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Preface 

The purpose of this book is to provide, in a unified form, a text covering the 
associated topics of structural and stress analysis for students of civil engineering 
during the first two years of their degree course. The book is also intended for 
students studying for Higher National Diplomas, Higher National Certificates and 
related courses in civil engineering. 

Frequently, textbooks on these topics concentrate on structural analysis or stress 
analysis and often they are lectured as two separate courses. There is, however, a 
degree of overlap between the two subjects and, moreover, they are closely related. 
In this book, therefore, they are presented in a unified form which illustrates their 
interdependence. This is particularly important at the first-year level where there is a 
tendency for students to ‘compartmentalize’ subjects so that an overall appreciation 
of the subject is lost. 

The subject matter presented here is confined to the topics students would be 
expected to study in their first two years since third- and fourth-year courses in 
structural and/or stress analysis can be relatively highly specialized and are therefore 
best served by specialist texts. Furthermore, the topics are arranged in a logical 
manner so that one follows naturally on from another. Thus, for example, internal 
force systems in statically determinate structures are determined before their 
associated stresses and strains are considered, while complex stress and strain 
systems produced by the simultaneous application of different types of load follow 
the determination of stresses and strains due to the loads acting separately. 

Although in practice modem methods of analysis are largely computer-based, the 
methods presented in this book form, in many cases, the basis for the establishment 
of the flexibility and stiffness matrices that are used in computer-based analysis. It is 
therefore advantageous for these methods to be studied since, otherwise, the student 
would not obtain an appreciation of structural behaviour, an essential part of the 
structural designer’s background. 

In recent years some students enrolling for degree courses in civil engineering, 
while being perfectly qualified from the point of view of pure mathematics, lack a 
knowledge of structural mechanics, an essential basis for the study of structural and 
stress analysis. Therefore a chapter devoted to those principles of statics that are a 
necessary preliminary has been included. 

As stated above, the topics have been arranged in a logical sequence so that they 
form a coherent and progressive ‘story’. Hence, in Chapter 1, structures are 
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considered in terms of their function, their geometries in different roles, their 
methods of support and the differences between their statically determinate and 
indeterminate forms. Also considered is the role of analysis in the design process 
and methods of idealizing structures so that they become amenable to analysis. In 
Chapter 2 the necessary principles of statics are discussed and applied directly to the 
calculation of support reactions. Chapters 3-6 are concerned with the determination 
of internal force distributions in statically determinate beams, trusses, cables and 
arches, while in Chapter 7 stress and strain are discussed and stress-strain 
relationships established. The relationships between the elastic constants are then 
derived and the concept of strain energy in axial tension and compression 
introduced. This is then applied to the determination of the effects of impact loads, 
the calculation of displacements in axially loaded members and the deflection of a 
simple truss. Subsequently, some simple statically indeterminate systems are 
analysed and the compatibility of displacement condition introduced. Finally, 
expressions for the stresses in thin-walled pressure vessels are derived. The 
properties of the different materials used in civil engineering are investigated in 
Chapter 8 together with an introduction to the phenomena of strain-hardening, creep 
and relaxation and fatigue; a table of the properties of the more common civil 
engineering materials is given at the end of the chapter. Chapters 9, 10 and 11 are 
respectively concerned with the stresses produced by the bending, shear and torsion 
of beams while Chapter 12 investigates composite beams. Deflections due to 
bending and shear are determined in Chapter 13, which also includes the application 
of the theory to the analysis of some statically indeterminate beams. Having 
determined stress distributions produced by the separate actions of different types of 
load, we consider, in Chapter 14, the state of stress and strain at a point in a 
structural member when the loads act simultaneously. This leads directly to the 
experimental determination of surface strains and stresses and the theories of elastic 
failure for both ductile and brittle materials. Chapter 15 contains a detailed 
discussion of the principle of virtual work and the various energy methods. These 
are applied to the determination of the displacements of beams and trusses and to 
the determination of the effects of temperature gradients in beams. Finally, the 
reciprocal theorems are derived and their use illustrated. Chapter 16 is concerned 
solely with the analysis of statically indeterminate structures. Initially methods for 
determining the degree of statical and kinematic indeterminacy of a structure are 
described and then the methods presented in Chapter 15 are used to analyse statically 
indeterminate beams, trusses, braced beams, portal frames and two-pinned arches. 
Special methods of analysis, i.e. slopedeflection and moment distribution, are then 
applied to continuous beams and frames. The chapter is concluded by an introduction 
to matrix methods. Chapter 17 covers influence lines for beams, trusses and 
continuous beams while Chapter 18 investigates the stability of columns. 

Numerous worked examples are presented in the text to illustrate the theory, while 
a selection of unworked problems with answers is given at the end of each chapter. 

T.H.G. MEGSON 
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CHAPTER 1 

Introduction 

In the past it was common practice to teach structural analysis and stress analysis, or 
theory of structures and strength of materials as they were frequently known, as two 
separate subjects where., generally, structural analysis was concerned with the 
calculation of internal force systems and stress analysis involved the determination of 
the corresponding internal stresses and associated strains. Inevitably a degree of 
overlap occurred. For example, the calculation of shear force and bending moment 
distributions in beams would be presented in both structural and stress analysis courses, 
as would the determination of displacements. In fact, a knowledge of methods of 
determining displacements is essential in the analysis of some statically indeterminate 
structures. Clearly, therefore, it is logical to present a unified approach in which the 
‘story’ can be told progressively with one topic following naturally on from another. 

Initially we shall examine the functions and forms of structures together with 
support systems and the difference between statically determinate and statically 
indeterminate structures. We shall also discuss the role of analysis in the design 
process and the idealization of structures into forms amenable to analysis. 

1.1 Function of a structure 
The basic function of any structure is to support loads. These arise in a variety of 
ways and depend, generally, upon the purpose for which the structure has been built. 
Thus in a steel-framed multistorey building the steel frame supports the roof and 
floors, the external walls or cladding and also resists the action of wind loads. In 
turn, the external walls provide protection for the interior of the building and 
transmit wind loads through the floor slabs to the frame, while the roof carries snow 
and wind loads which are also transmitted to the frame. In addition, the floor slabs 
carry people, furniture, floor coverings, etc. Ultimately, of course, the steel frame is 
supported on the foundations of the building which comprise a structural system in 
their own right. 

Other structures cany other types of load. A bridge structure supports a deck 
which allows the passage of pedestrians and vehicles, dams hold back large volumes 
of water, retaining walls prevent the slippage of embankments and offshore 
structures carry drilling rigs, accommodation for their crews, helicopter pads and 
resist the action of the sea and the elements. Harbour docks and jetties cany cranes 
for unloading cargo and must resist the impact of docking ships. Petroleum and gas 
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storage tanks must be able to resist internal pressure and, at the same time, possess 
the strength and stability to cany wind and snow loads. Television transmitting masts 
are usually extremely tall and placed in elevated positions where wind and snow 
loads are major factors. Other structures, such as ships, aircraft, space vehicles, cars, 
etc., carry equally complex loading systems but fall outside the realm of structural 
engineering. However, no matter how simple or how complex a structure may be or 
whether the structure is intended to cany loads or merely act as a protective 
covering, there will be one load to which it will always be subjected, its own weight. 

1.2 Structural Forms 
The decision as to the form of a structure rests with the structural designer and is 
governed by the purpose for which the structure is required, the materials that are to 
be used and any aesthetic considerations that may apply. At the same time a designer 
may face a situation in which more than one structural form will satisfy the 
requirements of the problem so that the designer must then rely on skill and 
experience to select the best solution. On the other hand there may be scope for a 
new and novel structure which provides savings in cost and improvements in 
appearance. Structures, for construction and analysis purposes, are divided into a 
number of structural elements, although an element of one structure may, in another 
situation, form a complete structure in its own right. Thus, for example, a beam may 
support a footpath across a stream (Fig. 1.1) or form part of a large framework 
(Fig. 1.2). Beams are the most common structural elements and carry loads by 
developing shear forces and bending moments along their length, as we shall see in 
Chapter 3. 

As spans increase, the use of beams to support bridge decks becomes 
uneconomical. For moderately large spans, trusses may be used. Trusses carry loads 
by developing axial forces in their members, and their depth, for the same span and 
load, is larger than that of a beam but, because of the skeletal nature of their 
construction, will be lighter. The Warren truss shown in Fig. 1.3 is typical of those 
used in bridge construction; other geometries form roof supports and also cany 
bridge decks. Portal frames (Fig. 1.4) are commonly used in building construction 

Fig. 1.1 Beam as a simple bridge 
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Fig. 1.2 Beam as a structural element 

Fig. 1.3 Warren t russ  

and generally comprise arrangements of beams and columns. The frames derive 
their stability under load from their rigid joints; the frames would, of course, be 
stable if their feet were on pinned supports (see Section 1.3). The arrangement 
shown in Fig. 1.4(a) frequently forms the basic unit in a multistorey, multibay 
building such as that shown in Fig. 1.2, whereas the frame shown in Fig. 1.4(b) is 
often used in single storey multibay buildings such as warehouses and factories 
(Fig. 1.5). Frames are comparatively easy to erect; the Empire State Building in New 
York, for example, was completed in eighteen months. However, frames frequently 
need to be reinforced by bracing or shear walls against large lateral forces produced 
by wind or earthquake loads. 

The use of trusses to support bridge decks becomes impracticable for longer than 
moderate spans. In this situation arches are often used. Figure 1.6(a) shows an arch 

Fig. 1.4 Portal frames 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Fig. 1.5 Multibay single storey building 

Fig. 1.6 Arches as bridge deck supports 

in which the bridge deck is camed by columns supported, in turn. by the arch. 
Alternatively the bridge deck may be suspended from the arch by hangers, as shown 
in Fig. 1.6(b). Arches carry most of their loads by developing compressive stresses 
within the arch itself and therefore in the past were frequently constructed using 
materials of high compressive strength and low tensile strength such as masonry. In 
addition to bridges, arches are used to support roofs. They may be constructed in a 
variety of geometries; they may be semicircular, parabolic or even linear where the 
members comprising the arch are straight. 

For exceptionally long-span bridges, and sometimes for short spans, cables are 
used to support the bridge deck. Generally, the cables pass over saddles on the tops 
of towers and are fixed at each end within the ground by massive anchor blocks. The 
cables carry hangers from which the bridge deck is suspended; a typical arrangement 
is shown in Fig. 1.7. 

Other structural forms include slabs, which are used as floors in buildings, as raft 
foundations and as bridge decks, and continuum structures which include shells, 
folded plate roofs, arch dams, etc.; generally, continuum stmctures require computer- 
based methods of analysis. 
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Fig. 1.7 Suspension bridge 

1.3 Support systems 
The loads applied to a structure are transferred to its foundations by its supports. In 
practice supports may be complex, in which case they are idealized into a form that 
may readily be analysed. Thus a support that allows rotation but prevents translation 
in practice would be as shown in Fig. 1.8(a), but is represented for analysis purposes 
by the idealized form shown in Fig. 1.8(b); this type of support is called a pinned 
support. 

A beam that is supported at one end by a pinned support would not necessarily be 
supported in the same way at the other. One support of this type is sufficient to 
maintain the horizontal equilibrium of a beam and it may be advantageous to allow 
horizontal movement of the other end so that, for example, expansion and 
contraction caused by temperature variations do not induce additional stresses. Such 
a support may take the form of a composite steel and rubber bearing as shown in 
Fig. 1.9(a) or consist of a roller sandwiched between steel plates. In an idealized 
form, this type of support is represented as shown in Fig. 1.9(b) and is called a 
roller support. i t  is assumed that such a support allows horizontal movement and 
rotation but prevents movement vertically, up or down. 

Fig. 1.8 Idealization of a pinned support 
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Fig. 1.9 Idealization of a sliding or roller support 

It is worth noting that a horizontal beam on two pinned supports wouId be 
statically indeterminate for other than purely vertical loads since, as we shall see in 
Section 2.5, there would be two vertical and two horizontal components of support 
reaction but only three independent equations of statical equilibrium. 

In some instances beams are supported in such a way that both translation and 
rotation are prevented. In Fig. 1.10(a) the steel I-beam is connected through brackets 
to the flanges of a steel column and therefore cannot rotate or move in any direction; 
the idealized form of this support is shown in Fig. 1.10(b) and is called a jxed,  
built-in or eticastrk support. A beam that is supported by a pinned support and a 
roller support as shown in Fig. 1.1 1 (a) is called a simply supported beam; note that 
the supports will not necessarily be positioned at the ends of a beam. A beam 
supported by combinations of more than two pinned and roller supports 
(Fig. 1.1 I (b)) is known as a coritiiiuous beam. A beam that is built-in at one end and 
free at the other (Fig. 1.12(a)) is a curltilever beurn while a beam that is built-in at 
both ends (Fig. 1.12(b)) is ajixed, built-in or ericastrk beam. 

Fig. 1.10 Idealization of a built-in support 
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Fig. 1.11 (a) Simply supported beam; (b) continuous beam 

Fig. 1.12 (a) Cantilever beam; (b) fixed or built-in beam 

Fig. 1.13 Support reactions in a cantilever beam subjected to an inclined load at 
its free end 

When loads are applied to a structure, reactions are generated in the supports and 
in many structural analysis problems the first step is to calculate their values. It is 
important, therefore, to identify correctly the type of reaction associated with a 
particular support. Thus, supports that prevent translation in a particular direction 
produce a force reaction in that direction while supports that prevent rotation induce 
moment reactions. For example, in the cantilever beam of Fig. 1.13, the applied load 
W has horizontal and vertical components which induce horizontal ( R A , H )  and 
vertical (RA,")  reactions of force at the built-in end A, while the rotational effect of 
W is balanced by the moment reaction M A .  We shall consider the calculation of 
support reactions in detail in Section 2.5. 

1.4 Statically determinate and indeterminate 
structures 
In many structural systems the principles of statical equilibrium (Section 2.4) may 
be used to determine support reactions and internal force distributions; such systems 
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Fig. 1.14 (a)  Statically determinate truss; (b) statically indeterminate truss 

are called statically deterinitlate. Systems for which the principles of statical 
equilibrium are insufficient to determine support reactions and/or internal force 
distributions, i.e. there are a greater number of unknowns than the number of 
equations of statical equilibrium, are known as statically indeterminate or 
hypersturic systems. However, it is possible that even though the support reactions 
are statically determinate, the internal forces are not, and vice versa. Thus, for 
example, the truss in Fig. 1.14(a) is, as we shall see in Chapter 4, statically 
determinate both for support reactions and forces in the members whereas the truss 
shown in Fig. 1.14(b) is statically determinate only as far as the calculation of 
support reactions is concerned. 

Another type of indeterminacy, kitletnutic iizdetermitlacy, is associated with the 
ability to deform, or the degrees of freedom of ,  a structure and is discussed in detail 
in Section 16.3. A degree of freedom is a possible displacement of a joint (or node 
as it is often called) in a structure. Thus a joint in a plane truss has three possible 
modes of displacement or degrees of freedom, two of translation in two mutually 
perpendicular directions and one of rotation, all in the plane of the truss. On the 
other hand a joint in a three-dimensional space truss or frame possesses six degrees 
of freedom, three of translation in three mutually perpendicular directions and three 
of rotation about three mutually perpendicular axes. 

1.5 Analysis and design 
Some students in the early stages of their studies have only a vague idea of the 
difference between an analytical problem and a design problem. It will be instructive, 
therefore, to examine the various steps in the design procedure and to consider the 
role of analysis in that procedure. 

Initially the structural designer is faced with a requirement for a structure to fulfil 
a particular role. This may be a bridge of a specific span, a multistorey building of a 
given floor area, a retaining wall having a required height, and so on. At this stage 
the designer will decide on a possible form for the structure. In the case of a bridge, 
for example, the designer must decide whether to use beams, trusses, arches or 
cables to support the bridge deck. To some extent, as we have seen, the choice is 
governed by the span required, although other factors may influence the decision. 
Thus, in Scotland, the Firth of Tay is crossed by a multispan bridge supported on 
columns, whereas the road bridge crossing the Firth of Forth is a suspension bridge. 
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In the latter case a large height clearance is required to accommodate shipping. In 
addition it is possible that the designer may consider different schemes for the same 
requirement. Further decisions are required as to the materials to be used: steel, 
reinforced concrete, timber, etc. 

Having decided on a form for the structure, the loads on the structure are 
calculated. These arise in different ways. Dead loads are loads that are permanently 
present, such as the structure’s self-weight, fixtures, cladding, etc. Live or imposed 
loads are movable or actually moving loads, such as temporary partitions, people, 
vehicles on a bridge, snow, etc. Wind loads are live loads but require special 
consideration since they are affected by the location, size and shape of the structure. 
Other live loads may include soil or hydrostatic pressure and dynamic effects 
produced, for example, by vibrating machinery, wind gusts, wave action or, in some 
parts of the world, earthquake action. 

In some instances values of the above loads are given in Codes of Practice. Thus, 
for floors in office buildings designed for general use, CP3: Chapter V: Part I 
specifies a distributed load of 2.5 kN/m’ together with a concentrated load of 
2.7 kN applied over any square of side 300 mm, while CP3: Chapter V: Part 2 gives 
details of how wind loads should be calculated. 

When the loads have been determined, the structure is analysed, i.e. the external 
and internal forces and moments are calculated, from which are obtained the internal 
stress distributions and also the strains and displacements. The structure is then 
checked for safety, i.e. that it possesses sufficient strength to resist loads without 
danger of collapse, and for serviceability, which determines its ability to cany loads 
without excessive deformation or local distress; Codes of Practice are used in this 
procedure. It is possible that this check may show that the structure is underdesigned 
(unsafe and/or unserviceable) or overdesigned (uneconomic) so that adjustments 
must be made to the arrangement and/or the sizes of the members; the analysis and 
design check are then repeated. 

Analysis, as can be seen from the above discussion, forms only part of the 
complete design process and is concerned with a given structure subjected to given 
loads. Thus, generally, there is a unique solution to an analytical problem whereas 
there may be one, two or more perfectly acceptable solutions to a design problem. 

1.6 Structural idealization 
Generally, structures are complex and must be idealized or simplified into a form 
that can be analysed. This idealization depends upon factors such as the degree of 
accuracy required from the analysis because, usually, the more sophisticated the 
method of analysis employed the more time consuming, and therefore more costly, 
it is. Thus a preliminary evaluation of two or more possible design solutions would 
not require the same degree of accuracy as the check on the finalized design. Other 
factors affecting the idealization include the type of load being applied, since it is 
possible that a structure will require different idealizations under different loads. 

We have seen in Section 1.3 how actual supports are idealized. An example of 
structural idealization is shown in Fig. 1.15 where the simple roof truss of 
Fig. 1.15(a) is supported on columns and forms one of a series comprising a roof 
structure. The roof cladding is attached to the truss through purlins which connect 
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Fig. 1.15 (a) Actual truss; (b) idealized truss 

each truss, and the truss members are connected to each other by gusset plates which 
may be riveted or welded to the members forming rigid joints. This structure 
possesses a high degree of statical indeterminacy and its analysis would probably 
require a computer-based approach. However, the assumption of a simple support 
system, the replacement of the rigid joints by pinned or hinged joints and the 
assumption that the forces in the members are purely axial, result, as we shall see in 
Chapter 4, in a statically determinate structure (Fig. l.l5(b)). Such an idealization 
might appear extreme but, so long as the loads are applied at the joints and the truss 
is supported at joints, the forces in the members are predominantly axial and bending 
moments and shear forces are negligibly small. 

At the other extreme a continuum structure, such as a folded plate roof, would be 
idealized into a large number of finite elements connected at nodes and analysed 
using a computer; the finite element method is, in fact, an exclusively computer- 
based technique. A large range of elements is available in finite element packages 
including simple beam elements, plate elements, which can model both in-plane and 
out-of-plane effects, and three-dimensional ‘brick’ elements for the idealization of 
solid three-dimensional structures. A wide range of literature devoted to finite 
element analysis is available but will not be considered here as the method is outside 
the scope of this book. 



CHAPTER 2 

Principles of Statics 

Statics, as the name implies, is concerned with the study of bodies at rest or, in other 
words, in equilibrium, under the action of a force system. Actually, a moving body 
is in equilibrium if the forces acting on it are producing neither acceleration nor 
deceleration. However, in structural analysis, structural members are generally at rest 
and therefore in a state of statical equilibrium. 

In this chapter we shall discuss those principles of statics that are essential to 
structural and stress analysis; an elementary knowledge of vectors is assumed. 

2.1 Force 
The definition of a force is derived from Newton’s First Law of Motion which 
states that a body will remain in its state of rest or in its state of uniform motion in a 
straight line unless compelled by an external force to change that state. Force is 
therefore associated with a change in motion, i.e. it causes acceleration or 
deceleration. 

We all have direct experience of force systems. The force of the earth’s 
gravitational pull acts vertically downwards on our bodies giving us weight; wind 
forces, which can vary in magnitude, tend to push us horizontally. Forces therefore 
possess magnitude and direction. At the same time the effect of a force depends 
upon its position. For example, a door may be opened or closed by pushing 
horizontally at its free edge, but if the same force is applied at any point on the 
vertical line through its hinges the door will neither open nor close. Thus we see that 
a force is specified by its magnitude, direction and position and is therefore a vector 
quantity. As such it must obey the laws of vector addition, which is a fundamental 
concept that may be verified experimentally. 

Since a force is a vector it may be represented graphically as shown in Fig. 2.1, 
where the force F is considered to be acting on an infinitesimally small particle at the 
point A and in a direction from left to right. The magnitude of F is represented, to a 
suitable scale, by the length of the line AB and its direction by the direction of the 
arrow. In vector notation the force F is written as F. 

Consider now a cube of material placed on a horizontal surface and acted upon by 
a force F ,  as shown in Fig. 2.2(a). If F ,  is greater than the frictional force between 
the surface and the cube, the cube will move in the direction of F , .  Similarly if a 
force F ,  is applied as shown in Fig. 2.2(b) the cube will move in the direction of F1. 
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Fig. 2.1 Representation of a force by a vector 

Fig. 2.2 Action of forces on a cube 

It follows that if F ,  and F ,  were applied simultaneously, the cube would move in 
some inclined direction as though it were acted on by a single inclined force R 
(Fig. 2.2(c)); clearly R is the resultant of F ,  and F,. 

Note that F ,  and F z  (and R )  are in a horizontal plane and that their lines of action 
pass through the centre of gravity of the cube, otherwise rotation as well as 
translation would occur since, if F , ,  say, were applied at one comer of the cube as 
shown in Fig. 2.2(d), the frictional force f, which would act at the centre of the 
bottom face of the cube would, with F , ,  form a couple (see Section 2.2). 

The effect of the force R on the cube would be the same whether it was applied at 
the point A or at the point B (so long as the cube is rigid). Thus a force may be 
considered to be applied at any point on its line of action, a principle known as the 
transmissibility of a force. 

Parallelogram of forces 

The resultant of two concurrent and coplanar forces, whose lines of action pass 
through a single point and lie in the same plane (Fig. 2.3(a)), may be found using 
the theorem of the parallelogram of forces which states that: 

If two forces acting at a point are represented by two adjacent sides of a 
parallelogram drawn from that point their resultant is represented in magnitude 
and direction by the diagonal of the parallelogram drawn through the point. 

Thus in Fig. 2.3(b) R is the resultant of F ,  and Fz. This result may be verified 
experimentally or, alternatively, demonstrated to be true using the laws of vector 
addition. Thus in Fig. 2.3(b) the side BC of the parallelogram is equal in magnitude 
and direction to the force F ,  represented by the side OA. Therefore, in vector 
notation 

R = Fz + F,  
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Fig. 2.3 Resultant of two concurrent forces 

The same result would be obtained by considering the side AC of the 
parallelogram which is equal in magnitude and direction to the force F,. Thus 

R = F ,  + F, 

Note that vectors obey the cornrnufafive law, Le. 

F, + F, = F, + F, 

The determination of the actual magnitude and direction of R may be carried out 
graphically by drawing the vectors representing F, and F ,  to the same scale (i.e. OB 
and BC) and then completing the triangle OBC by drawing in the vector, along OC, 
representing R. Alternatively R and 8 may be calculated using the trigonometry of 
triangles. Hence 

R 2 =  F f +  F i + 2 F , F 2 c o s  a (2.1) 

and t a n e =  (2.2) 
F, sin a 

F z + F , c o s a  

In Fig. 2.3(a) both F, and F, are ‘pulling away’ from the particle at 0. In 
Fig. 2.4(a) F, is a ‘thrust’ whereas F, remains a ‘pull’. To use the parallelogram of 
forces the system must be reduced to either two ‘pulls’ as shown in Fig. 2.4(b) or 
two ‘thrusts’ as shown in Fig. 2.4(c). In all three systems we see that the effect on 
the particle at 0 is the same. 

As we have seen, the combined effect of the two forces F, and F, acting 
simultaneously is the same as if they had been replaced by the single force R. 
Conversely, if R were to be replaced by F, and F, the effect would again be the 
same. F, and F2 may therefore be regarded as the cornponeiits of R in the directions 
OA and OB; R is then said to have been resolved into two components, F, and F,. 

Of particular interest in structural analysis is the resolution of a force into two 
components at right angles to each other. In this case the parallelogram of 
Fig. 2.3(b) becomes a rectangle in which a = 90” (Fig. 2.5) and, clearly, 

F, = R cos 8, (2.3) 

R,= Ff+ F:, tan 8 = F, IF, (2.4) 

F, = R sin 8 

It follows from Fig. 2.5, or from Eqs (2.1) and (2.2), that 
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Fig. 2.4 Reduction of a force system 

Fig. 2.5 Resolution of a force into two components at right angles 

We note, by reference to Figs 2.2(a) and (b), that a force does not induce motion 
in a direction perpendicular to its line of action; in other words a force has no effect 
in a direction perpendicular to itself. This may also be seen by setting 8 = 90" in 
Eqs (2.3), then 

F ,  = R, F2 = 0 

and the component of R in a direction perpendicular to its line of action is zero. 

The resultant of a system of concurrent forces 
So far we have considered the resultant of just two concurrent forces. The method 
used for that case may be extended to determine the resultant of a system of any 
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number of concurrent coplanar forces such as that shown in Fig. 2.6(a). Thus in the 
vector diagram of Fig. 2.6(b) 

R , ,  = F, + F, 

where RI2  is the resultant of F, and F2. Further 

R,?, = R, ,  + F, = F, + F2 + F, 

so that R123 is the resultant of F, ,  F, and F,. Finally 

R = RI2, + F, = F, + F, + F, + F4 

where R is the resultant of F, ,  F,, F, and F,. 
The actual value and direction of R may be found graphically by constructing the 

vector diagram of Fig. 2.6(b) to scale or by resolving each force into components 
parallel to two directions at right angles, say the x and y directions shown in 
Fig. 2.6(a). Thus 

F ,  = F ,  + F ,  cos a- F ,  cos p -  F4 cos y 
F ,  = F ,  sin a + F ,  sin p - F ,  sin y 

Then R = W  

F 

F.1 
and- t a n e = A  

Fig. 2.6 Resultant of a system of concurrent forces 
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The forces F , ,  F2,  F ,  and F ,  in Fig. 2.6(a) do not have to be taken in any 
particular order when constructing the vector diagram of Fig. 2.6(b). Identical 
results for the magnitude and direction of R are obtained if the forces in the vector 
diagram are taken in the order F , ,  F4, F,, F ,  as shown in Fig. 2.7 or, in fact, are 
taken in any order so long as the directions of the forces are adhered to and one 
force vector is drawn from the end of the previous force vector. 

Equilibrant of a system of concurrent forces 
In Fig. 2.3(b) the resultant R of the forces F ,  and F ,  represents the combined effect 
of F ,  and F ,  on the particle at 0. It follows that this effect may be eliminated by 
introducing a force RE which is equal in magnitude but opposite in direction to R at 
0, as shown in Fig. 2.8(a). RE is known at the equilibrunt of F ,  and F 2  and the 

v 

Fig. 2.7 Alternative construction of force diagram for system of Fig. 2.6(a) 

Fig. 2.8 Equilibrant of two concurrent forces 
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particle at 0 will then be in equilibrium and remain stationary. In other words the 
forces F , ,  F? and RE are in equilibrium and, by reference to Fig. 2.3(b), we see that 
these three forces may be represented by the triangle of vectors OBC as shown in 
Fig. 2.8(b). This result leads directly to the law of the triangle of forces which 
states that: 

I f  three forces acting at a point are in equilibrium they may be represented in 
magnitude and direction by the sides of a triangle taken in order. 

The law of the triangle of forces may be used in the analysis of a plane, pin-jointed 
truss in which, say, one of three concurrent forces is known in magnitude and 
direction but only the lines of action of the other two. The law enables us to find the 
magnitudes of the other two forces and also the direction of their lines of action. 

The above arguments may be extended to a system comprising any number of 
concurrent forces. Thus, for the force system of Fig. 2.6(a), RE, shown in 
Fig. 2.9(a), is the equilibrant of the forces F , ,  F, ,  F ,  and F,. Then F , ,  F,, F,, F ,  
and R E  may be represented by the force polygon OBCDE as shown in Fig. 2.9(b). 
The law of the polygon of forces follows: 

If a number of forces acting at a point are in equilibrium they may be represented 
in magnitude and direction by the sides of a closed polygon taken in order. 

Again, the law of the polygon of forces may be used in the analysis of plane, pin- 
jointed trusses where several members meet at a joint but where no more than two 
forces are unknown in magnitude. 

The resultant of a system of non-concurrent forces 
In most structural problems the lines of action of the different forces acting on the 
structure do not meet at a single point; such a force system is non-concurrent. 

Consider the system of non-concurrent forces shown in Fig. 2.10(a); their 
resultant may be found graphically using the parallelogram of forces as 
demonstrated in Fig. 2.10(b). Produce the lines of action of F ,  and F z  to their point 

Fig. 2.9 Equilibrant of a number of concurrent forces 
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Fig. 2.10 Resultant of a system of non-concurrent forces 

of intersection, I , .  Measure 1,A = F ,  and 1,B = F ,  to the same scale, then complete 
the parallelogram 1,ACB; the diagonal CI, represents the resultant, RIz,  of F ,  and 
Fz.  Now produce the line of action of R I 2  backwards to intersect the line of action 
of F ,  at I*. Measure I,D= R , ?  and I, F =  F ,  to the same scale as before, then 
complete the parallelogram 1,DEF; the diagonal 1,E = R,,,,  the resultant of R I z  and 
F,. It follows that R I z 3  = R ,  the resultant of F , ,  F2 and F,. Note that only the line of 
action and the magnitude of R can be found, not its point of action, since the 
vectors F , ,  F z  and F ,  in Fig. 2.10(a) define the lines of action of the forces, not 
their points of action. 

If the points of action of the forces are known, defined, say. by coordinates 
referred to a convenient xy axis system, the magnitude, direction and point of 
action of their resultant may be found by resolving each force into components 
parallel to the x' and y axes and then finding the magnitude and position of the 
resultants R ,  and R,  of each set of components using the method described in 
Section 2.3 for a system of parallel forces. The resultant R of the force system is 
then given by 

R = m  

and its point of action is the point of intersection of R ,  and R,;  finally, its 
inclination 8 to the x axis, say, is 

R, e = tan-' - 
Rl 

2.2 Momentof aforce 
So far we have been concerned with the translational effect of a force, i.e. the 
tendency of a force to move a body in a straight line from one position to another. A 
force may, however, exert a rotational effect on a body so that the body tends to turn 
about some given point or axis. 
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In Fig. 2.11(a) the bar AB is attached to a hinge which allows it to rotate in a 
horizontal plane (Fig. 2.11 (a) is a plan view). A force F whose line of action passes 
through the hinge will have no rotational effect on the bar but, when acting at some 
point along the bar as in Fig. 2.1 1 (b), will cause the bar to rotate about the hinge. 
Further, it is common experience that the greater the distance of F from the hinge, 
the greater will be its effect. (Thus a greater force is required to close a door when 
the force is applied near to the vertical line through its hinges than if the force were 
applied close to the free edge, the usual position for a door knob or handle.) At the 
same time, the force F exerts its greatest effect when it acts at right angles to the bar. 
If it were inclined, as shown in Fig. 2.11(c), such that its line of action passed 
through the hinge it would exert no rotational effect on the bar at all. 

In Fig. 2.1 1 (b) F is said to exert a moment on the bar about the hinge, which is 
usually referred to as the fulcrum. Clearly the rotational effect of F depends upon its 
magnitude and also on its distance from the hinge. We therefore define the moment 
of a force, F ,  about a given point 0 (Fig. 2.12) as the product of the force and the 
perpendicular distance of its line of action from the point. Thus, in Fig. 2.12, the 
moment, M, of F about 0 is given by 

M =Fa (2.5) 
where ‘a’ is known as the lever arm or moment arm of F about 0; note that the units 
of a moment are the units of force x distance. 

Fig. 2.1 1 Rotational effect of a force 
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--.? 

‘-0 1- =---- Given point 

Fig. 2.12 Moment of a force about a given point 

It can be seen from the above that a moment possesses both magnitude and a 
rotational sense; in Fig. 2.12, for example, F exerts a clockwise moment about 0. A 
moment is therefore a vector (an alternative argument is that the product of a vector, 
F ,  and a scalar, Q, is a vector). It is conventional to represent a moment vector 
graphically by a double-headed arrow, where the direction of the arrow designates a 
clockwise moment when looking in the direction of the arrow. Therefore, in 
Fig. 2.12, the moment M ( = F a )  would be represented by a double headed arrow 
through 0 with its direction into the plane of the paper. 

Moments, being vectors, may be resolved into components in the same way as 
forces. Consider the moment, M, (Fig. 2.13(a)) in a plane inclined at an angle 8 to 
the xz plane. The component of M in the xz plane, M,,, may be imagined to be 
produced by rotating the plane containing M through the angle 8 into the xz plane. 
Similarly, the component of M in the yz plane, M,,, is obtained by rotating the plane 
containing M through the angle 90 - 8. Vectorially, the situation is that shown in 
Fig. 2.13(b), where the directions of the arrows represent clockwise moments when 
viewed in the directions of the arrows. Then 

M,, = M cos 8, M,: = M sin 0 

The action of a moment on a structural member depends upon the plane in which 
it acts. In Fig. 2.14(a), for example, the moment, M, which is applied in the 

Fig. 2.13 Resolution of a moment 
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Fig. 2.14 Action of a moment in different planes 

longitudinal vertical plane of symmetry, will cause the beam to bend in a vertical 
plane. In Fig. 2.14(b) the moment, M, is applied in the plane of the cross-section of 
the beam and will therefore produce twisting; in this case M is called a torque. 

Couples 
Consider the two coplanar, equal and parallel forces F which act in opposite 
directions as shown in Fig. 2.15. The sum of their moments, M,, about any point 0 
in their plane is 

Mo = F x BO - F xAO 

where OAB is perpendicular to both forces. Then 

M o  = F ( B 0  - AO) = F x AB 

and we see that the sum of the moments of the two forces F about any point in their 
plane is equal to the product of one of the forces and the perpendicular distance 
between their lines of action; this system is termed a couple and the distance AB is 
the urrn or lever urrn of the couple. 

Since a couple is, in effect, a pure moment (not to be confused with the moment 
of a force about a specific point which vanes with the position of the point) it may 
be resolved into components in the same way as the moment M in Fig. 2.13. 

Equivalent force systems 

In structural analysis it is often convenient to replace a force system acting at one 
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Fig. 2.15 Moment of a couple 

point by an equivalent force system acting at another. In Fig. 2.16(a), for example, 
the effect on the cylinder of the force F acting at A on the arm AB may be 
determined as follows. 

If we apply equal and opposite forces F at B as shown in Fig. 2.16(b), the overall 
effect on the cylinder is unchanged. However, the force F at A and the equal and 
opposite force F at B form a couple which, as we have seen, has the same moment 
(Fa)  about any point in its plane. Thus the single force F at A may be replaced by a 

Fig. 2.16 Equivalent force system 
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single force F at B together with a moment equal to Fa as shown in Fig. 2.16(c). The 
effects of the force F at B and the moment (actually a torque) Fa may be calculated 
separately and then combined using the principle of superposition (see Section 3.8). 

2.3 The resultant of a system of parallel forces 
Since, as we have seen, a system of forces may be replaced by their resultant, it 
follows that a particular action of a force system, say the combined moments of the 
forces about a point, must be identical to the same action of their resultant. This 
principle may be used to determine the magnitude and line of action of a system of 
parallel forces such as that shown in Fig. 2.17(a). 

The point of intersection of the lines of action of F ,  and F2 is at infinity so that 
the parallelogram of forces (Fig. 2.3(b)) degenerates into a straight line as shown in 
Fig. 2.17(b) where, clearly 

R = F , + F 2  (2.6) 

The position of the line of action of R may be found using the principle stated 
above, i.e. the sum of the moments of F ,  and F ,  about any point must be equivalent 
to the moment of R about the same point. Thus from Fig. 2.17(a) and taking 
moments about, say, the h e  of action of F ,  we have 

F,a  = Rx = ( F ,  + F2)x  

Hence x = -  a (2.7) F2 
FI + Fz 

Note that the action of R is equivalent to that of F ,  and F, ,  so that, in this case, we 
equate clockwise to clockwise moments. 

The principle of equivalence may be extended to any number of parallel forces 
irrespective of their directions and is of particular use in the calculation of the 
position of centroids of area, as we shall see in Section 9.6. 

Fig. 2.17 Resultant of a system of parallel forces 
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Fig. 2.18 Force system of Ex. 2.1 

Example 2.1 
of the force system shown in Fig. 2.18. 

Find the magnitude and position of the line of action of the resultant 

In this case the polygon of forces (Fig. 2.6(b)) degenerates into a straight line and 

R = 2 - 3 + 6 +  1 = 6 k N  (i) 

Suppose that the line of action of R is at a distance x from the 2 kN force, then, 
taking moments about the 2 kN force, 

Rx= - 3 ~ 0 . 6 + 6 ~ 0 * 9 +  1 x 1.2 

Substituting for R from Eq. (i) we have 

6 ~ =  -1-8+5.4+ 1.2 
which gives x.0-8 m 

We could, in fact, take moments about any point, say now the 6 kN force. Then 

R(O.9 - X )  = 2 x 0.9 - 3 x 0.3 - 1 x 0.3 
so that x = 0.8 m as before. 

Note that in the second solution, anticlockwise moments have been selected as 
positive. 

2.4 Equilibrium of force systems 
We have seen in Section 2.1 that, for a particle or a body to remain stationary, that is 
in statical equilibrium, the resultant force on the particle or body must be zero. Thus, 
if a body (generally in structural analysis we are concerned with bodies, i.e. 
structural members, not particles) is not to move in a particular direction, the resultant 
force in that direction must be zero. Furthermore, the prevention of the movement of 
a body in two directions at right angles ensures that the body will not move in any 
direction. It follows that, for such a body to be in equilibrium, the sum of the 
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Fig. 2.19 Couple produced by out-of-line forces 

components of all the forces acting on the body in any two mutually perpendicular 
directions must be zero. In mathematical terms and choosing, say, the x and y 
directions as the mutually perpendicular directions, the condition may be written 

C F , = 0 ,  C F,=O (2.8) 

However, the condition specified by Eqs (2.8) is not sufficient to guarantee the 
equilibrium of a body acted on by a system of coplanar forces. In Fig. 2.19, for 
example, the forces F acting on a plate resting on a horizontal surface satisfy the 
condition C F ,  = O  (there are no forces in the y direction so that C F, = 0 is 
automatically satisfied), but form a couple Fa which will cause the plate to rotate in 
an anticlockwise sense so long as its magnitude is sufficient to overcome the 
frictional resistance between the plate and the surface. We have also seen that a 
couple exerts the same moment about any point in its plane so that we may deduce a 
further condition for the statical equilibrium of a body acted upon by a system of 
coplanar forces, namely, that the sum of the moments of all the forces acting on the 
body about any point in their plane must be zero. Therefore, designating a moment 
in the xy plane about the z axis as M:,  we have 

C M.=O (2.9) 

Combining Eqs (2.8) and (2.9) we obtain the necessary conditions for a system of 
coplanar forces to be in equilibrium. Thus 

Z F , = O ,  2 F>=O, Z M I = O  (2.10) 

The above arguments may be extended to a three-dimensional force system which is, 
again, referred to an xyz axis system. Thus for equilibrium 

x F , = O ,  x F , = 0 ,  E F F , = O  (2.1 1) 

and C M , = O ,  X M M , = O ,  C M , = O  (2.12) 

2.5 Calculation of support reactions 
The conditions of statical equilibrium, Eqs (2.10). are used to calculate reactions at 
supports in structures so long as the support system is statically determinate (see 
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Section 1.4). Generally the calculation of support reactions is a necessary preliminary 
to the determination of internal force and stress distributions and displacements. 

Example 2.2 Calculate the support reactions in the simply supported beam ABCD 
shown in Fig. 2.20. 

The different types of support have been discussed in Section 1.3. In Fig. 2.20 the 
support at A is a pinned support which allows rotation but no translation in any 
direction, while the support at D allows rotation and translation in a horizontal 
direction but not in a vertical direction. Therefore there will be no moment reactions 
at A or D and only a vertical reaction at D, R D .  It follows that the horizontal 
component of the 5 kN load can only be resisted at A, R A . , ,  which, in addition, will 
provide a vertical reaction, RA.v. 

Since the forces acting on the beam are coplanar, Eqs (2.10) are used. From the 
first of these, i.e. 1 F., = 0, we have 

R A . H  - 5 COS 60" =O 
R A . H  = 2.5 kN which gives 

The use of the second equation, 1 F ,  = 0, at this stage would not lead directly to 
either RA.v or R D  since both would be included in the single equation. A better 
approach is to use the moment equation, E MI = 0, and take moments about either A 
or D (it is immaterial which), thereby eliminating one of the vertical reactions. 
Taking moments, say, about D, we have 

RA." x 1-2 - 3 x 0.9 - (5 sin 60') x 0.4 = 0 (i) 
Note that in E q  (i) the moment of the 5 kN force about D may be obtained either by 
calculating the perpendicular distance of its line of action from D (0.4 sin 60") or 
by resolving it into vertical and horizontal components (5 sin 60" and 5 cos 60", 
respectively) where only the vertical component exerts a moment about D. From 
E¶* ( 0  

RA.,= 3.7 kN 

Fig. 2.20 Beam of Ex. 2.2 
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The vertical reaction at D may now be found using C F ,  = 0 or by taking moments 
about A, which would be slightly lengthier. Thus 

R, + RA,v - 3 - 5 sin 60" = 0 

so that R D  = 3.6  kN 

Example 2.3 Calculate the reactions at the support in the cantilever beam shown in 
Fig. 2.21. 

The beam has a fixed support at A which prevents translation in any direction and 
also rotation. The loads applied to the beam will therefore induce a horizontal 
reaction, RA.H, at A and a vertical reaction, RA,,, together with a moment reaction 
MA. Using the first of Eqs (2.10). C F,  = 0, we obtain 

RA,H - 2 COS 45" = 0 

whence RA,H = 1-4 kN 

From the second of Eqs (2. lo),  C F,  = 0 

'A.V - 5 - 2 sin 45" = 0 

which gives RA,v = 6 . 4  kN 

Finally from the third of Eqs (2.10), C Mr=O, and taking moments about A, 
thereby eliminating RA.H and R,.,, 

MA - 5 x 0.4 - (2 sin 45") x 1 .0=  0 

from which M A = 3 . 4  kNm 

In Exs 2.2 and 2.3, the directions or sense of the support reactions is reasonably 
obvious. However, where this is not the case, a direction or sense is assumed which, 
if incorrect, will result in a negative value. 

Fig. 2.21 Beam of Ex. 2.3 
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Occasionally the resultant reaction at a support is of interest. In Ex. 2.2 the 
resultant reaction at A is found using the first of Eqs (2.4), i.e. 

R ? - R ?  + R ?  
A -  A.H A.V 

R2 - 2.'j2 + 3.72 which gives A -  

whence R A = 4 - 5  1<N 
The inclination of R ,  to, say, the vertical is found from the second of Eqs (2.4). 
Thus 

R A H  2.5 tan 0 = - = - = 0.676 
RA,V 3.7 

from which 0 = 34.0" 

Example 2.4 Calculate the reactions at the supports in the plane truss shown in 
Fig. 2.22. 

The truss is supported in the same manner as the beam in Ex. 2.2 so that there will 
be horizontal and vertical reactions at A and only a vertical reaction at B. 

The angle of the truss, a, is given by 

2.4 

3 
a = tan-' - - - 38.7" 

From the first of Eqs (2.10) we have 

R A , H  - 5 sin 38.7" - 10 sin 38.7" = 0 

from which R A , H  = 9.4 kN 

Now taking moments about B, say, (E M ,  = 0)  

RA.v x 6 - (5 cos 38.7") x 4.5 + (5 sin 38.7") x 1.2 + (10 cos 38.7") x 1.5 
+ (10 sin 38.7") x 1.2 - 3  x 4 - 2  x 2  = O  

which gives RA.v = 1-8 kN 

Fig. 2.22 Truss of Ex. 2.4 
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Note that in the moment equation it is simpler to resolve the 5 kN and 10 kN loads 
into horizontal and vertical components at their points of application and then take 
moments rather than calculate the perpendicular distance of each of their lines of 
action from B. 

The reaction at B, R,, is now most easily found by resolving vertically (C F ,  = 0). 
Thus 

R ,  + RA.v - 5 cos 38.7" + 10 cos 38.7" - 3 - 2 = 0 

which gives RE = -0.7 kN 

In this case the negative sign of R, indicates that the reaction is downward, not 
upward, as initially assumed. 

Problems 
P.2.1 Determine the magnitude and inclination of the resultant of the two forces 

acting at the point 0 in Fig. P.2.1, (a) by a graphical method, (b) by calculation. 

Ans. 21.8 kN, 23.4" to the direction of the 15 kN load. 

Fig. P.2.1 

P.2.2 Determine the magnitude and inclination of the resultant of the system of 
concurrent forces shown in Fig. P.2.2, (a) by a graphical method, (b) by calculation. 

Ans. 8-6 kN, 23.9" down and to the left. 

Fig. P.2.2 
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P.2.3 Calculate the magnitude, inclination and point of action of the resultant 
of the system of non-concurrent forces shown in Fig. P.2.3. The coordinates of the 
points of action are given in m. 

Ans. 130.5 kN, 49.6" to the x direction at the point (0-86, 1.22). 

Fig. P.2.3 

P.2.4 Calculate the support reactions in the beams shown in Figs. P.2.4(a)-(d). 

Am. (a) RA.H = 9.2 kN to left, RA," = 6.9 kN upwards, RB = 7-9 kN upwards. 
(b) R ,  = 65 kN, MA = 400 kN m anticlockwise. 
(c) RA.H = 20 kN to right, RA.v = 22.5 kN upwards, RB = 12.5 kN upwards. 
(d) R ,  = 41.8 kN upwards, R ,  = 54-2 kN upwards. 

Fig. P.2.4 
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Fig. P.2.4 (continued) 

P.2.5 
and (b). 

Am. (a) R ,  = 57 kN upwards, R ,  = 2 kN downwards. 
(b) R,." = 3710 N to left, R A . "  = 835 N downwards, R ,  = 4733 N 

Calculate the support reactions in the plane trusses shown in Figs P.2.5 (a) 

downwards. 

Fig. P.2.5 
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Fig. P.2.5 (continued) 



CHAPTER 3 

Normal Force, Shear Force, 
Bending Moment and Torsion 

The purpose of a structure is to support the loads for which it has been designed. To 
accomplish this it must be able to transmit a load from one point to another, i.e. from 
the loading point to the supports. In Fig. 2.21, for example, the beam transmits the 
effects of the loads at B and C to the built-in end A. This it achieves by developing 
an internal force system and it is the distribution of these internal forces which must 
be determined before corresponding stress distributions and displacements can be 
found. 

A knowledge of stress is essential in structural design where the cross-sectional 
area of a member must be such that stresses do not exceed values that would cause 
breakdown in the crystalline structure of the material of the member; in other 
words, a structural failure. In addition to stresses, strains, and thereby displacements, 
must be calculated to ensure that as well as strength a structural member possesses 
sufficient stiffness to prevent excessive distortions damaging surrounding portions of 
a complete structure. 

In this chapter we shall examine the different types of load to which a structural 
member may be subjected and then determine corresponding internal force 
distributions. 

3.1 Typesof load 
Structural members may be subjected to complex loading systems apparently 
comprised of several different types of load. However, no matter how complex such 
systems appear to be they consist of a maximum of four basic load types: axial 
loads, shear loads, bending moments and torsion. 

Axial load 
Axial loads are applied along the longitudinal or centroidal axis of a structural 
member. If the action of the load is to increase the length of the member, the 
member is said to be in tensiori (Fig. 3.1 (a)) and the applied load is tensile. A load 
that tends to shorten a member places the member in compression and is known as a 
compressive load (Fig. 3.1 (b)). Members such as those shown in Figs 3.1 (a) and (b) 
are commonly found in pin-jointed frameworks where a member in tension is called 
a tie and one in compression a strut or column. More frequently, however, the name 
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Fig. 3.1 Axially loaded members 

‘column’ is associated with a vertical member canying a compressive load, as 
illustrated in Fig. 3.1 (c). 

Shear load 
Shear loads act perpendicularly to the axis of a structural member and have one of 
the forms shown in Fig. 3.2; in this case the members are beams. Fig. 3.2(a) shows a 
coriceritrated shear load, W ,  applied to a cantilever beam. The shear load in 
Fig. 3.2(b) is distributed over a length of the beam and is of intensity w (force 
units) per unit length. 

A concentrated load on a beam is one which, theoretically, can be regarded as 
acting wholly at one point. In reality such a situation could not arise since this would 
imply that the bearing pressure between the load and the beam was infinitely large. 
Thus, in practice, all loads must be distributed over a finite length of beam. It is 
when this length of beam is small that we can consider, for the purposes of 
calculation, the load to be concentrated at one point. 

Practical examples of loads that may be regarded as concentrated arise when a 
beam supports other transverse beams. Distributed loads occur in situations where a 
girder, for example, supports a wall or floor slab; other distributed loads result from 
wind forces. All beams in fact support a distributed load, their self-weight. 
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Fig. 3.2 Shear loads applied to beams 

Bending moment 
In practice it is difficult to apply a pure bending moment such as that shown in 
Fig. 3.3(a) to a beam. Generally, pure bending moments arise through the 
application of other types of load to adjacent structural members. For example, in 
Fig. 3.3(b), a vertical member BC is attached to the cantilever AB and carries a 
horizontal shear load, P (as far as BC is concerned). AB is therefore subjected to a 
pure moment, M = Ph, at B together with an axial load, P. 

Torsion 
A similar situation arises in the application of a pure torque, T (Fig. 3.4(a)), to a 
beam. A practical example of a torque applied to a cantilever beam is given in 
Fig. 3.4(b) wheie the horizontal member BC supports a vertical shear load at C. The 
cantilever AB is then subjected to a pure torque, T = Wh, plus a shear load, W. 

All the loads illustrated in Figs 3.1-3.4 are applied to the various members by 
some external agency and are therefore externally applied loads. Each of these loads 
induces reactions in the support systems of the different beams; examples of the 
calculation of support reactions are given in Section 2.5. Since structures are in 
equilibrium under a force system of externally applied loads and support reactions, 
it follows that the support reactions are themselves externally applied loads. 

Now consider the cantilever beam of Fig. 3.2(a). If we were to physically cut 
through the beam at some section mm (Fig. 3.5 (a)) the portion BC would no longer be 
able to support the load, W. The portion AB of the beam therefore performs the same 
function for the portion BC as does the wall for the complete beam. Thus at the 
section mm the portion AB applies a force Wand a moment M to the portion BC at B, 
thereby maintaining its equilibrium (Fig. 3.5(b)); by the law of action and reaction, 
BC exerts an equal force system on AB, but opposite in direction. The complete force 
systems acting on the two faces of the section mm are shown in Fig. 3.5(b). 
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Fig. 3.3 Moments applied to beams 

Fig. 3.4 Torques applied to a beam 

Systems of forces such as those at the section mm are known as internal forces. 
Generally, they vary throughout the length of a structural member as can be seen 
from Fig. 3.5(b) where the internal moment, M, increases in magnitude as the built- 
in end is approached due to the increasing rotational effect of W. We note that 
applied loads of one type can induce internal forces of another. Thus in Fig. 3.5(b) 
the external shear load, W ,  produces both shear and bending at the section mm. 

Internal forces are distributed throughout beam sections in the form of stresses. It 
follows that the resultant of each individual stress distribution must be the corresponding 
internal force; internal forces are therefore often known as stress resultants. However, 
before an individual stress distribution can be found it is necessary to determine the 
corresponding internal force. Also, in design problems, it is necessary to determine the 
position and value of maximum stress and displacement. Thus, usually, the first step in 
the analysis of a structure is to calculate the distribution of each of the four basic internal 
force types throughout the component structural members. We shall therefore determine 
the distributions of the four internal force systems in a variety of structural members. 
First, however, we shall establish a notation and sign convention for each type of force. 
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Fig. 3.5 Internal force system generated by an external shear load 

3.2 Notation and sign convention 
We shall be concerned initially with structural members having at least one 
longitudinal plane of symmetry. Normally this will be a vertical plane and will 
contain the externally applied loads. Later, however, we shall investigate the bending 
and shear of beams having unsymmetrical sections so that as far as possible the 
notation and sign convention we adopt now will be consistent with that required 
later. Some modifications will, however, be necessary. 

The coordinates of all points in a structural member will be referred to a right- 
handed system of axes Oxyz as shown in Fig. 3.6. Oz forms the longitudinal axis of 
the beam and Oy is vertically downwards. Vertical externally applied loads 
W(concentrated) and w(distributed) are positive in the positive direction of the y 
axis as are vertical displacements of the member, which are given the symbol v .  An 
axial load P is positive when tensile while a torque T is positive if applied in an 
anticlockwise sense when viewed in the direction z 0 .  

Positive internal force systems are shown acting on a length of a structural 
member in Fig. 3.7. For equilibrium of the length of beam the internal forces must 

Fig. 3.6 Notation and sign conventions for displacements and externally applied 
loads 
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Fig. 3.7 Positive internal force systems 

act in opposite directions on the opposite faces of the length of beam. Thus when 
deciding the sign of an internal force, attention must be paid to the face of the 
section on which it acts. For example, a positive shear force, S, acts downwards on 
the right-hand face of the element but upwards on the left-hand face. 

A positive bending moment, M ,  will cause the upper surface of a beam to become 
concave and is therefore known as a sagging bending moment. Negative bending 
moments produce convex upper surfaces on beams and are termed hogging bending 
moments. 

The axial force, N ,  acts normally to the cross-section of a member and is 
therefore referred to as a normal force; N is positive when tensile. 

A positive internal torque is anticlockwise when viewed in the direction z0.  
We see from the above that positive externally applied loads are associated with 

positive corresponding internal forces. 
Generally it is advantageous to represent the distribution of internal forces, 

moments and torques by internal force diagrams; the methods of construction of 
these diagrams will be illustrated by examples. 

3.3 Normal force 
Example 3.1 Construct a normal force diagram for the beam AB shown in 
Fig. 3.8(a). 

The first step is to calculate the support reactions using the methods described in 
Section 2.5. In this case, since the beam is on a roller support at B, the horizontal 
load at B is reacted at A; clearly RA,H = 10 kN acting to the left. 

Generally the distribution of an internal force will change at a loading 
discontinuity. In this case there is no loading discontinuity at any section of the beam 
so that we can determine the complete distribution of the normal force by 
calculating the normal force at any section Z, a distance : from A. 

Consider the length AZ of the beam as shown in Fig. 3.8(b) (equally we could 
consider the length ZB). The internal normal force acting at Z is N A B  which is shown 
acting in a positive (tensile) direction. The length AZ of the beam is in equilibrium 
under the action of RA,H (= 10 kN) and N A B .  Thus, from Section 2.4, for equilibrium 
in the z direction, 

N A B  - / ?A , ) ,  = N A B  - 10 = 0 

whence 

- N A B  = + 10 kN 

N A B  is positive and therefore acts in the assumed positive direction; the normal force 
diagram for the complete beam is then as shown in Fig. 3.8(c). 
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Fig. 3.8 Normal force diagram for the beam of Ex. 3.1 

When the equilibrium of a portion of a structure is considered as in Fig. 3.8(b) we 
are using what is termed a free body diagram. 

Example 3.2 Draw a normal force diagram for the beam ABC shown in Fig. 3.9(a). 

Again by considering the overall equilibrium of the beam we see that RA," = 10 kN 
acting to the left (C is the roller support). 

In this example there is a loading discontinuity at B so that the distribution of the 
normal force in AB will be different to that in BC. We must therefore determine the 
normal force at an arbitrary section Z, between A and B and then at an arbitrary 
section Z, between B and C. 

The free body diagram for the portion of the beam AZ, is shown in Fig. 3.9(b). 
(Alternatively we could consider the portion Z,C.) As before, we draw in a positive 
normal force, NAB. Then, for equilibrium of AZ, in the z direction. 

NAB- 10=0 

so that NAB = + 10 kN (tension) 

Now consider the length ABZ, of the beam; again we draw in a positive normal 
force, NBc. Then for equilibrium of ABZ, in the z direction. 

N,,+ 10- 10=0 

which gives NB, = 0 

Note that we would have obtained the same result by considering the portion ZzC of 
the beam. 
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Fig. 3.9 Normal force diagram for the beam of Ex. 3.2 

Finally the complete normal force diagram for the beam is drawn as shown in 
Fig. 3.9(d). 

Example 3.3 Fig. 3.10(a) shows a beam ABCD supporting three concentrated 
loads, two of which are inclined to the longitudinal axis of the beam. Construct the 
normal force diagram for the beam and determine the maximum value. 

In this example we are only concerned with determining the noma1 force 
distribution in the beam, so that it is unnecessary to calculate the vertical reactions at 
the supports. Further, the horizontal components of the inclined loads can only be 
resisted at A since D is a roller support. Thus, considering the horizontal equilibrium 
of the beam, 

RA,H + 6 COS 60" - 4 COS 60" = 0 

whence f?A,F, = - 1 kN 
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Fig. 3.10 Normal force diagram for the beam of Ex. 3.3 

The negative sign of RA." indicates that the reaction acts to the right and not to the 
left as originally assumed. However, rather than change the direction of R A , H  in the 
diagram, it is simpler to retain the assumed direction and then insert the negative 
value as required. 

Although there is an apparent loading discontinuity at B, the 2 kN load acts 
perpendicularly to the longitudinal axis of the beam and will therefore not affect the 
normal force. We may therefore consider the normal force at any section Z, between 
A and C. The free body diagram for the portion AZ, of the beam is shown in 
Fig. 3.10(b); again we draw in a positive normal force NAc. For equilibrium of AZ, 

N A C  - 'A ,"  = o 
so that NAc = R A . H  = - 1 kN (compression) 

The horizontal component of the inclined load at C produces a loading discontinuity 
so that we now consider the normal force at any section Z? between C and D. Here it 
is slightly simpler to consider the equilibrium of the length Z,D of the beam rather 
than the length AZ2. Thus, from Fig. 3.10(c) 

N,, - 4 COS 60" = 0 

which gives N c ,  = +2 kN (tension) 

From the completed normal force diagram in Fig. 3.10(d) we see that the maximum 
normal force in the beam is 2 kN (tension) acting at all sections between C and D. 
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3.4 Shear force and bending moment 
It is convenient to consider shear force and bending moment distributions in beams 
simultaneously since, as we shall see in Section 3.5, they are directly related. Again 
the method of construction of shear force and bending moment diagrams will be 
illustrated by examples. 

Example 3.4 Cantilever beam with a concentrated load at the free end (Fig. 3.1 1). 

Generally, as in the case of normal force distributions, we require the variation in 
shear force and bending moment along the length of a beam. Again, loading 
discontinuities, such as concentrated loads and/or a sudden change in the intensity 
of a distributed load, cause discontinuities in the distribution of shear force and 
bending moment so that it is necessary to consider a series of sections, one between 

Fig. 3.1 1 Shear force and bending moment diagrams for the beam of Ex. 3.4 
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each loading discontinuity. In this example, however, there are no loading 
discontinuities between the built-in end A and the free end B so that we may 
consider a section Z at any point between A and B. 

For many beams the value of each support reaction must be calculated before the 
shear force and bending moment distributions can be obtained. In Fig. 3.1 1 (a) a 
consideration of the overall equilibrium of the beam (see Section 2.5) gives a 
vertical reaction, W, and a moment reaction, WL, at the built-in end. However, if we 
consider the equilibrium of the length ZB of the beam as shown in the free body 
diagram in Fig. 3.1 1 (b), this calculation is unnecessary. 

As in the case of normal force distributions we assign positive directions to the 
shear force, SA,, and bending moment, MA,, at the section Z. Then, for vertical 
equilibrium of the length ZB of the beam we have 

SA,- W = O  

which gives S A B =  +W 

Thus the shear force is constant along the length of the beam and the shear force 
diagram is rectangular in shape, as shown in Fig. 3.11(c). 

The bending moment, MA,, is now found by considering the moment equilibrium 
of the length ZB of the beam about the section Z. Alternatively we could take 
moments about B, but this would involve the moment of the shear force, SA,, about 
B. This approach, although valid, is not good practice since it includes a previously 
calculated quantity; in some cases, however, this is unavoidable. Thus, taking 
moments about the section Z we have 

MA, + W(L - Z)  = 0 

whence MA, = -W(L - Z)  (i) 

Eq. (i) shows that MA, varies linearly along the length of the beam, is negative, i.e. 
hogging, at all sections and increases from zero at the free end (z = L )  to - WL at the 
built-in end where z = 0. 

It is usual to draw the bending moment diagram on the tension side of a beam. This 
procedure is particularly useful in the design of reinforced concrete beams since it 
shows directly the surface of the beam near which the major steel reinforcement 
should be provided. Also, drawing the bending moment diagram on the tension side 
of a beam can give an indication of the deflected shape as illustrated in Exs 3.4-3.7. 
This is not always the case, however, as we shall see in Exs 3.8 and 3.9. 

In this case the beam will bend as shown in Fig. 3.1 1 (e) so that the upper surface 
of the beam is in tension and the lower one in compression; the bending moment 
diagram is therefore drawn on the upper surface as shown in Fig. 3.11 (d). Note that 
negative (hogging) bending moments applied in a vertical plane will always resuit in 
the upper surface of a beam being in tension. 

Example 3.5 Cantilever beam carrying a uniformly distributed load of intensity w. 

Again it is unnecessary to calculate the reactions at the built-in end of the cantilever; 
their values are, however, shown in Fig. 3.12(a). Note that for the purpose of 
calculating the moment reaction the uniformly distributed load may be replaced by a 
concentrated load (= wL) acting at a distance L/2 from A. 
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Fig. 3.12 Shear force and bending moment diagrams for the beam of Ex. 3.5 

There is no loading discontinuity between A and B so that we may consider the 
shear force and bending moment at any section Z between A and B. As before, we 
insert positive directions for the shear force, SAB,  and bending moment, M A B ,  in the 
free body diagram of Fig. 3.12(b). Then, for vertical equilibrium of the length ZB 
of thebeam, 

SA, - w(L  - z) = 0 

so that S A B =  + w ( L - z )  (i) 

Therefore SA, varies linearly with z and increases from zero at B to +wL at A 
(Fig. 3.12(c)). 

Now consider the moment equilibrium of the length AB of the beam and take 
moments about Z: 

W 
MAB + - ( L  - z)' = 0 

2 
W 

which gives MAD = -- ( L  - z)' (ii) 
2 

Note that the total load on the length ZB of the beam is w ( L - z ) ,  which we may 
consider acting as a concentrated load at a distance ( L  - :)/2 from Z. From Eq. (ii) 
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we see that the bending moment, MAB, is negative at all sections of the beam and 
vanes parabolically as shown in Fig. 3.12(d) where the bending moment diagram is 
again drawn on the tension side of the beam. The actual shape of the bending 
moment diagram may be found by plotting values or, more conveniently, by 
examining Eq. (ii). Differentiating with respect to z we obtain 

(iii) 

so that when z = L ,  dMAB/di=O and the bending moment diagram is tangential to 
the datum line AB at B. Furthermore it can be seen from Eq. (iii) that the gradient 
(dMA,/dz) of the bending moment diagram decreases as z increases, so that its 
shape is as shown in Fig. 3.12(d). 

Example 3.6 

In this example it is necessary to calculate the value of the support reactions, both 
of which are seen, from symmetry, to be W / 2  (Fig. 3.13(a)). Also, there is a 
loading discontinuity at B, so that we must consider the shear force and bending 
moment first at an arbitrary section Z ,  say, between A and B and then at an arbitrary 
section Zz between B and C. 

From the free body diagram in Fig. 3.13(b) in which both SAB and MA, are in 
positive directions we see, by considering the vertical equilibrium of the length AZ, 
of the beam, that 

Simply supported beam carrying a central concentrated load. 

W 
2 

sAB--- = o  

whence 
W 

SA, +- 
2 

SA, is therefore constant at all sections of the beam between A and B, in other 
words, from a section immediately to the right of A to a section immediately to the 
left of B. 

Now consider the free body diagram of the length Z2C of the beam in 
Fig. 3.13(c). Note that, equally, we could have considered the length ABZ?, but this 
would have been slightly more complicated in terms of the number of loads acting. 
For vertical equilibrium of Z,C 

W s - _ -  
2 

from which A B  - 

and we see that SI,(. is constant at all sections of the beam between B and C so that 
the complete shear force diagram has the form shown in Fig. 3.13(d). Note that the 
change in shear force from that at a section immediately to the left of B to that at a 
section immediately to the right of B is - W. We shall consider the implications of 
this later in the chapter. 
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Fig. 3.13 Shear force and bending moment diagrams for the beam of Ex 3.6 

It would also appear from Fig. 3.13 (d) that there are two different values of shear 
force at the same section B of the beam. This results from the assumption that W is 
concentrated at a point which, practically, is impossible since there would then be an 
infinite bearing pressure on the surface of the beam. In practice, the load W and the 
support reactions would be distributed over a small length of beam (Fig. 3.14(a)) so 
that the actual shear force distribution would be that shown in Fig. 3.14(b). 

The distribution of the bending moment in AB is now found by considering the 
moment equilibrium about Z, of the length AZ, of the beam in Fig. 3.13(b). Thus 

W 
M A B  - - 2 = 0 

2 

(0 W 
2 

or MAB=-z 

Therefore MA, varies linearly from zero at A (z = 0) to + WL/4 at B (z = L / 2 ) .  

about Z, 
Now considering the length Z,C of the beam in Fig 3.13(c) and taking moments 
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Fig. 3.14 Shear force diagram in a practical situation 

W 
2 

M B ,  - - ( L  - z) = 0 

(ii) W 
2 

From Eq. (ii) we see that M, varies linearly from + WL/4 at B (z = L / 2 )  to zero at 

The complete bending moment diagram is shown in Fig. 3.13(e). Note that the 
bending moment is positive (sagging) at all sections of the beam so that the lower 
surface of the beam is in tension. In this example the deflected shape of the beam 
would be that shown in Fig. 3.13(f). 
Example 3.7 Simply supported beam carrying a uniformly distributed load. 

The symmetry of the beam and its load may again be used to determine the 
support reactions which are each wL/2.  Furthermore, there is no loading 
discontinuity between the ends A and B of the beam so that it is sufficient to 
consider the shear force and bending moment at just one section Z, a distance z, say, 
from A; again we draw in positive directions for the shear force and bending 
moment at the section Z in the free body diagram shown in Fig. 3.15 (b). 

which gives MBc = +- ( L  - 2) 

c ( z = L ) .  

Considering the vertical equilibrium of the length AZ of the beam gives 
L 

2 
SA, + W Z -  w - = 0 

whence SA, = + w(: - z) (i) 

SAB therefore varies linearly along the length of the beam from + w L / 2  at A ( 2  = 0) 
to - w L / 2  at B (z = L ) .  Note that SAB = 0 at mid-span (z = L/2) .  
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Fig. 3.15 Shear force and bending moment diagrams for the beam of Ex. 3.7 

Now taking moments about Z for the length AZ of the beam in Fig. 3.15(b) we have 

wzl W L  
MA, + - - - z = 0 

2 2  

WZ 
from which MA, = +- ( L  - 1) (ii) 

2 

Thus MA, varies parabolically along the length of the beam and is positive (sagging) 
at all sections of the beam except at the supports (: = 0 and 1 = L )  where it is zero. 
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Also, differentiating Eq. (ii) with respect to z gives 

- dM*B = w(; - .) 
dz 

(iii) 

From Eq. (iii) we see that dM,,/dz=O at mid-span where z=L/2,  so that the 
bending moment diagram has a turning value or mathematical maximum at this 
section. In this case this mathematical maximum is the maximum value of the 
bending moment in the beam and is, from Eq. (ii), + wL2/8. 

The bending moment diagram for the beam is shown in Fig. 3.15(d) where it is 
again drawn on the tension side of the beam; the deflected shape of the beam will be 
identical in form to the bending moment diagram. 

Examples 3.4-3.7 may be regarded as ‘standard’ cases and it is useful to 
memorize the form that the shear force and bending moment diagrams take including 
the principal values. 

Example 3.8 

Thus, taking moments about B in Fig. 3.16(a) we have 

Simply supported beam with cantilever overhang (Fig. 3.16(a)). 

The support reactions are calculated using the methods described in Section 2.5. 

R, x 2 - 2  x 3 x 0.5 + 1 x 1 = O  
which gives R , = l  kN 
From vertical equilibrium 

R , + R A - 2 x 3 - 1  = O  
so that R B = 6 k N  

The support reaction at B produces a loading discontinuity at B so that we must 
consider the shear force and bending moment at two arbitrary sections of the beam, 
Z ,  in AB and Z2 in BC. Free body diagrams are therefore drawn for the lengths AZ, 
and Z2C of the beam and positive directions for the shear force and bending moment 
drawn in as shown in Figs 3.16(b) and (c). Alternatively, we could have considered 
the lengths Z,BC and ABZ,, but this approach would have involved slightly more 
complicated solutions in terms of the number of loads applied. 

Now from the vertical equilibrium of the length AZ, of the beam in Fig. 3.16(b) 
we have 

SAB+22-  1 = o  
or SAR= 1-2: (i) 
The shear force therefore varies linearly in AB from + 1 kN at A ( z  = 0) to - 3  kN at 
B (I = 2 m). Note that SA, = 0 at 2 = 0 - 5  m. 

Consideration of the vertical equilibrium of the length Z2C of the beam in 
Fig. 3.16(c) gives 

SBC-2(3 -z ) -  1 = O  
from which S,, = 7 - 2: (ii) 

Eq. (ii) shows that S,, varies linearly in BC from +3 kN at B(2 = 2 m) to + 1 kN at 
C(z = 3 m). 
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Fig. 3.16 Shear force and bending moment diagrams for the beam of Ex. 3.8 
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The complete shear force diagram for the beam is shown in Fig. 3.16(d). 
The bending moment, MAB, is now obtained by considering the moment 

equilibrium of the length AZ, of the beam about Z ,  in Fig. 3.16(b). Hence 

so that (iii) 

which is a parabolic function of z. The distribution may be plotted by selecting a 
series of values of z and calculating the corresponding values of M A B .  However, 
this would not necessarily produce accurate estimates of either the magnitudes and 
positions of the maximum values of M A ,  or, say, the positions of the zero values of 
MAB which, as we shall see later, are important in beam design. A better approach is 
to examine Eq. (iii) as follows. Clearly when z = 0, MA, = 0 as would be expected at 
the simple support at A. Also at B, where z = 2 m, MAB = -2 kN so that although the 
support at B is a simple support and allows rotation of the beam, there is a moment 
at B; this is produced by the loads on the cantilever overhang BC. Rewriting Eq. (iii) 
in the form 

M A B  = z( 1 - z) (iv 1 
we see immediately that M A B  = 0 at z = 0 (as demonstrated above) and that MAB = 0 
at z =  1 m, the point D in Fig. 3.16(e). We shall see later in Chapter 9 that at the 
point in the beam where the bending moment changes sign the curvature of the beam 
is zero; this point is known as a point of contrajlexure or point of inflection. Now 
differentiating Eq. (iii) with respect to z we obtain 

-- - 1 - 2 z  ~ M A B  
dZ 

and we see that dMA,/dz = 0 at z = 0.5 m. In other words MAB has a turning value or 
mathematical maximum at z = 0.5 m at which point MAB = 0.25 kN m. Note that this 
is not the greatest value of bending moment in the span AB. Also it can be seen that 
for O <  ~ ~ 0 . 5  m, dMAB/dZ decreases with z while for 0.5 m <  z < 2  m, dMAB/dZ 
increases negatively with z .  

Now we consider the moment equilibrium of the length ZzC of the beam in 
Fig. 3.16(c) about Z2. 

2 

2 
MB, + - (3 - z ) ’ +  l (3  - z )  = 0 

so that M,,= -12+7:-z’ (vi) 
from which we see that dM,,/d: is not zero at any point in BC and that as z 
increases dMB,/dz decreases. 

The complete bending moment diagram is therefore as shown in Fig. 3.16(e). 
Note that the value of zero shear force in AB coincides with the turning value of the 
bending moment. 

In this particular example it is not possible to deduce the displaced shape of the 
beam from the bending moment diagram. Only three facts relating to the displaced 
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shape can be stated with certainty; these are, the deflections at A and B are zero and 
there is a point of contraflexure at D, 1 m from A. However, using the method 
described in Section 13.2 gives the displaced shape shown in Fig. 3.16(f). Note that, 
although the beam is subjected to a sagging bending moment over the length AD, the 
actual deflection is upwards; clearly this could not have been deduced from the 
bending moment diagram. 

Example 3.9 Simply supported beam carrying a point moment. 

From a consideration of the overall equilibrium of the beam (Fig. 3.17(a)) the 
support reactions are RA = Mn/L  acting vertically upward and R, = Mn/L acting 
vertically downward. Note that RA and R,  are independent of the point of 
application of Mn. 

Although there is a loading discontinuity at B it is a point moment and will not 
affect the distribution of shear force. Thus, by considering the vertical equilibrium 
of either AZ, in Fig. 3.17(b) or Z2C in Fig. 3.17(c) we see that 

The shear force is therefore constant along the length of the beam as shown in 
Fig. 3.17(d). 

Now considering the moment equilibrium about Z ,  of the length AZ, of the beam 
in Fig. 3.17(b), 

MA, - - M n  z = 0 
L 

or M n  

MAB=Li (ii) 

MA, therefore increases linearly from zero at A (z = 0) to +3M0/4 at B (z = 3L/4). 
From Fig. 3.17(c) and taking moments about Z, we have 

M,,+-(L-z)=O Mn 
L 

or Mo M BC- - - ( ( z - L )  . (iii) 
L 

M,, therefore decreases linearly from -Mn/4 at B ( z  = 3L/4) to zero at C(z = L); 
the complete distribution of bending moment is shown in Fig. 3.17(e). The deflected 
form of the beam is shown in Fig. 3.17(f) where a point of contraflexure occurs at 
B, the section at which the bending moment changes sign. 

In this example, as in Ex. 3.8, the exact form of the deflected shape cannot be 
deduced from the bending moment diagram without analysis. However, using the 
method of singularities described in Section 13.2, it may be shown that the 
deflection at B is positive and that the slope of the beam at C is negative, giving the 
displaced shape shown in Fig. 3.17(f). 
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Fig. 3.17 Shear force and bending moment diagrams for the beam of Ex. 3.9 
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3.5 Load, shear force and bending moment 
relationships 
It is clear from Exs 3.4-3.9 that load, shear force and bending moment are related. 
Thus, for example, uniformly distributed loads produce linearly varying shear forces 
and maximum values of bending moment coincide with zero shear force. We shall 
now examine these relationships mathematically. 

The length of beam shown in Fig. 3.18(a) cames a general system of loading 
comprising concentrated loads and a distributed load w(z). An elemental length 6z 
of the beam is subjected to the force and moment system shown in Fig. 3.18(b); 
since Sz is very small the distributed load may be regarded as constant over the 
length 6z. For vertical equilibrium of the element 

s - w(z)6z - (S + S S )  = 0 

so that -w(z)bz- 6 S = O  

Thus, in the limit as 62 + 0 

- -w(z) (3.1) 
dS 
dz 
_ -  

Fig. 3.18 Load, shear force and bending moment relationships 
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From Eq. (3.1) we see that the rate of change of shear force at a section of a beam, 
in other words the gradient of the shear force diagram, is equal to minus the value 
of the load intensity at that section. In Fig. 3.12(c), for example, the shear force 
changes linearly from wL at A to zero at B so that the gradient of the shear force 
diagram at any section of the beam is - wL/L = -w where w is the load intensity. 
Equation (3.1) also applies at beam sections subjected to concentrated loads. In 
Fig. 3.13(a) the load intensity at B, theoretically, is infinite, as is the gradient of the 
shear force diagram at B (Fig. 3.13(d)). In practice the shear force diagram would 
have a finite gradient at this section as illustrated in Fig. 3.14. 

Now integrating Eq. (3.1) with respect to z we obtain 

S = - I w(z )  dz + C, (3.2) 

in which C, is a constant of integration which may be determined in a particular case 
from the loading boundary conditions. 

If, for example, w ( z )  is a uniformly distributed load of intensity w,  that is it is 
not a function of z ,  Eq. (3.2) becomes 

s =  - w z + c ,  

which is the equation of a straight line of gradient -w as demonstrated for the 
cantilever beam of Fig. 3.12 in the previous paragraph. Furthermore, for this 
particular example, S = 0 at z = L so that C ,  = WL and S = w ( L  - z) as before. 

In the case of a beam carrying only concentrated loads then, in the bays between 
the loads, w ( z )  = 0 and Eq. (3.2) reduces to 

s=c, 
so that the shear force is constant over the unloaded length of beam (see Figs 3.11 
and 3.13). 

Suppose now that Eq. (3.1) is integrated over the length of beam between the 
sections Z, and Z,. Then 

which gives S 2  - S I  =I” w(z) dz (3.3) 
:I 

where S ,  and S 2  are the shear forces at the sections Z ,  and Z ,  respectively. Equation 
(3.3) shows that the change in shear force between two sections of a beam is equal 
to minus the area under the load distribution curve over that length of beam. 

The argument may be applied to the case of a concentrated load W which may be 
regarded as a uniformly distributed load acting over an extremely small elemental 
length of beam, say 62. The area under the load distribution curve would then be 
w6z( = W) and the change in shear force from the section z to the section z + 6z 
would be - W. In other words, the change in shear force from a section immediately 
to the left of a concentrated load to a section immediately to the right is equal to 
minus the value of the load, as noted in Ex. 3;6. 
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Now consider the rotational equilibrium of the element 6z in Fig. 3.18(b) about 
B. Thus 

62 

2 
M +  s 6z - w(z) 6z - - (M+ 6M) = 0 

The term involving the square of 6z is a second-order term and may be neglected. 
Hence 

S6z- 6 M = O  

or, in the limit as 6z +O 

dM 

dz 
-- - S  (3.4) 

Equation (3.4) establishes for the general case what may be observed in particular in 
the shear force and bending moment diagrams of Exs 3.4-3.9, i.e. the gradient of 
the bending moment diagram at a beam section is equal to the value of the shear 
force at that section. For example, in Fig. 3.16(e) the bending moment in AB is a 
mathematical maximum at the section where the shear force is zero. 

Integrating Eq. (3.4) with respect to z we have 

M = ]  Sdz+Cz (3.5) 

in which Cz is a constant of integration. Substituting for S in Eq. (3.5) from 
Eq. (3.2) gives 

M = / [-I w(z) dz + C ,  dz + C2 1 
or M = - / /  w(z) dz + C,z + C2 

If w(z) is a uniformly distributed load of intensity w, Eq. (3.6) becomes 
2 

M =  -w + CIZ+ cz 

which shows that the equation of the bending moment diagram on a length of beam 
carrying a uniformly distributed load is parabolic. 

In the case of a beam carrying concentrated loads only then, between the loads, 
w(:) = 0 and Eq. (3.6) reduces to 

2 

M =  c,: + cz 
which shows that the bending moment vanes linearly between the loads and has a 
gradient C,. 

The constants C, and C2 in Eq. (3.6) may be found, for a given beam, from the 
loading boundary conditions. Thus, for the cantilever beam of Fig. 3.12, we have 
already shown that C, = W L  so that M = - w:'/2 + wL: + C2. Also, when z = L ,  
M = 0 which gives C ,  = - 1.t.L'/2 and hence M = -wz2/2 + wL: - wL'/2 as before. 
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Now integrating Eq. (3.4) over the length of beam between the sections Z, and 2, 
(Fig. 3.18(a)), 

which gives M'-M,=/; Sdz (3.7) 

where M, and M, are the bending moments at the sections Z, and Z,, respectively. 
Equation (3.7) shows that the change in bending moment between two sections of a 
beam is equal to the area of the shear force diagram between those sections. Again, 
using the cantilever beam of Fig. 3.12 as an example, we see that the change in 
bending moment from A to B is wL2/2 and that the area of the shear force diagram 
between A and B is wL2/2. 

Finally, from Eqs (3.1 ) and (3.4) 

- -w(z) 
d'M dS 
dz' dz 
-- (3.8) 

The relationships established above may be used to construct shear force and 
bending moment diagrams for some beams more readily than when the methods 
illustrated in Exs 3.4-3.9 are employed. In addition they may be used to provide 
simpler solutions in some beam problems. 

Example 3.10 Construct shear force and bending moment diagrams for the beam 
shown in Fig. 3.19(a). 

Initially the support reactions are calculated using the methods described in 
Section 2.5. Hence, for moment equilibrium of the beam about E 

R A x 4 - 2 x 3 - 5 x 2 - 4 x  1 ~ 0 * 5 = 0  

from which RA=4.5 kN 

Now considering the vertical equilibrium of the beam 

R , + R A - 2 - 5 - 4 x 1 = 0  

so that R,=6-5 kN 

In constructing the shear force diagram we can make use of the facts that, as 
established above, the shear force is constant over unloaded bays of the beam, varies 
linearly when the loading is uniformly distributed and changes negatively as a 
venically downward concentrated load is crossed in the positive z direction by the 
value of the load. Thus in Fig. 3.19(b) the shear force increases positively by 
4.5 kN as we move from the left of A to the right of A, is constant between A and 
B, changes negatively by 2 kN as we move from the left of B to the right of B, and 
so on. In effect the shear force diagram is constructed by following the loading 
pattern. Note that between D and E the shear force changes linearly from -2.5 kN at 
D to -6.5 kN at a section immediately to the left of E, in other words it changes by 
-4 kN, the total value of the downward-acting uniformly distributed load. 
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. ... . . . . 
Fig. 3.19 Shear force and bending moment diagrams for the beam of Ex. 3.10 

The bending moment diagram may also be constructed using the above 
relationships, namely, the bending moment varies linearly over unloaded lengths of 
beam and parabolically over lengths of beam carrying a uniformly distributed load. 
Also, the change in bending moment between two sections of a beam is equal to the 
area of the shear force diagram between those sections. Thus in Fig. 3.19(a) we 
know that the bending moment at the pinned support at A is zero and that it varies 
linearly in the bay AB. The bending moment at B is then equal to the area of the 
shear force diagram between A and B, which is +4.5 kNm. This represents, in fact, 
the change in bending moment from the zero value at A to the value at B. At C the 
area of the shear force diagram to the right or left of C is 7 kNm (note that the 
bending moment at E is also zero), and so on. In the bay DE the shape of the 
parabolic curve representing the distribution of bending moment over the length of 
the uniformly distributed load may be found using part of Eq. (3.8), i.e. 

- =-w(z) 
d'M 

dz2 

For a vertically downward uniformly distributed load this expression becomes 

d?M - =-w 
dz' 
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which from mathematical theory shows that the curve representing the variation in 
bending moment is convex in the positive direction of bending moment. This may be 
observed in the bending moment diagrams in Figs 3.12(d), 3.15(d) and 3.16(e). In 
this example the bending moment diagram for the complete beam is shown in 
Fig. 3.19(c) and is again drawn on the tension side of the beam. 

Example 3.11 A precast concrete beam of length L is to be lifted from the casting 
bed and transported so that the maximum bending moment is as small as possible. If 
the beam is lifted by two slings placed symmetrically, show that each sling should be 
0.21L from the adjacent end. 

The external load on the beam is comprised solely of its own weight, which is 
uniformly distributed along its length. The problem is therefore resolved into that of 
a simply supported beam carrying a uniformly distributed load in which the supports 
are positioned at some distance a from each end (Fig. 3.20(a)). 

The shear force and bending moment diagrams may be constructed in terms of a 
using the methods described above and would take the forms shown in Figs 3.20(b) 
and (c). Examination of the bending moment diagram shows that there are two 
possible positions for the maximum bending moment. First at B and C where the 
bending moment is hogging and has equal values from symmetry; second at the mid- 
span point where the bending moment has a turning value and is sagging if the 
supports at B and C are spaced a sufficient distance apart. Suppose that B and C are 
positioned such that the value of the hogging bending moment at B and C is 

Fig. 3.20 
beam (Ex. 3.1 1) 

Determination of optimum position for supports in a precast concrete 
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numerically equal to the sagging bending moment at the mid-span point. If now B 
and C are moved further apart the mid-span moment will increase while the moment 
at B and C decreases. Conversely, if B and C are brought closer together, the 
hogging moment at B and C increases while the mid-span moment decreases. It 
follows that the maximum bending moment will be as small as possible when the 
hogging moment at B and C is numerically equal to the sagging moment at mid-span. 

The solution will be simplified if use is made of the relationship in Eq. (3.7). 
Thus, when the supports are in the optimum position, the change in bending moment 
from A to B (negative) is equal to minus half the change in the bending moment 
from B to the mid-span point (positive). It follows that the area of the shear force 
diagram between A and B is equal to minus half of that between B and the mid-span 
point. Then 

-- 1 awa = -- 1 1 L  [- (- -a)-(: -a) ]  
2 2 2 2  

which reduces to 
a’+ LA - L2/4 = O  

the solution of which gives 

a = 0.2 1 L(the negative solution has no practical significance) 

3.6 Torsion 
The distribution of torque along a structural member may be obtained by considering 
the equilibrium in free body diagrams of lengths of member in a similar manner to 
that used for the determination of shear force distributions in Exs 3.4-3.9. 

Example 3.12 Construct a torsion diagram for the beam shown in Fig. 3.21 (a). 

There is a loading discontinuity at B so that we must consider the torque at 
separate sections Z, and Zz in AB and BC, respectively. Thus, in the free body 
diagrams shown in Figs 3.21 (b) and (c) we insert positive internal torques. 

From Fig. 3.2 1 (b) 
TAB- 1 0 + 8 = 0  

so that T A B  = +2 kNm 
From Fig. 3.2 1 (c) 

T,,  + 8 = 0 

from which 

The complete torsion diagram is shown in Fig. 3.21 (d). 

Example 3.13 The structural member ABC shown in Fig. 3.22 cames a distributed 
torque of 2 kNm/m together with a concentrated torque of 10 kNm at mid-span. 
The supports at A and C prevent rotation of the member in planes perpendicular to 
its axis. Construct a torsion diagram for the member and determine the maximum 
value of torque. 

T,,  = -8 kN m 
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Fig. 3.21 Torsion diagram for a cantilever beam 

From the rotational equilibrium of the member about its longitudinal axis and its 
symmetry about the mid-span section at B, we see that the reactive torques T ,  and 
T ,  are each -9 kN m, i.e. clockwise when viewed in the direction CBA. In general, 
as we shall see in Chapter 11, reaction torques at supports form a statically 
indeterminate system. 

In this particular problem there is a loading discontinuity at B so that we must consider 
the internal torques at two arbitrary sections Z, and Z, as shown in Fig. 3.23(a). 
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Fig. 3.22 Beam of Ex. 3.13 

Fig. 3.23 Torsion diagram for the beam of Ex. 3.13 
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From the free body diagram in Fig. 3.23(b) 
TAB + 22 - 9 = 0 

which gives TAB= 9 - 2z ( 0  
From Eq. (i) we see that TAB varies linearly from +9 kN m at A (z = 0) to +5 kN m 
at a section immediately to the left of B (z = 2 m). Furthermore, from Fig. 3.23 (c) 

TBc - 2(4 - z) + 9 = 0 

so that TBc = -2.2 - 1 (ii) 

from which we see that TBc varies linearly from -5 kNm at a section immediately 

Fig. 3.24 Bending moment (BM) diagram using the principle of superposition 
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to the right of B (z = 2 m) to -9 kNm at C (z = 4 m). The resulting torsion diagram 
is shown in Fig. 3.23(d). 

3.7 Principle of superposition 

An extremely useful principle in the analysis of linearly elastic structures (see 
Chapter 8) is that of superposition. The principle states that if the displacements at 
all points in an elastic body are proportional to the forces producing them, that is the 
body is linearly elastic, the effect (i.e. stresses and displacements) on such a body of 
a number of forces acting simultaneously is the sum of the effects of the forces 
applied separately. 

This principle can sometimes simplify the construction of shear force and bending 
moment diagrams. 

Example 3.14 Construct the bending moment diagram for the beam shown in 
Fig. 3.24(a). 

Figures 3.24(b), (c) and (d) show the bending moment diagrams for the cantilever 
when each of the three loading systems acts separately. The bending moment 
diagram for the beam when the loads act simultaneously is obtained by adding the 
ordinates of the separate diagrams and is shown in Fig. 3.24(e). 

Problems 
P.3.1 A transmitting mast of height 40 m and weight 4.5 kN/m length is stayed 

by three groups of four cables attached to the mast at heights of 15.25 and 35 m. If 
each cable is anchored to the ground at a distance of 20 m from the base of the mast 
and tensioned to a force of 15 kN, draw a diagram of the compressive force in the 
mast. 

Ans. 

P.3.2 

Max. force = 315 kN. 

Construct the normal force, shear force and bending moment diagrams for 
the beam shown in Fig. P.3.2. 

Ans. NAB = 9.2 kN, NBC = 9-2 kN, N,D = 5-7 kN, NDE = 0. 

M, = 27.2 kNm, Mc = 50 kNm, MD = 39.5 kNm. 
SA, = 6.8 kN, S B C  = 3.8 kN, ScD = -2.3 kN, S D , =  -7.9 kN. 

Fig. P.3.2 
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Draw dimensioned sketches of the diagrams of normal force, shear force P.3.3 
and bending moment for the beam shown in Fig. P.3.3. 

NAB = NBC = NCD = 0, ND, = -6 kN. Ans. 
SA=O, S B  ( h A B ) =  -10 kN, SB (inBC)= 10 kN, 
s c = 4 k N ,  S D ( ~ I ’ I C D ) = ~ ~ N , S D , = - ~ ~ N .  
M B =  -25 kNm, Mc= -4 kNm, M D =  12 kNm. 

3 

Fig. P.3.3 

P.3.4 
Fig. P.3.4. 

Draw shear force and bending moment diagrams for the beam shown in 

All$. SAB = W, SBC = 0, Sc, = - W. 
MB = M c  = WL/4. 

Note zero shear and constant bending moment in central span. 

Fig. P.3.4 

P.3.5 The cantilever AB shown in Fig. P.3.5 carries a uniformly distributed load 
of 5 kN/m and a concentrated load of 15 kN at its free end. Construct the shear 
force and bending moment diagrams for the beam. 

Fig. P.3.5 
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Ans. SB = 15 kN, Sc=65 kN. 
MB =0, MA = -400 kNm. 

P.3.6 Sketch the bending moment and shear force diagrams for the simply 
supported beam shown in Fig. P.3.6 and insert the principal values. 

Ans. S, (in AB) = -5 kN, SB (in BC) = 3-75 kN, S, (in BC) = -6.25 kN, 
ScD=5 k N , M , =  -12-5 kNm, M , =  -25 kNm. 

Turning value of bending moment of -5.5 kNm in BC, 3-75 m from B. 

Fig. P.3.6 

P.3.7 
in Fig. P.3.7 indicating the principal values. 

Draw the shear force and bending moment diagrams for the beam shown 

Ans. SA, = 5.6 kN, SB (in BC) = -4.4 kN, Sc (in BC) = -7.4 kN, S, 
(in CD) = 1-5 kN. 
M B =  16.69 kNm, M,= -1-13 kNm. 

Fig. P.3.7 

P.3.8 Find the value of w in the beam shown in Fig. P.3.8 for which the 
maximum sagging bending moment occurs at a point 10/3 m from the left-hand 
support and determine the value of this moment. 

Fig. P.3.8 
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Ans. w = 1.2 kN/m, 6.7 kN m. 

P.3.9 Find the value of n for the beam shown in Fig. P.3.9 such that the 
maximum sagging bending moment occurs at L/3 from the right-hand support. Using 
this value of n determine the position of the point of contraflexure in the beam. 

Ans. n = 4/3, L/3 from left-hand support. 

Fig. P.3.9 

P.3.10 Sketch the shear force and bending moment diagrams for the simply 
supported beam shown in Fig. P.3.10 and determine the positions of maximum 
bending moment and point of contraflexure. Calculate the value of the maximum 
moment. 

Ans. SA = 45 kN, SB (in AB) = -55 kN, SBc = 20 kN. 
M,, = 202.5 kNm at 9 m from A, M B  = -100 kNm. 
Point of contraflexure is 18 m from A. 

Fig. P.3.10 

P.3.11 Determine the position of maximum bending moment in a simply 
supported beam, 8 m span, which cames a load of 100 kN uniformly distributed 
over its complete length and, in addition, a load of 120 kN uniformly distributed 
over 2.5 m to the right from a point 2 m from the left support. Calculate the value of 
maximum bending moment and the value of bending moment at mid-span. 

Am.  M,,, = 294 kN m at 3.6 m from left-hand support. 
M (mid-span) = 289 kN m. 

P.3.12 A simply supported beam AB has a span of 6 m and cames a distributed 
load which varies linearly in intensity from zero at A to 2 kN/m at B. Sketch the 
shear force and bending moment diagrams for the beam and insert the principal 
values. 
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Ans. S A B  = 2 - ~'16, SA = 2 kN, SB = -4 kN. 
MAB = 22 - z3/18, M,,, = 4.62 kNm at 3.46 m from A. 

P.3.13 A precast concrete beam of length L is to be lifted by a single sling and 
has one end resting on the ground. Show that the optimum position for the sling is 
0.29 m from the nearest end. 

Construct shear force and bending moment diagrams for the framework P.3.14 
shown in Fig. P.3.14. 

Ans. S A ,  = 60 kN, SBC = 10 kN, ScD = - 140 kN* 
MB = 480 kNm, Mc = 560 kNm. 

Fig. P.3.14 

P3.15 Draw shear force and bending moment diagrams for the framework 
shown in Fig. P.3.15. 

Atts. SAB= -5 kN, SBc= -15 kN, SO= -30 kN, SD,=  12 kN, S w = 7  kN, 
SFC = 5 kN, SG" = 0. 
MB=- lOkNm,Mc= - 4 0 k N m , M D =  - l00kNrn ,ME=-76kNm,  
MF=-20kNm,M,=M, ,=0 .  

Fig. P.3.15 

P.3.16 The cranked cantilever ABC shown in Fig. P.3.16 carries a load of 3 kN 
at its free end. Draw shear force, bending moment and torsion diagrams for the 
complete beam. 

A?u. SCB = 3 kN, SB, = 3 kN. 
Mc=O,MB ( inCB)=-6kNm,MB ( i n B A ) = 0 , M A = - 9 k N m .  
TCB=O, TB,=6kNm. 
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Fig. P.3.16 

P.3.17 
Ans. 

Construct a torsion diagram for the beam shown in Fig. P.3.17. 

T,, = -300 N m, TBA = -400 N m. 

Fig. P.3.17 

P.3.18 The beam ABC shown in Fig. P.3.18 carries a distributed torque of 
1 N m/mm over its outer half BC and a concentrated torque of 500 N m at B. Sketch 
the torsion diagram for the beam inserting the principal values. 

Fig. P.3.18 
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Ans. 

P.3.19 The cylindrical bar ABCD shown in Fig. P.3.19 is supported 
symmetrically at B and C by supports that prevent rotation of the bar about its 
longitudinal axis. The bar carries a uniformly distributed torque of 2 Nmlmm 
together with concentrated torques of 400 Nm at each end. Draw the torsion 
diagram for the bar and determine the maximum value of torque. 

T ,  = 0 ,  TB (in BC) = lo00 Nm, T B  (in AB) = 1500 Nm. 

Ans. T ,  =m+ 22, TCB =2Z - 2000, TBA = 2z - 44oc) ch Nm when z is in ItlIll). 
T,, = 1400 Nm at C and B. 

Fig. P.3.13 



CHAPTER 4 

Analysis of Pimjointed 
Trusses 

In Chapter 1 we discussed various structural forms and saw that for moderately large 
spans, simple beams become uneconomical and may be replaced by trusses. These 
structures comprise members connected at their ends and are constructed in a variety 
of arrangements. In general, trusses are lighter, stronger and stiffer than solid beams 
of the same span; they do, however, take up more room and are more expensive to 
fabricate. 

Initially in this chapter we shall discuss types of truss, their function and the 
idealization of a truss into a form amenable to analysis. Subsequently, we shall 
investigate the criterion which indicates the degree of their statical determinacy, 
examine the action of the members of a truss in supporting loads and, finally, 
examine methods of analysis of both trusses and space frames. 

4.1 Types of truss 
Generally the form selected for a truss depends upon the purpose for which it is 
required. Examples of different types of truss are shown in Figs 4.1 (a)-(f); some 
are named after the railway engineers who invented them. 

The Pratt, Howe, Warren and K trusses would, for example, be used to support 
bridge decks and large-span roofing systems (the Howe truss is no longer used 
for reasons we shall discuss in Section 4.5) whereas the Fink truss would be used 
to support gable-ended roofs. The Bowstring truss is somewhat of a special case 
in that if the upper chord members are arranged such that the joints lie on a 
parabola and the loads, all of equal magnitude, are applied at the upper joints, 
the internal members carry no load. This result derives from arch theory (Chapter 
6) but is rarely of practical significance since, generally, the loads would be 
applied to the lower chord joints as in the case of the truss being used to support 
a bridge deck. 

Frequently, plane trusses are connected together to form a three-dimensional 
structure. For example, in the overhead crane shown in Fig. 4.2, the tower would 
usually comprise four plane trusses joined together to form a ‘box’ while the jibs 
would be constructed by connecting three plane trusses together to form a triangular 
cross-section. 
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Fig. 4.1 Types of truss 

4.2 Assumptions in truss analysis 
It can be seen from Fig. 4.1 that trusses consist of a series of triangular units. The 
triangle, even when its members are connected together by hinges or pins as in 
Fig. 4.3(a), is an inherently stable structure, i.e. it will not collapse under any 
arrangement of loads applied in its own plane. On the other hand, the rectangular 
structure shown in Fig. 4.3 (b) would be unstable if vertical loads were applied at the 
joints and would collapse under the loading system shown; in other words it is a 
mechanism. 
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Fig. 4.2 Overhead crane structure 

Fig. 4.3 Basic unit of a truss 

Further properties of a pin-jointed triangular structure are that the forces in the 
members are purely axial and that it is statically determinate (see Section 4.4) so 
long as the structure is loaded and supported at the joints. Thus the forces in the 
members can be found using the equations of statical equilibrium (Eqs (2.10)). It 
follows that a truss comprising pin-jointed triangular units is also statically 
determinate if the above loading and support conditions are satisfied. In Section 4.4 
we shall derive a simple test for determining whether or not a pin-jointed truss is 
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statically determinate; this test, although applicable in most cases is not, as we shall 
see, foolproof. 

The assumptions on which the analysis of trusses is based are as follows: 

(1) The members of the truss are connected at their ends by frictionless pins or 

(2) The truss is loaded and supported only at its joints. 
(3) The forces in the members of the truss are purely axial. 

hinges. 

Assumptions (2) and (3) are interdependent since the application of a load at some point 
along a truss member would, in effect, convert the member into a simply supported beam 
and, as we have seen in Chapter 3, generate, in addition to axial loads, shear forces and 
bending moments; the truss would then become statically indeterminate. 

4.3 Idealization of a truss 
In practice trusses are not pin-jointed but are constructed, in the case of steel trusses, 
by bolting, riveting or welding the ends of the members to gusset plates as shown in 
Fig. 4.4. In a timber roof truss the members are connected using spiked plates driven 
into their vertical surfaces on each side of a joint. The joints in trusses are therefore 
semi-rigid and can transmit moments, unlike a frictionless pinned joint. Furthermore, 
if the loads are applied at points on a member away from its ends, that member 
behaves as a fixed or built-in beam with unknown moments and shear forces as well 
as axial loads at its ends. Such a truss would possess a high degree of statical 
indeterminacy and would require a computer-based analysis. 

However, if such a truss is built up using the basic triangular unit and the loads 
and support points coincide with the member joints then, even assuming rigid joints, 
a computer-based analysis would show that the shear forces and bending moments in 
the members are extremely small compared to the axial forces which, themselves, 
would be very close in magnitude to those obtained from an analysis based on the 
assumption of pinned joints. 

Fig. 4.4 Actual truss construction 
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A further condition in employing a pin-jointed idealization of an actual truss is 
that the centroidal axes of the members in the actual truss are concurrent, as shown 
in Fig. 4.4. We shall see in Section 9.2 that a load parallel to, but offset from, the 
centroidal axis of a member induces a bending moment in the cross-section of the 
member; this situation is minimized in an actual truss if the centroidal axes of all 
members meeting at a joint are concurrent. 

4.4 Statical determinacy 
It was stated in Section 4.2 that the basic triangular pin-jointed unit is statically 
determinate and the forces in the members are purely axial so long as the loads and 
support points coincide with the joints. The justification for this is as follows. 
Consider the joint B in the mangle in Fig. 4.3(a). The forces acting on the actual pin 
or hinge are the externally applied load and the axial forces in the members AB and 
BC; the system is shown in the free body diagram in Fig. 4.5. The internal axial forces 
in the members BA and BC, F B A  and F,,, are drawn to show them pulling away from 
the joint B; this indicates that the members are in tension. Actually, we can see by 
inspection that both members will be in compression since their combined vertical 
components are required to equilibrate the applied vertical load. The assumption of 
tension, however, would only result in negative values in the calculation of FBA and 
F,, and is therefore a valid approach. In fact we shall adopt the method of initially 
assuming tension in all members of a truss when we consider methods of analysis, 
since a negative value for a member force will then always signify compression and 
will be in agreement with the sign convention adopted in Section 3.2. 

Since the pin or hinge at the joint B is in equilibrium and the forces acting on the 
pin are coplanar, Eqs (2.10) apply. Thus the sum of the components of all the forces 
acting on the pin in any two directions at right angles must be zero. The moment 
equation, C M = 0, is automatically satisfied since the pin cannot transmit a moment 
and the lines of action of all the forces acting on the pin must therefore be 
concurrent. Thus, for the joint B, we can write down two equations of force 
equilibrium which are sufficient to solve for the unknown member forces F,, and 
F,,. The same argument may then be applied to either joint A or joint C to solve for 
the remaining unknown internal force F A C ( = F C A ) .  Thus we see that the basic 
triangular unit is statically determinate. 

Now let us consider the construction of a simple pin-jointed truss. Initially we 
start with a single triangular unit ABC as shown in Fig. 4.6. A further triangle BCD 

Fig. 4.5 Joint equilibrium in a triangular structure 
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Fig. 4.6 Construction of a single Warren truss 

is created by adding the TWO members BD and CD and the single joint D. The third 
triangle CDE is then formed by the addition of the TWO members CE and DE and the 
single joint E and so on for as many triangular units as required. Thus, after the 
initial triangle is formed, each additional triangle requires two members and a single 
joint. In other words the number of additional members is equal to twice the number 
of additional joints. This relationship may be expressed qualitatively as follows. 

Suppose that m is the total number of members in a truss and j the total number 
of joints. Then, noting that initially there are three members and three joints, the 
above relationship may be written 

m - 3 = 2(j-  3) 

so that m = 2 j - 3  (4.1) 
If Eq. (4.1) is satisfied, the truss is constructed from a series of statically 
determinate triangles and the truss itself is statically determinate. Furthermore, if 
m c 2 j  - 3 the structure is unstable (see Fig. 4.3 (b)) or if m > 2 j  - 3, the structure is 
statically indeterminate. Note that Eq. (4.1) applies only to the internal forces in a 
truss; the support system must also be statically determinate to enable the analysis to 
be camed out. 

Example 4.1 Test the statical determinacy of the pin-jointed trusses shown in 
Figs 4.7(a), (b) and (c). 

In Fig. 4.7(a) the truss has five members and four joints. Thus in = 5 and j = 4 so that 
2 j  - 3 = 5 = in 

and Eq. (4.1) is satisfied. 

Therefore 
The truss in Fig. 4.7(b) has an additional member so that in  = 6  and j = 4 .  

in > 2 j  - 3 

and the truss is statically indeterminate. 
The mss in Fig. 4.7(c) comprises a series of triangular units which suggests that 

it is statically determinate. However, in this case, m = 8 and j = 5 .  Thus 2 j  - 3 = 7 so 
that m>2j-  3 and the truss is statically indeterminate. In fact any single member 
may be removed and the truss would retain its stability under any loading system in 
its own plane. 
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Fig. 4.7 Statical determinacy o f  trusses 

Unfortunately, in some cases, Eq. (4.1) is satisfied but the truss may be statically 
indeterminate or a mechanism. The truss in Fig. 4.8, for example, has nine members 
and six joints so that Eq. (4.1) is satisfied. However, clearly the left-hand half is a 
mechanism and the right-hand half is statically indeterminate. Theoretically, 
assuming that the truss members are weightless, the truss could support vertical loads 
applied to the left- and/or right-hand vertical members; this would, of course, be an 
unstable condition. Any other form of loading would cause a collapse of the left 
hand half of the truss and consequently of the truss itself. 

The presence of a rectangular region in a truss such as that in the truss in Fig. 4.8 
does not necessarily result in collapse. The truss in Fig. 4.9 has nine members and six 
joints so that Eq. (4.1) is satisfied. This does not, as we have seen, guarantee either a 
stable or statically determinate truss. If, therefore, there is some doubt we can return 
to the procedure of building up a truss from a single triangular unit as demonstrated 
in Fig. 4.6. Thus, remembering that each additional triangle is created by adding two 
members and one joint and that the resulting truss is stable and statically determinate, 
we can examine the truss in Fig. 4.9 as follows. 

Suppose that ACD is the initial triangle. The additional triangle ACB is formed by 
adding the two members AB and BC and the single joint B. The triangle DCE 
follows by adding the two members CE and DE and the joint E. Finally, the two 
members BF and EF and the joint F are added to form the rectangular portion CBFE. 
We therefore conclude that the truss in Fig. 4.9 is stable and statically determinate. 
Compare the construction of this truss with that of the statically indeterminate truss 
in Fig. 4.7 (c). 

Fig. 4.8 Applicability o f  test for  statical determinacy 
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Fig. 4.9 Investigation into truss stability 

A condition, similar to Eq. (4.1). applies to space frames; the result for a space 
frame having m members and j pinned joints is 

m = 3 j - 6  (4.2) 

4.5 Resistance of a truss to shear force and bending 
moment 
Although the members of a truss carry only axial loads, the truss itself acts as a 
beam and is subjected to shear forces and bending moments. Therefore, before we 
consider methods of analysis of trusses, it will be instructive to examine the manner 
in which a truss resists shear forces and bending moments. 

The F'ratt truss shown in Fig. 4.10(a) canies a concentrated load W applied at a 
joint on the bottom chord at mid-span. Using the methods described in Section 3.4, 
the shear force and bending moment diagrams for the truss are constructed as shown 
in Figs 4.10(b) and (c), respectively. 

First we shall consider the shear force. In the bay ABCD the shear force is W / 2  
and is positive. Thus at any section mm between A and B (Fig. 4.11) we see that 
the internal shear force is W / 2 .  Since the horizontal members AB and DC are 
unable to resist shear forces, the internal shear force can only be equilibrated by the 
vertical component of the force F A ,  in the member AC. Fig. 4.1 1 shows the 
direction of the internal shear force applied at the section mm so that FAc is tensile. 
Hence 

W 
FAC COS 45" = - 

2 

The same result applies to all the internal diagonals whether to the right or left of the 
mid-span point since the shear force is constant, although reversed in sign, either 
side of the load. The two outer diagonals are in compression since their vertical 
components must be in equilibrium with the vertically upward support reactions. 
Alternatively, we arrive at the same result by considering the internal shear force at a 
section just to the right of the left-hand support and just to the left of the right-hand 
support. 
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Fig. 4.10 Shear forces and bending moments in a truss 

Fig. 4.1 1 Internal shear force in a truss 

If the diagonal AC was repositioned to span between D and B it would be 
subjected to an axial compressive load. This situation would be undesirable since the 
longer a compression member, the smaller the load required to cause buckling (see 
Chapter 18). Therefore, the aim of truss design is to ensure that the forces in the 
longest members, the diagonals in this case, are predominantly tensile. Hence the 
Howe truss (Fig. 4.1 (b)), whose diagonals for downward loads would be in 
compression, is no longer in use. 
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In some situations the loading on a truss could be reversed so that a diagonal that 
is usually in tension would be in compression. To counter this an extra diagonal 
inclined in the opposite direction is included (spanning, say, from D to B in 
Fig. 4.12). This, as we have seen, would result in the truss becoming statically 
indeterminate. However, if it is assumed that the original diagonal (AC in Fig. 4.12) 
has buckled under the compressive load and therefore carries no load, the truss is 
once again statically determinate. 

We shall now consider the manner in which a truss resists bending moments. The 
bending moment at a section immediately to the left of the mid-span vertical BC in 
the truss in Fig. 4.10(a) is, from Fig. 4.10(c), 1.5W and is positive, as shown in Fig. 
4.12. This bending moment is equivalent to the moment resultant, about any point in 
their plane, of the member forces at this section. In Fig. 4.12, analysis by the 
method of sections (Section 4.7) gives FBA = 1-5 W (compression), FAc = 0-707 W 
(tension) and F,= 1.OW (tension). Therefore at C, F ,  plus the horizontal 
component of FAc is equal to 1-5 W which, together with FBA, produces a couple of 
magnitude 1.5Wx 1 which is equal to the applied bending moment. Alternatively, 
we could take moments of the internal forces about B (or C). Hence 

M, = F ,  x 1 + FAc x 1 sin 45" = 1.OW x 1 + 0.707 W x 1 sin 45" = 1 e 5  W 

as before. Note that in Fig. 4.12 the moment resultant of the internal force system is 
equivalent to the applied moment, Le. it is in the same sense as the applied moment. 

Now let us consider the bending moment at, say, the mid-point of the bay AB, 
where its magnitude is, from Fig. 4.10(c), 1.25W. The internal force system is 
shown in Fig. 4.13 in which F,,, FAc and F ,  have the same values as before. Thus, 
taking moments about, say, the mid-point of the top chord member AB, we have 

M = F ,  x 1 + FA, x 0.5 sin 45" = 1 .OW x 1 + 0.707 W x 0.5 sin 45" = 1.25 W 

the value of the applied moment. 
From the discussion above it is clear that, in trusses, shear loads are resisted by 

inclined members, while all members combine to resist bending moments. 
Furthermore, positive (sagging) bending moments induce compression in upper 
chord members and tension in lower chord members. 

Finally, note that in the truss in Fig. 4.10 the forces in the members GE, BC and 
HF are all zero, as can be seen by considering the vertical equilibrium of joints E, B 
and F. Forces would only be induced in these members if external loads were 
applied directly at the joints E, B and F. Generally, if three coplanar members meet 

Fig. 4.12 Internal bending moment in a truss 
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Fig. 4.13 Resistance of a bending moment a t  a mid-bay point 

at a joint and two of them are collinear, the force in the third member is zero if no 
external force is applied at the joint. 

4.6 Method of joints 
We have seen in Section 4.4 that the axial forces in the members of a simple pin- 
jointed triangular structure may be found by examining the equilibrium of their 
connecting pins or hinges in two directions at right angles (Eqs (2.10)). This 
approach may be extended to plane trusses to determine the axial forces in all their 
members; the method is known as the method of joints and will be illustrated by an 
example. 

Example 4.2 Determine the forces in the members of the Warren truss shown in 
Fig. 4.14; all members are 1 m long. 

Hence, taking moments about D for the truss in Fig. 4.14 we obtain 
Generally, although not always, the support reactions must be calculated first. 

R ,  x 2 - 2  x 1.5 - 1 x 1 - 3 x 0.5 = O  

R ,  = 2-75 kN which gives 

Then, resolving vertically 
R D + R A - 2 - 1 - 3 = 0  

RD = 3.25 kN so that 

Note that there will be no horizontal reaction at A (D is a roller support) since no 
horizontal loads are applied. 

The next step is to assign directions to the forces acting on each joint. In one 
approach the truss is examined to determine whether the force in a member is tensile 
or compressive. For some members this is straightforward. For example, in 
Fig. 4.14, the vertical reaction at A, R,, can only be equilibrated by the vertical 
component of the force in AB which must therefore act downwards, indicating that 
the member is in compression (a compressive force in a member will push towards a 
joint whereas a tensile force will pull away from a joint). In some cases, where 
several members meet at a joint, the nature of the force in a particular member is 
difficult, if not impossible, to determine by inspection. Then a direction must be 
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Fig. 4.14 Analysis of a Warren truss 

assumed which, if incorrect, will result in a negative value for the member force. It 
follows that, in the same truss, both positive and negative values may be obtained 
for tensile forces and also for compressive forces, a situation leading to possible 
confusion. Therefore, if every member in a truss is initially assumed to be in 
tension, negative values will always indicate compression and the solution will then 
agree with the sign convention adopted in Section 3.2. 

We now assign tensile forces to the members of the truss in Fig. 4.14 using 
arrows to indicate the action of the force in the member on the joint; thus all arrows 
are shown to pull away from the adjacent joint. 

The analysis, as we have seen, is based on a consideration of the equilibrium of 
each pin or hinge under the action of all the forces at the joint. Thus for each pin or 
hinge we can write down two equations of equilibrium. It follows that a solution can 
only be obtained if there are no more than two unknown forces acting at the joint. In 
Fig. 4.14, therefore, we can only begin the analysis at the joint A or at the joint D, 
since at each of the joints B and C there are three unknown forces while at E there 
are four. 

Fig. 4.15 Equilibrium of forces at joint A 
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Consider joint A. The forces acting on the pin at A are shown in the free body 
diagram in Fig. 4.15. F A ,  may be determined directly by resolving forces vertically. 
Hence 

F A B  sin 60" + 2.75 = 0 0 )  
so that F A B =  -3.18 kN 

the negative sign indicating that AB is in compression as expected. 
Refemng again to Fig. 4.15 and resolving forces horizontally 

F A ,  + F A B  COS 60" = 0 (ii) 
Substituting the negative value of FA, in Eq. (ii) we obtain 

F A ,  - 3-18 Cos 60" = 0 

which gives F A ,  = + 1 *59 kN 

the positive sign indicating that F A B  is a tensile force. 
We now inspect the truss to determine the next joint at which there are no more 

than two unknown forces. At joint E there remain three unknowns since only 
FEA( = F A E )  has yet been determined. At joint B there are now two unknowns since 
F B A (  = F A B )  has been determined; we can therefore proceed to joint B. The forces 
acting at B are shown in Fig. 4.16. Since F B A  is now known we can resolve forces 
vertically and therefore obtain F B E  directly. Thus 

F B E  COS 30" + F B A  COS 30" + 2 = 0 (iii) 
Substituting the negative value of F B A  in Eq. (iii) gives 

FB,= +0.87 kN 

which is positive and therefore tensile. 
Resolving forces horizontally at the joint B we have 

FBc + FB, COS 60" - F B A  COS 60" = 0 (iv) 
Substituting the positive value of F B E  and the negative value of F B A  in Eq. (iv) 
yields 

FBc = -2.03 kN 

the negative sign indicating that the member BC is in compression. 
We have now calculated four of the seven unknown member forces. There are in 

fact just two unknown forces at each of the remaining joints C, D and E so that, 
theoretically, it is immaterial which joint we consider next. From a solution 
viewpoint there are three forces at D, four at C and five at E so that the arithmetic 
will be slightly simpler if we next consider D to obtain F, and F,E and then C to 
obtain FcF At C, F,. could be determined by resolving forces in the direction CE 
rather than horizontally or vertically. Carrying out this procedure gives 

F ,  = -3.75 kN (compression), F,E = + 1-88 kN (tension), 
F,,= +@29 kN (tension) 

The reader should verify these values using the method suggested above. 
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Fig. 4.16 Equilibrium of forces at joint B 

It may be noted that in this example we could write down ten equations of 
equilibrium, two for each of the five joints, and yet there are only seven unknown 
member forces. The apparently extra three equations result from the use of overall 
equilibrium to calculate the support reactions. Thus an alternative approach would 
be to write down the ten equilibrium equations which would include the three 
unknown support reactions (there would be a horizontal reaction at A if horizontal 
as well as vertical loads were applied) and solve the resulting ten equations 
simultaneously. Overall equilibrium could then be examined to check the accuracy 
of the solution. Generally, however, the method adopted above produces a quicker 
solution. 

4.7 Method of sections 
It will be appreciated from Section 4.5 that in many trusses the maximum member 
forces, particularly in horizontal members, will occur in the central region where the 
applied bending moment would possibly have its maximum value. It will also be 
appreciated from Ex. 4.2 that the calculation of member forces in the central region 
of a multibay truss such as the Pratt truss shown in Fig. 4.1 (a) would be extremely 
tedious since the calculation must begin at an outside support and then proceed 
inwards joint by joint. This approach may be circumvented by using the method of 
sectioiis. 

The method is based on the premise that if a structure is in equilibrium, any 
portion or component of the structure will also be in equilibrium under the action of 
any external forces and the internal forces acting between the portion or component 
and the remainder of the structure. We shall illustrate the method by an example. 

Example 4.3 Calculate the forces in the members CD, CF and EF in the Pratt truss 
shown in Fig. 4.17. 

Initially the support reactions are calculated and are readily shown to be 

RA.v = 4.5 kN, RA,H = 2 kN, R, = 5-5 Idv 

We now ‘cut’ the members CD, CF and EF by a section mm, thereby dividing the 
truss into two separate parts. Consider the left-hand part shown in Fig. 4.18 (equally 
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Fig. 4.17 Calculation of member forces using the the method of sections 

Fig. 4.18 Equilibrium of a portion of a truss 

we could consider the right-hand part). Clearly, if we actually cut the members CD, 
CF and EF, both the left-hand and right-hand parts would collapse. However, the 
equilibrium of the left-hand part, say, could be maintained by applying the forces 
F,,, FCF and F E F  to the cut ends of the members. Therefore, in Fig. 4.18, the left- 
hand part of the truss is in equilibrium under the action of the externally applied 
loads, the support reactions and the forces F,,, FCF and F E F  which are, as in the 
method of joints, initially assumed to be tensile; Eqs (2.10) are then used to 
calculate the three unknown forces. 

Thus, resolving vertically gives 

F C F  cos 45" -k 4 -4.5 = 0 (9 
whence FcF= +0.71 kN 

and is tensile. 
Now taking moments about the point of intersection of FCF and FEF we have 

F,, x 1 + 2 x 1 + 4.5 x 4 - 4 x 1 = 0 (ii) 

so that F,D= -16 kN 

and is compressive. 
Finally F E F  is obtained by taking moments about C, thereby eliminating F C F  and 

FCD from the equation. Alternatively, we could resolve forces horizontally since FCF 
and F,D are now known; however, this approach would involve a slightly lengthier 
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calculation. Hence 

FEF x 1 -4.5 x 3 - 2 x 1 =o (iii) 
which gives F E F =  +15*5 kN 

the positive sign indicating tension. 
Note that Eqs (i), (ii) and (iii) each include just one of the unknown member 

forces so that it is immaterial which is calculated first. In some problems, however, a 
preliminary examination is worthwhile to determine the optimum order of solution. 

In Ex. 4.3 we see that there are just three possible equations of equilibrium so that 
we cannot solve for more than three unknown forces. It follows that a section such 
as mm which must divide the frame into two separate parts must also not cut 
through more than three members in which the forces are unknown. If ,  for example, 
we wished to determine the forces in CD, DF, FG and FH we would first calculate 
F , D  using the section mm as above and then determine F,,, F ,  and FFH using the 
section nn. Actually, in this particular example FDF may be seen to be zero by 
inspection (see Section 4.5) but the principle holds. 

4.8 Method of tension coefficients 
An alternative form of the method of joints which is particularly useful in the 
analysis of pin-jointed space frames is the method of tension coeficients. 

Consider the member AB, shown in Fig. 4.19, which connects two pinned joints A 
and B whose coordinates, referred to arbitrary xy axes, are (xA,yA) and (xB,yB) 
respectively; the member carries a tensile force, T A B ,  is of length L A B  and is 
inclined at an angle a to the x axis. The component of T A B  parallel to the x axis at A 
is given by 

Similarly the component of T A B  at A parallel to the y axis is 

T A B  
LAB 

T A B  sin a = - (YB - Y,) 

We now define a tensioii coeflcient t A B  = T A B / L , B  so that the above components of 
T A B  become: 

(4.3) 

(4.4) 

parallel to the x axis: tAB(xB - x,) 

parallel to the y axis: t A B ( y B  - y,) 

Equilibrium equations may be written down for each joint in turn in terms of tension 
coefficients and joint coordinates referred to some convenient axis system. The 
solution of these equations gives tAB, etc, whence T A B  = tAB LAB in which L A B ,  

unless given, may be calculated using Pythagoras’ theorem, i.e. 
L A B  = d(xB - x,)’ + (yB - yA)‘. Again the initial assumption of tension in a member 
results in negative values corresponding to compression. Note the order of suffixes in 
Eqs (4.3) and (4.4). 
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Fig. 4.19 Method of tension coefficients 

Example 4.4 
in Fig. 4.20. 

Determine the forces in the members of the pin-jointed truss shown 

The support reactions are first calculated and are as shown in Fig. 4.20. 
The next step is to choose an xy axis system and then insert the joint coordinates in 

the diagram. In Fig. 4.20 we shall choose the support point A as the origin of axes 
although, in fact, any joint would suffice; the joint coordinates are then as shown. 

Again, as in the method of joints, the solution can only begin at a joint where 
there are no more than two unknown member forces, in this case joints A and E. 
Theoretically it is immaterial at which of these joints the analysis begins but since A 
is the origin of axes we shall start at A. Note that it is unnecessary to insert arrows to 
indicate the directions of the member forces since the members are assumed to be in 
tension and the directions of the components of the member forces are 
automatically specified when written in terms of tension coefficients and joint 
coordinates (Eqs (4.3) and (4.4)). 

The equations of equilibrium at joint A are 

x direction: tAB(XB - xA) + tAc(xc - xA) - R A , "  = 0 (i) 

y direction: tAB(yB - yA) + rAC(yC - y A )  + RA." = 0 (ii) 

Fig. 4.20 Analysis of a truss using tension coefficients (Ex. 4.4) 



88 Analysis of Pin-jointed Trusses 

Substituting the values of 
obtain, from Eq. (i), 

RA.v and the joint coordinates in Eqs (i) and (ii) we 

tAB(0 - 0) + tAC( 1 ’5 - 0) - 3 = 0 

whence 

and from Eq. (ii) 
f A c =  +2.0 

fAB(1.5 -0 )  + fAC(0-0) + 1 = o  
so that [AB = -0.67 

We see from the derivation of Eqs (4.3) and (4.4) that the units of a tension 
coefficient are force/unit length, in this case kN/m. Generally, however, we shall 
omit the units. 

We can now proceed to joint B at which, since tgA (=tAB) has been calculated, 
there are two unknowns. 

There are now just two unknown member forces at joint D. Hence, at D 

X direction: fDB(XB - XD) + tDF(xF - XD) + f&-(XC - XD) = 0 (vi) 

y direction: f D B  (ye - yD) + t D F  (yF - yo) + t ,  (yc - yD) - 5 = 0 (vii) 
Substituting values of joint coordinates and the previously calculated value of 
t D B ( = f B D )  in Eqs (vi) and (vii) we obtain, from Eq. (vi), 

-2.67(0- 1’5)+ tDF(3.0- 1.5) + tW(l.5 - 1*5)=0 

so that fDF = -2.67 

and from Eq. (vii) 

-2*67( 1.5 - 1.5) + t D F (  1.5 - 1.5) + tw(O - 1.5) - 5 = 0 

from which t ,  = -3.33 
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The solution then proceeds to joint C to obtain tcF and tCE or to joint F to determine 
t ,  and tFE; joint F would be preferable since fewer members meet at F than at C. 
Finally, the remaining unknown tension coefficient ( t ,  or rEF) is found by 
considering the equilibrium of joint E. Thus 

I,= +2*67, t,E= -2.67, t,=O 

which the reader should verify. 

coefficients by the member lengths. Thus 
The forces in the truss members are now calculated by multiplying the tension 

TAB = fABLAB = -0.67 x 1.5 = - 1 SO kN (compression) 
T,, = tACLAC = +2.0 x 1-5 = +3.0 kN (tension) 

TBC = ~BCLBC 

in which 

whence 

L, = J ( ~ B  - xc)’ + ( Y B  - yc)’ = J(0 - 1.5)’ + (1-5 - 0)’ = 2.12111 

TB, = +0.67 x 2.12 = +le42 kN(tension) 

Note that in the calculation of member lengths it is immaterial in which order the 
joint coordinates occur in the brackets since the brackets are squared. Also 

TBD = = -2.67 x 1.5 = -4.0 kN (compression) 

Similarly T,F = -4.0 kN (compression), 
T ,  = -5.0 kN (compression), 

T,= +5-67 kN (tension), 
T ,  = -4.0 kN (compression), T ,  = 0. 

4.9 Graphical method of solution 
In some instances, particularly when a rapid solution is required, the member forces 
in a truss may be found using a graphical method. 

The method is based upon the condition that each joint in a truss is in equilibrium 
so that the forces acting at a joint may be represented in magnitude and direction by 
the sides of a closed polygon (see Section 2.1). The directions of the forces must be 
drawn in the same directions as the corresponding members and there must be no 
more than two unknown forces at a particular joint otherwise a polygon of forces 
cannot be constructed. The method will be illustrated by applying it to the truss in 
Ex. 4.2. 

Example 4.5 Determine the forces in the members of the Warren truss shown in 
Fig. 4.21; all members are 1 m long. 

It is convenient in this approach to designate forces in members in terms of the 
areas between them rather than referring to the joints at their ends. Thus, in 
Fig. 4.21, we number the areas between all forces, both internal and external; the 
reason for this will become clear when the force diagram for the complete structure 
is constructed. 
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Fig. 4.21 Analysis of a truss by a graphical method 

The support reactions were calculated in Ex. 4.2 and are shown in Fig. 4.21. We 
must start at a joint where there are no more than two unknown forces, in this 
example either A or D; here we select A. The force polygon for joint A is 
constructed by going round A in, say, a clockwise sense. We must then go round 
every joint in the same sense. 

First we draw a vector 12 to represent the support reaction at A of 2.75 kN to a 
convenient scale (see Fig. 4.22). Note that we are moving clockwise from the region 
1 to the region 2 so that the vector 12 is vertically upwards, the direction of the 
reaction at A (if we had decided to move round A in an anticlockwise sense the 
vector would be drawn as 21 vertically upwards). The force in the member AB at A 
will be represented by a vector 26 in the direction AB or BA, depending on whether 
it is tensile or compressive, while the force in the member AE at A is represented by 
the vector 61 in the direction AE or EA depending, again, on whether it is tensile or 
compressive. The point 6 in the force polygon is therefore located by drawing a line 
through the point 2 parallel to the member AB to intersect, at 6, a line drawn through 

Fig. 4.22 Force polygon for the truss of Ex. 4.5 
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the point 1 parallel to the member AE. Thus we see from the force polygon that the 
direction of the vector 26 is towards A so that the member AB is in compression 
while the direction of the vector 61 is away from A indicating that the member AE is 
in tension. We now insert arrows on the members AB and AE in Fig. 4.21 to indicate 
compression and tension, respectively. 

We next consider joint B where there are now just two unknown member forces 
since we have previously determined the force in the member AB; note that, moving 
clockwise round B, this force is represented by the vector 62, which means that it is 
acting towards B as it must since we have already established that AB is in 
compression. Rather than construct a separate force polygon for the joint B we shall 
superimpose the force polygon on that constructed for joint A since the vector 26 (or 
62) is common to both; we thereby avoid repetition. Thus, through the point 2, we 
draw a vector 23 vertically downwards to represent the 2 kN load to the same scale 
as before. The force in the member BC is represented by the vector 37 parallel to BC 
(or CB) while the force in the member BE is represented by the vector 76 drawn in 
the direction of BE (or EB); thus we locate the point 7 in the force polygon. Hence 
we see that the force in BC (vector 37) acts towards B indicating compression, while 
the force in BE (vector 76) acts away from B indicating tension; again, arrows are 
inserted in Fig. 4.2 1 to show the action of the forces. 

Now we consider joint C where the unknown member forces are in CD and CE. 
The force in the member CB at C is represented in magnitude and direction by the 
vector 73 in the force polygon. From the point 3 we draw a vector 34 vertically 
downwards to represent the 3 kN load. The vectors 48 and 87 are then drawn 
parallel to the members CD and CE and represent the forces in the members CD 
and CE respectively. Thus we see that the force in CD (vector 48) acts towards C, 
i.e. CD is in compressicn, while the force in CE (vector 87) acts away from C 
indicating tension; again we insert corresponding arrows on the members in 
Fig. 4.2 1. 

Finally the vector 45 is drawn vertically upwards to represent the vertical reaction 
(=3.25 kN) at D and the vector 5 8 ,  which must be parallel to the member DE, 
inserted (since the points 5 and 8 are already located in the force polygon this is a 
useful check on the accuracy of construction). From the direction of the vector 58 
we deduce that the member DE is in tension. 

Note that in the force polygon the vectors may be read in both directions. Thus the 
vector 26 represents the force in the member AB acting at A, while the vector 62 
represents the force in AB acting at B. It should also be clear why there must be 
consistency in the sense in which we move round each joint; for example, the vector 
26 represents the direction of the force at A in the member AB when we move in a 
clockwise sense round A. However, if we then moved in an anticlockwise sense 
round the joint B the vector 26 would represent the magnitude and direction of the 
force in AB at B and would indicate that AB is in tension, which clearly it is not. 

4.10 Compound trusses 
In some situations simple trusses are connected together to form a compound truss, 
in which case it is generally not possible to calculate the forces in all the members by 
the method of joints even though the truss is statically determinate. 
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Fig. 4.23 Compound truss 

Figure 4.23 shows a compound truss comprising two simple trusses AGC and BJC 
connected at the apex C and by the linking bar GJ; all the joints are pinned and we 
shall suppose that the truss carries loads at all its joints. We note that the truss has 
twenty-seven members and fifteen joints so that Eq. (4.1) is satisfied and the truss is 
statically determinate. 

Lnitially we would calculate the support reactions at A and B and commence a 
method of joints solution at the joint A (or at the joint B) where there are no more 
than two unknown member forces. Thus the magnitudes of FAD and FAE would be 
obtained. Then, by considering the equilibrium of joint D, we would calculate F D ,  
and F,F and then FEF and F ,  by considering the equilibrium of joint E. At this stage, 
however, the analysis can proceed no further, since at each of the next joints to be 
considered, F and G, there are three unknown member forces: F,, F ,  and F ,  at F 
and FGF, F,, and F,, at G. An identical situation would have arisen if the analysis had 
commenced in the right-hand half of the truss at B. This difficulty is overcome by 
taking a section mm to cut the three members HC, IC and GJ and using the method of 
sections to calculate the corresponding member forces. Having obtained FGj we can 
consider the equilibrium of joint G to calculate FG, and FCF. Hence F ,  and FF, follow 
by considering the equilibrium of joint F; the remaining unknown member forces 
follow. Note that obtaining FGj by taking the section mm allows all the member forces 
in the right-hand half of the truss to be found by the method of joints. 

The method of sections could be used to solve for all the member forces. First we 
could obtain FHc, FIc and FGj by taking the section mm and then FFH, F,, and F,, by 
taking the section M where FGj is known, and so on. 

4.1 1 Pin-jointed space frames 
The most convenient method of analysing statically determinate stable space frames 
(see Eq. (4.2)) is that of tension coefficients. In the case of space frames, however, 
there are three possible equations of equilibrium for each joint (Eqs (2.11)); the 
moment equations (Eqs (2.12)) are automatically satisfied since, as in the case of 
plane trusses, the lines of action of all the forces in the members meeting at a joint 
pass through the joint and the pin cannot transmit moments. Therefore the analysis 
must begin at a joint where there are no more than three unknown forces. 

The calculation of the reactions at supports in space frames can be complex. If a 
space frame has a statically determinate support system, a maximum of six reaction 
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components can exist since there are a maximum of six equations of overall 
equilibrium (Eqs (2.11) and (2.12)). However, for the frame to be stable the 
reactions must be orientated in such a way that they can resist the components of the 
forces and moments about each of the three coordinate axes. Fortunately, in many 
problems, it is unnecessary to calculate support reactions since there is usually one 
joint at which there are no more than three unknown member forces. 

Example 4.6 Calculate the forces in the members of the space frame whose 
elevations and plan are shown in Figs 4.24(a), (b) and (c), respectively. 

In this particular problem the exact nature of the support points is not specified so 
that the support reactions cannot be calculated. However, we note that at joint F there 
are just three unknown member forces so that the analysis may begin at F. 

The first step is to choose an axis system and an origin of axes. Any system may 
be chosen so long as care is taken to ensure that there is agreement between the axis 
directions in each of the three views. Also, any point may be chosen as the origin of 
axes and need not necessarily coincide with a joint. In this problem it would appear 
logical to choose F, since the analysis will begin at F. Furthermore, it will be helpful 
to sketch the axis directions on each of the three views as shown and to insert the 
joint coordinates on the plan view (Fig. 4.24(c)). 

At joint F 
x direction: f m ( X D  - xF) + f m ( x B  - xF) + f F E ( x E  - xF) - 40 = 0 (i ) 

Y direction: ~ F ~ Y D - Y F )  + f m ( y B - y F ) +  t F E ( y E - y F ) = O  (ii) 
zdirection: f m ( z , - z F ) +  f F B ( Z B - Z F ) +  f F E ( Z E - Z F ) = O  (iii) 

Substituting the values of the joint coordinates in Eqs (i), (ii) and (iii) in turn we 
obtain, from Eq. (i), 

f F O ( 2  - 0) + f F B  ( -2 - 0) + f F E ( O  - 0) - 40 = 0 

whence 
from Eq. (ii) 

which gives f F D  + f F B  = 0 
and from Eq. (iii) 

f FD (2 - 0) + fFB (2 - 0) + f FE( -2 - 0) = 0 

f F D  + f F B  - f F E =  0 so that 
From Eqs (v) and (vi) we see by inspection that 

fFE = 0 
Now adding Eqs (iv) and (v), 

2 f F D  - 20= 0 

whence f F D =  10 
Therefore, from Eq. (v) 

f F B  = - 10 
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Fig. 4.24 Elevations and plan of space frame of Ex. 4.6 

We now proceed to joint E where, since tEF = tFE,  there are just three unknown 
member forces. 

x direction: tEB(x, - xE) + t,(x, - xE) + t,(xA - xE) + tEF(+ - xE) = 0 (vii) 
y direction: tEIj(yL3 - y E )  + t ,(y, - y E )  + t M ( Y A  - y E )  + t&F - y E )  - 60 = 0 (viii) 

(ix) z direction: tEB(z, - z ~ )  + t,(z, - zE) + f E A ( Z A  - zE) + tEF(ZF - zE) = O 
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Substituting the values of the coordinates and fEF(=O) in Eqs (vii)-(ix) in turn 
gives, from Eq. (vii), 

fEB ( -2 - 0) + f , (2 - 0) + fEA ( - 2  - 0) = 0 

so that 

from Eq. (viii) 

fEB ( -2 - 0) + f E  ( -2 - 0) + f U ,  ( - 2  - 0) - 60 = 0 

whence f E B + f , + f E A + 3 0 = 0  (xi) 

t ,  (2 + 2) + t,( -4 + 2) + tU, ( -4 + 2) = 0 

and from Eq. (ix) 

which gives fEB - 0.5tw - 0*5t, = 0 (xii) 

Subtracting Eq. (xi) from Eq. (x) we have 

- 2 t ,  - 30 = 0 

so that t ,= -15 

Now subtracting Eq. (xii) from Eq. (xi) (or Eq. (x)) yields 

1 . 5 t W  + 1 -5t- + 30 = 0 

which gives tU,= -5  

Finally, from any of Eqs (x)- (xii), 

t ,  = -10 

The length of each of the members is now calculated, except that of EF which is 
given (=2 m). Thus, using Pythagoras’ theorem, 

L F B  = J ( X B  - XF)’ + (YB - YF)’ + ( Z B  - ZF)’ 

whence 

Similarly 

The forces in the members follow. Thus 

L F B  = J(-2 - 0)’ + (-2 - 0)’ + ( 2  - 0)’ = 3.46 m 

L F D  = L ,  = LEA = 3.46 m, L E ,  = 4.90 m 

T ,  = t,LFB = - 10 x 3-46 kN = -34.6 kN (compression) 

Similarly 

TF,  = +34.6 kN (tension), T F E  = 0, T, = -51.9 kN (compression) 
TEA = - 17.3 kN (compression), T E B  = -49.0 kN (compression) 

The solution of Eqs (iv)-(vi) and (x)-(xii) in Ex. 4.6 was relatively 
straightforward in that many of the coefficients of the tension coefficients could be 
reduced to unity. This is not always the case, so that it is possible that the solution of 
three simultaneous equations must be carried out. In this situation an elimination 
method, described in standard mathematical texts, may be used. 
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Problems 
P.4.1 Determine the forces in the members of the truss shown in Fig. P.4.1 

using the method of joints and check the forces in the members JK, JD and DE by 
the method of sections. 

Ans. AG = +37-5, AB = -22.5, GB = -20.0, BC = -22.5, GC = -12-5, 
GH = +30*0, HC = 0, HJ = +30*0, CJ = + 12.5, CD = -37.5, JD = - 10.0, 
JK=+37*5,DK=+12*5, DE=-45*0,KE= -70.0,EFz -45.0,KF= +75*0. 
All in kN. 

Fig. P.4.1 

P.4.2 Calculate the forces in the members of the truss shown in Fig. P.4.2. 

Ans. AC = -30.0, AB = +26.0, CP = -8.7, CE = -25.0, EP = +8.7, 
PF= +17*3, EF= -17.3, EG= -20.0, EH= +8.7. FH= +17*3, 
GH = -8.7, GJ= - 15.0, HJ = +26.0, FB = 0. 
All in kN. 

Fig. P.4.2 

P.4.3 Calculate the forces in the members EF, EG, EH and FH of the truss 
shown in Fig. P.4.3. Note that the horizontal load of 4 kN is applied at the joint C. 

Ans. EF = -20.0, EG = -80-0, EH = -33.3, FH = + 106.6 kN. 
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Fig. P.4.3 

P.4.4 The roof truss shown in Fig. P.4.4 is comprised entirely of equilateral 
triangles; the wind loads of 6 kN at J and B act perpendicularly to the member JB. 
Calculate the forces in the members DF, EF, EG and EK. 

A ~ s .  DF= +106*5, EF= +1.7, EG= -107.4, E K =  -20.8 kN. 

Fig. P.4.4 

Fig. P.4.5 
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P.4.5 The upper chord joints of the bowstring truss shown in Fig. P.4.5 lie on a 
parabola whose equation has the form y = kx2 referred to axes whose origin coincides 
with the uppermost joint. Calculate the forces in the members AD, BD and BC. 

A ~ s .  AD= -3-1, BD= -0.5, BC= +2*7 kN. 
P.4.6 The truss shown in Fig. P.4.6 is supported by a hinge at A and a cable at D 

which is inclined at an angle of 45" to the horizontal members. Calculate the tension, 
T, in the cable and hence the forces in all the members by the method of tension 
coefficients. 

A ~ s .  T = 13.55 kN. AB = -9.2, BC = -9.4, CD = -4.7, DE = +7-1, 
EF = -5-0, FG = -0.3, GH = -3-1, AH = -4.4, BH = +3-1, 
BG = +4-0, CF= -6.6, GC = +4-7, FD = +4.7. 
All in kN. 

Fig. P.4.6 

P.4.7 Check your answers to problems P.4.1, P.4.2 and P.4.6 using a graphical 
method. 

P.4.8 Find the forces in the members of the space frame shown in Fig. P.4.8. 
A m .  OA = +24.2, OB = + 11.9, OC = -40.2 kN. 

Fig. P.4.8 
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P.4.9 Use the method of tension coefficients to calculate the forces in the 
members of the space frame shown in Fig. P.4.9. Note that the loads P2 and P ,  act 
in a horizontal plane and at angles of 45" to the vertical plane BAD. 

Ans. AB=+13.1,AD= +13-1,AC=-59.0kN. 

Fig. P.4.9 

P.4.10 The pin-jointed frame shown in Fig. P.4.10 is attached to a vertical wall 
at the points A, B ,  C and D; the members BE, BF, EF and AF are in the same 
horizontal plane. The frame supports vertically downward loads of 9 kN and 6 kN at 
E and F, respectively, and a horizontal load of 3 kN at E in the direction EF. 

Fig. P.4.10 
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Calculate the forces in the members of the frame using the method of tension 
coefficients. 

A ~ s .  EF = -3-0, EC = - 15.0, EB = + 12-0, FB = +5-0, FA = +4*0, 
FD = - 10.0. 
All in kN. 

P.4.11 Fig. P.4.11 shows the plan of a space frame which consists of six pin- 
jointed members. The member DE is horizontal and 4 m above the horizontal plane 
containing A, B and C while the loads applied at D and E act in a horizontal plane. 
Calculate the forces in the members. 

Ans. AD = 0, DC = 0, DE = +40.0. AE = 0, CE = -60.0, BE = +me0 kN. 

Fig. P.4.11 



CHAPTER 5 

Cables 

Flexible cables have been used to form structural systems for many centuries. Some 
of the earliest man-made structures of any size were hanging bridges constructed 
from jungle vines and creepers and spanning ravines and rivers. In European 
literature the earliest description of an iron suspension bridge was published by 
Verantius in 1607, while ropes have been used in military bridging from at least 
1600. In modem times, cables formed by binding a large number of steel wires 
together are employed in bridge construction where the bridge deck is suspended on 
hangers from the cables themselves. The cables in turn pass over the tops of towers 
and are fixed to anchor blocks embedded in the ground; in this manner large, clear 
spans are achieved. Cables are also used in cable-stayed bridges, as part of roof 
support systems, for prestressing in concrete beams and for guyed structures such as 
pylons and television masts. 

Structurally, cables are extremely efficient because they make the most effective 
use of structural material in that their loads are carried solely through tension. There 
is, therefore, no tendency for buckling to occur either from bending or from 
compressive axial loads (see Chapter 18). However, many of the structures 
mentioned above are statically indeterminate to a high degree. In other situations, 
particularly in guyed towers and cable-stayed bridges, the extension of the cables 
affects the internal force system and the analysis becomes non-linear. Such 
considerations are outside the scope of this book so that we shall concentrate on 
cables in which loads are suspended directly from the cable. 

Two categories of cable arise; the first is relatively lightweight and carries a 
limited number of concentrated loads, while the second is heavier with a more 
uniform distribution of load. We shall also examine, in the case of suspension 
bridges, the effects of different forms of cable support at the towers. 

5.1 Lightweight cables carrying concentrated loads 
In the analysis of this type of cable we shall assume that the self-weight of the cable is 
negligible, that it can only carry tensile forces and that the extension of the cable does 
not affect the geometry of the system. We shall illustrate the method by examples. 
Example 5.1 The cable shown in Fig. 5.1 is pinned to supports at A and B and 
cames a concentrated load of 10 kN at a point C. Calculate the tension in each part 
of the cable and the reactions at the supports. 
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Fig. 5.1 Lightweight cable carrying a concentrated load 

Since the cable is weightless the lengths AC and CB are straight. The tensions TAc 
and TcB in the parts AC and CB, respectively, may be found by considering the 
equilibrium of the forces acting at C where, from Fig. 5.1, we see that 

ct=tan-' 1/3= 18*4", p=tan- '  1/2=26.6" 

Thus, resolving forces in a direction perpendicular to CB (thereby eliminating TcB)  
we have 

TCA COS 45" - 10 COS 26.6" = 0 

whence TCA = 12.6 kN 

Now resolving forces horizontally (or alternatively vertically or perpendicular to 
CA) gives 

TcB COS 26.6" - TCA COS 18.4" = 0 

so that T,, = 13-4 kN 

Since the bending moment in the cable is everywhere zero we can take moments 
about B (or A)  to find the vertical component of the reaction at A, RA,v, (or RE,") 
directly. Hence 

R A , , x 5 -  1 0 ~ 2 = 0  (i) 

whence ' A . V  = 4k.N 

Now resolving forces vertically for the complete cable 

R0.v + RA.v - 10 = 0 

which gives RB.V = 6 kN 

From the horizontal equilibrium of the cable the horizontal components of the 
reactions at A and B are equal, i.e. RA,H = RB,H.  Thus, taking moments about C for 
the forces to the left of C, 

RA.H x 1 - RA,v x 3 = 0 (iii) 

RA.1, = 12 k~ (=RB.H) 

(ii) 

from which 
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Note that the horizontal component of the reaction at A, RA.H, would be included in 
the moment equation (Eq. (i)) if the support points A and B were on different 
levels. In this case Eqs (i) and (iii) could be solved simultaneously for RA.v and 
RA.H. Note also that the tensions TCA and T,, could be found from the components 
of the support reactions since the resultant reaction at each support, RA at A and RB 
at B, must be equal and opposite in direction to the tension in the cable otherwise 
the cable would be subjected to shear forces, which we have assumed is not 
possible. Hence 

T C A = R A = W T Z = 1 2 - 6 k N  

T C B = R B = m =  13-4 kN 

as before. 
In Ex. 5.1 the geometry of the loaded cable was specified. We shall now consider 

the case of a cable carrying more than one load. Thus, in the cable in Fig. 5.2(a), the 
loads W ,  and W 2  at the points C and D produce a different deflected shape to the 
loads W ,  and W ,  at C and D in Fig. 5.2(b). The analysis is then affected by the 
change in geometry as well as the change in loading, a different situation to that in 
beam and truss analysis. The cable becomes, in effect, a mechanism and changes 
shape to maintain its equilibrium; the analysis then becomes non-linear and therefore 
statically indeterminate. However, if the geometry of the deflected cable is partially 
specified, say the maximum deflection or sag is given, the system becomes statically 
determinate. 

Example 5.2 Calculate the tension in each of the parts AC, CD and DB of the 
cable shown in Fig. 5.3. 

There are different possible approaches to the solution of this problem. For 
example, we could investigate the equilibrium of the forces acting at the point C and 
resolve horizontally and vertically. We would then obtain two equations in which the 
unknowns would be TCA, T,,, a and p. From the geometry of the cable a= tan-' 
(0.5/1-5) = 18.4" so that there would be three unknowns remaining. A third equation 
could be obtained by examining the moment equilibrium of the length AC of the 
cable about A, where the moment is zero since the cable is flexible. The solution of 
these three simultaneous equations would be rather tedious so that a simpler 
approach is preferable. 

Fig. 5.2 Effect on cable geometry of load variation 
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Fig. 5.3 Cable of Ex. 5.2 

In Ex. 5.1 we saw that the resultant reaction at the supports is equal and opposite 
to the tension in the cable at the supports. Thus, by determining RA,v and R A , H  we 
can obtain TCA directly. Hence, taking moments about B we have 

RA." x 5.3 - 10 x 3.8 - 6 x 1.8 = 0 

from which R A . V =  9.2 kN 

Since the cable is perfectly flexible the internal moment at any point is zero. 
Therefore, taking moments of forces to the left of C about C gives 

R A . H  x 0.5 - RA.v x 1 *5 = 0 

so that RA.H = 27.6 kN 

Alternatively we could have obtained R A , H  by using the fact that the resultant 
reaction, R,, at A is in line with the cable at A, i.e. R,.,/R,," =tan a = tan 18.4", 
whence R A . H  = 27-6 kN as before. Having obtained RA.v and R A . H ,  TCA follows. Thus 

T C A = R A =  J m = & Z T S  
whence TCA = 29.1 kN 

From a consideration of the vertical equilibrium of the forces acting at C we have 

T,, sin p + TCA sin a - 10 = T,, sin p + 29-1 sin 18-4" - 10 = 0 

which gives TcDsin p=O.SlS 0) 
From the horizontal equilibrium of the forces at C 

TcD cos p - TCA cos a = T,, cos p - 29.1 cos 18.4" = 0 

so that T,D COS p=27.612 (ii) 

Dividing Eq. (i) by Eq. (ii) yields 

tan p = 0.0295 

whence p =  1.69" 
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Hence, from either of Eqs (i) or (ii) 

TCD = 27.6 kN 

We can obtain the tension in DB in a similar manner. Thus, from the vertical 
equilibrium of the forces at D, we have 

TDB sin y- T,,  sin p - 6 = TDB sin y- 27.6 sin 1-69" - 6 = 0 

from which TDB sin y= 6-815 (iii) 

From the horizontal equilibrium of the forces at D we see that 

TDB COS y- TcB COS p = TDB COS y- 27.6 COS 1-69" = 0 

TDB COS y= 27.618 from which 

Dividing Eq. (iii) by Eq. (iv) we obtain 

tan y = 0.2468 

so that y =  13.86" 

TDB follows from either of Eqs (iii) or (iv) and is 

TDB = 28.4 kN 

Alternatively we could have calculated TDB by determining R0.H (=R, . , )  and RE.,,. 
Then 

TDB = RB = 4 Ri ,H + Ri,,,  

and y=tan-' ( R B . V / R B . H )  

This approach would, in fact, be a little shorter than the one given above. However, 
in the case where the cable carries more than two loads, the above method must be 
used at loading points adjacent to the support points. 

5.2 Heavy cables 
We shall now consider the more practical case of cables having a significant self- 
weight. 

Governing equation for deflected shape 
The cable AB shown in Fig. 5.4(a) carries a distributed load w ( z )  per unit of its 
horizontally projected length. An element of the cable, whose horizontal projection 
if 6z, is shown, together with the forces acting on it, in Fig. 5.4(b). Since 6z is 
infinitesimally small, the load intensity may be regarded as constant over the length 
of the element. Suppose that T is the tension in the cable at the point z and that 
T + 6T is the tension at the point z + 6z; the vertical and horizontal components of T 
are V and H, respectively. In the absence of any externally applied horizontal loads 
we see that 

H = constant 
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Fig. 5.4 Cable subjected to a distributed load 

and from the vertical equilibrium of the element we have 

v +  6V-w(z)6z-V=0 

so that, in the limit as 6z + 0 

dV 
dz 

(5.1) -- - w(z) 

From Fig. 5.4(b) 

dY - tane = -- V 

H dz 
_ -  

where y is the vertical deflection of the cable at any point referred to the z axis. 

Hence V = - H -  dY 
dz 

d’y dV 
so that 

dz dz2 

Substituting for dV/dz from Eq. (5.1) into Eq. (5.2) we obtain the governing 
equation for the deflected shape of the cable. Thus 

(5.2) - -H - _ -  

(5.3) 

We are now in a position to investigate cables subjected to different load 
applications. 

Cable under its own weight 
In this case let us suppose that the weight per actual unit length of the cable is w,. 
Then, by refemng to Fig. 5 . 5 ,  we see that the weight per unit of the horizontally 

d2Y H - = -w(z)  
dz2 
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Fig. 5.5 Elemental length of cable under its own weight 

projected length of the cable, w(z), is given by 

Now, in the limit as 6s + 0. ds = (dz’ + dy’)”’ 
Whence, from Eq. (5.4), 

w(z)bz = w,6s (5.4) 

w(z) = -[ 1 + ( %)]I/’ 

H - dz2 = -w.[ 1 + ($)3”’ 

(5.5) 

Substituting for w(z) from Eq. (5.5) in Eq. (5.3) gives 

d’y 
(5.6) 

Let dy/dz = p. Then Eq. (5.6) may be written 

dP H - = -w,( 1 + pz)t’2 
dz 

or, rearranging and integrating 

= -1 - w, dz (5.7) 
dP 

J (1 +p2)’i2 H 

(: 1 

The term on the left-hand side of Eq. (5.7) is a standard integral. Thus 
w, 
H 

in which C ,  is a constant of integration. Thus 

sinh-’ p = - - z + C ,  

p = sinh -- z + C ,  

Now substituting for p (=dy/dz) we obtain 

2 = sid( -% z + cl) 
dz 

which, when integrated, becomes 

y = -- H cash (: -- z + C1 1 + C1 (5.8) 
W ,  

in which Cz is a second constant of integration. 
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The deflected shape defined by Eq. (5.8) is known as a catenary; the constants C, 
and Cz may be found using the boundary conditions of a particular problem. 

Example 5.3 Determine the equation of the deflected shape of the symmetrically 
supported cable shown in Fig. 5.6 if its self-weight is w, per unit of its actual length. 

The equation of its deflected shape is given by Eq. (5.8), i.e. 

y = -- cash -- z + C1 + Cz (i) 
W ,  H (: ) 
- dY = sinh(-$ z + cl) 

(;: ) 

Differentiating Eq. (i) with respect to z we have 

(ii) 

From symmetry, the slope of the cable at mid-span is zero, i.e. dy/dz=O when 
z = L / 2 .  Thus, from Eq. (ii) 

dz 

0 = sinh -- - + C,  

W L  c -2- 
H 2  

from which I -  

Eq. (i) then becomes 

(iii) 

The deflection of the cable at its supports is zero, i.e. y = O  when z = O  and z =  L. 
From the first of these conditions 

y = -- H cash[-: (z - :)] + C2 

W ,  

(: :) 
(> :) 

H 
0 = -- cash - - + Cz 

W ,  

H 
Cz = - cash - - so that 

W ,  

Fig. 5.6 Deflected shape of a symmetrically supported cable 
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Eq. (ii) is then written as 

y = - -  cosh-- Z - -  -cosh-- (iv) 
W, H [  [;;.( :)I s:i 

Equation (iv) gives the deflected shape of the cable in terms of its self-weight, its 
length and the horizontal component, H, of the tension in the cable. In a particular case 
where, say, w,, L and Hare specified, the sag, D, of the cable is obtained directly from 
Eq. (iv). Alternatively if, instead of H, the sag D is fixed, H is obtained from Eq. (iv) 
which then becomes a transcendental equation; this may be solved graphically. 

Since H is constant the maximum tension in the cable will occur at the point where 
the vertical component of the tension in the cable is greatest. In the above example 
this will occur at the support points where the vertical component of the tension in 
the cable is equal to half its total weight. For a cable having supports at different 
heights, the maximum tension will occur at the highest support since the length of 
cable from its lowest point to this support is greater than that on the opposite side of 
the lowest point. Furthermore, the slope of the cable at the highest support is a 
maximum (see Fig. 5.4(a)). 

Cable subjected to a uniform horizontally distributed load 
This loading condition is, as we shall see when we consider suspension bridges, 
more representative of that in actual suspension structures than the previous case. 

For the cable shown in Fig. 5.7, Eq. (5.3) becomes 

(5.9) 
d2Y 

Hdz'=-W 
Integrating Eq. (5.9) with respect to z we have 

(5.10) dY H - = -WZ + C ,  

z -  
and Hy = -W - + C ~ Z  + Cz (5.11) 

2 

dz 
1 

Fig. 5.7 Cable carrying a uniform horizontally distributed load 
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The boundary conditions are y = 0 at z = 0 and y = -h at z = L. The first of these 
gives C ,  = 0 while from the second we have 

L2 
H ( - h )  = -W - + CIL 

2 

so that 

Thus Eqs. (5.10) and (5.1 1 )  become, respectively, 

dy w W L  h 
dz H 2H L 
-- - -- z + - - -  

and 
2H 

(5.12) 

(5.13) 

Thus the cable in this case takes up a parabolic shape. 
Equations (5.12) and (5.13) are expressed in terms of the horizontal component, 

H, of the tension in the cable, the applied load and the cable geometry. If, 
however, the maximum sag, D, of the cable is known, H may be eliminated as 
f 0110 w s . 

The position of maximum sag coincides with the point of zero slope. Thus from 
Eq. (5.12) 

w W L  h 
0 = -- z + - - - 

H 2H L 

whence 
L Hh 
2 W L  

2 = - - - = L ,  (see Fig. 5.7) 

Then the horizontal distance, L,,  from the lowest point of the cable to the support at 
B is given by 

L Hh 
2 W L  

L ,  = L -  L ,  = - 4- - 

Now considering the moment equilibrium of the length CB of the cable about B we 
have, from Fig. 5.7, 

LI 
HD - w - = 0 

2 

so that 
H D - ; ( T + ; )  w L H h 2  = O  

(5.14) 

Equation (5.14) is a quadratic equation in H and may be solved for a specific case 
using the formula. 
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Alternatively, H may be determined by considering the moment equilibrium of 
the lengths AC and CB about A and C, respectively. Thus, for AC 

L: H ( D  - h )  - w - = 0 
2 

whence 

For CB 

so that 

w L f  
H =  

2(D - h )  

WL: 
H D - - -  - 0  

WL: H = -  
2 0  

Hence, equating Eqs (5.15) and (5.16), 

WL: - WL; -- 
2 ( D - h )  2 0  

which gives 

But 

therefore 

from which 

Thus, from Eq. (5.16) 

L ,  = J" L ,  
D 

L ,  + L ,  = L L,[/F'+ 11 = L 

(/?+ 1) 

L L ,  = 

wL2 H =  

2 D [ , / y +  112 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

As in the case of the catenary the maximum tension will occur, since H = constant, 
at the point where the vertical component of the tension is greatest. Thus, in the 
cable of Fig. 5.7, the maximum tension occurs at B where, as L 2 >  L , ,  the vertical 
component of the tension (= wL,) is greatest. Hence 

T,, = J ( w ~ 2 ) 2  + H ?  (5.19) 

in which L, is obtained from Eq. (5.17) and H from one of Eqs. (5.14), (5.16) or 
(5.18). 
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At B the slope of the cable is given by 

- 1  WL? 
a=tan - 

H 
or, alternatively, from Eq. (5.12) 

(5.20) 

W W L  h W L  h 
(5.21) L + - - -  = - -__  (z)z=L=-H 2H L 2 H  L 

For a cable in which the supports are on the same horizontal level, i.e. h = 0 ,  
Eqs. (5.12), (5.13), (5.14) and (5.19) reduce, respectively, to 

dY 

dy = w (L - 
dz H 2 

W 2 

2H 
y = - (Lz - z ) 

8 0  

(5.22) 

(5.23) 

(5.24) 

(5.25) 

We observe from the above that the analysis of a cable under its own weight, that is 
a catenary, yields a more complex solution than that in which the load is assumed to 
be uniformly distributed horizontally. However, if the sag in the cable is small 
relative to its length, this assumption gives results that differ only slightly from the 
more accurate but more complex catenary approach. Thus, in practice, the loading is 
generally assumed to be uniformly distributed horizontally. 

Example 5.4 Determine the maximum tension and the maximum slope in the cable 
shown in Fig. 5.8 if it cames a uniform horizontally distributed load of intensity 
10 kN/m. 

From Eq. (5.17) 

Then, from Eq. (5.16) 

10 x 110.1? 
H =  = 3367.2 kN 

2 x  18 

The maximum tension follows from Eq. (5.19), i.e. 

T,, = J ( l0  x 1 10-1)2 + 3367.2? = 3542.6kN 
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Fig.  5.8 Suspension cable of Ex. 5.4 

Then, from Eq. (5.20) 
l o x  110.1 

3367.2 
amx = tan-' = 18.1" at B 

Suspension bridges 
A typical arrangement for a suspension bridge is shown diagrammatically in Fig. 5.9. 
The bridge deck is suspended by hangers from the cables which pass over the tops 
of the towers and are secured by massive anchor blocks embedded in the ground. 
The advantage of this form of bridge construction is its ability to provide large clear 
spans so that sea-going ships, say, can pass unimpeded. Typical examples in the UK 
are the suspension bridges over the rivers Humber and Severn, the Forth road bridge 
and the Menai Straits bridge in which the suspension cables comprise chain links 
rather than tightly bound wires. Suspension bridges are also used for much smaller 
spans such as pedestrian footbridges and for light vehicular traffic over narrow 
rivers. 

The major portion of the load camed by the cables in a suspension bridge is due 
to the weight of the deck, its associated stiffening girder and the weight of the 
vehicles crossing the bridge. By comparison, the self-weight of the cables is 
negligible. Thus we may assume that the cables carry a uniform horizontally 

Fig. 5.9 Diagrammatic representation of a suspension bridge 
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distributed load and therefore take up a parabolic shape; the analysis described in the 
preceding section therefore applies. 

The cables, as can be seen from Fig. 5.9, are continuous over the tops of the 
towers. In practice they slide in grooves in saddles located on the tops of the towers. 
For convenience we shall idealize this method of support into two forms, the actual 
method lying somewhere between the two. In Fig. 5.10(a) the cable passes over a 
frictionless pulley, which means that the tension, TA, in the anchor cable is equal to 
T,, the tension at the tower in the suspension cable. Generally the inclination, p, of 
the anchor cable is a fixed value and will not be equal to the inclination, a, of the 
suspension cable at the tower, There will therefore be a resultant horizontal force, 
HT. on the top of the tower given by 

H T =  T ,  COS a- TA COS p 
or, since TA = T ,  

H, = T ,  (cos a - cos p) (5.26) 

H,, in turn, produces a bending moment, MT, in the tower which is a maximum at 
the tower base. Hence 

MT(max) = H T h T  = T ,  (COS a - COS P ) h T  (5.27) 

Also, the vertical compressive load, V,, on the tower is 

V,  = T ,  (sin a + sin p) (5.28) 

In the arrangement shown in Fig. 5.10(b) the cable passes over a saddle which is 
supported on rollers on the top of the tower. The saddle therefore cannot resist a 
horizontal force and adjusts its position until 

TA COS p = T ,  cos a (5.29) 

For a given value of p, Q. (5.29) determines the necessary value of T,. Clearly, 
since there is no resultant horizontal force on the top of the tower, the bending 
moment in the tower is everywhere zero. Finally, the vertical compressive load on 
the tower is given by 

V,  = T ,  sin a + T A  sin p (5.30) 

Fig. 5.10 Idealization of cable supports 
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Example 5.5 The cable of a suspension bridge, shown in Fig. 5.11, runs over a 
frictionless pulley on the top of each of the towers at A and B and is fixed to anchor 
blocks at D and E. If the cable carries a uniform horizontally distributed load of 
120 kN/m determine the diameter required if the permissible working stress on the 
gross area of the cable, including voids, is 600 N/mm'. Also calculate the bending 
moment and direct load at the base of a tower and the required weight of the anchor 
blocks. 

The tops of the towers are on the same horizontal level, so that the tension in the 
cable at these points is the same and will be the maximum tension in the cable. The 
maximum tension is found directly from Eq. (5.25) and is 

120x300 d(,aP 1 + - = 48466-5kN 
2 

Tmx = 

The maximum direct stress, amax, is given by 

(see Section 7.1) a,, = - 
ad2/4 

in which d is the cable diameter. Hence 

Tmx 

48 466.5 x 10 
600= 

xd2/4 
which gives d = 320.7 mm 

The angle of inclination of the suspension cable to the horizontal at the top of the 
tower is obtained using Eq. (5.20) in which L2 = L/2. Hence 

_ I  W L  120 x 300 
2H 2H 

a =  tan -=tan-' 

where H is given by Eq. (5.24). Thus 

120 x 300' 
H =  =45000kN 

8 x 30 

- I  120x300 

2x45000  
so that a = tan = 21.8" 

Fig. 5.1 1 Suspension bridge of Ex. 5.5 
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Therefore, from Eq. (5.27), the bending moment at the base of the tower is 
MT=48 466.5 (COS 2 1 . 8 " - ~ 0 ~ 4 5 " ) ~ 5 0  

whence 

The direct load at the base of the tower is found using Eq. (5.28), i.e. 

MT = 536 O00 kNm 

VT = 48 466.5 (sin 21.8" + sin 45") 

V ,  = 52 269.9 kN which gives 

Finally the weight, WA, of an anchor block must resist the vertical component of the 
tension in the anchor cable. Thus 

W, = TA COS 45" = 48 466.5 COS 45" 
from which WA = 34 271.0 kN. 

Problems 

also the vertical distance of the points B and E below the support points A and F. 
P.5.1Calculate the tension in each segment of the cable known in Fig. P.5.1 and 

Ans. TAB = TFE = 26.9 kN, TBC = TED = 25-5 kN, Tc-= 25.0 kN, 1.0 m. 

Fig. P.5.1 

P.5.2 Calculate the sag at the point B in the cable shown in Fig. P.5.2 and the 

A m .  

tension in each of its segments. 

0-81 m relative to A. TAB = 4.9 kN, TBc = 4.6 kN, TcD = 4-7 kN. 

Fig. P.5.2 

P.5.3 Calculate the sag, relative to A, of the points C and D in the cable shown 
in Fig. P.5.3. Determine also the tension in each of its segments. 

Ans. C = 4 - 2 m , D = 3 * l m .  TAB=11*98kN,TBc=9*68 kN, T , ~ = 9 - 4 3 k N .  
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Fig. P.5.3 

P.5.4 A cable that carries a uniform horizontally distributed load of 10 kN/m is 
suspended between two points that are at the same level and 80 m apart. Determine 
the minimum sag that may be allowed at mid-span if the maximum tension in the 
cable is limited to loo0 kN. 

Ans. 8-73 m. 

P.5.5 A suspension cable is suspended from two points 102 m apart and at the 
same horizontal level. The self-weight of the cable can be considered to be 
equivalent to 36 N/m of horizontal length. If the cable carries two concentrated 
loads each of 10 kN at 34 m and 68 m horizontally from the left-hand support and 
the maximum sag in the cable is 3 m, determine the maximum tension in the cable 
and the vertical distance between the concentrated loads and the supports. 

A m .  129-5 kN, 2-96 m. 

P.5.6 A cable of a suspension bridge has a span of 80 m, a sag of 8 m and 
cames a uniform horizontally distributed load of 24 kN/m over the complete span. 
The cable passes over frictionless pulleys at the top of each tower which are of the 
same height. If the anchor cables are to be arranged such that there is no bending 
moment in the towers calculate the inclination of the anchor cables to the 
horizontal. Calculate also the maximum tension in the cable and the vertical force 
on a tower. 

Ans. 21.8", 2584.9 kN, 1919-9 kN. 

P.5.7 A suspension cable passes over saddles supported by roller bearings on the 
top of two towers 120 m apart and differing in height by 2.5 m. The maximum sag 
in the cable is 10 m and each anchor cable is inclined at 55" to the horizontal. If the 
cable carries a uniform horizontally distributed load of 25 kN/m and is to be made 
of steel having an allowable tensile stress of 240 N/mm', determine its minimum 
diameter. Calculate also the vertical load on the tallest tower. 

A m .  218.3 mm, 8962.9 kN. 

P.5.8 A suspension cable has a sag of 40 m and is fixed to two towers of the 
same height and 400 m apart; the effective cross-sectional area of the cable is 
0.08 m2. However, due to corrosion, the effective cross-sectional area of the 
central half of the cable is reduced by 20%. If the stress in the cable is limited to 
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500 N/mm' calculate the maximum allowable distributed load the cable can support. 
Calculate also the inclination of the cable to the horizontal at the top of the towers. 

AIS 62.8 kN/m, 21.8". 

P.5.9 A suspension bridge with two main cables has a span of 250 m and a sag 
of 25 m. It cames a uniform horizontally distributed load of 25 kN/m and the 
allowable stress in the cables is 800 N/mm2. If each anchor cable makes an angle of 
45" with the towers calculate: 

(a) the required cross-sectional area of the cables, 
(b) the load in an anchor cable and the overturning force on a tower when 

(i) the cables run over a pulley device, 
(ii) the cables are attached to a saddle resting on rollers. 

Am. 

P.5.10 A suspension cable passes over two towers 80 m apart and carries a load 
of 5 kN per metre of span. If the top of the left-hand tower is 4 m below the top of 
the right-hand tower, calculate the maximum tension in the cables. Also, if the cable 
passes over saddles on rollers on the tops of the towers with the anchor cable at 45" 
to the horizontal, calculate the vertical thrust on the right-hand tower. 

(a) 5270 mm', (b) (i) 4210 kN, 930 kN (ii) 5530kN, 0. 

Am.  360 kN, 502 kN. 



CHAPTER 6 

The Romans were the first to use arches as major structural elements, employing 
them, mainly in semicircular form, in bridge and aqueduct construction and for roof 
supports, particularly the barrel vault. Their choice of the semicircular shape was 
due to the ease with which such an arch could be set out. Generally these arches, as 
we shall see, carried mainly compressive loads and were therefore constructed from 
stone blocks, or voussoirs, where the joints were either dry or used weak mortar. 

During the Middle Ages, Gothic arches, distinguished by their pointed apex, were 
used to a large extent in the construction of the great European cathedrals. The 
horizontal thrust developed at the supports, or springings, and caused by the 
tendency of an arch to ‘flatten’ under load was frequently resisted by flying 
buttresses. This type of arch was also used extensively in the 19th century. 

In the 18th century masonry arches were used to support bridges over the large 
number of canals that were built in that period. Many of these bridges survive to the 
present day and carry loads unimagined by their designers. 

Today arches are usually made of steel or of reinforced or prestressed concrete 
and can support both tensile as well as compressive loads. They are used to support 
bridge decks and roofs and vary in span from a few metres in a roof support system 
to several hundred metres in bridges. A fine example of a steel arch bridge is the 
Sydney harbour bridge in which the deck is supported by hangers suspended from 
the arch (see Figs 1.6(a) and (b) for examples of bridge decks supported by arches). 

Arches are constructed in a variety of forms. Their components may be straight or 
curved, but generally fall into two categories. The first, which we shall consider in 
this chapter, is the three-pinned arch which is statically determinate, whereas the 
second, the two-pinned arch, is statically indeterminate and will be considered in 
Chapter 16. 

Initially we shall examine the manner in which arches carry loads. 

6.1 The linear arch 
There is a direct relationship between the action of a flexible cable in carrying loads 
and the action of an arch. In Section 5.1 we determined the tensile forces in the 
segments of lightweight cables carrying concentrated loads and saw that the 
geometry of a cable changed under different loading systems; hence, for example, 
the two geometries of the same cable in Figs 5.2(a) and (b). 
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Let us suppose that the cable in Fig. 5.2(a) is made up of three bars or links AC, 
CD and DB hinged together at C and D and pinned to the supports at A and B. If the 
loading remains unchanged the deflected shape of the three-link structure will be 
identical to that of the cable in Fig. 5.2(a) and is shown in Fig. 6.l(a). Furthermore 
the tension in a link will be exactly the same as the tension in the corresponding 
segment of the cable. Now suppose that the three-link structure of Fig. 6.l(a) is 
inverted as shown in Fig. 6.1 (b) and that the loads W, and W2 $-re applied as before. 
In this situation the forces in the links will be identical in magnitude to those in 
Fig. 6.1 (a) but will now be compressive as opposed to tensile; the structure shown in 
Fig. 6.1 (b) is patently an arch. 

The same argument can be applied to any cable and loading system so that the 
internal forces in an arch may be deduced by analysing a cable having exactly the 
same shape and carrying identical loads, a fact first realized by Robert Hooke in the 
17th century. As in the example in Fig. 6.1 the internal forces in the arch will have 
the same magnitude as the corresponding cable forces but will be compressive, not 
tensile. 

It is obvious from the above that the internal forces in the arch act along the axes 
of the different components and that the arch is therefore not subjected to internal 
shear forces and bending moments; an arch in which the internal forces are purely 
axial is called a linear arch. We also deduce, from Section 5.2, that the internal 
forces in an arch whose shape is that of a parabola and which cames a uniform 
horizontally distributed load are purely axial. Further, it will now have become clear 
why the internal members of a bowstring truss (Section 4.1) carrying loads of equal 
magnitude along its upper chord joints carry zero force. 

There is, however, a major difference between the behaviour of the two structures 
in Figs 6.1 (a) and (b). A change in the values of the loads W, and Wz will merely 
result in a change in the geometry of the structure in Fig. 6.l(a), whereas the 
slightest changes in the values of W, and W 2  in Fig. 6.1 (b) will result in the collapse 
of the arch as a mechanism. In this particular case collapse could be prevented by 
replacing the pinned joint at C (or D) by a rigid joint as shown in Fig. 6.2. The 
forces in the members remain unchanged since the geometry of the structure is 
unchanged, but the arch is now stable and has become a three-pinned arch which, as 
we shall see, is statically determinate. 

Fig. 6.1 Equivalence of cable and arch structures 



The linear arch 12 1 

Fig. 6.2 Linear three-pinned arch 

If now the pinned joint at D was replaced by a rigid joint, the forces in the 
members would remain the same, but the arch has become a mu-pinned arch. In this 
case, because of the tension cable equivalence, the arch is statically determinate. It is 
important to realize. however, that the above arguments only apply for the set of 
loads W, and W 2  which produce the particular shape of cable shown in Fig. 6.1 (a). 
If the loads were repositioned or changed in magnitude, the two-pinned arch would 
become statically indeterminate and would probably cease to be a linear arch so that 
bending moments and shear forces would be induced. The three-pinned arch of 
Fig. 6.2 would also become non-linear if the loads were repositioned or changed in 
magnitude. 

In the above we have ignored the effect on the geometry of the arch caused by the 
shortening of the members. The effect of this on the three-pinned arch is negligible 
since the pins can accommodate the small changes in angle between the members 
which this causes. This is not the case in a two-pinned arch or in an arch with no pins 
at all (in effect a portal frame) so that bending moments and shear forces are 
induced. However, so long as the loads ( W ,  and W z  in this case) remain unchanged 
in magnitude and position, the corresponding stresses are ‘secondary’ and will have 
little effect on the axial forces. 

The linear arch, in which the internal forces are purely axial, is important for the 
structural designer since the linear arch shape gives the smallest stresses. If ,  
however, the thrust line is not axial, bending stresses are induced and these can cause 
tension on the inner or outer faces (the inrrados and exrr-trados) of the arch. In a 
masonry arch in which the joints are either dry or made using a weak mortar, this can 
lead to cracking and possible failure. Furthermore, if the thrust line lies outside the 
faces of the arch, instability leading to collapse can also occur. We shall deduce in 
Section 9.2 that for no tension to be developed in a rectangular cross-section, the 
compressive force on the section must lie within the middle third of the section. 

In small-span arch bridges, these factors are not of great importance since the 
greatest loads on the arch come from vehicular traffic. These loads vary with the size 
of the vehicle and its position on the bridge, so that it is generally impossible for the 
designer to achieve a linear arch. On the other hand, in large-span arch bridges, the 
self-weight of the arch forms the major portion of the load the arch has to carry. In 
Section 5.2 we saw that a cable under its own weight takes up the shape of a 
catenary. It follows that the ideal shape for an arch of constant thickness is an 
inverted catenary. However, in the analysis of the three-pinned arch we shall assume 
a general case in which shear forces and bending moments, as well as axial forces, 
are present. 
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6.2 The three-pinned arch 
A three-pinned arch would be used in situations where there is a possibility of 
support displacement; this, in a two-pinned arch, would induce additional stresses. In 
the analysis of a three-pinned arch the first step, generally, is to determine the 
support reactions. 

Support reactions - supports on same horizontal level 

Consider the arch shown in Fig. 6.3. It cames an inclined concentrated load, W, at a 
given point D, a horizontal distance a from the support point A. The equation of the 
shape of the arch will generally be known so that the position of specified points on 
the arch, say D, can be obtained. We shall suppose that the third pin is positioned at 
the crown, C, of the arch, although this need not necessarily be the case; the height 
or rise of the arch is h. 

The supports at A and B are pinned but ileither can be a roller support or the arch 
would collapse. Therefore, in addition to the two vertical components of the 
reactions at A and B, there will be horizontal components RA,H and RB.H. Thus there 
are four unknown components of reaction but only three equations of overall 
equilibrium (Eqs (2.10)) so that an additional equation is required. This is obtained 
from the fact that the third pin at C is unable to transmit bending moments although, 
obviously, it is able to transmit shear forces. 

Thus, from the overall vertical equilibrium of the arch in Fig. 6.3, we have 

RA.v + RB.V - W cos a = 0 

RA.H - RB.H - W sin a = 0 

R,.,L - W cos a ( L  - a )  - W sin a hD = 0 

(6.1) 

and from the horizontal equilibrium 

(6.2) 

Now taking moments about, say, B, 

(6.3) 

Fig. 6.3 Three-pinned arch 



The three-pinned arch 123 

The internal moment at C is zero so that we can take moments about C of forces to 
the left or right of C. A slightly simpler expression results by considering forces to 
the left of C; thus 

L 
2 

RA.v - - R A . H  h = 0 (6.4) 

Equations (6.1)-(6.4) enable the four components of reaction to be found; the 
normal force, shear force and bending moment at any point in the arch follow. 

Example 6.1 Calculate the normal force, shear force and bending moment at the 
point X in the semicircular arch shown in Fig. 6.4. 

In this example we can find either vertical component of reaction directly by 
taking moments about one of the support points. Hence, taking moments about B, 

R,.,x 12-60(6cos30"+6)-100(6sin30"+6)=0 
say, 

which gives RA, ,=  131.0 kN 

Now resolving forces vertically: RB,v + RA,v - 60 - 1 0 0  = 0 

which, on substituting for RA.v, gives 

R 9 . V  = 29.0 kN 

Since no horizontal loads are present, we see by inspection that 

RA,H = R B . H  

Finally, taking moments of forces to the right of C about C (this is a little simpler 
than considering forces to the left of C) we have 

RE." x 6 - Rs.v x 6 = 0 

R9.H = 29.0 kN = R A . n  from which 

Fig. 6.4 Three-pinned arch of Ex. 6.1 
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The normal force at the point X is obtained by resolving the forces to one side of X 
in a direction tangential to the arch at X. Thus, considering forces to the left of X 
and taking tensile forces as positive, 

Nx = -RA,v cos 45" - RA.H sin 45" + 60 cos 45" 

so that Nx = -70.7 1<N 
and is compressive. 

The shear force at X is found by resolving the forces to one side of X in a 
direction perpendicular to the tangent at X. We shall take a positive shear force as 
acting radially outwards when it is to the left of a section. Thus, considering forces 
to the left of X 

Sx = RA.v sin 45" - RA.H cos 45" - 60 sin 45" 

which gives Sx = +29-7 kN 

Now taking moments about X for forces to the left of X and regarding a positive 
moment as causing tension on the underside of the arch, we have 

M x  = RA,v (6 - 6 cos 45") - RA,H x 6 sin 45" - 60 (6 cos 30" - 6 cos 45") 

Whence M ,  = +50.0 kNm 

Note that in Ex. 6.1 the sign conventions adopted for normal force, shear force and 
bending moment are the same as those specified in Chapter 3. 

Support reactions - supports on different levels 
In the three-pinned arch shown in Fig. 6.5 the support at B is a known height, he,  
above A. Let us suppose that the equation of the shape of the arch is known so that 
all dimensions may be calculated. Now, resolving forces vertically gives 

(6.5) 

(6.6) 

RA.v + RB.v - W cos a = 0 

RA,H - R6.H - W sin a = 0 

RA.v L - RA.Hh, - W cos a ( L  - a )  - W sin a ( h ,  - h,) = 0 

and horizontally we have 

Also, taking moments about B, say, 

(6.7) 

Note that, unlike the previous case, the horizontal component of the reaction at A is 
included in the overall moment equation (Eq. (6.7)). 

Finally we can take moments of all the forces to the left or right of C about C 
since the internal moment at C is zero. In this case the overall moment equation 
(Eq. (6.7)) includes both components, RA.,, and RA,", of the support reaction at A. 
Thus, if we now consider moments about C of forces to the left of C, we shall 
obtain a moment equation in terms of RA.,, and RA.H.  This equation, with Eq. (6.7), 
provides two simultaneous equations which may be solved for RA.,, and R A , H .  
Alternatively if ,  when we were considering the overall moment equilibrium of the 
arch, we had taken moments about A, Eq. (6.7) would have been expressed in terms 
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Fig. 6.5 Three-pinned arch with supports at  different levels 

of RB.v and RB,H. Then we would obtain the fourth equation by taking moments 
about C of the forces to the right of C and the two simultaneous equations would be 
in terms of RB,v and RB.H. Theoretically this approach is not necessary but it leads to 
a simpler solution. Thus, referring to Fig. 6.5 

(6.8) 
The solution of Eqs (6.7) and (6.8) gives RA,v and RA,H, then RB," and RB." follow 
from Eqs (6.5) and (6.6), respectively. 

Example 6.2 The parabolic arch shown in Fig. 6.6 cames a uniform horizontally 
distributed load of intensity 10 kN/m over the portion AC of its span. Calculate the 
values of the normal force, shear force and bending moment at the point D. 

RA.VC - RA,Hh = O 

Fig. 6.6 Parabolic arch of Ex. 6.2 
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Initially we must determine the equation of the arch so that the heights of B and D 
may be calculated. The simplest approach is to choose the origin of axes at C so that 
the equation of the parabola may be written in the form 

y = h '  (i) 
in which k is a constant. At A, y = 7 m when x = - 15 m. Hence, from Eq. (i) 

7 = k x  (-15)' 

whence k = 0-031 1 

and Eq. (i) becomes 

y = 0 - 0 3 1 1 ~ '  

Then yB=0.0311 x (10)'=3.11 m 

Hence h B = 7 - 3 - 1 1  = 3 - 8 9 m  

Also yD = 0.031 1 x (-7-5)' = 1-75 m 

so that h D  = 7 - 1'75 = 5.25 m 

(ii) 

Taking moments about A for the overall equilibrium of the arch we have 

RB.v x 25 + RB,H x 3.89 - 10 x 15 x 7.5 = 0 

which simplifies to 

RB,v+0*16 RB,H-45*0=0 

Now taking moments about C for the forces to the right of C we obtain 

RB.v x 10 - R B . H  x 3.1 1 = 0 

RB,V - 0.31 1 R B , H  = 0 Whence 

The simultaneous solution of Eqs (iii) and (iv) gives 

RB." = 29.7 kN, R B . H  = 95.5 kN 

From the horizontal equilibrium of the arch we have 

R A , H  = R B , H  = 95.5 W 

and from the vertical equilibrium 

RA,v + RB,v - 10 x 15 = 0 

which gives RA.,, = 120.3 kN 

(iii) 

To calculate the normal force and shear force at the point D we require the slope of 
the arch at D. From Eq. (ii) 

= 2 x 0.03 11 x (-7.5) = -0.4665 = -tan a (3 
Hence a = 25.0" 
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Now resolving forces to the left (or right) of D in a direction parallel to the tangent 
at D we obtain the normal force at D. Hence 

ND = -RA.v sin 25.0" - l?A,H cos 25-0" + 10 x 7-5 sin 25.0" 

N D  = - 105.7 kN (compression) which gives 

The shear force at D is then 

SD = RA,v COS 25.0" - RA." sin 25.0" - 10 x 7-5 COS 25.0" 

so that S D  = +0.7 kN 

Finally the bending moment at D is 

7.5 
MD = RA.v x 7.5 - RA,H x 5-25 - 10 x 7.5 x - 

2 

from which MD= +119.6 kNm 

6.3 A three-pinned parabolic arch carrying a uniform 
horizontally distributed load 
In Section 5.2 we saw that a flexible cable carrying a uniform horizontally 
distributed load took up the shape of a parabola. It follows that a three-pinned 
parabolic arch carrying the same loading would experience zero shear force and 
bending moment at all sections. We shall now investigate the bending moment in the 
symmetrical three-pinned arch shown in Fig. 6.7. 

The vertical components of the support reactions are, from symmetry, 

W L  

2 
RA.V = RB.V = - 

Also, in the absence of any horizontal loads 

RA,H = RB,H 

I 

Fig. 6.7 Parabolic arch carrying a uniform horizontally distributed load 
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Now taking moments of forces to the left of C about C, 

which gives 
WL? 

RA,H = - 
8 h  

With the origin of axes at A, the equation of the parabolic shape of the parabola 
may be shown to be 

4h 
L 2  

y = - (Lx - x 2 )  

The bending moment at any point P ( x ,  y )  in the arch is given by 

or, substituting for RA." and RA." and for y in terms of x ,  
2 W L  w L 2  4h 2 wx 

2 8h  L 2  2 
M p =  - x -  - - ( L x - X ) - -  

Simplifying this expression 

as expected. 
The shear force may also be shown to be zero at all sections of the arch. 

6.4 Bending moment diagram for a three-pinned arch 
Consider the arch shown in Fig. 6.8; we shall suppose that the equation of the arch 
referred to the xy axes is known. The load W is applied at a given point D ( x D , y D )  
and the support reactions may be calculated by the methods previously described. 
The bending moment, M p ,  , at any point P,  ( x ,  y )  between A and D is given by 

M P ,  = R A . V x -  RA.Hy (6.9) 
and the bending moment, ME. at the point P2 ( x ,  y )  between D and B is 

M P 2 =  R A . V x -  w ( x - x D ) -  RA,Hy (6.10) 

Now let us consider a simply supported beam AB having the same span as the arch 
and canying a load, W ,  at the same horizontal distance, x D ,  from the left-hand 
support (Fig. 6.9(a)). The vertical reactions, RA and R B  will have the same 
magnitude as the vertical components of the support reactions in the arch. Thus the 
bending moment at any point between A and D and a distance x from A is 

MA, = RAx = RA,VX (6.1 1) 
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Fig. 6.8 Determination of the bending moment diagram for a three-pinned arch 

Fig. 6.9 Bending moment diagram for a simply supported beam (tension on 
undersurface of beam) 

Also the bending moment at any point between D and B a distance x from A is 

MD, = RAX - w ( X  - XD) = R A , , X  - w ( X  - XD) (6.12) 

giving the bending moment diagram shown in Fig. 6.9(b). Comparing Eqs (6.1 1) 
and (6.12) with Eqs (6.9) and (6.10), respectively, we see that Eq. (6.9) may be 
written 

Mm = M A D  - R A . H Y  (6.13) 

and Eq. (6.10) may be written 

MP2 = MDB - R A , H y  (6.14) 

Thus the complete bending moment diagram for the arch may be regarded as the sum 
of a ‘simply supported beam’ bending moment diagram and an ‘arch’ bending 
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moment diagram in which the ‘arch’ diagram has the same shape as the arch itself, 
since its ordinates are equal to a constant multiplied by y .  The two bending moment 
diagrams may be superimposed as shown in Fig. 6.10 to give the complete bending 
moment diagram for the arch. Note that the curve of the arch forms the baseline of 
the bending moment diagram and that the bending moment at the crown of the arch 
where the third pin is located is zero. 

In the above it was assumed that the mathematical equation of the curve of the 
arch is known. However, in a situation where, say, only a scale drawing of the curve 
of the arch is available, a semigraphical procedure may be adopted if the loads are 
vertical. The ‘arch’ bending moment at the crown C of the arch is RAHh as shown in 
Fig. 6.10. The magnitude of this bending moment may be calculated so that the scale 
of the bending moment diagram is then fixed by the rise (at C) of the arch in the 
scale drawing. Also this bending moment is equal in magnitude but opposite in sign 
to the ‘simply supported beam’ bending moment at this point. Other values of 
‘simply supported beam’ bending moment may be calculated at, say, load positions 
and plotted on the complete bending moment diagram to the already determined 
scale. The diagram is then completed, enabling values of bending moment to be 
scaled off as required. 

In the arch of Fig. 6.8 a simple construction may be used to produce the 
complete bending moment diagram. In this case the arch shape is drawn as in 
Fig. 6.10 and this, as we have seen, fixes the scale of the bending moment 
diagram. Then, since the final bending moment at C is zero and is also zero at A 
and B ,  a line drawn from A through C to meet the vertical through the point of 
application of the load at E represents the ‘simply supported beam’ bending 

Fig. 6.10 Complete bending moment diagram for a three-pinned arch 
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Fig. 6.1 1 Bending moment diagram for a three-pinned arch carrying two loads 

moment diagram between A and D. The bending moment diagram is then 
completed by drawing in the line EB. 

This construction is only possible when the arch cames a single load. In the case 
of an arch carrying two or more loads as in Fig. 6.1 1, the ‘simply supported beam’ 
bending moments must be calculated at D and F and their values plotted to the same 
scale as the ‘arch’ bending moment diagram. Clearly the bending moment at C 
remains zero. 

We shall consider the statically indeterminate two-pinned arch in Chapter 16. 

Problems 
P.6.1 Determine the position and calculate the value of the maximum bending 

moment in the loaded half of the semicircular three-pinned arch shown in Fig. P.6.1. 

Ans. 6-59 m from A, 84.2 kNm (sagging). 

Fig. P.6.1 

P.6.2 Figure Pk.2 shows a three-pinned arch of radius 12 m. Calculate the 

14.4 kN (compression), 5-5 kN, 21-9 kNm (hogging). 

normal force, shear force and bending moment at the point D. 

Ans. 
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Fig. P.6.2 

P.6.3 The three-pinned arch shown in Fig. P.6.3 is parabolic in shape. If the arch 
cames a uniform horizontally distributed load of intensity 40 kN/m over the part 
CB, calculate the bending moment at D. 

Ans. 140.5 kNm (sagging). 

Fig. P.6.3 

P.6.4 In the three-pinned arch ACB shown in Fig. P.6.4 the portion AC has the 
shape of a parabola with its origin at C ,  while CB is straight. The portion AC cames 
a uniform horizontally distributed load of intensity 30 kN/m, while the portion CB 
cames a uniform horizontally distributed load of intensity 18 kN/m. Calculate the 
normal force, shear force and bending moment at the point D. 

Aus. 91.2 kN (compression), 8.9 kN, 210.0 kNm (sagging). 

Fig. P.6.4 



Problems 133 

P.6.5 Draw normal force, shear force and bending moment diagrams for the 
loaded half of the three-pinned arch shown in Fig. P.6.5. 

Ans. NBD = 26-5 kN, NDE = 19.5 kN, N E F  = N ,  = 15 kN (all compression). 

M, = 11.3 kN m, M E  = 7.5 kN m, MF = 11.3 kN m (sagging). 
S B D =  -5.3 kN, S D E =  +1.8 kN, Sw= -2.5 kN, SK= +7*5 kN. 

Fig. P.6.5 

P.6.6 Calculate the components of the support reactions at A and D in the three- 
pinned arch shown in Fig. P.6.6 and hence draw the bending moment diagram for the 
member DC; draw the diagram on the tension side of the member. All members are 
1.5 m long. 

RA,v = 6.3 kN, RA,H = 11.12 kN, R D . v  = 21-43 kN, R D . H  = 3.88 kN. 
MD = 0, M, = 5.82 kN m (tension on left of CD). 

Am.  

Fig. P.6.6 



CHAPTER 7 

Stress and Strain 

We are now in a position to calculate internal force distributions in a variety of 
structural forms, i.e. normal forces, shear forces and bending moments in beams and 
arches, axial forces in truss and space frame members and in suspension cables and 
torque distributions in beams. These internal force systems are distributed throughout 
the cross-section of a structural member in the form of stresses. However, although 
there are four basic types of internal force, there are only two types of stress: one 
which acts perpendicularly to the cross-section of a member and one which acts 
tangentially. The former is known as a direct stress, the latter as a shear stress. 

The distribution of these stresses over the cross-section of a structural member 
depends upon the internal force system at the section and also upon the geometry of 
the cross-section. In some cases, as we shall see later, these distributions are 
complex, particularly those produced by the bending and shear of unsymmetrical 
sections. We can, however, examine the nature of each of these stresses by 
considering simple loading systems acting on structural members whose cross- 
sections have some degree of symmetry. At the same time we shall define the 
corresponding strains and investigate the relationships between the two. 

7.1 Direct stress in tension and compression 
The simplest form of direct stress system is that produced by an axial load. Suppose 
that a structural member has a uniform ‘I’ cross-section of area A and is subjected to 
an axial tensile load, P ,  as shown in Fig. 7.l(a). At any section mm the internal 
force is a normal force which, from the arguments presented in Chapter 3, is equal 
to P (Fig. 7.1 (b)). It is clear that this normal force is not resisted at just one point on 
each face of the section as Fig. 7.1 (b) indicates but at every point as shown in 
Fig. 7.2. We assume in fact that P is distributed uniformly over the complete face of 
the section so that at any point in the cross-section there is an intensity of force, Le. 
stress, to which we give the symbol o and which we define as 

P 

A 
( 3 = -  (7.1) 

This direct stress acts in the direction shown in Fig. 7.2 when P is tensile and in the 
reverse direction when P is compressive. The sign convention for direct stress is 
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- 

Fig. 7.1 Structural member with axial load 

Fig. 7.2 

identical to that for normal force; a tensile stress is therefore positive while a 
compressive stress is negative. 

In Fig. 7.1 the section mm is some distance from the point of application of the 
load. At sections in the proximity of the applied load the distribution of direct stress 
will depend upon the method of application of the load, and only in the case where 
the applied load is distributed uniformly over the cross-section will the direct stress 
be uniform over sections in this region. In other cases stress concentrations arise 
which require specialized analysis; this topic is covered in more advanced texts on 
strength of materials and stress analysis. 

We shall see in Chapter 8 that it is the level of stress that governs the behaviour 
of structural materials. For a given material, failure, or breakdown of the crystalline 
structure of the material under load, occurs at a constant value of stress. For 
example, in  the case of steel subjected to simple tension failure begins at a stress of 
about 300 N/mm', although variations occur in steels manufactured to different 
specifications. This stress is independent of size or shape and may therefore be used 
as the basis for the design of structures fabricated from steel. Failure stress varies 
considerably from material to material and in some cases depends upon whether the 
material is subjected to tension or compression. 

A knowledge of the failure stress of a material is essential in structural design 
where, generally, a designer wishes to determine a minimum size for a structural 

Internal force distribution in a beam section 
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Fig. 7.3 Column of Ex. 7.1 

member carrying a given load. Thus, for a member fabricated from a given material 
and subjected to axial load, we would use Eq. (7.1) either to determine a minimum 
area of cross-section for a given load or to check the stress level in a given member 
carrying a given load. 

Example 7.1 A short column has a rectangular cross-section with sides in the ratio 
1:2 (Fig. 7.3). Determine the minimum dimensions of the column section if the 
column carries an axial load of 800 kN and the failure stress of the material of the 
column is 400 N/mm’. 

From Eq. (7.1) the minimum area of the cross-section is given by 

P 800x 10.7 
A,,,,,, = - - - = 2000 mm2 

omx 400 

But A,,,,, = 2B’= 2000 mm’ 

from which B = 31.6 mm 

Therefore the minimum dimensions of the column cross-section are 
31.6 mm x 63-2 mm. In practice these dimensions would be rounded up to 
32 mm x 64 mm or, if the column were of some standard section, the next section 
having a cross-sectional area greater than 2000 mm2 would be chosen. Also the 
column would not be designed to the limit of its failure stress but to a working or 
design stress which would incorporate some safety factor (see Section 8.7). 

7.2 Shear stress in shear and torsion 
An externally applied shear load induces an internal shear force which is tangential 
to the faces of a beam cross-section. Fig. 7.4(a) illustrates such a situation for a 
cantilever beam carrying a shear load W at its free end. We have seen in Chapter 3 
that the action of W is to cause sliding of one face of the cross-section relative to 
the other; W also induces internal bending moments which produce internal direct 



Complementary shear stress 137 

Fig. 7.4 Generation of shear stresses in beam sections 

stress systems; these are considered in a later chapter. The internal shear force S 
(= W) required to maintain the vertical equilibrium of the portions of the beam is 
distributed over each face of the cross-section. Thus at any point in the cross-section 
there is a tangential intensity of force which is termed shear stress. This shear stress 
is not distributed uniformly over the faces of the cross-section as we shall see in 
Chapter 10. For the moment, however, we shall define the average shear stress over 
the faces of the cross-section as 

W 
A 

za" = - (7.2) 

where A is the cross-sectional area of the beam. 
A system of shear stresses is induced in a different way in the circular-section bar 

shown in Fig. 7.4(b) where the internal torque (T) tends to produce a relative 
rotational sliding of the two faces of the cross-section. The shear stresses are 
tangential to concentric circular paths in the faces of the cross-section. We shall 
examine the shear stress due to torsion in various cross-sections in Chapter 1 1. 

7.3 Complementary shear stress 
Consider the cantilever beam shown in Fig. 7.5(a). Let us suppose that the beam 
is of rectangular cross-section having a depth h and unit thickness; it canies a 
vertical shear load W at its free end. The internal shear forces on the opposite 
faces mm and nn of an elemental length 6z of the beam are distributed as shear 
stresses in some manner over each face as shown in Fig. 7.5 (b). Suppose now that 
we isolate a small rectangular element ABCD of depth 6h of this elemental 
length of beam (Fig. 7.5(c)) and consider its equilibrium. Since the element is 
small, the shear stresses z on the faces AD and BC may be regarded as constant. 
The shear force resultants of these shear stresses clearly satisfy vertical 
equilibrium of the element but rotationally produce a clockwise couple. This must 
be equilibrated by an anticlockwise couple which can only be produced by shear 
forces on the horizontal faces AB and CD of the element. Let z' be the shear 
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Fig. 7.5 Complementary shear stress 

stresses induced by these shear forces. Then for rotational equilibrium of the 
element about the corner D 

T ' X 6 Z X  1 x 6 h = . s x 6 h x  1 x6z  

which gives r1 = r  (7.3) 

We see, therefore, that a shear stress acting on a given plane is always accompanied 
by an equal complementary shear stress acting on planes perpendicular to the given 
plane and in the opposite sense. 

7.4 Direct strain 
Since no material is completely rigid, the application of loads produces distortion. 
Thus, as we observed in Chapter 3, an axial tensile load will cause a structural 
member to increase in length, whereas a compressive load would shorten its 
length. 

Suppose that 6 is the change in length produced by either a tensile or compressive 
axial load. We now define the direct strain, E, in the member in non-dimensional 
form as the change in length per unit length of the member. Hence 

(7.4) 
6 

Lo 
E = -  

where Lo is the length of the member in its unloaded state. Clearly E may be either a 
tensile (positive) strain or a compressive (negative) strain. Equation (7.4) is 
applicable only when distortions are relatively small and can be used for values of 
strain up to and around 0.001, which is adequate for most structural problems. For 
larger values, load-displacement relationships become complex and are therefore 
left for more advanced texts. 

We shall see in Section 7.7 that it is convenient to measure distortion in this non- 
dimensional form since there is a direct relationship between the stress in a member 
and the accompanying strain. The strain in an axially loaded member therefore 
depends solely upon the level of stress in the member and is independent of its 
length or cross-sectional geometry. 
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Fig. 7.6 Shear strain in an element 

7.5 Shear strain 
In Section 7.3 we established that shear loads applied to a structural member induce a 
system of shear and complementary shear stresses on any small rectangular element. 
The distonion in such an element due to these shear stresses does not involve a 
change in length but a change in shape as shown in Fig. 7.6. We define the shear 
strain, y, in the element as the change in angle between two originally mutually 
perpendicular edges. Thus in Fig. 7.6 

y= Q radians (7.5) 

7.6 Volumetric strain due to hydrostatic pressure 
A rather special case of strain which we shall find useful later occurs when a cube 
of material is subjected to equal compressive stresses, a, on all six faces as shown in 
Fig. 7.7. This state of stress is that which would be experienced by the cube if it 
were immersed at some depth in a fluid, hence the term hydrostatic pressure. The 
analysis would, in fact, be equally valid if cs were a tensile stress. 

Suppose that the original length of each side of the cube is Lo and that 6 is the 
decrease in length of each side due to the stress. Then, defining the volumetric strain 
as the change in volume per unit volume, we have 

~o~ - (Lo - a]3 
volumetric strain = 

~n~ 

Fig. 7.7 Cube subjected to hydrostatic pressure 
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Expanding the bracketed term and neglecting second- and higher-order powers of 6 
gives 

volumetric strain = ~ L , % / L , ~  

(7.6) 
36 from which volumetric strain = - 
LO 

Thus we see that for this case the volumetric strain is three times the linear strain in 
any of the three stress directions. 

7.7 Stress-strain relationships 

Hooke’s law and Young’s modulus 
The relationship between direct stress and strain for a particular material may be 
determined experimentally by a tensile test which is described in detail in Chapter 8. 
A tensile test consists basically of applying an axial tensile load in known 
increments to a specimen of material of a given length and cross-sectional area and 
measuring the corresponding increases in length. The stress produced by each value 
of load may be calculated from Eq.  (7.1) and the corresponding strain from 
Eq. (7.4). A stress-strain curve is then drawn which, for some materials, would have 
a shape similar to that shown in Fig. 7.8. Stress-strain curves for other materials 
differ in detail but, generally, all have a linear portion such as ab in Fig. 7.8. In this 
region stress is directly proportional to strain, a relationship that was discovered in 
1678 by Robert Hooke and which is known as Hooke’s l a o .  It may be expressed 
mathematically as 

0 = E E  (7.7) 
where E is the constant of proportionality. E is known as Young’s modulus or the 
elasric modulus of the material and has the same units as stress. For mild steel E is 
of the order of 200 kN/mm2. Equation (7.7) may be written in alternative form as 

0 

& 
- = E  (7.8) 

For many materials E has the same value in tension and compression. 

Fig. 7.8 Typical stress-strain curve 
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Shear modulus 
By comparison with Eq. (7.8) we can define the shear modulus or modulus of 
rigidity, G ,  of a material as the ratio of shear stress to shear strain; thus 

T - = G  
Y 

(7.9) 

Volume or bulk modulus 
Again, the volume modulus or bulk modulus, K ,  of a material is defined in a similar 
manner as the ratio of volumetric stress to volumetric strain, i.e. 

volumetric stress .- 
-zK - .L 

volumetric strain 
(7.10) 

It is not usual to assign separate symbols to volumetric stress and strain since they 
may, respectively, be expressed in terms of direct stress and linear strain. Thus in the 
case of hydrostatic pressure (Section 7.6), 

0 K=- 
3 E  

(7.1 1) 

Example 7.2 A mild steel column is hollow and circular in cross-section with an 
external diameter of 350 mm and an internal diameter of 300 mm. It carries a 
compressive axial load of 2000 kN. Determine the direct stress in the column and also 
the shortening of the column if its initial height is 5 m. Take E = 200 OOO N/mm’. 

The cross-sectional area A of the column is given by 

A 
A = - (3502 - 300*) = 25 525.4 ~ l l ~ ~ l *  

4 

The direct stress Q in the column is, therefore, from Eq. (7.1) 

2 0 0 0 ~  io3 
Q = -  = -78.4 N/mm2 (compression) 

25 525.4 

The corresponding strain is obtained from either Eq. (7.7) or Eq. (7.8) and is 

-78.4 
E=-- - -0.00039 

200000 

Finally the shortening, 6 ,  of the column follows from Eq. (7.4), i.e. 

6=O.OOO 39 x 5 x lo3= 1.95 mm 

Example 7.3 A short, deep cantilever beam is 500 mm long by 200 mm deep 
and is 2 mm thick. It carries a vertically downward load of 10 kN at its free end. 
Assuming that the shear stress is uniformly distributed over the cross-section of 
the beam, calculate the deflection due to shear at the free end. Take 
G = 25 000 N/mm*. 
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The internal shear force is constant along the length of the beam and equal to 
10 kN. Since the shear stress is uniform over the cross-section of the beam, we may 
use Eq. (7.2) to determine its value, i.e. 

w i o x  io3 
t,, = - = = 25 N/M* 

A 200x2 

This shear stress is constant along the length of the beam; it follows from Eq. (7.9) 
that the shear strain is also constant along the length of the beam and is given by 

This value is in fact the angle that the beam makes with the horizontal. The 
deflection, A,, due to shear at the free end is therefore 

A,=0401 x500=0.5 mm 

In practice, the solution of this particular problem would be a great deal more 
complex than this since the shear stress distribution is not uniform. Deflections due 
to shear are investigated in Chapter 13. 

7.8 Poisson effect 
It is common experience that a material such as rubber suffers a reduction in cross- 
sectional area when stretched under a tensile load. This effect, known as the Poisson 
efect, also occurs in structural materials subjected to tensile and compressive loads, 
although in the latter case the cross-sectional area increases. In the region where the 
stress-strain curve of a material is linear, the ratio of lateral strain to longitudinal 
strain is a constant which is known as Poisson's ratio and is given the symbol v .  The 
effect is illustrated in Fig. 7.9. 

Consider now the action of different direct stress systems acting on an elemental 
cube of material (Fig. 7.10). The stresses are all tensile stresses and are given 
suffixes which designate their directions in relation to the system of axes specified in 
Section 3.2. In Fig. 7.10(a) the direct strain, E:, in the z direction is obtained directly 
from either Eq. (7.7) or Eq. (7.8) and is 

=: 
- E  

E .  = - 

Due to the Poisson effect there are accompanying strains in the x and y directions 
given by 

E,  = -VE:,  E, = -VE,  

or, substituting for E, in terms of o., 

(7.12) =: 
E 

= - v -  =: 
E 

E: = -v - , 

These strains are negative since they are associated with contractions as opposed to 
positive strains produced by extensions. 
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Fig. 7.9 The Poisson effect 

Fig. 7.10 The Poisson effect in a cube of material 

In Fig. 7.10(b) the direct stress 0 ,  has an effect on the direct strain E,  as does (J: on 
E,. Thus 

6: V b ,  0 ,  V b :  V b :  V b ,  
(7.13) 

- E E ’  ’ E E ’  ‘ E E  
By a similar argument, the strains in the z ,  y and x directions for the cube of 
Fig. 7.10(c) are 

& = - - -  & = - - -  & =----. 

0,  V b :  V b ,  

- E  E E ’  ’ E  E E ’  ‘ E  E E 
& = - - - - -  0: V b ,  V b ,  CY, V b :  V b ,  

& = - - - A -  & = - - - - -  

(7.14) 

Let us now suppose that the cube of material in Fig. 7.10(c) is subjected to a 
uniform stress on each face such that or = 6, = o, = o. The strain in each of the axial 
directions is therefore the same and is, from any one of Eqs (7.14) 

0 
& = - (1 - 2 v )  

E 

In Section 7.6 we showed that the volumetric strain in a cube of material subjected 
to equal stresses on all faces is three times the linear strain. Thus in this case 

30 
E 

Volumetric strain = - (1 - 2 v )  (7.15) 
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It would be unreasonable to suppose that the volume of a cube of material subjected 
to tensile stresses on all faces could decrease. It follows that Eq. (7.15) cannot 
have a negative value. We conclude, therefore, that v must always be less than 
0-5. For most metals v has a value in the region of 0-3 while for concrete v can 
be as low as 0- 1. 

Collectively E, G, K and v are known as the elastic consrunts of a material. 

7.9 Relationships between the elastic constants 
There are different methods for determining the relationships between the elastic 
constants. The one presented here is relatively simple in approach and does not 
require a knowledge of topics other than those already covered. 

In Fig. 7.1 1 (a), ABCD is a square element of material of unit thickness and is in 
equilibrium under a shear and complementary shear stress system r. Imagine now 
that the element is 'cut' along the diagonal AC as shown in Fig. 7.1 1 (b). In order to 
maintain the equilibrium of the triangular portion ABC it is possible that a direct 
force and a shear force are required on the face AC. These forces, if they exist, will 
be distributed over the face of the element in the form of direct and shear stress 
systems, respectively. Since the element is small, these stresses may be assumed to 
be constant along the face AC. Let the direct stress on AC in the direction BD be o B D  

and the shear stress on AC be TAC. Then resolving forces on the element in the 
direction BD we have 

oBDACx 1=-rABx 1 xcos45"-rBCx 1 xcos45" 

Dividing through by AC 

AB BC 
oBD = -r - COS 45" - r ~ COS 45" 

AC AC 

or os,= -r COS' 45" - r COS' 45" 

from which o g D =  -r (7.16) 

The negative sign indicates that oBD is a compressive stress. Similarly, resolving 
forces in the direction AC 

rA,AC x 1 = rAB x 1 x cos 45" - rBC x 1 x cos 45" 

Fig. 7.1 1 Determination of the relationships between the elastic constants 
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Again dividing through by AC we obtain 

'5AC= '5 cos2 45" - '5 cos2 45" = 0 
A similar analysis of the triangular element ABD in Fig. 7.11 (c) shows that 

QAC = '5 (7.17) 

and f B D  = 0 

Hence we see that on planes parallel to the diagonals of the element there are direct 
stresses oBD (compressive) and oAC (tensile) both numerically equal to '5 as shown in 
Fig. 7.12. It follows from Section 7.8 that the direct strain in the direction AC is 
given by 

(1 + v )  (7.18) ~ A C  V ~ B D  '5 EAC=-+-=-  
E E E  

Note that the compressive stress oBD makes a positive contribution to the strain eAC. 
In Section 7.5 we defined shear strain and saw that under pure shear, only a 

change of shape is involved. Thus the element ABCD of Fig. 7.1 1 (a) distorts into 
the shape A'B'CD shown in Fig. 7.13. The shear strain yproduced by the shear stress 
'5 is then given by 

B'B 
y = I$ radians = - (7.19) 

BC 

since I$ is a small angle. The increase in length of the diagonal AC to A'C is 
approximately equal to A'F where AF is perpendicular to A'C. Thus 

A'C-AC A'F - -- &AC = 
AC AC 

Again, since I$ is a small angle, AA'F245" so that 

A'F = A'A COS 45" 

Also AC = BC/cos 45" 

Fig. 7.12 Stresses on diagonal planes in element 
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Fig. 7.13 Distortion due to shear in element 

A'A cos' 45" B'B cos' 45" 1 B'B 
2 BC 

- - = - -  Hence &AC = 
BC BC 

Therefore, from Eq. (7.19) 

(7.20) I 
& A C = Z Y  

Substituting for E~~ in Eq. (7.18) we obtain 

1 . r  

2 E  
- y = - ( l + v )  

or, since .r/y= G from Eq. (7.9), 

or E = 2G(1 + v )  (7.21) 

The relationship between Young's modulus E and bulk modulus K is obtained 
directly from Eqs (7.10) and (7.15). Thus, from Eq. (7.10) 

E G=- 
2(1 +v) 

0 
Volumetric strain = - 

K 
where 0 is the volumetric stress. Substituting in Eq. (7.15) 

0 30 
K E  
_ -  - - (1 - 2v) 

E 

3(1 - 2 ~ )  
from which K =  (7.22) 

Eliminating E from Eqs (7.2 I )  and (7.22) gives 

2G(1 +v) 

3(1 - 2 ~ )  
K =  (7.23) 

Example 7.4 A cube of material is subjected to a compressive stress 0 on each of 
its faces. If  v = 0.3 and E = 200 000 N/mm', calculate the value of this stress if the 
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volume of the cube is reduced by 0.1%. Calculate also the percentage reduction in 
length of one of the sides. 

From Eq. (7.22) 

= 167 000 N/mmz 
200 000 

3(1- 2 x 0.3) 
K =  

The volumetric strain is 0.001 since the volume of the block is reduced by 0.1%. 
Therefore, from Eq. (7.10), 

o 
0.001 = - 

K 
or o = 0@01 x 167 O00 = 167 N/mrn2 

In Section 7.6 we established that the volumetric strain in a cube subjected to a 
uniform stress on all six faces is three times the linear strain. Thus in this case 

linear strain = f x 0-001 = 0.00033 

The length of one side of the cube is therefore reduced by 0.033%. 

7.10 Strain energy in simple tension or compression 
An important concept in the analysis of structures is that of strain energy. The total 
strain energy of a structural member may comprise the separate strain energies due 
to axial load, bending moment, shear and torsion. In this section we shall 
concentrate on the strain energy due to tensile or compressive loads; the strain 
energy produced by each of the other loading systems is considered in the relevant, 
later chapters. 

A structural member subjected to a gradually increasing tensile load P gradually 
increases in length (Fig. 7.14(a)). The load-extension curve for the member is linear 
until the limit of proportionality is exceeded, as shown in Fig. 7.14(b). The 
geometry of the non-linear portion of the curve depends upon the properties of the 
material of the member (see Chapter 8). Clearly the load P moves through small 
displacements A and therefore does work on the member. This work, which causes 
the member to extend, is stored in the member as strain energy. If the value of P is 

Fig. 7.14 Load-extension curve for an axially loaded member 
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restricted so that the limit of proportionality is not exceeded, the gradual removal of 
P results in the member returning to its original length and the strain energy stored in 
the member may be recovered in the form of work. When the limit of 
proportionality is exceeded, not all of the work done by P is recoverable; some is 
used in producing a permanent distortion of the member (see Chapter 8), the related 
energy appearing largely as heat. 

Suppose the structural member of Fig. 7.14(a) is gradually loaded to some value 
of P within the limit of proportionality of the material of the member, the 
corresponding elongation being A. Let the elongation corresponding to some 
intermediate value of load, say PI, be A, (Fig. 7.15). Then a small increase in load 
of 6Pl will produce a small increase, &Al, in elongation. The incremental work done 
in producing this increment in elongation may be taken as equal to the average load 
between PI and PI + 6Pl multiplied by 6Al. Thus 

Incremental work done = 

which, neglecting second-order terms, becomes 

Incremental work done = PI 6Al 

The total work done on the member by the load P in producing the elongation A is 
therefore given by 

Total work done = 1," PI dAl (7.24) 

Since the load-extension relationship is linear, then 
PI = KAl (7.25) 

where K is some constant whose value depends upon the material properties of the 
member. Substituting the particular values of P and A in Eq. (7.25), we obtain 

P K = -  
A 

whence Eq. (7.25) becomes 

P 

A 
PI  = - A ,  

Now substituting for PI in Eq. (7.24) we have 

Total work done = - A I  dAI I% 1 
Integration of this equation yields 

Total work done = PA (7.26) 

Alternatively, we see that the right-hand side of Eq. (7.24) represents the area under 
the load-extension curve, so that again we obtain 

Total work done = PA 
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Fig. 7.15 Work done by a gradually applied load 

By the law of conservation of energy, the total work done is equal to the strain 
energy, U ,  stored in the member. Thus 

U = i P A  (7.27) 

The direct stress, 0, in the member of Fig. 7.14(a) corresponding to the load P is 

P 

A 

given by Eq. (7. l), Le. 

( 3 = -  

Also the direct strain, E, corresponding to the elongation A is, from Eq. (7.4), 

A 

Ln 
E = -  

Furthermore, since the load-extension curve is linear, the direct stress and strain are 
related by Eq. (7.7), so that 

P A - = E -  
A Ln 

PLn 
AE 

(7.28) 

In Eq. (7.28) the quantity LJAE determines the magnitude of the displacement 
produced by a given load; it is therefore known as the flexibility of the member. 
Conversely, by transposing Eq. (7.28) we see that 

from which A = -  

A E  

Ln 
in which the quantity AE/Ln determines the magnitude of the load required to 
produce a given displacement. Thus A E / L ,  is the sti’tzess of the member. 

P = - A  
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Substituting for A in Eq. (7.27) gives 

P2L,  u=- 
2AE 

(7.29) 

It is often convenient to express strain energy in terms of the direct stress 0. Thus, 
rewriting Eq. (7.29) in the form 

1 P 2  AL,  u=- - -  
2 A’ E 

we obtain 

a2 
u=-XAL, 

2E 
(7.30) 

in which we see that AL, is the volume of the member. The strain energy per unit 
volume of the member is then 

2E 

The greatest amount of strain energy per unit volume that can be stored in a member 
without exceeding the limit of proportionality is known as the modulus of resilience 
and is attained when the direct stress in the member is equal to the direct stress 
corresponding to the elastic limit of the material of the member. 

The strain energy, U ,  may also be expressed in terms of the elongation, A, or the 
direct strain, E .  Thus, substituting for P in Eq. (7.29) 

EAA’ 

2L0 
u=- 

or, substituting f o r o  in Eq. (7.30) 

u = ; EE? x AL, 

(7.31) 

(7.32) 

The above expressions for strain energy also apply to structuraI members 
subjected to compressive loads since the work done by P in Fig. 7.14(a) is 
independent of the direction of movement of P .  It follows that strain energy is 
always a positive quantity. 

Example 7.5 A concrete column of height 3 m has a square cross-section of side 
200 mm. It is designed to support an axial load of 100 kN. At mid-height a recess is 
cut in one face of the column to receive a floor beam (Fig. 7.16). Calculate the strain 
energy of the column produced by the axial load before and after the recess is cut. 
Take Young’s modulus E = 20 000 N/mm’. 

The strain energy, U , ,  of the column before the recess is cut is obtained directly 
from Eq. (7.29). Thus 

(lOOx 103)’x3x IO6 
I/, = = 18.75 N m 

2 x 200? x 20000 x lo6 
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Fig. 7.16 Column of Ex. 7.5 

After the recess has been cut, the stress in the reduced cross-section will be greater 
than that in the remainder of the column. The total strain energy, ifz, may then be 
found using Eq. (7.29) but will comprise two parts. Hence 

(100 x lo’)* 2.7 x loh 0.3 x loh 

2 x 20000 x 10‘ ( +  200’ 200 x 125 
= 19-88 N m 1 u)’ = 

Alternatively we could calculate the direct stress in the different sections of the 
column and use Eq. (7.30). In the complete section 

IOOX 10’ 

200? 

100 x lo3 

(3= = 2-5 N/mm’ 

whereas in the recessed section 

o =  = 4.0 N/mm’ 
200 x 125 

1 
Thus U 2  = 

2 x 20000 x loh 

x 0.31 
200’ 200x 125 

x (2.5 x 10‘)’ x - x 2-7 + (4.0 x 10‘))’ x 
1 Oh 1 Oh 

U? = 19.88 N m as before. 
[ 

i.e. 

A comparison of U ,  and U l  shows that the strain energy of the column increases 
when the volume decreases. Hence we see from Eq. (7.30) that such a change could 
increase the value of stress (which depends upon the ratio of strain energy to 
volume) by a comparatively large amount. The ability to absorb energy is of primary 
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importance in dynamic loading situations where the presence of a recess or cut-out 
can lead to high values of stress. 

7.1 1 Impact loads on structural members 
Possibly the most common controlled form of impact loading in civil engineering 
occurs when a pile is driven into the ground to form part of a foundation system. A 
given weight is allowed to fall through a predetennined height on to the head of the 
pile. Obviously at the instant of impact the stress generated in the pile is very much 
greater than that which would occur in the static case where the weight just rests on 
the head of the pile. The concept of strain energy may be used to determine this 
maximum stress and the accompanying deformation. 

Suppose a weight, P ,  falls through a height, h,  onto a column of original length, 
L,, and causes a maximum deformation, ti,,,, as shown in Fig. 7.17(a). We can 
obtain an approximate solution by neglecting energy losses during impact such as 
those producing deformation of the weight, noise and heat. We shall further assume 
that the maximum direct stress, omax, produced in the column is below the limit of 
proportionality so that no energy is dissipated in causing plastic deformations. Thus 
all the work done by the falling weight is transformed into strain energy of the 
column. Since the column is elastic, the stress and deflection in the column follow 
oscillations which decrease in amplitude with time from their maximum values to 
values corresponding to the static case as shown in Figs 7.17(b) and (c). 

The weight, P ,  falls through a height ( h  + ti,,,) and therefore loses energy equal 
to P ( h  + timdx). This is converted into strain energy of the column which, in terms of 
omdyr is given by Eq. (7.30). Thus 

2 

x AL, (7.33) P ( h  + ti,,,) = - 
o,, 
2E 

The maximum strain, E,,,, in the column is related to omx by Eq. (7.7). Hence 

=,, 
E,, = - 

E 

Fig. 7.17 Stress and deformation of a pile under impact loading 
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Using Eq. (7.4) we obtain 

o,, 
E 

6,, = E,, L ,  = - L, 

Substituting for 6,, in Eq. (7.33) we have 

Rearranging we obtain a quadratic equation in o,,,: 

2P 2PhE 
A & 

om,* - - omax - - -0 - 

the solution of which is 

(7.34) 

(7.36) 

Note that in this particular case om,, is a compressive stress. The negative root of 
Eq. (7.35) is discarded since a,, clearly cannot be a tensile stress. 

Having determined om,, the corresponding deflection, 6,.,, may be found using 
Eq. (7.34). Alternatively we could have substituted for om, in Eq. (7.33) from 
Eq. (7.34) and obtained 6,, directly. 

Suddenly applied loads 
A special case of impact loading is derived from the previous case by equating h to 
zero; the load then becomes a suddenly applied load. The physical situation may be 
imagined by supposing that the weight P in Fig. 7.17(a) is in contact with the top of 
the column but is supported such that the pressure between the two touching surfaces 
is zero. If the weight is then released the whole of P is applied to the column 
instantaneously. Thus, when h = 0 in Eq. (7.36) we obtain 

P 
A 

CYmx = 2 - (7.37) 

In Eq. (7.37) the quantity PIA represents the maximum stress the column would 
experience if the load were gradually applied and is in fact the final stress in the 
column when the oscillations produced by the dynamic effect of the suddenly 
applied load disappear. It follows, therefore, that a given load produces twice the 
maximum stress and hence twice the maximum strain and deformation if suddenly 
applied than if it were gradually applied. 

Example 7.6 A hollow cylindrical steel column 3 m high has an outside diameter 
of 200 mm, walls 25 mm thick and has been designed assuming a failure stress of 
270 N/mm’. Immediately after erection, a weight of 10 kN falls through a height of 
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0.8 m on to the head of the column. Determine whether or not the column requires 
replacing and calculate the maximum deformation the column sustains. What is the 
maximum value of suddenly applied load that the column is able to withstand? 
Young’s modulus E = 200 OOO N/mm’. 

The cross-sectional area A of the column is given by 

K 
A = - (200, - 1 502) = 13 744.5 mm2 

4 

From Eq. (7.36) 

%ax = l o x  io3 +/-) 13 744.5 io  x 10, x 3 10, 

i.e. om,, = 279-3 N/mm2 

Although this stress only just exceeds the design failure stress and it is unlikely that 
any obvious signs of failure would be apparent, the safest course would be to 
replace the column. 

The maximum instantaneous shortening of the column is obtained directly from 
Eq. (7.34). Thus 

279.3 x 3 x lo3 = 4.2 mm 
200000 

6,x = 

Finally, Eq. (7.37) gives the maximum suddenly applied load the column could 
withstand, Le. 

270 x 13 744.5 
P =  = 1855.5 kN 

2 10, 

7.1 2 Deflections of axially loaded structural members 
Equation (7.28) may be used to determine deflections of axially loaded structural 
members having a variety of geometrical and loading configurations. For example, 
the column shown in Fig. 7.18(a) could be part of a skeletal structure supporting 
floor beams at intermediate heights that produce axial loads P I ,  P,, P,. The normal 
force diagram is constructed using the method of Section 3.3 and is shown in 
Fig. 7.18(b); the self-weight of the column has been neglected. Thus the deflection 
of the length, h,, of the column is 

p ,  h ,  - 
AE 

Similarly, the separate deflections of the lengths h,  and h ,  are, respectively, 

( P ? + P , ) h ,  and (PI +P,+P,)hl 
A E  A E  



Deflectiorts of axially loaded structural members 155 

Fig. 7.18 Deflection of a column under axial loads 

The total shortening of the column is then 

1 

A E  
- [P ,h3  + (Pr + P,)h2 + (PI + P ,  + P,)h,l 

An alternative approach would be to use the principle of superposition (Section 
3.7). The deflections at the top of the column due to PI ,  P 2 ,  and P,  acting separately 
are, from Eq. (7.28), 

PI hl P d h l  + h,) and P 3 ( h l  + h 2 + h 3 )  
, 

A E  A E  A E  

The total deflection at the top of the column is then 

1 

A E  
- [PIhl + Pl(h1 + h,) + P,(hl + hz + h3)] 

which, on rearranging, becomes 

1 

AE 
- [P,h ,  + (Pr + P , ) h  + (PI + Pz + P3)hll 

as before. 

of the column shown in Fig. 7.19(a) is 
Changes in cross-section are also easily dealt with. Thus the deflection of the top 

1 L [ y +  (PI + PzVz 

E A2 

where again the self-weight of the column is neglected. 
Let us now consider the elongation, A, of the structural member shown in 

Fig. 7.20 due to its self-weight. Suppose that the density of the material of the 
member is p. The lower surface of the element, 6z, supports the length, z ,  of the 
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. .  . ,  

Fig. 7.19 Deflection of a column having a variable cross-section 

Fig. 7.20 Deflection of a member under its own weight 

member. It is therefore subjected to a tensile force equal to the weight of the length 
z ,  i.e. pAz. Thus from h. (7.28) the elongation of 6 z ,  6A, is 

pAz 6z 
6 A =  - 

AE 
It follows that the total elongation A is given by 

A = /  L - d z - A [ ' 2 ] :  pAz 
n AE A E  2 

PAL' i.e. A = -  
2A E 
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However PAL = W, the total weight of the member. Hence 

(7.38) 
WL A = -  
2AE 

For a column, Eq. (7.38) would represent a shortening due to self-weight. 

7.13 Deflection of a simple truss 
The equality between the work done by an externally applied load and the total 
internal strain energy of the members of a structure may be used to determine 
particular deflections of simple structures. 

In Fig. 7.21 a simple truss carries a gradually applied vertical load, W, at the joint 
A. A consideration of the equilibrium of the joint A shows that the axial forces PA, 
and PAC in the members AB and AC, respectively, are 

P A ,  = 1 -4  1 W (tension) 
PAC = W (compression) 

The strain energy of each member is then, from Eq. (7.29) 

(1 -41W)*~  1-41L - 1-41W'L 
- 

2AE AE 
UAB = 

W2L 
UAC = - 

2AE 

If  the vertical deflection of A is Av, the work done by the gradually applied load, W, 
is 

i WAv 

Fig. 7.21 Deflection of a simple truss 
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Thus equating work done to the total strain energy of the frame we have 

1 1.41W'L W2L 

AE 2AE 
7 WAv = +- 

3-82 WL 
whence Av = 

AE 
The use of strain energy to determine deflections in this manner has limitations. In 

the above example A, is, in fact, only the vertical component of the actual deflection 
of the joint A since A moves horizontally as well as vertically. Therefore we can 
only find the deflection of a load in its own line of action by this method. 
Furthermore, the method cannot be applied to structures subjected to more than one 
applied load as each load would contribute to the total work done by moving through 
an unknown displacement in its own line of action. There would, therefore, be as 
many unknown displacements as loads in the work-energy equation. We shall return 
to examine energy methods in much greater detail in Chapter 15. 

7.14 Statically indeterminate systems 
As we have seen, a statically indeterminate system is one in which support reactions 
or internal forces, or both, cannot be determined by applying just the force and 
moment equations of statical equilibrium. For example, the cantilever beam of 
Fig. 7.22(a) does not, theoretically, require the additional support at B to maintain its 
equilibrium. However, since the support is present, it will resist some of the applied 
load by providing a reactive force R,. The support system now comprises three 
unknown reactions, R,, R,  and MA. It is only possible to obtain two equations of 
statical equilibrium, one of force and one of moment, so that the support system is 
statically indeterminate. Once these reactions have been determined, the internal 
force system in the cantilever is obtained from statics. 

A different situation arises in the truss shown in Fig. 7.22(b). In this case the 
support reactions may be found by resolving forces and taking moments, but the 
forces in the members cannot be found since there are three unknown forces at each 
joint and only two possible equations of equilibrium. The internal forces therefore 
form a statically indeterminate system. 

Fig. 7.22 Statically indeterminate structures 



Statically indeterminate systems 159 

In any structural system the number of equations required for a solution is equal 
to the number of unknowns in the system. If the number of unknowns is greater 
than the possible number of equations of statical equilibrium, the structure is 
statically indeterminate and the excess unknowns are termed redundancies. Thus in 
Fig. 7.22(a) the support at B is a redundant support, whereas in Fig. 7.22(b) any one 
of the members may be regarded as the redundant member; both of these structures 
have a degree of redundancy equal to one. 

Pin-jointed frame 
The truss shown in Fig. 7.23 consists of three members of which only two are 
theoretically necessary to support a load at the joint A. Clearly, in the particular case 
where the load is vertical, members AB and AD could be dispensed with, but the 
remaining member AC would be incapable of supporting a horizontal load at A. A 
statically determinate structure is capable of supporting any system of loads 
although in the case of a two-dimensional structure, such as a plane truss, they must 
be applied in the plane of the structure. 

The load W produces tensile forces PA,, PAC and PAD in the members AB, AC and 
AD, respectively. Considering the vertical equilibrium of the joint A, we obtain 

PA, cos a + PAC + P A ,  cos a = W (7.39) 

Furthermore, from the horizontal equilibrium of joint A we have 

PA, sin a = P A ,  sin a 
or P A B  = ‘ A D  (7.40) 

Note that Eq. (7.40) could have been obtained directly by considering the symmetry 
of the structure. 

We now require a third equation to enable us to determine the three unknowns, 
PA,, PAC and PAD. Consider the deflected shape of the truss as shown in Fig. 7.24. 
The joint A is displaced vertically downwards to A’ causing the separate extensions, 
aAC, 6,, and 6AD in the three members. The latter two extensions are determined, to a 
first order of approximation, by constructing the perpendiculars AR and AQ to BA’ 

Fig. 7.23 Statically indeterminate truss 
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Fig. 7.24 Compatibility condition 

and DA', respectively. Clearly 6,, = tiAD. At all stages of the displacement the ends 
of the three members remain connected at A. Thus the end A of each member is 
displaced through the same vertical distance. We now use this compatibility of 
displacement condition to establish a relationship between these displacements and 
hence an additional relationship between the loads in the members. 

In Fig. 7.24 the angles AA'R and AA'Q are equal to a to a first order of 
approximation since the displacements are small. Thus from triangle AA'R 

- 'AB = cos a (7.41) 
6 A C  

From Eq. (7.28) 

p A C  L 
9 6 A C =  - 

pAE3(L/cos a) 
AE 

6.48 = 
AE 

Substituting for 6,, and tiAc in Eq. (7.41) we obtain 

L L 
= P A C  - COS a 

AE 
(7.42) P A , ,  

AE cos a 

Thus P,, = P A C  COS' a (7.43) 

Also, from Eq. (7.40) P,,, = P A ,  cos' a (7.44) 

We now substitute for PAD and PAD in Eq. (7.39) and obtain PAC,  

1.e. PA,. = (7.45) 
W 

1 + 2 cos3 a 

It follows from Eqs (7.43) and (7.44) that 

w cos2 a 
1 + 2 cos3 a 

p.A,3 = pAD = (7.46) 
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This method of analysis, which uses forces as the unknowns, is known as the 
force or flexibility method. The latter term is derived from the fact that the 
compatibility equation (7.42) contains the flexibilities, L/AE (see Eq. (7.28)), of 
the members AB and AC. An alternative method would express the unknown forces 
in terms of the unknown displacements (e.g. P A C =  (AE/L)GAc) and solve for the 
displacements using Eqs (7.41), (7.40) and (7.39). This method is known as the 
displacement or stifness method, the latter term being associated with member 
stiffness, AEIL. 

Composite structural members 
Axially loaded composite members are of direct interest in civil engineering where 
concrete columns are reinforced by steel bars and steel columns are frequently 
embedded in concrete as a fire precaution. 

In Fig. 7.25 a concrete column of cross-sectional area A ,  is reinforced by two 
steel bars having a combined cross-sectional area A,. The modulus of elasticity of 
the concrete is E,  and that of the steel E,. A load P is transmitted to the column 
through a plate which we shall assume is rigid so that the deflection of the concrete 
is equal to that of the steel. It follows that their respective strains are equal since 
both have the same original length. Since E,  is not equal to E ,  we see from Eq. (7.7) 
that the compressive stresses, 0, and 0,. in the concrete and steel, respectively, must 
have different values. This also means that unless A, and A ,  have particular values, 
the compressive loads, P ,  and P,, in the concrete and steel are also different. The 
problem is therefore statically indeterminate since we can write down only one 
equilibrium equation, Le. 

P , +  P,= P (7.47) 

However, equating displacements (the compatibility condition) we obtain, using 
Eq. (7.28) 

P,L P,L 
ACE, AsEs 

(7.48) -=- 

Fig. 7.25 Composite concrete column 
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Substituting for P ,  from Eq. (7.48) in Eq. (7.47) gives 

Ps(- A,& + 1). P 
As Es 

P ASES 
Ac Ec i- As Es 

Pc follows directly from Eqs (7.48) and (7.49), i.e. 

from which P ,  = 

ACE, 
Ac Ec i- As Es 

P ,  = 

(7.49) 

(7.50) 

The vertical displacement, 6, of the column is obtained using either side of 
Eq. (7.48) and the appropriate compressive load, P ,  or P,. Thus 

(7.5 1) 

Note that the above solution employs the flexibility method since the compatibility 
condition, Eq. (7.48), is written in terms of the flexibilities L/A,E,  and L/A,E,  of 
the concrete and steel, respectively. 

The direct stresses in the steel and concrete are obtained from Eqs (7.49) and 
(7.50), thus 

P ,  oc= P (7.52) 

We could, in fact, have solved directly for the stresses by writing Eqs (7.47) and 
(7.48) as 

(7.53) 

E,  
Ac Ec + A s  Es 

0 s  = 
ACE, + A s E s  

oCAc  + osAS = P 

and (7.54) 

respectively. 

Example 7.7 A reinforced concrete column, 5 m high, has the cross-section shown 
in Fig. 7.27. It is reinforced by four steel bars each 20 mm in diameter and carries a 
load of 1000 kN. If Young’s modulus for steel is 200 OOO N/mm’ and that for 
concrete is 15 000 N/mm’, calculate the stress in the steel and in the concrete and 
also the shortening of the column. 

The total cross-sectional area, A, ,  of the steel reinforcement is 
x 

A ,  = 4 x - x 20’ = 1257 mm’ 

The cross-sectional area, A,., of the concrete is reduced due to the presence of the 
steel and is given by 

A ,  = 400’- 1257 = 158 743 mm’ 

4 



Statically indeterminate systems 163 

Fig. 7.26 Reinforced concrete column of Ex. 7 

Equations (7.52) then give 

200000 x io00 x io3 

1 5 0 0 0 ~  looox io3 

os = = 76.0 N/mm2 
1 5 8 7 4 3 ~  15000+1257x200000 

bc = = 5-7 N/mm2 
158743 x 15OoO+ 1257 x 200000 

The deflection, 6 ,  of the column is obtained using either side of Fq. (7.54). Thus 

o c ~  5.7 x 5 x io3 6 = - -  - = 1-9mm 
E C  15 000 

Thermal effects 
It is possible for stresses to be induced by temperature changes in composite 
members which are additional to those produced by applied loads. These stresses 
arise when the components of a composite member have different rates of thermal 
expansion and contraction. 

First, let us  consider a member subjected to a uniform temperature rise, AT,  along 
its length. The member expands from its original length, Lo, to a length, L,, given by 

L,  = Lo( 1 + a A T )  

where a is the coefficient of linear expansion of the material of the member. In the 
condition shown in Fig. 7.27 the member has been allowed to expand freely so that 
no stresses are induced. The increase in the length of the member is then 

L ,  - L, = L,aAT 

Fig. 7.27 Expansion due to temperature rise 
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Suppose now that expansion is completely prevented so that the final length of the 
member after the temperature rise is still LO. The member has, in effect, been 
compressed by an amount LoaAT, thereby producing a compressive strain, E ,  which 
is given by (see Eq. (7.4)) 

LoaAT 

LO 
E=-- - aAT (7.55) 

The corresponding compressive stress, 6, is from Eq. (7.7) 

u = EaAT (7.56) 
In composite members the restriction on expansion or contraction is usually 

imposed by the attachment of one component to another. Thus in a reinforced 
concrete column the bond between the reinforcing steel and the concrete prevents the 
free expansion or contraction of either. 

Consider the reinforced concrete column shown in Fig. 7.28 (a) which is subjected 
to a temperature rise, AT. For simplicity we shall suppose that the reinforcement 
consists of a single steel bar of cross-sectional area, A,, located along the axis of 
the column; the actual cross-sectional area of concrete is A,. Young's modulus and 
the coefficient of linear expansion of the concrete are E,  and q, respectively, while 
the corresponding values for the steel are E ,  and a,. We shall assume that a, > q. 

Figure 7.28(b) shows the positions the concrete and steel would attain if they 
were allowed to expand freely; in this situation neither material is stressed. The 
displacements LOacAT and L,a,AT are obtained directly from Eq. (7.55). 
However, since they are attached to each other, the concrete prevents the steel from 
expanding this full amount while the steel forces the concrete to expand further than 
it otherwise would; their final positions are shown in Fig. 7.28(c). It can be seen that 
6, is the effective elongation of the concrete which induces a direct tensile load, P,. 
Similarly 6s is the effective contraction of the steel which induces a compressive 
load, P,. There is no externally applied load so that the resultant axial load at any 
section of the column is zero; thus 

PJtension) = P,(compression) (7.57) 

, I  

Fig. 7.28 Reinforced concrete column subjected to a temperature rise 
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Also, from Figs 7.28(b) and (c) we see that 

or 

From Eq. (7.28) 

6c + hS = LoasAT - LoacAT 

+ 6s = Lo AT (as - q) 

Substituting for 6c and in Eq. (7.58) we obtain 

+-- - AT(as - ac) pc ps 
AcEc AsEs 

(7.58) 

(7.59) 

(7.60) 

Simultaneous solution of Eqs (7.57) and (7.60) yields 

(7.61) m a ,  - a c )  P,(tension) = P,(compression) = 

(xk+ik) 
(7.62) w a s  - ac)AcEcAsEs 

AcEc +AsEs 
or P,(tension) = P s(compression) = 

The tensile stress, oc ,  in the concrete and the compressive stress, os, in the steel 
follow directly from Eqs (7.62): 

oc=-= pc  w a s  - QC 1 ECASES 
AC AcEc +AsEs 

(7.63) 

From Figs 7.28(b) and (c) it can be seen that the actual elongation, 6 ,  of the 
column is given by either 

6 = LnacAT + or 6 = LnasAT - 6,  (7.64) 
Using the first of Eqs (7.64) and substituting for 6c from Eqs (7.59) then Pc  from 
Eqs (7.62) we have 

which simplifies to 

6 = LOAT 
AcEc +A,Es 

(7.65) 

Clearly when ac=aS=a,  say, P,=P,=O, oc=os=O and 6=LnaAT as for 
unrestrained expansion. 
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The above analysis also applies to the case, a, > as, when, as can be seen from 
Eqs (7.62) and (7.63) the signs of P,, P,, o, and os are reversed. Thus the load and 
stress in the concrete become compressive, while those in the steel become tensile. A 
similar argument applies when AT specifies a temperature reduction. 

Note that the flexibility method is again employed in this analysis and that 
Eq. (7.58) is an expression of the compatibility of displacement of the concrete and 
steel. Also note that the stresses could have been obtained directly by writing 
Eqs (7.57) and (7.58) as 

o,A, = o s A ,  

and +-- - LO AT( as - a,) ocLn  o s L n  

E ,  Es 

respectively. 

Example 7.8 A rigid slab of weight 100 kN is supported on three columns each of 
height 4 m and cross-sectional area 300 mm2 arranged in line. The two outer 
columns are fabricated from material having a Young’s modulus of 80 OOO N/mm* 
and a coefficient of linear expansion of 1-85 x lO-’/”C; the corresponding values 
for the inner column are 200 OOO N/mm’ and 1.2 x 10-5/OC. If the slab remains 
firmly attached to each column, determine the stress in each column and the 
displacement of the slab if the temperature is increased by 100°C. 

The problem may be solved by determining separately the stresses and 
displacements produced by the applied load and the temperature rise; the two sets of 
results are then superimposed. Let subscripts o and i refer to the outer and inner 
columns, respectively. Using Eqs (7.52) we have 

P ,  o,(load) = Eo P El 
AoEo + A ,  E ,  

o,(load) = 
AoEo + A ,  E,  

In Eqs (i)  

AoE, + A,E,  = 2 x 300 x 80 OOO + 300 x 200 OOO= 108.0 x 10‘ 

200000 x 100 x lo3 
Thus o,(load) = = 185.2 N/mm’ (compression) 

108.0 x 10” 

80000 x 1 0 0  x lo3 

108.0 x lo6 
o,(load) = = 74.1 N/mm’ (compression) 

Eqs (7.63) give the values of o, (temp.) and oo (temp.) produced by the temperature 
rise. Thus  

m a ,  - ao)EoA, El 
A o E o + A , E ,  

o,(temp.) = 

(ii) 
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In Eqs (ii) a, > ai so that Q, (temp.) is a compressive stress while oi (temp.) is a 
tensile stress. Thus 

lOO(1.2 - 1.85) x x 80OOO x 300 x 200000 
o,(temp.) = 

108.0 x lo6 

= -28.9 N/mm2 (i.e. compression) 
lOO(1-2 - 1-85) x x 2 x 300 x 80000 x 200000 

o,(temp.) = 
108.0 x lo6 

= -57.8 N/mm’ (Le. tension) 

Superimposing the sets of stresses, we obtain the final values of stress, Q, and bo, 
due to load and temperature change combined. Hence 

6, = 185.2 - 57.8 = 127.4 N/mmz 
0, = 74.1 + 28.9 = 103.0 N/mm’ 

(compression) 
(compression) 

The displacements due to the load and temperature change are found using 
Eqs (7.5 1) and (7.65), respectively. Hence 

l o o x  1 0 3 x 4 x  lo3 
G(1oad) = = 3-7 mm (contraction) 

108.0 x lo6 

1.85 1 0 - ~  2 300 80000+ 1.2 1 0 - ~  300 x 200000 

108.0 x lo6 

= 6.0 mm (elongation) 

The final displacement of the slab involves an overall elongation of the columns of 
6-0  - 3.7 = 2-3 mm. 

Initial stresses and prestressing 
The terms initial stress and prestressing refer to structural situations in which some 
or all of the components of a structure are in a state of stress before external loads 
are applied. In some cases, for example welded connections, this is an unavoidable 
by-product of fabrication and unless the whole connection is stress-relieved by 
suitable heat treatment the initial stresses are not known with any real accuracy. On 
the other hand, the initial stress in a component may be controlled as in a bolted 
connection; the subsequent applied load may or may not affect the initial stress in the 
bolt. 

Initial stresses may be deliberately induced in a structural member so that the 
adverse effects of an applied load are minimized. In this category is the prestressing 
of beams fabricated from concrete which is particularly weak in tension. An overall 
state of compression is induced in the concrete so that tensile stresses due to applied 
loads merely reduce the level of compressive stress in the concrete rather than cause 
tension. Two methods of prestressing are employed, pre- and post-tensioning. In the 
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former the prestressing tendons are positioned in the mould before the concrete is 
poured and loaded to the required level of tensile stress. After the concrete has set, 
the tendons are released and the tensile load in the tendons is transmitted, as a 
compressive load, to the concrete. In a post-tensioned beam, metal tubes or conduits 
are located in the mould at points where reinforcement is required, the concrete is 
poured and allowed to set. The reinforcing tendons are then passed through the 
conduits, tensioned and finally attached to end plates which transmit the tendon 
tensile load, as a compressive load, to the concrete. 

Usually the reinforcement in a concrete beam supporting vertical shear loads is 
placed closer to either the upper or the lower surface since, as we shall see in 
Chapter 12, such a loading system induces tension in one part of the beam and 
compression in the other; clearly the reinforcement is placed in the tension zone. To 
demonstrate the basic principle, however, we shall investigate the case of a post- 
tensioned beam containing one axially loaded prestressing tendon. 

Suppose that the initial load in the prestressing tendon in the concrete beam shown 
in Fig. 7.29 is F. In the absence of an applied load the resultant load at any section 
of the beam is zero so that the load in the concrete is also F but compressive. If now 
a tensile load, P ,  is applied to the beam, the tensile load in the prestressing tendon 
will increase by an amount APT while the compressive load in the concrete will 
decrease by an amount AP,. From a consideration of equilibrium, 

A P T +  AP,  = P (7.66) 

Furthermore, the total tensile load in the tendon is F + A P ,  while the total 
compressive load in the concrete is F - AP,. 

The tendon and concrete beam are interconnected through the end plates so that 
they both suffer the same elongation, 6 ,  due to P .  Thus, from Eq. (7.28) 

A P T L  A P c L  

ArET A c E c  
6 = - -  -- (7.67) 

where E, and E,  are Young’s modulus for the tendon and the concrete, respectively. 
From Eq. (7.67) 

APC (7.68) AT E T  

AcEc 
APT = - 

Concrete, cross- Prestressing tendon, 
sectional area, A, cross-sectional area, A, 

Fig. 7.29 Prestressed concrete beam 
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Substituting in Eq.  (7.66) for APT we obtain 

AP,(Z+ 1) = P  

whence 

Substituting now for AP,  in Eq. (7.68) from Eq. (7.69) gives 

The final loads, P ,  and P T ,  in the concrete and tendon, respectively, are then 

and 

P (compression) A C E ,  
AcEc  + A T E ,  

P , = F -  

P (tension) ATE,  
AcEc  + A T E ,  

P T = F +  

(7.69) 

(7.70) 

(7.7 1) 

(7.72) 

The corresponding final stresses, 0, and bT, follow directly and are given by 

(compression) (7.73) 

(tension) (7.74) 

Ac Ec  +ATET 

p ,  1 

Ac Ac  

PT 1 

Ac E c  + A T &  
and 

Obviously if the bracketed term in Eq. (7.73) is negative then 0, will be a tensile 
stress. 

Finally the elongation, 6, of the beam due to P is obtained from either of 
Eqs (7.67) and is 

AT AT 

(7.75) 

Example 7.9 A concrete beam of rectangular cross-section, 120 mm x 300 mm, is 
to be reinforced by six high-tensile steel prestressing tendons each having a cross- 
sectional area of 300 mm’. If the level of prestress in the tendons is 150 N/mm’, 
determine the corresponding compressive stress in the concrete. If the reinforced 
beam is subjected to an axial tensile load of 150 kN, determine the final stress in the 
steel and in the concrete assuming that the ratio of the elastic modulus of steel to 
that of concrete is 15. 

The cross-sectional area, A,, of the concrete in the beam is given by 

A ,  = 120 x 300- 6 x 300= 34 200 mm’ 
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The initial compressive load in the concrete is equal to the initial tensile load in the 
steel; thus 

oCI x 34 200= 150 x 6 x 300 (i) 

where ocI is the initial compressive stress in the concrete. Hence 

oc, = 7.9 N/mm’ 

The final stress in the concrete and in the steel are given by Eqs (7.73) and (7.74), 
respectively. Hence, from Eq. (7.73) 

oc= - - P (ii) F EC 
Ac A c E c + A T E T  

in which F / A c  = oc, = 7-9 N/mm2. Rearranging Eq. (ii) we have 

150 x lo3 

342OO+ 15 x 6 x 300 
or oc = 7.9 - = 5.4 N/mm’ (compression) 

Similarly, from Eq. (7.74) 

150 io3 
whence oT= 150+ = 186-8 N/mm2 (tension) 

1 x 34200 + 6 x 300 
15 

7.1 5 Thin-walled shells under internal pressure 
So far we have been concerned with stress systems which involve either a single 
direct stress or a shear stress acting at a point in a structural member. However, as we 
shall see in Chapter 14, it is possible for combinations of direct and shear stresses to 
act simultaneously to form a complex stress system in two or three dimensions. As a 
preliminary example on combined stresses we shall investigate the direct stress 
system generated in the walls of a thin-walled shell which is subjected to internal 
pressure; the shell may be either cylindrical or spherical. Figure 7.30 shows a long, 
thin-walled cylindrical shell subjected to an internal pressure p .  This internal 
pressure has a dual effect: it acts on the sealed ends of the shell, thereby inducing a 
longitudinal direct stress on cross-sections of the shell, and it also tends to separate 
one half of the shell from the other along a diametral plane, thus producing 
circumferential or hoop stresses. 
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Fig. 7.30 Thin cylindrical shell under internal pressure 

Suppose that d is the internal diameter of the shell and r the thickness of its walls. 

ndZ 
P X -  

4 

This load is equilibrated by an internal force corresponding to the longitudinal direct 
stress, oL, so that 

In Fig. 7.31 the axial load on each end of the shell due to the pressure p is 

nd’ 
4 

G L R  d t = p  - 

which gives oL = pd (7.76) 

Now consider a unit length of the half shell formed by a diametral plane 
(Fig. 7.32). The force on the shell, produced by p. in the opposite direction to the 
circumferential stress, oc, is given by 

p x projected area of the shell in the direction of oC 

4t 

Thus for equilibrium of the unit length of shell 

2 0 , ~ ( l x t ) = p x ( l x d )  

whence oc = pd (7.77) 
2r 

We can now represent the state of stress at any point in the wall of the shell by 
considering the stress acting on the edges of a very small element of the shell wall 

Fig. 7.31 Longitudinal stresses due to internal pressure 
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Fig. 7.32 Circumferential stress due to internal pressure 

as shown in Fig. 7.33(a). The stresses comprise the longitudinal stress, o,, 
(Eq. (7.76)) and the circumferential stress, oc, (Eq. (7.77)). Since the element is 
very small, the effect of the curvature of the shell wall can be neglected so that the 
state of stress may be represented as a two-dimensional stress system acting on a 
plane element of thickness, t (Fig. 7.33(b)). We shall investigate this and other 
forms of complex stress system in Chapter 14. 
In addition to stresses, the internal pressure produces corresponding strains in the 

walls of the shell which lead to a change in volume. Consider the element of 
Fig. 7.33(b). The longitudinal strain, E,, is, from Eqs (7.13) 

E L = - - V -  0, oc 

E E 

or, substituting for oL and oc from Eqs (7.76) and (7.77), respectively, 

&L=&(L-v) 2tE 2 (7.78) 

Similarly, the circumferential strain, E,-, is given by 

&c=&(l-;v) 2tE (7.79) 

The increase in length of the shell is E,L while the increase in circumference is ECxd. 
We see from the latter expression that the increase in circumference of the shell 

Fig. 7.33 Two-dimensional stress system 
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corresponds to an increase in diameter, Ecd, so that the circumferential strain is equal 
to diametral strain (and also radial strain). The increase in volume, AV, of the shell 
is then given by 

x IC 
AV = - (d + Ecd)'(L + E ~ L )  - - d 2 L  

4 4 

which, when second-order terms are neglected, simplifies to 

x d 2 L  
4 

A V = -  (2% +EL) (7.80) 

Substituting for E~ and E~ in Eq. (7.80) from Eqs (7.78) and (7.79) we obtain 

A V = - -  - - v  
x d 2 L  4 pd tE (5 4 1 

whence the volumetric strain is 

A"/F = yd(5 tE 4 -.) 
The analysis of a spherical shell is somewhat simpler since only one direct stress 

is involved. It can be seen from Figs 7.34(a) and (b) that no matter which diametral 
plane is chosen, the tensile stress, 6, in the walls of the shell is constant. Thus for 
the equilibrium of the hemispherical portion shown in Fig. 7.34(b) 

(7.81) 

x d 2  

4 
CJ x xdt = p  x - 

(7.82) CJ=Y d from which 
4t 

Again we have a two-dimensional state of stress acting on a small element of the 
shell wall (Fig. 7.34(c)) but in this case the direct stresses in the two directions are 

Fig. 7.34 Stress in a spherical shell 
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equal. Also the volumetric strain is determined in an identical manner to that for the 
cylindrical shell and is 

3Pd - (1 - v )  
4tE 

(4.83) 

Example 7.10 A thin-walled, cylindrical shell has an internal diameter of 2 m and 
is fabricated from plates 20 mm thick. Calculate the safe pressure in the shell if the 
tensile strength of the plates is 400 N/mm’ and the factor of safety is 6. Determine 
also the percentage increase in the volume of the shell when it is subjected to this 
pressure. Take Young’s modulus E = 200 OOO N/mm’ and Poisson’s ratio v = 0-3. 

The maximum tensile stress in the walls of the shell is the circumferential stress, 
oc, given by Eq. (7.77). Thus 

400 p x 2 x 1 0 3  -- - 
6 2 x 20 

p = 1-33 N/mm2 from which 

The volumetric strain is obtained from Eq. (7.81) and is 

1 . 3 3 ~ 2 ~  10’ 5 
- - 0-3 = 0.00063 

20x200000 0 4 

Hence the percentage increase in volume is 0.063%. 

Problems 
P.7.1 A column 3 m high has a hollow circular cross-section of external 

diameter 300 mm and carries an axial load of 5000 kN. If the stress in the column 
is limited to 150 N/mm’ and the shortening of the column under load must not 
exceed 2 mm calculate the maximum allowable internal diameter. Take 
E = 200 000 N/mm’. 

Ans. 205-6 mm. 

P.7.2 A steel girder is firmly attached to a wall at each end so that changes in its 
length are prevented. If the girder is initially unstressed, calculate the stress induced 
in the girder when it is subjected to a uniform temperature rise of 30 K. The 
coefficient of linear expansion of the steel is 0.000 05/K and Young’s modulus 
E = 180 OOO N/mm’. (Note L = L o (  1 + aT).) 

Am. 270 N/mm’ (compression). 

P.7.3 A column 3 m high has a solid circular cross-section and carries an axial 
load of 10 OOO kN. If the direct stress in the column is limited to 150 N/mm’ 
determine the minimum allowable diameter. Calculate also the shortening of the 
column due to this load and the increase in its diameter. Take E = 200 OOO N/mm’ 
and v = 0.3. 

Ans. 291.3 mm, 2.25 mm, 0.066 mm. 
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P.7.4 A structural member, 2 m long, is found to be 1.5 mm short when 
positioned in a framework. To enable the member to be fitted it is heated uniformly 
along its length. Determine the necessary temperature rise. Calculate also the residual 
stress in the member when it cools to its original temperature if movement of the 
ends of the member is prevented. 

If the member has a rectangular cross-section, determine the percentage change in 
cross-sectional area when the member is fixed in position and at its original 
temperature. 

Young’s modulus E = 200 OOO N/mm’, Poisson’s ratio v = 0.3 and the coefficient 
of linear expansion of the material of the member is 0.000 012/K. 

Ans. 62.5 K, 150 N/mm2 (tension), 0.045% (reduction). 

P.7.5 A member of a framework is required to cany an axial tensile load of 
100 kN. It is proposed that the member be comprised of two angle sections back to 
back in which one 18 mm diameter hole is allowed per angle for connections. If the 
allowable stress is 155 N/mmz, suggest suitable angles. 

Ans. Required minimum area of cross-section = 645.2 mm’. From steel tables, 
two equal angles 5 1 x 5 1 x 4-6  mm are satisfactory. 

P.7.6 Two structural members, A and B, are of circular cross-section and of the 
same material; each has a length of 250 mm. Member A has a diameter of 25 mm 
for a length of 50 mm and a diameter of 20 mm for the remainder, while member B 
has a diameter of 25 mm for a length of 200 mm and a diameter of 20 mm for the 
remainder. If B receives an axial blow sufficient to produce a maximum stress of 
200 N/mmz, find the maximum stress produced by the same blow on A, assuming 
that the strain energy absorbed is the same in each case. 

Ans. 175.2 N/mmz. 

P.7.7 A bar of circular cross-section, 2 m long, is securely held in a vertical 
position by its upper end. A freely sliding weight falls from a height of 30 mm on to 
a stop at the lower end of the bar and produces a stress of 150 N/mm’. Determine 
the stress if the load had been applied gradually and also the maximum stress if the 
load had fallen from a height of 40 mm. Take E = 200 OOO N/mm’. 

Ans. 3-57 N/mm’, 172.6 N/mm’. 

P.7.8 A column 3 m high has a hollow circular cross-section of external diameter 
300 mm and carries an axial load of 5000 kN. If the stress in the column is limited to 
150 N/mmz and the shortening of the column under load must not exceed 2 mm, 
calculate the maximum internal diameter. Calculate also the maximum Shortening of 
the column if the load were suddenly applied. Take E = 200 OOO N/mm’. 

Ans. 206 mm, 4 mm. 

P.7.9 A concrete pile 5 m long has a diameter of 200 mm and is to be driven 
into the ground using a weight of 2 kN. If the maximum instantaneous stress the 
concrete can withstand is 25 N/mm’, calculate the height through which the weight 
should be dropped on to the head of the pile. Take E = 15 000 N/mm’. 

Ans. 1.63 m. 
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P.7.10 A vertical hanger supporting the deck of a suspension bridge is formed 
from a steel cable 25 m long and having a diameter of 7-5 mm. If the density of the 
steel is 7850 kg/m3 and the load at the lower end of the hanger is 5 kN, determine 
the maximum stress in the cable and its elongation. Young’s modulus 
E = 200 OOO N/mm’. 

Ans. 115.1 N/mm’, 14-3 mm. 

P.7.11 A concrete chimney 40 m high has a cross-sectional area (of concrete) 
of 0.15 m’ and is stayed by three groups of four cables attached to the chimney at 
heights of 15 m, 25 m and 35 m. If each cable is anchored to the ground at a 
distance of 20 m from the base of the chimney and tensioned to a force of 15 kN, 
calculate the maximum stress in the chimney and the shortening of the chimney 
including the effect of its own weight. The density of concrete is 2500 kg/m3 and 
Young’s modulus E = 20 OOO N/mm’. 

Ans. 1.9 N/mm’, 2.2 mm. 

P.7.12 A column of height h has a rectangular cross-section which tapers 
linearly in width from 6, at the base of the column to b2 at the top. The breadth of 
the cross-section is constant and equal to a. Determine the shortening of the column 
due to an axial load P .  

Ans. (Ph/[aE(h - b2)l)log,(h/b~). 
P.7.13 Determine the vertical deflection of the 20 kN load in the truss shown in 

Fig. P.7.13. The cross-sectional area of the tension members is 100 mm’ while that 
of the compression members is 200 mm’. Young’s modulus E = 205 OOO N/mm2. 

Ans. 4.5 mm. 

Fig. P.7.13 

P.7.14 The truss shown in Fig. P.7.14 has members of cross-sectional area 
1200 mm2 and Young’s modulus 205 OOO N/mm’. Determine the vertical deflection 
of the load. 

Ans. 10.3 mm. 
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Fig. P.7.14 

P.7.15 The members AD and CD of the pin-jointed framework shown in 
Fig. P.7.15 each has a cross-sectional area of 500 mm2; the member BD has a cross- 
sectional area of 250 mm’. If the framework carries a vertical load of 100 kN at D, 
calculate the stress id each member and the vertical deflection of D. Take 
E = 200 O00 N/mm’. 

Ans. oCD = oAD = 83.4 N/mm’, oBD = 1 11.2 N/mm2, 1.1 mm. 

Fig. P.7.15 

P.7.16 The pin-jointed framework shown in Fig. P.7.16 supports a vertical load 
W at the joint B. Determine the loads in the members. 

Airs. 

P.7.17 

P,,, = 0, P,, = W/$ (compression), PBA = W / f i  (tension). 

Three identical bars of length L are hung in a vertical position as shown 
in Fig. P.7.17. A rigid, weightless beam is attached to their lower ends and this in 
turn cames a load P. Calculate the load in each bar. 

P ,  = P/12, P?= P/3, P,=7P/12. ATIS. 
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Fig. P.7.16 

Fig. P.7.17 

P.7.18 A composite column is formed by placing a steel bar, 20 mm in diameter 
and 200 mm long, inside an alloy cylinder of the same length whose internal and 
external diameters are 20 mm and 25 mm, respectively. The column is then 
subjected to an axial load of 50 kN. If E for steel is 200 OOO N/mm’ and E for the 
alloy is 70 000 N/mm’, calculate the stress in the cylinder and in the bar, the 
shortening of the column and the strain energy stored in the column. 

45-8 N/mm’ (cyl.), 131 N/mm’ (bar), 0.13 mm, 3-3 Nm. A m .  

P.7.19 A timber column, 3 m high, has a rectangular cross-section, 
100 mm x 200 m n ,  and is reinforced over its complete length by two steel plates each 
200 mm wide and 10 mm thick attached to its 200 mm wide faces. The column is 
designed to carry a load of 100 kN. If the failure stress of the timber is 55 N/mm’ and 
that of the steel is 380 N/mm’, check the design using a factor of safety of 3 for the 
timber and 2 for the steel. E (timber) = 15 OOO N/mm’, E (steel) = 200 OOO N/mm‘. 

A m .  o (timber) = 13.6 N/mm’ 
(3 (steel) = 181.8 N/mm’ 

(allowable stress = 18-3 N/mm’), 
(allowable stress = 190 N/mm’). 
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P.7.20 The composite bar shown in Fig. P.7.20 is initially unstressed. If the 
temperature of the bar is reduced by an amount T uniformly along its length, find an 
expression for the tensile stress induced. The coefficients of linear expansion of 
steel and aluminium are a, and a, per unit temperature change, respectively, while 
the corresponding values of Young’s modulus are E, and E,. 

Ans. T(a&, + a , b ) / ( L , / E ,  + W E , ) .  

Fig. P.7.20 

P.7.21 A short bar of copper, 25 mm in diameter, is enclosed centrally within a 
steel tube of external diameter 36 mm and thickness 3 mm. At 0°C the ends of the 
bar and tube are rigidly fastened together and the complete assembly heated to 80°C. 
Calculate the stress in the bar and in the tube if E for copper is 100 OOO N/mmz, E 
for steel is 200 OOO N/mm2 and the coefficients of linear expansion of copper and 
steel are 0-OOO 01 /”C and 0-OOO 006/”C, respectively. 

o (steel) = 28.3 N/mm’ (tension), 
o (copper) = 17.9 N/mm’ (compression). 

Ans. 

P.7.22 A structural member, 2 m long, is found to be 1.5 mm short when 
positioned in a framework. To enable the member to be fitted it is heated uniformly 
along its length. Determine the necessary temperature rise. Calculate also the residual 
stress in the member when it cools to its original temperature. Also, if the member 
has a rectangular cross-section, determine the percentage change in cross-sectional 
area when the member is fixed in position and at its original temperature. Take 
E = 200 OOO N/mm’, Poisson’s ratio v = 0.3 and a = 0400 012/”C. 

A m .  62.5OC, 150 N/mm’, 0.045%. 
P.7.23 A bar of mild steel of diameter 75 mm is placed inside a hollow 

aluminium cylinder of internal diameter 75 mm and external diameter 100 mm; both 
bar and cylinder are the same length. The resulting composite bar is subjected to an 
axial compressive load of 10‘N. If the bar and cylinder contract by the same 
amount, calculate the stress in each. 

The temperature of the compressed composite bar is then reduced by 150°C but 
no change in length is permitted. Calculate the final stress in the bar and in the 
cylinder. Take E (steel) = 200 OOO N/mm’, E (aluminium) = 80 000 N/mm’, a 
(steel) = 0.000 012/”C, a (aluminium) = @OOO OO5/”C. 

A m .  
Due to load: o (steel) = 172.5 N/mm’ (compression), 

Final stress: CJ (steel) = 187.5 N/mm’ (tension), 
CJ (aluminium) = 69.0 N/mm’ (compression). 

CJ (aluminium) = 9.0 N/mm’ (compression). 
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P.7.24 Two structural members are connected together by a hinge which is 
formed as shown in Fig. P.7.24. The bolt is tightened up onto the sleeve through 
rigid end plates until the tensile force in the bolt is 10 kN. The distance between the 
head of the bolt and the nut is then 100 mm and the sleeve is 80 mm in length. If the 
diameter of the bolt is 15 mm and the internal and outside diameters of the sleeve 
are 20 mm and 30 mm, respectively, calculate the final stresses in the bolt and sleeve 
when an external tensile load of 5 kN is applied to the bolt. 

ts (bolt) = 65.4 N/mm2 (tension), 
ts (sleeve) = 16.7 N/mm2 (compression). 

Ans. 

Fig. P.7.24 

P.7.25 Calculate the minimum wall thickness of a cast iron water pipe having an 
internal diameter of 1 m under a head of 120 m. The limiting tensile strength of cast 
iron is 20 N/mm' and the density of water is loo0 kg/m3. 

Ans. 29-5 mm. 

P.7.26 A thin-walled spherical shell is fabricated from steel plates and has to 
withstand an internal pressure of 0-75 N/mm'. The internal diameter is 3 m and the 
joint efficiency 80%. Calculate the thickness of plates required using a working 
stress of 80 N/mm'. (Note, effective thickness of plates = 0-8 x actual thickness). 

Ans. 8-8 mm. 



CHAPTER 8 

Properties of Engineering 

It is now clear from the discussion in Chapter 7 that the structural designer requires a 
knowledge of the behaviour of materials under different types of load before he/she 
can be reasonably sure of designing a safe and, at the same time, economic structure. 

One of the most important properties of a material is its strength, by which we 
mean the value of stress at which it fractures. Equally important in many instances, 
particularly in elastic design, is the stress at which yielding begins. In addition, the 
designer must have a knowledge of the stiffness of a material so that he/she can 
prevent excessive deflections occumng that could cause damage to adjacent 
structural members. Other factors that must be taken into consideration in design 
include the character of the different loads. It is common experience, for example, 
that a material such as cast iron fractures readily under a sharp blow whereas mild 
steel merely bends. 

We shall, therefore, in this chapter examine some of the properties of engineering 
materials and the methods used to determine them. Initially, however, we shall 
discuss the more important materials used in civil engineering, with some reference 
to their different functions. 

The basic and most widely used materials in civil engineering construction are 
steel, in its various forms, and concrete. Steel is fabricated into a variety of 
structural shapes for use as beams, columns, plates, connectors and to act as 
reinforcement in the comparatively weak tensile zones of concrete beams. Concrete 
itself is used in the construction of beams, columns, floor slabs and foundations and 
decoratively as wall cladding. Generally, as we have noted, structural concrete is 
reinforced by steel bars in its weak tensile zones and is sometimes used to encase 
steel columns as a precaution against fire damage. Instances of unreinforced 
structural concrete are few and are usually restricted to gravity structures such as 
dams and comparatively lightly loaded foundations. 

In addition to steel and concrete, timber is employed extensively in civil 
engineering as formwork during the construction of concrete structures and in its 
own right as a structural material in light roof trusses and decorative beams. 
Frequently timber beams and arches are laminated to eliminate the less desirable 
characteristics of timber such as cracking, shrinkage and warping. Non-structurally, 
timber is found in floors, ceilings, wall panels, etc. 

Of other materials in general use, masonry, ceramics and plastics are the most 
common. Masonry is used to support compressive loads as columns or walls and is 
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also used to form in-fill panels in steel or concrete skeletal structures. Ceramics and 
plastics fulfil mainly non-structural roles and are frequently used decoratively as 
wall, floor or ceiling cladding. 

8.1 Classification of engineering materials 
Engineering materials may be grouped into two distinct categories, ductile materials 
and brittle materials, which exhibit very different properties under load. We shall 
define the properties of ductility and brittleness and also some additional properties 
which may depend upon the applied load or which are basic characteristics of the 
material. 

Ductility 
A material is said to be ductile if it is capable of withstanding large strains under 
load before fracture occurs. These large strains are accompanied by a visible change 
in cross-sectional dimensions and therefore give warning of impending failure. 
Materials in this category include mild steel, aluminium and some of its alloys, 
copper and polymers. 

Brittleness 
A brittle material exhibits little deformation before fracture, the strain normally being 
below 5%. Brittle materials therefore may fail suddenly without visible warning. 
Included in this group are concrete, cast iron, high-strength steels, timber and ceramics. 

Elastic materials 
A material is said to be elastic if deformations disappear completely on removal of 
the load. All known engineering materials are, in addition, linearly elastic within 
certain limits of stress so that strain, within these limits, is directly proportional to 
stress. 

Plasticity 
A material is perfectly plastic if no strain disappears after the removal of load. 
Ductile materials are elastoplastic and behave in an elastic manner until the elastic 
limit is reached after which they behave plastically. When the stress is relieved the 
elastic component of the strain is recovered but the plastic strain remains as a 
permanent set. 

Isotropic materials 
In many materials the elastic properties are the same in all directions at each point in 
the material although they may vary from point to point; such a material is known as 
isotropic. An isotropic material having the same properties at all points is known as 
homogeneous, for example mild steel. 
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Anisotropic materials 
Materials having varying elastic properties in different directions are known as 
anisotropic. 

Orthotropic materials 
Although a structural material may possess different elastic properties in different 
directions, this variation may be limited, as in the case of timber which has just two 
values of Young’s modulus, one in the direction of the grain and one perpendicular 
to the grain. A material whose elastic properties are limited to three different values 
in three mutually perpendicular directions is known as orthotropic. 

8.2 Testing of engineering materials 
The properties of engineering materials are determined mainly by the mechanical 
testing of specimens machined to prescribed sizes and shapes. The testing may be 
static or dynamic in nature depending on the particular property being investigated. 
Possibly the most common mechanical static tests are tensile and compressive tests 
which are camed out on a wide range of materials. Ferrous and non-ferrous metals 
are subjected to both forms of test, while compression tests are usually carried out 
on many non-metallic materials such as concrete, timber and brick which are 
normally used in compression. Other static tests include bending, shear and hardness 
tests, while the toughness of a material, in other words its ability to withstand shock 
loads, is determined by impact tests. 

Tensile tests 
Tensile tests are normally carried out on metallic materials and, in addition, timber. 
Test pieces are machined from a batch of material, their dimensions being 
specified by Codes of Practice. They are commonly circular in cross-section, 
although flat test pieces having rectangular cross-sections are used when the batch 
of material is in the form of a plate. A typical test piece would have the 
dimensions specified in Fig. 8.1. Usually the diameter of a central portion of the 
test piece is fractionally less than that of the remainder to ensure that the test piece 
fractures between the gauge points. 

Fig. 8.1 Standard cylindrical test piece 
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Before the test begins, the mean diameter of the test piece is obtained by taking 
measurements at several sections using a micrometer screw gauge. Gauge points are 
punched at the required gauge length, the test piece is placed in the testing machine 
and a suitable strain measuring device, usually an extensometer, is attached to the 
test piece at the gauge points so that the extension is measured over the given gauge 
length. Increments of load are applied and the corresponding extensions recorded. 
This procedure continues until yield (see Section 8.3) occurs, when the extensometer 
is removed as a precaution against the damage which would be caused if the test 
piece fractured unexpectedly. Subsequent extensions are measured by dividers 
placed in the’ gauge points until, ultimately, the test piece fractures. The final gauge 
length and the diameter of the test piece in the region of the fracture are measured 
so that the percentage elongation and percentage reduction in area may be calculated. 
The two parameters give a measure of the ductility of the material. 

A stress-strain curve is drawn (see Figs 8.8 and 8.12), the stress normally being 
calculated on the basis of the original cross-sectional area of the test piece, i.e. a 
norninal stress as opposed to an actual stress (which is based on the actual area of 
cross-section). For ductile materials there is a marked difference in the latter stages 
of the test as a considerable reduction in cross-sectional area occurs between yield 
and fracture. From the stress-strain curve the ultimate stress, the yield stress and 
Young’s modulus, E ,  are obtained (see Section 7.7). 

There are a number of variations on the basic tensile test described above. Some 
of these depend upon the amount of additional information required and some upon 
the choice of equipment. Thus there is a wide range of strain measuring devices to 
choose from, extending from different makes of mechanical extensometer, e.g. 
Huggenberger, Lindley, Cambridge, to the electrical resistance strain gauge. The last 
would normally be used on flat test pieces, one on each face to eliminate the effects of 
possible bending. At the same time a strain gauge could be attached in a direction 
perpendicular to the direction of loading so that lateral strains are measured. The ratio 
lateral strain/longitudinal strain is Poisson’s ratio, v ,  (Section 7.8). 

Testing machines are usually driven hydraulically. More sophisticated versions 
employ load cells to record load and automatically plot load against extension or 
stress against strain on a pen recorder as the test proceeds, an advantage when 
investigating the distinctive behaviour of mild steel at yield. 

Compression tests 
A compression test is similar in operation to a tensile test, with the obvious 
difference that the load transmitted to the test piece is compressive rather than tensile. 
This is achieved by placing the test piece between the platens of the testing machine 
and reversing the direction of loading. Test pieces are normally cylindrical and are 
limited in length to eliminate the possibility of failure being caused by instability 
(Chapter 18). Again contractions are measured over a given gauge length by a 
suitable strain measuring device. 

Variations in test pieces occur when only the ultimate strength of the material in 
compression is required. For this purpose concrete test pieces may take the form of 
cubes having edges approximately 10 cm long, while mild steel test pieces are still 
cylindrical in section but are of the order of 1 cm long. 
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Bending tests 
Many structural members are subjected primarily to bending moments. Bending tests 
are therefore carried out on simple beams constructed from the different materials to 
determine their behaviour under this type of load. 

Two forms of loading are employed, the choice depending upon the type specified 
in Codes of Practice for the particular material. In the first a simply supported beam 
is subjected to a 'two-point' loading system as shown in Fig. 8.2(a). Two 
concentrated loads are applied symmetrically to the beam, producing zero shear 
force and constant bending moment in the central span of the beam (Figs 8.2(b) and 
(c)). The condition of pure bending is therefore achieved in the central span (see 
Section 9.1). 

The second form of loading system consists of a single concentrated load at mid- 
span (Fig. 8.3(a)) which produces the shear force and bending moment diagrams 
shown in Figs 8.3(b) and (c) .  

The loads may be applied manually by hanging weights on the beam or by a 
testing machine. Deflections are measured by a dial gauge placed underneath the 
beam. From the recorded results a load-deflection diagram is plotted. 

For most ductile materials the test beams continue to deform without failure and 
fracture does not occur. Thus plastic properties, for example the ultimate strength in 
bending, cannot be determined for such materials. In the case of brittle materials, 
including cast iron, timber and various plastics, failure does occur, so that plastic 
properties can be evaluated. For such materials the ultimate strength in bending is 
defined by the modulus of rupture. This is taken to be the maximum direct stress in 

Fig. 8.2 Bending test on a beam, 'two-point' load 
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Fig. 8.3 Bending test on a beam, single load 

bending, bzVu, corresponding to the ultimate moment Mu, and is assumed to be 
related to M u  by the elastic relationship 

ymx (see Eq. 9.9) br.u = - M U  

I 

Other bending tests are designed to measure the ductility of a material and involve 
the bending of a bar round a pin. The angle of bending at which the bar starts to 
crack is then taken as an indication of its ductility. 

Shear tests 

Two main types of shear test are used to determine the shear properties of materials. 
One type investigates the direct or transverse shear strength of a material and is used 
in connection with the shear strength of bolts, rivets and beams. A typical 
arrangement is shown diagrammatically in Fig. 8.4 where the test piece is clamped to 
a block and the load applied through the shear tool until failure occurs. In the 
arrangement shown the test piece is subjected to double shear, whereas if it extended 
only partially across the gap in the block it would be subjected to single shear. In 
either case the average shear strength is taken as the maximum load divided by the 
shear resisting area. 

The other type of shear test is used to evaluate the basic shear properties of a 
material such as the shear modulus, G(Eq. (7.9)), the shear stress at yield and the 
ultimate shear stress. In the usual form of test a solid circular-section test piece is 
placed in a torsion machine and twisted by controlled increments of torque. The 
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Fig. 8.4 Shear test 

corresponding angles of twist are recorded and torque-twist diagrams plotted from 
which the shear properties of the material are obtained. The method is similar to that 
used to determine the tensile properties of a material from a tensile test and uses 
relationships derived in Chapter 1 1. 

Hardness tests 

The machinability of a material and its resistance to scratching or penetration are 
determined by its ‘hardness’. There also appears to be a connection between the 
hardness of some materials and their tensile strength so that hardness tests may be 
used to determine the properties of a finished structural member where tensile and 
other tests would be impracticable. Hardness tests are also used to investigate the 
effects of heat treatment, hardening and tempering and of cold forming. Two types 
of hardness test are in common use: indentation tests and scratch and abrasion tests. 

Indentation tests may be subdivided into two classes: static and dynamic. Of the 
static tests the Brinell is the most common. In this a hardened steel ball is pressed 
into the material under test by a static load acting for a fixed period of time. The load 
in kg divided by the spherical area of the indentation in mm2 is called the Brinell 
Hardness Number (BHN). Thus in Fig. 8.5, if D is the diameter of the ball, F the 
load in kg, h the depth of the indentation, and d the diameter of the indentation, 
then 

2F 
- 

F B m = - -  
ZDh a D [ D - d n ]  

In practice the hardness number of a given material is found to vary with F and D so 
that for uniformity the test is standardized. For steel and hard materials F = 3000 kg 

Fig. 8.5 Brinell hardness test 
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and D = 10 mm while for soft materials F = 500 kg and D = 10 mm; in addition the 
load is usually applied for 15 s. 

In the Brinell test the dimensions of the indentation are measured by means of a 
microscope. To avoid this rather tedious procedure, direct reading machines have 
been devised of which the Rockwell is typical. The indenting tool, again a hardened 
sphere, is first applied under a definite light load. This indenting tool is then replaced 
by a diamond cone with a rounded point which is then applied under a specified 
indentation load. The difference between the depth of the indentation under the two 
loads is taken as a measure of the hardness of the material and is read directly from 
the scale. 

A typical dynamic hardness test is performed by the Shore Scleroscope which 
consists of a small hanker approximately 20 mm long and 6 mm in diameter fitted 
with a blunt, rounded, diamond point. The hammer is guided by a vertical glass tube 
and allowed to fall freely from a height of 25 cm onto the specimen, which it 
indents before rebounding. A certain proportion of the energy of the hammer is 
expended in forming the indentation so that the height of the rebound, which 
depends upon the energy still possessed by the hammer, is taken as a measure of the 
hardness of the material. 

A number of tests have been devised to measure the ‘scratch hardness’ of 
materials. In one test, the smallest load in grams which, when applied to a diamond 
point, produces a scratch visible to the naked eye on a polished specimen of material 
is called its hardness number. In other tests the magnitude of the load required to 
produce a definite width of scratch is taken as the measure of hardness. Abrasion 
tests, involving the shaking over a period of time of several specimens placed in a 
container, measure the resistance to wear of some materials. In some cases there 
appears to be a connection between wear and hardness number although the results 
show no level of consistency. 

Impact tests 
It has been found that certain materials, particularly heat-treated steels, are 
susceptible to failure under shock loading whereas an ordinary tensile test on the 
same material would show no abnormality. Impact tests measure the ability of 

Fig. 8.6 lzod impact test 
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Fig. 8.7 Charpy impact test 

materials to withstand shock loads and provide an indication of their toughness. Two 
main tests are in use, the Izod and the Charpy. 

Both tests rely on a striker or weight attached to a pendulum. The pendulum is 
released from a fixed height, the weight strikes a notched test piece and the angle 
through which the pendulum then swings is a measure of the toughness of the 
material. The arrangement for the Izod test is shown diagrammatically in Fig. 8.6(a). 
The specimen and the method of mounting are shown in detail in Fig. 8.6(b). The 
Charpy test is similar in operation except that the test piece is supported in a different 
manner as shown in the plan view in Fig. 8.7. 

8.3 Stress-strain curves 
We shall now examine in detail the propenies of the different materials used in civil 
engineering construction from the viewpoint of the results obtained from tensile and 
compression tests. 

Low carbon steel (mild steel) 
A nominal stress-strain curve for mild steel, a ductile material, is shown in Fig. 8.8. 
From 0 to 'a' the stress-strain curve is linear, the material in this range obeying 

Fig. 8.8 Stress-strain curve for mild steel 
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Hooke’s law. Beyond ‘a’, the limit of proportionality, stress is no longer 
proportional to strain and the stress-strain curve continues to ‘b’, the elastic limir, 
which is defined as the maximum stress that can be applied to a material without 
producing a permanent plastic deformation or permanent set when the load is 
removed. In other words, if the material is stressed beyond ‘b’ and the load then 
removed, a residual strain exists at zero load. For many materials it is impossible to 
detect a difference between the limit of proportionality and the elastic limit. From 0 
to ‘b’ the material is said to be in the elastic range while from ‘b’ to fracture the 
material is in the plastic range. The transition from the elastic to the plastic range 
may be explained by considering the arrangement of crystals in the material. As the 
load is applied, slipping occurs between the crystals which are aligned most closely 
to the direction of load. As the load is increased, more and more crystals slip with 
each equal load increment until appreciable strain increments are produced and the 
plastic range is reached. 

A further increase in stress from ‘b’ results in the mild steel reaching its upper 
yield point at ‘c’ followed by a rapid fall in stress to its lower yield point at ‘d’. The 
existence of a lower yield point for mild steel is a peculiarity of the tensile test 
wherein the movement of the ends of the test piece produced by the testing machine 
does not proceed as rapidly as its plastic deformation; the load therefore decreases, 
as does the stress. From ‘d’ to ‘f‘ the strain increases at a roughly constant value of 
stress until strain hardening (see Section 8.4) again causes an increase in stress. This 
increase in stress continues, accompanied by a large increase in strain to ‘g’, the 
ultimate stress, oU,,, of the material. At this point the test piece begins, visibly, to 
‘neck’ as shown in Fig. 8.9. The material in the test piece in the region of the ‘neck’ 
is almost perfectly plastic at this stage and from thence, onwards to fracture, there is 
a reduction in nominal stress. 

For mild steel, yielding occurs at a stress of the order of 300 N/mm*. At fracture 
the strain @e. the elongation) is of the order of 30%. The gradient of the linear 
portion of the stress-strain curve gives a value for Young’s modulus in the region 
of 200 OOO N/mm*. 

The characteristics of the fracture are worthy of examination. In a cylindrical test 
piece the two halves of the fractured test piece have ends which form a ‘cup and 
cone’ (Fig. 8.10). The actual failure planes in this case are inclined at approximately 
45” to the axis of loading and coincide with planes of maximum shear stress 

Fig. 8.9 ’Necking’ of a test piece in the plastic range 

Fig. 8.10 ’Cup-and-cone’ failure of a mild steel test piece 
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(Section 14.2). Similarly, if a flat tensile specimen of mild steel is polished and then 
stressed, a pattern of fine lines appears on the polished surface at yield. These lines, 
which were first discovered by Liider in 1854, intersect approximately at right angles 
and are inclined at 45” to the axis of the specimen, thereby coinciding with planes 
of maximum shear stress. These forms of yielding and fracture suggest that the 
crystalline structure of the steel is relatively weak in shear with yielding taking the 
form of the sliding of one crystal plane over another rather than the tearing apart of 
two crystal planes. 

The behaviour of mild steel in compression is very similar to its behaviour in 
tension, particularly in the elastic range. In the plastic range it is not possible to 
obtain ultimate and fracture loads since, due to compression, the area of cross- 
section increases as the load increases producing a ‘barrelling’ effect as shown in 
Fig. 8.11. This increase in cross-sectional area tends to decrease the true stress, 
thereby increasing the load resistance. Ultimately a flat disc is produced. For design 
purposes the ultimate stresses of mild steel in tension and compression are assumed 
to be the same. 

Aluminium 
Aluminium and some of its alloys are also ductile materials, although their 
stress-strain curves do not have the distinct yield stress of mild steel. A typical 
stress-strain curve is shown in Fig. 8.12. The points ‘a’ and ‘b’ again mark the limit 

Fig. 8.1 1 ’Barrelling’ of a mild steel test piece in compression 

Fig. 8.12 Stress-strain curve for aluminium 
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of proportionality and elastic limit, respectively, but are difficult to determine 
experimentally. Instead a proof stress is defined which is the stress required to 
produce a given permanent strain on removal of the load. Thus, in Fig. 8.12, a line 
drawn parallel to the linear portion of the stress-strain curve from a strain of 0.001 
(i.e. a strain of 0.1 %) intersects the stress-strain curve at the 0.1% proof stress. For 
elastic design this, or the 0.2% proof stress, is taken as the working stress. 

Beyond the limit of proportionality the material extends plastically, reaching its 
ultimate stress, bull, at ‘d’ before finally fracturing under a reduced nominal stress 
at ‘f’. 

A feature of the fracture of aluminium alloy test pieces is the formation of a 
‘double cup’ as shown in Fig. 8.13, implying that failure was initiated in the central 
portion of the test piece while the outer surfaces remained intact. Again considerable 
‘necking’ occurs. 

In compression tests on aluminium and its ductile alloys similar difficulties are 
encountered to those experienced with mild steel. The stress-strain curve is very 
similar in the elastic range to that obtained in a tensile test but the ultimate strength in 
compression cannot be determined; in design its value is assumed to coincide with 
that in tension. 

Brittle materials 

These include cast iron, high-strength steel, concrete, timber, ceramics, glass, etc. 
The plastic range for brittle materials extends to only small values of strain. A 
typical stress-strain curve for a brittle material under tension is shown in Fig. 8.14. 
Little or no yielding occurs and fracture takes place very shortly after the elastic 
limit is reached. 

Fig. 8.13 ’Double-cup’ failure of an aluminium alloy test piece 

Fig. 8.14 Stress-strain curve for a brittle material 
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Fig. 8.15 Failure of brittle materials 

The fracture of a cylindrical test piece takes the form of a single failure plane 
approximately perpendicular to the direction of loading with no visible 'necking' 
and an elongation of the order of 2-3%. 

In compression the stress-strain curve for a brittle material is very similar to that 
in tension except that failure occurs at a much higher value of stress; for concrete 
the ratio is of the order of 1O:l. This is thought to be due to the presence of 
microscopic cracks in the material, giving rise to high stress concentrations which 
are more likely to have a greater effect in reducing tensile strength than compressive 
strength. 

The form of the fracture of brittle materials under compression is clear and 
visible. A cast-iron cylinder, for example, cracks on a diagonal plane as shown in 
Fig. 8.15(a) while failure of a concrete cube is shown in Fig. 8.15(b) where failure 
planes intersect at approximately 45" along each vertical face. Fig. 8.15(c) shows a 
typical failure of a rectangular block of timber in compression. Failure in all these 
cases is due primarily to a breakdown in shear on planes inclined to the direction of 
compression. 

All the stress-strain curves described in the preceding discussion are those 
produced in tensile or compression tests in which the strain is applied at a negligible 
rate. A rapid strain application would result in significant changes in the apparent 
properties of the materials giving possible variations in yield stress of up to 100%. 

8.4 Strain hardening 
The stress-strain curve for a material is influenced by the strain history, or the 
loading and unloading of the material, within the plastic range. Thus in Fig. 8.16 a 

Fig. 8.16 Strain hardening of a material 
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test piece is initially stressed in tension beyond the yield stress at, ‘a’, to a value at 
‘b’. The material is then unloaded to ‘c’ and reloaded to ‘f ’ producing an increase in 
yield stress from the value at ‘a’ to the value at ‘d’. Subsequent unloading to ‘g’ and 
loading to ‘j’ increases the yield stress still further to the value at ‘h’. This increase in 
strength resulting from the loading and unloading is known as strain hardening. It 
can be seen from Fig. 8.16 that the stress-strain curve during the unloading and loading 
cycles forms loops, the shaded areas in Fig. 8.16. These indicate that strain energy is 
lost during the cycle, the energy being dissipated in the form of heat produced by 
internal friction. This energy loss is known as mechanical hysteresis and the loops as 
hysteresis loops. Although the ultimate stress is increased by strain hardening it is 
not influenced to the same extent as yield stress. The increase in strength produced 
by strain hardening is accompanied by decreases in toughness and ductility. 

8.5 Creep and relaxation 
We have seen in Chapter 7 that a given load produces a calculable value of stress in a 
structural member and hence a corresponding value of strain once the full value of the 
load is transferred to the member. However, after this initial or ‘instantaneous’ stress 
and its corresponding value of strain have been attained, a great number of structural 
materials continue to deform slowly and progressively under load over a period of 
time. This behaviour is known as creep. A typical creep curve is shown in Fig. 8.17. 

Some materials such as plastics and rubber exhibit creep at room temperatures but 
most structural materials require high temperatures or long-duration loading at 
moderate temperatures. In some ‘soft’ metals, such as zinc and lead, creep occurs 
over a relatively short period of time, whereas materials such as concrete may be 
subject to creep over a period of years. Creep occurs in steel to a slight extent at 
normal temperatures but becomes very important at temperatures above 316°C. 

Closely related to creep is relaxation. Whereas creep involves an increase in strain 
under constant stress, relaxation is the decrease in stress experienced over a period 
of time by a mateiial subjected to a constant strain. 

Fig. 8.17 Typical creep curve 
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8.6 Fatigue 
Structural members are frequently subjected to repetitive loading over a long period 
of time. Thus, for example, the members of a bridge structure suffer variations in 
loading possibly thousands of times a day as traffic moves over the bridge. In these 
circumstances a structural member may fracture at a level of stress substantially 
below the ultimate stress for non-repetitive static loads; this phenomenon is known 
as fatigue. 

Fatigue cracks are most frequently initiated at sections in a structural member 
where changes in geometry, for example holes, notches or sudden changes in 
section, cause stress concentrations. Designers seek to eliminate such areas by 
ensuring that rapid changes in section are as smooth as possible. Thus at re-entrant 
comers, fillets are provided as shown in Fig. 8.18. 

Other factors which affect the failure of a material under repetitive loading are the 
type of loading (fatigue is primarily a problem with repeated tensile stresses due, 
probably, to the fact that microscopic cracks can propagate more easily under 
tension), temperature, the material, surface finish (machine marks are potential 
crack propagators), corrosion and residual stresses produced by welding. 

Frequently in structural members an alternating stress, oalt, is superimposed on a 
static or mean stress, omean, as illustrated in Fig. 8.19. The value of o,,[ is the most 
important factor in determining the number of cycles of load that produce failure. 
The stress, oa,,, that can be withstood for a specified number of cycles is called the 

Fig. 8.18 Stress concentration location 

Fig. 8.19 Alternating stress in fatigue loading 
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Fig. 8.20 Stress-endurance curves 

fatigue strength of the material. Some materials, such as mild steel, possess a stress 
level that can be withstood for an indefinite number of cycles. This stress is known 
as the endurance limit of the material; no such limit has been found for aluminium 
and its alloys. Fatigue data are frequently presented in the form of an S-n curve or 
stress-endurance curve as shown in Fig. 8.20. 

In many practical situations the amplitude of the alternating stress varies and is 
frequently random in nature. The S-n curve does not, therefore, apply directly and 
an alternative means of predicting failure is required. Miner’s cumulative damage 
theory suggests that failure will occur when 

(8.1) 
i t ,  n2 nr - +-+. . .+  - = I  
NI  Nz N ,  

where n , ,  n,, ..., n, are the number of applications of stresses oalt, oman and N , ,  
N ? ,  . . . , N ,  are the number of cycles to failure of stresses oaIt, o,,,. 

8.7 Design methods 
In Section 8.3 we examined stress-strain curves for different materials and saw that, 
generally, there are two significant values of stress: the yield stress, by, and the 
ultimate stress, our,. . Either of these two stresses may be used as the basis of design 
which must ensure, of course, that a structure will adequately perform the role for 
which it is constructed. In any case the maximum stress in a structure should be kept 
below the elastic limit of the material otherwise a permanent set will result when the 
loads are applied and then removed. 

Two design approaches are possible. The first, known as elastic design, uses either 
the yield stress (for ductile materials), or the ultimate stress (for brittle materials) 
and establishes a working or allowable stress within the elastic range of the material 
by applying a suitable factor of safety whose value depends upon a number of 
considerations. These include the type of material, the type of loading (fatigue 
loading would require a larger factor of safety than static loading which is obvious 
from Section 8.6) and the degree of complexity of the structure. Therefore for 
materials such as steel, the working stress, ow, is given by 

(8.2) OY 
o w =  - 

I t  
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where n is the factor of safety, a typical value being 1.65. For a brittle material such 
as concrete, the working stress would be given by 

in which n is of the order of 2.5. 
Elastic design has been superseded for concrete by limit state or ultimate load 

design and for steel by plastic design (or limit, or ultimate load design). In this 
approach the structure is designed with a given factor of safety against complete 
collapse which is assumed to occur in a concrete structure when the stress reaches 
Gull and occurs in a steel structure when the stress at one or more points reaches o, 
(see Section 9.10). In the design process working or actual loads are determined and 
then factored to give the required ultimate or collapse load of the structure. Knowing 
oUlI (for concrete) or oy (for steel) the appropriate section may then be chosen for 
the structural member. 

The factors of safety used in ultimate load design depend upon several 
parameters. These may be grouped into those related to the material of the member 
and those related to loads. Thus in the ultimate load design of a reinforced concrete 
beam the values of ouiI for concrete and oy for the reinforcing steel are factored by 
partial safety factors to give design strengths that allow for variations of 
workmanship or quality of control in manufacture. Typical values for these partial 
safety factors are 1-5 for concrete and 1-15 for the reinforcement. Note that the 
design strength in both cases is less than the actual strength. In addition, as stated 
above, design loads are obtained in which the actual loads are increased by 
multiplying the latter by a partial safety factor which depends upon the type of load 
being considered. 

As well as strength, structural members must possess sufficient stiffness, under 
normal working loads, to prevent deflections being excessive and thereby damaging 
adjacent parts of the structure. Another consideration related to deflection is the 
appearance of a structure which can be adversely affected if large deflections cause 
cracking of protective and/or decorative coverings. This is particularly critical in 
reinforced concrete beams where the concrete in the tension zone of the beam 
cracks; this does not affect the strength of the beam since the tensile stresses are 
withstood by the reinforcement. However, if deflections are large the crack widths 
will be proportionately large and the surface finish and protection afforded by the 
concrete to the reinforcement would be impaired. 

Codes of Practice limit deflections of beams either by specifying maximum span/ 
depth ratios or by fixing the maximum deflection in terms of the span. A typical 
limitation for a reinforced concrete beam is that the total deflection of the beam 
should not exceed span/250. An additional proviso is that the deflection that takes 
place after the construction of partitions and finishes should not exceed span/350 or 
20 mm, whichever is the lesser. A typical value for a steel beam is span/360. 

It is clear that the deflections of beams under normal working loads occur within 
the elastic range of the material of the beam no matter whether elastic or ultimate 
load theory has been used in their design. Deflections of beams, therefore, are 
checked using elastic analysis. 
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Table 8.1 

Modulus 
of Shear Yield Ultimate 
elasticity, modulus, stress, stress, Poisson’s 

Density E G CY 0”ll ratio 
Material (kNlm3) (Nlmm’) (Nlmm’) (Nlmm’) (Nlmm’) v 

Aluminium alloy 
Brass 
Bronze 
Cast iron 

Concrete 
(med. strength) 
Copper 
Steel (mild) 
Steel 
(high carbon) 

Timber 

27.0 
82-5 
87.0 
72.3 

22.8 

80.6 
77.0 
77.0 

6.0 

70 000 
103 000 
103 000 
103 000 

21 400 

117 000 
200 000 
200 000 

12 000 

40 000 290 440 0.33 
41 000 103 276 
45 000 138 345 
41 000 552 (comp.) 0.25 

138 (tens.) 
20.7 (comp.) 0.13 

41 000 245 345 
79 000 250 4 1 0-550 0.27 
79 000 414 690 0.27 

58(comp.) 

8.8 Material properties 
Table 8.1 lists some typical properties of the more common engineering materials. 

Problems 
P.8.1 Describe a simple tensile test and show, with the aid of sketches, how 

measures of the ductility of the material of the specimen may be obtained. Sketch 
typical stress-strain curves for mild steel and an aluminium alloy showing their 
important features. 

A bar of metal 25 mm in diameter is tested on a length of 250 mm. In 
tension the following results were recorded: 

P.8.2 

Load (kN) 10.4 31.2 52.0 72.8 
Extension (mm) 0.036 0.089 0.140 0.191 

A torsion test gave the following results: 

Torque (kN rn) 0.051 0.152 0.253 0.354 
Angle of twist (deg) 0.24 0.71 1.175 1.642 

Represent these results in graphical form and hence determine Young’s modulus, 
E ,  the modulus of rigidity, G, Poisson’s ratio, v ,  and the bulk modulus, K, for the 
metal. 
(Note: see Chapter 1 1  for torque-angle of twist relationship). 

Am. 

P.8.3 

E = 205 000 N/mm’, G = 80 700 N/mm’, v 2: 0.27, K =  148 500 N/mm’. 

The actual stress-strain curve for a particular material is given by CJ = CE“ 
where C is a constant. Assuming that the material suffers no change in volume 
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during plastic deformation, derive an expression for the nominal stress-strain curve 
and show that this has a maximum when E = n / ( l  - n). 

Ans. B (nominal) = CE "/( 1 + E). 

P.8.4 A structural member is to be subjected to a series of cyclic loads which 
produce different levels of alternating stress as shown below. Determine whether or 
not a fatigue failure is probable. 

Table P.8.4 

Loading No. of cycles No. of cycles to failure 

1 10' 
2 105 

4 1 o7 
3 1 o6 

5x10' 
106 
24x 10' 
12 x i o 7  

~~ ~ ~~ ~ 

Ans. Not probable ( n , / N ,  + n , / N ,  + e-. = 0.39). 



CHAPTER 9 

Bending of Beams 

We have seen in Chapter 3 that bending moments in beams are produced by the 
action of either pure bending moments or shear loads. Reference to problem P.3.4 
also shows that two symmetrically placed concentrated shear loads on a simply 
supported beam induce a state of pure bending, i.e. bending without shear, in the 
central portion of the beam. It is also possible, as we shall see in Section 9.2, to 
produce bending moments by applying loads parallel to but offset from the centroidal 
axis of a beam. Initially, however, we shall concentrate on beams subjected to pure 
bending moments and consider the corresponding internal stress distributions. 

9.1 Symmetrical bending 
Although symmetrical bending is a special case of the bending of beams of 
arbitrary cross-section, it is advantageous to investigate the former first, so that the 
more complex general case may be more easily understood. 

Symmetrical bending arises in beams which have either singly or doubly 
symmetrical cross-sections; examples of both types are shown in Fig. 9.1. 

Suppose that a length of beam, of rectangular cross-section, say, is subjected to a 
pure, sagging bending moment, M (see Section 3.2), applied in a vertical plane. The 
length of beam will bend into the shape shown in Fig. 9.2(a) in which the upper 
surface is concave and the lower convex. It can be seen that the upper longitudinal 
fibres of the beam are compressed while the lower fibres are stretched. It follows 
that between these two extremes there is a fibre that remains unchanged in length. 

Fig. 9.1 Symmetrical section beams 
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Fig. 9.2 Beam subjected to a pure sagging bending moment 

Thus the direct stress varies through the depth of the beam from compression in the 
upper fibres to tension in the lower. Clearly the direct stress is zero for the fibre that 
does not change in length. The surface that contains this fibre and runs through the 
length of the beam is known as the neutral surface or neutral plane; the line of 
intersection of the neutral surface and any cross-section of the beam is termed the 
neutral axis (Fig. 9.2 (b)). 

The problem, therefore, is to determine the variation of direct stress through the 
depth of the beam, the values of the stresses and subsequently to find the 
corresponding beam deflection. 

Assumptions 
The primary assumption made in determining the direct stress distribution produced 
by pure bending is that plane cross-sections of the beam remain plane and normal to 
the longitudinal fibres of the beam after bending. We shall also assume that the 
material of the beam is linearly elastic, i.e. it obeys Hooke’s law, and that the 
material of the beam is homogeneous. Cases of composite beams are considered in 
Chapter 12. 

Direct stress distribution 
Consider a length of beam (Fig. 9.3(a)) that is subjected to a pure, sagging bending 
moment, M, applied in a vertical plane; the beam cross-section has a vertical axis of 
symmetry as shown in Fig. 9.3(b). The bending moment will cause the length of 

Fig. 9.3 Bending of a symmetrical section beam 
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beam to bend in a similar manner to that shown in Fig. 9.2(a) so that a neutral plane 
will exist which is, as yet, unknown distances y ,  and y ,  from the bottom and top of 
the beam, respectively. Coordinates of all points in the beam are referred to axes 
Oxyz (see Section 3.2) in which the origin 0 lies in the neutral plane of the beam. 
We shall now investigate the behaviour of an elemental length, 6z, of the beam 
formed by parallel sections MIN and PGQ (Fig. 9.3(a)) and also the fibre ST of 
cross-sectional area 6A a distance y from the neutral plane. Clearly, before bending 
takes place I" = IG = ST = NQ = 6 2 .  

The application of the bending moment M causes the length of beam to bend 
about a centre of curvature, C, with a radius of curvature, R ,  measured to the 
neutral plane (Fig. 9.4(a)). The previously parallel plane sections MIN and PGQ 
remain plane according to our assumption but are now inclined at an angle 6e to each 
other. The length M P  is now shorter than 6z, while NQ and ST are longer. The length 
IG, being in the neutral plane, remains equal to 6z in length, although curved. Since 
the fibre ST is stretched, it suffers a direct tensile strain, E, (parallel to the z axis of 
the beam), and a corresponding stress, csz. From Fig. 9.4(a) it can be seen that the 
increase in length of ST is ( R  + y)68 - 6z or ( R  + y)& - R 68, since 6z = IG = R 68. 
Thus 

( R + y ) 6 0 - R 6 8  y 
R 6e R 

E L  = = -  (9.1) 

We have assumed that the material of the beam obeys Hooke's law so that the direct 
stress, a?, in the fibre ST is related to E~ by Eq. (7.7); thus 

(9.2) 
Y b I = E -  
R 

The normal force on the fibre ST, i.e. on its cross-section, is oI 6A. However, since 

Fig. 9.4 Deflected shape of a symmetrical section beam subjected to a pure 
bending moment 
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the direct stress is caused by a pure bending moment, the resultant normal force on 
the complete cross-section of the beam must be zero, i.e. 

J o,dA=O 

Substituting for aZ in Eq. (9.3) from Eq. (9.2) gives 

F J  y d A = O  
R A  

in which both E and R are constants for a beam of 
given bending moment. Thus 

J ydA=O 
A 

(9.3) 

(9.4) 

a given material subjected to a 

(9.5) 

Equation (9.5) states that the first moment of the area of the cross-section of the 
beam with respect to the neutral axis, i.e. the x axis, is equal to zero. Thus we see 
that the neutral axis passes through the centroid of area of the cross-section. Since 
the y axis in this case is also an axis of symmetry, it must also pass through the 
centroid of the cross-section. Hence the origin, 0, of the coordinate axes, coincides 
with the centroid of area of the cross-section. 

The moment about the neutral axis of the normal force o,6A, acting on the cross- 
section of the fibre ST is aZy6A. The integral of all such moments over the complete 
cross-section of the beam must equal the applied moment, M. Thus 

which becomes, on substituting for oZ from Eq. (9.2) 

E 
M =  - J y2dA 

R A  
(9.6) 

The term IA  y2 dA is the second moment of area of the cross-section of the beam 
about the neutral axis and is given the symbol I .  Rewriting Eq. (9.6) we have 

EI 
R 

M = -  

or, combining this expression with Eq. (9.2), 

From Eq. (9.8) we see that 

The direct stress, 
directly proportional 

MY 
6. = - 

- I  

(9.7) 

(9.9) 

o,, at any point in the cross-section of a beam is therefore 
to the distance of the point from the neutral axis and so varies 
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linearly through the depth of the beam as shown, for the section JK, in Fig. 9.4(b). 
Clearly, for a positive, or sagging, bending moment or is positive, i.e. tensile, when 
y is positive and compressive (Le. negative) when y is negative. Thus in Fig. 9.4(b) 

MY2 (tension), oz,2 = - (compression) MY 1 
02.1 = - 

I I 
(9.10) 

Furthermore, we see from Eq. (9.7) that the curvature, 1/R, of the beam is given by 

1 M  

R EI 
- = -  (9.1 1) 

and is therefore directly proportional to the applied bending moment and inversely 
proportional to the product EI which is known as the flexural rigidity of the beam. 

Elastic section modulus 

Equations (9.10) may be written in the form 

M M 
oz.2 = - 

Ze.1 Ze.2 
oz.l = - , (9.12) 

in which the terms Ze.](=I/y1) and Ze.2(=I/y2) are known as the elastic section 
moduli of the cross-section. For a beam section having the x axis as an axis of 
symmetry y1 = y2 and Ze.l = Ze.? = Z,, say, 

(9.13) 

Expressing the extremes of direct stress in a beam section in this form is extremely 
useful in elastic design where, generally, a beam of a given material is required to 
support a given bending moment. The maximum allowable stress in the material of 
the beam is known and a minimum required value for the section modulus, Z,, can 
be calculated. A suitable beam section may then be chosen from handbooks listing 
properties and dimensions, including section moduli, of standard structural shapes. 

The selection of a beam cross-section depends upon many factors; these include 
the type of loading and construction, the material of the beam and several others. 
However, for a beam subjected to bending and fabricated from material that has the 
same failure stress in compression as in tension, it is logical to choose a doubly 
symmetrical beam section having its centroid (and therefore its neutral axis) at mid- 
depth. Also it can be seen from Fig. 9.4(b) that the greatest values of direct stress 
occur at points furthest from the neutral axis so that the most efficient section is one 
in which most of the material is located as far as possible from the neutral axis. Such 
a section is the I-section shown in Fig. 9.1. 

Example 9.1 A simply supported beam, 6 m long, is required to carry a uniformly 
distributed load of 10 kN/m. If the allowable direct stress in tension and 
compression is 155 N/mm’, select a suitable cross-section for the beam. 
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From Fig. 3.15(d) we see that the maximum bending moment in a simply 
supported beam of length L carrying a uniformly distributed load of intensity w is 
given by 

wL2 M,, = - 
8 

Therefore in this case 

10 x 62 
8 

M,, = - - 4 5 k N m  - 

The required section modulus of the beam is now obtained using Eq. (9.13), thus 

M,, 45 x lo6 

0 2 .  ,x 

z . = - -  - = 290323 m3 e. mln 
155 

From tables of structural steel sections it can be seen that a Universal Beam, 
254 mm x 102 mm x 28 kg/m, has a section modulus (about a centroidal axis 
parallel to its flanges) of 307 600 mm'. This is the smallest beam section having a 
section modulus greater than that required and allows a margin for the increased load 
due to the self-weight of the beam. However, we must now check that the allowable 
stress is not exceeded due to self-weight. The total load intensity produced by the 
applied load and self-weight is 

28 x 9.81 
10 + = 10.3 kN/m 

1 o3 
Hence, from Eq. (i) 

10.3 x 62 
8 

M,, = = 46.4 kN m 

Therefore from Eq. (9.13) 

46.4 io3 io3 
a:.max = = 150-8 N / I ~ I ~ '  

307 600 

The allowable stress is 155 N/mm2 so that the Universal Beam, 
254 mm x 102 mm x 28 kg/m, is satisfactory. 

Example 9.2 The cross-section of a beam has the dimensions shown in 
Fig. 9.5(a). If the beam is subjected to a sagging bending moment of 100 kNm 
applied in a vertical plane, determine the distribution of direct stress through the 
depth of the section. 

The cross-section of the beam is doubly symmetrical so that the centroid, G, of 
the section, and therefore the origin of axes, coincides with the mid-point of the 
web. Furthermore, the bending moment is applied to the beam section in a vertical 
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Fig. 9.5 Direct stress distribution in beam of Ex. 9.2 

plane so that the x axis becomes the neutral axis of the beam section; we therefore 
need to calculate the second moment of area, I,, about this axis. Thus 

200 x 30O3 175 x 2603 
I ,  = - = 193.7 x 106mm4 (see Section 9.6) 

12 12 

From Eq. (9.9) the distribution of direct stress, oz. is given by 

100x lo6 
0: = y = 0 .52~  ( 9  

193.7 x lo6 

The direct stress therefore varies linearly over the depth of the section from a value 

0.52 x (- 150) = -78 N/mm2 (compression) 

at the top of the beam to 

0.52 x (+ 150) = +78 N/mm’ (tension) 

at the bottom as shown in Fig. 9.5(b). 

Example 9.3 Now determine the distribution of direct stress in the beam of 
Ex. 9.2 if the bending moment is applied in a horizontal plane and in a clockwise 
sense about Cy when viewed in the direction yG. 

In this case the beam will bend about the vertical y axis which therefore becomes the 
neutral axis of the section. Thus Eq. (9.9) becomes 

A4 
o : = - x  (i) 

I? 

where I, is the second moment of area of the beam section about the y axis. Again 
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from Section 9.6 

20 x 2003 260 x 253 
I. .  = 2 x + = 27-0 

12 12 

Hence, substituting for M and I ,  in Eq. (i), 

We have not specified a sign convention for bending moments applied in a horizontal 
plane; clearly in this situation the sagging/hogging convention loses its meaning. 
However, a physical appreciation of the problem shows that the left-hand edges of 
the beam are in tension while the right-hand edges are in compression. Again the 
distribution is linear and varies from 3.7 x (+ 100) = 370 N/mm* (tension) at the 
left-hand edges of each flange to 3.7 x (- 100) = -370 N/mm' (compression) at the 
right-hand edges. 

We note that the maximum stresses in this example are very much greater than 
those in Ex. 9.2. This is due to the fact that the bulk of the material in the beam 
section is concentrated in the region of the neutral axis where the stresses are low. 
The use of an I-section in this manner would therefore be structurally inefficient. 

Example 9.4 The beam section of Ex. 9.2 is subjected to a bending moment of 
100 kN m applied in a plane parallel to the longitudinal axis of the beam but inclined 
at 30" to the left of vertical. The sense of the bending moment is clockwise when 
viewed from the left-hand edge of the beam section. Determine the distribution of 
direct stress. 

The bending moment is first resolved into two components, M ,  in a vertical plane 
and My in a horizontal plane. Equation (9.9) may then be written in two forms: 

M., MY 

I ,  I Y  

or= - y and or= - x 

The separate distributions can then be determined and superimposed. A more direct 
method is to combine the two equations (i) to give the total direct stress at any point 
( x ,  y) in the section. Thus 

Now 

M ,  = 100 cos 30" = 86.6 kN m 
M ,  = 100 sin 30" = 50-0 kN m 

(ii) 

(iii) 

M A  is, in this case, a negative bending moment producing tension in the upper half 
of the beam where y is negative. Also M ,  produces tension in the left-hand half of 
the beam where x is positive; we shall therefore call M ,  a positive bending moment. 
Substituting the values of M ,  and M ,  from Eqs (iii) but with the appropriate sign in 
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Eq. (ii) together with the values of I ,  and I ,  from Exs 9.2 and 9.3 we obtain 

86.6 x lo6 50.0 x lo6 
6, = - X (iii) 

193.7 x lo6 '+ 27.0 x lo6 

or o,= -0*45y+ 1 . 8 5 ~  (iv) 
Equation (iv) gives the value of direct stress at any point in the cross-section of the 
beam and may also be used to determine the distribution over any desired portion. Thus 
on the upper edge of the top flange y = - 150 mm, 100 mm L x 3 - 100 mm, so that the 
direct stress varies linearly with x. At the top left-hand comer of the top flange 

(tension) or= -0-45 x (-150)+ 1.85 x (+loo)= +252-5 N/mm2 

At the top right-hand comer 

6, = -0.45 x (- 150) + 1.85 x (-100) = - 1173 N/mmz (compression) 

The distributions of direct stress over the outer edge of each flange and along the 
vertical axis of symmetry are shown in Fig. 9.6. Note that the neutral axis of the 
beam section does not in this case coincide with either the x or y axis, although it 
still passes through the centroid of the section. Its inclination, a, to the x axis, say, 
can be found by setting oz = 0 in Eq. (iv). Thus 

0 = - 0 . 4 5 ~  + 1 . 8 5 ~  

y 1.85 

x 0.45 
-=-- or -4.11 = t a n a  

which gives a = 76.3" 

Fig. 9.6 Direct stress distribution in beam of Ex. 9.4 
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Note that a may be found in general terms from Eq. (ii) by again setting oz = 0. 
Hence 

- -- - - t a n a  (9.14) Y MI[, 

x M,I. ,  
_ -  

9.2 Combined bending and axial load 
In many practical situations beams and columns are subjected to combinations of 
axial loads and bending moments. For example, the column shown in Fig. 9.7 
supports a beam seated on a bracket attached to the column. The loads on the beam 
produce a vertical load, P ,  on the bracket, the load being offset a distance e from the 
neutral plane of the column. The action of P on the column is therefore equivalent 
to an axial load, P ,  plus a bending moment, Pe .  The direct stress at any point in the 
cross-section of the column is therefore the algebraic sum of the direct stress due to 
the axial load and the direct stress due to bending. 

Consider now a length of beam having a vertical plane of symmetry and 
subjected to a tensile load, P ,  which is offset by positive distances e, and e ,  from the 
x and y axes, respectively (Fig. 9.8). It can be seen that P is equivalent to an axial 
load P plus bending moments Pe, and P e ,  about the x and y axes, respectively. The 
moment P e ,  is a positive or sagging bending moment while the moment P e ,  induces 
tension in the region where x is positive; P e ,  is therefore also regarded as a positive 
moment. Thus at any point ( x , y )  the direct stress, oz, due to the combined force 
system is, using Eqs (7.1) and (9.9), 

P P e ,  P e ,  
o , = - + - y + -  x (9.15) 

A 1, I ,  

Equation (9.15) gives the value of o, at any point (x, y) in the beam section for any 
combination of signs of P ,  e , ,  e , .  

Example 9.5 

A beam has the cross-section shown in Fig. 9.9(a). It is subjected to a normal tensile 
force, P ,  whose line of action passes through the centroid of the horizontal flange. 

Fig. 9.7 Combined bending and axial load on a column 
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Fig. 9.8 Combined bending and axial load on a beam section 

Fig. 9.9 Direct stress distribution in beam section of Ex. 9.5 

Calculate the maximum allowable value of P if the maximum direct stress is limited 
to +150 N/mm’. 

The first step in the solution of the problem is to determine the position of the 
centroid, G,  of the section. Thus, taking moments of areas about the top edge of the 
flange we have 

(200x20+200x20) j=200x20x10+200x20x120  

from which y=65  mm 

The second moment of area of the section about the x axis is then obtained using the 
methods of Section 9.6 and is 

200 x 65’ 180 x 45’ 20 x 155’ 

3 3 3 
I ,  = - + = 37.7 x 106mm4 
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Since the line of action of the load intersects the y axis, e, in Eq. (9.15) is zero so 
that 

P Pe, 

- A I., 
Y o-=-+- 

Also e, = -55 mm so that Pe, = -55 P and Eq. (i) becomes 

0 2 = P  -- 55 Y) 
(8; 3 7 . 7 ~  lo6 

or a r=P(1 .25  x 1 . 4 6 ~  lo-") (ii) 

It can be seen from Eq. (ii) that 6: varies linearly through the depth of the beam 
from a tensile value at the top of the flange where y is negative to either a tensile or 
compressive value at the bottom of the leg depending on whether the bracketed term 
is positive or negative. Therefore at the top of the flange 

+ 150= P[1-25 x 1 . 4 6 ~  10-6x (-65)] 

which gives the limiting value of P as 682 kN. 

of Eq. (ii)becomes 
At the bottom of the leg of the section y = + 155 mm, so that the right-hand side 

P[1.25 x 1 . 4 6 ~  10-6x (+155)] = -1.01 x 10-4P 

which is negative for a tensile value of P. Hence the resultant direct stress at the 
bottom of the leg is compressive so that, for a limiting value of P,  

- i50= -1.01 x ~ o - ~ P  

from which P =  1485 kN 

We see therefore that the maximum allowable value of P is 682 kN, giving the 
direct stress distribution shown in Fig. 9.9(b). 

Core of a rectangular section 

In some structures, such as brick-built chimneys and gravity dams which are 
fabricated from brittle materials, it is inadvisable for tension to be developed in any 
cross-section. Clearly, from our previous discussion, it is possible for a compressive 
load that is offset from the neutral axis of a beam section to induce a resultant tensile 
stress in some regions of the cross-section if the tensile stress due to bending in 
those regions is greater than the compressive stress produced by the axial load. We 
therefore require to impose limits on the eccentricity of such a load so that no tensile 
stresses are induced. 

Consider the rectangular section shown in Fig. 9.10 subjected to an eccentric 
compressive load, P, applied parallel to the longitudinal axis in the positive xy 
quadrant. Note that if P were inclined at some angle to the longitudinal axis, then we 
need only consider the component of P normal to the section since the in-plane 
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Fig. 9.10 Core of a rectangular section 

component would induce only shear stresses. Since P is a compressive load and 
therefore negative, Eq. (9.15) becomes 

P Pe, Pe, 
Y - -  X (9.16) 

In the region of the cross-section where x and y are negative, tension will develop if 

Q, = -- - - 
A I ,  I ,  

17y+-x I P > - 
p: I 13 

A p Pe I ,  ( ;) y ( :) 
The limiting case arises when the direct stress is zero at the comer of the section, i.e. 
when x =  -b /2  and y =  -d/2.  Therefore, substituting these values in Eq. (9.16) we 
have 

0 = - - -  ?' -- -- -- 

or, since A = bd, I ,  = bd7/12, I ,  = db3/12 (see Section 9.6) 

0 = - bd + 6be, + 6de,, 

bd 
be,. + de, = - 

6 
which gives 

Rearranging we obtain 

(9.17) 

Equation (9.17) defines the line AB in Fig. 9.10 which sets the limit for the 
eccentricity of P from both the x and y axes. It follows that P can be applied at any 
point in the regiol; GAB for there to be no tension developed anywhere in the 
section. 

Since the section is doubly symmetrical, a similar argument applies to the regions 
GBC, GCD and GDA; the rhombus ABCD is known as the core of the secrion and 
has diagonals BD = b /3  and AC = d/3.  

d d  
e =-- e ,  + - 
? ' b  6 
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Core of a circular section 
Bending, produced by an eccentric load P ,  in a circular cross-section always takes 
place about a diameter that is perpendicular to the radius on which P acts. It is 
therefore logical to take this diameter and the radius on which P acts as the 
coordinate axes of the section (Fig. 9.1 1). 

Suppose that P in Fig. 9.11 is a compressive load. The direct stress, o,, at any 
point ( x ,  y)  is given by Eq. (9.15) in which e, = 0. Hence 

(9.18) 
P Pe, 
A I ,  

X (J = - - - -  

Tension will occur in the region where x is negative if 

l ? x l  > l j  
The limiting case occurs when o L = 0 and x = - R; hence 

P Pe,y o=----  ( -R)  
A 1, 

Now A = nRZ and I ,  = 7cR4/4 (see Section 9.6) 

1 4e ,  
so that O=- -  +-  

nR2 nR' 

R from which e = -  
.'- 4 

Thus the core of a circular section is a circle of radius R / 4 .  

Example 9.6 A free-standing masonry wall is 7 m high, 0.6 m thick and has a 
density of 2000 kg/m7. Calculate the maximum, uniform, horizontal wind pressure 
that can occur without tension developing at any point in the wall. 

Fig. 9.1 1 Core of a circular section beam 
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Fig. 9.12 Masonry wall of Ex. 9.6 

Consider a 1 m length of wall. The forces acting are the horizontal resultant, P ,  of 
the uniform wind pressure, p ,  and the weight, W, of the 1 m length of wall 
(Fig. 9.12). 

Clearly the base section is the one that experiences the greatest compressive 
normal load due to self-weight and also the greatest bending moment due to wind 
pressure. It is also the most critical section since the bending moment that causes 
tension is a function of the square of the height of the wall, whereas the weight 
causing compression is a linear function of wall height. From Fig. 9.10 it is clear 
that the resultant, R, of P and W must lie within the central 0.2 m of the base 
section, i.e. within the middle third of the section, for there to be no tension 
developed anywhere in the base cross-section. The limiting case arises when R 
passes through m, one of the middle third points, in which case the direct stress at B 
is zero and the moment of R (and therefore the sum of the moments of P and W )  
about m is zero. Hence 

3.5 P=0.1 w ( 0  
where P = p x 7 x l  N if p i s i n N / m 2  

and W = 2 0 0 0 ~ 9 * 8 1  ~ 0 . 6 ~ 7 N  

Substituting for P and W in Eq. (i) and solving for p gives 

p = 336.3 N/m’ 

9.3 Anticlastic bending 
Consider the rectangular beam section in Fig. 9.13(a); the direct stress distribution in 
the section due to a positive bending moment applied in a vertical plane vanes from 
compression in the upper half of the beam to tension in the lower half 
(Fig. 9.13(b)). However, due to the Poisson effect (see Section 7.8) the compressive 
stress produces a lateral elongation of the upper fibres of the beam section while the 
tensile stress produces a lateral contraction of the lower. The section does not 
therefore remain rectangular but distorts as shown in Fig. 9.13(c); the effect is 
known as anticlastic berdirzg. 
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Fig. 9.13 Anticlastic bending of a beam section 

Anticlastic bending is of interest in the analysis of thin-walled box beams in 
which the cross-sections are maintained by stiffening ribs. The prevention of 
anticlastic distonion induces local variations in stress distributions in the webs and 
covers of the box beam and also in the stiffening ribs. 

9.4 Strain energy in bending 
A positive bending moment applied to a length of beam causes the upper 
longitudinal fibres to be compressed and the lower ones to stretch as shown in 
Fig. 9.4(a). The bending moment therefore does work on the length of beam and 
this work is absorbed by the beam as strain energy. 

Suppose that the bending moment, M, in Fig. 9.4(a) is gradually applied so that 
when it reaches its final value the angle subtended at the centre of curvature by the 
element 62 is 68. From Fig. 9.4(a) we see that 

R68=6z  

Substituting in Eq. (9.7) for R we obtain 

(9.19) EI, M = - 6 8  
62 

so that 68 is a linear function of M. It follows that the work done by the gradually 
applied moment M is M 68/2 subject to the condition that the limit of 
proportionality is not exceeded. The strain energy, 6U, of the elemental length of 
beam is therefore given by 

6 i J = f M 6 8  (9.20) 

or, substituting for 68 from Eq. (9.19) in Eq. (9.20), 

1 M 2  
2 E l ,  

6 U = - - &  

The total strain energy, U ,  due to bending in a beam of length L is therefore 

M ?  u = J  -ddz (9.21) 
c 2EI, 
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9.5 Unsymmetrical bending 
Frequently in civil engineering construction beam sections do not possess any axes 
of symmetry. Typical examples are shown in Fig. 9.14 where the angle section has 
legs of unequal length and the Z-section possesses anti- or skew symmetry about a 
horizontal axis through its centroid, but not symmetry. We shall now develop the 
theory of bending for beams of arbitrary cross-section. 

Assumptions 
We shall again assume, as in the case of symmetrical bending, that plane sections of 
the beam remain plane after bending and that the material of the beam is 
homogeneous and linearly elastic. 

Sign conventions and notation 
Since we are now concerned with the general case of bending we may apply loading 
systems to a beam in any plane. However, no matter how complex these loading 
systems are, they can always be resolved into components in planes containing the 
three coordinate axes of the beam. We shall use an identical system of axes to that 
shown in Fig. 3.6, but our notation for loads must be extended and modified to allow 
for the general case. 

Figure 9.15 shows the symbols adopted, positive directions and senses for loads 
and moments applied externally to a beam and also the positive directions of the 
components u,  v and w of the displacement of any point in the beam cross-section 

Fig. 9.14 Unsymmetrical beam sections 

Fig. 9.15 Sign conventions and notation 
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parallel to the x ,  y and z axes, respectively. The convention for axial load, P ,  and 
torque, T ,  is identical to that in Fig. 3.6 but externally applied shear loads are now 
given the symbol S with an appropriate suffix, x or y ,  to indicate direction; similarly 
for the distributed loads w,(z )  and w,(z). The suffixes used to designate the 
components M, and M, of an applied bending moment indicate the axes about which 
they act. Thus M, is a bending moment in a vertical plane acting about the x axis of 
the beam section. Although M ,  in Fig. 9.15 is a sagging bending moment and 
therefore in agreement with our previous convention, we need to extend the 
definition of a positive bending moment to include M, which is applied in a 
horizontal plane. Thus we shall define M, and M, as positive when they each induce 
tensile stresses in the positive xy quadrant of the beam section. 

Although positive directions and senses for externally applied forces and moments 
have been fixed, it can be seen from Fig. 9.16 that positive internal forces and 
moments form one of two different systems depending on which face of an internal 
section is considered. Thus if we refer internal forces and moments to that face of a 
section that is seen when a view is taken in the direction z0 ,  then positive internal 
forces and moments are in the same direction and sense as the externally applied 
loads, whereas on the opposite face they form an opposite system. The former 
system has the advantage that axial and shear forces are always positive in the 
positive directions of the appropriate axes whether they are internal or external. It 
must be realized, however, that internal stress resultants then become equivalent to 
externally applied forces and moments and are not in equilibrium with them as 
would be the case if the opposite face were considered. 

Direct stress distribution 
Consider a beam having the arbitrary cross-section shown in Fig. 9.17. The face of 
the section shown is that which is seen when viewed in the direction z 0  so that the 
components M, and M, of the internal bending moment are positive. Suppose that 
the origin 0 of our system of axes is positioned at some point on the neutral axis of 
the beam section; the location and inclination a of the neutral axis to the x axis are 
both, as yet, unknown. 

Fig. 9.16 Positive internal force system 
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Fig. 9.17 Bending of an unsymmetrical section beam 

We have seen in Section 9.1 that a beam bends about the neutral axis of its cross- 
section so that the radius of curvature, R, of the beam is perpendicular to the neutral 
axis. Therefore by direct comparison with Eq. (9.2) it can be seen that the direct 
stress, az, on the element, 6A, a perpendicular distance p from the neutral axis, is 
given by 

(9.22) 

The beam section is subjected to a pure bending moment so that the resultant direct 
load on the section is zero. Hence 

1, aZ dA = 0 

P 
R 

a ,=E-  

Replacing aZ in this equation from Q. (9.22) we have 

IAE;dA=O P 

or, for a beam of a given material subjected to a given bending moment, 

l ,PdA=O (9.23) 

Qualitatively Eq. (9.23) states that the first moment of area of the beam section 
about the neutral axis is zero. It follows that in problems involving the pure bending 
of beams the neutral axis always passes through the centroid of the beam section. 
We shall therefore choose the centroid, G, of a section as the origin of axes. 

From Fig. 9.17 we see that 
p = x sin a + y cos a (9.24) 

so that from Eq. (9.22) 

(9.25) 
E 
R 

0, = - (x sin a + y cos a) 
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The moment resultants of the direct stress distribution are equivalent to M, and M, 

E sin a E cos a 
M,= - I ,  + - 1 ,  

My= - I ,  + - I I, 

R R 

E sin a E cos a 
R R 

so that 

M, = j A  o z y  dA, My = IA olx dA 

Substituting for o2 from Eq. (9.25) in Eqs (9.26), we obtain 

(9.28) 

b 

M,= - E s i n a /  xydA+- E ‘Os a 1, y2 dA 
R A  R 

My= - x dA+- EcosaI  xydA 
R A  

InEqs (9.27) 

(9.26) 

(9.27) 

Equation (9.29) may be written in the more convenient form 

M.! M, 
1.v  Ir 

o,= - y + -  x 

where 

(9.29) 

(9.30) 

(9.3 1) 

In the case where the beam section has either Ox or Oy (or both) as an axis of 
symmetry, then I,, is zero (see Section 9.6) and Ox, O y  are principal axes. 
Equations (9.31) then reduce to 

M, = M,, M, = M, 
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and Eq.  (9.30) becomes 

M, M,. 
I., I,v 

6, = - y + - x (compare with Eq. (ii) of Ex. 9.4) (9.32) 

which is the result for symmetrical bending. 

Position of the neutral axis 
The direct stress at all points on the neutral axis of the beam section is zero. Thus, 
from Eq. (9.30) 

M, My 
0 = - YN.A.  + - xN.A. 

L 4 
where x ~ . ~ .  and YN,A, are the coordinates of any point on the neutral axis. Thus 

k- @ y I., 
XN.A. R.x I y  

or, referring to Fig. 9.17 

R, I ,  

M., I.v 
m a = - -  (9.33) 

since Q is positive when Y , , ~ ,  is negative and x , , ~ ,  is positive. 

9.6 Calculation of section properties 
It will be helpful at this stage to discuss the calculation of the various section 
properties required in the analysis of beams subjected to bending. Initially, however, 
two useful theorems are quoted. 

Parallel axes theorem 
Consider the beam section shown in Fig. 9.18 and suppose that the second moment 
of area, I,, about an axis through its centroid G is known. The second moment of 
area, I,, about a parallel axis, NN, a distance b from the centroidal axis is then given 
by 

(9.34) 

Fig. 9.18 Parallel axes theorem 
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Theorem of perpendicular axes 
In Fig. 9.19 the second moments of area, I ,  and I , ,  of the section about Ox and Oy 
are known. The second moment of area about an axis through 0 perpendicular to the 
plane of the section (i.e. a polar second moment of area) is then 

(9.35) I ,  = I, + I ,  

Second moments of area of standard sections 
Many sections in use in civil engineering such as those illustrated in Fig. 9.1 may be 
regarded as comprising of a number of rectangular shapes. The problem of 
determining the properties of such sections is simplified if the second moments of 
area of the rectangular components are known and use is made of the parallel axes 
theorem. Thus, for the rectangular section of Fig. 9.20, 

[IC2 I , = /  y 2 d A = I  4 2  6y2dy=b - 
- 4 2  

(9.36) 
bd 3 
12 

db 3 
12 

which gives I , =  - 

Similarly I ,  = - (9.37) 

Frequently it is useful to know the second moment of area of a rectangular section 
about an axis which coincides with one of its edges. Thus in Fig. 9.20, and using the 
parallel axes theorem, 

] , = - + b d - -  =- (9.38) 

Example 9.7 Determine the second moments of area, I ,  and I , ,  of the I-section 
shown in Fig. 9.2 1. 

Using Eq. (9.36) 

bd3 12 ( J b: 

bd3 (b - tw)dw3 
12 12 

I , = - -  

Fig. 9.19 Theorem of perpendicular axes 
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Fig. 9.20 Second moments of area of a rectangular section 

Fig. 9.21 

Alternatively, using the parallel axes theorem in conjunction with Q. (9.36) 

Second moments of area of an I-section 

[ y; ( dw;tr ) l  Ldw 3 I ,  = 2 - + btf - +- 
12 

Also, from Q. (9.37). 
3 tfb3 d, t ,  

12 12 
I,.=2-+- 

It is also useful to determine the second moment of area, about a diameter, of a 
circular section. In Fig. 9.22 where the x and y axes pass through the centroid of the 
section, 

I ,  = I, yz dA = [-:; 2(: cos 0)y’ dy (9.39) 
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Fig. 9.22 Second moments of area of a circular section 

Integration of Eq. (9.39) is simplified if an angular variable, 8, is used. Thus 

I , = J ” ~ ’  d c o s e  - s ine  -cosede  

I ,  = - J;‘’ cos2 e sin’ e de 

which gives I ,  = - (9.40) 

Clearly from symmetry 

4 2  (:. r: 
d4 

8 
i.e. 

nd4 

64 

7td4 

64 
I ,  = - (9.41) 

Using the theorem of perpendicular axes, the polar second moment of area, I , ,  is 
given by 

nd4 
I ,  = I ,  + I ,  = - 

32 
(9.42) 

Product second moment of area 
The product second moment of area, I,,, of a beam section with respect to x and y 
axes is defined by 

I , ,  =I, X Y  dA (9.43) 

Thus each element of area in the cross-section is multiplied by the product of its 
coordinates and the integration is taken over the complete area. Although second 
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moments of area are always positive since elements of area are multiplied by the 
square of one of their coordinates, it is possible for I , ,  to be negative if the section 
lies predominantly in the second and fourth quadrants of the axes system. Such a 
situation would arise in the case of the Z-section of Fig. 9.23(a) where the product 
second moment of area of each flange is clearly negative. 

A special case arises when one (or both) of the coordinate axes is an axis of 
symmetry so that for any element of area, &A, having the product of its coordinates 
positive, there is an identical element for which the product of its coordinates is 
negative (Fig. 9.23(b)). Summation (Le. integration) over the entire section of the 
product second moment of area of all such pairs of elements results in a zero value 
for I , ) .  

We have shown previously that the parallel axes theorem may be used to calculate 
second moments of area of beam sections comprising geometrically simple 
components. The theorem can be extended to the calculation of product second 
moments of area. Let us suppose that we wish to calculate the product second 
moment of area, I , ,  of the section shown in Fig. 9.23(c) about axes xy when I,, 
about its own, say centroidal, axes system GXY is known. From Eq. (9.43) 

I , ,  =I, XY dA 

or I , ,  = 1, ( X  - a)(Y - b)  dA 

Fig. 9.23 Product second moment of area 
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which, on expanding, gives 

I-r,,,=/ A X Y d A - b /  A X d A - a /  Y d A + a b /  A dA 

If X and Y are centroidal axes then j A  X dA = JA Y dA = 0. Hence 

I , ,  = I,, + abA (9.44) 

It can be seen from Eq. (9.44) that if either GX or GY is an axis of symmetry then 
I, ,  = 0 and 

I ,~ = abA (9.45) 

Thus for a section component having an axis of symmetry that is parallel to either of 
the section reference axes the product second moment of area is the product of the 
coordinates of its centroid multiplied by its area. 

Example 9.8 A beam having the cross-section shown in Fig. 9.24 is subjected to a 
hogging bending moment of 1500 Nm in a vertical plane. Calculate the maximum 
direct stress due to bending stating the point at which it acts. 

The position of the centroid, G, of the section may be found by taking moments 
of areas about some convenient point. Thus 

( 1 2 0 ~ 8 + 8 0 ~ 8 ) j = 1 2 0 ~ 8 ~ 4 + 8 0 ~ 8 ~ 4 8  

which gives j = 2 1 . 6  mm 

and 

giving P =  16 mm 

The second moments of area referred to axes Gxy are now calculated. 

(120 x 8 + 80 x 8 ) i =  80 x 8 ~4 + 120 x 8 x 24 

120 x (8)) 8 x (80)3 
I ,  = + 120 x 8 x (17-6)'+ 

12 12 
+ 80 x 8 x (26-4)* 

= 1-09 x lo6 mm' 

8 x (120)' 
80 x (8)' + 80 x 8 x (12)2 + 120 x 8 x (8f + - I ,  = 

12 12 

=1-31 x 10hmm4 

I , ,  = 120 x 8 x (-8) x (-17.6) + 80 x 8 x (+  12) x ( +  26.4) 

=0.34 x 10' mm4 

Since M, = - 1500 N m and M, = 0 we have, from Eqs. (9.31) 

R,= -1630Nm and HI= +505 Nm 

Substituting these values and the appropriate second moments of area in Eq. (9.30), 
we obtain 

(i) <T ~ = - 1 . 5 ~  + 0 . 3 9 ~  
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Fig. 9.24 Beam section of Ex. 9.8 

Inspection of Eq. (i) shows that az is a maximum at F where x =  8 mm, 
y = 66.4 mm. Hence 

az.mx = -96 N/mm2 (compressive) 

Approximations for thin-walled sections 
Modem civil engineering structures frequently take the form of thin-walled cellular 
box beams which combine the advantages of comparatively low weight and high 
strength, particularly in torsion. Other forms of thin-walled structure consist of 
‘open’ section beams such as a plate girder which is consuucted from thin plates 
stiffened against instability. 

There is no clearly defined line separating ‘thick’ and ‘thin-walled’ sections; the 
approximations allowed in the analysis of thin-walled sections become increasingly 
inaccurate the ‘thicker’ a section becomes. However, as a guide, it is generally accepted 
that the approximations are reasonably accurate for sections for which the ratio 

t,, 

b 
d 0.1 - 

where t,,, is the maximum thickness in the section and b is a typical cross-sectional 
dimension. 

In the calculation of the properties of thin-walled sections we shall assume that 
the thickness, t ,  of the section is small compared with its cross-sectional dimensions 
so that squares and higher powers of t are neglected. The section profile may then be 
represented by the mid-line of its wall. Thus stresses are calculated at points on the 
mid-line and assumed to be constant across the thickness. 

Example 9.9 Calculate the second moment of area, I.,, of the channel section 
shown in Fig. 9.25(a). 

The centroid of the section is located midway between the flanges; its horizontal 
position is not needed since only I ,  is required. Thus 

I ,  = *(% + b d )  + t [2(h - t/2)I3 

12 
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Fig. 9.25 Calculation of the second moment of area of a thin-walled channel section 

which, on expanding, becomes 

3h2t  3ht2 t 3  (7; . ) I : [ (  2 4 8  
I ,  = 2 - + bth + - (2)’ h 3  - - + - - -)] 

Neglecting powers of t 2  and upwards we obtain 

2 ( 2 N 3  I ,  = 2bth + t - 
12 

It is unnecessary for such calculations to be carried out in full since the final result 
may be obtained almost directly by regarding the section as being represented by a 
single line as shown in Fig. 9.25 (b). 
Example 9.10 A thin-walled beam has the cross-section shown in Fig. 9.26. 
Determine the direct stress distribution produced by a hogging bending moment M,. 

The section is antisymmetrical with its centroid at the mid-point of the vertical 
web. The direct stress distribution is therefore given by Eq. (9.30),  viz. 

R, R, 
I ,  I )  

, R,= 

o : = - y + - x  ( 9  

M , I , ,  / I ,  
1 - (],,I ) . /I ,  I ,  

where, in this case (see Eqs (9 .31)) ,  

(ii) 

The section properties are calculated using the previously specified approximations 
for thin-walled sections; thus 

- M ,  
1 - ( I , $ / I ,  I ,  

R, = 

I+-(-)  f i t  h 2 + - = -  th’ h’t 

t I1 ’ h’t 1 = 2 -  - = -  
’ 3 ( 2 )  12 

I = - -  ht (”)( - - + - - -  ;) 1; ( ;)(+ 8 h ’t 

2 2  12 3 

” 2 4 
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Fig. 9.26 Beam section of Ex. 9.10 

Substituting these values in Eqs (ii) we obtain 

H, = -2.29 M , ,  H) = -0.86 M, 
These expressions, in turn, when substituted in Eq. (i) give 

(iii) 

On the top flange y = -h/2, h / 2  3 x 3 0 and the distribution of direct stress is given 

M, 
0: = - - ( 6 . 8 6 ~  + 10.3~) 

h ' I  

by 

M, 
h 'f 

az = - (3.43h - 1 0 . 3 ~ )  

which is linear. Hence 

1-72M, 
0 : A  = - - (compressive) 

I1 2t 

3-43M, 
0 : , B  = +- (tensile) 

h ' I  

In the web - h/2 a y ah/2  and x = 0 so that Eq. (iii) reduces to 

6*86M,  
GI=-- Y 

h ' I  

Again the distribution is linear and vanes from 

3*43M, 
ol.B = + - (tensile) 

I1 -t 

3.43M, 
to O:,c = - - (compressive) 

The distribution in the lower flange may be deduced from antisymmetry. The 
complete distribution is as shown in Fig. 9.27. 

h ' I  
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Fig. 9.29 Second moment of area of a semicircular thin-walled section 

Properties of thin-walled curved sections are found in a similar manner. Thus I ,  
for the semicircular section of Fig. 9.29 is 

I ,  = I lr ty2 ds 
0 

Expressing y and s in terms of a single variable 9 simplifies the integration; hence 

I ,  = In t(-r cos 9)2r de 
0 

from which 
I ,  = rcr3t/2 

9.7 Principal axes and principal second moments of 
area 

In any beam section there is a set of axes, neither of which need necessarily be an 
axis of symmetry, for which the product second moment of area is zero. Such axes 
are known as principal axes and the second moments of area about these axes are 
termed principal second moments of area. 

Consider the arbitrary beam section shown in Fig. 9.30. Suppose that the second 
moments of area I , ,  I ,  and the product second moment of area, I , ) ,  about arbitrary 
axes Oxy are known. By definition 

I ,  =I y’dA, I ,  = I, x’dA, I , ,  =I xydA (9.46) 

The corresponding second moments of area about axes  OX,^,, are 

I,(,) = J, Y,’ dA7 I , , , )  = 1, XI’ dA, I,(I).,(l) =I, XIY,  dA (9.47) 

From Fig. 9.30 

x, = s c o s  4 +ysin 4, y ,  =ycos  I$ -xsin (I 

Substituting for y ,  in the first of Eqs (9.47) 

I , , , )  = 1, (y cos 4 - x sin 4)’ dA 
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Fig. 9.30 Principal axes in a beam of arbitrary section 

Expanding, we obtain 

Ir(l) = cos’ Q 1, y’ dA + sin’ Q / x’ dA - 2 cos Q sin 4 1 xy dA 
which gives, using Eqs (9.46) 

I . , ( , ,  = I ,  cos’ Q + I ,  sin’ 4 -1 ,  sin 24 (9.48) 

(9.49) 

Lm,(,) = ( I ,  - 2 ‘i)sin 24 + I , ,  cos 24 (9.50) 

Equations (9.48)-(9.50) give the second moments of area and product second 
moment of area about axes inclined at an angle 4 to the x axis. In the special case where 
O x , y ,  are principal axes, Ox,,y,, l,(p),y(p) = 0, 4 = 4, and Eqs (9.48) and (9.49) become 

I . , ( , )  = I., cos’ 4p + I ,  sin’ Q, - I.,, sin 2 Q, (9.51) 
I, , , ,  = I ,  cos’ 4, + I,, sin’ + p  + I,, sin 24, (9.52) 

Similarly 

I , ( , ,  = I ,  cos’ Q + I., sin’ Q + I ,  sin 24 

and 

and 

respectively. Furthermore, since I , , , , , , ( , ,  = I . , ( p ) . ) ( p )  = 0, Eq. (9.50) gives 

(9.53) 2 L ,  tan 2OP = - 
I ,  - I ,  

The angle 4, may be eliminated from Eqs (9.51) and (9.52) by first determining 
cos 2Qp and sin 2OP using Eq. (9.53). Thus 

(1, - Iy)/2 

4w+c 
4, 

4u I?. - I., )/2 1 2 + I.,? ’ 

cos 2 4 p  = 

sin 24, = 
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Rewriting Eq. (9.5 1) in terms of cos 2#, and sin 24, we have 

I I ,  I*(,) = 2 (1 + cos 2OP) + - (1 - cos 24,) - I,v, sin 24, 
2 2 

Substituting for cos 24,, and sin 2$, from the above we obtain 

I,+I, .  1 
= - - - J (Z.l- - + 41,’ 

2 2 

Similarly 

(9.54) 

I , + I ,  1 
I,(,) = - . + - , / ( I ,  - + 4I,,* (9.55) 

2 2 

Note that the solution of Eq. (9.53) gives two values for the inclination of the 
principal axes, 4, and 4, + x/2, corresponding to the axes Ox, and Oyp. 

The results of Eqs (9.48)-(9.55) may be represented graphically by Mohr’s 
circle, a powerful method of solution for this type of problem. We shall discuss 
Mohr’s circle in detail in Chapter 14 in connection with the analysis of complex 
stress and strain. 

Principal axes may be used to provide an apparently simpler solution to the 
problem of unsymmetrical bending. Refemng components of bending moment and 
section properties to principal axes having their origin at the centroid of a beam 
section, we see that Eqs (9.31) reduce to 

&P, = M,(P), J G P ,  = M,,,, 
since I , , , , , , ( , ,  = 0. Equation (9.30) then takes the form 

(9.56) 

However, it must be appreciated that before I , ( , ,  and I , ( , ,  can be determined, I , ,  I ,  
and I , ,  must be known together with 4,. Furthermore, the coordinates x ,  y of a point 
in the beam section must be transferred to the principal axes as must the components, 
M, and M,, of bending moment. Thus unless the position of the principal axes is 
obvious by inspection, the amount of computation required by the above method is 
far greater than direct use of Eq. (9.30) and an arbitrary, but convenient, set of 
centroidal axes. 

9.8 Effect of shear forces on the theory of bending 
So far our analysis has been based on the assumption that plane sections remain 
plane after bending. This assumption is only strictly true if the bending moments are 
produced by pure bending action rather than by shear loads, as is very often the case 
in practice. The presence of shear loads induces shear stresses in the cross-section of 
a beam which, as shown by elasticity theory, cause the cross-section to deform into 
the shape of a shallow inverted ‘s’. However, shear stresses in beams, the cross- 
sectional dimensions of which are small in relation to their length, are comparatively 
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low in value so that the assumption of plane sections remaining plane after bending 
may be used with reasonable accuracy. 

9.9 Load, shear force and bending moment 
relationships, general case 

In Section 3.5 we derived load, shear force and bending moment relationships for 
loads applied in the vertical plane of a beam whose cross-section was at least singly 
symmetrical. These relationships are summarized in Eqs (3.8) and may be extended 
to the more general case in which loads are applied in both the horizontal (xz) and 
vertical (yz) planes of a beam of arbitrary cross-section. Thus for loads applied in a 
horizontal plane Eqs (3.8) become 

and for loads applied in a vertical plane Eqs (3.8) become 

-=- 
az2 aZ 

(9.57) 

(9.58) 

We defined in Eqs (9.31) the parameters n, and a). We shall find it useful to 
establish similar parameters s,, S, ,  E, and E) in terms of the applied shear loads and 
distributed load intensities. Let us suppose that s bears the same relationship to R) as 
S, does to M, (see Eqs (9.57)). Then 

s , = L -  - aa aM,/az - ( ~ I M , / ~ I ~ ) I , J I ,  

aZ 1 - 1, )2 /4  I )  
- 

or 

Similarly 

- s, - s, I.y,/I., 
1 - I.r,2/Iy I, 

S, = (9.59) 

(9.60) 

from Eqs (9.58) 

expressions. Thus 
The parameters E., and E, are related to load intensities by similarly derived 

(9.61) 

(9.62) 

The parameters R,, M,, s,, s,, iC, and E, are often termed effective bending 
moments, shear forces and load intensities since they behave, in beam analysis, in an 
identical manner to actual bending moments, shear forces and load intensities. 
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9.10 Plastic bending 
One of the primary assumptions of the preceding analysis of beams subjected to 
bending is that the stresses produced by the applied loads lie within the limit of 
proportionality of the material of the beam. Design, based on this elastic analysis, 
uses a working or allowable stress derived from the yield stress of the material of 
the beam with an appropriate factor of safety (see Section 8.7). 

An alternative and increasingly favoured method of design of steel structures is to 
determine the working loads on a structure and then multiply these loads by a load 
factor (see Section 8.7) to obtain the ultimate loads which measure the required 
muximum strength of the structure. The components are then designed to have this 
required maximum strength. The problem, therefore, in the analysis of such 
structures is not to determine stresses due to applied loads as in elastic analysis but to 
determine loads that produce collapse. Clearly, when this occurs, the stress at one or 
more points in a structure will have exceeded the elastic limit so that the material at 
these points will be in a plastic state (see Section 8.3). We shall now, therefore, 
investigate the plasric analysis of beams subjected to bending. 

Generally the problem is complex and is governed by the form of the stress-strain 
curve in tension and compression of the material of the beam. Fortunately mild steel 
beams, which are used extensively in civil engineering construction, possess structural 
properties that lend themselves to a relatively simple analysis of plastic bending. 

We have seen in Section 8.3, Fig. 8.8, that mild steel obeys Hooke’s law up to a 
sharply defined yield stress and then undergoes large strains during yielding until 
strain hardening causes an increase in stress. For the purpose of plastic analysis we 
shall neglect the upper and lower yield points and idealize the stress-strain curve as 
shown in Fig. 9.31. We shall also neglect the effects of strain hardening, but since 
this provides an increase in strength of the steel it is on the safe side to do so. Finally 
we shall assume that both Young’s modulus, E, and the yield stress, oy, have the 
same values in tension and compression and that plane sections remain plane after 
bending. The last assumption may be shown experimentally to be very nearly true. 

Plastic bending of beams having a singly symmetrical cross-section 
This is the most general case we shall discuss since the plastic bending of beams of 
arbitrary section is complex and is still being researched. 

Fig. 9.31 Idealized stress-strain curve for mild steel 
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Consider the length of beam shown in Fig. 9.32(a) subjected to a positive bending 
moment, M, and possessing the singly symmetrical cross-section shown in 
Fig. 9.32(b). If M is sufficiently small the length of beam will bend elastically, 
producing at any section mm, the linear direct stress distribution of Fg .  9.32(c) 
where the stress, a, at a distance y from the neutral axis of the beam is given by 
Eq. (9.9). In this situation the elastic neutral axis of the beam section passes through 
the centroid of area of the section (Eq. (9.5)). 

Suppose now that M is increased. A stage will be reached where the maximum 
direct stress in the section, i.e. at the point furthest from the elastic neutral axis, is 
equal to the yield stress, oy (Fig. 9.33(b)). The corresponding value of M is called 
the yield moment, My, and is given by Eq. (9.9); thus 

(9.63) 

If the bending moment is further increased, the strain at the extremity y2 of the 
section increases and exceeds the yield strain, E ~ .  However, due to plastic yielding 
the stress remains constant and equal to ay as shown in the idealized stress-strain 
curve of Fig. 9.3 1. At some further value of M the stress at the lower extremity of 
the section also reaches the yield stress, ay (Fig. 9.33(c)). Subsequent increases in 
bending moment cause the regions of plasticity at the extremities of the beam 
section to extend inwards, producing a situation similar to that shown in 
Fig. 9.33(d); at this stage the central portion or ‘core’ of the beam section remains 
elastic while the outer portions are plastic. Finally, with further increases in bending 

O Y  I My=- 
Y2  

Fig. 9.32 Direct stress due to bending in a singly symmetrical section beam 

Fig. 9.33 Yielding of a beam section due to bending 
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moment the elastic core is reduced to a negligible size and the beam section is more 
or less completely plastic. Thus for all practical purposes the beam has reached its 
ultimate moment resisting capacity; the value of bending moment at this stage is 
known as the plastic moment, M,, of the beam. The stress distribution 
corresponding to this moment may be idealized into two rectangular portions as 
shown in Fig. 9.33 (e). 

The problem now, therefore, is to determine the plastic moment, M p  First, 
however, we must investigate the position of the neutral axis of the beam section 
when the latter is in its fully plastic state. One of the conditions used in 
establishing that the elastic neutral axis coincides with the centroid of a beam 
section was that stress is directly proportional to strain (Eq. (9.2)). It is clear that 
this is no longer the case for the stress distributions of Figs 9.33(c), (d) and (e). In 
Fig. 9,33(e) the beam section above the plastic neutral axis is subjected to a 
uniform compressive stress, oy, while below the neutral axis the stress is tensile 
and also equal to by. Suppose that the area of the beam section below the plastic 
neutral axis is A , ,  and that above, A2 (Fig. 9.34(a)). Since M, is a pure bending 
moment the total direct load on the beam section must be zero. Thus from 
Fig. 9.34 

o y A l  = o y A Z  

so that A ,  = A ,  (9.64) 
Therefore if the total cross-sectional area of the beam section is A, 

A 

2 
A ,  = A ,  = - (9.65) 

and we see that the plastic neutral axis divides the beam section into two equal areas. 
Clearly for doubly symmetrical sections or for singly symmetrical sections in which 
the plane of the bending moment is perpendicular to the axis of symmetry, the 
elastic and plastic neutral axes coincide. 

The plastic moment, M,, can now be found by taking moments of the resultants 
of the tensile and compressive stresses about the neutral axis. These stress resultants 

Fig. 9.34 Position of the plastic neutral axis in a beam section 
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act at the centroids C, and C2 of the areas A, and A2, respectively. Thus from 
Fig. 9.34 

MP=oYAIJI + 0YA2J2 
or, using Eq. (9.65) 

A 

2 
MP = OY - c y 1  + Y J  (9.66) 

Equation (9.66) may be written in a similar form to Eq. (9.13); thus 

Mp = o y z p  (9.67) 

where (9.68) 

2, is known as the plastic modulus of the cross-section. Note that the elastic 
modulus, Z,, has two values for a beam of singly symmetrical cross-section 
(Eqs (9.12)) whereas the plastic modulus is single-valued. 

Shape factor 
The ratio of the plastic moment of a beam to its yield moment is known as the shape 
factor, f. Thus 

(9.69) 

where Zp is given by Eq. (9.68) and 2, is the minimum elastic section modulus, Z/y2. 
It can be seen from Eq. (9.69) that f is solely a function of the geometry of the 
beam cross-section. 

Example 9.11 Determine the yield moment, the plastic moment and the shape 
factor for a rectangular section beam of breadth b and depth d. 

The elastic and plastic neutral axes of a rectangular cross-section coincide (Eq. (9.65)) 
and pass through the centroid of area of the section. Thus, from Eq. (9.63) 

oy bd3/12 bd ' 
MY = = o y  - 

dl2 6 

and from Eq. (9.66) 

bd2 

Substituting for Mp and My in Eqs (9.69) we obtain 

f=---=- MP 3 
My 2 

(ii) 

(iii) 
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Note that the plastic collapse of a rectangular section beam occurs at a bending 
moment that is 50% greater than the moment at initial yielding of the beam. 

Example 9.12 Determine the shape factor for the I-section beam shown in 
Fig. 9.35 (a). 

centroid, G,  of the section. 

Fig. 9.35 (b). The total direct force in the upper flange is 

Again, as in Ex. 9.1 1, the elastic and plastic neutral axes coincide with the 

In the fully plastic condition the stress distribution in the beam is that shown in 

oy btf (compression) 

and its moment about Gx is 

aybtf (; --- ;)= -- OF (d  - t f )  

o y t w ( : - t ] : ( : - t ] =  - ( d - 2 t J 2  G Y  t w  

(i) 

Similarly the total direct force in the web above Gx is 

oy tw (: - t ]  (compression) 

and its moment about Gx is 

(ii) 

The lower half of the section is in tension and contributes the same moment about 
Gx so that the total plastic moment, M,, of the complete section is given by 

M P = ~ y [ b t f ( d - t f > + ~ t w ( d - 2 t f ) * ]  (iii) 

8 

Fig. 9.35 Beam section of Ex. 9.12 
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Comparing Eqs (9.67) and (iii) we see that 2, is given by 

Zp= btf(d - t f )  + a  t,(d - 2t f ) ’  (iv ) 

Alternatively we could have obtained Z, from Eq. (9.68). 
The second moment of area, I, of the section about the common neutral axis is 

bd3 (b - rw) (d -2r f )3  I = - -  
12 12 

so that the elastic modulus 2, is given by 

(VI  

Substituting the actual values of the dimensions of the section in Eqs (iv) and (v) 

1 I ( b  - r,)(d - 2tf)3 2, = - = 2 [” - 

1 ’ [  12 12 

d/2 d 12 12 

we obtain 

Z P = l 5 0 x 1 2 ( 3 0 0 - 1 2 ) + ~  x8(300-2x  12)2=6.7x10Smm3 

= 5.9 x 10’ m3 
150 x 30O3 (150 - 8)(300 - 24)3 - 2, = - 

300 
and 

Therefore from Eqs (9.69) 

M, Z, 6.7 x 10’ 
M~ z, 5 . 9 ~  10’ 

f=-=-= = 1.14 

and we see that the fully plastic moment is only 14% greater than the moment at 
initial yielding. 

Example 9.13 

In this case the elastic and plastic neutral axes are not coincident. Suppose that the 
former is a depth ye from the upper surface of the flange and the latter a depth y,. 
The elastic neutral axis passes through the centroid of the section, the location of 

Determine the shape factor of the T-section shown in Fig. 9.36. 

Fig. 9.36 Beam section of Ex. 9.13 
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which is found in the usual way. Hence, taking moments of areas about the upper 
surface of the flange 

( 1 5 0 ~ 1 0 + 1 9 0 ~ 7 ) ~ , = 1 5 0 ~ 1 0 ~ 5 + 1 9 0 ~ 7 ~ 1 0 5  

which gives 

ye = 52.0 mm 

The second moment of area of the section about the elastic neutral axis is then, 
using Eq. (9.38) 

150 x 52’ 143 x 42’ 7 x 148’ 

3 3 3 
I =  - + = 11.1 io6 mrn4 

Therefore 
11.1 x lo6 z, = = 75 000 mm3 

148 

Note that we choose the least value for Z, since the stress will be a maximum at a 
point furthest from the elastic neutral axis. 

The plastic neutral axis divides the section into equal areas (see Eq. (9.65)). 
Inspection of Fig. 9.36 shows that the flange area is greater than the web area so that 
the plastic neutral axis must lie within the flange. Hence 

150yp= 150(10-yp)+ 190x7 

from which yp = 9.4 mm 

Equation (9.68) may be interpreted as the first moment, about the plastic neutral 
axis, of the area above the plastic neutral axis plus the first moment of the area 
below the plastic neutral axis. Hence 

Zp = 150 x 9-4 x 4.7 + 150 x 0.6 x 0.3 + 190 x 7 x 95.6 = 133 800 mm’ 

The shape factor f is, from Eqs (9.69) 

Mp Zp 133800 
My Z, 75000 

f=-=-- - 1.78 

Moment-curvature relationships 

From Eqs (9.8) we see that the curvature k of a beam subjected to elastic bending is 
given by 

At yield, when M is equal to the yield moment, M y  

MY 
k y  = - 

El 

(9.70) 

(9.71) 
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Thus the moment-curvature relationship for a beam in the linear elastic range may 
be expressed in nondimensional form by combining Eqs (9.70) and (9.71), i.e. 

M k  
-- -- (9.72) 
MY ku 

This relationship is represented by the linear portion of the moment-curvature 
diagram shown in Fig. 9.37. When the bending moment is greater than MY part of 
the beam becomes fully plastic and the moment-curvature relationship is non-linear. 
As the plastic region in the beam section extends inwards towards the neutral axis the 
curve becomes flatter as rapid increases in curvature are produced by small increases 
in moment. Finally, the moment-curvature curve approaches the horizontal line 
M = M, as an asymptote when, theoretically, the curvature is infinite at the collapse 
load. From Eqs (9.69) we see that when M = M,, the ratio M/M, = f, the shape 
factor. Clearly the equation of the non-linear portion of the moment-curvature 
diagram depends upon the particular cross-section being considered. 

Suppose a beam of rectangular cross-section is subjected to a bending moment 
which produces fully plastic zones in the outer portions of the section 
(Fig. 9.38(a)); the depth of the elastic core is de. The total bending moment, M, 
corresponding to the stress distribution of Fig. 9.38(b) is given by 

M = 2 0 y b - ( d - d e ) -  1 1 ( d  - + -  ;) + 2 - b - - -  ; ;;; 
2 2 2  

which simplifies to 

oybd’ 
12 M = - (-1 - $) = 7 (-1 - $) (9.73) 

Note that when de = d, M = My and when de = 0, M = 3MY/2 = M, as derived in 
Ex. 9.11. 

The curvature of the beam at the section shown may be found using Eq. (9.2) and 
applying this equation to a point on the outer edge of the elastic core. Thus 

d e  o , = E  - 
2R 

Fig. 9.37 Moment-curvature diagram for a beam 
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Fig. 9.38 Plastic bending of a rectangular-section beam 

1 2Qy 
or k = - = -  (9.74) 

R Ed, 

The curvature of the beam at yield is obtained from Eq. (9.71), i.e. 

(9.75) ky=-=- MY 20, 
EI Ed 

Combining Eqs (9.74) and (9.75) we obtain 

(9.76) 
k d  

ku de 
-- -- 

Substituting for d,/d in Eq. (9.73) from Eq. (9.76) we have 

M=M,(3-$)  2 

(9.77) 
1 

- 
k 

whence 
kv Jm 

Equation (9.77) gives the moment-curvature relationship for a rectangular section 
beam for M y  a M a  M,, i.e. for the non-linear portion of the moment-curvature 
diagram of Fig. 9.37 for the particular case of a rectangular section beam. 
Corresponding relationships for beams of different section are found in a similar 
manner. 

We have seen that for bending moments in the range My G M a M, a beam section 
comprises fully plastic regions and a central elastic core. Thus yielding occurs in the 
plastic regions with no increase in stress whereas in the elastic core increases in 
deformation are accompanied by increases in stress. The deformation of the beam is 
therefore controlled by the elastic core, a state sometimes termed contained plastic 
flow. As M approaches M, the moment-curvature diagram is asymptotic to the line 
M = M, so that large increases in deformation occur without any increase in moment, 
a condition known as unrestricted plastic flow. 

_ -  
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Plastic hinges 

The presence of unrestricted plastic flow at a section of a beam leads us to the 
concept of the formation of plastic hinges in beams and other structures. 

Consider the simply supported beam shown in Fig. 9.39(a); the beam carries a 
concentrated load, W ,  at mid-span. The bending moment diagram (Fig. 9.39(b)) is 
triangular in shape with a maximum moment equal to WL/4.  If W is increased in 
value until WL/4 = M,, the mid-span section of the beam will be fully plastic with 
regions of plasticity extending towards the supports as the bending moment 
decreases; no plasticity occurs in beam sections for which the bending moment is 
less than My. Clearly, unrestricted plastic flow now occurs at the mid-span section 
where large increases in deformation take place with no increase in load. The beam 
therefore behaves as two rigid beams connected by a plastic hinge which allows 
them to rotate relative to each other. The value of W given by W = 4 M P / L  is the 
collapse load for the beam. 

The length, L,, of the plastic region of the beam may be found using the fact that 
at each section bounding the region the bending moment is equal to My. Thus 

My=-(1) w L - L ,  
2 

Substituting for W (  =4M,/L)  we obtain 

from which 

L , = L  I - -  ( ::) 
or, from Eqs (9.69), 

L , = L ( i  --:) (9.78) 

For a rectangular section beam f = 1-5 (see Ex. 9.1 l ) ,  giving L,= L / 3 .  For the I- 
section beam of Ex. 9.12, f = 1.14 and L ,  = O .  12L so that the plastic region in this 
case is much smaller than that of a rectangular section beam; this is generally true 
for I-section beams. 

It is clear from the above that plastic hinges form at sections of maximum 
bending moment. 

Plastic analysis of beams 

We can now use the concept of plastic hinges to determine the collapse or ultimate 
load of beams in terms of their individual yield moment, M,, which may be found 
for a particular beam section using Eq. (9.67). 
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Fig. 9.39 Formation of a plastic hinge in a simply supported beam 

For the case of the simply supported beam of Fig. 9.39 we have seen that the 
formation of a single plastic hinge is sufficient to produce failure; this is me for all 
statically determinate systems. Having located the position of the plastic hinge, at 
which the moment is equal to M,, the collapse load is found from simple statics. Thus 
for the beam of Fig. 9.39, taking moments about the mid-span section, we have 

- M P  
wu L --- 
2 2  

or 

where W ,  is the ultimate value of the load W. 
Example 9.14 Determine the ultimate load for a simply supported, rectangular 
section beam, breadth b,  depth d,  having a span L and subjected to a uniformly 
distributed load of intensity w. 

The maximum bending moment occurs at mid-span and is equal to wL2/8 (see 
Section 3.4). Thus the plastic hinge forms at mid-span when this bending moment is 
equal to M,, the corresponding ultimate load intensity being wu. Thus 

wu=- 4Mp (as deduced before) 
L 

W , L '  
(9 -- - MP 

8 
From Ex. 9.1 1 ,  Eq. (ii) 

bd' 

4 
M p = o y -  

8M, 2 o y b d 2  - 
L2 

so that w u = - -  
L 2  

where oy is the yield stress of the material of the beam. 
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Fig. 9.40 Beam of Ex. 9.15 

Example 9.15 The simply supported beam ABC shown in Fig. 9.40(a) has a 
cantilever overhang and supports loads of 4 W  and W .  Determine the value of W at 
collapse in terms of the plastic moment, M,, of the beam. 

The bending moment diagram for the beam is constructed using the method of 
Section 3.4 and is shown in Fig. 9.40(b). Clearly as W is increased a plastic hinge 
will form first at D, the point of application of the 4 W  load. Thus, at collapse 

: W,L = M ,  

4MP so that W , = -  
3L 

where W ,  is the value of W that causes collapse. 

The formation of a plastic hinge in a statically determinate beam produces large, 
increasing deformations which ultimately result in failure with no increase in load. 
In this condition the beam behaves as a mechanism with different lengths of beam 
rotating relative to each other about the plastic hinge. The terms failure mechanism 
or collapse mechanism are often used to describe this state. 

In a statically indeterminate system the formation of a single plastic hinge does 
not necessarily mean collapse. Consider the propped cantilever shown in 
Fig. 9.41 (a). The bending moment diagram may be drawn after the reaction at C has 
been determined by any suitable method of analysis of statically indeterminate 
beams (see Chapter 16) and is shown in Fig. 9.41 (b). 
As the value of W is increased a plastic hinge will form first at A where the 

bending moment is greatest. However, this does not mean that the beam will 
collapse. Instead it behaves as a statically determinate beam with a point load at B 
and a moment M ,  at A. Further increases in W eventually result in the formation of a 
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Fig. 9.41 

second plastic hinge at B (Fig. 9.41 (c)) when the bending moment at B reaches the 
value M,. The beam now behaves as a mechanism and failure occurs with no further 
increase in load. The bending moment diagram for the beam is now as shown in 
Fig. 9.41 (d) with values of bending moment of -M, at A and M ,  at B. Comparing 
the bending moment diagram at collapse with that corresponding to the elastic 
deformation of the beam (Fig. 9.41(b)) we see that a redistribution of bending 
moment has occurred. This is generally the case in statically indeterminate systems 
whereas in statically determinate systems the bending moment diagrams in the elastic 
range and at collapse have identical shapes (see Figs 9.39(b) and 9.40(b)). In the 
beam of Fig. 9.41 the elastic bending moment diagram has a maximum at A. After 
the formation of the plastic hinge at A the bending moment remains constant while 
the bending moment at B increases until the second plastic hinge forms. Thus this 
redistribution of moments tends to increase the ultimate strength of statically 

Plastic hinges in a propped cantilever 
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indeterminate structures since failure at one section leads to other portions of the 
structure supporting additional load. 

Having located the positions of the plastic hinges and using the fact that the 
moment at these hinges is M,, we may determine the ultimate load, W,, by statics. 
Therefore taking moments about A we have 

L 
2 

(9.79) Mp = W ,  - - RCL 

where R ,  is the vertical reaction at the support C. Now considering the equilibrium 
of the length BC we obtain 

L 
2 

R , - = M p  (9.80) 

Eliminating R ,  from Eqs (9.79) and (9.80) gives 

(9.8 1) 

Note that in this particular problem it is unnecessary to determine the elastic 
bending moment diagram to solve for the ultimate load which is obtained using 
statics alone. This is a convenient feature of plastic analysis and leads to a much 
simpler solution of statically indeterminate structures than an elastic analysis. 
Furthermore, the magnitude of the ultimate load is not affected by structural 
imperfections such as a sinking support, whereas the same kind of imperfection 
would have an appreciable effect on the elastic behaviour of a structure. Note also 
that the principle of superposition (Section 3.7), which is based on the linearly 
elastic behaviour of a structure, does not hold for plastic analysis. In fact the plastic 
behaviour of a structure depends upon the order in which the loads are applied as 
well as their final values. We therefore assume in plastic analysis that all loads are 
applied simultaneously and that the ratio of the loads remains constant during 
loading. 

An alternative and powerful method of analysis uses the principle of virtual work 
(see Section 15.2), which states that for a structure that is in equilibrium and that is 
given a small virtual displacement, the sum of the work done by the internal forces 
is equal to the work done by the external forces. 

Consider the propped cantilever of Fig. 9.41 (a); its collapse mechanism is shown 
in Fig. 9.41 (c). At the instant of collapse the cantilever is in equilibrium with plastic 

6MP W u = -  
L 

Fig. 9.42 Virtual displacements in propped cantilever of Fig. 9.41 
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hinges at A and B where the moments are each M, as shown in Fig. 9.41(d). 
Suppose that AB is given a small rotation, 8. From geometry, BC also rotates 
through an angle 8 as shown in Fig. 9.42; the vertical displacement of B is then 
8L/2 .  The external forces on the cantilever which do work during the virtual 
displacement are comprised solely of W, since the vertical reactions at A and C are 
not displaced. The internal forces which do work consist of the plastic moments, 
M,, at A and B and which resist rotation. Hence 

L 
2 

as before. from which Wu = - 

W,8 - = (MP)*8 + (M,),28 (see Section 15.1) 

6MP 
L 

We have seen that the plastic hinges form at beam sections where the bending 
moment diagram attains a peak value. It follows that for beams canying a series of 
point loads, plastic hinges are located at the load positions. However, in some 
instances several collapse mechanisms are possible, each giving different values of 
ultimate load. For example, if the propped cantilever of Fig. 9.41(a) supports two 
point loads as shown in Fig. 9.43(a), three possible collapse mechanisms are 
possible (Figs 9.43(b), (c) and (d)). Each possible collapse mechanism should be 
analysed and the lowest ultimate load selected. 

Fig. 9.43 
concentrated loads 

Possible collapse mechanisms in a propped cantilever supporting two 
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Plastic design of beams 

It is now clear that the essential difference between the plastic and elastic methods of 
design is that the former produces a structure having a more or less uniform factor 
of safety against collapse of all its components, whereas the latter produces a 
uniform factor of safety against yielding. The former method in fact gives an 
indication of the true factor of safety against collapse of the structure which may 
occur at loads only marginally greater than the yield load, depending on the cross- 
sections used. For example, a rectangular section mild steel beam has an ultimate 
strength 50% per cent greater than its yield strength (see Ex. 9.1 l), whereas for an I- 
section beam the margin is in the range 10-20% (see Ex. 9.12). It is also clear that 
each method of design will produce a different section for a given structural 
component. This distinction may be more readily understood by refemng to the 
redistribution of bending moment produced by the plastic collapse of a statically 
indeterminate beam. 

Two approaches to the plastic design of beams are indicated by the previous 
analysis. The most direct method would calculate the working loads, determine the 
required strength of the beam by the application of a suitable load factor, obtain by 
a suitable analysis the required plastic moment in terms of the ultimate load and 
finally, knowing the yield stress of the material of the beam, determine the required 
plastic section modulus. An appropriate beam section is then selected from a 
handbook of structural sections. The alternative method would assume a beam 
section, calculate the plastic moment of the section and hence the ultimate load for 
the beam. This value of ultimate load is then compared with the working loads to 
determine the actual load factor, which would then be checked against the prescribed 
value. 

Example 9.16 The propped cantilever of Fig. 9.41(a) is 10 m long and is 
required to carry a load of 100 kN at mid-span. If the yield stress of mild steel is 
300 N/mm*, suggest a suitable section using a load factor against failure of 1-5. 

The required ultimate load of the beam is 1-5 x 100 = 150 kN. Thus from Eq. 
(9.81) the required plastic moment M, is given by 

150x 10 

6 
MP = =250kNm 

From Eq. (9.67) the minimum plastic modulus of the beam section is 

Refemng to an appropriate handbook we see that a Universal Beam, 
406 mm x 140 mm x 46 kg/m, has a plastic modulus of 886.3 cm3. This section 
therefore possesses the required ultimate strength and includes a margin to allow for 
its self-weight. Note that unless some allowance has been made for self-weight in 
the estimate of the working loads the design should be rechecked to include this 
effect. 
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Effect of axial load on plastic moment 
We shall investigate the effect of axial load on plastic moment with particular 
reference to an I-section beam, one of the most common structural shapes, which is 
subjected to a positive bending moment and a compressive axial load, P, 
(Fig. 9.44(a)). 

If the beam section were subjected to its plastic moment only, the stress 
distribution shown in Fig. 9.44(b) would result. However, the presence of the axial 
load causes additional stresses which cannot, obviously, be greater than oy. Thus the 
region of the beam section supporting compressive stresses is increased in area while 
the region subjected to tensile stresses is decreased in area. Clearly some of the 
compressive stresses are due to bending and some due to axial load so that the 
modified stress distribution is as shown in Fig. 9.44(c). 

Since the beam section is doubly symmetrical it is reasonable to assume that the 
area supporting the compressive stress due to bending is equal to the area supporting 
the tensile stress due to bending, both areas being symmetrically arranged about the 
original plastic neutral axis. Thus from Fig. 9.44(d) the reduced plastic moment, 
Mp,R, is given by 

MP.R = G Y ( Z P  - Z,) (9-82) 
where 2, is the plastic section modulus for the area on which the axial load is 
assumed to act. From Eq. (9.68) 

z,= - 2atw (4 + f)=& 
2 

Also P = 2at,oy 

P 

2tWOY 
so that a = -  

Fig. 9.44 Combined bending and axial compression 
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Substituting for Z,,  in Eq. (9.82) and then for a, we obtain 

(9.83) 

Let 6, be the mean axial stress due to P taken over the complete area, A,  of the 
beam section. Then 

P’ 
M p . R  = C J T ~  Zp - - ( 4twCJy4 

( 44: :2) 

P = o , A  

Substituting for P in Eq. (9.83) 
2 

Mp.R = b y  Z p  - - - (9.84) 

Thus the reduced plastic section modulus may be expressed in the form 

Zp,R = Zp - Kn’ (9.85) 

where K is a constant that depends upon the geometry of the beam section and 11 is 
the ratio of the mean axial stress to the yield stress of the material of the beam. 

Equations (9.84) and (9.85) are applicable as long as the neutral axis lies in the 
web of the beam section. In the rare case when this is not so, reference should be 
made to advanced texts on structural steel design. In addition the design of beams 
carrying compressive loads is influenced by considerations of local and overall 
instability, as we shall see in Chapter 18. 

Problems 
P.9.1 A girder 10 m long has the cross-section shown in Fig. P.9.1 (a) and is 

simply supported over a span of 6 m (see Fig. P.9.1 (b)). If the maximum direct 
stress in the girder is limited to 150 N/mm’, determine the maximum permissible 
uniformly distributed load that may be applied to the girder. 

Ans. 84.3 N/m. 

Fig. P.9.1 
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P.9.2 A 230 mm x 300 mm timber cantilever of rectangular cross-section 
projects 2.5 m from a wall and carries a load of 13 300 N at its free end. Calculate 
the maximum direct stress in the beam due to bending. 

Ans. 9.6 N/mm’. 

P.9.3 A floor carries a uniformly distributed load of 16 kN/m2 and is supported 
by joists 300 mm deep and 1 10 mm wide; the joists in turn are simply supported over 
a span of 4 m. If the maximum stress in the joists is not to exceed 7 N/mm2, 
determine the distance apart, centre to centre, at which the joists must be spaced. 

Ans. 0.36 m. 

P.9.4 A wooden mast 15 m high tapers linearly from 250 mm diameter at the 
base to 100 mm at the top. At what point will the mast break under a horizontal load 
applied at the top? If the maximum permissible stress in the wood is 35 N/mm2, 
calculate the magnitude of the load that will cause failure. 

Ans. 

P.9.5 

5 m from the top, 2320 N. 

A main beam in a steel framed structure is 5 m long and simply supported 
at each end. The beam cames two cross-beams at distances of 1.5 m and 3 m from 
one end, each of which transmits a load of 20 kN to the main beam. Design the 
main beam using an allowable stress of 155 N/mm2; make adequate allowance for 
the effect of self-weight. 

Ans. 

P.9.6 A short column, whose cross-section is shown in Fig. P.9.6 is subjected to 
a compressive load, P ,  at the centroid of one of its flanges. Find the value of P such 
that the maximum compressive stress does not exceed 150 Nlmm’. 

Universal Beam, 254 mm x 102 mm x 25 kg/m. 

Ans. 845 kN. 

Fig. P.9.6 
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P.9.7 A vertical chimney built in brickwork has a uniform rectangular cross- 
section as shown in Fig. P.9.7(a) and is built to a height of 15 m. The brickwork has 
a density of ZOO0 kg/m3 and the wind pressure is equivalent to a uniform horizontal 
pressure of 750 N/m2 acting over one face. Calculate the stress at each of the points 
A and B at the base of the chimney. 

(A) 0.11 Nlmm’ (compression), (B) 0.48 N/mm2 (compression). Ans. 

Fig. P.9.7 

P.9.8 A cantilever beam of length 2 m has the cross-section shown in Fig. P.9.8. 
If the beam carries a uniformly distributed load of 5 kN/m together with a 
compressive axial load of 100 kN applied at its free end, calculate the maximum 
direct stress in the cross-section of the beam. 

Am. 121-5 N/mm’ (compression) at the built-in end and at the bottom of the leg. 

Fig. P.9.8 

P.9.9 The section of a thick beam has the dimensions shown in Fig. P.9.9. 
Calculate the section properties I,, I, and I,, referred to horizontal and vertical axes 
through the centroid of the section. Determine also the direct stress at the point A 
due to a bending moment My = 55 N m. 

Ans. 114 N/mm’ (tension). 
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Fig. P.9.9 

P.9.10 A beam possessing the thick section shown in Fig. P.9.10 is subjected to 
a bending moment of 12 kNm applied in a plane inclined at 30" to the right of 
vertical and in a sense such that its components M ,  and M, are both negative. 
Calculate the magnitude and position of the maximum direct stress in the beam 
cross-section. 

Ans. 89-6 N/mm* (tension) at A. 

Fig. P.9.10 

P.9.11 The cross-section of a beamMoor slab arrangement is shown in 
Fig. P.9.11. The complete section is simply supported over a span of 10 m and, in 
addition to its self-weight, carries a concentrated load of 25 kN acting vertically 
downwards at mid-span. If the density of concrete is 2000 kg/m3, calculate the 
maximum direct stress at the point A in its cross-section. 

Ans. 5-4 N/mm' (tension). 
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Fig. P.9.11 

P.9.12 A precast concrete beam has the cross-section shown in Fig. P.9.12 and 
carries a vertically downward uniformly distributed load of 100 kN/m over a simply 
supported span of 4 m. Calculate the maximum direct stress in the cross-section of 
the beam, indicating clearly the point at which it acts. 

-27.2 N/mm* (compression) at B. Am. 

Fig. P.9.12 

P.9.13 A thin-walled, cantilever beam of unsymmetrical cross-section supports 
shear loads at its free end as shown in Fig. P.9.13. Calculate the value of direct 

Fig. P.9.13 
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stress at the extremity of the lower flange (point A) at a section half-way along the 
beam if the position of the shear loads is such that no twisting of the beam occurs. 

Ans. 194 Nlmm' (tension). 

P.9.14 A thin-walled cantilever with walls of constant thickness r has the cross- 
section shown in Fig. P.9.14. The cantilever is loaded by a vertical force P at the tip 
and a horizontal force 2 P  at the mid-section. Determine the direct stress at the points 
A and B in the cross-section at the built-in end. 

Ans. (A) - 1.84 PL/ td ' ,  (B) 0.1 P L / t d 2 .  

Fig. P.9.14 

P.9.15 A cold-formed, thin-walled beam section of constant thickness has the 
profile shown in Fig. P.9.15. Calculate the position of the neutral axis and the 
maximum direct stress for a bending moment of 350 lcNm applied about the 
horizontal axis Gx. 

Ans. a = 5 1"40', * 10 N/mmz. 

Fig. P.9.15 

P.9.16 Determine the plastic moment and shape factor of a beam of solid 
circular cross-section having a radius r and yield stress oY. 

Ans. M,= 1-33 csyr3, f = 1.69. 
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P.9.17 Determine the plastic moment and shape factor for a thin-walled box 
girder whose cross-section has a breadth b, depth d and a constant wall thickness t .  
Calculate f for b = 200 mm, d = 300 mm. 

Ans. Mp=o,td(2b+d)/2,  f =  1-17. 

P.9.18 A beam having the cross-section shown in Fig. P.9.18 is fabricated from 
mild steel which has a yield stress of 300 N/mm*. Determine the plastic moment of 
the section and its shape factor. 

Ans. 256-5 kNm, 1-52. 

Fig. P.9.18 

P.9.19 A cantilever beam of length 6 m has an additional support at a distance 
of 2 m from its free end as shown in Fig. P.9.19. Determine the minimum value of 
W at which collapse occurs if the section of the beam is identical to that of 
Fig. P.9.18. State clearly the form of the collapse mechanism corresponding to this 
ultimate load. 

Atis. 128.3 kN, plastic hinge at C. 

Fig. P.9.19 

P.9.20 A beam of length L is rigidly built-in at each end and carries a uniformly 
distributed load of intensity w along its complete span. Determine the ultimate 
strength of the beam in terms of the plastic moment, M , ,  of its cross-section. 

Ans. 16 M,fL’ .  
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P.9.21 A simply supported beam has a cantilever overhang and supports loads as 
shown in Fig. P.9.21. Determine the collapse load of the beam, stating the position 
of the corresponding plastic hinge. 

Ans. 2 M p / L ,  plastic hinge at D. 

Fig. P.9.21 

P.9.22 
Fig. P.9.22 and specify the corresponding collapse mechanism. 

A m .  

Determine the ultimate strength of the propped cantilever shown in 

W = 4M, /L ,  plastic hinges at A and C. 

Fig. P.9.22 

P.9.23 The working loads, W, on the propped cantilever of Fig. P.9.22 are each 
150 kN and its span is 6 m. If the yield stress of mild steel is 300 N/mm*, suggest a 
suitable section for the beam using a load factor of 1.75 against collapse. 

Ans. Universal Beam, 406 mm x 152 mm x 67 kg/m. 



CHAPTER 10 

Shear of Beams 

Beams, as we saw in Chapter 3, are subjected to loads which induce internal shear 
forces in the planes of their cross-sections. These shear forces are distributed in a 
manner that depends to a large extent upon the geometry of the beam section. We 
shall now investigate this distribution of shear stress, beginning with the general case 
of an unsymmetrical section. 

10.1 Shear stress distribution in a beam of 
u n sym met r ica I section 

Consider an elemental length, 6z ,  of a beam of arbitrary section subjected to internal 
shear forces S, and S, as shown in Fig. 10.1 (a). The origin of the axes xyz coincides 
with the centroid G of the beam section. Let us suppose that the lines of action of S, 
and S, are such that no twisting of the beam occurs (see Section 10.4). The shear 
stresses induced are therefore due solely to shearing action and are not contributed to 
by torsion. 

Imagine now that a ‘slice’ of width bo is taken through the length of the element. 
Let r be the average shear stress along the edge, bo, of the slice in a direction 
perpendicular to bo and in the plane of the cross-section (Fig. 10.1 (b)); note that r is 
not necessarily the absolute value of shear stress at this position. We saw in Chapter 
7 that shear stresses on given planes induce equal, complementary shear stresses on 
planes perpendicular to the given planes. Thus, T on the cross-sectional face of the 
slice induces shear stresses T on the flat longitudinal face of the slice. In addition 
shear loads, as we saw in Chapter 3, produce internal bending moments which, in 
turn, give rise to direct stresses in beam cross-sections. Therefore on any filament, 
6 A ‘ ,  of the slice there is a direct stress (T, at the section z and a direct stress 
(T, + (ao,/az)6z at the section z+ 6z (Fig. 10.1 (b)). The slice is therefore in 
equilibrium in the z direction under the combined action of the direct stress due to 
bending and the complementary shear stress, r. Hence 

rb ,6z+J  A’ 

which, when simplified, becomes 

(10.1) 
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Fig. 10.1 
section 

Determination of shear stress distribution in a beam of arbitrary cross- 

We shall assume (see Section 9.8) that the direct stresses produced by the bending 
action of shear loads are given by the theory developed for the pure bending of 
beams. Therefore, for a beam of unsymmetrical section and for coordinates referred 
to axes through the centroid of the section 

J7r My 
1.1 1, 

ao, aM., y am, x 

aZ aZ t, aZ t, 

aivy - am, - 
aZ ’ aZ 

a- t, t, 

OL = - y + - x (Le. Eq. (9.30)) 

Hence -- ---+A- 

From Section 9.9 

- = s,, - = s, 

- = - y + - x  ao, S ,  3.l so that 

Substituting for ao,/az in Eq. (10.1) we obtain 

s,. s . x  
, A‘ I ,  

ob, = IA, 7 y dA‘+ I - x dA’ 

( 10.2) 

The slice may be taken so that the average shear stress in any chosen direction can be 
determined. 

s s 
bo I., A‘ bo 1, 

whence .=-I y d ~ ’ + -  1,. x dA’ 
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10.2 Shear stress distribution in symmetrical sections 
Generally in civil engineering we are not concerned with shear stresses in 
unsymmetrical sections except where they are of the thin-walled type (see Sections 
10.4 and 10.5). ‘Thick’ beam sections usually possess at least one axis of symmetry 
and are subjected to shear loads in that direction. 

Suppose that the beam section shown in Fig. 10.2 is subjected to a single shear 
load S,. Since the y axis is an axis of symmetry, it follows that I,, = 0 (Section 9.6). 
Therefore Eqs (9.59) and (9.60) reduce to 

and Eq. (10.2) becomes 
s, = s, = 0, S )  = S )  

I,. y dA’ (10.3) 

Clearly the important shear stresses in the beam section of Fig. 10.2 are in the 
direction of the load. To find the distribution of this shear stress throughout the 
depth of the beam we therefore take the slice, bo, in a direction parallel to and at any 
distance y from the x axis. The integral term in Eq. (10.3) represents, mathe- 
matically, the first moment of the shaded area A‘ about the x axis. We may therefore 
rewrite Eq. (10.3) as 

s, 
bolt 

z=-  

S ,  A ’ j  

bo], 
z=- (10.4) 

where j is the distance of the centroid of the area A’ from the x axis. Alternatively, 
if the value of j is not easily determined, say by inspection, then jA y dA’ may be 
found by calculating the first moment of area about the x axis of an elemental strip 
of length b, width 6 y l ,  (Fig. 10.2), and integrating over the area A’. Equation (10.3) 
then becomes 

(10.5) s, ’“UT 

bnl, ’ 
.=-I bYldY, 

Fig. 10.2 Shear stress distribution in a symmetrical section beam 
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Either of Eqs (10.4) or (10.5) may be used to determine the distribution of vertical 
shear stress in a beam section possessing at least a horizontal or vertical axis of 
symmetry and subjected to a vertical shear load. The corresponding expressions for 
the horizontal shear stress due to a horizontal load are, by direct comparison with 
Eqs (10.4) and (10.9, 

(10.6) S,A'.f s, -Imi 

bo 1) bel, ' 
T=- r =  - 5 bx, dx, 

in which bo is the length of the edge of a vertical slice. 

Example 10.1 
section shown in Fig. 10.3(a) due to a vertical shear load S,. 

we may use Eq. (10.4). From Fig. 10.3(a) we see that 

Determine the distribution of vertical shear stress in the beam 

In this example the value of j for the slice A' is found easily by inspection so that 

bo=b, I , = - ,  bd 12 3 A t = h ( f 3 ,  , = + ( : + y )  

Hence 

which simplifies to 

z = 1 2 s ,  b - - y  (; );(; - - - + y  ) 
b2d 3 

6S, d' 
r = - ( T - y 2 )  bd 3 (10.7) 

The distribution of vertical shear stress is therefore parabolic as shown in 
Fig. 10.3(b) and varies from r = 0 at y = +d/2 to r = r,,,,, = 3S,/2bd at the neutral 
axis ( y =  0) of the beam section. Note that zmdx = 1 . 5 ~ ~ ~ .  where zav, the average 
vertical shear stress over the section, is given by zdv = S,/bd. 

Example 10.2 Determine the distribution of vertical shear stress in the I-section 
beam of Fig. 10.4(a) produced by a vertical shear load, S,. 

Fig. 10.3 Shear stress distribution in a rectangular section beam 
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Fig. 10.4 Shear stress distribution in an I-section beam 

It is clear from Fig. 10.4(a) that the geometry of each of the areas A,' and A,' 
formed by taking a slice of the beam in the flange (at y = y,) and in the web (at 
y = y,), respectively, are different and will therefore lead to different distributions of 
shear stress. First we shall consider the flange. The area A,' is rectangular so that the 
distribution of vertical shear stress, rf, in the flange is, by direct comparison with 
Ex. 10.1, 

r f=  - S,. -(- B D -Yf ) ( ;  + Y f )  
BI ,  2 2 

or r f=  S, (f -y:) (10.8) 
2 I., 

where I ,  is the second moment of area of the complete section about the centroidal 
axis Gx and is obtained by the methods of Section 9.6. 

A difficulty arises in the interpretation of Eq. (10.8) which indicates a parabolic 
distribution of vertical shear stress in the flanges increasing from rf = 0 at y ,  = * D / 2  
to a value 

(10.9) r f=  - ( D  - d - )  

at y, = +-d/2.  However, the shear stress must also be zero at the inner surfaces ab, 
etc., of the flanges. Equation (10.8) therefore may only be taken to give an 
indication of the vertical shear stress distribution in the flanges in the viciniry of the 
web. Clearly if the flanges are thin so that d is close in value to D then rf in rhe 
j7unges at the extremities of the web is small, as indicated in Fig. 10.4(b). 

The area A; formed by taking a slice in the web at y = y ,  comprises two 
rectangles which may therefore be treated separately in determining A'? for the web. 

s 2 '  

8 I ,  
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Thus 

ow = S, [.( 2 D - -) d l D  - (- + --) d + t ,  (p - y ,) + (: + yw)] 
,I., 2 2 2  

which simplifies to 

or cw = - 

Again the distribution is parabolic and increases from 

at y ,  = *d/2 to a maximum value, rw,max, given by 

rw,,,, = - - (0’ - d ’ )  + - [ 8:w ”’I 8 

(10.10) 

(10.11) 

(10.12) 

(10.13) 

at y = O .  Note that the value of ow at the extremities of the web (Eq. (10.12)) is 
greater than the corresponding values of cf  by a factor B / t w .  The complete 
distribution is shown in Fig. 10.4(b). 

The value of T~,,,, (Eq. (10.13)) is not very much greater than that of ow at the 
extremities of the web. In design checks on shear stress values in I-section beams it is 
usual to assume that the maximum shear stress in the web is equal to the shear load 
divided by the web area. In most cases the result is only slightly different from the 
value given by Eq. (10.13). A typical value given in Codes of Practice for the 
maximum allowable value of shear stress in the web of an I-section, mild steel beam is 
100 N/mm’; this is applicable to sections having web thicknesses not exceeding 40 mm. 

We have been concerned so far in this example with the distribution of vertical 
shear stress. We now consider the situation that arises if we take the slice across one 
of the flanges at x”sf as shown in Fig. 10.5(a). Equations (10.4) and (10.5) still 
apply, but in this case bo = t , .  Thus, using Eq. (10.4), 

where r f lh)  is the distribution of horizontal shear stress in the flange. Simplifying the 
above equation we obtain 

(1 0.14) 

Equation (10.14) shows that the horizontal shear stress varies linearly in the flanges 
from zero at xf = B / 2  to S , ( D  + d ) B / 8 I ,  at xf = 0. 
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Fig. 10.5 Distribution of horizontal shear stress in the flanges of an I-section beam 

We have defined a positive shear stress as being directed away from the edge bo 
of the slice towards the interior of the slice (Fig. lO.l(b)). Since Eq. (10.14) is 
always positive, then r f ( h )  in the lower flange is directed towards the outer edges of 
the flange. By a similar argument q ( h )  in the upper flange is negative since 1 is 
negative for any slice and rf(,,) is therefore directed towards the web. The distribution 
is shown in Fig. 10.5 (b). 

From Eq. (10.12) we see that the shear stress at the extremities of the web 
multiplied by the web thickness is 

S, B S B  
I ,  8 I., 8 

r t = - - ( D  + d ) ( D  - d ) =  2 - ( D  +d)2rf (10.15) 

The product of horizontal flange stress and flange thickness at the extremities of the 
web is, from Eq. (10.14) 

w w  

S,. B 

I., 8 
rf(,,)tf = - - (D + d)t f  (10.16) 

Comparing Eqs (10.15) and (10.16) we see that 

r w t w  = 2 . r f ( h , t f  (10.17) 

The product stress x thickness gives the shear force per unit length in the walls of 
the section and is known as the shear flow, a particularly useful parameter when 
considering thin-walled sections. In the above example we note that r f ( h ) t f  is the 
shear flow at the extremities of the web produced by considering one half of the 
complete flange. From symmetry there is an equal shear flow at the extremities of 
the web from the other half of the flange. Equation (10.17) therefore expresses the 
equilibrium of the shear flows at the web/flange junctions. We shall return to a more 
detailed consideration of shear flow when investigating the shear of thin-walled 
sections. 
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In ‘thick’ I-section beams the horizontal flange shear stress is not of great 
importance since, as can be seen from Equation (10.17), it is of the order of half 
the magnitude of the vertical shear stress at the extremities of the web if t ,  = t,. In 
thin-walled I-sections (and other sections too) this horizontal shear stress can 
produce shear distortions of sufficient magnitude to redistribute the direct stresses 
due to bending, thereby seriously affecting the accuracy of the basic bending theory 
described in Chapter 9. This phenomenon is known as shear lug. 

Example 10.3 Determine the distribution of vertical shear stress in a beam of 
circular cross-section when it is subjected to a shear force S, (Fig. 10.6). 

The area A’ of the slice in this problem is a segment of a circle and therefore does 
not lend itself to the simple treatment of the previous two examples. We shall 
therefore use Eq. (10.5) to determine the distribution of vertical shear stress. Thus 

7 = - SS I,”” by, dYl (10.18) 
bo 1.r 

R D ~  
64 

where I ,  = - (Eq. (9.40)) 

Integration of Eq. (10.18) is simplified if angular variables are used; thus, from 
Fig. 10.6, 

D D D D 
2 2 2 2 

bo = 2 x - COS 0, b = 2 x - COS 4, Y I  = - sin 4, dyl = - COS 4 d$ 

Hence Eq. ( 10.18) becomes 

2 =  l6 ” If cos‘ 4 sin I$ de 
nD2 cos 0 

Fig. 10.6 Distribution of shear stress in a beam of circular cross-section 
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Integrating we obtain 

r =  16S, [ -- cof$]: 
xD2 cos 8 

which gives 

16S,, 

3x0’ 
r =  - . COS‘ e 

2 

( 4 2 )  
2 2 But cos e =  1 -sin e =  1 - - 

Therefore ‘5 = 2% (1 - $) (1 0.19) 

The distribution of shear stress is parabolic with values of r = 0 at y = +D/2 and 
r = r,,, = 16S,/3xD2 at y = 0, the neutral axis of the section. 

3xD2 

10.3 Strain energy due to shear 
Consider a small rectangular element of material of side 6 z ,  6y and thickness t 
subjected to a shear stress and complementary shear stress system, r (Fig. 10.7(a)); r 
produces a shear strain y in the element so that distortion occurs as shown in 
Fig. 10.7(b), where displacements are relative to the side CD. The horizontal 
displacement of the side AB is y6y so that the shear force on the face AB moves 
through this distance and therefore does work. If the shear loads producing the shear 
stress are gradually applied, then the work done by the shear force on the element 
and hence the strain energy stored, 6U, is given by 

6U = ;rt 6zy 6 y  

6U = ;yt 6 z  6y or 

Now y= r/G, where G is the shear modulus and r 6z 6y is the volume of the 
element. Hence 

1 r2 
6U = - - x volume of element 

2 G  

Fig. 10.7 Determination of strain energy due to shear 
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The total strain energy, U, due to shear in a structural member in which the shear 
stress, z, is uniform is then given by 

T2 U = - x volume of member 
2G 

(10.20) 

10.4 Shear stress distribution in thin-walled open 
section beams 
In considering the shear stress distribution in thin-walled open section beams we shall 
make identical assumptions regarding the calculation of section propenies as were 
made in Section 9.6. In addition we shall assume that shear stresses in the plane of 
the cross-section and parallel to the tangent at any point on the beam wall are constant 
across the thickness (Fig. 10.8(a)), whereas shear stresses normal to the tangent are 
negligible (Fig. 10.8(b)). The validity of the latter assumption is evident when it is 
realized that these normal shear stresses must be zero on the inner and outer surfaces 
of the section and that the walls are thin. We shall further assume that the wall 
thickness can vary round the section but is constant along the length of the member. 

Figure 10.9 shows a length of a thin-walled beam of arbitrary section subjected to 
shear loads S, and S, which are applied such that no twisting of the beam occurs. In 
addition to shear stresses, direct stresses due to the bending action of the shear loads 
are present so that an element 6s x 6z of the beam wall is in equilibrium under the 
stress system shown in Fig. 10.10(a). The shear stress T is assumed to be positive in 
the positive direction of s, the distance round the profile of the section measured 
from an open edge. Although we have specified that the thickness t may vary with s, 
this variation is small for most thin-walled sections so that we may reasonably make 

Fig. 10.8 Assumptions in thin-walled open section beams 

Fig. 10.9 Shear of a thin-walled open section beam 
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Fig. 10.10 Equilibrium of beam element 

the approximation that t is constant over the length 6s. As stated in Ex. 10.2 it is 
convenient, when considering thin-walled sections, to work in terms of shear flow to 
which we assign the symbol q(=.st). Figure 10.10(b) shows the shear stress system 
of Fig. 10.10(a) represented in terms of q. Thus for equilibrium of the element in 
the z direction 

o1+---6z t 6 s - a b , t 6 s +  q + - 6 s  6 z - q 6 z = O  

which gives - + t - = o  (10.21) 

ab, am, y am,, x 

aZ aZ I., az I ,  

ab1 s,. s, 
aZ I ,  I? 

aq s, s, 
as I., I ,  

( :) ( ; : )  
aq ab: 
as aZ 

Again we assume that the direct stresses are given by Eq. (9.30), so that 

-=--+A- 

which becomes 

- = - y + - x  (Section 9.9) 

Substituting in Eq. (10.21) we obtain 

_ -  _ - -  . r y - - t x  

Integrating this expression from s = 0 (where q = 0 on the open edge of the section) 
to any point s we have 

- 
(10.22) s I q s = -  - :: Ji tyds--  J’txds 

I, 0 

The shear stress at any point in the beam section wall is obtained by dividing the 
shear flow q, by the appropriate wall thickness. Thus 

Tr = - Si 1; ty d s  - S, J; tx ds (10.23) 
t.5 I., t , I ,  

Note the similarity to Eq. (10.2) for the shear stress distribution in a ‘thick’ beam. 
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Example 10.4 Determine the shear flow distribution in the thin-walled Z-section 
beam shown in Fig. 10.1 1 produced by a shear load S, applied in the plane of the 
web. 

The origin for our system of reference axes coincides with the centroid of the 
section at the mid-point of the web. The centroid is also the centre of antisymmetry 
of the section so that the shear load, applied through this point, causes no twisting 
of the section and the shear flow distribution is given by Eq. (10.22) in which 

- - 4, I.& s, s, = , s,= 
1 - I . ~ , ~ / I . ~  I ,  

(1) 
1 - I . ~ , ~ / I . ~  I ,  

The second moments of area of the section about the x and y axes have previously 
been calculated in Ex. 9.10 and are 

h 't h3t I , = - ,  I =- -  
.'?' 8 

h 3t 
I ,  = - , 

3 12 

Substituting these values in Eq. (i) we obtain 

S,= 2-28 S,, S., = 0.86 S,  

whence, from Eq. (10.22), 

s, q3 = - - J' (6.84 y + 10.32 x )  ds 
h 3  o 

On the upper flange AB, y = -h/2 and x = h/2 - s, where OS s, s h/2. Therefore 

 AB = - " I SA (10.32 SA - 1 *74h) dSA 
h 3  o 

(ii) s P 2 which gives  AB = 3 (5.16~A - 1.74hS~) 
h 

Fig. 10.1 1 Beam section of Ex. 10.4 
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Thus at A(s, = 0). 4, = 0 and at B(s, = h/2), qB = 0.42SJ/h. Note that the order of 
the suffixes of q in Eq. (ii) denotes the positive direction of q(and s,). An 
examination of Eq. (ii) shows that the shear flow distribution on the upper flange is 
parabolic with a change of sign (i.e. direction) at sA=0-34h.  For values of 
sA<0.34h,  q A B  is negative and is therefore in the opposite direction to s,. 
Furthermore, q A B  has a turning value between s, = 0 and S, = 0.34h at a value of s, 
given by 

-- dqAB - 1 0 . 3 2 ~ ~  - 1.74h = 0 
ds, 

i.e. at sA=0.17h. The corresponding value of qAB is then, from Eq. (ii), 
q A B  = -0*15S,/h. 

In the web BC, y = - h/2 + sB where 0 s sa< h and x = 0. Thus 

qec = - - ”’ IXR (6.84~B - 3-42h) dSB + q~ (iii) 

Note that in Eq. (iii), qBC is not zero when sB = 0 but equal to the value obtained by 
inserting s A =  h/2 in Eq. (ii), Le. qB=0-42SJ/h. Integrating the first two terms on 
the right-hand side of Eq. (iii) we obtain 

h 3  o 

(iv) 
S 2 

h 3  
(IBC = - L (3.42~B - 3.42h.Y~ - 0.42h *) 

Equation (iv) gives a parabolic shear flow distribution in the web, symmetrical about 
Gx and with a maximum value at sB = h/2 equal to 1*28S,/h; q A B  is positive at all 
points in the web. 

The shear flow distribution in the lower flange may be deduced from 
antisymmetry; the complete distribution is shown in Fig. 10.12. 

Fig. 10.12 Shear flow distribution in beam section of Ex.  10.4 
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Shear centre 
We have specified in the previous analysis that the lines of action of the shear loads 
S, and S, must not cause twisting of the section. For this to be the case, S, and S, 
must pass through the shear centre of the section. Clearly in many practical 
situations this is not so and torsion as well as shear is induced. These problems may 
be simplified by replacing the shear loads by shear loads acting through the shear 
centre, plus a pure torque, as illustrated in Fig. 10.13 for the simple case of a 
channel section subjected to a vertical shear load S, applied in the line of the web. 
The shear stresses corresponding to the separate loading cases are then added by 
superposition. 

Where a section possesses an axis of symmetry, the shear centre must lie on this 
axis. For cruciform, T and angle sections of the type shown in Fig. 10.14 the shear 
centre is located at the intersection of the walls since the resultant internal shear 
loads all pass through this point. In fact in any beam section in which the walls are 
straight and intersect at just one point, that point is the shear centre of the section. 

Example 10.5 

Determine the position of the shear centre of the thin-walled channel section shown 
in Fig. 10.15. 

The shear centre S lies on the horizontal axis of symmetry at some distance xs 
say, from the web. If an arbitrary shear load, S,, is applied through the shear centre, 
then the shear flow distribution is given by Eq. (10.22) and the moment about any 
point in the cross-section produced by these shear flows is equivalent to the moment 
of the applied shear load about the same point; S, appears on both sides of the 
resulting equation and may therefore be eliminated to leave xs as the unknown. 

Fig. 10.13 Replacement of a shear load by a shear load acting through the shear 
centre plus a torque 

Fig. 10.14 Special cases of shear centre position 
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Fig. 10.15 Channel section beam of Ex. 10.5 

For the channel section, Gx is an axis of symmetry so that I,, = 0, giving s, = S, 
and s, = S, = 0. Equation (10.22) therefore simplifies to 

q r = - -  ’‘ 1’ t y d s  
I ,  o 

where 

Substituting for I ,  and noting that t is constant round the section, we have 

I , = - + 2 b t  th 3 
12 (ir - = -  t:i (1 + 6 :) 

( 0  
12s, 

q < =  - 1; Y d s  
h3(l  + 6b/h) 

The solution of this type of problem may be reduced in length by giving some 
thought to what is required. We are asked, in this case, to obtain the position of the 
shear centre and not a complete shear flow distribution. From symmetry it can be 
seen that the moments of the resultant shear forces on the upper and lower flanges 
about the mid-point of the web are numerically equal and act in the same sense. 
Furthermore, the moment of the web shear about the same point is zero. Therefore it 
is only necessary to obtain the shear flow distribution on either the upper or lower 
flange for a solution. Alternatively, the choice of either flange/web junction as the 
moment centre leads to the same conclusion. 

On the upper flange, )I = - /z/2 so that from Eq. (i) we obtain 

S A  (ii) 

Equating the anticlockwise moments of the internal shear forces about the mid-point 

6S,  
h’(1 + 66/h)  

q A B  = 
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of the web to the anticlockwise moment of the applied shear load about the same 
point gives 

b h  
2 s) x S  = 2 I, qAB - dsA 

Substituting for qAB from Eq. (ii) we have 

b 6S, h 
o h2(1 +6b /h)  2 

s,x, = 2 I - SA ds, 

from which 

3b2 

h(l  + 6b/h)  
xs = 

In the case of an unsymmetrical section, the coordinates (x , ,y , )  of the shear 
centre referred to some convenient point in the cross-section are obtained by first 
determining xs  in a similar manner to that described above and then calculating ys  by 
applying a shear load S, through the shear centre. It should be noted that in each of 
the separate applications of S, and S, both s, and 3, have values. 

10.5 Shear stress distribution in thin-walled closed 
section beams 

The shear flow and shear stress distributions in a closed section, thin-walled beam 
are determined in a manner similar to that described in Section 10.4 for an open 
section beam but with two important differences. First, the shear loads may be 
applied at points in the cross-section other than the shear centre so that shear and 
torsion occur simultaneously. We shall see that a solution may be obtained for this 
case without separating the shear and torsional effects, although such an approach is 
an acceptable alternative, particularly if the position of the shear centre is required. 
Secondly, it is not generally possible to choose an origin for s that coincides with a 
known value of shear flow. A closed section beam under shear is therefore singly 
redundant as far as the internal force system is concerned and requires an equation 

Fig. 10.16 Shear of a thin-walled closed section beam 
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additional to the equilibrium equation (10.21). Identical assumptions are made 
regarding section properties, wall thickness and shear stress distribution as were 
made for the open section beam. 

The thin-walled beam of arbitrary closed section shown in Fig. 10.16 is subjected 
to shear loads S, and S, applied through any point in the cross-section. These shear 
loads produce direct and shear stresses on any element in the beam wall identical to 
those shown in Figs 10.10(a) and (b). The equilibrium equation (10.21) is therefore 
applicable and is 

aq ao. 
as aZ - + t - = O  

By an identical procedure of substitution for o1 as for an open section beam we obtain 

3 aq - d s = - - /  3,. s t y d s - - /  3, 5 txds 
as 1.1 O I ,  O 

If, at the origin for s, the shear flow q has the unknown value ql,o then integration of 
the above equation gives 

or (10.24) 

It is clear from a comparison of Eqs (10.24) and (10.22) that the first two terms 
of the right-hand side of Eq. (10.24) represent the shear flow distribution in an open 
section beam with the shear loads applied through its shear centre. We shall denote 
this ‘open section’ or ‘basic’ shear flow distribution by qb and rewrite Eq. (10.24) as 

4s = q b  + 93.0 

We obtain qb by supposing that the closed section beam is ‘cut’ at some convenient 
point, thereby producing an ‘open section’ beam as shown in Fig. 10.17(b); we take 
the ‘cut’ as the origin for s. The shear flow distribution round this ‘open section’ 
beam is given by Eq. (10.22), i.e. 

s r  s 
q b -  - -  -1 tyds- L l ’ t x d s  

I ,  I ,  
Eq. (10.22) is valid only if  the shear loads produce no twist; in other words, S, and 
S, must be applied through the shear centre of the ‘open section’ beam. Thus by 
‘cutting’ the closed section beam to determine qb we are, in effect, transfening the 
line of action of S, and S, to the shear centre, Sl,n, of the resulting ‘open section’ 
beam. The implication is, therefore, that when we ‘cut’ the section we must 
simultaneously introduce a pure torque to compensate for the transference of S, and 
S,. We shall show in Chapter 11 that the application of a pure torque to a closed 
section beam results in a constant shear flow round the walls of the beam. In this 
case qr,n, which is effectively a constant shear flow round the section, corresponds to 
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Fig. 10.17 Determination of shear flow value at the origin for s in a closed section 
bea rn 

the pure torque produced by the shear load transference. Clearly different positions 
of the ‘cut’ will result in different values for qs,o since the corresponding ‘open 
section’ beams have different shear centre positions. 

It is immaterial whether S, and S, in Fig. 10.17 are externally applied loads or 
internal shear forces since we have stipulated in Section 9.5 that when internal force 
systems are those acting on that face of the section that is seen when viewed in the 
direction z 0  they act in the same sense as externally applied loads. S, and S, are 
therefore the stress resultants of the internal shear flows qs. Thus, equating internal 
and external anticlockwise moments in Fig. 10.17(a), we have 

S,qn - S , L  = JPql ds = J ~ 9 b  ds + q3.n JP ds 

where 4 denotes integration taken completely round the section. In Fig. 10.17(a) the 
elemental area 6A is given by 

6A = !,v 6s 

Thus Jp d s = 2  J dA 

or Jp ds = 2A 

where A is the area enclosed by the mid-line of the section wall. Hence 

S,qn - S,tn = JPqb ds + 2 ~ 9 ,  n (10.25) 

If the moment centre coincides with the lines of action of S, and S, then Eq. (10.25) 
reduces to 

0 = J-pqb ds + 2Aq, 0 (10.26) 

The unknown shear flow cl,n follows from either of Eqs (10.25) or (10.26). Note 
that the signs of the moment contributions of S ,  and S, on the left-hand side of 
Eq. (10.25) depend upon the position of their lines of action relative to the moment 



Shear stress distribution in thin-walled closed section beams 277 

centre. The values given in Eq. (10.25) apply only to Fig. 10.17(a) and could change 
for different moment centres and/or differently positioned shear loads. 

Shear centre 
A complication arises in the determination of the position of the shear centre of a 
closed section beam since the line of action of the arbitrary shear load (applied 
through the shear centre as in Ex. 10.5) must be known before qs,o can be determined 
from either of Eqs (10.25) or (10.26). However, before the position of the shear 
centre can be found, qs,o must be obtained. Thus an alternative method of 
determining qs,o is required. We therefore consider the rate of twist of the beam 
which, when the shear loads act through the shear centre, is zero. 

Consider an element, 6s x 6z, of the wall of the beam subjected to a system of 
shear and complementary shear stresses as shown in Fig. 10.18(a). These shear 
stresses induce a shear strain, y, in the element which is given by 

Y= $ 1  + $2 

irrespective of whether direct stresses (due to bending action) are present or not. If 
the linear displacements of the sides of the element in the s and z directions are 6v, 
(i.e. a tangential displacement) and 6w, respectively, then as both 6s and 6z become 
infinitely small 

aw aut 
as aZ y=--+- ( 10.27) 

Suppose now that the beam section is given a small angle of twist, 8, about its 
centre of twist, R. If we assume that the shape of the cross-section of the beam is 
unchanged by this rotation (Le. it moves as a rigid body), then from Fig. 10.18(b) it 
can be seen that the tangential displacement, ut, of a point in the wall of the beam 
section is given by 

ut =PRe 

a v, ae 
aZ aZ  Hence -=PR-  

Fig. 10.18 Rate of twist in a thin-walled closed section beam 
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Since we are assuming that the section rotates as a rigid body, it follows that 8 is a 
function of z only so that the above equation may be written 

av, de  -- -PR - aZ dz 

Substituting for aut/& in Eq. (10.27) we have 

aw de  
as dz 

+PR - y= - 

Now 

Thus 

Integrating both sides of this equation completely round the cross-section of the 
beam, i.e. from s = 0 to s = sk (see Fig. 10.18(b)), 

which gives 

4 aw d e  f > d s = f  Gt - d s + - l p R d s  as dz 

f $ ds = [w],,, + - 2A 
s=s, de 

dz 

The axial displacement, w, must have the same value at s = 0 and s = sr Therefore 
the above expression reduces to 

de  1 q.s _ -  - - f - d s  
dz 2A Gt 

For shear loads applied through the shear centre, de/dz = 0 so that 

4 .r O =  1 -ds 
Gt 

which may be written 

Hence 

If G is constant then Eq. (10.29) simplifies to 

(10.28) 

(10.29) 

(10.30) 
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Example 10.6 A thin-walled, closed section beam has the singly symmetrical, 
trapezoidal cross-section shown in Fig. 10.19. Calculate the distance of the shear 
centre from the wall AD. The shear modulus G is constant throughout the section. 

The shear centre lies on the horizontal axis of symmetry so that it is only 
necessary to apply a shear load S, through S to determine xs. Furthermore the axis of 
symmetry coincides with the centroidal reference axis Gx so that ZA, = 0, s, = S, and 
3, = S, = 0. Equation (10.24) therefore simplifies to 

qs = - 5 I’ tY ds + 95.0 (9 
1, O 

Note that in Eq. (i) only the second moment of area about the x axis and coordinates 
of points referred to the x axis are required so that it is unnecessary to calculate the 
position of the centroid on the x axis. It will not, in general, and in this case in 
particular, coincide with S .  

The second moment of area of the section about the x axis is given by 

1 1 5 0 + - ~  ds 
800 I5O r 1 I ,  = 12x600) + 8 ~ 3 0 0 ~  +2[,nm ( 

12 12 

from which I ,  = 1074 x lo6 mm4. Alternatively, the second moment of area of each 
inclined wall about an axis through its own centroid may be found using the method 
described in Section 9.6 and then transferred to the x axis by the parallel axes theorem. 

We now obtain the qb shear flow distribution by ‘cutting’ the beam section at the 
mid-point 0 of the wall CB. Thus, since y = s, we have 

s, 
I ,  

9 b o ~  = - - InsA  SA dSA 

which gives 

(ii) s, 2 

1, 
qbOB = - A 434 

Fig. 10.19 Closed section beam of Ex. 10.6 
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Thus 

For the wall BA where y = 150 + 150sB/800 

from which 

(iii) 

which gives 

S S  

1.1- 
qb.AD = - A (3600s~ - 6scZ + 189 x io') (iv) 

The remainder of the qb distribution follows from symmetry. 

must use Eq. (10.30) to determine qS,n. Now 
The shear load S, is applied through the shear centre of the section so that we 

ds  600 2 x 8 0 0  300 +-+-- - 247.5 IT=- 12 10 8 

Hence 

Substituting for qb.oB, q b . A D  and 
respectively, we obtain 

in Eq. (v) from Eqs (ii), (iii) and (iv), 

+J;Y (300ic - 1 sC- , + imX io.)n,,] 

12 

from which 

-L S x 1.04 x 10 6 

11 
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Taking moments about the mid-point of the wall AD we have 

syX, = 2 ( I d,, 78640, dsA + Inm 294qBA dSB) (vi) 

Noting that qos = qb.oB + qx.o and qBA = qb.BA + qx.” we rewrite Q. (vi) as 

sx=’  Y S  2I: [I:” 786(-4sA2 + 1-04 X lo6) dsA 

+I RIM 294(-1500sB - g SB* + 0.95 X lo6) dSB (Vii) 
n 1 

Integrating Eq. (vii) and eliminating S ,  gives 

xs  = 282 mm. 

Problems 
P.10.1 A cantilever has the inverted T-section shown in Fig. P.10.1. It carries a 

vertical shear load of 4 kN in a downward direction. Determine the distribution of 
vertical shear stress in its cross-section. 

Ans. In web: T = 0.004 (44’ - y 2 )  N/mm2. 

In flange: z = 0.004 (262 - yz) N/mm2. 

Fig. P.10.1 

P.10.2 An I-section beam having the cross-sectional dimensions shown in 
Fig. P.10.2 cames a vertical shear load of 80 kN. Calculate and sketch the 
distribution of vertical shear stress across the beam section and determine the 
percentage of the total shear load camed by the web. 

z (base of flanges) = 1 - 1 N/mm*, 

T (neutral axis) = 15.7 N/mm’, 95.5%. 
Ans. z (ends of web) = 1 1 .O N/mm’, 
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Fig. P.10.2 

P.10.3 A doubly symmetrical I-section beam is reinforced by a flat plate 
attached to the upper flange as shown in Fig. P.10.3. If the resulting compound beam 
is subjected to a vertical shear load of 200 kN, determine the distribution of shear 
stress in the portion of the cross-section that extends from the top of the plate to the 
neutral axis. Calculate also the shear force per unit length of beam resisted by the 
shear connection between the plate and the flange of the I-section beam. 

Ans. r (top of plate) = 0 
r (bottom of plate) = 0.69 N/mm2 
r (top of flange) = 1.36 N/mm2 
r (bottom of flange) = 1.79 N/mm2 
r (top of web) = 14.3 N/mm2 
'5 (neutral axis) = 15.25 N/mm2 
Shear force per unit length = 272 kN/m. 

Fig. P.10.3 

P.10.4 A timber beam has a rectangular cross-section, 150 mm wide by 
300 mm deep, and is simply supported over a span of 4 m. The beam is subjected 
to a two point loading at the quarter span points. If the beam fails in shear when the 
total of the two concentrated loads is 180 kN, determine the maximum shear stress 
at failure. 

Ans. 3 N/mm'. 
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P.10.5 A beam has the singly symmetrical thin-walled cross-section shown in 
Fig. P.10.5. Each wall of the section is flat and has the same length, a, and thickness, 
t. Determine the shear flow distribution round the section due to a vertical shear load, 
S,, applied through the shear centre and find the distance of the shear centre from the 
point c. 

Ans. qAB = 3s,(2asA - S ~ ~ / 2 ) / 1 6 Q ~  sin a 

qBc = 3S,(3/2 + sB/a - ~ ~ ~ / 2 a * ) / 1 6 a  sin a 

S.C. is 5a cos a/8 from C. 

Fig. P.10.5 

P.10.6 Define the term ‘shear centre’ of a thin-walled open section and 
determine the position of the shear centre of the thin-walled open section shown in 
Fig. P.10.6. 

Ans. 2.66r from centre of semicircular wall. 

Fig. P.10.6 

P.10.7 Determine the position of the shear centre of the cold-formed, thin- 
walled section shown in Fig. P.10.7. The thickness of the section is constant 
throughout. 

Ans. 87.5 mm above centre of semicircular wall. 
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Fig. P.10.7 

P.10.8 Determine the position of the shear centre of the cold-formed, thin- 
walled channel section shown in Fig. P.10.8. 

Am. 1-24r from mid-point of web. 

Fig. P.10.8 

Fig. P.10.9 
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P.10.9 The thin-walled channel section shown in Fig. P.10.9 has flanges that 
decrease linearly in thickness from 2to at the tip to t o  at their junction with the web. 
The web has a constant thickness to. Determine the distribution of shear flow round 
the section due to a shear load S, applied through the shear centre S. Determine also 
the position of the shear centre. 

AnS.  AB = S,f,h(sA- sA’/4d)/I, 
qBc = S~o(hsB - sB* + 3hd/2)/21, 

where 

unsymmetrical channel section shown in Fig. P. 10.10. 

I ,  = r,h2(h + 9d)/12, h/2 from mid-point of web. 
P.10.10 Calculate the position of the shear centre of the thin-walled 

Am. 23.3 mm from web BC. 
76-5 mm from flange CD. 

Fig. P.lO.10 

P.lO.11 The closed, thin-walled, hexagonal section shown in Fig. P.10.11 
supports a shear load of 30 kN applied along one side. Determine the shear flow 
distribution round the section if the walls are of constant thickness throughout. 

Ans. qoB = 155 - O-OO~SA’, 
qcD = 50 - 1.2sC + 0.003sc2, 

qBc = 140 - 0.6sB - O.003sB2, 
qDE = 0.006~D’ - 0.6sD - 40. 

Remainder of distribution follows by symmetry. All shear flows in N/mm. 

Fig. P.10.11 
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P.10.12 A closed section, thin-walled beam has the shape of a quadrant of a 
circle and is subjected to a shear load S applied tangentially to its curved side as 
shown in Fig. P.10.12. If the walls are of constant thickness throughout determine 
the shear flow distribution round the section. 

A ~ s .  qoA = S(COS 0 - 0*45)/0*62r 
q A B  = S ( 0 . 3 5 ~ ~  -0.707r~ + 0.257r2)/0*62r3. 

Fig. P.10.12 

P.10.13 An overhead crane runs on tracks supported by a thin-walled beam 
whose closed cross-section has the shape of an isosceles triangle (Fig. P.10.13). If 
the walls of the section are of constant thickness throughout determine the position 
of its shear centre. 

Ans. 0.71 m from horizontal wall. 

Fig. P.10.13 

P.10.14 A box girder has the singly symmetrical trapezoidal cross-section shown 
in Fig. P.10.14. It supports a vertical shear load of 500 kN applied through its shear 
centre and in a direction perpendicular to its parallel sides. Calculate the shear flow 
distribution and the maximum shear stress in the section. 

Ans. 40, = 36S)sA X 103/I, 

qAB = 6 . ~ ~ 3  - 5sB2/2 + 5~,/2) x 103/z, 
9Bc = 6 ~ , ( 3  - 2s,) x 103/1,, I, in m4; s,, etc., in m 
T~~ = 32 N/mmz. 
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Fig. P.10.14 



CHAPTER 11 

Torsion of Beams 

Torsion in beams arises generally from the action of shear loads whose points of 
application do not coincide with the shear centre of the beam section. Examples of 
practical situations where this occurs are shown in Fig. 11.1 where, in Fig. 11.1 (a), a 
concrete encased I-section steel beam supports an offset masonry wall and in 
Fig. 1 1.1 (b) a floor slab, cast integrally with its supporting reinforced concrete 
beams, causes torsion of the beams as it deflects under load. Relevant Codes of 
Practice either imply or demand that torsional stresses and deflections be checked 
and provided for in design. 

The solution of torsion problems is complex particularly in the case of beams of 
solid section and arbitrary shape for which exact solutions do not exist. Use is then 
made of empirical formulae which are conveniently expressed in terms of correction 
factors based on the geometry of a particular shape of cross-section. The simplest 
case involving the torsion of solid section beams (as opposed to hollow cellular 
sections) is that of a circular section shaft or bar. This case therefore forms an 
instructive introduction to the more complex cases of the torsion of solid section, 
thin-walled open section and thin-walled closed section beams. 

11.1 Torsion of solid and hollow circular-section bars 
Figure 11.2(a) shows a circular-section bar of length L subjected to equal and 
opposite torques, T ,  at each end. The torque at any section of the bar is therefore 
equal to T and is constant along its length. We shall assume that cross-sections 

Fig. 11.1 Causes of torsion in beams 
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Fig. 11.2 Torsion of a solid circular-section bar 

remain plane during twisting, that radii remain straight during twisting and that all 
normal cross-sections equal distances apart suffer the same relative rotation. 

Consider the generator AB on the surface of the bar and parallel to its longitudinal 
axis. Due to twisting, the end A is displaced to A' so that the radius OA rotates 
through a small angle, 0, to OA'. The shear strain, ys, on the surface of the bar is 
then equal to the angle ABA' in radians so that 

AA' R e  
ys=-- - -  

L L  

Similarly the shear strain, y, at any radius r is given by the angle DCD' so that 

DD' re  
y =  - - _ -  

L L  
The shear stress, r, at the radius r is related to the shear strain y by Eq. (7.9). Thus 

r re  y =  - = - 
G L  

or, rearranging 

(11.1) r e - = G -  
r L 

Consider now any cross-section of the bar as shown in Fig. 11.2(b). The shear 
stress, r ,  on an annulus of radius rand  width 6r is tangential to the annulus, is in the 
plane of the cross-section and is constant round the annulus since the cross-section 
of the bar is perfectly symmetrical. The shear force on the element 6s of the annulus 
is then r 6s 6r and its moment about the centre, 0, of the section is r 6s 6r r. 
Summing the moments on all such elements of the annulus we obtain the torque, 6T,  
on the annulus, i.e. 

6T = 1'"' r 6r r ds  
n 

which gives 

6T = 2nr2z 6 r  
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The total torque on the bar is now obtained by summing the torques from each 
annulus in the cross-section. Thus 

T = I R  0 2nr2rdr (11.2) 

Substituting for T in Eq. (1 1.2) from Eq. (1 1.1) we have 

0 

L 

nR4 8 which gives T=-G-  
2 L  

T = IoR 2nr3G - dr  

0 

L 
or T = J G  - (11.3) 

where J =  xR4/2(=nD4/32) is defined as the polar second moment of area of the 
cross-section (see Eq. (9.42)). Combining Eqs (1 1.1) and (1 1.3) we have 

T r  0 
- = - =  c -  (11.4) 
J r  L 

Note that for a given torque acting on a given bar the shear stress is a maximum at 
the outer surface of the bar. Note also that these shear stresses induce 
complementary shear stresses on planes parallel to the axis of the bar but not on the 
actual surface (Fig. 1 1.3). 

Torsion of a circular section hollow bar 
The preceding analysis may be applied directly to a hollow bar of circular section 
having outer and inner radii R, and R,, respectively. Equation (1 1.2) then becomes 

T = / R‘’ 2 n r ’ ~  dr  
R ,  

Substituting for T from Eq. (1 1.1) we have 

e 
T = 1 “’ 2nr’G - dr  

R ,  L 

n 4 4 e  whence T = - ( R ,  - R , ) C -  
2 L 

Fig. 11.3 Shear and complementary shear stresses on the surface of a circular- 
section bar subjected to torsion 
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Thus the polar second moment of area, J, is given by 

(11.5) I C 4  

2 
J =  - (R, -R,4)  

Statically indeterminate circular-section bars under torsion 

In many instances bars subjected to torsion are supported in such a way that the 
support reactions are statically indeterminate. These reactions must be determined, 
however, before values of maximum stress and angle of twist can be obtained. 

Figure 11.4(a) shows a bar of uniform circular cross-section firmly supported at 
each end and subjected to a concentrated torque at a point B along its length. From 
equilibrium we have 

T = T A +  Tc (1 1.6) 

A second equation is obtained by considering the compatibility of displacement at B 
of the two lengths AB and BC. Thus the angle of twist at B in AB must equal the 
angle of twist at B in BC, i.e. 

~ B ( A B )  = ~ B ( B C ,  

or using Eq. (1 1.3) 

-- &LAB TCLBC 
GJ GJ 

-- 

whence 

L BC 

LAB 
TA = T, - 

Fig. 11.4 Torsion of a circular-section bar with built-in ends 
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Substituting in Eq. (1 1.6) for TA we obtain 

TA=Tc  -+ 1 (LL: 1 
which gives Tc = T (11.7) LAB 

LAB + LBC 

LBC 
LAB + LBC 

Hence T ,  = T (11.8) 

The distribution of torque along the length of the bar is shown in Fig. 11.4(b). Note 
that if LAB > LBC, Tc is the maximum torque in the bar. 

Example 11.1 A bar of circular cross-section is 2.5 m long (Fig. 11.5). For 2 m 
of its length its diameter is 200 mm while for the remaining 0.5 m its diameter is 
100 mm. If the bar is firmly supported at its ends and subjected to a torque of 
50 kNm applied at its change of section, calculate the maximum stress in the bar 
and the angle of twist at the point of application of the torque. Take 
C = 80 OOO N/mm2. 

In this problem Eqs (1 1.7) and (1 1.8) cannot be used directly since the bar 
changes section at B. Thus from equilibrium 

T = T A + T c  (i 1 
and from the compatibility of displacement at B in the lengths AB and BC 

~ B ( A B )  = ~ B ~ B C )  

or using Eq. (1 1.3) 

TALA, TcLBc 
~ J A B  GJBC 
-- -- 

(ii) LBC J A B  

LAB JBC 

whence T A  = - - Tc 

Fig. 11.5 Bar of Ex. 11.1 
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Substituting in Eq. (i) we obtain 

LBC JAB + 1 T = T c  -- 
( L A B  JBC ) 

or 50= T c [ g  x ( 200 x 10-~ ) 4 + 11 
100 x 10-~ 

from which Tc=lOkNm 

Hence, from Eq. (i) T A = 4 0  kNm 

Although the maximum torque occurs in the length AB, the length BC has the 
smaller diameter. It can be seen from Eqs (11.4) that shear stress is directly 
proportional to torque and inversely proportional to diameter (or radius) cubed. We 
therefore conclude that in this case the maximum shear stress occurs in the length 
BC of the bar and is given by 

l o x  1o6x 100x32 

2xxx1004  
L a x  = = 50.9 N/ITII~' 

Also the rotation at B is given by either 

TC LBC or OB= - T A L A B  
GJAB GJBC 

e B  = - 

Using the first of these expressions we have 

40 x lo6 x 2 x lo3 x 32 

80000 x x x 2o04 
8 s  = = 0.0064 radians 

or O B  = 0.37" 

11.2 Strain energy due to torsion 
It can be seen from Eq. (1 1.3) that for a bar of a given material, a given length, L ,  
and radius, R ,  the angle of twist is directly proportional to the applied torque. 

Fig. 11.6 Torque-angle of twist relationship for a gradually applied torque 
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Therefore a torque-angle of twist graph is linear and for a gradually applied torque 
takes the form shown in Fig. 11.6. The work done by a gradually applied torque, T ,  
is equal to the area under the torque-angle of twist curve and is given by 

Work done = i TO 

The corresponding strain energy stored, U, is therefore also given by 

U = i T 8  

Substituting for T and 8 from Eqs (1 1.4) in terms of the maximum shear stress, rmaX, 
on the surface of the bar we have 

u=- -x -  1 % a X J  LaxL 
2 R  G R  

1 ‘5mx nR 4 
or u=-  - n ~ 2 ~  since J = -  

4 G  2 
2 

Hence u= - x volume of bar (11.9) 

Alternatively, in terms of the applied torque T we have 

L a x  

4G 

T’L 
U = L T e = -  (11.10) ‘ 2GJ 

11.3 Plastic torsion of circular-section bars 
Equations (1 1.4) apply only if the shear stress-shear strain curve for the material of 
the bar in torsion is linear. Stresses greater than the yield shear stress, q, induce 
plasticity in the outer region of the bar and this extends radially inwards as the 
torque is increased. It is assumed, in the plastic analysis of a circular-section bar 
subjected to torsion, that cross-sections of the bar remain plane and that radii remain 
straight. 

For a material such as mild steel which has a definite yield point the shear 
stress-shear strain curve may be idealized in a similar manner to that for direct stress 
(see Fig. 9.31) as shown in Fig. 11.7. Thus, after yield, the shear strain increases at a 

Fig. 11.7 Idealized shear stress - shear strain curve for a mild steel bar 
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more or less constant value of shear stress. It follows that the shear stress in the 
plastic region of a mild steel bar is constant and equal to zY. Figure 11.8 illustrates 
the various stages in the development of full plasticity in a mild steel bar of circular 
section. In Fig. 11.8(a) the maximum stress at the outer surface of the bar has 
reached the yield stress, zY. Equations (11.4) still apply, therefore, so that at the 
outer surface of the bar 

T Y  =Y 

J R  

AR 3 
2 

- = -  

(11.11) 

where T ,  is the torque producing yield. In Fig. 11.8(b) the torque has increased 
above the value T, so that the plastic region extends inwards to a radius re. Within re 
the material remains elastic and forms an elastic core. At this stage the total torque is 
the sum of the contributions from the elastic core and the plastic zone, i.e. 

or T y =  - =Y 

7, Je 

re 
T = - + I R  27tr2oY d r  

where Je is the polar second moment of area of the elastic core and the contribution 
from the plastic zone is derived in an identical manner to Eq. (1 1.2) but in which 
T = zY = constant. Hence 

‘e 

3 
= Y X r e  2 3 T =  - + - A T ~ ( R  - re3) 

2 3 

which simplifies to 

(11.12) 
2 n ~ 3  

T =  - Ty ( 1-- ii3) 
Note that for a given value of torque, Eq. (1 1.12) fixes the radius of the elastic core 
of the section. In stage three (Fig. 11.8(c)) the cross-section of the bar is completely 

3 

Fig. 11.8 Plastic torsion of a circular-section bar 



296 Torsion of Beams 

plastic so that re in Eq. (1 1.12) is zero and the ultimate torque or fully plastic torque, 
T p ,  is given by 

2 n ~ 3  
Tp = - TY (11.13) 

3 

ComparingEqs (1l.ll)and (11.13) weseethat 

(11.14) TP 4 
Tv 3 

so that only a one-third increase in torque is required after yielding to bring the bar to 
its ultimate load-carrying capacity. 

Since we have assumed that radii remain straight during plastic torsion, the angle 
of twist of the bar must be equal to the angle of twist of the elastic core which may 
be obtained directly from Eq. (1 1.3). Thus for a bar of length L and shear modulus 
G ,  

- = -  

TL 2TL 

GJ, nGre4 
e=-=- (11.15) 

or, in terms of the shear stress, T ~ ,  at the outer surface of the elastic core 

(11.16) e = -  

Either of Eqs (1 1.15) or (1 1.16) shows that 0 is inversely proportional to the radius, 
re ,  of the elastic core. Clearly, when the bar becomes fully plastic, re+O and 0 
becomes, theoretically, infinite. In practical terms this means that twisting continues 
with no increase in torque in the fully plastic state. 

T v L  

Gre 

11.4 Torsion of a thin-walled closed section beam 
Although the analysis of torsion problems is generally complex and in some 
instances relies on empirical methods for a solution, the torsion of a thin-walled 
beam of arbitrary closed section is relatively straightforward. 

Figure 11.9(a) shows a thin-walled closed section beam subjected to a torque, T .  
The thickness, t ,  is constant along the length of the beam but may vary round the 

Fig. 11.9 Torsion of a thin-walled closed section beam 
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cross-section. The torque T induces a stress system in the walls of the beam which 
consists solely of shear stresses if the applied loading comprises only a pure torque. 
In some cases structural or loading discontinuities or the method of support produce 
a system of direct stresses in the walls of the beam even though the loading consists 
of torsion only. These effects, known as axial constraint effects, are considered in 
more advanced texts. 

The shear stress system on an element of the beam wall may be represented in 
terms of the shear flow, 9, (see Section 10.4) as shown in Fig. 11.9(b). Again we 
are assuming that the variation of t over the side 6s of the element may be 
neglected. For equilibrium of the element in the z direction we have 

(9 + 2 6s) 6 Z  - 4 6 Z = o  

which gives _ -  - 0  (11.17) 

Considering equilibrium in the s direction, 

a9  
as 

(. + 2 az) 6s - 9 6s = 0 

from which _ -  - 0  (11.18) 

Equations (11.17) and (11.18) may only be satisfied simultaneously by a constant 
value of 9. We deduce, therefore, that the application of a pure torque to a thin- 
walled closed section beam results in the development of a constant shear flow in the 
beam wall. However, the shear stress, ‘5, may vary round the cross-section since we 
allow the wall thickness, t, to be a function of s. 

39 
aZ 

Fig. 11-10 Torque-shear flow relationship in a thin-wailed closed section beam 
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The relationship between the applied torque and this constant shear flow may be 
derived by considering the torsional equilibrium of the section shown in Fig. 11.10. 
The torque produced by the shear flow acting on the element, 6s, of the beam wall is 
q 6s p .  Hence 

T = Jpq ds 

or, since q = constant 

T = q J p d s  (11.19) 

We have seen in Section 10.5 that 4 p ds = 2A where A is the area enclosed by the 
mid-line of the beam wall. Hence 

T = 2Aq (11.20) 

The theory of the torsion of thin-walled closed section beams is known as the 
Bredr-Batho theory and Eq. (1 1.20) is often referred to as the Bredt-Batho formula. 

It follows from EQ. ( 1  1.20) that 

(11.21) 

and that the maximum shear stress in a beam subjected to torsion will occur at the 
section where the torque is a maximum and at the point in that section where the 
thickness is a minimum. Thus 

(11.22) 

In Section 10.5 we derived an expression (Eq. (10.28)) for the rate of twist, 
dO/dz, in a shear-loaded thin-walled closed section beam. Equation (10.28) also 
applies to the case of a closed section beam under torsion in which the shear flow 
is constant if it is assumed that, as in the case of the shear-loaded beam, cross- 
sections remain undistorted after loading. Thus, rewriting Eq. (10.28) for the 
case qs = q = constant, we have 

T,X om, = - 
2At,, 

-=-I-  de  q ds 

dz 2A Gt 

Substituting for q from Eq. (1 1.20) we obtain 

de  T ds 
dz 4A2 
-=- 

or, if G, the shear modulus, is constant round the section 

de T ds 
dz 4A2G t 
-=- - 

(11.23) 

(11.24) 

(1 1.25) 

Example 11.2 A thin-walled circular-section beam has a diameter of 200 mm and 
is 2 m long; it is firmly restrained against rotation at each end. A concentrated torque 
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of 30 kN m is applied to the beam at its mid-span point. If the maximum shear stress 
in the beam is limited to 200N/mm2 and the maximum angle of twist to 2O, 
calculate the minimum thickness of the beam walls. Take G = 25 OOO N/mm2. 

The minimum thickness of the beam corresponding to the maximum allowable 
shear stress of 200 N/mm2 is obtained directly using Eq. (1 1.22) in which 
T,, = 15 kNm. Thus 

1 5 x  106x4  
tmin = = 1-2mm 

2 x x x 2002 x 200 

The rate of twist along the beam is given by Eq. (1 1.25) in which 

ds x x 2 0 0  

Hence 
de  T 7 ~ x 2 0 0  

dz 4A2G t*,, 
X- _ -  -- 

Taking the origin for z at one of the fixed ends and integrating Eq. (i) for half the 
length of the beam we obtain 

T 200x e=- X- z + c, 
4A2G t,,, 

where C, is a constant of integration. At the fixed end where z = O ,  8 = 0  so that 
C, = 0. Hence 

T 200x e=--- x- Z 
4A2G t,,, 

The maximum angle of twist occurs at the mid-span of the beam where z =  1 m. 
Hence 

15 x lo6 x 200 x x x 1 x lo3 x 180 
tmin = =2-7  mm 

The minimum allowable thickness that satisfies both conditions is therefore 2.7 mm. 

4 x ( x x 2 0 0 2 / 4 ) 2 x 2 5 0 0 0 x 2 x x  

11.5 Torsion of solid section beams 
Generally, by solid section beams, we mean beam sections in which the walls do not 
form a closed loop system. Examples of such sections are shown in Fig. 1 1.1 1. An 
obvious exception is the hollow circular section bar which is, however, a special case 
of the solid circular section bar. The prediction of stress distributions and angles of 
twist produced by the torsion of such sections is complex and relies on the St. 
Venant warping function or Prandtl stress function methods of solution. Both of 
these methods are based on the theory of elasticity which may be found in advanced 
texts devoted solely to this topic. Even so, exact solutions exist for only a few 
practical cases, one of which is the circular-section bar. 
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Fig:l 1 .l 1 Examples of solid beam sections 

In all torsion problems, however, it is found that the torque, T ,  and the rate of 
twist, de/dz, are related by the equation 

(11.26) 

where G is the shear modulus and J is the torsion constant. For a circular-section 
bar J is the polar second moment of area of the section (see Eq. (1 1.3)) while 
for a thin-walled closed section beam J ,  from Eq. (1 1.25). is seen to be equal to 
4A2/J(ds/t). It is J in fact that distinguishes one torsion problem from another. 

For ‘thick’ sections of the type shown in Fig. 1 1.1 1 J is obtained empirically in 
terms of the dimensions of the particular section. For example, the torsion constant 
of the ‘thick’ I-section shown in Fig. 1 1.12 is given by 

J=  25, + J, + 2aD4 

where J l = ~ [ l - O ~ 6 3 ~ ( l - ~ ) ]  3 

de  
dz 

T = G J -  

J -1 3 
2 - 3dtw 

a = fi (015 + 0.1 i) 
12 

in which t ,  = t ,  and t, = t, if t f  c t,, or t ,  = t, and t r  = t f  if tf > t,. 

Fig. 11.12 Torsion constant for a ‘thick‘ I-section beam 
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It can be seen from the above that J ,  and J 2 ,  which are the torsion constants of the 
flanges and web, respectively, are each equal to one-third of the product of their 
length and their thickness cubed multiplied, in the case of the flanges, by an 
empirical constant. The torsion constant for the complete section is then the sum of 
the torsion constants of the components plus a contribution from the material at the 
web/flange junction. If the section were thin-walled, t f e b  and D4 would be 
negligibly small, in which case 

3 
bt? dt, 
3 3 

J =  2-+- 

Generally, for thin-walled sections the torsion constant J may be written as 

J = st3 (1 1.27) 

in which s is the length and t the thickness of each component in the cross-section 
or, if t varies with s, 

1 
J = - I  . t3ds (11.28) 

The shear stress distribution in a thin-walled open section beam may be shown to 

3 section 

be related to the rate of twist by the expression 

dB 
~ = 2 G n -  

dz 
(1 1.29) 

where n is the distance to any point in the section wall measured normally from its 
mid-line. The distribution is therefore linear across the thickness as shown in 
Fig. 11.13 and is zero at the mid-line of the wall. An alternative 
shear stress distribution is obtained, in terms of the applied torque, 
for de/dz in Eq. (1 1.29) from Eq. (1 1.26). Thus 

T ~ = 2 n -  
J 

It is clear from either of Eqs (1 1.29) or (1 1.30) that the maximum 
stress occurs at the outer surfaces of the wall when n = *t/2. Hence 

de  Tt 

dz J 
om, = *Gt - = * - 

expression for 
by substituting 

(1 1.30) 

value of shear 

(1 1.31) 

The positive and negative signs in Eqs (11.31) indicate the direction of the shear 
stress in relation to the assumed direction for s. 

The behaviour of closed and open section beams under torsional loads is similar in 
that they twist and develop internal shear stress systems. However, the manner in 
which each resists torsion is different. It is clear from the preceding discussion that a 
pure torque applied to a beam section produces a closed, continuous shear stress 
system since the resultant of any other shear stress system would generally be a 
shear force unless, of course, the system were self-equilibrating. In a closed section 
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Fig. 11.13 Shear stress distribution due to torsion in a thin-walled open section 
beam 

beam this closed loop system of shear stresses is allowed to develop in a continuous 
path round the cross-section, whereas in an open section beam it can only develop 
within the thickness of the walls; examples of both systems are shown in Fig. 1 1.14. 
Here, then, lies the basic difference in the manner in which torsion is resisted by 
closed and open section beams and the reason for the comparatively low torsional 
stiffness of thin-walled open sections. Clearly the development of a closed loop 
system of shear stresses in an open section is restricted by the thinness of the walls. 

Example 11.3 The thin-walled section shown in Fig. 11.15 is symmetrical about a 
horizontal axis through 0. The thickness to of the centre web CD is constant, while 
the thickness of the other walls varies linearly from t o  at points C and D to zero at 
the open ends A, F, G and H. Determine the torsion constant J for the section and 
also the maximum shear stress produced by a torque T. 

Since the thickness of the section varies round its profile except for the central 
web, we use both Eqs (1 1.27) and (1 1.28) to determine the torsion constant. Thus, 

3 3 

J =  - 2at,3 +2x-l,(:) 1 dsA+2x-[,,  1 k (c) S B t O  ds, 
3 3 3 

which gives 

4atO3 
J =  - 

3 

Fig. 11.14 Shear stress development in closed and open section beams subjected 
to torsion 
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Fig. 11.15 Beam section of Ex. 11.3 

The maximum shear stress is now obtained using Eq. (1 1.3 l) ,  i.e. 

Tto 3Tto 3T 
T m a x = f  -- -*-=*- 

J 4ato3 4ato2 

1 1.6 Warping of cross-sections under torsion 
Although we have assumed that the shapes of closed and open beam sections remain 
undistorted during torsion, they do not remain plane. Thus, for example, the cross- 
section of a rectangular section box beam, although remaining rectangular when 
twisted, warps out of its plane as shown in Fig. 1 l.l6(a), as does the channel section 
of Fig. I l.l6(b). The calculation of warping displacements is covered in more 
advanced texts and is clearly of importance if a beam is, say, built into a rigid 
foundation at one end. In such a situation the warping is supressed and direct tensile 
and compressive stresses are induced which must be investigated in design 
particularly if a beam is of concrete where even low tensile stresses can cause severe 
cracking. 

Fig. 11.16 Warping of beam sections due to torsion 
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Some beam sections do not warp under torsion; these include solid (and hollow) 
circular-section bars and square box sections of constant thickness. 

Problems 
P.11.1 The solid bar of circular cross-section shown in Fig. P.11.1 is subjected 

to a torque of 1 kN m at its free end and a torque of 3 kN m at its change of section. 
Calculate the maximum shear stress in the bar and the angle of twist at its free end. 
G = 70 OOO N/mm2. 

Ans. 40.6 N/mm2, 0.6". 

Fig. P . l l . l  

P.11.2 A hollow circular-section shaft 2 m long is firmly supported at each end 
and has an outside diameter of 80 mm. The shaft is subjected to a torque of 
12 kNm applied at a point 1-5 m from one end. If the shear stress in the shaft is 
limited to 150 N/mm2 and the angle of twist to 1.5". calculate the maximum 
allowable internal diameter. The shear modulus G = 80 OOO N/mm*. 

Ans. 63.8 mm. 

P.11.3 A bar ABCD of circular cross-section having a diameter of 50 mm is 
firmly supported at each end and cames two concentrated torques at B and C as 
shown in Fig. P.11.3. Calculate the maximum shear stress in the bar and the 
maximum angle of twist. Take G = 70 OOO N/mm'. 

Ans. 66-2 N/mm* in CD, 2.3" at B. 

Fig. P.1 I .3 

P.11.4 A bar ABCD has a circular cross-section of 75 mm diameter over half 
its length and 50 mm diameter over the remaining half of its length. A torque of 
1 kNm is applied at C mid-way between B and D as shown in Fig. P.11.4. Sketch 
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the distribution of torque along the length of the bar and calculate the maximum 
shear stress and the maximum angle of twist in the bar. 

T , , , ~ ~  = 23.7 N/mm2 in CD, 0.4' at C. Ans. 

Fig. P.11.4 

P.11.5 A thin-walled rectangular section box girder carries a uniformly 
distributed torque loading of 1 kN m/mm over the outer half of its length as shown 
in Fig. P. 1 1.5. Calculate the maximum shear stress in the walls of the box girder and 
also the distribution of angle of twist along its length; illustrate your answer with a 
sketch. Take G = 70 OOO N/mm2. 

Am. 133 N/mm'. In AB, 8 = 218 x 10-6z degrees. 
In BC, 8 = 0.109 x 10-6(4000z - z2/2) - 0.218 degrees. 

Fig. P.11.5 

P.11.6 The thin-walled box section beam ABCD shown in Fig. P.11.6 is 
attached at each end to supports which allow rotation of the ends of the beam in the 
longitudinal vertical plane of symmetry but prevent rotation of the ends in vertical 
planes perpendicular to the longitudinal axis of the beam. The beam is subjected to a 
uniform torque loading of 20 Nm/mm over the portion BC of its span. Calculate 
the maximum shear stress in the cross-section of the beam and the distribution of 
angle of twist along its length. 

A m .  71.4 N/mm', 8, = 8, = 0.36', 8 at mid-span = 0.73'. 
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Fig. P.11.6 

P.11.7 Figure P.11.7 shows a thin-walled cantilever box-beam having a constant 
width of 50 mm and a depth which decreases linearly from 200 mm at the built-in end 
to 150 mm at the free end. If the beam is subjected to a torque of 1 kNm at its free 
end, plot the angle of twist of the beam at 500 mm intervals along its length and 
determine the maximum shear stress in the beam section. Take G = 25 0oO N/mm2. 

Ans. om,, = 33-3 N/mm2. 

Fig. P.11.7 

P.11.8 The cold-formed section shown in Fig. P.11.8 is subjected to a torque of 
50 Nm. Calculate the maximum shear stress in the section and its rate of twist. 
G = 25 O00 N/mm’. 

A m .  om,, = 220.6 N/mm’, d9/dz = 0.0044 rad/mm. 

Fig. P.11.8 



Problems 307 

P.11.9 The thin-walled angle section shown in Fig. P.11.9 supports shear loads 
that produce both shear and torsional effects. Determine the maximum shear stress in 
the cross-section of the angle, stating clearly the point at which it acts. 

17.7 N/mm2 on the inside of flange BC at 16.2 mm from point B. Ans. 

Fig. P.11.9 

P.ll.10 Figure P.11.10 shows the cross-section of a thin-walled inwardly lipped 
channel. The lips are of constant thickness while the flanges increase linearly in 
thickness from 1.27 mm, where they meet the lips, to 2.54 mm at their junctions 
with the web. The web has a constant thickness of 2.54 mm and the shear modulus 
C is 26 700 N/mm2. Calculate the maximum shear stress in the section and also its 
rate of twist if it is subjected to a torque of 100 N m. 

Ans. r,,, = 297.2 N/mm2, de/dz = 0.0044 rad/mm. 

Fig. P.ll.10 



CHAPTER 12 

Composite Beams 

Frequently in civil engineering construction beams are fabricated from 
comparatively inexpensive materials of low strength which are reinforced by small 
amounts of high-strength material such as steel. In this way a timber beam of 
rectangular section may have steel plates bolted to its sides or to its top and bottom 
surfaces. Again, concrete beams are reinforced in their weak tension zones and also, 
if necessary, in their compression zones, by steel reinforcing bars. Other instances 
arise where steel beams support concrete floor slabs in which the strength of the 
concrete may be allowed for in the design of the beams. The design of reinforced 
concrete beams and concrete-and-steel beams is covered by Codes of Practice and 
relies, as in the case of steel beams, on ultimate load analysis. The design of steel 
reinforced timber beams is not covered by a code, and we shall therefore limit the 
analysis of this type of beam to an elastic approach. 

12.1 Steel reinforced timber beams 
The timber joist of breadth b and depth d shown in Fig. 12.1 is reinforced by two 
steel plates bolted to its sides, each plate being of thickness t and depth d. Let us 
suppose that the beam is bent to a radius R at this section by a positive bending 
moment, M. Clearly, since the steel plates are firmly attached to the sides of the 
timber joist, both are bent to the same radius, R. Thus, from Q. (9.7). the bending 
moment, M,,  camed by the timber joist is 

E,  I ,  M , = -  
R 

(12.1) 

where E, is Young’s modulus for the timber and I ,  is the second moment of area of 
the timber section about the centroidal axis, Gx. Similarly for the steel plates 

(12.2) E ,  I ,  M , =  - 
R 

in which I ,  is the combined second moment of area about Gx of the two plates. The 
total bending moment is then 

1 
R 

M = M ,  + M ,  = - ( E ,  I ,  + E,  I , )  
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Fig. 12.1 Steel-reinforced timber beam 

from which 

M 
- (12.3) 1 

R E,t ,+E,I ,  

From a comparison of Eqs (12.3) and (9.7) we see that the composite beam behaves 
as a homogeneous beam of bending stiffness Et where 

Et = E,[ ,  +- E,[, 

Et = E,  I ,  + - I ,  (12.4) 

The composite beam may therefore be treated wholly as a timber beam having a total 
second moment of area 

E ,  I ,  + - I ,  
E, 

This is equivalent to replacing the steel reinforcing plates by timber ‘plates’ each 
having a thickness ( E , / E , ) t  as shown in Fig. 12.2(a). Alternatively, the beam may be 

- -  

or ( ; I  

Fig. 12.2 Equivalent beam sections 
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transformed into a wholly steel beam by writing Eq. (12.4) as 

so that the second moment of area of the equivalent steel beam is 

E ,  - I ,  + I ,  
E ,  

which is equivalent to replacing the timberjoist by a steel ‘joist’ of breadth (E,/E,)b 
(Fig. 12.2(b)). Note that the transformed sections of Fig. 12.2 apply only to the case 
of bending about the horizontal axis, Gx. Note also that the depth, d,  of the beam is 
unchanged by either transformation. 

The direct stress due to bending in the timber joist is obtained using Eq. (9.9), i.e. 

MtY 
I ,  

6, = - 

From Eqs (12.1) and (12.3) 

or M 
E ,  1, 1+- 

M, = 

Substituting in Eq. (12.5) from Eqn. (12.6) we have 

(12.5) 

(1 2.6) 

(12.7) 
E ,  I ,  + - I ,  
E,  

Equation (12.7) could in fact have been deduced directly from Eq. (9.9) since 
I , +  ( E , / E , ) I ,  is the second moment of area of the equivalent timber beam of 
Fig. 12.2(a). Similarly, by considering the equivalent steel beam of Fig. 12.2(b), we 
obtain the direct stress distribution in the steel. i.e. 

My 
E,  I ,  + - I ,  
E ,  

6, = (12.8) 

Example 12.1 A beam is formed by connecting two timber joists each 
100 mm x 400 mm with a steel plate 12 mm x 300 mm placed symmetrically 
between them (Fig. 12.3). If the beam is subjected to a bending moment of 
50 kN m, determine the maximum stresses in the steel and in the timber. The ratio of 
Young’s modulus for steel to that of timber is 12: 1. 
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Fig. 12.3 Steel-reinforced timber beam of Ex. 12.1 

The second moments of area of the timber and steel about the centroidal axis, Gx, 
are 

4003 t, = 2 x 100 x - = 1067 x lo6 mm4 

I ,= 12 x - - 

12 

- 27 x lo6 mm4 
3Oo3 

and 

respectively. Therefore, from Q. (12.7) we have 

12 

50 x IO6 x 200 
1067 x lo6 + 12 x 27 x lo6 

( T i =  f = i7 .2  N/mm2 

and from Q. (12.8) 

50 x lo6 x 150 

27 x lo6 + 1067 x 106/12 
(T,= i = i 64 -7  N/mm* 

Consider now the steel-reinforced timber beam of Fig. 12.4(a) in which the steel 
plates are attached to the top and bottom surfaces of the timber. The section may be 
transformed into an equivalent timber beam (Fig. 12.4(b)) or steel beam 
(Fig. 12.4(c)) by the methods used for the beam of Fig. 12.1. The direct stress 
distributions are then obtained from Eqs (12.7) and (12.8). There is, however, one 
important difference between the beam of Fig. 12.1 and that of Fig. 12.4(a). In the 
latter case, when the beam is subjected to shear loads, the connection between the 
timber and steel must resist horizontal complementary shear stresses as shown in 
Fig. 12.5. Generally, it is sufficiently accurate to assume that the timber joist resists 
all the vertical shear and then calculate an average value of shear stress, T ~ ~ .  Thus 

s, 
TdV = - 

bd 

so that, based on this approximation, the horizontal complementary shear stress is 
S,/bd and the shear force per unit length resisted by the timber/steel connection is 
Sild. 
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Fig. 12.4 Reinforced timber beam with steel plates attached to its top and bottom 
surfaces 

Fig. 12.5 Shear stresses between steel plates and timber beam 

Example 12.2 A timber joist 100 mm x 200 mm is reinforced on its top and bottom 
surfaces by steel plates 15 mm thick x 100 mm wide. The composite beam is simply 
supported over a span of 4 m and carries a uniformly distributed load of 10 kN/m. 
Determine the maximum direct stress in the timber and in the steel and also the shear 
force per unit length transmitted by the timber/steel connection. Take E,/E, = 15. 

The second moments of area of the timber and steel about a horizontal axis 
through the centroid of the beam are 

100 x 2003 
I ,  = 

I , = ~ x  1 5 ~  1 0 0 ~  1 0 7 - 5 ' = 3 4 . 7 ~  10hmm4 

= 66.7 x lo6 mm4 
12 

and 

respectively. The maximum bending moment in the beam occurs at mid-span and is 

10 x 4: 

8 
M,,, = - - - 2 0 k N m  

From Eq. (12.7) 

20 x lo6 x 100 
G,.rrJV = * = k3.4 N/mm' 

66.7 x I O 6 +  15 x 34.7 x lo6 
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and from Eq. (12.8) 

2 0 x  106x 115 
0 S . m a X  = f = f58.8 N/mm2 

34.7 x lo6 + 66-7 x 106/15 

The maximum shear force in the beam occurs at the supports and is equal to 
10 x 4/2 = 20 kN. The average shear stress in the timber joist is then 

2oX io3 
%" = = 1 N/mm2 

100 x 200 

It follows that the shear force per unit length in the timber/steel connection is 
1 x l00= 100 N/mm or 100 kN/m. Note that this value is an approximation for 
design purposes since, as we saw in Chapter 10, the distribution of shear stress 
through the depth of a beam of rectangular section is not uniform. 

12.2 Reinforced concrete beams 
As we have noted in Chapter 8, concrete is a brittle material which is weak in 
tension. It follows that a beam comprised solely of concrete would have very little 
bending strength since the concrete in the tension zone of the beam would crack at 
very low values of load. Concrete beams are therefore reinforced in their tension 
zones (and sometimes in their compression zones) by steel bars embedded in the 
concrete. Generally, whether the beam is precast or forms part of a slab/beam 
structure, the bars are positioned in a mould (usually fabricated from timber and 
called formwork) into which the concrete is poured. On setting, the concrete shrinks 
and grips the steel bars; the adhesion or bond between the bars and the concrete 
transmits bending and shear loads from the concrete to the steel. 

In the design of reinforced concrete beams the elastic method has been superseded by 
the ultimate load method. We shall, however, for completeness, consider both methods. 

Elastic theory 
Consider the concrete beam section shown in Fig. 12.6(a). The beam is subjected to 
a bending moment, M, and is reinforced in its tension zone by a number of steel 
bars of total cross-sectional area A,. The centroid of the reinforcement is at a depth 
d ,  from the upper surface of the beam; d ,  is known as the efective depth of the 
beam. The bending moment, M, produces compression in the concrete above the 
neutral axis whose position is at some, as yet unknown, depth, n,  below the upper 
surface of the beam. Below the neutral axis the concrete is in tension and is assumed 
to crack so that its contribution to the bending strength of the beam is negligible. 
Thus all tensile forces are resisted by the reinforcing steel. 

The reinforced concrete beam section may be conveniently analysed by the 
method employed in Section 12.1 for steel reinforced beams. The steel 
reinforcement is, therefore, transformed into an equivalent area, rnA,, of concrete in 
which m, the modular ratio, is given by 

E,  
E,  

m = -  
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Fig. 12.6 Reinforced concrete beam 

where E, and E, are Young’s moduli for steel and concrete, respectively. The 
transformed section is shown in Fig. 12.6(b). Taking moments of areas about the 
neutral axis we have 

n 
2 

bn - = mA,(d, - n) 

which, when rearranged, gives a quadratic equation in n, i.e. 

bn ’ 
- + mA,n - mA,d, = 0 

2 
(12.9) 

whence n=- mAT (/T- 1 )  (12.10) 
b 

Note that the negative solution of Eq. (12.9) has no practical significance and is 
therefore ignored. 
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The second moment of area, IC, of the transformed section is 

bn 
3 

IC = - + mA,(d, - n)’ 

so that the maximum stress, cr,, induced in the concrete is 

Mn 
6, = - 

I C  

(12.11) 

( 1 2.1 2) 

The stress, o,, in the steel may be deduced from the strain diagram (Fig. 12.6(c)) 
which is linear throughout the depth of the beam since the beam section is assumed 
to remain plane during bending. Thus 

o,lE, 4% -=- 
dl --)I n 

from which 

Substituting for a, from Eq. (12.12) we obtain 

mM 

I,. 
6, = - (d,  - n )  

(12.13) 

(12.14) 

Frequently, instead of determining stresses in a given beam section subjected to a 
given applied bending moment, we wish to calculate the moment of resistance of a 
beam when either the stress in the concrete or the steel reaches a maximum allowable 
value. Equations (12.12) and (12.14) may be used to solve this type of problem but 
an alternative and more direct method considers moments due to the resultant loads 
in the concrete and steel. Thus, from the stress diagram of Fig. 12.6(d) 

so that M =  5 bn(d, - ;) 
2 

(12.15) 

Alternatively, taking moments about the centroid of the concrete stress diagram 

or M = *,+ - ;) (12.16) 

Equation (12.16) may also be used in conjunction with Eq. (12.13) to ‘design’ the 
area of reinforcing steel in a beam section subjected to a given bending moment so 
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that the stresses in the concrete and steel attain their maximum allowable values 
simultaneously. Such a section is known as a critical or economic section. The 
position of the neutral axis is obtained directly from Eq. (12.13) in which a,, o,, m 
and d,  are known. The required area of steel is then determined from Eq. (12.16). 

Example 12.3 A rectangular section reinforced concrete beam has a breadth of 
200 mm and is 350 mm deep to the centroid of the steel reinforcement which 
consists of two steel bars each having a diameter of 20 mm. If the beam is subjected 
to a bending moment of 30 kN m, calculate the stress in the concrete and in the steel. 
Themodular ratio m is 15. 

The area A ,  of the steel reinforcement is given by 

n 
A ,  = 2 x - x 202 = 628.3 mm2 

4 

The position of the neutral axis is obtained from Eq. (12.10) and is 

Now using Eq. (12.1 1) 

200 x 140*53 
3 

I ,  = + 15 x 628-3(350 - 140-5)2 = 598-5 x lo6 111111~ 

The maximum stress in the concrete follows from Eq. (12.12), i.e. 

30 x lo6 x 140.5 
598.5 x lo6 

a, = = 7.0 N/mm2 

and from Eq. (12.14) 

15 x 30 x lo6 
a, = (350 - 140.5) = 157.5 N/mm2 

598.5 x lo6 

Example 12.4 A reinforced concrete beam has a rectangular section of breadth 
250 mm and a depth of 400 mm to the steel reinforcement, which consists of three 
20 mm diameter bars. If the maximum allowable stresses in the concrete and steel 
are 7.0 N/mm2 and 140 N/mm2, respectively, determine the moment of resistance 
of the beam. The modular ratio m = 15. 

The area, A,, of steel reinforcement is 

n 
A ,  = 3 x - x 202 = 942-5 mm2 

4 

From Eq. (12.10) 

2 x 250 x 400 
250 15 x 942.5 

n =  942.5 v + l5 
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The maximum bending moment that can be applied such that the permissible stress 
in the concrete is not exceeded is given by Eq. (12.15). Thus 

M =  - 7 x 250 x 163.5 ( 400 - - 161a5) x = 49.4 kN m 
2 

Similarly, from Eq. (12.16) the stress in the steel limits the applied moment to 

M = 1 4 0 ~ 9 4 2 - 5  ( 400-- '4") x = 45.6 kN m 

The steel is therefore the limiting material and the moment of resistance of the beam 
is 45-6 kN m. 

Example 12.5 A rectangular section reinforced concrete beam is required to 
support a bending moment of 40 kNm and is to have dimensions of breadth 
250 mm and effective depth 400 mm. The maximum 'allowable stresses in the steel 
and concrete are 120 N/mm* and 6-5 N/mm', respectively; the modular ratio is 15. 
Determine the required area of reinforcement such that the limiting stresses in the 
steel and concrete are attained simultaneously. 

Using Eq. (12.13) we have 

1 2 0 = 6 . 5 ~ 1 5 ( ? -  1) 

from which n = 179-3 mm. 
The required area of steel is now obtained from Eq (12.16); hence 

A, = 
M 

odd, - n/3) 

i.e. 
40x lo6 

A, = = 979.7 mm2 
120(400 - 179*3/3) 

It may be seen from Ex. 12.4 that for a beam of given cross-sectional 
dimensions, increases in the area of steel reinforcement do not result in increases in 
the moment of resistance after a certain value has been attained. When this stage is 
reached the concrete becomes the limiting material, so that additional steel 
reinforcement only serves to reduce the stress in the steel. However, the moment of 
resistance of a beam of a given cross-section may be increased above the value 
corresponding to the limiting concrete stress by the addition of steel in the 
compression zone of the beam. 

Figure 12.7(a) shows a concrete beam reinforced in both its tension and 
compression zones. The centroid of the compression steel of area A, is at a depth d2 
below the upper surface of the beam, while the tension steel of area A,, is at a depth 
d,. The section may again be transformed into an equivalent concrete section as 
shown in Fig. 12.7(b). However, when determining the second moment of area of 
the transformed section it must be remembered that the area of concrete in the 
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Fig. 12.7 Reinforced concrete beam with steel in tension and compression zones 

compression zone is reduced due to the presence of the steel. Thus taking moments 
of areas about the neutral axis we have 

bn ’ - -A , (n  - d 2 )  + mA,(n - d,) = mA,(d, - n )  
2 

or, rearranging, 

bn ’ 
- + ( m  - l)A,(n - d,) = mA,,(d, - n )  ( 1 2.17) 

2 

It can be seen from Eq. (12.17) that multiplying A, by ( in-  1) in the transformation 
process rather than m automatically allows for the reduction in the area of concrete 
caused by the presence of the compression steel. Thus the second moment of area 
of the transformed section is 

bn ’ 
3 

I, = - + ( m  - I)A,(n - d2)’ + mA,,(d, - n)’ (12.18) 
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The maximum stress in the concrete is then 

Mn 
IC  

o, = - (see Eq. (12.12)) 

The stress in the tension steel and in the compression steel are obtained from the 
strain diagram of Fig. 12.7 (c). Hence 

(12.19) 

mM(n - d, )  
whence 0, = 6, = (1 2.20) m(n - d, )  

n I C  

and 
mM 

I C  

o, = - ( d ,  - n )  as before (12.21) 

An alternative expression for the moment of resistance of the beam is derived by 
taking moments of the resultant steel and concrete loads about the compressive 
reinforcement. Therefore from the stress diagram of Fig. 12.7(d) 

whence M = o,A,(dl - d2)  - 
2 

(12.22) 

Example 12.6 A rectangular section concrete beam is 180 mm wide and has a 
depth of 360 mm to its tensile reinforcement. It is subjected to a bending moment of 
45 kN m and carries additional steel reinforcement in its compression zone at a depth 
of 40 mm from the upper surface of the beam. Determine the necessary areas of 
reinforcement if the stress in the concrete is limited to 8-5 N/mm? and that in the 
steel to 140 N/mm2. The modular ratio E,/Ec = IS. 

Assuming that the stress in the tensile reinforcement and that in the concrete attain 
their limiting values we can determine the position of the neutral axis using 
Eq. (12.13) Thus 

140=8-5x 15(:- 1) 

from which 

Substituting this value of n in Eq. (12.22) we have 

n = 171-6 mm 

45x 1 0 6 = 1 4 0 A , , ( 3 6 0 - 4 0 ) + ~ x  180x 171-6(?-40) 
2 

which gives A,, = 954 mm’ 
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We can now use Eq. (12.17) to determine A, or, alternatively, we could equate the 
load in the tensile steel to the combined compressive load in the concrete and 
compression steel. Substituting for n and 4,t in Eq. (12.17) we have 

180 x 171.6’ 
2 

+ (15 - 1)A,(171.6 - 40) = 15 x 954(360 - 171.6) 

from which 

The stress in the compression steel may be obtained from Eq. (12.20), i.e. 

A, = 24-9 mm’ 

(171.6-40) 

171.6 
o w =  15 x 8.5 = 97-8 N/mm’ 

In xany practical situations reinforced concrete beams are cast integrally with 
floor slabs, as shown in Fig. 12.8. Clearly, the floor slab contributes to the overall 
strength of the structure so that the part of the slab adjacent to a beam may be 
regarded as forming part of the beam. The result is a T-beam whose flange, or the 
major portion of it, is in compression. The assumed width, B ,  of the flange cannot 
be greater than L ,  the distance between the beam centres; in most instances B is 
specified in Codes of Practice. 

It is usual to assume in the analysis of T-beams that the neutral axis lies within the 
flange or coincides with its under surface. In either case the beam behaves as a 
rectangular section concrete beam of width B and effective depth d ,  (Fig. 12.9). 
Therefore, the previous analysis of rectangular section beams still applies. 

Ultimate load theory 
We have previously noted in this chapter and also in Chapter 8 that the modem 
design of reinforced concrete structures relies on ultimate load theory. The 

Fig. 12.8 Slab-reinforced concrete beam arrangement 

Fig. 12.9 Analysis of a reinforced concrete T-beam 
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calculated moment of resistance of a beam section is therefore based on the failure 
strength of concrete in compression and the yield strength of the steel reinforcement 
in tension modified by suitable factors of safety. Typical values are 1 -5 for concrete 
(based on its 28-day cube strength) and 1.15 for steel. However, failure of the 
concrete in compression could occur suddenly in a reinforced concrete beam, 
whereas failure of the steel by yielding would be gradual. It is therefore preferable 
that failure occurs in the reinforcement rather than in the concrete. Thus, in design, 
the capacity of the concrete is underestimated to ensure that the preferred form of 
failure occurs. A further factor affecting the design stress for concrete stems from 
tests in which it has been found that concrete subjected to compressive tests due to 
bending always fails before attaining a compressive stress equal to the 28-day cube 
strength. The characteristic strength of concrete in compression is therefore taken as 
two-thirds of the 28-day cube strength. A typical design strength for concrete in 
compression is then 

=cu - x 0-67 = 0.450,~ 
1.5 

where c~~~ is the 28-day cube strength. The corresponding figure for steel is 

=Y 

1.5 
- 0.870y -- 

In the ultimate load analysis of reinforced concrete beams it is assumed that plane 
sections remain plane during bending and that there is no contribution to the bending 
strength of the beam from the concrete in tension. From the first of these 
assumptions we deduce that the strain varies linearly through the depth of the beam 
as shown in Fig. 12.10(b). However, the stress diagram in the concrete is not linear 
but has the rectangular-parabolic shape shown in Fig. 12.10(c). Design charts in 
Codes of Practice are based on this stress distribution, but for direct calculation 
purposes a reasonably accurate approximation can be made in which the 
rectangular-parabolic stress distribution of Fig. 12.10(c) is replaced by an 
equivalent rectangular distribution as shown in Fig. 12.1 1 (b) in which the 
compressive stress in the concrete is assumed to extend down to the mid-effective 

Fig. 12.10 Stress and strain distributions in a reinforced concrete beam 
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Fig. 12.1 1 Approximation of stress distribution in concrete 

depth of the section at the maximum condition, i.e. at the ultimate moment of 
resistance, Mu, of the section. 
Mu is then given by 

Mu = Cad, = 0*40a,,b i d ,  :dl  

which gives Mu = O-15G,ub(dl)2 (12.23) 

or Mu = T i  d ,  = 0 : 8 7 ~ ~ A , a  d ,  

from which Mu = 0-650yA,d, (12.24) 

whichever is the lesser. For applied bending moments less than Mu a rectangular stress 
block may be assumed for the concrete in which the stress is 0 . 4 ~ ~ ~  but in which the 
depth of the neutral axis must be calculated. For beam sections in which the applied 
bending moment is greater than Mu, compressive reinforcement is required. 

Example 12.7 A reinforced concrete beam having an effective depth of 600 mm and 
a breadth of 250 mm is subjected to a bending moment of 350 kNm. If the 28-day 
cube strength of the concrete is 30 N/mm' and the yield stress in tension of steel is 
400 N/mm', determine the required area of reinforcement. 

First it is necessary to check whether or not the applied moment exceeds the 
ultimate moment of resistance provided by the concrete. Hence, using Eq. (12.23) 

M,=0.15 x 30 x 250 x 600' x 10-'=405 kNm 

Since this is greater than the applied moment, the beam section does not require 
compression reinforcement. 

We now assume the stress distribution shown in Fig. 12.12 in which the neutral 
axis of the section is at a depth 11 below the upper surface of the section. Thus, 
taking moments about the tensile reinforcement we have 

350 x 10' = 0.4 x 30 x 25012 600 - - ( If) 
from which n = 243-3 mm. 
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Fig. 12.12 Stress distribution in beam of Ex. 12.7 

The lever arm is therefore equal to 600 - 243-3/2 = 478.4 mm. Now taking moments 
about the centroid of the concrete we have 

0.87 x 400 x A, x 478-4 = 350 x lo6 
which gives A,  = 2102-3 mm2. 

Example 12.8 A reinforced concrete beam of breadth 250 mm is required to have 
an effective depth as small as possible. Design the beam and reinforcement to 
support a bending moment of 350 kNm assuming that ocu= 30 N/mm2 and 
oy = 400 N/mm’. 

In this example the effective depth of the beam will be as small as possible when 
the applied moment is equal to the ultimate moment of resistance of the beam. 
Thus, using JQ. (12.23) 

350 x lo6 = 0-15 x 30 x 250 x d,’ 

which gives d,  =557.8 mm. 

This is not a practical dimension since it would be extremely difficult to position the 
reinforcement to such accuracy. We therefore assume d ,  = 558 mm. Since the 
section is stressed to the limit, we see from Fig. 12.1 1 (b) that the lever arm is 

: d , = :  x558=418.5 mm. 

Hence, from Eq. (12.24) 

350 x 10’ = 0.87 x 400 A, x 418.5 

from which A, = 2403.2 mm’ 

A comparison of Exs 12.7 and 12.8 shows that the reduction in effective depth is 
only made possible by an increase in the area of steel reinforcement. 

We have noted that the ultimate moment of resistance of a beam section of given 
dimensions can only be increased by the addition of compression reinforcement. 
However, although the design stress for tension reinforcement is 0.87 oy, 
compression reinforcement is designed to a stress of 0.72 oy to avoid the possibility 
of the reinforcement buckling between the binders or stirrups. The method of 
designing a beam section to include compression reinforcement is simply treated as 
an extension of the singly reinforced case and is best illustrated by an example. 
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Example 12.9 A reinforced concrete beam has a breadth of 300 mm and an 
effective depth to the tension reinforcement of 618 mm. Compression 
reinforcement, if required, will be placed at a depth of 60 mm. If Q,, = 30 N/mm2 
and by =410 N/mm’, design the steel reinforcement if the beam is to support a 
bending moment of 650 kN m. 

The ultimate moment of resistance provided by the concrete is obtained using 
Eq. (12.23) and is 

Mu = 0.15 x 30 x 300 x 6182 x = 5 15.6 kN m. 

This is less than the applied moment so that compression reinforcement is required to 
resist the excess moment of 650- 515.6= 134.4 kNm. Thus, if A, is the area of 
compression reinforcement, 

134.4 x lo6 = lever arm x 0.72 x 410A, 

i.e. 134.4 x lo6 = (618 - 60) x 0.72 x 410A, 

which gives A, = 8 15.9 mm2. 

The tension reinforcement, A,,, is required to resist the moment of 515.6 kNm (as 
though the beam were singly reinforced) plus the excess moment of 134.4 kNm. 
Hence 

134.4 x lo6 + 515-6 x loh 
0.75 x 618 x 0.87 x 410 

A, = 
(618 - 60) x 0.87 x 410 

from which A,, = 3793.8 mm2. 

The ultimate load analysis of reinforced concrete T-beams is simplified in a 
similar manner to the elastic analysis by assuming that the neutral axis does not 
lie below the lower surface of the flange. The ultimate moment of a T-beam 
therefore corresponds to a neutral axis position coincident with the lower surface 
of the flange as shown in Fig. 12.13(a). Thus Mu is the lesser of the two values 
given by 

or 

Mu = 0.40,,Bhf (d, - :) 
Mu = 0.870yA, (d, - :) 

(12.25) 

(1 2.26) 

For T-beams subjected to bending moments less than Mu, the neutral axis lies within 
the flange and must be found before, say, the amount of tension reinforcement can 
be determined. Compression reinforcement is rarely required in T-beams due to the 
comparatively large areas of concrete in compression. 

Example 12.10 A reinforced concrete T-beam has a flange width of 1200 mm and 
an effective depth of 618 mm; the thickness of the flange is 150 mm. Determine the 
required area of reinforcement if the beam is required to resist a bending moment of 
500 kNm. Take ocu = 30 N/mm’ and oy = 410 N/mm’. 
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Fig. 12.13 Ultimate load analysis of a reinforced concrete T-beam 

Mu for this beam section may be determined using Eq. (12.25), i.e. 

Mu = 0.4 x 30 x 1200 x 150 ( 618 - - ':)x 10-6=1173kNm 

Since this is greater than the applied moment, we deduce that the neutral axis lies 
within the flange. Thus from Fig. 12.14 

500 x lo6 = 0.4 x 30 x 1200n 618 - - ( 3 

( 3 

the solution of which gives 

n = 59 mm 

Now taking moments about the centroid of the compression concrete we have 

500 x lo6 = 0.87 x 410 x A, 618 - - 

which gives A, = 2381.9 mm'. 

Fig. 12.14 Reinforced concrete T-beam of Ex. 12.10 
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12.3 Steel and concrete beams 
In many instances concrete slabs are supported on steel beams, the two being joined 
together by shear connectors to form a composite structure. We therefore have a 
similar situation to that of the reinforced concrete T-beam in which the flange of the 
beam is concrete but the leg is a standard steel section. 

Ultimate load theory is used to analyse steel and concrete beams with stress limits 
identical to those applying in the ultimate load analysis of reinforced concrete 
beams; plane sections are also assumed to remain plane. 

Consider the steel and concrete beam shown in Fig. 12.15(a) and let us suppose 
that the neutral axis lies within the concrete flange. We ignore the contribution of the 
concrete in the tension zone of the beam to its bending strength, so that the assumed 
stress distribution takes the form shown in Fig. 12.15(b). A convenient method of 
designing the cross-section to resist a bending moment, M, is to assume the lever 
arm to be (h ,  + h,)/2 and then to determine the area of steel from the moment 
equation 

(12.27) 

The available compressive force in the concrete slab, O-4oc,bh,, is then checked to 
ensure that it exceeds the tensile force, 0.87oYA,, in the steel . If it does not, the 
neutral axis of the section lies within the sleel and A, given by Eq. (12.27) will be 
too small. If the neutral axis lies within the concrete slab the moment of resistance 
of the beam is determined by first calculating the position of the neutral axis. Thus, 
since the compressive force in the concrete is equal to the tensile force in the steel 

( A ,  + h,) M = 0*87oyA, 
2 

0.4o,,b1~, = 0.87ayA, (12.28) 

Fig. 12.15 
the concrete 

Ultimate load analysis of a steel and concrete beam, neutral axis within 
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Then, from Fig. 12.15 

Mu = 0.870 A d - - (12.29) 

If the neutral axis lies within the steel, the stress distribution shown in Fig. 
12.16(b) is assumed in which the compressive stress in the steel above the neutral 
axis is the resultant of the tensile stress and twice the compressive stress. Thus, if 
the area of steel in compression is A,, we have, equating compressive and tensile 
forces 

O*4oc,bh, + 2 x (0*870y)A, = 0*870yA, (12.30) 

y .( ;) 

which gives A, and hence h,. Now taking moments 

Mu = 0.870yA, d - - - 2 x (0.870y)A, h,  - - (12.31) 

Example 12.11 A concrete slab 150 mm thick is 1-8 m wide and is to be supported 
by a steel beam. The total depth of the steel/concrete composite beam is limited to 
562 mm. Find a suitable beam section if the composite beam is required to resist a 
bending moment of 709 kN m. Take o,, = 30  N/mm2 and oY = 350 N/mm2. 

Using Eq. (12.27) 

( 3 ( 3 

2 x 709 x lo6 
A, = = 8286 mm’ 

0-87 x 350 x 562 

Fig. 12.16 
the steel 

Ultimate load analysis of a steel and concrete beam, neutral axis within 



328 Composite Beams 

The tensile force in the steel is then 

0.87 x 350 x 8286 x = 2523 kN 

and the compressive force in the concrete is 

0.4 x 1-8 x lo3 x 150 x 30 x = 3240 kN. 

The neutral axis therefore lies within the concrete slab so that the area of steel in 
tension is, in fact, equal to A,. From Steel Tables we see that a Universal Beam of 
nominal size 406 mm x 152 mm x 67 kg/m has an actual overall depth of 412 mm 
and a cross-sectional area of 8530 mm’. The position of the neutral axis of the 
composite beam incorporating this beam section is obtained from Eq. (12.28); 
hence, 

0.4 x 30 x l8OOn, = 0437 x 350 x 8530 

which gives n,  = 120 mm. 

Substituting for n ,  in Eq. (12.29) we obtain the moment of resistance of the 
composite beam, 

Mu = 0.87 x 350 x 8530(356 - 60) x = 769 kNm 

Since this is greater than the applied moment we deduce that the beam section is 
satisfactory. 

Problems 

P.12.1 A timber beam 200 mm wide by 300 mm deep is reinforced on its top 
and bottom surfaces by steel plates each 12 mm thick by 200 mm wide. If  the 
allowable stress in the timber is 8 N/mm’ and that in the steel is 110 N/mm*, find 
the allowable bending moment. The ratio of the modulus of elasticity of steel to that 
of timber is 20. 

Ans. 94.7 kNm. 

P.12.2 A simply supported beam of span 3.5 m cames a uniformly distributed 
load of 46.5 kN/m. The beam has the box section shown in Fig. P.12.2. Determine 
the required thickness of the steel plates if the allowable stresses are 124 N/mm’ for 
the steel and 8 N/mm’ for the timber. The modular ratio of steel to timber is 20. 

Ans. 17 mm. 

P.12.3 A timber beam 150 mm wide by 300 mm deep is reinforced by a steel 
plate 150 mm and 12 mm thick which is securely attached to its lower surface. 
Determine the percentage increase in the moment of resistance of the beam 
produced by the steel reinforcing plate. The allowable stress in the timber is 
12 N/mm‘ and in the steel, 150 N/mm’. The modular ratio is 20. 

A m .  176%. 



Problems 329 

Fig. P.12.2 

P.12.4 A singly reinforced rectangular concrete beam of effective span 4.5 m is 
required to cany a uniformly distributed load of 16.8 kN/m. The overall depth, D, 
is to be twice the breadth and the centre of the steel is to be at 0.1D from the 
underside of the beam. Using elastic theory find the dimensions of the beam and the 
area of steel reinforcement required if the stresses are limited to 8 N/mm2 in the 
concrete and 140 N/mm2 in the steel. Take m = 15. 

D = 404 mm, A ,  = 992-3 mm2. Ans. 

P.12.5 A reinforced concrete beam is of rectangular section 300 mm wide by 
775 mm deep. It has five 25 mm diameter bars as tensile reinforcement in one layer 
with 25 mm cover and three 25 mm diameter bars as compression reinforcement, 
also in one layer with 25 mm cover. Find the moment of resistance of the section 
using elastic theory if the allowable stresses are 7-5 N/mm2 and 125 N/mm2 in the 
concrete and steel, respectively. The modular ratio is 16. 

Am. 214.5 kNm. 

P.12.6 A reinforced concrete T-beam is required to carry a uniformly distributed 
load of 42 kN/m on a simply supported span of 6 m. The slab is 125 mm thick, the rib is 
250 mm wide and the effective depth to the tensile reinforcement is 550 mm. The 
working stresses are 8.5 N/mm2 in the concrete and 140 N/mm2 in the steel; the modular 
ratio is 15. Making a reasonable assumption as to the position of the neutral axis find the 
area of steel reinforcement required and the breadth of the compression flange. 

Ans. 2655.7 mm2, 700 mm (N.A. coincides with base of slab). 

P.12.7 Repeat P.12.4 using ultimate load theory assuming G,, = 24 N/mm’ and 
oy = 280 N/mm2. 

Ans. 

P.12.8 Repeat P.12.5 using ultimate load theory and take ocu = 22.5 N/mm’, 

D = 307.8 mm, A ,  = 843 mm’. 

oy = 250 N/mm’. 

Ans. 222.5 kNm. 
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P.12.9 Repeat P.12.6 using ultimate load theory. Assume o,, = 25.5 N/mm2 and 
oy = 280 N/mm‘. 

Ans. 

P.12.10 A concrete slab 175 mm thick and 2 m wide is supported by, and firmly 
connected to, a 457 mm x 152 mm x 74 kg/m Universal Beam whose actual depth is 
461.3 mm and whose cross-sectional area is 9490 mm’. If oCu = 30 N/mm’ and 
oy = 350 N/mm’, find the moment of resistance of the resultant steel and concrete 
beam. 

1592 mm’, 304 mm (N.A. coincides with base of slab). 

Ans. 919.5 kNm. 



CHAPTER 13 

Deflection of Beams 

In Chapters 9, 10 and 11 we investigated the strength of beams in terms of the 
stresses produced by the action of bending, shear and torsion, respectively. An 
associated problem is the determination of the deflections of beams caused by 
different loads for, in addition to strength, a beam must possess sufficient stifness so 
that excessive deflections do not have an adverse effect on adjacent structural 
members. In many cases, maximum allowable deflections are specified by Codes of 
Practice in terms of the dimensions of the beam, particularly the span; typical values 
are quoted in Section 8.7. 

The design of beams from the point of-view of strength has been discussed in 
Chapter 9, where we saw that two approaches were possible: elastic and plastic 
design. However, it is obvious that actual beam deflections must be limited to the 
elastic range of a beam, otherwise permanent distortion results. Thus in determining 
the deflections of beams under load, elastic theory is used. 

There are several different methods of obtaining deflections in beams, the choice 
depending upon the type of problem being solved. For example, the double integration 
method gives the complete shape of a beam whereas the moment-area method can only 
be used to determine the deflection at a particular beam section. The latter method, 
however, is also useful in the analysis of statically indeterminate beams. 

Generally beam deflections are caused primarily by the bending action of applied 
loads. In some instances, however, where a beam’s cross-sectional dimensions are 
not small compared with its length, deflections due to shear become significant and 
must be calculated. We shall consider beam deflections due to shear in addition to 
those produced by bending. We shall also include deflections due to unsymmetrical 
bending. 

13.1 Differential equation of symmetrical bending 
In Chapter 9 we developed an expression relating the curvature, l / R ,  of a beam to 
the applied bending moment, M, and flexural rigidity, El ,  i.e. 

1 M  
R El 
- = -  

For a beam of a given material and cross-section, El is constant so that the curvature 
is directly proportional to the bending moment. We have also shown that bending 
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moments produced by shear loads vary along the length of a beam, which implies 
that the curvature of the beam also varies along its length; Eq. (9.1 1) therefore gives 
the curvature at a particular section of a beam. 

Consider a beam having a vertical plane of symmetry and loaded such that at a 
section of the beam the deflection of the neutral plane is v and the slope of the 
tangent to the neutral plane at this section is dv/dz (Fig. 13.1). The axes Gxyz are 
centroidal axes so that in the unloaded condition Gz lies in the neutral plane of the 
beam. Also, if the applied loads produce a positive, i.e. sagging, bending moment at 
this-section, then the upper surface of the beam is concave and the centre of 
curvature lies above the beam as shown. For the system of axes shown in Fig. 13.1, 
the sign convention usually adopted in mathematical theory gives a negative value 
for this curvature; thus 

d2 v 
1 dz’ 
- = -  (13.1) 

- 

R [1+($)1’” 

For small deflections dv/dz is small so that (dv/dz)2 is negligibly small compared 
with unity. Equation (13.1) then reduces to 

1 .d2v 
- = - -  (13.2) 
R dz2 

whence, from Eq. (9.1 1) 

d’v M 
-=- -  (13.3) 
dz’ EI 

Double integration of Eq. (13.3) then yields the equation of the deflection curve of 
the neutral plane of the beam. 

In the majority of problems concerned with beam deflections the bending moment 
varies along the length of a beam and therefore M in Eq. (13.3) must be expressed 
as a function of z before integration can commence. Alternatively, it may be 

Fig. 13.1 Deflection and curvature of a beam due to bending 
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convenient in cases where the load is a known function of z to use the relationships 
of Eq. (3.8).Thus 

S d3v 
dz3 EI 

d4v w 

dz4 EI 

_ - -  (1 3.4) -- 

(13.5) 

We shall now illustrate the use of Eqs (13.3), (13.4) and (13.5) by considering 
some standard cases of beam deflection. 

Example 13.1 Determine the deflection curve and the deflection of the free end of 
the cantilever shown in Fig.13.2(a); the flexural rigidity of the cantilever is EI. 

The load W causes the cantilever to deflect such that its neutral plane takes up the 
curved shape shown in Fig. 13.2(b); the deflection at any section Z is then v while 
that at its free end is utiV The axis system is chosen so that the origin coincides with 
the built-in end where the deflection is clearly zero. 

- = -  

The bending moment, M, at the section Z is, from Fig. 13.2(a) 

M = - W ( L  - z) (i.e. hogging) (i ) 
Substituting for M in Eq. (13.3) we obtain 

d2v W -  -- --(L-z) 
dz2 EI 

or in more convenient form 

W ( L  - z) (ii) 
d2 v 
dz2 

EI - = 

Integrating Eq. (ii) with respect to z gives 

E I - = W  L z - -  +C, 
dv dz ( i) 

Fig. 13.2 Deflection of a cantilever beam carrying a concentrated load at its free 
end (Ex. 13.1) 
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where C, is a constant of integration which is obtained from the boundary condition 
that dv/dz = 0 at the built-in end where z = 0. Hence C, = 0 and 

E I - = W  L z - -  (iii) 
dv  dz ( I 

Integrating Eq. (iii) we obtain 

Eiv = w ($ - i) + c2 

in which C2 is again a constant of integration. At the built-in end v = 0 when z = 0 so 
that C2 = 0. Hence the equation of the deflection curve of the cantilever is 

(iv) W 2 v = - (3Lz - z3) 
6EI 

The deflection, vlip, at the free end is obtained by setting z = L in Eq. (iv). Thus‘ 

WL3 
(VI 2, .  =- 

‘Ip 3EI 

and is clearly positive and downwards. 

Example 13.2 
the cantilever shown in Fig. 13.3(a). 

Determine the deflection curve and the deflection of the free end of 

The bending moment, M, at any section Z is given by 

(i) W 2 M = - - ( L - z )  
2 

Substituting for M in Eq. (13.3) and rearranging we have 

(ii) d2v w 2 w  E ] - = -  ( L  - 2 )  = - (L2 - 2Lz + 2’)  
dz2 2 2 

Fig. 13.3 Deflection of a cantilever beam carrying a uniformly distributed load 



Differential equation of symmetrical bending 335 

Integration of Eq. (ii) yields 

dv w 
dz 2 

Et - = - (L2z - Lz2 + :) + c , 
When z = 0 at the built-in end, v = 0 so that C, = 0 and 

E[ dzI = (.'z -Lz2 + 
dz 2 

Integrating Eq. (iii) we have 

(iii) 

and since v = 0 when z = 0, C2 = 0. The deflection curve of the beam therefore has 
the equation 

W 
v=- (6Lzzz - 4Lz3 + z4) 

24Et 

and the deflection at the free end where z = L is 

v,ip = - 
8Et 
wL4 

which is again positive and downwards. 

that a solution can be obtained using Eq. (13.5).  i.e. 
The applied loading in this case may be easily expressed in mathematical form so 

d4v w 
dz4 Et 
-- -- 

in which w = constant. Integrating Eq. (vi) we obtain 

d3v 
dz3 

Et - = wz + CI 

We note from Eq. (13.4) that 

d3v S - = - -  
dz3 Et 

Therefore when z = 0, S = WL and 

d3v WL 
dz3 Et 
-- _ - -  

which gives c, = -wL 

Alternatively we could have determined C, from the boundary condition that when 
z=L,  s=o. 
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d3v 
Hence EI -- - w(z - L )  (vii) 

Integrating Eq. (vii) gives 
dz3 

E i $ = w ( f - L z ) + c 2  dz- 

From Eq. (13.3) we see that 

M d’v 
dz’ EI 

- - = -  

and when z = 0, M = - wL2/2 (or when z = L ,  M = 0)  so that 

WL’ 
c2= - 

2 

d’v w 
dz2 2 

and 

which is identical to Eq. (ii). The solution then proceeds as before. 
Example 13.3 The cantilever beam shown in Fig. 13.4(a) cames a uniformly 
distributed load over part of its span. Calculate the deflection of the free end. 

If we assume that the cantilever is weightless then the bending moment at all 
sections between D and F is zero. It follows that the length DF of the beam remains 
straight. The deflection at D can be deduced from Eq. (v) of Ex. 13.2 and is 

EI - = - ( 2 ’ -  2Lz + L’) 

4 wa 
8EI 

VD = - 

Similarly the slope of the cantilever at D is found by substituting z = a and L = a in 
Eq. (iii) of Ex. 13.2; thus 

3 (z)D=€lD=- WU 

6EI 

Fig. 13.4 Cantilever beam of Ex. 13.3 
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The deflection, vF, at the free end of the cantilever is then given by 

wa3 wa 
8EI 6EI 

4 

VF - + (L  - a )  - 

which simplifies to 
3 wa 

24 EI 
vF=- (4L - a )  

Example 13.4 Determine the deflection curve and the mid-span deflection of the 
simply supported beam shown in Fig. 13.5 (a). 

The support reactions are each wL/2 and the bending moment, M ,  at any section 
Z, a distance z from the left-hand support is 

2 
W L  wz 
2 2 

M = -  Z - -  

Substituting for M in Eq. (13.3) we obtain 

d2v w 
EI - = -- (Lz - z2 )  

dz' 2 

Integrating we have 

From symmetry it is clear that at the mid-span section the gradient, dv/dz = 0. 

Hence 

whence 

Theref ore 

wL3 c, = - 
24 

(ii) 

(iii) 

Integrating again gives 
W Elv = - - ( ~ L z '  - z4 - L'z) + C? 
24 

Since v = O  when z = O  (or since v = O  when z = L )  it follows that C,=O and the 
deflected shape of the beam has the equation 

W 
7J= - - (2Lz3 - z4 - L'z) 

24EI 
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Fig. 13.5 Deflection of a simply supported beam carrying a uniformly distributed 
load (Ex. 13.4) 

The maximum deflection occurs at mid-span where z = L / 2  and is 

5 wL4 
Vm,d-\pan = - (v) 

384EI 

So far the constants of integration were determined immediately they arose. 
However, in some cases a relevant boundary condition, say a value of gradient, is 
not obtainable. The method is then to carry the unknown constant through the 
succeeding integration and use known values of deflection at two sections of the 
beam. Thus in the previous example Eq. (ii) is integrated twice to obtain 

Elv = __  w ( - LZ' - - f,) + c,z + c2 
2 6  

The relevant boundary conditions are v = 0 at z = 0 and z = L. The first of these gives 
C 2 = 0  while from the second we have C ,  = wL3/24. Thus the equation of the 
deflected shape of the beam is 

W 7 4 3  
21 = -- (2Lz- - Z - L'Z) 

24EI 

as before. 

Example 13.5 Figure 13.6(a) shows a simply supported beam carrying a 
concentrated load W at mid-span. Determine the deflection curve of the beam and 
the maximum deflection. 
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Fig. 13.6 Deflection of a simply supported beam carrying a concentrated load at 
mid-span (Ex. 13.5) 

The support reactions are each W / 2  and the bending moment M at a section Z a 

W 
2 

distance i( d L/2 )  from the left-hand support is 

M = - Z  (i) 

From Eq. (13.3) we have 

d’ v W 
dz’ 2 

E l - = - - i  (ii) 

Integrating we obtain 

dti w Z’ 

dz 2 2  
E l - = -  - - + C l  

From symmetry the slope of the beam is zero at mid-span where z=L/2 .  Thus 
C ,  = WL2/16 and 

W ’  
(iii) d 11 

d-. 16 
E] - = - - (4z- - L’) 

Integrating Eq. (iii) we have 

w 4z3  
Elti = - - ( - -L-z  ’ ) +cz 

16 3 

and when z=O, v = O  so that Cz=O. The equation of the deflection curve is 
therefore 

(4z3 - 3L’z) (iv) 
W 

48 El  
t i = - -  
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The maximum deflection occurs at mid-span and is 

WL3 
vmid-span = - (v) 

48EI 
Note that in this problem we could not use the boundary condition that v = 0 at z = L 
to determine C2 since Eq. (i) applies only for 0 Q z C L / 2 ;  it follows that Eqs (iii) 
and (iv) for slope and deflection apply only for Os z s L / 2  although the deflection 
curve is clearly symmetrical about mid-span. 
Example 13.6 The simply supported beam shown in Fig. 13.7(a) carries a concen- 
trated load W at a distance a from the left-hand support. Determine the deflected 
shape of the beam, the deflection under the load and the maximum deflection. 

Considering the moment and force equilibrium of the beam we have 
W W a  
L L 

R A = - ( L - a ) ,  R s = -  

At a section Z,, a distance z from the left-hand support where z s a, the bending 
moment is 

M = RAz (0 
At the section Z 2 ,  where z 2 a 

Substituting both expressions for M in turn in Eq. (13.3) we obtain 
M = RAz - W ( z  - a )  (ii) 

(iii) 
d2 v 
dz2 

d2 v 

dz- 

E I - = - R  A z (z s a )  

and Z!?I 7 = -RAZ + w(Z - a) (2 2 U )  

Fig. 13.7 Deflection of a simply supported beam carrying a concentrated load not 
a t  mid-span (Ex. 13.6) 
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Integrating Eqs (iii) and (iv) we obtain 

and 

dv Z2 
EZ - = -R, - + C, (z d a) 

dz 2 

dv Z2 EZ - = -RA - + W(: - az) + C', (z B a) 
dz 2 

z3 
EZv = -RA - + Clz + C2 

6 
(z s a) 

3 2 z3 
EZv = -RA - + W ( t  - 7) + C',z + C; (z B a) 

6 

(vii) 

(viii) 

in which C,, C;, C2, C; are arbitrary constants. In using the boundary conditions to 
determine these constants, it must be remembered that Eqs (v) and (vii) apply only 
for 0 d z c a and Eqs (vi) and (viii) apply only for ad  z d L. At the left-hand support 
Y = 0 when z = 0, therefore, from Eq. (vii), C2 = 0. It is not possible to determine 
C,, C; and C2 directly since the application of further known boundary conditions 
does not isolate any of these constants. However, since v = 0 when z = L we have, 
from Eq (viii), 

L3 L~ aL2 
6 

0 = -R, - + w(T - T )  + c ; L  + c; 

which, after substituting R,  = W ( L  - a ) / L ,  simplifies to 

WaL2 o =  - - + c; L + c; 
3 

Additional equations are obtained by considering the continuity which exists at the 
point of application of the load; at this section Eqs (v)-(viii) apply. Thus, from 
Eqs (v) and (vi) 

? 

a- a' 
- R , - + C , = - R A - + W  

2 2 

which gives 

Now equating values of deflection at z = a we have, from Eqs (vii) and (viii) 

a3 a 3  -R, - + C , a  = - R ,  - + W 
6 6 

which yields 
w a  

C l a =  - - + C;a + CS 
3 
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Solution of the simultaneous equations (ix), (x) and (xi) gives 

Wa 
6L 

CI = - (a  - 2L)(a - L )  

Wa 
6L  

C; = - (a2 + 2 ~ ’ )  

Equations (v)- (vii) then become, respectively, 

dv  W(U - L )  
El - = [3z2 + a(a  - 2 ~ 1 1  

dz 6L 

dv Wa 
dz 6L 

EI - = - (3z’ - 6Lz + a’ + 2L2) 

W ( a  - L )  
6L 

EIv = [z3 + a(a  - 2L)zl 

( z  d a )  (xii) 

( z  2 a )  (xiii) 

( z  d a )  (xiv) 

Wa 
6L 

EIV = - [z3 - ~ L Z ’  + (a2 + 2 ~ 3 z  - a ’ ~ ]  ( z  2 a )  

The deflection of the beam under the load is obtained by putting z = a into either 
of Eqs (xiv) or (xv). Thus 

Wa2(a - L)’ 
3 EIL 

v, = (xvi) 

This is not, however, the maximum deflection of the beam. This will occur, if 
a < L/2, at some section between C and B. Its position may be found by equating 
dv/dz in Eq. (xiii) to zero. Hence 

0 = 32’- ~ L z  + + 2L’ (xvii) 

The solution of Eq. (xvii) is then substituted in Eq. (v) and the maximum deflection 
follows. 

For a central concentrated load a = L/2 and 

WL’ 
= - as before 

48 EI 

Example 13.7 Determine the deflection curve of the beam AB shown in Fig. 13.8 
when it carries a distributed load that vanes linearly in intensity from zero at the left- 
hand support to w, at the right-hand support. 
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Fig. 13.8 Deflection of a simply supported beam carrying a triangularly 
distributed load 

To find the support reactions we first take moments about B. Thus 

L 
RAL = f w0L - 

3 

W L  RA = 2- 
.6 

WOL 

which gives 

Resolution of vertical forces then gives 

Rs = - 
3 

The bending moment, M, at any section Z, a distance z from A is 

M = R A z - -  w,- Z- 
2 l (  t) 4 

(i) 
wo ’ 
6L  

or M = - (L-Z - 2)  

d2 v wo ’ 

Substituting for M in Eq. (13.3) we obtain 

(ii) El 7 = - - (L-z  - z3) 
dz- 6L  

which, when integrated, becomes 

d 21 w, Z2 4 
El - = - - (L2 1 - a).., (iii) 

dz 6L 

Integrating Eq. (iii) we have 
73 5 

EIv = - 2 (L.’ 6 - -&) + C,Z + C2 (iv) 
6L  
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The deflection v = 0 at z = 0 and z = L. From the first of these conditions we obtain 
Cz = 0, while from the second 

which gives 
7w,L4 CI = - 

360 
The deflection curve then has the equation 

v=- w o  (3z5 - 1 0 ~ ~ ~ ~  + 7 ~ ~ ~ )  
36OEIL 

An alternative method of solution is to use Eq. (13.5) and express the applied load 
in mathematical form. Thus 

d4v Z 

dz4 L 
EI - = W =  w, - 

Integrating we obtain 

d3 v Z 2  
EI - = W ,  - + c3 

dz3 2L 

When z = 0 we see from Eq. ( 1  3.4) that 

Hence 

and 

d3 v WOL E I - = - R  - A - - -  
dz3 6 

c3=--  W O  L 
6 

Integrating Eq. (vii) we have 
3 d’v w,z w,L 

z + c 4  El - = - - - 
dz’ 6L 6 

Since the bending moment is zero at the suppons we have 

d’ v 
E I - = O  whenz=O 

dz’ 
Hence C, = 0 and 

(vii) 

as before. 
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13.2 Singularity functions 
A comparison of Exs 13.5 and 13.6 shows that the double integration method 
becomes extremely lengthy when even relatively small complications such as the 
lack of symmetry due to an offset load are introduced. Again the addition of a 
second concentrated load on the beam of Ex. 13.6 would result in a total of six 
equations for slope and deflection producing six arbitrary constants. Clearly the 
computation involved in determining these constants would be tedious, even though 
a simply supported beam carrying two concentrated loads is a comparatively simple 
practical case. An alternative approach is to introduce so-called singularity or half- 
range functions. Such functions were first applied to beam deflection problems by 
Macauley in 1919 and hence the method is frequently known as Macauley's method. 

We now introduce a quantity [ z  - a ]  and define it to be zero if ( z  - a )  < 0, i.e. 
z <a, and to be simply (z - a )  if z >a. The quantity [ z  - a ]  is known as a singularity 
or half-range function and is defined to have a value only when the argument is 
positive in which case the square brackets behave in an identical manner to ordinary 
parentheses. Thus in Ex. 13.6 the bending moment at a section of the beam furthest 
from the origin for z may be written 

M = R,z - W[Z - a ]  

This expression applies to both the regions AC and CB since W[z - a ]  disappears for 
z < a. Equations (iii) and (iv) in Ex. 13.6 then become the single equation 

d2 v 
dz2 

EI - = -RAz + W[Z - a ]  

which on integration yields 

dv z2 w 
EI - = -RA - + - [ Z  - a]' + C1 

dz 2 2  

z3 w 
and EIv = - R ,  -+ -  [ z - u ] ~ + C I Z + C ~  

6 6  

Note that the square brackets must be retained during the integration. The arbitrary 
constants C, and C2 are found using the boundary conditions that v = 0 when z = 0 

Fig. 13.9 Macauley's method for the deflection of a simply supported beam (Ex. 
13.8) 



346 Deflection of Beams 

and z = L .  From the first of these and remembering that [ z  - aI3 is zero for z < a, we 
have C2 = 0. From the second we have 

in which RA = W ( L  - a ) / L .  

Substituting for R ,  gives 

Wa(L - a )  

6 L  
c, = ( 2 L  -a )  

W 
6 L  

The deflection of the beam under the load is then 

whence EIv = - [ (a - L)z3  + L [ z  - + u(L  - a)(2L - U)Z ] 

Wa2(a - L)* 
vc = 

3EIL 

as before. 

Example 13.8 Determine the position and magnitude of the maximum upward and 
downward deflections of the beam shown in Fig. 13.9. 

A consideration of the overall equilibrium of the beam gives the support 
reactions; thus 

RA = i W (upward), R F  = W (downward) 

Using the method of singularity functions and taking the origin of axes at the left- 
hand support, we write down an expression for the bending moment, M, at any 
section Z between D and F, the region of the beam furthest from the origin. Thus 

M = R , z  - W [ Z  - a ]  - W [ Z  - 2 ~ ]  + ~ W [ Z -  3 ~ ]  (i) 

Substituting for M in Eq.  (13.3) we have 

d’v 3 
dz2 4 

E I - = - -  W z +  W [ z  - a ]  + W [ z  - 2 a ]  - 2W[z  - 3 a ]  (ii) 

Integrating Eq. (ii) and retaining the square brackets we obtain 

dv 3 W , w  E [ - = -  - WZ* + - [ z  - a ] -  + - [ z  - 2al’ - W [ Z  - 3a12 + C,  (iii) 
dz 8 2 2 

1 W 7 w  W 7 

8 6 6 3 
and EIv = - - Wz3 + - [ z  - a].  + - [ z  - 2aI3 - - [ z  - 3 a ] -  + C,z + C2 (iv) 

in which C ,  and C2 are arbitrary constants. When z = O  (at A), v = O  and hence 
Cz=O. Note that the second, third and fourth terms on the right-hand side of 
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Eq. (iv) disappear for z c u. Also u = 0 at z = 4a (F) so that, from Eq. (iv), we have 

w 3 w  , W , W  O =  - - 6 4 ~  + - 2 7 ~  + - 8 ~ -  - - u3 + ~ u C ,  
8 6 6 3 

which gives C, = Wu'. 

Equations (iii) and (iv) now become 

du  3 2 W  2 w  2 2 5  2 E t - = - - W z  + - [ z - u ]  + - [ z - ~ u ]  - W [ Z - ~ U ]  + - W U  (v) 
dz 8 2 2 8 

1 3 w  3 w  W 5 2  and Etu = - - Wz + - [ z  - u]. + - [ z  - 2uI3 - - [ z  - 3uI3 + - Wu z (vi) 
8 6 6 3 8 

respectively. 
To determine the maximum upward and downward deflections we need to know in 

which bays du/dz = 0 and thereby which terms in Eq. (v) disappear when the exact 
positions are being located. One method is to select a bay and determine the sign of 
the slope of the beam at the extremities of the bay. A change of sign will indicate 
that the slope is zero within the bay. 

By inspection of Fig. 13.9 it seems likely that the maximum downward deflection 
will occur in BC. At B, using Eq. (v) 

du 3 2 5  2 E t -  = - - W U  +-WU 
dz 8 8 

which is clearly positive. At C 

du 3 W 5 

dz 8 2 8 
Et - = - - w k 2  + - + - wa? 

which is negative. Therefore, the maximum downward deflection does occur in BC 
and its exact position is located by equating du/dz to zero for any section in BC. 
Thus, from Eq. (v) 

3 , w  7 5  7 O = - - w z - + - [ z - u ] - + -  wu- 
8 2 8 

or, simplifying, 

Solution of Eq. (vii) gives 

0 = z - 8uz + 9u' 

z = 1 . 3 5 ~  

so that the maximum downward deflection is, from Eq. (vi) 
1 W 5 
8 6 8 

Etu = - - W( 1.35~)'  + - (0.35~)'  + - WU'( 1.354 

(vii) 

i.e. 
O*54Wu3 

u,,(downward) = 
E t  
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In a similar manner it can be shown that the maximum upward deflection lies 
between D and F at z = 3 . 4 2 ~  and that its magnitude is 

0 . 0 4 ~ ~ ~  
v,,(upward) = 

EI 

An alternative method of determining the position of maximum deflection is to 
select a possible bay, set dv/dz = 0 for that bay and solve the resulting equation in z. 
If the solution gives a value.of z that lies within the bay, then the selection is 
correct, otherwise the procedure must be repeated for a second and possibly a third 
and a fourth bay. This method is quicker than the former if the correct bay is 
selected initially; if not, the equation corresponding to each selected bay must be 
completely solved, a procedure clearly longer than determining the sign of the slope 
at the extremities of the bay. 

Example 13.9 Determine the position and magnitude of the maximum deflection 
in the beam of Fig. 13.10. 

Following the method of Ex. 13.8 we determine the support reactions and find the 
bending moment, M, at any section Z in the bay furthest from the origin of the axes. 
Thus 

M = R,z - w 4 [z - $1 (9 
4 

Examining Eq. (i) we see that the singularity function [ z - 5 L / 8 ]  does not become 
zero until z s 5 L / 8  although Eq. (i) is only valid for zz3L/4.  To obviate this 
difficulty we extend the distributed load to the support D while simultaneously 
restoring the status quo by applying an upward distributed load of the same intensity 
and length as the additional load (Fig. 13.1 1). 

At the section Z, a distance z from A, the bending moment is now given by 
2 

M = R,z - E [z - :I2 + f [z - $1 (ii) 
2 

Fig. 13.10 Deflection of a beam carrying a part-span uniformly distributed load 
(Ex. 13.9) 
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Fig. 13.1 1 

Equation (ii) is now valid for all sections of the beam if the singularity functions 
are discarded as they become zero. Substituting Q. (ii) into Eq. (13.3) we obtain 

Method of solution for a part span uniformly distributed load 

2 

E [ - = - -  d2 v 3 WLZ + 2? [. - :I2 - ; [. - :] (iii) 
d Z 2  32 2 

Integrating Eq. (iii) gives 

dz 
dv 3 64 wLz2 + 1 6 [. - 3 3  - i [. - y3 + c1 

Etv = - - w ~ z 3  + z [z  - ;14 - E [z - 3 4  + c,z + c2 

o = - -  wL4 + - -  w (LY - - -  ; ( y + c l L  

3 WLZ2+ 2? [. - ;I3- : [. - 3 +- 

(iv) E [ -  = -  

(VI  

where C, and C2 are arbitrary constants. The required boundary conditions are v = 0 
when z = 0 and z = L. From the first of these we obtain C2 = 0 while the second gives 

64 24 

64 24 2 

27wL3 
from which CI = - 

2048 
Equations (iv) and (v) then become 

3 27wL3 
(vi) 

dv 

dz 64 6 2048 

E h =  - - w ~ z 3  + -  w [ z - -  ;14 -- ; [.-3 +- Z 

E [ -  = -  

4 27wL3 
and (vii) 

In this problem, the maximum deflection clearly occurs in the region BC of the 

64 24 2048 

beam. Thus equating the slope to zero for BC we have 

3 27wL3 
o = - - w L z + -  z - -  +- 

64 3 ’ w [  6 :] 2048 

which simplifies to 

z 3  - 1.78Lz’ + O*75zL2 - 0-046L3 = 0 (viii) 
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Solving Eq. (viii) by trial and error, we see that the slope is zero at z = 0.6L. Hence 
from Eq. (vii) the maximum deflection is 

4.53 x ~ O - L L ~  
v,, = 

EI 

Example 13.10 Determine the deflected shape of the beam shown in Fig. 13.12. 

reactions are found in the normal way and are 
In this problem an external moment M, is applied to the beam at B. The support 

M M 
L L 

RA  = - 2 (downwards), R,  = 2 (upwards) 

The bending moment at any section Z between B and C is then given by 

M = R,z + M, (i) 
Equation (i) is valid only for the region BC and clearly does not contain a singularity 
function which would cause M, to vanish for zc b. We overcome this difficulty by 
writing 

(ii) 
Equation (ii) has the same value as Eq. (i) but is now applicable to all sections of 
the beam since [ z  - b]" disappears when z x  b. Substituting for M from Eq. (ii) in 
Eq. (13.3) we obtain 

M = R,z + M,[z - b]" (Note: [ z  - b]" = 1) 

(iii) d2 v n 
dz- 

EI 7 = -RAz - M,[z - b] 

Integration of Eq. (iii) yields 

dv z 2  
EI - = -RA - - M,[z - b] + Cl 

z3  M, 2 

(iv) 
dz 2 

( 4  and EIv=-RA --- [ z - b ]  + C ~ Z + C ~  
6 2  

Fig. 13.12 Deflection of a simply supported beam carrying a point moment (Ex. 
13.10) 
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where C, and C2 are arbitrary constants. The boundary conditions are v = 0 when 
z = 0 and z = L.  From the first of these we have C2 = 0 while the second gives 

0 = 2 -  L.‘ -- M ‘ [ L - b ] ’ + C , L  
L 6  2 

from which 
M 
6 L  

C, = 2 (2Lz - 6Lb + 3b2) 

The equation of the deflection curve of the beam is then 

v =  - - M o  { z3 + 3L[z - bI2 - (2L2 - 6 L b  + 3b2)z) 
6EIL 

13.3 Moment-area method for symmetrical bending 
The double integration method and the method of singularity functions are used 
when the complete deflection curve of a beam is required. However, if only the 
deflection of a particular point is required, the moment-area method is generally 
more suitable. 

Consider the curvature-moment equation (13.3). i.e. 

M d2 v 
dz2 El 

- - -  -- 

Integration of this equation between any two sections, say A and B, of a beam gives 

or 

which gives 

(13.6) 

(13.7) 

In qualitative terms Eq. (13.7) states that the change of slope between two sections 
A and B of a beam is numerically equal to minus the area of the M/EI diagram 
between those sections. 

We now return to Eiq. (13.3) and multiply both sides by z thereby retaining the 
equality. Thus 

Z - z = - -  d’ v M 
dz’ Ei 

Integrating Eq. (1 3.8) between two sections A and B of a beam we have 

B d’v B M  
I A  dz2 I IA EI 

- 7 d ~ = -  - Z ~ Z  

(13.8) 

(13.9) 
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The left-hand side of Eq. (13.9) may be integrated by parts and yields 

dv B B dv B M  ['z] A - / A  xdz'-/A EZdz 
B B M  - [VIA = - 1, E Z dz 

or [. 3 
Hence, inserting the limits we have 

B M  
A IA EZ 

zB( z)B - zA( z) - (vB - vA)  = - - z dz ( 1 3.1 0) 

in which zB and zA represent the z coordinate of each of the sections B and A, 
respectively, while (dvldz), and (dvldz), are the respective slopes; vB and vA are 
the corresponding deflections. The right-hand side of Eq. (13.10) represents the 
moment of the area of the M/EZ diagram between the sections A and B about A. 

Equations (13.7) and (13.10) may be used to determine values of slope and 
deflection at any section of a beam. We note that in both equations we are concerned 
with the geometry of the M/EZ diagram. This will be identical in shape to the 
bending moment diagram unless there is a change of section. Furthermore, the form 
of the right-hand side of both Eqs (13.7) and (13.10) allows two alternative 
methods of solution. In cases where the geometry of the M/EZ diagram is relatively 
simple, we can employ a semi-graphical approach based on the actual geometry of 
the M/EZ diagram. Alternatively, in complex problems, the bending moment may be 
expressed as a function of z and a completely analytical solution obtained. Both 
methods are illustrated in the following examples. 

Example 13.11 Determine the slope and deflection of the free end of the 
cantilever beam shown in Fig. 13.13. 

Fig. 13.13 Moment-area method for the deflection of a cantilever (Ex. 13.1 1) 



Moment-area method for symmetrical bending 353 

We choose the origin of the axes at the free end B of the cantilever. 
Equation (13.7) then becomes 

E M  
(:)A - (:)B = - /A dz 

or, since (dvldz), = 0 

Generally at this stage we decide which approach is most suitable; however, both 
semi-graphical and analytical methods are illustrated here. Using the geometry of 
Fig. 13.13(b) we have 

which gives 
WL2 (2) = - -  

E 2EI 

(compare with the value given by Eq. (iii) of Ex. 13.1. Note the change in sign due 
to the different origin for z). 

Alternatively, since the bending moment. at any section z is - Wz we have, from 
Eq. (9 

dz 

which again gives 
WL2 (2) = - -  

E 2EI 

With the origin for z at B, Eq. (13.10) becomes 

Since (dvldz),, = 0, zB = 0 and vA = 0, Eq. (ii) reduces to 

(ii) 

(iii) 

Again we can now decide whether to proceed semi-graphically or analytically. Using 
the former approach and taking the moment of the area of the M/EI  diagram about 
B, we have 

= - 

which gives WL3 
VB = - 

3EI 
(compare with Eq. (v) of Ex. 13.1) 
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Alternatively we have 
2 

v g = -  - z dz = 1,' $ dz 1,' (-:I 
WL3 

which gives UB = - 
3EI 

as before. 
Note that if the built-in end had been selected as the origin for z, we could not 

have determined V ,  directly since the term z,(dv/dz), in Eq. (ii) would not have 
vanished. The solution for U ,  would then have consisted of two parts, first the 
determination of (dV/dZ), and then the calculation of v,. 

Example 13.12 Determine the maximum deflection in the simply supported beam 
shown in Fig. 13.14(a). 

From symmetry we deduce that the beam reactions are each wL/2; the M/EI  
diagram has the geometry shown in Fig. 13.14(b). 

If we take the origin of axes to be at A and consider the half-span AC, 
Eq. (13.10) becomes 

(9  
zC( ") - z A (  2) - (vC - v A )  = - c M  - z dz 

dz c A jA EI 

In this problem (dvldz), = 0, zA = 0 and vA = 0; hence Eq. (i) reduces to 

vc = j;l2 $ z dz (ii) 

Fig. 13.14 Moment-area method for a simply supported beam carrying a 
uniformly distributed load 
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Using the geometry of the M / E I  diagram, i.e. the semi-graphical approach, and 
taking the moment of the area of the M / E I  diagram between A and C about A we 
have from Eq. (ii) 

which gives 
5wL4 

vc = - 
384EI 

(see Eq. (v) of Ex. 13.4). 

function of z; thus 
For the completely analytical approach we express the bending moment M as a 

2 WL wz 
2 2 

M=-z-- 

or 
W M = - (Lz - z 2 )  
2 

Substituting for M in Eq. (ii) we have 

Ll? w ..=I, - (Lz’ - z3) dz 
2EI 

which gives 

Hence 

w [ L Z ~  
u c = -  --- 

2EI 3 

5wL4 
uc = - 

384EI 

Example 13.13 Figure 13.15(a) shows a cantilever beam of length L carrying a 
concentrated load W at its free end. The section of the beam changes mid-way along 
its length so that the second moment of area of its cross-section is reduced by half. 
Determine the deflection of the free end. 

In this problem the bending moment and M/EI diagrams have different 
geometrical shapes. Choosing the origin of axes at C, Eq. (1 3.10) becomes 

in which (dv/dz), = 0, zc = 0, uA = 0. Hence 

L M  
vc = - lo z dz (ii) 
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Fig. 13.15 Deflection of a cantilever of varying section 

From the geometry of the M/EI diagram (Fig. 13.15(c)) and taking moments of 
areas about C we have 

v c =  -{( -WL) L 3L + -  1 ( -WL)  - -- L 5L + -  ; (-WL) - --- L 2 L }  

VC = - [I"z $ d z + I L  -dr] -WZ' 

2Et 2 4 2 2EI 2 6 EI 2 3 2  

3 WL3 
which gives vc = - 

8Et 

Analytically we have 

L/2  EI 
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w 2z3  LI2 
or 

vc = - EI [[TI. + [$I:,j 
3 WL3 

Hence vc = - 

as before. 
Example 13.14 The cantilever beam shown in Fig. 13.16 tapers along its length so 
that the second moment of area of its cross-section varies linearly from its value I, 
at the free end to 21, at the built-in end. Determine the deflection at the free end 
when the cantilever carries a concentrated load W. 

8EI 

Choosing the origin of axes at the free end B we have, from Eq. (13.10), 

(0 z A ( ~ ) ~  - z B ( ~ ) .  - ( v A  - v B )  = - A M  - z dz IB EIz 

in which I z ,  the second moment of area at any section Z, is given by 

Iz = I.( 1 + t) 
Also (dvldz), = 0, zB = 0, vA = 0 so that Eq, (i) reduces to 

v B = -  I" Mz dz (ii) 
o El,( 1 + t) 

The geometry of the M/EI diagram in this case will be complicated so that the 
analytical approach is most suitable. Therefore since M = - Wz, Eq. (ii) becomes 

V B  = jL wz2 dz 

O El,( 1 + 5) 
WL L z2 

or v * =  - - dz (iii) 
EI, In L + z  

Fig. 13.16 Deflection of a cantilever of tapering section 
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Rearranging Eq. (iii) we have 

U B  = J!k {I L (Z - L )  dz + 1, L L+.Z L2 dz} 
EI, o 

1: WL z2  

El,  
Hence UB = - [( 2 - Lz) + L2 lo&(L - z) 

so that vB= -(-:+10&2) WL3 

EI, 

0.19 WL’ 

EI, 
whence U B  = 

13.4 Deflections due to unsymmetrical bending 
We noted in Chapter 9 that a beam bends about its neutral axis whose inclination to 
arbitrary centroidal axes is determined from Eq. (9.33). Beam deflections, therefore, 
are always perpendicular in direction to the neutral axis. 

Suppose that at some section of a beam, the deflection normal to the neutral axis 
(and therefore an absolute deflection) is 5. Thus, as shown in Fig. 13.17, the centroid 
G is displaced to G’. If the displacement corresponds to a bending moment whose 
components M, and M,. give positive values for Hr and my, the direction of the 
displacement will generally be as shown in Fig. 13.17 with components 

u = < s i n a ,  u=C,cosa (13.11) 

The centre of curvature of the beam lies in a longitudinal plane perpendicular to the 
neutral axis of the beam and passing through the centroid of any section. Hence for 
a radius of curvature R, we see, by direct comparison with Eq. (13.2) that 

1 d’< 
R dz2 

(13.12) - = - -  

Fig. 13.17 Deflection of a beam of unsymmetrical cross-section 
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or, substituting from Eqs (13.1 1) 

cos a d2v 
R dz2 ’ R dz2 

( 1 3.1 3) -- _ - -  sin a d2u -- _ - -  

We observe from the derivation of Eq. (9.30) that 

E c o s a  a.v 
( 1 3.14) 

Therefore eliminating (sin a)/R and (cos a)/R between Eqs (13.13) and (13.14) we 
have 

-=- E sin a m, -- -- 
R I ,  R I ,  

M, _ - -  (1 3.15) 
d2 v -- my - - -  d’u 

dz2 E t ,  ’ dz2 EI,  
-- 

Note the similarity between Eqs (13.15) and (13.3). 

Example 13.15 Determine the horizontal and vertical components of the 
deflection of the free end of the cantilever shown in Fig. 13.18. The second 
moments of area of its unsymmetrical section are I x ,  I ,  and IA7. 

From Eqs (1 3.15) we have 

0 )  
m . v  d2u m, 

dz2 E l ,  ’ dz2 E1.V 
_ - -  d2 v -- -=-A 

We shall concentrate initially on the vertical component of deflection, v. Since M, 
vanes with z(M, = 0),  HV must be expressed as a function of z before the second of 
Eqs (i) can be integrated. Now 

-- - 3,. (see Section 9.9) 
aa.v 
aZ 

and 3, is constant along the length of the cantilever. 

Hence 

where C,  is an unknown constant of integration which is determined using the 
boundary condition that R, = 0 when z = L (note that M, and M y  are zero at z = L).  

R, = s,z + c, 

Fig. 13.18 Deflection of a cantilever of unsymmetrical cross-section carrying a 
concentrated load at its free end (Ex. 13.15) 
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Hence C, = - s,,. L and 

Substituting for Hx in the second of Eqs (i) we have 

= S J Z  - L) 

d’ u s ,. -=- -  ’ (z-L) 
dz2 EI, 

Integrating Eq. (iii) gives 

and 

(ii) 

(iii) 

The constants of integration, Cz and C,, are found from the boundary conditions 
that v = O  when z = O  and du/dz=O when z=O. From the first of these, C,=O, 
while from the second C2 = 0 also. Hence 

The vertical component, vtlp, of the deflection at the free end of the cantilever is then 

u,ip = - 
3EI, 

(vii) 

In the derivation of Eq. (vi) the loading has been expressed in general form using 
only the fact that s,. is constant along the length of the cantilever since both S,(= W) 
and S,(=O) are both constant along its length; by the same argument, f,t is constant. 
Also, we see that the boundary conditions used in evaluating C,, Cz and C, apply 
equally to My, du/dz and u. The expression for the horizontal component of deflection 
may therefore be written down by direct comparison with Eqs (vi) and (vii). Hence 

S,L3 

and s, L’ 
u .  =- 

3EI, LIP 

(viii) 

Comparing Eqs (vii) and (ix) with Eq. (v) of Ex. 13.1 we see why 3,. s,,. are termed 
‘effective’ shear forces. 

The solution is completed by evaluating s., and s, in terms of the applied loading. 
Thus since S ,  = W and S, = 0 we see from Eqs (9.59) and (9.60) that 

whence ufIp and zllIp. 
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Example 13.16 Determine the deflection of the free end of the cantilever beam 
shown in Fig. 13.19. The second moments of area of its cross-section about a 
horizontal and vertical system of centroidal axes are Z.r, I ,  and Z,v,. 

In this problem S,, and therefore sy and s,v, are functions of z. We therefore use 
the relationships 

a2n, - 
(9 -- - - w, -- - -5,, 

a* n.r 
az2 az2 

to determine the variation of Hv and H, with z. Integrating the first of Eqs (i) we 
obtain 

-- - -R,,z + ci (ii) 
an.t 
aZ 

an.r - 
aZ When z = L, - - - S, = 0, hence C1 = E, L and 

(iii) -- - E, (L - 2 )  
an., 
aZ 

Integrating Eq. (iii) we have 

J?v = 5, Lz - - + C? (iv> ( - : )  

( '2 :) 
When z = L, HX = 0 so that C2 = -E, L2/2. Thus Eq. (iv) becomes 

2 

m.,=5, Lz---- (VI 

The remainder of the solution is identical in form to Ex. 13.15 and yields 

5.v L4 

W -w~.,,/~.r , in which E, = , 5.r= 
1 - LT2/IS 1, 

u. =- 
8 EZ, 

(compare with Eq. (v) of Ex. 13.2) 
E, L4 

t'P 
2 ) .  =- 

8 EZ, t'P 

1 - z.,,2/z.r I ,  

Fig. 13.19 Deflection of a cantilever of unsymmetrical cross-section carrying a 
uniformly distributed load (Ex. 13.16) 
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13.5 Moment-area method for unsymmetrical bending 
We may use the concept of ‘effective’ bending moments to write down equations for 
slope and deflection of a beam subjected to unsymmetrical bending corresponding to 
Eqs (13.7) and (13.10) for the symmetrical case. Thus in the vertical yz plane we 
have, for sections A and B of a beam, 

B (3. -(:)A = - JA EI, dz  

and in the horizontal xz plane 

Similarly Eq. (13.10) becomes 

and 

( 1 3.1 6) 

( 1 3.1 7) 

( 1 3.1 8) 

(1 3.19) 

In Eqs (13.16)-(13.19) we are concerned-with the area and the moment of area of 
the ‘effective’ bending moment diagram divided by the appropriate flexural rigidity. 
Therefore, although the semi-graphical approach is possible, it will generally be 
simpler to use the relationships developed in Section 9.9 and work analytically. 
Example 13.17 Determine the horizontal and vertical components of the 
deflection of the free end of the cantilever shown in Fig. 13.18. 

Taking the origin for z at the free end, F, we rewrite Eqs (13.18) and (13.19) as 

and (ii) 

respectively. In Eqs (i) and (ii) (dvldz), = (du/dZ),=o, zF = o  and vD= uD=o. 
Hence we have 

Now 
an.v - 
aZ -= S,. (see Section 9.9) 

(iii) 
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Integrating, 

h7, = 3,: + C, 

The boundary conditions are h7, = 0 (Le. M, = M, = 0) at z = 0. Thus C, = 0 and 

a, = 3,: (v ) 
Substituting for h7, in Eq. (iii) we obtain 

which gives 

Similarly 

In Eqs (vi) and (vii) 

v F =  - . z dz 

S,L3 

S,L3 

v F = -  - 
3 Et ,  

uF=-- 
3Et, 

(vii) 

(viii) 

Hence vF and uF (compare with Eqs (vii) and (ix) of Ex. 13.15). 
Note that in Eqs (viii) S, = - W since the origin for z is at the free end of the 

beam, so that W acts on the face of the section which is seen when viewed in the 
direction Oz (see Fig. 9.16). 

13.6 Deflection due to shear 
So far in this chapter we have been concerned with deflections produced by the 
bending action of shear loads. These shear loads however, as we saw in Chapter 10, 
induce shear stress distributions throughout beam sections which in turn produce 
shear strains and therefore shear deflections. Generally, shear deflections are small 
compared with bending deflections, but in some cases of deep beams they can be 
comparable. In the following we shall use strain energy to derive an expression for 
the deflection due to shear in a beam having a cross-section which is at least singly 
symmetrical. 

In Chapter 10 we showed that the strain energy U of a piece of material subjected 
to a uniform shear stress z is given by 

zL 
2G 

U = -  x volume 

However, we also showed in Chapter 10 that shear stress distributions are not 
uniform throughout beam sections. We therefore write Eq. (10.20) as 

u = 1 x (;) x volume 
2G 

(1 3.20) 
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in which S is the applied shear force, A is the cross-sectional area of the beam 
section and /3 is a constant which depends upon the distribution of shear stress 
through the beam section; p is known as the form factor. 

To determine P we consider an element bo 6 y  in an elemental length 6z of a beam 
subjected to a vertical shear load S, (Fig. 13.20); we shall suppose that the beam 
section has a vertical axis of symmetry. The shear stress '5 is constant across the 
width, bo, of the element (see Section 10.2). The strain energy, SU, of the element 
bo Sy 6z is, from Eq. (10.20), 

T2 
6U=-xbOSydz (13.21) 

2G 

Therefore the total strain energy U in the elemental length of beam is given by 

u=  Eli: T'b O Y  d (1 3.22) 

Alternatively U for the elemental length of beam is obtained using Eq. (13.20); thus 

x - xA6z  (1 3.23) 

2G 

u=- P ("all 
2G 

Equating Eqs (13.23) and (13.22) we have 

- P x (y x A  az= - 6z l::.r2bOdy 
2G 2G 

whence p = - I" '5 * body (13.24) 
A 
sf Y '  

Fig. 13.20 Determination of form factor p 
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The shear stress distribution in a beam having a singly or doubly symmetrical 

S, A’jj 

bo I ,  

cross-section and subjected to a vertical shear force, S,, is given by Eq. (10.4), i.e. 

T= - 

Substituting this expression for ‘I: in Eq. (13.24) we obtain 

which gives (13.25) 

Suppose now that 6v, is the deflection due to shear in the elemental length of 
beam of Fig. 13.20. The work done by the shear force S, (assuming it to be constant 
over the length 6z and gradually applied) is then 

1 s, 6% 

which is equal to the strain energy stored. Hence 

which gives 

The total deflection due to shear in a beam of length L subjected to a vertical shear 
force S, is then 

..=-I P ( 5 ) d z  
G L A  

(1 3.26) 

Example 13.18 A cantilever beam of length L has a rectangular cross-section of 
breadth B and depth D and carries a vertical concentrated load, W ,  at its free end. 
Determine the deflection of the free end, including the effects of both bending and 
shear. The flexural rigidity of the cantilever is El and its shear modulus G. 

Using Eq. (13.25) we obtain the form factor P for the cross-section of the beam 
directly. Thus 

BD ID’’ I[.(;-y)-(-+y)]’dy 1 D  (seeEx. 10.1) ’= (BD3/1q2 -DI2 B 2 2  

D4 D’y’ 
which simplifies to P = - 36 I D’2 (- - - +y4)dy 

Ds -012 16 2 
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Integrating we obtain 

which gives 
6 

5 
p = -  

Note that the dimensions of the cross-section do not feature in the expression for p. 
The form factor for any rectangular cross-section is therefore 6/5 or 1.2. 

Let us suppose that v, is the vertical deflection of the free end of the cantilever 
due to shear. Hence, from Eq. (13.26) we have 

6 
5G 

v, = - 1,' (g) dz 

so that 
6WL v, = - 

SGBD 

The vertical deflection due to bending of the free end of a cantilever carrying a 
concentrated load has previously been determined in Ex. 13.1 and is WL3/3EI. The 
total deflection, vT, produced by bending and shear is then 

WL3 6WL 
v T = - + -  

3EI SGBD 

Rewriting Eq. (ii) we obtain 

(ii) 

(iii) 

For many materials (3E/10G) is approximately unity so that the contribution of 
shear to the total deflection is (D/L)' of the bending deflection. Clearly this term 
only becomes significant for short, deep beams. 

13.7 Statically indeterminate beams 
The beams we have considered so far have been supported in such a way that the 
support reactions could be determined using the equations of statical equilibrium; 
such beams are therefore statically determinate. However, many practical cases arise 
in which additional supports are provided so that there are a greater number of 
unknowns than the possible number of independent equations of equilibrium; the 
support systems of such beams are therefore statically indeterminate. Simple 
examples are shown in Fig. 13.21 where, in Fig. 13.21 (a), the cantilever does not, 
theoretically, require the additional support at its free end and in Fig. 13.21(b) any 
one of the three supports is again, theoretically, redundant. A beam such as that 
shown in Fig. 13.21(b) is known as a continuous beam since it has more than one 
span and is continuous over one or more supports. 
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Fig. 13.21 Examples of statically indeterminate beams 

We saw in Section 7.14 that additional equations are obtained in statically 
indeterminate systems by considering the displacements of the system. We shall 
therefore use the results of the previous work in this chapter to investigate methods 
of solving statically indeterminate beam systems. Having determined the reactions, 
diagrams of shear force and bending moment follow in the normal manner. 

The examples given below are relatively simple cases of statically indeterminate 
beams. We shall investigate more complex cases in Chapter 16. 

Method of superposition 

In Section 3.7 we discussed the principle of superposition and saw that the combined 
effect of a number of forces on a structural system may be found by the addition of 
their separate effects. The principle may be-applied to the determination of support 
reactions in relatively simple statically indeterminate beams. We shall illustrate the 
method by examples. 

Example 13.19 The cantilever AB shown in Fig. 13.22(a) cames a uniformly 
distributed load and is provided with an additional support at its free end. Determine 
the reaction at the additional support. 

Fig. 13.22 Propped cantilever of Ex. 13.19 
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Suppose that the reaction at the support B is R E .  Using the principle of 
superposition we can represent the combined effect of the distributed load and the 
reaction RB as the sum of the two loads acting separately as shown in Fig. 13.22(b) 
and (c). Also, since the vertical deflection of B in Fig. 13.22(a) is zero, it follows 
that the vertical downward deflection of B in Fig. 13.22(b) must be numerically 
equal to the vertically upward deflection of B in Fig. 13.22(c). Therefore using the 
results of Exs (13.1) and (13.2) we have 

3 whence R E = g w L  

It is now possible to determine the reactions RA and MA at the built-in end using the 
equations of simple statics. Thus taking moments about A for the beam in 
Fig. 13.22(a) we have 

Resolving vertically 

3 5 

8 8 
RA = W L  - RB = W L  - - W L  = - W L  

In the solution of Ex. 13.19 we selected RB as the redundancy; in fact, any one of 
the three support reactions, M A ,  RA or RB, could have been chosen. Let us suppose 
that M A  is taken to be the redundant reaction. We now represent the combined 
loading of Fig. 13.22(a) as the sum of the separate loading systems shown in Figs 
13.23(a) and (b) and work in terms of the rotations of the beam at A due to the 
distributed load and the applied moment, MA. Clearly, since there is no rotation at 
the built-in end of a cantilever, the rotations produced separately in Figs 13.23(a) 
and (b) must be numerically equal but opposite in direction. Using the method of 
Section 13.1 it may be shown that 

wL3 
8, (due to W )  = - 

24EI 
(clockwise) 

(anticlockwise) MAL 
3EI 

I eA(MA) I = 1 eA(w) I 

and e A  (due to M A )  = - 

Since 

we have 
WL? 

MA=-  as before. 
8 

Built-in or fixed-end beams 
In practice single-span beams may not be free to rotate about their supports but are 
connected to them in a manner that prevents rotation. Thus a reinforced concrete 
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Fig. 13.23 Alternative solution of Ex. 13.19 

beam may be cast integrally with its supports as shown in Fig. 13.24(a) or a steel 
beam may be bolted at its ends to steel columns (Fig. 13.24(b)). Clearly neither of 
the beams of Fig. 13.24(a) or (b) can be regarded as simply supported. 

Consider the fixed beam of Fig. 13.25. Any system of vertical loads induces 
reactions of force and moment, the latter arising from the constraint against rotation 
provided by the supports. Thus there are four unknown reactions and only two 
possible equations of statical equilibrium; the beam is therefore statically 
indeterminate and has two redundancies. A solution is obtained by considering 
known values of slope and deflection at particular beam sections. 

Example 13.20 Figure 13.26(a) shows a fixed beam carrying a central 
concentrated load, W. Determine the value of the fixed-end moments, MA and ME. 

Since the ends A and B of the beam are prevented from rotating, moments MA 
and M B  are induced in the supports; these are termed fixed-end moments. From 
symmetry we see that M A  = M B  and R A  = RB = W/2. 

The beam AB in Fig. 13.26(a) may be regarded as a simply supported beam 
carrying a central concentrated load with moments MA and M B  applied at the 
supports. The bending moment diagrams corresponding to these two loading cases 

Fig. 13.24 Practical examples of fixed beams 

Fig. 13.25 Support reactions in a fixed beam 
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Fig. 13.26 Bending moment diagram for a fixed beam (Ex. 13.20) 

are shown in Fig. 13.26(b) and (c) and are known as the free bending moment 
diagram and the fu-ed-end moment diagram, respectively. Clearly the concentrated 
load produces sagging (positive) bending moments, while the fixed-end moments 
induce hogging (negative) bending moments. The resultant or final bending moment 
diagram is constructed by superimposing the free and fixed-end moment diagrams as 
shown in Fig. 13.26(d). 

The moment-area method is now used to determine the fixed-end moments, M A  and 
MB. From Eq. (13.7) the change in slope between any two sections of a beam is equal 
to minus the area of the M / E I  diagram between those sections. Therefore the net area 
of the bending moment diagram of Fig. 13.26(d) must be zero since the change of 
slope between the ends of the beam is zero. It follows that the area of the free bending 
moment diagram is numerically equal to the area of the fixed-end moment diagram; thus 

1 WL 
2 4  

M A L = - - L  

W L  
Hence M A = M B = -  

8 
and the resultant bending moment diagram has principal values as shown in 
Fig. 13.27. Note that the maximum positive bending moment is equal in magnitude 
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Fig. 13.27 Complete bending moment diagram for fixed beam of Ex. 13.20 

to the maximum negative bending moment and that points of contraflexure (i.e. 
where the bending moment changes sign) occur at the quarter-span points. 

Having determined the support reactions, the deflected shape of the beam may be 
found by any of the methods described in the previous part of this chapter. 

Example 13.21 Determine the fixed-end moments and the fixed-end reactions for 
the beam shown in Fig. 13.28(a). 

The resultant bending moment diagram is shown in Fig. 13.28(b) where the line 
AB represents the datum from which values of bending moment are measured. 
Again the net area of the resultant bending moment diagram is zero since the change 
in slope between the ends of the beam is zero. Hence 

1 1 Wab 
2 2 L  
- ( M A + M B ) L = - L -  

which gives M , + M , = -  (0 
Wab 

L 

Fig. 13.28 Fixed beam of Ex. 13.28 



Eq. (13.10) and taking the origin for z at A; hence we have 
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We require a further equation to solve for MA and MB. This we obtain using 

(ii) 

In Eq. (ii) (dv/dz)B = (dv/dz), = 0 and vB = v, = 0 SO that 

B M  o = J  -zdz 
A EI 

(iii) 

and the moment of the area of the M/EI diagram between A ani B a,out A is zero. 
Since EI is constant for the beam, we need only consider the bending moment 
diagram. Therefore from Fig. 13.28(b) 

Simplifying, we obtain 

Solving Eqs (i) and (iv) simultaneously we obtain 

Wa2b 
, MB=- 

Wab2 
MA=- 

L2 L2 

We can now use statics to obtain RA and RB; hence, taking moments about B 

R A L - M A + M B - w b = O  

Substituting for MA and MB from Eqs (v) we have 

whence 

Similarly 

Wab2 Wa2 b 
R A L  = - - - + W b  

L2 L2 

Wb2 
RA = 7 L (3a + b)  

Wa2 
RB= 7 (a  + 3b) 

L 

Example 13.22 The fixed beam shown in Fig. 13.29(a) carries a uniformly 
distributed load of intensity w. Determine the support reactions. 

From symmetry, M , = M ,  and R , =  R,. Again the net area of the bending 
moment diagram must be zero since the change of slope between the ends of the 
beam is zero (Eq. (1 3.7)). Hence 

2 wL2 
M A L = - -  L 

3 8  
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Fig. 13.29 Fixed beam carrying a uniformly distributed load (Ex. 13.22) 

wL2 
so that M , = M , = -  

12 

WL 
From statics, R A = R B = -  

2 

Example 13.23 The fixed beam of Fig. 13.30 cames a uniformly distributed load 
over part of its span. Determine the values of the fixed-end moments. 

Consider a small element 6z of the distributed load. We can use the results of 
Ex. 13.21 to write down the fixed-end moments produced by this elemental load 
since it may be regarded, in the limit as 6z-+O, as a concentrated load. Therefore 
from Eqs (v) of Ex. 13.21 we have 

z ( L  - z )2  

L2 
6 M A  = w 6z 

The total moment at A, MA, due to all such elemental loads is then 

MA = 1’ -K z (L - z)’ dz 
u L’ 

U’ L’ , , 2 1 
(9 

(ii) 

I which gives M A  = 7 - (b- - a- )  - - L(b’ - a’) + - (b4 - a4)  
L- 2 3 4 

+‘I(“ --- ;) 
[ 

Similarly 
L- 3 

If the load covers the complete span, a = 0, b = L and Eqs (i) and (ii) reduce to 

WL’ 
M , = M , = -  

12 

as in Ex. 13.22. 
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Fig. 13.30 Fixed beam with part-span uniformly distributed load (Ex; 13.23) 

Fixed beam with a sinking support 
In most practical situations the ends of a fixed beam would not remain perfectly 
aligned indefinitely. Since the ends of such a beam are prevented from rotating, a 
deflection of one end of the beam relative to the other induces fixed-end moments as 
shown in Fig. 13.31(a). These are in the same sense and for the relative 
displacement shown produce a total anticlockwise moment equal to MA + M, on the 
beam. This moment is equilibrated by a clockwise couple formed by the force 
reactions at the supports. The resultant bending moment diagram is shown in 
Fig. 13.31(b) and, as in previous examples, its net area is zero since there is no 
change of slope between the ends of the beam and EZ is constant (see Eq. (13.7)). 
This condition is satisfied by MA = M,. 

Fig. 13.31 Fixed beam with a sinking support 
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Let us now assume an ongh for z at A; Eq. (13.10) becomes 

in which (dvldz), = (dv/dz), = 0, uA = 0 and uB = 6. Hence Eq. (i) reduces to 

Using the semi-graphical approach and taking moments of areas about A we have 

1 L M A L  1 L M A 5  6 + - - -  - L  
2 2 E I 6  2 2 E I 6  

which gives 

It follows that 

The effect of building in the ends of a beam is to increase both its strength and its 
stiffness. For example, the maximum bending moment in a simply supported beam 
carrying a central concentrated load W is WL/4 but it is WL/8 if the ends are built- 
in. A comparison of the maximum deflections shows a respective reduction from 
WL3/48EI to WL3/192EI. It would therefore appear desirable for all beams to have 
their ends built-in if possible. However, in practice this is rarely done since, as we 
have seen, settlement of one of the supports induces additional bending moments in 
a beam. It is also clear that such moments can be induced during erection unless the 
supports are perfectly aligned. Furthermore, temperature changes can induce large 
stresses while live loads, which produce vibrations and fluctuating bending moments, 
can have adverse effects on the fixity of the supports. 

One method of eliminating these difficulties is to employ a double cantilever 
construction. We have seen that points of contraflexure (Le. zero bending moment) 
occur at sections along a fixed beam. Thus if hinges were positioned at these points 
the bending moment diagram and deflection curve would be unchanged but 
settlement of a support or temperature changes would have little or no effect on the 
beam. 

Problems 
P.13.1 The beam shown in Fig. P.13.1 is simply supported symmetrically at two 

points 2 m from each end and carries a uniformly distributed load of 5 kN/m 
together with two concentrated loads of 2 kN each at its free ends. Calculate the 
deflection at the mid-span point and at its free ends using the method of double 
integration. El = 43 x 10” N mm’. 

Ans. 3.5 mm downwards, 2-1 mm upwards. 
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Fig. P.13.1 

P.13.2 A beam AB of length L (Fig. P.13.2) is freely supported at A and at a 
point C which is at a distance KL from the end B. If a uniformly distributed load of 
intensity w per unit length acts on AC, find the value of K which will cause the 
upward deflection of B to equal the downward deflection mid-way between A and C. 

A ~ s .  0.24. 

Fig. P.13.2 

P.13.3 A uniform beam is simply supported over a span of 6 m. It cames a 
triangularly distributed load with intensity varying from 30 kN/m at the left-hand 
support to 90 kN/m at the right-hand support. Find the equation of the deflection 
curve and hence the deflection at the mid-span point. The second moment of area 
of the cross-section of the beam is 120x lo6 mm4 and Young's modulus 
E = 206 OOO N/mm'. 

Ans. 41 mm. 

P.13.4 A cantilever having a flexural rigidity EI cames a distributed load that 
varies in intensity from w per unit length at the built-in end to zero at the free end. 
Find the deflection of the free end. 

Am. wLJ/30EI. 

P.13.5 Determine the position and magnitude of the maximum deflection of the 
simply supported beam shown in Fig. P. 13.5 in terms of its flexural rigidity EI. 

Ans. 37-8/Et  m at 2-9 m from left-hand support. 
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Fig. P.13.5 

P.13.6 Calculate the position and magnitude (in terms of El)  of the maximum 
deflection in the beam shown in Fig. P. 13.6. 

Ans. 1310/EI m at 13.4 m from left-hand support. 

Fig. P.13.6 

P.13.7 Determine the equation of the deflection curve of the beam shown in 

Ans. 
Fig. P. 13.7. The flexural rigidity of the beam is EI. 

I 100 2 50 4 50 525 
[Z - 11 + - [Z - 23 - - [Z - 414 - - [Z - 413 + 5 0 4 2  . 2)= i (" z3 - - 

EI 6 2 12 12 6 

Fig. P.13.7 

P.13.8 The beam shown in Fig. P.13.8 has its central portion reinforced so that 
its flexural rigidity is twice that of the outer portions. Use the moment-area method 
to determine the central deflection. 

Ans. 3WL3/256EI. 
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Fig. P.13.8 

P.13.9 A simply supported beam of flexural rigidity El carries a triangularly 
distributed load as shown in Fig. P.13.9. Determine the deflection of the mid-point 
of thebeam. 

~ n s .  W , , L ~ / ~ ~ O E I .  

Fig. P.13.9 

P.13.10 The simply supported beam shown in Fig. P.13.10 has its outer regions 
reinforced so that their flexural rigidity may be regarded as infinite compared with 
the central region. Determine the central deflection. 

Ans. 7 WL3/384EI. 

Fig. P.13.10 

P.13.11 Calculate the horizontal and vertical components of the deflection at the 
centre of the simply supported span AB of the thick 2-section beam shown in 
Fig. P. 13.1 1. Take E = 200 OOO N/mm2. 

Ans. u=2.43 mm, u =  1.75 mm. 
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Fig. P.13.11 

P.13.12 The simply supported beam shown in Fig. P.13.12 supports a uniformly 
distributed load of 10 N/mm in the plane of its horizontal flange. The properties of 
its cross-section referred to horizontal and vertical axes through its centroid are 
Z, = 1.67 x lo6 mm4, Z, = 0-95 x lo6 mm4 and Z,K, = 0.74 x lo6 mm4. Determine the 
magnitude and direction of the deflection at the mid-span section of the beam. Take 
E = 70 OOO N/~IuII~. 

Am. 52.5 mm at 23'54' below horizontal. 

Fig. P.13.12 

P.13.13 A uniform cantilever of arbitrary cross-section and length L has section 
properties Z.c, Z,, and Z.,s with respect to the centroidal axes shown (Fig. P.13.13). It is 
loaded in the vertical plane by a tip load W .  The tip of the beam is hinged to a 
horizontal link which constrains it to move in the vertical direction only (provided 
that the actual deflections are small). Assuming that the link is rigid and that there are 
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no twisting effects, calculate the force in the link and the deflection of the tip of the 
beam. 

Ans. WZ.,,./Z.x (compression if I,,y is positive), WL3/3 EZ,. 

Fig. P.13.13 

P.13.14 A thin-walled beam is simply supported at each end and supports a 
uniformly distributed load of intensity w per unit length in the plane of its lower 
horizontal flange (see Fig. P.13.14). Calculate the horizontal and vertical 
components of the deflection of the mid-span point. Take E = 200 OOO N/mm’. 

Fig. P.13.14 

P.13.15 A uniform beam of arbitrary unsymmetrical cross-section and length 2L 
is built-in at one end and is simply supported in the vertical direction at a point half - 
way along its length. This support, however, allows the beam to deflect freely in the 
horizontal x direction (Fig. P.13.15). Determine the vertical reaction at the support. 

Ans. 5W/2. 

P.13.16 A cantilever of length 3L has section second moments of area l.v, I,, 
and Zl,. referred to horizontal and vertical axes through the centroid of its cross- 
section. If the cantilever cames a vertically downward load W at its free end and is 
pinned to a support which prevents both vertical and horizontal movement at a 
distance 2L from the built-in end, calculate the magnitude of the vertical reaction at 
the support. Show also that the horizontal reaction is zero. 

Ans. 7W/4. 
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Fig. P.13.15 

P.13.17 Calculate the deflection due to shear at the mid-span point of a simply 
supported rectangular section beam of length L which cames a vertically downward 
load W at mid-span. The beam has a cross-section of breadth B and depth D; the 
shear modulus is G. 

Ans. 3WLIlOGBD. 

P.13.18 Determine the deflection due to shear at the free end of a cantilever of 
length L and rectangular cross-section B x D which supports a uniformly distributed 
load of intensity w. The shear modulus is G. 

Ans. 3wL2/5GBD. 

P.13.19 A cantilever of length L has a solid circular cross-section of diameter D 
and carries a vertically downward load W at its free end. The modulus of rigidity of 
the cantilever is G. Calculate the shear stress distribution across a section of the 
cantilever and hence determine the deflection due to shear at its free end. 

Ans. 

P.13.20 Show that the deflection due to shear in a rectangular section beam 
supporting a vertical shear load S, is 20% greater for a shear stress distribution given 
by the expression 

T =  16W(1 - 4y2/D2)/3nD2, 40WL/9nGD2. 

S,A'Y 

boll 
T=- 

than for a distribution assumed to be uniform. 
A rectangular section cantilever beam 200 mm wide by 400 mm deep and 2 m 

long carries a vertically downward load of 500 kN at a distance of 1 m from its free 
end. Calculate the deflection at the free end taking into account both shear and 
bending effects. Take E = 200 OOO N/mm2 and G = 70 OOO N/mm2. 

Ans. 2.06mm. 
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P.13.21 The beam shown in Fig. P.13.21 is simply supported at each end and is 
provided with an additional support at mid-span. If the beam carries a uniformly 
distributed load of intensity w and has a flexural rigidity EZ, use the principle of 
superposition to determine the reactions in the supports. 

Ans. 5wL/4  (central support), 3wL/8 (outside supports). 

Fig. P.13.21 

P.13.22 A built-in beam ACB of span L carries a concentrated load W at C a 
distance a from A and b from B. If the flexural rigidity of the beam is EI, use the 
principle of superposition to determine the support reactions. 

Ans. R, = Wb*(L + 2 a ) / L 3 ,  
MA = Wab2/L2,  

RB = Wa2(L  + 2 b ) / L 3 ,  
MB = Wa2b/L2 .  

P.13.23 A beam has a second moment of area I for the central half of its span 
and 112 for the outer quarters. If the beam carries a central concentrated load W ,  find 
the deflection at mid-span if the beam is simply supported and also the fixed-end 
moments when both ends of the beam are built-in. 

Ans. 3WL3/128EI, 5WL/48. 

P.13.24 A cantilever beam projects 1.5 m from its support and carries a 
uniformly distributed load of 16 kN/m over its whole length together with a load of 
30 kN at 0.75 m from the support. The outer end rests on a prop which compresses 
0-12  mm for every kN of compressive load. If the value of EI for the beam is 
2000 kNm2, determine the reaction in the prop. 

Ans. 12.6 kN. 
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Complex Stress and Strain 

In Chapters 7, 9, 10 and 11 we have determined stress distributions produced 
separately by axial load, bending moment, shear force and torsion. However, in 
many practical situations some or all of these force systems act simultaneously so 
that the various stresses are combined to form complex systems which may include 
both direct and shear stresses. In such cases it is no longer a simple matter to predict 
the mode of failure of a structural member, particularly since, as we shall see, the 
direct and shear stresses at a point due to, say, bending and torsion are not 
necessarily the maximum values of direct and shear stress at that point. 

Therefore as a preliminary to the investigation of the theories of elastic failure in 
Section 14.10 we shall examine states of stress and strain at points in structural 
members subjected to complex loading systems. 

14.1 Representation of stress at a point 
We have seen that generally stress distributions in structural members vary 
throughout the member. For example the direct stress in a cantilever beam carrying a 
point load at its free end varies along the length of the beam and throughout its 
depth. Suppose that we are interested in the state of stress at a point lying in the 
vertical plane of symmetry and on the upper surface of the beam mid-way along its 
span. The direct stress at this point on planes perpendicular to the axis of the beam 
can be calculated using Eq. (9.9). This stress may be imagined to be acting on two 
opposite sides of a very small thin element ABCD in the surface of the beam at the 
point (Fig. 14.1 (a) and (b)). 

Since the element is thin we can ignore any variation in direct stress across its 
thickness. Similarly, since the sides of the element are extremely small we can 
assume that Q has the same value on each opposite side BC and AD of the element 
and that Q is constant along these sides (in this particular case a is constant across 
the width of the beam but the argument would apply if it were not). Thus we are 
representing the stress at a point in a structural member by a stress system acting on 
the sides and in the plane of a thin, very small element; such an element is known as 
a two-dimensional element. 

Although some states of stress require representation by three-dimensional 
elements, we shall restrict our analysis to two-dimensional cases. Also, since two 
dimensional elements may be aligned in any direction in a structural member, 



384 Complex Stress and Strain 

Fig. 14.1 Representation of stress at a point in a structural member 

their edges will not necessarily be parallel to beam reference axes (Fig. 3.6) and 
it is no longer practicable to use these axes to define directions of stress. We shall 
therefore revert to a simple xy system in which the x axis of the element is 
parallel to the longitudinal axis of a structural member and the y axis is 
perpendicular to the longitudinal axis. In Fig. 14.1 (b), therefore, the direct stress 
would become 0 , .  

14.2 Determination of stresses on inclined planes 
Suppose that we wish to determine the direct and shear stresses at the same point in 
the cantilever beam Fig. 14.1 but on a plane PQ inclined at an angle to the axis of 
the beam as shown in Fig. 14.2(a). The direct stress on the sides AD and BC of the 
element ABCD is 0, in accordance with the sign convention now adopted. 

Consider the triangular portion PQR of the element ABCD where QR is parallel to 
the sides AD and BC. On QR there is a direct stress which must also be 0, since 
there is no variation of direct stress on planes parallel to QR between the opposite 
sides of the element. On the side PQ of the triangular element let 6, be the direct 
stress and T the shear stress. Although the stresses are uniformly distributed along the 
sides of the elements it is convenient to represent them by single arrows as shown in 
Fig. 14.2(b). 

Fig. 14.2 Determination of stresses on an inclined plane 
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The triangular element PQR is in equilibrium under the action of forces 
corresponding to the stresses (T,~, (T, and z. Thus, resolving forces in a direction 
perpendicular to PQ and assuming that the element is of unit thickness we have 

~ , P Q  = (T, QR COS e 
QR 

0, = (T, - COS e 
PQ 

or 

which simplifies to (T, = (T, cos2 e (14.1) 

Resolving forces parallel to PQ 

rPQ = a,QR sin 8 

r = (T, cos 8 sin 8 

r = - sin 28 

from which 

or (14.2) 

We see from Eqs (14.1) and (14.2) that although the applied load induces direct 
stresses only on planes perpendicular to the axis of the beam, both direct and shear 
stresses exist on planes inclined to the axis of the beam. Furthermore it can be seen 
from Eq. (14.2) that the shear stress 7 is a maximum when 8 = 45". This explains the 
mode of failure of ductile materials subjected to simple tension and other materials 
such as timber under compression. For example, a flat aluminium alloy test piece 
fails in simple tension along a line at approximately 45" to the axis of loading as 
illustrated in Fig. 14.3. This suggests that the crystal structure of the metal is 
relatively weak in shear and that failure takes the form of sliding of one crystal 
plane over another as opposed to the tearing apart of two crystal planes. The failure 
is therefore a shear failure although the test piece is in simple tension. 

Biaxial stress system 
A more complex stress system may be produced by a loading system such as that 
shown in Fig. 14.4 where a thin-walled hollow cylinder is subjected to an internal 

=, 
2 

Fig. 14.3 Mode of failure in an aluminium alloy test piece 
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Fig. 14.4 Generation of a biaxial stress system 

pressure, p .  The internal pressure induces circumferential or hoop stresses a,, 
given by Eq. (7.77), on planes parallel to the axis of the cylinder and, in 
addition, longitudinal stresses, a,, on planes perpendicular to the axis of the 
cylinder (Eq. (7.76)). Thus any two-dimensional element of unit thickness in the 
wall of the cylinder and having sides perpendicular and parallel to the axis of the 
cylinder supports a biaxial stress system as shown in Fig. 14.4. In this particular 
case o, and o, each have constant values irrespective of the position of the 
element. 

Let us consider the equilibrium of a triangular portion ABC of the element as 
shown in Fig. 14.5(a) and (b). Resolving forces in a direction perpendicular to AB 
we have 

o,AB = o,BC cos 0 + o,AC sin 0 

a, = a, - cos 0 + a, - sin 8 

a, = G , ~  cos2 0 + cs, sin% 

BC AC 
AB AB 

or 

which gives 

Resolving forces parallel to AB 

(14.3) 

TAB = o,BC sin 0 - o,AC cos 0 

BC AC 
or T = o, - sin 0 - o, - cos 0 

AB . AB 

which gives T = (7) sin 20 (14.4) 

Again we see that although the applied loads produce only direct stresses on 
planes perpendicular and parallel to the axis of the cylinder, both direct and shear 
stresses exist on inclined planes. Furthermore, for given values of a.r and a, (i.e. 
y )  the shear stress T is a maximum on planes inclined at 45" to the axis of the 
cylinder. 

Example 14.1 A cylindrical pressure vessel has an internal diameter of 2 m and is 
fabricated from plates 20 mm thick. If the pressure inside the vessel is 1.5 N/mmz 
and, in addition, the vessel is subjected to an axial tensile load of 2500 kN, calculate 
the direct and shear stresses on a plane inclined at an angle of 60" to the axis of the 
vessel. Calculate also the maximum shear stress. 
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Fig. 14.5 Determination of stresses on an inclined plane in a biaxial stress system 

From Eq. (7.77) the circumferential stress is 

pd -=  = 75 N/mm2 
2t 2 x 20 

1.5 x 2 x lo3 

From Eq. (7.76) the longitudinal stress is 

pd - = 37.5 N/mm2 
4t  

The direct stress due to axial load is, from Eq. (7.1), 

2x10 x io3 
R x 2000 x 20 

= 19.9 N/mm2 

Thus on a rectangular element at any point in the wall of the vessel there is a biaxial 
stress system as shown in Fig. 14.6. Now considering the equilibrium of the 
triangular element ABC we have, resolving forces perpendicular to AB, 

o,AB x 20 = 57.4 BC x 20 COS 30" + 75AC x 20 COS 60" 
Since the walls of the vessel are thin the thickness of the two-dimensional element 
may be taken as 20 mm. However, as can be seen, the thickness cancels out of the 
above equation so that it is simpler to assume unit thickness for two-dimensional 
elements in all cases. Thus 

0, = 57-4 COS' 30" + 75 COS' 60" 

which gives 

Resolving parallel to AB 

on = 61 -8 N/mm2 

TAB = 57-4 BC cos 60" - 75AC sin 60" 
z = 57.4 sin 60" cos 60" - 75 cos 60" sin 60" or 

from which z =  -7.6 N/mm' 
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Fig. 14.6 Biaxial stress system of Ex. 14.1 

The negative sign of T indicates that T acts in the direction AB and not, as was 
assumed, in the direction BA. From Eq. (14.4) it can be seen that the maximum 
shear stress occurs on planes inclined at 45" to the axis of the cylinder and is given 
by 

57.4 - 75 
2 

= -8-8 N/mm2 =mx = 

Again the negative sign of T,,, indicates that the direction of T,,~ is opposite to that 
assumed. 

General two-dimensional case 

If we now apply a torque to the cylinder of Fig. 14.4 in an anticlockwise sense when 
viewed from the right-hand end, shear and complementary shear stresses are induced 
on the sides of the rectangular element in addition to the direct stresses already 
present. The value of these shear stresses is given by Eq. (1 1.21) since the cylinder 
is thin-walled. We now have a general two-dimensional stress system acting on the 
element as shown in Fig. 14.7(a). The suffixes employed in designating shear stress 
refer to the plane on which the stress acts and its direction. Thus T,? is a shear stress 
acting on an s plane in the y direction. Conversely T), acts on a y plane in the x 
direction. However, since t,, = T ~ ,  we label both shear and complementary shear 
stresses 7,) as in Fig. 14.7(b). 

Considering the equilibrium of the triangular element ABC in Fig. 14.7(b) and 
resolving forces in a direction perpendicular to AB 

o,AB=o,BC cos 8 + 0 , A C  sin e+T,,BC sin O+T,,AC cos 8 

Dividing through by AB and simplifying we obtain 

0, = 0, cos2 e + a, sin' e + T,) sin 213 (14.5) 

Now resolving forces parallel to BA 

TAB = (3, BC sin 8 - 6) AC cos 8 - 7, )  BC cos 8 + T,) AC sin 8 
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Fig. 14.7 General two-dimensional stress system 

Again dividing through by AB and simplifying we have 

'5 = ( y) sin 28 - T , ~  cos 28 (14.6) 

Example 14.2 A cantilever of solid, circular cross-section supports a compressive 
load of 50 OOO N applied to its free end at a point 1.5 mm below a horizontal 
diameter in the vertical plane of symmetry together with a torque of 1200 Nm 
(Fig. 14.8). 

Calculate the direct and shear stresses on a plane inclined at 60" to the axis of the 
cantilever at a point on the lower edge of the vertical plane of symmetry. 

The direct loading system is equivalent to an axial load of 50 OOO N together with 
a bending moment of 50 OOO x 1.5 = 75 OOO N mm in a vertical plane. Thus at any 
point on the lower edge of the vertical plane of symmetry there are direct 
compressive stresses due to axial load and bending moment which act on planes 
perpendicular to the axis of the beam and are given, respectively, by Eqs (7.1) and 
(9.9). Therefore 

50 000 

TC x 602/4 
= 17-7 N/mm' o,(axial load) = 

= 3-5 N/mm2 
75000x30 
x x 604/64 

6, (bending moment) = 

The shear stress T,) at the same point due to the torque is obtained from Eq. (1 1.4) 
and is 

1200 x lo3 x 30 
x x 604/32 

'5,) = = 28.3 N/mrn' 

The stress system acting on a two-dimensional rectangular element at the point is as 
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Fig. 14.8 Cantilever beam of Ex. 14.2 

Fig. 14.9 Two-dimensional stress system in cantilever beam of Ex. 14.2 

shown in Fig. 14.9. Thus considering the equilibrium of the triangular element ABC 
and resolving forces in a direction perpendicular to AB we have 

CT, AB = -21 -2 BC cos 30" + 28.3 BC sin 30" + 28-3 AC cos 30" 

Dividing through by AB we obtain 

CY, = -21.2 cos2 30" + 28-3 cos 30" sin 30" + 28.3 sin 30" cos 30" 

(3, = 8.6 N/mm2 which gives 

Similarly resolving parallel to AB 

TAB = -21.2 BC cos 60" - 28.3 BC sin 60" + 28.3 AC cos 60" 

r = -21 e2 sin 60" cos 60" - 28.3 sin' 60" + 28.3 cos' 60" 

T = -23.3 N/mm2 

Thus 

from which 

acting in the direction AB. 

14.3 Principal stresses 
Equations (14.5) and (14.6) give the direct and shear stresses on an inclined plane at 
a point in a structural member subjected to a combination of loads which produces a 
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general two-dimensional stress system at that point. Clearly for given values of B , ~ ,  

by and o,, in other words a given loading system, both 0, and .r vary with the angle 8 
and will attain maximum or minimum values when da,/dO = 0 and d.r/dO = 0. From 
Eq. (14.5) 

do " - = -20, cos 8 sin 8 + 20, sin 8 COS 8 + 22,, COS 28 = 0 

- ( Q , ~  - o?) sin 28 + 27,> cos 28 = 0 

de 

Hence 

or 2.5, tan2e=- (14.7) 
0, - by 

Two solutions, 8 and 8 + x / 2 ,  satisfy Eq. (14.7) so that there are two mutually 
perpendicular planes on which the direct stress is either a maximum or a minimum. 
Furthermore, by comparison of Eqs (14.7) and (14.6) it can be seen that these planes 
correspond to those on which .r = 0. 

The direct stresses on these planes are called principal stresses and the planes are 
called principal planes. 

From Eq. (14.7) 

0, - 0, 
COS 28 = 2.r S? sin 28 = 

2 2 '  2 2 
J(0+ - 0?) + 4.r,v, J(O.r - 0?) + 4.r.v.Y 

and - 22 .v? 

2 
sin 2(8 + 742) = 

J(OI - 0J2 + 4.r,t, 

-(ox - Or) 
COS 2(8 + 1t/2) = 

J(q - 0J2 + 42, 2 

Rewriting Eq. (14.5) as 

0 0? 

2 2 
0, = 2 (1 + COS 28) + - (1 - cos 28) + .r, sin 28 

and substituting for {sin 28, cos 28) and (sin 2(8 + n/2), cos 2(8 + n/2)} in turn 
gives 

(14.8) 2 CTv+ 0, 1 
01 = - . + - J(0, - or)? + 42, 

2 2 

(14.9) 
0,+0,  1 

2 2 
GII = - - - J(OI - 0J2 + 4.r r?2 

where ol is the maximum or mujor principal stress and oI1 is the minimum or minor 
principal stress; oI is algebraically the greatest direct stress at the point while oI1 is 
algebraically the least. Thus, when ( T , ~  is compressive, i.e. negative, it is possible for 
oII to be numerically greater than ol. 
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From Eq. (14.6) 

giving 

It follows that 

d2 - = (a, - a,,) COS 28 + 2z,! sin 28 = 0 
de 

4a.x - o?.) 
- oJ2 + 42.xy 

sin 28 = 
2 '  

Substituting these values in Eq. (14.6) gives 

(14.10) 

(14.11) 

Here, as in the case of the principal stresses, we take the maximum value as being 
the greater value algebraically. 

Comparing Eq. (14.1 1) with Eqs (14.8) and (14.9) we see that 

(JI - 011 
Tm,, = - 

2 
( 14.12) 

Equations (14.1 1) and (14.12) give alternative expressions for the maximum shear 
stress acting at the point in the plane of the given stresses. This is not necessarily the 
maximum shear stress in a three-dimensional element subjected to a two-dimensional 
stress system, as we shall see in Section 14.10. 

Since Eq. (14.10) is the negative reciprocal of Eq. (14.7), the angles given by 
these two equations differ by 90" so that the planes of maximum shear stress are 
inclined at 45" to the principal planes. 

We see now that the direct stresses, a,, o,, and shear stresses, z,, , are not, in a 
general case, the greatest values of direct and shear stress at the point. This fact is 
clearly important in designing structural members subjected to complex loading 
systems, as we shall see in Section 14.10. We can illustrate the stresses acting on the 
various planes at the point by considering a series of elements at the point as shown 
in Fig. 14.10. Note that generally there will be a direct stress on the planes on which 
T,,, acts. 
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Fig. 14.10 Stresses acting on different planes at a point in a structural member 

Example 14.3 A structural member supports loads which produce, at a particular 
point, a direct tensile stress of 80 N/mm' and a shear stress of 45 N/mm' on the 
same plane. Calculate the values and directions of the principal stresses at the point 
and also the maximum shear stress, stating on which planes this will act. 

Suppose that the tensile stress of 80 N/mm' acts in the x direction. Then 
6, = +80 N/mm*, cry = 0 and 2, = 45 N/mm'. Substituting these values in 
Eqs (14.8) and (14.9) in turn gives 

80 1 

2 2  

480' + 4 x 45' = -20-2 N/mm2 
80 1 

(TI1 = - - - 
2 2  

6, = - + - 480' + 4 x 45' = 100.2 N/mm' 

From Eq. (14.7) 

2 x 45 
t an2e=  - - - 1-125 

80 
from which 

Also, the plane on which o , ~  acts corresponds to 8 = 24"ll' + 90" = 1 14'1 1 '. 

8 = 24" 1 1 ' (corresponding to oI) 

The maximum shear stress is most easily found from Eq. (14.12) and is given by 

100.2 - (-20.2) 
= 60.2 N/mm2 

2 
Tmax = 

The maximum shear stress acts on planes at 45" to the principal planes. Thus 
0 = 69"ll' and e = 159" 1 1 ' give the planes of maximum shear stress. 
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14.4 Mohr's circle of stress 
The state of stress at a point in a structural member may be conveniently represented 
graphically by Mohr's circle of stress. We have shown that the direct and shear 
stresses on an inclined plane are given, in terms of known applied stresses, by 

0,  = o , ~  cos2 9 + 0,  sin' 0 + z, sin 28 (Eq. (14.5)) 

(Eq. (14.6)) and 

respectively. The positive directions of these stresses and the angle 9 are defined in 
Fig. 14.7. We now write Eq. (14.5) in the form 

z =  (O-' - Or) sin 20 - z.', cos 29 
2 

0.' 0 

2 2 
0, = - (1 + cos 29) + 2 (1 - cos 28) + z.KJ sin 28 

on - i ((T,~ + 0,) = i (0, - oJ) cos 29 + z, sin 29 or 

Now squaring and adding Eqs (14.6) and (14.13) we obtain 

( 14.13) 

[ C Y " - ;  (0,+0,)]2+z'= [; (0,-0y)]2+z.,y2 (14.14) 

Equation (14.14) represents the equation of a circle of radius 

f fJ(ap - aJ2 + 4z,* 

and having its centre at the point (y , 0). 

The circle may be constructed by locating the points Ql(crx,z.,J and Q2(o,, -z.,J 
referred to axes O m  as shown in Fig. 14.11. The line QlQ2 is then drawn and 
intersects the 00 axis at C. From Fig. 14.1 1 

oc = OP, - CP, = 0, - (0, - 0 , ) / 2  

oc = (0, + 0 , ) / 2  so that 

Fig. 14.1 1 Mohr's circle of stress 
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Thus the point C has coordinates ( - O-' I."' , 0) which, as we have seen, is the centre of 
the circle. Also 

which is the radius of the circle; the circle is then drawn as shown. 
Now we set CQ' at an angle 28 (positive clockwise) to CQ,; Q' is then the point 

(on, -7) as demonstrated below. 
From Fig. 14.1 1 we see that 

ON = OC + CN 

or, since OC = (0, + 0,)/2, CN = CQ' cos (p - 20) and CQ' = CQI, we have 

On=- (3.r + OJ + CQ I (cos p cos 2e + sin p sin 2e) 
2 

But CQI CP,/COS j3 and CP, = (0, - 0,)/2 

which, on rearranging, becomes 

O, = O, cos' e + O, sin' 8 + T , , ~  sin 28 

as in Eq. (14.5). Similarly it may be shown that 

as in Eq. (14.6). It must be remembered that the construction of Fig. 14.11 
corresponds to the stress system of Fig. 14.7(b); any sign reversal must be allowed 
for. Also the 00 and 0.r axes must be constructed to the same scale otherwise the 
circle would not be that represented by Eq. (14.14). 

The maximum and minimum values of the direct stress o,, that is the major and 
minor principal stresses o1 and oll, occur when N and Q' coincide with B and A, 
respectively. Thus 

oI = OC + radius of circle 

(as in Eq. (14.8)) O,+ Oy 1 2 o1  = - + - J(q - ay) + 4.5,' i.e. 
2 2 

and o,, = OC - radius of circle 
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Fig. 14.12 Mohr's circle of stress for Ex. 14.4 

whence 

The principal planes are then given by 28 = p(o,) and 28 = p + x(o,,). 
The maximum and minimum values of the shear stress T occur when Q' coincides 

with F and D at the lower and upper extremities of the circle. At these points T ~ ~ . ~ ~ ~  

are clearly equal to the radius of the circle. Hence 

O I I  = - - - 
2 2 

(0, - 0J2 + 4T ,?' 2 (as in Eq. (14.9)) 0,+0? 1 J 

(see Eq. (14.1 1)) 

The minimum value of shear stress is the algebraic minimum. The planes of 
maximum and minimum shear stress are given by 28 = p + n/2 and 28 = p + 3x/2 and 
are inclined at 45" to the principal planes. 

Example 14.4 Direct stresses of 160 N/mm2, tension, and 120 N/mm2, compression, 
are applied at a particular point in an elastic material on two mutually perpendicular 
planes. The maximum principal stress in the material is limited to 200 N/mm2, tension. 
Use a graphical method to find the allowable value of shear stress at the point. 

First, axes 0 0 7  are set up to a suitable scale. P, and P2 are then located 
corresponding to 6, = 160 N/mm2 and 0 )  = - 120 N/mm2, respectively; the centre C 
of the circle is mid-way between P, and P, (Fig. 14.12). The radius is obtained by 
locating B (ol = 200 N/mm2) and the circle then drawn. The maximum allowable 
applied shear stress, T,,, is then obtained by locating Q, or Qz. The maximum shear 
stress at the point is equal to the radius of the circle and is 180 N/mm'. 

2 
T'max,rnI" = *; 4<OA - 0?.Y + 4TAJ 

14.5 Stress trajectories 
We have shown that direct and shear stresses at a point in a beam produced, say, by 
bending and shear and calculated by the methods of Chapters 9 and 10, respectively, 
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Fig. 14.13 Stress trajectories in a beam 

are not necessarily the greatest values of direct and shear stress at the point. In order, 
therefore, to obtain a more complete picture of the distribution, magnitude and 
direction of the stresses in a beam we investigate the manner in which the principal 
stresses vary throughout a beam. 

Consider the simply supported beam of rectangular section carrying a central 
concentrated load as shown in Fig. 14.13(a). Using Eqs (9.9) and (10.4) we can 
determine the direct and shear stress at any point in any section of the beam. 
Subsequently from Eqs (14.8), (14.9) and (14.7) we can find the principal stresses at 
the point and their directions. If this procedure is followed for very many points 
throughout the beam, curves, to which the principal stresses are tangential, may be 
drawn as shown in Fig. 14.13(b). These curves are known as stress trajectories and 
form two orthogonal systems; in Fig. 14.13(b) solid lines represent tensile principal 
stresses and dotted lines compressive principal stresses. The two sets of curves cross 
each other at right angles and all curves intersect the neutral axis at 45" where the 
direct stress (calculated from Eq. (9.9)) is zero. At the top and bottom surfaces of 
the beam where the shear stress (calculated from Eq. (10.4)) is zero the trajectories 
have either horizontal or vertical tangents. 

Another type of curve that may be drawn from a knowledge of the distribution of 
principal stress is a stress conrow. Such a curve connects points of equal principal stress. 

14.6 Determination of strains on inclined planes 
In Section 14.2 we investigated the two-dimensional state of stress at a point in a 

Fig. 14.14 Determination of strains on an inclined plane 
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structural member and determined direct and shear stresses on inclined planes; we 
shall now determine the accompanying strains. 

Figure 14.14(a) shows a two-dimensional element subjected to a complex direct 
and shear stress system. The applied stresses will distort the rectangular element of 
Fig. 14.14(a) into the shape shown in Fig. 14.14(b). In particular, the triangular 
element ABC will suffer distortion to the shape A’B’C‘ with corresponding changes 
in the length CD and the angle BDC. The strains associated with the stresses Q,, Q, 

and T.,,. are E,, E, and y.,,., respectively. We shall now determine the direct strain E, in a 
direction normal to the plane AB and the shear strain y produced by the shear stress 
acting on the plane AB. 

To a first order of approximation 

A’C’= AC(l + E,) 

C‘B’= CB( 1 + E ~ )  
A’B‘=AB(l +E,+=D) 

(14.15) 

where E,,+,/~ is the direct strain in the direction AB. From the geometry of the 
triangle A‘B‘C’ in which angle B‘C’A’ = x/2 - y,, 

(A’B’)2 = (A’C’)2 + (C’B’)’ - 2(A‘C’)(C’B‘) COS ( ~ / 2  - Y.~,) 

or, substituting from Eqs (14.15) 

(AB12(1 + ~ n + z / 2 ) ’  

= (AC)’(l +E,)’+ (CB)’(l + E , ) ~ - ~ ( A C ) ( C B ) ( ~  + ~ , ~ ) ( 1  +E,) sin y,, 

Noting that (AB)’ = (AC)’ + (CB)2 and neglecting squares and higher powers of 
small quantities, this equation may be rewritten 

2(AB)2~n+x/, = 2(AC)’&, + ~(CB)’E, - 2(AC)(CB)y,, 

Dividing through by 2(AB)’ gives 

E ~ + ~ ~ ~  =E,* sin% + E, cos2@ - sin e cos ey,,, ( 14.16) 

The strain E, in the direction normal to the plane AB is found by replacing the angle 
8 in Eq. (14.16) by 8 - x/2. Hence 

E, ,=E ,COS 2 €)+&,sin 2 8+-sin28 YV! (14.17) 
2 

Now from triangle C’D’B‘ we have 

(C‘B‘)2= (C’D‘)’+ (D‘B’)2 - 2(C’D‘)(D‘B‘) COS (x/2 - y) 

C’B’ = CB(1 +E!) 

C’D’ = CD(l +E,) 

(14.18) 

in which 

D’B‘ = D B ( ~ + E , + , / ~ )  
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Substituting in Eq. (14.18) for C‘B’, C’D‘ and D’B’ and writing cos (n/2 - y) = sin y 
we have 

(CB)’(l +E,)’ = (CD)2(l +E,)’ + (DB)2(1 +E,+,/~)* 

- 2(CD)(DB)(l +&,)(I +E,+,/~) sin y (14.19) 

Again ignoring squares and higher powers of strains and writing sin y=y. 
Eq. (14.19) becomes 

(CB)2(1 + 2 ~ ~ )  = (CD)2(1 + 2 ~ , )  + (DB)’(l+ 2~,+,/2) - 2(CD)(DB)y 

From Fig. 14.14(a) we see that (CB)2= (CD)’+ (DB)’ and the above equation 
simplifies to 

2(CB)2~,= 2(CD)*&, + 2(DB)2~,+x/2 - 2(CD)(DB)y 

Dividing through by 2(CB)2 and rearranging we obtain 
2 2 &,sin ~ + E , + , , ~ c o s  

Y =  
sin 0 cos 0 

Substitution of E, and E ~ + ~ ~ ~  from Eqs (14.17) and (14.16) yields 

-- Y (E.‘-E,) sin 20 - - Yvy cos 20 - 
2 2 2 

(14.20) 

14.7 Principal strains 
From a comparison of Eqs (14.17) and (14.20) with Eqs (14.5) and (14.6) we 
observe that the former two equations may be obtained from Eqs (14.5) and (14.6) 
by replacing Q, by E,, Q, by E,, 0, by E,, z, by y,,/2 and 7 by y/2. It follows that for 
each deduction made from Eqs (14.5) and (14.6) concerning a, and ‘5 there is a 
corresponding deduction from Eqs (14.17) and (14.20) regarding E, and y/2. Thus at 
a point in a structural member there are two mutually perpendicular planes on which 
the shear strain y is zero and normal to which the direct strain is the algebraic 
maximum or minimum direct strain at the point. These direct strains are the principal 
strains at the point and are given (from a comparison with Eqs (14.8) and (14.9)) by 

(14.2 1) E,+&,. 1 2 
(E, - E J  + y,,* 

E,+&, 1 2 
(E, - EJ2 + ysy E l l  = - - - J 

E l = - + -  
2 2 J  

(14.22) 

Since the shear strain y is zero on these planes it follows that the shear stress must 
also be zero and we deduce from Section 14.3 that the directions of the principal 
strains and principal stresses coincide. The related planes are then determined from 
Eq. (14.7) or from 

and 
2 2 

Y I, 
EI - E, 

tan2e=- (14.23) 



400 Complex Stress and Strain 

In addition the maximum shear strain at the point is given by 

(14.24) (9. = 7 1 &E, - %.I2 + Y . V J  2 

(14.25) E l  -E11  

or ($$x= 2 
(cf. Eqs (14.11) and (14.12)). 

14.8 Mohr's circle of strain 

The argument of Section 14.7 may be applied to Mohr's circle of stress described in 
Section 14.4. A circle of strain, analogous to that shown in Fig. 14.1 1, may be 
drawn when as, a,, etc., are replaced by E,, E ~ ,  etc., as specified in Section 14.7. The 
horizontal extremities of the circle represent the principal strains, the radius of the 
circle half the maximum shear strain, and so on. 

Example 14.5 A structural member is loaded in such a way that at a particular 
point in the member a two-dimensional stress system exists consisting of 
a, = +60 N/mm2, a, = -40 N/mm2 and 7, = 50 N/mm*. 

the point. 

principal planes. 

Poisson's ratio, v = 0.3. 

(a) Calculate the direct strain in the x and y directions and the shear strain, y,,, at 

(b) Calculate the principal strains at the point and determine the position of the 

(c) Verify your answer using a graphical method. Take E = 200 OOO N/mm2 and 

Fig. 14.15 Mohr's circle of strain for Ex. 14.5 
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(a) From Section 7.8 

1 
200000 

E, = (60 + 0.3 x 40) = 360 x 

1 
E,. = (-40 - 0.3 x 60) = -290 x 
' 200000 

The shear modulus, G, is obtained using Eq. (7.21); thus 

E 
2( 1 + V )  

= 76 923 N / m 2  
200000 

2( 1 + 0-3) 
- - G =  

Hence, from Eq. (7.9) 

r .~ ,~ 50 
G 76923 

ylr = - = - - - 650 x 

(b) Now substituting in Eqs (14.21) and (14.22) for E,, E, and y,, we have 

1 290 + 1 d(360 + 290)2 + 6502 
2 

which gives El = 495 x 

Similarly E I ~  = -425 x 

From Eq. (14.23) we have 

= 1  
650 x 

360 x + 290 x 
tan 28 = 

Therefore 

so that 
and 

Q,(-290 x located. The centre C of the circle is the 
intersection of Q,Q, and the OE axis (Fig. 14.15). The circle is then drawn with 
radius equal to CQ, and the points B(q) and A(&,,) located. Finally angle QICB = 20 
and Q,CA = 28 +TI. 

28 = 45" or 225" 

8 = 22.5" or 112-5" 
(c) Axes OE and Oy are set up and the points Ql (360 x $ x 650 x -+ x65Ox 

14.9 Experimental measurement of surf ace strains 
and stresses 
Stresses at a point on the surface of a structural member may be determined by 
measuring the strains at the point, usually with electrical resistance strain gauges. These 
consist of a short length of fine wire sandwiched between two layers of impregnated 
paper, the whole being glued to the surface of the member. The resistance of the wire 
changes as the wire stretches or contracts so that as the surface of the member is strained 
the gauge indicates a change of resistance which is measurable on a Wheatstone bridge. 
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Fig. 14.16 Electrical resistance strain gauge measurement 

Strain gauges measure direct strains only, but the state of stress at a point may be 
investigated in terms of principal stresses by using a strain gauge ‘rosette’. This 
consists of three strain gauges inclined at a given angle to each other. Typical of 
these is the 45” or ‘rectangular’ strain gauge rosette illustrated in Fig. 14.16(a). An 
equiangular rosette has gauges inclined at 60”. 

Suppose that a rosette consists of three arms, ‘a’, ‘b’ and ‘c’ inclined at angles a 
and p as shown in Fig. 14.16(b). Suppose also that E~ and E~~ are the principal strains 
at the point and that E~ is inclined at an unknown angle 0 to the arm ‘a’. Then if E,, E~ 
and E, are the measured strains in the directions 0, (0 + a) and (0 + a + p) to E~ we 
have, from Eq. (14.17) 

E, = El cosz 0 + E11 sin2 0 (14.26) 
in which E, has become E,, E, has become E ~ ,  E, has become E~~ and y,, is zero since 
the x and y directions have become principal directions. This situation is equivalent, 
as far as E,, E~ and qI are concerned, to the strains acting on a triangular element as 
shown in Fig. 14.16(c). Rewriting Eq. (14.26) we have 

E l  E 11 

2 2 
E, = - (1 + cos 20) + - ( 1  - cos 20) 

or E, = f (E1 + El,) + f (El - Ell) cos 20 (14.27) 

Similarly E, = f (EI + ell) + f (E[ - EJ cos 2(0 + a) (14.28) 

and E, = i (El + EJ + f (el - ell) cos 2(0 + a + p) (14.29) 
Therefore if E,, E, and E, are measured in given directions, i.e. given angles a and p, 
then q, E ~ ,  and 0 are the only unknowns in Eqs (14.27), (14.28) and (14.29). 

Having determined the principal strains we obtain the principal stresses using 
relationships derived in Section 7.8. Thus 

1 

E 

1 

E 

E l = -  (01-Vc511)  (14.30) 

and E I I  = - ( 0 1 1  - v 0 , )  (14.3 1) 
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Solving Eqs (14.30) and (14.31) for o1 and oII we have 
E 

GI= - (E I + V E  I I )  (14.32) 
1 -v2  

1 - v 2  

E 
and 611 = - (E I1 + VE I )  (14.33) 

For a 45” rosette a = p = 45” and the principal strains may be obtained using the 
geometry of Mohr’s circle of strain. Suppose that the arm ‘a’ of the rosette is inclined 
at some unknown angle 8 to the maximum principal strain as in Fig. 14.16@). Then 
Mohr’s circle of strain is as shown in Fig. 14.17; the shear strains y,, yb and y, do not 
feature in the discussion and are therefore ignored. From Fig. 14.17 

oc = ; (E, + E,) 

CN = E, - OC = i (E, - E,) 

QN=CM=Eb-OC=Eb-~(E,+E,) 

The radius of the circle is CQ and 

CQ = 4- 
Hence CQ=J[+(E,-Ec)I2+ [ & b - i ( E a + E c ) ]  2 

1 
which simplifies to 

Therefore E ~ ,  which is given by 

CQ = - J ( E  a - E b)’ + (E , - E b)’ a 
E l  = OC + radius of circle 

E [  = - ( E , + & , ) +  - J ( & a  - E b)’ + (E, - & b)’ 

E,, = OC - radius of circle 

E [I = - (E a + E ,) - - J (E a - & b)’ + (&E - & b)’ 

1 1 

2 
(14.34)) Jz is 

Also 

i.e. 
1 1 

2 
(14.35) Jz 

Fig. 14.17 Mohr’s circle of strain for a 45’ strain gauge rosette 
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Finally the angle 8 is given by 

QN Eb-i(Ea+Ec) 

CN 
tm2e=-= 

2& b -  E ,  - & c  
i.e. tan 28 = 

E a - & ,  

A similar approach can be adopted for a 60" rosette. 

(14.36) 

Example 14.6 A shaft of solid circular cross-section has a diameter of 50 mm and 
is subjected to a torque, T ,  and axial load, P .  A rectangular strain gauge rosette 
attached to the surface of the shaft recorded the following values of strain: 
E, = 1OOO x cb= -200 x and E, = -300 x where the gauges 'a' and 'c' 
are in line with and perpendicular to the axis of the shaft, respectively. If the 
material of the shaft has a Young's modulus of 70 OOO N/mm2 and a Poisson's ratio 
of 0.3, calculate the values of T and P .  

Substituting the values of E,, &b and E, in Eq. (14.34) we have 

(1000 - 300) + - .J( lo00 + 200)* + (-200 + 300)* 
1 o-6 

Jz E l =  - 
2 

which gives E I = (700 + 1703) = 1202 x 
L 

It follows from Eq. (14.35) that 

(700 - 1703) = -502 x Ell=- 
1 o-6 
2 

Substituting for El and Ell in Eq. (14.32) we have 

70OOO x 
01 = (1202 - 0.3 x 502) = 80-9 N/mm2 

1 - (0.3)' 

Similarly from Eq. (14.33) 

70000 x 
011 = (-502 + 0.3 x 1202) = -10.9 N/mm' 

1 - (0.3)' 

Since o,=O (note that the axial load produces 0, only), Eqs (14.8) and (14.9) 
reduce to 

0 1  
2 2  

G I = > + -  Jm 
and (ii) 
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respectively. Adding Eqs (i) and (ii) we obtain 

Thus 

6, + 611 = 0, 

Q , ~  = 80.9 - 10.9 = 70 N/mm* 

Substituting for G , ~  in either of Eqs (i) or (ii) gives 

T.,,. = 29.7 N/mm2 

For an axial load P 

2 p  P 
6, = 70 N / ~ I I ~  = - = 

A (744) x 502 

whence P = 137.4 kN 

Also for the torque T and using Eq. (1 1.4) we have 

2 Tr Tx25 
T, = 29.7 N/mm = - = 

J (q'32) x504 

which gives T=0.7 kNm 

Note that P could have been found directly in this case from the axial strain E,. 

Thus from Eq. (7.8) 

6, =E&,=  70 0oO x IO00 x 70 N/mm2 

as before. 

14.10 Theories of elastic failure 
The direct stress in a structural member subjected to simple tension or compression is 
directly proportional to strain up to the yield point of the material (Section 7.7). It is 
therefore a relatively simple matter to design such a member using the direct stress at 
yield as the design criterion. However, as we saw in Section 14.3, the direct and 
shear stresses at a point in a structural member subjected to a complex loading 
system are not necessarily the maximum values at the point. In such cases it is not 
clear how failure occurs, so that it is difficult to determine limiting values of load or 
alternatively to design a structural member for given loads. An obvious method, 
perhaps, would be to use direct experiment in which the structural member is loaded 
until deformations are no longer proportional to the applied load; clearly such an 
approach would be both time-wasting and uneconomical. Ideally a method is 
required that relates some parameter representing the applied stresses to, say, the 
yield stress in simple tension which is a constant for a given material. 

In Section 14.3 we saw that a complex two-dimensional stress system comprising 
direct and shear stresses could be represented by a simpler system of direct stresses 
only, in other words, the principal stresses. The problem is therefore simplified to 
some extent since the applied loads are now being represented by a system of direct 
stresses only. Clearly this procedure could be extended to the three-dimensional case 
so that no matter how complex the loading and the resulting stress system, there 
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would remain at the most just three principal stresses, ol, oI1 and Q ~ ~ ~ ,  as shown, for a 
three-dimensional element, in Fig. 14.18. 

It now remains to relate, in some manner, these principal stresses to the yield 
stress in simple tension, oY, of the material. 

Ductile materials 
A number of theories of elastic failure have been proposed in the past for ductile 
materials but experience and experimental evidence have led to all but two being 
discarded. 

Maximum shear stress theory 

This theory is usually linked with the names of Tresca and Guest, although it is more 
widely associated with the former. The theory proposes that: 

Failure (i.e. yielding) will occur when the maximum shear stress in the material is 
equal to the maximum shear stress at failure in simple tension. 
For a two-dimensional stress system the maximum shear stress is given in terms 

of the principal stresses by Eq. (14.12). For a three-dimensional case the maximum 
shear stress is given by 

(14.37) 

where amax and omin are the algebraic maximum and minimum principal stresses. At 
failure in simple tension the yield stress oY is in fact a principal stress and since there 
can be no direct stress perpendicular to the axis of loading, the maximum shear 
stress is, therefore, from either of Eqs (14.12) or (14.37), 

Qmx - Q min 

2 
om, = 

(14.38) Q Y  om, = - 
2 

Thus the theory proposes that failure in a complex system will occur when 
Q m x - Q m i n  Q Y  =- 

2 2 
or Qmnx - Qmin = QY (14.39) 

Fig. 14.18 Reduction of a complex three-dimensional stress system 
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Let us now examine stress systems having different relative values of bl, qI and 

6 1  - ~ l I I =  bY (14.40) 

Second, suppose that al>alI>O but ol,,=O. In this case the three-dimensional 
stress system of Fig. 14.18 reduces to a two-dimensional stress system but is still 
acting on a three-dimensional element. Thus Eq. (14.39) becomes 

o , ~ ~ .  First suppose that o1 > bII > olll > 0. From Eq. (14.39) failure occurs when 

01 - o =  b y  

or 61 = b y  (14.41) 

Here we see an apparent contradiction of Eq. (14.12) where the maximum shear 
stress in a two-dimensional stress system is equal to half the difference of o1 and q,. 
However, the maximum shear stress in that case occurs in the plane of the two- 
dimensional element, i.e. in the plane of o1 and oII. In this case we have a three- 
dimensional element so that the maximum shear stress will lie in the plane of oI and 
=I l l .  

Finally, let us suppose that b1>0, q < O  and oIII=O. Again we have a two- 
dimensional stress system acting on a three-dimensional element but now oI1 is a 
compressive stress and algebraically less than qI1. Thus Eq. (14.39) becomes 

bI - 6 1 1  = b y  (14.42) 

Shear strain energy theory 

This particular theory of elastic failure was established independently by von Mises, 
Maxwell and Hencky but is now generally referred to as the von Mises criterion. The 
theory proposes that: 

Failure will occur when the shear or distortion strain energy in the material 
reaches the equivalent value at yielding in simple tension. 
In 1904 Huber proposed that the total strain energy, Ut,  of an element of material 

could be regarded as comprising two separate parts: that due to change in volume and 
that due to change in shape. The former is termed the volumetric strain energy, U,, 
the latter the distortion or shear strain energy, U,. Thus 

u, = u, + u, (14.43) 

Since it is relatively simple to determine U ,  and U,, we obtain Us by transposing 

u,= ut- u, (14.44) 

Initially, however, we shall demonstrate that the deformation of an element of 
material may be separated into change of volume and change in shape. 

The principal stresses csI, crI1 and oIII acting on the element of Fig. 14.18 may be 
written as 

Eq. (14.43). Hence 

01 = ! ( 0 1  + 0 1 1  + ~ 1 1 0  +@I - 6 1 1  - OIIl) 

II - 3 ( 0 1  + 0 1 1  + Gl11) + f (2011 - 0 1  - 0 1 1 1 )  

~ , 1 1 =  t ( 0 1  + 0 1 1  + ~ l l I )  + i (2~1,1- 0 1 1  - 0 1 )  

a - I  



I 
1 0 1  v I E l  =---  

E E  

I 6 1 1  v E l l  = - - - 
E E  

Io111 v 1 

E E  

( 0 1 1  + % I 1 )  

(or1 + d 

& [ I 1  = - - - ( 0 1  + Oil') 

1 

I 

Fig. 14.19 Representation of principal stresses as volumetric and distortional 
stresses 

(14.47) . 
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It follows that 011, bII' and q l l I  produce no change in volume but only change in 
shape. We have therefore successfully divided the ol, oI1, oIl1 stress system into 
stresses (a) producing changes in volume and stresses (6') producing changes in 
shape. 

In Section 7.10 we derived an expression for the strain energy, U, of a member 
subjected to a direct stress, CT (Eq. (7.30)), i.e. 

1 o2 U = - x - x volume 
2 E  

This equation may be rewritten 
I U = r  x a x c x v o l u m e  

since E = Q / E .  The strain energy per unit volume is then 0&/2. Thus for a three- 
dimensional element subjected to a stress 6 on each of its six faces the strain energy 
in one direction is 

i BE 
where E is the strain due to 6 in each of the three directions. The total or volumetric 
strain energy per unit volume, U,, of the element is then given by 

or, since 
a B a  
E E E  

E = - - - 2 v - =  - ( 1 - 2 v )  

1 35 
2 E  

u, = - a - (1 - 2 v )  

But 

so that Eq. (14.48) becomes 
6 = f (61 +all + 6111) 

(1 - 2 v )  

6 E  
u, = (0 I + II + 0 

( 14.48) 

( 14.49) 

By a similar argument the total strain energy per unit vo.dme, U,, oA an element 
subjected to stresses oI, oll and olll is 

I (14.50) 

where 

and 

(14.5 1) 

(see Eqs (14.47)) 
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Substituting for 
Eq. (14.44) we have 

etc. in Eq. (14.50) and then for U ,  from Eq. (14.49) and U, in 

1 us = - 
2E 

which simplifies to 

per unit volume. 

Thus 
From Eq. (7.21) E = 2G(1 + v )  

(14.52) 

The shear or distortion strain energy per unit volume at failure in simple tension 
corresponds to crI = by, cl1 = bill = 0. Hence from Eq. (14.52) 

(14.53) b Y  Us (at failure in simple tension) = - 
6G 

According to the von Mises criterion, failure occurs when Us, given by Eq. (14.52), 
reaches the value of Us, given by Eq. (14.53), i.e. when 

(a1 - 0lJ2 + ( 0 1 1  - old2 + (a111 - all2 = 20Y2 (14.54) 

2 

For a two-dimensional stress system in which clll = 0, Eq. (14.54) becomes 

GI* + b l 1 2  - b l b l l =  b y  2 (14.55) 

Design application 

Codes of Practice for the use of structural steel in building use the von Mises 
criterion for a two-dimensional stress system (Eq. (14.55)) in determining an 
equivalent allowable stress for members subjected to bending and shear. Thus if o.r 
and T~,. are the direct and shear stresses, respectively, at a point in a member 
subjected to bending and shear, then the principal stresses at the point are, from 
Eqs (14.8) and (14.9) 

1 
2 2  

o l = 2 + -  Jm 
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Substituting these expressions in Eq. (14.55) and simplifying we obtain 

b y =  Jm- (14.56) 

In Codes of Practice oy is termed an equivalent stress and allowable values are given 
for a series of different structural members. 

Yield loci 

Equations (14.39) and (14.54) may be plotted graphically for a two-dimensional 
stress system in which oil, = 0 and in which it is assumed that the yield stress, by,  is 
the same in tension and compression. 

Figure 14.20 shows the yield locus for the maximum shear stress or Tresca theory 
of elastic failure. In the first and third quadrants, when o1 and oI1 have the same 
sign, failure occurs when either o1 = oy or oII = oy (see Eq. (14.41)) depending on 
which principal stress attains the value oy first. For example, a structural member 
may be subjected to loads that produce a given value of oII (coy) and varying values 
of oI. If the loads were increased, failure would occur when oI reached the value 
oy. Similarly for a fixed value of o1 and varying oII. In the second and third 
quadrants where o1 and oII have opposite signs, failure occurs when o1 - oI1 = oy or 
olI - o1 = oy (see Eq. (14.42)). Both these equations represent straight lines, each 
having a gradient of 45' and an intercept on the olI axis of by.  Clearly all 
combinations of oI and oII that lie inside the locus will not cause failure, while all 
combinations of oI and all on or outside the locus will. Thus the inside of the locus 
represents elastic conditions while the outside represents plastic conditions. Note that 
for the purposes of a yield locus, o1 and ol1 are interchangeable. 

The shear strain energy (von Mises) theory for a two-dimensional stress system is 
represented by Eq. (14.55). This equation may be shown to be that of an ellipse 
whose major and minor axes are inclined at 45' to the axes of o1 and oI1 as shown in 
Fig. 14.21. It may also be shown that the ellipse passes through the six comers of the 
Tresca yield locus so that at these points the two theories give identical results. 
However, for other combinations of o1 and oII the Tresca theory predicts failure 

Fig. 14.20 Yield locus for the Tresca theory of elastic failure 
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Fig. 14.21 Yield locus for the von Mises theory 

where the von Mises theory does not so that the Tresca theory is the more 
conservative of the two. 

The value of the yield loci lies in their use in experimental work on the validation 
of the different theories. Structural members fabricated from different materials may 
be subjected to a complete range of combinations of ol and oII each producing 
failure. The results are then plotted on the yield loci and the accuracy of each theory 
is determined for different materials. 

Example 14.7 The state of stress at a point in a structural member is defined by a 
two-dimensional stress system as follows: a, = + 140 N/mm2, o, = -70 N/mm2 and 
T . , ~  = +60 N/mm2. If the material of the member has a yield stress in simple tension 
of 225 N/mm2, determine whether or not yielding has occurred according to the 
Tresca and von Mises theories of elastic failure. 

The first step is to determine the principal stresses o1 and oil. From Eqs (14.8) and 
(14.9) 

o1  = i ( 1 4 0  - 70) + f J ( 1 4 0 +  70)2 + 4  x 60’ 

i.e. oI = 155.9 N/mm’ 

and 

i.e. ol, = -85.9 N/mm2 

Since ol, is algebraically less than ais( =O), Eq. (14.42) applies. 

oll = i (140 - 70) - i J (  140 + 70)’ + 4 x 602 

Thus o1 - GI] = 241.8 N / m * .  

This value is greater than cry (=225 N/mm2) so that according to the Tresca theory 
failure has, in fact, occurred. 

Substituting the above values of 6, and oII in Eq. (14.55) we have 

( 155.9)’ + ( - 85 -9)2 - ( 1 55-9) ( - 85.9) = 45 075.4 

The square root of this expression is 212.3 N/mm’ so that according to the von 
Mises theory the material has not failed. 



Theories of elastic failure 4 13 

Example 14.8 The rectangular cross-section of a thin-walled box girder 
(Fig. 14.22) is subjected to a bending moment of 250 kNm and a torque of 
200 kNm. If the allowable equivalent stress for the material of the box girder is 
180 N/mm2, determine whether or not the design is satisfactory using the 
requirement of Eq. (14.56). 

The maximum shear stress in the cross-section occurs in the vertical walls of the 
section and is given by Eq. (1 1.22), i.e. 

z m x = - -  T,X - 200 x 'Oh = 80 N/mm* 
2At ,,,in 2 x 500 x 250 x 10 

The maximum stress due to bending occurs at the top and bottom of each vertical 
wall and is given by Eq. (9.9), i.e. 

MY ( T = -  

I 

2 x  10x500~  
12 

where 

i.e. 

Thus ( T =  = 107.1 N/mm2 

Substituting these values in Eq. (14.56) we have 

I =  2 x 12 x 250 x 2502 + (see Section 9.6) 

I = 583.3 x loh mm4 

250 x loh x 250 

583.3 x loh 

4- = J1O7.l2 + 3 x 802 = 175.1 N/mm2 

This equivalent stress is less than the allowable value of 180 N/mm2 so that the box 
girder section is satisfactory. 

Example 14.9 A beam of rectangular cross-section 60 mm x 100 mm is subjected 
to an axial tensile load of 60 OOO N. If the material of the beam fails in simple 

Fig. 14.22 Box girder beam section of Ex. 14.8 
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tension at a stress of 150 N/mm2 determine the maximum shear force that can be 
applied to the beam section in a direction parallel to its longest side using the Tresca 
and von Mises theories of elastic failure. 

The direct stress 0, due to the axial load is uniform over the cross-section of the 
beam and is given by 

2 = 10 N/mm 
60 OOO 

60x 100 
6, = 

The maximum shear stress z,,, occurs at the horizontal axis of symmetry of the 
beam section and is, from Eq. (10.7) 

3 s, z,, = - x 
2 60x100 

Thus from Eqs (14.8) and (14.9) 

or 

lo Jm 10 1 
2 2  2 2  

b l = - + -  J-, o I I = - - -  

It is clear from the second of Eqs (ii) that tsll is negative since I 
Thus in the Tresca theory Eq. (14.42) applies and 

I > 5. 

6 I - o II = 2 4- = 150 N/mm2 

T,,,~, = 74.8 N/mmz from which 
Thus from Eq. (i) 

S, = 299.3 kN 

Now substituting for o1 and oI1 in Eq. (14.55) we have 

which gives 

Again from Eq. (i) 

r,,, = 86.4 N/mm’ 

S, = 345.6 kN 

Brittle materials 
When subjected to tensile stresses brittle materials such as cast iron, concrete and 
ceramics fracture at a value of stress very close to the elastic limit with little or no 
permanent yielding on the planes of maximum shear stress. In fact the failure plane 
is generally flat and perpendicular to the axis of loading, unlike ductile materials 
which have failure planes inclined at approximately 45’ to the axis of loading; in the 
latter case failure occurs on planes of maximum shear stress (see Sections 8.3 and 
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14.2). This would suggest, therefore, that shear stresses have no effect on the failure 
of brittle materials and that a direct relationship exists between the principal stresses 
at a point in a brittle material subjected to a complex loading system and the failure 
stress in simple tension or compression. This forms the basis for the most widely 
accepted theory of failure for brittle materials. 

Maximum normal stress theory 

This theory, frequently attributed to Rankine, states that: 

Failure occurs when one of the principal stresses reaches the value of the yield 
stress in simple tension or compression. 

For most brittle materials the yield stress in tension is very much less than the yield 
stress in compression, for example for concrete oy (compression) is approximately 
20ay (tension). Thus it is essential in any particular problem to know which of the 
yield stresses is achieved first. 

Suppose that a brittle material is subjected to a complex loading system which 
produces principal stresses oIr oI1 and alIl as in Fig. 14.18. Thus for o1 > oII > oIII > 0 
failure occurs when 

o1 = oy (tension) (14.57) 

Alternatively, for o1 > oI1 > 0, oIII < 0 and o1 < oy (tension) failure occurs when 

oIll = oy (compression) (14.58) 

and so on. 
A yield locus may be drawn for the two-dimensional case, as for the Tresca and 

von Mises theories of failure for ductile materials, and is shown in Fig. 14.23. Note 
that since the failure stress in tension, oy(T), is generally less than the failure stress 
in compression, oy(C), the yield locus is not symmetrically arranged about the o1 
and oII axes. Again combinations of stress corresponding to points inside the locus 
will not cause failure, whereas combinations of o1 and oI1 on or outside the locus 
will. 

Fig. 14.23 Yield locus for a brittle material 
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Example 14.10 A concrete beam has a rectangular cross-section 250 mm x 500 mm 
and is simply supported over a span of 4 m. Determine the maximum mid-span 
concentrated load the beam can cany if the failure stress in simple tension of concrete 
is 1-5 N/mm'. Neglect the self-weight of the beam. 

If the central concentrated load is W N the maximum bending moment occurs at 
mid-span and is 

4 w  
-- - W N m  

4 
(see Ex. 3.6) 

The maximum direct tensile stress due to bending occurs at the soffit of the beam 
and is 

w 10' 250 x 12 
a =  = W x 9.6 x N/mm2 (Eq. 9.9) 

250 x 50O3 

At this point the maximum principal stress is, from Eq. (14.8), 

o1 = W x 9.6 x lo-' N/mm2 
Thus from Eq. (14.57) the maximum value of W is given by 

oI = W x 9.6 x = o,(tension) = 1.5 N/mm2 

from which W = 15.6 kN. 

section over each support and is, from Q. (10.7), 
The maximum shear stress occurs at the horizontal axis of symmetry of the beam 

3 w/2 T,, = - x 
2 250x500 

i.e. T,,, = W x 0.6 x N/mm' 

Again, from Eq. (14.8), the maximum principal stress is 

o1 = W x 0-6  x lo-' N/mm2 = oy(tension) = 1.5 N/mm2 

from which W=250 kN 
Thus the maximum allowable value of W is 15.6 kN. 

Problems 
P.14.1 At a point in an elastic material there are two mutually perpendicular 

planes, one of which carries a direct tensile stress of 50 N/mm' and a shear stress 
of 40 N/mm2 while the other plane is subjected to a direct compressive stress of 
35 N/mm2 and a complementary shear stress of 40 N/mm'. Determine the principal 
stresses at the point, the position of the planes on which they act and the position of 
the planes on which there is no direct stress. 

Ans. o, = 66 N/mm', 8 = 21"37'; oI, = -51 N/mm', 8 = 1 ll"37'. 
No direct stress on planes at 70"17' and -26"48' to the plane on which the 
50 N/mm' stress acts. 
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P.14.2 One of the principal stresses in a two-dimensional stress system is 
139 N/mm' acting on a plane A. On another plane B normal and shear stresses of 
108 N/mm2 and 62 N/mm', respectively, act. Determine 

(a) the angle between the planes A and B, 
(b) the other principal stress, 
(c) the direct stress on the plane perpendicular to plane B. 
Ans. (a) 26"34', (b) -16 N/mm2, (c) 15 N/mm2. 

P.14.3 The state of stress at a point in a smctural member may be represented 
by a two-dimensional stress system in which a, = 100 N/mm2, a, = -80 N/mm2 and 
T,? = 45 N/mm2. Determine the direct stress on a plane inclined at 60" to the positive 
direction of 6, and also the principal stresses. Calculate also the inclination of the 
principal planes to the plane on which 6, acts. Verify your answers by a graphical 
method. 

Ans. a, = 94 N/mm2, a1 = 110.5 N/mm2, cI1 = -90.5 N/mm2, 

P.14.4 Determine the normal and shear stress on the plane AB shown in 

(i) CY = 60", a , = 54 N/mm', a = 30 N/mm2, r,, = 5 N/mm2, I (ii) a = 120". a , = -60 N/mm , a, = -36 N/mm2, T,, = 5 N/mm2. 

Ans. 

9 =  13"18' and 103"18'. 

Fig. P.14.4 when 

(i) a, = 43-7 N/mm2, r = 12.9 N/mm2, 
(ii) 6, = -49.7 N/mm2, r = 12.9 N/mm2. 

Fig. P.14.4 

P.14.5 A shear stress T,? acts in a two-dimensional field in which the maximum 
allowable shear stress is denoted by z,,,, and the major principal stress by aI. Derive, 
using the geometry of Mohr's circle of stress, expressions for the maximum values 
of direct stress which may be applied to the x and y planes in terms of the 
parameters given. 

Ans. a, = a, - r ,lwIL + Jx, 
In an experimental determination of principal stresses a cantilever of 

hollow circular cross-section is subjected to a varying bending moment and torque; 

a? = a I - z mx - Jm. 
P.14.6 
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the internal and external diameters of the cantilever are 40 mm and 50 mm, 
respectively. For a given loading condition the bending moment and torque at a 
particular section of the cantilever are 100 Nm and 50 Nm, respectively. Calculate 
the maximum and minimum principal stresses at a point on the outer surface of the 
cantilever at this section where the direct stress produced by the bending moment is 
tensile. Determine also the maximum shear stress at the point and the inclination of 
the principal stresses to the axis of the cantilever. 

The experimental values of principal stress are estimated from readings obtained 
from a 45’ strain gauge rosette aligned so that one of its three arms is parallel to and 
another perpendicular to the axis of the cantilever. For the loading condition of zero 
torque and varying bending moment, comment on the ratio of these strain gauge 
readings. 

Ans. ol = 14.6 N/mm2, oI1 = -0.8 N/mm2, T,,,,~ = 7.7 N/mm2, 
8 = 12’53‘ and 102’53’. 

P.14.7 A thin-walled cylinder has an internal diameter of 1200 mm and has 
walls 1.2 mm thick. It is subjected to an internal pressure of 0.7 N/mm2 and a 
torque, about its longitudinal axis, of 500 kN m. Determine the principal stresses at a 
point in the wall of the cylinder and also the maximum shear stress. 

Ans. 

P.14.8 A rectangular piece of material is subjected to tensile stresses of 83 N/mm2 
and 65 N/mm’ on mutually perpendicular faces. Find the strain in the direction of 
each stress and in the direction perpendicular to both stresses. Determine also the 
maximum shear strain, the maximum shear stress and their directions. Take 
E = 200 OOO N/mmz and v = 0.3. 

466.5 N/mm2, 58-5 N/mm’, 204 N/mm2. 

Ans. 3.18 x 2.01 x -2-22 x ymax = 1-17 x 

P.14.9 A cantilever beam of length 2 m has a rectangular cross-section 100 mm 
wide and 200 mm deep. The beam is subjected to an axial tensile load, P ,  and a 
vertically downward uniformly distributed load of intensity w. A rectangular strain 
gauge rosette attached to a vertical side of the beam at the built-in end and in the 
neutral plane of the beam recorded the following values of strain: E, = 1OOO x 
E, = 100 x The arm ‘a’ of the rosette is aligned with the 
longitudinal axis of the beam while the arm ‘c’ is perpendicular to the longitudinal 
axis. 

Calculate the value of Poisson’s ratio, the principal strains at the point and hence 
the values of P and w. Young’s modulus, E = 200 OOO N/mm’. 

Ans. P = 4000 kN, w = 255.3 kN/m. 

P.14.10 

T,,,,, = 9.0 N/mm2 at 45’ to the directions of the given stresses. 

E, = -300 x 

A beam has a rectangular thin-walled box section 50 mm wide by 
100 mm deep and has walls 2 mm thick. At a particular section the beam cames a 
bending moment M and a torque T.  A rectangular strain gauge rosette positioned on 
the top horizontal wall of the beam at this section recorded the following values of 
strain: E, = 1000 x If the strain gauge ‘a’ is E ,  = -200 x lo-‘, E, = -300 x 
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aligned with the longitudinal axis of the beam and the strain gauge ‘c’ is 
perpendicular to the longitudinal axis, calculate the values of M and T. Take 
E = 200 OOO N/mmz and v = 0.3. 

Ans. M =  3333 Nm, T = 1692 Nm. 

P.14.11 The simply supported beam shown in Fig. P.14.11 carries two 
symmetrically placed transverse loads, W. A rectangular strain gauge rosette 
positioned at the point P gave strain readings as follows: E,= -222 x 1O-6, 
E,= -213 x lO-6, ~ , = 4 5  x lo-‘. Also the direct stress at P due to an external axial 
compressive load is 7 N/mm2. Calculate the magnitude of the transverse load. Take 
E = 31 OOO Nlmm’, v = 0-2. 

ATIS. W=98*1 kN. 

Fig. P.14.11 

P.14.12 In a tensile test on a metal specimen having a cross-section 20 mm by 
10 mm elastic breakdown occurred at a load of 70 OOO N. 

A thin plate made from the same material is to be subjected to loading such that at 
a certain point in the plate the stresses are a, = -70 N/mm2, T . ~ ~  = 60 Nlmm’ and a,. 
Determine the maximum allowable values of 6 ,  using the Tresca and von Mises 
theories of elastic breakdown. 

Ans. 259 N/mm’ (Tresca), 294 Nlmm’ (von Mises). 

P.14.13 A beam of circular cross-section is 3000 mm long and is attached at 
each end to supports which allow rotation of the ends of the beam in the 
longitudinal vertical plane of symmetry but prevent rotation of the ends in vertical 
planes perpendicular to the axis of the beam (Fig. P.14.13). The beam supports an 
offset load of 40 OOO N at mid-span. 

Fig. P.14.13 
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If the material of the beam suffers elastic breakdown in simple tension at a stress 
of 145 Nlmm’, calculate the minimum diameter of the beam on the basis of the 
Tresca and von Mises theories of elastic failure. 

Ans. 136 mm (Tresca), 135 mm (von Mises). 

P.14.14 A cantilever of circular cross-section has a diameter of 150 mm and is 
made from steel, which, when subjected to simple tension suffers elastic breakdown 
at a stress of 150 N/mm*. 

The cantilever supports a bending moment and a torque, the latter having a value 
numerically equal to twice that of the former. Calculate the maximum allowable 
values of the bending moment and torque on the basis of the Tresca and von Mises 
theories of elastic failure. 

Ans. M = 22.3 kNm, T = 44-4 kNm (Tresca). 
M = 24.9 kNm, T = 49.8 kNm (von Mises). 

P.14.15 A certain material has a yield stress limit in simple tension of 
387 N/mm’. The yield limit in compression can be taken to be equal to that in 
tension. The material is subjected to three stresses in mutually perpendicular 
directions, the stresses being in the ratio 3 : 2 : - 1.8. Determine the stresses that will 
cause failure according to the von Mises and Tresca theories of elastic failure. 

Ans. Tresca: o1 = 240 Nlmm’, oII = 160 N/mm’, oil, = - 144 Nlmm’. 
von Mises: oI = 263 Nlmm’, oI1 = 175 N/mm’, oIll = - 158 N/mm2. 

A column has the cross-section shown in Fig. P.14.16 and cames a 
compressive load P parallel to its longitudinal axis. If the failure stresses of the 
material of the column are 4 N/mm’ and 22 N/mm‘ in simple tension and 
compression, respectively, determine the maximum allowable value of P using the 
maximum normal stress theory. 

P.14.16 

Ans. 640 kN. 

Fig. P.14.16 



CHAPTER 15 

Virtual Work and Energy 
Methods 

The majority of the structural problems we have encountered so far have involved 
structures in which the support reactions and the internal force systems are statically 
determinate. Thus we have analysed beams, trusses, cables and three-pinned arches 
and, in the case of beams, calculated displacements. Some statically indeterminate 
structures have also been investigated. These include the simple truss and composite 
structural members in Section 7.14 and the circular section beams subjected to 
torsion and supported at each end in Section 11.1. These relatively simple problems 
were solved using a combination of statical equilibrium and compatibility of 
displacements. Further, in Section 13.7, a statically indeterminate propped cantilever 
was analysed using the principle of superposition (Section 3.7) while the support 
reactions for some cases of fixed beams were determined by combining the 
conditions of statical equilibrium with the moment-area method (Section 13.3). 
These methods are perfectly adequate for the comparatively simple problems to 
which they have been applied. However, other more powerful methods of analysis 
are required for more complex structures which may possess a high degree of 
statical indeterminacy. These methods will, in addition, be capable of providing 
rapid solutions for some statically determinate problems, particularly those involving 
the calculation of displacements. 

The methods fall into two categories and are based on two important concepts; the 
first, the principle of virtual work, is the most fundamental and powerful tool 
available for the analysis of statically indeterminate structures and has the advantage 
of being able to deal with conditions other than those in the elastic range, while the 
second, based on strain energy, can provide approximate solutions of complex 
problems for which exact solutions may not exist. The two methods are, in fact, 
equivalent in some cases since, although the governing equations differ, the 
equations themselves are identical. 

In modern structural analysis, computer-based techniques are widely used; these 
include the flexibility and stiffness methods. However, the formulation of, say, 
stiffness matrices for the elements of a complex structure is based on one of the 
above approaches, so that a knowledge and understanding of their application is 
advantageous. We shall briefly examine the flexibility and stiffness methods in 
Chapter 16 and their role in computer-based analysis. 

Other specialist approaches have been developed for particular problems. 
Examples of these are the slope-deflection method for beams and the moment 
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distribution method for beams and frames; these will also be described in Chapter 16 
where we shall consider statically indeterminate structures. Initially, however, in this 
chapter, we shall examine the principle of virtual work, the different energy 
theorems and some of the applications of these two concepts. 

15.1 Work 
Before we consider the principle of virtual work in detail, it is important to clarify 
exactly what is meant by work. The basic definition of work in elementary 
mechanics is that 'work is done when a force moves its point of application'. 
However, we shall require a more exact definition since we shall be concerned with 
work done by both forces and moments and with the work done by a force when the 
body on which it acts is given a displacement which is not coincident with the line of 
action of the force. 

Consider the force, F ,  acting on a particle, A, in Fig. 15.1(a). If the particle is 
given a displacement, A ,  by some external agency so that it moves to A' in a 
direction at an angle a to the line of action of F ,  the work, W,, done by F is given 

WF = F ( A  COS a )  (15.1) 

or WF = ( F  COS a ) A  (15.2) 

Thus we see that the work done by the force, F ,  as the particle moves from A to A' 
may be regarded as either the product of F and the component of A in the direction 
of F (Eq. (15.1)) or as the product of the component of F in the direction of A and 
A (Eq. (15.2)). 

Now consider the couple (pure moment) in Fig. 15.l(b) and suppose that the 
couple is given a small rotation of 8 radians. The work done by each force F is then 
F ( a / 2 ) e  so that the total work done, W,, by the couple is 

a a wc= F - e +  F - e =  F a e  
2 2 

by 

Fig. 15.1 Work done by a force and a moment 
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It follows that the work done, W,, by the pure moment, M ,  acting on the bar AB in 
Fig. 15.1 (c) as it is given a small rotation, 8, is 

w, = Me (15.3) 

Note that in the above the force, F ,  and moment, M ,  are in position before the 
displacements take place and are not the cause of them. Also, in Fig. 15.1 (a), the 
component of A parallel to the direction of F is in the same direction as F ;  if it 
had been in the opposite direction the work done would have been negative. The 
same argument applies to the work done by the moment, M ,  where we see in 
Fig. 15.l(c) that the rotation, 8, is in the same sense as M .  Note also that if the 
displacement, A, had been perpendicular to the force, F ,  no work would have been 
done by F.  

Finally it should be remembered that work is a scalar quantity since it is not 
associated with direction (in Fig. 15.l(a) the force F does work if the particle is 
moved in any direction). Thus the work done by a series of forces is the algebraic 
sum of the work done by each force. 

15.2 Principle of virtual work 
The establishment of the principle will be carried out in stages. First we shall 
consider a particle, then a rigid body and finally a deformable body, which is the 
practical application we require when analysing structures. 

Principle of virtual work for a particle 

In Fig. 15.2 a particle, A, is acted upon by a number of concurrent forces, 
F , ,  F,, ..., F,, ..., F,; the resultant of these forces is R. Suppose that the particle is 
given a small arbitrary displacement, Av, to A' in some specified direction; A" is an 
imaginary or virtual displacement and is sufficiently small so that the directions of 
F , ,  F z ,  etc., are unchanged. Let O R  be the angle that the resultant, R, of the forces 
makes with the direction of Av and e,, e2. ..., 8, ,..., 8, the angles that 
F , ,  F 2 ,  ..., F,, ..., F ,  make with the direction of Av, respectively. Then, from either 

Fig. 15.2 Virtual work for a system of forces acting on a particle 
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of Eqs (15.1) or (15.2) the total virtual work, W,, done by the forces F as the 
particle moves through the virtual displacement, A,, is given by 

r 

Thus W, = 1 F ,  A, COS 0, 
I.= I 

or, since A, is a fixed, although imaginary displacement, 
r 

wF = A, 1 F ,  COS 0, 
k =  I 

(15.4) 

In Eq. (15.4) 
r 

F ,  cos 8, 
t =  I 

is the sum of all the components of the forces, F, in the direction of A, and 
therefore must be equal to the component of the resultant, R,  of the forces, F,  in the 
direction of A,, Le. 

r 

WF = A" 1 FP COS 8, = A,R COS 0 R  (15.5) 
,= I 

If the particle, A, is in equilibrium under the action of the forces, 
F, ,  F?, ..., F,, ..., F,, the resultant, R, of the forces is zero (Chapter 2). It follows 
from Eq. (15.5) that the virtual work done by the forces, F, during the virtual 
displacement, A,, is zero. 

We can therefore state the principle of virtual work for a particle as follows: 

I f  a particle is in equilibrium under the action of a number of forces the total 
work done by the forces for a small arbitrary displacement of the particle is zero. 

It is possible for the total work done by the forces to be zero even though the particle 
is not in equilibrium if the virtual displacement is taken to be in a direction 
perpendicular to their resultant, R. We cannot, therefore, state the converse of the 
above principle unless we specify that the total work done must be zero for any 
arbitrary displacement. Thus: 

A particle is in equilibrium under the action of a system of forces if the total work 
done by the forces is zero for any virtual displacement of the particle. 

Note that in the above, A" is a purely imaginary displacement and is not related in 
any way to the possible displacement of the particle under the action of the forces, 
F. Av has been introduced purely as a device for setting up the work-equilibrium 
relationship of Eq. (15.5). The forces, F ,  therefore remain unchanged in magnitude 
and direction during this imaginary displacement; this would not be the case if the 
displacement were real. 
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Principle of virtual work for a rigid body 

Consider the rigid body shown in Fig. 15.3, which is acted upon by a system of 
external forces, F , ,  F,, . .., F,, .. ., F,. These external forces will induce internal forces 
in the body, which may be regarded as comprising an infinite number of particles; on 
adjacent particles, such as A, and A,, these internal forces will be equal and opposite, 
in other words self-equilibrating. Suppose now that the rigid body is given a small, 
imaginary, that is virtual, displacement, A, (or a rotation or a combination of both), in 
some specified direction. The external and internal forces then do virtual work and the 
total virtual work done, W,, is the sum of the virtual work, We, done by the external 
forces and the virtual work, W,, done by the internal forces. Thus 

w,= we+ wi (15.6) 

Since the body is rigid, all the particles in the body move through the same 
displacement, A", so that the virtual work done on all the particles is numerically the 
same. However, for a pair of adjacent particles, such as A, and A, in Fig. 15.3, the 
self-equilibrating forces are in opposite directions, which means that the work done on 
A, is opposite in sign to the work done on A,. Thus the sum of the virtual work done 
on A, and A, is zero. The argument can be extended to the infinite number of pairs of 
particles in the body from which we conclude that the internal virtual work produced 
by a virtual displacement in a rigid body is zero. Equation (15.6) then reduces to 

w,= we (15.7) 

Since the body is rigid and the internal virtual work is therefore zero, we may regard 
the body as a large particle. It follows that if the body is in equilibrium under the 
action of a set of forces, F , ,  F,, ..., F,, ..., F,, the total virtual work done by the 
external forces during an arbitrary virtual displacement of the body is zero. 

The principle of virtual work is, in fact, an alternative to Eqs (2.10) for 
specifying the necessary conditions for a system of coplanar forces to be in 
equilibrium. To illustrate the truth of this we shall consider the calculation of the 
support reactions in a simple beam. 

Fig. 15.3 Virtual work for a rigid body 
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Example 15.1 Calculate the support reactions in the simply supported beam shown 
inFig. 15.4. 

Only a vertical load is applied to the beam so that only vertical reactions, RA and 
Re, are produced. 

Suppose that the beam at C is given a small imaginary, that is a virtual, 
displacement, A,,,, in the direction of Re as shown in Fig. 15.4(b). Since we are 
concerned here solely with the external forces acting on the beam we may regard the 
beam as a rigid body. The beam therefore rotates about A so that C moves to C‘ and 
B moves to B’. From similar triangles we see that 

a a 
L 

A, . ,  = - A”.,  Av.B = - 
a + b  

The total virtual work, W,,  done by all the forces acting on the beam is then given by 

wt= wAv.B (ii) 

Note that the work done by the load, W ,  is negative since Av.B is in the opposite 
direction to its line of action. Note also that the support reaction, R,, does no work 
since the beam only rotates about A. Now substituting for Av.B in Eq. (ii) from 
Eq. (i) we have 

(iii) 

Since the beam is in equilibrium, W ,  is zero from the principal of virtual work. 
Hence, from Eq. (iii) 

a 
which gives R c = W -  

L 

which is the result that would have been obtained from a consideration of the 
moment equilibrium of the beam about A. RA follows in a similar manner. Suppose 
now that instead of the single displacement AvVc the complete beam is given a 
vertical virtual displacement, A,, together with a virtual rotation, e,, about A as 
shown in Fig. 15.4(c). The total virtual work, W,,  done by the forces acting on the 
beam is now given by 

W, = R ,  A, - W(A, + ae,) + Rc(Av + Le,) = 0 

( R ,  + Re - W)A, + (R,L - Wa)e,  = 0 

(iv ) 

(v ) 

since the beam is in equilibrium. Rearranging Eq. (iv) 

Equation (v) is valid for all values of A, and 8, so that 

R , + R , -  W = O  and R,L-Wa=O 

which are the equations of equilibrium we would have obtained by resolving forces 
vertically and taking moments about A. 
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Fig. 15.4 Use of the principle of virtual work to calculate support reactions 

It is not being suggested here that the application of Eqs (2.10) should be 
abandoned in favour of the principle of virtual work. The purpose of Ex. 15.1 is to 
illustrate the application of a virtual displacement and the manner in which the 
principle is used. 

Virtual work in a deformable body 
In structural analysis we are not generally concerned with forces acting on a rigid 
body. Structures and structural members deform under load, which means that if we 
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assign a virtual displacement to a particular point in a structure, not all points in the 
structure will suffer the same virtual displacement as would be the case if the 
structure were rigid. Thus the virtual work produced by the internal forces is not zero 
as it is in the rigid body case, since the virtual work produced by the self- 
equilibrating forces on adjacent particles does not cancel out. The total virtual work 
produced by applying a virtual displacement to a deformable body acted upon by a 
system of external forces is therefore given by Eq. (15.6). 

If the body is in equilibrium under the action of the external force system then 
every particle in the body is also in equilibrium. Thus, from the principle of virtual 
work, the virtual work done by the forces acting on the particle is zero irrespective 
of whether the forces are external or internal. Therefore, since the virtual work is 
zero for all particles in the body, it is zero for the complete body and Eq. (15.6) 
becomes 

we+ wi=o (15.8) 

Note that in the above argument only the conditions of equilibrium and the concept 
of work are employed. Thus Eq. (15.8) does not require the deformable body to be 
linearly elastic (i.e. it need not obey Hooke’s law) so that the principle of virtual 
work may be applied to any body or structure that is rigid, elastic or plastic. The 
principle does require that displacements, whether real or imaginary, must be small, 
so that we may assume that external and internal forces are unchanged in magnitude 
and direction during the displacements. In addition the virtual displacements must be 
compatible with the geometry of the structure and the constraints that are applied, 
such as those at a support. The exception is the situation we have in Ex. 15.1 where 
we apply a virtual displacement at a support. This approach is valid since we include 
the work done by the support reactions in the total virtual work equation. 

Work done by internal force systems 
The calculation of the work done by an external force is straightforward in that it is 
the product of the force and the displacement of its point of application in its own 
line of action (Eqs (15.1), (15.2) or (15.3)) whereas the calculation of the work 
done by an internal force system during a displacement is much more complicated. 
In Chapter 3 we saw that no matter how complex a loading system is, it may be 
simplified to a combination of up to four load types: axial load, shear force, bending 
moment and torsion; these in turn produce corresponding internal force systems. We 
shall now consider the work done by these internal force systems during arbitrary 
virtual displacements. 

Axial force 

Consider the elemental length, 6 2 ,  of a structural member as shown in Fig. 15.5 and 
suppose that it is subjected to a positive internal force system comprising a normal 
force (Le. axial force), N ,  a shear force, S, a bending moment, M, and a torque, T ,  
produced by some external loading system acting on the structure of which the 
member is part. The stress distributions corresponding to these internal forces have 
been related in previous chapters to an axis system whose origin coincides with the 
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Fig. 15.5 Virtual work due to internal force system 

centroid of area of the cross-section. We shall, in fact, be using these stress 
distributions in the derivation of expressions for internal virtual work in linearly 
elastic structures so that it is logical to assume the same origin of axes here; we shall 
also assume that the y axis is an axis of symmetry. Initially we shall consider the 
normal force, N. 

The direct stress, a, at any point in the cross-section of the member is given by 
o = N/A (Eq. (7.1)). Therefore the noma1 force on the element 6A at the point 
( X , Y )  is 

N 
A 

6N = o6A = - 6A 

Suppose now that the structure is given an arbitrary virtual displacement which 
produces a virtual axial strain, E , ,  in the element. Thus the internal virtual work, 
6 ~ , , ~ ,  done by the axial force on the elemental length of the member is given by 

N - dAE, 62 IA A 
6 w ~ , N  = 

which, since j A  dA = A ,  reduces to 

~ W ~ , N = N & ,  62 ( 1 5.10) 

In other words, the virtual work done by N is the product of N and the virtual axial 
displacement of the element of the member. For a member of length L, the virtual 
work, w , . ~ ,  done during the arbitrary virtual strain is then 

w,.N = I N E ,  dz (15.11) 
L 



430 Virtual Work and Energy Methods 

For a structure comprising a number of members, the total internal virtual work, 
WiVN, done by axial force is the sum of the virtual work of each of the members. 
Thus 

(15.12) 

Note that in the derivation of Eq. (15.12) we have made no assumption regarding the 
material properties of the structure so that the relationship holds for non-elastic as 
well as elastic materials. However, for a linearly elastic material, i.e. one that obeys 
Hooke’s law (Section 7.7), we can express the virtual strain in terms of an 
equivalent virtual normal force. Thus 

Qv N v  E,=-=-  
E EA 

Therefore, if we designate the actual normal force in a member by N A ,  Eq. (15.12) 
may be expressed in the form 

( 15.13) 

Shear force 

The shear force, S, acting on the member section in Fig. 15.5 produces a distribution 
of vertical shear stress which, as we saw in Section 10.2, depends upon the 
geometry of the cross-section. However, since the element, 6A, is infinitesimally 
small, we may regard the shear stress, o, as constant over the element. The shear 
force, 6S, on the element is then 

6 S = z 6 A  (1 5.14) 

Suppose that the structure is given an arbitrary virtual displacement which produces a 
virtual shear strain, yv, at the element. This shear strain represents the angular 
rotation in a vertical plane of the element 6A x 6z  relative to the longitudinal 
centroidal axis of the member. The vertical displacement at the section being 
considered is therefore y, 6z.  The internal virtual work, GwieS, done by the shear 
force, S, on the elemental length of the member is given by 

= I, z dAy, 6 2  

We saw in Section 13.6 that we could assume a uniform shear stress through the 
cross-section of a beam if we allowed for the actual variation by including a form 
factor, p. Thus the expression for the internal virtual work in the member may be 
written 

or 6 W i . ,  = psy, 6.2 (15.15) 
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Hence the virtual work done by the shear force during the arbitrary virtual strain in a 
member of length L is 

wi,s = P I, S Y ~  dz (15.16) 

For a linearly elastic member, as in the case of axial force, we may express the virtual 
shear strain, y,, in terms of an equivalent virtual shear force, Sv. Thus, from Section 7.7 

2, s v  
yv=-=-  

G GA 
so that from Eq. (15.16) 

(15.17) 

For a structure comprising a number of linearly elastic members the total internal 
work, Wi.s,  done by the shear forces is 

( 1 5.1 8) 

Bending moment 

The bending moment, M, acting on the member section in Fig. 15.5 produces a 
distribution of direct stress, o, through the depth of the member cross-section. The 
normal force on the element, 6A, corresponding to this stress is therefore o 6A. Again 
we shall suppose that the stmcture is given a small arbitrary virtual displacement which 
produces a virtual direct strain, E,, in the element 6A x 6z. Thus the virtual work done 
by the normal force acting on the element 6A is o 6A E,  6z. Hence, integrating over the 
complete cross-section of the member we obtain the internal virtual work, 6 ~ ~ , ~ ,  done 
by the bending moment, M, on the elemental length of member, Le. 

(15.19) 

The virtual strain, E,, in the element 6A x 6z is, from Eq. (9.1), given by 
V 

where Rv is the radius of curvature of the member produced by the virtual 
displacement. Thus, substituting for E ,  in Eq. (15.19), we obtain 

Y 6 ~ ~ . ~  = / A  0 R, dA 6z 

or, since oy 6A is the moment of the normal force on the element, 6A, about the x 
axis, 

M 
RV 

6 W i . M  = - 62 
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Therefore, for a member of length L, the internal virtual work done by an actual 
bending moment, M A ,  is given by 

M A  
W i , M  =I, dz (15.20) 

In the derivation of Eq. (15.20) no specific stress-strain relationship has been 
assumed, so that it is applicable to a non-linear system. For the particular case of a 
linearly elastic system, the virtual curvature 1/R, may be expressed in terms of an 
equivalent virtual bending moment, M,, using the relationship of Eq. (9.1 1). Thus 

1 M v  

R, EZ 
- = -  

Substituting for 1/R, in Eq. (15.20) we have 

(15.21) 

so that for a structure comprising a number of members the total internal virtual 
work, W i e M ,  produced by bending is 

dz 
W i . M  = 1 J, 7 (15.22) 

In Chapter 9 we used the suffix ‘x’ to denote a bending moment in a vertical plane 
about the x axis (M,) and the second moment of area of the member section about 
the x axis (Z.J. Clearly the bending mbments in Eq. (15.22) need not be restricted to 
those in a vertical plane; the suffixes are therefore omitted. 

Torsion 

The internal virtual work, w ~ , ~ ,  due to torsion in the particular case of a linearly 
elastic circular section bar may be found in a similar manner and is given by 

(15.23) 

in which Z, is the polar second moment of area of the cross-section of the bar (see 
Section 11.1). For beams of non-circular cross-section, I ,  is replaced by a torsion 
constant, J ,  which, for many practical beam sections is determined empirically 
(Section 11.5). 

Hinges 

In some cases it is convenient to impose a virtual rotation, e,, at some point in a 
structural member where, say, the actual bending moment is MA. The internal virtual 
work done by MA is then MA€), (see Eq. (15.3)); physically this situation is 
equivalent to inserting a hinge at the point. 
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Sign of internal virtual work 

So far we have derived expressions for internal work without considering whether it 
is positive or negative in relation to external virtual work. 

Suppose that the structural member, AB, in Fig. 15.6(a) is, say, a member of a 
tmss and that it is in equilibrium under the action of two externally applied axial 
tensile loads, P;  clearly the internal axial, that is normal, force at any section of the 
member is P.  Suppose now that the member is given a virtual extension, 6,, such that 
B moves to B'. Then the virtual work done by the applied load, P ,  is positive since 
the displacement, 6,, is in the same direction as its line of action. However, the 
virtual work done by the internal force, N ( = P ) ,  is negative since the displacement 
of B is in the opposite direction to its line of action; in other words work is done on 
the member. Thus, from Eq. (15.8), we see that in this case 

we= wi (15.24) 

Equation (15.24) would apply if the virtual displacement had been a contraction and 
not an extension, in which case the signs of the external and internal virtual work in 
Eq. (15.8) would have been reversed. Clearly the above applies equally if P is a 
compressive load. The above arguments may be extended to structural members 
subjected to shear, bending and torsional loads, so that Eq. (15.24) is generally 
applicable. 

Virtual work due to external force systems 

So far in our discussion we have only considered the virtual work produced by 
externally applied concentrated loads. For completeness we must also consider the 
virtual work produced by moments, torques and distributed loads. 

In Fig. 15.7 a structural member canies a distributed load, w ( z ) ,  and at a 
particular point a concentrated load, W ,  a moment, M, and a torque, T .  Suppose that 
at the point a virtual displacement is imposed that has translational components, Av,y 
and A,.,, parallel to the y and z axes, respectively, and rotational components, 8, and 
$,, in the yz  and xy planes, respectively. 

Fig. 15.6 Sign of the internal virtual work in an axially loaded member 
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Fig. 15.7 Virtual work due to externally applied loads 

If we consider a small element, 6z, of the member at the point, the distributed 
load may be regarded as constant over the length 6z and acting, in effect, as a 
concentrated load w(z) 6z. Thus the virtual work, we, done by the complete external 
force system is given by 

we = WA ,,? + PAv,z + Me, + T4,  + W(Z)A,,~ dz IL 

For a structure comprising a number of load positions, the total external virtual work 
done is then 

We = 1 [WA,., + PAv.z + Me, + T$,  + 1 L W(Z)A,.~ dz] (15.25) 

In Eq. (15.25) there need not be a complete set of external loads applied at every 
loading point so, in fact, the summation is for the appropriate number of loads. 
Further, the virtual displacements in the above are related to forces and moments 
applied in a vertical plane. We could, of course, have forces and moments and 
components of the virtual displacement in a horizontal plane, in which case 
Eq. (15.25) would be extended to include their contribution. 

The internal virtual work equivalent of Eq. (15.25) for a linear system is, from 
Eqs (15.13), (15.18). (15.22) and (15.23) 

Wi = 1 [IL 7 dz + p I %! dz + 1 - dz + 1, % dz + MA€), (15.26) 

in which the last term on the right-hand side is the virtual work produced by an actual 
internal moment at a hinge (see above). Note that the summation in Eq. (15.26) is 
taken over all the members of the structure. 

Use of virtual force systems 
So far, in all the structural systems we have considered, virtual work has been 
produced by actual forces moving through imposed virtual displacements. However, 
the actual forces are not related tu the virtual displacements in any way since, as we 
have seen, the magnitudes and directions of the actual forces are unchanged by the 
virtual displacements so long as the displacements are small. Thus the principle of 
virtual work applies for any set of forces in equilibrium and any set of 

I N A  N v  MAM 
L GA L EI 
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displacements. Equally, therefore, we could specify that the forces are a set of 
virtual forces in equilibrium and that the displacements are actual displacements. 
Thus, instead of relating actual external and internal force systems through virtual 
displacements, we can relate actual external and internal displacements through 
virtual forces. 

If we apply a virtual force system to a deformable body it will induce an internal 
virtual force system which will move through the actual displacements; thus, internal 
virtual work will be produced. In this case, for example, Eq. (15.1 1) becomes 

in which Nv is the internal virtual normal force and is the actual strain. Thus, for a 
linear system, in which the actual internal normal force is NA, = N A / E A ,  so that 
for a structure comprising a number of members the total internal virtual work due 
to a virtual normal force is 

which is identical to Eq. (15.13). Equations (15.18), (15.22) and (15.23) may be 
shown to apply to virtual force systems in a similar manner. 

Applications of the principal of virtual work 

We have now seen that the principle of virtual work may be used either in the form 
of imposed virtual displacements or in the form of imposed virtual forces. 
Generally the former approach, as we saw in Ex. 15.1, is used to determine forces, 
while the latter is used to obtain displacements. 

For statically determinate structures the use of virtual displacements to determine 
force systems is a relatively trivial use of the principle although problems of this 
type provide a useful illustration of the method. The real power of this approach lies 
in its application to the solution of statically indeterminate structures, as we shall see 
in Chapter 16. However, the use of virtual forces is particularly useful in 
determining actual displacements of structures. We shall illustrate both approaches 
by examples. 

Example 15.2 Determine the bending moment at the point B in the simply 
supported beam ABC shown in Fig. 15.8(a). 

We determined the support reactions for this particular beam in Ex. 15.1. In this 
example, however, we are interested in the actual internal moment, MB, at the point 
of application of the load. We must therefore impose a virtual displacement which 
will relate the internal moment at B to the applied load and which will exclude other 
unknown external forces such as the support reactions, and unknown internal force 
systems such as the bending moment distribution along the length of the beam. 
Thus, if we imagine that the beam is hinged at B and that the lengths AB and BC are 
rigid, a virtual displacement, at B will result in the displaced shape shown in 
Fig. 15.8(b). 
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Fig. 15.8 Determination of bending moment at a point in the beam of Ex. 15.2 
using virtual work 

Note that the support reactions at A and C do no work and that the internal moments 
in AB and BC do no work because AB and BC are rigid links. From Fig. 15.8(b) 

Av,B = ap = ba ( 0  

P a 
b 

Hence a = -  

and the angle of rotation of BC relative to AB is then 

e , = p + a = P  I + -  =-f.3 (ii) 

Now equating the external virtual work done by W to the internal virtual work done 
by M ,  (see Eq. (15.24)) we have 

W &,B = M B ~ B  (iii) 

( ;) : 
Substituting in Eq. (iii) for Av,B from Eq. (i) and for e B  from Eq. (ii) we have 

L 
b 

Wah 
L 

WaP = M B  - p 

whence M s = -  

which is the result we would have obtained by calculating the moment of R,  (= Wa/L 
from Eq. 15.1) about B. 
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Example 15.3 Determine the force in the member AB in the truss shown in 
Fig. 15.9(a). 

We are required to calculate the force in the member AB, so that again we need to 
relate this internal force to the externally applied loads without involving the internal 
forces in the remaining members of the truss. We therefore impose a virtual 
extension, Av,B, at B in the member AB, such that B moves to B’. If we assume that 
the remaining members are rigid, the forces in them will do no work. Further, the 
triangle BCD will rotate as a rigid body about D to B’C‘D as shown in Fig. 15.9(b). 
The horizontal displacement of C, &, is then given by 

Ac = 4a 

while AVeB = 3a 

Hence A~ = 4 4 . ~ 3  (i 1 
Thus, equating the external virtual work done by the 30kN load to the internal 
virtual work done by the force, F B A ,  in the member, AB, we have (see Eq. (15.24) 
andFig. 15.6) 

30 & = F B A A V , B  (ii) 
Substituting for & from Eq. (i) in Eq. (ii), 

30 x + Av.B = F B A A v . B  

FBA = +40 kN (i.e. F B A  is tensile) Whence 

Fig. 95.9 Determination of the internal force in a member of a t russ  using virtual 
work 
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In the above we are, in effect, assigning a positive (Le. tensile) sign to FBA by 
imposing a virtual extension on the member AB. 

The actual sign of FBA is then governed by the sign of the external virtual work. 
Thus, if the 30 kN load had been in the opposite direction to & the external work 
done would have been negative, so that FBA would be negative and therefore 
compressive. This situation can be verified by inspection. Alternatively, for the 
loading as shown in Fig. 15.9(a), a contraction in AB would have implied that F, 
was compressive. In this case DC would have rotated in an anticlockwise sense, 4 
would have been in the opposite direction to the 30 kN load so that the external 
virtual work done would be negative, resulting in a negative value for the 
compressive force FBA; FBA would therefore be tensile as before. Note also that the 
10 kN load at D does no work since D remains undisplaced. 

We shall now consider problems involving the use of virtual forces. Generally we 
shall require the displacement of a particular point in a structure, so that if we apply 
a virtual force to the structure at the point and in the direction of the required 
displacement the external virtual work done will be the product of the virtual force 
and the actual displacement, which may then be equated to the internal virtual work 
produced by the internal virtual force system moving through actual displacements. 
Since the choice of the virtual force is arbitrary, we may give it any convenient 
value; the simplest type of virtual force is therefore a unit load and the method then 
becomes the unit load method. 

Example 15.4 Determine the vertical deflection of the free end of the cantilever 
beam shown in Fig. 15.10(a). 

Let us suppose that the actual deflection of the cantilever at B produced by the 
uniformly dismbuted load is vB and that a vertically downward virtual unit load was 
applied at B before the actual deflection took place. The external virtual work done by 

Fig. 15.10 Deflection of the free end of a cantilever beam using the unit load 
method 
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the unit load is, from Fig. 15.10(b), lvB. The deflection, vB, is assumed to be caused 
by bending only, i.e. we are ignoring any deflections due to shear. The internal virtual 
work is given by Eq. (15.22) which, since only one member is involved, becomes 

The virtual moments, M,, are produced by a unit load so that we shall replace M ,  by 
MI. Thus 

(ii) 

At any section of the beam a distance z from the built-in end 

W M A - _ -  - ( L  - Z)', MI = -1(L - Z )  
2 

Substituting for MA and M ,  in Eq. (ii) and equating the external virtual work done 
by the unit load to the internal virtual work we have 

L W  l vB  = J - ( L  - z ) ~  dz 
2EI 

which gives 

so that 
wL4 
8EI 

= - (as in Ex. 13.2) 

Example 15.5 Determine the rotation, i.e. the slope, of the beam ABC shown in 
Fig. 15.1 1 (a) at A. 

The actual rotation of the beam at A produced by the actual concentrated load, W, 
is €lA. Let us suppose that a virtual unit moment is applied at A before the actual 
rotation takes place, as shown in Fig. 15.11(b). The virtual unit moment induces 
virtual support reactions of R,.A (= 1 / L )  acting downwards and Rv,c (= 1 / L )  acting 
upwards. The actual internal bending moments are 

W 
MA= -i- - ( L - Z )  

2 
L/2 < z s L 

The internal virtual bending moment is 

1 

L 
M , = I - - z  O S Z S L  
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Fig. 15.1 1 
using the unit load method 

The external virtual work done is l e ,  (the virtual support reactions do no work as 
there is no vertical displacement of the beam at the supports) and the internal virtual 
work done is given by Eq. (15.22). Hence 

Determination of the rotation of a simply supported beam at  a support 

1 Ll? w L W  
l e A  = - [In 1 Z(1 - I) dz + I L I I  1 ( L  - Z)(l - ;) d ~ ]  (i) 

EI 

Simplifying Eq. (i) we have 

(ii) 1 L 
e A  = - w [JL12 (Lz  - z') dz + 1, ( L  - z)* dz 

2EIL n 

' 3 L/2 

e A  = - w { [. ; - ;In - f [(. - z)3]:,2} 
2EIL 

Hence 

WL 2 
from which e * =  - 

16EI 

which is the result that may be obtained from Eq. (iii) of Ex. 13.5. 
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Example 15.6 Calculate the vertical deflection of the joint B and the horizontal 
movement of the support D in the truss shown in Fig. 15.12(a). The cross-sectional 
area of each member is 1800 mm2 and Young’s modulus, E ,  for the material of the 
members is 200 OOO N/mm‘. 

The virtual force systems, i.e. unit loads, required to determine the vertical 
deflection of B and the horizontal deflection of D are shown in Fig. 15.12(b) and 
(c), respectively. Thus, if the actual vertical deflection at B is 6B,v and the horizontal 
deflection at D is 6D,h the external virtual work done by the unit loads is 16B,v and 
16D,h, respectively. The internal actual and virtual force systems comprise axial 
forces in all the members. These axial forces are constant along the length of each 
member so that for a truss comprising n members, Eq. (15.13) reduces to 

(0  
n F A , j  Fv.j  L j  

Wi.N = 1 
j = l  EjAj 

in which FA, and Fv,i are the actual and virtual forces in the jth member which has a 
length Li, an area of cross-section Ai and a Young’s modulus Ep 

Since the forces F,,j are due to a unit load, we shall write Eq. (i) in the form 

(ii) ?z F A . j F , , j L j  
Wi.N = 1 

j -  1 EjAj 

Also, in this particular example, the area of cross-section, A ,  and Young’s modulus, 
E ,  are the same for all members so that it is sufficient to calculate Cjr, F A ,  F , ,  Li 
and then divide by EA to obtain Wi,N. 

Fig. 15.12 Deflection of a truss using the unit load method 



442 Virtual Work and Energy Methods 

Table 15.1 

Member 

A€ 
AB 

BC 
CD 
CF 
DF 

L(m) 

5.7 
4.0 
4-0 
4.0 
5.7 
4.0 
4.0 
4.0 
5.7 

F1 .B  

-84.9 
+60-0 
-60.0 
+20-0 
-28.3 
+80*0 
+80*0 

+ 1 00.0 
-113-1 

-0.94 
+0-67 
-0.67 
+0-67 
+0*47 
+Om33 
+Om33 
0 
-0.47 

0 +451-4 
+le0 + 160.8 
0 + 160-8 
0 +53*6 

+le0 +105-6 
+le0 + 105.6 
0 0 
0 +301-0 

C= +1263*6 

0 -75.2 

0 

0 
0 
0 

+240-0 

+320*0 
+320*0 

0 
0 

Z = +880.0 

The forces in the members, whether actual or virtual, may be calculated by the 
method of joints (Section 4.3). Note that the support reactions corresponding to the 
three sets of applied loads (one actual, two virtual) must be calculated before the 
internal force systems can be determined. However, in Fig. 15.12(c), it is clear from 
inspection that F,.AB = FIVBC = F,.cD = + 1 while the forces in all other members are 
zero. The calculations are presented in Table 15.1; note that positive signs indicate 
tension and negative signs compression. 

Thus equating internal and external virtual work done (Eq. (15.24)) we have 

1263.6 x lo6 
l 8 B . v  = 

200000 x 1800 
whence aB." = 3-51 mm 

and 
880 x lo6 

200000 x 1800 
D.h = 

which gives 8D,h = 2.44 mm 
Both deflections are positive which indicates that the deflections are in the directions 
of the applied unit loads. Note that in the above it is unnecessary to specify units for 
the unit load since the unit load appears, in effect, on both sides of the virtual work 
equation (the internal F ,  forces are directly proportional to the unit load). 

Examples 15.2-15.6 illustrate the application of the principle of virtual work to 
the solution of problems involving statically determinate linearly elastic structures. 
We have also previously seen its application in the plastic bending of beams 
(Fig. 9.42), thereby demonstrating that the method is not restricted to elastic 
systems. We shall now examine the alternative energy methods but we shall return to 
the use of virtual work in Chapter 16 when we consider statically indeterminate 
structures. 

15.3 Energy methods 
Although it is generally accepted that energy methods are not as powerful as the 
principle of virtual work in that they are limited to elastic analysis, they possibly find 
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their greatest use in providing rapid approximate solutions of problems for which 
exact solutions do not exist. Also, many statically indeterminate structures may be 
conveniently analysed using energy methods while, in addition, they are capable of 
providing comparatively simple solutions for deflection problems which are not 
readily solved by more elementary means. 

Energy methods involve the use of either the total complementary energy or the 
total potential energy of a structural system. Either method may be employed to 
solve a particular problem, although as a general rule displacements are more easily 
found using complementary energy while forces are more easily found using 
potential energy. 

Strain energy and complementary energy 
In Section 7.10 we investigated strain energy in a linearly elastic member subjected 
to an axial load. Subsequently in Sections 9.4, 10.3 and 11.2 we derived expressions 
for the strain energy in a linearly elastic member subjected to bending, shear and 

Fig. 15.13 Load-deflection curve for a non-linearly elastic member 
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torsional loads, respectively. We shall now examine the more general case of a 
member that is not linearly elastic. 

Figure 15.13 (a) shows the jth member of a structure comprising n members. The 
member is subjected to a gradually increasing load, Pi, which produces a gradually 
increasing displacement, A? If the member possesses non-linear elastic 
characteristics,the load-deflection curve will take the form shown in Fig. 15.13(b). 
Let us suppose that the final values of Pi and Aj are Pi.F and A,,F. 

As the member extends (or contracts if Pi is a compressive load) Pi does work 
which, as we saw in Section 7.10, is stored in the member as strain energy. The work 
done by Pi as the member extends by a small amount SAj is given by 

6 Wi = Pi SAj 

Therefore the total work done by Pj ,  and therefore the strain energy stored in the 
member, as P j  increases from zero to Pj,F is given by 

ui = j:F Pi dAj (15.27) 

which is clearly the area OBD under the load-deflection curve in Fig. 15.13(b). 
Similarly the area OAB, which we shall denote by cj, above the load-deflection 
curve is given by 

(15.28) 

It may be seen from Fig. 15.13 (b) that the area OABD represents the work done by a 
constant force Pj.F moving through the displacement Aj.p Thus from Eqs (15.27) and 
(15.28). 

~j + cj = Pj.F Aj.F (15.29) 

It follows that since uj has the dimensions of work, cj also has the dimensions of 
work but otherwise cj has no physical meaning. It can, however, be regarded as the 
complement of the work done by Pj  in producing the displacement Aj and is 
therefore called the complementary energy. 

The total strain energy, U ,  of the structure is the sum of the individual strain 
energies of the members. Thus 

n 

u = c  uj 
j -  1 

which becomes, when substituting for uj from Eq. (15.27) 

(15.30) 

Similarly, the total complementary energy, C, of the structure is given by 
n 

c = c  cj 
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whence, from Eq. (15.28) 

C = 2 J p i ' F  0 AidPi 
j= 1 

Equation (15.30) may be written in expanded form as 

U = J A i ' F  P I  dA , + / P2 dAt + + 1:' P, dA, n n 

(15.31) 

+ ... + I t ' '  P, dA,, (15.32) 

Partially differentiating Eq. (15.32) with respect to a particular displacement, say Ai, 
gives 

au - =pi 
a A j  

(15.33) 

Equation (15.33) states that the partial derivative of the strain energy in an elastic 
structure with respect to a displacement Ai is equal to the corresponding force Pi; 
clearly U must be expressed as a function of the displacements. This equation is 
generally known as Custigfiuno's jirst theorem (Purr I) after the Italian engineer 
who derived and published it in 1879. One of its primary uses is in the analysis of 
non-linearly elastic structures, which is outside the scope of this book. 

Now writing Eq. (15.31) in expanded form we have 

The partial derivative of Eq. (15.34) with respect to one of the loads, say Pi, is then 

-- - Ai 
ac 
api 

(15.35) 

Equation (15.35) states that the partial derivative of the complementary energy of an 
elastic suucture with respect to an applied load, Pi, gives the displacement of that 
load in its own line of action; C in this case is expressed as a function of the loads. 
Equation (15.35) is sometimes called the Crotti-Engesser theorem after the two 
engineers, one Italian, one German, who derived the relationship independently, 
Crotti in 1879 and Engesser in 1889. 

Now consider the situation that arises when the load-deflection curve is linear, as 
shown in Fig. 15.14. In this case the areas OBD and OAB are equal so that the strain 
and complementary energies are equal. Thus we may replace the complementary 
energy, C ,  in Eq. (15.35) by the strain energy, U. Hence 

-- - Aj 
au 
api 

(15.36) 

Equation (15.36) states that, for a linearly elastic structure, the partial derivative of 
the strain energy of a structure with respect to a load gives the displacement of the 
load in its own line of action. This is generally know as Custigliuno'sjirst theorem 
(Part ZZ). Its direct use is limited in that it enables the displacement at a particular 
point in a structure to be determined only if there is a load applied at the point and 
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Fig. 15.14 Load-deflection curve for a linearly elastic member 

only in the direction of the load. It could not therefore be used to solve for the 
required displacements at B and D in the truss in Ex. 15.6. 

The principle of the stationary value of the total complementary energy 
Suppose that an elastic structure comprising n members is in equilibrium under the 
action of a number of forces, P I ,  P, ,  ..., P,, ..., P,, which produce corresponding 
actual displacements, A , ,  A,, .. ., Ak,  . . ., Ar,  and actual internal forces, 
F,, F,, ..., F;, ..., F,. Now let us suppose that a system of elemental virtual forces, 
6 P , ,  6P2 ,  ..., 6P,,  ..., 6P,, are imposed on the structure and act through the actual 
displacements. The external virtual work, awe, done by these elemental virtual 
forces is, from Section 15.2, 

6We = 6P,Al  -+ 6P2A2 -+ --. + 6PLAk + * - -  + 6 P J r  
r 

or SW, = C A k  6 P k  (15.37) 

At the same time the elemental external virtual forces are in equilibrium with an 
elemental internal virtual force system, 6 F , ,  6F,, . . . , 6Fj,  . . ., 6F,, which moves 
through actual internal deformations, a,, Z2, ..., S,, ..., 6,. Hence the internal 
elemental virtual work done is 

1;- 1 

n 

6 W i = C  6, 6 F ,  (15.38) 
;= I 

2 A. ,6Pp  =T 6 ,6F,  
P =  1 ;= 1 

From Eq. (15.24) 

so that 2 6 , 6 F , - 2  A k 6 P , = 0  (15.39) 
;= 1 t =  I 
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Equation (15.39) may be written 

6 TjFJ s j d F j - 2  A k P k ) = O  (15.40) 

From Eq. (15.31) we see that the first term in Eq. (15.40) represents the comple- 
mentary energy, Ci, of the actual internal force system, while the second term 
represents the complementary energy, C,, of the external force system. Ci and C, 
are opposite in sign since C, is the complement of the work done by the external 
force system while Ci is the complement of the work done on the structure. 
Rewriting Eq. (15.40), we have 

6(Ci + C,) = 0 (15.41) 

In Eq. (15.40) the displacements, Ak, and the deformations, Si, are the actual 
displacements and deformations of the elastic structure. They therefore obey the 
condition of compatibility of displacement so that Eqs (15.41) and (15.40) are 
equations of geometrical compatibility. Also Eq. (15.41) establishes the principle of 
the stationary value of the total complementary energy which may be stated as: 

For an elastic body in equilibrium under the action of applied forces the true 
internal forces (or stresses) and reactions are those for which the total 
complementary energy has a stationary value. 

In other words the true internal forces (or stresses) and reactions are those that 
satisfy the condition of compatibility of displacement. This property of the total 
complementary energy of an elastic structure is particularly useful in the solution 
of statically indeterminate structures in which an infinite number of stress 
distributions and reactive forces may be found to satisfy the requirements of 
equilibrium so that, as we have already seen, equilibrium conditions are insufficient 
for a solution. 

We shall examine the application of the principle in the solution of statically 
indeterminate structures in Chapter 16. Meanwhile we shall illustrate its application 
to the calculation of displacements in statically determinate structures. 

I,=, o k =  1 

Fig. 15.15 Deflection of a truss using complementary energy 
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Example 15.7 The calculation of deflections in a truss. 

Suppose that we wish to calculate the deflection, A*, in the direction of the load, 
P, ,  and at the joint at which P ,  is applied in a truss comprising n members and 
carrying a system of loads P , ,  P? ,  ..., P, ,  .. ., P,, as shown in Fig. 15.15. From 
Eq. (15.40) the total complementary energy, C, of the truss is given by 

From the principle of the stationary value of the total complementary energy with 
respect to the load P, ,  we have 

from which 

(ii) 

(iii) 

Note that the partial derivatives with respect to P 2  of the fixed loads, 
P I ,  P , ,  ..., P,,  ..., P,,  vanish. 

To complete the solution we require the load-displacement characteristics of the 
structure. For a non-linear system in which, say, 

F j =  b(aj)' 

where b and c are known, Eq. (iii) becomes 

A,=g(?) - aFj  

j =  1 ap2 

In Eq. (iv) Fj may be obtained from basic equilibrium conditions, e.g. the method of 
joints, and expressed in terms of P?; hence aFj/i3P2 is found. The actual value of P 2  
is then substituted in the expression for Fi and the product (Fj /b) ' l raFj / i3P,  
calculated for each member. Summation then gives A,. 

In the case of a linearly elastic structure Si is, from Sections 7.4 and 7.7, given by 

&=- 
I E jA j  

in which Ej ,  Ai and Lj are Young's modulus, the area of cross-section and the length 
of the jth member. Substituting for Sj in Eq. (iii) we obtain 

Equation (v) could have been derived directly from Castigliano's first theorem (Pan 11) 
which is expressed in Q. (15.36) since, for a linearly elastic system, the comple- 
mentary and strain energies are identical; in this case the strain energy of the jth 
member is Fj2Lj/2AjEj from Eq. (7.29). Other aspects of the solution merit discussion. 
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We note that the support reactions at A and B do not appear in Eq. (i). This 
convenient absence derives from the fact that the displacements, 
A,, A,, ..., A, ,..., Ar, are the actual displacements of the truss and fulfil the 
conditions of geometrical compatibility and boundary restraint. The complementary 
energy of the reactions at A and B is therefore zero since both of their 
corresponding displacements are zero. 

In Eq. (v) the term aFj/aP,  represents the rate of change of the actual forces in 
the members of the truss with P,. This may be found, as described in the non-linear 
case, by calculating the forces, Fj,  in the members in terms of P z  and then 
differentiating these expressions with respect to Pz. Subsequently the actual value of 
P ,  would be substituted in the expressions for Fj  and thus, using Eq. (v), A2 
obtained. This approach is rather clumsy. A simpler alternative would be to calculate 
the forces, Fj ,  in the members produced by the applied loads including P z ,  then 
remove all the loads and apply P ,  only as an unknown force and recalculate the 
forces F j  as functions of P2; dFj/aP2 is then obtained by differentiating these 
functions. 

This procedure indicates a method for calculating the displacement of a point in 
the truss in a direction not coincident with the line of action of a load or, in fact, of 
a point such as C which carries no load at all. Initially the forces F j  in the members 
due to P , ,  P2 ,  ..., P,, ..., P, are calculated. These loads are then removed and a 
dummy orfictitious load, P I ,  applied at the point and in the direction of the required 
displacement. A new set of forces, Fj,  are calculated in terms of the dummy load, 
P f ,  and thus aFJ /aPf  is obtained. The required displacement, say & of C, is then 
given by 

The simplification may be taken a stage further. The force F, in a member due to the 
dummy load may be expressed, since the system is linearly elastic, in terms of the 
dummy load as 

(vii) 

Suppose now that P, = 1, i.e. a unit loud. Equation (vii) then becomes 

so that aFj/aP,= F, . j ,  the load in the jth member due to a unit load applied at the 
point and in the direction of the required displacement. Thus, Eq. (vi) may be 
written 

(viii) 

in which a unit load has been applied at C in the direction of the required 
displacement. Note that Eq. (viii) is identical in form to Q. (ii) of Ex. 15.6. 
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In the above we have concentrated on members subjected to axial loads. The 
arguments apply in cases where structural members carry bending moments that 
produce rotations, shear loads that cause shear deflections and torques that produce 
angles of twist. We shall now demonstrate the application of the method to 
structures subjected to other than axial loads. 

Example 15.8 Calculate the deflection, vB,  at the free end of the cantilever beam 
shown in Fig. 15.16(a). 

We shall assume that deflections due to shear are negligible so that vB is due 
entirely to bending action in the beam. In this case the total complementary energy 
of the beam is, from Eq. (15.40) 

C = j I" de dM - WvB 
n o  

in which M is the bending moment acting on an element, 6z, of the beam; 62 
subtends a small angle, 60, at the centre of curvature of the beam. The radius of 
curvature of the beam at the section is R as shown in Fig. 15.16(b) where, for 
clarity, we represent the beam by its neutral plane. From the principle of the 
stationary value of the total complementary energy of the beam 

whence 

In Eq. (ii) 

and from Eq. (9.1 1) 

so that 

1 M  
R El 
- = -  

M 
El 

68= - 6z 

Substituting in Eq. (ii) for 68 we have 
L M a M  -- dz 
0 EI aw 

so that 

From Fig. 15.16 (a) we see that 
M=-W(L-z )  

Hence - - ( L  - z) 
a M  -- 
aw 

(ii) 

(iii) 

Note: Eq. (iii) could have been obtained directly from Eq. (9.21) by using 
Castigliano's first theorem (Part 11). 
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Fig. 15.16 Deflection of a cantilever beam using complementary energy 

Equation (iii) then becomes 

L W  
vB = J, = ( L  - z12 dz 

(as in Ex 13.1) 
WL’ 

whence 2)B = - 
3EI 

Example 15.9 Determine the deflection, vB, of the free end of a cantilever beam 
carrying a uniformly distributed load of intensity w. The beam is represented in 
Fig. 15.17 by its neutral plane; the flexural rigidity of the beam is EI. 

For this example we use the dummy load method to determine vg since we require 
the deflection at a point which does not coincide with the position of a concentrated 

Fig. 15.17 Deflection of a cantilever beam using the dummy load method 
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load; thus we apply a dummy load, P,, at B as shown. The total complementary 
energy, C, of the beam includes that produced by the uniformly distributed load; thus 

in which v is the displacement of an elemental length, 6z, of the beam at any 
distance z from the built-in end. Then 

so that (ii) 

Note that in Eq. (i) t~ is an actual displacement and w an actual load, so that the 
last term disappears when C is partially differentiated with respect to P,. As in 
Ex. 15.8 

M 
EI 

&e= - 6Z 

Also 
W 

M=-P,(L-z)--((L-z)2 
2 

in which Pf is imaginary and therefore disappears when we substitute for M in 
Eq. (ii). Then 

aM 

apf 
- = -(L - z) 

so that 

whence 
wL4 

2)B = - 
8EI 

(see Ex. 13.2) 

For a linearly elastic system the bending moment, M,, produced by a dummy load, 
P,, may be written as 

aM M,= - P, 
ap, 

If  P, = 1, Le. a unit loud 

so that aM/aP, = M , ,  the bending moment due to a unit load applied at the point and 
in the direction of the required deflection. Thus we could write an equation for 
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deflection, such as Eq. (ii), in the form 

v =  J' M , M , d z  (iii) 
O EI 

in which MA is the actual bending moment at any section of the beam and M, is the 
bending moment at any section of the beam due to a unit load applied at the point 
and in the direction of the required deflection. Thus, in this example 

W 2 

2 
M A = - - ( L - Z )  9 M,=- l (L-z)  

L W  
so that V B  = J o  = ( L  - 213 dz 

as before. 

Temperature effects 
The principle of the stationary value of the total complementary energy in 
conjunction with the unit load method may be used to determine the effect of a 
temperature gradient through the depth of a beam. 

Normally, if a structural member is subjected to a uniform temperature rise, t ,  it 
will expand as shown in Fig. 15.18. However, a variation in temperature through the 
depth of the member such as the linear variation shown in Fig. 15.19(b) causes the 

Fig. 15.18 Expansion of a member due to a uniform temperature rise 

Fig. 15.19 Bending of a beam due to a linear temperature gradient 
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upper fibres to expand more than the lower ones so that bending strains, without 
bending stresses, are induced as shown in Fig. 15.19(a). Note that the undersurface 
of the member is unstrained since the change in temperature in this region is zero. 

Consider an element, 62, of the member. The upper surface will increase in length 
to 6z( l+ a t ) ,  while the length of the lower surface remains equal to 6z as shown in 
Fig. 15.19(c); a is the coefficient of linear expansion of the material of the member. 
Thus, from Fig. 15.19(c), 

R R + h  
6 2  6 ~ ( 1  +at)  
-=  

so that 

Also 

whence 

h R = -  
at 

62 
68=- 

R 

at 6z 
60=  - 

h 
(1 5.42) 

If we require the deflection, ATe,B, of the free end of the member due to the 
temperature rise, we can employ the unit load method as in Ex. 15.9. Thus, by 
comparison with Eq. (ii) in Ex. 15.9. 

(15.43) 

in which, as we have seen, a M / a P ,  = M, , the bending moment at any section of the 
member produced by a unit load acting vertically downwards at B. Now substituting 
for 68 in Eq. (15.43) from Eq. (15.42) 

(15.44) 

In the case of a beam carrying actual external loads the total deflection is, from the 
principle of superposition (Section 3.7), the sum of the bending, shear (unless 
neglected) and temperature deflections. Note that in Eq. (15.44) t can vary arbitrarily 
along the length of the beam but only linearly with depth. Note also that the 
temperature gradient shown in Fig. 15.19(b) produces a hogging deflected shape for 
the member. Thus, strictly speaking, the radius of curvature, R ,  in the derivation of 
Eq. (15.42) is negative (compare with Fig. 9.4) so that we must insert a minus sign 
in Eq. (15.44) as shown. 

Example 15.10 Determine the deflection of the free end of the cantilever beam in 
Fig. 15.20 when subjected to the temperature gradients shown. 

The temperature, t ,  at any section z of the beam is given by 
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Fig. 15.20 Deflection of a cantilever beam having linear lengthwise and 
depthwise temperature gradients 

Thus, substituting for t in Eq. (15.44), which applies since the variation of 
temperature through the depth of the beam is identical to that in Fig. 15.19(b), and 
noting that M ,  = - 1 ( L  - z) we have 

L a z  

h L  
ATe,B = - 1, [ - 1 ( ~  -Z)I - - to dz 

which simplifies to 

at,-, L 

hL. 
ATe.* = - 1, (Lz - z*) dz 

at,L* 
6 h  

whence IITe.B = - 

Potential energy 
In the spring-mass system shown in its unstrained position in Fig. 15.21(a) the 
potential energy of the mass, m, is defined as the product of its weight and its 
height, h, above some arbitrary fixed datum. In other words, it possesses energy by 
virtue of its position. If the mass is allowed to deflect to the equilibrium position 
shown in Fig. 15.21 (b) it has lost an amount of potential energy mg Ap Thus 
deflection is associated with a loss of potential energy or, alternatively, we could say 
that the loss of potential energy of the mass represents a negative gain in potential 
energy. Thus, if we define the potential energy of the mass as zero in its undeflected 
position in Fig. 15.21 (a), which is the same as taking the position of the datum such 
that h = 0, its actual potential energy in its deflected state in Fig. 15.21 (b) is -mgh. 
Thus, in the deflected state, the total energy of the spring-mass system is the sum of 
the potential energy of the mass ( - m g h )  and the strain energy of the spring. 

Applying the above argument to the elastic member in Fig. 15.13(a) and defining 
the total potential energy (TPE) of the member as the sum of the strain energy, U, 
of the member and the potential energy, V ,  of the load, we have 

TPE = U + V = /:''F P,  dAj - P,,FA,.F (see Eq. (15.25)) (15.45) 
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Fig. 15.21 Potential energy of a spring-mass system 

Thus, for a structure comprising n members and subjected to a system of loads, 
P I ,  P 2 ,  ..., P, ,  .. ., P,,  the total potential energy is given by 

T P E = U c V = T  / A i ' F  0 P j d A j - T  P k A k  (15.46) 

in which Pi is the internal force in the jth member, Aj,F is its extension or contraction 
and A, is the displacement of the load, P,, in its line of action. 

The principle of the stationary value of the total potential energy 

Let us now consider an elastic body in equilibrium under a series of loads, 
P , ,  P , ,  ..., P,, ..., P,, and let us suppose that we impose infinitesimally small virtual 
displacements, SAl ,  SA2, ..., SAk ,..., SAr, at the points of application and in the 
directions of the loads. The virtual work done by the loads is then 

j =  I I.- I 

r 

SW, = 1 P ,  SA, 

This virtual work will be accompanied by an increment of virtual strain energy, SU, 
or internal virtual work since, by imposing virtual displacements at the points of 
application of the loads we induce accompanying virtual strains in the body itself. 
Thus from the principle of virtual work (Eq. (15.24)) we have 

(15.47) 
/I= I 

SW, = SU 

or S U -  SW, = 0 
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Substituting for SW, from Eq. (15.47) we obtain 
r 

S U - C  P k  6 A p = 0  (1 5.48) 
L= I 

which may be written in the form 

6 U - C  P L A k  = O  

in which we see that the second term is the potential energy, V, of the applied loads. 
Hence the equation becomes 

6 (U + V )  = 0 (15.49) 

and we see that the total potential energy of an elastic system has a stationary value 
for all small displacements if the system is in equilibrium. 

It may also be shown that if the stationary value is a minimum, the equilibrium is 
stable. This may be demonstrated by examining the states of equilibrium of the 
particle at the positions A, B and C in Fig. 15.22. The total potential energy of the 
particle is proportional to its height, h, above some arbitrary datum, u; note that a 
single particle does not possess strain energy, so that in this case TPE = V. Clearly, at 
each position of the particle, the first-order variation, a(U+V)/au, is zero 
(indicating equilibrium) but only at B, where the total potential energy is a 
minimum, is the equilibrium stable; at A the equilibrium is unstable while at C the 
equilibrium is neutral. 

The principle of the stationary value of the total potential energy may therefore 
be stated as: 

The total potential energy of an elastic system has a stationary value for all small 
displacements when the system is in equilibrium; further, the equilibrium is stable 
if the stationary value is a minimum. 

Potential energy can often be used in the approximate analysis of structures in cases 
where an exact analysis does not exist. We shall illustrate such an application for a 
simple beam in Ex. 15.11 below and in Chapter 18 in the case of a buckled column; 

( k : ,  1 

Fig. 15.22 States of equilibrium of a particle 
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in both cases we shall suppose that the deflected form is unknown and has to be 
initially assumed (this approach is called the Rayleigh-Ritz method). For a linearly 
elastic system, of course, the methods of complementary energy and potential 
energy are identical. 

Example 15.11 Determine the deflection of the mid-span point of the linearly 
elastic, simply supported beam ABC shown in Fig. 15.23(a). 

We shall suppose that the deflected shape of the beam is unknown. Initially, 
therefore, we shall assume a deflected shape that satisfies the boundary conditions 
for the beam. Generally, trigonometric or polynomial functions have been found to 
be the most convenient where the simpler the function the less accurate the solution. 
Let us suppose that the displaced shape of the beam is given by 

Virtual Work and Energy Methods 

KZ 
v = uB sin - 6) 

L 

in which vB is the deflection at the mid-span point. From Eq. (i) we see that 
when z = 0 and z = L, v = 0 and that when z = L/2, v = us. Furthermore, dv/dz = 
(K/L)v, cos (xz/L) which is zero when z=L/2. Thus the displacement function 
satisfies the boundary conditions of the beam. 

L M 2  
o 2EI 

The strain energy due to bending of the beam is given by Eq. (9.21), i.e. 

(ii) iJ=/ -dz 

Also, from Eq. (13.3) 

(iii) 
d2 v 
dz2 

M =  -EI - 

Fig. 15.23 Approximate value for beam deflection using total potential energy 
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Substituting in Eq. (iii) for v from Eq. (i), and for M in Eq. (ii) from Eq. (iii), we 
have 

2 4  
7 7tz 

sin’ - dz 
L 

which gives 

The TPE of the beam is then given by 

x4 EIvi 
4L3 

TPE= U + V =  - - WVB 

Hence, from the principle of the stationary value of the total potential energy 

whence 

a( u + v) rC4EIV~ w = o  =-- 
avB 2 ~ 3  

WL’ - 0.02053 - v B = - -  2 WL) 
7 t 4 ~ ~  EI 

The exact expression for the deflection at the mid-span point was found in Ex. 13.5 
and is 

WL3 
- 0-02083 - V B = - -  

WL3 
48 EI EI 

Comparing the exact and approximate results we see that the difference is less than 
two percent. Furthermore, the approximate deflection is less than the exact deflection 
because, by assuming a deflected shape, we have, in effect, forced the beam into that 
shape by imposing restraints; the beam is therefore stiffer. 

15.4 Reciprocal theorems 
There are two reciprocal theorems: one, attributed to Maxwell, is the theorem of 
reciprocal displacements (often referred to as Maxwell’s reciprocal theorem) and 
the other, derived by Betti and Rayleigh, is the theorem of reciprocal work. We 
shall see, in fact, that the former is a special case of the latter. We shall also see that 
their proofs rely on the principle of superposition (Section 3.7) so that their 
application is limited to linearly elastic structures. 

Theorem of reciprocal displacements 
In a linearly elastic body a load, P I ,  applied at a point 1 will produce a displacement, 
A, ,  at the point and in its own line of action given by 

AI = a , , P ,  
in which a , ,  is a flexibility coejicient which is defined as the displacement at the 
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point 1 in the direction of P I  produced by a unit load at the point 1 in the direction 
of P I .  It follows that if the elastic body is subjected to a series of loads, 
P I ,  P,, ,..,PI., ..., P,, each of the loads will contribute to the displacement of point 
1. Thus the corresponding displacement, A I ,  at the point 1 (i.e. the total displacement 
in the direction of P I  produced by all the loads) is then 

A I  = a l ,P ,  + aIzP2  + + a,,P,+ + al,P, 

in which aI2  is the displacement at the point 1 in the direction of P I  produced by a 
unit ioad at 2 in the direction of P,, and so on. The corresponding displacements at 
the points of application of the loads are then 

1 A I  = a l l  P I  + a12P2  + -.. + a,,P,+ + al ,Pr 
A , = O ~ ~  P I  + a2,P, + - . e  + a2,P, + - . e  + azrPr  

I AP=aI. ,  P I  + a k 2 P 2  + + a,,P, + e-. + ap,Pr 

A r = a r l P I  + a r 2 P 2 + . - -  +a,,P,+-.-  +a,,P, 

or, in matrix form 

al l  a12 ... a l p  ... a, ,  
a,, a 2 ,  ... a,, ... a,, 

a,, ak2  ... a,, ... a,, 

a,, a r2  ... a,, ... a,, 

(15.50) 

(15.51) 

which may be written in matrix shorthand notation as 

{AI = [ A I { P l  

Suppose now that a linearly elastic body is subjected to a gradually applied load, P I ,  
at a point 1 and then, while P I  remains in position, a load P, is gradually applied at 
another point 2. The total strain energy, UI,  of the body is equal to the external work 
done by the loads; thus 

(15.52) 

The third term on the right-hand side of Eq. (15.52) results from the additional work 
done by P I  as it is displaced through a further distance a,,P, by the action of P2. If 
we now remove the loads and then apply P, followed by P I ,  the strain energy, U2,  is 
given by 

(15.53) 
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By the principle of superposition the strain energy of the body is independent of the 
order in which the loads are applied. Hence 

u, = U? 
so that a,? = a2,  (15.54) 

Thus, in its simplest form, the theorem of reciprocal displacements states that: 

The displacement at a point I in a given direction due to a unit load at a point 2 in 
a second direction is equal to the displacement at the point 2 in the second 
direction due to a unit load at the point 1 in the given direction. 
The theorem of reciprocal displacements may also be expressed in terms of 

The rotation at a point 1 due to a unit moment at a point 2 is equal to the rotation 
at the point 2 produced by a unit moment at the point I .  

moments and rotations. Thus: 

Finally we have: 
The rotation in radians at a point I due to a unit load at a point 2 is numerically 
equal to the displacement at the point 2 in the direction of the unit load due to a 
unit moment at the point I .  

Example 15.12 A cantilever 800 mm long with a prop 500 mm from its built-in 
end deflects in accordance with the following observations when a concentrated load 
of 40 kN is applied at its free end: 

Table 15.2 

Distancefromfixedend 0 100 200 300 400 500 600 700 800 

0 -0.3 -1.4 -2.5 -1.9 0 2.3 4.8 10.6 
(mm) 
Deflection 
(mm) 

What will be the angular rotation of the beam at the prop due to a 30 kN load 
applied 200 mm from the built-in end together with a 10 kN load applied 350 mm 
from the built-in end? 

The initial deflected shape of the cantilever is plotted to a suitable scale from the 
above observations and is shown in Fig. 15.24(a). Thus, from Fig. 15.24(a) we see 
that the deflection at D due to a 40 kN load at C is - 1.4 mm. Hence the deflection at 
C due to a 40 kN load at D is, from the reciprocal theorem, - 1 -4 mm. It follows that 
the deflection at C due to a 30 kN load at D is equal to (3/4) x (- 1.4) = - 1.05 mm. 
Again, from Fig. 15.24(a), the deflection at E due to a 40 kN load at C is -2.4 mm. 
Thus the deflection at C due to a 10 kN load at E is equal to (1/4) x (-2.4) = 
-0.6 mm. Therefore the total deflection at C due to a 30 kN load at D and a 10 kN 

load at E is - 1-05 - 0.6 = - 1-65 mm. From Fig. 15.24(b) we see that the rotation 
of the beam at B is given by 

- 1  1-65 
300 

eB=tan  -- - tan-’ 0.0055 

or eB = 0019’ 
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Fig. 15.24 Deflection of a propped cantilever using the reciprocal theorem 

Example 15.13 An elastic member is pinned to a drawing board at its ends A and 
B. When a moment, M, is applied at A, A rotates by 8 A ,  B rotates by OB and the 
centre deflects by 6,. The same moment, M, applied at B rotates B by 8, and deflects 
the centre through ?j2. Find the moment induced at A when a load, W, is applied to 
the centre in the direction of the measured deflections and A and B are restrained 
against rotation. 

The three load conditions and the relevant displacements are shown in Fig. 15.25. 
Thus, from Figs 15.25(a) and (b) the rotation at A due to M at B is, from the 
reciprocal theorem, equal to the rotation at B due to M at A. 

Thus eA(b) = eB 

It follows that the rotation at A due to MB at B is 

(i) 
M B  

eA(c).I = - OB M 
where (b) and (c) refer to (b) and (c) in Fig. 15.25. 

a unit moment at A. Therefore 
Also, the rotation at A due to a unit load at C is equal to the deflection at C due to 

eA(c).2 61 -- -- 
W M  

(ii) 

in which 8A(c),Z is the rotation at A due to W at C. Finally the rotation at A due to MA 

W 
M or eA(c).2 = - 61 
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Fig. 15.25 Model analysis of a fixed beam 

at A is, from Figs 15.25(a) and (c) 

(iii) 

The total rotation at A produced by MA at A, W at C and M, at B is, from Eqs (i), 
(ii) and (iii) 

M A  
eA(c).3 = - eA M 

(iv) 
M B  W M A  

eA(c).l + eA(c).2 + eA(c).3 = - e B  + - 6 l  i- - eA = o M M M 
since the end A is restrained against rotation. In a similar manner the rotation at B is 
given by 

(v) 
MB w MA - ec+ - t32 + - eB = o 
M M M 

Solving Eqs (iv) and (v) for MA gives 

M A = w (  6 2 e B - 6 1 8 C  ) 
eAec - e’, 

The fact that the arbitrary moment, M, does not appear in the expression for the 
restraining moment at A (similarly it does not appear in M,) produced by the load W 
indicates an extremely useful application of the reciprocal theorem, namely the 
model analysis of statically indeterminate structures. For example, the fixed beam of 
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Fig. 15.25(c) could possibly be a full-scale bridge girder. It is then only necessary to 
construct a model, say, of perspex, having the same flexural rigidity, EI, as the full- 
scale beam and measure rotations and displacements produced by an arbitrary 
moment, M ,  to obtain the fixed-end moments in the full-scale beam supporting a 
full-scale load. 

Theorem of reciprocal work 
Let us suppose that a linearly elastic body is to be subjected to two systems of loads, 
PI,  P2, ..., Pk, ..., P,, and, Q l ,  Q2, ..., Q; ,..., Q,, which may be applied 
simultaneously or separately. Let us also suppose that corresponding displacements 
are Ap.1. Ap.2, ..-,Ap.kr *..rAP.r due to the loading system, P, and 
AQ.1, A , , ,  ..., AQ,;, ..., AQ,, due to the loading system, Q. Finally, let us suppose that 
the loads, P, produce displacements Absl,  A&, ..., Ab,;, ..., Ab,, at the points of 
application and in the direction of the loads, Q. while the loads, Q, produce 
displacements ..., A;,, at the points of application and in the 
directions of the loads, P. 

Now suppose that the loads P and Q are applied to the elastic body gradually and 
simultaneously. The total work done, and hence the strain energy stored, is then 
given by 

..., 

UI = i P I ( A p , I  + A>, l )  + i P2(Ap.2 + A>.,) + - - -  + f Pk(Ap,k + A>,,) 

+ . . . + i P  ~ ( A P . ~ + A > , ~ ) + ~ Q I < A Q . ,  + A b . , ) + t Q 2 ( A ~ , z + A b . 2 )  

+ + fQ,(A,; + Ab.;) + + i Q,(AQ,, + Ab.,) (15.55) 

If now we apply the P loading system followed by the Q loading system, the total 
strain energy stored is 

U2 = f P1Ap.I + f P2Ap.2 + + i PkAp.k + + f P,Ap,, + i QlAQ,I + 1 Q ~ A Q . ~  

+ + f Q;AQ,; + + Q,AQ,, + I + P2 Ak.2 + <A>,k + - - e  + P, A>., (15.56) 

Since, by the principle of superposition, the total strain energies, UI and U?, must be 
the same, we have from Eqs (15.55) and (15.56) 

2 prA>,r 

= - f Q I A b . ,  - f Q  A' - ... - ?Q;Ab,;- 1 

- I PI A I,, - f p2A >,2 - . . . - 1 p.A' . - . . . - L 
2 I P k  

1 
;Z Q,Ab.m ... - 

2 Q.2 

In other words 
rn 

(1557) 
t =  1 ;= I 

The expression on the left-hand side of Eq. (15.57) is the sum of the products of 
the P loads and their corresponding displacements produced by the Q loads. The 
right-hand side of Eq. (15.57) is the sum of the products of the Q loads and their 
corresponding displacements produced by the P loads. Thus the theorem of 
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reciprocal work may be stated as: 

The work done by a first loading system when moving through the corresponding 
displacements produced by a second loading system is equal to the work done by 
the second loading system when moving through the corresponding displacements 
produced by the first loading system. 

Again, as in the theorem of reciprocal displacements, the loading systems may be 
either forces or moments and the displacements may be deflections or rotations. 

If, in the above, the P and Q loading systems comprise just two loads, say PI and 
Q2, then, from Eq. (15.57), we see that 

so that a12 = a21 
as in the theorem of reciprocal displacements. Therefore, as stated initially, we see 
that the theorem of reciprocal displacements is a special case of the theorem of 
reciprocal work. 

In addition to the use of the reciprocal theorems in the model analysis of 
structures as described in Ex. 15.13, they are used to establish the symmetry of, say, 
the stiffness matrix in the matrix analysis of some structural systems. We shall 
examine this procedure in Chapter 16. 

Pi (ai2Q2) = Qz(aziPi) 

Problems 
P.15.1 

Ans. R ,  = 1-25 W, R ,  = 1.75 W. 

Use the principle of virtual work to determine the support reactions in the 
beam ABCD shown in Fig. P.15.1. 

Fig. P.15.1 

Fig. P.15.2 
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P.15.2 Find the support reactions in the beam ABC shown in Fig. P.15.2 using 

Ans. RA= (W+2wL)/4, R,= (3W+2wL)/4. 

P.15.3 Determine the reactions at the built-in end of the cantilever beam ABC 
shown in Fig. P. 15.3 using the principle of virtual work. 

Ans. R A  = 3 W, M A  = 2.5 WL. 

the principle of virtual work. 

Fig. P.15.3 

P.15.4 Find the bending moment at the threequarter-span point in the beam 

Ans. 3wL2/32. 

shown in Fig. P.15.4. Use the principle of virtual work. 

Fig. P. 15.4 

P.15.5 Calculate the forces in the members FG, GD and CD of the mss shown 
in Fig. P.15.5 using the principle of virtual work. All horizontal and vertical 
members are 1 m long. 

Ans. FG = +20 kN, GD = +28-3 kN, CD = -20 kN. 

Fig. P.15.5 
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P.15.6 Use the unit load method to calculate the vertical displacements at the 

Ans. 1 19wL4/24576 El, 5wL4/384EI. 

quarter- and mid-span points in the beam shown in Fig. P.15.6. 

Fig. P.15.6 

P.15.7 

A m .  wa’(4L - a)/24EI. 

Calculate the deflection of the free end C of the cantilever beam ABC 
shown in Fig. P.15.7 using the unit load method. 

Fig. P.15.7 

P.15.8 

Ans. 3WL3/8EI. 

Use the unit load method to calculate the deflection at the free end of the 
cantilever beam ABC shown in Fig. P.15.8. 

Fig. P.15.8 

P.15.9 Use the unit load method to find the magnitude and direction of the 
deflection of the joint C in the truss shown in Fig. P.15.9. All members have a cross- 
sectional area of 500 mm’ and a Young’s modulus of 200 OOO N/mm’. 

Ans. 23.4 mm, 9.8” to left of vertical. 
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Fig. P.15.9 

P.15.10 Calculate the magnitude and direction of the deflection of the joint A in 
the truss shown in Fig. P.15.10. The cross-sectional area of the compression 
members is lo00 mm2 while that of the tension members is 750 mm2. Young's 
modulus is 200 OOO N/mm2. 

Ans. 15.03 mm, 9.6" to right of vertical. 

Fig. P.15.10 

P.15.11 A rigid triangular plate is suspended from a horizontal plane by three 
vertical wires attached to its corners. The wires are each 1 mm diameter, 
1440 mm long with a modulus of elasticity of 196 000 N/mm2. The ratio of the 
lengths of the sides of the plate is 3 : 4 : 5. Calculate the deflection at the point of 
application of a load of 100 N placed at a point equidistant from the three sides 
of the plate. 

Ans. 0-33 mm. 

P.15.12 The pin-jointed space frame shown in Fig. P.15.12 is pinned to supports 
0,4,5 and 9 and is loaded by a force P in the x direction and a force 3P in the 
negative y direction at the point 7. Find the rotation of the member 27 about the z 
axis due to this loading. All members have the same cross-sectional area, A ,  and 
Young's modulus, E. (Hint. Calculate the deflections in the x direction of joints 2 
and 7.) 

A m .  382P/9AE. 



Problems 469 

Fig. P.15.12 

P.15.13 The tubular steel post shown in Fig. P.15.13 cames a load of 250 N at 
the free end C. The outside diameter of the tube is 100 mm and its wall thickness is 
3 mm. If the modulus of elasticity of the steel is 206 0oO N/mm’, calculate the 
horizontal movement of C. 

Ans. 53.5 mm. 

Fig. P.15.13 

P.15.14 A cantilever beam of length L and depth h is subjected to a uniform 
temperature rise along its length. At any section, however, the temperature increases 
linearly from t ,  on the undersurface of the beam to tz on its upper surface. If the 
coefficient of linear expansion of the material of the beam is a, calculate the 
deflection at its free end. 

Ans. a ( f z  - t , ) L 2 / 2 h .  
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P.15.15 A simply supported beam of span L is subjected to a temperature 
gradient which increases linearly from zero at the left-hand support to to at the 
right-hand support. If the temperature gradient also varies linearly through the 
depth, h, of the beam and is zero on its undersurface, calculate the deflection of 
the beam at its mid-span point. The coefficient of linear expansion of the material 
of the beam is a. 

Ans. -at,L2/48h. 

P.15.16 Figure P.15.16 shows a frame pinned to supports at A and B. The frame 
centre-line is a circular arc and its section is uniform, of bending stiffness EI and 
depth d. Find the maximum stress in the frame produced by a uniform temperature 
gradient through the depth, the temperatures on the outer and inner surfaces being 
raised and lowered by an amount T .  The coefficient of linear expansion of the 
material of the frame is a. (Hint. Treat half the frame as a curved cantilever built-in 
on its axis of symmetry and determine the horizontal reaction at a support by 
equating the horizontal deflection produced by the temperature gradient to the 
horizontal deflection produced by the reaction). 

Ans. 1 -29ETa. 

Fig. P.15.16 

P.15.17 Calculate the deflection at the mid-span point of the beam of Ex. 15.1 1 
by assuming a deflected shape function of the form 

. x2 3x2 
27 = u I  sin - + u3 sin - 

L L 

in which u I  and u3 are unknown displacement parameters. Note: 
1. . 1 1, sin (nx;/L) dz = L/2, 1' sin(rnxz/L)sin(nxz/L) dz = 0 

n 

Ans. 0.02078 WL3/EI. 

P.15.18 A beam is supported at both ends and has the central half of its span 
reinforced such that its flexural rigidity is 2EI; the flexural rigidity of the 
remaining parts of the beam is EI. The beam has a span L and carries a vertically 
downward concentrated load, W ,  at its mid-span point. Assuming a deflected shape 
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function of the form 
2 4v,z 

L3 
v = -  (3L - 42) (0 d 2 d L/2)  

in which v, is the deflection at the mid-span point, determine the value of v,. 

Am. 0-00358 WL3/Et. 

P.15.19 Figure P.15.19 shows two cantilevers, the end of one being vertically 
above the end of the other and connected to it by a spring AB. Initially the system is 
unstrained. A weight, W ,  placed at A causes a vertical deflection at A of 61 and a 
vertical deflection at B of Zi2. When the spring is removed the weight W at A causes a 
deflection at A of a3. Find the extension of the spring when it is replaced and the 
weight, W, is transferred to B. 

Ans. 62(6l - 6?)/(63 - 6 , )  

Fig. P.15.19 

P.15.20 A beam 2.4 m long is simply supported at two points A and B which are 
1.44 m apart; point A is 0.36 m from the left-hand end of the beam and point B is 
0-6 m from the right-hand end; the value of Et for the beam is 240 x 10* N m 2 .  
Find the slope at the supports due to a load of 2 kN applied at the mid-point of AB. 

Use the reciprocal theorem in conjunction with the above result to find the 
deflection at the mid-point of AB due to loads of 3 kN applied at each end of the 
beam. 

Ans. 0.011, 15-8 mm. 



CHAPTER 16 

Analysis of Statically 
Indeterminate Structures 

Statically indeterminate structures occur more frequently in practice than those that 
are statically determinate and are generally more economical in that they are stiffer 
and stronger. For example, a fixed beam carrying a concentrated load at mid-span 
has a central displacement that is one quarter of that of a simply supported beam 
of the same span and carrying the same load, while the maximum bending moment 
is reduced by half. It follows that a smaller beam section would be required in the 
fixed beam case, resulting in savings in material. There are, however, 
disadvantages in the use of this type of beam for, as we saw in Section 13.7, the 
settling of a support in a fixed beam causes bending moments that are additional to 
those produced by the loads, a serious problem in areas prone to subsidence. 
Another disadvantage of statically indeterminate structures is that their analysis 
requires the calculation of displacements so that their cross-sectional dimensions 
are required at the outset. The design of such structures therefore becomes a matter 
of trial and error, whereas the forces in the members of a statically determinate 
structure are independent of member size. On the other hand, failure of, say, a 
member in a statically indeterminate frame would not necessarily be catastrophic 
since alternative load paths would be available, at least temporarily. However, the 
failure of a member in, say, a statically determinate truss would lead, almost 
certainly, to a rapid collapse. 

The choice between statically determinate and statically indeterminate structures 
depends to a large extent upon the purpose for which a particular structure is 
required. As we have seen, fixed or continuous beams are adversely affected by 
support settlement so that the insertion of hinges at, say, points of contraflexure 
would reduce the structure to a statically determinate state and eliminate the problem. 
This procedure would not be practical in the construction of skeletal structures for 
high-rise buildings so that these structures are statically indeterminate. Clearly, both 
types of structure exist in practice so that methods of analysis are required for both 
statically indeterminate and statically determinate structures. 

In this chapter we shall examine methods of analysis of different forms of 
statically indeterminate structures; as a preliminary we shall discuss the basis of the 
different methods, and investigate methods of determining the degree of statical and 
kinematic indeterminacy, an essential part of the analytical procedure. 
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16.1 Flexibility and stiffness methods 
In Section 4.4 we briefly discussed the statical indeterminacy of trusses and 
established a condition, not always applicable, for a truss to be stable and statically 
determinate. This condition, which related the number of members and the number 
of joints, did not involve the support reactions which themselves could be either 
statically determinate or indeterminate. The condition was therefore one of internal 
statical determinacy; clearly the determinacy, or otherwise, of the support reactions 
is one of external statical determinacy. 

Consider the portal frame shown in Fig. 16.1. The frame carries loads, P and W, 
in its own plane so that the system is two-dimensional. Since the vertical members 
AB and FD of the frame are fixed at A and F, the applied loads will generate a total 
of six reactions of force and moment as shown. For a two-dimensional system there 
are three possible equations of statical equilibrium (Eqs (2.10) so that the frame is 
externally statically determinate to the third degree. The situation is not improved by 
taking a section through one of the members since this procedure, although 
eliminating one of the sets of reactive forces, would introduce three internal stress 
resultants. If, however, three of the support reactions were known or, alternatively, 
if the three internal stress resultants were known, the remaining three unknowns 
could be determined from the equations of statical equilibrium and the solution 
completed. 

A different situation arises in the simple truss shown in Fig. 4.7(b) where, as we 
saw, the additional diagonal results in the truss becoming internally statically 
indeterminate to the jirst degree; note that the support reactions are statically 
determinate. 

In the analysis of statically indeterminate structures two basic methods are 
employed. In one the structure is reduced to a statically determinate state by 
employing releases, i.e. by eliminating a sufficient number of unknowns to enable 
the support reactions and/or the internal stress resultants to be found from a 
consideration of statical equilibrium. In the frame in Fig. 16.1, for example, the 
number of support reactions would be reduced to three if one of the supports was 

Fig. 16.1 Statical indeterminacy of a portal frame 
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pinned and the other was a pinned roller support. The same result would be achieved 
if one support remained fixed and the other support was removed entirely. Also, in 
the truss in Fig. 4.7.(b), removing a diagonal, vertical or horizontal member would 
result in the truss becoming statically determinate. Releasing a structure in this way 
would produce displacements that would not otherwise be present. These 
displacements may be calculated by analysing the released statically determinate 
structure; the force system required to eliminate them is then obtained, i.e. we are 
employing a compatibility of displacement condition. This method is generally 
termed the flexibility or force method; in effect this method was used in the solution 
of the propped cantilever in Fig. 13.22. 

The alternative procedure, known as the stifness or displacement method is 
analogous to the flexibility method, the major difference being that the unknowns are 
the displacements at specific points in the structure. Generally the procedure requires 
a structure to be divided into a number of elements for each of which 
load -displacement relationships are known. Equations of equilibrium are then 
written down in terms of the displacements at the element junctions and are solved 
from the required displacements; the complete solution follows. 

Both the flexibility and stiffness methods generally result, for practical structures 
having a high degree of statical indeterminacy, in a large number of simultaneous 
equations which are most readily solved by computer-based techniques. However, 
the flexibility method requires the stmcture to be reduced to a statically determinate 
state by inserting releases, a procedure requiring some judgement on the part of the 
analyst. The stiffness method, on the other hand, requires no such judgement to be 
made and is therefore particularly suitable for automatic computation. 

Although the practical application of the flexibility and stiffness methods is 
generally computer-based, they are fundamental to ‘hand’ methods of analysis as we 
shall see. Before investigating these hand methods we shall examine in greater detail 
the indeterminacy of structures since we shall require the degree of indeterminacy 
of a structure before, in the case of the flexibility method, the appropriate number 
of releases can be determined. At the same time the kinematic indeterminacy of a 
structure is needed to determine the number of constraints that must be applied to 
render the structure kinematically determinate in the stiffness method. 

16.2 Degree of statical indeterminacy 
In some cases the degree of statical indeterminacy of a structure is obvious from 
inspection. The portal frame in Fig. 16.1, for example, has a degree of external 
statical indeterminacy of 3, while the truss of Fig. 4.7(b) has a degree of internal 
statical indeterminacy of 1. However, in many cases, the degree is not obvious and 
in other cases the internal and external indeterminacies may not be independent so 
that we need to consider the complete structure, including the support system. A 
more formal and methodical approach is therefore required. 

Rings 
The simplest approach is to insert constraints in a structure until it becomes a series 
of completely stiff rings. The statical indeterminacy of a ring is known and hence 
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that of the completely stiff structure. Thus by inserting the number of releases 
required to return the completely stiff structure to its original state, the degree of 
indeterminacy of the actual structure is found. 

Consider the single ring shown in Fig. 16.2(a); the ring is in equilibrium in space 
under the action of a number of forces that are not coplanar. If, say, the ring is cut at 
some point, X, the cut ends of the ring will be displaced relative to each other as 
shown in Fig. 16.2(b) since, in effect, the internal forces equilibrating the external 
forces have been removed. The cut ends of the ring will move relative to each other in 
up to six possible ways until a new equilibrium position is found, i.e. translationally 
along the x,  y and z axes and rotationally about the x ,  y and z axes, as shown in 
Fig. 16.2(c). The ring is now statically determinate and the internal force system at any 
section may be obtained from simple equilibrium considerations. To rejoin the ends of 
the ring we require forces and moments proportional to the displacements, i.e. three 
forces and three moments. Thus at any section in a complete ring subjected to an 
arbitrary external loading system there are three internal forces and three internal 
moments, none of which may be obtained by statics. Thus a ring is six times statically 
indeterminate. For a two-dimensional system in which the forces are applied in the 
plane of the ring, the internal force system is reduced to an axial force, a shear force 
and a moment, so that a two-dimensional ring is three times statically indeterminate. 

The above arguments apply to any closed loop so that a ring may be of any shape. 
Furthermore, a ring may be regarded as comprising any number of members which 
form a closed loop and which are joined at nodes, a node being defined as a point at 
the end of a member. Examples of rings are shown in Fig. 16.3 where the number 

Fig. 16.2 Statical indeterminacy of a ring 
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Fig..16.3 Examples of rings 

of members, M, and the number of nodes, N, are given. Note that the number of 
members is equal to the number of nodes in every case. However, when a ring is cut 
we introduce an additional member and two additional nodes, as shown in Fig. 16.4. 

The entire structure 
Since we shall require the number of rings in a structure, and since it is generally 
necessary to include the support system, we must decide what constitutes the 
structure. In Fig. 16.5, for example, the members AB and BC are pinned to the 
foundation at A and C. The foundation therefore acts as a member of very high 
stiffness. In this simple illustration it is obvious that the members AB and BC, with 
the foundation, form a ring if the pinned joints are replaced by rigid joints. In more 
complex structures we must ensure that just sufficient of the foundation is included 
so that superfluous indeterminacies are not introduced; the structure is then termed 
the entire structure. This condition requires that the points of support are singly 
connected such that for any two points A and B in the foundation system there is 
only one path from A to B that does involve retracing any part of the path. In 

Fig. 16.4 Effect on members and nodes of cutting a ring 

Fig. 16.5 Foundation acting as a structural member 
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Figs 16.6(a) and (b), for example, there is only one path between A and B which 
does not involve retracing part of the path. In Fig. 16.6(c), however, there are two 
possible paths from A to B, one via G and one via F and E. Thus the support points 
in Fig. 16.6(a) and (b) are singly connected, while those in Fig. 16.6(c) are multiply 
connected. We note from the above that there may be a number of ways of singly 
connecting the support points in a foundation system and that each support point in 
the entire structure is attached to at least one foundation ‘member’. Including the 
foundation members increases the number of members, but the number of nodes is 
unchanged. 

The completely stiff structure 
Having established the entire structure we now require the completely stif structure 
in which there is no point or member where any stress resultant is always zero for 
any possible loading system. Thus the completely stiff structure (Fig. 16.7(b)) 
corresponding to the simple truss in Fig. 16.7(a) has rigid joints (nodes), members 
that are capable of resisting shear loads as well as axial loads and a single 
foundation member. Note that the completely stiff structure comprises two rings, is 
two-dimensional and therefore six times statically indeterminate. We shall consider 
how such a structure is ‘released’ to return it to its original state (Fig. 16.7(a)) after 
considering the degree of indeterminacy of a three-dimensional system. 

Degree of statical indeterminacy 
Consider the frame structure shown in Fig. 16.8(a). It is three-dimensional and 
comprises three portal frames that are rigidly built-in at the foundation. Its 
completely stiff equivalent is shown in Fig. 16.8(b) where we observe by inspection 
that it consists of three rings, each of which is six times statically indeterminate so 
that the completely stiff structure is 3 x 6 = 18 times statically indeterminate. 
Although the number of rings in simple cases such as this is easily found by 
inspection, more complex cases require a more methodical approach. 

Suppose that the members are disconnected until the structure becomes singly 
connected as shown in Fig. 16.8(c). (A singly connected structure is defined in the 
same way as a singly connected foundation.) Each time a member is disconnected, 
the number of nodes increases by one, while the number of rings is reduced by one; 

Fig. 16.6 Determination of the entire structure 



478 Analysis of Statically Indeterminate Structures 

Fig. 16.7 A completely stiff structure 

Fig. 16.8 Determination of the degree of statical indeterminacy of a structure 

the number of members remains the same. The final number of nodes, N',  in the 
singly connected structure is therefore given by 

N' = M + 1 (M = number of members) 

Suppose now that the members are reconnected to form the original completely stiff 
structure. Each reconnection forms a ring, Le. each time a node disappears a ring is 
formed so that the number of rings, R ,  is equal to the number of nodes lost during 
the reconnection. Thus 

R = N ' - N  

where N is the number of nodes in the completely stiff structure. Substituting for N' 
from the above we have 

R = M - N + l  

In Fig. 16.8(b) ,  M = 10 and N = 8 so that R = 3 as deduced by inspection. Therefore, 
since each ring is six times statically indeterminate, the degree of statical 
indeterminacy, n:, of the completely stiff structure is given by 

n : = 6 ( M - N +  1 )  (16.1) 

For an actual entire structure, releases must be inserted to return the completely 
stiff structure to its original state. Each release will reduce the statical indeterminacy 
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by one, so that if r is the total number of releases required, the degree of statical 
indeterminacy, n,, of the actual structure is 

n, = nl - r 
or, substituting for n: from Eq. (16.1) 

n,=6(M-N+ 1 ) - r  (16.2) 

Note that in Fig. 16.8 no releases are required to return the completely stiff structure 
of Fig. 16.8(b) to its original state in Fig. 16.8(a) so that its degree of 
indeterminacy is 18. 

In the case of two-dimensional structures in which a ring is three times statically 
indeterminate, Eq. (16.2) becomes 

n,=3(M-N+ 1 ) - r  (16.3) 

Pin-jointed frames 
A difficulty arises in determining the number of releases required to return the 
completely stiff equivalent of a pin-jointed frame to its original state. 

Consider the completely stiff equivalent of a plane truss shown in Fig. 16.9(a); we 
are not concerned here with the indeterminacy or otherwise of the support system 
which is therefore omitted. In the actual truss each member is assumed to be capable 
of resisting axial load only so that there are two releases for each member, one of 
shear and one of moment, a total of 2M releases. Thus, if we insert a hinge at the 
end of each member as shown in Fig. 16.9(b) we have achieved the required 
number, 2M, of releases. However, in this configuration, each joint would be free to 
rotate as a mechanism through an infinitesimally small angle, independently of the 
members; the truss is then excessively pin-jointed. This situation can be prevented by 
removing one hinge at each joint as shown, for example, at joint B in Fig. 16.9(c). 
The member BC then prevents rotation of the joint at B. Furthermore, the presence 
of a hinge at B in BA and at B in BE ensures that there is no moment at B in BC so 
that the conditions for a truss are satisfied. 

From the above we see that the total number, 2M, of releases is reduced by one 
for each node. Thus the required number of releases in a plane truss is 

r = 2 M - N  (16.4) 

so that Eq. (16.3) becomes 

n,=3(M-N+ 1)- (2M-N) 

or n,= M -  2N + 3 (16.5) 

Equation (16.5) refers only to the internal indeterminacy of a truss so that the degree 
of indeterminacy of the support system is additional. Also, returning to the simple 
triangular truss of Fig. 16.7(a) we see that its degree of internal indeterminacy is, 
from Eq. (16.5), given by 

n,= 3 - 2  x 3 + 3 = O  

as expected. 
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Fig. 16.9 Number of releases for a plane truss 

A similar situation arises in a pin-jointed space frame where, again, each member 
is required to resist axial load only so that there are 5 M  releases for the complete 
frame. This could be achieved by inserting ball joints at the ends of each member. 
However, we would then be in the same kind of position as the plane truss of 
Fig. 16.9(b) in that each joint would be free to rotate through infinitesimally small 
angles about each of the three axes (the members in the plane uuss can only rotate 
about one axis) so that three constraints are required at each node, a total of 3N 
constraints. Therefore the number of releases is given by 

r = 5 M - 3 N  

so that Eq. (16.2) becomes 

nS=6(M-N+ 1)- (5M-3N) 

or ns= M -  3N + 6 (16.6) 

For statically determinate plane trusses and pin-jointed space frames, i.e. n, = 0, 
Eqs (16.5) and (16.6) become, respectively, 

M=2N-3,  M = 3 N - 6  (16.7) 

which are the results deduced in Section 4.4 (Eqs (4.1) and (4.2)). 

16.3 Kinematic indeterminacy 
We have seen that the degree of statical indeterminacy of a structure is, in fact, the 
number of forces or stress resultants, which cannot be determined using the 
equations of statical equilibrium. Another form of the indeterminacy of a structure 
is expressed in terms of its degrees of freedom; this is known as the kinematic 
indeterminacy, nk ,  of a structure and is of particular relevance in the stiffness 
method of analysis where the unknowns are the displacements. 

A simple approach to calculating the kinematic indeterminacy of a structure is to 
sum the degrees of freedom of the nodes and then subtract those degrees of freedom 
that are prevented by constraints such as support points. It is therefore important to 
remember that in three-dimensional structures each node possesses six degrees of 
freedom while in plane structures each node possess three degrees of freedom. 

Example 16.1 Determine the degrees of statical and kinematic indeterminacy of 
the beam ABC shown in Fig. 16.10(a). 
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Fig. 16.10 Determination of the statical and kinematic indeterminacies of the 
beam of Ex. 16.1 

The completely stiff structure is shown in Fig. 16.10(b) where we see that M = 4 
and N = 3. The number of releases, r,  required to return the completely stiff structure 
to its original state is five, as indicated in Fig. 16.10(b); these comprise a moment 
release at each of the three supports and a translational release at each of the 
supports B and C. Therefore, from Eq. (16.3) 

n , = 3 ( 4 - 3 + 1 ) - 5 = 1  

so that the degree of statical indeterminacy of the beam is one. 

are four constraints so that the degree of kinematic indeterminacy is given by 
Each of the three nodes possesses three degrees of freedom, a total of nine. There 

nk = 9 - 4  = 5 

Example 16.2 Determine the degree of statical and kinematic indeterminacy of 
the pin-jointed frame shown in Fig. 16.1 1 (a). 

The completely stiff structure is shown in Fig. 16.11(b) in which we see that 
M = 17 and N = 8. However, since the frame is pin-jointed, we can obtain the 
internal statical indeterminacy directly from Eq. (16.5) in which M = 16, the actual 
number of frame members. Thus 

n,= 16- 1 6 + 3 = 3  

and since, as can be seen from inspection, the support system is statically 
determinate, the complete structure is three times statically indeterminate. 

Alternatively, considering the completely stiff structure in Fig. 16.1 1 (b) in which 
M =  17 and N = 8, we can use Eq. (16.3). The number of internal releases is found 
from Eq. (16.4) and is r = 2 x 16 - 8 = 24. There are three additional releases from 
the support system giving a total of twenty-seven releases. Thus, from Eq. (16.3) 

) I ,  = 3 ( 1  7 - 8 + 1 )  - 27 = 3 

as before. 

Fig. 16.11 Determinacy of the pin-jointed frame of Ex. 16.2 



482 Analysis of Statically Indeterminate Structures 

The kinematic indeterminacy is found as before by examining the total degrees of 
freedom of the nodes and the constraints, which in this case are provided solely by the 
support system. There are eight nodes each having two mslational degrees of 
freedom. The rotation at a node does not result in a stress resultant and is therefore 
irrelevant. There are therefore two degrees of freedom at a node in a pin-jointed plane 
frame and three in a pin-jointed space frame. In this example there are then 8 x 2 = 16 
degrees of freedom and three translational constraints from the support system. Thus 

n k =  16-3= 13 

Example 16.3 Calculate the degree of statical and kinematic indeterminacy of the 
frame shown in Fig. 16.12(a). 

In the completely stiff structure shown in Fig. 16.12(a), M = 7  and N=6.  The 
number of releases, r,  required to return the completely stiff structure to its original 
state is 3. Thus, from Eq. (16.3) 

n ,=3(7-6+1)-3=3 

The number of nodes is six, each having three degrees of freedom, a total of 
eighteen. The number of constraints is three so that the kinematic indeterminacy of 
the frame is given by 

n k =  18 - 3 = 15 

Example 16.4 
space frame shown in Fig. 16.13 (a). 

Therefore from Eq. (16.2) 

Determine the degree of statical and kinematic indeterminacy in the 

In the completely stiff structure shown in Fig. 16.13(b), M =  19, N = 13 and r = 0. 

11,=6(19- 13+ 1 ) - 0 ~ 4 2  

There are thirteen nodes each having six degrees of freedom, a total of seventy- 
eight. There are six constraints at each of the four supports, a total of twenty-four. 
Thus 

n k  = 78 - 24 = 54 

We shall now consider different types of statically indeterminate structure and the 
methods that may be used to analyse them; the methods are based on the work and 
energy methods described in Chapter 15. 

Fig. 16.12 Statical and kinematic indeterminacies of the frame of Ex. 16.3 
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Fig. 16.13 Space frame of Ex. 16.4 

16.4 Statically indeterminate beams 
Beams are statically indeterminate generally because of their support systems. In this 
category are propped cantilevers, fixed beams and continuous beams. A propped 
cantilever and some fixed beams were analysed in Section 13.7 using either the 
principle of superposition or moment-area methods. We shall now apply the methods 
described in Chapter 15 to some examples of statically indeterminate beams. 

Example 16.5 Calculate the support reaction at B in the propped cantilever shown 
in Fig. 16.14. 

In this example it is unnecessary to employ the procedures described in 
Section 16.2 to calculate the degree of statical indeterminacy since this is obvious by 
inspection. Thus the removal of the vertical support at B would result in a statically 
determinate cantilever beam so that we deduce that the degree of statical 
indeterminacy is one. Furthermore, it is immaterial whether we use the principle of 
virtual work or complementary energy in the solution since, for linearly elastic 
systems, they result in the same equations (see Chapter 15). First, we shall adopt the 
complementary energy approach. 

The total complementary energy, C, of the beam is given, from Eq. (i) of 
Ex. 15.8, by 

c=jLj" n n  dedM-RBVB (0 

in which vB is the vertical displacement of the cantilever at B (in this case vB = 0 
since the beam is supported at B). 

From the principle of the stationary value of the total complementary energy we have 

de-VB=O (ii) 
ac L aM -- - 
aRB In Z 

which, by comparison with Eq. (iii) of Ex. 15.8, becomes 

dz = 0 (iii) v B = J  -- 
L M aM 
' El aRB 
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Fig. 16.14 Propped cantilever of Ex. 16.5 

The bending moment, M, at any section of the beam is given by 

W 
M =  R B ( L  - Z) - - ( L  - z)’ 

2 

- L - z  -- aM 
JRB 

Hence 

Substituting in Eq. (iii) for M and 

aM - 
aRB 

(iv) 1 / ; { R B ( L - z )  2 w  - - ( L - z ) ~  d z = O  we have 
2 

3wL 
from which R B = -  

8 
which is the result obtained in Ex. 13.19. 

assumed an origin for z at the end B of the beam. Equation (iv) would then become 

/,(RBz2-:z3)dz=0 

The algebra in the above solution would have been slightly simplified if we had 

3 WL 
which again gives R B = -  

8 
Having obtained RB, the remaining support reactions follow from statics. 
An alternative approach is to release the structure so that it becomes statically 

determinate by removing the support at B (one release only is required in this case) 
and then to calculate the vertical displacement at B due to the applied load using, 
say, the unit load method. We then calculate the vertical displacement at B produced 
by R ,  acting alone, again, say, by the unit load method. The sum of the two 
displacements must be zero since the beam at B is supported, so that we obtain an 
equation in which R ,  is the unknown. 



Statically indeterminate beams 485 

It is not essential to select the support reaction at B as the release. We could, in 
fact, choose the fixing moment at A in which case the beam would become a simply 
supported beam which, of course, is statically determinate. We would then 
determine the moment at A required to restore the slope of the beam at A to zero. 

In the above, the released structure is frequently termed the primary structure. 
Suppose that the vertical displacement at the free end of the released cantilever 

due to the uniformly distributed load is v g p .  Then, from 3. (iii) of Ex. 15.9 (noting 
that M A  in that equation has been replaced by Ma here to avoid confusion with the 
bending moment at A) 

in which 
W 

Ma = -- ( L  - Z)*, MI = -1(L - z) 
2 

Hence, substituting for Ma and M I  in Eq. (v), we have 

which gives 
wL4 

VB.0 = - 
8EI 

We now apply a vertically downward unit load at the B end of the cantilever from 
which the distributed load has been removed. The displacement, v ~ . ~ ,  due to this unit 
load is then, from Eq. (v) 

from which 
L” 

v B . l  = - 
3EI 

(vii) 

The displacement due to RB at B is -RBvB., (RB acts in the opposite direction to the 
unit load) so that the total displacement, vB, at B due to the uniformly distributed 
load and RB is, using the principle of superposition, 

U B  = vg.0- RBvB.1 = 0 (viii) 

Substituting for vB.0 and vB.1 from Eqs (vi) and (vii) we have 

wLJ L’ 
- - R B - -  - 0  
8EI 3EI 

3wL 
whence R B = -  

8 

as before. This approach is the flexibility method described in Section 16.1 and is, in 
effect, identical to the method used in Ex. 13.9. 



486 Analysis of Statically Indeterminate Structures 

In Eq. (viii) vB., is the displacement at B in the direction of RB due to a unit load 
at B applied in the direction of RB (either in the same or opposite directions). For a 
beam that has a degree of statical indeterminacy greater than one there will be a 
series of equations of the same form as Eq. (viii) but which will contain the 
displacements at a specific point produced by the redundant forces. We shall 
therefore employ the flexibility coeflcient akj ( k  = 1, 2, . . . , r ;  j = 1, 2, . . . , r )  which 
we defined in Section 15.4 as the displacement at a point k in a given direction 
produced by a unit load at a point j in a second direction. Thus, in the above, 
vB., = a , ,  so that Eq. (viii) becomes 

uB.0 - a1 I R B  = 0 0x1 
It is also convenient, since the flexibility coefficients are specified by numerical 
subscripts, to redesignate RB as R,. Thus Eq. (ix) becomes 

uB.n-aiiRi = O  (x 1 
Example 16.6 Determine the support reaction at B in the propped cantilever shown 
in Fig. 16.15(a). 

As in Ex. 16.5, the cantilever in Fig. 16.15(a) has a degree of statical 
indeterminacy equal to one. Again we shall choose the support reaction at B, R,, as 
the indeterminacy; the released or primary structure is shown in Fig. 16.15(b). 
Initially we require the displacement, v g . 0 ,  at B due to the applied load, W ,  at C. This 
may readily be found using the unit load method. Thus from Eq. (iii) of Ex. 15.9 

which gives 
7 WL3 

uB.0 = - 
12EI 

-1(L - z)) dz 

Similarly, the displacement at B due to the unit load at B in the direction of R, 
(Fig. 16.15(c)) is 

(use Eq. (vii) of Ex. 16.5) 
L3 

a , ,  = - 
3EI 

we have 

whence 

R, = O  
7WL3 L3 --- 
12EI 3EI 

7w 
R , = -  

4 

(ii) 

Alternatively, we could select the fixing moment, MA (=M,), at A as the release. 
The primary structure is then the simply supported beam shown in Fig. 16.16(a) 
where RA=-W/2 and RB=3W/2. The rotation at A may be found by any of the 
methods previously described. They include the integration of the second-order 
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Fig. 16.16 Alternative solution for Ex. 16.6 

differential equation of bending (Q. (13.3)), the moment-area method described in 
Section 13.3 and the unit load method (in this case it would be a unit moment). 
Thus, using the unit load method and applying a unit moment at A as shown in 
Fig. 16.16(b) we have, from the principle of virtual work (see Ex. 15.5), 

(iii) 3Lj2 Ma M, 1eA.O = 1," % dz + 1 - dz 
L EI 

In Eq. (iii) 

1 W 
2 L 

z, M , = - z - 1  ( O s z s L )  M a = - -  

M,=Wz--, 3 WL M,=O ( L s z s  T) 
2 

Substituting in Eq. (iii) we have 

W L  
8A,o = - 5, (Lz - z') dz 

2 EIL 

(anticlockwise) 
WL? 

from which 8A.O = - 
12EI 
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The flexibility coefficient, 022, i.e. the rotation at A (point 2), due to a unit moment at 
A is obtained from Fig. 16.16(b). Thus 

0 2 2 = I L  -(-- 1 . 2  1) * dz 
O EI L 

L 

3EI 
from which 022 = - (anticlockwise) 

Therefore, since the rotation at A in the actual structure is zero, 

0A.O+ 022M2=0 

WL2 L 
or - + - M , = O  

12EI 3EI 

WL 
4 

(clockwise) M --- which gives 2 -  

Considering now the statical equilibrium of the beam in Fig. 16.15(a) we have, 
taking moments about A 

3L WL 
2 4  

7 W L  
whence R ,  = - 

4 

R I L -  W -  - -- - 0  

as before. 
Example 16.7 Determine the support reactions in the three-span continuous beam 
ABCD shown in Fig. 16.17(a). 

Fig. 16.17 Analysis of a three-span continuous beam 
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It is clear from inspection that the degree of statical indeterminacy of the beam is 
two. Therefore, if we choose the supports at B and C as the releases, the primary 
structure is that shown in Fig. 16.17(b). We therefore require the vertical 
displacements, v g . 0  and vc.0, at the points B and C. These may readily be found 
using any of the methods previously described (unit load method, moment-area 
method, Macauley’s method (Section 13.2)) and are 

8.88 9-08 
, vc.0 = - 2b.n = - 

EI EI 

We now require the flexibility coefficients, a,,, a12,  a22 and a*,. The coefficients 
a,, and a2, are found by placing a unit load at B (point 1) as shown in Fig. 16.17(c) 
and then determining the displacements at B and C (point 2). Similarly, the 
coefficients aZ2 and a,, are found by placing a unit load at C and calculating the 
displacements at C and B; again, any of the methods listed above may be used. 
However, from the reciprocal theorem (Section 15.4) a,* = a2, and from symmetry 
a,, = a22. Therefore it is only necessary to calculate the displacements a,, and a2, 
from Fig. 16.17(c). These are 

0.45 0-39 
a,, = a22 = - , a2, = a l 2 =  - 

El EI 

The total displacements at the support points B and C are zero so that 

or, substituting the calculated values of v g . 0 ,  a,,, etc, in Eqs (i) and (ii) and 
multiplying through by EI, 

8.88 - 0.45RI - 0.39RZ = 0 (iii) 
9.08 - 0-39RI - 0.45RZ = 0 (iv) 

Note that the negative signs in the terms involving R, and R, in Eqs (i) and (ii) are 
due to the fact that the unit loads were applied in the opposite directions to R, and 
R,. Solving Eqs (iii) and (iv) we obtain 

R,(=Rg)=8.7 kN, RZ(=RC)= 12-68 kN 

The remaining reactions are determined by considering the statical equilibrium of 
the beam and are 

R, = 1.97 kN, Rg = 4.65 kN 
In Exs 16.5-16.7 we have assumed that the beam supports are not subjected to 

a vertical displacement themselves. It is possible, as we have previously noted, 
that a support may sink, so that the right-hand side of the compatibility 
equations, Eqs (viii), (ix) and (x) in Ex. 16.5, Eq. (ii) in Ex. 16.6 and Eqs (i) 
and (ii) in Ex. 16.7, would not be zero but equal to the actual displacement of the 
support. In such a situation one of the releases should coincide with the displaced 
support. 
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It is clear from Ex. 16.7 that the number of simultaneous equations of the form 
of Eqs (i) and (ii) requiring solution is equal to the degree of statical indeterminacy 
of the structure. For structures possessing a high degree of statical indeterminacy the 
solution, by hand, of a large number of simultaneous equations is not practicable. 
The equations would then be expressed in matrix form and solved using a computer- 
based approach. Thus for a structure having a degree of statical indeterminacy equal 
to n there would be n compatibility equations of the form 

v , . ~ +  a , , R ,  + a I 2 R 2  + - - -+a , , ,R , ,=O 

v , , . ~  + a n I R I  + an2R2 + + a,,,,R,, = 0 

or, in matrix form 

Note that here n is n,, the degree of statical indeterminacy; the subscript ‘s’ has been 
omitted for convenience. 

Alternative methods of solution of continuous beams are the slope-deflection 
method described in Section 16.9 and the iterative moment distribution method 
described in Section 16.10. The latter method is capable of producing relatively 
rapid solutions for beams having several spans. 

16.5 Statically indeterminate trusses 
A truss may be internally and/or externally statically indeterminate. For a truss that 
is externally statically indeterminate, the support reactions may be found by the 
methods described in Section 16.4. For a truss that is internally statically 
indeterminate the flexibility method may be employed as illustrated in the following 
examples. 

Example 16.8 Determine the forces in the members of the truss shown in 
Fig. 16.18(a); the cross-sectional area, A, and Young’s modulus, E, are the same for 
all members. 

The truss in Fig. 16.18(a) is clearly externally statically determinate but, from 
Eq. (16.5), has a degree of internal statical indeterminacy equal to one (M = 6, 
N=4). We therefore release the truss so that it becomes statically determinate by 
‘cutting’ one of the members, say BD, as shown in Fig. 16.18(b). Due to the actual 
loads (P in this case) the cut ends of the member BD will separate or come together, 
depending on whether the force in the member (before it was cut) was tensile or 
compressive; we shall assume that it was tensile. 

We are assuming that the truss is linearly elastic so that the relative displacement 
of the cut ends of the member BD (in effect the movement of B and D away from 
or towards each other along the diagonal BD) may be found using, say, the unit load 
method as illustrated in Exs 15.6 and 15.7. Thus we determine the forces Fa,, in the 
members produced by the actual loads. We then apply equal and opposite unit loads 
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Fig. 16.18 Analysis of a statically indeterminate truss 

to the cut ends of the member BD as shown in Fig. 16.18(c) and calculate the 
forces, F, , ,  in the members. The displacement of B relative to D, A B D ,  is then given 
by 

n F . F  L 
A B D  = c a”Al J (see Eq. (viii) in Ex. 15.7) 

j -  I 

The forces, F,,,, are the forces in the members of the released truss due to the 
actual loads and are not, therefore, the actual forces in the members of the complete 
truss. We shall therefore redesignate the forces in the members of the released truss 
as FOep The expression for A B D  then becomes 

‘ F , , F ,  j L j  
A B D = ~  ’Ai (9 

j =  1 

In the actual structures this displacement is prevented by the force, X B D ,  in the 
redundant member BD. If, therefore, we calculate the displacement, a,,, in the 
direction of BD produced by a unit value of X,,, the displacement due to X B D  will 
be X B D a B D .  Clearly, from compatibility 

ABD + X B D ~ B D  = 0 (ii) 
from which X B ,  is found. Again, as in the case of statically indeterminate beams, 
uBD is a flexibility coefficient. Having determined X B D ,  the actual forces in the 
members of the complete truss may be calculated by, say, the method of joints or 
the method of sections. 

In Eq. (ii), uBD is the displacement of the released truss in the direction of BD 
produced by a unit load. Thus, in using the unit load method to calculate this 
displacement, the actual member forces ( F , , )  and the member forces produced by 
the unit load ( F I e j )  are the same. Therefore, from Eq (i). 

n Ft ,  L ,  
a B D = C  - (iii) 

, = I  AE 
The solution is completed in Table 16.1. 
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Table 16.1 

AB L 0 -0.71 0 0-5L +0*40P 
BC L 0 -0.71 0 0-5L +0*40P 

L -P -0.71 0-71 PL 0.5L -0.60P 
1.41L -0.56P 

CD 
BD 1.41 L - 1 .o 
AC 1.41L 1-41P 1.0 2.0 PL 1-41 L +0*85P 
AD L 0 -0.71 0 0.5L +0*40P 

- 

1 = 2.71 PL 1 = 4.82 L 

From Table 16. I 

Substituting these values in Eq. (i) we have 

0 +XBD-= 
2-71 PL 4.82 L 

AE AE 
whence XBD = -0-56P (i.e. compression) 

The actual forces, Fa,, in the members of the complete truss of Fig. 16.18(a) are 
now calculated using the method of joints and are listed in the final column of 
Table 16.1. 

We note in the above that ABD is positive, which means that ABD is in the direction 
of the unit loads, i.e. B approaches D and the diagonal BD in the released structure 
decreases in length. Therefore in the complete structure the member BD, which 
prevents this shortening, must be in compression as shown; also a B D  will always be 
positive since it contains the term F,,:. Finally, we note that the cut member BD is 
included in the calculation of the displacements in the released structure since its 
deformation, under a unit load, contributes to a g D .  

Example 16.9 Calculate the forces in the members of the truss shown in 
Fig. 16.19(a). All members have the same cross-sectional area, A,  and Young’s 
modulus, E. 

By inspection we see that the truss is both internally and externally statically 
indeterminate since it would remain stable and in equilibrium if one of the 
diagonals, AD or BD, and the support at C were removed; the degree of 
indeterminacy is therefore 2. Unlike the truss in Ex. 16.18, we could not remove any 
member since. if BC or CD were removed, the outer half of the truss would 
become a mechanism while the portion ABDE would remain statically 
indeterminate. Therefore we select AD and the support at C as the releases, giving 
the statically determinate truss shown in Fig. 16.19(b); we shall designate the force 
in the member AD as XI and the vertical reaction at C as R2. 
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Fig. 16.19 Statically indeterminate truss of Ex. 16.9 

In this case we shall have two compatibility conditions, one for the diagonal AD 
and one for the support at C. We therefore need to investigate three loading cases: 
one in which the actual loads are applied to the released statically determinate truss 
in Fig. 16.19(b), a second in which unit loads are applied to the cut member AD 
(Fig. 16.19(c)) and a third in which a unit load is applied at C in the direction of R, 
(Fig. 16.19(d)). By comparison with the previous example, the compatibility 
conditions are 

AAD + a , , X ,  + a,,R, = 0 ( 0  

vc + az lXl  + a,,R, = 0 (ii) 

in which AAD and vc are, respectively, the change in length of the diagonal AD and 
the vertical displacement of C due to the actual loads acting on the released truss, 
while a l l ,  a,,, etc., are flexibility coefficients, which we have previously defined 
(see Ex. 16.7). The calculations are similar to those carried out in Ex. 16.8 and are 
shown in Table 16.2. 
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From Table 16.2 

F,jFl,(Xl)L. -27.1 
J =- (i.e. AD increases in length) 

j =  1 AE 

F,jFl,;(R2)L. -48.1 1 
J =- (i.e. C displaced downwards) 

;= 1 AE AE 

=- 
j= 1 AE 

FI,j(X1)6.;(R2)Lj - 2.7 -- 
AE AE a 12 = a21c 

j =  1 

Substituting in Eqs (i) and (ii) and multiplying through by AE we have 

-27.1 + 4.32Xl + 2-7R2 = 0 

-48.1 1 + 2.7X1 + 11 .62R2 = 0 

Solving Eqs (iii) and (iv) we obtain 

XI = 4.28 kN, R2 = 3.15 kN 

(iii) 

(iv) 

The actual forces, F,, in the members of the complete truss are now calculated 
by the method of joints and are listed in the final column of Table 16.2. 

Self-straining trusses 
Statically indeterminate trusses, unlike the statically determinate type, may be 
subjected to self-straining in which internal forces are present before external loads 
are applied. Such a situation may be caused by a local temperature change or by an 
initial lack of fit of a member. In cases such as these, the term on the right-hand side 
of the compatibility equations, Eq. (ii) in Ex. 16.8 and Eqs (i) and (ii) in Ex. 16.9, 
would not be zero. 

Example 16.10 The truss shown in Fig. 16.20(a) is unstressed when the 
temperature of each member is the same, but due to local conditions the 
temperature in the member BC is increased by 30°C. If the cross-sectional area of 
each member is 200 mm2 and the coefficient of linear expansion of the members is 
7 x lO-'/OC, calculate the resulting forces in the members; Young's modulus 
E = 200 000 N/mm2. 

Due to the temperature rise, the increase in length of the member BC is 
3 x lo3 x 30 x 7 x IO-'= 0.63 mm. The truss has a degree of internal statical 
indeterminacy equal to 1 (by inspection). We therefore release the truss by cutting 
the member BC, which has experienced the temperature rise, as shown in 
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Fig. 16.20 Self-straining due to a temperature change 

Fig. 16.20(b); we shall suppose that the force in BC is XI.  Since there are no 
external loads on the truss, ABc is zero and the compatibility condition becomes 

a , ,X ,  = -0.63 mm ( 0  
in which, as before, 

,, F : , ~  L~ 
a l l = c  - 

j - 1  AE 

Note that the extension of BC is negative since it is opposite in direction to XI. The 
solution is now completed in Table 16.3. 

Hence a,,  = 48000 = 1.2 x 10-3 
200 x 200000 

Thus, from Eq. (i) 
XI = -525 N 

The forces, F,,j, in the members of the complete truss are given in the final column 
of Table 16.3. 

An alternative approach to the solution of statically indeterminate trusses, both 
self-straining and otherwise, is to use the principle of the stationary value of the 

Table 16.3 

Member L, (mm) F,,i F l y ,  Fa.j (N) 

AB 4000 1 -33 7111-1 -700 
BC 3000 1 -0 3000-0 -525 
CD 4000 1 e33 7111.1 -700 
DA 3000 1 e o  3000.0 -525 
AC 5000 -1.67 13888.9 875 
DB 5000 -1 -67 13888.9 875 

1 = 48000.0 
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total complementary energy. Thus, for the truss of Ex. 16.8, the total 
complementary energy, C, is, from Eq. (15-40), given by 

j -  I 

in which A, is the displacement of the joint C in the direction of P. Let us suppose 
that the member BD is short by an amount I,, (i.e. the lack of fit of BD), then 

From the principle of the stationary value of the total complementary energy we have 

Assuming that the truss is linearly elastic, Eq. (16.8) may be written 

(16.8) 

(16.9) 

or since, for linearly elastic systems, the complementary energy, C, and the strain 
energy, U, are interchangeable, 

( 16.10) 

Equation (16.10) expresses mathematically what is generally referred to as 
Castigliano's second theorem which states that 

For a linearly elastic structure the partial diferential coeficient of the total strain 
energy of the structure with respect to the force in a redundant member is equal to 
the initial lack of fit of that member. 

The application of complementary energy to the solution of statically 
indeterminate trusses is very similar to the method illustrated in Exs 16.8-16.10. For 
example, the solution of Ex. 16.8 would proceed as follows. 

Again we select BD as the redundant member and suppose that the force in BD is 
Xi .  The forces, Fa,, in the complete truss are calculated in terms of P and XI,  and 
hence aF,,/aX, obtained for each member. The term (F,.,Lj/A,Ej) aF,,/aX, is 
calculated for each member and then summed for the complete truss. 
Equation (16.9) (or (16.10)) in which hgD=O then gives X, in terms of P. The 
solution is illustrated in Table 16.4. Thus from Eq. (16.9) 

1 

AE 
- (2-7 1 PL + 442x1 L )  = 0 

whence Xi = -0.56P 

as before. 
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Table 16.4 

~~ 

AB L -0.71 XI -0.71 0-5 LX, 
BC L -0.71 XI -0.71 0*5LX, 

DA L -0.71 XI -0.71 0.5 Lx1 
CD L - P- 0.71 XI -0.71 (0.71 P+ 0 * 5 X 1 ) L  

AC 1 *41 L 1-41 P+ X, 1 *o (2P+ 1-41 X , )  L 
BD 1 -41 L Xl 1 -0 1 *41 Xl L 

1 = 2.71 PL + 4-82X1 L 

Of the two approaches illustrated by the two solutions of Ex. 16.8, it can be seen 
that the use of the principle of the stationary value of the total complementary 
energy results in a slightly more algebraically clumsy solution. This will be even 
more the case when the degree of indeterminacy of a structure is greater than 1 and 
the forces Fa.j are expressed in terms of the applied loads and all the redundant 
forces. There will, of course, be as many equations of the form of Eq. (16.9) as 
there are redundancies. 

16.6 Braced beams 
Some structures consist of beams that are stiffened by trusses in which the beam 
portion of the structure is capable of resisting shear forces and bending moments in 
addition to axial forces. Generally, however, displacements produced by shear 
forces are negligibly small and may be ignored. Therefore, in such structures we 
shall assume that the members of the truss portion of the structure resist axial forces 
only while the beam portion resists bending moments and axial forces; in some cases 
the axial forces in the beam are also ignored since their effect, due to the larger area 
of cross-section, is small. 

Example 16.11 The beam ABC shown in Fig. 16.21 (a) is simply supported and 
stiffened by a truss whose members are capable of resisting axial forces only. 
The beam has a cross-sectional area of 6000 mm2 and a second moment of area 
of 7-2 x lo6 mm4. If the cross-sectional area of the members of the truss is 
400 mm’, calculate the forces in the members of the truss and the maximum 
value of the bending moment in the beam. Young’s modulus, E ,  is the same for 
all members. 

We observe that if the beam were capable of resisting axial forces only, the 
structure would be a relatively simple statically determinate truss. However, the 
beam, in addition to axial forces, resists bending moments (we are ignoring the 
effect of shear) so that the structure is statically indeterminate with a degree of 
indeterminacy equal to 1 ,  the bending moment at any section of the beam. Therefore 
we require just one release to produce a statically determinate structure; it does not 
necessarily have to be the bending moment in the beam, so we shall choose the truss 
member ED as shown in Fig. 16.21(b) since this will produce benefits from 
symmetry when we consider the unit load application in Fig. 16.2 1 (c). 
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Fig. 16.21 Braced beam of Ex. 16.11 

In this example displacements are produced by the bending of the beam as well as 
by the axial forces in the beam and truss members. Thus, in the released structure of 
Fig. 16.21 (b), the relative displacement, A E D ,  of the cut ends of the member ED is, 
from the unit load method (see Eq. (iii) of Ex. 15.9 and Exs 16.8-16.10), given by 

0)  
M0M1 dz + 2 F o . j F I . j L j  

A E D = I A B C  El  J =  I AJE 
in which M,, is the bending moment at any section of the beam ABC in the released 
structure. Further, the flexibility coefficient, aI  I ,  of the member ED is given by 

- d z + x  M: n - ~ : , j ~ j  (ii) 

In Eqs (i) and (ii) the length, L,, is constant, as is Young’s modulus, E.  These may 
therefore be omitted in the calculation of the summation terms in Table 16.5. 

Examination of Table 16.5 shows that the displacement, A E D ,  in the released 
structure is due solely to the bending of the beam, i.e. the second term on the right- 
hand side of Eq. (i) is zero; this could have been deduced by inspection of the 
released structure. Also the contribution to displacement of the axial forces in the 
beam may be seen, from the first two terms in the penultimate column of 
Table 16.5, to be negligibly small. 

Table 16.5 

J =  I AJE a11 =I,,, E1 

Member AI (mm2) Fo I (kN) F1,/ FO.IFl.JA1 FI2lJAJ Fa.1 (W 

AB 6000 0 -0.5 0 4 - m  10-5 -2.01 
BC 6000 0 -0.5 0 4.1 7 x 1 0 - 5  -2.01 
CD 400 0 1 -0 0 2.sX 10-3 4.02 
ED 400 0 1 -0 0 2-5 x 10-3 4-02 
BD 400 0 -1 -0 0 2-5 x 10-3 -4.02 
EB 400 0 -1 e o  0 2-5x 1 0 - 3  -4.02 
A€  400 0 1 .o 0 2 . 5 ~  10-3 4.02 

- 

2 = 0  2 = 0.01 26 
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The contribution to A,, of the bending of the beam will now be calculated. Thus 
from Fig. 16.21 (b) 

MO=9Z ( 0 ~ ~ ~ 0 . 5  m) 

MO= 92-  12(2 - 0.5) = 6 -  3z (0.5 c z S 2 . 0  m) 

MI = - 0 . 8 7 ~  (OSZS 1.0 m) 

MI = -0.87z+ 1.74(z- 1.0)=0.872- 1.74 ( 1 . 0 a z s 2 - 0 m )  

Substituting from MO and M, in Eq. (i) we have 

IABC 7 dz MOM, 

1 1 0.5 
= - [ -1 9 x 0 . 8 7 ~ ~  dz - I In (6 - 3z)O.87z dz + 1'" (6 - 3z)(0-87z - 1.74) dz 

0.5 1.0 EI O 

0.33 x lo6 
dz=  - mm MOM, 

M; 1 in 

IABC 7 E 
from which 

1 - dz = - [I 0.87'~' dz + I " (0.872 - 1 ~ 7 4 ) ~  dz 

0.083 x lo3 

In 
Similarly j 

ABC EI EI O 

mm/N 
M: - dz = 

IABC E]  EI 
from which 

Fig. 16.22 Bending moment distribution in the beam of Ex. 16.11 
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The compatibility condition gives 
AED + a,,X, = 0 

0.33 x lo6 0.083 x lo3 
whence - + x, = o  

E E 

which gives X ,  =4018.1 N or X, =4.02 kN 

The axial forces in the beam and truss may now be calculated using the method of 
joints and are given in the final column of Table 16.5. The forces acting on the beam 
in the complete structure are shown in Fig. 16.22(a) together with the bending 
moment diagram in Fig. 16.22(b), from which we see that the maximum bending 
moment in the beam is 2-76 kN m. 

16.7 Portal frames 
The flexibility method may be applied to the analysis of portal frames although, as 
we shall see, in all but simple cases the degree of statical indeterminacy is high so 
that the number of compatibility equations requiring solution becomes too large for 
hand computation. 

Consider the portal frame shown in Fig. 16.23(a). From Section 16.2 we see that 
the frame, together with its foundation, forms a single two-dimensional ring and is 
therefore three times statically indeterminate. Therefore we require three releases to 
obtain the statically determinate primary structure. These may be obtained by 
removing the foundation at the foot of one of the vertical legs as shown in 
Fig. 16.23(b); we then have two releases of force and one of moment and the 
primary structure is, in effect, a cranked cantilever. In this example there would be 
three compatibility equations requiring solution, two of translation and one of 
rotation. Clearly, for a plane, two-bay portal frame we would have six compatibility 
equations so that the solution would then become laborious; further additions to the 
frame would make a hand method of solution impracticable. Furthermore, as we 
shall see in Section 16.10, the moment distribution method produces a rapid solution 
for frames although it should be noted that using this method requires that the sway 
of the frame, that is its lateral movement, is considered separately whereas, in the 
flexibility method, sway is automatically included. 

Example 16.12 Determine the distribution of bending moment in the frame ABCD 
shown in Fig. 16.24(a); the flexural rigidity of all the members of the frame is EZ. 

Fig. 16.23 Indeterminacy of a portal frame 
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Fig. 16.24 Portal frame of Ex. 16.12 

Comparison with Fig. 16.23(a) shows that the frame has a degree of statical 
indeterminacy equal to two since the vertical leg CD is pinned to the foundation at 
D. We therefore require just two releases of reaction, as shown in Fig. 16.24(b), to 
obtain the statically determinate primary structure. For frames of this type it is usual 
to neglect the displacements produced by axial force and to assume that they are 
caused solely by bending. 

The point D in the primary structure will suffer vertical and horizontal 
displacements, A0.v and AD.H. Thus if we designate the redundant reactions as R ,  and 
R,, the equations of compatibility are 

A D , v + a l l R l  + a , , R , = O  (i ) 

AD,H + a 2 , R ,  + a22R2 = 0 (ii) 
in which the flexibility coefficients have their usual meaning. Again, as in the 
preceding examples, we employ the unit load method to calculate the displacements 
and flexibility coefficients. Thus 

MOM,,, dz 
' D . V  = 1 1, 7 

in which M,.v  is the bending moment at any point in the frame due to a unit load 
applied vertically at D. 

dz M O M I . H  
' D . H  = c 5, 7 Similarly 

Mf.V MT." c I M L v M L H  dz and a , ,  = 1 1, T dz, a?2 = 1 I, - dz, u12 = a?, = 
EI L EI 

We shall now write down expressions for bending moment in the members of the 
frame; we shall designate a bending moment as positive when it causes tension on 
the outside of the frame. Thus in DC 

M n = O ,  M , . V = o ,  M I , , = -  12, 
I, 

M -4zZ-=22zi, M , . , = - I Z ~ ,  M,.H=-3 In CB n -  

In BA 

2 

Mn = 4 x 3.5 x 1-75 + 101, = 24.5 + 101,, Ml.v = -3-5, MI.H = - l (3  - ~ 3 )  
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Hence 

489.8 
(-2z:) dz, + / 3 -(24.5 + 10z3)3.5 dz, = - - 1 El 

]=-7 

0 
AD,V = - 

El O 

24 1 e 0  

1 [I" 
1 [13.5 AD.H = - (-62:) dz, + 1,' -(24-5 + 10z3)(3 - z,) dz, 
E1 O 

a , ,  = -  1 [ / 3 ' 5 z ~ d z 2 + / ~ 3 6 2 d z 3 ] = -  51.0 
EI O El  

' [ / 3 z ~ d z l + / ~ 3 2 d z 2 + / 3 ( 3 - z 3 )  dz, =- a,,= - 
2 I 4: 

E1 0 1 3;; 

EI r~ 0 

alz  = a2,  = i [/3.5 3z2 dz2 + 1; 3.5(3 - z,) dz, = - 

Substituting for AD.", AD.", a,,, etc., in Eqs (i) and (ii) we obtain 

489.8 51.0 34.1 
E1 E1 El 

241-0 34.1 49-5 

+- R , +  - Rz=O (iii) -- 

(iv) +- R, + - Rz = O  -- and 

Solving Eqs (iii) and (iv) we have 

E1 E1 EI 

R , =  11-8 kN, R,=-3.3 kN 

The bending moment diagram is then drawn as shown in Fig. 16.25. 
It can be seen that the amount of computation for even the relatively simple frame 

of Ex. 16.12 is quite considerable. Generally, therefore, as stated previously, the 
moment distribution method or a computer-based analysis would be employed. 

Fig. 16.25 Bending moment diagram for the frame of Ex. 16.12 (diagram drawn 
on tension side of members) 
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16.8 Two-pinned arches 
In Chapter 6 we saw that a three-pinned arch is statically determinate due to the 
presence of the third pin or hinge at which the internal bending moment is zero; in 
effect the presence of the third pin provides a release. Therefore a two-pinned arch 
such as that shown in Fig. 16.26(a) has a degree of statical indeterminacy equal to 1. 
This is also obvious from inspection since, as in the three-pinned arch, there are two 
reactions at each of the supports. 

The analysis of two-pinned arches, i.e. the determination of the support reactions, 
may be carried out using the flexibility method; again, as in the case of portal 
frames, it is usual to ignore the effect of axial force on displacements and to assume 
that they are caused by bending action only. 

The arch in Fig. 16.26(a) has a profile whose equation may be expressed in terms 
of the reference axes x and y. The second moment of area of the cross-section of 
the arch is I and we shall designate the distance round the profile from A as s. 

Initially we choose a release, say the horizontal reaction, R , ,  at B, to obtain the 
statically determinate primary structure shown in Fig. 16.26(b). We then employ the 
unit load method to determine the horizontal displacement, AB.”, of B in the primary 
structure and the flexibility coefficient, a,  ,. Then, from compatibility 

AB.H - a l l R l  = O  (16.11) 

in which the term containing R ,  is negative since R ,  is opposite in direction to the 
unit load (see Fig. 16.26(c)). 

Fig. 16.26 Solution of a two-pinned arch 



Two-pinned arches 505 

Then, with the usual notation 

ds (1 6.12) 

in which M, depends upon the applied loading and M ,  = ly (a moment is positive if 
it produces tension on the undersurface of the arch). Also 

MOM1 
*B*H = IprofiIe EI 

(16.13) 

Substituting for M ,  in Eq. (16.12) and then for AB,H and a, , in Eq. (16.1 1) we obtain 

Y 2  - M' ds  = J - d s  a" = IProfiIe E] Profile El 

- May ds J profile EI 
R l =  (16.14) 

Y2 
Jprofile E ds 

Fig. 16.27 Semicircular arch of Ex. 16.13 
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Example 16.13 Determine the support reactions in the semicircular two-pinned 
arch shown in Fig. 16.27(a). The flexural rigidity, EI, of the arch is constant 
throughout. 

Again we shall choose the horizontal reaction at the support B as the release so 
that RB,H ( = R , )  is given directly by Eq. (16.14) in which M, and s are functions of 
x and y .  The computation will therefore be simplified if we use an angular 
coordinate system so that, from the primary structure shown in Fig. 16.27 (b) 

(0  

in which RLeV is the vertical reaction at B in the primary structure. From 
Fig. 16.27(b) in which, from symmetry, R;l,v = R i V v ,  we have RL,v = 50 kN. 
Substituting for RL.v in Eq. (i) we obtain 

(ii) 

M, = R&5 + 5 COS e) - 9 (5 + 5 COS q2 

M, = 125 sin2 8 

Also y = 5 sin 8 and ds = 5 de, so that from Eq. (16.14) we have 

I,̂  125 sin28 5sine 5de 

j; 25 sin2@ 5d0 
R 1  = 

I," 25 sin3 8 de  

I,̂  sin28d0 
or R I  = (iii) 

which gives Rl ~ 2 1 . 2  kN (=RB,H) 

The remaining reactions follow from a consideration of the statical equilibrium 
of the arch and are 

RA,H = 21 -2 kN, RAsv = RB,v = 50 kN 
The integrals in Eq. (iii) of Ex. 16.13 are relatively straightforward to evaluate; 

the numerator may be found by integration by parts, while the denominator is found 
by replacing sin' 8 by (1 - cos 28)/2. Furthermore, in an arch having a semicircular 
profile, M,, y and ds are simply expressed in terms of an angular coordinate system. 
However, in a two-pinned arch having a parabolic profile this approach cannot be 
used and complex integrals result. Such cases may be simplified by specifying that 
the second moment of area of the cross-section of the arch varies round the profile; 
one such variation is known as the secant assumption and is described below. 

Fig. 16.28 Elemental length of arch 
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Secant assumption 
In Eq. (16.14) the term &/I appears. If this term could be replaced by a term that is 
a function of either x or y, the solution would be simplified. 

Consider the elemental length, 6s, of the arch shown in Fig. 16.28 and its 
projections, 6x and 6 y ,  on the x and y axes. From the elemental triangle 

6x = 6s COS e 
or, in the limit as 6s + 0 

ds = dx/cos 8 = dx sec 9 

ds dxsec8 Thus - 
I I 

Let us suppose that I varies round the profile of the arch such that I = Io  sec 8 where 
I, is the second moment of area at the crown of the arch (Le. where 8 = 0). Then 

ds dxsec8 dx 
I Iosec8 I o  

-- 

-- - =-  

Thus substituting in Eq.  (16.14) for ds/f we have 

Mny dx 
El0 

Y 2  

L f i k  MnY dx 

- J Pmfile 

R, = 

- dx iPmme Elo 

(16.15) 
J Profile 

Example 16.14 Determine the support reactions in the parabolic arch shown in 
Fig. 16.29 assuming that the second moment of area of the cross-section of the arch 
varies in accordance with the secant assumption. 

or R ,  = 
y 2  dx 

Fig. 16.29 Parabolic arch of Ex. 16.14 
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The equation of the arch may be shown to be 

4h 2 y = - ( L x - x )  
L2 

Again we shall release the arch at B as in Fig. 16.26(b). Then 

M,= Ra.,x ( O s x s a )  

M,=Ra.,x- W ( x - a )  ( a d x s L )  

in which Ra,, is the vertical reaction at A in the released structure. Now taking 
moments about B we have 

RX.,L - W ( L  - a )  = 0 

( L  - a )  
I W  

whence R,.v = - 
L 

Substituting in the expressions for M, gives 

( L - a ) x  ( O s x s a )  
W 
L 

M,= - 

Wa 
L 

M,= - ( L - x )  ( a s x s L )  

(ii) 

(iii) 

The denominator in Eq. (16.15) may be evaluated separately. Thus, from Eq. (i) 

L 4h 2 2  8h2L J Y2dx=J (-) ( L X - X )  dx=- 
Profile L2  15 

Then, from Eq. (16.15) and Eqs (ii) and (iii) 

1 4h 4h 
l5 [ 1; ( L  - a)x  - (Lx - x 2 )  dx + ( L  - x )  - (Lx - x 2 )  dx 

L2 
R ,  = 2 

8h L L2 

5Wa 
R ,  = - ( L , ~  + a3 - 2 ~ a ' )  

8hL3 
which gives 

The remaining support reactions follow from a consideration of the statical 
equilibrium of the arch. 

If, in Ex. 16.14, we had expressed the load position in terms of the span of the 
arch, say a = kL, Eq. (iv) in Ex. 16.14 becomes 

R ,  = - 5wL ( k  + k' - 2k3) 
8h 

(16.16) 

Therefore, for a series of concentrated loads positioned at distances k,L, k2L, k,L, 
etc., from A, the reaction, R , ,  may be calculated for each load acting separately 
using Eq. (16.16) and the total reaction due to all the loads obtained by 
superposition. 
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The result expressed in Eq. (16.16) may be used to determine the reaction, R, ,  due 
to a part-span uniformly distributed load. Consider the arch shown in Fig 16.30. The 
arch profile is parabolic and its second moment of area vanes as the secant 
assumption. An elemental length, 6x,  of the load produces a load w 6x on the arch. 
Thus, since 6x is very small, we may regard this load as a concentrated load. This 
will then produce an increment, 6R,,  in the horizontal support reaction which, from 
Eq. (16.16), is given by 

5 L 
8 h 

6R,  = - w 6x - (k + k4 - 2 k 3 )  

in which k = x / L .  Therefore, substituting for k in the expression for 6 R ,  and then 
integrating over the length of the load we obtain 

4 

” ” )  dx 
5wL .I* x x 
8h L3 R I = - I., I ( y + 2 - - 

I Z [ ;z 5L4 2L3 X I  

( 

x 4  X l  x5 R , = -  -+---  which gives 

For a uniformly distributed load covering the complete span, i.e. xl  = 0, x2 = L .  we 
have 

8h 2L 5L4 2L3 L4 1 wL2 8h 
5wL L 2  L5 R , = -  -+--- =- 

The bending moment at any point ( x ,  y )  in the arch is then 
WL wx 2 wL2 [z(k-x2,] 

M = - x - - - -  
2 2 8h 15’ 

2 2 WL w x  WL wx 
2 2 2 2 

i.e. M = - x - - - -  x + - -  -0  

Fig. 16.30 Parabolic arch carrying a part-span uniformly distributed load 



5 10 Analysis of Statically Indeterminate Structures 

Fig. 16.31 

Therefore, for a parabolic two-pinned arch carrying a uniformity distributed load 
over its complete span, the bending moment in the arch is everywhere zero; the same 
result was obtained for the three-pinned arch in Chapter 6. 

Although the secant assumption appears to be an artificial simplification in the 
solution of parabolic arches it would not, in fact, produce a great variation in second 
moment of area in, say, large-span shallow arches. The assumption would therefore 
provide reasonably accurate solutions for some practical cases. 

Tied arches 
In some cases the horizontal support reactions are replaced by a tie which connects the 
ends of the arch as shown in Fig. 16.3 1 (a). In this case we select the axial force, XI,  in 
the tie as the release. The primary st~~cture is then as shown in Fig. 16.3 1 (b) with the tie 
cut. The unit load method, Fig. 16.31(c), is then used to determine the horizontal 
displacement of B in the primary strucm. This displacement will receive contributions 
from the bending of the arch and the axial force in the tie. Thus, with the usual notation 

Solution for a tied two-pinned arch 

L FoFlL 
MnM'  d s + j  - dx 

AB'H =IProfik E] o AE 

dx Mf L F:L 
and.  a11=Iprofile E d s + l n  AE 
.The compatibility condition is then 

AB.H+allXl=o 

Segmental arches 
A segmental arch is one comprising segments having different curvatures or different 
equations describing their profiles. The analysis of such arches is best carried out 
using a computer-based approach such as the stiffness method in which the stiffness 
of an individual segment may be found by determining the force-displacement 
relationships using an energy approach. Such considerations are, however, outside 
the scope of this book. 

16.9 Slope-deflection method 
An essential part of the computer-based stiffness method of analysis and also of the 
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moment distribution method are the slope-deflection relationships for beam elements. 
In these, the shear forces and moments at the ends of a beam element are related to 
the end displacements and rotations. In addition these relationships provide a method 
of solution for the determination of end moments in statically indeterminate beams 
and frames; this method is known as the slope-dejection method. 

Consider the beam, AB, shown in Fig. 16.32. The beam has flexural rigidity EI 
and is subjected to moments, MA, and MBA, and shear forces, SAB and SBA, at its 
ends. The shear forces and moments produce displacements vA and vB and rotations 
eA and e B  as shown. Here we are concerned with moments at the ends of a beam. 
The usual sagging/hogging sign convention is therefore insufficient to describe 
these moments since a clockwise moment at the left-hand end of a beam coupled 
with an anticlockwise moment at the right-hand end would induce a positive 
bending moment at all sections of the' beam. We shall therefore adopt a sign 
convention such that the moment at a point is positive when it is applied in a 
clockwise sense and negative when in an anticlockwise sense; thus in Fig. 16.32 
both moments MAB and MBA are positive. We shall see in the solution of a particular 
problem how these end moments are interpreted in terms of the bending moment 
distribution along the length of a beam. In the analysis we shall ignore axial force 
effects since these would have a negligible effect in the equation for moment 
equilibrium. Also, the moments MAB and MBA are independent of each other but the 
shear forces, which in the absence of lateral loads are equal and opposite, depend 
upon the end moments. 

From Eq. (13.3) and Fig. 16.32 

Hence 

and 

dv 
dz 

When z = o ,  -=  0A and V = V A  

Therefore, from Eq. (16.17) C, = EIe, and from Eq. (16.18), C2 = EIv,. 
Equations (1 6.17) and (16.18) then become, respectively, 

and 

(1 6.17) 

(16.18) 

(16.19) 

(16.20) 
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Fig. 16.32 Slope and deflection of a beam 

Also, at z = L,  dv/dz = 8s and 2) = vB. Thus, from Eqs (16.19) and (16.20) we have 

(16.21) L 
2 

EI8B = -MABL + SAB - + E I 8 A  

L2 
and EIvB = - M A B  - + S A B  $ + E I 8 A  L + E I V A  (16.22) 

2 

Solving Eqs (16.21) and (16.22) for M A ,  and S A B  gives 

2EI [ , 8 A  + 8s + - ( 2 ) A  - 2)B) (16.23) 
L 3 1  

6EK[ L L 2 l  
M A ,  = - 

L 

S A B  = 7 8 A  + 8 B  + - ( 2 ) A  - 2)B) ( 1  6.24) and 

Now, from the moment equilibrium of the beam about B,  we have 

M B A  - S A B L  + M A ,  = 0 

or 

Substituting for SAB and MA, in this expression from Eqs (16.24) and (16.23) we obtain 

M B A  = SABL - M A B  

M B A  = - 288 + 8 A  + - (2 )A  - 2)B) (16.25) 
2EI L [ L 3 1  
-6EK[ L L 2 l  

Further, since S B A  = - S A B  

S B A  = 7 8,  + 8s + - ( 2 ) A  - 2)B) (1  6.26) 
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Equations (16.23)-(16.26) are usually written in the form 
2EI 

V B  + - e B  V A  + - e A  - - 4EI 6EI 
L2 L L2 L 

L3 L2 L3 L2 

L' L L2 L 

6EI 
M A B =  - 

12EI 6EI 
V B  + - OB 

4EI 

6EI 
V A  + - e A  - - 12EI 

S A B  = - 
( 16.27) 

V B  + - e B  V A + - e A - -  
2EI 6EI 6EI 

M B A =  - 

12El 6EI 12EI 6EI 
V B  - - e B  S B A =  - - v A - - e A + -  

L3 L2 L3 L2 

Equations (16.27) are known as the slope-deflection equations and establish 
force-displacement relationships for the beam as opposed to the displacement-force 
relationships of the flexibility method. The coefficients that pre-multiply the 
components of displacement in Eqs (16.27) are known as sti$ness coeflcients. 

The beam in Fig. 16.32 is not subject to lateral loads. Clearly, in practical cases, 
unless we are interested solely in the effect of a sinking support, lateral loads will be 
present. These will cause additional moments and shear forces at the ends of the 
beam. Equations (16.23)-( 16.26) may then be written as 

28, + 8 s  + - ( V A  - V B )  + M A B  (16.28) 
L 

(16.29) 

3 I F  2E1 L [ 
2 I F  

L 3 I F  
I F  -6E1[ L- L 

M A B  = - 

6E1 [B, + e B  + y ( V A  - V B )  + S A B  S A B  = - 
L' 

M B A  = 2EI [ 28s + e A  + - ( V A  - V B )  + M B A  (16.30) 
L 

2 (16.31) 

in which MIB and MiA are the moments at the ends of the beam caused by the 
applied loads and correspond to 8, = 8, = 0 and vA = vB = 0, i.e. they are fixed-end 
moments. Similarly the shear forces S:B and S i A  correspond to the fixed-end case. 

S B A  = 7 e A  + 8 s  + - ( V A  - V B )  + S B A  

Fig. 16.33 Continuous beam of Ex. 16.15 
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Example 16.15 Find the support reactions in the three-span continuous beam 
shown in Fig. 16.33. 

The beam in Fig. 16.33 is the beam that was solved using the flexibility method in 
Ex. 16.7, so that this example provides a comparison between the two methods. 

Initially we consider the beam as comprising three separate fixed beams AB, BC 
and CD and calculate the values of the fixed-end moments, MI,, M;,, Mic, etc. 
Thus, using the results of Exs 13.20 and 13.22 and remembering that clockwise 
moments are positive and anticlockwise moments negative 

F F 12 x 1.02 
M,, = -M, = - = -1.0 kNm 

12 
In the beam of Fig. 16.33 the vertical displacements at all the supports are zero, 

i.e. vA, vB, vc and vD are zero. Therefore, from Eqs (16.28) and(16.30) we have 

M,=O 
Substituting for MAD, etc., from Eqs (i)-(vi) in these expressions we obtain 

4EI8, + 2E18~ - 0.75 = 0 
2EIOA + 8E18~ + 2EI8c - 0.5 = O 

2E1e8 + 8EI0, + 2EIOD + 0-25 = 0 
4E1€1,+2EI8,+ 1*0=0 
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The solution of Eqs (vii)- (x) gives 

E18,=0*183, E&=O.008, E&=0-033, E&,= -0.267 

Substituting these values in Eqs (i)- (vi) gives 

M A B = O ,  MBA= 1.15, MBc= -1.15, McB= 1.4, McD= -1.4, M,=O 
The end moments acting on the three spans of the beam are now shown in 
Fig. 16.34. They produce reactions RAB, RBA, etc., at the supports; thus 

1.15 
1.0 

(1.4- 1-15> 
1.0 

R,, = -RBA = - - = -1.15 kN 

RBC = -RcB = - = -0.25 kN 

R CD = - R D c = - -  la4 - 1.40kN 
1.0 

Therefore, due to the end moments only, the support reactions are 

RA,M=-1*15 kN, RB.M=1.15-0 .25=0*9  kN, 
Rc,M = 0.25 + 1.4 = 1.65 kN, RD,M = -1.4 kN 

In addition to these reactions there are the reactions due to the actual loading, which 
may be obtained by analysing each span as a simply supported beam (the effects of 
the end moments have been calculated above). In this example these reactions may 
be obtained by inspection. Thus 

RA,s = 3.0 kN, RB.s = 3.0 + 5.0 = 8.0 kN, Rc.s = 5.0 + 6.0 = 11.0 kN, 
RD.s = 6.0 kN 

The final reactions at the supports are then 

R, = R A p  + R A s  = - 1.15 + 3.0 = 1.85 kN 

RB = RB.M + RB.s = 0.9 + 8.0 = 8 . 9  kN 

Rc = RC.M + Rc.s = 1.65 + 11.0 = 12.65 kN 

RD=RD. ,+RD, ,=  -1-4+6.0=4-6kN 

Fig. 16.34 Moments and reactions at the ends of the spans of the continuous 
beam of Ex. 16.15 
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Alternatively, we could have obtained these reactions by the slightly lengthier 
procedure of substituting for e,, e B ,  etc., in Eqs (16.29) and (16.31). Thus, for 
example, 

6EI 
L2 

S A B  = - R A  = - (0, + 0,) - 3.0 (VA = VB = 0) 

which gives R, = 1.85 kN as before. 
Comparing the above solution with that of Ex. 16.7 we see that there are small 

discrepancies; these are caused by rounding-off errors. 
Having obtained the support reactions, the bending moment distribution (reverting 

to the sagging (positive) and hogging (negative) sign convention) is obtained in the 
usual way and is shown in Fig. 16.35. 

Example 16.16 Determine the end moments in the members of the portal frame 
shown in Fig. 16.36; the second moment of area of the vertical members is 2-51 
while that of the horizontal member is I .  

In this particular problem the approach is very similar to that for the continuous 
beam of Ex. 16.15. However, due to the unsymmetrical geometry of the frame and 
also to the application of the 10 kN load, the frame will sway such that there will be 

Fig. 16.35 Bending moment diagram for the beam of Ex. 16.15 

Fig. 16.36 Portal frame of Ex. 16.16 
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horizontal displacements, uB and uc, at B and C in the members BA and CD. Since 
we are ignoring displacements produced by axial forces then uB = vc= u l ,  say. We 
would, in fact, have a similar situation in a continuous beam if one or more of the 
supports experienced settlement. Also we note that the rotation, e,, at A must be 
zero since the end A of the member AB is fixed. 

Initially, as in Ex. 16.15, we calculate the fixed-end moments in the members of 
the frame, again using the results of Exs 13.20 and 13.22. The effect of the 
cantilever CE may be included by replacing it by its end moment, thereby reducing 
the number of equations to be solved. Thus, from Fig. 16.36 we have 

3 ~6~ 
ME,=--=-54mm 2 

l o x  10 MAE F = -MBA F = -- = -12.5 kN m 

- F F 3 x 202 ME,= -Mce = -- - 
12 

Now, from Eqs (16.28) and (16.30) 

8 

-100kNm, Mc,=M,=O F F 

(ii) 

In Eqs (i) and (ii) we are assuming that the displacement, ul ,  is to the right. 
Furthermore 

2*5EI 201, + 8, + - u ,  ( 10 3 ,  
M ,  = 

10 

(iii) 

From the equilibrium of the member end moments at the joints 

MEA + ME, = 0, Mc, + MC, - 54 = 0, M, = 0 
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Substituting in the equilibrium equations for M B A ,  M,,, etc., from Eqs (i)-(vi) we 
obtain 

1.25EI8, + 0.1 EIBC-  0*15EIv, - 87.5 = O (vii) 
1.2EIBC + 0.1EI8, + 0.5EI8C + 0*15EIVl+ 46 = 0 (viii) 

E Z ~ D + O . ~ E I ~ C + O . ~ ~ E I V ,  = O  (ix 1 
Since there are four unknown displacements we require a further equation for a 
solution. This may be obtained by considering the overall horizontal equilibrium of 
the frame. Thus 

SAB+SX+lO=O 

in which, from Eq. (16.29) 

S A B  = 
6 x 2-5 EI 12 x 2.5EI 

VI-5 io3 O B  - 
1 0’ 

where the last term on the right-hand side is Si,(= -5 kN), the contribution of the 
10 kN horizontal load to SA,. Also 

6 x 2-5 EI 12 x 2.5EI 
V I  

1 o3 SDc = (OD + - 
10’ 

Hence, substituting for SAB and SX in the equilibrium equations, we have 
E188 + EI8D + EI8c - 0.4EIvI + 33.3 = O (XI  

Solving Eqs (vii)- (x) we obtain 
EI8, = 101.5, EIB, = -73-2, = 9.8, EIv, = 178.6 

Substituting these values in Eqs (i)-(vi) yields 
MA,= 11-5 kNm, MBA=87-2 kNm, MBC= -87.2 kNm, 

McB=95.5 kNm, Mco= -41.5 kNm, 
M,=O and Mc,=-54kNm 

16.1 0 Moment distribution 
Examples 16.15 and 16.16 show that the greater the complexity of a structure, the 
greater the number of unknowns and therefore the greater the number of 
simultaneous equations requiring solution; hand methods of analysis then become 
extremely tedious if not impracticable so that alternatives are desirable. One obvious 
alternative is to employ computer-based techniques but another, quite powerful hand 
method is an iterative procedure known as the momeizr distribution method. The method 
was derived by Professor Hardy Cross and presented in a paper to the ASCE in 1932. 

Principle 
Consider the three-span continuous beam shown in Fig. 16.37(a). The beam carries 
loads that, as we have previously seen, will cause rotations, e,, e,, 8, and 8 D  at the 



Moment distribution 5 19 

Fig. 16.37 Principle of the moment distribution method 

supports as shown in Fig. 16.37(b). In Fig. 16.37(b), 8, and OC are positive 
(corresponding to positive moments) and 8s and 8D are negative. 

Suppose that the beam is clamped at the supports before the loads are applied, 
thereby preventing these rotations. Each span then becomes a fixed beam with 
moments at each end, i.e. fixed-end moments (FEMs). Using the same notation as in 
the slope-deflection method these moments are MzB,  M:h M&, M t B ,  M:, and Mk. 
If we now release the beam at the support B, say, the resultant moment at B, 
M i A +  M i c ,  will cause rotation of the beam at B until equilibrium is restored; 
Mi,,,+ M i c  is the our of balance moment at B. Note that, at this stage, the rotation of 
the beam at B is not 8,. By allowing the beam to rotate to an equilibrium position at 
B we are, in effect, applying a balancing moment at B equal to - (MLA+ Mic) .  Part 
of this balancing moment will cause rotation in the span BA and part will cause 
rotation in the span BC. In other words the balancing moment at B has been 
distributed into the spans BA and BC, the relative amounts depending upon the 
stifliiess, or the resistance to rotation, of BA and BC. This procedure will affect the 
fixed-end moments at A and C so that they will no longer be equal to MIB and MEB. 
We shall see later how they are modified. 

We now clamp the beam at B in its new equilibrium position and release the beam 
at, say, C. This will produce an out of balance moment at C which will cause the 
beam to rotate to a new equilibrium position at C. The fixed-end moment at D will 
then be modified and there will now be an out of balance moment at B. The beam is 
now clamped at C and released in turn at A and D, thereby modifying the moments 
at B and C. 

The beam is now in a position in which it is clamped at each support but in which 
it has rotated at the supports through angles that are not yet equal to e,, OB, OC and 
8,. Clearly the out of balance moment at each support will not be as great as it was 
initially since some rotation has taken place; the beam is now therefore closer to the 
equilibrium state of Fig. 16.37 (b). The release/clamping procedure is repeated until 
the difference between the angle of rotation at each support and the equilibrium state 
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of Fig. 16.37(b) is negligibly small. Fortunately this occurs after relatively few 
release/clamping operations. 

In applying the moment distribution method we shall require the fixed-end moments 
in the different members of a beam or frame. We shall also need to determine the 
distribution of the balancing moment at a support into the adjacent spans and also the 
fraction of the distributed moment which is carried over to each adjacent support. 
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The sign convention we shall adopt for the fixed-end moments is identical to that 
for the end moments in the slope-deflection method; thus clockwise moments are 
positive, anticlockwise are negative. 

Fixed-end moments 
We shall require values of fixed-end moments for a variety of loading cases. It will 
be useful, therefore, to list them for the more common loading causes; others may 
be found using the moment-area method described in Section 13.3. Included in 
Table 16.6 are the results for the fixed beams analysed in Section 13.7. 

Stiffness coefficient 
A moment applied at a point on a beam causes a rotation of the beam at that point, 
the angle of rotation being directly proportional to the applied moment (see 
Eq. (9.19)). Thus for a beam AB and a moment MBA applied at the end B 

MBA = KABOB (16.32) 
in which KAB(=KBA) is the rotational stiffness of the beam AB. The value of KAB 
depends, as we shall see, upon the support conditions at the ends of the beam. 

Distribution factor 
Suppose that in Fig. 16.38 the out of balance moment at the support B in the beam 
ABC to be distributed into the spans BA and BC is M,(=M,FA+Mzc) at the first 
release). Let MbA be the fraction of M, to be distributed into BA and MLc be the 
fraction of M, to be distributed into BC. Suppose also that the angle of rotation at B 
due to M, is 0;. Then, from h. (16.32) 

MLA = KBAe; (16.33) 
and M ~ c  = K& (1 6.34) 

but M b A  + MLc + MB = 0 

Note that MbA and MLc are fractions of the balancing moment while M, is the out 
of balance moment. Substituting in this equation for MbA and Mbc from Eqs (16.33) 
and (16.34) 

% ( K B A  + KBc) = -MB 

(1 6.35) MB 
KBA + KBC 

0’ - - so that B -  

Fig. 16.38 Determination of distribution factor 
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Substituting in Eqs (16.33) and (16.34) for el, from Eq. (16.35) we have 

( - M B )  (16.36) 

The terms K B A / ( K B A  + KBC) and KBc/ (KBA + KBC) are the distribution factors (DFs) 
at the support B. 

KBC 
(-MB), M k =  KBA 

KBA + KBC 
M ) B A  = 

K B A  + KBC 

Stiffness coefficients and carry over factors 
We shall now derive values of stiffness coefficient ( K )  and carry over factor (COF) 
for a number of support and loading conditions. These will be of use in the solution 
of a variety of problems. For this purpose we use the slope-deflection equations, 
Eqs (16.28) and (16.30). Thus for a span AB of a beam 

and 

In some problems we shall be interested in the displacement of one end of a beam 
span relative to the other, i.e. the effect of a sinking support. Thus for, say, vA = 0 
and vB = 6 (the final two load cases in Table 16.6) the above equations become 

and 

Rearranging Eqs (16.37) and (16.38) we have 

and 

(16.37) 

(16.38) 

(16.39) 

( 16.40) 

Equations (16.39) and (16.40) may be expressed in terms of various combinations of 
e,, 8s and 6. Thus subtracting Eq. (16.39) from Eq. (16.40) and rearranging we obtain 

Multiplying Eq. (1 6.39) by 2 and subtracting from Eq. (1 6.40) gives 

(16.41) 

( 16.42) 
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Now eliminating 0, between Eqs (16.39) and (16.40) we have 

(1 6.43) 

We shall now use Eqs (16.41)-(16.43) to determine stiffness coefficients and 
carry over factors for a variety of support and loading conditions at A and B. 

Case I :  A fixed, B simply supported, moment MBA applied at B 

This is the situation arising when a beam has been released at a support (B) and we 
require the stiffness coefficient of the span BA so that we can determine the 
distribution factor; we also require the fraction of the moment, MBA, which is 
carried over to the support at A. 

In this case e, = 6 = 0 so that, from Eq. (16.42) 
I 

M A B  = i MBA 

Therefore one-half of the applied moment, M B A ,  is carried over to A so that the 
carry over factor (COF) = 1/2. Now from Eq. (16.43) we have 

so that 

4EI 
L 

from which (see Eq. (16.32)) KBA = - ( = KAB) 

Case 2: A simply supported, B simply supported, moment MBA applied at B 

This situation arises when we release the beam at an internal support (B) and the 
adjacent support (A) is an outside support which is pinned and therefore free to 
rotate. In this case the moment, MBA, does not affect the moment at A, which is 
always zero; there is, therefore, no carry over from B to A. 
From Eq. (1 6.43) 

whence 

so that 
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Case 3: A and B simply supported, equal moments M B A  and - M A B  applied at 
B and A 

This case is of use in a symmetrical beam that is symmetrically loaded and would 
apply to the central span. Thus identical operations will be carried out at each end of 
the central span so that there will be no cany over of moment from B to A or A to B. 
Also OB = -8, SO that from Eq. (16.41) 

2EI 
L 

M B A  = - O B  

2EI 

L 
and KBA = - ( = K A B )  

Case 4: A and B simply supported, the beam antisymmetrically loaded such 
that M B A =  M A B  

This case uses the antisymmetry of the beam and loading in the same way that Case 
3 used symmetry. There is therefore no cany over of moment from B to A or A to B 
and 8, = OB. Therefore, from Eq. (16.43). 

6EI 
L 

6EI 
L 

M B A  = - 8s  

so that K B A  = - ( = K A B )  

We are now in a position to apply the moment distribution method to beams and 
frames. Note that the successive releasing and clamping of supports is, in effect, 
carried out simultaneously in the analysis. 

First we shall consider continuous beams. 

Continuous beams 
Example 16.17 
shown in Fig. 16.39; its flexural rigidity EI is constant throughout. 

Determine the support reactions in the continuous beam ABCD 

Fig. 16.39 Beam of Ex. 16.17 
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Initially we calculate the fixed-end moments (FEMs) for each of the three spans 
using the results presented in Table 16.6. Thus 

8 x 3 *  
12 

- -6.0 kN m M A B = - M B A = - - -  F F 

8 ~ 2 ~  2 0 x 2  
12 8 

- -7.67 kN m F MBC= -McB = -- - - - 

In this particular example certain features should be noted. First, the support at A 
is a fixed support so that it will not be released and clamped in turn. In other words, 
the moment at A will always be balanced (by the fixed support) but will be 
continually modified as the beam at B is released and clamped. Secondly, the support 
at D is an outside pinned support so that the final moment at D must be zero. We can 
therefore reduce the amount of computation by balancing the beam at D initially and 
then leaving the support at D pinned so that there will be no carry over of moment 
from C to D in the subsequent moment distribution. However, the stiffness 
coefficient of CD must be modified to allow for this since the span CD will then 
correspond to Case 2 as the beam is released at C and is free to rotate at D. Thus 
Kc, = K, = 3EI/L. All other spans correspond to Case 1 where, as we release the 
beam at a support, that support is a pinned support while the beam at the adjacent 
support is fixed. Therefore, for the spans AB and BC, the stiffness coefficients are 
4EI/L and the carry over factors are equal to 112. 

The distribution factions (DFs) are obtained from Eqs (16.36). Thus 

Note that the sum of the distribution factors at a support must always be equal to 
unity since they represent the fraction of the out of balance moment which is 
distributed into the spans meeting at that support. The solution is now completed as 
shown in Table 16.7. 

Note that there is a rapid convergence in the moment distribution. As a general 
rule it is sufficient to stop the procedure when the distributed moments are of the 
order of 2% of the original fixed-end moments. In the table the last moment at C in 
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Table 16.7 

A B C D 

DFs - 0-4 0.6 0.57 0.43 1 -0 

FEMs 
Balance D 
Carry over 
Balance 
Carry over 
Balance 
Carry over 
Balance 
Carry over 
Balance 

-6.0 +6*0 -7.67 +7-67 -2.67 +2-67 

-1-34 f l  
-2.67 

+0-67 +1-0 -2.09 -1.58 
+ O S /  -1 -05 +0*5 

+0*42 +Om63 -0-29 -0.21 
+ 0 . 2 1 4  -0.15 +0*32 

+0*06 +0*09 -0.18 -0.14 
+0*03 -0-09 = +0.05 

+0*04 +0-05 -0.03 -0.02 

Final moments -5.42 +7.19 -7.19 +5*95 -5.95 0 

CD is -0.02 which is 0.75% of the original fixed-end moment, while the last 
moment at B in BC is +0.05 which is 0.65% of the original fixed-end moment. We 
could, therefore, have stopped the procedure at least one step earlier and still have 
retained sufficient accuracy. 

The final reactions at the supports are now calculated from the final support 
moments and the reactions corresponding to the actual loads, Le. the free reactions; 
these are calculated as though each span were simply supported. The procedure is 
identical to that in Ex. 16.15. 

Table 16.8 
~~ ~ 

A B C D 

Free reactions 1'12.0 12.01' 1'18.0 18.01' 1' 8-0 8-0 1' 
Final moment reactions 40-6 0.61' 1' 0.6 0.6& 1' 2-98 2.984 

Total reactions (kN) 1'11.4 12.61' 1'18.6 17.41' 1'10-98 5.021' 

In Table 16.8 the final moment reactions in AB, for example, form a couple to balance 
the clockwise moment of 7-19-5.42 = 1-77 kNm acting on AB. Thus at A the 
reaction is 1-77/3.0 = 0.6 kN acting downwards while at B in AB the reaction is 0.6 kN 
acting upwards. The remaining final moment reactions are calculated in the same way. 

Finally the complete reactions at each of the supports are 

R,= 11.4 kN, R , =  12*6+ 18*6=31-2 kN, 
R ,  = 17-4 + 10.98 = 28-38 kN, RD = 5-02 kN 

Example 16.18 Calculate the support reactions in the beam shown in Fig. 16.40; 
the flexural rigidity, EI, of the beam is constant throughout. 
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Fig. 16.40 Beam of Ex. 16.18 

This example differs slightly from Ex. 16.17 in that there is no fixed support 
and there is a cantilever overhang at the right-hand end of the beam. We 
therefore treat the support at A in exactly the same way as the support at D in the 
previous example. The effect of the cantilever overhang may be treated in a 
similar manner since we know that the final value of moment at D is 
-5 x 4 = -20 kNm. We therefore calculate the fixed-end moments M h  
(=-20 kN m) and M&, balance the beam at D, carry over to C and then leave the 
beam at D balanced and pinned; again the stiffness coefficient, K,, is modified to 
allow for this (Case 2). 

The fixed-end moments are again calculated using the appropriate results from 
Table 16.6. Thus 

F F 1 2 ~  14 MA, = -MBA = - - = -21 kN m 
8 

F 7 x 4 ~ 8 ~  7 x 8 ~ 4 ~  - = -18.67 kN m F MBC = -McB = - 
12* 122 

McD=-MDc = -- - F 22x12 
--22kNm F 

12 

M L , = - 5  x4=-20kNm 

The distribution factors are calculated as follows. 

3E1/14 
= 0.39 KBA - DF,, = - 

KBA + KBc 3E1/14 + 4E1/12 

Hence DFBC = 1 - 0.39 = 0.61 

4E1/12 
= 0.57 - - KC, 

KcB + KcD 
DFCB = 

4E1/12 + 3E1/12 

Hence DFCD = 1 - 0.57 = 0.43 
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The solution is completed as follows. 

E 

DFs 1 0.39 0.61 0-57 0.43 1.0 0 - 

FEMs -21.0 +21*0 -18.67 +18.67 -22.0 +22-0 -20.0 0 
Balance A and D +21 .O -2.0 

Balance -5.0 -7-83 +2.47 +le86 

- A B C D 

Carry over 7 + 1 0 - 5  -1.0 - 
Carry over +1-24--3*92 

Carry over +1 e1 2=-0.38 

Carry over +0.11= 0.34 

Balance -0.48 -0.76 +2*23 +1*69 

Balance -0.44 -0.68 +0.22 +0.16 

Balance -0.04 -0.07 +0*19 +0.15 

Final moments 0 +25.54 -25.54 +19*14 -19.14 +20.0 -20.0 0 

The support reactions are now calculated in an identical manner to that in Ex. 16.17 
and are 

R,=4*18kN, RB=15*35kN, Rc=17.4kN, R,=16*07kN 

Example 16.19 Calculate the reactions at the supports in the beam ABCD shown in 
Fig. 16.41. The flexural rigidity of the beam is constant throughout. 

The beam in Fig. 16.41 is symmetrically supported and loaded about its centre- 
line; we may therefore use this symmetry to reduce the amount of computation. 

In the centre span, BC, M i C =  -MEB and will remain so during the distribution. 
This situation corresponds to Case 3, so that if we reduce the stiffness (Ksc)  of BC 
to 2EI/L there will be no carry over of moment from B to C (or C to B) and we can 
consider just half the beam. The outside pinned support at A is treated in exactly the 
same way as the outside pinned supports in Exs 16.17 and 16.18. 

Fig. 16.41 Symmetrical beam of Ex. 16.19 
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The fixed-end moments are 

F F 5 ~ 6 ~  
A B -  E A -  M --M ---=-15kNm 

12 

F 4 0 x 5  
CB --25kNm F MBc=-M =--- 

8 

The distribution factors are 

= 0.71 
KBA - 3 E116 DFAB = - 

KBA + KBc 3EZ/6 + 2EZ/10 

Hence DFBC = 1 - 0.7 1 = 0.29 

The solution is completed as follows: 

A B 

DFs 1 0.71 0.29 

FEMs -15.0 +15*0 -25.0 
Balance A +15.0 

Balance B +lo78 +0*72 
Carry over - +7.5 
Final moments 0 +24.28 -24.28 

Note that we only need to balance the beam at B once. The use of symmetry 
therefore leads to a significant reduction in the amount of computation. 

Example 16.20 Calculate the end moments at the supports in the beam shown 
in Fig. 16.42 if the support at B is subjected to a settlement of 12 mm. 
Furthermore, the second moment of area of the cross-section of the beam is 
9 x 10' mm4 in the span AB and 12 x 10' mm4 in the span BC; Young's modulus, 
E ,  is 200 000 N/mm'. 

Fig. 16.42 Beam of Ex. 16.20 
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In this example the fixed-end moments produced by the applied loads are modified 
by additional moments produced by the sinking support. Thus, using Table 16.6 

6 ~ 5 ~  6x200000x9x106x  12 
MAB=--- = -17.7 kN m 

12 (5 io3)* io6 

12 (5 x 1 0 ~ ) ~  x io6 
6 ~ 5 ~  6x200000x9x106x12  

M ;A = + - - = +7.3 kN m 

Since the support at C is an outside pinned support, the effect on the fixed-end 
moments in BC of the settlement of B is reduced (see the last case in Table 16.6). 
Thus 

4 0 x 6  3x200000x12x106x12  
MEc=---- + = -27-6 kN m 

8 (6 x x lo6 

The distribution factors are 

Hence 

4E x 9 x 106/5 
= 0-55 KBA - DFBA = - 

KBA +KBC (4E x 9 x 106)/5 + (3E x 12 x 106)/6 

A B C 

DFs - 0.55 0.45 1 -0 

FEMs -17.7 +7*3 -27.6 +30*0 
Balance C -30.0 
Carry over - 1 5 ~ 0 ~  
Balance B + 19-41 + 1 5-89 
Carry over +9.71 

Final moments -7.99 +26*71 -26.71 0 

Note that in this example balancing the beam at B has a significant effect on the 
fixing moment at A; we therefore complete the distribution after a carry over to A. 

Portal frames 
Portal frames fall into two distinct categories. In the first the frames, such as that 
shown in Fig. 16.43(a), are symmetrical in geometry and symmetrically loaded, 
while in the second (Fig. 16.43(b)) the frames are unsymmetrical due either to their 
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Fig. 16.43 Symmetrical and unsymmetrical portal frames 

geometry, the loading or a combination of both. The displacements in the 
symmetrical frame of Fig. 16.43(a) are such that the joints at B and C remain in 
their original positions (we are ignoring axial and shear displacements and we 
assume that the joints remain rigid so that the angle between adjacent members at a 
joint is unchanged by the loading). In the unsymmetrical frame there are additional 
displacements due to side sway or sway as it is called. This sway causes additional 
moments at the ends of the members which must be allowed for in the analysis. 

Initially we shall consider frames in which there is no sway. The analysis is then 
virtually identical to that for continuous beams with only, in some cases, the added 
complication of more than two members meeting at a joint. 

Example 16.21 Obtain the bending moment diagram for the frame shown in 
Fig. 16.44; the flexural rigidity EI is the same for all members. 

In this example the frame is unsymmetrical but sway is prevented by the member 
BC which is fixed at C. Also, the member DA is fixed at D while the member EB is 
pinned at E. 

The fixed-end moments are calculated using the results of Table 16.6 and are 
F F MAD = M L ~  = 0, M~~ = M : ~  = o 

1 2 x 4 ~ 8 ~  1 2 x 8 ~ 4 ’  
- = -32 kN m F F MAB = -MBA = - 

1 2’ 12’ 

1 x 16’ 
12 

Since the vertical member EB is pinned at E, the final moment at E is zero. We 
may therefore treat E as an outside pinned support, balance E initially and reduce the 
stiffness coefficient, K,,, as before. However, there is no fixed-end moment at E so 
that the question of balancing E initially does not arise. The distribution factors are 
now calculated. 

- -21.3 kN m M L ~  = - M ~ ~  = -- - F 

= 0.5 
- 4EI/12 - KAD DF,, = 

KAD + KAB 4EI/12 + 4EI/12 

Hence DF,, = 1 - 0.5 = 0.5 
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Fig. 16.44 Beam of Ex. 16.21 

= 0.4 
4EI/12 - - KBA DFBA = 

KEA + KBC + KBE 4EI/12 + 4EI/16 + 3E1/12 

= 0.3 
- 4EI/16 - KBC 

KBA + KBC + KBE 
DFBc = 

4EI/12 + 4EI/16 + 3EI/12 

Hence DFBE = 1 - 0.4 - 0.3 = 0.3 

The solution is now completed below. 

Joint D A B C E 

Member DA AD AB BA BE BC CB EB 
DFs - 0.5 0.5 0.4 0.3 0.3 - 1.0 

FEMs 0 0 -32.0 +32.0 0 -21.3 +21.3 0 
Balance A & B +16*0 +16.0 -4.3 -3.2 -3.2 
Carry over +8*0 -2.15 +8.0 -1.6 
Balance +1*08 +la08 -3.2 -2.4 -2.4 

Balance +0*8 +0.8 -0.22 -0.16 -0.1 6 
Carry over +0.4 -0.11 +0.4 -0.08 
Balance +0*05 +0.06 -0.16 -0.12 -0-12 

-- 

Carry over +O-54 -1.6 + O m 5 4  -1 -2 

Final moments +8.94 +17.93 -17.93 +33.08 -5.88 -27.18 +18-42 0 

The bending moment diagram is shown in Fig. 16.45 and is drawn on the tension 
side of each member. The bending moment distributions in the members AB and BC 
are determined by superimposing the fixing moment diagram on the free bending 
moment diagram, i.e. the bending moment diagram obtained by supposing that AB 
and BC are simply supported. 

We shall now consider frames that are subject to sway. For example, the frame 
shown in Fig. 16.46(a), although symmetrical itself, is unsymmetrically loaded and 
will therefore sway. Let us suppose that the final end moments in the members of the 
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Fig. 16-45 Bending moment diagram for the frame of Ex. 16.21 (bending 
moments [kN m 1 drawn on tension side of members) 

Fig. 16.46 Calculation of sway effect in a portal frame 

frame are MA,, M B A ,  M,,, etc. Since we are assuming a linearly elastic system we 
may calculate the end moments produced by the applied loads assuming that the 
frame does not sway, then calculate the end moments due solely to sway and 
superimpose the two cases. Thus 

M A ,  = M:: + M&, M B A  = M z i  + MiA, etc. 

in which M,”B’ is the end moment at A in the member AB due to the appIied loads, 
assuming that sway is prevented, while M i ,  is the end moment at A in the member 
AB produced by sway only, and so on for M B A ,  M,,, etc. 

We shall now use the principle of virtual work (Section 15.2) to establish a 
relationship between the final end moments in the member and the applied loads. 
Thus we impose a small virtual displacement on the frame comprising a rotation, e,, 
of the members AB and DC as shown in Fig. 16.46(b). This displacement should 
not be confused with the sway of the frame which may, or may not, have the same 
form depending on the loads that are applied. In Fig. 16.46(b) the members are 
rotating as rigid links so that the internal moments in the members do no work. 
Therefore the total virtual work comprises external virtual work only (the end 
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moments M A B ,  MBA, etc. are externally applied moments as far as each frame 
member is concerned) so that, from the principle of virtual work 

M A B 8 ,  + M B A 8 ,  + McD8, + MW8, + Ph 8, = 0 

Hence MAB + M B ,  + hi,,+ M,+ P h = O  (16.44) 

Note that, in this case, the member BC does not rotate so that the end moments MBc 
and McB do no virtual work. Now substituting for M A B ,  M B A ,  etc. in Eq. (16.44) we 
have 

M , N , S + M A S B + M ~ : + + ; A + M ~ ~ + M ~ D + M ~ + M ~ + P h = O  (16.45) 

in which the no-sway end moments, M!;, etc. are found in an identical manner to 
those in the frame of Ex. 16.21. 

Let us now impose an arbitrary sway on the frame; this can be of any convenient 
magnitude. The arbitrary sway and moments, Mt;, M t z ,  etc., are calculated using 
the moment distribution method in the usual way except that the fixed-end moments 
will be caused solely by the displacement of one end of a member relative to the 
other. Since the system is linear the member end moments will be directly 
proportional to the sway so that the end moments corresponding to the actual sway 
will be directly proportional to the end moments produced by the arbitrary sway. 
Thus, MASB = kMf: ,  M;A = kM2, etc. in which k is a constant. Substituting in 
Eq. (16.45) for MASB, MiA, etc. we obtain 

M,"B" + Mg; + M,Ng + M$ + k ( M 2  + M;: + MGg + MS) + Ph = 0 (16.46) 

Substituting the calculated values of Mt;, M f ; ,  etc. in Eq. (16.46) gives k. The actual 
sway moments MASB, etc., follow as do the final end moments, MAB(=Mti + M:,), etc. 

An alternative method of establishing Eq. (16.44) is to consider the equilibrium 
of the members AB and DC. Thus, from Fig. 16.46(a) in which we consider the 
moment equilibrium of the member AB about B we have 

RA,H h - MA,  - MBA = O 

which gives MAB + MBA 
h 

RA.H = 

Similarly, by considering the moment equilibrium of DC about C 

h 

Now, from the horizontal equilibrium of the frame 
RA.n + RD,H + P = 0 

so that, substituting for RA.H and RD,H we obtain 
M A ,  + M B A  + M, + Mc, + Ph = o  

which is Eq. (16.4). 
Example 16.22 Obtain the bending moment diagram for the portal frame shown in 
Fig. 16.47(a). The flexural rigidity of the horizontal member BC is 2EI while that of 
the vertical members AB and CD is EI. 
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Fig. 16.47 Portal frame of Ex. 16.22 

First we shall determine the end moments in the members assuming that the frame 
does not sway. The corresponding fixed-end moments are found using the results in 
Table 16.6 and are as follows: 

F F F 
M A B  = M L A  = 0, MCD = M DC = o 

F 4X5X1O2 
MBC=- = -8.89 kN m 

152 

4 x  l o x  5’ 
152 

= +444 kN m F MCB=+ 

The distribution factors are 

= 0-43 
KBA = 4EI/10 

DFBA = 
KBA + KBC 4EI/10 i- 4 x 2EI/15 

Hence DFBC = 1 - 0.43 = 0.57 

From the symmetry of the frame, DFCB = 0.57, DF,, = 0-43. 
The no-sway moments are determined in the table overleaf. We now assume that 

the frame sways by an arbitrary amount, 6, as shown in Fig. 16.47(b). Since we are 
ignoring the effect of axial strains, the horizontal movements of B and C are both 6. 
The fixed-end moments corresponding to this sway are then (see Table 16.6). 

F - hf LC = MCD 
F F 6EI 6 M A B  = M BA = -- - 

1 o2 
F F MBC = MCB = 0 

Suppose that 6 = 100 x 10’/6EI. Then 
MIB = ME,= M& = M,F,= - 100 kN m (a convenient value) 

The distribution factors for the members are the same as those in the no-sway case 
since they are functions of the member stiffness. We now obtain the member end 
moments corresponding to the arbitrary sway. 
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No-sway case 

DFs 

A B C D 

- 0-43 0.57 0.57 0.43 - 

FEMs 
Balance 
Carry over 
Balance 
Carry over 
Balance 
Carry over 
Balance 
Carry over 
Balance 

0 0 -8.89 +4*44 0 0 
+3.82 +5-07 -2.53 -1.91 

+le91 - 1 0 2 6 ~  +2*53 -0.95 
+0*54 +0*72 -1.44 -1.09 

+0-27 -0.72- +0*36 -0.55 
+0.31 +0*41 -0.21 -0.15 

+0.15 -0.1 1- +0*21 -0.08 
+0.05 +0*06 -0.12 -0.09 

+0.03 -0.06- +0*03 1 - 0 - 0 5  
+0*03 +0*03 -0.02 -0.01 

Final moments (wS) +2-36 +4-75 -4.75 +3*25 -3.25 -1 -63 

Sway case 

D Fs 

A B C D 

- 0.43 0.57 0.57 0.43 - 

FEMs -100 -100 0 0 -100 -100 
Balance +43 +57 +57 +43 
Carry over +21-5 + 2 8 - 5 x ~  + 28.5 L +215 
Balance 
Carry over 
Balance 
Carry over 
Balance 

-12.3 -16.2 -16.2 -12.3 
-6-2/ -8.1- -8.1 -6.2 

+3-5 +4*6 +4*6 +3.5 
+1-8/ +2*3% +2*3 1 +1.8 

-1.0 -1.3 -1.3 -1.0 

Final arbitrary -82.9 -66.8 +66*8 +66*8 -66.8 -82.9 
sway moments (MAS) 

Comparing the frames shown in Figs 16.47 and 16.46 we see that they are virtually 
identical. We may therefore use Eq. (16.46) directly. Thus, substituting for the no- 
sway and arbitrary-sway end moments we have 

2.36 + 4.75 - 3.25 - 1-63 + k(-82-9 - 66.8 - 66.8 - 82.9) + 2 x 10 = 0 
which gives k = 0.074 
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The actual sway moments are then 

M2B= Mt: = 0.074 x (-82.9) = -6- 14 kN m 

Similarly MiA= -4.94 kNm, Mic=4.94 a m ,  M&=4'94 kNm 

M:',= -4.94 kNm, M&= -6-14 kNm 

Thus the final end moments are 

MAB=M~:+MASB=2.36-6.14= -3.78 kNm 

SimilarlyMBA= -0.19 kNm, MBc=0.19 kNm, McB=8.19 kNm 

McD= -8.19 kNm, M,= -7.77 kNm 

The bending moment diagram is shown in Fig. 16.48 and is drawn on the tension 
side of the members. 

Example 16.23 Calculate the end moments in the members of the frame shown in 
Fig. 16.49. All members have the same flexural rigidity, EI; note that the member 
CD is pinned to the foundation at D. 

Fig. 16.48 Bending moment diagram for the portal frame of Ex. 16.22 

Fig. 16.49 Frame of Ex. 16.23 
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Initially, the fixed-end moments produced by the applied loads are calculated. 
Thus, from Table 16.6 

F 4 0 x 6  
-30 kN m F MA, = -MEA = -- = 

8 

F F 2 0 ~ 6 ~  
MBC = -McB = - - = -60 kN m 

12 
M;,=M.,=O F 

The distribution factors are calculated as before. Note that the length of the member 
CD = -= 7-5 m. 

= 0-5 
- 4E1/6 DFBA = KBA - 

KBA + K B ~  4E1/6 + 4E1/6 

= 0.625 
- 4E1/6 - KCB 

KCB + KCD 
DFcB = 

4E1/6 + 3E117.5 

Therefore DFCD = 1 - 0.625 = 0.375 

No-sway case 

DFs 

A B C D 

- 0.5 0.5 0.625 0-375 1.0 
- 

FEMs -30.0 +30.0 -60.0 +60*0 0 0 
Balance +15*0 +15.0 -37.5 -22.5 
Carry over +7.5 - - 18.8- +7*5 
Balance +9*4 +9*4 -4.7 -2.8 
Carry over +4.7 - -2.4- +4*7 
Balance +1*2 +1*2 -2.9 -1.8 
Carry over +0*6 - -1 *5- +0*6 
Balance +0*75 +0*75 -0.38 -0.22 

Final moments ( MNS) -1 7.2 +56.35 -56.35 +27.32 -27.32 0 

Unlike the frame in Ex. 16.22 the frame itself in this case is unsymmetrical. 
Therefore the geometry of the frame, after an imposed arbitrary sway, will not have 
the simple form shown in Fig. 16.47(b). Furthermore, since the member CD is 
inclined, an arbitrary sway will cause a displacement of the joint C relative to the 
joint B. This also means that in the application of the principle of virtual work a 
virtual rotation of the member AB will result in a rotation of the member BC, so 
that the end moments MBc and McB will do work; Eq. (16.46) cannot, therefore, be 
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used in its existing form. In this situation we can make use of the geometry of the 
frame after an arbitrary virtual displacement to deduce the relative displacements of 
the joints produced by an imposed arbitrary sway; the fixed-end moments due to the 
arbitrary sway may then be calculated. 

Figure 16.50 shows the displaced shape of the frame after a rotation, 8, of the 
member AB. This diagram will serve, as stated above, to deduce the fixed-end 
moments due to sway and also to establish a virtual work equation similar to 
Eq. (16.46):It is helpful, when calculating the rotations of the different members, to 
employ an instantaneous centre, I. This is the point about which the triangle IBC 
rotates as a rigid body to IB'C'; thus all sides of the triangle rotate through the same 
angle which, since BI = 8 m (obtained from similar triangles AID and BIC), is 38/4. 
The relative displacements of the joints are then as shown. 

The fixed-end moments due to the arbitrary sway are, from Table 16.6 and 
Fig. 16.50 

M&= MEB= +6EI(4.58)/62 = +0*75EI8 

MED= -3EI(7.58)/7-52 = -0.4EI8 

If we impose an arbitrary sway such that EIB = 100 we have 

MIB= M:A= -100 kNm, M&= MEB= +75 kNm, MCFD= -40 kNm 

Sway case 

A B C D 
- 

DFs - 0-5 0-5 0.625 0.375 1 -0 

FEMs -100 -100 + 75 + 75 -40 0 
Balance +12.5 +12.5 -21.9 -13.1 
Carry over +6*3- -1 0.9- +6*3 
Balance +5.45 +5.45 -3.9 -2.4 
Carry over +2.72- -1 *95-+2.72 
Balance -0.97 +0*97 -1.7 -1 -02 
Carry over +0*49- - 0.8- +0*49 
Balance +0.43 +0*43 -0.31 -0.1 8 

Final arbitrary -90.49 -80.65 +80.65 +56.7 -56.7 
sway moments (MAS) 
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Fig. 16.50 Arbitrary sway and virtual displacement geometry of frame of 
Ex. 16.23 

Now replacing MA,, etc., by Mfg + k M g ,  etc., Eq. (i) becomes 

4 (M:; + M;: + Mg) - 3 (M;: + M,N,s) 
+ k [ 4 ( M g + M ~ ~ + M ~ , ) - 3 ( M ~ ~ + M ~ ~ ) ] - 6 0 0 = 0  

Substituting the values of Mfi and M f ; ,  etc., we have 

4(-17.2 + 56.35 - 27.32) - 3(-56.35 + 27.32) 
+ k[4( -90.49 - 80.65 - 56.7) - 3(80.65 + 56.7) ] - 600 = 0 

from which k = -0.352. The final end moments are calculated from 
MA, = M:; - 0.352Mf;, etc., and are given below. 

AB 0A BC CB CD DC 

No-sway moments -17.2 +56.4 -56.4 +27-3 -27.3 0 
Sway moments +31*9 +28*4 -28.4 -20.0 +20.0 0 

Final moments +14.7 +84.8 -84.8 +7.3 -7.3 0 

16.1 1 Introduction to matrix methods 
In Section 16.1 we discussed the flexibility and stiffness methods of analysis of 
statically indeterminate structure and saw that the flexibility method involved 
releasing the structures, determining the displacements in the released structure and 
then finding the forces required to fulfil the compatibility of displacement condition 
in the complete structure. The method was applied to statically indeterminate beams, 
trusses, braced beams, portal frames and two-pinned arches in Sections 16.4-16.8. It 
is clear from the analysis of these types of structure that the greater the degree of 
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indeterminacy the higher the number of simultaneous equations requiring solution; 
for large numbers of equations a computer approach then becomes necessary. 
Furthermore, the flexibility method requires judgements to be made in terms of the 
release selected, so that a more automatic procedure is desirable so long, of course, 
as the fundamental behaviour of the structure is understood. 

In Section 16.9 we examined the slope-deflection method for the solution of 
statically indeterminate beams and frames; the slope-deflection equations also form 
the basis of the moment distribution method described in Section 16.10. These 
equations are, in fact, force-displacement relationships as opposed to the 
displacement-force relationships of the flexibility method. The slope-deflection and 
moment distribution methods are therefore stifness or displacement methods. 

The stiffness method basically requires that a structure, which has a degree of 
kinematic indeterminacy equal to n,, is initially rendered determinate by imposing 
a system of nk constraints. Thus, for example, in the slope-deflection analysis of 
a continuous beam (e.g. Ex. 16.15) the beam is initially fixed at each support and 
the fixed-end moments calculated. This generally gives rise to an unbalanced 
system of forces at each node. Then by allowing displacements to occur at each 
node we obtain a series of force-displacement states (Eqs (i)-(vi) in Ex. 16.15). 
The n,  equilibrium conditions at the nodes are then expressed in terms of the 
displacements, giving nk equations (Eqs (vii)-(x) in Ex. 16.15), the solution of 
which gives the true values of the displacements at the nodes. The internal stress 
resultants follow from the known force-displacement relationships for each 
member of the structure (Eqs (i)-(vi) in Ex. 16.15) and the complete solution 
is then the sum of the determinate solution and the set of n ,  indeterminate 
systems. 

Again, as in the flexibility method, we see that the greater the degree of 
indeterminacy (kinematic in this case) the greater the number of equations requiring 
solution, so that a computer-based approach is necessary when the degree of 
interdeterminacy is high. Generally this requires that the force-displacement 
relationships in a structure are expressed in matrix form. We therefore need to 
establish force-displacement relationships for structural members and to examine 
the way in which these individual force-displacement relationships are combined to 
produce a force-displacement relationship for the complete structure. Initially we 
shall investigate members that are subjected to axial force only. 

Axially loaded members 
Consider the axially loaded member, AB, shown in Fig. 16.5 1 (a) and suppose that 
it is subjected to axial forces, FA and FB, and that the corresponding 
displacements are wA and w,; the member has a cross-sectional area, A,  and 
Young’s modulus, E .  An elemental length, 6z, of the member is subjected to 
forces and displacements as shown in Fig. 16.5 1 (b) so that its change in length 
from its unloaded state is w + 6w - w = 6w. Thus, from Eq. (7.4). the strain, E, in 
the element is given by 

dw 
dz 

E=-  
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Fig. 16.51 Axially loaded member 

Further, from Eq. (7.8) 
F dw 

A dz 
- - = E -  

F 
AE 

so that dw=-dz 

Therefore the axial displacement at the section a distance z from A is given by 
- F  w = / i  AE dz 

F 

AE 
which gives w =  - z + c ,  

in which C, is a constant of integration. When z = 0, w = wA so that C, = wA and the 
expression for w may be written as 

(16.47) 
F 

AE 

In the absence of any loads applied between A and B, F = F, = - F A  and Eq. (16.47) 
may be written as 

w=-z+wA F ,  (16.48) 

w, = - z + wA 

AE 

Thus, when z = L ,  w = wB so that from JZq. (16.48) 

+ WA 
FBL 

Wg=-  
AE 

( 16.49) AE 
L 

or F,=- ( w B - w A )  

Furthermore, since F ,  = - F A  we have, from Eq. (16.49) 
AE 
L 

AE 
L 

-FA = - ( w B  - wA) 

or A -  (wB - wA) (16.50) F - _ -  
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Eqs (16.49) and (16.50) may be expressed in matrix form as follows 

[;:)=[ AE/L -AE/L w A  

-Am A m ] [  -1 
or [E:} =& l][wJ 

(16.5 1) 
AE 1 -1 W A  

Eq. (16.5 1) may be written in the general form 

{ F } =  [ K A B l { w j  (16.52) 

in which ( F )  and ( w ]  are generalized force and displacement matrices and [KAB] is 
the stifness matrix of the member AB. 

Suppose now that we have two axially loaded members, AB and BC, in line and 
connected at their common node B as shown in Fig. 16.52. 

In Fig. 16.52 the force, FB, comprises two components: FB.AB due to the change in 
length of AB, and FB.Bc due to the change in length of BC. Thus, using the results 
of Eqs (16.49) and (16.50) 

(16.53) AABEAB 
LAB 

FA = ( w A  - wB) 

(we- wC) (16.54) AABEAB ABCEBC 
FB = FB.AB + FB.BC = (wB - w A )  + 

LAB LBC 

Fc = ABCEBC (wC - wB) (16.55) 

in which A,,, EA, and LAB are the cross-sectional area, Young’s modulus and length 
of the member AB; similarly for the member BC. The term A E / L  is a measure of 
the stiffness of a member, this we shall designate by k. Thus, Eqs (16.53)-(16.55) 
become 

LBC 

FA = ~ A B ( w A  - WB) 

FB = -kABwA +  AB + ~ B C ) ~ B  - ~ B C W C  

FC = kBC(wC - W B )  

(16.56) 

(16.57) 

(1 6.58) 

Fig. 16.52 Two axially loaded members in line 
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Equations (16.56)-(16.58) are expressed in matrix form as 

(1 6.59) 

Note that in Eq. (16.59) the stiffness matrix is a symmetric matrix of order 3 x 3, 
which, as can be seen, connects three nodal forces to three nodal displacements. 
Also, in Eq. (16.51), the stiffness matrix is a 2 x 2 matrix connecting two nodal 
forces to two nodal displacements. We deduce, therefore, that a stiffness matrix for a 
structure in which n nodal forces relate to n nodal displacements will be a symmetric 
matrix of the order n x n. 

In more general terms the matrix in Eq. (16.59) may be written in the form 

( 16.60) 

in which the element k,  I relates the force at node 1 to the displacement at node 1, k,* 
relates the force at node 1 to the displacement at node 2, and so on. Now, for the 
member connecting nodes 1 and 2 

and for the member connecting nodes 2 and 3 

Therefore we may assemble a stiffness matrix for a complete structure, not by the 
procedure used in establishing Eqs (16.56)-(16.58) but by writing down the matrices 
for the individual members and then inserting them into the overall stiffness matrix 
such as that in Eq. (16.60). The element k,, appears in both [KIJ and [KZ3] and will 
therefore receive contributions from both matrices. Hence, from Eq. (16.51) 

and 

Inserting these matrices into Eq. (16.60) we obtain 

[ -kBC kBC O 1  

 AB  AB 
I K A B C 1 =  -kAB k A B + k B C  -kBC 

as before. We see that only the kz2 term (linking the force at node 2 (B) to the 
displacement at node 2) receives contributions from both members AB and BC. This 
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, 

results from the fact that node 2(B) is directly connected to both nodes 1(A) and 
3(C) while nodes 1 and 3 are connected directly to node 2. Nodes 1 and 3 are not 
directly connected so that the terms k,3 and k3, are both zero, i.e. they are not 
affected by each other’s displacement. 

To summarize, the formation of the stiffness matrix for a complete structure is 
carried out as follows: terms of the form kjj on the main diagonal consist of the sum 
of the stiffnesses of all the structural elements meeting at node i ,  while the off- 
diagonal terms of the form k, consist of the sum of the stiffnesses of all the 
elements connecting node i to node j .  

Equation (16.59) may be solved for a specific case in which certain boundary 
conditions are specified. Thus, for example, the member AB may be fixed at A and 
loads F ,  and F ,  applied. Then wA = 0 and FA is a reaction force. Inversion of the 
resulting matrix enables wB and w, to be found. 

In a practical situation a member subjected to an axial load could be part of a truss 
which would comprise several members set at various angles to one another. 
Therefore, to assemble a stiffness matrix for a complete structure, we need to refer 
axial forces and displacements to a common, or global, axis system. 

Consider the member shown in Fig. 16.53 . It is inclined at an angle 8 to a global 
axis system denoted by zy. The member connects node i to node j ,  and has member 
or local axes i, 7. Thus nodal forces and displacements referred to local axes are 
written as F, 17, etc., so that, by comparison with Eq. (16.51), we see that 

t F,.;  AE 0 0 0 0 0; . .=- 
F:.; L - 1  0 1 0 i+j 

F.v.j 0 0  O O C j  

(16.61) 

where the member stiffness matrix is written as [ K j j ] .  
In Fig. 16.53 external forces FZ.;, and Fz,j are applied to i and j .  It should be noted 

that FJ.; and F,.j do not exist. since the member can only support axial forces. 
However, FZ.; and FZi have components FZ,;, FJ,; and FZ,j, FyJ respectively, so that 
whereas only two force components appear for the member in local coordinates, 
four components are present when global coordinates are used. Therefore, if we are 
to transfer from local to global coordinates, Eq. (16.61) must be expanded to an 
order consistent with the use of global coordinates. Thus, 

IR.11 [ 1 0 -1 ol[i+;] 
(16.62) 

Expansion of Eq. (16.62) shows that the basic relationship between FZ,;, FLj and 

From Fig. 16.53 we see that 
@;, iGj as defined in Eq. (16.61) is unchanged. 

F:,; = F:.; cos 8 + FY,; sin 8 

and 
F7,, = -F:,; sin 8 + Fy.; cos 8 
Fz,i = F,,j cos 8 + FYd sin 8 
F7.i = -F,,j sin 8 + Fy,j cos 8 
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Fig. 16.53 Local and global axes systems for an axially loaded member 

Writing h for cos 9 and 1 for sin 8 we express the above equations in mauix form as [:;:I=[ CJ -P o o h 0 ' P o](rl F.Z,J 

h P 0 0 F,, 

(16.63) 

G 0 0 -P h Fs,J 

or, in abbreviated form 

IF) = [TI{F) (16.64) 

where [TI is known as the transformation matrix. A similar relationship exists 
between the sets of nodal displacements. Thus, 

16) = [T1(6) (16.65) 

in which (6)  and ( 6 )  are generalized displacements referred to the local and global 
axes, respectively. Substituting now for ( F )  and 16) in Eq. (16.62) from 
Eqs (16.64) and (1 6.65) we have 

[TI{F)  = [ K , l [ T l { ~ l  

Hence { F )  = [T-'l[K,l[TIl6) (16.66) 

It may be shown that the inverse of the transformation matrix is its transpose, i.e. 

[T-'] = [TIT 

Thus we rewrite q. (16.66) as 

{FJ = [TIT[K,I[Tl(W (16.67) 

The nodal force system referred to the global axes, (F),  is related to the 
corresponding nodal displacements by 

{ F l =  [K,II61 (16.68) 

in which [K,,] is the member stiffness matrix referred to global coordinates. 
Comparison of Eqs (16.67) and (16.68) shows that 

[K,I = [TITIK,IITl 
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Fig. 16.54 Truss of Ex. 16.24 

Substituting for [TI from Eq. (16.63) and [it,] from Eq. (16.62) we obtain 

h2 hp -1' -hp 

1x.I-T[ AE -I2 h p  IF p2 -hp ; -p2 :"j 
Evaluating h(=cos 0) and p(=sin 0) for each member and substituting in 
Eq. (16.69) we obtain the stiffness matrix, referred to global axes, for each member 
of the framework. 

Example 16.24 Determine the horizontal and vertical components of the 
deflection of node 2 and the forces in the members of the truss shown in Fig. 16.54. 
The product AE is constant for all members. 

We see from Fig. 16.54 that the nodes 1 and 3 are pinned to the foundation and 
are therefore not displaced. Hence, refemng to the global coordinate system shown, 

( 16.69) 

-b 

w , = 2 ) , = w 3 = t J 3 = o  

The external forces are applied at node 2 such that F,,? = 0, FJ,2 = - W, the nodal 
forces at 1 and 3 are then unknown reactions. 

The first step in the solution is to assemble the stiffness matrix for the complete 
framework by writing down the member stiffness matrices referred to the global axes 
using Eq. (16.69). The direction cosines h and p take different values for each of the 
three members; therefore, remembering that the angle 0 is measured clockwise from 
the positive direction of the z axis we have the following: 

Member 0 (deg) A P 

12 0 1 0 
13 90 0 1 
23 135 -0.707 0.707 
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7 

WI = o  
VI = o  

w2 
v2 

w3 = 0 
213 = 0 

The member stiffness matrices are therefore 

. (ii) 

0 -1 0 0 0 0 0  
A E O O O O  1 0 -1 

[ K 1 2 1 = y [ - :  1 0 ]  [ K 1 3 1 = p [ i  0 - 1  0 0 0  0 1 
0 0 0 0  

r 0.5 -0.5 -0.5 0.51 

The complete stiffness matrix is now assembled using the method suggested in the 
discussion of Eq. (16.60). The matrix will be a 6 x 6 matrix since there are six nodal 
forces connected to six nodal displacements; thus 

1 0 -1 0 0 0 
0 1  0 0 0 -1 

-1 0 1.354 -0.354 -0.354 0.354 
0 0 -0.354 0.354 0.354 -0-354 
0 0 -0.354 0.354 0.354 -0.354 
0 -1 0.354 -0.354 -0.354 1.354 

If we now delete rows and columns in the stiffness matrix corresponding to zero 
displacements, we obtain the unknown nodal displacements w2 and v2 in terms of 
the applied loads FL,2 (=O) and F,.* (= - W). Thus 

1.354 -0.354 W Z  

-0.354 0.354 I1 v2 I 
Inverting Eq. (iii) gives 

(iii) 

L -WL 
W? = - (F:.? + F,.J = - 

AE AE 
from which 

L -3.828WL 
AE AE 

The reactions at nodes 1 and 3 are now obtained by substituting for w 2  and v2 from 
Eq. (iv) into Eq. (ii). Hence 

V? = - (F;? + 3*828F,2) = 

0 -1 -1 

0.354 -0.354 0 -1 
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giving 

The internal forces in the members may be found from the axial displacements of 
the nodes. Thus, for a member ij, the internal force Fji  is given by 

AE 

L 
F ,  = - (aj - ai) 

But Gj = hWj + p v j  

Gi = hw; + pv; 
Gi- i j ;  = q w j -  w;) + p(vj- V i )  Hence 

Substituting in Eq. (v) and rewriting in matrix form, 

Thus, for the members of the framework 

I -WL --n 

I wj - w; 
vj - v; 

= -W (compression) 1 
F , , = -  AE [0 11 1: I :} = 0 (obvious from inspection) 

L 

AE 
Fz3= - [-0*707 0.7071 

1.414L 

W L  
O + -  

AE 
3.828 W L  

O +  
AE 

The matrix method of solution for the statically determinate truss of Ex. 16.24 is 
completely general and therefore applicable to any structural problem. We observe 
from the solution that the question of statical determinacy of the truss did not arise. 
Statically indeterminate trusses are therefore solved in an identical manner with the 
stiffness matrix for each redundant member being included in the complete stiffness 
matrix as described above. Clearly, the greater the number of members the greater 
the size of the stiffness matrix, so that a computer-based approach is essential. 

Pin-jointed space frames may be analysed in a similar manner to plane trusses. In 
this case a member stiffness matrix is of the order 6 x 6  as is the transformation 
matrix. The analysis of these structures is, however, outside the scope of this book. 
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0 12/L3 6/L2 0 -12/L3 6/L2 
0 6/L2 4/L 0 -6/L2 2/L [K , ]  = EI 
0 0 0 0  0 0 

Beam elements 
The matrix analysis of members subjected to axial forces may be extended to beams 
that carry bending moments and shear forces. These beams may be structures in their 
own right or, in fact, be elements of other structural forms such as portal frames. 
However, even in the case of a simple beam, matrix analysis requires the beam to be 
idealized into a number of elements where the end of an element, i.e. a node, 
coincides with a loading or structural discontinuity. 

In Section 16.9 we derived the slope-deflection relationships for a beam AI3 
(Eqs (16.27)). Rewriting these equations in matrix form for a beam connecting 
nodes i (A) andj  (B) we have 

(16.71) 

12/L3 6/L2 -12/L3 6/L2 
6/L2 4/L -6/L2 2/L 

-12/L3 -6/L2 12/L3 -6/L2 
-6/L2 2/L -6/L2 4/L 

(16.70) 

in which FJ,; has replaced S A B ,  M i  has replaced M A B ,  and so on. Equation (16.70) is 
of the form 

{FI = [Kij1{61 
where [K,] is the stiffness matrix for the beam. This stiffness matrix applies to a 
beam where the axis is aligned with the z axis, so that it is actually [ K j j ] ,  the stiffness 
matrix referred to local or member axes. If the beam is positioned in the zy plane 
with its axis inclined to the z axis, then the zy axes are global axes and Eq. (16.70) 
must be transformed to allow for this. The procedure is similar to that for an axially 
loaded member except that [R,] must be expanded to allow for the fact that nodal 
displacements E; and Ej which are irrelevant for the beam in local axes (we are not 
considering axial effects here) have components w;, ui and wj, uj referred to global 
axes. Thus 

ro  o 0 0  0 0 1  

0 -6/L2 
0 -12/L3 -6/L2 0 

2/L 0 -6/L2 l2IL3 4/L I 
The transformation matrix [TI may be deduced from Eq. (16.63) if it is remembered 
that although w and u will transform in exactly the same way as in the case of the 
axially loaded member, the rotations 8 remain the same in local and global axes. Hence 

(16.72) 
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where h and p have previously been defined. Therefore, since 

CKijI = [TITIKijI [TI 

we have, from Eqs (16.71) and (16.72) 

[Kij] = E l  

1 2 p 2 ~ ~ 3  
- 1 2 1 ~ j ~ ~  1 2 ~ ~ 1 ~ ~  

- 1 2 p 2 ~ ~ 3  6 p ~ ~ 2  1 2 p 2 ~ ~ 3  
-6pJL’ 6hJL’ 4JL 

1 2 1 . ~ 1 ~ ~  - 1 2 ~ ~ j ~ ~  - 6 1 ~ ~ ’  - 1 2 ~ 4 ~ ~  1 2 1 ~ ’ ~ ~ ~  
-6pJL’ 6hJL’ 2JL -6pJL‘ -6hJL’ 4hJL 

(16.73) 

Again, the stiffness matrix for the complete structure is assembled from the member 
stiffness matrices, the boundary conditions are applied and the resulting equations 
solved for the unknown nodal displacements and forces. 

The matrix analysis of beams presented above is based on the condition that no 
external forces are applied between the nodes. In a practical situation a beam 
supports a variety of loads along its length and therefore such beams must be 
idealized into a number of beam-elements for which the above condition holds. Thus 
nodes are specified at points along the beam such that any element lying between 
adjacent nodes carries at the most a uniform shear force and a linearly varying 
bending moment. Beams carrying a distributed load require the load to be replaced 
by a series of statically equivalent point loads at a selected number of nodes. Clearly 
the greater the number of nodes chosen, the more accurate but more complex will be 
the analysis. 

The discussion in this section is intended as an introduction to the matrix analysis 
of structures. The subject is extensive and complete texts are devoted to its 
presentation, which ranges from the relatively simple case of an axially loaded 
member to the sophisticated finite element method for the analysis of continuum 
structures. Such topics are advanced and fall outside the scope of this book. 

Problems 
P.16.1 Determine the degrees of static and kinematic indeterminacy in the plane 

structures shown in Fig. P.16.1. 

Ans. (a) n , = 3 ,  n k = 6 ,  (b) n,=1, nk=2,  (c) n,=2, nk=4,  
(d) n, = 6, t I k  = 15, (e) tI, = 2, nk = 7. 

P.16.2 Determine the degrees of static and kinematic indeterminacy in the space 
frames shown in Figs P. 16.2. 

Am. 

P.16.3 

(a) n, = 6, izk = 24, (b) 1 2 ,  = 42, nk = 36, (c) 1 2 ,  = 18, nt = 6. 

Calculate the support reactions in the beam shown in Fig. P.16.3 using a 
flexibility method. 

Ans. R ,  = 3.4 kN, R ,  = 14.5 kN, R,  = 4-1 kN, M A  = 2.4 kN m (hogging). 
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Fig. P.16.1 

Fig. P.16.2 

Fig. P.16.3 

Fig. P.16.4 
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P.16.4 Determine the support reactions in the beam shown in Fig. P. 16.4 using a 
flexibility method. 

A m .  R ,  = 3.5 kN, RB = 8.75 kN, R ,  = 3.75 kN, MA = 5 kN m (hogging), 
M, = -23 kN m (hogging). 

P.16.5 Use a flexibility method to determine the support reactions in the beam 
shown in Fig. P.16.5. The flexural rigidity EI of the beam is constant throughout. 

Ans. R ,  = 4.2 kN, RB = 15.4 kN, R,  = 17.4 kN, R ,  = 16.1 kN. 

Fig. P.16.5 

P.16.6 Calculate the forces in the members of the truss shown in Fig. P.16.6. 
The members AC and BD are 30 mm2 in cross-section, all the other members are 
20 mm2 in cross-section. The members AD, BC and DC are each 800 mm long; 
E = 200 OOO N/mmz. 

Am. AC=48*2 N, BC=87*6 N, BD= -1.8 N, CDz2.1 N, AD= 1.0 N. 

Fig. P.16.6 

P.16.7 Calculate the forces in the members of the truss shown in Fig. P.16.7. 
The cross-sectional area of all horizontal members is 200 mm2, that of the vertical 
members is 100 mm2 while that of the diagonals is 300 mm2; E is constant 
throughout . 

Ans. AB = FD = -29.2 kN, BC = CD = -29-2 kN, AG = GF = 20-8 kN, 
BG = DG = 41.3 kN, AC = FC = -29.4 kN, CG = 41.6 kN. 
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Fig. P.16.7 

P.16.8 Calculate the forces in the members of the truss shown in Fig. P.16.8 and 
the vertical and horizontal components of the reactions at the supports; all members 
of the truss have the same cross-sectional properties. 

Ans. RA,v = 67-52 kN, RA.H = 70.04 kN = RF,H, RF,v = 32.48 kN, 
AB = -32.49 kN, 
BD = 72.65 kN, 
DF = -70.04 kN, 

AD = -78.31 kN, BC = -64.98 kN, 
CD= - 100.0 kN, CE = -64.98 kN, DE = 72-65 kN, 

EF = -32-49 kN. 

Fig. P.16.8 

P.16.9 The plane truss shown in Fig. P.16.9(a) has one member (24) which is 
loosely attached at joint 2 so that relative movement between the end of the member 
and the joint may occur when the framework is loaded. This movement is a 
maximum of 0-25 mm and takes place only in the direction 24. Figure P.16.9(b) 
shows joint 2 in detail when the framework is unloaded. Find the value of P at 
which the member 24 just becomes an effective part of the truss and also the loads in 
all the members when P = 10 kN. All members have a cross-sectional area of 
300 mm2 and a Young's modulus of 70 000 N/mm'. 
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Ans. P = 2.95 kN, 12 = 2.48 kN, 23 = 1-86 kN, 34 = 2.48 kN, 
41 = -5.64 kN, 13 = 9.4 kN, 42 = -3.1 W. 

Fig. P.16.9 

P.16.10 Figure P.16.10 shows a plane truss pinned to a rigid foundation. All 
members have the same Young's modulus of 70000N/mm2 and the same 
cross-sectional area, A,  except the member 12 whose cross-sectional area is 

Under some systems of loading, member 14 carries a tensile stress of 0.7 N/ 
mm2. Calculate the change in temperature which, if applied to member 14 only, 
would reduce the stress in that member to zero. The coefficient of linear expansion 

1-414A. 

a = 2 x  1o-"c. 

ATIS. 5.5". 

Fig. P.16.10 
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P.16.11 The truss shown in Fig. P. 16.1 1 is pinned to a foundation at the points A 
and B and is supported on rollers at G; all members of the truss have the same axial 
rigidity EA = 2 x 10’ N. 

Calculate the forces in all the members of the truss produced by a settlement of 
15 mrn at the support at G. 

Am. FG= 1073.9 kN, GH= -536.9 kN, NF= -1073-9 kN, 
DF = 1073.9 kN, 
DC = 2147.7 kN, 
AC = -1073.9 kN, 

JH = - 1610.8 kN, 
U = 1073.9 kN, 

DH = 1073.9 kN, 
AJ = -2684-6 kN, 

DJ = -1073.9 kN, BC = 3221.6 kN. 

Fig. P.16.11 

P.16.12 The cross-sectional area of the braced beam shown in Fig. P.16.12 is 4A and 
its second moment of area for bending is Aa2/16. All other members have the same 
cross-sectional area, A, and Young’s modulus is E for all members. Find, in terms of w, 
A, a and E, the vertical displacement of the point D under the loading shown. 

Am. 30 232 wa2/3AE. 

Fig. P.16.12 

P.16.13 Determine the force in the vertical member BD (the king post) in the 
trussed beam ABC shown in Fig. P.16.13. The cross-sectional area of the king post 
is 2000 mm2, that of the beam is 5000 mm2 while that of the members AD and DC 
of the truss is 200 mm’; the second moment of area of the beam is 4.2 x lo6 mm4 
and Young’s modulus, E, is the same for all members. 

Am. 91-6kN. 
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Fig. P.16.13 

P.16.14 Determine the distribution of bending moment in the frame shown in 
P. 16.14. 

Am. M, = 7wL2/45, M, = 8wL2/45. Parabolic distribution on AB, linear on BC 
and CD. 

Fig. P.16.14 

Fig. P.16.15 



558 Analysis of Statically Indeterminate Structures 

P.16.15 Use the flexibility method to determine the end moments in the 
members of the portal frame shown in Fig. P.16.15. The flexural rigidity of the 
horizontal member BC is 2EI while that of the vertical members AB and CD is EI. 

Ans. MAB = -3.8 kNm, MBA = -MBc = -0.2 kNm, 
MCB = -MCD = 8.2 kN In, M, = -7.8 kN m. 

P.16.16 Calculate the end moments in the members of the frame shown in 
Fig. P. 16.16 using the flexibility method; all members have the same flexural rigidity, EI. 

Ans. MAB = 14.7 kNm, 
McB= -McD=7*0 kNm, M,=0. 

MBA = -MBc = 84.8 kNm, 

Fig. P.16.16 

P.16.17 The two-pinned circular arch shown in Fig. P.16.17 carries a uniformly 
distributed load of 15 kN/m over the half-span AC. Calculate the support reactions 
and the bending moment at the crown C. 

Ans. RA.,=34.1 kN,RB.,=11-4kN, R,,,=RB,,=18.7kN, 
Mc= 1.76 kNm. 

Fig. P.16.17 
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P.16.18 The two-pinned parabolic arch shown in Fig. P.16.18 has a second 
moment of area, I, that varies such that I = I, sec 8 where I, is the second moment 
of area at the crown of the arch and 8 is the slope of the tangent at any point. 
Calculate the horizontal thrust at the arch supports and determine the bending 
moment in the arch at the loading points and at the crown. 

ATIS. R A . n  = R B , H  = 168-7 kN, M, = 49.6 kNm, kf, = -6.1 kNm. 

Fig. P.16.18 

P.16.19 Show that, for a two-pinned parabolic arch carrying a uniformly 
distributed load over its complete span and in which the second moment of area of the 
cross-section varies as the secant assumption, the bending moment is everywhere zero. 

. P.16.20 The arch shown in Fig. P.16.20 is parabolic, the equation of its profile 
being y = O.O5x(40 - x) .  If the second moment of area of the cross-section of the 
arch varies directly as the secant of its slope, calculate the reactions at the support 
points and the bending moment at the crown C. 

Ans. RA.v= 10.3 kN, RB.V=4-7 kN, R A . H =  RB.,=0*6 kN, 
M, = -44.0 kNm. 

Fig. P.16.20 

P.16.21 
Ex. 16.20. 

Use the slope-deflection method to solve P.16.3, P.16.4, P.16.5 and 
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P.16.22 Use the slope-deflection method to determine the member end moments 

P.16.23 Calculate the support reactions in the continuous beam shown in Fig. 
P.16.23 using the moment distribution method; the flexural rigidity, EI, of the beam 
is constant throughout. 

in the portal frame of Ex. 16.22. 

Ans. R ,  = 2.7 kN, R, = 10.6 kN, R, = 3.7 kN, MA = -1.7 kNm. 

Fig. P.16.23 

P.16.24 Calculate the support reactions in the beam shown in Fig P.16.24 using 
the moment distribution method; the flexural rigidity, EI, of the beam is constant 
throughout. 

Ans. R ,  = 28.2 kN, R, = 17.0 kN, RE = 4.8 kN, M E  = 1.6 kN m. 

Fig. P.16.24 

P.16.25 In the beam ABC shown in Fig. P.16.25 the support at B settles by 
10 mm when the loads are applied. If the second moment of area of the spans'AB 
and BC are 83.4 x loh mm4 and 125.1 x 10' mm4, respectively, and Young's 
modulus, E ,  of the material of the beam is 207 OOO N/mm2, calculate the support 
reactions using the moment distribution method. 

Ans. R ,  = 28.6 kN, R ,  = 15-9 kN, R, = 30-5 kN, M, = 53.9 kNm. 
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Fig. P.16.25 

P.16.26 Calculate the end moments in the members of the frame shown in 
Fig. P.16.26 using the moment distribution method. The flexural rigidity of the 
members AB, BC and BD are 2EI, 3EI and EI, respectively, and the support system 
is such that sway is prevented. 

Ans. MAB = McB = 0, MBA = 30 kNm, MBc = -36 kNm, 
Mg,=6 kNm, M,,=3 kNm. 

Fig. P.16.26 
P.16.27 The frame shown in Fig. P.16.27 is pinned to the foundation of A and D 

and has members whose flexural rigidity is EI. Use the moment distribution method to 
calculate the moments in the members and draw the bending moment diagram. 

Am.  M A  = M, = 0, M, = 11-9 kNm, Mc = 63.2 kNm. 

Fig. P.16.27 
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P.16.28 Use the moment dismbution method to calculate the bending moments at 
the joints in the frame shown in Fig. P. 16.28 and draw the bending moment diagram. 

MAB= M,=O, MBA= 12.7 kNm= -MBC, MCB= -13-9 kNm= -McP Ans. 

Fig. P.16.28 

P.16.29 The frame shown in Fig. P.16.29 has rigid joints at B, C and D and 
is pinned to its foundation at A and G. The joint D is prevented from moving 
horizontally by the member DF which is pinned to a support at F. The flexural 
rigidity of the members AB and BC is 2EI while that of all other members is 
El. 

Use the moment distribution method to calculate the end moments in the members. 

Am. MBA = -MBC = 2.6 kN m, McB = -McD = 67.7 kNm, 

M, = -53.5 kNm, MD,= 26.7 kNm, M, = 26.7 kNm. 

Fig. P.16.29 

P.16.30 Figure P.16.30 shows a square symmetrical truss pinned to rigid 
supports at 2 and 4 and loaded with a vertical load, P ,  at 1. The axial rigidity EA is 
the same for all members. 

Use the stiffness method to find the displacements at nodes 1 and 3 and hence 
solve for the member forces and support reactions. 
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A M .  V I  =0-707PL/AE,  v ,=0 .293PL/AE,  1 2 =  1 4 = 0 * 5 P ,  

2 3 = 4 3 =  -0*207P,  13=0*293P,  F , , = - F L . 4 = 0 * 2 0 7 P ,  
Fy.l = Fy,4 = 0.5 P .  

Fig. P.16.30 

P.16.31 Form the matrices required to solve completely the plane truss shown in 
Fig. P.16.31 and determine the force in the member DE; all members have equal 
axial rigidity. 

A ~ s .  DE=O. 

Fig. P.16.31 

P.16.32 Use the stiffness method to find the ratio H I P  for which the 
displacement of node 4 in the truss shown in Fig. P.16.32 is zero, and for that case 
find the displacements of nodes 2 and 3. All members have equal axial rigidity, EA. 

Ans. HIP  = 0.448, v? = 0.321 PLIAE, v3 = 0-481 PLIAE. 



564 Analysis of Statically Indeterminate Structures 

Fig. P.16.32 



CHAPTER 17 

Influence Lines 

The structures we have considered so far have been subjected to loading systems that 
were stationary, i.e. the loads remained in a fixed position in relation to the structure. 
In many practical situations, however, structures cany loads that vary continuously. 
Thus a building supports a system of stationary loads which consist of its self- 
weight, the weight of any permanent fixtures such as partitions, machinery, etc., and 
also a system of imposed or ‘live’ loads which comprise snow loads, wind loads or 
any movable equipment. The structural elements of the building must then be 
designed to withstand the worst combination of these fixed and movable loads. 

Other forms of movable load consist of vehicles and trains that cross bridges and 
viaducts. Again, these structures must be designed to support their self-weight, the weight 
of any permanent fixtures such as a road deck or railway track and also the forces 
produced by the passage of vehicles or trains. It is then necessary to determine the 
critical positions of the vehicles or trains in relation to the bridge or viaduct. Although 
these loads are moving loads, they are assumed to be moving or changing at such a 
slow rate that dynamic effects such as vibrations and oscillating stresses are absent. 

The effects of loads that occupy different positions on a structure can be studied 
by means of influence lines. Influence lines give the value at a particular point in a 
structure of functions such as shear force, bending moment and displacement for all 
positions of a travelling unit load; they may also be constructed to show the variation 
of support reaction with the unit load position. From these influence lines the value 
of a function at a point can be calculated for a system of loads traversing the 
structure. For this we use the principle of superposition so that the structural systems 
we consider must be linearly elastic. 

17.1 Influence lines for beams in contact with the load 
We shall now investigate the construction of influence lines for support reactions 
and for the shear force and bending moment at a section of a beam when the 
travelling load is in continuous contact with the beam. 

Consider the simply supported beam AB shown in Fig. 17.1 (a) and suppose that 
we wish to construct the influence lines for the support reactions, R, and R,, and 
also for the shear force, SKI and bending moment, M,, at a given section K; all the 
influence lines are constructed by considering the passage of a unit load across the 
beam. 
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Fig. 17.1 
supported beam 

Reaction, shear force and bending moment influence lines for a simply 

RA influence line 

Suppose that the unit load has reached a position C, a distance z from A, as it travels 
across the beam. Then, considering the moment equilibrium of the beam about B we 
have 

R,L- l ( L - z ) = O  

which gives R,  = ( L  - z)L (17.1) 
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Hence RA is a linear function of z and when z = 0, RA = 1 and when z = L ,  RA = 0; 
both these results are obvious from inspection. The influence line (IL)  for RA (RAIL) 
is then as shown in Fig. 17.1 (b). Note that when the unit load is at C, the value of 
RA is given by the ordinate cd in the RA influence line. 

RB influence line 

The influence line for the reaction RB is constructed in an identical manner. Thus, 
taking moments about A 

RBL- l ~ =  0 

so that RB=zJL (17.2) 

Equation (17.2) shows that RB is a linear function of z .  Further, when z = 0, R ,  = 0 
and when z = L ,  R ,  = 1, giving the influence line shown in Fig. 17.1 (c). Again, with 
the unit load at C the value of RB is equal to the ordinate c,e in Fig. 17.1 (c). 

S, influence line 

The value of the shear force at the section K depends upon the position of the unit 
load, i.e. whether it is between A and K or between K and B. Suppose initially that 
the unit load is at the point C between A and K. Then the shear force at K is given by 

SK= -RB 

so that from Eq. (17.2) 

s - - -  z ( O c z c a )  
L 

K -  (17.3) 

The sign convention for shear force is that adopted in Section 3.2. We could have 
established Eq. (17.3) by expressing SK in terms of RA. Thus 

S K =  R A -  1 

Substituting for RA from Eq. (17.1) we obtain 

L - z  Z s 1 = -- 
L L 

as before. Clearly, however, expressing SK in the terms of R ,  is the most direct 
approach. 

We see from Eq. (17.3) that S, varies linearly with the position of the load. 
Therefore, when z = O ,  S,=O and when z = a ,  S K =  -a /L ,  the ordinate kg in 
Fig. 17.1 (d), and is the value of SK with the unit load immediately to the left of K. 
Thus, with the load between A and K the S, influence line is the line a,g in 
Fig. 17.l(d) so that, when the unit load is at C, the value of SK is equal to the 
ordinate c,f. 

K -  

With the unit load between K and B the shear force at K is given by 

S K =  +RA (Or S K =  1 - RB) 
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Substituting for RA from Eq. (17.1) we have 
SK= ( L - z ) / L  ( a c z s L )  (17.4) 

Again SK is a linear function of load position. Therefore when z = L ,  SK = 0 and 
when z = a,  i.e. the unit load is immediately to the right of K, SK = ( L  - a ) / L  which 
is the ordinate kh in Fig. 17.1 (d). 

From Fig. 17.1 (d) we see that the gradient of the line a2g is equal to 
[ ( - a / L )  - O] /u  = - 1/L and that the gradient of the line hb2 is equal to 
[0 - ( L  - a ) / L ] / ( L  - a )  = - 1/L. Thus the gradient of the SK influence line is the 
same on both sides of K. Furthermore, gh = kh + kg or gh = ( L  - a ) / L  + a / L  = 1. 

MK influence line 

The value of the bending moment at K also depends upon whether the unit load is to 
the left or right of K. With the unit load at C 

M, = RB(L - a) (Or M K  = RAU - I ( U  - Z )  

which, when substituting for Re from Eq. (17.2) becomes 

MK=(L-Q)z /L  ( O S Z S ~ )  (17.5) 

From Eq. (17.5) we see that MK varies linearly with z. Therefore, when z=O, 
MK = 0 and when z = a, M, = ( L  - a)a/L, which is the ordinate k,j  in Fig. 17.1 (e). 

Now with the unit load between K and B 

M K  = RAa 
which becomes, from Eq. (17.1) 

MK= [ ( L - z ) / L ] a  ( a c z s L )  (17.6) 

Again MK is a linear function of z so that when z = a ,  MK = ( L  - U)Q/L ,  the ordinate 
k , j  in Fig. 17.1 (e), and when z = L,  MK = 0. The complete influence line for the 
bending moment at K is then the line ajb,  as shown in Fig. 17.1(e). Hence the 
bending moment at K with the unit load at C is the ordinate c,i in Fig. 17.1 (e). 

In establishing the shear force and bending moment influence lines for the section 
K of the beam in Fig. 17.l(a) we have made use of the previously derived 
relationships for the support reactions, R ,  and Re. If only the influence lines for SK 
and M, had been required, the procedure would have been as follows. 

With the unit load between A and K 

SK = -Re 
Now, taking moments about A 

RBL- lz=O 

whence 
Z 

R B = L  
Thus s - -L 

L 
K -  
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This, of course, amounts to the same procedure as before except that the calculation 
of RB follows the writing down of the expression for S,. The remaining equations 
for the influence lines for SK and M, are derived in a similar manner. 

We note from Fig. 17.1 that all the influence lines are composed of straight-line 
segments. This is always the case for statically determinate structures. We shall 
therefore make use of this property when considering other beam arrangements. 

Example 17.1 Draw influence lines for the shear force and bending moment at the 
section C of the beam shown in Fig. 17.2(a). 

In this example we are not required to obtain the influence lines for the support 
reactions. However, the influence line for the reaction RA has been included to 
illustrate the difference between this influence line and the influence line for RA in 
Fig. 17.1 (b); the reader should verify the R A  influence line in Fig. 17.2(b). 

Since we have established that influence lines for statically determinate structures 
consist of linear segments, they may be constructed by placing the unit load at 
different positions, which will enable us to calculate the principal values. 

S, influence line 

With the unit load at A 

Sc = -RB = 0 (by inspection) 

Fig. 17.2 Shear force and bending moment influence lines for the beam of 
Ex. 17.1 
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With the unit load immediately to the left of C 

Sc= - RB 

Now taking moments about A we have 

R , x 6 - 1 ~ 2 = 0  

which gives 

Therefore, from Eq. (i) 

1 
RB=- 

3 

1 s - - _  
3 

C -  

Now with the unit load immediately to the right of C 

Sc= +RA 

Taking moments about B gives 

R A x 6 - 1 x 4 = 0  

2 
RA= 7 whence 

so that, from Eq. (iii) 

2 s,=+- 
3 

With the unit load at B 

S, = + R A  = 0 (by inspection) 

Placing the unit load at D we have 

Sc= +RA 

Again taking moments about B 
R A x 6 + 1 x 2 = 0  

RA = - 113 from which 

(ii) 

(iii) 

Hence Sc= -113 (vii) 

The complete influence line for the shear force at C is then as shown in 
Fig. 17.2(c). Note that the gradient of each of the lines a,e, fb,, and b,g is the same. 

M, influence line 

With the unit load placed at A 

Mc = + RB x 4 = 0 (Rs = 0 by inspection) 
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With the unit load at C 

in which R, = 2/3 with the unit load at C (see above). With the unit load at B 

Mc = + R ,  x 2 = 0 (R, = 0 by inspection) 

Finally, with the unit load at D 

Mc=+R,X2 
but, again from the calculation of Sc, R, = - 1/3. Hence 

2 M c = - -  
3 

The complete influence line for the bending moment at C is shown in Fig. 17.2(d). 
Note that the line hbzi is one continuous line. 

17.2 Mueller-Breslau principle 
A simple and convenient method of constructing influence lines is to employ the 
Mueller-Breslau principle which gives the shape of an influence line without the 
values of its ordinates; these, however, are easily calculated for statically 
determinate systems from geometry. 

Consider the simply supported beam, AB, shown in Fig. 17.3(a) and suppose that 
a unit load is crossing the beam and has reached the point C a distance z from A. 
Suppose also that we wish to determine the influence line for the moment at the 
section K,  a distance a from A. We now impose a virtual displacement, vc, at C 
such that internal work is done only by the moment at K, i.e. we allow a change in 
gradient, e,, at K so that the lengths AK and KB rotate as rigid links as shown in 
Fig. 17.3(b). Therefore, from the principle of virtual work (Chapter 15), the 
external virtual work done by the unit load is equal to the internal virtual work done 
by the moment, M,,  at K. Thus 

1 VC = MK8, 

If we choose vc so that is equal to unity 

MK= V C  (17.7) 

Le. the moment at the section K due to a unit load at the point C, an arbitrary 
distance z from A, is equal to the magnitude of the virtual displacement at C. But, as 
we have seen in Section 17.1, the moment at a section K due to a unit load at a point 
C is the influence line for the moment at K. Therefore the MK influence line may be 
constructed by introducing a hinge at K and imposing a unit change in angle at K; the 
displaced shape is then the influence line. 

The argument may be extended to the construction of the influence line for the 
shear force, SK. at the section K. Suppose now that the virtual displacement, vc, 
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Fig. 17.3 Verification of the Mueller-Breslau principle 

produces a shear displacement, us,,, at K as shown in Fig. 17.3(c). Again, from the 
principle of virtual work 

1 uc = S K ~ S . K  
If we choose vc SO that us,, = 1 

s K =  vc (17.8) 

Hence, since the shear force at the section K due to a unit load at any point C is the 
influence line for the shear force at K, we see that the displaced shape in Fig. 17.3(c) 
is the influence line for S, when the displacement at K produced by the virtual 
displacement at C is unity. A similar argument may be used to establish reaction 
influence lines. 

The Mueller-Breslau principle demonstrated above may be stated in general terms 
as follows: 

The shape of an influence line for a particular function (support reaction, shear 
force, bending moment, etc.) can be obtained by removing the resistance of the 
structure to that function at the section for which the injuence line is required and 
applying an internal force corresponding to that function so that a unit 
displacement is produced at the section. The resulting displaced shape of the 
structure then represents the shape of the influence line. 
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Example 17.2 Use the Mueller-Breslau principle to determine the shape of the 
shear force and bending moment influence lines for the section C in the beam in 
Ex. 17.1 (Fig. 17.2(a)) and calculate the values of the principal ordinates. 

In Fig. 17.4(b) we impose a unit shear displacement at the section C. In effect we 
are removing the resistance to shear of the beam at C by cutting the beam at C. We 
then apply positive shear forces to the two faces of the cut section in accordance 
with the sign convention of Section 3.2. Thus the beam to the right of C is displaced 
upwards while the beam to the left of C is displaced downwards. Since the slope of 
the influence line is the same on each side of C we can determine the ordinates of 
the influence line by geometry. Hence, in Fig. 17.4(b). 

c,e clf 
clal clbl 
-- -- 

clal 1 
cibi 2 

Therefore c,e = - c,f = - c,f 

c,e + c,f = 1 

1 2 
c , e = - ,  elf=- 

3 3 

Further, since 

as before. The ordinate d,g(=f) follows. 

Fig. 17.4 Construction of influence lines using the Mueller-Breslau principle 
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In Fig. 17.4(c) we have, from the geometry of a triangle, 

a + p = 1 (external angle = sum of opposite internal angles) 

Then, assuming that the angles a and p are small so that their tangents are equal to 
the angles in radians 

c2h c2h 
-+-=l 
c2a2 c~b2 

or 

4 
whence czh = - 

3 

as in Fig. 17.2(d). The ordinate d2i(= f) follows from similar triangles. 

17.3 Systems of travelling loads 
Influence lines for beams are constructed, as we have seen, by considering the 
passage of a unit load across a beam or by employing the Mueller-Breslau principle. 
Once constructed, an influence line may be used to determine the value of the 
particular function for shear force, bending moment, etc., at a section of a beam 
produced by any system of travelling loads. These may be concentrated loads, 
distributed loads or combinations of both. Generally we require the maximum values 
of a function as the loads cross the beam. 

Concentrated loads 
By definition the ordinate of an influence line at a point gives the value of the 
function at a specified section of a beam due to a unit load positioned at the point. 
Thus, in the beam shown in Fig. 17.1 (a) the shear force at K due to a unit load at C 
is equal to the ordinate c2f in Fig. 17.1 (d). Since we are assuming that the system is 
linear it follows that the shear force at K produced by a load, W, at C is WcZf. 

The argument may be extended to any number of travelling loads whose positions 
are fixed in relation to each other. In Fig. 17.5(a), for example, three concentrated 
loads, W , ,  W2 and W3 are crossing the beam AB and are at fixed distances c and d 
apart. Suppose that they have reached the positions C, D and E, respectively. Let us 
also suppose that we require values of shear force and bending moment at the 
section K; the SK and M, influence lines are then constructed using either of the 
methods described in Sections 17.1 and 17.2. 

Since the system is linear we can use the principle of superposition to determine 
the combined effects of the loads. Therefore, with the loads in the positions shown, 
and refemng to Fig. 17.5(b), 

s K =  -wIsI - wzsz- w3s3 (17.9) 

in which s,, s2 and s3 are the ordinates under the loads in the SK influence line. 
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Fig. 17.5 Number of concentrated travelling loads 

Similarly, from Fig. 17.5(c) 

MK = W , m ,  + W2m, + W3m3 (17.10) 

where m , ,  m2,  and m3 are the ordinates under the loads in the M, influence line. 

Maximum shear force at K 

It can be seen from Fig. 17.5(b) that, as the loads W , ,  Wz and W 3  move to the right, 
the ordinates s, , s2 and s3 increase in magnitude so that the shear force at K increases 
negatively to a peak value with W ,  just to the left of K. When W ,  passes to the right 
of K, the ordinate, sI, becomes positive, then 

SK = + w l s ,  - w2s2 - w3s3 

and the magnitude of SK suddenly drops. As the loads move further to the right the 
now positive ordinate s, decreases in magnitude while the ordinates s, and s3 
increase negatively. Therefore a second peak value of SK occurs with W 2  just to the 
left of K. When W z  passes to the right of K the ordinate s-, becomes positive and 

S K  = + w,s, + wZs2 - w3s3 

so that again there is a sudden fall in the negative value of S,. A third peak value is 
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reached with W ,  just to the left of K and then, as W ,  passes to the right of K, SK 
becomes completely positive. The same arguments apply for positive values of SK as 
the loads travel from right to left. 

Thus we see that maximum positive and negative values of shear force at a 
section of a beam occur when one of the loads is at that section. In some cases it is 
obvious which load will give the greatest value, in other cases a trial-and-error 
method is used. 

Maximum bending moment at K 

A similar situation arises when determining the position of a set of loads to give the 
maximum bending moment at a section of a beam although, as we shall see, a more 
methodical approach than trial and error may be used when the critical load position 
is not obvious. 

With the loads W ,  , W, and W ,  positioned as shown in Fig. 17.5 (a) the bending 
moment, MK, at K is given by Eq. (17.10), i.e. 

MK = W,m, + W2m2 + W,m, 

As the loads move to the right the ordinates m,,  m2 and m3 increase in magnitude 
until W ,  passes K and m, begins to decrease. Thus MK reaches a peak value with W, 
at K. Further movement of the loads to the right causes m2 and m3 to increase, while 
m, decreases so that a second peak value occurs with W ,  at K; similarly, a third peak 
value is reached with W, at K. Thus the maximum bending moment at K will occur 
with a load at K. In some cases this critical load is obvious, or it may be found by 
trial and error as for the maximum shear force at K. However, alternatively, the 
critical load may be found as follows. 

Suppose that the beam in Fig. 17.5(a) carries a system of concentrated loads, W,, 
W,, ..., y., ..., Wn, and that they are in any position on the beam. Then, from 
Eq. (17.10) 

(17.11) 

Suppose now that the loads are given a small displacement 62. The bending moment 
at K then becomes M,+6MK and each ordinate m becomes m+6m. Therefore, 
from Eq. (17.1 1) 

or 

whence 
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Therefore, in the limit as 6z  + 0 

-=cy-  dMK dm. 

dz j - 1  dz 

in which dmj/dz is the gradient of the MK influence line. Therefore, if 
n 

j -  1 

is the sum of the loads to the left of K and 

is the sum of the loads to the right of K, we have, from Eqs (17.5) and (17.6) 

For a maximum value of M,, dMK/dz = 0 so that 

or 
a L - a  

(17.12) 

From Eq. (17.12) we see that the bending moment at K will be a maximum with one 
of the loads at K (from the previous argument) and when the load per unit length of 
beam to the left of K is equal to the load per unit length of beam to the right of K. 
Part of the load at K may be allocated to AK and part to KB as required to fulfil this 
condition. 

Equation (17.12) may be extended as follows. Since 

n 

then 

Substituting for 

j =  I 
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in Eq. (17.12) we obtain 

i u:- i y,L 
L - a  j - 1  j =  I - -  Rearranging we have - 

whence j =  1 -- -- j =  I 

L a 

Combining Eqs ( 17.12) and (1 7.13) we have 

j =  1 i -  1 j =  1 -=-- 
L a L - a  

(17.13) 

(17.14) 

Therefore, for MK to be a maximum, there must be a load at K such that the load per 
unit length over the complete span is equal to the load per unit length of beam to the 
left of K and the load per unit length of beam to the right of K. 

Example 17.3 Determine the maximum positive and negative values of shear 
force and the maximum value of bending moment at the section K in the simply 
supported beam AB shown in Fig. 17.6(a) when it is crossed by the system of loads 
shown in Fig. 17.6(b). 

The influence lines for the shear force and bending moment at K are constructed 
using either of the methods described in Sections 17.1 and 17.2 as shown in 
Fig. 17.6(c) and (d). 

Maximum negative shear force at K 

It is clear from inspection that SK will be a maximum with the 5 kN load just to the 
left of K ,  in which case the 3 kN load is off the beam and the ordinate under the 
4 kN load in the SK influence line is, from similar triangles, -0.1. Then 

Maximum positive shear force at K 

There are two possible load positions which could give the maximum positive 
value of shear force at K; neither can be eliminated by inspection. First we shall 
place the 3 kN load just to the right of K. The ordinates under the 4 kN load and 
5 kN load are calculated from similar triangles and are +Os5 and +0.3, respectively. 
Then 

SK = 3 x 0.7 + 4 x 0-5 + 5 x 0-3 = 5.6 kN 
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Fig. 17.6 Determination of the maximum shear force and bending moment at a 
section of a beam 

Now with the 4 kN load just to the right of K, the ordinates under the 3 kN load 
and 5 kN load are -0.1 and + O S ,  respectively. Then 

SK = 3 x (-0.1) + 4 x 0.7 + 5 x 0.5 = 5.0 kN 

Therefore the maximum positive value of SK is 5-6 kN and occurs with the 3 kN 
load immediately to the right of K. 

Maximum bending moment at K 

We position the loads in accordance with the criterion of Eq. (17.14). The load per unit 
length of the complete beam is (3 + 4 + 5)/20 = 0-6 kN/m. Therefore if we position the 
4 kN load at K and allocate 0.6 kN of the load to AK the load per unit length on AK is 
(3 + 0-6)/6 = 0.6 kN/m and the load per unit length on KB is (3.4 + 5)/14 = 0.6 kN/m. 
The maximum bending moment at K therefore occurs with the 4 kN load at K in this 
example the critical load position could have been deduced by inspection. 

With the loads in this position the ordinates under the 3 kN and 5 kN loads in the 
M ,  influence line are 1 -4 and 3.0, respectively. Then 

MK(max) = 3 x 1.4 + 4 x 4-2 + 5 x 3-0 = 36.0 kNm 

Distributed loads 
Figure 17.7(a) shows a simply supported beam AB on which a uniformly distributed 
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Fig. 17.7 Shear force and bending moment due to a moving uniformly distributed 
load 

load of intensity w and length 1 is crossing from left to right. Suppose we wish to 
obtain values of shear force and bending moment at the section K of the beam. 
Again we construct the SK and MK influence lines using either of the methods 
described in Sections 17.1 and 17.2. 

If we consider an elemental length 61 of the load, we may regard this as a 
concentrated load of magnitude w61. The shear force, 6SK, at K produced by this 
elemental length of load is then, from Fig. 17.7(b), 

6 s K  = w61s 

The total shear force, SK, at K due to the complete length of load is then 
I SK = 1, ws dl 

or, since the load is uniformly distributed 

SK = w Ji s dl (17.15) 

Hence SK = w x area under the projection of the load in the SK influence line. 

Similarly 

so that 

MK = w 1' in dl (17.16) 
n 

MK = w x area under the projection os the load in the MK influence line. 
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Maximum shear force at K 

It is clear from Fig. 17.7(b) that the maximum negative shear force at K occurs with 
the head of the load at K while the maximum positive shear force at K occurs with 
the tail of the load at K. Note that the shear force at K would be zero if the load 
straddled K such that the negative area under the load in the SK influence line was 
equal to the positive area under the load. 

Maximum bending moment at K 

If we regard the distributed load as comprising an infinite number of concentrated 
loads,we can apply the criterion of Eq. (17.14) to obtain the maximum value of 
bending moment at K. Thus the load per unit length of the complete beam is equal to 
the load per unit length of beam to the left of K and the load per unit length of 
beam to the right of K. Therefore, in Fig. 17.8, we position the load such that 

w ck, w dkl -- -- 
a h  klbl 

ck, dk, 
or --- - (17.17) 

a lk~ klbl 

fc a,c 
hkl alkl 
-- -- From Fig. 17.8 

so that fc = - a,c hk, = ( a’kii7’) hk, = (1 - 2) hkl 
alkl 

d g =  1- -  ( :;I) hkl 
Similarly 

Therefore, from Eq. (17.17) we see that 

fc = dg 

and the ordinates under the extremities of the load in the M, influence line are equal. 
It may also be shown that the area under the load in the MK influence line is a 
maximum when fc = dg. This is an alternative method of deducing the position of 

Fig. 17.8 Load position for maximum bending moment at K. 
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the load for maximum bending moment at K. Note that, from Eq. (17.17), K divides 
the load in the same ratio as it divides the span. 

Example 17.4 A load of length 2 m and intensity 2 kN/m crosses the simply 
supported beam AB shown in Fig. 17.9(a). Calculate the maximum positive and 
negative values of shear force and the maximum value of bending moment at the 
quarter-span point. 

The shear force and bending moment influence lines for the quarter-span point K 
are constructed in the same way as before and are shown in Fig. 17.9(b) and (c). 

Maximum shear force at K 

The maximum negative shear force at K occurs with the head of the load at K. In 
this position the ordinate under the tail of the load is -0.05. Hence 

SK(max. -ve) = -2 x $ (0.05 + 0.25) x 2 = -0.6 kN 

The maximum positive shear force at K occurs with the tail of the load at K. With 
the load in this position the ordinate under the head of the load is 0-55. Thus 

SK(max. +ve) = 2 x $ (0-75 + 0-55) x 2 = +2.6 kN 

Fig. 17.9 Maximum shear force and bending moment a t  the quarter-span point in 
the beam of Ex. 17.4 
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Maximum bending moment at K 

We position the load so that K divides the load in the same ratio that it divides the 
span. Therefore 0.5 m of the load is to the left of K and 1.5 m to the right of K. 
The ordinate in the MK influence line under the tail of the load is then 1.5 as is the 
ordinate under the head of the load. The maximum value of MK is thus given by 

MK(max)=2[i(1-5+ 1.875)x0.5+i(l-875+ 1 . 5 ) ~  1-51 

which gives 

MK(max) =6.75 kNm 

Diagram of maximum shear force 
Consider the simply supported beam shown in Fig. 17.10 (a) and suppose that a 
uniformly distributed load of intensity w and length L/5 (any fraction of L may be 
chosen) is crossing the beam. We can draw a series of influence lines for the 
sections, A, K, ,  K,, K,, K, and B as shown in Fig. 17.10(b) and then determine the 
maximum negative and positive values of shear force at each of the sections K,, K,, 
etc., by considering first the head of the load at K, ,  K,, etc., and then the tail of the 
load at A, K, ,  K,, etc. These values are then plotted as shown in Fig. 17.10(c). 

With the head of the load at K, ,  K,, K,, K4 and B the maximum negative shear 
force is given by w(ak,)s,, w(k, k,)s,, and so on, where sI, s,, etc., are the mid- 
ordinates of the areas ak,, k,k,, etc. Since s,, s,, etc. increase linearly, the maximum 
negative shear force also increases linearly at all sections of the beam between K, 
and B. At a section between A and K,,  the complete length of load will not be on the 
beam so that the maximum value of negative shear force at this section will not 

Fig. 17.10 Diagram of maximum shear force 
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lie on the straight line and the diagram of maximum negative shear force between A 
and K,, will be curved; the maximum negative shear force should be calculated for 
at least one section between A and K,. 

An identical argument applies to the calculation of the maximum positive shear 
force which occurs with the tail of the load at a beam section. Thus, in this case, the 
non-linearity will occur as the load begins to leave the beam between K4 and B. 

Reversal of shear force 
In some structures it is beneficial to know in which parts of the structure, if any, the 
maximum shear force changes sign. In Section 4.5, for example, we saw that the 
diagonals of a truss resist the shear forces and therefore could be in tension or 
compression depending upon their orientation and the sign of the shear force. If, 
therefore, we knew that the sign of the shear force would remain the same under the 
design loading in a particular part of a truss we could arrange the inclination of the 
diagonals so that they would always be in tension and would not be subject to 
instability produced by compressive forces. If, at the same time, we knew in which 
parts of the truss the shear force could change sign we could introduce 
counterbracing (see Section 17.5). 

Consider the simply supported beam AB shown in Fig. 17.1 1 (a) and suppose that 
it carries a uniformly distributed dead load (self-weight, etc.) of intensity wDL- The 
shear force due to this dead load (the dead load shear (DLS)) varies linearly from 
+wDLf./2 at A to -wDLL/2 at B as shown in Fig. 17.1 1 (b). Suppose now that a 
uniformly distributed live load of length less than the span AB crosses the beam. 
As for the beam in Fig. 17.10, we can plot diagrams of maximum positive and 
negative shear force produced by the live load; these are also shown in 
Fig. 17.1 1 (b). Then, at any section of the beam, the maximum shear force is equal 

Fig. 17.1 1 Reversal of shear force in a beam 
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to the sum of the maximum positive shear force due to the live load and the dead 
load shear force, or the sum of the maximum negative shear force due to the live 
load and the dead load shear force. The variation in this maximum shear force 
along the length of the beam will be more easily understood if we invert the dead 
load shear force diagram. 

Referring to Fig. 17.1 1 (b) we see that the sum of the maximum positive shear 
force due to the live load and the dead load shear force is always positive between a 
and c. Furthermore, between a and c, the sum of the maximum negative shear 
force due to the live load and the dead load shear force is always positive. 
Similarly, between e and ti the maximum shear force is always negative. However, 
between c and e the summation of the maximum positive shear force produced by 
the live load and the dead load shear force is positive, while the summation of the 
maximum negative shear force due to the live load and the dead load shear force is 
negative. Therefore the maximum shear force between c and e may be positive or 
negative, i.e. there is a possible reversal of maximum shear force in this length of 
the beam. 

Example 17.5 A simply supported beam AB has a span of 5 m and carries a 
uniformly distributed dead load of 0.6 kN/m (Fig. 17.12(a)). A similarly 
distributed live load of length greater than 5 m and intensity 1.5 kN/m travels across 
the beam. Calculate the length of beam over which reversal of shear force occurs 
and sketch the diagram of maximum shear force for the beam. 

The shear force at a section of the beam will be a maximum with the head or tail 
of the load at that section. Initially, before writing down an expression for shear 
force, we require the support reaction at A, R,. Thus, with the head of the load at a 

Fig. 17.12 Reversal of shear force in the beam of Ex. 17.5 
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section a distance z from A, the reaction, R A ,  is found by taking moments about B. 
Thus 

R A  x 5 - 0.6 x 5 x 2.5 - 1 * 5 ~ ( 5  - 2/2) = 0 

whence R A =  1.5 + 1 . 5 ~ - 0 . 1 5 ~ *  0 )  
The maximum shear force at the section is then 

S(max) = RA - 0.62 - 1-52 (ii) 

or, substituting in Eq. (ii) for R A  from Eq. (i) 

S(max) = 1 -5 - 0 . 6 ~  - 0.152 * (iii) 

Equation (iii) gives the maximum shear force at any section of the beam with the 
load moving from left to right. Then, when z=O, S(max)= 1.5 kN and when 
z = 5 m, S(max) = -5.25 kN. Furthermore, from Eq. (iii) S(max) = 0 when 
z =  1.74 m. 

The maximum shear force for the load travelling from right to left is found in a 
similar manner. The final diagram of maximum shear force is shown in 
Fig. 17.12(b) where we see that reversal of shear force may take place within the 
length cd of the beam; cd is sometimes called the focal length. 

Determination of the point of maximum bending moment in a beam 
Previously we have been concerned with determining the position of a set of loads 
on a beam that would produce the maximum bending moment at a given section of 
the beam. We shall now determine the section and the position of the loads for the 
bending moment to be the absolute maximum. 

Consider a section K a distance z ,  from the mid-span of the beam in Fig. 17.13 
and suppose that a set of loads having a total magnitude W, is crossing the beam. 
The bending moment at K will be a maximum when one of the loads is at K; let this 

Fig. 17.13 Determination of the absolute maximum bending moment in a beam 
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load be q.. Also, suppose that the centre of gravity of the complete set of loads is a 
distance c from the load W j  and that the total weight of all the loads to the left of Wj 
is WL, acting at a distance u from Wj; a and c are fixed values for a given set of 
loads. 

Initially we fmd R, by taking moments about B. 

Hence 

which gives 

The bending moment, MK, at K is then given by 

MK = R,(: + zl) - w a  

or, substituting for R,, 

+ z, - WLa 1 
Differentiating M, with respect to z1 we have 

5 = 3 [ - 1( 5 + zl) + 1( 4 - z, + 41 
&I L 

or 

For a maximum value of M,, dM,/dZ, = 0 so that 

C 
z1 = - 

2 
(17.18) 

Therefore the maximum bending moment occurs at a section K under a load Wj such 
that the section K and the centre of gravity of the complete set of loads are 
positioned at equal distances either side of the mid-span of the beam. 

To apply this rule we select one of the larger central loads and position it over a 
section K such that K and the centre of gravity of the set of loads are placed at 
equal distances on either side of the mid-span of the beam. We then check to 
determine whether the load per unit length to the left of K is equal to the load per 
unit length to the right of K. If this condition is not satisfied, another load and 
another section K must be selected. 

Example 17.6 The set of loads shown in Fig. 17.14(b) crosses the simply 
supported beam AB shown in Fig. 17.14(a). Calculate the position and magnitude of 
the maximum bending moment in the beam. 
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Fig. 17.14 Determination of absolute maximum bending moment in the beam of 
Ex. 17.6 

The first step is to find the position of the centre of gravity of the set of loads. 
Thus, taking moments about the load W, we have 

(9 + 15 + 15 + 8 +8)2=15 x 2 + 15 x 4.3 + 8 x 7-O+ 8 x 9.3 

whence 2 = 4 4 9 m  

Therefore the centre of gravity of the loads is 0-21 m to the left of the load W,. 
By inspection of Fig. 17.14(b) we see that it is probable that the maximum 

bending moment will occur under the load W,. We therefore position W3 and the 
centre of gravity of the set of loads at equal distances either side of the mid-span of 
the beam as shown in Fig. 17.14(a). We now check to determine whether this 
position of the loads satisfies the load per unit length condition. The load per unit 
length on AB = 55/20 = 2-75 kN/m. Therefore the total load required on 
AK = 2-75 x 10.105 = 27.79 kN. This is satisfied by W,, W, and part (3.79 kN) of 

Having found the load position, the bending moment at K is most easily found by 
w3. 

direct calculation. Thus taking moments about B we have 

R, x 20 - 55 x 10.105 = 0 

whence R, = 27-8 kN 

Hence M K  = 27.8 x 10.105 - 9 x 4.3 - 15 x 2-3 = 207.7 kNm 
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It is possible that in some load systems there may be more than one load position 
which satisfies both criteria for maximum bending moment but the corresponding 
bending moments have different values. Generally the absolute maximum bending 
moment will occur under one of the loads between which the centre of gravity of 
the system lies. If the larger of these two loads is closer to the centre of gravity than 
the other, then this load will be the critical load; if not then both cases must be 
analy sed. 

17.4 Influence lines for beams not in contact with the 
load 
In many practical situations, such a bridge construction for example, the moving 
loads are not in direct contact with the main beam or girder. Fig. 17.15 shows a 
typical bridge construction in which the deck is supported by stringers that are 
mounted on cross beams which, in turn, are camed by the main beams or girders. 
The deck loads are therefore transmitted via the stringers and cross beams to the 
main beams. Generally, in the analysis, we assume that the segments of the stringers 
are simply supported at each of the cross beams. In Fig. 17.15 the portion of the 
main beam between the cross beams, for example FG, is called a panel and the 
points F and G are called panel points. 

Figure 17.16 shows a simply supported main beam AB which supports a bridge 
deck via an arrangement of cross beams and stringers. Let us suppose that we wish 
to construct shear force and bending moment influence lines for the section K of the 
main beam within the panel CD. As before we consider the passage of a unit load; in 
this case, however, it crosses the bridge deck. 

S, influence line 

With the unit load outside and to the left of the panel CD (position 1) the shear 
force, SK, at K is given by 

(17.19) 

SK therefore varies linearly as the load moves from A to C. Thus, from Eq. (17.19), 
when z ,  = 0, SK = 0 and when z ,  = a ,  SK = -a/L, the ordinate cf in the SK influence 
line shown in Fig. 17.16(b). Furthermore, from Fig. 17.16(a) we see that 

Zl sK = -R, = - - 
L 

Fig. 17.15 Typical bridge construction 
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Fig. 17.16 Influence lines for a beam not in direct contact with the moving load 

SK = Sc = SD with the load between A and C, so that for a given position of the load 
the shear force in the panel CD has the same value at all sections. 

Suppose now that the unit load is to the right of D between D and B (position 2). 
Then 

L - z, 
S, = +RA = - (1 7.20) 

and is linear. Therefore when z2 = L ,  SK = 0 and when z2 = e ,  S, = ( L  - e ) / L ,  the 
ordinate dh in the SK influence line. Also, with the unit load between D and B, 
SK = Sc = SD( = + R A )  so that for a given position of the load, the shear force in the 
panel CD has the same value at all sections. 

Now consider the unit load at some point between C and D (position 3). There 
will now be reaction forces, R, and R,, as shown in Fig. 17.16(a) acting on the 
stringer and the beam where, by considering the portion of the stringer immediately 
above the panel CD as a simply supported beam, we see that R,= ( e - z , ) / c  and 
RD = (z3 - a)/c .  Therefore the shear force at K is given by 

L 

S K =  -R,+ R,  (or S K =  + R A -  R,) 
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so that (17.2 1) 

SK therefore varies linearly as the load moves between C and D. Furthermore, when 
z3=a ,  SK= -a /L ,  the ordinate cf in the SK influence line, and when z 3 = e ,  
SK = ( L  - e ) / L  the ordinate dh in the SK influence line. Note that in the calculation of 
the latter value, e - a = c. 

Note also that for all positions of the unit load between C and D, SK = -RB + R,  
which is independent of the position of K. Therefore, for a given load position 
between C and D, the shear force is the same at all sections of the panel. 

MK influence line 

With the unit load in position 1 between A and C, the bending moment, M,, at K is 
given by 

(17.22) 

M, therefore varies linearly with the load position between A and C. Also, when 
2, =0, M , = O  and when zi = a ,  M,=a(L-d ) /L ,  the ordinate c i i  in the M, 
influence line in Fig. 17.16(c). 

With the unit load in position 2 between D and B 

(17.23) 

Again, M, varies linearly with load position so that when z2= e ,  M, = ( L  - e )d /L ,  
the ordinate dip in the MK influence line. Furthermore, when z2 = L,  MK = 0. 

When the unit load is between C and D (position 3) 

MK = Rs(L - d )  - RD(e - d )  

As before we consider the stringer over the panel CD as a simply supported beam so 
that RD = (z3 - a)/c.  Then since 

RB = z3/L 

MK = - 23 (L - d )  - (?)(e - d )  
L 

(17.24) 

Equation (17.24) shows that M, varies linearly with load position between C and D. 
Therefore, when z3 = a,  M ,  = a ( L  - d ) / L ,  the ordinate c,i in the M, influence line, 
and when z3 = e ,  M, = d ( L  - e ) / L ,  the ordinate d,p in the M ,  influence line. Note, 
that in the latter calculation, e - a = c. 

Maximum values of SK and MK 

In determining maximum values of shear force and bending moment at a section of 
a beam that is not in direct contact with the load, certain points are worthy of note. 
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1. When the section K coincides with a panel point (C or D, say) the SK and M, 
influence lines are identical in geometry to those for a beam that is in direct contact 
with the moving load; the same rules governing maximum and minimum values 
therefore apply. 

2. The absolute maximum value of shear force will occur in an end panel, AE or 
DB, when the SK influence line will be identical in form to the bending moment 
influence line for a section in a simply supported beam that is in direct contact with 
the moving load. Therefore the same criteria for load positioning may be used for 
determining the maximum shear force, i.e. the load per unit length of beam is equal 
to the load per unit length to the left of E or D and the load per unit length to the 
right of EorD.  

3. To obtain maximum values of shear force and bending moment in a panel, a 
trial-and-error method is the simplest approach remembering that, for concentrated 
loads, a load must be placed at the point where the influence line changes slope. 

17.5 Forces in the members of a truss 
In some instances the main beams in a bridge are trusses, in which case the cross 
beams are positioned at the joints of the truss. The shear force and bending moment 
influence lines for a panel of the truss may then be used to determine the variation in 
the truss member forces as moving loads cross the bridge. 

Fig. 17.17 Determination of forces in the members of a truss 
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Consider the simply supported Warren truss shown in Fig. 17.17(a) and suppose 
that it cames cross beams at its upper chord joints which, in turn, support the bridge 
deck. Alternatively, the truss could be inverted and the cross beams supported by the 
lower chord joints; the bridge deck is then the through type. Suppose also that we 
wish to determine the forces in the members CD, CE, DE and GE of the truss. 

We have seen in Section 4.5 the mechanism by which a truss resists shear forces 
and bending moments. Thus shear forces are resisted by diagonal members, while 
bending moments are generally resisted by a combination of both diagonal and 
horizontal members. Therefore, refemng to Fig. 17.17(a), we see that the forces in 
the members CE and DE may be determined from the shear force in the panel CD, 
while the forces in the members CD and GE may be found from the bending 
moments at E and C, respectively. We therefore construct the influence lines for the 
shear force in the panel CD and for the bending moment at E and C, as shown in 
Fig. 17.17(b), (c) and (d). 

In Section 17.4 we saw that, for a given load position, the shear force in a panel 
such as CD is constant at all sections in the panel; we will call this shear force ScD. 
Then, considering a section XX through CE, CD and GE, we have 

F C E  sin 8 = ScD 
" 

so that 

Similarly 

(17.25) 

F D E  = - (1  7.26) 
sin 8 

From Fig. 17.17(b) we see that for a load position between A and J, S,, is 
negative. Therefore, referring to Fig. 17.17(a), F C E  is compressive while F D E  is 
tensile. For a load position between J and B, SCD is positive so that F C E  is tensile and 
F D E  is compressive. Thus F C E  and F D E  will always be of opposite sign; this may also 
be deduced from a consideration of the vertical equilibrium of joint E. 

I f  we now consider the moment equilibrium of the truss at a vertical section 
through joint E we have 

FcDh = ME 

or ME 
FCD = 

Since M E  is positive for all load positions (Fig. 17 
The force in the member GE is obtained 

Fig. 17.17(d). Thus 

FGEh = M c  

which gives 

F,, will be tensile since M ,  is positive for all load 

(17.27) 

17(c)), F C D  is compressive. 
from the Mc influence line in 

(17.28) 

positions. 
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It is clear from Eqs (17.25)-(17.28) that the influence lines for the forces in the 
members could be constructed from the appropriate shear force and bending moment 
influence lines. Thus, for example, the influence line for FCE would be identical in 
shape to the shear force influence line in Fig. 17.17(b) but would have the ordinates 
factored by 1 /sin 8. The influence line for FDE would also have the ScD influence line 
ordinates factored by l/sin 8 but, in addition, would have the signs reversed. 

Example 17.17 Determine the maximum tensile and compressive forces in the 
member EC in the Pratt truss shown in Fig. 17.18(a) when it is crossed by a 
uniformly distributed load of intensity 2.5 kN/m and length 4 m; the load is applied 
on the bottom chord of the tms .  

The vertical component of the force in the member EC resists the shear force in 
the panel DC. We therefore construct the shear force influence line for the panel DC 
as shown in Fig. 17.18(b). From Eq. (17.19) the ordinate df = 2 x 1-4/ 
(8 x 1.4) = 0.25 while from Eq. (17.20) the ordinate cg = (8 x 1.4 - 3 x 1-4)/ 
(8 x 1.4) = 0.625. Furthermore, we see that S, changes sign at the point j 
(Fig. 17.18 (b)) where jd, from similar triangles, is 0-4. 

The member EC will be in compression when the shear force in the panel DC is 
negative and its maximum value will occur when the head of the load is at j ,  thereby 
completely covering the length aj in the SI, influence line. Therefore 

F, sin 45" = SI, = 2.5 x i x 3.2 x 0.25 

whence F,= 1.41 kN (compression) 

The force in the member EC will be tensile when the shear force in the panel DC 
is positive. Therefore to find the maximum tensile value of F, we must position the 
load within the part jb of the SDc influence line such that the maximum value of S, 
occurs. Since the positive portion of the S, influence line is triangular, we may use 
the criterion previously established for maximum bending moment. Thus the load 
per unit length over jb must be equal to the load per unit length over jc and the load 
per unit length over cb. In other words, c divides the load in the same ratio that it 

Fig. 17.18 Determination of the force in a member of the Pratt girder of Ex. 17.7 
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divides jb, i.e. 1:7. Therefore 0-5 m of the load is to the left of c, 3.5 m to the right. 
The ordinates under the extremities of the load in the SK influence line are then both 
0.3 125 m. Hence the maximum positive shear force in the panel CD is 

ScD(max. +ve) = 2.5[;(0.3125 +0-625) x 0.5 + f(0.625 + 0.3125) x 3-53 

Sc,(max. +ve) = 4.69 kN 

F ,  sin 45" = ScD 

F ,  = 6.63 )cN 

which gives 

Then, since 

which is the maximum tensile force in the member EC. 

Counterbracing 
A diagonal member of a Pratt truss will, as we saw for the member EC in Ex. 17.7, 
be in tension or compression depending on the sign of the shear force in the 
particular panel in which the member is placed. The exceptions are the diagonals in 
the end panels where, in the Pratt truss of Fig. 17.18(a), construction of the shear 
force influence lines for the panels AH and MB shows that the shear force in the 
panel AH is always positive and that the shear force in the panel MB is always 
negative; the diagonals in these panels are therefore always in tension. 

In some situations the diagonal members are unsuitable for compressive forces so 
that counrerbrucing is required. This consists of diagonals inclined in the opposite 
direction to the original diagonals as shown in Fig. 17.18(a) for the two centre 
panels. The original diagonals are then assumed to be carrying zero force while the 
counterbracing is in tension. 

It is clear from Ex. 17.17 that the shear force in all the panels, except the two 
outer ones, of a Pratt truss can be positive or negative so that all the diagonals in 
these panels could experience compression. Therefore it would appear that all the 
interior panels of a Pratt truss require counterbracing. However, as we saw in 
Section 17.3, the dead load acting on a beam has a beneficial effect in that it reduces 
the length of the beam subjected to shear reversal. This, in turn, will reduce the 
number of panels requiring counterbracing. 

Example 17.8 The Pratt truss shown in Fig. 17.19(a) carries a dead load of 
1.0 kN/m applied at its upper chord joints. A uniformly distributed live load, which 
exceeds 9 m in length, has an intensity of 1-5 kN/m and is also carried at the upper 
chord joints. If the diagonal members are designed to resist tension only find which 
panels require counterbracing. 

A family of influence lines may be drawn as shown in Fig. 17.19(b) for the 
shear force in each of the ten panels. We begin the analysis at the centre of the 
truss where the dead load shear force has its least effect; initially, therefore, we 
consider panel 5 .  The shear force, S5, in panel 5 with the head of the live load at n, 
is given by 

S, = 1 .O(area n,gb - area n,qa) - 1-5 (area n,qa) 

1.e. S, = 1 -0 x area n,gb - 2.5 x area n,qa (i) 
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Fig. 17.19 Counterbracing in a Pratt t russ  

The ordinates in the Ss influence line at g and q are found from similar triangles 
and are 0-5 and 0.4, respectively. Also, from similar triangles, n, divides the 
horizontal distance between q and g in the ratio 0.4:0.5. Therefore, from Eq. (i) 

Ss = 1-0 x + X  5.0 x 0-5 - 2-5 x ;X 4.0 x 0.4 

Ss = -0.75 kN which gives 

Therefore, since Ss is negative, the diagonal in panel 5 will be in compression so that 
panel 5 ,  and from symmetry panel 6, requires counterbracing. 

Now with the head of the live load at n4, Sa= l-O(area n,fb-area n,ra) - 
1 -5 (area n4ra). 

The ordinates and base lengths in the triangles n4fb and n4ra are determined as 
before. Then 

S, = 1.0 x !X 6.0 x 0-6 - 2-5 X ~ X  3.0 x 0-3 

S4 = 0.675 kN from which 

Therefore, since S, is positive, panel 4, and therefore panel 7, do not require 

Clearly the remaining panels will not require counterbracing. 
Note that for a Pratt truss having an odd number of panels the net value of the 

dead load shear force in the central panel is zero, so that this panel will always 
require counterbracing. 

counterbracing. 

17.6 Influence lines for continuous beams 
The structures we have investigated so far in this chapter have been statically 
determinate so that the influence lines for the different functions have comprised 
straight line segments. A different situation arises for statically indeterminate 
structures such as continuous beams. 
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Consider the two-span continuous beam ABC shown in Fig. 17.20(a) and let us 
suppose that we wish to construct influence lines for the reaction at B, the shear 
force at the section D in AB and the bending moment at the section F in BC. 

The shape of the influence lines may be obtained by employing the 
Mueller-Breslau principle described in Section 17.2. Thus, in Fig. 17.20(b) we 
remove the support at B and apply a unit displacement in the direction of the support 
reaction, RB. The beam will bend into the shape shown since it remains pinned to the 
supports at A and C. This would not have been the case, of course, if the span BC 
did not exist for then the beam would rotate about A as a rigid link and the RB 
influence line would have been straight as in Fig. 17.1 (c). 

To obtain the shear force influence line for the section D we ‘cut’ the beam at D 
and apply a unit shear displacement as shown in Fig. 17.20(c). Again, since the 
beam is attached to the support at C, the resulting displaced shape is curved. 
Furthermore, the gradient of the influence line must be the same on each side of D 
because, otherwise, it would imply the presence of a moment causing a relative 
rotation. This is not possible since the displacement we have specified is due solely 
to shear. It follows that the influence line between A and D must also be curved. 

The influence line for the bending moment at F is found by inserting a hinge at F 
and applying a relative unit rotation as shown in Fig. 17.20(d). Again the portion 

Fig. 17.20 Influence lines for a continuous beam using the Mueller-Breslau 
principle 
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ABF of the beam will be curved, as will the portion FC, since this pan of the beam 
must rotate so that the sum of the rotations of the two portions of the beam at F is 
equal to unity. 

Example 17.9 Construct influence lines for the reaction at B and for the shear 
force and bending moment at D in the two-span continuous beam shown in 
Fig. 17.21 (a). 

The shape of each influence line may be drawn using the Mueller-Breslau 
principle as shown in Fig. 17.21(b), (c) and (d). However, before they can be of 
direct use in determining maximum values, say, of the various functions due to the 
passage of loading systems, the ordinates must be calculated; for this, since the 
influence lines are comprised of curved segments, we need to derive their equations. 

Fig. 17.21 Influence lines for the continuous beam of Ex. 17.9 
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However, once the influence line for a support reaction, RB in this case, has been 
established, the remaining influence lines follow from statical equilibrium. 

RB influence line 

Suppose initially that a unit load is a distance zI from A, between A and B. To 
determine RB we may use the flexibility method described in Section 16.4. Thus we 
remove the support at B (point 2)  and calculate the displacement, a21, at B due to the 
unit load at zI (point 1). We then calculate the displacement, a22, at B due to a 
vertically downward unit load at B. The total displacement at B due to the unit load 
at z l  and the reaction RB is then 

U2l - U ~ ~ R B  = 0 (i 1 
since the support at B is not displaced. In Eq. (i) the term az2RB is negative since RB 
is in the opposite direction to the applied unit load at B. 

Both the flexibility coefficients in Eq. (i) may be obtained from a single unit load 
application since, from the reciprocal theorem (Section 15.4), the displacement at B 
due to a unit load at z1 is equal to the displacement at zI due to a unit load at B. We 
therefore apply a vertically downward unit load at B. 

The equation for the displaced shape of the beam is that for a simply supported 
beam carrying a central concentrated load. Therefore, from Eq. (iv) of Ex. 13.5 

1 
48Et 

v = - -  (4z3 - 3L2z) 

or, for the beam of Fig. 17.21 (a) 

At B, when z = 4 m 

Z 
v = - -  (z2 - 48) 

12Et 

32 u s = - -  - all 
3Et 

(ii) 

(iii) 

Furthermore, the displacement at B due to the unit load at z I  (=displacement at zI 
due to a unit load at B) is, from Eq. (iii), 

v. =-- (z: - 48) = azl 
- I  12Et 

Substituting for and in Eq. (i) we have 

z1 7 32 
12Et 3Et 

(z;  - 48) - - R, = 0 -- 

(vi) 
ZI 

128 
from which RB = - - (zf - 48) (0 s zI d 4.0 m) 

Equation (vi) gives the influence line for RB with the unit load between A and B; 
the remainder of the influence line follows from symmetry. Eq. (vi) may be checked 
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since we know the value of R, with the unit load at A and B. Thus from Eq. (vi), 
when z, = 0, RB = 0 and when zI = 4.0 m, RB = 1 as expected. 

If the support at B were not symmetrically positioned, the above procedure would 
be repeated for the unit load on the span BC. In this case the equations for the 
deflected shape of AB and BC would be Eqs (xiv) and (xv) in Ex. 13.6. 

In this example we require the SD influence line so that we shall, in fact, need to 
consider the value of RB with the unit load on the span BC. Therefore from Eq. (xv) 
inEx. 13.6 

(vii) 1 3  2 V, = - (zI - 24z1 + 144zl - 128) (4.0 m d z1 d 8.0 m) 
' 12EI 

Hence from Eq. (i) 

(viii) 

A check on Eq. (viii) shows that when zI = 4-0  m, RB = 1 and when zI = 8.0 m, RB = 0. 

1 

128 
RB = - (z: - 242: + 1442, - 128) (4-0 m d z1 d 8.0 m) 

SD influence line 

With the unit load to the left of D, the shear force, SD, at D is most simply given by 

S D =  +R,- 1 (ix) 

(XI 

where, by taking moments about C, we have 

R, x 8 - l(8 - ZI) + RB X 4 = o  
Substituting in Eq. (x) for RB from Eq. (vi) and rearranging gives 

1 

256 
RA = - (2: - 802, + 256) 

whence, from Eq. (ix) 

1 ,  SD = - ( z ;  - 80z1) (0 d c 2.0 m) 
256 

(xii) 

Therefore, when z ,  = 0, S, = 0 and when z l  = 2.0 m, SD = -0-59, the ordinate dlg 
in the SD influence line in Fig. 17.21 (c). 

With the unit load between D and B 

SD= +R, 
so that, substituting for R ,  from Eq. (xi) 

1 

256 
SI, = - (:; - 80:, + 256) (2.0 m c zl c 4.0 m) (xiii) 

Thus, when z ,  =2.0 rn, SI,= +0.41, the ordinate d,f in Fig. 17.21(c) and when 
z I  = 4.0 m, S, = 0. 
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Now consider the unit load between B and C. Again 

S D =  + R ,  

but in this case, RB in Eq. (x) is given by Eq. (viii). Substituting for RB from 
Eq. (viii) in Eq. (x) we obtain 

1 2 RA = S, = - - (2: - 24Z, + 176z, - 384) (4.0 m s zI s 8.0 m) (xiv) 
256 

Therefore the SD influence line consists of three segments, a,g, fb, and b,c,. 

M, influence line 
With the unit load between A and D 

M , = R ,  x 2 - 1(2 - 2,) 

Substituting for R ,  from Eq. (xi) in Eq. (xv) and simplifying, we obtain 

(xvi) 

When z ,  = 0, M ,  = 0 and when zI  = 2.0 m, M ,  = 0-81, the ordinate dzh in the MD 
influence line in Fig. 17.2 1 (d). 

1 
128 

MD = - (2: + 48zJ (0 s z ,  s 2.0 m) 

Now with the unit load between D and B 
M , = R A X 2  (xvii) 

Therefore, substituting for R ,  from Eq. (xi) we have 

(xviii) 

From J3q. (xviii) we see that when zI = 2.0 m, MD = 0.81, again the ordinate d2h in 
Fig. 17.21 (d). Also, when z I  = 4.0 m, MI, = 0. 

Finally, with the unit load between B and C, MD is again given by Eq. (xvii) but 
in which R ,  is given by Eq. (xiv). Hence 

1 

128 
MD = - (2: - 8Oz, + 256) (2.0 m s Z, s 4.0 m) 

(xix) 

The maximum ordinates in the S, and M ,  influence lines for the span BC may be 
found by differentiating Eqs (xiv) and (xix) with respect to z,, equating to zero and 
then substituting the resulting values of z ,  back in the equations. Thus, for example, 
from Eq. (xiv), 

1 
128 

MD = -- (2: - 24zT + 1762, - 384) (4-0 m s z, s 8.0 m) 

1 
--- ( 3 ~ :  - 48~1 -t 176) = 0 dSD -- 

dzi 256 

from which z ,  = 5.7 m. Hence 
S,(max) = -0.1 

Similarly M,(max) = -0.2 at z I  = 5.7 m. 
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In this chapter we have constructed influence lines for beams, trusses and 
continuous beams. Clearly influence lines can be drawn for a wide variety of 
structures that carry moving loads. Their construction, whatever the structure, is 
based on considering the passage of a unit load across the structure. 

Problems 
P.17.1 Construct influence lines for the support reaction at A in the beams 

shown in Fig. P.17.1 (a), (b) and (c). 

Ans. (a) Unit load at C, RA = 1.25. 
(b) Unit load at C, RA = 1.25; at D, RA = -0.25. 
( c )  Unit load between A and B, R ,  = 1; at C, RA = 0. 

Fig. P.17.1 

P.17.2 Draw influence lines for the shear force at C in the beams shown in 

Ans. Influence line ordinates 

Figs P.17.2(a) and (b). 

(a) D = 0.25, A = 0, C = k0.5, B = 0. 
(b) D=0*25 ,A=B=O,C=*0*5 ,E=-0 .25 .  

Fig. P.17.2 

P.17.3 Draw influence lines for the bending moment at C in the beams shown in 

Ans. Influence line ordinates 

Fig. P.17.2(a) and (b). 

(a) D = -0.125L, A = B = 0, C = 0.25L. 
(b) D = E = -0*125L, A = B = 0, C = 0-25L. 
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P.17.4 The simply supported beam shown in Fig. P.17.4 carries a uniformly 
distributed travelling load of length 10 m and intensity 20 kN/m. Calculate the 
maximum positive and negative values of shear force and bending moment at the 
section C of the beam. 

Ans. Sc = +37.5 kN, -40.0 kN, M,= +550 kNm, -80 kNm. 

Fig. P.17.4 

P.17.5 The beam shown in Fig. P.17.5(a) is crossed by the train of four loads 
shown in Fig. P.17.5 (b). For a section at mid-span, determine the maximum sagging 
and hogging bending moments. 

A m .  +161-3 kNm, -77.5 kNm. 

Fig. P.17.5 

P.17.6 A simply supported beam AB of span 20 m is crossed by the train of 
loads shown in Fig. P.17.6. Determine the position and magnitude of the absolute 
maximum bending moment on the beam and also the maximum values of positive 
and negative shear force anywhere on the beam. 

A m .  M(max) = 466.7 kN m under a central load 10.5 m from A. 
S(max +ve) = 104 kN at A, S(max -ve) = -97.5 kN at B. 

Fig. P.17.6 

P.17.7 The three-span beam shown in Fig. P.17.7 has hinges at C and E in its 
central span. Construct influence lines for the reaction at B and for the shear force 
and bending moment at the sections K and D. 
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A m .  Influence line ordinates 

R,; A = 0, B = 1, C = 1.25, E= F = G = 0. 
S,; A = 0, K = *O-5 ,  B = 0, C = -0.25, E = 0. 
SD;A=B=O,D=l*O,C= l*O,E=F=G=O.  
M, ;A=B=O,K=l*O,C= - 0 * 5 , E = F = G = 0 .  
MD; A = B = D = O ,  C = -0.5, E = F =  G = 0. 

Fig. P.17.7 

P.17.8 Draw influence lines for the reactions at A and C and for the bending 
moment at E in the beam system shown in Fig. P.17.8. Note that the beam AB is 
supported on the lower beam at D by a roller. 

If two 10 kN loads, 5 m apart, cross the upper beam AB, determine the maximum 
values of the reactions at A and C and the bending moment at E. 

Ans. R,(max) = 16.7 kN, R,(max) = 17.5 kN, M,(max) = 58.3 kNm. 

Fig. P.17.8 

P.17.9 A simply supported beam having a span of 5 m has a self-weight of 
0.5 kN/m and carries a travelling uniformly distributed load of intensity 1-2 kN/m 
and length 1 m. Calculate the length of beam over which shear reversal occurs. 

Ans. The central 1.3 m (graphical solution). 
P.17.10 Construct an influence line for the force in the member CD of the truss 

shown in Fig. P.17.10 and calculate the force in the member produced by the loads 
positioned at C, D and E. 

Ans. 28.1 kN (compression). 
P.17.11 The truss shown in Fig. P.17.11 carries a train of loads consisting of, 

left to right, 40kN, 70kN, 70kN and 60kN spaced at 2 m ,  3 m and 3 m ,  
respectively. If the self-weight of the truss is 15 kN/m, calculate the maximum 
force in each of the members CG, HD and FE. 

Ans. CG = 763 kN, HD = -724 kN, FE = -326 kN. 
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Fig. P.17.10 

Fig. P.17.11 

P.17.12 One of the main girders of a bridge is the truss shown in Fig. P.17.12. 
Loads are transmitted to the truss through cross beams attached at the lower panel 
points. The self-weight of the mss is 30 kN/m and it cames a live load of intensity 
15 kN/m and of length greater than the span. Draw influence lines for the force in 
each of the members CE and DE and determine their maximum values. 

Ans. CE = +37-3 kN, -65-3 kN, DE = +96-1 kN. 

Fig. P.17.12 

Fig. P.17.13 
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P.17.13 The Pratt truss shown in Fig. P.17.13 has a self-weight of 1.2 kN/m 
and carries a uniformly distributed live load longer than the span of intensity 
2.8 kN/m, both being applied at the upper chord joints. If the diagonal members are 
designed to resist tension only, determine which panels require counterbracing. 

Ans. Panels 4 ,5  and 6. 

P.17.14 Using the Mueller-Breslau principle sketch the shape of the influence 
lines for the support reactions at A and B, and the shear force and bending moment 
at E in the continuous beam shown in Fig. P.17.14. 

Fig. P.17.14 

P.17.15 
the bending moment at B in the continuous beam shown in Fig. P.17.15. 

Construct influence lines for the reaction at A, the shear force at D and 

Ans. 

R, = (z13 - 202, + 32)/32 
R,= (-z13+ 12zI2-44z, +48)/32 ( 2 ~ 0 m c z , d 4 - 0 m )  
SD = (zI3 - 20~,)/32 
SD = (zI3  - 202, + 32)/32 
MB= (zl3-4z1)/16 (Odz,d2*0m) 
M B =  (-z13+ 1 2 ~ , ~ - 4 4 ~ , + 4 8 ) / 1 6  ( 2 ~ 0 m c z , c 4 . 0 m )  

(0 c z, c 2.0 m) 

(OS Z ,  d 1.5 m) 
(1.5 m d  I, d 2.0 m) 

Fig. P.17.15 



CHAPTER 18 

Structural Instability 

So far, in considering the behaviour of structural members under load, we have been 
concerned with their ability to withstand different forms of stress. Their strength, 
therefore, has depended upon the strength properties of the material from which 
they are fabricated. However, structural members subjected to axial compressive 
loads may fail in a manner that depends upon their geometrical properties rather than 
their material properties. It is common experience, for example, that a long slender 
structural member such as that shown in Fig. 18.l(a) will suddenly bow with large 
lateral displacements when subjected to an axial compressive load (Fig. 18.1 (b)). 
This phenomenon is known as instability and the member is said to buckle. If the 
member is exceptionally long and slender it may regain its initial straight shape when 
the load is removed. 

Structural members subjected to axial compressive loads are known as columns or 
struts, although the former term is usually applied to the relatively heavy vertical 
members that are used to support beams and slabs; struts are compression members 
in frames and trusses. 

It is clear from the above discussion that the design of compression members 
must take into account not only the material strength of the member but also its 
stability against buckling. Obviously the shorter a member is in relation to its cross- 
sectional dimensions, the more likely it is that failure will be a failure in 
compression of the material rather than one due to instability. It follows that in some 
intermediate range a failure will be a combination of both. 

We shall investigate the buckling of long slender columns and derive expressions 
for the buckling or critical load; the discussion will then be extended to the design 

Fig. 18.1 Buckling of slender column 
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of columns of any length and to a consideration of beams subjected to axial load 
and bending moment. 

18.1 Euler theory for slender columns 
The first significant contribution to the theory of the buckling of columns was made 
in the eighteenth century by Euler. His classical approach is still valid for long 
slender columns possessing a variety of end restraints. Before presenting the theory, 
however, we shall investigate the nature of buckling and the difference between 
theory and practice. 

We have seen that if an increasing axial compressive load is applied to a long 
slender column there is a value of load at which the column will suddenly bow or 
buckle in some unpredetermined direction. This load is patently the buckling load of 
the column or something very close to the buckling load. The fact that the column 
buckles in a particular direction implies a degree of asymmetry in the plane of the 
buckle caused by geometrical and/or material imperfections of the column and its 
load. Theoretically, however, in our analysis we stipulate a perfectly straight, 
homogeneous column in which the load is applied precisely along the perfectly 
straight centroidal axis. Theoretically, therefore, there can be no sudden bowing or 
buckling, only axial compression. Thus we require a precise definition of buckling 
load which may be used in the analysis of the perfect column. 

If the perfect column of Fig. 18.2 is subjected to a compressive load P, only 
shortening of the column occurs no matter what the value of P. Clearly if P were to 
produce a stress greater than the yield stress of the material of the column, then 
material failure would occur. However, if the column is displaced a small amount by 
a lateral load, F ,  then, at values of P below the critical or buckling load, PCR, removal 
of F results in a return of the column to its undisturbed position, indicating a state of 
stable equilibrium. When P = P,, the displacement does not disappear and the column 
will, in fact, remain in any displaced position so long as the displacement is small. 
Thus the buckling load, P,,, is associated with a state of neutral equilibrium. For 
P > P,, enforced lateral displacements increase and the column is unstable. 

Fig. 18.2 Definition of the buckling load of a column 
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Buckling load for a pin-ended column 

Consider the pin-ended column shown in Fig. 18.3. We shall assume that it is in the 
displaced state of neutral equilibrium associated with buckling so that the 
compressive axial load has reached the value PcR. We also assume that the column 
has deflected so that its displacements, u, referred to the axes Ozy are positive. The 
bending moment, M, at any section Z is then given by 

h'f= PCRV 

so that substituting for M from Eq. (13.3) we obtain 

d2v PCR 
-- - -- V (18.1) 
dz2 EI 

Rearranging we obtain 

d'v PCR - + - v = o  (18.2) 
dz' EI 

The solution of Eq. (18.2) is of standard form and is 

v = C,  cos pz + C2 sin pz (18.3) 

in which C, and Cz are arbitrary constants and p' = PcR/EI. The boundary conditions 
for this particular case are v = 0 at z = 0 and .z = L. The first of these gives C, = 0 
while from the second we have 

O =  Cz sin p L  

Fig. 18.3 Determination of buckling load for a pin-ended column 
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For a non-uivial solution (Le. v # 0 and C2 # 0) then 

sinpL=O 

so that pL = nn where n = 1, 2, 3, .. . 

Hence -L = n n  

n 2n2EI 
L2 

PCR 2 2 2 

EI 

from which PCR = - (18.4) 

Note that C2 is indeterminate and that the displacement of the column cannot 
therefore be found. This is to be expected since the column is in neutral equilibrium 
in its buckled state. 

The smallest value of buckling load corresponds to a value of n = 1 in Eq. (18.4), 
i.e. 

n2EI 
PCR = - (18.5) 

The column then has the displaced shape v = C2 sin pz and buckles into the 
longitudinal half sine-wave shown in Fig. 18.4(a). Other values of PcR 
corresponding to n = 2, 3, . . . are 

L2 

4n2EI 9n2EI 
P - T’... 

L 
PCR = - 7 C R -  

L2 

These higher values of buckling load correspond to more complex buckling modes 
as shown in Figs 18.4(b) and (c). Theoretically these different modes could be 

Fig. 18.4 Buckling modes of a pin-ended column 



Euler theory f o r  slender columns 61 1 

produced by applying external restraints to a slender column at the points of 
contraflexure to prevent lateral movement. However, in practice, the lowest value is 
never exceeded since high stresses develop at this load and failure of the column 
ensues. We are not therefore concerned with buckling loads higher than this. 

Buckling load for a column with fixed ends 
In practice, columns usually have their ends restrained against rotation so that they 
are, in effect, fixed. Figure 18.5 shows a column having its ends fixed and subjected 
to an axial compressive load that has reached the critical value, PCR,  so that the 
column is in a state of neutral equilibrium. In this case the ends of the column are 
subjected to fixing moments, M F ,  in addition to axial load. Thus at any section Z the 
bending moment, M, is given by 

M =  PCRV- MF 
Substituting for M from Eq. (13.3) we have 

d2v PCR MF -- - -- V + -  (18.6) 
dz2 EI EI 

Rearranging we obtain 

d2v PCR MF - + - v = -  (18.7) 
dz2 EI EI 

the solution of which is 

v = c, cos pz + c2 Sin pz + MF/PcR (1 8.8) 

where p2 = PcR/EI 

Fig. 18.5 Buckling of a slender column with fixed ends 
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When z = 0, v = 0 so that C, = -MF/PcR. Further v = 0 at z = L, hence 

MF cos pL + C2 sin p L  + - MF O=--  
PCR PCR 

which gives 
MF (1-cospL) 

PCR sin pL 
c --- 

2 -  

Hence Eq. (1 8.8) becomes 

(1 - cos pL) v =  2% [cospz+ s i n p -  11 (18.9) 

Note that again v is indeterminate since M, cannot be found. Also since dv/dz = 0 at 
z = L  we have from Eq. (18.9) 

PCR sin pL 

o =  1 -cos pL 
whence cos p L  = 1 
and pL = nn where n = 0,2,4,  . . . 
For a non-trivial solution, i.e. N f 0, and taking the smallest value of buckling load 
(n  = 2) we have 

4n2EI 
P& = - ( 1 8.1 0) 

L2 

Buckling load for a column with one end fixed and one end free 
In this configuration the upper end of the column is free to move laterally and also to 
rotate as shown in Fig. 18.6. At any section Z the bending moment M is given by 

M =  -Pc,(6 - V )  or M =  PCRV - M, 

Fig. 18.6 Determination of buckling load for a column with one end fixed and one 
end free 
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Substituting for M in the first of these expressions from Eq. (13.3) (equally we 
could use the second) we obtain 

d2v PCR 
-- -- (6 - v) 
dz2 EI 

(18.11) 

which, on rearranging, becomes 

(18.12) d2v PCR PCR - +-v=-6 
dz2 EI EI 

The solution of Eq. (18.12) is 

v = c ,  c o s p z + c ~ s i n p z + 6  (1 8.13) 

where p2 = PcR/EI. When z = 0, v = 0 so that C, = -6. Also when z = L, v = 6 so that 
from Eq. (18.13) we have 

6 = - 6 c o s p L + C , s i n p L + 6  

cos p L  
which gives C , = S -  

sin p L  

cos p L  ( sin pL 
v =  -6 cospz- - sin pz - 1) (18.14) Hence 

Again u is indeterminate since 6 cannot be determined. Finally we have dv/dz = 0 at 
z = 0. Hence from Eq. (18.14) 

cos pL = 0 
x 

whence p L = n  - wheren= 1,3,5, ... 
2 

Fig. 18.7 Determination of buckling load for a column with one end fixed and the 
other end pinned 
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Thus taking the smallest value of buckling load (corresponding to n = 1) we obtain 

a2EI 
PCR = - 

4L2 
(1 8.15) 

Buckling of a column with one end fixed, the other pinned 
The column in this case is allowed to rotate at one end but requires a lateral force, F, 
to maintain its position (Fig. 18.7). 

At any section Z the bending moment M is given by 
M = PCRV + F ( L  - Z) 

Substituting for M from Eq. (13.3) we have 

d2v PCR F 
dz2 EI EI 

v - - (L - 2)  - = -- 

which, on rearranging, becomes 

d2v PCR F 
(L - z) - +-v=-- 

dz2 EI EI 
The solution of Eq. (18.17) is 

v = C, cos pz + C, sin pz - 2 (L - z) 
PCR 

Now dv/dz = 0 at z = 0, thus 
F 

O=pC2+- 
PCR 

F 
whence C, = -- 

When z = L ,  v = 0, hence 
PPCR 

0 = C, cos p L  + C, sin pL 

which gives 

Thus Eq. (18.18) becomes 
F v = - 

PPCR 
Also v=Oatz=O.Thus 

or 

F c, = - tan pL 
PPCR 

(18.16) 

(1 8.17) 

(1 8.18) 

[tan p L  cos pz - sin pz - p(L - z)] ( 1 8.1 9) 

0 =tan p L  - pL 
pL = tan pL (1 8.20) 

Equation (18.20) is a transcendental equation which may be solved graphically as 
shown in Fig. 18.8. The smallest non-zero value satisfying Eq. (18.20) is 
approximately 4-49. 
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Fig. 18.8 Solution of a transcendental equation 

This gives 

20.2 EI 
PCR = - 

L2 

which may be written approximately as 

2.05 x’EI 
(18.21) 

It can be seen from Eqs (18.5), (18.10), (18.15) and (18.21) that the buckling load 

L2 
PCR = 

in all cases has the form 

K’X’EI 
L2 

X’EI 

L,‘ 

PCR = - (18.22) 

in which K is some constant. Equation (18.22) may be written in the form 

PCR = - (1 8.23) 

in which L , ( = L / K )  is the equivalent length of the column, i.e. (by comparison of 
Eqs (18.23) and (18.5)) the length of a pin-ended column that has the same buckling 
load as the actual column. Clearly the buckling load of any column may be 
expressed in this form so long as its equivalent length is known. By inspection of 
Eqs (18.5), (18.10), (18.15) and (18.21) we see that the equivalent lengths of the 
various types of column are: 

Both ends pinned 
Both ends fixed 
One end fixed, one free 

Le = 1 *OL 

Le = 2.0L 
Le = 0.5 L 

One end fixed, one pinned Le = 0.7L 
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Fig. 18.9 Variation of critical stress with slenderness ratio 

18.2 Limitations of the Euler theory 
For a column of cross-sectional area A the critical stress, bCR, is, from Eq. (18.23) 

PCR K ~ E I  
b C R  = - -- - (1 8.24) 

A AL.: 
The second moment of area, I ,  of the cross-section is equal to Ar2 where r is the 
radius of gyration of the cross-section. Thus we may write Eq. (18.24) as 

K 2 E  

(Le/rI2 
b C R  = - (18.25) 

Therefore for a column of a given material, the critical or buckling stress is inversely 
proportional to the parameter (L,./r)’. L,/r is an expression of the proportions of the 
length and cross-sectional dimensions of the column and is known as its slenderness 
ratio. Clearly if the column is long and slender L,/r is large and bCR is small; 
conversely, for a short column having a comparatively large area of cross-section, Le/r 
is small and oCR is high. A graph of oCR against L,/r for a particular material has the 
form shown in Fig. 18.9. For values of Le/r less than some particular value, which 
depends upon the material, a column will fail in compression rather than by buckling 
so that ocR as predicted by the Euler theory is no longer valid. Thus in Fig. 18.9 the 
actual failure stress follows the dotted curve rather than the full line. 

18.3 Failure of columns of any length 
Empirical or semi-empirical methods are generally used to predict the failure of a 
column of any length: these then form the basis for safe load or safe stress tables 
given in Codes of Practice. One such method which gives good agreement with 
experiment is that due to Rankine. 

Rankine theory 

Suppose that P is the failure load of a column of a given material and of any length. 
Suppose also that P, is the failure load in compression of a short column of the 
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same material and that PcR is the buckling load of a long slender column, again of 
the same material. The Rankine theory proposes that 

1 1 1  _ -  - -+-  
p PS PCR 

(1 8.26) 

Equation (18.26) is valid for a very short column since l/P,-R + 0 and P then + P,; 
the equation is also valid for a long slender column since 1/P, is small compared 
with l/PcR; thus P+ PcR. Equation (18.26) is therefore seen to hold for extremes in 
column length. 

Now let cs be the yield stress in compression of the material of the column and A 
its cross-sectional area. Then 

P, = CTSA 

Also from Eq. (18.23) 

X ~ E I  
PCR = - 

L: 
Substituting for P, and PcR in Eq. (18.26) we have 

1 +- 1 1  
P a s A  x2EIfL2 
-=- 

Thus 

so that 

1 X ~ E I / L ~  + G,A 

P G,AX~EI/L: 
-- - 

O,AX~EI f ~ f  
X’EI/L: + O,A 

P =  

Dividing top and bottom of the right-hand side of this equation by x2EI/L: we have 

%A 
QALS 
X ~ E I  

P =  
1+- 

But I = Ar2 so that 

%A 
2 

P =  
I++($) X’E 

which may be written 

%A P =  
1 + k(L,/r)’ 

(18.27) 

in which k is a constant that depends upon the material of the column. The failure 
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stress in compression, oc, of a column of any length is then, from Eq. (18.27) 

P OS oc=-=  
A 1 +k(Le/r)2 

(18.28) 

Note that for a column of a given material oc is a function of the slenderness ratio, 
Le/.- 

Initially curved column 

An alternative approach to the Rankine theory bases a design formula on the failure 
of a column possessing a small initial curvature, the argument being that in practice 
columns are never perfectly straight. 

Consider the pin-ended column shown in Fig. 18.10. In its unloaded configuration 
the column has a small initial curvature such that the lateral displacement at any 
value of z is v,. Let us assume that 

v, = c2 sin x - 
L 

(18.29) 

in which a is the initial displacement at the centre of the column. Equation (1 8.29) 
satisfies the boundary conditions of v, = 0 at z = 0 and z = L and also dv,/dz = 0 at 
z = L/2; the assumed deflected shape is therefore reasonable, particularly since we 
note that the buckled shape of a pin-ended column is also a half sine-wave. 

Since the column is initially curved, an axial load, P, immediately produces 
bending and therefore further lateral displacements, v, measured from the initial 
displaced position. The bending moment, M, at any section Z is then 

M = P(v + v,) (18.30) 

If the column is initially unstressed, the bending moment at any section is 
proportional to the change in curvature at that section from its initial configuration 
and not its absolute value. Thus, from Eq. (13.3) 

d2v 
M = - E I -  

dz2 

so that 

Rearranging Eq. (18.31) we have 

d2v P P 
vo - + - v =  -- 

dz2 EI EI 

(18.3 1) 

(18.32) 

Note that P is not, in this case, the buckling load for the column. Substituting for vo 
from EQ. (1 8.29) we obtain 

d2v P P 2 

dz’ EI EI L 
a sin x - - + - v = -- (18.33) 
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Fig. 18.10 Failure of an initially curved column 

The solution of Eq. (18.33) is 

z 
sin x - (18.34) 

in which p2 = P/EI. If the ends of the column are pinned, v = 0 at z = 0 and z = L. 
The first of these boundary conditions gives C1 = 0 while from the second we have 

C12a v = CI cos pz  + C2 sin p z  + 
x2/L2 - p2 L 

O =  C2 sin pL 

Although this equation is identical to that derived from the boundary conditions of 
an initially straight, buckled, pin-ended column, the circumstances are now 
different. If sin pL.= 0 then p L  = x so that p2 = n2/L2.  This would then make the 
third term in Eq. (18.34) infinite which is clearly impossible for a column in stable 
equilibrium ( P  < PcR). We conclude, therefore, that C2 = 0 and hence Eq. (18.34) 
becomes 

Z 
S i n X -  (1 8.35) p2a 

V =  
x2/L2 - p2 L 

Dividing the top and bottom of Eq. (18.35) by p2 we obtain 

a sin RZ fL 
V =  

n2/p2L2 - 1 
But p2 = P/EI  and a sin x z / L  = vo. Thus 

(18.36) VO V =  
~ ' E I  1 
PL2 
-- 
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From Eq. (18.5) we see that n2EI/L2 = P,,, the buckling load for a perfectly straight 
pin-ended column. Hence Eq. ( 1  8.36) becomes 

(1 8.37) 

It can be seen from Eq. (18.37) that the effect of the compressive load, P ,  is to 
increase the initial deflection, uo, by a factor l / (PCR/P - 1). Clearly as P approaches 
PcR, u tends to infinity. In practice this is impossible since material breakdown 
would occur before P,, is reached. 

If we consider displacements at the mid-height of the column we have, from 
Eq. (18.37), 

a 
v, = - 

P 
PCR -- 

Rearranging we obtain 

Equation (18.38) represents a linear relationship between u, and u, /P .  Thus in an 
actual test on an initially curved column a graph of v, against u,/P will be a straight 
line as the critical condition is approached. The gradient of the line is Pc, and its 
intercept on the u, axis is equal to a, the initial displacement at the mid-height of the 
column. The graph (Fig. 18.1 1) is known as a Southwell plot and gives a convenient, 
nondestructive, method of determining the buckling load of columns. 

The maximum bending moment in the column of Fig. 18.10 occurs at mid-height 
and is 

M,, = P ( a  + u,) 

Substituting for v, from Eq. (18.38) we have 

or M m x = P a  - ( PC? P )  
(18.39) 

The maximum compressive stress in the column occurs in an extreme fibre and is, 
from Eq. (9.15) 
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Fig. 18.11 
Southwell plot 

Experimental determination of the buckling load of a column from a 

in which A is the cross-sectional area, c is the distance from the centroidal axis to the 
extreme fibre and I is the second moment of area of the column’s cross-section. 
Since I = Ar2 ( r  = radius of gyration), we may rewrite the above equation as 

am, = P [ 1 + PCR (E)] (18.40) 

Now PIA is the average stress, a, on the cross-section of the column. Thus, writing 
Eq. (18.40) in terms of stress we have 

A PCR- P r2 

o, ,=a l+-  - (18.41) 

in which bCR = PcR/A = x2E(r /L)2 ,  (see Eq. (18.25)). The term ac/r2 is an expression 
of the geometrical configuration of the column and is a constant for a given column 
having a given initial curvature. Therefore, writing ac/r2 = q, Eq. (18.41) becomes 

[ 2:a (31 

[ ::a] 
amx=a 1+- (1 8.42) 

Expanding Eq. (18.42) we have 

amx(aCR - a) = a [(l + q b C R  - 0 1 
which, on rearranging, becomes 

a 2 - ~ [ ~ m a x +  ( l  + q ) a C R l  + a m a x a C R = O  ( 18.43) 
the solution of which is 

I 1 
0 = z[amx + (1 + q ) a C R ]  - Ja[%ix + (1 + q ) a C R I 2  - % a x o C R  (18.44) 

The positive square root in the solution of Eq. (18.43) is ignored since we are only 
interested in the smallest value of a. Equation (18.44) then gives the average stress, 
a, in the column at which the maximum compressive stress would be reached for 
any value of q. Thus if we specify the maximum stress to be equal to cry, the yield 
stress of the material of the column, then Eq. (1 8.44) may be written 

0 = i[.Y + (1 + q)ocRl - J a [ a Y  1 + (1 + q ) a C R I 2  - OYoCR ( 18.45) 
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It has been found from tests on mild steel pin-ended columns that failure of an 
initially curved column occurs when the maximum stress in an extreme fibre reaches 
the yield stress, ay. Also, from a wide range of tests on mild steel columns, 
Robertson concluded that 

q = 0403( t) 
Substituting this value of q in Eq. (18.45) we obtain 

0 = +[by + (1 + o . o 0 3 t > a C R ]  - di[ay + (1 + 0 ' ~ 3 ~ ) ~ C R ] *  - GyacR (18.46) 

In Eq. (18.46) cy is a material property while aCR (from Eq. (18.25)) depends upon , 

Young's modulus, E, and the slenderness ratio of the column. Thus Eq. (18.46) may 
be used to determine safe axial loads or stresses (a) for columns of a given material 
in terms of the slenderness ratio. Codes of Practice tabulate maximum allowable 
values of average compressive stress against a range of slenderness ratios. 

18.4 Effect of cross-section on the buckling of 
columns 
The columns we have considered so far have had doubly symmetrical cross- 
sections with equal second moments of area about both centroidal axes. In 
practice, where columns frequently consist of I-section beams, this is not the case. 
Thus, for example, a column having the I-section of Fig. 18.12 would buckle 
about the centroidal axis about which the flexural rigidity, EI,  is least, i.e. Gy. In 
fact, the most efficient cross-section from the viewpoint of instability would be a 
hollow circular section that has the same second moment of area about any 
centroidal axis and has as small an amount of material placed near the axis as 
possible. However, a disadvantage with this type of section is that connections are 
difficult to make. ' 

In designing columns having only one cross-sectional axis of symmetry (e.g. a 
channel section) or none at all (i.e. an angle section having unequal legs) the least 
radius of gyration is taken in calculating the slenderness ratio. In the latter case the 
radius of gyration would be that about one of the principal axes. 

Fig. 18.12 Effect of cross-section on the buckling of columns 
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Another significant factor in determining the buckling load of a column is the 
method of end support. We saw in Section 18.1 that considerable changes in 
buckling load result from changes in end conditions. Thus a column with fixed ends 
has a higher value of buckling load than if the ends are pinned (cf. Eqs (18.5) and 
(18.10)). However, we have seen that by introducing the concept of equivalent 
length, the buckling loads of all columns may be referred to that of a pin-ended 
column no matter what the end conditions. It follows that Eq.  (18.46) may be used 
for all types of end condition, provided that the equivalent length, Le, of the column 
is used. Codes of Practice list equivalent or ‘effective’ lengths of columns for a wide 
variety of end conditions. Furthermore, although a column buckles naturally in a 
direction perpendicular to the axis about which EI is least, it is possible that the 
column may be restrained by external means in this direction so that buckling can 
only take place about the other axis. 

18.5 Stability of beams under transverse and axial 
loads 
Stresses and deflections in a linearly elastic beam subjected to transverse loads as 
predicted by simple beam theory are directly proportional to the applied loads. This 
relationship is valid if the deflections are small such that the slight change in 
geometry produced in the loaded beam has an insignificant effect on the loads 
themselves. This situation changes drastically when axial loads act simultaneously 
with the transverse loads. The internal moments, shear forces, stresses and 
deflections then become dependent upon the magnitude of the deflections as well as 
the magnitude of the external loads. They are also sensitive, as we observed in 
Section 18.3, to beam imperfections such as initial curvature and eccentricity of 
axial loads. Beams supporting both axial and transverse loads are sometimes known 
as beam-columns or simply as transversely loaded columns. 

We consider first the case of a pin-ended beam carrying a uniformly distributed 
load of intensity w and an axial load, P, as shown in Fig. 18.13. The bending 
moment at any section of the beam is 

d2v WLZ wz M = pv + - - - - - -EI - 
2 2 dz 2 

2 

(from Eq.  13.3) 

d2v P W 
giving - +-v=- (z2 - Lz) (18.47) 

dz2 EI 2EI 

Fig. 18.13 Bending of a uniformly loaded beam-column 
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The standard solution of Eq. (1 8.47) is 

v = C, cos pz + C, sin pz + - w ( z 2 - L z - ; )  
2P 

where C, and C2 are unknown constants and pz = P/EZ. Substituting the boundary 
conditions v = 0 at z = 0 and L gives 

W W c, = - , c2= (1 - cos pt) 
p2P p 2 p  sin p~ 

so that the deflection is determinate for any value of w and P and is given by 

1 - cos p L  
v = w [cos p z  + ( sin p L  )sin pz ]  + $ (z2 - Lz - ;) (1 8.48) 

In beamcolumns, as in beams, we are primarily interested in maximum values of 
stress and deflection. For this particular case the maximum deflection occurs at the 
centre of the beam and is, after some transformation of Eq. (18.48) 

P2P 

WLZ 
(1 8.49) v , x = - ( s e c T - l ) - -  W PL 

P2P 8P 

The corresponding maximum bending moment is 

WLZ 
M,, = -Pv,, - - 

8 

or, from Eq. (1 8.49) M , , = ~ ( l - s e c $ )  (18.50) 

We may rewrite Eq; (18.50) in terms of the Euler buckling load, P,, = nZEI/L2, for 
a pin-ended column. Hence 

M,, = - wL2 - PCR ( 1 - sec - 4 E) 
P2 

(18.51) 
n2 P 

Fig. 18.14 Beam-column supporting a point load 
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As P approaches PCR the bending moment (and deflection) becomes infinite. 
However, the above theory is based on the assumption of small deflections 
(otherwise d2v/dz2 would not be a close approximation for curvature) so that such a 
deduction is invalid. The indication is, though, that large deflections will be 
produced by the presence of a compressive axial load no matter how small the 
transverse load might be. 

Let us consider now the beam-column of Fig. 18.14 with pinned ends carrying a 
concentrated load W at a distance a from the right-hand support. 

Forz s L - a ,  

andforz 3 L - a ,  

Writing 

Equation (1 8.52) becomes 

d2v W 
EI - = - M =  -pv - - 

dz2 L 
(L -a )& - z) 

p2 = PIE1 

d2v Wa 
- + p v = - -  Z 
dz2 EIL 

the general solution of which is 

Wa 

PL 
v = C ,  cos pz + C, sin pz - - Z 

Similarly the general solution of Eq. (18.53) is 

W 

PL 
v = C, cos pz + C, sin pz - - (L - a)(L - z )  

(18.52) 

(18.53) 

(18.54) 

(1 8.55) 

where C,, C?, C3 and C, are constants which are found from the boundary 
conditions as follows. 

When z = 0, v = 0, therefore from Eq. (18.54) C ,  = 0. At z = L, u = 0 giving, from 
Eq. (18.55), C, = -C, tan pL. At the point of application of the load the deflection 
and slope of the beam given by Eqs (18.54) and (18.55) must be the same. Hence, 
equating deflections, 

wu Wa 

PL PL 
C, sin p(L - a)  - - (L - a) = C, [sin p(L - a)  - tan pL cos p(L - a)] - - (L - a) 

and equating slopes 

w u  W 
PL PL 

C2p cos p(L - a) - - = C,p[cos p(L - a) + tan p!. sin p(L - a)] + - (L - a) 
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Solving the above equations for C2 and C4 and substituting for C,, Cz, C3 and C4 in 
Eqs (1 8.54) and (1 8.55) we have 

w sin p a  wa 
P p  sin p L  PL 

V =  sinpz- - z for z s L - a  (1 8.56) 

w sin p ( L  - a )  W 
V =  sin p(L - z) - - (L - a)(L - z) for z P L - a (18.57) 

P p  sin p L  PL 

These equations for the beam-column deflection enable the bending moment and 
resulting bending stresses to be found at all sections. 

A particular case arises when the load is applied at the centre of the span. The 
deflection curve is then symmetrical with a maximum deflection under the load of 

w p L  WL 
urn, = - tan--- 

2Pp 2 4P 

Finally we consider a beamcolumn subjected to end moments, MA and M,, in 
addition to an axial load, P (Fig. 18.15). The deflected form of the beam-column 
may be found by using the principle of superposition and the results of the previous 
case. First we imagine that M, acts alone with the axial load, P .  If we assume that 
the point load, W ,  moves towards B and simultaneously increases so that the product 
W a  = constant = M, then, in the limit as a tends to zero, we have the moment M, 
applied at B. The deflection curve is then obtained from Eq. (18.56) by substituting 
pa for sin p a  (since pa is now very small) and M, for Wa. Thus 

(18.58) 

We find the deflection curve corresponding to MA acting alone in a similar way. 
Suppose that W moves towards A such that the product W ( L  - a )  = constant = MA. Then 
as ( L  - a )  tends to zero we have sin p ( L  - a)  = p ( L  - a)  and Eq. (18.57) becomes 

-“I L 
v=-[ MA sin p ( L - Z )  

P sinpL 
(18.59) 

The effect of the two moments acting simultaneously is obtained by superposition of 
the results of Eqs (18.58) and (18.59). Hence, for the beam-column of Fig. 18.15 

(1 8.60) -“I L 

Equation (18.60) is also the deflected form of a beam-column supporting eccen- 
trically applied end loads at A and B. For example, if e A  and e ,  are the eccentricities 
of P at the ends A and B, respectively, then MA = Pe,, M, = Pe,, giving a deflected 
form of 

sin p(L - z )  (L - z)] 
u = e ,  --- (18.61) 

(s in  sin p pZ L : ) + e ,  [ sin p L  L 
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Fig. 18.15 Beam-column supporting end moments 

Other beamcolumn configurations featuring a variety of end conditions and 
loading regimes may be analysed by a similar procedure. 

18.6 Energy method for the calculation of buckling 
loads in columns (Rayleigh-Ritz method) 
The fact that the total potential energy of an elastic body possesses a stationary value 
in an equilibrium state (see Section 15.3) may be used to investigate the neutral 
equilibrium of a buckled column. In particular the energy method is extremely 
useful when the deflected form of the buckled column is unknown and has to be 
‘guessed’. 

First we shall consider the pin-ended column shown in its buckled position in 
Fig. 18.16. The internal or strain energy, U, of the column is assumed to be 
produced by bending action alone and is given by Eq. (9.21), i.e. 

(18.62) L M 2 
o 2Et 

i J=I  -dz 
or alternatively, since Et d2u/dz2 = -M (Eq. (13.3)), 

Et L d2v 2 u=- (18.63) 

The potential energy, V, of the buckling load, P,,, referred to the straight position 
of the column as datum, is then 

2 l O ( i +  

v =  -P,,6 

where 6 is the axial movement of PCR caused by the bending of the column from its 

Fig. 18.16 Shortening of a column due to buckling 
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initially straight position. From Fig. 18.16 the length 6L of the buckled column is 

6L = (622 + 6v2)"2 
and since dv/dz is small then 

Hence 

giving 

Therefore 

Since 

only differs from 

I" L (e)' & 
2 dz 

by a term of negligible order, we write 

giving (1 8.64) 

The total potential energy of the column in the neutral equilibrium of its buckled 
state is therefore 

u+v= L M' --dz---J0(-) PCR L dv ' dz In 2EI 2 

or, using the alternative form of U from Eq. (18.63), 

We shall now assume a deflected shape having the equation 
w 

Ilnz 
11 = 1 A, sin - 

n =  1 L 

(1 8.65) 

(18.66) 

(1 8.67) 
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This satisfies the boundary conditions of 

and is capable, within the limits for which it is valid and if suitable values for the 
constant coefficients, A , ,  are chosen, of representing any continuous curve. We are 
therefore in a position to find P,, exactly. Substituting Eq. (18.67) into Eq. (18.66) 
gives 

U + V = I (?r[? n2A, sin - nm )’.. - 3 I,” ($[: cos E)’.. (1 8.68) 
2 O L  L 2 L 

The product terms in both integrals of Eq. (18.68) disappear on integration leaving 
only integrated values of the squared terms. Thus 

(18.69) 

Assigning a stationary value to the total potential energy of Eq. (18.69) with respect 
to each coefficient, A,, in turn, then taking A ,  as being typical, we have 

a(U + v) 7t4EIn4A, 7t2PcRn2An 
= O  - - - 

aA, 2 ~ 3  2 L  

from which 

as before. 
We see that each term in Eq. (1 8.67) represents a particular deflected shape with a 

corresponding critical load. Hence the first term represents the deflection of the 
column shown in Fig. 18.16 with P C R = x Z E I / L Z .  The second and third terms 
correspond to the shapes shown in Fig. 18.4(b) and (c) having critical loads of 
45c’EI/L’ and 9n2EI/L2 and so on. Clearly the column must be constrained to buckle 
into these more complex forms. In other words, the column is being forced into an 
unnatural shape, is consequently stiffer and offers greater resistance to buckling, as 
we observe from the higher values of critical load. 

If the deflected shape of the column is known, it is immaterial which of 
Eqs (18.65) or (18.66) is used for the total potential energy. However, when only an 
approximate solution is possible, Eq. (18.65) is preferable since the integral 
involving bending moment depends upon the accuracy of the assumed form of v, 
whereas the corresponding term in Eq. (18.66) depends upone the accuracy of 
d2v/dz’. Generally, for an assumed deflection curve v is obtained much more 
accurately than d’v/dz ’. 

Suppose that the deflection curve of a particular column is unknown or extremely 
complicated. We then assume a reasonable shape which satisfies as far as possible 
the end conditions of the column and the pattern of the deflected shape 
(Rayleigh-Ritz method). Generally the assumed shape is in the form of a finite 
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series involving a series of unknown constants and assumed functions of z. Let us 
suppose that v is given by 

v = A,fI(Z) + A f 2 ( z )  + A f & )  
Substitution in Eq. (18.65) results in an expression for total potential energy in terms 
of the critical load and the coefficients A , ,  At and A ,  as the unknowns. Assigning 
stationary values to the total potential energy with respect to A , ,  A2 and A,  in turn 
produces three simultaneous equations from which the ratios A , / A 2 ,  A , / A ,  and the 
critical load are determined. Absolute values of the coefficients are unobtainable 
since the displacements of the column in its buckled state of neutral equilibrium are 
indeterminate. 

As a simple illustration consider the column shown in its buckled state in 
Fig. 18.17. An approximate shape may be deduced from the deflected shape of a 
cantilever loaded at its free end. Thus, from Eq. (iv) of Ex. 13.1 

2 

v=- (3L - z )  VOZ 

2 ~ 3  

This expression satisfies the end conditions of deflection, viz. v = O  at z=O and 
v = v,, at z = L. In addition, it satisfies the conditions that the slope of the column is 
zero at the built-in end and that the bending moment, Le. d2v/dz2, is zero at the free 
end. The bending moment at any section is M =  PC,(vO- v) so that substitution for 
M and v in Eq. ( 1  8.65) gives 

2 5 1,' (3) z2(2L - z)2 dz u+ v =  - I,' ( l  - - + Lp - p&4 3Z2 

2EI 2 ~ 2  2 ~ 3  2 

Integrating and substituting the limits we have 

17 PGRv;L 3 4 
35 2EI 5 L 

PCR - u + v =  - --- 

a(u+v) 17 P;R~,$ 6P&V, =----- Hence - 0  a% 35 EI 5L 
42EI EI 

from which PCR = - = 2.471 - 
17L' L2 

Fig. 18.17 Buckling load for a built-in column by the energy method 



Problems 631 

This value of critical load compares with the exact value (see Eq. (18.15)) of 
rc2EI/4L2=2-467EZ/L2; the error, in this case, is seen to be extremely small. 
Approximate values of critical load obtained by the energy method are always 
greater than the correct values. The explanation lies in the fact that an assumed 
deflected shape implies the application of constraints in order to force the column to 
take up an artificial shape. This, as we have seen, has the effect of stiffening the 
column with a consequent increase in critical load. 

It will be observed that the solution for the above example may be obtained by 
simply equating the increase in internal energy ( V )  to the work done by the external 
critical load (-V). This is always the case when the assumed deflected shape 
contains a single unknown coefficient such as vo in the above example. 

In this chapter we have investigated structural instability with reference to the 
overall buckling or failure of columns subjected to axial load and also to bending. 
The reader should also be aware that other forms of instability occur. Thus the 
compression flange in an I-section plate girder can buckle laterally when the girder is 
subjected to bending moments unless it is restrained. Furthermore, thin-walled open 
section beams that are weak in torsion can exhibit torsional instability when 
subjected to axial load. These forms of instability are considered in more advanced 
texts. 

Problems 
P.18.1 A uniform column of length L and flexural rigidity EI is built-in at one 

end and is free at the other. It is designed so that its lowest buckling load is P. 
(Fig. P.18.1 (a)). Subsequently it is required to carry an increased load and for that it 
is provided with a lateral spring at the free end (Fig. P.18.1(b)). Determine the 
necessary spring stiffness, k, so that the buckling load is 4P. 

k = 4Pp/(jd - tan p L )  where p2 = P/EI. Ans. 

Fig. P.18.1 

P.18.2 A pin-ended column of length L and flexural rigidity EI is reinforced to 
give a flexural rigidity 4EI over its central half. Determine its lowest buckling load. 

Ans. 24.2EI/L2. 
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P.18.3 A uniform pin-ended column of length L and flexural rigidity EI has an 
initial curvature such that the lateral displacement at any point between the column 
and the straight line joining its ends is given by 

4z 
u, = a - (L - z )  

L2 
where a is the initial displacement at the mid-length of the column and the origin for 
z is at one end. 

Show that the maximum bending moment due to a compressive axial load, P ,  is 
given by 

M,, = - 8aP (sec PL - 1) where p 2 p  = - 
w2 EI 

P.18.4 A compression member is made of circular-section tube having a 
diameter d and thickness t and is curved initially so that its initial deflected shape 
may be represented by the expression 

v, = 6 sin(:) 

in which 6 is the displacement at its mid-length and the origin for z is at one end. 

direct stress, o,,,, given by 
Show that if the ends are pinned, a compressive load, P ,  induces a maximum 

P 1 46 
x dt l-a d 

where a = P/P , ,  and P,, = d E Z / L * .  Assume that t is small compared with d so that 
the cross-sectional area of the tube is xdt and its second moment of area is xd3t/8. 

In the experimental determination of the buckling loads for 12-5 mm 
diameter, mild steel, pin-ended columns, two of the values obtained were: 

P.18.5 

(i) 
(ii) 
(a) Determine whether either of these values conforms to the Euler theory for 

(b) Assuming that both values are in agreement with the Rankine formula, find 

Am. (a) (i) conforms with Euler theory. 

P.18.6 A tubular column has an effective length of 2.5 m and is to be designed 
to cany a safe load of 300 kN. Assuming an approximate ratio of thickness to 
external diameter of 1/16, determine a practical diameter and thickness using the 
Rankine formula with os = 330 N/mm’ and k = 1/7500. Use a safety factor of 3. 

length 500 mm, load 9800 N, 
length 200 mm, load 26 400 N. 

buckling load. 

the constants os and k. Take E = 200 OOO N/mm’. 

(b) os = 317 N/mm’, k =  1.16 x 

Ans. Diameter = 128 mm, thickness = 8 mm. 
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P.18.7 A mild steel pinended column is 2.5 m long and has the cross-section 
shown in Fig. P.18.7. If the yield stress in compression of mild steel is 300 N/mm2, 
determine the maximum load the column can withstand using the Robertson formula. 
Compare this value with that predicted by the Euler theory. 

Ans. 576 kN, P(Rob.)/P(Euler) = 0.62. 

Fig. P.18.7 

P.18.8 A compression member in a framework is subjected to an axial load of 
20.2 tonnes and a bending moment of 0-1 tm; its effective length is 1.5 m. For 
practical purposes a channel section is the most suitable; design the section. 

Ans. 

P.18.9 A pin-ended column of length L has its central portion reinforced, the 
second moment of its area being I, while that of the end portions, each of length a, 
is I,. Use the Rayleigh-Ritz method to determine the critical load of the column 
assuming that its centreline deflects into the parabola u = kz(L - z) and taking the 
more accurate of the two expressions for bending moment. 

In the case where I, = 1-61, and u = 0.2L find the percentage increase in strength 
due to the reinforcement and compare it with the percentage increase in weight on 
the basis that the radius of gyration of the section is not altered. 

203 mm x 76 mm x 23.8 kg is a suitable section. 

Ans. 

P.18.10 A tubular column of length L is tapered in wall thickness so that the 
area and the second moment of area of its cross-section decrease uniformly from A ,  
and I, at its centre to 0.2A, and 0.21, at its ends, respectively. 

Assuming a deflected centreline of parabolic form and taking the more correct 
form for the bending moment, use the Rayleigh-Ritz method to estimate its critical 
load; the ends of the column may be taken as pinned. Hence show that the saving in 
weight by using such a column instead of one having the same radius of gyration 
and constant thickness is about 15%. 

P,, = 15.2EI, f L 2 ,  5296, 36%. 

Ans. 7EI,/Lz. 
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Braced beams 498-501 
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load 109-113 
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Cables (continued) 
catenary 108 
deflected shape 105,106 
under self-weight 106-109 

lightweight cables carrying concentrated loads 

suspension bridges 5, 113- 116 
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strains on inclined planes 397-399 
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representation of stress at a point 383,384 
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stress trajectories 396,397 
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Components of a force 13.14 
Composite beams 308-328 

101-105 
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230 

area 230-232 

cylindrical shell 170-173 

Complex stress 

steel and concrete beams 326-328 
steel reinforced timber beams 308-313 
see also Reinforced concrete beams 
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Compound trusses 91,92 
Compression tests 184 
Continuous beams 6,7,488-490,514-516, 

524-530,596-602 
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Core of a rectangular section 21 1,212 
Counterbracing 594-596 
Couple 21 
Creep and relaxation 194 
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tertiary creep 194 
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concrete beam 316 

Crotti-Engesser theorem 445 

Deflection of axially loaded structural members 

Deflection of beams 
154-157 

deflection due to shear 363-366 
deflection due to unsymmetrical bending 

358-361 _.. _ . ~  

differential equation of symmetrical bending 

form factor 364 
331 -333 

moment - area 
351-358 

method for symmetrical bending 

moment-area method for unsymmetrical 

statically indeterminate beams see Statically 
bending 362,363 

indeterminate structures 
singularity functions (Macauley’s method) 

345-351 
Design 8 , 9  

deadloads 9 
live or imposed loads 9 
safety 9 
serviceability 9 
windloads 9 

Design methods 196-198 
allowable (working) stress 196 
elastic design 196 
design strengths 197 
limit state (ultimate load) design 197 
partial safety factors 197 
plastic design 197 

Distribution factors 521 
Ductility 182 
Dummy (fictitious) load method 449,451 

‘Effective’ bending moments, shear forces and 

Effective depth of a reinforced concrete beam 313 
Elastic and linearly elastic materials 182 
Elastic design 196 
Elastic limit 182 
Elastic section modulus 204,205 
Elastoplastic materials 182 
Electrical resistance strain gauges 401,402 
Endurance limit 196 
Energy methods 

load intensities 233 

Castigliano’s first theorem (Parts I and II) 445 
Castigliano’s second theorem 497 
column failure (Rayleigh-Ritz method) 

627-631 
complemenmy energy 443,444 
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Energy methods (continued) 
Crotti-Engesser theorem 445 
dummy (fictitious) load method 449,451 
flexibility coefficients 459 
Maxwell’s reciprocal theorem 459-464 
potential energy 455 
principle of the stationary value of the total 

complementary energy 446445,483,497 
principle of the stationary value of the total 

potential energy 456-459 
reciprocal theorems 459-465 
strain energy 421,443,444,445 

due to shear 268 
due to torsion 293,294 
inbending 215 
in tension and compression 147-152 

temperature effects 453-455 
theorem of reciprocal work 459,464,465 
total complementary energy 444,483,497,498 
total potential energy 455 

Engesser 445 
Equilibrium of force systems 24.25 
Euler theory see Structural instability 
Experimental measurement of surface strains and 

stresses 401 -405 

Factors of safety 
Fatigue 195. 196 

endurance limit 196 
fatigue strength 196 
Miner’s cumulative damage theory 196 
stress concentrations 195 
stress-endurance curves 196 

Finite element method 10 
Fixed (built-in) beams 368-375 

sinking support 374,375 
Fixed end moments (table) 520,521 
Flexibility 149 
Flexibility coefficients 459 
Flexibility (force) method 161,473,474,504 
Flexural rigidity 204 
Flying buttress 119 
Force see Principles of statics 
Form factor 364 
Free body diagrams 39 
Fulcrum 19 
Function of a structure 1,2 

Graphical method for truss analysis 89-91 

Hardness tests 187 
Hinges 

in principle of virtual work 432 
plastic 243 

Homogeneous materials 182 
Hooke’s law 140, 190 
Howe truss 71,72 
Hysteresis 194 

Impact loads 152-154 

Impact tests 188, 189 
suddenly applied loads 153, 154 

Indentation tests 187 
Influence lines 

beams in contact with load 565-589 
concentrated travelling loads 574-579 
diagram of maximum shear force 583,584 
distributed travelling loads 579-583 
maximum bending moment 576-578, 581, 

maximum shear force at a section 575, 576, 

Mueller-Breslau principle 571-574,597 
point of maximum bending moment 586, 

reversal of shear force 584,585 

maximum values of shear force and bending 
moment 591,592 

panels, panel points 589 
continuous beams 596-602 
counterbracing 594-596 
forces in members of a truss 592-596 

582 

581 

587 

beams not in contact with load 589-592 

Initial stress and prestressing 167-170 
Isotropic materials 182 
hod impact test 188, 189 

Ktruss 71,72 
Kinematic indeterminacy 8,474,480-483,541 

Limit of proportionality 147, 190 
Limit state (ultimate load) design 197 
Linear arches 119-121 
Load, types of 

axial 33, 34 
bending moment 35.36 
concentrated 34 
distributed 34 
externally applied 35 
free body diagrams 39 
internal forces 36 
load, shear force and bending moment 

normal force 38-41 
notation and sign convention 37,38,216.219 
shear 34,35 
shear force and bending moment 42-53 
stress resultants 36 
torsion 35.36, 60-64 

Longitudinal stresses in a thin cylindrical shell 

Liider’s lines 191 

Macauley’s method 345-351 
Matrix methods, introduction 541-551 

axially loaded members 541-549 
beam elements 550 
pin-jointed space frames 549 
statically indeterminate trusses 549 
stiffness matrix 543 
stiffness of a member 543 
transformation matrix 546 

relationships 54-60.233 

170-173 

Maxwell’s reciprocal theorem 459-464 
Method of joints 81-84 
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Method of sections 84-86 
Middle third rule 214 
Miner’s cumulative damage theory 196 
Modular ratio 313 
Modulus of resilience 150 
Modulus of rigidity 141 
Modulus of rupture 185 
Mohr’s circle of strain 400,401,403 
Mohr’s circle of stress 394-396 
Moment-area method 

fixed beams 368-375 
symmetrical bending of beams 351-358 
unsymmetrical bending of beams 362,363 

cany over factors 522-524 
continuous beams 524-530 
distribution factors 521 
fixed end moments (table) 520,521 

principal of virtual work 583 
sway 531-533 

principle 518-520 
stiffness coefficients 521,522-524 

Moment of a force 18-21 
couple 21 
fulcrum 19 
lever arm, moment arm 19 
resolution of a moment 20 

Moment distribution method 

portal frames 530-540 

Mueller-Breslau principle 571-574.597 

‘Necking’ of test pieces 190 
Neutral plane, neutral axis 201,203 

elastic neutral axis 201,203,235 
inclination 208,220 
plastic neutral axis 236 
position 203,218 

Newton’s first law of motion 11 
Nominal stress 184 
Normal force 

diagrams 38-41 
notation and sign convention 37,38 

Notation and sign conventions for forces and 
displacements 37,38 

Orthotropic materials 183 

Parallelogram of forces 12-14 
Partial safety factors 197 
Permanent set 182,190 
Pin-jointed plane and space frames see Trusses 
Plastic bending 234-251 

collapse load 243 
contained plastic Row 242 
effect of axial load 250,251 
elastic neutral axis 235 
idealized stress-strain curve 234 
moment-curvature relationships 240-242 
plastic analysis of beams 234-248 
plastic hinges 243 
plastic modulus 237 
plastic moment 236 
plastic neutral axis 236 

principle of virtual work see Virtual work 
required maximum strength 234 
shape factor 237 
singly symmetrical sections 234-240 
statically indeterminate beams 245-248 
unrestricted plastic Row 242 
yield moment 235 

Plastic design 197,249 
Plasticity 182 
Point of contraflexure (inflection) 51 
Poisson effect 142-144,214 
Poisson’s ratio 142, 184 
Polygon of forces 17 
Portal frames 2,3,4,501-503.516-518, 

Potential energy see Energy methods 

Prestressing 167-170 
Principal axes and principal second moments of 

Principal strains 399,400 
Principles of statics 11 -29 

calculation of support reactions 25-29 
commutative law 13 
components of a force 13,14 
couple 21 
equilibrant of a force system 16, 17 
equilibrium of force systems 24.25 
equivalent force systems 21 -23 
force 11-18 

moment of a force 18-21 
Newton’s first law of motion 11 
parallelogram of frames 12-14 
polygon of forces 17 
resolution of a moment 20,207 
resultant of a force system 12-16,23,24 
resultant of a system of parallel forces 23, 

statical equilibrium 11 
transmissibility of a force 12 
triangle of forces 17 

530-540 

Pratt ttUSS 71.72.84-86.594-596 

area 219,230-232 

as a vector 11.12 

24 

Principle of superposition 64,367,368 
Principle of the stationary value of the total 

complementary energy see Energy methods 
Principle of the stationary value of the total 

potential energy see Energy methods 
Principle of virmal work see Virtual work 
Properties of engineering materials 181-198 

anisotropic 183 
brittleness 182 
ductility 182 
elastic and linearly elastic 182 
elastic limit 182, 190 
elastoplastic 182 
homogeneous 182 
isotropic 182 
orthotropic 183 
permanent set 182 
plasticity 182 
table of material properties 198 
see o h  Testing of engineering materials 
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Rankine theory for column failure 616-618 
Rankine theory of elastic failure 415,416 

Rayleigh-Ritz method for column failure 

Reciprocal theorems 459-465 
flexibility coefficients 459 
Maxwell’s reciprocal theorem 459-464 
theorem of reciprocal work 459,464,465 

Reinforced concrete beams 313-325 
bond 
critical (economic) section 316 
effective depth 313 
elastic theory 313-320 
factors of safety 321 
modular ratio 313 
ultimate load theory 320-325 

Relationships between the elastic constants 

Resultant of a force system 12- 16 
Robertson formula for column failure 622 
Rockwell hardness test 188 

Safety 9 
Safety factors 197 
Scratch and abrasion tests 187 
Secant assumption 507 
Segmental arches 5 10 
Serviceability 9 
Shape factor 237 
Shear centre 272-274,277-281 
Shear flow, definition 265,269 
Shear force 34.35 

diagrams 42-53 
effect on theory of bending 232,233 
notation and sign convention 37,38,216,217 
relationship to load intensity and bending 

yield locus 415 

627 -63 1 

144-147 

moment 54-60,233 
Shearlag 266 
Shear of beams 259-281 

deflection due to shear see Deflection of beams 
horizontal shear stress in flanges of an I-section 

shear centre 272-274,277-281 
shear flow, definition, 265,269 
shearlag 266 
shear stress distribution in symmetrical 

shear stress distribution in thin-walled closed 

shear stress distribution in thin-walled open 

shear stress distribution in unsymmetrical 

strain energy due to shear 267,268 

beam 264-266 

sections 261 -267 

sections 274-281 

sections 268-274 

sections 259,260 

Shear tests 186 
Shore scleroscope 188 
Singularity functions 345-35 1 
Slenderness ratio 616 
Slope-deflection method see Statically 

Southwell plot 620, 621 
indeterminate structures 

Springings 119 
Statical determinacy of trusses 75-78, 479,480 
Statical equilibrium see Principles of statics 
Statical indeterminacy 

completely stiff structure 477 
degree of statical indeterminacy 477-479 
entire structure 476,477 
kinematic indeterminacy 8,474,480-483,541 
nodes 475 
pin-jointed frames 479-480 
releases 473 
rings 474-476 
singly connected supports 476 

Statically determinate structures 7, 8 
Statically indeterminate structures 7, 8, 158- 163, 

291-293,367-375,472-551 
beams subjected to torsion 291-293 
braced beams 498-501 
flexibility and stiffness methods 473,474 
introduction to matrix methods see Matrix 

kinematic indeterminacy 8,474,480-482,541 
portal frames 501-503.516-518, 530-540 
slope-deflection method 510-518 

continuous beams 514-516 
equations for a beam 5 13 
portal frames 516-518 
stiffness coefficients 513 

see also Moment distribution method 
see also Statical determinacy 
statically indeterminate beams 

methods 

continuous beams 488-490,514-516, 

fixed beam with sinking support 374,375 
fixed (built-in) beams 368-374 
matrix analysis 550 
method of superposition 367,368 
plastic analysis 245-248 
propped cantilevers 367,368,483-488 
stationary value of total complementary 

total complementary energy 483 

Castigliano’s second theorem 497 
matrix analysis 549 
self-straining trusses (lack of fit) 495-498 
stationary value of total complementary 

temperature effects 495 
total complementary energy 497,498 
unit load method 490 

see also Two-pinned arches 

524-530,596-602 

energy 483 

statically indeterminate trusses 

energy 497 

Stiffness 149,543 
Stiffness (displacement) method 161,473,474, 

5 10,543 
Strain 

see also Complex strain 
direct strain 138 
shear strain 139 
volumetric strain 139, 140 

due to shear 268 
Strain energy 
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Strain energy (continued) 
due to torsion 293,294 
inbending 215 
in tension and compression 147-152 
modulus of resilience 150 
see also Energy methods 

Strain gauge rosettes 402 
Strain hardening 193, 194 
Strains on inclined planes 397-399 
stress 

actual stress 184 
complementary shear stress 137, 138 
direct stress in tension and compression 

nominal stress 184 
shear stress in shear and torsion, 136,137, see 

also Shear of beams 
stress concentrations 135,195 
see also Complex stress 

Stress contours 397 
Stress-endurance curves 196 
Stress resultants 36 
Stress-strain curves 140 

aluminium 191.192 
‘barrelling’ 191 
brittle materials 192,193 
failure modes 190, 192, 193 
hysteresis 194 
mild steel 189-191 
‘necking’ 190 
strain hardening 193,194 
ultimate stress 189, 190 
upper and lower yield points for mild steel 190 

Hooke’slaw 140 
shear modulus, modulus of rigidity 141 
volume or bulk modulus 141 
Young’s modulus, elastic modulus 140 

134-136 

Stress-strain relationships 140- 142 

Stress trajectories 396,397 
Stresses on inclined planes 384,385 
Structural forms 2-5 

arches 3,4 
beams 2.3 
cables 4.5 
continuum structures 4 
portal frames 2,3,4 
slabs 4 
suspension bridge 5 
trusses 2.3 

Structural idealization 
finite elements 10 
nodes 10 
roof truss 9, 10,74,75 

buckling (critical) load, definition 608 
column with fixed ends 611,612 
column with one end fixed, one end free 

column with one end fixed, one end pinned 

effect of cross-section on buckling 622,623 
energy method (Rayleigh-Ritz) 627-631 

Structural instability 

612-614 

614,615 

equivalent length of a column 615 
Euler theory for slender columns 608-616 
failure of columns of any length 616-622 

initially curved column 618-622 
Rankine theory 616-618 

limitations of Euler theory 616 
pin-ended column 609-61 1 
Robertson formula 622 
slenderness ratio 616 
Southwell plot 620,621 
stability of beams under transverse and axial 

loads 623-627 
Suddenly applied loads 153,154 
Support reactions 7,25-29 
Support systems 5-7 

fixed (built-in, encastn5) 6 
idealization 5.6, 114 
pinned 5 
roller 5 
support reactions 7,25-29 

Table of material properties 198 
Temperature effects 163-167.453-455 
Tension coefficients 86-89,92-95 
Testing of engineering materials 183- 193 

actual stress 184 
bending tests 185 
Brinell Hardness Number 187 
compression tests 184 
hardness tests 187 
impact tests 188, 189 
indentation tests 187 
modulus of rupture 185 
nominal stress 184 
Rockwell 188 
scratch and abrasion tests 187 
shear tests 186 
shore scleroscope 188 
tensile tests 183, 184 

Theorem of reciprocal work 459,464,465 
Theories of elastic failure 405-416 

brittle materials 414-416 
ductile materials 406-414 
maximum normal stress theory (Rankine) 415, 

maximum shear stress theory (Tresca) 406,407 
shear strain energy theory (von 

yield loci 411,412,415 
Thermal effects 163-167.453-455 
Thin-walled shells under internal pressure 

416 

Mises) 407-411 

170-174 
cylindrical 170-173 
spherical 173, 174 

Three-pinned arches 122-131 
bending moment diagram 128- 131 
parabolic arch carrying a uniform horizontally 

distributed load 127, 128 
support reactions 122-127 

Bredt-Batho formula 298 
compatibility condition 291 

Torsion of beams 288-304 
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Torsion of beams (continued) 
diagrams 60-64 
plastic torsion of circular section bars 294-296 
shear stress due to torsion 136,137 
solid and hollow circular section bars 288-291 
solid section beams 299-301 
statically indeterminate beams 291 -293 
strain energy due to torsion 293,294 
thin-walled closed section beams 296-299 
thin-walled open section beams 301-304 
torsion constant 300,301 
warping of cross-sections 303,304 

Total complementary energy see Energy methods 
Total potential energy see Energy methods 
Transmissibility of a force 12 
Tresca theory of elastic failure 406,407 

Triangle of forces 17 
Trusses 71-95 

yield locus 411,412 

assumptions in analysis 72-74 
compound trusses 91.92 
counterbracing 594-596 
graphical method 89-91 
idealization 74,75 
influence lines 592-596 
method of joints 81-84 
method of sections 84-86 
pin-jointed space frames 92-95 
resistance to shear force and bending moment 

self-straining (lack of fit) trusses 495-498 
stability 77, 78 
statical determinacy 75-78,479-480 
statically indeterminate see Statically 

temperature effects 495 
tension coefficients 86-89.92-95 
types of truss 7 1,72 

78-81 

indeterminate structures 

Two-pinned arches 504-510 
flexibility method 504 

parabolic arch carrying a pan span uniformly 
distributed load 509 

secant assumption 507 
segmental arches 5 10 
tied arches 

Ultimate s m s  190 
Unit load method 438-442,449,452,490 
Upper and lower yield points for mild steel 190 

Virtual work 
applications of principle 435-442 
due to external force systems 433,434 
hinges, use of 432 
principle of virtual work 247,248,421 
principle of virtual work for a panicle 423, 

424 
principle of virtual work for a rigid body 

425 -421 
sign of internal virtual work 433 
unit load method 438-442 
virtual force systems, use of 434,435 
virtual work in a deformable body 427,428 
work, definition 422,423 
work done by internal force systems 

axial force 428-430 
bending moment 43 1,432 
shear force 430.43 1 
torsion 432 

Volume or bulk modulus 141 
von Mises theory of elastic failure 407-41 1 

design application 410,411 
yield locus 41 1,412 

Voussoirs 119 

Warping of beam cross-sections 303,304 
Warren truss 2,3,71,72,76,81,82,89-91 
Work, definition 422,423 

Yield moment 235 
Young’s modulus, elastic modulus 140, 184, 

234 


