccentric from the 
centreline of the joint. A simple example of an eccentric restraint is the support offered to 
an industrial portal frame by the purlins and girts located around it. For this type of 
structure the purlins and girts are fixed eccentrically to the member. They provide out of 
plane lateral support to the member at the point of attachment. They may also provide 
some degree of rotational restraint depending upon the fixity of the purlin to the cleat. 

In general, an eccentric restraint can be located at a distance eX, eY  
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FIG. 8.6. Eccentric restraint. 

and ez in the X, Y and Z directions from the joint origin, as shown in Fig. 8.6. To allow for 
the effect of this restraint on a matrix displacement analysis, the displacement degrees of 
freedom δXR, δYR, δZR in the X, Y, Z directions, respectively, at the restraint point R can 
simply be transformed to those at the origin J of the joint, using rigid body kinematics. 
The resulting transformations are given by 
δX=δXR−eZ.θYR+eY.θZR 

(8.28) 
δY=δYR+eZ.θXR−eX.θZR 

(8.29) 
δZ=δZR−eY.θXR+eX.θYR 

(8.30) 

The rotations θXR, θYR, θZR are simply the rigid body rotations unaffected by the eccentric 
position of the restraint. These relationships, along with eqns (8.28), (8.29) and (8.30), 
have been assembled as an eccentric restraint transformation matrix [ER], given in 
Appendix 3 and expressed in matrix notation by 

{δ}=[ER]{δR} 
(8.31) 

where {δR} is the vector of joint displacements at the eccentric restraint. The 
corresponding set of force transformations is expressed in matrix notation by 

{WR}=[ER]T{W} 
(8.32) 

where {WR} is the vector of joint loads at the eccentric restraint points. Elimination of 
{W} and {δ} from eqn (8.25) results in 
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{WR}=[ER]T[K][ER].{δR} 
(8.33) 

By equating the relevant eccentric joint displacements to zero, the effect of eccentric 
restraints is incorporated in the analysis. 

8.3 STUDY OF PITCHED ROOF PORTAL FRAMES COMPOSED 
OF CHANNEL- AND Z-SECTIONS 

8.3.1 Frame Geometry and Loading 

Experimental work at the University of Sydney described by Baigent and Hancock (1980, 
1982b) involved testing of pitched-roof portal frames composed of cold-formed sections. 
The structures tested were made from single-channel-sections connected at the eaves and 
apex, using stiffened plates bolted to the webs of adjacent sections. The same frame 
geometry is used in the study described in this chapter. However, both channel- and Z-
section portal frames are considered. 

The test frames consisted of pinned-base pitched-roof portals with the overall 
geometry as shown in Fig. 8.7(a). Lateral restraint consisted of two types. External 
restraint simulated the effect of purlins and girts and involved prevention of movement 
normal to the plane of the frame at the 16 external locations shown in Fig. 8.7(a). 
External plus internal restraint simulated the effect of purlins and girts with fly bracing 
attached to prevent lateral movement of the internal flange of the frame. The internal 
restraints were located opposite the third external restraint position in each stanchion and 
opposite the first and third restraint positions in each rafter. In the tests, the three load 
cases of dead and live load, transverse wind load, and longitudinal wind load producing 
suction were studied. However, for simplicity, in this chapter only the first case of 
vertical dead and live load is considered. These loads are assumed to be applied to the 
frames at the restraint points in the rafters, since these are the positions of the purlins 
which transmit the dead load of the roof, and the live load upon it, to the frame. Vertical 
point loads of W/4 are assumed to be applied equally at the four restraint points on each 
rafter shown in Fig. 8.7(a). 

In the test frames, each of the monosymmetric channels were bolted through their 
webs to joints which consisted of stiffened plates, as shown in detail in Fig. 8.7(b). The 
web of each channel was rigidly attached to the joint. However, the nature of the 
connection allowed  
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FIG. 8.7. Frame geometry. 

freedom of movement of the flanges. The construction of the joint is similar to the 
diagrammatic representation shown in Fig. 8.5(b). The apex joint was of a similar 
construction to the eaves joint. In this chapter a similar type of joint has been assumed for 
connecting Z-sections such that only the webs of the sections are connected to the joint 
with the flanges free. 

The channel section used in the tests had an overall depth of 153 mm, an overall 
flange width for both the top and bottom flanges of 79 mm, a plate thickness of 1·86 mm, 
an overall lip stiffener depth of 15 mm and internal corner radii of 10 mm. The Z-section 
used in this study is assumed to have the same dimensions, with only the direction of the 
outside flange reversed.  
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8.3.2 Computer Models 

The computer models of the channel- and Z-section portal frames studied are shown in 
Figs. 8.8(a) and (b), respectively. The structures are each subdivided into 24 thin-walled 
elements with the nodal positions located at the boundaries between different member 
types, the restraint and loading points and the eaves, apex and base joints. It is not 
necessary to further subdivide the members, since the stiffness matrices of the thin-
walled elements are based on an exact solution of the differential equations, as described 
in Section 8.2.1, and not on an approximate energy analysis. The lateral restraint points 
are 50 mm beyond the flange of the members and are located on the centreline of these 
flanges, as shown in Fig. 8.8. 

The eaves and apex joints are assumed to be effectively rigid bodies linking the webs 
of two adjacent sections. The joints are treated as prismatic members with their shear 
centre and centroidal axes along the centreline of the plate. They are considered as having 
no warping torsion capability but transmit all torque by Saint-Venant torsion. Hence, 
using the results in eqns (8.26) and (8.27), a bimoment calculated with respect to the 
shear centre axis is applied on the end of  

 

FIG. 8.8. Computer models of portal 
frames: (a) channel portal; (b) Z-
section portal. 

the channel (and is equal to the major axis moment multiplied by the distance from the 
shear centre to the channel web) and also on the end of the Z-section (and is equal to the 
axial force multiplied by the sectorial coordinate at the centre of the web). 
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As a consequence of the warping freedom of the thin-walled sections at the joints, the 
ends of the thin-walled members are assumed to be free to warp as described in Section 
8.2.1. 

8.3.3 Stress Resultants and Stresses in Model Portals 

8.3.3.1 Channel Portal 

Distributions of lateral deflection of the inside flange (δX), bending moments about both 
principal axes (Mx, My), axial force (Fz) and bimoment (Bz) are plotted in Fig. 8.9, for 
one-half of the channel portal subjected to vertical loading with W=1 kN. The stress 
distributions resulting from the separate components (Mx, My, Fz, Bz) in a channel are 
given in Fig. 8.10. The analysis has been performed for  

 

FIG. 8.9. Channel portal stress 
resultants and displacements. 
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FIG. 8.10. Stresses in a channel-
section. 

lateral restraint only (solid lines in Fig. 8.9) and lateral plus torsional restraint (dashed 
lines in Fig. 8.9). 

The most notable feature of these distributions is the large value of the bimoments 
adjacent to the eaves and apex joints. The bimomental values decay rapidly with distance 
from the joint. The bimoments are induced by the application of the major axis bending 
moment (Mx) in the joint onto the plane of the web of the channel-section, as described in 
Section 8.2.4. The longitudinal stresses, created principally by the major axis bending 
moment and bimoment, are plotted in Fig. 8.11 for the critical cross-section just below 
the eaves joint. The longitudinal stress values for the case of lateral plus torsional 
restraint are not significantly less than for the case of lateral restraint only, since the  
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FIG. 8.11. Longitudinal stress below 
eaves of channel portal. 

major axis moment, and hence bimoment, is not significantly altered by the torsional 
restraints. It is interesting to note that the minor axis moment (My) within the rafters and 
columns is altered significantly by the torsional restraints. However, its value adjacent to 
the eaves joint is small and does not seriously influence the longitudinal stress 
immediately adjacent to the eaves.  

 

FIG. 8.12. Measured stress 
distributions below eaves of channel 
portal. 
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The stress distributions measured in the test frames at the critical cross-sections in the 
stanchions below both the right hand and left hand eaves are shown in Fig. 8.12(a) for the 
frame with lateral restraints only and in Fig. 8.12(b) for the frame with lateral and 
torsional restraints. The stresses are plotted at 67 per cent and 74 per cent of the frame 
collapse loads, respectively. They are compared with the theoretical estimates using the 
methods just described. The comparison is good, confirming the theoretical model in the 
vicinity of the joints. 

8.3.3.2 Z-Portal 

Distributions of lateral deflection of the inside flange (δX), bending moments about both 
principal axes (Mx, My), axial force (Fz) and bimoment (Bz) are plotted in Fig. 8.13 for 
one-half of the Z-portal subjected to a vertical loading with W=1 kN. The stress 
distributions corresponding to the separate components (Mx, My, Fx, Bz) in a  

 

FIG. 8.13. Z-portal stress resultants 
and displacements. 
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FIG. 8.14. Stresses in a Z-section. 

Z-section are given in Fig. 8.14. The frame analysis has been performed for lateral 
restraint only (solid lines in Fig. 8.13) and lateral plus torsional restraint (dashed lines in 
Fig. 8.13). 

The distributions of major axis moment and axial force around the frame are similar 
for both the Z- and channel-portals. However, the distributions of minor axis moment and 
bimoment are distinctly different. The minor axis moment distribution in Fig. 8.13 for the 
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Z-portal is similar in pattern to the bimoment distribution for the channel-portal in Fig. 
8.9. In both cases, there are large values adjacent to the eaves and apex joints with fairly 
rapid decay away from the joints. Of  

 

FIG. 8.15. Longitudinal stress adjacent 
to eaves of Z-portal. 

interest, the bimoment distribution in the Z-portal has a similar pattern to the minor axis 
moment distribution in the channel-portal. In both cases, the values adjacent to the joints 
are small but have significant values within the span. 

The stress distributions computed above and below the eaves joint are shown in Fig. 
8.15. The most interesting feature of these stress distributions is their similarity around 
the section to those of the channel-portal shown in Figs. 8.11 and 8.12. Apparently, the 
combination of major and minor axis bending moment in a Z-section produces a similar 
stress distribution to the combination of major axis moment and bimoment in a channel. 
As for the channel-portal, the effect of the torsional restraints is to produce only a slight 
decrease in the stresses adjacent to the eaves. 

8.3.3.3 Frame Deformations 

The in-plane displacements of the eaves and apex, and twisting rotations of the rafters, 
are summarised for both portal types in Table 8.1. They have been compared with those 
for a prismatic-section portal frame with the same second moment of area of the section 
about a horizontal axis (X′-axis) as that for the channel- and Z-section.  

TABLE 8.1 
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FRAME DEFORMATIONS (W=1 kN) 
Frame section Restraint δZ (apex) (mm) δY (eave) (mm)θY max (rafter) (degrees) 
Channel L −2·16 −0·69 0·32 
    (+61%)    
Channel L+T −1·85 −0·58 0·008 
    (+38%)    
Z L −2·28 −0·68 −0·16 
    (+70%)    
Z L+T −1·55 −0·48 −0·027 
    (+16%)    
Prismatic Either −1·34 −0·42 0·0 
L=lateral, T=torsional. Figures in brackets are per cent increase above prismatic values. 

The in-plane deflections for both types of thin-walled portals, without torsional restraint, 
are significantly (60–70 per cent) in excess of those for the prismatic-portals. The 
additional deflections of the channel-portals have been confirmed in the tests described 
by Baigent and Hancock (1980, 1982b). When torsional restraints are included, the in-
plane deflections are reduced to exceed the deflections of a prismatic-portal by 38 per 
cent and 16 per cent for the channel- and Z-portals, respectively. 

The maximum twisting deformations of the rafters of the channel-portal are 
approximately double those of the Z-portal. This phenomenon is demonstrated by 
comparing δX in Figs. 8.9 and 8.13. 

8.4 ELASTIC AND INELASTIC LOCAL BUCKLING OF COLD-
FORMED SECTIONS 

8.4.1 Finite Strip Method 

As described in the introduction, failure of cold-formed members generally occurs when 
inelastic local buckles develop at critical cross-sections. To calculate theoretically the 
inelastic buckling load, a method is required which accounts for the particular geometry 
of the cross-section, the longitudinal stress distribution and the progression of yielding. 
Yoshida (1975) described a method in which he used the finite strip method of analysis 
developed by Cheung (1976) which was applied to local buckling by Przmieniecki (1973) 
and to membrane displacements as well as plate flexural displacements in the buckling 
mode by Plank and Wittrick (1974). 

Yoshida extended the elastic analysis of Przmieniecki by allowing for yielding in I-
section columns. He achieved this by reducing the effective moduli of yielded strips, 
according to the theory of plastic stability of thin-walled plates described by Bijlaard 
(1947). In the case of I-sections, progressive yielding of the web and flanges occurs with 
increasing load, as a result of gradients of residual stress being superimposed with the 
applied stress. For cold-formed sections of portal frames, progressive yielding of the web 
and flange will occur mainly as a result of the gradients of stress caused by 
superimposing bending and torsional effects to produce stress distributions of the type 

Portal frames composed of cold-formed Channel- and Z-sections     255

�



shown in Figs. 8.11, 8.12 and 8.15. A similar method to that described by Yoshida (1975) 
can be applied to cold-formed sections undergoing bending and twisting and is described 
in this chapter. 

8.4.2 Elastic Buckling Analysis 

A finite strip subdivision of the channel is shown in Fig. 8.16. The detailed analytical 
method of elastic buckling was described by Hancock (1978). The method involves 
performing a buckling analysis of the section subjected to the appropriate longitudinal 
stress distribution, shown in Fig. 8.17 for an assumed range of buckle half-wavelengths.  

 

FIG. 8.16. Finite strip subdivision of 
channel-section for buckling analysis. 
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FIG. 8.17. Buckling curve for channel 
section. 

The resulting critical stresses are plotted against the buckle half-wavelengths, as shown in 
Fig. 8.17. The modes corresponding to certain half-wavelengths are also shown in Fig. 
8.17. 

The mode shown at A is a local buckle involving the flange and web and occurs at a 
half-wavelength of 90 mm. A higher minimum occurs at B at a half-wavelength of 550 
mm and corresponds to a stiffener buckle with the lip stiffener undergoing in-plane 
bending in the buckling mode. For long wavelengths of laterally unrestrained sections, a 
lateral buckle of the type shown at C occurs. However, for portal frames such as those 
tested, lateral restraints prevent this mode and so the local mode shown at A 
predominates. 

8.4.3 Inelastic Buckling Analysis 

Following initial yielding at a cross-section, increasing load causes yielding to progress 
along the thin-walled elements of the cross-section. In the case of the channel- and Z-
sections with stress distributions shown in Figs. 8.11, 8.12 and 8.15, yielding commences 
at the flange-web junction and penetrates into both the web and flange. To calculate the 
progression of yielding, it is assumed that the stress resultant ratios calculated at first 
yield remain constant so that a monotonic load increase can be applied. This assumption 
is reasonable for small increases in load beyond first yield, where the localised yielding 
does not alter significantly the overall structural response. 

Santathadaporn and Chen (1972) developed a tangent stiffness method for the biaxial 
bending analysis of column sections. However, their method did not include yielding 
resulting from the bimoment in thin-walled members. Hancock (1977) extended the 
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method to include yielding resulting from warping torsion. The method has been applied 
by Baigent and Hancock (1982c) to study the channel-section portal frames as follows. 

First, the axial force, bending moments and bimoment are increased monotonically 
beyond yield by applying a load factor λ to their values. Based on the elastic section 
rigidities (EA, EIx, EIy, EIw), the resulting strain distribution is calculated. The yielded 
zones are determined and the consequent stress distribution, assuming the yield stress in 
the yielded zones, is integrated to calculate the net section stress resultants. Before 
convergence, these stress resultants will differ slightly from the applied values at load 
factor λ. The axial strain dw/dz, curvatures (d2us/dz2, d2υs/dz2) and rate of change of twist 
(d2θz/dz) are adjusted using a tangent stiffness matrix based on the effective section 
rigidities. The effective rigidities are those of the elastic core ignoring yielded zones. A 
new strain distribution, and hence yield distribution, is calculated and the process 
repeated until the resulting stress distribution is in equilibrium with the applied stresses. 
By continuing this process at increasing load factors, the progression of yielding in a 
thin-walled cross-section can be calculated. 

To account for yielding in the finite strip buckling analysis, the analytical process is 
performed with the Young’s and shear moduli and Poisson’s ratio reduced, to allow for 
plasticity. Two approaches have been developed for the purpose. The original approach 
developed by Bijlaard (1947) used the deformation (or total strain) theory of plasticity. 
The theory was further developed by Ilyushin (1947) and Stowell (1948) and has been 
found to correlate well with plastic buckling tests. The alternative flow (or incremental) 
theory of plasticity developed by Prager (1949) is more rationally based, but was not 
found to correlate well with plastic buckling tests of imperfect specimens. However, 
modifications of the application of the flow theory by Onat and Drucker (1953) and 
Haaijer (1957), to account for imperfections, produced results which correlate well with 
plastic buckling tests. 

In the study of local buckling of partially yielded sections, the reduced value of the 
shear modulus (G) in the strain-hardening range  
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FIG. 8.18. Local buckling curves for 
partially yielded sections. 

is important. Haaijer (1957) and Lay (1965) have concluded that a shear modulus based 
on mild steel in the strain-hardening range produces reasonable results. Accordingly, in 
this chapter, Gy/G has been taken as 0·25, based on the work of Lay. For simplicity, 
conservative values of Et/E equal to 1/33 are taken in both directions and a Poisson’s 
ratio of 0·5 has been used in the yielded zones. 

The results of the inelastic local buckling analysis at increasing load factors are shown 
in Fig. 8.18. The curves are seen to drop with increasing load factor without a signiflcant 
change in the local buckle half-wavelength. When the minimum on the buckling curve is 
equal to the load factor, failure is assumed to occur. 

In the tests of the channel portals reported by Baigent and Hancock, this method 
always produced conservative estimates of the strengths of the channel section portal 
frames. The theoretical failure loads varied from 17 to 28 per cent greater than the 
theoretical first yield loads, whilst the experimental failure loads varied from 25 to 77 per 
cent greater than the theoretical first yield loads. The experimentally observed failure 
loads of the portal frames under uplift load were 75 and 77 per cent greater than the 
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theoretical first yield loads since, although yielding occurred under the eaves, failure of 
the frame did not occur until plastic buckling in the rafters. 

8.5 SIMPLEFIED DESIGN 

8.5.1 Z-Portals 

A common procedure in the design of portal frames is to perform a plane-frame linear 
elastic analysis, either by a manual method such as moment distribution or more recently 
a computer analysis using the matrix displacement approach. A possible simplified 
procedure for the design of a Z-portal would be to use the results of such an analysis to 
calculate first yield, without recourse to the three-dimensional analysis described in 
Section 8.2. To investigate this approach, the stresses at the critical cross-sections were 
computed by Hancock (1983) for three different load cases by applying the planar 
bending moments and axial force to the Z-section. In this chapter, the results for the 
vertical load case are summarised. 

Two possible approaches exist for calculating the stresses from the planar bending 
moment. The first would be to resolve the planar moment applied about the horizontal 
axis (X′-axis in Fig. 8.14) into its components about the principal axes (x, y axes in Fig. 
8.14). The superposition of the stresses resulting from the two principal axis moments is 
taken as the resultant stress distribution and is shown as ‘Simplified Design 1’ in Fig. 
8.15. For all load cases studied, the simplified design method 1 produces slightly higher 
(more conservative) stress estimates than the three dimensional analysis, with the 
maximum value conservative by 17 per cent. 

The second method for calculating stresses from the planar bending moment would be 
to simply divide the moment by the section modulus about the horizontal (X′) axis. This 
method assumes that the section is fully restrained laterally and torsionally throughout its 
length and results in a uniform stress distribution in the flanges. The stress distribution 
using this approach is shown in Fig. 8.15 as ‘Simplified Design 2’. The method is 
significantly unconservative as a result of the assumption regarding full lateral and 
torsional restraint, which is not satisfied in the frames studied. Hence the simplified 
procedure 2 should not be used. The simplified design procedure 1 appears suitable for 
estimating first yield. 

8.5.2 Channel Portals 

A similar procedure of using a plane frame linear elastic analysis could be applied to the 
channel-section portals. However, in this case, the bimoment produced by major axis 
bending would need to be calculated using eqn (8.26). 

The maximum compressive stress, computed half way around the radius between the 
flange and web of the channel-section, is 30·3 MPa, consisting of 13·0 MPa from the 
major axis bending moment, 16·4 MPa from the bimoment, using eqns (8.3a) and (8.26), 
and 0·9 MPa from axial compression. This is less than the value of 33·3 MPa in Fig. 8.11 
for the frame with lateral restraints only, but approximately equal to the value of 30·0 
MPa for the frame with lateral and torsional restraints. This latter agreement is to be 
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expected, since the minor axis moment has been ignored in the simplified calculation and 
is effectively zero below the eaves in Fig. 8.9 when lateral and torsional restraints are 
included. 

There does not appear to be a simple way to produce a conservative estimate of the 
longitudinal stress in a channel portal without torsional restraints. The full three 
dimensional analysis appears to be necessary in this case. 

8.6 CONCLUDING REMARKS 

A systematic approach to the analysis and design of portal frames composed of cold-
formed channel- and Z-section members has been described. To accurately understand 
the behaviour of such structures it has been demonstrated that a full three dimensional 
analysis, including non-uniform torsion and cross-section monosymmetry and 
asymmetry, is required. In addition, the specific nature of the connection of thin-walled 
members to joints is important and must be accurately modelled if the stiffness and 
strength of such structures is to be assessed. Simplified methods for calculating first yield 
based on plane frame linear elastic analyses have been described. However, these 
methods have only been investigated for the types of portals described and they should 
not be used for other joint types and frame geometries without further investigation.  

A method for determining the strength of structures composed of cold-formed 
members has been presented. The method assumes that the mode of failure is inelastic 
local buckling. However, other failure modes such as elastic instability of members may 
occur if insufficient lateral and torsional restraints are attached to a frame. Further 
research in this area is required for a complete understanding of struc tures of this type. 
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APPENDIX 1 

Member stiffness matrices 

(a) Axial stiffness matrix 

 

  

(b) Flexural stiffness matrices 

 

  

(c) Torsional stiffness matrix 
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APPENDK 2 

Cross-section transformation matrix [G] 

 

  

For channel in Fig. 8.1, α=0, C=0, ay=0, bY′=0. 
For Z-section in Fig. 8.1, αx=0, ay=0, bX′=0, bY′=0, C=αw. 

APPENDIX 3 

Eccentric restraint transformation matrix [ER] 
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Chapter 9 
BRACED STEEL ARCHES 

 
SADAO KOMATSU  

Department of Civil Engineering, Osaka University, Japan 

SUMMARY 

This chapter deals with the ultimate strength of parabolic steel arches with bracing 
systems for the following cases; (1) when they fail by inelastic in-plane instability under 
uniformly distributed vertical loads, (2) when they fail by inelastic out-of-plane instability 
under vertical loads or combined vertical and uniform lateral loads. Design formulae are 
presented for each case. 

NOTATION 
A Average cross-sectional area over the whole length of the 

arch rib with variable cross section, or cross-sectional area 
of arch rib with uniform cross section 

A1, A2 Cross-sectional areas of bracing members in the end and 
next panel, respectively 

Aj Cross-sectional area of arch rib at the jth segment 

As Cross-sectional area at springings of arch rib 

a Distance of twin arch ribs 

ā Slenderness parameter 

B Coefficient matrix including reduced bending stiffness and 
elongation stiffness in elastic-plastic range 

Cd Drag coefficient of arch rib, which is 2·19 for box cross-
section with height-to-width ratio of 2 

Di Axial force of bracing member in the ith panel 

E Young’s modulus 

ƒ Rise of arch rib 

h Height of arch rib 

�



I Second moment of area of arch rib about horizontal axis 

I0, I1 Second moments of area of arch rib in the portal frame and 
the end panel of bracing system, respectively 

Ib(=I3), Iy Second moments of area of cross beam and arch about 
vertical axis, respectively 

K Effective-length factor 

 Coefficient included in eqn. (9.11) 

Ke, Kp Stiffness matrices corresponding to the elastic and plastic 
parts of the whole structure, respectively 

Kg Initial stress matrix 

L Total length of arch 

Lj Length of the jth segment of arch rib 

l Span length of arch 

l0 Panel length of portal frame 

lp Panel length of bracing system 

lt Effective buckling length of bracing 

M Vertical bending moment 

M0 Vertical bending moment at the end of arch 

M1, M3, M5 Lateral bending moments of arch given by analysis, as 
shown in Fig. 9.13 

Mb Lateral bending moment of individual rib for the integrated 
whole structure 

Mc Lateral bending moment at the springings of arch rib 

Ms Lateral bending moment of individual rib computed by 
elastic analysis for load intensity q/q0=1 

My Yield moment at springings of arch rib 

m Force ratio given by formula (9.29) 

 Non-dimensional vertical bending moment 

N Axial force at springings of arch produced by vertical load, 
p 

Ncr,s, Ncr Critical axial forces at the quarter point of span length 
under symmetric and asymmetric loading, respectively 

NE Euler buckling load 

Ns Axial force of leeward rib computed by elastic analysis for 
load intensity q/q0=1 

Nu Ultimate axial force at springings of arch rib 

 Non-dimensional load normal to original arch axis 

P Incremental load vector 
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p Uniform live load 

pn, pt Loads normal and tangential to original arch axis, 
respectively 

Q0 Shear force at the end of arch 

Qi(i=1, 2) Lateral shear forces in the ith panel of idealised plane 
frame under lateral loading 

Qr Lateral shear forces of idealised plane frame under lateral 
loading 

q Wind load 

q0 Reference wind load 

 Non-dimensional wind load 

qu Ultimate lateral load 

R0 Radius of finite circular arc-element 

r Radius of gyration about horizontal centroidal axis of arch 
cross-section 

rt Radius of gyration of bracing member 

ry Radius of gyration about vertical centroidal axis of arch 
cross-section 

 Non-dimensional load tangential to original arch axis 

u, u Displacement vector and displacement normal to original 
arch axis 

V0 Reference wind velocity, 50 m/s 

υ Specified design wind velocity 

Wcr Critical load producing in-plane instability 

Wy, Wz Section moduli about vertical and horizontal centroidal 
axes at the springings of arch rib, respectively 

w Dead load 

X State vector at the end of arch 

Y Load vector 

α Angle between diagonal member and a transverse line in 
idealised plane frame, as shown in Fig. 9.13 

β Ratio of the length of braced portion to the total length of 
arch 

θ Polar coordinates for finite circular arc-element 

κ Buckling coefficient given by Stiissi (1935) 

λ Generalised slenderness ratio about horizontal axis of arch 
rib 

λcr Buckling coefficient for in-plane instability 

λy Slenderness ratio about vertical axis of arch rib 
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Non-dimensional slenderness parameter defined by eqn 

(9.16) 

v Load factor 

p Density of air, 0·125 kg/m3 

σn=N/As  Normal stress at the springings of arch rib due to normal 
force 

 Ultimate stress and non-dimensional stress of braced arch 
subjected to vertical load, respectively 

 Maximum elastic fibre stress and non-dimensional stress at 
the springings of leeward rib, respectively 

σsa Theoretical value of σs 

σse Approximate value of σs 

σy Yield stress 

Φ Reduction factor 

 Slope of deflection curve at the end of arch 

9.1 INTRODUCTION 

Currently the concept of ultimate state design is gaining international acceptance. Such a 
trend in structural design emphasises the importance of understanding the true 
characteristics of the ultimate behaviour and predicting accurately the instability of metal 
compression members and structures, when they include some initial imperfections, 
which influence their load carrying capacity. 

Few studies have been carried out on the inelastic instability of arches, so far. 
Unfortunately the elastic buckling theory only permits us to estimate the critical loads of 
extremely slender arches which are hardly ever used as components of a bridge structure. 

Plastic analysis based on the assumption of formation of plastic hinges is not realistic 
for the arch, because the plastic zone always spreads along the arch axis under vertical 
overloading. In such a situation, it appears that the elasto-plastic analysis taking account 
of finite displacement is an indispensable tool. 

9.2 IN-PLANE INSTABILITY OF ARCHES UNDER VERTICAL 
LOADS 

9.2.1 Theoretical Background 

Details of theoretical investigations can be found in the thesis of Shinke (1977). As this 
and the relevant papers were written only in Japanese, a brief explanation of the 
theoretical procedure is given below. 

The structural model treated in the analysis is composed of finite circular arc-
elements, being able to fit for any shape of arch axis as a whole. 
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In the equilibrium equation between the stress resultants and the external forces acting 
on the element, account is taken of the deformation and the elongation of the arch axis; 
from this, simultaneous differential equations for the two components of in-plane 
displacement u and υ were derived. 

Eliminating one component υ from these equations, the following sixth-order 
fundamental differential equation has been obtained. 

(9.1) 

where , nondimensional bending moment; , 
nondimensional load normal to the original arch axis; , nondimensional load 
tangential to the original arch axis. 

By dividing the cross-section of each element into a sufficient number of sub-
elements, the relation betwen the bending moment, the normal force, the curvature of 
arch axis and the strain, the so-called ‘  relationship’, in the elasto-plastic 
range was numerically determined taking into consideration both residual stress and 
strainhardening. 

Equation (9.1) is transformed into simultaneous differential equations of the first-order 
which can be solved by means of numerical integration, such as by the Runge-Kutta 
method. Thus, a field transfer matrix determines the relationship between the two state 
vectors at both ends of the element. 

Then, the following matrix equation for a vector X including three unknown 
mechanical quantities as its components is derived by means of a general procedure of 
transfer matrix method, as follows 

BX=Y 
(9.2) 

where for two-hinged arch, X={M0; Q0; N0} for fixed arch. 
Thus, the inelastic stability of the arch occurs when the following equation is satisfied 
|B|=0 

(9.3) 

The nonlinear equation (eqn (9.3)) for the characteristic value Kcr (referred to as buckling 
coefficient) can be found by using iteration procedure. 

Finally, the critical load Wcr producing in-plane instability can be given by 

 (9.4) 
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9.2.2 Experimental Investigation 

Tests have been performed on 20 models having various combinations of parameters, 
such as rise-to-span ratio, end condition, slenderness ratio, load condition, grade of steel, 
initial deflection and residual stress, to investigate some important characteristics of 
arches and also to examine the rationality of the analysis. 

A typical example indicating the effect of initial deflection on the ultimate strength of 
arches is shown in Fig. 9.1. For two cases of two-hinged and fixed arches, the initial 
deflection, assumed to be sinusoidal, affects distinctly the ultimate strength of the arches 
under the load ratio of p/w=0·05.  

 

FIG. 9.1. Critical horizontal reaction 
versus initial deformation curves 
(Model series II). 
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FIG. 9.2. Relationship between 
ultimate strength and slenderness ratio 
(Model series I). 

The effect of residual stress on the reduction of the ultimate strength was also noticeable, 
especially for the small value of load ratio p/w. 

Good agreement is seen between computed and experimental results for both types of 
arches, as shown in Fig. 9.2. 

Similar results have been obtained in the experiments on other models. 

9.2.3 Design Formulae 

Based upon a large number of parametric computations for the appropriate range of all 
the parameters involved in existing arch bridges, the following design formulae for steel 
arches under symmetrical and asymmetrical loading, shown in Fig. 9.3, were obtained by 
Komatsu and Shinke (1977).  

 

FIG. 9.3. Distribution of load. 

Braced steel arches     271

�



9.2.3.1 Symmetric Loading 

 

(9.5) 

where 

 
(9.6) 

 (9.7) 

The values of buckling coefficient κ in eqn (9.6), given by Stüssi (1935), are given in 
Table 9.1. 

TABLE 9.1  
BUCKLING COEFFICIENT κ GIVEN BY 
STÜSSI (1935) 

Type f/l 
  0·1 0·15 0·2 0·3
Two-hinged arch 36·0 32·0 28·0 20·0
Fixed arch 76·0 69·5 63·0 48·0

Figure 9.4(a) and (b) show how the proposed formulae give an adequate estimation for 
the ultimate strength of two-hinged and fixed arches under symmetrical loading. In the 
Figures, SS41 and SM58 show the mild steel and high-strength low-alloy steel with 
tensile strengths of 402 N/mm2 and 569 N/mm2 specified according to the Japanese 
Industrial Standard, respectively. 

9.2.3.2 Asymmetric Loading 

As is well known, the critical axial force Ncr of arches under asymmetric loading is 
considerably small compared with Ncr,s under symmetric loading, even though all other 
parameters are unchanged. 

From the results of parametric studies, the following formulae for estimating the 
critical axial force Ncr could be obtained.  

Ncr=ΦNcr,s 
(9.8) 
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FIG. 9.4. Comparison between theory 
and the proposed formulae for 
symmetric loading. 

where 

 (9.9) 

 

(9.10) 
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(9.11) 

 
(9.12) 

 

FIG. 9.5. Comparison between theory 
and the proposed formulae for 
asymmetric loading. 
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For the two-hinged and fixed arches made of mild steel or high-strength low-alloy steel, 
the critical axial forces Ncr calculated by the theory mentioned previously are compared 
with those of the proposed formulae, in Fig. 9.5(a) and (b). 

It will be observed from these figures that the proposed formulae will serve as a 
convenient tool in design practice. 

9.2.3.3 Arches With Variable or Hybrid Cross-Section 

Arch bridges are usually designed in such a way that the cross-sectional properties vary 
along the arch axis; sometimes, two or three grades of steels are used in various parts of 
the span. It is necessary to employ an engineering approach to the estimation of the 
ultimate strength for such bridges. For this purpose, the following treatment may be 
useful. 

From a number of numerical results obtained from typical models, it has been realised 
that an arch with a variable cross-section has approximately the same ultimate strength as 
an ideal arch with a uniform cross-section averaged over the whole length. In a similar 
way, an arch composed of various grades of steels may be regarded as a homogeneous 
arch having an idealised yield stress averaged over the whole length.  
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FIG. 9.6. Ultimate strength of (a) 
variable cross-sections; (b) hybrid 
sections. 

Typical examples of numerical comparison between theoretical results and the 
proposed approaches can be seen in Fig. 9.6(a) for the case of variable cross-section. 
Similar examples for the case of hybrid arches display good correlation, as shown in Fig. 
9.6(b) for variations of materials. 
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9.3 OUT-OF-PLANE INSTABILITY OF ARCHES WITH 
BRACING SYSTEMS 

9.3.1 Theoretical Background 

A method evaluating both torsional and bending rigidities of a partially yielded closed 
cross-section has been presented by Komatsu and Sakimoto (1975) in a form suitable for 
matrix analysis, and examined experimentally to find its validity. 

Introducing it into a matrix stiffness method, the tangential stiffness matrix was 
derived by Komatsu and Sakimoto (1976) for the spatial frames subjected to 
nonproportional loads, considering the finite displacement and the spanwise and 
transverse spread of plastic zones. 

The formulation was carried out using the following assumptions and idealisations; 

(1) symmetric closed cross-sections of arch ribs made of elastic/perfectly plastic 
materials, 

(2) Von Mises yield criterion, 
(3) small strains and Bernoulli-Navier hypothesis, 
(4) no local buckling of plate elements and no cross-sectional distortion induced, 
(5) uniform shear flow in elasto-plastic element, 
(6) immovability of shear centre after partial yielding in the crosssection, i.e. an almost 

double-symmetric configuration, and 
(7) Prandtl-Reuss stress-strain relations. 

The arch rib is divided into a number of finite bar elements of which the cross-sections 
are further divided into 47 sub-elements. The bracing members are also divided into 24 
cross-segments like the arch rib. 

The principle of minimum potential energy for each element is applied to derive the 
incremental equilibrium equation in terms of the local coordinates on the basis of up-
dated Lagrangian formulation. 

After transforming the coordinate system and assembling it for the whole structural 
system, the governing equation for the increment u of nodal displacements under given 
load increments p can be obtained in the global coordinate system as follows 

 (9.13) 

The last term expresses the unbalanced forces due to the linearisation in the 
formulation for each incremental stage as well as yielding of the material during the 
incremental loading process. This force can be cancelled by the iterative Newton-
Raphson procedure for each incremental loading stage. 

The convergence criterion in the iterative computation is such that the increment of 
every nodal displacement becomes less than 10−3 times the up-to-date total displacement 
at the same node. 

The small residual unbalanced forces still remaining just after ending the iteration 
process for each incremental load are added to the next incremental load so as to make 

Braced steel arches     277

�



the computing time short. The maximum load is determined as the average of the last two 
load values, i.e. the ultimate equilibrium load and the next divergent one. Every arch 
studied herein reaches the collapse caused by unbounded increase of lateral deflections 
without forming any plastic hinge. 

9.3.2 Structural Models 

The effects of the stiffness, location and type of lateral bracing system on the inelastic 
lateral stability of the arch are mainly investigated in the following paragraphs. The other 
structural parameters, such as the magnitude and distribution of residual stresses, the 
amplitude and variation of the initial crookedness, the configuration of the arch, the rise-
to-span ratio, the height-to-width ratio of box cross section, the loading direction, and the 
grade of steel, are assumed somewhat conservatively on the basis of the previous study 
performed by Sakimoto and Komatsu (1977a, b), in which the influences of these 
parameters on the lateral instability of unbraced arches were reported upon quantitatively. 
The range of parameters treated here is listed in Table 9.2, on the basis of the justification 
for its choice as examined by that study. Moreover, the typical models are representatives 
of what might actually be found in existing arches, and are shown in Fig. 9.7. 

The notations included in Table 9.2 are described below: 
The λy values of existing bridges constructed in Japan lie somewhere within the range 

of 100–600. The λt value varies from 70 to 150 in existing arch bridges.  

TABLE 9.2 
PROPERTIES OF STANDARD MODELS 

Items Properties 
Section modulus ratio, Wz/Wy 2·0 
Axial variation of cross-section Uniform 
Slenderness ratio, λy=L/ry 100–800 
Grade of steel, E/σy 875, homogeneous mild steel

Maximum initial crookedness  
0, L/1000 

Slenderness ratio of truss member, λt=lt/rt 70, 140, 280 
Stiffness ratio of cross beam, n=Ib/Iy 0·01, 0·1, 1 

14 (D6X, D7B) Number of finite elements in individual arch rib
16 (D12X) 
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FIG. 9.7. Typical models 

The bending stiffness ratio Ib/Iy of the cross beam to the arch rib in the frame type of 
bracing system is denoted by n. 

For numerical analysis, each rib is divided into 14 and 16 member elements for the 
cases D6X, D6B, and D12X shown in Fig. 9.7, respectively. 

Notations D6X and D12X denote twin arches having the double Warren type of 
bracing system with six and twelve panels, respectively, while D6B and D12B denote 
twin arches having the frame type of bracing system with six and twelve panels, 
respectively. 

Each of the diagonal members and the cross beams constructing the bracing system is 
treated as a single element and the intersecting points of the diagonal members in the 
double Warren truss type of bracing system are regarded as loose, for the sake of 
simplicity. 

Braced steel arches     279

�



The cross-sections of the arch rib element and the bracing member element are 
subdivided into 48 and 24 segments, respectively, which are adequate to model the 
development of plastic zone in the cross-sections. 

9.3.3 Ultimate Strength of Braced Arches Under Vertical Loads 

The non-dimensional ultimate strength of the model D6X is shown in Fig. 
9.8, where σu is the ultimate stress due to axial force at  

 

FIG. 9.8. Ultimate stresses of model 
D6X: (O), collapse without buckling of 
bracings; (∆), collapse with premature 
buckling of bracings; (×), initiation of 
buckling of bracings. 
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FIG. 9.9. Comparison of ultimate 
strength between several models. 

springings (Sakimoto and Komatsu, 1977b). The value of the corresponding single-rib 
arch is also displayed in the figure. 

It is worth noting that the ultimate strength of the twin arches braced with lateral 
members is reduced considerably due to the premature buckling of the end bracing 
member, if its slenderness ratio is considerably large. Such an important characteristic 
was also seen for other types of bracing systems in the numerical studies. 

The ultimate strength curves for D6X.2Wy and D6X.2B are shown in Fig. 9.9. The end 
portions of arch rib of the model D6X.2Wy have a heavy cross-section, of which the 
radius of gyration is twice as large as that of the standard model. It is remarkable that the 
ultimate strength of the model D6X.2Wy exceeds that of the D6X by a significant amount. 
This suggests how the slenderness ratio of the unbraced end portion of the arch rib itself 
plays an important role in strengthening the through arch bridges with twin arch ribs. 

D6X.2B is the model braced by the end cross beams of Ib/Iy=1, in addition to the 
double Warren truss with six panels. However, the increase of the ultimate strength by 
the addition of such comparatively stiff cross beam is not significant, compared with the 
model D6X. 

The ultimate stress σu of braced arches subjected only to the vertical loads can be 
obtained by the following formulae, which are based on the results of theoretical and 
experimental investigation previously described for lateral instability (Sakimoto, Yamao 
and Komatsu (1979)), 
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(9.14) 

where 

 (9.15) 

 
(9.16) 

 (9.17) 

 (9.18) 

 
(9.19) 

 
(9.20) 

 
(9·21) 

9.3.4 Ultimate Strength of Braced Arches Subjected to Combined 
Vertical and Lateral loads 

In the analysis, the lateral load q is increased step-by-step under the constant vertical load 
p until an instability occurs. The longitudinal distributions of stress resultants and 
deflection in the ultimate state are similar to those observed in the case of vertical 
loading, except for the torsional behaviour as shown in Fig. 9.10. 

The difference in the in-plane bending moment diagrams between the two ribs, as 
shown in Fig. 9.10(d), may be caused by the torsional action of the lateral load about the 
bridge axis passing through both ends of the arch. The most important characteristic in 
the lateral  
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FIG. 9.10. Longitudinal distribution of 
stress resultants and deflections. 

bending moment diagram of the individual rib is that it has a large negative gradient in 
the end panels of the bracing system, where the negative shear forces acting in the panel 
produce an additional axial force in the bracing members, as shown in Fig. 9.10(b). 
Similar behaviour was also seen for the case of pure vertical loading. 

After a large number of parametric studies, it has been concluded that the ultimate 
strength of the models D6X and D12X under lateral loading may be classified by the 
following three categories according to the slenderness ratio of arch rib λy. 
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(1) Stocky arches having slenderness ratios in the range of λy<180 can have 
sufficiently large ultimate strengths under lateral loads even if there are no bracing 
systems. For this reason, the central-arch-girder bridge can be useful for this range of 
slenderness ratio from economical and aesthetic standpoints. 

(2) The bridge consisting of twin arches with medium slenderness ratios ranging from 
180 to 300 needs an appropriate bracing member, rationally designed by the procedure 
described later. 

(3) If the slenderness ratio of arch rib is in the range of λy>300, a sufficient margin 
against collapse cannot be ensured even by means of a rigid lateral system, because they 
collapse owing to a remarkable decrease in lateral rigidity by the yielding of the arch rib 
in the neighbourhood of the springings. Therefore, it is necessary to strengthen the 
unbraced parts of the individual ribs to prevent yielding there. 

9.3.5 Relation Between the Ultimate Strength and the Stresses at 
Springings 

In order to ascertain if the ultimate strengths of the slender arches with λy>300 subjected 
to lateral load may be controlled by the stresses at the arch springings, the ultimate 
strengths of four different models were compared with each other, as shown in Fig. 9.11. 
The unbraced portion of model D6X.2Wy has twice the section modulus of the standard 
model D6X. The ultimate strength of the model D6X.2Wy under lateral load is 
comparatively large even for the range of λy> 300, shown in Fig. 9.11. 

These facts show that there exists a close relationship between the ultimate strength of 
braced arches and the stresses at the springings. 

In design practice, the lateral load q is represented by the wind load. So, the ultimate 
strength under lateral load can be defined by the following non-dimensional form 

 (9.22) 

where 

 
(9.23) 

Both windward and leeward ribs are supposed to be subject to an identical wind load q as 
shielding effect does not appear for parallel twin arches.  
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FIG. 9.11. Effects of double section 
modulus and portal frame. 

Thus the value of may be considered alternatively as a reservation factor for a nominal 
load corresponding to the wind velocity V0. 

On the other hand, the maximum elastic fibre stress σs at the springings of the leeward 
rib can be given by the following formula in non-dimensional form under the assumption 
that the lateral bracing system never buckles. 

 
(9.24) 

can be regarded as a measure of the maximum load effect in the braced arch. Since it 
may be a fictitious stress for the completely elastic arch, the stress resultants Ns and Ms 
should be estimated, multiplying q0/q by their values computed under a certain load q 
lower than both the elastic limit load and the critical load at which the arch will collapse 
elastically.  
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FIG. 9.12. Ultimate strength versus 
maximum stress at the arch springings 

. 

The theoretical values of and for various models are plotted in Fig. 9.12, which 
shows that there is a distinctive correlation between the ultimate strength and the 
maximum stress at springings. From the figure, the conservatively approximate 
formula can be found as follows 

 (9.25) 

If the arch must be designed against a specified design wind velocity υ m/s, the safety 
criterion as to the ultimate strength can be formulated as follows 
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 (9.26) 

9.3.6 Derivation of Design Formulae 

9.3.6.1 Stress Resultants of Framed Structure 

Let us consider a laterally-loaded plane frame, which is obtained by straightening the 
twin arch with bracing members in the horizontal plane, as shown in Fig. 9.13. Since this 
frame is an indeterminate structure of high-order, it certainly is cumbersome to solve it 
analytically except by matrix analysis relying on a computer. However, it is advantageous 
for practical purposes in design to solve it approximately by giving attention to its lateral 
bending characteristics shown in Fig. 9.10(b). As illustrated schematically in this figure, 
the lateral bending moment of the individual rib abruptly decreases along the span in the 
end panel of the bracing system, so that the bending moment in the central part may be 
disregarded. 

 

FIG. 9.13. Plane frame analysis for 
lateral bending moments of arch. 

Therefore, the lateral bending moments of an individual rib can be easily determined by 
analysing the sub-structure consisting of a portal frame and two end panels of the bracing 
system. 

According to the compatibility conditions of the slopes at points B and E, unknown 
bending moments M3 and M5 can be readily determined and then the portal frame can be 
analytically solved, as follows  

 (9.27a) 

(9.27b) 

 (9.27c) 
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(9.28) 

 (9.29) 

N is the axial force at the springings of the arch rib produced by the vertical load p 
according to the linear theory. 

 
(9.30) 

 
(9.31) 

9.3.6.2 Axial Forces of Bracing Members 

The axial force Di of a bracing member in the ith panel is given by 

 
(9.32) 

 (9.33) 

The shear force of the individual rib in the central panel of i>2 may be regarded as 
negligibly small and approximately equal to zero. 

Substituting eqns (9.31) and (9.33) into eqn (9.32) gives a fairly approximate axial 
force of bracing members. It should be noted that some iterative procedure is needed for 
the solution of eqns (9.27) to (9.33) for purposes of design, because the axial forces from 
which the cross-sectional areas of bracing members should be decided cannot be 
computed without assuming the cross-sectional area. The lateral bracing members can be 
dimensioned, however, by using the standard column strength curve, after estimating the 
axial force Di by means of trial and error. 

Since the validity of the concept on which these formulae are based is unaffected by 
the different types of bracing systems, these formulae might be applicable to the other 
types of trussed bracing systems (e.g. K-truss) after some modification, if necessary. 

In conventional design practice, the shear force of arch rib Qr has been neglected 
through judging mistakenly that such a treatment will give the result only on the safety 
side for the bracing members. In fact, Fig. 9.14 clearly shows that this assumption 
underestimates their axial force.  
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FIG. 9.14. Axial forces of lateral 
bracing members in end panel. 

9.3.6.3 Maximum Stress at Springings 

The maximum stress at the springings of the arch ribs can be approximately estimated by 
the following simple formula 

 
(9.34) 

where Mc is the lateral bending moment at the springings of arch rib, regarded as a curved 
beam, under lateral load 2q. 

Mb is given by the following formula 

 
(9.35) 

The approximate values σse of σs calculated by formula (9.34) are compared with the 
theoretical ones σsa for various structural models in Fig. 9.15. The general validity of the 
proposed formula (eqn (9.34)) is demonstrated by such a comparison shown in this 
figure, so that σse can be substituted into eqn (9.25) to find the ultimate strength . In 
addition, the ultimate strengths estimated by the formula (eqn (9.25)) are compared 
with the values , calculated by the elasto-plastic finite displacement theory described 
in Section 9.2.1, in Fig. 9.16 for  
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FIG. 9.15. Accuracy of the stress 
estimated by proposed formula (eqn 
(9.34)). 

various structural models showing that the former gives fairly conservative predictions. 
Before applying the formula (eqn (9.25)), it should be checked up if the stress σn 

included in the first term of the stress σs is smaller than the value σu at which the arch 
fails due to lateral instability under pure vertical load p.  

 

FIG. 9.16. Applicability of proposed 
formula (eqn (9.25)). 
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9.3.6.4 Interaction Formula 

It has been found from comparison with theoretical results that the following interaction 
formula, for the ultimate strength of steel arches subjected to combined in-plane and 
lateral loads, is fairly conservative if the rigidity of bracing members is sufficient to 
prevent its premature buckling 

 
(9.36) 

9.4 CONCLUSIONS 

This Chapter describes the strength characteristics of arches with bracing system and 
some design formulae have been presented for estimating their ultimate strengths for the 
following cases; 

(1) when in-plane instability occurs due to in-plane load, 
(2) when lateral instability occurs due to in-plane load, 
(3) when lateral instability occurs due to combined in-plane and lateral load. 
These formulae can be applied to the design of braced steel arch bridges with span 

lengths less than about 300 m, which was the limit covered in the parametric study. A 
detailed description of Section 9.3. can be found in the papers by Sakimoto and Komatsu 
(1979, 1982). 
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Chapter 10  
MEMBER STABILITY IN PORTAL 

FRAMES  

 
L.J.MORRIS  

Simon Engineering Laboratories, University of Manchester, UK 

and 
K.NAKANE  

University of Canterbury, Christchurch, New Zealand 

SUMMARY 

One of the more interesting design problems associated with portal frame construction is 
member stability and the location of lateral supports. A review of existing procedures for 
checking both unrestrained and restrained members, together with the conditions to 
which they apply, is undertaken. These stability checks are discussed with reference to 
both uniform and haunched members. New proposals for determining the limiting 
slenderness ratio for the compression flange are introduced and then the theoretical 
failure loads, as predicted by the appropriate methods, are compared with known 
experimental evidence. Guidance is also given on the design of lateral supports. 

NOTATION 
A Cross-sectional area; stability parameter (√k (l/ry)) 

a Distance from centroidal axis of member to axis of 
restraint 

ay Extreme fibre distance about minor axis 

B Width of flange 

c Shape factor 

D Depth of uniform section 

D*  Largest depth of haunch 

d  Distance between centroid of flanges (=D−tf) 

E Modulus of elasticity 



ƒ0 Bending stress about minor axis 

fx Major axis bending stress due to Mx 

G  Shear modulus 

Iy Second moment of area about minor axis 

K St Venant’s constant 

k  Equivalent uniform moment distribution factor 

Lch Maximum unsupported length of haunched 
member 

Lcr Elastic critical length 

 Critical buckling length 

Lm Allowable design length 

l Distance between lateral restraints to compression 
flange 

Mpr Reduced plastic moment due to axial load 

Mx Larger end moment 

 Equivalent uniform major axis moment 

 Equivalent major axis moment, including effects 
of axial load 

My Yield moment (=Zxpy) 

m Equivalent moment factor; sub-lengths (l/s) 

n Number of flanges 

P Axial thrust 

PE Euler buckling load 

p Mean axial stress 

py Yield stress; design strength 

q Ratio of haunched length to haunch length 

r Ratio of maximum and minimum depths (=D*/D) 

r0 Polar radius of gyration 

ry Radius of gyration (minor axis) 

s Spacing between tension flange restraints 

T Torsion constant ( ) 

tf flange thickness 

x D/tf ratio 

Zx Elastic modulus (major axis) 

α Regression factor 

β Ratio of end moments 
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ρ P/PE 

 Rotation 

 Initial imperfection 

10.1 INTRODUCTION 

Following the innovative research undertaken at Cambridge (Baker et al., 1956) 
structural engineers were provided with a powerful new design method known as plastic 
design, with the result that, since the mid-fifties, portal (gable) frame construction in the 
UK has been almost exclusively designed by the plastic theory. Such designs produce 
quite slender rafter members with fairly long shallow haunches at the eaves (see Fig. 
10.1), the normal practice being to make the haunch depth twice that of the basic rafter 
section (see enlarged detail of Fig. 10.1). At least one plastic hinge of those required for 
the collapse mechanism is usually assumed to develop at either the column/haunch 
intersection or the haunch/rafter intersection. Secondary members such as purlins and 
sheeting rails provide restraint on one flange against lateral displacement. 

A basic assumption of plastic theory is that the frame is able to collapse by the rotation 
of the plastic hinges before member or frame instability can develop. That is, plastic 
deformation can take place without the geometry of the structure changing to such an 
extent that the conditions of equilibrium are significantly modified. Such changes of 
geometry are associated with problems of local, frame and member instability, i.e. 

(a) overall change of geometry of the structure, causing joints to displace in-plane 
relative to each other (e.g. sway deformation),  

 

FIG. 10.1. Typical portal frame 
construction. 
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(b) out-of-plane displacements within the length of a member relating to straight lines 
drawn between adjacent lateral supports which define the length being considered (due 
to bending and/or twisting of the member), and 

(e) deformation within the cross-section of a member (resulting from local buckling in 
the plate elements constituting the web or flanges). 

Though the preceding comments are applicable to any framed structure, this chapter will 
concentrate on criteria by which the adequacy of portal frame construction can be 
checked against member instability. The problems of frame instability are discussed by 
Horne in Chapter 1. 

Producing realistic design guidance with respect to the instability problems is beset 
with difficulties, not only because of the complexity, but because the theoretical solutions 
are not always supported by experiments on a level approaching full-scale conditions. 
Despite the difficulties, a great deal of effort has gone into studying these problems in 
recent years. 

At present, there are no current recommendations in the British, European and 
American codes of practice for structural steelwork for determining the maximum safe 
unsupported length for lateral stability of haunched members. Though a design procedure 
for checking the adequacy of uniform members against stability has been available since 
the mid-sixties (Horne, 1964a, b), it is only in the last decade that tentative design 
proposals based on theoretical considerations have been suggested for non-uniform 
members, e.g. haunched members. Also, it has become important economically to assess 
the influence of the ‘middle’ flange, which is a feature of British portal frame 
construction. 

Previous work at Manchester University has produced two different approaches for 
checking the adequacy of two-flanged members, one of which has been extended to 
include three-flanged members. The approach of Horne et al. (1979a), which covers the 
design of tapered and haunched two-flanged members, appears to give realistic solutions, 
but the method needs to be extended to include three-flanged members. Horne and Morris 
(1977) modified a safe stress method to check the adequacy of the three-flanged members 
against lateral instability. These methods are further developed to account, where 
possible, for the beneficial effect of the middle flange. Also, there is a need for any 
tentative conservative design proposal to be checked against experimental evidence.  

Due to the definite gap in the research knowledge on the behaviour of haunched rafter 
members, a series of tests was undertaken, which has provided useful information 
(Morris and Nakane, 1983). This, together with other published research evidence, is 
used in the comparison of existing and new theoretical treatments for member stability. 

10.2 THE PROBLEM 

A steel I-section is very efficient and strong when loaded through its shear centre, but it is 
inherently weak when subject to lateral bending (minor axis) or torsion, particularly the 
universal beam sections. The engineer must, therefore, guard against the possibility of 
failure caused by lateral movement of a member combined with a twisting action of the 
cross-section. Such a phenomenon is known as lateral-torsional buckling—a condition 
which can arise when in-plane bending of an I-section causes both sudden sideways 
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deflection and twisting at a lower load than designed. Thus, lateral-torsional stability is 
an important criterion in the design of steel I-section members. In the case of single-
storey construction, there is the added complication that the rafter is usually haunched 
within the most highly stressed length. Deep haunches can be more susceptible to overall 
member instability by twisting about the purlin/rafter connections. 

The complex subject of lateral-torsional stability has attracted the attention of many 
researchers over a number of years and various design formulae or charts have been 
proposed for a wide range of problems. Thus majority of these solutions have dealt with 
the stability of symmetrical I-sections having a uniform depth—few have examined the 
stability of members having a varying depth, i.e. tapered (Vickery, 1962; Nethercot, 
1973). When viewed in terms of real structures, it is inevitable that approximate solutions 
only have been derived because of the numerous ‘practical’ factors that need to be 
considered, such as plasticity, imperfections, residual stresses and effectiveness of 
restraints. 

The particular problem being considered involves lateral-torsional buckling of a 
haunched member subjected to large in-plane moments, the magnitude of which may be 
sufficient to cause a plastic hinge to develop at the designated positions assumed in 
analysis, e.g. haunch/rafter intersection. The engineer needs to define the critical length 
over which the outstand (compression) flange is stable under factored loading. Important 
parameters include the efiect of lateral restraint on the tension flange and/or compression 
flange, the ability of the member to develop the necessary moment-rotation capacity to 
allow a plastic hinge to form without instability, the influence of local buckling on lateral 
stability and the effect of non-uniform members. 

10.3 STABILITY OF UNRESTRAINED UNIFORM MEMBERS 

In elastic design, the conditions for member stability are assessed simply by reference to 
the forces and corresponding stresses derived from an elastic analysis of the frame. A 
limited acknowledgement in the proposed British code (to be published as BS5950) is 
made of the influence of redistribution of forces after partial yielding by allowing a 
redistribution of moments up to 10% of the peak moments. 

On the other hand, in plastic design account must be taken of plastic rotation 
requirements, and these affect design for member instability in the following ways. 

(a) Inelastic deformations due to plasticity in bending about the major axis of an I-section 
causes the warping resistance to decrease more drastically than St Venant torsional 
resistance. 

(b) Rotation requirements are less severe in regions of low moment gradient (e.g. sagging 
moment regions in beams) than in regions of high moment gradient (e.g. at rigid or 
continuous supports) because of the greater elastic rotation capacity of the former. 

(c) A modest reduction in the full plastic capacity is not deleterious when this occurs in a 
region of uniform or near-uniform moment, since such a region will contain the ‘last 
hinge to form’. The eflfect of such a reduction on the collapse load of the structure 
will be small. 
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For these reasons, special treatment procedures of member stability requirements are 
needed in plastic design; the following are among those suitable for the treatment of such 
problems in single-storey frames. 

10.3.1 Elastic Stability of Unrestrained Uniform Member 

Apart from localised plastic hinge action at designated locations in a portal frame 
(necessary to produce a failure mode) the frame behaves elastically. Therefore, the 
stability of the uniform members or parts of uniform members, not containing plastic 
hinges, can be readily checked by using conventional allowable stress limitations as 
given in the current British code (BS449) or the design charts given in the BCSA 
publication No. 23 (Horne, 1964b) using factored loading. The latter method for checking 
elastic stability is based on earlier studies by the Cambridge team (Baker et al., 1956; 
Horne, 1956). The procedure is best suited for members not carrying high axial loads and 
can deal with any combination of end moments (including minor axis bending). The 
treatment of stability is based on the calculation of an equivalent uniform major axis 
moment given by , where m depends on β (ratio of end moments) (see 
Fig. 10.2). The values of m are presented graphically for different moment ratios β. For 
members with slenderness greater than a certain limiting value, buckling occurs at loads 
only slightly greater than these causing yield in a extreme fibre near mid-length. The 
design charts therefore facilitate a stability check  
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FIG. 10.2. Unrestrained member 
subject to linear moment gradient. 

based on the criterion that the extreme fibre stress does not exceed yield anywhere along 
the length of the member. 

10.3.2 Plastic Stability of Unrestrained Uniform Member 

A design procedure for checking the stability of uniform members with plastic hinges at 
the ends has been available since the mid-sixties and also takes the form of design charts, 
the basis of which is given elsewhere (Horne, 1964a). In using the charts, the uniform 
member is assumed to be subjected to end moments that act about the major axis only, 
the larger moment causing a plastic hinge to form at one end. The BCSA publication No. 
23 (Horne, 1964b) gives a direct checking procedure for such members subject to a linear 
moment gradient. That is, plastic moment occurs at one end, Mpr (=Zpr.py), with βMpr at 
the other end (where ). To use the charts it is necessary to know the 
slenderness ratio l/ry, where l is the length of member being considered, and the torsion 
constant T ( ) a property of the cross-section of the chosen member. Values 
of T are given as a  
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FIG. 10.3. Typical stability curve—
unrestrained member. 

property for both the universal sections and the RSJs in Table C of Plastic Design 
(Morris and Randall, 1979). Alternatively, it may be assumed to be given (with sufficient 
accuracy) by , where x=D/tf. Charts are plotted in terms of 
slenderness ratio and permissible axial stress for different values of β and are reproduced 
for both grade 43 and 50 steels and specific values of T: Fig. 10.3 shows a typical chart. 
Knowing the end moment ratio β and permissible axial stress p, the engineer can rapidly 
assess whether or not the design slenderness ratio is acceptable. 

10.3.2.1 Limiting Slendemess Curve for Unrestrained Members 

The various charts given in BCSA publication No. 23 (Horne, 1964b) for checking 
plastic instability indicate the maximum axial stresses allowed while ensuring the 
attainment of full plastic action at one or both ends of a member. It would appear from 
these charts that plastic action is not possible, whatever the slenderness ratio, when a 
condition of uniform moment is approached, e.g. β>0·6 in the chart shown in Fig. 10.3. 
However, at low slenderness ratios, plastic collapse mechanisms involving assumed 
‘plastic hinges’ in such members will give satisfactory estimates of carrying capacity of 
continuous structures, provided 

(a) the peak of the moment-rotation curve is not more than a few per cent below the 
theoretical plastic moment for the given axial load, and 
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(b) the curve of moment versus in-plane hinge rotation is sufficiently flat-topped, i.e. 
adequate rotation capacity. 

The theoretical treatment of this problem is difficult since it involves following the post-
buckling behaviour in the elastic-plastic range. This has been done for the lateral 
instability of uniform beams in Chapter 12 of Baker et al. (1956) and is the basis for the 
design recommendations given in the preceding section. The recommended maximum 
unsupported length is given by 

 

(10.1) 

This equation gives the limiting slenderness curve indicated on the design charts, as 
illustrated by Fig. 10.3. At slenderness below this limiting curve, full plastic action may 
be assumed in the member for design purposes, irrespective of ratio of end moments. 
That is, eqn (10.1) gives the safe permissible spacing of supports to the compression 
flange whatever the ratio of end moments and the degree of plasticity, provided there is 
no destabilising force acting on the compression ftange between the supports. For 
example, the effect of the compression flange of the haunch trying to move laterally at 
the eaves connection introduces a destabilising lateral force into the inner flange of the 
portal leg, thereby requiring adequate restraint at that position. 

As the axial stresses in a portal frame are generally low, and taking account of the safe 
assumptions involved in its derivation, eqn (10.1) can be simplified to Lm/ry=1500/x for 
grade 43 steel. Alternatively, the safe spacing of supports for a uniform member 
containing a plastic hinge has been tabulated for each section in Table B of Plastic 
Design (Morris and Randall, 1979). However, if the length of members being considered 
is elastic and/or contains the last hinge to form, then the maximum spacing can be relaxed 
as rotational capacity is not a requirement and a value of 2500/x for grade 43 steel is 
recommended. 

If the axial stress in a member exceeds the value given by the appropriate chart, the 
member may be rendered safe by the introduction of lateral supports to the compression 
flange or by changing the section size. 

10.3.2.2 Maximum Spacing of Restraints on Tension Flange 

All lengths of any member between lateral restraints to the tension flange, i.e. maximum 
spacing between secondary members such as purlins, must satisfy the stability 
requirement for an unrestrained member of that effective length. A simple conservative 
estimate is to ensure the spacing of these secondary members does not exceed the value 
given by the limiting slenderness values in Section 10.3.2.1. 
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10.4 STABILITY OF UNIFORM MEMBERS RESTRAINED 
ALONG ONE FLANGE 

Since the early seventies, researchers have been attempting to take account of the effect 
of restraint to uniform members, normally supplied by secondary members. Considering 
the particular case of portal frame construction, the columns are usually restrained at 
intervals along one (tension) flange by cold-formed sheeting rails. The rafters are also 
restrained by similar secondary members (purlins). Composite action with the cladding 
by the purlins and sheeting rails is sufficient to ensure that the particular flange involved 
(at its point of attachment to a rail) is fully restrained against displacement perpendicular 
to the web of the rafter or column under consideration, i.e. positional lateral restraint is 
provided. 

The effective torsional restraint given to the main member by the purlins or sheeting 
rails depends on many factors, such as the length and cross-section of the rails, the 
moment-rotation characteristics of the joints between the rails and the main members, the 
local deformation of the main member and the nature of the cladding. However, standard 
connections between purlins and the tension flange of the rafter are generally not 
markedly moment resistant, i.e. as the connections occur on one flange of the main 
member only, local deformation of the web and the outstand flange can occur. Therefore, 
researchers in recent years have assumed there is adequate lateral restraint, but any 
torsional restraint (as might be present) has been ignored. 

To develop a design procedure for the general case, the design of restrained 
symmetrical I-section members subject to uniform moment is considered initially. The 
modification required to deal with any distribution of moments is then considered. 

10.4.1 Elastic Stabflity of Restrained Uniform Member 

The elastic buckling of members, laterally supported at intervals along one flange, was 
presented by Horne and Ajmani (1971, 1972). The loading condition considered was for 
a symmetrical I-section member (Fig. 10.4(a)) supported against lateral deflection in both 
flanges at its ends (distance l apart) and subjected to an axial thrust P, together with 
major axis end moments Mx and βMx (Fig. 10.4(b)). The ends are assumed free to rotate 
about the minor axis of the section with no restraint against warping. Also, the section is 
assumed to be restrained by the rails at intervals of s along the axis AB. As these 
secondary members are attached to one of the flanges, the effective axis of restraint is 
assumed to act at some distance a from the centroidal axis of the main member. Due to 
the finite size of connections, a is somewhat larger than half the depth of the main 
member. If d is the distance between the centroids of the flanges, the ratio a/d will tend to 
lie between the values of 0·5 and 0·75, i.e. the distance from the axis of restraint to the 
flange lies between zero and 0·25d. To be on the safe side a high value should be taken 
and after due consideration of constructional details it is assumed that the ratio a/d=0·75.  
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FIG. 10.4. Restrained member subject 
to linear moment gradient. 

It is shown by Horne and Ajmani (1971) that, for sufficiently small values of s, a member 
(loaded as indicated in Fig. 10.4) will buckle by twisting about the restrained axis AB 
(‘overall failure’, Fig. 10.5(a)), but that for s larger than some critical value, buckling will 
occur between supports (‘failure between supports’, Fig. 10.5(b)). The critical value of s 
depends only slightly on the ratio of end moments β, provided that the larger end moment 
Mx produces compression in the unrestrained flange, as illustrated in Fig. 10.4(b). It is 
therefore sufficient to consider the case of uniform moment.  
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FIG. 10.5. Different modes of member 
instability: (a) overall buckling; (b) 
buckling between supports. 

 

FIG. 10.6. Determination of mode of 
failure when a/d=0·75. 
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Some results obtained by Horne and Ajmani (1971) for the uniform moment condition 
are given in Fig. 10.6 for a/d=0·75. The vertical scale gives the number of sub-lengths 
m(=l/s) into which the member is divided by the lateral restraints. The horizontal scale is 
the value of (l/ry)2(tf/D)2. The curves are plotted for various values of ρ=P/PE= 
(p/π2E)(s/ry)2, where PE is the Euler buckling load for the member as a pin-ended strut 
over a length s and p is the mean axial stress (=P/A). Failure occurs by overall instability 
for cases lying above the appropriate curve, and between supports for cases lying below. 
When failure occurs between supports, design methods appropriate to unrestrained 
members should be used (see Section 10.3) and should be applied to the most critically 
loaded length between supports, see Horne (1956). However, in the haunched region of 
portal frames, overall failure (by twisting about the axis of restraint) tends to be more 
critical and is a particular problem where deep haunches are used, as they are more 
susceptible to instability of the outstand compression flange. 

10.4.1.1 Restrained Uniform Member Subject to Uniform Moment 

Taking the member shown in Fig. 10.4 which is subject to uniform moment, Mx=βMx (i.e. 
β=1), the differential equation governing the rotation at a distance z from one end, 
assuming the initial imperfection is given by 

 (10.2) 

is  

(10.3) 

Here, GK is the St Venant torsional rigidity, EIy the flexural rigidity about the minor axis 
and r0 the polar radius of gyration about the axis of restraint. Assuming the ends of the 
members to be free about the minor axis and free from warping restraint, the solution to 
eqn (10.3) is 

 (10.4) 

where  

 

(10.5) 

Following the Perry-Robertson approach for struts, it is assumed that the initial lateral 
deflection at mid-span of the outstand flange is 0·0015(lry/ay) where ay is the extreme 
fibre distance about the minor axis, e.g. B/2 for the section shown in Fig. 10.4. Hence 
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(10.6) 

By considering the bending of the outstand flange, it is readily shown from eqns (10.5) 
and (10.6) that the bending stress about the minor axis at mid-length is given by ƒ0 where 

(10.7) 

In order to simplify eqn (10.7), various approximations to section properties may be 
made, in this instance based on the British range of universal beam sections. It is found 
that, approximately, 

 
  

If rx is the radius of gyration about the major axis then 

 
  

Hence 

 
  

where ƒx is the major axis bending stress due to Mx. Inspection of typical universal 
sections shows that the second term inside the square brackets approximates to 0·65ƒx. 
Taking E=200 kN/mm2 and G= 80 kN/mm2, eqn (10.7) then reduces to 

(10.8) 

The design criterion is that the maximum stress, given by p+ƒx+ƒ0, should not exceed the 
yield stress py, i.e. 

 
(10.9) 

When p=0, it follows that ƒx≤ py, so that a safe (high) value of ƒ0 may be derived from 
eqn (10.8) by putting ƒx=py. Substituting the resulting value of ƒ0 in eqn (10.9) gives, 
approximately, the design criterion 
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(10.10) 

It is intended to produce a set of design charts for checking the elastic stability of 
restrained uniform members, based on the theoretical treatment by Horne and Ajmani 
(1971). These charts, similar to the charts (34–36) for unrestrained members given in 
BCSA publication No. 23 (Horne, 1964b), are intended for publication in a companion 
volume to the Constrado monograph (Horne and Morris, 1981). 

10.4.1.2 Restrained Uniform Member Subject to Non-Uniform Moment 

It has been shown by Singh (1969) that a satisfactory method of calculating the critical 
elastic buckling conditions for a restrained uniform member, subjected to non-uniform 
moment, in the absence of axial load (which is the usual design case) is as follows. Let ƒ1, 
ƒ2, ƒ3, ƒ4 and ƒ5 be the elastic extreme fibre stresses (based on elastic moduli) due to the 
applied moments M1, M2, M3, M4 and M5, where M1 and M5 are the moments at the ends 
(Fig. 10.7(b)), M3 is the moment at mid-length and M2 and M4 are the quarter point 
moments. A factor k is calculated where 

(10.11) 

The elastic stresses ƒSmax and ƒEmax are the maximum span and end stresses, respectively. 
The stresses ƒ1 to ƒ5, ƒSmax and ƒEmax are positive if they correspond to compression in the 
outstand flange, otherwise they are zero. Similarly, the quantity (ƒSmax=ƒEmax) is only 
included if it is positive. If Lcr is the critical buckling length for a member subjected to a 
uniform moment producing extreme fibre stress of py, then the  
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FIG. 10.7. Different moment 
distributions. 

critical buckling length for the given moment distribution is where 
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 (10.12) 

It follows that, to obtain the equivalent length for buckling under a uniform moment, the 
actual length should be multiplied by √k. Hence the term l/100ry in eqn (10.10) should be 
replaced by √kl/100ry giving as the design criterion 

(10.13) 

The stress condition (10.13) aims to limit the maximum stress in the member to the yield 
value. The bending stress about the minor axis ƒ0 occurs only between the points of 
lateral support at sections 1 and 5, and may be assumed to occur equally at sections 2, 3 
and 4. Hence ƒx on the left-hand side of eqn (10.12) refers to the greatest positive stress 
anywhere within the restrained length, which might not coincide with the quarter-points 
2, 3 or 4. Note, if the right-hand side of inequality (10.13) is negative, then the member is 
not stable. There is no necessity to check the stability if D/tf<220/√py. 

10.4.1.3 Effect of Axial Load 

The effect of an axial load P may be derived by noting from eqn (10.7) that a moment Mx 
in the presence of a force P has the same effect as a moment where 

 
  

It has been shown that when a=0·75d then approximates to 13d2/16, hence 

   

In order always to produce a safe result it may be assumed that 

   

The stresses ƒ in eqn (10.11) are therefore replaced by corresponding stresses ƒ* due to 
the moments (see Fig. 10.7(c)). The calculation of the modified moments to allow 
for the effect of axial load is illustrated by Figs. 10.7(c)–(f), inclusive. Because of the 
safe approximations made to derive eqn (10.10) it may be safely used for members 
carrying loads up to a mean factored stress of 10% of the yield stress. 

10.4.2 Plastic Stability of Restrained Uniform Member 

The research work by Horne and Ajmani (1971, 1972) describes a method of checking a 
member subject to plastic end moments in the presence of axial thrust when the tension 

Steel framed structures     310



flange is laterally restrained at intervals, not exceeding that recommended in Section 
10.3.2.2. Failure occurs due to torsional buckling about the restrained axis and the 
theoretical treatment is similar to that used for unrestrained members (Section 10.3.2). 
Lower limiting slenderness curves applicable to loading in the plastic range with any 
ratio of end moments β are also derived by considering post-buckling behaviour. In 
producing design charts it is assumed that a/d is 0·75. Adopting this value, then the 
limiting slenderness between restraints to compression flange while  

 

FIG. 10.8. Typical stability curve—
restrained member. 

allowing plastic action is given by 

 

(10.14) 

Assuming grade 43 steel, then eqn (10.14) becomes 
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(10.15) 

A typical design chart, similar to the charts (1–32) for unrestrained members given in the 
BCSA publication No. 23 (Horne, 1964b), is reproduced in Fig. 10.8. A complete set of 
design curves is intended for publication in a companion volume to the Constrado 
monograph (Horne and Morris, 1981). 

10.5 STABILITY OF RESTRAINED NON-UNIFORM MEMBERS 

The preceding sections and comments have dealt only with members having a constant 
cross-section throughout thek length. The method outlined in Section 10.4.1 needs to be 
modified to take account of the varying depth of a haunched member and, when 
necessary, the ‘middle’ flange. Also, the theoretical approach of Horne et al. (1979a) is 
discussed due to its particular relevance to tapered and haunched members. 

10.5.1 Elastic Stabflity of Non-Uniform Members Restrained Along 
One Flange 

Initially, design methods dealing with the stability of two-flanged, tapered and haunched 
members are described, followed by a discussion of procedures concerned with three-
flanged members. 

10.5.1.1 Two-Flanged Haunched Members 

(a) Home and Morris (1977) approach. In the design of non-uniform members, such as 
the two-flanged haunched rafter shown in  
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FIG. 10.9. Two-flanged haunched 
rafter: (a) two-flanged haunch 
member; (b) bending moment diagram; 
(c) typical stress distribution. 

Fig. 10.9(a), it is assumed that restraint is provided at intervals along the flange AB as 
indicated (see enlarged detail in Fig. 10.1). The outstand flange is assumed to be laterally 
restrained at the points C and D, or point E. The design condition, eqn (10.13), can be 
applied, provided D*, tf and ry all refer to the properties at the deepest section of the 
haunched rafter and k is calculated from eqn (10.11), based on the induced compression 
stresses in the outstand flange. This approach involves numerous assumptions. The most 
important is that eqn (10.11) gives the factor k to be applied to the critical length Lcr for a 
uniform member subject to a uniform yield moment (based on properties of the deepest 
section) in order to obtain the elastic critical length of the haunched 
member under its actual load conditions.  
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(b) Horne et al. (1979a) method. The general approach adopted by Horne et al. is to 
express the maximum stable length of a non-uniform (tapered or haunched) I-section 
rafter in the form 

 (10.16) 

where Ls is the maximum stable length of a uniform member (properties based on 
minimum section) subject to a uniform moment. In the case of elastic instability, the 
reference length Ls is in fact the critical length Lcr for a uniform member subject to a 
uniform moment just sufficient to cause yield in the extreme fibres, i.e. My. The factor k 
allows for the arbitrary distribution of stresses along its length based on elastic moduli 
(see eqn (10.11)) while the shape factor c allows for the varying depth of the tapered or 
haunched member.  

Using the expression derived by Horne and Ajmani (1969) for the critical length Lcr, 
Horne et al. investigated the influence of various parameters affecting the elastic critical 
length in the context of the British range of universal beam sections, and proposed an 
empirical expression for the elastic critical slenderness ratio 

 
(10.17)  

which reduces to the following equation for grade 43 steel 

 
(10.18) 

where x=D/tf of the basic section. The parameter c represents an estimate of the ratio of 
the elastic critical length of a haunched member, subject to a moment distribution that 
would just cause yield in all extreme fibres, to the critical length Lcr of a uniform 
member, i.e. 

   

Subsequent investigation, with respect to the more ‘economic’ universal beam sections, 
resulted in c being defined as 

 (10.19) 

where r=D*/D (ratio of maximum and minimum depths) and q is the ratio of the 
haunched length to the total length of member between lateral supports. A slightly more 
accurate evaluation of c is given in Horne et al. (1979a). However, it should be noted that 
this method deals only with elastic critical length and does not include for the effect of 
imperfections as other methods do. Therefore, it will tend to give an overestimate of the 
allowable design length. 
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10.5.1.2 Three-Flanged Haunched Members 

(a) Horne and Morris (1977) method. Practical haunched members (Morris and Packer, 
1977, 1984) tend to differ from the arrangement given in Fig. 10.9(a) in that the basic 
section is continued through into the haunched portion. This produces within the haunch 
region a ‘middle flange’ (see Fig. 10.10(a)). Considering the buckling of a uniform three-
flanged member of the cross-section indicated in Fig. 10.11, restrained about the axis R, 
then the differential eqn (10.3) remains  

 

FIG. 10.10. Three-flanged haunched 
rafter: (a) three-flanged haunch 
member; (b) bending moment diagram; 
(c) typical stress distribution. 
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FIG. 10.11. Cross-section of three-
flanged member. 

the same, except that the term EIy(a2+d2/4) is replaced (to a sufficiently close 
approximation) by where I1, I2 and I3 are the second 
moments of area of the flanges about the minor axis of the section, and a1, a2 and a3 are 
their distances from the axis of restraint. Thus, eqn (10.7) is amended accordingly. 

When the necessary modifications to eqns (10.8) and (10.10) including 
approximations to the value of r0 are explored numerically, it is found that the net effect 
is to replace 3(tf/D)2 in eqn (10.8) by 4·2(tf/D*)2, and 3000(tf/D)2 by 4200(tf/D*)2 in eqn 
(10.10). This corresponds to the increase in the St Venant term GK in eqn (10.7) to allow 
for the torsional resistance of the third flange. It may be noted that the axis restraint is 
still assumed to be a distance from the tension flange of a quarter of the depth of basic 
section. A further refinement is suggested by Horne (1983) to cover the case when the 
haunch flange thickness is different from the flange of the basic rafter section. That is, a 
universal beam (UB) cutting different from the basic section is deliberately used to 
improve the stability of the haunch. 

The use of the modifying factor √k by which l in eqn (10.7) is multiplied to derive the 
effect of varying extreme fibre stresses has not been investigated theoretically for three-
flanged haunched members. Tentatively, however, it may be applied in the same way as 
for two-flanged tapered members, the stresses ƒ being based on elastic moduli, for cross-
sections perpendicular to the axis of the basic rafter section. Equation (10.13) becomes 
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(10.20) 

where th is the thickness of haunch compression flange. 
(b) Horne et al. method (1979a). It is suggested that a conservative estimate for the 

three-flanged, haunched member using the method outlined in Section 10.5.1.1(b) would 
be obtained if c is made equal to unity, i.e. 

   

where Lcr is defined by eqn (10.17) or (10.18). 
(c) Morris and Nakane approach. One of the comments occasionally made by 

engineers regarding empirical design formulae is that they should be simple (Morris, 
1980, 1983a, b). In an attempt to simplify eqns (10.13) and (10.20), it is necessary to 
know the influences of each variable parameter, i.e. k, l/ry, py and D/tf or D*/tf, on the 
equations. The relationship between each variable and each equation could be shown 
graphically by means of scatter diagrams, using a simple random sampling technique for 
the variables. Although it is possible to obtain some indication from these diagrams of the 
relationship between each variable within the context of a given equation, this method is 
not sufficiently precise for most statistical purposes. It becomes necessary to compute a 
quantitative index of each relationship; one such index is the Pearson product-moment 
correlation coefficient, or simply the Pearson r coefficient. A basic assumption dependent 
on the use of the Pearson r technique is that the variables and equations have a linear 
relationship. However, though the variable l/ry exhibits a curvilinear relationship it has a 
dominant influence when compared with k and D/tf or D*/tf and is retained in a non-
linear form. Also, k plays an important role in reflecting the stress distribution along the 
member, and is retained in its present form. 

Equation (10.13) can be expressed in a simple form, i.e. 

 

  

where A=√k(l/ry) and α is the regression coefficient. A regression analysis was 
undertaken to evaluate α, based on the following ranges of the variables for the two-
flange case, assuming grade 43 steel, 

   

The resulting value of r was 0·997, with α=0·000047. Similar analyses were carried out 
for the three-flanged case. Further study revealed that a general, though slightly less 
accurate, expression can be used for both cases, i.e. 
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(10.21) 

where x is dependent on n, the number of flanges in haunched region, i.e. x=D/tf when 
n=2 and x=D*/tf when n=3. It is suggested that k does not exceed a value of 0·75–0·80, 
otherwise there is a strong possibility of plasticity occurring in the haunched region, 
which could lead to premature failure. Equation (10.21) can be easily used for grade 50 
steel, by replacing the constant 4 by 3. 

Extending the concept of the shape factor c to include three-flanged members, both 
tapered and haunched, the following approximate empirical expressions have been 
developed. 

(i) tapered members (depth varies continually within design length, i.e. q=1) 
c=(2−r)[0·007√(x−20)+0·9158]+r−1 

(10.22) 

(ii) haunched members (part of design length has constant depth, i.e. q≠1) 
c=1+q[(44−x)3×10−5−0·0364] 

(10.23) 

where x=D/tf. 

10.5.2 Plastic Stability of Non-Uniform Members Restrained Along 
One Flange 

10.5.2.1 Two-Flanged Haunched Members 

Horne et al. (1979a) also gives a theoretical treatment, based on Horne and Ajmani 
(1969, 1971), for the derivation of maximum possible slenderness ratios appropriate to 
two-flanged haunched rafters laterally restrained on the top flange by purlins, when the 
rafter is assumed to contain a plastic hinge at the haunch/rafter intersection. A convenient 
expression similar to eqn (10.14), for the limiting slenderness ratio, is 

 
(10.24) 

The permissible length for the two-flanged haunched member is obtained by 
substituting Ls=Lm in eqn (10.16). In the evaluation of k the stresses ƒ are calculated, 
based on the plastic moduli of the appropriate cross-sections. The factor c is determined 
from eqn (10.19). For grade 43 steel, eqn (10.24) reduces to eqn (10.15). 

Experimental confirmation of eqn (10.24) was limited to cases where plastic hinges 
formed at the haunch/rafter intersection, while the moment at the eaves connection was 
always less than 0·7 of the plastic moment at the deepest section. If plasticity occurs in 
the haunched region, other than local yielding near the eaves connection, then it becomes 
difficult to ensure satisfactory plastic rotation capacity. It is found that in order to develop 
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a plastic hinge at the haunch/rafter intersection, full depth web stiffness is required at that 
position. This was confirmed later by the research of Morris and Nakane (1983). 

10.5.2.2 Three-Flanged Haunched Members 

An estimate of for three-flanged, haunched rafters can be made by using the Horne et 
al. method outlined in Section 10.5.2.1 and making c=1. 

Alternatively, it may be assumed that the appropriate expression for c developed by 
Morris and Nakane (see eqns (10.22) and (10.23)) may be used with the Horne et al. 
method given in Section 10.5.2.1. 

10.6 LATERAL RESTRAINTS 

In checking for member stability the engineer assumes the positions of lateral restraints to 
the compression flange, based on practical considerations. For instance, members must be 
adequately braced against lateral and torsional displacements at hinge positions. In 
addition, a member may need to be braced away from the hinge position, depending on 
stability requirements. In all cases, the restraining brace should be sufficiently stiff so that 
the member is induced to buckle between braces, i.e. restraint must have adequate 
strength and stiifness. 

Recent tests (Morris and Nakane, 1983) have indicated that the magnitude of the 
restraining force before instability occurs is of the order of 2% of the squash load of the 
compression flange, i.e. 0·02Btfpy. Though the restraining force is relatively small, it is 
essential that such a force (in the form of a brace) be supplied. If a lateral restraint 
buckles (or is removed) then the buckling mode will change to a more severe condition, 
leading to premature failure as was noted recently (Morris and Packer, 1984). Adequate 
stiffness is therefore probably more important than strength and in view of the lack of 
sufficient experimental evidence a limiting slenderness ratio of 100 is recommended 
(Morris, 1980) for diagonal braces. 

It is sometimes difficult to give lateral support exactly at a plastic hinge position. 
However, if the hinge position is to be regarded as being laterally restrained, then the 
point of support to the compression flange must not be more than D/2 from the hinge 
position. 

10.7 COMPARISON OF METHODS 

In an attempt to assess the different procedures outlined in this chapter it was decided to 
compare several of the methods against known experimental evidence. There are three 
main sources of test information: the research on two-flanged tapered and haunched 
members by Horne et al. (1979a, b), the test series on haunched members summarised in 
a paper by Morris and Nakane (1983), and more recently the reported behaviour of 
practical rafters by Morris and Packer (1984). Though each series of tests have differing 
support conditions at the ‘column’/rafter intersection, they are, in simple terms, haunched 
rafter members cantilevered from a ‘column’ member and loaded at the free end to 
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produce a linear moment gradient along the length of the member. Each test arrangement 
is such as effectively to restrain torsionally both ends of the member. 

The experimental research used in the comparison has been broadly classified into 
groups, basically related to the geometry of the member and the amount of restraint 
applied to the member, i.e. 

(a) Horne et al. (1979b)—two-flanged, tapered members (q=1) tension flange restraint (3 
tests),  

TABLE 10.1 
PREDICTED/ACTUAL FAILURE LOAD RATIO 
FOR VARIOUS STABILITY CHECKS 

Mean predicted/actual failure load ratio 
Home and 

Morris eqns
(10.13), 
(10.20), 

Morris 
and 

Nakane 
eqn 

(10.21) 

Morris and 
Nakane eqns 

(10.21), 
(10.19), 
(10.22), 
(10.23) 

Home et al 
eqns 

(10.24), 
(10.19) 

Home et 
al. eqn 
(10.17) 

Morris and 
Nakane 

eqns 
(10.24), 
(10.23) 

Test 
reference (see 
text, Section 
10.7) 

exclude c 
Method (1)

c=1 
Method (2)

include c 
Method (3) 

include c 
Method (4)

c=1 
Method 

(5) 

include c 
Method (6) 

Two-flanged members 
(a) Home et al. 0·76 0·87 0·77 0·95 — — 
(b) Home et al. 0·84 0·88 0·85 0·96 — — 
Three-flanged members 
(c) Morris and 

Nakane 
0·60 0·75 0·78 — 0·88 0·92 

(d) Morris and 
Nakane 

0·56 0·71 0·74 — 0·80 0·86 

(e) Morris and 
Nakane 

0·83 0·85 0·86 — >1·0 >1·0 

(f) Morris and 
Packer, 
Morgan 

0·84 0·94 0·94 — 0·88 0·92 

(b) Horne et al. (1979b)—two-flanged, haunched members (q<1) with tension flange 
restraint (8 tests), 

(c) Morris and Nakane (1983)—three-flanged, haunched members with no tension flange 
restraint (6 tests), 

(d) Morris and Nakane (1983)—three-flanged, haunched members with only tension 
flange restraint (4 tests), 

(e) Morris and Nakane (1983)—three-flanged, haunched members with tension flange 
restraint, coupled with lateral support to compression flange at the haunch/rafter 
intersection (3 tests), and 
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(f) Morris and Packer (1984), Morgan (1978)—represents practical conditions; three-
flanged, haunched rafter with cold-formed purlins attached to tension flange and 
diagonal braces to outstand flange at haunch/rafter intersection (3 tests). 

Table 10.1 gives the mean predicted/actual failure load ratio for each group of tests 
against the various methods being compared. The comparison indicates that method (2) is 
an improvement on the original basic method (1), giving a more accurate but safe 
prediction of failure load. In effect, this means an increase in the limiting allowable 
slenderness. Though method (3) produces similar results to procedure (2) it does involve 
the additional calculation of the factor c, and method (2) is preferred because of its 
simplicity. The method by Horne et al. (4) gives an extremely good estimate of failure 
load for the two-flanged condition. In the context of the three-flanged members, methods 
(5) and (6) produce fairly consistent predictions, apart from one unsafe result. An 
inspection of the estimates for the practical haunched members (ƒ) shows that there is 
little to choose between the methods (2) and (6), apart from the calculation of c for the 
latter. On the other hand, method (6) gives a direct evaluation of the limiting slenderness 
ratio. 

10.8 CONCLUSIONS 

A preliminary assessment of both existing and new methods, used for checking the 
adequacy of haunched members against instability, is made on the basis of predicting the 
failure load for a range of test specimens, the actual failure loads of which are known. 
Though the two methods (2) and (6) appear to produce good results, the procedure by 
Morris and Nakane (2) might be preferred as it gives safe answers. However, further 
detailed examination of the test evidence needs to be undertaken in order to give better 
guidance as to the influence of geometry of the member, the amount of restraint and 
stress distribution factor k in the control of stability of haunched members. 
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