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Preface

The past three decades have seen enormous developments in medical imaging
technologies. X-ray computed tomography (CT), magnetic resonance imag-
ing (MRI), positron computed tomography (PET), single photon emission
computed tomography (SPECT), and ultrasonic imaging (US), etc. have rev-
olutionized the diagnosis in clinical medicine and also become powerful tools
for research in basic science. Physical principles and mathematical procedures
of these technologies have been extensively studied during their development.
However, less work has been done on their statistical aspect. In the history
of technology development, statistical investigation into technology not only
provides better understanding of the intrinsic features of the technology (anal-
ysis), but also leads to improved design of the technology (synthesis). This
book attempts to fill this gap and to provide a theoretical framework for
statistical investigation into medical technologies.

Medical imaging technologies encompass a broad array of disciplines:
physics, chemistry, mathematics, engineering, computer science, etc. This
book begins with descriptions of physical principles of medical imaging tech-
niques, then derives statistical properties of the data (measurements) in the
imaging domain based on these principles. In terms of these properties and
mathematics of the image reconstruction, statistical properties of the data
(pixel intensities) in the image domain are derived. By using these proper-
ties, stochastic image models are established and statistical image analysis
methods are developed. The book ends with assessments of the performance
evaluations of image analysis methods. The book essentially consists of three
parts. The first part includes Chapters 1 through 4: imaging physics and math-
ematics. The second part consists of Chapters 5 through 8: imaging and image
statistics. The third part has Chapters 9 through 12: statistical image analysis.

This book discusses two major medical imaging techniques: X-ray CT and
MRI. For these two imaging techniques, the statistical investigation focuses
on their basic imaging protocols. In X-ray CT, the study is limited to parallel
and divergent projections and the convolution image reconstruction method.
In MRI, the study is confined to the rectilinear k-space sampling and Fourier
transform reconstruction method and the radial k-space sampling and pro-
jection reconstruction method. The purpose of this approach is to show the
basic statistical properties of these two imaging techniques and to provide
a method to conduct similar statistical investigations to more complicated
imaging protocols. By revisiting X-ray CT and MRI and briefly reviewing
PET and SPECT from the standpoint of tomography, the book shows that
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X-ray CT, MRI, PET, and SPECT belong to a particular category of imaging
non-diffraction computed tomography.

This book is partially based on the lecture notes developed for two graduate
courses Medical Imaging and Image Analysis and Biomedical Signal Process-
ing at the Department of Computer Science and Electrical Engineering and
Department of Biological Resource Engineering at the University of Mary-
land, as well as for short courses at SPIE Medical Imaging conferences and
the United States Patent and Trademark Office, and partially draws from re-
search done at the University of Maryland and the University of Pennsylvania.
In the book, statistical properties and their proofs are written in a theorem-
proof format. To keep the compactness of proofs, only the major steps of
proofs are given in sections, the details of these major steps are shown in the
appendices. Sub-levels of some of these details are listed in Problems as read-
ers’ exercises. The list of references in each chapter by no means constitutes a
complete bibliography on the topic. Those references are listed because I feel
that they have been useful in teaching and research over the years.

The book is intended for graduates, seniors, and researchers from the fields
of biomedical, electrical, and system engineering, with a strong interest in sta-
tistical image and signal analysis in medical imaging techniques. My students
and colleagues who attended these courses deserve much credit for prompting
the completion of this book. Specifically, I wish to thank Professors T.P.L.
Roberts, F.W. Wehrli, H.K. Song, K.Ty Bae, D.P. Chakraborty, A.A. Amini,
J.Z. Liang, J. Hsieh, G-S. Ying, M.H. Loew, J.M. Fitzpatrick, K. Hanson, R.F.
Wagner, M. Sonka, D. Jaramillo, M.D. Schnall, R.N. Bryan, C.N. Dorny, I.G.
Kazantsev, and L.M. Popescu for their support and useful discussions. I ac-
knowledge that any errors that remain in this book are my own fault. I would
also like to thank my colleagues: Professors W. Sewchand, C-I. Chang, J. Mor-
ris, T. Adali, D. Bruley, G.T. Herman, R.M. Lewitt, S. Matej, P.K. Saha, and
J.K. Udupa. Finally, I am grateful to R. Calver, Senior Editor, at Chapman
& Hall / CRC, for his patience, suggestions, and help from the very beginning
of writing this book.

Tianhu Lei
Baltimore, Maryland
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Introduction

The commonly used medical imaging techniques include but are not limited to
X-ray computed tomography (X-ray CT), magnetic resonance imaging (MRI),
positron emission tomography (PET), single photon emission computed to-
mography (SPECT), ultrasonic imaging (US), etc. These modern technologies
not only revolutionize traditional diagnostic radiology in medicine, but also
provide powerful tools for research in basic science.

1.1 Data Flow and Statistics

For each of these medical imaging techniques, we have observed its unique data
flow from acquiring measurements to computing pixel intensities. Data may be
real or complex valued, continuous or discrete. For instance, in the imaging
domain of MRI, these data are thermal equilibrium macroscopic magneti-
zation (TEMM), transverse precessing macroscopic magnetization (TPMM),
free induction decay (FID) signal, phase sensitive detection (PSD) signal,
analog-to-digital conversion (ADC) signal, k-space sample.

Most of medical imaging techniques were developed independently of each
other. By comparing these techniques, we also find that their data flows may
have some common features. For instance, in the imaging domain of X-ray
CT, PET, and SPECT, we encounter the same procedures: photon emission,
photon detection, and projection formation.

During the development and improvement of these technologies, it is neces-
sary and reasonable to evaluate performances of these techniques and study
some fundamental measures of image quality. For instance, we have to inves-
tigate the signal-to-noise ratio of the acquired data, the nature and variations
of the signal components, the sources and limits of the noise components, etc.;
in other words, the statistics of the data which normally consist of signal and
noise components.

Medical imaging techniques encompass an array of disciplines: physics,
chemistry, mathematics, computer science, and engineering. Statistical inves-
tigation into these techniques not only provides a better understanding of the
intrinsic features of these techniques (analysis), but also leads to improved
design of the techniques (synthesis).

1
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For instance, in MRI, the spin noise may set a theoretical limit on the spatial
resolution that the conventional MRI can achieve; statistics of Hamming and
Hanning windows may provide insight into the filter design in Fourier trans-
form image reconstruction in terms of the mainlobe width, the peak sidelobe
level, and the sidelobe rolloff of their spectra, etc. Also, the similar statisti-
cal properties of X-ray CT and MR images suggest that these two imaging
techniques may have some fundamental similarities. Indeed, they belong to a
category of imaging, non-diffraction computed tomography, in which the inter-
action model and the external measurements are characterized by the straight
line integral of some indexes of the medium and the image reconstruction is
based on the Fourier slice theorem.

1.2 Imaging and Image Statistics

In this book, statistical properties of imaging data are described in a natural
order as they are processed. In X-ray CT, they are in the order of photon
emission =⇒ photon detection =⇒ projection formation. In MRI, they are in
the order of TEMM =⇒ TPMM =⇒ MR signal (FID −→ PSD −→ ADC)
=⇒ k-space sample. The means, variances, and correlations of imaging data
are given in terms of conditions and settings of the imaging system. When
the data travel in the space – time – (temporal or spatial) frequency domains,
their statistics are evolving step by step.

Image reconstruction is an inevitable part of modern medical imaging tech-
nologies. From statistical standpoint, image reconstruction constitutes a trans-
form from a set of random variables (e.g., projections or k-space samples) to an
another set of random variables (e.g., pixel intensities of the image). This new
set of random variables forms a spatial random process (often called a random
field). The reconstructed image is a configuration of the random process and
each pixel intensity is a value (of the corresponding random variable in the
random process) in the state space. Statistical properties of data propagate
from the imaging domain to the image domain through image reconstruction.

Statistical properties of the image are described at three levels: a single
pixel, any two pixels, and a group of pixels (i.e., an image region) and are
focused on the second-order statistics. They are (i) Gaussianity for any single
pixel intensity, (ii) spatially asymptotic independence and exponential corre-
lation coefficient for any two pixel intensities, and (iii) stationary and ergodic
for pixel intensities in an image region. These basic statistics lead to that X-
ray CT and MR image are embedded on a Markov random field (MRF) with
the properly selected neighborhood system.
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1.3 Statistical Image Analysis

Statistical properties of images provide sufficient information for establish-
ing stochastic image models. Two Finite Normal Mixture (iFNM and cFNM)
models are proposed. They are suitable for images with independent and cor-
related pixel intensities, respectively. Similarities and differences of these two
models, their dependence on the signal-to-noise ratio of the image, and com-
parison with hidden Markov random field (hMRF) model have been discussed.

Imaging is commonly viewed as an operation or a process from data to the
pictures, while image analysis refers to an operation or a process from pic-
tures to the “data.” Here, “data” may include some image primitives such as
edges or regions as well as some quantities and labels related to these prim-
itives. Advanced image analysis techniques such as graph approach, classical
snakes, and active contour approaches, level set methods, active shape model
and active appearance model approaches, fuzzy connected object delineation
method, and Markov random field (MRF) model based approach are widely
used in medical image analysis.

This book proposed two stochastic model-based image analysis methods.
They consist of three steps: detecting the number of image regions, estimat-
ing model parameters, and classifying pixels into image regions. These three
steps form an unsupervised, data-driven approach. Two methods are imple-
mented by expectation-maximization (EM) and the extended EM algorithms.
In particular, a sensor array signal processing method for detecting the num-
ber of image regions, the determination of the order of neighborhood system
of MRF, and a new procedure for clique potential design to perform maximum
a posterior (MAP) operation are proposed.

With the rapid development of medical image analysis technologies, in-
creasing interest has evolved toward the analyzing image analysis techniques,
especially in the cases of the lack of the ground truth or a gold standard. A
new protocol for evaluating the performance of FNM-EM-based image analy-
sis method is proposed in this book. Performances in the detection, estimation,
and classification are assessed. Probabilities of over- and under-detection of
the number of image regions, Cramer-Rao bounds of variances of estimates of
model parameters, and a misclassification probability for the Bayesian classi-
fier are given. The strength of this protocol is that it not only provides the
theoretically approachable accuracy limits of image analysis techniques, but
also shows the practically achievable performance for the given images.
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1.4 Motivation and Organization

1.4.1 Motivation

Physical principles and mathematical procedures of medical imaging tech-
niques have been exhaustively studied during the past decades. The less work
has been done in their statistical aspect. This book attempts to fill this gap
and provides theoretical framework for the statistical investigation.

The philosophy of conducting statistical investigations in X-ray CT and MR
imaging is as follows. The study starts from the very beginning of imaging
process, for example, photon emission in X-ray CT and spin system in MRI,
derives statistical properties of data in imaging domain step by step according
to imaging procedures. Then through image reconstruction, the study derives
statistical properties at various levels of image structure, for example, a single
pixel, two pixels, an image region as well as neighborhood pixels. Finally, the
study establishes stochastic image models based on image statistics and devel-
ops model-based image analysis techniques. Performance evaluation of image
analysis techniques, in statistical content, is followed to assess the proposed
methods.

For the various medical imaging modalities, this book is confined to two
major imaging techniques: X-ray CT and MRI. For the variety of approaches
in these two techniques, the book is restricted to the basic approaches. For
instance, in X-ray CT, it is restricted to the parallel and divergent projections
and the convolution image reconstruction method; in MRI, it is restricted in
the rectilinear and radial k-space sampling and Fourier transform (FT) and
projection reconstruction (PR) methods. The book focuses on imaging and
image data processes.

This book is based mainly on the lecture notes developed for the graduate
courses and partially on the results of research. It is intended for students in
the engineering departments, especially in the field of signal and image pro-
cessing. It is also intended to be useful for engineers, scientists, and researchers
in the field of medical imaging as a reference book.

1.4.2 Organization

This book is essentially divided into three parts. Part I consists of Chapters
2, 3, and 4, and focuses on imaging physics and mathematics. Part II includes
Chapters 5, 6, 7, and 8, and describes imaging and image statistics. Chapters
9, 10, 11, and 12 form Part III, and describe statistical image analysis. The
book is organized as follows.

Chapter 2 describes physical principle and mathematical image reconstruc-
tion of X-ray CT.

Chapter 3 describes the physical principle and mathematical image recon-



Introduction 5

struction of MRI.
Chapter 4, by revisiting X-ray CT and MRI and briefly reviewing PET and

SPECT, shows that they belong to non-diffraction CT.
Chapter 5 describes statistical properties in imaging domain of X-ray CT

based on its imaging physics and mathematics.
Chapter 6 describes statistical properties in image domain of X-ray CT

based on its statistics properties in imaging domain.
Chapter 7 describes statistical properties in imaging domain of MRI based

on its imaging physics and mathematics.
Chapter 8 describes statistical properties in image domain of MRI based

on its statistics properties in imaging domain.
Chapter 9 describes two stochastic models based on statistical properties

in image domain of X-ray CT and MRI.
Chapter 10 describes an image analysis method for the images with inde-

pendent pixel intensities, based on the model in Chapter 9.
Chapter 11 describes an image analysis method for the images with corre-

lated pixel intensities, based on the model in Chapter 9.
Chapter 12 describes a protocol to evaluate the performance of image anal-

ysis techniques given in Chapters 10 and 11.
Each chapter has several appendices, that are used to give the detailed

proofs of statistical properties or some related important issues in the chapter,
for the purpose of keeping the text description in the chapter compact and in
focus.
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X-Ray CT Physics and Mathematics

2.1 Introduction

The word tomography consists of two Greek words tomos (slice) and graphein
(draw). Historically, the term tomography has referred to a technique of X-
ray photography in which only one plane of the internal structure inside the
object is photographed in shape focus. Linear and transaxial tomography are
two examples.

In the linear tomography as shown in Figure 2.1, an X-ray source and a
photographic plate (which is parallel to the cross section of an object) are
placed on two sides of the object. By moving the X-ray source at a fixed
speed parallel to the cross section in one direction, and moving the plate at
an appropriate speed in the opposite direction, a point in the cross section
(denoted by •) is always projected onto the same point in the plate, but
the point above or below the plate is projected onto different points in the
plate. Thus, on the photographic plate the cross section stands out while the
remainder of the object is blurred.

In transaxial tomography as shown in Figure 2.2, an object sits in a turn-
table in an upright position. The photographic plate is on a horizontal ta-
ble next to the object. X-rays are directed obliquely through the object
and projected onto the photographic plate. Both the object and the pho-
tographic plate are rotating in the same direction and at the same speed.
Only those points actually on the focal section of the object remain in sharp
focus throughout a rotation. Points that are above or below the focal section
are blurred.

Nowadays, tomography refers to the cross-sectional imaging of an object
from either transmission or reflection data collected by illuminating the object
from many different directions.

Computed tomography (abbreviated as CT) is different from conventional
tomography in that the images of the cross sections in CT are not influenced
by the objects outside those sections.

In X-ray transmission CT (abbreviated as X-ray CT), a single X-ray source
is contained in a tube and the detector device consists of an array of X-ray
detectors. The X-ray tube and the collimator are on one side and the detector
device and the data acquisition unit are on the other side of the object. Both
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FIGURE 2.1

Linear tomography: t1 and t2 denote the time instants and −→ represents the
moving direction.

the object and this apparatus are stationary, and the apparatus is rotating
around the object. An image of a slice of the object (which is determined by
the X-ray beams from the source to the detectors) can be created [1–4, 7–9,
18, 37, 53].

X-ray CT technology has improved dramatically over the past 50 years and
now CT scanners are an important and routinely used diagnostic imaging
instrument. From the first X-ray CT scanner∗ to the modern 3D cone beam
scanner, there may not be a clear definition of the generations of X-ray CT.
However, based on X-ray generation, detection, data acquisition, and image
reconstruction, the milestones in its research and development may include,
but are not limited to, (1) the parallel beams (a translation-rotation mode),
(2) the narrow divergent beams (a translation-rotation mode), (3) the wide
divergent beams (a rotation mode), (4) the wide divergent beams with the
closed detector ring (a rotation mode), (5) electron beams, (6) beams on a
spiral or a helical path, (7) the cone beam geometry, as well as the micro-CT
and PET-CT combined scanner, etc.

X-ray CT is closely related to a computational approach often known as
image reconstruction from projections. As stated in [4], “Image reconstruction
from projections is the process of producing an image of a two-dimensional
distribution (usually of some physical property) from estimation of its line in-
tegrals along a finite number of lines of known locations.” In fact, X-ray CT
is an example of the application of this approach. Over the past 50 years, the

∗It utilized 180 views, 160 parallel projections in each view, algebraic reconstruction
method, and took 2.5 hours to reconstruct a 64× 64 slice image.
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Transaxial tomography; → represents the rotating direction.

application of image reconstruction from projections have not only revolution-
ized the diagnostic medicine, but also covered divergent fields in science and
technology, from electron microscopes (reconstructing molecular structures)
to radio telescopes (reconstructing maps of radio emission from celestial ob-
jects).

Research and development of X-ray CT involve various fields of science and
technology. They cover physics, chemistry, mathematics, computer science,
and engineering. In 1901, the first Nobel prize was awarded to Wilhelm C.
Röntgen, in physics, for his discovery of the X-ray. In 1979, the Nobel prize
in physiology and medicine was awarded to Allan M. Cormack and Sir God-
frey N. Hounsfield for their development of computed tomography during the
1960s and 1970s. The 1982 Nobel prize in chemistry was given to Aaron Klug
for the use of reconstruction from electron microscopic projections for the ex-
planation of biologically important molecular complexes. The recipients of the
2003 Nobel prize in physiology and medicine, Paul C. Lauterbur and Peter
Mansfield, used image reconstruction from projections in their early research.

More generally, according to the physical nature of source–medium interac-
tion, transmission CT can be classified into two categories: (1) a nondiffrac-
tion CT, in which the interaction model and the external measurements are
characterized by the line integrals of some index of the medium and the im-
age reconstruction is based on the Fourier Slice Theorem [37, 53]; and (2) a
diffraction CT imaging, in which the interaction and measurements are mod-
eled with the wave equation and the tomographic reconstruction approach is
based on the Fourier diffraction theorem [30, 37]. The former includes con-
ventional X-ray CT, emission CT, ultrasound CT (refractive index CT and
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attenuation CT), magnetic resonance imaging (MRI), etc. The latter includes
acoustic, certain seismic, microwave, optical imaging, etc.

This chapter first describes the physical concepts of X-ray CT imaging. It
covers photon emission, attenuation, and detection; relative linear attenuation
coefficient; and projection formation (parallel and divergent). Then it dis-
cusses the mathematics of X-ray CT image reconstruction. Based on Fourier
slice theorem, it shows two inverse radon formulas for parallel projections and
one formula for divergent projections. Image reconstruction is limited in the
convolution method, whose computational implementation consists of a dou-
ble convolution and a projection. A signal processing paradigm of X-ray CT
is given at the end of this chapter.

2.2 Photon Emission, Attenuation, and Detection

X-ray, made of photons that have no mass and no electrical charge, demon-
strates wave−particle duality, that is, the properties of both waves and parti-
cles. X-rays have the wavelengths roughly 10−13m to 10−8 m, or the frequen-
cies 3 × 1016 Hz to 3 × 1021 Hz, with the energies 0.12 eV to 12 keV (“soft”)
or 12 eV to 120 keV (“hard”).† X-ray is of electromagnetic in nature.

2.2.1 Emission

An X-ray tube is shown in Figure 2.3. The filament of the cathode is heated
up to a certain temperature to overcome the binding energy of electrons to
the metal of the filament. An electron cloud emerges around the hot filament.
Those electrons are accelerated in the transit process from the cathode to the
anode and then strike the focus volume of the anode. The shape and size of
the electron beam are controlled by the focus cup. The anode is rotating. A
special target material (tungsten) is embedded in the anode. The effective
target area in the focus volume of the anode depends on the orientation of
the anode surface with respect to the incoming high-speed electron beam.

When the accelerated electrons enter into the lattice atoms of the focus
volume of the anode, the interactions between the high-speed electrons and
the orbital electrons as well as the atomic nucleus cause the deceleration.
As shown by classic electrodynamics, the deceleration of electrons radiates
electromagnetic waves in the form of photons. Among several atomic processes
caused by these interactions, two main physical events are X-ray fluorescence
and Bremsstrahlung (in Germany, brems for braking, strahlung for radiation).

†“Hard” X-rays are mainly used for imaging, because they can penetrate solid objects.
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FIGURE 2.3

An illustration of X-ray tube and photon emission.

X-ray fluorescence represents a direct interaction of the high-speed elec-
trons with electrons on the inner shell. When an electron on the inner shell
is kicked out of the atom by this collision, an electron of one of the outer
shells fills the vacant position on the inner shell. Because the potential energy
of the inner shells is lower than that of the outer shells, photons are emitted
in this process. X-ray fluorescence produces an emission spectrum of X-ray
frequencies, called the characteristic line. In Bremsstrahlung, the high-speed
electrons are scattered by the strong electric field near the nuclei with the
high proton number and, hence, slowing down. This deceleration also emits
photons. Because the scattering is a multiple process, the radiation spectrum
of X-ray frequencies is continuous.

X-ray fluorescence and Bremsstrahlung generate X-rays and superimpose
the characteristic lines on the continuous emission spectrum of X-ray fre-
quencies. However, in total, X-ray fluorescence contributes far less than
Bremsstrahlung to the radiation intensity, that is, the number of photons.
X-rays produced by Bremsstrahlung are the most useful for medical and in-
dustrial applications.

2.2.2 Attenuation

The emitted photons travel through collimators, penetrate the medium, and
arrive at the X-ray detectors. Between the X-ray tube and the detectors,
several types of collimators are installed to control the size and shape of the
X-ray beam, which may determine, for example, the slice thickness of an X-
ray CT image, etc. X-ray beams are polychromatic in nature. By using several
types of filtering, a more uniform beam (a monochromatic beam in the ideal
case) can be obtained.
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Photon–medium interaction can change the number of photons, the photon
energy, and the travel direction. This phenomenon is also called the atten-
uation. Scattering and absorption are the two main mechanisms that cause
X-ray attenuation. The measurement of the attenuation provides the basis for
X-ray CT imaging.

Rayleigh scattering is an elastic scattering phenomena. This event occurs
when the size of the scattering nucleus is less than the wavelength of the inci-
dent X-ray. In this case, the incident and the scattered X-rays have the equal
wavelength but different travel directions. There is no energy transfer during
the scattering. Other types of scattering may include Compton scattering.
This event occurs when the incident photon collides with a weakly bound
electron on the outer shell. The photon loses only a part of its energy in this
case.

Photoelectric absorption occurs when the binding energy of atomic electrons
is less than the energy of a photon. In this case, the electron on a lower shell
is kicked off the atom and travels in the medium as a free photoelectron with
a kinetic energy equal to the difference between the energy of the incident
photon and the binding energy of the electron. This difference in energy is
transferred to the lattice atoms locally in the form of heat.

2.2.3 Detection

In X-ray CT, the attenuated photons are not measured directly. They are
detected via their interaction products. When photons enter the detectors,
either crystal or ionizing gas produces light or electrical energy. The photon
energy is then collected and converted to an electrical signal, which is further
converted to a digital signal for image reconstruction.

Two types of detectors utilized in CT systems are the scintillation (a solid-
state) detector and xenon gas (an ionizing) detector.

Scintillation detectors first utilize a crystal to convert the shortwave X-
ray photons to longwave light. Then, a photodiode that is attached to the
scintillation portion of the detector transforms the light energy into electrical
energy. The strength of the detector signal is proportional to the number of
attenuated photons.

The gas detector consists of a chamber made of a ceramic material with long
thin ionization plates submersed in xenon gas. When photons interact with the
charged plates, xenon gas ionization occurs. The ionization of ions produces
an electrical current. Ionization of the plates and the electrical current rely
on the number photons and ionizing the gas.

The Geiger-Muller counter used in the first tomographic experiment by
Cormack and Hounsfield is a gas detector.

The performance of a detector is characterized by its efficiency and dynamic
range. Detector efficiency describes the percent of incoming photons able to be
converted to a useful electrical signal. Scintillation detectors can convert 99 to
100 percent of the attenuated photons, and gas detectors can convert 60 to 90
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percent of the photons that enter the chamber. The dynamic range describes
the ability of a detector to differentiate the range of X-ray intensities. Some
detectors can detect 1,000,000 intensities at approximately 1,100 views per
second.

2.3 Attenuation Coefficient

Photon–medium interactions are characterized by the attenuation. X-ray at-
tenuation is often measured by attenuation coefficients. These coefficients can
be mass attenuation coefficients, mass energy-absorption coefficient, linear
attenuation coefficient, etc. Medical applications utilizing X-ray‡ for forming
images of tissues are based on linear attenuation coefficients.

2.3.1 Linear Attenuation Coefficient

A simple mechanism is shown in Figure 2.4a. Let ρ be the probability that
a photon with the energy e, which enters a slab of the homogeneous tissue
t with unit thickness in a direction perpendicular to the surface of the slab,
is not absorbed or scattered in the slab. According to its physical meaning,
the probability ρ is also called the transmittance of the tissue t at energy e.
A single constant coefficient defined by

µ(e, t) = − ln ρ (2.1)

is called the linear attenuation coefficient of tissue t at energy e and abbrevi-
ated as LAC. Linear attenuation coefficients of several materials are listed in
Table 2.1. It is clear that the dimensionality of the linear attenuation coeffi-
cient is the inverse of the length.

TABLE 2.1

LACs of Several Materials (the unit
is cm−1)

KeV 50 100 150

Air 0.00027 0.00020 0.00018
Water 0.22 0.17 0.15
Wood 0.120 0.085 0.080

‡In this chapter, the discussion is confined to the case of monochromatic X-ray.
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An illustration of the linear attenuation coefficient of X-ray.
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The relationship between the linear attenuation coefficient µ(e, t) and the
probability ρ is shown in Figure 2.4b. ρ increasing leads to µ(e, t) decreasing.
When ρ = 1, µ(e, t) = 0, which implies that there is no attenuation; while
ρ = 0, µ(e, t)→∞, which implies that there is infinitely large attenuation.

Assume the attenuation of the air ignored or the entire mechanism of Figure
2.4a is placed in the free space. Let the numbers of photons transmitted by the
X-ray source and received by the photon detector be N0 and Nd, respectively.
The probability ρ can be estimated by

ρ =
Nd
N0

. (2.2)

Hence, Eq. (2.1) can be rewritten as

Nd
N0

= e−µ(e,t). (2.3)

Appendix 1A shows that the definition in Eq. (2.1) and the expression in
Eq. (2.3) can be derived from the reduction of photons when X-rays penetrate
the slab.

A mechanism for the physical measurement of X-rays is shown in Figure
2.4c. It consists of two detection paths: detection and reference detection.
That is, part of the X-ray beam travels through a homogeneous reference
material such as air. The reference detection shows how many photons that
leave the X-ray source are counted by the reference detector and compensates
the fluctuations in the strength of the X-ray. Thus, let the numbers of photons
counted by the detector and the reference detector be Nd andNr, respectively.
The probability ρ of Eq. (2.2) can be expressed by

ρ =
Nd
N0

=
Nd
Nr

. (2.4)

2.3.2 Relative Linear Attenuation Coefficient

In X-ray CT, X-ray measurement is performed in two processes: an actual
measurement and a calibration measurement. Figure 2.5 shows a measurement
mechanism that can be applied to both the actual and calibration processes.
Mechanisms of the actual and calibration measurement processes are very
similar. The only difference between these two processes is that an object (to
be imaged) is placed in the detection path of the actual measurement process
to partially replace the homogeneous reference material in the detection path
of the calibration measurement process.

Let µa(e, t) and µc(e, t) be LACs (Eq. (2.1)) in the actual and calibration
measurement processes, respectively. A quantity defined as the difference of
these LACs in two processes,

µa(e, t)− µc(e, t) = − ln
ρa
ρc
, (2.5)
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An illustration of the relative linear attenuation coefficient of X-ray.

is called the relative linear attenuation coefficient of tissue t at energy e, abbre-
viated as RLAC. In Eq. (2.5), ρa and ρc are the probabilities ρ (Eqs. (2.2) and
(2.4)) in the actual and the calibration measurement processes, respectively.
The dimensionality of the RLAC is the inverse of the length.

In the detection path of either the actual or calibration measurement in
Figure 2.5, let the polar coordinate (r, φ) denote the location of a point in the
object; f(r, φ) is used to represent RLAC at (r, φ) along the line L. That is,

f(r, φ) = µa(e, t)− µc(e, t) = − ln
ρa
ρc
. (2.6)

The detection path is divided into n slabs of the equal (e.g., the unit) thickness.
For simplicity, let the i-th slab represent the tissue type ti (i = 1, · · · , n) and
the top surfaces of i-th slab be located at (ri, φi). Assume that the number
of photons that enter the i-th slab in the detection path is Nd(ti−1); then the
probability ρ(ti) for the i-th slab is

ρ(ti) =
Nd(ti)

Nd(ti−1)
. (2.7)

Because the linear attenuation coefficient represents the reduction of pho-
tons when they travel through the object, the overall LAC in the detection
path is

n∑

i=1

µ(e, ti) = −
n∑

i=1

ln ρ(ti) = − ln

n∏

i=1

ρ(ti)
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= − ln(
Nd(t1)

Nd(t0)
· Nd(t2)
Nd(t1)

· · · Nd(tn)

Nd(tn−1)
)

= − ln
Nd(tn)

Nd(t0)
= − ln

Nd
Nr

= − ln ρ = µ(e, t), (2.8)

which implies that the overall LAC in the detection path can be expressed as
the sum of the cascaded LACs at each point along the path.

Applying Eq. (2.8) to the actual and calibration measurement processes
and computing the difference of two LACs, we have

µa(e, t)− µc(e, t) =
n∑

i=1

(µa(e, ti)− µc(e, ti)). (2.9)

Based on the definition of RLAC (Eq. (2.5)), the left side of Eq. (2.9) is

µa(e, t)− µc(e, t) = − ln
ρa
ρc
, (2.10)

and the right side of Eq. (2.9) is

n∑

i=1

(µa(e, ti)− µc(e, ti)) = −
n∑

i=1

ln
ρa(ti)

ρc(ti)
. (2.11)

By using Eq. (2.6), − ln ρa(ti)
ρc(ti)

is replaced by f(ri, φi) (over the slab of the

unit thickness). Thus, when n −→∞, we have

−
n∑

i=1

ln
ρa(ti)

ρc(ti)
= −∆l

n∑

i=1

f(ri, φi) −→
∫

L

f(r, φ)dz. (2.12)

Therefore, by substituting Eqs. (2.10)-(2.12) into Eq. (2.9), we obtain

− ln
ρa
ρc

=

∫

L

f(r, φ)dz, (2.13)

which implies that the overall RLAC in the detection path can be expressed
as the line integral of RLAC at each point along the path.

2.4 Projections

2.4.1 Projection

In Figures 2.4 and 2.5, let Nad and Nar denote the numbers of photons Nd
and Nr counted by the detector and the reference detector in the actual mea-
surement process, respectively; and let Ncd and Ncr denote the numbers of
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photons Nd and Nr counted by the detector and the reference detector in the
calibration measurement process, respectively. In X-ray CT, a quantity given
by

− ln
Nad/Nar
Ncd/Ncr

(2.14)

is called the projection along the line L. In some literature, it is also called
the ray or the beam. Although the projection is defined on a geometric line
specified by the ray or the beam direction, it represents a physical concept
and is determined by the physical measurements. Eq. (2.12) indicates that the
projection is dimensionless, that is, it is just a number.

Figures 2.4 and 2.5 show the mechanisms of physical measurement of X-ray.
Mathematically, as shown in Figure 2.6, let l be the distance from the origin
of a rectangular coordinate system to a line L, and let θ be the angle between
the normal direction of the line L and the positive direction of the X-axis of
the coordinate system, the line L can be specified by

L : r cos(θ − φ) = l , (2.15)

where (r, φ) is the polar coordinate of a point P on the line L.
From Eq. (2.4), Nad

Nar
= ρa and Ncd

Ncr
= ρc. Thus, from Eqs. (2.14) and (2.13),

we have

− ln
Nad/Nar
Ncd/Ncr

= − ln
ρa
ρc

=

∫

L

f(r, φ)dz . (2.16)

In order to directly link the physical measurement − ln Nad/Nar

Ncd/Ncr
of Eq. (2.14)

to its embedded geometry—the line L of Eq. (2.15), which is required by the
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An illustration of the projection.
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image reconstruction, and also for the purpose of simplicity, we use p(l, θ) to

represent − ln Nad/Nar

Ncd/Ncr
. Thus, we obtain

p(l, θ) =

∫

L

f(r, φ)dz, (2.17)

Eq. (2.17) indicates that the projection on the line L is the line integral of
the relative linear attenuation coefficient of X-ray at the points along the L,
that is, along the ray or the beam direction. This is the basis of straight ray
computed tomography (non-diffraction computed tomography).

Eqs. (2.14) and (2.16), in fact, represent a double normalization procedure
forNad. The first normalization (in both numerator and denominator) appears
in both the actual and calibration measurement processes. It is a necessary
and reasonable operation to estimate the transmittances ρa and ρc. The sec-
ond normalization appears between the actual and calibration measurement
processes. The double normalization not only reduces (or eliminates) the effect
on p(l, θ) caused by the fluctuation in Nad due to the photon emission in one
projection and among projections, but also makes the definition of the pro-
jection p(l, θ) consistent with the definition of the relative linear attenuation
coefficient f(r, φ) and, hence, establishes Eq. (2.17).

Eq. (2.6) shows that when the point (r, φ) is inside the reconstruction region
(Figure 2.6), due to ρa(r, φ) 6= ρc(r, φ), f(r, φ) 6= 0; when (r, φ) is outside the
reconstruction region, due to ρa(r, φ) = ρc(r, φ), f(r, φ) = 0. Thus, Eq. (1.17)
can be further expressed as

p(l, θ) =

∫ +∞

−∞
f(r, φ)dz =

∫ +∞

−∞
f(
√
l2 + z2, θ + tan−1(

z

l
))dz, (2.18)

which implies that the non-zero line integral of the relative linear attenuation
coefficient is only performed inside the object (to be imaged).

Note, in Figure 2.6, z = 0 corresponds to the intersection of the line L and
the line K, where K⊥L. In Eq. (2.18), z = −∞ and z = +∞ correspond to
the locations of the detector and the source, respectively.

2.4.2 Parallel and Divergent Projections

A finite number of projections can be produced in the different ways, Parallel
projection and Divergent projection are two basic modes for data acquisition
in X-ray CT. They are shown in Figures 2.7 and 2.8, respectively.

2.4.2.1 Parallel Projections

As shown in Figure 2.7, the line L is specified by two parameters, θ and l,
where θ is the angle between the normal direction of the line L and the positive
direction of X-axis, l is the distance from the origin of the coordinate system
to the line L. l and θ define a space, called (l, θ)-space.
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Parallel projections of the data collection in X-ray CT.

In Figure 2.7, a pair consisting of a single source and a single detector moves
parallel (perpendicular to the line connecting the source and detector) to each
other in 2N + 1 steps with the spacing d, where Nd > E and E is the radius
of the circular reconstruction region Ω that contains the object to be imaged.
After the data have been collected for these 2N + 1 projections, which are
considered in one view, the entire apparatus is rotated by an angle of ∆, and
the data are again collected for 2N + 1 projections of the next view. The
procedure is repeated M times, where

M∆ = π.

This is a translation-rotation mode that was used in the first generation of
X-ray CT, as mentioned in Section 2.1.

Thus, parallel projections are defined on (l, θ)-space. When p(l, θ) represents
the i-th projection in the m-th view of parallel mode, then it is denoted by
p(id,m∆) (−N ≤ i ≤ N, 0 ≤ m ≤M − 1).

2.4.2.2 Divergent Projections

As shown in Figure 2.8, the line L is specified by two parameters, β and σ,
where β is the angle between the source direction (i.e., the line connecting
the origin of the coordinate system and the source location) and the positive
direction of y-axis, and σ is the angle between the source direction and the
line L. Thus, projection can be expressed by p(σ, β), where β determines the
source location, that is the location of view, and σ determines the location of
projection in that view. σ and β define a space called the (σ, β)-space.
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Divergent projections of the data collection in X-ray CT.

In Figure 2.8,§ a single X-ray source faces a wide strip of detectors so that
the angle subtended by the detector strip at the source location covers the
whole reconstruction region Ω. The projections are taken forM equally spaced
values of β with the angular spacing ∆, where

M∆ = 2π,

and at each m∆ (m = 0, 1, · · · ,M − 1) the projections are sampled at 2N +1
equally spaced angles with angle spacing δ, where Nδ ≥ sin−1(ED ), and D is
the distance from the origin of the coordinate system to the source location.
This is a rotation mode that is used in the third generation of X-ray CT,
mentioned in Section 2.1.

Thus, divergent projections are defined on (σ, β)-space. When p(σ, β) rep-
resents the i-th projection in the m-th view of divergent mode, then it is
denoted by p(iδ,m∆) (−N ≤ i ≤ N, 0 ≤ m ≤M − 1).

§There are two types of divergent projections: equiangular and equispaced [37]. In this
chapter, we only discuss the former.
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2.5 Mathematical Foundation of Image Reconstruction

Two theorems described in this section provide a mathematical foundation of
X-ray CT image reconstruction.¶ The first one is the Fourier slice theorem. It
is also known as the projection slice theorem or central section theorem. The
second one is the inverse Radon transform. It is also referred to as the Radon
inversion formula.

This section first proves the Fourier slice theorem, and then derives the
inverse Radon transform based on the first theorem. Two Radon inversion
formulas (for parallel projections) are derived in this section, the third one
(for divergent projections) is shown in Section 2.6.1.

In imaging theory, the spatial distribution of a physical property of interest
of an object to be imaged is called the object function. In X-ray CT, it is the
relative linear attenuation coefficient. The Fourier slice theorem and inverse
Radon transform establish the relation between the object function and the
projection.

2.5.1 Fourier Slice Theorem

Theorem 1. The 1-D Fourier transform of the projection at a given view
equals the 2-D Fourier transform of the object function at the same view.

Proof

As shown in Figure 2.9, an x′-y′ coordinate system is created by rotating
an x-y coordinate system with an angle θ. The two coordinate systems are
related by

(
x

′

y
′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
or

(
x
y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x

′

y
′

)
.

(2.19)
As a result, the line L: r cos(θ − φ) = l (Eq. (2.15)) in x-y coordinate system
becomes the line x′ = l in the x′-y′ system.

Let f(x, y) be the object function. Let p(x′, θ) be the projection on the line
x′ = l in x′-y′ system, that is, at the view θ in x-y system. From Eq. (2.17)
or Eq. (2.18), we have

p(x′, θ) =
∫

L

f(r, φ)dz =

∫

x′=l

f(x, y)dy′ =
∫ +∞

−∞
f(x, y)dy′. (2.20)

¶Rigorously speaking, this section is limited to the transform methods based image recon-
struction.
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An illustration for Fourier slice theorem.

Let P (f, θ) denote the 1-D Fourier transform of p(x′, θ); then

P (f, θ) = F1{p(x′, θ)} =
∫ +∞

−∞
p(x′, θ)e−i2πfx

′

dx′

=

∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−i2πfx

′

dx′dy′

=

∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−i2πf(x cos θ+y sin θ)dx′dy′

=

∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−i2πf(x cos θ+y sin θ)dxdy, (2.21)

where the Jacobian determinant is J = |∂(x
′,y′)

∂(x,y) | = 1.

By defining a transform

f cos θ = fx and f sin θ = fy (2.22)

and letting F (fx, fy) be the 2-D Fourier transform of f(x, y), Eq. (2.21) be-
comes

P (f, θ) = F1{p(x′, θ)}

=

∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−i2π(xfx+yfy)dxdy

= F2{f(x, y)} = F (fx, fy). (2.23)
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2.5.2 Inverse Radon Transform

Theorem 2. The Radon transform is given by Eq. (2.17) or Eq. (2.18)

p(l, θ) =

∫

L

f(r, φ)dz (2.24)

and the Inverse Radon transform is given by

f(r, φ) =
1

2π2

∫ π

0

∫ +∞

−∞

1

r cos(θ − φ) − l ·
∂p(l, θ)

∂l
dldθ. (2.25)

or

f(r, φ) =
1

4π2

∫ 2π

0

∫ +∞

−∞

1

r cos(θ − φ)− l ·
∂p(l, θ)

∂l
dldθ. (2.26)

Proof

From Eq. (2.23), we have

f(x, y) = F−1
2 {F (fx, fy)} =

∫ ∞

−∞

∫ ∞

−∞
F (fx, fy)e

i2π(xfx+yfy)dfxdfy . (2.27)

Using Eqs. (2.22) and (2.19), xfx + yfy = f(x cos θ + y sin θ) = x′, Eq. (2.27)
becomes

f(x, y) =

∫ π

0

∫ ∞

−∞
|f |P (f, θ)ei2πfx′

dfdθ (2.28)

=

∫ 2π

0

∫ ∞

0

fP (f, θ)ei2πfx
′

dfdθ, (2.29)

where the Jacobian determinant is J = |∂(fx,fy)∂(f,θ) | = f .

1) Let q(x′, θ) denote the inner integral of Eq. (2.28)

q(x′, θ) =
∫ ∞

−∞
(sgn(f) · fP (f, θ))ei2πfx′

df, (2.30)

where sgn(f) is the sign (signum) function defined by

sgn(f) =





1 (f > 0)

−1 (f < 0).
(2.31)

By applying the Fourier transform of the Inverse function and Derivative
theorem [6, 11, 27]

F−1{sgn(f)} = − 1

iπx′
and F−1

1 {fP (f, θ)} =
1

i2π

∂p(x′, θ)
∂x′

, (2.32)
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Eq. (2.30) becomes

q(x′, θ) =

(
1

iπx′

)
⋆

(
1

i2π

∂p(x′, θ)

∂x′

)

=
1

2π2

∫ ∞

−∞

1

x′ − l
∂p(l, θ)

∂l
dl, (2.33)

where ⋆ denotes the convolution and x′ is given by Eq. (2.19). By substituting
Eq. (2.33) into Eq. (2.28), noticing f(x, y) = f(r, φ) and x′ = r cos(θ−φ), we
obtain Eq. (2.25).

2) Let q(x′, θ) denote the inner integral of Eq. (2.29)

q(x′, θ) =
∫ ∞

−∞
(u(f) · fP (f, θ))ei2πfx′

df, (2.34)

where u(f) is the unit step function defined by

u(f) =





1 (f > 0)

0 (f < 0).
(2.35)

By applying the Fourier transform of the unit step function and the Derivative
theorem [6, 11, 27]

F−1{u(f)} = 1

2
δ(x′)− 1

i2πx′
and F−1

1 {fP (f, θ)} =
1

i2π

∂p(x′, θ)
∂x′

, (2.36)

Eq. (2.34) becomes

q(x′, θ) =

(
1

2
δ(x′)− 1

i2πx′

)
⋆

(
1

i2π

∂p(x′, θ)
∂x′

)

=
1

i4π
δ(x′) ⋆

∂p(x′, θ)
∂x′

+
1

4π2

1

x′
⋆
∂p(x′, θ)
∂x′

=
1

i4π

∂p(x′, θ)
∂x′

+
1

4π2

∫ ∞

−∞

1

x′ − l
∂p(l, θ)

∂l
dl, (2.37)

where ⋆ denotes the convolution and x′ is given by Eq. (2.19). By substituting
Eq. (2.37) into Eq. (2.29), we have

f(x, y) =
1

i4π

∫ 2π

0

∂p(x′, θ)

∂x′
dθ +

1

4π2

∫ 2π

0

∫ ∞

−∞

1

x′ − l
∂p(l, θ)

∂l
dldθ. (2.38)

Appendix 2B shows that

∫ 2π

0

∂p(x′, θ)
∂x′

dθ = 0; (2.39)

thus, noticing f(x, y) = f(r, φ) and x′ = r cos(θ − φ), Eq. (2.38) becomes
Eq. (2.26).
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2.6 Image Reconstruction

Methodology for X-ray CT image reconstruction can be classified into two cat-
egories: transform reconstruction methods and series-expansion reconstruction
methods.

Transform reconstruction methods are based on analytic inversion formulas,
which are manipulated into a variety of forms, depending on the underlying
principles and data acquisition schemes. In transform reconstruction methods,
the problem can be stated as “given the measured data p(l, θ) or p(σ, β), esti-

mate the object function f(r, φ).” The estimate f̂(r, φ) is determined in terms
of (r, φ), p(l, θ), or p(σ, β) through continuous functional operations. At the
very end of image reconstruction, the inversion formula becomes discretized
for the computational implementation. In the space domain, it uses Radon
inversion formulas; in the frequency domain, it uses the Fourier slice theorem.
The rho-filtered layergram method and the method involving expansion in
angular harmonics are also examples of transform reconstruction methods.

Series-expansion reconstruction methods are fundamentally different from
transform reconstruction methods. They are discretized at the very beginning
of the image reconstruction by finding a finite set of numbers as estimates
of the object function. It is embedded on the grids of square pixels, and
the problem can be formulated as “given the measured vector y, estimate
the image vector x, such that y = Ax,” where y and x are the m- and
n-dimensional vectors, respectively, and A is an m × n-dimensional matrix.
This estimation is done by requiring x to satisfy some specified optimization
criteria. Series-expansion reconstruction methods are often known as algebraic
methods, iterative algorithms, optimization theory techniques, etc., which are
either non-iterative or iterative.

The most commonly used method in X-ray CT image reconstruction, par-
ticularly for parallel projections, is the convolution method derived from
Radon inversion formulas. The reason for this is ease of implementation com-
bined with good accuracy. This section discusses this transform reconstruction
method only and shows that the implementation of this method finally leads
to the operations consisting of a double convolution and a backprojection.

2.6.1 Convolution Method

2.6.1.1 Convolution Method for Parallel Projections

This section discusses the convolution method for parallel projections. It is
based on the first Radon inversion formula Eq. (2.25).

Operator Expressions. For the convenience of analysis, we use operators
to express Radon and Inverse Radon transforms. As shown in Figures 2.6 and
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2.7, the Radon transform (Eq. (2.18)) can be written more accurately as

p(l, θ) =





∫ +∞
−∞ f(

√
l2 + z2, θ + tan−1( zl ))dz (l 6= 0)

∫ +∞
−∞ f(z, θ + π

2 )dz (l = 0).

(2.40)

Let the operatorR represent the Radon transform. Eq. (2.40) can be expressed
as

p(l, θ) = [Rf ](l, θ). (2.41)

Similarly, let D1 represent the partial differentiation with respect to the
first variable of a function of two real variables, that is,

[D1p](l, θ) =
∂p(l, θ)

∂l
= p′(l, θ), (2.42)

let an operator H1 represent the Hilbert transform with respect to the first
variable of a function of two real variables, that is,

[H1p
′](l

′

, θ) = − 1

π

∫ +∞

−∞

p′(l, θ)
l′ − l dl = t(l′, θ), (2.43)

let an operator B represent the backprojection, that is, given a function t of
two variables, Bt is another function of two polar variables whose value at any
point (r, φ) is

[Bt](r, φ) =
∫ π

0

t(r cos(θ − φ), θ)dθ = s(r, φ), (2.44)

let an operator N represent the normalization, that is,

[N s](r, φ) = − 1

2π
s(r, φ), (2.45)

then, the Inverse Radon transform can be expressed as

f(r, φ) =
1

2π2

∫ π

0

∫ +∞

−∞

1

r cos(θ − φ) − l
∂p(l, θ)

∂l
dldθ

=
1

2π2

∫ π

0

∫ +∞

−∞

1

r cos(θ − φ) − l [D1p](l, θ)dldθ

= − 1

2π

∫ π

0

(− 1

π

∫ +∞

−∞

[D1p](l, θ)

r cos(θ − φ)− l dl)dθ

= − 1

2π

∫ π

0

[H1D1p](r cos(θ − φ), θ)dθ

= − 1

2π
[BH1D1p](r, φ)

= [NBH1D1p](r, φ). (2.46)
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Thus, from Eqs. (2.41) and (2.46), the Inverse Radon transforms Eq. (2.25)
can be expressed by the operators as

f(r, φ) = [R−1p](r, φ) and R−1 = NBH1D1. (2.47)

Eq. (2.47) implies that Inverse Radon transform in (l, θ)-space can be decom-
posed into four operations: (1) a partial differentiation with respect to l in
each view θ, (2) a Hilbert transform with respect to l in each view θ, (3) a
backprojection on r cos(θ−φ) over all views θ, and (4) a normalization on the
backprojected data.

Hilbert Transform. The main problem in carrying out the Inverse Radon
transform Eq. (2.46) is in implementing Hilbert transform, because Eq. (2.43)
is an improper integral of both the first kind and second kind. The first kind
of improper integral is that the integration is from −∞ to +∞. The second
kind of improper integral is that the integration diverges at l = l′.

The Hilbert transform Eq. (2.43) is, in fact, a convolution of two functions,
p′(l, θ) and ρ(l) = − 1

πl :

[H1p
′](l′, θ) = p′(l, θ) ⋆ ρ(l), (2.48)

where ⋆ denotes the convolution. By adopting the convolution approach, the
following typical, mathematical handling can take place. Let a set of param-
eterized functions

{ρA(l)|A > 0} (2.49)

be applied such that in the limiting case of A→∞,

p′(l, θ) ⋆ ρ(l) = lim
A→∞

(p′(l, θ) ⋆ ρA(l)), (2.50)

then for a sufficiently large A, the Hilbert transform can be approximated by

[H1p
′](l′, θ) ≃ p′(l, θ) ⋆ ρA(l). (2.51)

[4, 18] give a sufficient condition to Eq. (2.50). That is, if p′(l, θ) is reasonable
at l and {ρA(l)|A > 0} is a regularizing family, then

[H1p
′](l′, θ) = lim

A→∞
(p′(l, θ) ⋆ ρA(l)). (2.52)

p′(l, θ) is said to be reasonable at l if





p′(l, θ) = 0 (|l| > E)

∫ +E

−E p′(l, θ)dl exists

− 1
π limǫ→0{

∫ l′−ǫ
−∞

p′(l,θ)
l′−l dl +

∫ +∞
l′+ǫ

p′(l,θ)
l′−l dl} exists.

(2.53)
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A set of functions {ρA(l)|A > 0} is said to be a regularizing family if for any
reasonable function p′(l, θ) at l, Eq. (2.50) holds.

The first two formulas in Eq. (2.53) is to make the improper integral of the
first kind in Eq. (2.43) exits. This is because

∫ +∞

−∞

p′(l, θ)
l′ − l dl =

∫

|l|<E

p′(l, θ)
l′ − l dl +

∫

|l|>E

p′(l, θ)
l′ − l dl, (2.54)

and due to f(r, φ) = 0 (|l| > E),

p′(l, θ) = [D1Rf ](l, θ) = [RD1f ](l, θ) = 0 . (2.55)

The third formula in Eq. (2.53) is the Cauchy principal value (PV) of the
improper integral of the second kind in Eq. (2.43). This condition assumes
that this improper integral exists in the sense of PV.

By using the Liemann–Lebesgue lemma (for absolutely integrable functions)
and the third formula of Eq. (2.53), [4, 18] show that

ρA(l) = −2
∫ A/2

0

FA(u) sin(2πul)du (2.56)

can serve as a regularizing family of functions, where FA(u) is a real-valued
integrable function that for u ≥ 0





0 ≤ FA(u) ≤ 1 and FA(u) = 0 (u ≥ A
2 )

FA(u2) ≥ FA(u1) (u2 < u1)

limA→∞ FA(u) = 1,

(2.57)

FA(u) of Eq. (2.57) actually specifies a window with width A. For example,
Hamming window given by

FA(u) = α+ (1− α) cos(2πu
A

) (2.58)

is a such window.

Convolution for Parallel Projections. Based on Eqs. (2.53) and (2.56),
it has been shown that Eq. (2.51) can be written as

[H1D1p](l
′, θ) = [H1p

′](l′, θ)

≃ p′(l′, θ) ⋆ ρA(l
′)

=

∫ +∞

−∞
p′(l, θ)ρA(l

′ − l)dl

=

∫ +∞

−∞
p(l, θ)ρ′A(l

′ − l)dl

= p(l′, θ) ⋆ ρ′A(l
′), (2.59)
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where ρ′A(l
′ − l) = dρA(l′−l)

dl . Thus, Eq. (2.46) becomes

f(r, φ) = [NBH1D1p](r, φ)

= [NB(p ⋆ ρ′A)](r, φ)

= [− 1

2π
B(p ⋆ ρ′A)](r, φ)

= [B(p ⋆ (− 1

2π
ρ′A))](r, φ)

= [B(p ⋆ q)](r, φ)

=

∫ π

0

p(l′, θ) ⋆ q(l′)dθ

=

∫ π

0

∫ +∞

−∞
p(u, θ) ⋆ q(l′ − u)dudθ , (2.60)

where q(l) = − 1
2πρ

′
A(l) is called the convolution function. From Eq. (2.56), it

is equal to

q(l) = 2

∫ A/2

0

uFA(u) cos(2πul)du (2.61)

with l = r cos(θ − φ).
In Eq. (2.60), the integration function p(l′, θ)⋆q(l′) represents a convolution

of the parallel projections p(l′, θ) and the convolution function q(l′) inside one
view θ, the integral represents a sum of these convolved projections over all
views. Thus, the convolution method for the parallel projections consists of a
convolution and a backprojection.

2.6.1.2 Convolution Method for Divergent Projections

This section discusses the convolution method for divergent projections. It is
based on the second Radon inversion formula Eq. (2.26), ‖

f(r, φ) =
1

4π2

∫ 2π

0

∫ +∞

−∞

1

r cos(θ − φ) − l ·
∂p(l, θ)

∂l
dldθ . (2.62)

This formula is for parallel projections p(l, θ). In order to derive a formula
to link the object function f(r, φ) and divergent projections p(σ, β) which are
defined in Section 2.4.2.2 and shown in Figures 2.6 and 2.8, parameters (l, θ)
in Eq. (2.62) must be replaced by (σ, β).

Geometry. In Figure 2.10, two lines L(σ, β) and L′(σ′, β) are in the same
view β of the divergent projections; the line L′ passes the point P at (r, φ).
Let D denote the distance between the source location S and the origin O of

‖Based on the original Radon inversion formula in [15], [4, 16, 18] proved Eq. (2.26) in a
different way.
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FIGURE 2.10

An illustration of the geometry for the convolution of divergent projections.

the coordinate system. It can be shown (Problem 2.4) that for any line L(σ, β)
in the view β,

D sinσ = l and σ + β = θ, (2.63)

where |σ′| ≤ sin−1
(
E
D

)
, and E is the radius of the circular reconstruction

region Ω. Let D′ denote the distance between the source location S and the
point P . It can be shown (Problem 2.5) that for the line L′(σ′, β) in the view
β,

D′ =
√
(r cos(β − φ))2 + (D + r sin(β − φ))2

σ′ = tan−1(r cos(β − φ)/(D + r sin(β − φ))) (2.64)

r cos(θ − φ) − l = D′ sin(σ′ − σ),
where |σ| ≤ sin−1

(
E
D

)
.

Projection. Let p(l, θ) and p(σ, β) represent the same projection; then from
Eq. (2.63) we have

p(l, θ) = p(D sinσ, σ + β) = p(σ, β) , (2.65)

and in Eq. (2.62),

∂p(l, θ)

∂l
dldθ =

(
∂p(l, θ)

∂σ

∂σ

∂l
+
∂p(l, θ)

∂β

∂β

∂l

)
Jdσdβ, (2.66)

where J = | ∂(l,θ)∂(σ,β) | = 1
D cosσ is the Jacob determinant. It has been shown

(Problem 2.6) that Eq. (2.66) can be written as

∂p(l, θ)

∂l
dldθ = (p′1(σ, β) − p′2(σ, β))dσdβ, (2.67)
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where p′1(σ, β) and p
′
2(σ, β) are the partial derivatives of p(σ, β) with respect

to σ and β, respectively, that is,

p′1(σ, β) =
∂p(σ, β)

∂σ
and p′2(σ, β) =

∂p(σ, β)

∂β
. (2.68)

Convolution for Divergent Projections. By substituting Eqs. (2.64)
and (2.67) into Eq. (2.62), we obtain

f(r, φ) =
1

4π2

∫ 2π

0

∫ +∞

−∞

1

D′ sin(σ′ − σ) (p
′
1(σ, β) − p′2(σ, β))dσdβ

=
1

4π2

∫ 2π

0

∫ +∞

−∞

1

σ′ − σ ·
σ′ − σ

D′ sin(σ′ − σ) (p
′
1(σ, β) − p′2(σ, β))dσdβ . (2.69)

Let

P ′
1,2(σ, β, σ

′) =
σ′ − σ

D′ sin(σ′ − σ) (p
′
1(σ, β) − p′2(σ, β)). (2.70)

Eq. (2.69) can be expressed as

f(r, φ) =
1

4π2

∫ 2π

0

∫ +∞

−∞

P ′
1,2(σ, β, σ

′)

σ′ − σ dσdβ. (2.71)

Eq. (2.71) is called an Inverse Radon transform for divergent projections.
When P ′

1,2(σ, β, σ
′) is considered as a function of σ alone, the inner integral of

Eq. (2.71) can be considered a Hilbert transform of P ′
1,2(σ, β, σ

′). Eq. (2.71)
is similar to, but not exactly the same as, its parallel projection counterpart
Eq. (2.43), because P ′

1,2(σ, β, σ
′) in Eq. (2.71) includes an additional param-

eters σ′.
Assume that P ′

1,2(σ, β, σ
′), as a function of σ, is reasonable at σ′, and let

{ρA|A > 0} be a family of regularizing functions. Eq. (2.71) can be approxi-
mately written as

f(r, φ) =
1

4π2

∫ 2π

0

∫ +∞

−∞
ρA(σ

′ − σ)P ′
1,2(σ, β, σ

′)dσdβ, (2.72)

where ρA(σ) = − 1
πσ and its parallel projection counterpart is given by

Eq. (2.56). Based on Eq. (2.72), [16] proves that

f(r, φ) =
D

4π2

∫ 2π

0

1

(D′)2

∫ +∞

−∞
p(σ, β)[q1(σ

′−σ) cosσ+q2(σ′−σ) cos σ′]dσdβ,

(2.73)
where

q1(σ) = −
σρA(σ)

sin2 σ
and q2(σ) =

ρA(σ) + σρ′A(σ)
sinσ

, (2.74)

with ρ′A(σ) = dρA(σ)
dσ , and p(σ, β) is the divergent projection given by

Eq. (2.65).
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Eq. (2.73) provides a convolution reconstruction formula for the divergent
projections. Its inner integral is a sum of one weighted convolution of the pro-
jection p(σ, β) with q1(σ) and the weight cosσ and one unweighted convolution
of the projection p(σ, β) with q2(σ). That is, the inner integral is essentially
a convolution of the divergent projections and the convolution functions. The
outer integral is a sum of these convolved projections over all views. Thus,
similar to the convolution method for the parallel projections, the convolution
method for the divergent projections consists of a convolution and a backpro-
jection.

2.6.2 Computational Implementation

2.6.2.1 Parallel Projections

At the end of X-ray CT image reconstruction, the continuous operations of
Eq. (2.60)—the convolution p(l′, θ) ⋆ q(l′) and the integration

∫ π
0
p(l′, θ) ⋆

q(l′)dθ—are discretized and are approximated by Riemann sums over pro-
jections at (−Nd, · · · ,−d, 0, d, · · · , Nd) within one view and over all views
on (0,∆, · · · , (M − 1)∆), respectively. Convolution function q(l

′

) is also dis-
cretized on the multiples of projection-spacing d. From Eq. (2.60), we have

p(l′, θ) ⋆ q(l′) = d

N∑

k=−N
p(kd,m∆)q(l′ − kd) = t(l′,m∆) , (2.75)

and

f(r, φ) =

∫ π

0

(p(l′, θ) ⋆ q(l′))dθ = ∆

M−1∑

m=0

t(l′,m∆) . (2.76)

However, for the given grids {(r, φ)}, that is, the centers of pixels, l′ =
r cos(θ − φ) may not be the multiples of the projection-spacing d,

t(l′,m∆) 6= t(nd,m∆) (−N ≤ n ≤ N). (2.77)

Thus, t(l′,m∆) must be approximated by some discretized t(nd,m∆) (−N ≤
n ≤ N), which are computed by

t(nd,m∆) = d

N∑

k=−N
p(kd,m∆)q((n− k)d); (2.78)

t(nd,m∆) of Eq. (2.77) are called the convolved projections in the m-th view.
The procedure that approximates t(l′,m∆) using t(nd,m∆) is known as in-
terpolation. The resulting approximation is called the interpolated data in the
m-th view, denoted by sm(r, φ), that is,

sm(r, φ) = t(l′,m∆) . (2.79)
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The commonly used interpolation methods are the linear interpolation,
which uses the interpolation function given by

ψ(u) =





1− |u|
d (|u| < d)

0 (|u| ≥ d)
, (2.80)

and the nearest neighbor interpolation, which uses the interpolation function
given by

ψ(u) =





1 (|u| < d/2)

0.5 (|u| = d/2)

0 (|u| > d/2)

. (2.81)

When linear interpolation is applied, an integer n is selected such that
nd ≤ l′ < (n + 1)d and t(l′,m∆) is approximated by a weighted summation
of t(nd,m∆) and t((n+ 1)d,m∆), where the weights are proportional to the

relative distances (n+1)d−l′
d and l′−nd

d , respectively. When nearest neighbor
interpolation is applied, an integer n is chosen such that |nd − l′| is as small
as possible and t(l′,m∆) is approximated by the value of t(nd,m∆).

Appendix 2C shows that the interpolated data equal the convolution of the
convolved projections t(nd,m∆) in a view and proper interpolation function
ψ(u). That is,

sm(r, φ) = t(l′,m∆) ≃
+∞∑

n=−∞
t(nd,m∆)ψ(l′ − nd)). (2.82)

Thus, by substituting Eqs. (2.82) and (2.78) into Eq. (2.76), we obtain

f(r, φ) = ∆[
M−1∑

m=0

sm(r, φ)]

= ∆[

M−1∑

m=0

(

+∞∑

n=−∞
t(nd,m∆)ψ(l′ − nd))]

= d∆{
M−1∑

m=0

[
+∞∑

n=−∞
(

N∑

k=−N
p(kd,m∆)q((n− k)d))ψ(l′ − nd)]}, (2.83)

where l′ = r cos(m∆− φ).
Eq. (2.83) shows that computational implementation of the convolution

method for parallel projections represented by Eq. (2.60) consists of three
operations: (1) a convolution of the projections p(nd,m∆) and the convolution
function q(nd) in one view m∆, (2) a convolution of the convolved projections
t(nd,m∆) and an interpolation functions ψ(nd) in one view m∆, and (3) a
backprojection of the interpolated data sm(r, φ) over all views m∆ (m =
0, · · · ,M − 1).
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2.6.2.2 Divergent Projections

In the computational implementation of X-ray CT image reconstruction, the
continuous operations of Eq. (2.73)—the inner and the outer integrations—
are discretized and are approximated by Riemann sums over projections at
(−Nδ, · · · ,−δ, 0, δ, · · · , Nδ) within one view and over all views on (0,∆, · · · ,
(M − 1)∆), respectively.

Let t(σ′,m∆) denote the inner integration of Eq. (2.73); we have

t(σ′,m∆) = δ
N∑

k=−N
p(kδ,m∆)[q1(σ

′−kδ) cos(kδ)+q2(σ′−kδ) cosσ′] , (2.84)

and

f(r, φ) =
D

4π2
∆
M−1∑

m=0

1

(D′)2
t(σ′,m∆) , (2.85)

where σ′ and D′ are given by

σ′ = tan−1(r cos(β − φ)/D + r sin(β − φ)) (2.86)

and
D′ =

√
(r cos(β − φ))2 + (D + r sin(β − φ))2 , (2.87)

respectively.
Because for the given grids {(r, φ)}, that is, the centers of pixels, σ′ of

Eq. (2.86) may not be the multiples of the projection-spacing δ, t(σ′,m∆) of
Eq. (2.84) must be approximated by some discretized, convolved projections
t(nδ,m∆) (−N ≤ n ≤ N), which are computed by

t(nδ,m∆) = δ

N∑

k=−N
p(kδ,m∆)[q1((n− k)δ) cos(kδ) + q2((n− k)δ) cos(nδ)].

(2.88)
Similar to the discussion for parallel projections in Section 2.6.2.1, t(σ′,m∆)

is approximated by an interpolation operation that is equivalent to a convo-
lution of convolved projections with the proper interpolation function. That
is,

sm(r, φ) = t(σ′,m∆) ≃
+∞∑

n=−∞
t(nδ,m∆)ψ(σ′ − nδ), (2.89)

where ψ(σ′) is an interpolation function and is defined by Eq. (2.80) or
Eq. (2.81).

Thus, letting

W =
D

(2πD′)2
(2.90)
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and substituting Eqs. (2.88) and (2.89) into Eq. (2.85), we obtain

f(r, φ) = ∆{
M−1∑

m=0

Wsm(r, φ)}

= ∆{
M−1∑

m=0

W [

+∞∑

n=−∞
t(nδ,m∆)ψ(σ′ − nδ)]}

= δ∆{
M−1∑

m=0

W [

+∞∑

n=−∞
(

N∑

k=−N
p(kδ,m∆)

(q1((n− k)δ) cos(kδ) + q2((n− k)δ) cos(nδ)))ψ(σ′ − nδ)]}, (2.91)

where σ′ is given by Eq. (2.86).
Eq. (2.91) indicates that computational implementation of the convolution

method for divergent projections represented by Eq. (2.73) consists of three
operations: (1) a convolution of the projections p(nd,m∆) and the convolution
function q1(nd) and q2(nd) in one viewm∆, (2) a convolution of the convolved
projections t(nd,m∆) and an interpolation functions ψ(nd) in one view m∆,
and (3) a backprojection of the interpolated data sm(r, φ) over all views m∆
(m = 0, · · · ,M − 1).

In summary, Eqs. (2.83) and (2.91) show the computational implementa-
tions of the Inverse Radon transform-based X-ray CT image reconstruction
methods for the parallel and the divergent projections, respectively. Although
two equations have some differences, they are essentially the same. Their com-
mon features are that these computational implementations consist of a double
convolution and a backprojection. Thus, the image reconstruction approach
implemented by Eqs. (2.83) and (2.91) has been given the name of the con-
volution method.

2.7 Appendices

2.7.1 Appendix 2A

This appendix proves Eq. (2.1).

Proof.
Figure 2.11 shows a physical mechanism that illustrates the reduction of

photons when they penetrate the object. In Figure 2.11, a slat of the homo-
geneous medium with thickness ∆l is placed between the X-ray source and a
detector. The X-ray is monochromatic and its beam direction is perpendicular
to the surface of the slat. Let the number of photons arriving at the surface
located at l − ∆l be n(l − ∆l) and the number of photons departing from
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FIGURE 2.11

Physical mechanisms for illustrating the attenuation coefficient.

the surface located at l be n(l). A single constant coefficient µ that is able
to describe the reduction of photons due to the scattering and the absorption
when X-rays penetrate the object can be defined by

n(l) = n(l −∆l)− µn(l −∆l)∆l. (2.92)

This equation can be rewritten as

n(l)− n(l −∆l)

n(l −∆l)
= −µ∆l. (2.93)

In the limiting case of ∆l → 0, we have l−∆l→ l, ∆l → dl and n(l)− n(l−
∆l)→ dn(l). Thus, the above equation becomes

dn(l)

n(l)
= −µdl. (2.94)

The solution of this differential equation is

n(l) = e−µl+C , (2.95)

where the constant C is determined by the initial condition n(0), which leads
to n(0) = eC . Thus, Eq. (2.96) becomes

n(l)

n(0)
= e−µl. (2.96)

Assume that the attenuation of the air is ignored or the entire physical
mechanism of Figure 2.11 is placed in a free space. Then, n(0) = n(l −∆l).

Thus, the left side of the above equation becomes n(l)
n(0) = n(l)

n(l−∆l) , which



38 Statistics of Medical Imaging

represents a ratio between the number of photons leaving the slab and the
number of photons coming to the slab. That is, this ratio can be considered
the probability of the photons that enter the slab without being scattered

and absorbed. Thus, let ∆l = 1; n(l)
n(l−∆l) is the probability ρ of Eq. (2.1), and

hence, Eq(2.97) becomes
ρ = e−µ, (2.97)

that is,
µ = − ln ρ. (2.98)

where µ is the Linear attenuation coefficient. In order to show its dependence
on the energy of the X-ray and the property of the object (e.g., the tissues), µ is
denoted by µ(e, t), where e and t denote the energy and the tissue, respectively.
Eq. (2.97) is known as Lambert-Beer’s law.

2.7.2 Appendix 2B

This appendix proves Eq. (2.39).

Proof.
Eq. (2.39) can be rewritten as

∫ 2π

0

∂p(x′, θ)
∂x′

dθ =

∫ π

0

∂p(x′, θ)
∂x′

dθ +

∫ π

0

∂p(x′, θ + π)

∂x′
dθ. (2.99)

It can be shown that the Radon transform given by Eq. (2.17) or Eq. (2.18)
have the following properties

p(x′, θ) = p(−x′, θ ± π) = p(x′, θ + 2nπ) , (2.100)

where n is an integer. These properties are called symmetry and periodicity.
Thus, the first integral on the right side of Eq. (2.100) becomes

∫ π

0

∂p(x′, θ)

∂x′
dθ =

∫ π

0

∂p(−x′, θ + π)

∂x′
dθ = −

∫ π

0

∂p(x′, θ + π)

∂x′
dθ. (2.101)

By substituting Eq. (2.102) into Eq. (2.100), we prove Eq. (2.39).

2.7.3 Appendix 2C

This appendix proves that the interpolated data equals the convolution of the
convolved projections t(nd,m∆) in a view and proper interpolation function
ψ(u).

Proof.
At the m-th view, for a pixel centered at (r, φ), l

′

= r cos(m∆ − φ).
Suppose that nd ≤ l′ ≤ (n + 1)d. The distances between the interpolation
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data sm(r, φ) = t(l
′

,m∆) and the n-th and (n + 1)-th convolved projections
t(nd,m∆) and t((n+ 1)d,m∆) are (l′ − nd) and ((n+ 1)d− l′), respectively.

1) For the linear interpolation. Based on Eq. (2.80), the non-zero interval
of ψ(u) is |u| ≤ d, which implies that only two projections are involved in the
interpolation. Thus, we have

t(l′,m∆) =
(n+ 1)d− l′

d
t(nd,m∆) +

l′ − nd
d

t((n+ 1)d,m∆)

= t(nd,m∆)(1 − |l
′ − nd|
d

) + t((n+ 1)d,m∆)(1− |l
′ − (n+ 1)d|

d
)

=
+∞∑

n=−∞
t(nd,m∆)ψ(l

′ − nd). (2.102)

2) For the nearest neighbor interpolation. Based on Eq. (2.81), the non-
zero interval of ψ(u) is |u| ≤ d

2 , which implies that only one, at most two,
projections are involved in the interpolation. Thus, we have

if |l′ − (n+ 1)d| < d/2, then t(l′,m∆) = t((n+ 1)d,m∆) ,
if |l′ − nd| = d/2, then t(l′,m∆) = 1

2 (t(nd,m∆) + t((n+ 1)d,m∆)) ,
if |l′ − nd| < d/2, then t(l′,m∆) = t(nd,m∆) .

(2.103)
Clearly, in the above all cases, sm(r, φ) = t(l

′

,m∆) =
∑+∞

n=−∞ t(nd,m∆)ψ(l
′−

nd).

Problems

2.1. In X-ray CT, physical measurements of X-ray include actual measure-
ment and calibration measurement processes. What is the role of the
calibration measurement?

2.2. Both the actual measurement and the calibration measurement pro-
cesses have a detection path and a reference detection path. What is
the role of the reference detection?

2.3. Prove Eq. (2.59), that is, prove [H1D1p](l
′, θ) = p(l′, θ) ⋆ ρ′A(l

′).

2.4. Prove Eq. (2.63).

2.5. Prove three formulas in Eq. (2.64). (Hint, See Figure 2.10. Prove
∠OPQ = β − φ first.)

2.6. Derive Eq. (2.67).

2.7. Verify the symmetry and periodicity of Radon transform, Eq. (2.101).
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3

MRI Physics and Mathematics

3.1 Introduction

3.1.1 History

Magnetic resonance imaging (MRI) is based on the nuclear magnetic reso-
nance (NMR) phenomenon, which was first observed by Edward M. Purcell
(United States) and Felix Bloch (United States) independently in 1946. They
found that nuclei absorb radio waves at specified frequencies. This finding
provided chemists and physicists with a way to probe molecular structures
and diffusion. They received the Nobel Prize in Physics in 1952 for this dis-
covery [12, 25]. In 1972, the first magnetic resonance (MR) image (a cross-
sectional image of two water tubes) using the spatial information encoding
principle was reported. The first MR images of the human head were pub-
lished in 1978, with body scans following soon afterward. During the 1970s,
most research in MRI took place in academia, primarily in the United King-
dom. In the 1980s, industry joined forces with universities, investing substan-
tial resources to develop MRI systems. MRI scanners were first indicated for
clinical use in 1983.

Since then, the image quality of MRI has improved dramatically and MRI
scanners have proliferated throughout the world. With the ever-improving
technology to produce images at higher resolution (micro imaging), higher
speed (fast imaging), and higher information content (combined anatomical,
metabolic, and functional imaging), the impact of MRI has been revolutionary
not only in diagnostic radiology, but also in biology and neuroscience. Con-
sequently, the Nobel Prize in Chemistry was awarded to Richard R. Ernst
(Switzerland) in 1991 for Fourier transform nuclear magnetic resonance spec-
troscopy, and Kurt Wuthrich (Switzerland) in 2002 for the development of nu-
clear magnetic resonance spectroscopy in determining the three-dimensional
structure of biological macromolecules in solution [13, 14]. The Nobel Prize in
Medicine was given to Paul C. Lauterbur (United States) and Sir Peter Mans-
field (United Kingdom) in 2003 for the discoveries leading to MRI [15, 16].

41
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3.1.2 Overview

MRI encompasses an array of disciplines: physics, chemistry, mathematics,
and engineering. For the purpose of description, a “simple big picture” of
the principles of MRI is outlined here. When an object is placed in a static,
external magnetic field which is in the longitudinal direction, all nuclear spins
are oriented with the field direction at either a parallel or an anti-parallel, and
at the same time precess around this external magnetic field at the Larmor
frequency. The net magnetization (defined as a vector sum of spin moments in
an unit volume) of these uneven populations generates a thermal equilibrium
macroscopic magnetization. When a pulse radiofrequency field is applied in
a transverse direction, the thermal equilibrium macroscopic magnetization is
excited and perturbed from its equilibrium state and flipped towards to the
transverse plane. After the radiofrequency pulse is removed and sufficient time
is given, the precessing macroscopic magnetization undergoes a longitudinal
relaxation and a transverse relaxation to return to its equilibrium state. As
a consequence, a real-valued physical signal, often known as Free Induction
Decay, is induced in the receiver coil.

In addition to the static field and the radiofrequency field, a specially de-
signed, time-varying pulse gradient field is applied immediately after the ra-
diofrequency field is removed. Spatial information is then encoded into the
Free Induction Decay signal, which is followed by a complex-valued base-
band signal produced by a quadratic phase sensitive detector and a discrete,
complex-valued baseband signal generated by an analog-digital converter. The
time integral of field gradient at a direction multiplied by the gyromagnetic
ratio of nuclear spins gives a spatial frequency at that direction, which de-
fines k-space. The sampling schedule of analog-digital converter is controlled
by the timing diagram of the gradient pulse sequences. Thus, the discrete,
complex-valued baseband signal at a given time is mapped to a sample at the
corresponding spatial frequency in k-space.

The dynamics of macroscopic magnetization are described by Bloch equa-
tion. By ignoring the transverse relaxation term in the solution of Bloch
equation or by using a simple physical model of Bloch equation, MR signal
equation is formed, which shows that k-space sample is a two-dimensional,
inverse Fourier transform of the thermal equilibrium macroscopic magnetiza-
tion. When k-space is sampled rectilinearly, from MR signal equation, an MR
image is reconstructed via Fourier transform and implemented by DFT (dis-
crete Fourier transform); when k-space is sampled radially, by using Fourier
Slice Theorem, an MR image is reconstructed via Inverse Radon transform
and implemented by FBP (filtered backprojection) algorithm.
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FIGURE 3.1

A spin and the spin angular momentum ~S.

3.2 Nuclear Spin and Magnetic Moment

Nuclei with an odd number of protons and/or an odd number of neutrons pos-
sess a spin angular momentum, and therefore demonstrate the nuclear mag-
netic resonance (NMR) phenomenon. These nuclei can be imaged as spinning
charged particles and are often referred to as spins, which are shown in Fig-
ure 3.1. An ensemble of such nuclei of the same type in the sample is referred
to as a nuclear spin system. As a moving charged particle, the spin creates
a tiny magnetic field around it, which is represented by a magnetic dipole
moment.

Spin angular momentum and magnetic dipole moment are vector quantities,
denoted by ~S and ~µ, and are related by

~µ = γ~S, (3.1)

where γ is the gyromagnetic ratio. It is a physical property of the nucleus of
the atom. Different chemical elements, even the different isotopes of the same
element, demonstrate different gyromagnetic ratios. Gyromagnetic ratios of
some nuclear species are listed in Table 3.1.

TABLE 3.1

Gyromagnetic Ratios

Nucleus γ
2π (MHz/T)

Hydrogen 1H 42.576
Carbon 13C 10.705
Fluorine 19F 40.054
Phosphorus 31P 17.235
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Let µ be the magnitude of ~µ; Quantum theory shows,

µ = γ~
√
I(I + 1), (3.2)

where ~ = h
2π and h is Planck’s constant (6.626 × 10−34 J · s), and I is the

spin quantum number, which takes the value of the zero and the non-negative
values of integers and half-integers (0, 1

2 , 1,
3
2 , 2, · · ·) [25–27].

A spin system is called a spin-I system when I is assigned to one of the
following values: (1) zero if the atomic mass number is even and the charge
number is also even, (2) an integer value if the atomic mass number is even
and the charge number is odd, and (3) a half-integer value if the atomic mass
number is odd. Thus, when NMR phenomena occur, I must be non-zero. 1H,
13C, 19F, and 31P are all spin- 12 systems.

Because the magnetic dipole moment ~µ, the spin angular momentum ~S,
and other quantities in MRI are vectors, two coordinate systems, often known
as the reference frames in MRI, are introduced. Let {~i,~j,~k} be a set of unit
directional vectors at the X-, Y-, and Z-axes of a Cartesian coordinate system
{X,Y,Z}. {~i,~j,~k} or {X,Y,Z} defines a frame known as the fixed reference

frame. With respect to {~i,~j,~k}, a set of vectors {~i(t),~j(t), ~k(t)} is defined by



~i(t)
~j(t)
~k(t)


 =




cosωt − sinωt 0
sinωt cosωt 0
0 0 1





~i
~j
~k


 ∆

= R(ωt)



~i
~j
~k


 . (3.3)

Let the unit directional vector {~i(t),~j(t), ~k(t)} be at the X′-, Y′-, and Z′-axes
of a Cartesian coordinate system {X′,Y′,Z′}. {~i(t),~j(t), ~k(t)} or {X′,Y′,Z′}
defines a frame known as the rotating reference frame. R(ωt) is referred to

as the rotation matrix. Clearly, {X′,Y′,Z′} is rotating about the ~k-direction

clockwise at the angular frequency ω. ~k and ~k(t) specify the longitudinal direc-
tion; ~i and ~j or ~i(t) and ~j(t) define the transverse plane. These two reference
frames are shown in Figure 3.2.

3.3 Alignment and Precession

When a spin system is placed in a static, external magnetic field ~Bo, two
physical phenomena occur: alignment and precession.

3.3.1 Alignment

In the absence of an external magnetic field, nuclear spins in a sample are
oriented randomly. However, when the sample is placed in a static, external



MRI Physics and Mathematics 45

✲ X ′

✻

Y ′

s Py′

P

x′

P✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✶ X
❇❇

❇❇
xP

✏✏✏✏✏✏✏✏✏✏✏✏
yP

❇
❇

❇
❇
❇

❇
❇
❇
❇▼

Y

ωt

FIGURE 3.2

The fixed reference frame {X,Y,Z} and the rotating reference frame
{X′,Y′,Z′} have the same vertical axis. The horizontal plane {X′,Y′} is ro-
tating about the vertical axis in the clockwise direction.
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FIGURE 3.3

The alignment of nuclear spins in a static, external magnetic field.

magnetic field
~Bo = Bo~k , (3.4)

nuclear spins in the sample will align themselves in one of two directions:
with ~Bo (parallel) or against ~Bo (anti-parallel). In fact, spin alignment is not

exactly parallel or anti-parallel to ~Bo. Instead, the spin is oriented at an angle
θ to ~Bo as shown in Figure 3.3 and therefore precesses around ~Bo.

By the quantum model, the magnetic dipole moment ~µ = µx~i+ µy~j + µz~k
may take one of several possible orientations. In other words, the magnitude
of its z-component can be

µz = Iz(γ~) , (3.5)

where Iz takes one of (2I+1) values: −I, (−I + 1), · · · , 0, · · · , (I− 1), I, and

is called the magnetic quantum number. Thus, the angle θ between ~µ and ~Bo
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can be calculated by

θ = cos−1(
Iz√

I(I + 1)
). (3.6)

Let ~µxy = µx~i+ µy~j be the transverse component of ~µ. The counterpart of
its complex representation is

~µxy −→ µx + iµy = µxye
iφµxy , (3.7)

where i =
√
−1, µxy =

√
µ2
x + µ2

y, and φµxy = tan−1(
µy

µx
). Thus, we have

µxy = γ~
√
I(I + 1)− I2z . (3.8)

As an example, for 1H, a spin- 12 system, Iz = − 1
2 or + 1

2 ; therefore, θ ≃ 54.73◦

and µxy =
γ~√
2
≃ 1.245× 10−7 eV/T.

3.3.2 Precession

Spin precession is a type of rotation and can be viewed as a gyroscope. Ac-
cording to classical mechanics, the rate of change of spin angular momentum
d~S
dt equals the torque ~µ× ~Bo that is imposed on the magnetic dipole moment

~µ that is placed in the magnetic field ~Bo:

d~S

dt
= ~µ× ~Bo. (3.9)

where “×” denotes the vector cross-product. Eq. (3.9) leads to

d~µ

dt
= ~µ× γ ~Bo. (3.10)

The solution to the differential equation (3.10) is

µxy(t) = µxy(0)e
−iγBot and µz(t) = µz(0), (3.11)

where µxy(0) and µz(0) are the initial values of µxy(t) and µz(t). The physical

interpretation of this mathematical solution is that ~µ precesses about ~Bo at
the frequency γBo. This frequency is known as the Larmor frequency ωo and
defined by

ωo = γBo. (3.12)

An example: Let Bo = 1 T, then f = ωo

2π = γ
2π . For different nuclear species,

γ
2π is shown in Table 3.1.
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3.4 Macroscopic Magnetization

3.4.1 Macroscopic Magnetization

The vector sum of individual magnetic dipole moments ~µi in a unit volume
of the sample forms a macroscopic magnetization expressed by ~M

~M =
n∑

i=1

~µi , (3.13)

where n is the number of nuclear spins in the unit volume. In the absence of
a static, external magnetic field, due to the random orientations of nuclear
spins, the net macroscopic magnetization is zero, while in the presence of
a such field, due to the alignment and precession of nuclear spins, the net
macroscopic magnetization becomes non-zero. Macroscopic magnetization is a
bulk property of the spin system and can be utilized to describe the molecular
structure and environment surrounding nuclei.

Due to the linear relationship between ~M and ~µ as shown in Eq. (3.13), the
counterpart of Eq. (3.10) for the macroscopic magnetization is

d ~M

dt
= ~M × γ ~Bo , (3.14)

which characterizes the precession for the macroscopic magnetization when
the static field ~Bo is applied only. Similar to ~µ, ~M =Mx

~i+My
~j+Mz

~k can be

expressed as ~M = ~Mxy+Mz
~k, and its transverse component ~Mxy =Mx

~i+My
~j

has a corresponding complex notation:

~Mxy −→Mx + iMy =Mxye
iφMxy , (3.15)

where Mxy =
√
M2
x +M2

y and φMxy = tan−1(
My

Mx
).

When the macroscopic magnetization ~M is at an angle θ to the static,
external magnetic field ~Bo, the energy of this spin system is

E = − ~M · ~Bo = −MBo cos θ = −MzBo , (3.16)

where “·” denotes the vector dot product, and M and Bo denote the magni-
tudes of ~M and ~Bo. When θ = 0, the system is at its lowest energy state, the
thermal equilibrium state, and the corresponding ~M is called thermal equi-
librium macroscopic magnetization, abbreviated as TEMM and denoted by
~Mo
z .

3.4.2 Thermal Equilibrium Macroscopic Magnetization

LetMo
z be the magnitude of ~Mo

z ; Appendix 3A shows that for a spin-I system,

Mo
z =

γ2~2BonI(I + 1)

3κT
, (3.17)
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where κ is Boltzmann’s constant and T is absolute temperature. Eq. (3.17)
indicates that for a given static, external magnetic field, TEMM is determined
by both the spin system itself (via n) and the environment thermal agitation
(via T ).

For hydrogen 1H, its magnetic dipole moment µz can be calculated using
Eq. (3.5). The nuclear spin of 1H has a bi-level of energy. From Eqs. (3.5) and
(3.16), its low and high energy are

el = −
1

2
γ~Bo and eh = +

1

2
γ~Bo, (3.18)

respectively and the energy difference between these two levels is

δe = eh − el = γ~Bo. (3.19)

Let nl and nh be the number of nuclear spins in the directions of parallel
and anti-parallel to ~Bo in a unit volume of the sample, nl + nh = n. The
difference between these two populations of nuclear spins, nl − nh, generates
a net macroscopic magnetization—TEMM:

~Mo
z = µz(nl − nh)~k. (3.20)

Its magnitude is

Mo
z =

1

2
(nl − nh)γ~. (3.21)

By applying Eq. (3.17) to hydrogen 1H (i.e., I = 1
2 ) and letting it equal

Eq. (3.21), we obtain a ratio of the population difference and the total popu-
lation of nuclear spins in a unit volume of the sample,

nl − nh
n

=
γ~Bo
2κT

∆
= ǫ, (3.22)

where ǫ is a function of the strength of the static, external magnetic field Bo
and the environment thermal agitation T . Eq. (3.22) leads to

nl =
1 + ǫ

2
n and nh =

1− ǫ
2

n. (3.23)

Under normal conditions and the ordinary settings of MRI as shown in Table
3.2, Eq. (3.22) gives

ǫ ≃ 3.4× 10−6.

Most commonly used methods take the first-order approximation of the
Boltzmann distribution [25–27, 55] to derive the value of ǫ and/or other mea-
sures related to nl, nh, and n. For example,

(a) [54] shows that for the typical settings, n−

n+
≃ 0.999993 (n+ =

nl and n− = nh);
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TABLE 3.2

The Physical Constants and Some Typical Settings

Gyromagnetic ratio γ/2π 42.576× 106 Hz/T (1H)
Planck’s constant h 6.626× 10−34 J·s
Boltzmann’s constant κ 1.381× 10−23 J/K
Number of spins/(mm)3 n 6.69× 1019 (H2O)
Absolute temperature T 300K
Static magnetic field B0 1 Tesla

(b) [55] shows an excess (i.e., nl − nh) of 5 out of every 106 spins
at 1.5 T;

(c) [56] shows that at 1 T and 300 K,
N↑−N↓

Ns
≃ 0.000003 (N↑ = nl,

N↓ = nh, and Ns = n);

(d) [6] shows that at 1 T and for κT in the body approximately
equal to 1

40 eV, the ratio of the mean populations of two spin states

is given by ñ1

ñ2
≃ 1.00000693 (ñ1 → nl and ñ2 → nh).

It has been verified that the numbers in the above (a)–(d) are identical to or
consistent with the value of ǫ derived by the method that makes Eq. (3.17)
equal to Eq. (3.21).

Eq. (3.17) shows that TEMM is a function of the spin density n, the strength
of the static, external magnetic field Bo, and the temperature T . Eq. (3.21)
shows that TEMM is determined by the uneven populations of two spin states.
Eq. (3.22) shows that these two interpretations are equivalent. Although the
population difference between two spin states is very small (about three in a
million spins in the sample at 1 T and at room temperature), it is this uneven
spin population that generates the TEMM, which is one that can be measured
and actually observed in MRI.

TEMM represents the electrical current density, that is, its physical unit
is A/m (A - ampere and m - meter).∗ To verify this, a simple way is to use
Eq. (3.21), where the units of γ and ~ are s−1 · T−1 and J·s (s - second, T -
Tesla, J - Joule). Thus, the physical unit of TEMM Mo

z is

m−3 · (s−1 · T−1) · (J · s) = m−3 · T−1 · J
= m−3 · (kg · s−2 ·A−1)−1 · (kg ·m2 · s−2) = A/m .

(3.24)

∗The meter-kilogram-second (MKS) system; an International System of Units is used in
this book.
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3.5 Resonance and Relaxation

In addition to the main static magnetic field ~Bo, a radiofrequency (RF) field
~B1 is also applied in MRI. When the RF field turns on and off, the spin system
undergoes a forced precession known as resonance and a free precession known
as relaxation, respectively.

3.5.1 Resonance

Resonance is a physical state that can be defined in different ways. For ex-
ample, it can be viewed as a state that occurs when the system vibrates at a
certain frequency, or it may involve the transfer of energy between two sys-
tems with the same certain frequency. By applying a pulsed RF field ~B1 in
one transverse direction (say ~i)

~B1 = B1
~i (3.25)

at the Larmor frequency to a spin system that is in a static magnetic field,
some nuclear spins absorb energy from the RF pulse, become excited, and
undergo transitions from the low energy state to the high energy state. This
phenomenon is known as nonselective excitation and this state is called mag-
netic resonance.

The excitation of nuclear spins changes the TEMM. However, as a macro-
scopic magnetization, it behaves differently from individual spins. TEMM does
not necessarily adopt an anti-parallel orientation, but instead it is perturbed
from its equilibrium state and spirally flipped toward to the transverse plane.
The macroscopic magnetization in this transition process is called the pre-
cession macroscopic magnetization, abbreviated as PMM. Section 3.7.1 will
mathematically prove that in this nonselective excitation process, PMM un-
dergoes a forced precession about ~B1 in the rotating reference frame. Analo-
gous to the relationship between the static field ~Bo and the Larmor frequency
ωo: ωo = γBo, the relationship between the RF field ~B1 and the radiofrequency
ω1 is

ω1 = γB1. (3.26)

Thus, the angle that PMM rotates about ~B1 (i.e., the angle between the

PMM direction and the ~k(t) direction in the Y′-Z′ plane of the rotating ref-
erence frame) is given by

α = ω1τp = γB1τp, (3.27)

where τp is the duration of RF pulse. α is known as the flip angle and is
determined by the strength of RF field B1 and the duration of RF pulse τp.
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In addition to inducing nuclear spins to absorb energy and change their
energy status, an RF pulse also forces nuclear spins to precess in phase. This
is so called phase coherence that is maintained within RF pulse duration τp.

With the RF field, a z-gradient field† caused by z-gradient Gz(t)~k

~BGz = BGz
~k = Gz(t)z~k (3.28)

is applied at the longitudinal direction. As a result, nuclear spins in some
restricted regions in the sample are excited. This physical phenomenon is
known as selective excitation. Section 3.7.2 will show that selective excitation
will make the slice selection.

Resonance occurs in the forced precession of nuclear spins. The forced pre-
cession is characterized by

d ~M

dt
= ~M × γ ~B, (3.29)

where ~B = ~Bo + ~B1 or ~B = ~Bo + ~B1 + ~BGz for the nonselective or selective
excitation, respectively.

3.5.2 Relaxation

After the excitation magnetic fields—RF field ~B1 and the slice-selection ex-
citation field ~BGz—are removed and sufficient time is given, according to the
laws of thermodynamics, PMM begins to return to its thermal equilibrium
state. This return process is known as relaxation. In this relaxation process,
PMM undergoes a free precession about ~Bo in the fixed reference frame.

Relaxation consists of longitudinal and transverse relaxations. The former
is a recovery of the longitudinal precession macroscopic magnetization abbre-
viated as LPMM and is also known as spin-lattice relaxation, because it is a
process for nuclear spins to release their absorbed energy (the dissipation of
energy on a subatomic level) during RF excitation to their environment—the
lattice. The magnitude of LPMM increases during this relaxation and achieves
a maximum at the end. The longitudinal relaxation can be characterized by

d ~Mz

dt
= −

~Mz − ~Mo
z

T1
, (3.30)

where Mo
z is the TEMM in the presence of ~Bo only and can be calculated by

Eq. (3.17) or Eq. (3.21), and T1 is the spin-lattice relaxation time constant
that governs the evolution of Mz toward its equilibrium value Mo

z .

†In MRI, the gradient field ~BG is a special magnetic field whose longitudinal component
BGz varies linearly at the gradient directions and whose transverse components BGx and

BGy are often ignored—because of the very strong main static magnetic field ~Bo in the
longitudinal direction. The gradient directions are often defined as x-, y-, and z-directions.
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Transverse relaxation is a destruction of the transverse precession macro-
scopic magnetization abbreviated as TPMM and is also known as spin-spin
relaxation, as it is a process involving the interactions among individual nu-
clear spins. Due to the spins interaction and the local magnetic field inho-
mogeneities, nuclear spins lose phase coherence and begin dephasing as the
transverse relaxation takes place. The magnitude of TPMM decreases progres-
sively and achieves a minimum, zero, at the end. The transverse relaxation
can be characterized by

d ~Mxy

dt
= −

~Mxy

T2
, (3.31)

where T2 is the spin-spin relaxation time constant that governs the evolution
of Mxy toward its equilibrium value of zero.
T2 must be shorter than T1: T2 < T1, because when all nuclear spins are

aligned in the longitudinal direction, there is no transverse component.
Transverse relaxation induces an electromagnetic force (emf) in the sur-

rounding coil that, with the thermal noise voltage, produces a free induction
decay (FID) signal.

During the free precession period, x- and y-gradient fields caused by x-
and y-gradients Gx(t)~i and Gy(t)~j, ~BGz = Gx(t)x~k and ~BGz = Gy(t)y~k, are
applied at the longitudinal direction to encode spatial localization information.

3.6 Bloch Eq. and Its Solution

The dynamic behavior of PMM ~M(t) can be phenomenologically described
by the Bloch equation

d ~M

dt
= ~M × γ ~B − Mx

~i+My
~j

T2
− Mz −Mo

z

T1
~k , (3.32)

where ~M =Mx
~i+My

~j+Mz
~k is PMM,Mx

~i+My
~j is TPMM,Mz

~k is LPMM,
Mo
z is TEMM, T1 and T2 are the spin-lattice and the spin-spin relaxation time

constants, γ is the gyromagnetic ratio, and ~B(t) = Bx~i + By~j + Bz~k is the
magnetic field applied to the spin system that consists of three types of fields:
(1) static field ~Bo, (2) RF field ~B1, and (3) gradient field ~BG. The mathemat-
ical solutions of the Bloch equation are given under different conditions. As
shown by Eqs. (3.29), (3.30), and (3.31), the first term on the right side of
Eq. (3.32) characterizes the forced precession process—excitation; the second
and third terms characterize the free precession process—relaxation.
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3.6.1 Homogeneous Sample and Uniform Magnetic Field

In this case, the sample is composed of one type of nuclear spin, which is often
known as an isochromat. RF field and gradient field are not applied, that is, the
magnetic field ~B consists of the static field ~B = Bo~k only. Without relaxation,
the Bloch equation (3.32) becomes

d ~M(t)

dt
= ~M(t)× γBo~k. (3.33)

By converting the vector cross product to the pure matrix multiplication
(see Appendix 3B), the cross product of Eq. (3.33) can be rewritten as the

multiplication of a skew-symmetric matrix of γBo and the vector ~M(t):



dMx(t)/dt
dMy(t)/dt
dMz(t)/dt


 =




0 γBo 0
−γBo 0 0

0 0 0





Mx(t)
My(t)
Mz(t)


 . (3.34)

The solution to Eq. (3.34) is

Mx(t) = Mx(0) cosωot+My(0) sinωot
My(t) = −Mx(0) sinωot+My(0) cosωot
Mz(t) = Mz(0) ,

(3.35)

where Mx(0), My(0), and Mz(0) are the initial values of Mx(t), My(t), and

Mz(t). Eq. (3.35) represents a rotation of TPMM around ~k-direction at the
angular frequency ωo in the fixed reference frame.

With the relaxation, the Bloch equation (3.32) becomes

d ~M(t)

dt
= ~M(t)× γ ~Bo −

Mx(t)~i +My(t)~j

T2
− Mz(t)−Mo

z

T1
~k. (3.36)

Similarly, by converting the vector cross product to the pure matrix multipli-
cation, Eq. (3.36) becomes



dMx(t)/dt
dMy(t)/dt
dMz(t)/dt


 =



−1/T2 γBo 0
−γBo −1/T2 0

0 0 −1/T1





Mx(t)
My(t)
Mz(t)


+




0
0

Mo
z /T1


 .

(3.37)
The solution to Eq. (3.37) is

Mx(t) = ( Mx(0) cosωot+My(0) sinωot)e
−t/T2

My(t) = (−Mx(0) sinωot+My(0) cosωot)e
−t/T2

Mz(t) = Mo
z + (Mz(0)−Mo

z )e
−t/T1 ,

(3.38)

where Mo
z is TEMM. Eq. (3.38) represents an inverse spiral motion of PMM

around the ~k-direction at an angular frequency ωo in the fixed reference frame.
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FIGURE 3.4

The dynamic behavior of the longitudinal and the transverse macroscopic
magnetization.

3.6.2 Complex Representation

Similar to Eq. (3.15), TPMM ~Mxy(t) =Mx(t)~i+My(t)~i has a complex repre-
sentationMxy(t) =Mx(t)+iMy(t). Thus, from Eq. (3.37), the Bloch equation
(3.36) can be decomposed into two equations, one for TPMM and another for
LPMM:

dMxy(t)

dt
= −( 1

T2
+ iωo)Mxy(t)

dMz(t)

dt
= −Mz(t)−Mo

z

T1
. (3.39)

The solutions to Eq. (3.39) are

Mxy(t) = Mxy(0)e
− t

T2 e−iωot

Mz(t) = Mo
z + (Mz(0)−Mo

z )e
− t

T1 , (3.40)

where Mxy(0) and Mz(0) the initial values of Mxy(t) and Mz(t). Eq. (3.40) is
shown in Figure 3.4.

3.6.3 Heterogeneous Sample and Nonuniform Magnetic
Field

In this case, in order to demonstrate the inhomogeneity of the spin system,
nonuniformity of the magnetic field, and the spatial dependence, both the
spatial argument r = (x, y, z) and the temporal argument t are inserted into
Eq. (3.32). The Bloch equation becomes

d ~M(r, t)

dt
= ~M(r, t)× γ ~B(r, t)− Mx(r, t)~i +My(r, t)~j

T2(r)
− Mz(r, t) −Mo

z

T1(r)
~k.

(3.41)
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Although the magnetic field ~B(r, t) varies spatially, due to the very strong

main static magnetic field ~Bo, its orientation is still in the ~k-direction, that
is,

~B(r, t) = (Bo +∆B(r, t))~k, (3.42)

where ∆B(r, t) characterizes the nonuniformity of the magnetic field. In prac-
tice, it is normally caused by the inhomogeneities δBo of Bo, the gradient
field BG, and the chemical shift ωcs.

‡ In the ideal case, δBo = 0. Thus, by
ignoring the chemical shift, ∆B(r, t) mainly represents a spatially dependent,
time-varying gradient field, that is,

∆B(r, t) = BG = ~G(r, t) · r, (3.43)

where ~G(r, t) is the field gradient vector.
By applying the complex representationMxy(r, t) and using Eq. (3.37), the

Bloch equation (3.37) can be decomposed into two equations:

dMxy(r, t)

dt
= −( 1

T2(r)
+ i(ωo +∆ω(r, t)))Mxy(r, t)

dMz(r, t)

dt
= −Mz(r, t)−Mo

z

T1
, (3.44)

where
∆ω(r, t) = γ∆B(r, t) . (3.45)

The first equation of Eq. (3.44) is for TPMM and its solution is

Mxy(r, t) =Mxy(r, 0)e
− t

T2(r) e−iωote−i
∫ t
0
∆ω(r,τ))dτ , (3.46)

where Mxy(r, 0) is the initial value of the complex representation Mxy(r, t).

For the static gradient ~G(r, t) = ~G = Gx~i +Gy~j +Gz~k, ∆ω(r, t) = γ ~G · r,
Eq. (3.46) becomes

Mxy(r, t) =Mxy(r, 0)e
− t

T2(r) e−iωote−iγ
~G·rt. (3.47)

For the time-varying gradient, ~G(r, t) = ~G(t) = Gx(t)~i + Gy(t)~j + Gz(t)~k,

∆ω(r, t)) = γ ~G(t) · r, Eq. (3.46) becomes

Mxy(r, t) =Mxy(r, 0)e
− t

T2(r) e−iωote−iγ
∫ t
0
~G(τ)·rdτ . (3.48)

The second equation of Eq. (3.44) is for LPMM and is not affected by the
complex representation of TPMM; therefore, its solution remains the same as
shown in Eq. (3.40).

‡Chemical shift is a small displacement ωcs of the resonance frequency ωo due to shield
caused by the orbital motion of the surrounding electrons in response to the main Bo field.
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3.7 Excitation

When an RF field is turned on in the presence of a static field, all nuclear
spins in the sample are excited and undergo a forced precession. This kind
of excitation is known as nonselective. Generally, when an RF field is turned
on with an additional gradient field, the nuclear spins in a restricted region
(typically a plane) in the sample are excited. This type of excitation is known
as selective.

3.7.1 Nonselective Excitation

An RF field is turned on by applying an amplitude-modulated RF pulse in
one transverse direction at a carrier frequency ω,

~B1(t) = 2B1(t) cosωt~i, (3.49)

where B1(t) is the amplitude modulation function. This linearly polarized
field can be decomposed into two circularly polarized fields as

~B1(t) = B1(t)(cosωt~i− sinωt~j) +B1(t)(cosωt~i+ sinωt~j). (3.50)

The first and second terms on the right side of Eq. (3.50) represent a left-
handed and a right-handed rotating circularly polarized field, respectively.
Because the PMM of the sample and the left-handed field are rotating in
the same direction, spins are more responded (resonant) to the left-handed
rotating field and are less affected by the other. Thus, the effective RF field is

~B1(t) = B1(t)(cosωt~i− sinωt~j), (3.51)

and the total magnetic field experienced by nuclear spins in the sample is

~B(t) = ~B1(t) + ~Bo = B1(t) cosωt~i−B1(t) sinωt~j +Bo~k, (3.52)

which is shown in Figure 3.5.
Because the modulation function B1(t) turns the RF field on in a time

interval shorter than the relaxation time constant T2, hence T1, the relaxation
terms in the Bloch equation can be ignored. Thus, in nonselective excitation,
the Bloch equation becomes

~M(r, t)

dt
= ~M(r, t)× γ ~B(t). (3.53)

Therefore, in the fixed reference frame, Eq. (3.53) can be explicitly expressed
as

dMx(r, t)/dt
dMy(r, t)/dt
dMz(r, t)/dt


 =




0 ωo ω1(t) sinωt
−ωo 0 ω1(t) cosωt

−ω1(t) sinωt −ω1(t) cosωt 0





Mx(r, t)
My(r, t)
Mz(r, t)


 ,

(3.54)
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FIGURE 3.5

A linear polarized field is decomposed into two counter-rotating circularly
polarized fields.

where ωo = γBo and ω1(t) = γB1(t).
Let

~M ′(r, t) =Mx′(r, t)~i(t) +My′(r, t)~j(t) +Mz′(r, t)~k(t) (3.55)

represent PMM in the rotating reference frame. Using the rotation matrix
Eq. (3.3), we have

Mx′(r, t) =Mx(r, t) cosωt−My(r, t) sinωt
My′(r, t) =Mx(r, t) sinωt+My(r, t) cosωt
Mz′(r, t) =Mz(r, t).

(3.56)

Thus, by taking the derivatives of Mx′(r, t), My′(r, t), and Mz′(r, t) of
Eq. (3.56) with respect to t and then using Eq. (3.54), we obtain

dMx′(r, t)

dt
=
dMx(r, t)

dt
cosωt− dMy(r, t)

dt
sinωt

−ωMx(r, t) sinωt− ωMy(r, t) cosωt

= ωoMy(r, t) cosωt+ ωoMx(r, t) sinωt

−ωMx(r, t) sinωt− ωMy(r, t) cosωt

= (ωo − ω)My′(r, t), (3.57)

dMy′(r, t)

dt
=
dMx(r, t)

dt
sinωt+

dMy(r, t)

dt
cosωt

+ωMx(r, t) cosωt− ωMy(r, t) sinωt

= ωoMy(r, t) sinωt+ ω1(t)Mz(r, t) sin
2 ωt

−ωoMx(r, t) cosωt+ ω1(t)Mz(r, t) cos
2 ωt

+ωMx(r, t) cosωt− ωMy(r, t) sinωt

= −(ωo − ω)Mx′(r, t) + ω1(t)Mz(r, t), (3.58)

dMz′(r, t)

dt
=
dMz(r, t)

dt
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= −ω1(t)Mx(r, t) sinωt− ω1(t)My(r, t) cosωt

= −ω1(t)My′(r, t) . (3.59)

Eqs. (3.57) through (3.59) can be expressed as



dMx′(r, t)/dt
dMy′(r, t)/dt
dMz′(r, t)/dt


 =




0 (ωo − ω) 0
−(ωo − ω) 0 ω1(t)

0 −ω1(t) 0





Mx′(r, t)
My′(r, t)
Mz′(r, t)


 . (3.60)

Let
~B′(t) = Bx′(t)~i(t) +By′(t)~j(t) +Bz′(t)~k(t) (3.61)

be the counterpart of ~B(t) of Eq. (3.52) in the rotating reference frame. By
applying the rotation matrix Eq. (3.3) to Eq. (3.52), we have

Bx′(t) = B1(t)
By′(t) = 0
Bz′(t) = Bo,

(3.62)

that is,
~B′(t) = B1(t)~i(t) +Bo~k(t). (3.63)

By introducing an effective magnetic field ~Beff (t), which is defined in the
rotating reference frame by

~Beff (t) = ~B′(t)− ω

γ
~k(t) = B1(t)~i(t) +

ωo − ω
γ

~k(t), (3.64)

then, in terms of ~M ′(r, t) of Eq. (3.55) and ~Beff (t) of (3.64), the Eq. (3.60)
can be written as

d ~M ′(r, t)
dt

= ~M ′(r, t)× γ ~Beff (t), (3.65)

which is the Bloch equation in the rotating reference frame for nonselective
excitation

Consider a simple case. When RF frequency equals the Larmor frequency
and RF field is constant: ω = ωo and ω1(t) = ω1, the solution to Eq. (3.65)
or Eq. (3.60) is

Mx′(r, t) = Mx′(r, 0)
My′(r, t) = My′(r, 0) cosω1t+Mz′(r, 0) sinω1t
Mz′(r, t) = −My′(r, 0) sinω1t+Mz′(r, 0) cosω1t,

(3.66)

where Mx′(r, 0), My′(r, 0), and Mz′(r, 0) are the initial values of Mx′(r, t),
My′(r, t), and Mz′(r, t).

Eq. (3.35) shows that when a static field ~Bo is applied in the ~k-direction,

PMM rotates about the ~k-direction in the fixed reference frame at the fre-
quency ωo = γBo. Comparing with Eq. (3.35), Eq. (3.66) shows that when
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(π2 )x′ and (π)x′ excitation pulses flip TEMM.

an RF field ~B1(t) = 2B1 cosωt~i is applied in the ~i-direction in the fixed

reference frame at the Larmor frequency ωo, the resultant PMM ~M ′(r, t) will
rotate about the~i(t)-direction in the rotating reference frame at the frequency
ω1 = γB1.

Let the width of the amplitude modulation function B1(t) be τp. When τp
is chosen such that the flip angle α = ω1τp = γB1τp = π

2 or π, the RF pulse
is called the (π2 )x′ or (π)x′ pulse; here the subscript x′ indicates that the RF

field is placed in the ~i(t)-direction. From Eq. (3.66), after a (π2 )x′ pulse,

Mx′(r, τp) =Mx′(r, 0) , My′(r, τp) =Mz′(r, 0) , Mz′(r, τp) = −My′(r, 0),

and after a (π)x′ pulse

Mx′(r, τp) =Mx′(r, 0) , My′(r, τp) = −My′(r, 0) , Mz′(r, τp) = −Mz′(r, 0),

which are shown in Figure 3.6.

3.7.2 Selective Excitation

The previous section showed that when an RF field ~B1(t) = 2B1(t) cosωt~i

is on in the presence of a static field ~Bo, all nuclear spins in the sample
are excited, and this nonselective excitation rotates PMMs about the ~i(t)-
direction in the rotating reference frame. This section shows that when an RF
field is on in the presence of an additional static gradient field, for example,
~BG = BGz

~k(t) = Gzz~k(t), only those spins at a certain plane in the sample
whose resonance frequency equals the RF frequency ω are excited, and this
selective excitation localizes the excited plane, in other words, makes a slice
selection.

Because the RF pulse is short, the relaxation terms in the Bloch equation
are ignored. Thus, the Bloch equation in the rotating reference frame for the
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selective excitation is the same as Eq. (3.65), which is for the nonselective
excitation

~M ′(r, t)
dt

= ~M ′(r, t)× γ ~Beff (t), (3.67)

but ~Beff (t) is replaced by

~Beff (t) = B1(t)~i(t) + (Bo +BGz −
ω

γ
)~k(t), (3.68)

which includes an additional static gradient field BGz
~k(t) (see Eq. (3.28)).

Eq. (3.67), via Eq. (3.68), can be explicitly expressed as



dMx′(r, t)/dt
dMy′(r, t)/dt
dMz′(r, t)/dt


 =




0 (ωo + ωGz − ω) 0
−(ωo + ωGz − ω) 0 ω1(t)

0 −ω1(t) 0





Mx′(r, t)
My′(r, t)
Mz′(r, t)


 ,

(3.69)
where ωGz = γBGz = γGzz is called the z-gradient frequency.

In MRI physics, ~G = Gx~i + Gy~j + Gz~k represents a gradient vector and
~G·r = Gxx+Gyy+Gzz is the gradient field at the location r. In mathematics,

~G · r = Gxx+Gyy +Gzz = p (3.70)

represents a plane, which is shown in Figure 3.7. This plane is perpendicular
to the gradient vector ~G and is located at a distance p

G from the origin r =

(0, 0, 0), here G =
√
G2
x +G2

y +G2
z. Thus, two planes ~G ·r = p1 and ~G ·r = p2

define a slice that is perpendicular to the vector ~G and has the thickness
|p1−p2|
G . In the case of selective excitation, because ~G = Gz~k, the plane ~G·r = p

becomes z = p
Gz

, which is parallel to the transverse plane and located at
z = p

Gz
.

When the RF frequency ω is tuned to the Larmor frequency ωo + γGzzo
of the central plane of a slice (here zo = p1+p2

2 is the location of the central
plane in the slice), Eq. (3.69) becomes



dMx′(r, t)/dt
dMy′(r, t)/dt
dMz′(r, t)/dt


 =




0 γGz(z − zo) 0
−γGz(z − zo) 0 ω1(t)

0 −ω1(t) 0





Mx′(r, t)
My′(r, t)
Mz′(r, t)


 ,

(3.71)
By assuming that the RF pulse is “weak” such that the flip angle α < π

6 , we

can approximate Mz′(r, t) ≃ Mo
z (r) and dMz′(r,t)

dt ≃ 0. Thus, Eq. (3.71) can
be approximated by


dMx′(r, t)/dt
dMy′(r, t)/dt
dMz′(r, t)/dt


 ≃




0 γGz(z − zo) 0
−γGz(z − zo) 0 ω1(t)

0 0 0





Mx′(r, t)
My′(r, t)
Mo
z (r)


 ,

(3.72)
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Mathematical expressions of the plane and the slice.

This approximation removes the interaction between TPMM and LPMM.
Similar to Section 3.6.2, TPMM in the rotating reference frame ~M ′

xy(r, t) =

Mx′(r, t)~i(t) + My′(r, t)~j(t) has a complex representation M ′
xy(r, t) =

Mx′(r, t)+iMy′(r, t). Thus, the first two equations in Eq. (3.72) are equivalent
to

dM ′
xy(r, t)

dt
= −iγGz(z − zo)M ′

xy(r, t) + iω1(t)M
o
z (r). (3.73)

By assuming that the initial conditionM ′
xy(r, 0) = 0+ i0, we have shown that

the solution to Eq. (3.73) is

M ′
xy(r, t) = iγMo

z (r)e
−iγGz(z−zo)t

∫ t

0

B1(τ)e
iγGz(z−zo)τdτ. (3.74)

Because the amplitude modulation function B1(τ) is pulsed and symmetric
to its center point:

B1(τ) = 0 (τ < 0 or τ > τp) and B1(−τ +
τp
2
) = B1(τ +

τp
2
), (3.75)

Eq. (3.74) at the end of the selective excitation can be written as

M ′
xy(r, τp) = iγMo

z (r)e
−iγGz(z−zo)τp/2

∫ τp/2

−τp/2
B1(τ +

τp
2
)e−iγGz(z−zo)τdτ .

(3.76)
Because ωGz = γGzz (Eq. (3.69)), γGz(z−zo) = ωGz−ωGzo

= γ(BGz−BGzo
)

= ∆ωGz = 2πf , and f is the frequency. Thus Eq. (3.76) becomes

M ′
xy(r, τp) = iγMo

z (r)e
−i2πfτp/2F−1

1 {B1(τ +
τp
2
)}|f= 1

2π γGz(z−zo), (3.77)
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where F−1
1 denotes the one-dimensional inverse Fourier transform.

The left side of Eq. (3.77) is the profile of TPMM in the excited slice and
the right side is the inverse Fourier transform of the modulation function of
the RF excitation pulse multiplied by TEMM and a phase factor (shift). Thus,
Eq. (3.77) establishes a relation between the excited slice TPMM profile and
the envelope of the RF excitation pulse. This relation provides useful insight
into the design of B1(τ) for the given or expected slice TPMM profile. More
conveniently, we can use the magnitude of the slice TPMM profile:

|M ′
xy(r, τp)| = γMo

z (r)|F−1
1 {B1(τ +

τp
2
)}|. (3.78)

Let ∆z be the slice thickness. The quantity defined by

r|M ′
xy| =

∫∆z/2

−∆z/2 |M ′
xy(r, τp)|dz∫∞

−∞ |M ′
xy(r, τp)|dz

(3.79)

represents a ratio between the TPMMwithin the slice and the total TPMM ex-
cited by RF (in magnitude). It provides measures on (1) the relation between
r|M ′

xy | and various ∆z for a given RF excitation pulse and (2) the relation
between r|M ′

xy | and various RF excitation pulses for a fixed slice thickness
∆z. In the following, two examples are used for illustrating these relations.

Example 1. Let the RF excitation pulse B1(τ) take a Gaussian shape such
as

B1(τ +
τp
2
) = e−πτ

2

, (3.80)

then
F−1

1 {B1(τ +
τp
2
)} = e−πf

2

. (3.81)

By substituting Eq. (3.81) into Eq. (3.78), the slice TPMM profile has a
Gaussian shape

|M ′
xy(r, t)| = γMo

z (r) e
−πf2

. (3.82)

Appendix 3C shows that both e−πτ
2

and e−πf
2

are the probability density
function (pdf) of Gaussian distribution with the zero mean and the variance
σ2 = 1

2π . Appendix 3C also shows that when the slice is defined by −2σ <
f < 2σ, then the slice thickness ∆z and the ratio r|M ′

xy| are

∆z =
4
√
2π

γGz
and r|M ′

xy| > 0.95, (3.83)

that is, more than 95% of TPMM is located within the slice.
Example 2. Let the RF excitation pulse B1(τ) take a sinc shape such as

B1(τ +
τp
2
) = sinc(τ∆f) =

sin(πτ∆f)

πτ∆f
, (3.84)
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where we set ∆f = 1
τp
; then

F−1
1 {B1(τ +

τp
2
)} = rect(

f

∆f
) =

{
1

∆f (|f | ≤ ∆f
2 )

0 (|f | > ∆f
2 ).

(3.85)

By substituting Eq. (3.85) into Eq. (3.78), the slice TPMM profile has a
rectangular shape

|M ′
xy(r, τp)| = γMo

z (r) rect(
f

∆f
). (3.86)

Appendix 3C shows that when the slice is defined by −∆f
2 < f < +∆f

2 , then
the slice thickness ∆z and the ratio r|M ′

xy| are

∆z =
1

1
2πγGzτp

and r|M ′
xy| = 1.00, (3.87)

that is, 100% of TPMM is located within this slice.

3.7.2.1 Discussion

In practice, B1(τ) cannot be the perfect Gaussian or sinc shape because the
duration of RF pulse must be finite. This fact implies that Eq. (3.80) and
Eq. (3.84) must be multiplied by a rect function. As a result, Eq. (3.81) and
Eq. (3.85) will be replaced by a convolution with the sinc function. Thus, the
selective excitation cannot be uniform across the slice thickness and can also
spread to the neighboring slices.

Various functions can be used for B1(τ) to achieve the well-defined slice
TPMM profile. Some of these functions are discussed in Appendix 3C.

The phase factor e−iγGz(z−zo)τp/2 in Eq. (3.76) (or e−i2πfτp/2 in Eq. (3.77))
exists across the slice thickness. The phase dispersion is a linear function of z
and will cause signal loss. This dephasing effect can be eliminated by applying
a linear z-gradient immediately after selective excitation, which has the same
magnitude as the slice selection z-gradient Gz but with the opposite polarity
and lasts for only half the duration of the selective excitation

τp
2 . Thus, this

post-excitation refocusing produces a rephasing factor eiγGz(z−zo)τp/2 that
exactly cancels the dephasing factor e−iγGz(z−zo)τp/2.

Eq. (3.74) also provides insight into the relation between nonselective and
selective excitations. In Eq. (3.74), let Gz = 0 (i.e., without applying z-
gradient) or z = zo (i.e., at the central plane of the slice), we have

M ′
xy(r, t) = iMo

z (r)

∫ t

0

γB1(τ)dτ = iMo
z (r)

∫ t

0

ω1(τ)dτ = iMo
z (r)α. (3.88)

Because α is small, α ≃ sinα. Thus, M ′
xy(r, t) ≃ iMo

z (r) sinα, that is the
outcome of the nonselective excitation, and i indicates that thisM ′

xy(r, t) is at

the ~j(t)-direction because it rotates about the~i(t)-direction during excitation
in the rotating reference frame.
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3.8 Induction

3.8.1 Signal Detection

According to Faraday’s law of electromagnetic induction, PMM ~M(r, t) pro-
duces an electromagnetic force (emf), denoted by sr(t), in the surrounding
receiver coil, and sr(t) is determined by the rate of change of the magnetic
flux Φ(t) through the receiver coil:

sr(t) = −
∂Φ(t)

∂t
. (3.89)

Let ~Br(r) = Brx(r)~i+Bry(r)~j+Brz(r)
~k be indicative of the sensitivity of the

receiver coil. In other words, ~Br(r) represents a magnetic field at the location
r produced by a hypothetical unit direct current flowing in the receiver coil.
According to the principle of reciprocity, the magnetic flux Φ(t) is given by

Φ(t) =

∫

V

~Br(r) · ~M(r, t)dr, (3.90)

where V denotes the volume of the sample.
Thus, the emf sr(t) induced in the receiver coil is

sr(t) = −
∂

∂t

∫

V

(Brx(r)Mx(r, t)+Bry (r)My(r, t)+Brz (r)Mz(r, t))dr . (3.91)

Because LPMMMz(r, t) varies slowly compared to TPMMMxy(r, t),
∂Mz(r,t)

∂t
is ignored in computing sr(t). This leads to

sr(t) = −
∫

V

(Brx(r)
∂Mx(r, t)

∂t
+Bry (r)

∂My(r, t)

∂t
)dr. (3.92)

Similar to the complex expression Mxy(r, t) of Section 3.6.2, the trans-

verse component of ~Br(r), ~Brxy(r) = Brx(r)~i + Bry (r)~j, can be expressed as

Brxy (r) = Brx(r) + iBry(r) = |Brxy (r)|eiφrxy (r); here |Brxy (r)| and φBrxy
(r)

are the magnitude and phase of Brxy (r). By converting the vector dot product
to the complex multiplication,

~Brxy (r) ·
∂

∂t
~Mxy(r, t) = ℜ{Brxy(r)(

∂

∂t
Mxy(r, t))

∗}, (3.93)

where ∗ and ℜ denote the complex conjugate and the real part of the complex
quantity, Eq. (3.93) can be rewritten as

sr(t) = −ℜ{
∫

V

Brxy(r)
∂

∂t
M∗
xy(r, t)dr}. (3.94)
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By substituting Eq. (3.46) into Eq. (3.94), we have

sr(t) = −ℜ{
∫

V

Brxy (r)M
∗
xy(r, 0)(−

1

T2(r)
+ i(ωo +∆ω(r, t)))

e
− t

T2(r) ei(ωot+
∫ t
0
∆ω(r,τ)dτ)dr}

= −ℜ{
∫

V

|Brxy (r)| |Mxy(r, 0)|(−
1

T2(r)
+ i(ωo +∆ω(r, t)))

e
− t

T2(r) e
i(ωot+

∫ t
0
∆ω(r,τ)dτ+φBrxy

(r)−φMxy (r,0))dr}, (3.95)

where ∆ω(r, t) is given by Eq. (3.45), and |Mxy(r, 0)| and φMxy (r, 0) are the
magnitude and the phase of Mxy(r, 0), respectively.

For many applications in practice, ωo ≫ ∆ω(r, t) and ωo ≫ 1
T2(r)

; thus

− 1
T2(r)

+ i(ωo +∆ω(r, t)) ≃ ωoeiπ2 . As a result, Eq. (3.95) becomes

sr(t) = ωo

∫

V

|Brxy(r)| |Mxy(r, 0)|e−
t

T2(r)

cos(ωot+

∫ t

0

∆ω(r, τ)dτ + φBrxy
(r)− φMxy (r, 0)−

π

2
)dr. (3.96)

sr(t) is a real-valued physical signal. Because it is generated through the
induction of TPMM in the free precession and exponentially decayed, it is
commonly called free induction decay (FID). Rigorously speaking, as described
in Section 3.5.2, sr(t) of Eq. (3.96) represents the signal component of the FID
signal; it and a noise counterpart (which is discussed in Chapter 7) together
form the FID signal. Eq. (3.96) is often known as MR signal equation (in
terms of sr(t)).

3.8.2 Signal Demodulation

In practice, as shown in Figure 3.8, the FID signal sr(t) is split into two
channels: the in-phase denoted by I and the quadrature denoted by Q. In these
two channels, sr(t) is multiplied by cosωot and sinωot separately, then passes
through the low-pass filters with the impulse response function h(t) , and
finally mixed. This type of signal processing procedure is called quadrature
phase sensitive detection (PSD). The quadrature PSD results in a frequency
shift of sr(t) by ωo and produces a baseband signal sc(t) (i.e., without the
phase factor ωot - demodulation).

Let sI(t) and sQ(t) be the outputs of the in-phase and quadrature channels,
respectively. They are

sI(t) = (sr(t) cosωot) ∗ h(t)

= (ωo

∫

V

|Brxy (r)| |Mxy(r, 0)|e−
t

T2(r) cosωot

cos(ωot+

∫ t

0

∆ω(r, τ)dτ + φBrxy
(r)− φMxy (r, 0)−

π

2
)dr) ∗ h(t)
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FIGURE 3.8

MR signal detection and demodulation. In this simplified signal flow diagram,
sr(t), sc(t), and ŝc(j) represent the pure signal components; the corresponding
noise components are not included.

= (
ωo
2

∫

V

|Brxy (r)| |Mxy(r, 0)|e−
t

T2(r)

[cos(2ωot+

∫ t

0

∆ω(r, τ)dτ + φBrxy
(r)− φMxy (r, 0)−

π

2
)

+ cos(

∫ t

0

∆ω(r, τ)dτ + φBrxy
(r) − φMxy (r, 0)−

π

2
)]dr) ∗ h(t)

=
ωo
2

∫

V

|Brxy (r)| |Mxy(r, 0)|e−
t

T2(r)

cos(

∫ t

0

∆ω(r, τ)dτ + φBrxy
(r)− φMxy (r, 0)−

π

2
)dr, (3.97)

and

sQ(t) = (sr(t) sinωot) ∗ h(t)

= (ωo

∫

V

|Brxy(r)| |Mxy(r, 0)|e−
t

T2(r) sinωot

cos(ωot+

∫ t

0

∆ω(r, τ)dτ + φBrxy
(r)− φMxy (r, 0)−

π

2
)dr) ∗ h(t)

= (
ωo
2

∫

V

|Brxy (r)| |Mxy(r, 0)|e−
t

T2(r)

[sin(2ωot+

∫ t

0

∆ω(r, τ)dτ + φBrxy
(r) − φMxy (r, 0)−

π

2
)

− sin(

∫ t

0

∆ω(r, τ)dτ + φBrxy
(r) − φMxy (r, 0)−

π

2
)]dr) ∗ h(t)

= −ωo
2

∫

V

|Brxy (r)| |Mxy(r, 0)|e−
t

T2(r)
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sin(

∫ t

0

∆ω(r, τ)dτ + φBrxy
(r)− φMxy (r, 0)−

π

2
)dr . (3.98)

Thus, the output of the quadrature PSD is

sc(t) = sI(t) + isQ(t)

=
ωo
2

∫

V

|Brxy (r)| |Mxy(r, 0)|e−
t

T2(r)

[cos(

∫ t

0

∆ω(r, τ)dτ + φBrxy
(r)− φMxy (r, 0)−

π

2
)

−i sin(
∫ t

0

∆ω(r, τ)dτ + φBrxy
(r)− φMxy (r, 0)−

π

2
)]dr

=
ωo
2

∫

V

|Brxy (r)| |Mxy(r, 0)|e−
t

T2(r)

e−i(
∫ t
0
∆ω(r,τ)dτ+φBrxy

(r)−φMxy (r,0)−π
2 )dr. (3.99)

Using |Brxy (r)|e−iφBrxy
(r)

= B∗
rxy

(r) and |Mxy(r, 0)|eiφMxy (r,0) =
Mxy(r, 0), Eq. (3.99) becomes

sc(t) =
ωo
2
ei

π
2

∫

V

B∗
rxy

(r)Mxy(r, 0)e
− t

T2(r) e−i
∫ t
0
∆ω(r,τ)dτdr. (3.100)

For the homogeneous sample and the uniform reception field, T2(r) and
Brxy (r) are independent of the location r, i.e., they are constant over the

sample volume V : T2(r) = T2 and Brxy (r) = Brxy . For t ≪ T2, e
− t

T2 ≃ 1.

Thus, letting c = ωo

2 e
i π2B∗

rxy
and substituting ∆ω(r, τ) by γ ~G(τ) · r (see

Eqs. (3.47) and (3.48)), Eq. (3.100) can be simplified as

sc(t) ≃ c
∫

V

Mxy(r, 0)e
−iγ

∫
t
0
~G(τ)·rdτdr. (3.101)

The continuous, complex-valued baseband signal sc(t) of Eq. (3.101) is gen-
erated by the quadrature PSD and called PSD signal. Similar to the notation
of Eq. (3.96), sc(t) of Eq. (3.101) actually represents the signal component of
PSD signal.

Eq. (3.101) reveals Fourier formulation relation between sc(t) andMxy(r, 0),
and is also known as the MR signal equation (in terms of sc(t)). TPMM
Mxy(r, 0) and TEMM Mo

z (r) are linked by Eq. (3.88). When the flip angle
α = π

2 , Mxy(r, 0) = iMo
z (r). Thus, Eq. (3.101), in fact, reveals the Fourier

formulation relation between sc(t) and TEMM.
sc(t) is further sampled at the Nyquist frequency for the given bandwidth

of the anti-aliasing filter to yield a discrete, complex-valued baseband signal
ŝc(j),

ŝc(j) ≃ c
∫

V

Mxy(r, 0)e
−iγ

∫
j
0
~G(τ)·rdτdr, (3.102)
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where j denotes the time instant. The sampling is carried out by Analog-
Digital converter (ADC), therefore, ŝc(j) is called ADC signal. Following to
the notation of Eq. (3.101), ŝc(j) of Eq. (3.102) only represents the signal
component of ADC signal. Eq. (3.102) is the discrete version of MR signal
equation (in terms of ŝc(j)).
sr(t), sc(t), and ŝc(j) are MR signals at the different stages of signal de-

tection and formulation module. They represent the electrical voltage, i.e.,
their physical units are V (V - Volt). To verify this, a simple way is to use

Eqs. (3.86) and (3.87), where the units of ~B(r) and ~M(r, t) are Wb/(A ·m2)
and A/m (Wb - weber). Thus, the physical unit of sr(t) is

s−1 ·m3 ·Wb/(A ·m2) · A/m = Wb/s = V. (3.103)

Clearly, sc(t) and ŝc(j) have the same physical unit as sr(t).

3.8.3 Spatial Localization

Section 3.7.2 shows that the z-gradient and RF excitation pulse select a slice.
After these excitations are turned off, the nuclear spin system transfers itself
from the forced precession period to the free precession period, and the spins
undergo through processes of the longitudinal and transverse relaxations. As
mentioned in Section 3.5.2, immediately after the excitation, the remaining
x- and y-gradients, Gx and Gy, are applied at the ~i- and ~j-directions in the
transverse plane to encode spatial localization information.

When y-gradient Gy is imposed, both the magnetic field strength and Lar-
mor frequency vary linearly with y-location:

ωy = γ(Bo +Gyy). (3.104)

By turning this gradient on, nuclear spins at the different y locations precess
with different frequencies. When y-gradient is turned off after a period ty,
these nuclear spins return to precessing at the same frequency, but have the
different phases φy:

φy = ωyty = γ(Bo +Gyy)ty. (3.105)

Thus, the nuclear spin at a different y-location has its own unique phase;
therefore, y-location is encoded into the phase. This process is often called
phase encoding.

Similarly, when x-gradient Gx is imposed, both magnetic field strength and
Larmor frequency vary linearly with x-location:

ωx = γ(Bo +Gxx). (3.106)

By turning this gradient on, nuclear spins at the different x locations precess
with different frequencies. The resultant signal during this period is the sum
of all signal components with different frequencies that come from different
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range bins in the x-direction. Thus, this gradient links spatial location x with
the frequency, and this process is often called frequency encoding.

Intuitively, the functions of three gradients can be thought of as the selective
excitation z-gradient selects a slice, the phase encoding y-gradient cuts that
slice into strips, and the frequency encoding x-gradient cuts those strips into
cubes (pixels or voxels).

3.9 k-Space and k-Space Sample

k-Space is very useful in MRI. Not only does it provide a basis for establishing
a new version of MR signal equation that explicitly demonstrates the Fourier
transform relation between TPMM and k-space sample, but it also gives a
clear interpretation of the connection between the spatial localization (phase
encoding and frequency encoding) and Fourier transform.

A k-space sample is an alternative representation of an ADC signal in terms
of the spatial frequency. In this section, the underlying mechanism that trans-
forms the ADC signal to a k-space sample is revealed, followed by a review of
the commonly used k-space sampling schemes: rectilinear and radial. Then,
the sampling requirements for these schemes are discussed.

3.9.1 Concepts

For simplicity in introducing the concept of k-space, let the gradient vector
be constant and the slice be selected at z = zo with the unit thickness. Thus
~G(τ) · r = Gxx+Gyy +Gzzo, and Eq. (3.102) becomes

ŝc(j) ≃ c′
∫

V

Mxy(r, 0)e
−iγ(Gxx+Gyy)jdr, (3.107)

where c′ = ce−iγGzzoj is a constant and c is given by Eq. (3.101). By defining
the quantities

kx(j) =
1

2π
γGxj and ky(j) =

1

2π
γGyj, (3.108)

a relation between the one-dimensional time index j and the two-dimensional
coordinates, kx(j) and ky(j), is established.

The physical unit of kx(j) and ky(j) is m
−1 (m - meter), that is, the inverse

of the length. To verify this, a simple way is to use Eq. (3.108). The unit of
γGxj (or γGyj) is (s

−1T−1)(Tm−1)s = m−1. Thus, kx(j) and ky(j) represent
the time-varying spatial frequency and define a space called k-space.

In the X-Y plane, when the gradient ~Gθ is defined at the direction spec-
ified by an angle θ from the x-direction, then, similar to kx(j) and ky(j) of
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Eq. (3.108), the spatial frequency k(j) caused by the gradient ~Gθ is 1
2πγGθj.

Because Gx = Gθ cos θ and Gy = Gθ sin θ, θ is given by tan−1(
Gy

Gx
). When

the time instant j is within the bounded pairwise time intervals, the ratio
Gy

Gx
may stay the same, while between these time intervals, the ratio

Gy

Gx
can

vary. Therefore, the relation between the angle θ and the time instant j can
be characterized by a staircase function. In order to show θ ∼ j dependence,
the notation θ(j) is used. Thus, a pair of two polar coordinates

k(j) =
1

2π
γGθj and θ(j) = tan−1(

Gy
Gx

) (3.109)

also specifies a location in k-space.
For the slice at z = zo, Eq. (3.107) implicitly adopts r = (x, y), dr = dxdy,

and V → S; here, S denotes the area of the slice under the integration. By
using kx(j) and ky(j) of Eq. (3.108), Eq. (3.107) can be rewritten as

ŝc(j) ≃ c′
∫

S

Mxy(x, y, 0)e
−i2π(kx(j)x+ky(j)y)dxdy

= c′F2{Mxy(x, y, 0)} ∆
=M(kx(j), ky(j)), (3.110)

where F2 denotes the two-dimensional Fourier transform, andM(kx(j), ky(j))
is called the k-space sample. Rigorously speaking, thisM(kx(j), ky(j)) is the
signal component of the k-space sample, because, as indicated in Section 3.8.2,
ŝc(j) only represents the signal component of the ADC signal. In the polar
coordinate system, the k-space sample is expressed byM(k(j), θ(j)).

Eq. (3.108) and Eq. (3.109) map a time index j to a k-space location (kx(j),
ky(j)) or (k(j), θ(j)). Eq. (3.110) maps the corresponding ADC signal ŝc(j)
in the time domain to the k-space sample M(kx(j), ky(j)), orM(k(j), θ(j))
in the spatial frequency domain. Eq. (3.110) is a k-space version of the MR
signal equation. It also shows that the physical unit of the k-space sample
M(kx(j), ky(j)) or M(k(j), θ(j)) is the same as the ADC signal ŝc(j): V
(Volt). Generally, when the gradients Gx and Gy are time varying, the spatial
frequencies kx(t) and kx(t) of Eq. (3.108) are defined by

kx(t) =
γ

2π

∫ t

0

Gx(τ)dτ and ky(t) =
γ

2π

∫ t

0

Gy(τ)dτ. (3.111)

3.9.2 Sampling Protocols

The commonly used k-space sampling protocols include rectilinear sampling
and radial sampling, which lead to two different MR image reconstruction
methods: Fourier transform and projection reconstruction.

3.9.2.1 Rectilinear Sampling

Figures 3.9 and 3.10 demonstrate the rectilinear k-space sampling scheme.
Figure 3.9 shows a timing sequence. A π

2 RF excitation pulse and a z-gradient
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Gz select a slice. The negative lobe of the z-gradient is used for refocusing
(see Section 3.7.2.1). Both y-gradient Gy and x-gradient Gx are turned on for
a period ty. Gy, which will be changed in the next period ty, is for the phase
encoding. The negative Gx, which will not be changed in the next period ty, is
used for covering the desired area of the k-space. At the end of period ty, Gy
is turned off that completes the phase encoding; Gx is changed to the positive
that carries out the frequency encoding and reads out the FID signal. From
Eq. (3.107), this readout signal is a sum of all signal components

Mxy(x, y, 0)e
−iγ(Gxxj+Gyyty)

across the sample.
Corresponding to the timing sequence in Figure 3.9, Figure 3.10.a shows

the k-space sample trajectory for the rectilinear sampling. For the positive
Gy and the negative Gx, the trajectory begins at the origin and moves along
a line in the second quadrant (with an angle θ in the x-direction). The slope

of this line is determined by the ratio
Gy

Gx
. This process corresponds to phase

encoding. At the end of period ty, it moves right along the kx direction. This
process corresponds to the frequency encoding and readout of the FID signal.

On the next period ty, the amplitude Gy changes (as shown by l in Fig-
ure 3.9) but the amplitude Gx remains the same. Thus, the angle θ changes.
A change in the amplitude Gy leads to a different line in the k-space—the
horizontal dashed line in Figure 3.10a. By choosing an appropriate set of Gy
(i.e., the period ty will be repeated for certain times), a desired rectangular
region in k-space can be covered.

The k-space data and the sampled k-space data in rectilinear sampling
are expressed byM(kx(t), ky(t)) andM(kx(j), ky(j)), respectively. When the
sampling indexed by j occurs at a Cartesian grid as shown in Figure 3.10b,
k-space samples are often expressed byM(m∆kx, n∆ky); here, m and n are
integers, ∆kx and ∆ky are horizontal and vertical sampling intervals. Clearly,
M(m∆kx, n∆ky) is a k-space sample at the m-th frequency encoding after
the n-th phase encoding.

3.9.2.2 Radial Sampling

Figures 3.11 and 1.12 demonstrate the radial k-space sampling scheme. Fig-
ure 3.11 shows a timing sequence. An RF excitation pulse and a z-gradient
Gz select a slice. The negative z-gradient is used for refocusing (see Section
3.7.2.1). Both y-gradient Gy and x-gradient Gx are turned on for a period ty.
At the end of the period ty, both Gy and Gx change their polarities, perform
the frequency encoding, and read out the FID signal. From Eq. (3.107), this
readout signal is the sum of all signal components

Mxy(x, y, 0)e
−iγ(Gxxj+Gyyj)

across the sample, which is different from that in rectilinear sampling.



72 Statistics of Medical Imaging

FID

Gx

✲ ✛ ty
lGy

Gz

π
2

RF

FIGURE 3.9

A timing diagram in the rectilinear k-space sampling.
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FIGURE 3.10

The trajectory (a) and the sampling (b) in the rectilinear k-space sampling.
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FIGURE 3.11

MR signal detection and demodulation in the radial k-space sampling.

Corresponding to the timing sequence in Figure 3.11, Figure 3.12a shows
the k-space sample trajectory for the radial sampling. For the negative Gy
and Gx, the trajectory begins at the origin and moves along a line in the
third quadrant(with an angle θ in the x-direction). The slope of this line is

determined by the ratio
Gy

Gx
. At the end of period ty, the trajectory turns

back, passes through the origin, and moves along the same direction but in
the first quadrant as shown in Figure 3.12a. This process corresponds to Gy
and Gx frequency encoding. The FID signal is read out during the positive
lobe of Gx in Figure 3.11.

On the next period ty, both Gy and Gx change their amplitudes as shown

in Figure 3.11 by l. A change in the ratio
Gy

Gx
results in a different line in

the k-space as shown in Figure 3.12a by the tilted dashed line. By choosing
an appropriate set of Gy and Gx such that θ changes from 0 to π (i.e., ty is
repeated for certain times), a desired circular region in k-space will be covered.

The k-space data and the sampled k-space data in polar sampling are ex-
pressed byM(k(t), θ(t)) andM(k(j), θ(j)), respectively. When the sampling
indexed by j occurs at a polar grid as shown in Figure 3.12.b, k-space samples
are often expressed by M(m∆k, n∆θ), where m and n are integers, and ∆k
and ∆θ are the radial and angular sampling intervals. Clearly,M(m∆k, n∆θ)
is a k-space sample at the m-th frequency encoding at the n-th readout.
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FIGURE 3.12

The trajectory (a) and the sampling (b) in the radial k-space sampling.

3.9.3 Sampling Requirements

3.9.3.1 Rectilinear Sampling

Figure 3.13 shows the details of the timing sequence in Figure 3.9 for phase
encoding, frequency encoding, and the readout sampling. In Figure 3.13, Gy
and ty, Gx and tx denote the amplitude and the time period for the phase
and frequency encoding, respectively. ∆Gy and ∆t represent the incremental
magnitude of the y-gradient and the sampling interval of the readout signal.
Let npe and nfe be the numbers of the phase encoding and frequency encoding
(in each phase encoding). Then

(npe − 1)∆Gy = 2Gy and (nfe − 1)∆t = tx, (3.112)

which is equivalent to

npe =
2Gy
∆Gy

+ 1 and nfe =
tx
∆t

+ 1. (3.113)

At the time instant j that corresponds to the m-th frequency encoding after
the nth phase encoding, we have

kx(j) =
γ

2π
Gx(m∆t) and ky(j) =

γ

2π
(n∆Gy)ty, (3.114)

where −nfe

2 ≤ m ≤
nfe−1

2 and −npe

2 ≤ n ≤
npe−1

2 . Eq. (3.114) leads to

∆kx =
γ

2π
Gx∆t and ∆ky =

γ

2π
∆Gyty . (3.115)
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3.9.3.2 Radial Sampling

Based on Eqs. (3.108) and (3.109), F2{Mxy(x, y, 0)} in Eq. (3.110) can be
rewritten as

F2{Mxy(x, y, 0)} =
∫
Mxy(x, y, 0)e

−i2πk(j)(x cos θ(j)+y sin θ(j))dxdy, (3.119)

where k(j) =
√
k2x(j) + k2y(j) and θ(j) = tan−1(

ky(j)
kx(j)

).

Let the coordinate system X′ −Y′ be generated by rotating the coordinate
system X-Y with an angle θ(j) (which is given by Eq. (3.109)) such that

the x′-direction coincides with the gradient ~Gθ(j) direction. The coordinates
(x′, y′) and (x, y) are related by



x′

y′


 =




cos θ(j) sin θ(j)

− sin θ(j) cos θ(j)





x

y


 .

By using new coordinates (x′, y′), Eq. (3.119) becomes

F2{Mxy(x
′, y′, 0)} =

∫
Mxy(x

′, y′, 0)e−i2πk(j)x
′

dx′dy′. (3.120)

By defining the measured projection p(x′, θ(j)) as

p(x′, θ(j)) =
∫
Mxy(x

′, y′, 0)dy′, (3.121)

Eq. (3.120) becomes

F2{Mxy(x
′, y′, 0)} =

∫
p(x′, θ(j))e−i2πk(j)x

′

dx′ = F1{p(x′, θ(j))}, (3.122)

where F1 denotes the one-dimensional Fourier transform with respect to x′.
Eq. (3.122) indicates that the one-dimensional Fourier transform of the

projection p(x′, θ(j)) of TPMM Mxy(x
′, y′, 0) at a given direction θ(j) equals

the two-dimensional Fourier transform of the object function (i.e., TPMM
Mxy(x

′, y′, 0)) in that direction).§ This is the well-known Fourier slice theo-
rem, which is illustrated in Figure 3.14.

In the object domain, let TPMM Mxy(x
′, y′, 0) be confined in a circular

area with diameter FOVr . Then, in each direction θ(j), in order to avoid the
aliasing artifact in the radial direction (i.e., x′-direction) of the reconstructed
TPMM Mxy(x

′, y′, 0), according to the Nyquist–Shannon sampling theorem,
the sampling interval ∆k (which is equivalent to the sampling interval ∆t for
ADC signal ŝ(j) in the time domain) must satisfy

∆k ≤ 1

FOVr
. (3.123)

§The coordinates (x′, y′) implicitly specify this direction.
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FIGURE 3.13

Phase encoding, frequency encoding, and readout sampling.

Figure 3.13 shows that the sampling intervals ∆kx and ∆ky represent a scaled
area between two adjacent vertical lines in the frequency encoding period and
a scaled area between two adjacent horizontal lines in the phase encoding
period, respectively.

Eq. (3.110) indicates that TPMM Mxy(x, y, 0) and k-space samples
M(kx, ky) constitute a pair of Fourier transform (ignoring the constant c′)
and TPMM Mxy(x, y, 0) is the space-limited. These two conditions enable us
to use the Nyquist Shannon sampling theorem, which states that a tempo-
ral frequency band-limited signal can be reconstructed from uniform samples
in the frequency domain at a sampling rate equal to or greater than twice
the frequency band (or with the sampling interval equal to or less than the
reciprocal of the sampling rate).

In the object domain, let TPMM Mxy(x, y, 0) be confined in a rectangular
area FOVx×FOVy ; here, FOVx and FOVy denote the dimensions of the field
of view in the x- and y-directions, respectively. Thus, in order to reconstruct
TPMM Mxy(x, y, 0), the sampling intervals ∆kx and ∆ky in the k-space do-
main (which is equivalent to the sampling interval ∆t for the ADC signal ŝc(j)
in the time domain) must satisfy

∆kx ≤
1

FOVx
and ∆ky ≤

1

FOVy
. (3.116)

Using Eq. (3.115), the sampling requirements for the rectilinear sampling are

∆t ≤ 2π

γGxFOVx
and ∆Gy ≤

2π

γtyFOVy
. (3.117)

Let δx × δy denote the spatial resolution (i.e., the pixel size) of the recon-
structed MR image. Due to FOVx = I · δx and FOVy = J · δy (I and J are
the numbers of pixels in each row and each column of the image), Eq. (3.l16)
leads to

δx ≤ 1

kxmax
and δy ≤ 1

kymax
. (3.118)
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An illustration of the Fourier slice theorem.

F2{Mxy(x
′, y′, 0)} in Eq. (3.122) can be expressed either rectilinearly by

M(kx′(j), ky′(j)) or radially byM(k(j), θ(j)). Radial samples are often used
for the projection reconstruction method, which is based on the Inverse Radon
transform and implemented by filtered backprojection (FBP) algorithm. In
the numerical implementation of FBP, radial samplesM(k(j), θ(j)) and mea-
sured projections p(x′, θ(j)) are discretized both radially and angularly as
M(n∆k,m∆θ) and p(n∆p,m∆θ) (−N2 ≤ n ≤ N−1

2 , 0 ≤ m ≤ M − 1). Here
∆k and ∆θ are the radial and angular spacings between two adjusting k-space
samples, and ∆p is the spacing between two adjacent measured projections.

Thus, from Eq. (3.122), the measured projections p(k∆p,m∆θ) at the direc-
tion specified by the anglem∆θ and the radial k-space samplesM(n∆k,m∆θ)
at the time instant j, which corresponds to the n-th frequency encoding at
the m-th readout are linked by

p(k∆p,m∆θ) = ∆k

(N−1)/2∑

n=−N/2
M(n∆k,m∆θ)ei2πk∆p n∆k, (3.124)

where ∆k is restricted by Eq. (3.123). To ensure the accuracy of the interpola-
tion required by FBP, N and ∆p must be chosen so that 1

N∆p is significantly

smaller than ∆k [18], that is,

1

N∆p
<

1

FOVr
. (3.125)

In Figure 3.15, ∆̂s and ∆s denote the arc and the chord spanned by an
angle interval ∆θ on the circumference of a circle. ∆s and ∆k represent the
azimuthal and radial sampling interval and are orthogonal. ∆k is fixed and
∆s varies with circles of different diameters. Here, only the most outward
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FIGURE 3.15

An illustration of the relationship between M and N in FBP. Because M is
large, the arc ∆̂s and the chord ∆s are very close. They are nearly overlapped
on each other and are not virtually distinguished in this figure.

∆s (which corresponds to the circle with the diameter N∆k) is chosen for
consideration, because it is the largest.

Similar to the ∆kx and ∆ky in the rectilinear sampling, two orthogonal
sampling intervals ∆k and ∆s are considered the same, that is, ∆k = ∆s.

Also, because M is usually very large, ∆s ≃ ∆̂s. Thus, 2M∆s
N∆k ≃ 2M∆̂s

N∆k = π
which leads to M and N in FBP being related by

M

N
≃ π

2
. (3.126)

This relation is confirmed in references [18, 37, 56]. Thus, from Eqs. (3.125)
and (3.126), the angular sampling interval ∆θ in the polar sampling scheme
will be

∆θ =
π

M
≃ 2

N
<

2∆p

FOVr
. (3.127)

Therefore, the sampling requirements for the polar sampling scheme are

∆k ≤ 1

FOVr
and ∆θ <

2∆p

FOVr
. (3.128)

3.10 Image Reconstruction

Corresponding to two k-space sampling schemes (rectilinear and radial), two
methods—Fourier transform (FT) and projection reconstruction (PR)—are
commonly used for MR image reconstruction. In the two-dimensional case,
they are abbreviated as 2DFT and 2DPR, respectively.
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3.10.1 Fourier Transform

3.10.1.1 Mathematical Description

As shown in Section 3.9.2.1, M(kx(t), ky(t)) and M(kx(j), ky(j)) represent
the continuous and discrete rectilinear k-space data, and M(m∆kx, n∆ky)
represents the rectilinear k-space samples. In the k-space version of the MR
signal equation (3.110), ignoring the constant c′, replacing Mxy(x, y, 0) by
Mxy(x, y) (0 implies t = 0) and M(kx(j), ky(j)) by M(m∆kx, n∆ky), we
have

Mxy(x, y) = F−1
2 {M(m∆kx, n∆ky)}, (3.129)

where F−1
2 denotes a two-dimensional inverse Fourier transform.

Eq. (3.129) shows that an appropriate set of k-samples M(m∆kx, n∆ky)
(i.e., a set of the ADC signal ŝc(j)) can be acquired to produce an image
X(x, y) which is an estimate of the TPMM Mxy(x, y, 0). Let (x, y) = r;
Eq. (3.88) indicates that TPMM Mxy(r, 0) and TEMM Mo

z (r) are related
by Mxy(r, 0) = iMo

z (r) sinα (α - the flip angle). Therefore, the MR image
generated by 2DFT essentially represents the spatial distribution of TEMM.

Based on the Fourier transform relation between TPMM and k-space sam-
ples given by Eq. (3.129) and considering the requirements of data acquisition
and image quality, a framework for 2DFT can be mathematically described
by

Mxy(x, y) = F−1
2 {M(kx(t), ky(t)) ·

1

∆kx∆ky

comb

(
kx(t)

∆kx
,
ky(t)

∆ky

)
rect

(
kx(t)

Wkx

,
ky(t)

Wky

)
filt

(
kx(t)

Wkx

,
ky(t)

Wky

)
}. (3.130)

In Eq. (3.130), comb function (also known as “the bed of nails”) is given by

comb

(
kx(t)

∆kx
,
ky(t)

∆ky

)
= ∆kx∆ky

∞∑

m,n=−∞
δ(kx(t)−m∆kx, ky(t)− n∆ky),

(3.131)
where δ(kx(t)−m∆kx, ky(t)− n∆ky) is the 2-D Dirac delta function defined
by

δ(kx(t)−m∆kx, ky(t)−n∆ky) =
{
non 0 (kx(t) = m∆kx and ky(t) = n∆ky)
0 (otherwise),

(3.132)
and rect is a rectangular window function (also known as the scope function)
given by

rect

(
kx(t)

Wkx

,
ky(t)

Wky

)
=

{
1 (|kx(t)| ≤ Wkx

2 and |ky(t)| ≤ Wky

2 )
0 (otherwise),

(3.133)

where Wkx and Wky are the widths of the window shown in Figure 3.10;
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filt is the filter function (also known as the apodization function) given by

filt

(
kx(t)

Wkx

,
ky(t)

Wky

)
= Φ

(
kx(t)

Wkx

,
ky(t)

Wky

)
· rect

(
kx(t)

Wkx

,
ky(t)

Wky

)
, (3.134)

where the function Φ can take various forms, which are real, even, and nor-
malized, such as Hamming and Hanning functions:

Φ

(
kx(t)

Wkx

,
ky(t)

Wky

)
= (α + (1− α) cos(2πkx(t)

Wkx

))(α + (1− α) cos(2πky(t)
Wky

));

(3.135)
α = 0.54 for the Hamming function and α = 0.50 for the Hanning function.

Thus, Eq. (3.130) can be decomposed into three steps, which are
• Step 1: Sampling. It is given by

M1(m∆kx, n∆ky) =M(kx(t), ky(t)) ·
1

∆kx∆ky
comb

(
kx(t)

∆kx
,
ky(t)

∆ky

)
.

(3.136)
Using Eq. (3.131), we have

M1(m∆kx, n∆ky) =M(kx(t), ky(t))

∞∑

m,n=−∞
δ(kx(t)−m∆kx, ky(t)−n∆ky).

This sampling operation (from the continuous k-space data to the discrete
samples) is carried out by the rectilinear sampling scheme described in Section
3.9.2.1. The sampling requirements are specified by Eqs. (3.116) or (3.117),
which are mainly for eliminating the aliasing artifact.
• Step 2: Truncating. It is given by

M2(m∆kx, n∆ky) =M1(m∆kx, n∆ky) · rect
(
kx(t)

Wkx

,
ky(t)

Wky

)
. (3.137)

This truncation operation is necessary because only the finite k-space samples
can be utilized in the practical computation of image reconstruction. With
this step, the finite k-space samples M2(m∆kx, n∆ky) (− I2 ≤ m ≤ I−1

2 ,

−J2 ≤ n ≤ J−1
2 , I, J , m, and n - integers) are extracted from the entire

discrete k-space domainM1(m∆kx, n∆ky).
• Step 3: Filtering. It is given by

M(m∆kx, n∆ky) =M2(m∆kx, n∆ky) · filt
(
kx(t)

Wkx

,
ky(t)

Wky

)
, (3.138)

It is well known that the Fourier transform of the truncated data always
produces Gibbs ringing artifact. In order to remove or reduce this artifact, a
spatial filter must be applied toM2(m∆kx, n∆ky). The filt function decays
smoothly to the zero at m = − I2 , I−1

2 and n = −J2 , J−1
2 .M(m∆kx, n∆ky) is

finally used in Eq. (3.129).
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3.10.1.2 Computational Implementation

FOVx and FOVy—the dimensions of the field of view (Section 3.9.3.1)—
specify the size of the reconstructed MR image. Let δx and δy be the Fourier
pixel size [56]; the numbers of pixels in each row and each column of the

reconstructed image are I = FOVx

δx and J =
FOVy

δy , respectively. Eq. (3.129)

or Eq. (3.130) can be numerically implemented by 2-D DFT. Thus, the pixel
valuesX(x, y), that is, the estimates ofMxy(x, y), are computed by the inverse
2-D DFT of k-space samplesM(m∆kx, n∆ky).

When I × J rectilinear k-space samplesM(m∆kx, n∆ky) are acquired, for
the pixels whose centers are at the locations (x = kδx, y = lδy), based on
Eq. (3.116) with the equal-sign, we have

Y (kδx, lδy) = ∆kx∆ky

(I−1)/2∑

m=−I/2

(J−1)/2∑

n=−J/2

M(m∆kx, n∆ky)Φ(m∆kx, n∆ky)e
i2πm∆kxkδxei2πn∆kylδy

=
1

I · J · δx · δy

(I−1)/2∑

m=−I/2

(J−1)/2∑

n=−J/2

M(m∆kx, n∆ky)Φ(m∆kx, n∆ky)e
i2πkm/Iei2πln/J , (3.139)

where Φ(m∆kx, n∆ky) is the filter function given by Eq. (3.134), − I2 ≤
k ≤ I−1

2 , −J2 ≤ l ≤ J−1
2 . For pixels with unity size (i.e., δx = δy = 1)

and using the abbreviation M(m,n) and Φ(m,n) for M(m∆kx, n∆ky) and
Φ(m∆kx, n∆ky), respectively, Eq. (139) becomes

X(k, l) =
1

I · J

(I−1)/2∑

m=−I/2

(J−1)/2∑

n=−J/2
M(m,n)Φ(m,n)ei2πkm/Iei2πln/J .

3.10.2 Projection Reconstruction

The FT method dominates in the field of MR image reconstruction. The main
reason is its convenience and efficiency in image reconstruction afforded by
the rectilinear sampling on the Cartesian grids in the k-space. However, the
PR method is also very useful in some applications, particularly due to its
analogy with X-ray computed tomography (CT).

3.10.2.1 Mathematical Description

As shown in Figure 3.16, L is a straight line, l is the distance from the origin
(0, 0) of the X-Y coordinate system to the line L, and θ is the angle between
the positive direction of the X-axis and the line which is perpendicular to the
line L and passes through the origin (0, 0). Let P be a point on the line L. The
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coordinate of P can be either in the polar (r, θ) or in the rectilinear (x, y). It
can be shown that

x cos θ + y sin θ − l = 0.

Thus, the line L can be uniquely specified by (l, θ) and explicitly expressed
by the above equation.

Let X(x, y) be a 2-D spatial function and let p(l, θ) be the integration of
X(x, y) along the line L(l, θ) defined by

p(l, θ) =

∫

L(l,θ)

X(x, y)ds.

It is known that X(x, y) and p(l, θ) are linked by the Inverse Radon transform
(IRT) given by

X(x, y) =
1

2π2

∫ π

0

∫ ∞

−∞

∂p(l, θ)

∂l

1

x cos θ + y sin θ − l dldθ. (3.140)

In the imaging, X(x, y) is often referred to as the object function and
p(l, θ) is commonly called the projection. For example, in X-ray computed to-
mography (CT), X(x, y) represents the relative linear attenuation coefficient
(RLAC) and p(l, θ) represents the projection: either parallel, or divergent, or
the cone beam rays. When p(l, θ) is formulated, X(x, y) will be determined.
This approach leads to a typical image reconstruction of X-ray CT.

In MRI, the object function is the transverse precession macroscopic mag-
netization (TPMM) Mxy(x, y). In a rotated coordinate system as specified in
Section 3.9.3.2 (which is slightly different from the rotating reference frame de-
fined by Eq. (3.3)), it is expressed as Mxy(x

′, y′), where x′ = x cos θ + y sin θ
and y′ = −x sin θ + y cos θ. The projection—often called as the measured
projection—is defined by Eq. (3.121). It is the integration of Mxy(x

′, y′) over
y′ along the line x′ = l:

p(x′, θ) =
∫

x′=l

Mxy(x
′, y′)dy′.

Thus,Mxy(x
′, y′) and p(x′, θ) are linked by the Inverse Radon transform. That

is, Mxy(x
′, y′) can be reconstructed by using Eq. (3.140), where it is denoted

by X(x, y).
Eq. (3.121) gives a theoretical definition of the measured projection p(x′, θ).

When the F2{Mxy(x
′, y′)} in Eq. (3.122) is expressed by the radial k-space

sample dataM(k, θ), an operational definition of the measured projection is

p(x′, θ) = F−1
1 {M(k, θ)}, (3.141)

which directly links the measured projection p(x′, θ) with k-space sample
M(k, θ). In Eq. (3.141), the subscript 1 in F−1

1 denotes a 1-D Fourier trans-
form with respect to the first variable k inM(k, θ). In this book, F−1

k is also
used as the same notation.
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FIGURE 3.16

The geometry of Radon space.

By using x′ = x cos θ + y sin θ and ∂p(l,θ)
∂l = p′(l, θ), the inner integral in

Eq. (3.140), with the coefficient 1
2π2 , can be written as

1

2π2

∫ ∞

−∞

∂p(l, θ)

∂l

1

x′ − l dl =
1

2π2

∫ ∞

−∞

p′(l, θ)
x′ − l dl

∆
= t(x′, θ). (3.142)

Based on the methods used to compute the projection t(x′, θ), IRT of
Eq. (3.140) can be implemented in two ways [18, 54–56]: (1) filtering by Fourier
transform, where t(x′, θ) is called the filtered projection, and (2) filtering by
the convolution, where t(x′, θ) is called the convolved projection.

(1) Filtering by Fourier transform. Eq. (3.142) can be rewritten as

t(x′, θ) =
p′(x′, θ)
i2π

⋆
−1
iπx′

,

where ⋆ denotes the convolution. Thus, the IRT of Eq. (3.140) consists of two
steps.
• Step 1: Filtering at each view. Based on Eq. (3.141) and using the Fourier

transform of the derivative theorem [6, 30], we have

F
{
p′(x′, θ)
i2π

}
= kM(k, θ). (3.143)

By using the Fourier transform of the Inverse function [6, 30], we have

F
{ −1
iπx′

}
= sign(k) =




−1 (k < 0)

1 (k > 0)
. (3.144)

Thus, the filtered projection t(x′, θ) can be computed by

t(x′, θ) = F−1
1 {kM(k, θ) · sign(k)} = F−1

1 {M(k, θ)|k|} . (3.145)
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In order to limit the unboundness of |k| filter at high frequency, |k| is mul-
tiplied by the bandlimited functions such as rect( k

Wk
) or rect-modulated cos,

sinc, and Hamming window, etc.; hereWk denotes the bandwidth. Therefore,
the filtered projection t(x′, θ) is computed by

t(x′, θ) = F−1
1 {M(k, θ)|k| rect( k

Wk
)}. (3.146)

• Step 2: Backprojection over all views. By substituting Eq. (3.146) into
Eq. (3.140), we obtain

X(x, y) =

∫ π

0

t(x′, θ)dθ =
∫ π

0

F−1
1 {M(k, θ)|k| rect( k

Wk
)}dθ. (3.147)

With filtering by the transform method, FBP consists of a 1-D Fourier trans-
form of the weighted k-space samples at each view and a backprojection over
all views.

(2) Filtering by the convolution. Eq. (3.142) can be rewritten as

−2πt(x′, θ) = − 1

π

∫ ∞

−∞

p′(x′, θ)
x′ − l dl = p′(x′, θ) ⋆

−1
πx′

= H1{p′(x′, θ)},

where ⋆ denotes the convolution, H1 represents the Hilbert transform with
respect to the first variable x′ of p′(x′, θ). Let ρ(x′) = −1

πx′ and {ρA(x′)} be
a set of functions of ρ(x′) parametrized at A > 0. As shown in X-ray CT
image reconstruction [18], when p(x′, θ) is reasonable and {ρA(x′)} is from
a regulating family, that is, limA→∞ p′(x′, θ) ⋆ ρA(x′) = H1{p′(x′, θ)}, then
we have H1{p′(x′, θ)} = limA→∞ p(x′, θ) ⋆ ρ′A(x

′); here, ρ′A(x
′) = ∂ρA(x′)

∂x′ . By
defining a convolution function q(x′) = − 1

2πρ
′
A(x

′), we obtain

t(x′, θ) = lim
A→∞

p(x′, θ) ⋆ q(x′).

The more detailed discussion on the filter function q(x′) can be found in
[18, 49, 53]. Thus, the IRT of Eq. (3.140) consists of three steps.
• Step 1: Filtering at each view. For a sufficiently large A, the convolved

projection t(x′, θ) can be computed by

t(x′, θ) = p(x′, θ) ⋆ q(x′). (3.148)

• Step 2: Interpolation at each view. For any specified n (−N/2 ≤ n ≤
(N − 1)/2), since x′ 6= n∆p with the probability one, 1-D interpolation must
be applied to approximate x′ with some n∆p. Among a variety of signal
interpolation schemes, the most effective one may be the nearest neighbor
interpolation given by

t(x′, θ) = t(k∆p, θ) if k = Arg min
n
|x′ − n∆p|. (3.149)
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It has been shown [18, 49, 53] that the nearest neighbor interpolation
Eq. (3.149) is equivalent to a convolution of the convolved projections t(x′, θ)
in a view with an interpolation function ψ(x′) defined by

ψ(x′) =





1 (|x′| < ∆p
2 )

0.5 (|x′| = ∆p
2 )

0 (|x′| > ∆p
2 ).

(3.150)

Thus, the interpolated data sθ(x, y) at the view θ is

sθ(x, y) = t(x′, θ) ⋆ ψ(x′), (3.151)

• Step 3: Backprojection over all views. By substituting Eqs. (3.148) and
(3.151) into Eq. (3.140), we obtain

X(x, y) =

∫ π

0

sθ(x, y)dθ =

∫ π

0

[(p(x′, θ) ⋆ q(x′)) ⋆ ψ(x′)]dθ. (3.152)

With filtering by the convolution method, FBP consists of a double convolu-
tion at each view and a backprojection over all views, in terms of the measured
projections.

Two steps of filtering by the Fourier transform and three steps of filtering by
convolution form a framework of the FBP algorithm for the 2DPR of the MR
image. Eqs. (3.147) and (3.152) show that an appropriate set of k-space data
can be acquired to produce an image X(x, y), which (via Eq. (3.121)) is an
estimate of TPMM Mxy(x

′, y′, 0). Due to the intrinsic link between TPMM
and TEMM described by Eq. (3.88), the MR image generated by FBP (a
2DPR method) essentially represents the spatial distribution of TEMM.

3.10.2.2 Computational Implementation

(1) 2DPR via filtering by Fourier transform. Eq. (3.147) can be numerically
implemented by an inverse 1-D DFT over k in each view and a backprojec-
tion over all views. When M ×N radial k-space samplesM(n∆k,m∆θ) are
acquired, for the pixels whose centers are at the locations (x = kδx, y = lδy),
we have

X(kδx, lδy) = ∆θ∆k
M−1∑

m=0

(N−1)/2∑

n=−N/2
M(n∆k,m∆θ)|n∆k|ei2πx′n∆k, (3.153)

where x′ = kδx cosm∆θ + lδy sinm∆θ is defined in Eq. (3.120).
Based on Eqs. (3.125) and (3.128) with the equal sign, we have ∆k = 1

N∆p .

From Eq. (3.127), we have ∆θ = π
M . For pixels with the unity size (i.e.,

δx = δy = 1), using the abbreviations M(n,m) for M(n∆k,m∆θ), and
substituting the above ∆k and ∆θ into Eq. (3.153), we obtain

X(k, l) =
c1

M ·N

M−1∑

m=0

(N−1)/2∑

n=−N/2
M(n,m)|n|ei2πnx′(k,l,m),
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where N is the number of the radial samples at each view, M is the number
of views (i.e., the number of the angle samples), c1 = π

∆p , ∆p is the spacing

between two adjacent measured projections (Section 3.9.3.2), and x′(k, l,m) =
k cos mπM + l sin mπ

M .
Discussion. Let FOVr and FOVx, FOVy be the field of view of a circular

image and its insider square I × I image. Under the conditions δx = δy = 1,

FOVr =
√
FOV 2

x + FOV 2
y =

√
(Iδx)2 + (Iδy)2 =

√
2I. Because FOVr =

N∆p (Eq. (3.125) with the equal sign), we have N∆p =
√
2I, which implies

that the spacing ∆p is less than or, at least, equal to the diagonal size
√
2 of

the unity pixel (δx = δy = 1) because N ≥ I.
(2) 2DPR via filtering by the convolution. Eq. (3.152) can be numerically im-
plemented by a convolution with the convolution function (in each view), a
convolution with the interpolation function (in each view), and a backprojec-
tion over all views, in terms of the measured projections, as follows.

X(x, y) = ∆p∆θ{
M−1∑

m=0

[

∞∑

n=−∞
(

(N−1)/2∑

l=−N/2
p(l∆p,m∆θ)q((n−l)∆p))ψ(x′−n∆p)]} ,

(3.154)
where x′ = x cosm∆θ+ y sinm∆θ and the measured projection p(l∆p,m∆θ)
is given in Eq. (3.124).

3.11 Echo Signal

In the previous sections, analyses on magnetizations, MR signals, k-space sam-
ples, and image reconstructions were based on ideal conditions. In practice,
however, non-ideal conditions such as the nonuniform magnetic field and the
heterogeneous sample always exist. This section discusses these nonidealities.
As we will see, these discussions will lead to some important topics in MRI,
for example, T ∗

2 decay, various echoes, the true T2 decay, etc.

3.11.1 T∗
2 Decay

FID signal sr(t) is given by Eq. (3.96), where ∆ω(r, τ) represents the off-
resonance frequency. Eq. (3.45) shows ∆ω(r, t) = γ∆B(r, t). Three factors:
(1) the inhomogeneities δBo of the main magnetic field Bo, (2) the gradient
field BG, and (3) the chemical shift ωcs/γ, can affect ∆B(r, t). Thus, ∆ω(r, t)
can be expressed as

∆ω(r, t) = γδBo(r) + γBG(r, t) + ωcs(r). (3.155)
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Eq. (3.155) implicitly indicates that δBo(r) and ωcs(r) are spatially variant
and BG(r, t) is spatio-temporally variant.

When ∆ω(r, t) = 0, then for an (one) isochromat, Eq. (3.96) becomes

sr(t) = ωo

∫

V

|Brxy(r)| |Mxy(r, 0)|e−
t

T2

cos(ωot+ φBrxy
(r) − φMxy (r, 0)−

π

2
)dr. (3.156)

It implies that under ideal conditions, the composite signal components of
sr(t) (i.e., the items inside the integral) sinusoidally oscillate with resonance
frequency ωo and decay with intrinsic transverse relaxation time constant T2.

When ∆ω(r, t) 6= 0, then for an (one) isochromat, Eq. (3.96) remains

sr(t) = ωo

∫

V

|Brxy (r)| |Mxy(r, 0)|e−
t

T2

cos(ωot+

∫ t

0

∆ω(r, τ)dτ + φBrxy
(r) − φMxy (r, 0)−

π

2
)dr . (3.157)

It implies that under the practical conditions, due to the non-zero off-
resonance frequency ∆ω(r, t), the composite signal components of sr(t) si-
nusoidally oscillate with various frequencies. Therefore, they lose the phase
coherence and undergo a destructive dephasing process. As a result of the
integration of these dephasing components over the volume V, the FID signal
sr(t) of Eq. (3.157) decays with effective reduced time constants, which is
much faster than its counterpart of Eq. (3.156).

The first effective reduced time constant results from the inhomogeneities
δBo of the main magnetic field Bo, denoted by T ∗

2 , and is given by

1

T ∗
2

=
1

T2
+ γδBo. (3.158)

T ∗
2 is then further rapidly reduced by the gradient field BG and becomes T ∗∗

2 ,
which is given by

1

T ∗∗
2

=
1

T ∗
2

+ γGR, (3.159)

where G is the gradient and R is the radius of the sample. It is clear that

T ∗∗
2 < T ∗

2 < T2. (3.160)

The impacts of T ∗
2 and T ∗∗

2 on the FID signal decays are shown in Figure 3.17.

Although each nuclear spin in the sample experiences a decay with its intrin-
sic transverse relaxation time constant T2, the FID signal sr(t), as a function
of TPMM Mxy(r, 0) which is a collective representation of spins in the unit
volume dr over the sample volume, decays with the effective reduced time
constants T ∗

2 or T ∗∗
2 .
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FIGURE 3.17

Three types of decays of FID signal: (a) with the intrinsic T2, (b) with T ∗
2

caused by the inhomogeneities δBo of the main magnetic field Bo, and (c)
with T ∗∗

2 caused by the gradient field BG.

3.11.2 Echoes

A single population of nuclear spins (i.e., an isochromat) has an intrinsic trans-
verse relaxation time constant T2. Different isochromats have different values
of T2. By measuring values of T2 from the ideal FID signals, the isochromats
that normally correspond to different tissues can be distinguished. In practice,
however, as shown in the previous section, FID signals decay with effective
reduced time constants T ∗

2 or T ∗∗
2 that are the field and/or the sample depen-

dent. Thus, in order to distinguish different isochromats, the true T2 decay is
required.

From Eq. (3.155), the phase shift from ωot (i.e., the phase accumulation over
the time t) of FID signal caused by three types of off-resonance frequencies is

∫ t

0

∆ω(r, τ)dτ = γδBo(r)t+ γ

∫ t

0

BG(r, τ)dτ + ωcs(r)t
∆
= ∆φ(r, t). (3.161)

In Eq. (3.161), δBo(r) and ωcs(r) are spatially variant, and BG(r, τ) is spatio-
temporally variant but controllable. The phase shift caused by spatially vari-
ant factors can be removed instantly in different ways, thereby recovering the
phase coherence. The resultant signals are different from the FID signal and
are called echo signals. Echo signals can be generated either by gradient field
reversal or by multiple RF pulses. The former are called gradient echoes and
the latter are known as RF echoes.

3.11.2.1 Gradient Echoes

By ignoring the inhomogeneities of the main magnetic field and the chemical
shift, that is, in Eq. (3.161), letting δBo(r) = 0 and ωcs(r) = 0, then ∆φ(r, t) =
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FIGURE 3.18

Gradient echo generation: (a) an excitation RF pulse (π2 )x′ , (b) the gradient
Gx, and (c) the decays of FID signal with T ∗

2 and T ∗∗
2 .

γ
∫ t
0
BG(r, τ)dτ . As shown in Figure 3.18, the readout gradient is ~G(τ) = Gx~i.

Because of the spatio-temporally variant gradient field, all spins in the sam-
ple lose phase coherence after the excitation RF pulse (π2 )x′ is turned off. As
shown in Figure 3.18, from the time t = 0, spins begin to dephase. During the
time period 0 < t < τ , the FID signal sr(t) decays with an effective reduced
time constant T ∗∗

2 and the phase shift is given by

∆φ(r, t) = −γGxxt. (3.162)

Also as shown in Figure 3.18, at time t = τ , the readout gradient ~Gx reverses
its polarity and spins begin to rephase. During the time period τ < t < 2τ ,
spins gradually regain phase coherence and the phase shift is given by

∆φ(r, t) = −γGxxτ + γGxx(t− τ). (3.163)

Spin rephasing results in a regrowth of the signal. At time t = 2τ ,
Eq. (3.163) becomes

∆φ(r, t) = 0, (3.164)

which implies that the spins are rephased completely. Thus, a signal occurs
at time t = 2τ , and is called the gradient echo.

The phase shift ∆φ(r, t) as a function of the time t for three locations (t =
−x, 0, x) is plotted in Figure 3.19, which gives the phase progressions of spins.
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FIGURE 3.19

Phase progressions of spins at three locations, x = x1, 0, −x1, in the gradient
echo.

For time t > 2τ , as the gradient remains on, spins begin to dephase again.
However, by repetitively switching gradient polarity as shown in Figure 3.20,
multiple gradient echoes are generated at time t = n · 2τ (n > 1) within the
limit of T ∗

2 decay.
Changing the polarity of the readout gradient inverts spins from the dephas-

ing process to the rephasing process, thereby, producing a gradient echo signal
at certain time instants. This signal, in fact, is a two-side, nearly symmetric
FID signal with T ∗∗

2 decay and its peak amplitudes have T ∗
2 decay.

3.11.2.2 Spin Echoes

By ignoring the gradient field and the chemical shift, that is, in Eq. (3.161),
letting BG(r, τ) = 0 and ωcs(r) = 0, then ∆φ(r, t) = γδBo(r)t.

Figure 3.21 shows a two-pulse sequence—an excitation pulse (π2 )x′ followed
by a time delay τ and then a refocusing RF pulse (π)x′—denoted by

(
π

2
)x′ − τ − (π)x′ − 2τ.

The RF pulse (π2 )x′ flips TEMM onto the y′-axis, which becomes TPMM as
shown in Figure 3.22a.

Because of the spatially variant inhomogeneities δBo of the main magnetic
field Bo, all spins in the sample lose phase coherence after the excitation RF
pulse (π2 )x′ is turned off. As shown in Figure 3.22b, from the time t = 0 (here,
the pulse width τπ/2 of (π2 )x′ is ignored because τπ/2 ≪ τ . A more detailed
discussion is given in Appendix 3D.), TPMM begins to fan out and dephase.
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FIGURE 3.20

The gradient echo train generated by switching the polarity of the gradient
~Gx.

During the time period 0 < t < τ , the FID signal sr(t) decays with an effective
reduced time constant T ∗

2 and the phase shift is given by

∆φ(r, t) = γδBo(r)t. (3.165)

Immediately before time τ , the pre-pulse phase shift is given by ∆φ(r, τ−) =
γδBo(r)τ .

¶

At the time t = τ , the refocusing RF pulse (π)x′ reverses all spins by
the phase π, i.e., rotates TPMM to the other side of the transverse plane,
as shown in Figure 3.22.c. Immediately after (π)x′ pulse (Here, the pulse
width τπ of (π)x′ is ignored because τπ ≪ τ . A more detailed discussion is
given in Appendix 3D.), the post-pulse phase shift is given by ∆φ(r, τ+) =
π −∆φ(r, τ−) = π − γδBo(r)τ .

From time t = τ , TPMM continues the precession as before the refocusing
RF pulse (π)x′ ; therefore, TPMM begins to rephase as shown in Figure 3.22.c.
During the time period τ < t < 2τ , spins gradually regain phase coherence
and the phase shift is given by

∆φ(r, t) = ∆φ(r, τ+) + γδBo(r)(t − τ). (3.166)

¶When τ is properly selected, TPMM completely vanishes and sr(t) disappears before time
t = τ .
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FIGURE 3.21

Spin echo generation by RF pulses (π2 )x′ − τ − (π)x′ − 2τ .
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FIGURE 3.22

Phase diagram of TPMM: (a) at t = 0, TEMM is flipped by an excitation RF
pulse (π2 )x′ onto the y′-direction and becomes a TPMM; (b) for 0 < t < τ ,
TPMM begins to fan out and dephase; (c) for τ < t < 2τ , TPMM is reversed
by a refocusing RF pulse (π)x′ and continues precession; and (d) TPMM is
rephased in the −y′-direction and an echo is formed.
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FIGURE 3.23

The spin echo train generated by the RF pulse sequence (π2 )x′ − τ − (π)
(1)
x′ −

2τ − · · · − (π)
(N)
x′ − 2τ .

Spin rephasing results in a regrowth of the signal. At time t = 2τ , the phase
shift becomes

∆φ(r, 2τ−) = ∆φ(r, τ+) + γδBo(r)(2τ − τ) = π, (3.167)

as shown in Figure 3.22d, which implies that all spins are rephased completely.
Thus a signal occurs at time t = 2τ and is known as spin echo. 2τ is commonly
called the echo time and denoted by TE .

For the time t > 2τ , as the relaxation continues, spins begin to dephase
again. However, by repetitively applying the refocusing RF pulse (π)x′ at
time t = (2n− 1)τ (n > 1) as shown in Figure 3.23, multiple spin echoes are
generated at time t = n · 2τ (n > 1) within the limit of T2 decay.

Applying the refocusing RF pulse (π)x′ inverts spins from the dephasing
process to the rephasing process, thereby, producing a spin echo signal at
certain time instants. This signal, in fact, is a two-side, nearly symmetric FID
signal with T ∗

2 decay and its peak amplitudes have T2 decay.

3.11.3 T2 Decay

Section 3.11.2.2 provides a graphic analysis of the generation of spin echo
signals. This section presents a rigorous analysis of the evolution of the spin
echoes generated by the RF pulse sequence

(
π

2
)x′ − τ − (π)

(1)
x′ − 2τ · · · (π)(N)

x′ − 2τ.
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It shows that at time t = n · TE (n = 1, · · · , N and TE = 2τ—the echo time),
TPMMs Mx′y′(r, t) at the different locations r in the sample regain phase
coherence; therefore, at these time instants, FID signals are not degraded by
the inhomogeneities of the main magnetic field. Because the gradient field
and the chemical shift are ignored in spin echoes, the peak amplitudes of spin
echoes that occur at time t = n · TE have the true T2 decay.

The analysis adopts the following approach:

(a) The entire process of the spin echo generation is decomposed
into several individual processes.

(b) Each of these processes represents either a forced precession
or a free precession.

(c) The solutions for PMM in the forced and free precession are
given by Eqs. (3.66) and (3.38), respectively.‖

(d) The values of PMM at the end of the preceding process serve
as the initial values of PMM in the immediately following process.

By using this approach, the analytical expressions of PMM in the spin echo
generation can be obtained.

The beginning portion of this RF pulse sequence is (π2 )x′−τ−(π)(1)x′ −2τ and
the remaining portion is the repetitive (π)

(n)
x′ − 2τ (n = 2, · · · , N). Appendix

3D shows that (π2 )x′ − τ − (π)
(1)
x′ − 2τ pulse sequence generates two forced

precessions and two free precessions and (π)
(2)
x′ −2τ pulse generates one forced

precession and one free precession. These six precession processes are in the
order of (1) an excitation, (2) a relaxation (rephasing), (3) a refocusing, (4)
a relaxation (dephasing and rephasing), (5) a refocusing, and (6) a relaxation
(dephasing and rephasing).

By analyzing each of these processes, Appendix 3D proves that when
τπ/2 << τ and τπ << τ , that is, the widths of RF pulses are ignored, then

(1) TPMMs Mx′y′(r, t) at the different locations r in the sample
undergo the dephasing and rephasing in the time periods ((n −
1)TE, (n− 1

2 )TE) and ((n− 1
2 )TE , (n)TE), respectively.

(2) At the time t = n ·TE (n = 1, · · · , N), as shown by Eq. (3.161),
∆φ(r, t) = 0, the rephasing is completed, TPMMs Mx′y′(r, t) re-
gain the phase coherence, and |Mx′y′(r, t)| ∝ e−t/T2 .

Thus, Eq. (3.96) (i.e., Eq. (3.157) becomes Eq. (3.156), and the peak ampli-
tudes sr(nTE) of FID signal have the true T2 decay.

When the sample consists of only one isochromat, T2(r) = T2. At time
t = n · TE, Eq. (3.156) can be rewritten as

sr(nTE) = ωo(

∫

V

|Brxy (r)| |Mxy(r, 0)|

cos(ωonTE + φBrxy
(r)− φMxy (r, 0)−

π

2
)dr)e−

nTE
T2 , (3.168)

‖See Section 3.5.2; PMM consists of TPMM and LPMM.
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which implies that the compound signal components of the FID signal sinu-
soidally oscillate with the resonance frequency ωo and the FID signal decays
with an intrinsic transverse relaxation time constant T2.

Although the above analysis is developed for the (π2 )x′ − τ − (π)
(1)
x′ −

2τ · · · (π)
(N)
x′ −2τ RF pulse sequence, the idea and method used in this

approach can be applied to arbitrary α1 − τ − α2 (α1 6= π
2 , α2 6= π, and not

restricted at x′-axis) pulse sequences.

3.12 Appendices

3.12.1 Appendix 3A

This appendix proves that for a spin-I system, its TEMM is given by
Eq. (3.17). Following Abragam’s guidance [27], Mo

z (r) can be derived from
the populations of energy levels of nuclear spins.

The Boltzmann distribution for energies is given by

ni
n

=
exp(−ei/κT )∑
i exp(−ei/κT )

, (3.169)

where ni is the number of spins at equilibrium temperature T in a state i
that has energy ei, n is the total number of spins in the system, and κ is the
Boltzmann constant (1.380× 10−23 J ·K−1).

Let a spin system of population n be placed in a static magnetic field
~Bo = Bo~k. Because different orientations of the nuclear spins with respect
to the field, described by different quantum number Iz of the spin quantized
along the field, correspond to different magnetic energies, a net macroscopic
magnetization appears [25–27, 55].

According to the Boltzmann distribution, for this spin system, ni is given
by

nIz = n
exp(−eIz/κT )∑I

Iz=−I exp(−eIz/κT )
, (3.170)

where eIz = γ~IzBo and the net macroscopic magnetization Mo
z (r) is

Mo
z (r) =

I∑

Iz=−I
nIz (γ~Iz) = γ~n

∑I
Iz=−I Iz exp(γ~BoIz/κT )∑I
Iz=−I exp(γ~BoIz/κT )

. (3.171)

Because γ~Bo/κT is a very small number, the exponential term in the
Boltzmann distribution can be approximated by its linear expansion. Thus,
the denominator in Eq. (3.171) is

I∑

Iz=−I
exp(γ~BoIz/κT ) ≃

I∑

Iz=−I
(1 + γ~BoIz/κT ) = 2I + 1, (3.172)
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and the numerator in Eq. (3.171) is

I∑

Iz=−I
Iz exp(γ~BoIz/κT ) ≃

I∑

Iz=−I
Iz(1+γ~BoIz/κT ) =

1

3
I(I+1)(2I+1)

γ~Bo
κT

.

(3.173)
By substituting Eqs. (3.172) and (3.173) into (3.171), Eq. (3.17) is proved.

3.12.2 Appendix 3B

This appendix shows that a vector cross product can be converted to a pure
matrix multiplication. Let

~a =



a1
a2
a3


 and ~b =



b1
b2
b3


 (3.174)

be two column vectors, the cross product ~a×~b and ~b×~a can be expressed as
the multiplication of a skew-symmetric matrix A and the vector ~b as follows.

~a×~b = A~b =




0 −a3 a2
a3 0 −a1
−a2 a1 0





b1
b2
b3


 (3.175)

or

~b× ~a = AT~b =




0 a3 −a2
−a3 0 a1
a2 −a1 0





b1
b2
b3


 (3.176)

where AT is the transpose matrix of A.
Verification. The definition of the vector cross product is given by

~a×~b =



~i ~j ~k
a1 a2 a3
b1 b2 b3


 = (a2b3−a3b2)~i+(a3b1−a1b3)~j+(a1b2−a2b1)~k. (3.177)

Eq. (3.175) gives

~a×~b = A~b =



a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1


 . (3.178)

Eq. (3.177) and Eq. (3.178) are identical. Similarly, we can also verify

Eq. (3.176) which is used in this book for the Bloch equation, where ~b = ~M

and ~a = γ ~B.
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3.12.3 Appendix 3C

First, we prove that a Gaussian RF pulse produces a Gaussian slice TPMM
profile; the slice thickness is ∆z = 4

√
2π/γGz and the ratio r|M ′

xy| > 0.95.

• Let p(x) be the pdf of N(0, 1
2π ), that is, a Gaussian distribution with zero

mean and variance σ2 = 1
2π ; then

p(x) =
1√
2πσ

e−
x2

2σ2 =
1√

2π(1/
√
2π)

e−
x2

2(1/2π) = e−πx
2

. (3.179)

Thus, both e−πτ
2

(Eq. (3.80)) and e−πf
2

(Eq. (3.81)) are pdf of a Gaussian
distribution with N(0, 1

2π ). This implies that a Gaussian RF excitation pulse
(Eq. (3.80)) produces a Gaussian slice TPMM profile (Eq. (3.82)).
• When −2σ < f < 2σ is chosen to define a slice, then based on

Eqs. (1.76) and (3.77), the slice thickness can be determined by z, which
satisfies 1

2πγGz(z − zo) = ±2σ. Thus ∆z = 4σ/ 1
2πγGz. Due to σ = 1√

2π
,

∆z = 4
√
2π/γGz.

• It is known that for Gaussian pdf p(x) of Eq. (3.179)

∫ 2σ

−2σ

p(x)dx =

∫ 2σ

−2σ

e−πx
2

dx > 0.95. (3.180)

Thus, using Eq. (3.82), the ratio r|M ′
xy | defined by Eq. (3.79) for this case is

r|M ′
xy| =

∫ zo+2σ/ 1
2π γGz

zo−2σ/ 1
2π γGz

|M ′
xy(r, τp)|dz∫∞

−∞ |M ′
xy(r, τp)|dz

=

∫ 2σ

−2σ
e−πf

2

df∫∞
−∞ e−πf2df

> 0.95. (3.181)

It implies that more than 95% of TPMM is located within the slice.
Second, we prove that for the slice TPMM profile with the rectangular

shape as shown in Eg.(3.86), which is produced by an RF excitation pulse
with sinc shape as shown in Eq. (3.84), the slice thickness is ∆z = 1/ 1

2πγGzτp
and the ratio r|M ′

xy | = 1.00.

• When −∆f
2 < f < ∆f

2 (∆f = 1
τp
) is chosen to define a slice, then based

on Eqs. (1.76) and (3.77), the slice thickness can be determined by z, which
satisfies 1

2πγGz(z − zo) = ±
∆f
2 . Thus ∆z = ∆f/ 1

2πγGz = 1/ 1
2πγGzτp.

• Using Eq. (3.86), the ratio r|M ′
xy| defined by Eq. (3.79) for this case is

r|M ′
xy | =

∫ zo+0.5/ 1
2π γGzτp

zo−0.5/ 1
2π γGzτp

|M ′
xy(r, τp)|dz∫∞

−∞ |M ′
xy(r, τp)|dz

=

∫ ∆f/2

−∆f/2 rect(
f
∆f )df∫∞

−∞ rect( f
∆f )df

= 1.00.

(3.182)
It implies that 100% of TPMM is located within the slice.

Third, we prove that for the slice TPMM profile with sinc shape which is
produced by an RF excitation pulse with rectangular shape, the slice thickness
is ∆z = 2/ 1

2πγGzτp and the ratio r|M ′
xy | > 0.90.
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Let the RF excitation pulse B1(τ) take a rectangular shape

B1(τ +
τp
2
) = rect(

τ

τp
) =

{ 1
τp

(|τ | ≤ τp
2 )

0 (|τ | > τp
2 );

(3.183)

then

F−1
1 {B1(τ +

τp
2
)} = sin(πfτp)

πfτp
= sinc(fτp). (3.184)

By substituting Eq. (3.184) into Eq. (3.78), the slice TPMM profile has a sinc
shape

|M ′
xy(r, τp)| = γMo

z (r)| sinc(fτp)| . (3.185)

• When a pair of points at the f -axis (f > 0 and f < 0) that are the first
zero cross of sinc(fτp) is chosen to define a slice, then based on Eqs. (1.76) and
(3.77), the slice thickness can be determined by z which satisfies fτp = ±1,
that is, 1

2πγGz(z − zo) = ± 1
τp

= f . Thus z = zo ± 1/ 1
2πγGzτp; therefore, the

slice thickness is ∆z = 2/ 1
2πγGzτp.

• Using the formula
∫∞
0 sinc(x)dx = 1

2 , we have

∫ ∞

−∞
sinc(fτp)df = 2

∫ ∞

0

sinc(fτp)df =
1

τp
. (3.186)

Using the formula Si(y) =
∫ y
0

sin x
x dx = y − 1

3 ·
y3

3! + 1
5 ·

y5

5! − · · ·, we have∫ 1

0
sinc(x)dx = 1

πSi(π) ≃ 1− π2

18 .
∗∗ Thus

∫ 1/τp

−1/τp

sinc(fτp)df = 2

∫ 1/τp

0

sinc(fτp)df =
2

πτp
Si(π) ≃ 2

τp
(1−π

2

18
). (3.187)

Thus, by using Eq. (3.185) as well as Eqs. (3.186) and (3.187), the ratio
r|M ′

xy | defined by Eq. (3.79) for this case is

r|M ′
xy | =

∫ zo+1/ 1
2π γGzτp

zo−1/ 1
2π γGzτp

|M ′
xy(r, τp)|dz∫∞

−∞ |M ′
xy(r, τp)|dz

=

∫ 1/τp
−1/τp

|sinc(fτp)|df∫∞
−∞ |sinc(fτp)|df

> 2(1−π
2

18
) ≃ 0.903.

(3.188)
It implies that more than 90% of TPMM is located within the slice.††

∗∗Which is based on the first two terms of Taylor series expansion of
sin(x)

x
, therefore “≃”

actually implies “>.”
††In Eq. (3.188), we use

∫∞
−∞ |sinc(fτp)|df ≃ |

∫∞
−∞ sinc(fτp)df | =

1
τp

. The more accurate

results can be obtained by numerical computation.
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FIGURE 3.24

(π2 )x′ − τ − (π)
(1)
x′ − 2τ − (π)

(2)
x′ − 2τ pulse sequence generates a process that

consists of six sub-processes: (i) an excitation (t0−t1), (ii) a relaxation (t1−t2),
(iii) a refocusing (t2 − t3), (iv) a relaxation (t3, t5), (v) a refocusing (t5, t6),
and (vi) a relaxation (t6, t8).

3.12.4 Appendix 3D

This appendix proves that for the spin echoes generated by the RF pulse

sequence (π2 )x′ − τ − (π)
(1)
x′ − 2τ · · · (π)(N)

x′ − 2τ , TPMMs Mx′y′(r, t) at the
different locations r in the sample undergo dephasing and rephasing in the
time periods ((n−1)TE, (n− 1

2 )TE) and ((n− 1
2 )TE , (n)TE), respectively; and

at the time t = n·TE (n = 1, · · · , N and TE = 2τ), the rephasing is completed,
TPMMs regain phase coherence and |Mx′y′(r, t)| ∝ e−t/T2 .

It is sufficient to prove the above properties for the RF pulse sequence

(
π

2
)x′ − τ − (π)

(1)
x′ − 2τ − (π)

(2)
x′ − 2τ, (3.189)

because (π)
(n)
x′ − 2τ (n > 2) is just repetitions of (π)

(2)
x′ − 2τ .

As indicated in Section 3.11.2.2, the RF pulse sequence (π2 )x′ − τ − (π)
(1)
x′ −

2τ − (π)
(2)
x′ − 2τ generates three forced precession and three free precession

processes. As shown in Figure 3.24, these six processes are in the order of (i) an
excitation (t0, t1), (ii) a relaxation: dephasing (t1, t2), (iii) a refocusing (t2, t3),
(iv) a relaxation: rephasing (t3, t4) and dephasing (t4, t5), (v) a refocusing
(t5, t6), and (vi) a relaxation: rephasing (t6, t7) and dephasing (t7, t8).

At each time point ti (i = 1, · · · , 8), t−i and t+i denote the end time instant of
the preceding process and the start time instant of the immediately following

process. τπ/2 and τπ denote the width of RF pulses (π2 )x′ and (π)
(n)
x′ (n = 1, 2),

τπ/2 ≪ τ and τπ ≪ τ .

(i) In the period t0 − t1. When an excitation RF pulse (π2 )x′ is applied at
the time t = t0 = 0, due to ω1τπ/2 = π

2 , Eq. (3.66) shows

Mx′(r, t−1 ) = Mx′(r, 0)
My′(r, t

−
1 ) = Mz′(r, 0)

Mz′(r, t
−
1 ) = −My′(r, 0),

(3.190)

where Mx′(r, 0), My′(r, 0), and Mz′(r, 0) are the initial values of the com-

ponents of PMM ~M ′(r, t) = Mx′(r, t)~i(t) + My′(r, t)~j(t) + Mz′(r, t)~k(t)
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(Eq. (1.5.5)). If the spin system is at the thermal equilibrium state (it is al-
ways the case in practice) immediately before the excitation, then, Eq. (3.190)
becomes

Mx′(r, t−1 ) = 0
My′(r, t

−
1 ) =Mo

z (r)
Mz′(r, t

−
1 ) = 0,

(3.191)

where Mo
z (r) denotes the TEMM at r. The PMM of Eq. (3.191) is shown in

Figure 3.22a.

(ii) In the period t1 − t2. After the excitation RF pulse (π2 )x′ is turned
off, spins undergo relaxation which is characterized by Eq. (3.38). Because
~M ′(r, t+1 ) = ~M ′(r, t−1 ), the initial values in Eq. (3.38) are given by Eq. (3.191).

Thus, for t1 < t < t2, PMM ~M ′(r, t) is described by

Mx′(r, t) =Mo
z (r) sinωo(t− t1) e−(t−t1)/T2

My′(r, t) =Mo
z (r) cosωo(t− t1) e−(t−t1)/T2

Mz′(r, t) =Mo
z (r)(1 − e−(t−t1)/T1) ,

(3.192)

and TPMM Mx′y′(r, t) =Mx′(r, t) + iMy′(r, t) is given by

Mx′y′(r, t) = i Mo
z (r)e

−(t−t1)/T2e−iωo(t−t1). (3.193)

In Eq. (3.193), as the time t (t1 < t < t2) approaches t2, the phase shift
defined by Eq. (3.161) |∆φ(r, t)| = ωo(t− t1) becomes larger and approaches
its maximum ωoτ . Thus, Eq. (3.193) represents a dephasing process.

After τ delay, that is, at the time t = t−2 , Eq. (3.192) shows PMM

Mx′(r, t−2 ) =Mo
z (r) sinωoτ e

−τ/T2

My′(r, t
−
2 ) =Mo

z (r) cosωoτ e
−τ/T2

Mz′(r, t
−
2 ) =Mo

z (r)(1 − e−τ/T1),

(3.194)

and Eq. (3.193) shows TPMM

Mx′y′(r, t
−
2 ) = iMo

z (r)e
−τ/T2e−iωoτ . (3.195)

(iii) In the period t2 − t3. When the refocusing RF pulse (π)
(1)
x′ is applied

at time t = t2, due to ω1τπ = π, Eq. (3.66) shows that

Mx′(r, t−3 ) = Mx′(r, t+2 )
My′(r, t

−
3 ) = −My′(r, t

+
2 )

Mz′(r, t
−
3 ) = −Mz′(r, t

+
2 ).

(3.196)

Because ~M ′(r, t+2 ) = ~M ′(r, t−2 ), Eq. (3.196) becomes

Mx′(r, t−3 ) = Mo
z (r) sinωoτ e

−τ/T2

My′(r, t
−
3 ) = −Mo

z (r) cosωoτ e
−τ/T2

Mz′(r, t
−
3 ) = −Mo

z (r)(1 − e−τ/T1).

(3.197)
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(iv) In the period t3 − t5. After the (π)
(1)
x′ RF pulse is turned off, spins

undergo the relaxation that is characterized by Eq. (3.38). Because of
~M ′(r, t+3 ) = ~M ′(r, t−3 ), the initial values in Eq. (3.38) are given by Eq. (3.197).

Thus, for t3 < t < t4, PMM ~M ′(r, t) is described by

Mx′(r, t) = Mo
z (r) sinωo(τ − (t− t3)) e−(τ+(t−t3))/T2

My′(r, t) = −Mo
z (r) cosωo(τ − (t− t3)) e−(τ+(t−t3))/T2

Mz′(r, t) = Mo
z (r)(1 − (2− e−τ/T1)e−(t−t3)/T1),

(3.198)

and TPMM Mx′y′(r, t) is given by

Mx′y′(r, t) = −i Mo
z (r)e

−(τ+(t−t3))/T2eiωo(τ−(t−t3)). (3.199)

In Eq. (3.199), as the time t (t3 < t < t4) approaches t4, the phase shift defined
by Eq. (3.161) ∆φ(r, t) = ωo(τ − (t − t3)) becomes smaller and approaches
the zero. Thus, Eq. (3.199) represents a rephasing process.

After τ delay, that is, at the time t = t−4 , Eq. (3.198) shows PMM

Mx′(r, t−4 ) = 0

My′(r, t
−
4 ) = −Mo

z (r) e
−2τ/T2

Mz′(r, t
−
4 ) = Mo

z (r)(1 − e−τ/T1)2,
(3.200)

and Eq. (3.199) shows TPMM

Mx′y′(r, t
−
4 ) = −iMo

z (r)e
−2τ/T2 ≃ −iMo

z (r)e
−t−4 /T2 , (3.201)

which indicates that the spin rephasing is completed at t = t−4 because of the

phase shift ∆φ(r, t−4 ) = 0. |Mx′y′(r, t
−
4 )| ≃Mo

z (r)e
−t−4 /T2 implies that TPMM

has a true T2 decay. In Eq. (3.201), −i indicates that TPMM Mx′y′(r, t
−
4 ) is

at the −~j(t)-direction as shown in Figure 3.22d.
After t > t4, spins continue relaxation as they do before the refocusing RF

pulse (π)
(1)
x′ . Thus, for t4 < t < t5, due to t − t3 = t − (t4 − τ) = t − t4 + τ ,

Eq. (3.198) becomes

Mx′(r, t) = −Mo
z (r) sinωo(t− t4) e−(2τ+(t−t4))/T2

My′(r, t) = −Mo
z (r) cosωo(t− t4) e−(2τ+(t−t4))/T2

Mz′(r, t) = Mo
z (r)(1 − (2 − e−τ/T1)e−(τ+(t−t4))/T1),

(3.202)

and TPMM Mx′y′(r, t) is given by

Mx′y′(r, t) = −i Mo
z (r)e

−(2τ+(t−t4))/T2e−iωo(t−t4). (3.203)

In Eq. (3.203), as the time t (t4 < t < t5) approaches t5, the phase shift
|∆φ(r, t)| = ωo(t − t4) becomes larger and approaches its maximum ωoτ .
Thus, Eq. (3.203) represents a dephasing process.
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After τ delay, that is, at the time t = t−5 , Eq. (3.202) shows PMM

Mx′(r, t−5 ) = −Mo
z (r) sinωoτ e

−3τ/T2

My′(r, t
−
5 ) = −Mo

z (r) cosωoτ e
−3τ/T2

Mz′(r, t
−
5 ) = Mo

z (r)(1 − (2− e−τ/T1)e−2τ/T1),

(3.204)

and Eq. (3.203) shows TPMM

Mx′y′(r, t
−
5 ) = −iMo

z (r)e
−3τ/T2e−iωoτ . (3.205)

(v) In the period t5− t6. When the refocusing RF pulse (π)
(2)
x′ is applied at

the time t = t5, due to ω1τπ = π, Eq. (3.66) shows that

Mx′(r, t−6 ) = Mx′(r, t+5 )
My′(r, t

−
6 ) = −My′(r, t

+
5 )

Mz′(r, t
−
6 ) = −Mz′(r, t

+
5 ).

(3.206)

Because of ~M ′(r, t+5 ) = ~M ′(r, t−5 ), Eq. (3.206) becomes

Mx′(r, t−6 ) = −Mo
z (r) sinωoτ e

−3τ/T2

My′(r, t
−
6 ) = Mo

z (r) cosωoτ e
−3τ/T2

Mz′(r, t
−
6 ) = −Mo

z (r)(1 − (2− e−τ/T1)e−2τ/T1).

(3.207)

(vi) In the period t6 − t8. After the refocusing RF pulse (π)
(2)
x′ is turned

off, spins undergo the relaxation that is characterized by Eq. (3.38). Because
~M ′(r, t+6 ) = ~M ′(r, t−6 ), the initial values in Eq. (3.38) are given by Eq. (3.207).

Thus, for t6 < t < t7, PMM ~M ′(r, t) is described by

Mx′(r, t) = −Mo
z (r) sinωo(τ − (t− t6)) e−(3τ+(t−t6))/T2

My′(r, t) = Mo
z (r) cosωo(τ − (t− t6)) e−(3τ+(t−t6))/T2

Mz′(r, t) = Mo
z (r)(1 − (2− (2 − e−τ/T1)e−2τ/T1)e−(t−t6)/T1),

(3.208)

and TPMM Mx′y′(r, t) is given by

Mx′y′(r, t) = i Mo
z (r)e

−(3τ+(t−t6))/T2eiωo(τ−(t−t6)). (3.209)

In Eq. (3.209), as the time t (t6 < t < t7) approaches t7, the phase shift defined
by Eq. (3.161) ∆φ(r, t) = ωo(τ − (t − t6)) becomes smaller and approaches
the zero. Thus, Eq. (3.209) represents a rephasing process.

After τ delay,that is, at the time t = t−7 , Eq. (3.208) shows PMM

Mx′(r, t−7 ) = 0

My′(r, t
−
7 ) =Mo

z (r) e
−4τ/T2

Mz′(r, t
−
7 ) =Mo

z (r)(1 − e−2τ/T1)(1− e−τ/T1)2,
(3.210)



MRI Physics and Mathematics 103

and Eq. (3.209) shows TPMM

Mx′y′(r, t
−
7 ) = iMo

z (r)e
−4τ/T2 ≃ iMo

z (r)e
−t−7 /T2 , (3.211)

which indicates that the spin rephasing is completed at t = t−7 because of the

phase shift ∆φ(r, t−7 ) = 0. |Mx′y′(r, t
−
7 )| ≃Mo

z (r)e
−t−7 /T2 implies that TPMM

has a true T2 decay. In Eq. (3.211), i indicates that TPMM Mx′y′(r, t
−
7 ) is at

the ~j(t)-direction (not shown in Figure 3.22).

After t > t7, spins continue relaxation as they do before the RF pulse (π)
(2)
x′ .

Thus, for t7 < t < t8, due to t − t6 = t − (t7 − τ) = t − t7 + τ , Eq. (3.208)
becomes

Mx′(r, t) =Mo
z (r) sinωo(t− t7) e−(4τ+(t−t7))/T2

My′(r, t) =Mo
z (r) cosωo(t− t7) e−(4τ+(t−t7))/T2

Mz′(r, t) =Mo
z (r)(1 − (2− (2− e−τ/T1)e−2τ/T1)e−(τ+(t−t7))/T1),

(3.212)

and TPMM Mx′y′(r, t) is given by

Mx′y′(r, t) = i Mo
z (r)e

−(4τ+(t−t7))/T2e−iωo(t−t7). (3.213)

In Eq. (3.213), as the time t (t7 < t < t8) approaches t8, the phase shift
|∆φ(r, t)| = ωo(t − t7) becomes larger and approaches its maximum ωoτ .
Thus, Eq. (3.213) represents a dephasing process.

From Figure 3.24, we find that the peak amplitudes of the n-th spin echo
occurs at time instants

t3n+1 = τπ/2 + n(τπ + TE). (3.214)

It is easy to verify that the peak amplitudes of the first, second, and third
spin echoes are at t4 = τπ/2 + (τπ + TE), t7 = τπ/2 + 2(τπ + TE), and t10 =
τπ/2+3(τπ+TE). Under the conditions τπ/2 << τ and τπ << τ (i.e., ignoring
the widths of RF pulses), Eq. (3.214) can be approximated by t3n+1 ≃ nTE .
Thus, based on Eqs. (3.201) and (3.211), we have

|Mx′y′(r, t3n+1)| =Mo
z (r)e

−nTE/T2 ≃Mo
z (r)e

−t3n+1/T2 ∝ e−t3n+1/T2 .
(3.215)

Eq. (3.215) indicates that in order to have the true T2 decay, the FID signal
sr(t) should be sampled at time τπ/2 + n(τπ + TE), not at nTE.

Problems

3.1. Section 3.2 gives two statements on nuclear magnetic resonance (NMR)
phenomena. The first one says, “Nuclei with an odd number of protons
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and/or an odd number of neutrons demonstrate NMR phenomena.” The
second one says that “When NMR phenomena occurs, I (the spin quan-
tum number) must be non-zero.” Elaborate that these two statements
are identical.

3.2. The spin precession is characterized by Eq. (3.10) in terms of the mag-
netic dipole moment ~µ. (a) Prove that the solution to Eq. (3.10) is
Eq. (3.11). (b) Discuss the physical meaning of this solution. Repeat
(a) and (b) for Eq. (3.14); that is, find the solution of Eq. (3.14) and
interpret it.

3.3. Section 3.4.2 shows that under the normal conditions and the ordinary
settings of MRI as shown in Table 3.2, ǫ ≃ 3.4× 10−6. References [7–10]
used the first-order approximation of Boltzmann distribution and derive
the values of ǫ and/or other measures related to nl, nh, and n, which
are given in (a)–(d) in that section. Prove that values listed in (a)–(d)
are identical to or consistent with ǫ ≃ 3.4× 10−6.

3.4. Solve Eq. (3.34) to show that its solution is Eq. (3.35).

3.5. Solve Eq. (3.37) to show that its solution is Eq. (3.38).

3.6. Show that by using the complex representation, Eq. (3.37) can be de-
composed into two equations in Eq. (3.39).

3.7. Solve Eq. (3.39) to show that its solution is Eq. (3.40).

3.8. Solve the first equation of Eq. (3.44) to show that its solution is
Eq. (3.46).

3.9. By following the instructions in Section 3.7.1, verify the Eqs. (3.57),
(3.58), and (3.59).

3.10. Verify Eqs. (3.65) and (3.66).

3.11. Prove Eq. (3.73) and show that its solution is Eq. (3.74).

3.12. Prove Eqs. (1.76) and (3.77).

3.13. Verify Eq. (3.93).

3.14. Mathematically explain k-space trajectory shown in Figures 3.10a and
1.12a. (Hint: using Eqs. (3.108) and (3.109) for the rectilinear and radial
sampling, respectively, and considering kx and ky as well as k and θ as
functions of both the gradient and the time.)

3.15. Derive Eq. (3.198) and Eq. (3.208) in Appendix 3D.

3.16. In Appendix 3D, TPMMs reach their peak amplitudes at t4 and t7. De-
rive the corresponding LPMMs Mz′(r, t

−
4 ) in Eq. (3.200) andMz′(r, t

−
7 )

in Eq. (3.210).
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3.17. Appendix 3D shows the evolution of spin echoes generated by the RF
pulse sequence

(
π

2
)x′ − τ − (π)

(1)
x′ − 2τ − (π)

(2)
x′ − 2τ.

Show the corresponding results for the RF pulse sequence

(
π

2
)y′ − τ − (π)

(1)
y′ − 2τ − (π)

(2)
y′ − 2τ.
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4

Non-Diffraction Computed Tomography

4.1 Introduction

In X-ray CT imaging, the measurements are photons, which demonstrate
wave-particle duality, that is, the properties of both waves and particles. X-
rays have wavelengths roughly 10−13 m to 10−8 m, or frequencies of 1016 Hz
to 1021 Hz. In MR imaging, the measurements are free induction decay (FID)
signals, which are radio frequency (RF) signals with the wavelengths roughly
100 m to 102 m, or the frequencies 106 Hz to 108 Hz. X-ray and FID signal are
electromagnetic in nature. In this chapter, imaging sources in several medical
imaging techniques are characterized as electromagnetic (EM) waves.

When EM waves impinge on an object, or an object is immersed in the
EM field, several physical phenomena occur on the object: its surface, inside,
and surrounding. These phenomena include, but are not limited to, absorp-
tion, diffraction, non-diffraction, reflection, refraction, scattering, etc. Many
of these phenomena can be utilized for imaging the object: its shape or surface
or the internal structure.

In medical applications, these imaging techniques are X-ray CT [2, 2–
4, 7–9, 18, 37, 53], MRI [12–16, 25, 25, 54–56], positron emission tomog-
raphy (PET) [21–24, 37, 53], single photon emission computed tomography
(SPECT) [22, 24, 25, 37, 53], ultrasonic (US) [26–29, 37, 53], etc. Although
these techniques were developed based on different physical phenomena and
principles, according to the nature of source-medium interaction, they can
be classified into a category of imaging, transmission computed tomography.∗

Transmission CT can be further divided into two groups: (1) a non-diffraction
CT imaging, in which the interaction model and the external measurements
are characterized by the straight line integrals of some indexes of the medium
and the image reconstruction is based on Fourier Slice theorem [37, 53], and
(2) a diffraction CT imaging, in which the interaction and measurements are
modeled with the wave equation and the tomographic reconstruction approach
is based on the Fourier diffraction theorem [30, 37]. The former includes X-ray
CT, MRI, emission CT, ultrasonic CT (e.g., refractive index CT and attenu-

∗Its counterpart is called the reflection computed tomography, which is outside the scope
of this book.
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FIGURE 4.1

Physical phenomena caused by interaction between EM wave and an object.

ation CT), etc. The latter includes acoustic, certain seismic, microwave, and
optical imaging, etc.

In this chapter, we first use the inverse scattering problem as an example
to demonstrate how the interactions between the incident EM wave and the
object can be used to generate the image of the object. Then we revisit X-ray
CT and MRI and briefly review emission CT from a specific standpoint, and
show that they belong to a category of imaging—the non-diffraction computed
tomography. This insight may explain why X-ray CT and MRI have very
similar statistical properties that are described in the remaining chapters of
this book.

4.2 Interaction between EM Wave and Object

When EM waves impinge on an object, due to the interaction between the
wave and the object, the following physical phenomena occur at the object,
which are shown in Figure 4.1. All these physical phenomena can be used for
imaging the shape of the object, its external surface, and internal structure,
and have practical applications:

1. Absorption

2. Diffraction
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3. Non-diffraction

4. Reflection

5. Refraction

6. Scattering

For the given EM wave and the fixed points on the surface of the object, the
diffracted, reflected, and refracted waves are in specified directions, while the
scattered waves are in all directions. Thus, when the detectors (or receivers)
are randomly placed around the object, the diffracted, reflected and refracted
waves are received with probability zero, and the scattered waves are received
with probability one. The inverse scattering problem in the imaging arises
from scattered EM waves.

4.3 Inverse Scattering Problem

4.3.1 Relationship between Incident and Scattered Waves

The inverse scattering problem may be the simplest imaging principle. We
use it as an example. In Figure 4.2, S and V denote the surface and volume
of the object, ~I is the unit vector in the direction of the incident wave, ~r is
the vector from the origin of the coordinate system to a point on the surface
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FIGURE 4.2

Incident and scattered waves.
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S, P is a point in space, ~n is the unit vector outward normal to the surface S
at the end point of the vector ~r, ds(~r) is the area element that contains the
end point of the vector ~r, and R denotes the distance between the end point
of the vector ~r and the point P .

Under the following conditions:

1. The incident EM wave is transverse, plane, and time-harmonic,

~E(~r, t) = ~E0 e
i(K~I·~r−ωt) and ~B(~r, t) = ~B0 e

i(K~I·~r−ωt), (4.1)

where ~E0 and ~B0 are constant in both space and time. Let λ and f be
the wavelength and frequency of the incident wave, K = 2π

λ the wave

number†, ω = 2πf , and · in ~I · ~r denotes the inner product,

2. The wavefront of the incident wave is infinitely wide and the object is
immersed in the far-field of this wave,

3. Only the E-field component of the incident wave is considered, and

4. The object is convex,

it has been shown that the E-field components of the backscattered wave at
point P and the incident wave at point ~r have the relationship

~Es ≃
ρ

2
√
πR

~E0 e
i(2KR−ωt), (4.2)

where ρ is defined by

ρ =
−iK√
π

∫

S: ~I·~n<0

~I · ~n ei2K~I·~rds(~r), (4.3)

where S is the surface illuminated by the incident wave, ~I ·~n < 0 and ~I ·~n > 0
denote the portions of S that produce the back- and the forward- scattering,
respectively.

From Eq. (4.2), we have

4πR2| ~Es|2 = |ρ|2| ~E0|2. (4.4)

4πR2 is the total area of the spherical surface with radius R. If | ~Es|2 is thought
of as the power density on this spherical surface, then Eq. (4.4) shows that
the total power that penetrates this surface is equal to a portion of the power
that is generated by a source ~E0 inside this sphere. This portion is determined
by ρ, and |ρ|2 is called the power cross section. From Eq. (4.3), ρ is a function

of K. Define the wavenumber vector ~P by‡

~P = −2K~I. (4.5)

ρ will be a function of ~P and is denoted by ρ(~P ).

†K is sometimes called the spatial frequency.
‡ ~P is sometimes called the spatial frequency vector.
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4.3.2 Inverse Scattering Problem Solutions

• Theoretical solution of the inverse scattering problem. Using ~P to replace ~I,
Eq. (4.3) becomes

ρ(~P ) =
i

2
√
π

∫

S: ~P ·~n>0

~P · ~n e−i~P ·~rds(~r). (4.6)

Using Eq. (4.6), Appendix 4A shows that

2
√
π
ρ(~P ) + ρ∗(− ~P )

|~P |2
=

∫ ∫ ∫

V

e−i
~P ·~rdv(~r), (4.7)

where V is the volume enclosed by the surface S, dv(~r) is the volume ele-
ment that contains the end point of the vector ~r, and ∗ denotes the complex
conjugate.

Define

Γ(~P ) = 2
√
π
ρ(~P ) + ρ∗(− ~P )

|~P |2
, (4.8)

and

γ(~r) =





1 ~r ∈ V

0 ~r ∈ V
; (4.9)

then

Γ(~P ) =

∫ ∫ ∫

V

γ(~r) e−i
~P ·~rdv(~r), (4.10)

that is,

γ(~r) = (2π)−3

∫ ∫ ∫

P
Γ(~P ) ei

~P ·~rd~P , (4.11)

where P is the wavenumber space: its directions occupy 360o solid angles and
its magnitudes range from 0 to ∞.

Eqs. (4.10) and (4.11) show that γ(~r) and Γ(~P ) form a pair of three-
dimensional Fourier transform

γ(~r)
F3←→ Γ(~P ). (4.12)

γ(~r) defined by Eq. (4.9) is an indicator function of the geometry of the

object. Γ(~P ) is, from Eqs. (4.8) and (4.3), measurable. Thus, Eqs. (4.11)

shows that if all Γ(~P ) are available, then γ(~r)—the geometry of the object -
will be uniquely determined.

• Practical solution of inverse scattering problem. In practice, the backscat-
tering data can only be acquired at limited directions and magnitudes; that is,
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Γ(~P ) can only be obtained in a limited portion of the space P , say D, D ⊂ P .
Define an indicator function K(~P ) by

K(~P ) =





1 ~P ∈ D

0 ~P ∈ D
; (4.13)

then the actually available Γ(~P ) is

Γ̂(~P ) = K(~P )Γ(~P ) . (4.14)

Thus, the object geometry that is determined by Γ̂(~P ) will be

γ̂(~r) = k(~r) ⋆ γ(~r), (4.15)

where ⋆ denotes the convolution and k(~r) is given by

k(~r)
F3←→ K(~P ). (4.16)

Eq. (4.15) indicates that γ̂(~r) is an estimate of γ(~r) and can be obtained by

γ̂(~r) = F−1
3 {Γ̂(~P )}. (4.17)

The above discussion shows that the geometry of an object can be deter-
mined using backscattered measurements. This procedure is known as the
inverse backscattering problem. One of its well-known applications is the
Turntable Data Imaging experiment. In this experiment, an object model
and a transmitter/receiver (T/R) are located in the same X-Y plane of the
coordinate system. The object model is rotating at constant speed around the
Z-axis. T/R transmits signals and receives the echos returned by the object
model. Using the inverse backscattering solution, an image of the shape of
the object model can be created. In this experiment, P is limited in the X-Y
plane and the wavenumber is limited by the frequency band of the T/R.

4.4 Non-Diffraction Computed Tomography

In this section we revisit X-ray CT and MRI and briefly review emission CT
from a specific standpoint. We will show that in these imaging techniques, the
interaction model and the external measurements are characterized by straight
line integrals of some indexes of the object and the image reconstruction is
based on Fourier slice theorem. That is, they belong to the non-diffraction
computed tomography.
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4.4.1 X-Ray Computed Tomography

Physical measurements in X-ray CT are in photons. The “external measure-
ments” directly used in the image reconstruction are the projections. The
definition of the projection is given by Eq. (2.14) and denoted by p(l, θ)

p(l, θ) = − ln
Nad/Nar
Ncd/Ncr

, (4.18)

where Nad and Nar are the numbers of photons counted by the detector
and the reference detector in the actual measurement process, respectively,
and Ncd and Ncr are the counterparts of Nad and Nar in the calibration
measurement process, respectively.

Chapter 2 showed that Nad

Nar
= ρa and Ncd

Ncr
= ρc. ρa and ρc are the trans-

mittances along the straight line in the actual and calibration measurement
processes, respectively. − ln ρa and − ln ρc are the linear attenuation coeffi-

cient (LAC) in these two processes. − ln Nad/Nar

Ncd/Ncr
= (− ln ρa) − (− ln ρc) is

the relative linear attenuation coefficient (RLAC) along a straight line. It has
been shown that RLAC along a straight line specified by a pair of parameters
(l, θ), denoted by p(l, θ), is the line integral of RLAC at each point (r, φ) at
this straight line, denoted by f(r, φ). Eqs. (2.16) and (2.17) show that

p(l, θ) =

∫

L

f(r, φ)dz, (4.19)

where the straight line L is specified by

L : r cos(θ − φ) = l. (4.20)

p(l, θ) is the “external measurement.” f(r, φ) is an “index of the object,” and
is called the object function of X-ray CT.

Eq. (4.18) actually represents a double normalization procedure for Nad.
The first normalization appears in its numerator (for the actual measurement
process) and its denominator (for the calibration measurement process) sep-
arately. It is a necessary and reasonable operation to estimate the transmit-
tances ρa and ρc. The second normalization appears between the numerator
and denominator of Eq(4.18). The double normalization not only reduces (or
eliminates) the effect on p(l, θ) caused by the fluctuation in Nad due to the
photon emission in one projection and among projections, but also makes the
definition of the projection p(l, θ) consistent with the definition of the relative
linear attenuation coefficient f(r, φ) and hence establishes Eq. (4.19).

Let X-Y be a rectangular coordinate system that corresponds to a radial
coordinate system where the line L : (l, θ) and RLAC f(r, φ) are defined. By
rotating the X-Y coordinate system with an angle θ, a new X′-Y′ rectangular
coordinate system is created. It is easy to verify that (1) the line L : r cos(θ−
φ) = l becomes the line x′ = l and the projection p(l, θ) becomes the projection
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p(x′, θ), and (2) the projection p(x′, θ) still equals the line integral of the object
function f(x, y), that is,

p(x′, θ) =
∫

L

f(r, φ)dz =

∫

x′=l

f(x, y)dy′ =
∫ +∞

−∞
f(x, y)dy′. (4.21)

Eqs. (2.21) through (2.23) show that

F1{p(x′, θ)} = F2{f(x, y)}, (4.22)

which is Fourier slice theorem for X-ray CT image reconstruction.
Eq. (4.19) is also known as the Radon transform. Based on Eq. (4.22), three

formulas of the Inverse Radon transform have been derived. They are given
in Eqs. (2.25) and (2.26) for the parallel projection and Eq. (2.71) for the
divergent projection. These formulas lead to filtered backprojection (FBP)
image reconstruction algorithm.

Photons travel in the straight lines. Projections are formulated along the
straight lines. Projection (“the external measurements”) is a line integral of
the object function RLAC (“the index of the object”). Image reconstruction is
based on the Fourier slice theorem. Thus, X-ray CT is a typical non-diffraction
CT imaging.

4.4.2 Magnetic Resonance Imaging

As shown in Chapter 3, the thermal equilibrium macroscopic magnetization
(TEMM, denoted by Mo

z (x
′, y′)) of a spin system is a physical quantity that

can be actually measured and observed in MR imaging. It is an index of the
object, we call it the object function of MRI. The measurement in MRI that
is directly used in the image reconstruction is the k-space sample, that is, an
alternative representation of the discrete, complex-valued, baseband signal.
All these relations are depicted by one formula—Eq. (3.110).

Chapter 3 described two basic k-space sample acquisition schemes and two
typical image reconstruction protocols. The following combinations—(1) the
rectilinear k-space sampling and Fourier transform (FT) reconstruction, and
(2) the radial k-space sampling and the projection reconstruction (PR)—are
two approaches widely used in MRI. In order to show the tomography nature
of MRI, we elaborate the second approach.

By rotating a rectangular coordinate system X-Y by an angle θ at which
the radial k-space sampling takes place and using X′-Y′ to denote this rotated
rectangular coordinate system, Eq. (3.121) gives a theoretical definition of the
measured projection p(x′, θ)

p(x′, θ) =
∫

x′=l

Mxy(x
′, y′)dy′, (4.23)

where Mxy(x
′, y′) represents the transverse precession macroscopic magne-

tization (TPMM). The relation between TPMM Mxy(x
′, y′) and TEMM
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Mo
z (x

′, y′) is given by Eq. (3.88), which can be rewritten as

Mxy(x
′, y′) = i Mo

z (x
′, y′) sinα, (4.24)

where α is the flip angle during excitation, i (
√
−1) denotes that Mxy(x

′, y′)
is in the ~j(t) direction of the rotating coordinate system X′-Y′. Substituting
Eq. (4.24) into Eq. (4.23), we have

p(x′, θ) = i sinα

∫

x′=l

Mo
z (x

′, y′)dy′, (4.25)

which shows that the “external measurement,” the projection p(x′, θ), is a
straight line integral of the object function TEMM Mo

z (x
′, y′), the “index of

the object.”
By using the coordinate transform



x′

y′


 =




cos θ(j) sin θ(j)

− sin θ(j) cos θ(j)





x

y


 (4.26)

and the definition of k-space sample (Eq. (3.110)), we obtain Eq. (3.122), that
is,

F1{p(x′, θ)} = F2{Mxy(x
′, y′)}, (4.27)

which is the Fourier slice theorem for MR image reconstruction and is depicted
in Figure 3.14.

Eq. (4.23) is the Radon transform for MRI. Based on Eq. (4.27), the formula
for the inverse Radon transform for MRI is

Mxy(x, y) =
1

2π2

∫ π

0

∫ ∞

−∞

∂p(l, θ)

∂l

1

x′ − l dldθ, (4.28)

where x′ = x cos θ + y sin θ. The inner integral (including the coefficient 1
2π2 )

is defined as

t(x′, θ) =
1

2π2

∫ ∞

−∞

∂p(l, θ)

∂l

1

x′ − l dldθ. (4.29)

The implementation of Eq. (4.28) can be carried out by two approaches: (1)
filtering by Fourier transform where t(x′, θ) is called the filtered projection,
and (2) filtering by convolution where t(x′, θ) is known as the convolved pro-
jection.
• In the filtering by Fourier transform approach, the first step is to compute

the filtered projection t(x′, θ) by

t(x′, θ) =
p′(x′, θ)
i2π

⋆
−1
iπx′

= F−1
1 {M(k, θ)|k|}, (4.30)

where ⋆ denotes the convolution, andM(k, θ) is the radial k-space sample. To
derive Eq. (4.30), an operational definition of the measured projection p(x′, θ)
is used:

p(x′, θ) = F−1
1 {M(k, θ)}. (4.31)
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The second step is to compute the backprojection by

Mxy(x, y) =

∫ π

0

t(x′, θ)dθ. (4.32)

• In the filtering by the convolution approach, the first step is to compute
the convolved projection t(x′, θ) by

t(x′, θ) = p′(x′, θ) ⋆ q(x′), (4.33)

where q(x′) is the convolution function. The second step is to compute the
interpolated data sθ(x, y) by

sθ(x, y) = t(x′, θ) ⋆ ψ(x′), (4.34)

where ψ(x′) is an interpolation function. The third step is to compute the
backprojection by

Mxy(x, y) =

∫ π

0

sθ(x, y)dθ. (4.35)

Thus, filtering by the convolution approach leads to a typical FBP algorithm.
Although there is no physical measurement along the straight line in MRI,

a straight line integral of k-space samples (Eq. (4.31)) can be properly for-
mulated such that it is a line integral of the object function (Eq. (4.23)). As
a result, MR image reconstruction (PR method) is embedded on the Fourier
slice theorem and is implemented by a typical tomographic reconstruction
algorithm. In this sense, MRI belongs to non-diffraction imaging.

4.4.3 Emission Computed Tomography

A brief review of emission CT is given in this section. This is not intended
to provide a systematic description of imaging principles of these techniques
and the details of image reconstruction methods used in these techniques.
The purpose of this review is to show their non-diffraction imaging nature.
It focuses on the fact that in these imaging techniques, the interaction model
and the external measurements are characterized by the straight line integrals
of some indexes of the objects to be imaged. Emission CT includes positron
emission tomography (PET), single-photon emission computed tomography
(SPECT), and conventional or planar imaging.

4.4.3.1 Positron Emission Tomography

Although the possibility of positron imaging was discovered in the 1950s, real
tomographic imaging occurred after 1972 when X-ray CT was developed. This
history may hint that PET and X-ray CT have some intrinsic similarities.

PET utilizes the short-lived radionuclides (also known as positron emitting
compounds) generated by a cyclotron. These radionuclides are suitable for (1)
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radiopharmaceuticals that can be administered the human body, and (2) de-
vices that can detect the annihilation photons and process signals to generate
images of the distribution of positron concentrations or their activities.

When a positron is emitted and combined with a nearby electron, two
photons of 511 keV are produced. Because these two annihilation photons
are generated simultaneously and travel in opposite directions, they are of-
ten called simultaneity and collinearity, respectively. When two detectors are
placed exactly on the opposite sides along the direction of photon travel, the
collinearity of the two annihilation photons provides possibilities to identify
the activity (annihilation event) or existence of the positron emitter (concen-
tration). When two annihilation photons arrive at these two detectors within
a “coincidence resolving time” (i.e., 10−8 seconds or less), the coincidence de-
tection circuits can sense annihilation photons simultaneously and record an
event.

It is clear that the total number of coincident events counted by a given pair
of detectors is proportional to the integral of the concentration of the positron
emitting radionuclides over the column or strip joining these two detectors,
and constitutes a measure of the integrated radioactivity, the line-integral
projection data.

z2

z0

z1 ✁
✁
✁

coincident detection

�
�

object

✻

❄

��
e+

❅❅
e−

✬

✫

✩

✪
D1

D2

✻
~z

✻γ2

❄γ1

r r

FIGURE 4.3

Illustration of the coincident detection of PET.

In Figure 4.3, e+ and e− denote a positron and an electron, γ1 and γ2 denote
two annihilation photons, D1 and D2 represent two detectors, zi (i = 0, 1, 2)
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represent three locations on the axis ~z, which is along the direction of photon
travel. From Eq. (2.13), the probabilities of photons γ1 and γ2 arriving at the
detectors D1 and D2 are

ρ1 = exp(−
∫ z0

z1

f(r, φ)dz) and ρ2 = exp(−
∫ z2

z0

f(r, φ)dz), (4.36)

respectively; here, f(r, φ) represents the linear attenuation coefficient § at a
point (r, φ) in the axis ~z ((r, φ) represents the polar coordinate). Thus, the
probability of the annihilation photons being simultaneously detected by the
coincident detection is the product of ρ1 and ρ2, that is,

ρ = ρ1 · ρ2 = exp(−
∫ z2

z1

f(r, φ)dz). (4.37)

Eq. (4.36) gives a very important outcome. First, it shows that the prob-
ability of the coincident detection of the annihilation photons only depends
on the attenuation of photons (511 keV) propagating from z1 to z2. Second,
this attenuation is the same, that is, it does not depend on where the positron
annihilation occurs on the line from D1 to D2. Rewriting Eq. (4.37), we have

− ln ρ =

∫ z2

z1

f(r, φ)dz. (4.38)

Similar to X-ray CT (see Eq. (2.16)), ρ is measurable. Thus, we obtain that
the “external measurement” characterized by − ln ρ is a straight line integral
of the object function f(r, φ), the “index of the object.”

4.4.3.2 Single-Photon Emission Computed Tomography

SPECT utilizes the decay of radioactive isotopes to generate images of the
distribution of the isotope concentration. In the form of radiopharmaceuticals,
these isotopes are administered to the human body. Thus, SPECT images
can show both anatomic structures and functional states of tissue and organ
systems.

SPECT is different from PET, which utilizes the positron and annihilation
photons, SPECT is based on detecting individual photons emitted by the
radionuclide. Localizing gamma photon emission activity is performed by a
narrow mechanical collimator. The first SPECT image was demonstrated in
the early 1960s using backprojection reconstruction.

Figure 4.4 is used to illustrate the relations among the concentration of the
radioactive isotope, the attenuation of the object, and the measurement, that
is, the projection. In Figure 4.4, the line L is specified by a pair of parameters
(l, θ). The detector is located at the end of the line L. Let p(l, θ) denote the

§It is not the relative linear attenuation coefficient in X-ray CT.
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FIGURE 4.4

Illustration of the detection of SPECT.

projection along the line L, that is, at the location l in the view θ. The line
K passes through the origin of the X-Y rectangular coordinate system and is
perpendicular to the line L: K ⊥ L. d′ denotes the distance from the line K
to the edge of the object along the line L. For simplicity in discussion, the
object is assumed to be convex.

Let (r, φ) represent the polar coordinate, f(r, φ) denote the concentration
of the radioactive isotope, and µ be the linear attenuation coefficient. From
Eq. (2.13), the original measurement at the line L

p′(l, θ) =
∫

L

f(r, φ)e−µ(d
′+d)dz. (4.39)

For a given (l, θ), d′ is determined by the external shape of the object, and d
is given by

d = r sin(θ − φ), (4.40)

and the projection at the line L is defined as

p(l, θ) = p′(l, θ)eµd
′

=

∫

L

f(r, φ)e−µddz. (4.41)

Eq. (4.41) is called the exponential Radon transform. [31] shows that f(r, φ)
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can be estimated by

f(r, φ) =

∫ 2π

0

(

∫ ∞

−∞
p(r cos(θ − φ)− l, θ)q(l)dl)e−µr sin(θ−φ)dθ, (4.42)

where q(l) is a convolution function that is chosen under certain conditions.
Eq. (4.41) shows that the “external measurement,” the projection p(l, θ),

is a straight line integral of the “index of the object,” the object func-
tion f(r, φ). Eq. (4.42) essentially represents a filtered backprojection opera-
tion. The inner integral—the convolution of the projection and a convolution
function—generates a filtered projection in each view. Then, the weighted (by
e−µr sin(θ−φ)) filtered projection forms the backprojection contribution in each
view. These are very similar to the FPB operation used in X-ray CT.

4.5 Appendix

4.5.1 Appendix 4A

This appendix proves Eq. (4.7).

Proof

Because

ρ(~P ) =
i

2
√
π

∫

~P ·~n≥0

~P · ~n e−i ~P ·~rds(~r), (4.43)

then

ρ∗(− ~P ) = i

2
√
π

∫

−~P ·~n≥0

~P · ~n e−i~P ·~rds(~r), (4.44)

where ∗ denotes the complex conjugate. Thus

ρ(~P ) + ρ∗(− ~P ) = i

2
√
π

∫ ∫

S

~P · ~n e−i ~P ·~rds(~r). (4.45)

Let
~Pe−i

~P ·~r = ~u and ~nds(~r) = ~ds, (4.46)

and using divergence theorem
∫ ∫

S

~u · ~ds =
∫ ∫ ∫

V

▽ · ~udv, (4.47)

Eq. (4.45) can be written as

ρ(~P ) + ρ∗(− ~P ) = i

2
√
π

∫ ∫ ∫

V

( ∂∂x (pxe
−i~P ·~r) + ∂

∂y (pye
−i ~P ·~r) + ∂

∂z (pze
−i~P ·~r))dv(~r), (4.48)
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where ~P = px~i+ py~j + pz~k.

Because ~P is fixed in the space and

~P · ~r = xpx + ypy + zpz, (4.49)

therefore
∂
∂x (pxe

−i~P ·~r) = −ip2xe−i
~P ·~r

∂
∂y (pye

−i~P ·~r) = −ip2ye−i
~P ·~r

∂
∂z (pze

−i~P ·~r) = −ip2ze−i
~P ·~r.

(4.50)

Substituting Eq. (4.50) into Eq. (4.48), we obtain

ρ(~P ) + ρ∗(− ~P ) = |
~P |2
2
√
π

∫ ∫ ∫

V

e−i
~P ·~rdv(~r). (4.51)

Problems

4.1. Prove and interpret Eq. (4.21).

4.2. Prove Eqs. (4.40) and (4.41) regardless that the point (r, φ) is below or
above the intersection point of lines L and K (along the line L).

4.3. Prove and interpret Eq. (4.45).
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5

Statistics of X-Ray CT Imaging

5.1 Introduction

As shown in Chapter 2, X-ray CT images are reconstructed from projections,
while the projections are formulated from photon measurements. In X-ray CT
imaging, photon measurements and projections are called CT imaging data,
abbreviated as CT data.∗

Similar to any type of realistic data, each type of CT data consists of its
signal and noise components. In photon measurements, the instrumental and
environmental noise form the noise component of photon measurements, which
is random. The emitted and detected photons (numbers) form the signal com-
ponent of the photon measurements, which is also random, due to the intrinsic
variations in the emission and detection processes.

The parallel projection is a translation-rotation mode (Sections 2.3 and 2.4).
Within one view, the photon measurements and the projections are acquired
and formulated sequentially in time from one projection location to another.
The divergent projection is a rotation mode (Sections 2.3 and 2.4). Within
one view, the photon measurements and the projections are acquired and
formulated simultaneously for all projections. Over all views, both parallel and
divergent projections are collected sequentially in time from one view location
to another. Thus, projections are spatio-temporal in nature. Because the time
interval of CT data collection, particularly in the dievergent projection, is
very short, the time argument in CT data is excluded in the process of image
reconstruction.

This chapter describes the statistics of both signal and noise components of
each type of CT data, and is focused on their second-order statistics. Based
on the physical principles of X-ray CT described in Chapter 2 and according
to CT data acquisition procedures, the statistical description of X-ray CT
imaging is progresses in the following order: photon measurement (emission
→ detection → emission and detection) =⇒ projection.

This chapter also provides signal processing paradigms for the convolution
image reconstruction method for the parallel and divergent projections. Then,

∗Imaging is often referred to as a process or an operation from the imaging data (e.g., the
acquired measurements) to the reconstructed pictures.
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it gives a statistical interpretation to CT image reconstruction. CT image
reconstruction can be viewed as a transform from a set of random variables
(projections) to another set of random variables (pixel intensities). These new
random variables form a spatial random process, also known as a random
field. Statistics of CT data in the imaging domain propagate to the statistics
in the image domain through image reconstruction.

Discussions in this chapter are confined to the monochromatic X-ray, the
basic parallel and divergent projections, and the convolution image recon-
struction method [2, 2–4, 7–9, 18, 37, 53].

5.2 Statistics of Photon Measurements

This section describes statistics of the photon measurements in terms of their
signal and noise components.

5.2.1 Statistics of Signal Component

Physical principles of photon emission, attenuation, and detection are de-
scribed in Section 2.2; some parameters in these processes are given in Section
2.3. In this section, statistics of the signal component of photon measurements
are analyzed in the following order: photon emission → photon detection →
photon emission and detection, based on their physical principles.

5.2.1.1 Photon Emission

In the process of photon emission, let ti and (ti, ti+1] (i = 0, 1, 2, · · ·) denote
the time instant and the time interval, respectively; n(ti, ti+1] represents the
number of photons emitted in the interval (ti, ti+1]. n(ti, ti+1] is a random
variable. P (n(ti, ti+1] = m) denotes the probability that m photons are emit-
ted in the time interval (ti, ti+1].

Generally, similar to other particle emissions in physics, photon emission
in X-ray CT is considered to follow the Poisson law. Specifically, the photon
emission in X-ray CT satisfies the following four conditions:

1) P (n(ti, ti+1] = m) depends on m and the interval τi = ti+1 − ti only; it
does not depend on the time instant ti.

2) For the nonoverlapping intervals (ti, ti+1], random variables n(ti, ti+1]
(i = 0, 1, 2, · · ·) are independent

3) There are only finite numbers of photons emitted in a finite interval,
P (n(ti, ti+1] =∞) = 0. Also, P (n(ti, ti+1] = 0) 6= 1.

4) The probability that more than one photon is emitted in an interval
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τi = ti+1 − ti approaches zero as τi → 0. That is,

lim
τ→0

1− P (n(ti, ti+1] = 0)− P (n(ti, ti+1] = 1)

τi
= 0.

Therefore, photon emission in X-ray CT forms a Poisson process [25, 77].
Let λ be the average number of photons emitted per unit time by a stable

X-ray source and X represents the random variable n(ti, ti+1]. The prob-
ability mass function (pmf) of the number of emitted photons, PX(m) =
P (n(ti, ti+1] = m), is given by

PX(m) = e−λ
λm

m!
(0 < m <∞), (5.1)

where m is an integer. X has a Poisson distribution, denoted by X ∼ P (λ).
Its mean and variance are

µX = λ and σ2
X = λ. (5.2)

5.2.1.2 Photon Detection

Suppose the probability that one of the photons emitted by a stable X-ray
source is counted by the detector (without having been absorbed or scattered
when it passes through the object) is ρ. Then, the probability that n out of m
emitted photons are counted by this detector (without having been absorbed
or scattered when it passes through the object) follows an mth-order binomial
law. This probability, denoted by P (n|m), is given by

P (n|m) =
m!

n!(m− n)!ρ
n(1 − ρ)m−n (0 < n < m), (5.3)

where n and m are integers.
Let Y represent the number of emitted photons that are counted by the

detector without having been absorbed or scattered when passing through
the object. Y has a binomial distribution, denoted by Y ∼ B(m, ρ). Its mean
and variance are

µY = mρ and σ2
Y = mρ(1− ρ). (5.4)

It is known that whenm is sufficiently large, ρ is sufficiently small, andmρ =
λ, the Poisson distribution P (λ) is the limiting case of binomial distribution
B(m, ρ) as m→∞ [25, 77].

5.2.1.3 Photon Emission and Detection

Combining the photon emission (Eq. (5.1)) and the photon detection
(Eq. (5.3)), the probability that the number of photons emitted from a steady
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X-ray source and counted by a detector is

PY (n) =
∞∑

m=0

P (n|m)PX(m)

=

∞∑

m=0

m!

n!(m− n)!ρ
n(1− ρ)m−n · e−λλ

m

m!

=
ρnλn

n!
e−λ

∞∑

m=0

λ(m−n)

(m− n)! (1− ρ)
m−n

=
(λρ)n

n!
e−λ

∞∑

k=0

λk

k!
(1− ρ)k

=
(λρ)n

n!
e−λeλ(1−ρ)

= e−λρ
(λρ)n

n!
(0 < n <∞), (5.5)

where n is an integer [18, 49].
Eq. (5.5) represents the pmf of a Poisson distribution Y ∼ P (λρ). Its mean

and variance are
µY = λρ and σ2

Y = λρ . (5.6)

It is known [25, 77] that when λρ is sufficiently large, the Gaussian dis-
tribution N(λρ, λρ) is an excellant approximation of the Poisson distribution
P (λρ).† That is, P (λρ) −→ N(λρ, λρ) as λρ→∞. In X-ray CT, λρ is always
very large; thus, Y ∼ N(µY , σ

2
Y ); the mean µY and the variance σ2

Y are given
by Eq. (5.6); and the probability density function (pdf) is given by

pY (y) =
1√
2πσ2

Y

exp(− (y − µY )2
2σ2

Y

). (5.7)

The number Y of detected X-ray photons forms the signal component of the
photon measurement in X-ray CT. It is characterized by a Gaussian random
variable. Because Y cannot be negative and infinite, Y must be limited in a
finite range [0,M ]. M depends on the physical settings and conditions of the
X-ray production system. Because µY = λρ is usually very large, it is possible
to make M = 2µY − 1. Thus, Y ∼ N(µY , σ

2
Y ) over [0,M ] is symmetric with

respect to the mean µY .

†Bernoulli-Poisson theorem [71] or DeMoivre-Laplace theorem [77] shows that the bino-
mial distribution B(n, p) can also be accurately approximated by a Gaussian distribution
N(np, np(1− p)) as n approaches infinity.
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5.2.2 Statistics of Noise Component

The noise component of the photon measurement in X-ray CT, denoted by
N , mainly consists of the noise caused by detection system electronics. At
the lower frequencies, it is mainly characterized by flicker noise with the 1

f

spectrum (f denotes the frequency); at higher frequencies, it is dominated
by the white noise with the flat spectrum. Overall, the noise in X-ray CT is
characterized by a Gaussian random variable with zero mean and variance
σ2
N , its pdf is given by

pN (n) =
1√
2πσ2

N

exp(− n2

2σ2
N

). (5.8)

That is, N ∼ N(0, σ2
N ). It is additive and independent of the signal component

of photon measurement Y .

5.2.3 Statistics of Photon Measurements

The photon measurement in X-ray CT, denoted by Z, consists of two compo-
nents: signal Y and noise N .

Z = Y +N. (5.9)

Because Y and N are characterized by two independent Gaussian random
variables, Z is a Gaussian randow variable with the mean µZ and variance σ2

Z

given by

µZ = µY = λρ and σ2
Z = µY + σ2

N = λρ+ σ2
N , (5.10)

its pdf is given by

pZ(z) =
1√
2πσ2

Z

exp(− (z − µZ)2
2σ2

Z

). (5.11)

That is, Z ∼ N(µZ , σ
2
Z). Eq. (5.10) shows that the intrinsic variance of the

signal component σ2
Y = λρ sets the ultimate limit on the variance σ2

Z of the
photon measurement in X-ray CT.

The photon measurement Z has the following statistical property.

Property 5.1 The photon measurement Z of Eq. (5.9) represents the outcome
of a cascaded photon emission process and photon detection process in X-ray
CT. It is characterized by a Gaussian random variable with the mean and the
variance of Eq. (5.10) and the pdf of Eq. (5.11).

Proof.
Using Eq. (5.1) (for X in the photon emission), Eqs. (5.5) through (5.7)

(for Y in the photon detection), Eq. (5.8) (for N - the noise component), and
Eqs. (5.9)-(5.11), the property is proved.
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5.3 Statistics of Projections

5.3.1 Statistics of a Single Projection

The projection in X-ray CT was described and defined in Section 2.4.1. From
Eqs. (2.16) and (2.17), it can be rewritten as‡

p(l, θ) = − ln
Nad/Nar
Ncd/Ncr

= − lnNad + lnNar + lnNcd − lnNcr, (5.12)

where Nad and Nar are the numbers of emitted photons counted by the de-
tector and the reference detector in the actual measurement process, and Ncd
and Ncr are the numbers of emitted photons counted by the detector and the
reference detector in the calibration measurement process.

As described in Section 5.2.3, each of Nad, Nar, Ncd and Ncr can be char-
acterized by a Gaussian random variable as Z of Eq. (5.9) with pdf given by
Eq. (5.11) and parameters given by Eq. (5.10), but has the different statisti-
cal contents. In order to see these different contents, some practical issues in
photon emission and detection should be discussed.

(1) It is known that not every photon that reaches the detector is necessarily
counted by the detector. The probability of a photon that reaches the detector
being counted by the detector is called efficiency, denoted by ς . The overall
efficiency of a detector is the product of the geometric efficiency (a ratio
of the X-ray-sensitive area of the detector to the total exposed area) and
the quantum efficiency (a fraction of incoming photons that are absorbed
and contributed to the output signal) [4, 9, 18]. Clearly, ς < 1, and the
transmittance ρ in Section 5.2 should be replaced by ρς .

(2) As shown in Figures 2.4 through 2.6, photons emitted from an X-ray
source are counted in two paths: a detection path and a reference detection
path. Let fd and fr denote the fractions of photon emission in these two
paths. Then, λ in Section 5.2, which stands for the average number of photons
emitted per unit time by a stable X-ray source in the detection path and the
reference detection path, should be fdλ and frλ, respectively.

Combining the above two factors (1) and (2), the mean of each random
variable of Nad, Nar, Ncd, and Ncr will have the form fλρς and their variance
will have the form fλρς+σ2

N . More specifically, let µZad
, µZar , µZcd

and µZcr

denote the means, σ2
Zad

, σ2
Zar

, σ2
Zcd

, and σ2
Zcr

denote the variances, of Nad,
Nar, Ncd, and Ncr, then, they are

µZad
= fdλaρaςd and σ2

Zad
= fdλaρaςd + σ2

N

µZar = frλaρrςr and σ2
Zar

= frλaρrςr + σ2
N

‡p(l, θ) is used for the general description. Specifically, p(l, θ) and p(σ, β) are used for the
parallel and divergent projections, respectively.
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µZcd
= fdλcρcςd and σ2

Zcd
= fdλcρcςd + σ2

N

µZcr = frλcρrςr and σ2
Zcr

= frλcρrςr + σ2
N , (5.13)

where the subscript a stands for the actutal measurement process, c for the
calibration measurement process, d for the detection, and r for the reference
detection.

The following discussions give the statistical properties of a single projection
p(l, θ) defined by Eq. (5.12).

Property 5.2a Let the random variable Z defined by Eq. (5.9) denote each
of Nad, Nar, Ncd, and Ncr of Eq. (5.12). Let the random variable W defined
by

W = lnZ (5.14)

represent each of lnNad, lnNar, lnNcd, and lnNcr. W has the pdf pW (w)
given by

pW (w) =
1√
2πσ2

Z

exp(− (ew − µZ)2
2σ2

Z

)ew, (5.15)

and the mean µW and the variance σ2
W given by

µW ≃ lnµZ −
σ2
Z

2µ2
Z

and σ2
W ≃

σ2
Z

µ2
Z

(1 +
σ2
Z

2µ2
Z

), (5.16)

where µZ and σ2
Z are the mean and the variance of Z given by Eq. (5.10) but

with different contents given by Eq. (5.13).

Proof.
Section 5.2 shows that Z is in the range [0,M ], where M = 2µZ − 1.

Because W = lnZ is not defined for Z = 0, a truncated random variable Z
is adopted [4, 18]. That is, Z is in the range [1,M ].§ Thus, W is in the range
[0, lnM ].

The random variable Z has a Gaussian pdf given by Eq. (5.11). Using the
transformation of random variables, the pdf of the random variable W is

pW (w) =
cn√
2πσ2

Z

exp(− (ew − µZ)2
2σ2

Z

)ew, (5.17)

where cn is a normalization constant determined by

∫ lnM

0

pW (w) = 1. (5.18)

Appendix 5A shows that cn ≃ 1. Thus, Eq. (5.17) becomes Eq. (5.15).

§The probability P (Z = 1) of the truncated random variable is understood to be equal to
the probability P (Z = 0) + P (Z = 1) of the original random variable, whose meaning can
be seen in the property (iv) of Section 5.2.1.1.
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In Eq. (5.15), let ew = u, e
w−µZ

σZ
= v, and use the approximation ln(1+x) ≃

x− x2

2 (−1 < x ≤ 1), after some mathematical and statistical manipulations,
Appendix 5A shows that the mean µW and the variance σ2

W of W are given
by Eq. (5.16).

Discussions. In Eq. (5.10), if σ2
N ≪ µZ , then, in Eq. (5.16),

σ2
Z

µ2
Z
=

µZ+σ2
Z

(µZ)2 ≃
1
µZ

. Thus, the mean µW and the variance σ2
W ofW , that is, Eq. (5.16), become

µW ≃ lnµZ −
1

2µZ
and σ2

W ≃
1

µZ
(1 +

1

2µZ
). (5.19)

In practice, the transmittance ρ defined and described in Section 2.3.1 and
Section 5.2.1 is spatially variant because ρ is different at the different locations
inside the object. From Eq. (5.10), the mean µZ = λρ and the variance σ2

Z =
λρ + σ2

N are spatially variant. Thus, the mean µW and the variance σ2
W are

also spatially variant.
Using the definition and the notation of W of Eq. (5.14), the projection

p(l, θ) of Eq. (5.12) can be rewritten as

p(l, θ) = −Wad +War +Wcd −Wcr. (5.20)

Based on statistical properties of W (Property 5.2a), the compound W s of
Eq. (5.20) give the following statistical property of the projection p(l, θ).

Property 5.2b The mean µp(l,θ) and the variance σ2
p(l,θ) of the projection

p(l, θ) are

µp(l,θ) = − ln
µZad

/µZar

µZcd
/µZcr

− 1

2

(
−σ

2
Zad

µ2
Zad

+
σ2
Zar

µ2
Zar

+
σ2
Zcd

µ2
Zcd

− σ2
Zcr

µ2
Zcr

)
, (5.21)

and

σ2
p(l,θ) =

σ2
Zad

µ2
Zad

(
1 +

σ2
Zad

2µ2
Zad

)
+
σ2
Zar

µ2
Zar

(
1 +

σ2
Zar

2µ2
Zar

)

+
σ2
Zcd

µ2
Zcd

(
1 +

σ2
Zcd

2µ2
Zcd

)
+
σ2
Zcr

µ2
Zcr

(
1 +

σ2
Zcr

2µ2
Zcr

)
. (5.22)

Proof.
The pdf of each W is given by Eq. (5.15). However, the pdf of p(l, θ) of

Eq. (5.20) may be too complicated to be expressed in a closed form. Thus,
instead of being based on the pdf of p(l, θ), we derive the mean µp(l,θ) and the
variance σ2

p(l,θ) of p(l, θ) in terms of means µW and variances σ2
W of W s.

By taking the expectation of Eq. (5.20), we have

µp(l,θ) = E[p(l, θ)] = −µWad
+ µWar + µWcd

− µWcr . (5.23)
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Using Eq. (5.16) to Eq. (5.23), we obtain Eq. (5.21).

The variance σ2
p(l,θ) of the projection p(l, θ) is

σ2
p(l,θ) = E[(p(l, θ)− µp(l,θ))2]

= E[(−(Wad − µWad
) + (War − µWar )

+ (Wcd − µWac)− (Wcr − µWcr ))
2]. (5.24)

Let Wad − µWad
= δWad, War − µWar = δWar, Wcd − µWcd

= δWcd, and
Wcr − µWcr = δWcr; Eq. (5.24) can be expressed as

σ2
p(l,θ) = E[(δWad)

2 + (δWar)
2 + (δWcd)

2 + (δWcr)
2] (5.25)

+ E[−δWad(δWar + δWcd − δWcr)] (5.26)

+ E[δWar(−δWad + δWcd − δWcr)] (5.27)

+ E[δWcd(−δWad + δWar − δWcr)] (5.28)

+ E[−δWcr(−δWad + δWar + δWcd)]. (5.29)

In Eq. (5.26), the co-variances E[δWadδWcd] = 0; and E[δWadδWcr] = 0,
this is because δWad and δWcd, δWad and δWcr, are in different processes
(actual measurement and calibration measurement); hence, they are indepen-
dent. The co-variance E[δWadδWar] = 0; this is because, although δWad and
δWar are in the same process, but they are a-dependent [77]. Here, δWad and
δWar are treated as two divergent projections (Section 5.3.2). Thus, Eq. (5.26)
becomes zero. Similarly, Eqs. (5.27), (5.28), and (5.29) are all equal to zero.

The remaining Eq. (5.25) is a sum of four variances that gives

σ2
p(l,θ) = σ2

Wad
+ σ2

War
+ σ2

Wcd
+ σ2

Wcr
. (5.30)

Using Eq. (5.16) to Eq. (5.30), we obtain Eq. (5.22).

Discussion. When σ2
N ≪ µZ , Eq. (5.19) holds. With this approximation,

Eqs. (5.21) and (5.22) become

µp(l,θ) = − ln
µZad

/µZar

µZcd
/µZcr

− 1

2

(
− 1

µZad

+
1

µZar

+
1

µZcd

− 1

µZcr

)
, (5.31)

and

σ2
p(l,θ) =

1

µZad

+
1

µZar

+
1

µZcd

+
1

µZcr

+
1

2µ2
Zad

+
1

2µ2
Zar

+
1

2µ2
Zcd

+
1

2µ2
Zcr

. (5.32)

The discussion of Property 5.2a indicates the mean µW and the variance
σ2
W of W are spatially variant. Thus, from Eqs. (5.23) and (5.30), the mean
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µp(l,θ) and the variance σ2
p(l,θ) of the projection p(l, θ) are spatially variant.

That is, projections p(l, θ) with different (l, θ) may have different means and
variances, but the same type of pdf.

Property 5.2c The projection p(l, θ) defined by Eq. (5.20) can be character-
ized by an approximated Gaussian distribution N(µp(l,θ), σ

2
p(l,θ)). That is, the

pdf of p(l, θ) is approximated by

p(p(l, θ)) =
1√

2πσ2
p(l,θ)

exp(− (p(l, θ)− µp(l,θ))2
2σ2

p(l,θ)

), (5.33)

where the mean µp(l,θ) and the variance σ2
p(l,θ) are given by Eqs. (5.21) and

(5.22), respectively.

Proof.
Each component on the right side of Eq. (5.20): Wad, War, Wcd, and

Wcr, has a similar pdf: pWad
(w), pWar (w), pWcd

(w), and pWcr(w), given by
Eq. (5.15), and the finite mean µp(l,θ) and the finite variance σ2

p(l,θ), given by

Eq. (5.16) (or Eq. (5.19)). As shown in the proof of Property 5.2b, these four
components are also independent. Thus, the true pdf of the projection p(l, θ)
of Eq. (5.20), denoted by p̂(p(l, θ)), can be expressed as

p̂(p(l, θ)) = pWad
(−w) ⋆ pWar (w) ⋆ pWcd

(w) ⋆ pWcr(−w), (5.34)

where ⋆ denotes the convolution.
Based on the Central-Limit theorem, p̂(p(l, θ)) can be approximated by a

Gaussian pdf p(p(l, θ)) of Eq. (5.33). An error correction procedure is given in
Appendix 5B. It provides the means to evaluate the accuracy of this approx-
imation. An example is also included in Appendix 5B. It demonstrates that
this approximation is quite accurate.

Note. Generally, we use p(l, θ) to represent a projection in X-ray CT imag-
ing. Specifically, as shown in Chapter 2 and in the following sections, p(l, θ)
is a notation for the parallel projection. It is clear that Properties 5.2a, 5.2b,
and 5.2c also hold for the divergent projection p(σ, β).

5.3.2 Statistics of Two Projections

This subsection describes the statistical relationship between two projections.

Property 5.3 In the parallel mode ((l, θ)-space), two projections p(l1, θ1)
and p(l2, θ2) in either the same view (θ1 = θ2) or the different views (θ1 6= θ2)
are uncorrelated. That is, the correlation Rp((l1, θ1), (l2, θ2)) of p(l1, θ1) and
p(l2, θ2) is

Rp((l1, θ1), (l2, θ2)) = E[p(l1, θ1)p(l2, θ2)] = µp(l1,θ1)µp(l2,θ2)

+ rp((l1, θ1), (l2, θ2))σp(l1,θ1)σp(l2,θ2)δ[l1 − l2, θ1 − θ2], (5.35)
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where µp(l1,θ1) and µp(l2,θ2) are the means, σp(l1,θ1) and σp(l2,θ2) are the stan-
dard deviations, rp((l1, θ1), (l2, θ2)) is the correlation coefficient, of p(l1, θ1)
and p(l2, θ2), δ[l1 − l2, θ1 − θ2] is 2-D Kronecker delta function given by

δ[l1 − l2, θ1 − θ2] =





1 (l1 = l2 and θ1 = θ2)

0 (l1 6= l2 or θ1 6= θ2) ,
(5.36)

In the divergent mode ((σ, β)-space), two projections p(σ1, β1) and p(σ2, β2)
in the same view (β1 = β2) are a-dependent and in the different views (β1 6=
β2) are uncorrelated. That is, the correlation Rp((σ1, β1), (σ2, β2)) of p(σ1, β1)
and p(σ2, β2) is

Rp((σ1, β1), (σ2, β2)) = E[p(σ1, β1)p(σ2, β2)] = µp(σ1,β1)µp(σ2,β2)

+ rp((σ1, β1), (σ2, β2))σp(σ1,β1)σp(σ2,β2)δ[β1 − β2]rect
(
σ1 − σ2

a

)
, (5.37)

where µp(σ1,β1) and µp(σ2,β2) are the means, σp(σ1,β1) and σp(σ2,β2) are the
standard deviations, and rp((σ1, β1), (σ2, β2)) is the correlation coefficient,
of p(σ1, β1) and p(σ2, β2), and δ[β1 − β2] is 1-D Kronecker delta function,
rect(σ1−σ2

a ) is a rect function given by

rect(
σ1 − σ2

a
) =





1 |σ1 − σ2| ≤ a
2

0 |σ1 − σ2| > a
2 .

(5.38)

Proof.
We first make some simplifications. Eq. (5.10) shows that µZ = λρ. Because

λ is normally very large, the terms 1
2µ2

Z
of Eq. (5.32) are much less than

their corresponding terms 1
µZ

. Thus, the last four terms on the right side of

Eq. (5.32) can be omitted, which gives

σ2
p(l,θ) ≃

1

µZad

+
1

µZar

+
1

µZcd

+
1

µZcr

. (5.39)

In the design of X-ray CT, the variance σ2
p(l,θ) is to be minimized. µZcd

and

µZcr can be made very large such that 1
µZcd

and 1
µZcr

are negligible. Because

µZcd
= fdλcρcςd and µZcr = frλcρrςr (Eq. (5.13)), the very large µZcd

and
µZcr can be achieved by making λc vary large.¶ λc is in the process of the
calibration measurement, controllable, and not harmful to patients. Eq. (5.13)
also shows µZad

= fdλaρaςd and µZar = frλaρrςr. In µZar , the transmittance

¶The saturation of the counting capability of the photon detectors may set an up-limit to
λc.
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ρr is normally very large, close to 1. Thus, compared with 1
µZad

, 1
µZar

can be

ignored. Therefore, as a result, Eq. (5.39) can be further approximated as

σ2
p(l,θ) ≃

1

µZad

. (5.40)

Examining Eq. (5.30), (5.39), and (5.40) shows that σ2
War

≃ 1
µZar

→ 0,

σ2
Wcd

≃ 1
µZcd

→ 0, and σ2
Wcr

≃ 1
µZcr

→ 0. These results imply that the

random variables War, Wcd, and Wcr can be considered deterministic. Thus,
the randomness of the projection p(l, θ) is mainly derived from the random
variable Wad, that is, the photon measurements in the detection path in the
process of the actual measurement.

In the parallel projection, which is a translation-rotation mode, two distinc-
tive projections in either the same view or in different views are formed at the
different, nonoverlapping time intervals. According to the statistical proper-
ties of photons described in Section 5.2.1.1, the number of photons counted
by the detector in the detection path in the process of the actual measure-
ment Zad, hence, the Wad and p(l, θ) are statistically independent. Thus, the
correlation of two parallel projections is given by Eq. (5.35).

In the divergent projection that is a rotation mode, the situation is more
complicated than in the parallel projection. When two distinctive projections
are in the different views, because they are formed in the different, non-
overlapping time intervals, which is similar to the parallel projection, they are
statistically independent. When two distinctive projections are in the same
view, because they are formed in the same time interval, which is different
from the parallel projection, they may not be statistically independent.

As shown in Section 2.2.1, two mechanisms—fluorescence and Bremsstrahlung—
produce X-ray. For most medical and industrial applications, Bremsstrahlung
is dominant. In Bremsstrahlung, the high-speed electrons are scattered by the
strong electric field near nuclei and the resulting decelerations emit photons.
In the real X-ray tube as shown in Figure 2.3, the shape of the high-speed
electron beam is not an ideal delta function. The area of the spot struck by
the electron beam on the focus volume of the anode is not a single point.

At a given time interval, if X-rays are caused by the one-electron-nucleus
pair (”collision”), then these rays are statistically dependent because they
are produced by the same physical source; if X-rays are caused by different
electron-nucleus pairs that are in the different locations of the focal spot, they
are statistically independent because these X-rays are produced by the dif-
ferent physical sources. Thus, projections that are spatially closer are more
statistically dependent than those that are more spatially separated. There-
fore, it is reasonable to consider that, in the one view of divergent mode,
the projections within a small angle interval (say, a, a ≪ α, α is shown in
Figure 2.8) are statisticaly dependent and outside this angle interval are statis-
tically independent. This is a so-called a-dependent process [11, 77]. Thus, the
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statistical relationship between two devergent projections can be expressed by

Rp((σ1, β1), (σ2, β2)) = E[p(σ1, β1)p(σ2, β2)] (5.41)

=




µp(σ1,β1)µp(σ2,β2) (cond.1)

µp(σ1,β1)µp(σ2,β2) + rp((σ1, β1), (σ2, β2))σp(σ1,β1)σp(σ2,β2) (cond.2) ,

with 



cond.1 : β1 6= β2 or |σ1 − σ2| > a/2

cond.2 : β1 = β2 and |σ1 − σ2| ≤ a/2,
(5.42)

where µp(σ1,β1) and µp(σ2,β2) are the means, σp(σ1,β1) and σp(σ2,β2) are the
standard deviations, and rp((σ1, β1), (σ2, β2)) is the correlation coefficient, of
p(σ1, β1) and p(σ2, β2). Eq. (5.41) can be further simplified as Eq. (5.36).

5.4 Statistical Interpretation of X-Ray CT Image Re-

construction

5.4.1 Signal Processing Paradigms

Let p(nη,m∆θ) (−N ≤ n ≤ N, 0 ≤ m ≤ M − 1) denote the sampled pro-
jections. When η = d, it represents the parallel projections p(nd,m∆θ) in
(l, θ)-space; when η = δ, it represents the divergent projections p(nδ,m∆θ)
in (σ, β)-space. In computational implementations of the convolution recon-
struction method described by Eqs. (2.83) and (2.91), data flow in the order
of the following three operations.

The first operation is a convolution of 2N+1 projections p(nη,m∆θ) in one
view m∆θ and a convolution function q or functions q1, q2, which generates
2N + 1 convolved projections t(nη,m∆θ) in that view.

The second operation is a convolution of 2N + 1 convolved projections
t(nη,m∆θ) in one viewm∆θ and an interpolation function ψ, which generates
an interpolated data sm(r, φ) in that view.

The third operation is a backprojection of M interpolated data sm(r, φ)
over M views, which produces a backprojected data f(r, φ), that is, a value
of a pixel centered at (r, φ).

The pixel value represents the relative linear attenuation coefficient at that
point. Repeat this three-step operation for a set of grids; a X-ray CT image
is created. This three-step operation is illustrated by Eq. (5.43).
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for a given point (r, φ)
⇓

M(2N + 1) projections : p(iη,m∆)
view 0

︷ ︸︸ ︷
p(−Nη, 0) · · · p(Nη, 0) · · ·

view m
︷ ︸︸ ︷
p(−Nη,m∆) · · · p(Nη,m∆) · · ·

view M−1
︷ ︸︸ ︷
p(−Nη, (M − 1)∆) · · · p(Nη, (M − 1)∆)

⇓ ⇓ ⇓
M(2N + 1) convolved projections : t(iη,m∆) = c1

∑N
k=−N p(kη, m∆)q∗((i− k)η)

view 0
︷ ︸︸ ︷
t(−Nη, 0) · · · t(Nη, 0) · · ·

view m
︷ ︸︸ ︷
t(−Nη,m∆) · · · t(Nη,m∆) · · ·

view M−1
︷ ︸︸ ︷
t(−Nη, (M − 1)∆) · · · t(Nη, (M − 1)∆)

⇓ ⇓ ⇓
M interpolated data : sm(r, φ) =

∑∞
k=−∞ t(kη,m∆)ψ(u− kη)

view 0
︷ ︸︸ ︷
s0(r, φ) · · · · · · · · · · · · · · · · · · · · · · · · · · ·

view m
︷ ︸︸ ︷
sm(r, φ) · · · · · · · · · · · · · · · · · · · · · · · · · · ·

view (M−1)
︷ ︸︸ ︷
sM−1(r, φ)︸ ︷︷ ︸

⇓
1 backprojected data set

f(r, φ) = c2
∑M−1

m=0 c
′sm(r, φ) ,

(5.43)
where for the parallel projection shown in Eq. (2.83), c1 = d, c2 = ∆, c′ =
1, and q∗((i − k)η) denotes q((n − k)d), for the divergent projection shown
in Eq. (2.91), c1 = δ, c2 = ∆, c′ = W , and q∗((i − k)η) denotes q1((n −
k)δ) cos(kδ) + q2((n− k)δ) cos(nδ).

5.4.2 Statistical Interpretations

From Sections 5.3 and 5.4.1, we observed that
1). When X-ray CT data acquisition consists of M × (2N + 1) projections,

and the reconstructed X-ray CT image consists of I × J pixels, then X-ray
CT image reconstruction constitutes a transform from a set of M × (2N + 1)
random variables to another set of I × J random variables.

2). These new I × J random variables form a random process, also known
as a 2-D random field. The image reconstruction is a realization of this ran-
dom process. The reconstructed image is a configuration of the entire random
process. Each pixel intensity in the image is a value in the state space of a
corresponding random variable in this process.

5.5 Appendices

5.5.1 Appendix 5A

This appendix proves cn = 1 in Eq. (5.17) and derives Eq. (5.16).
From Eqs. (5.17) and (5.18), we have

cn√
2πσ2

Z

∫ lnM

0

exp(− (ew − µZ)2
2σ2

Z

)ewdw = 1. (5.44)
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Let

ew = u ,
ew − µZ
σZ

= v , M = 2µZ − 1, (5.45)

Eq. (5.44) becomes

cn√
2π

∫ µZ−1

σZ

−µZ−1

σZ

exp

(
−v

2

2

)
dv = 1. (5.46)

Let Φ(x) = 1√
2π

∫ x
−∞ e−

y2

2 dy denote the cumulative density function (cdf)

of the standard Gaussian random variable Y ∼ N(0, 1); Eq. (5.46) gives

(
Φ(
µZ − 1

σZ
)− Φ(−µZ − 1

σZ
)

)
cn = 1. (5.47)

Because µZ = λρ, hence, µZ−1
σZ

is very large, Φ(µZ−1
σZ

)→ 1, and Φ(−µZ−1
σZ

)→
0. Thus, cn ≃ 1.

From Eq. (5.17) with cn ≃ 1, the mean µW of the random variableW = lnZ
is given by

µW =
1√
2πσ2

Z

∫ lnM

0

w exp

(
− (ew − µZ)2

2σ2
Z

)
ewdw. (5.48)

Using Eq. (5.45), Eq. (5.48) becomes

µW =
1√
2π

∫ µZ−1

σZ

−µZ−1

σZ

ln

(
µZ

(
1 +

σZ
µZ

v

))
exp

(
−v

2

2

)
dv. (5.49)

Using the approximation ln(1+x) ≃ x− x2

2 (−1 < x ≤ 1), Eq. (5.49) becomes

µW ≃
1√
2π

∫ µZ−1

σZ

−µZ−1

σZ

(lnµZ +
σZ
µZ

v − 1

2

(
σZ
µZ

)2

v2) exp

(
−v

2

2

)
dv. (5.50)

It has been shown that Eq. (5.50) is

µW ≃ lnµZ −
1

2

(
σZ
µZ

)2

. (5.51)

From Eq. (5.17) with cn ≃ 1, the variance σ2
W of the random variable

W = lnZ can be computed by

σ2
W =

1√
2πσ2

Z

∫ lnM

0

w2 exp

(
− (ew − µZ)2

2σ2
Z

)
ewdw − µ2

W . (5.52)
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Using Eq. (5.45) and the approximation ln(1+x) ≃ x− x2

2 (−1 < x ≤ 1), the
first item of the right side of Eq. (5.52) becomes

1√
2π

∫ µZ−1

σZ

−µZ−1

σZ

(
lnµZ +

σZ
µZ

v − 1

2

(
σZ
µZ

)2

v2

)2

exp

(
−v

2

2

)
dv

= (lnµZ)
2 +

(
σZ
µZ

)2

(1 − lnµZ) +
3

4

(
σZ
µZ

)4

. (5.53)

The second item on the right side of Eq. (5.52) is

µ2
W = (lnµZ)

2 − lnµZ

(
σZ
µZ

)2

+
1

4

(
σZ
µZ

)4

. (5.54)

By substituting Eqs. (5.53) and (5.54) into Eq. (5.52), we obtain

σ2
W =

(
σZ
µZ

)2

+
1

2

(
σZ
µZ

)4

. (5.55)

5.5.2 Appendix 5B

This appendix (1) describes an error correction procedure to evaluate the dif-
ference between the true pdf p̂(p(l, θ)) of Eq. (5.34) and the approximated
Gaussian pdf p(p(l, θ)) of Eq. (5.33), (2) gives an example to show that
p(p(l, θ)) is a good approximation of p̂(p(l, θ)), and (3) shows, by applying
the error correction procedure to this example, that the procedure can lead
to an accurate evaluation of the error in a Gaussian approximation.

(1) Let the difference between pdfs p̂(p(l, θ)) and p(p(l, θ)) be defined by

ǫ(p) = p̂(p(l, θ))− p(p(l, θ)). (5.56)

Because calculating p̂(p(l, θ)) by means of the convolutions of Eq. (5.34) is
difficult, we use an error correction procedure [6, 27, 77] to evaluate this
difference.

The Hermite polynomials defined by

Hn(x) = xn − (n2 ) x
n−2 + 1 · 3 (n4 )xn−4 + · · · (5.57)

form a complete orthogonal set in the interval (−∞,∞)

∫ +∞

−∞
e−

x2

2 Hn(x)Hm(x)dx =




n!
√
2π (n = m)

0 (n 6= m).
(5.58)
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Thus, a large class of continuous functions over this interval can be expressed
in a Hermite polynomial series. In particular, the difference ǫ(p) can be ex-
pressed by

ǫ(p) =
1√

2πσ2
p(l,θ)

exp(− (p(l, θ)− µp(l,θ))2
2σ2

p(l,θ)

)

∞∑

n=0

CnHn(
p(l, θ)− µp(l,θ)

σp(l,θ)
),

(5.59)
where µp(l,θ) and σ

2
p(l,θ) are given by Eq. (5.31) and Eq. (5.32), respectively.

The coefficients Cn (n = 0, 1, 2, · · ·) can be determined by

n!σ2
p(l,θ)Cn + an,n−2σ

2
p(l,θ)Cn−2 + · · · · · · = Bn − σ2

p(l,θ)An, (5.60)

where
C0 = C1 = C2 = 0, (5.61)

An (n = 1, 2, · · ·) is the n-th moment of the standard Gaussian N(0, 1)

A2n−1 = 0 and A2n =
(2n)!

2nn!
, (5.62)

Bn (n = 1, 2, · · ·) is the n-th moment of p̂(p(l, θ))

Bn =

∫ +∞

−∞
(p(l, θ)− µp(l,θ))np̂(p(l, θ))dp(l, θ), (5.63)

and an,m are determined by

An+m − (m2 )An+m−2 + 1 · 3 (m4 )An+m−4 + · · · · · · , (5.64)

with

an,n = n! and an,m = 0 (m > n or odd (n+m)). (5.65)

Eq. (5.59) shows that in order to evaluate ǫ(p), the coefficients Cn (n =
3, 4, · · ·) must be known. Because An are known, finding Cn is equivalent
to finding Bn, the moment of p̂(p(l, θ)). Let the characteristic function of
W (Eq. (5.14) be h(t), and the characteristic functions of Wad, War, Wcd,
and Wcr be gWad

(t), gWar(t), gWcd
(t), and gWcr(t). Then, the characteristic

function of p̂(p(l, θ)) is

g(t) = gWad
(t)gWar (t)gWcd

(t)gWcr (t) = h4(t), (5.66)

where
gWad

(t) = gWar (t) = gWcd
(t) = gWcr(t) = h(t). (5.67)

Thus, the n-th moment of p̂(p(l, θ)) is

Bn = (i)−ng(n)(0), (5.68)



142 Statistics of Medical Imaging

where g(n)(t) is the n-th derivative of g(t). g(n)(t), can be generated iteratively
through

g(n)(t) = ∆ng
(n−1)(t), (5.69)

with

∆n = ∆n−1 +
∆′
n−1

∆n−1
and ∆1 = 4

h′(t)
h(t)

, (5.70)

where ′ denotes the first derivative.

(2) The following example shows that although War , War, Wcd, and Wcr

are non-Gaussian (see pW (w) of Eq. (5.15)), their sum p(l, θ) (Eq. (5.20)) has
quite an accurate Gaussian distribution. In this example, in order to compute
the true pdf p̂(p(l, θ)) (Eq. (5.34)), for the purpose of simplicity, instead of
using W (Eq. (5.14)) and its pdf pW (w) (Eq. (5.15)), we use four random
variables δθi (i = 1, 2, 3, 4), each of them having a uniform pdf over [−π,+π]

p(δθi) =





1 [−π,+π]

0 otherwise,
(5.71)

with the mean and variance given by

µδθi = 0 and σ2
δθi =

π2

3
. (5.72)

It has been verified that the sum of two δθ,
∑2
i=1 δθi, has a triangle pdf

p̂(δθ) = p(δθ)⋆p(δθ) (⋆ - the convolution.); the sum of three δθ,
∑3

i=1 δθi, has
a pdf p̂(δθ) = p(δθ)⋆p(δθ)⋆p(δθ) consisting of three pieces of parabolic curves;

and the sum of four δθ,
∑4

i=1 δθi, has a pdf p̂(δθ) = p(δθ)⋆p(δθ)⋆p(δθ)⋆p(δθ)
consisting multiple pieces of curves. These true pdfs are shown in Figures 5.1
through 5.3 by the solid lines. The corresponding approximated Gaussian pdfs

are p(δθ) = 1√
2πσ2

k

exp(− (δθ)2

2σ2
k
) (k = 2, 3, 4), where the variances σ2

k = 1
kσ

2
δθi

.

The Gaussian pdfs are shown in Figures 5.1 through 5.3 by the dash lines.
The virtual examination of two pdfs in each figure indicates that Gaussian
approximation is quite accurate.

(3) Now, we apply the error correction procedure in (1) to the above exam-
ple. Define the difference between the true pdf p̂(δθ) and the approximated
Gaussian pdf p(δθ) by

ǫ(p) = p̂(δθ) − p(δθ). (5.73)

Because p(δθ) is an even function, the first-order expansion of Eq. (5.59) in
terms of Hermite polynomials is

ǫ(p) =
1√
2πσ2

k

exp(− (δθ)2

2σ2
k

){ 1
4!
(
B4

σ4
k

− 3)[(
δθ

σk
)4 − 6(

δθ

σk
)2 + 3]}, (5.74)
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FIGURE 5.1

The true pdf p̂(δθ) and the approximated Gaussian pdf p(δθ) of
∑2

i=1 δθi.

FIGURE 5.2

The true pdf p̂(δθ) and the approximated Gaussian pdf p(δθ) of
∑3

i=1 δθi.

where

σ2
k =

1

k
σ2
δθi =

1

k
· π

2

3
and B4 = g(4)(0) =

d4

dt4
(hk(t))t=0. (5.75)

For k = 2, 3, 4, due to

k = 2 , σ2
2 = π2

6 , B4 = 2
5π

4,

k = 3 , σ2
3 = π2

9 , B4 = 13
405π

4,

k = 4 , σ2
4 = π2

12 , B4 = 13
672π

4,

(5.76)
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FIGURE 5.3

The true pdf p̂(δθ) and the approximated Gaussian pdf p(δθ) of
∑4

i=1 δθi.

we have ǫ(p) in the cases of
∑k

i=1 δθi (k = 2, 3, 4)

ǫ(p) = −
√
6

40π
√
2π
e−

3
π2 ( 36π4 (δθ)

4 − 36
π2 (δθ)

2 + 3),

ǫ(p) = −
√
9

60π
√
2π
e−

4.5
π2 ( 81π4 (δθ)

4 − 54
π2 (δθ)

2 + 3),

ǫ(p) = −
√
12

112π
√
2π
e−

6
π2 (144π4 (δθ)

4 − 72
π2 (δθ)

2 + 3).

(5.77)

These ǫ(p) are ploted in Figure 5.4.
Figures 5.1 through 5.3 show the differences between the true pdf p̂(δθ)

and the approximated Gaussian pdf p(δθ). Figure 5.4 shows these differences
evaluated by the error correction procedure. The comparison of Figure 5.4
with Figures 5.1-5.3 indicates that the differences in the two appraoches are
consistent. This consistency proves that the error correction procedure can
lead to an accurate evaluation of the Gaussian approximation. When the true
pdf is complicated, this procedure will be very useful.

Problems

5.1. Prove P (λρ) −→ N(λρ, λρ) as λρ→∞ in Section 5.2.1.3.

5.2. Validate σZ

µZ
< 1 in Eq. (5.49).

5.3. Prove Eq. (5.51) from Eq. (5.50).
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FIGURE 5.4

Differences between the true pdf p̂(δθ) and the approximate Gaussian pdfs
p(δθ)in the example of (2).

5.4. Prove Eq. (5.53) from Eq. (5.52).

5.5. Describe the pattern of pW (w) of Eq. (5.15) and discuss the difference
between pW (w) and pW (−w).
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6

Statistics of X-Ray CT Image

6.1 Introduction

As shown in Section 5.4, X-ray CT image reconstruction constitutes a trans-
form from a set of random variables (projections) to another set of random
variables (pixel intensities). Statistics of X-ray CT data in the imaging domain
propagate to the statistics in the image domain through image reconstruction.
This chapter describes the statistics of the X-ray CT image generated by us-
ing basic CT data acquisition schemes (parallel and divergent projections)
and the typical image reconstruction technique (convolution method). A sta-
tistical description of X-ray CT image is given at three levels of the image: a
single pixel, any two pixels, and a group of pixels (also referred to as an image
region).

The Gaussianity of the intensity of a single pixel in an X-ray CT image
is proved in two ways. Then this chapter gives conditions for two pixel in-
tensities to be independent with a probability measure for the parallel and
divergent projections, respectively. These conditions essentially imply that
(1) the intensities of any two pixels are correlated, (2) the degree of the cor-
relation decreases as the distance between two pixels increases, and (3) in
the limiting case of the distance approaching the infinity, the intensities of
two pixels become independent. These properties are summarized as spatially
asymptotically independent, abbreviated as SAI.

An X-ray CT image consists of piecewise contiguous regions. This fact re-
veals that each image region, that is, a group of pixels, may have some unique
statistical properties. This chapter shows that, based on Gaussianity and SAI,
pixel intensities in each image region are stationary in the wide sense, hence,
in the strict sense; and ergodic, hence, satisfy the ergodic theorems.

Gaussianity, spatially, asymptotically independent, stationarity, and ergod-
icity are described in the order of a single pixel =⇒ any two pixels =⇒ a
group of pixels. These properties provide a basis for creating a stochastic im-
age model and developing new image analysis methodologies for X-ray CT
image analysis, which are given in Chapters 9, 10, and 11.
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6.2 Statistics of the Intensity of a Single Pixel

Statistical properties of the intensity of a single pixel in an X-ray CT image
are described in Property 6.1. Similar to Chapters 2 and 5, we use f(r, φ)
to denote the intensity of a pixel centered at (r, φ), where (r, φ) is the polar
coordinate.

6.2.1 Gaussianity

Property 6.1 The intensity f(r, φ) of a single pixel in an X-ray CT image
has a Gaussian distribution N(µf(r,φ), σ

2
f(r,φ)), that is, pdf of f(r, φ) is

p(f(r, φ)) =
1√

2πσ2
f(r,φ)

exp

(
− (f(r, φ)− µf(r,φ))2

2σ2
f(r,φ)

)
, (6.1)

where the mean µf(r,φ) and the variance σ2
f(r,φ) of f(r, φ) are given by

µf(r,φ) =





∫ π
0
dθ
∫ +∞
−∞ µp(l,θ)qp(l

′ − l)dl (parallel projection)

∫ 2π

0 Wdβ
∫ +∞
−∞ µp(σ,β)qd(σ

′ − σ)dσ (divergent projection),

(6.2)
and

σ2
f(r,φ) =





∫ π
0
dθ
∫ +∞
−∞ σ2

p(l,θ)q
2
p(l

′ − l)dl (parallel projection)

∫ 2π

0
W 2dβ

∫ +∞
−∞ σ2

p(σ,β)q
2
d(σ

′ − σ)dσ (divergent projection),

(6.3)
where µp(l,θ), µp(σ,β), and σ2

p(l,θ), σ
2
p(σ,β) are the means and variances of

the parallel and divergent projections given by Eq. (5.21) and Eq. (5.22),
respectively; for the parallel projection, qp(l

′ − l) denotes the convolution
function q(l′ − l) of Eq. (2.60), l′ = r cos(θ − φ) is given by Eq. (2.15);
for the divergent projection, qd(σ

′ − σ) denotes the convolution function

q1(σ
′ − σ) cosσ + q2(σ

′ − σ) cos σ′ of Eq. (2.73), σ′ = tan−1 r cos(θ−φ)
D+r cos(θ−φ) and

W = D
(2πD′)2 are given by Eq. (2.64) and Eq. (2.90), respectively.

Proof.
Because (1) the projection (either parallel projection p(l, θ) or divergent

projection p(σ, β)) has a Gaussian distribution (Property 5.2.c) and (2) the
operations in the convolution reconstruction method (Eq. (2.60) for the par-
allel projection and Eq. (2.73) for the divergent projection) are linear, the
Gaussianity of the pixel intensity f(r, φ) holds.
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(1) For the parallel projection, from Eq. (2.60), the mean µf(r,φ) of the pixel
intensity f(r, φ) is

µf(r,φ) = E[f(r, φ)] =

∫ π

0

dθ

∫ +∞

−∞
µp(l,θ)qp(l

′ − l)dl. (6.4)

The correlation Rf ((r1, φ1), (r2, φ2)) of two pixel intensities f(r1, φ1) and
f(r2, φ2), in terms of Property 5.3 (Eq. (5.35)), is

Rf ((r1, φ1), (r2, φ2)) = E[f(r1, φ1)f(r2, φ2)]

=

∫ π

0

∫ π

0

∫ +∞

−∞

∫ +∞

−∞
E[p(l1, θ1)p(l2, θ2)]

qp(l
′
1 − l1)qp(l′2 − l2)dl1dl2dθ1dθ2

=

∫ π

0

∫ π

0

∫ +∞

−∞

∫ +∞

−∞
µp(l1,θ1)µp(l2,θ2)

qp(l
′
1 − l1)qp(l′2 − l2)dl1dl2dθ1dθ2

+

∫ π

0

∫ +∞

−∞
rp((l2, θ2), (l2, θ2))σp(l2,θ2)σp(l2,θ2)

qp(l
′
1 − l2)qp(l′2 − l2)dl2dθ2

= µf(r1,φ1)µf(r2,φ2)

+

∫ π

0

∫ +∞

−∞
σ2
p(l2,θ2)

qp(l
′
1 − l2)qp(l′2 − l2)dl2dθ2. (6.5)

In deriving the previous formula in Eq. (6.5), rp((l2, θ2)(l2, θ2)) = 1 is used.

When (r1, φ1) = (r2, φ2), l
′
1 = l′2. Thus, Eq. (6.5) becomes

Rf ((r, φ), (r, φ)) = µ2
f(r,φ) +

∫ π

0

dθ

∫ +∞

−∞
σ2
p(l,θ)q

2
p(l

′ − l)dl. (6.6)

Therefore, the variance σ2
f(r,φ) of the pixel intensity f(r, φ) is given by

σ2
f(r,φ) = Rf ((r, φ), (r, φ)) − µ2

f(r,φ) =

∫ π

0

dθ

∫ +∞

−∞
σ2
p(l,θ)q

2
p(l

′ − l)dl. (6.7)

(2) For the divergent projection, from Eq. (2.73), the mean µf(r,φ) of the
pixel intensity f(r, φ) is

µf(r,φ) = E[f(r, φ)] =

∫ 2π

0

dβ

∫ +∞

−∞
µp(σ,β)qd(σ

′ − σ)dσ. (6.8)

The correlation Rf ((r1, φ1), (r2, φ2)) of two pixel intensities f(r1, φ1) and
f(r2, φ2), in terms of Property 5.3 (Eq. (5.37)), is

Rf ((r1, φ1), (r2, φ2)) = E[f(r1, φ1)f(r2, φ2)]
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=

∫ 2π

0

∫ 2π

0

∫ +∞

−∞

∫ +∞

−∞
E[p(σ1, β1)p(σ2, β2)]W1W2

qd(σ
′
1 − σ1)qd(σ′

2 − σ2)dσ1dσ2dβ1dβ2

=

∫ 2π

0

∫ 2π

0

∫ +∞

−∞

∫ +∞

−∞
µp(σ1,β1)µp(σ2,β2)W1W2

qd(σ
′
1 − σ1)qd(σ′

2 − σ2)dσ1dσ2dβ1dβ2

+

∫ 2π

0

W2dβ2

∫ +∞

−∞
σp(σ2,β2)qd(σ

′
2 − σ2)dσ2

∫ σ2+a/2

σ2−a/2
W1rp((σ1, β2), (σ2, β2))σp(σ1 ,β2)qd(σ

′
1 − σ1)dσ1

= µf(r1,φ1)µf(r2,φ2)

+

∫ 2π

0

∫ +∞

−∞
W1W2σ

2
p(σ2,β2)

qd(σ
′
1 − σ2)qd(σ′

2 − σ2)dσ2dβ2. (6.9)

In deriving the previous formula in Eq. (6.9), the following approximations are
used. For |σ1 − σ2| < a

2 (a is a small angle, see Property 5.3), that is, for two
closer projections p((σ1, β2)) and p((σ2, β2)), σ1 ≃ σ2, rp((σ1, β2), (σ2, β2)) ≃
1.

When (r1, φ1) = (r2, φ2), σ
′
1 = σ′

2,W1 =W2, and qd(σ
′
1−σ1) ≃ qd(σ′

2−σ2).
Thus, Eq. (6.9) becomes

Rf ((r, φ), (r, φ)) = µ2
f(r,φ) +

∫ 2π

0

W 2dβ

∫ +∞

−∞
σ2
p(σ,β)q

2
d(σ

′ − σ)dσ. (6.10)

Therefore, the variance σ2
f(r,φ) of the pixel intensity f(r, φ) is given by

σ2
f(r,φ) = Rf ((r, φ), (r, φ)) − µ2

f(r,φ)

=

∫ 2π

0

W 2dβ

∫ +∞

−∞
σ2
p(σ,β)q

2
d(σ

′ − σ)dσ. (6.11)

Discussion.

(1) Figure 2.7 and Figure 2.8 show that projections, either parallel or di-
vergent, are acquired over M views and with (2N + 1) samples in each view.
These M(2N + 1) projections have the finite means and the finite variances
(Property 5.2.b) and are independent for parallel projections and a-dependent
for divergent projections (Property 5.3).

Signal processing paradigms of Section 5.4.1 show that the computational
implementation of the convolution reconstruction method consists of two
convolutions and one backprojection. As shown by Eq. (5.43), these op-
erations are the weighted summations of the input projections p(nη,m∆)
(−N ≤ n ≤ N, 0 ≤ m ≤M) and are linear.
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The numberM(2N+1) is usually very large. Thus, according to the Central
Limit theorem [77], f(r, φ) of Eq. (5.43) generated using parallel projections
has an asymptotical Gaussian distribution; according to the extended Central
Limit theorem [2], f(r, φ) of Eq. (5.43) generated using divergent projections
also has an asymptotical Gaussian distribution.

(2) Let δ(x) and δ[x] denote the Dirac and Kronecker delta function, re-
spectively. Let g(x) be a continuous function on (−∞,+∞). It is known that

∫ +∞

−∞
g(x)δ(x− x0)dx = g(x0), (6.12)

but ∫ +∞

−∞
g(x)δ[x − x0]dx = g(x0) (6.13)

has not been proved. However, if E > 0 is a finite value and −E < x0 < E,
then ∫ +E

−E
g(x)δ[x− x0]dx = g(x0). (6.14)

In the proof of Property 6.1, the Property 5.3 is used where δ[l1− l2, θ1−θ2]
in Eq. (5.35) and δ[β1 − β2] in Eq. (5.37) are Kronecker delta funtions. In
Eq. (6.5), based on Eq. (6.14),

∫ π

0

∫ +∞

−∞
rp((l1, θ1), (l2, θ2))σp(l1,θ1)σp(l2,θ2)

δ[l1 − l2, θ1 − θ2]qp(l′1 − l2)qp(l′2 − l2)dl1dθ1

= rp((l2, θ2), (l2, θ2))σp(l2,θ2)σp(l2,θ2)qp(l
′
1 − l2)qp(l′2 − l1). (6.15)

This is because in the practical X-ray CT image reconstruction, the integral
for l1 over (−∞,+∞) is actually performed over a finite interval [−E,+E] as
shown in Figures 2.7 and 2.9.

(3) Although the parallel projetions are independent and the divergent pro-
jections are a-dependent, but this difference is not reflected in the variances
of pixel intensities generated using these two types of projections, respec-
tively. The expressions of Eqs. (6.7) and (6.11) are nearly identical except a
weight W 2. The reason for this scenario is that in Eq. (6.9) when using the
a-dependent, the angle a is assumed to be very small. This condition leads to
an approximation σ1 ≃ σ2 that is almost equivalent to applying a Kronecker
function δ[σ1 − σ2] in Eq. (6.9), which would be the same as δ[l1 − l2] in
Eq. (6.5).
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6.3 Statistics of the Intensities of Two Pixels

This section describes statistical properties of the intensities of any two pixels
in the X-ray CT image generated by the convolution reconstruction method.
Specifically, it gives a description of the relation between the correlation of
pixel intensities and the distance between pixels. It shows that (1) the inten-
sities of any two pixels in an X-ray CT image are correlated, (2) the degree
of the correlation decreases as the distance between pixels increases, and (3)
in the limiting case of the distance approaching infinity, the intensities of two
pixels become independent. These properties are called spatially asymptoti-
cally independent, abbreviated as SAI. We prove it probabilistically.

6.3.1 Spatially Asymptotic Independence

Property 6.2 Pixel intensities of X-ray CT image are spatially asymptotically
independent.

Proof.
For the purpose of easy reading, the three equations in Eq. (5.43) are written

separately below. (i) A pixel intensity f(r, φ), that is, backprojected data are
computed by

f(r, φ) = c2

M−1∑

m=0

c′sm(r, φ), (6.16)

(ii) M interpolated data sm(r, φ) (0 ≤ m ≤M − 1) are computed by

sm(r, φ) =

∞∑

k=−∞
t(kη,m∆)ψ(u− kη), (6.17)

where

u =





l′ = r cos(m∆− φ) (parallel projection)

σ′ = tan−1 r cos(m∆−φ)
D+r sin(m∆−φ) (divergent projection),

(6.18)

(iii) M(2N + 1) convolved projections t(iη,m∆) (−N ≤ i ≤ N, 0 ≤ m ≤
M − 1) are computed by

t(iη,m∆) = c1

N∑

k=−N
p(kη,m∆)q∗((i− k)η), (6.19)

where p(kη,m∆) (−N ≤ k ≤ N, 0 ≤ m ≤ M − 1) are M(2N + 1) input
projections; for the parallel projection shown in Eq. (2.83), c1 = d, c2 = ∆,
c′ = 1, and q∗((i − k)η) denotes q((n − k)d); for the divergent projection



Statistics of X-Ray CT Image 153

shown in Eq. (2.91), c1 = δ, c2 = ∆, c′ = W , and q∗((i − k)η) denotes
q1((n− k)δ) cos(kδ) + q2((n− k)δ) cos(nδ).∗

Let Rf (i, j) denote the correlation of the intensities f(ri, φi) and f(rj , φj) of
two pixels at (ri, φi) and (rj , φj). By ignoring the constants c2 and c′, Rf (i, j)
is given by

Rf̂ (i, j) = E[f(ri, φi)f(rj , φj)] = E[(

M−1∑

m=0

sm(ri, φi))(

M−1∑

n=0

sn(rj , φj))]

=

M−1∑

m=0

E[sm(ri, φi)sm(rj , φj)] +

M−1∑

m=0

M−1∑

n=0
n6=m

E[sm(ri, φi)]E[sn(rj , φj)]. (6.20)

sm(ri, φi) and sn(rj , φj) (m 6= n) of Eq. (6.20) are uncorrelated because the
projections contained in sm(ri, φi) and sn(rj , φj) come from different views,
and therefore are statistically independent (Property 5.3).

On the other hand, because sm(ri, φi) of Eq. (6.20) is the interpolation
of two convolved projections t(nmiη,m△) and t((nmi + 1)η,m△), it can be
written as

sm(ri, φi) =

1∑

l=0

C
(mi)
l t((nmi + l)η,m△). (6.21)

In Eq. (6.21), nmi and C
(mi)
l (l = 0, 1) are determined by

nmiη ≤ ζi ≤ (nmi + 1)η and C
(mi)
l = (−1)l+1 ζi − (nmi + 1− l)η

η
, (6.22)

where

ζi =





ri cos(m△− φi) (parallel projection) (a)

tan−1 ri cos(m△− φi)
D+ri sin(m△− φi) (divergent projection) (b).

(6.23)

It is easy to verify that the summation in Eq. (6.17) is identical to the
operation in Eq. (6.21). Substituting Eq. (6.21) into the first sum on the right
side of Eq. (6.20), we have

E[sm(ri, φi)sm(rj , φj)]

= E[(
1∑

l=0

C
(mi)
l t((nmi + l)η,m△))(

1∑

l=0

C
(mj)
l t((nmj + l)η,m△))]. (6.24)

∗More specifically, W = W1W2, W1 = D
(2π)2

, W2 = 1
(D′)2

, and (D′)2 = (r cos(m∆−φ))2+

(D + r sin(m∆− φ))2.
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In the following, the proof is divided into two paths: the parallel projection
and the divergent projection.

(1) Parallel Projection. For the parallel projection, η = d. From Eq. (6.19),
we have

t((nmi + l)d,m△) =
N∑

k=−N
p(kd,m△)q∗((nmi + l − k)d) (l = 0, 1). (6.25)

The convolution function q∗((n − k)d) = q((n − k)d) (q((n − k)d) is defined
by Eq. (2.83) and Eq. (2.61)) can be approximated by a bandlimit function,
that is,

q∗(nd) ≃ 0 (|n| > n0), (6.26)

where n0 depends on the window width A of the window function FA(U) of
Eq. (2.57) and A ≃ 1

d [4, 18]. Applying Eq. (6.26) to Eq. (6.25), the convolved
projections t((nmi + l)d,m△) (l = 0, 1) in Eq. (6.25) are determined by the
some (not all) input projections (in the m-th view) that are located in the
interval [nmi + l−n0, nmi + l+n0] (l = 0, 1). Thus the first and second sums
of Eq. (6.24) are determined by some input projections p(nd,m△) with n that
satisfies [nmi − n0 ≤ n ≤ nmi + n0 + 1] and [nmj − n0 ≤ n ≤ nmj + n0 + 1],
respectively. For a given convolution function q∗, if the i-th and j-th pixels
are separated enough such that the two intervals [nmi −n0, nmi +n0+1] and
[nmj − n0, nmj + n0 + 1] are not overlapping, namely

|nmj − nmi | > 2n0 + 1, (6.27)

then Eq. (6.24) becomes

E[sm(ri, φi)sm(rj , φj)] = E[sm(ri, φi)]E[sm(rj , φj)], (6.28)

because all input projections p(nd,m△) in the parallel projection are inde-
pendent (Property 5.3). Substituting Eq. (6.28) into Eq. (6.20), we obtain

Rf (i, j) =

M−1∑

m=0

E[sm(ri, φi)] ·
M−1∑

n=0

E[sn(rj , φj)]

= E(f(ri, φi))E(f(rj , φj)). (6.29)

Eq. (6.29) shows that when |nmj −nmi | > 2n0 +1, f(ri, φi) and f(rj , φj) are
statistically independent.

Clearly, the condition of Eq. (6.27) is inconvenient to use. Below we derive
a formula that is simple and has obvious physical meaning, even though it is
somewhat approximate. Let (ri, φi), (xi, yi), (rj , φj), and (xj , yj) denote the
polar and rectangular coordinates of the centers of two pixels labeled by i and
j, and ∆R and ψ denote the distance between these two centers and the angle
of the line connecting these two centers with the positive X-axis, that is,

∆R =
√
(xi − xj)2 + (yi − yj)2 and ψ = tan−1 yi − yj

xi − xj
. (6.30)
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FIGURE 6.1

The geometry of projections and pixel locations.

The geometry of the projections and the locations of pixels is shown in Fig-
ure 6.1, where m△ is assumed to have a uniform distribution on [0, 2π], that
is, its pdf is

pm△ =





1/2π [0, 2π]

0 elsewhere .
(6.31)

Figures 6.1a and 6.1c show the two extreme situations in which

m△ = ψ + π (Figure 6.1.a) and m△ = ψ +
π

2
(Figure 6.1c). (6.32)

For the given pixels labeled by i and j, ψ is fixed; thus the probabilities

P (m△ = ψ + π) = P (m△ = ψ +
π

2
) = 0 , (6.33)

and therefore we only consider the general situation shown in Figure 6.1b. We
approximate Eq. (6.23a) by using the nearest neighbor interpolation method,
that is,

ri cos(m△− φi) ≃ nmid and rj cos(m△− φj) ≃ nmjd, (6.34)

where nmi and nmj are the nearest integers of ri cos(m△− φi)/d and rj cos
(m△− φj)/d, respectively. Thus

(nmj − nmi)d ≃ (xi − xj) cosm△+ (yi − yj) sinm△
= ∆R cos(m△− ψ). (6.35)

Substituting Eq. (6.35) into Eq. (6.27), the statement represented by
Eq. (6.27) and (6.28) becomes that when

|∆R cos(m△− ψ)| > (2n0 + 1)d, (6.36)
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then f(ri, φi) and f(rj , φj) are statistically independent. ∆R cos(m△− ψ) of
Eq. (6.36) is the projected distance of the distance ∆R onto the direction
perpendicular to the projection direction. Thus, Eq. (6.36) states that when
this projected distance is greater than the “correlation” distance (2n0 + 1)d,
then f(ri, φi) and f(rj , φj) are statistically independent.

It is clear from Eq. (6.36) that for some m, ∆R cos(m△− ψ) is less than
(2n0 + 1)d. Thus, what we have to do is find the condition such that the
probability that this event occurs is less than a specified small value (1− P0)
(say 0.05). Eq. (6.31) shows that (m△ − ψ) has a uniform distribution on
[0, 2π]. It is easy to show that if γ0 is the smallest angle among all possible
(m△− ψ) < π

2 such that when m△− ψ ≥ γ0,

∆R cos(m△− ψ) ≤ (2n0 + 1)d, (6.37)

then from the above discussion we have

P (γ0 ≤ m△− ψ ≤
π

2
) =

π
2 − γ0
2π

≤ 1− P0

4
, (6.38)

which leads to
γ0 ≥

π

2
P0. (6.39)

γ0 can be determined when the equality of Eq. (6.37) holds. Thus, we obtain

cos−1(
(2n0 + 1)d

∆R
) ≥ π

2
P0, (6.40)

and therefore

∆R ≥ (2n0 + 1)d

cos(π2P0)
. (6.41)

Eq. (6.41) gives the condition for two pixel intensities generated by the con-
volution reconstruction method (for the parallel projection) to be statistically
independent with a probability greater than P0. From Eq. (6.41), we have ob-
served: (1) When the projection spacing d and the effective bandwidth n0 of
the convolution function q are fixed, the larger the probability P0, the larger
the distance ∆R is. In the limiting case of the probability P0 approaching 1,
the distance ∆R approaches infinity. (2) When d and P0 are fixed, the smaller
the n0, the smaller ∆R is. (3)) When P0 and n0 are fixed, the smaller the d,
the smaller ∆R is.

(2) Divergent Projection. For the divergent projection, η = δ and the convo-
lution reconstruction method is different from that for the parallel projection
in two aspects: (1) The convolution function q∗ of Eq. (6.19) consists of two
functions q1 and q2 (Eq. (2.74)) that are different from q∗ for the parallel
projection. (2) The original projections p(nδ,m△) are a-dependent, not in-
dependent as in parallel projection. Below we show that even though these
two differences exist, the conclusion similar to Eq. (6.41) for the divergent
projection can still be achieved.
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It has been shown that the convolution function for the divergent projection
q∗((n− k)δ) = q1((n− k)δ) cos(kδ) + q2((n− k)δ) cos(nδ) (see Eq. (2.91) and
Eq. (2.74)) behaves similarly to q∗((n− k)d)) for the parallel projection, that
is, q∗ can be approximated by a bandlimit function

q∗(nδ) ≃ 0 (|n| > n0), (6.42)

where n0 depends on the window width A of the window function FA(U) of
Eq. (2.57) and A ≃ 1

δ .
The a-dependency in each view of divergent projections implies that if |k−

n| < n′
0, where n

′
0 is defined by

n′
0 = [

a

δ
] + 1 (6.43)

([x] denotes the integer part of x), then p(kδ,m△) and p(nδ,m△) are corre-
lated (Property 5.3).

Thus, when Eq. (6.27) holds for the divergent projection, then n0 of
Eq. (6.27) should be replaced by n0+n′

0. Thus, we obtain that, for the diver-
gent projection, when

|nmj − nmi | > 2(n0 + n′
0) + 1, (6.44)

then the pixel intensities f(ri, φi) and f(rj , φj) are statistically independent.
In order to obtain a simple formula for Eq. (6.44), we approximate

Eq. (6.23b) using the nearest neighbor interpolation

tan−1 ri cos(m△− φi)
D+ri sin(m△− φi) ≃ nmiδ

tan−1 rj cos(m△− φj)
D+rj sin(m△− φj) ≃ nmjδ.

(6.45)

After mathematical manipulations, we have

tan(nmj − nmi)δ =
D∆R cos(m△− ψ) + rirj sin(φj − φi)

D2 +D∆R
′

sin(m△− ψ′

) + rirj cos(φj − φi)
, (6.46)

where ∆R and ψ are defined by Eq. (6.30), and ∆R′ and ψ′ are defined by

∆R′ =
√
(xi + xj)2 + (yi + yj)2 and ψ′ = tan−1 yi + yj

xi + xj
. (6.47)

In most cases, D ≫ ri and rj , thus, Eq. (6.46) can be approximated by

tan(nmj − nmi)δ ≃
∆R cos(m△− ψ)

D
. (6.48)

Therefore, the statement represented by Eq. (6.44) becomes that when

tan−1(
∆R cos(m△− ψ)

D
) ≥ (2(n0 + n′

0) + 1)δ , (6.49)
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then f(ri, φi) and f(rj , φj) are statistically independent.
∆R cos(m△− ψ) is the projected distance of ∆R onto the direction per-

pendicular to the central projection of the divergent projections. The left side

of Eq. (6.49), tan−1(
∆R cos(m△− ψ)

D ), is the angle subtended by this pro-
jected distance at the source of a distance D. Thus, the physical meaning of
Eq. (6.49) is that when the angle separation of two pixels (with respect to the
source position) is greater than the “correlation” angle (2(n0+n

′
0)+1)δ, then

the two pixel intensities are statistically independent.
Taking the same steps as Eq. (6.37) - Eq. (6.40), we obtain

∆R ≥ D tan(2(n0 + n′
0) + 1)δ

cos(π2P0)
. (6.50)

Eq. (6.50) gives the condition for two pixel intensities generated by the convo-
lution reconstruction method (for the divergent projection) to be statistically
independent with a probability greater than P0. From Eq. (6.50), we have
observed that (i) When the projection spacing δ, the effective bandwidth n0

of the convolution function q, and a-dependency width n′
0 are fixed, the larger

the probability P0, the larger the distance ∆R is. In the limiting case of the
probability P0 approaching 1, the distance ∆R approaches infinity. (ii) When
δ and P0 are fixed, the smaller the n0 and/or n′

0, the smaller the ∆R is. (iii))
When P0 and n0 and n′

0 are fixed, the smaller δ, the smaller the ∆R is.
In a summary, (2n0 + 1)d in Eq. (6.41) and D tan(2(n0 + n′

0) + 1)δ in
Eq. (6.50) are the correlation distance, because if ∆R is equal to the corre-
lation distance, P0 = 0, that is, 1 − P0 = 1, which implies that two pixel
intensities are correlated with probability 1. Let Rcor denote the correlation
distance. Eq. (6.41) and Eq. (6.50) can be rewritten as

1− P0 ≥
2

π
sin−1

(
Rcor
∆R

)
. (6.51)

By taking the equality of Eq. (6.51), the relation between the probability
(1 − P0) of two pixel intensities being correlated and their distance ∆R is
plotted in Figure 6.2. The curve in Figure 6.2 shows that any two pixel
intensities in an X-ray CT image generated by the convolution reconstruction
method are correlated; the probability (1 − P0) of two pixel intensities being
correlated is a monotonically decreasing function of the distance ∆R between
pixels; when ∆R approaches infinity, (1 − P0) approaches the zero, which
implies that pixel intensities are independent.

Let lp be the pixel size and define

∆J =

[
∆R

lp

]
+ 1, (6.52)

where ∆R is given by Eq. (6.41) or Eq. (6.50) by taking the equality, we obtain
that when two pixels are spatially separated no less than ∆J , then these two
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FIGURE 6.2

The relationship between the probability (1−P0) of two pixel intensities being
correlated and the distance ∆R between two pixels.

pixel intensities are statistically independent with probability greater than
P0. The following example illustrates the relationship between ∆J and the
probability P0. In this example, we assume that n0 = 2 and lp = 10d for
the parallel projection and n0 = n′

0 = 2, δ = 0.05o, and D = 450lp for the
divergent projection. The curves of ∆J versus P0 for the above settings are
shown in Figure 6.3. It is clear from Figure 6.3, when two pixel intensities
are statistically independent with probability greater than 0.7, then these
two pixels must be separated by 2 for parallel or 8 for divergent projections,
respectively.

6.3.2 Exponential Correlation Coefficient

Property 6.3 The magnitude of the correlation coefficient of pixel intensities
of an X-ray CT image decreases exponentially with the distance between
pixels.

Proof.
By taking the equality of Eq. (6.51), it becomes

1− P0 =
2

π
sin−1(

Rcor
∆R

) (∆R ≥ Rcor > 0), (6.53)

where ∆R is the distance between two pixels, Rcor is the correlation distance
that is determined by the settings of the imaging system and the parameters
of the image reconstruction algorith, and (1 − P0) is the probability of two
pixel intensities being correlated.

Eq. (6.53) and Figure 6.2 show that any two pixel intensities in X-ray CT
image generated by the convolution reconstruction method are correlated; the
probability (1−P0) of two pixel intensities being correlated is a monotonically
decreasing function of the distance ∆R between pixels; when ∆R approaches
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FIGURE 6.3

Relationship between the probability P0 of two pixel intensities being indepen-
dent and the pixel separation ∆J : (a) for parallel projections, (b) for divergent
projections.

infinity, (1− P0) approaches, which implies that pixel intensities are uncorre-
lated, and hence independent.

These statements are equivalent to
(a) When two pixel intensities are less likely to be correlated, that is, ∆R is

larger, then (1 − P0) becomes smaller. In the limiting case of ∆R→∞, that
is, two pixel intensities are uncorrelated, (1− P0) = 0.

(b) When two pixel intensities are more likely to be correlated, that is, ∆R
is smaller, then (1 − P0) becomes larger. In the limiting case of ∆R = Rcor,
that is, two pixel intensities are fully correlated, then (1− P0) = 1.

Thus, the variation of (1 − P0), monotonically increasing from 0 to 1, cor-
responds to the change in the relationship between two pixel intensities, from
uncorrelated to the fully correlated. Therefore, (1−P0) can be used as a mea-
sure of the magnitude of the correlation coefficient, |rx((i, j), (k, l))|, of two
pixel intensities.

Let (1 − P0) be denoted by r̂|rx((i,j),(k,l))|. Because Eq. (6.53) has an ap-
proximately exponential shape, we have

r̂|rx((i,j),(k,l))| = e−a(∆R−Rcor) (∆R−Rcor > 0), (6.54)

where a > 0 is a constant. Because r̂|rx((i,j),(k,l))| of Eq. (6.54) is very similar
to (1 − P0) of Eq. (6.53) and also possesses several desirable analytical and
computational properties, we use Eq. (6.54) to approximate Eq. (6.53). Pa-
rameter a can be determined such that r̂|rx((i,j),(k,l))| fits (1 − P0) according
to some objective requirements. For instance, we can choose a by minimizing
the sum of the square differences of (r̂|rx((i,j),(k,l))| − (1 − P0)) over n points
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of ∆R. From Eqs. (6.53) and (6.54), the dimensionality of a is the inverse of
the length.

r̂|rx((i,j),(k,l))| = e−a·∆R (∆R ≥ 0, a > 0) (6.55)

is a shifted version of Eq. (6.54). For most imaging systems and image re-
construction algorithms, the correlation distance Rcor is less than the one-
dimensional pixel size δp. Thus, ∆R = Rcor in Eq. (6.54) and ∆R = 0 of
Eq. (6.55) are equivalent. Due to its simplicity, we use Eq. (6.55). By using
∆R = δp

√
(i − k)2 + (j − l)2 = δp

√
m2 + n2 and letting aδp = α, Eq. (6.55)

becomes

r̂|rx((i,j),(k,l))| = e−a·δp
√
m2+n2

= e−α
√
m2+n2

(α > 0). (6.56)

Clearly, α has no dimensionality.

6.4 Statistics of the Intensities of a Group of Pixels

As shown in Section 2.3.2, the pixel intensity f(r, φ) represents the relative
linear attenuation coefficient (RLAC) of an X-ray at the location (r, φ). The
homogeneous tissue type or organ system has its unique RLAC. Pixels in
some regions of the image that correspond to these homogeneous tissue type
or organ system have essentially the same intensities. The small differences
among them are caused by system noise. These nearly equal pixel intensities
form an image region in an X-ray CT image.

In the image, a region refers to a group of pixels that are connected to each
other, and their intensities have the same mean and the same variance. An
image region is a union of these regions that may be or not be adjacent to each
other. X-ray CT image consists of piecewise contiguous image regions. This
fact reveals that each image region may possess unique statistical properties.
This section proves that pixel intensities in each image region of an X-ray CT
image form a spatial, stationary and ergodic random process, hence satisfying
ergodic theorems.

6.4.1 Stationarity

A random process is said to be stationary in a wide sense if the mean is
constant and the correlation function is shift invariant (either in time or in
space) [24].

Property 6.4a Pixel intensities in an image region of an X-ray CT image
form a spatial, stationary random process in the wide sense.

Proof.
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Based on the concept of the image region given in this section, pixel in-
tensities in an image region of an X-ray CT image have the same mean and
the same variance, which are constant. In Eq. (6.51), (1 − P0)—the proba-
bility of pixel intensities being correlated - is a measure of the correlation
Rf ((ri, φi), (rj , φj)) of pixel intensities. Eq. (6.51) shows that this measure
only depends on the distance between pixels; it does not depend on pixel lo-
cations in the image. That is, the correlation of pixel intensities is spatially
shift invariant. Thus, pixel intensities in an image region of an X-ray CT image
are stationary in the wide sense.

Property 6.4b Pixel intensities in an image region of an X-ray CT image
form a spatial, stationary random process in the strict sense.

Proof.
Property 6.1 shows that pixel intensities in an image region of an X-ray CT

image have a Gaussian distribution. Property 6.4a shows these pixel intensities
are stationary in the wide sense. Thus, pixel intensities in an image region of
an X-ray CT image are stationary in the strict sense [24].

Remarks on Stationarity. An X-ray CT image is a piecewise stationary
random field.

6.4.2 Ergodicity

The concept of ergodicity has a precise definition for random process appli-
cation. One such definition is given by [24]: A random process is said to be
ergodic if for any invariant event, F , either m(F ) = 0 or m(F ) = 1 (here
m is the process distribution). Thus, if an event is “closed” under time shift,
then it must have all the probability or none of it. An ergodic process is not
the same as a process that satisfies an ergodic theorem. However, ergodicity
is a sufficient condition of the Birkhoff-Khinchin ergodic theorem [24]. Thus,
we first prove that pixel intensities in an image region of an X-ray CT image
form an ergodic process, and then prove that this process satisfies the ergodic
theorem.

Property 6.5a Pixel intensities in an image region of an X-ray CT image
form an ergodic process.

Proof.
Property 6.4b shows that pixel intensities in an image region of an X-ray CT

image form a spatial stationary random process. Property 6.2 shows that this
process is spatially asymptotically independent. A stationary, asymptotically
independent random process is ergodic [24].

Property 6.5b Pixel intensities in an image region of an X-ray CT image
satisfy the ergodic theorem, at least with probability 1.

Proof.
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Because the random process formed by pixel intensities in an image region
of an X-ray CT image is stationary (Property 6.4b) and ergodic (Property
6.5a), this process satisfies Birkhoff-Khinchin ergodic theorems [24]. That is,
all spatial averages converge to the corresponding ensemble averages of the
process, at least with probability 1.

Remarks on Ergodicity. An X-ray CT image is a piecewise ergodic random
field.

As shown in Section 5.4.2, the reconstructed image is a configuration of
the underlying random process, that is, an outcome of the image reconstruc-
tion. Each pixel intensity is a value in the state space of the corresponding
random variable in this random process. Let f(r, φ) denote the underlying
random process, and let f (k)(r, φ) (k = 1, 2, · · ·) denote the k-th configura-
tion of f(r, φ). f (k)(ri, φi) represents a pixel intensity in f (k)(r, φ). In order
to estimate the mean or variance of f(ri, φi), K independently identically
distributed samples f (k)(ri, φi) (k = 1, · · · , K) from K images are required
to generate an ensemble, for example, the sample mean or sample variance.
With ergodicity, a spatial average of f (k)(ri, φi) over an image region inside
one image f (k)(r, φ) (a given k) can be performed to generate these estimates,
because under ergodicity, the ensemble average equals the spatial (or time)
average. Thus, only one reconstructed image is required.

6.5 Appendices

6.5.1 Appendix 6A

A signal-to-noise ratio (SNR) of an image is one of the fundamental measures
of image quality. An image with a high SNR has some unique features. For an
X-ray CT image, these features are given by Property 6.6. For a pixel centered
at (r, φ), let µf(r,φ) and σf(r,φ) be the mean and the standard deviation of the
pixel intensity f(r, φ); its SNR is defined by

SNRf(r,φ) =
µf(r,φ)
σf(r,φ)

. (6.57)

Property 6.6 For an X-ray CT image with a high SNR, its pixel intensities
tend to be statistically independent; pixel intensities in an image region are
stationary and ergodic in the mean and the autocorrelation.

Proof.
The second items on the right side of Eq. (6.5) and Eq. (6.9), as shown by

Eq. (6.6) and Eq. (6.10), actually represent the variance of the pixel intensity.
Let them be denoted by kiσf(ri,φi)kjσf(rj ,φj) approximately, where k1 and
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k2 are two coefficients. Thus, Eqs. (6.5) and (6.9) can be expressed by one
formula:

Rf ((ri, φi), (rj , φj))

= µf(ri,φi)µf(rj ,φj) + kiσf(ri,φi)kjσf(rj ,φj)

= µf(ri,φi)µf(rj ,φj)[1 + kikj/(
µf(ri,φi)µf(rj,φj)

σf(ri,φi)σf(rj ,φj)
)]

= µf(ri,φi)µf(rj ,φj)[1 +
kikj

SNRf(ri,φi)SNRf(rj,φj)
], (6.58)

When the SNR is high, the second item in the bracket on the right side of
Eq. (6.58) can be ignored. Thus, Eq. (6.58) becomes

Rf ((ri, φi), (rj , φj)) ≃ µf(ri,φi)µf(rj ,φj), (6.59)

which implies that pixel intensities f(ri, φi) and f(rj , φj) are approximately
considered as statistically independent.

Under the approximated independence of pixel intensities in an X-ray CT
image with high SNR, the stationarity and ergodicity of pixel intensities in
an image region are proved in a different way.

In an image region, pixel intensities have the same mean µ and the same
variance σ2, that is,

µf(ri, φi)
= µ and σ2

f(ri, φi)
= σ2, (6.60)

thus, the autocorrelation function Rf (i, j) of pixel intensities is

Rf (i, j) = E[f(ri, φi)f(rj , φj)] =




µ2 (i 6= j)

σ2 + µ2 (i = j).
(6.61)

Eqs. (6.60) and (6.61) show that f(r, φ) is a stationary process in the wide
sense, and hence in the strict sense.

Because the autocovariance Cf (i, j) of pixel intensities is

Cf (i, j) = Rf (i, j)− µf(ri, φi)µf(rj , φj) =





0 (i 6= j)

σ2 (i = j),
(6.62)

which means that the autovariance Cf (i, i) < ∞ and the autocovariance
Cf (i, j) −→ 0 when |j − i| → ∞. Thus, f(r, φ) is ergodic in the mean [6, 77].

In order to prove that f(r, φ) is ergodic in the autocorrelation, we define a
new process eτ (r, φ):

eτ (ri, φi) = f(ri+τ , φi+τ )f(ri, φi) (τ > 0). (6.63)
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Thus, proving that f(r, φ) is ergodic in autocorrelation is equivalent to proving
that eτ (r, φ) is ergodic in the mean. The mean of eτ (r, φ) is

µeτ = E[eτ (ri, φi)] = E[f(ri+τ , φi+τ )f(ri, φi)] = Rf (i+ τ, i). (6.64)

From Eq. (6.61), the mean µeτ of eτ (r, φ) is

µeτ = µ2. (6.65)

The variance σ2
eτ of eτ (r, φ) is

σ2
eτ = E[e2τ (ri, φi)]− [E(eτ (ri, φi))]

2

= E[f2(ri+τ , φi+τ )f
2(ri, φi)]− µ2

eτ

= E[f2(ri+τ , φi+τ )]E[f2(ri, φi)]− µ2
eτ

= (σ2 + µ2)(σ2 + µ2)− µ4

= σ2(σ2 + 2µ2). (6.66)

The autocorrelation Reτ (i, j) of eτ (r, φ) (for i 6= j) is

Reτ (i, j) = E[eτ (ri, φi)eτ (rj , φj)]

= E[f(ri+τ , φi+τ )f(ri, φi)f(rj+τ , φj+τ )f(rj , φj)]

=




E[f(ri+τ , φi+τ )]E[f(ri, φi)]E[f(rj+τ , φj+τ )]E[f(rj , φj)]

E[f(ri+τ , φi+τ )]E[f(ri, φi)f(rj+τ , φj+τ )]E[f(rj , φj)]

=




µ4 (|i− j| 6= τ)

µ2(σ2 + µ2) (|i− j| = τ)
. (6.67)

Thus, from Eqs. (6.65) through (6.67), eτ (r, φ) is stationary.

Because the autocovariance Ceτ (i, j) of eτ (r, φ) is

Ceτ (i, j) = Reτ (i, j)− E[eτ (ri, φi)]E[eτ (rj , φj)]

=





0 (|i − j| 6= τ)

µ2σ2 (|i − j| = τ)
(6.68)
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and the autovariance Ceτ (i, i) of eτ (r, φ) is

Ceτ (i, i) = σ2(σ2 + 2µ2) <∞. (6.69)

Thus, eτ (r, φ) is ergodic in the mean, and hence f(r, φ) is ergodic in the
autocorrelation [6, 77].

Problems

6.1. Verify that the operations represented by Eqs. (6.21) and (6.17) are
identical.

6.2. Verify Eq. (6.42).

6.3. Derive Eq. (6.46).

6.4. Prove Eq. (6.50).

6.5. Derive Eq. (6.51).
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7

Statistics of MR Imaging

7.1 Introduction

As shown in Chapter 3, MR images are reconstructed from k-space samples,
while k-space samples are formulated from analog-to-digital conversion (ADC)
signals by applying adequate pulse sequences. An ADC signal is a discrete
version of a phase sensitive detection (PSD) signal (sampled at the proper
frequency), while a PSD signal is formed from a free induction decay (FID)
signal via quadrature PSD. FID signals are induced by transverse precessing
macroscopic magnetization (TPMM), while TPMM originates from thermal
equilibrium macroscopic magnetization (TEMM).

Thus, in MR imaging, the term MR data means the macroscopic magnetiza-
tions (TEMM, TPMM), MR signals (FID, PSD, ADC), and k-space samples.
Among them, TEMM is spatially distributed, TPMM varies with both time
and the spatial location, FID, PSD and ADC are the temporal signals, and
k-space samples are in the spatial frequency domain. TEMM and FID are real
data; TPMM, PSD, ADC, and k-space samples are complex data. Similar to
any type of realistic data, each type of MR data consists of its signal and noise
components.

In some statistics studies on MR imaging, the randomness of the signal
components of MR data is ignored. Therefore, the randomness of MR data
is mainly derived from their noise components, particularly from the thermal
noise [1–3, 5–7, 9–11, 13, 14, 16, 17, 23, 27, 53–56]. MR noise studies are often
associated with the signal-to-noise ratio (SNR) evaluation. This is because
the SNR can provide an absolute scale for assessing imaging system perfor-
mance and lead to instrumentation design goals and constraints for system
optimization; also, it is one of the fundamental measures of image quality.

This chapter describes statistics of both signal and noise components of each
type of MR data, and focuses on their second-order statistics. Based on the
physical principles of MRI described in Chapter 3 and according to MR data
acquisition procedures, the statistical description of MR imaging progresses in
the following natural and logical order: macroscopic magnetizations (TEMM
→ TPMM) =⇒ MR signals (FID → PSD → ADC) =⇒ k-space samples.
When MR data travel in the space–time–(temporal and spatial)–frequency
domains, their statistics are evolving step by step.
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For the typical MR data acquisition protocols (the rectilinear and the ra-
dial k-space sampling), this chapter provides signal processing paradigms for
the basic image reconstruction methods (Fourier transform (FT) and projec-
tion reconstruction (PR)). Then it gives a statistical interpretation of MR
image reconstruction. That is, MR image reconstruction can be viewed as a
transform from a set of random variables (k-space samples) to another set
of random variables (pixel intensities). These new random variables form a
random process, also known as a random field. Statistics of MR data in the
imaging domain propagate to the statistics in the image domain through im-
age reconstruction.

7.2 Statistics of Macroscopic Magnetizations

Several studies on magnetization are at the microscopic scale and have es-
tablished theoretical models for (a) the classical response of a single spin to
a magnetic field and (b) the correlation of two individual spins in 1-D Ising
model [20, 27, 55]. Macroscopic magnetization represents a vector sum of all
microscopic magnetic moments of spins in a unit volume of sample. As shown
in Chapter 3, because signal components of k-space samples (Eq. (3.110)
and MR signals (Eqs. (3.96), (3.101), (3.102)) represent the collective be-
havior of a spin system, medical applications utilizing magnetic resonance for
imaging objects (tissues or organs) are based on macroscopic magnetization,
which is often called the bulk magnetization. Statistics of two types of bulk
magnetizations—TEMM and TPMM—are analyzed in this section.

7.2.1 Statistics of Thermal Equilibrium Magnetization

As shown in Section 3.4.2, when a sample is placed in an external, static mag-
netic field ~B0 = B0

~k (where ~k is the unit directional vector at the Z direction
of a Cartesian coordinate system {U, V, Z}),∗ the magnitude of TEMM of the
spin- 12 systems such as 1H , 13C, 19F , and 31P , etc., is given by

Mo
z (r) =

1

2
(nl − nh)γ~ =

1

2
γ~ǫn, (7.1)

where r = (u, v, z) denotes a location, nl and nh are the numbers of spins
at the lower and higher energy states, n = nl + nh, γ is the gyromagnetic

∗Instead of {X, Y,Z} used in the previous chapters, starting from this chapter, {U, V,Z}

denotes a Cartesian coordinate system. ~i, ~j ,and ~k are the unit directional vectors at the
U , V , and Z directions. ~i and ~j define the transverse plane and ~k specifies the longitudinal
direction.
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ratio ~ = h
2π and h is Planck’s constant, and ǫ is the ratio of the population

difference and the total population of nuclear spins in a unit volume of sample
and is given by Eq. (3.22). Mo

z (r) is in the ~k direction. Statistics of TEMM
are given by the following property.

Property 7.1 TEMM has a binomial distribution B(n, p) on the order n
with the parameter p (the probability for a single spin in a population of
the size n to be in the lower energy state). Under the normal conditions
and the ordinary settings of MRI, TEMM can be characterized by a spa-
tially Gaussian random process with constant mean and almost-zero variance:
Mo
z (r) ∼ N(µMo

z
, σMo

z
→ 0), where µMo

z (r)
= 1

2γ~ǫn. That is, TEMM is spa-
tially deterministic with probability 1.

�

Proof.
Because the probability that a single spin in a population of the size n is

in the lower energy state is p (Section 3.4.2), the probability that nl spins in
this population are in the lower energy state and nh = n − nl spins in this
population are in the higher energy state is

(nnl
)pnl(1− p)n−nl . (7.2)

Eq. (7.2) is the probability mass function (pmf) of a binomial distribution of
the order n with the parameter p, B(n, p). The parameter p can be estimated
by nl

n , which, by using Eq. (3.23), leads to p = 1+ǫ
2 . Let ν be a random variable

with B(n, p); its mean and variance are [45]

µν = E[ν] = np

σ2
ν = V ar[ν] = np(1− p). (7.3)

In MRI, n≫ 1 and np(1−p)≫ 1. Thus, according to the Bernoulli-Poisson
theorem [71] or DeMoivre-Laplace theorem [77], the binomial distribution
ν ∼ B(n, p) can be accurately approximated by a Gaussian distribution ν ∼
N(µν , σν) (0 < nl < n), that is,

(nν )p
ν(1− p)n−ν ≃ 1√

2πσν
exp

(
− (ν − µν)2

2σ2
ν

)
. (7.4)

Let ν and (n − ν) represent two populations of spins in the low and high
energy states, respectively, and let ∆ be the population difference; then ∆ =
ν − (n − ν) = 2ν − n. By applying the transform of random variables, ∆ is
characterized by a Gaussian distribution: N(µ∆, σ∆) (0 < ∆ < n), where the
mean, the variance, and the coefficient of variation of ∆ are, respectively,

µ∆ = E[∆] = 2µν − n = ǫn,

σ2
∆ = V ar[∆] = 4σ2

ν = (1− ǫ2)n, (7.5)

(
σ

µ
)∆ =

√
1− ǫ2
ǫ
√
n
≃ 1

ǫ
√
n
.
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Using ∆, Eq. (7.1) becomes Mo
z (r) = 1

2γ~∆. By applying the transform
of random variables again, TEMM Mo

z (r) is characterized by a Gaussian dis-
tribution, N(µMo

z
, σMo

z
), where the mean, the variance, and the coefficient of

variation of Mo
z (r) are, respectively,

µMo
z (r)

= E[Mo
z (r)] =

1

2
γ~µ∆ =

1

2
γ~ǫn

∆
= µMo

z
,

σ2
Mo

z (r)
= V ar[Mo

z (r)] =
1

4
γ2~2σ2

∆ =
1

4
γ2~2(1− ǫ2)n ∆

= σ2
Mo

z
, (7.6)

(
σ

µ
)Mo

z (r)
= (

σ

µ
)∆ ≃

1

ǫ
√
n

∆
= (

σ

µ
)Mo

z
.

Under normal conditions and ordinary settings of MRI as shown in Table
3.2, we have

µMo
z
≃ 3.21× 10−12,

σ2
Mo

z
≃ 1.33× 10−32, (7.7)

(
σ

µ
)Mo

z
≃ 3.60× 10−5.

The values in Eq. (7.7) show that σ2
Mo

z
is almost zero and (σµ )Mo

z
is very small.

These two values indicate that the inherent noise of TEMM is very small and
can be negligible.

Necessary and sufficient conditions for a random variable to be a constant
(with probability 1) is its variance being equal to zero [24, 77]. σ2

Mo
z
→ 0 in

Eq. (7.7) leads to that, at a given location r, Mo
z (r) can be approximated by

a constant, or characterized by a Gaussian random variable with a constant
mean µMo

z
and an almost-zero variance: N(µMo

z
, σMo

z
→ 0). This constant

approximation of Mo
z (r) at any given location r infers that TEMM can be

considered a spatially deterministic process with probability 1. As a result,
the correlation of TEMM at two locations is

E[Mo
z (r1)M

o
z (r2)] = E[Mo

z (r1)]E[Mo
z (r2)] (r1 6= r2), (7.8)

which represents that Mo
z (r1) and Mo

z (r2) are uncorrelated, and therefore
independent due to the Gaussianity of Mo

z (r).

Remarks. The values in Eq. (7.7) are computed based on data listed in Table
3.2, where n = 6.69× 1019/(mm)3 for H2O. The voxel volume v = 1.0 (mm)3

is typical for the conventional MRI. When it becomes very small, e.g., v =
10−6 (mm)3 such as in Micro-MRI, (σµ )Mo

z (r)
≃ 3.60× 10−2. In this case, the

inherent noise of TEMM may not be negligible and should be considered.

7.2.1.1 Spin Noise and Its Statistics

Spin noise is inherent in magnetic resonance. It is caused by incomplete can-
cellation of spin moments when the external static magnetic field is absent
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or by their small but finite fluctuations when the magnetic field is applied.
Thus, spin noise can be viewed as the variation of TEMM. In other words,
TEMM Mo

z (r) can be decomposed into a signal component s(r) and a noise
component n(r) and expressed as

Mo
z (r) = s(r) + n(r). (7.9)

s(r) and n(r) are two random variables; n(r) denotes the spin noise. Statistics
of spin noise are given by the following property.

Property 7.2 Spin noise n(r) in MRI can be characterized by a spatial
Gaussian random process with the zero mean and the standard deviation σn:
n(r) ∼ N(0, σn), where σn = σMo

z
= 1

2γ~
√
(1 − ǫ2)n (ǫ is given by Eq. (3.22)).

n(r) and s(r) are independent.
�

Proof.
Let µs, µn and σs, σn denote the means and the standard deviations of the

random variables s(r) and n(r), respectively.
(a) Similar to any other type of noise, spin noise n(r) is commonly consid-

ered to have the zero mean µn = 0. (b) From the definition of the spin noise,
we have σn = σMo

z
. The arguments (a) and (b) lead to that (i) µs = µMo

z
,

σs = 0; thus the random variable s(r) is deterministic with probability 1,
therefore, it can be characterized by a Gaussian distribution with the zero
variance: s(r) ∼ N(µMo

z
, 0); and (ii) n(r) and s(r) are independent (because

s(r) is deterministic) and n(r) has a Gaussian distribution: n(r) ∼ N(0, σn)
(because n(r) and Mo

z (r) are linear dependent—Eq. (7.9)). From Property
7.1,

σn = σMo
z
=

1

2
γ~
√
(1− ǫ2)n. (7.10)

Thus, we have

Mo
z (r) ∼ N(µMo

z
, σMo

z
),

s(r) ∼ N(µs, 0) = N(µMo
z
, 0), (7.11)

n(r) ∼ N(0, σn) = N(0, σMo
z
).

µMo
z
and σMo

z
are given by Eq. (7.6).

Based on Eqs. (7.9) and (7.6), the intrinsic SNR of TEMM is defined as

SNR = (
µ

σ
)Mo

z
=
µs
σn

=
ǫ
√
n√

1− ǫ2
. (7.12)

From Property 7.1 and Property 7.2, we have the following observations.
(1) At a sample size of 1× 1× 1(mm)3 (n = 6.69× 1019/(mm)3) and under

the conditions: Bo = 1 T and T = 300K, Eqs. (3.22), (7.6), (7.11), and (7.12)
give ǫ ≃ 3.40 × 10−6, µs ≃ 3.21 × 10−12 (A/m), σn ≃ 1.16 × 10−16 (A/m),
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TABLE 7.1

Relations between Bo, T , ǫ, and SNR

Bo 1.0 1.5 3.0 4.7 9.4
T 300 300 300 300 300

ǫ 10−5× 0.340 0.511 1.021 1.600 3.200
log SNR 4.477 4.621 4.921 5.115 5.420

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟

r
r

r
r

3 6 90.0

1.5

3.0

4.5

log ∆v (µm)3

SNR ≃ ǫ
√

∆v · 6.69 × 1010
log SNR

FIGURE 7.1

Relationship between spatial resolution ∆v and SNR.

and SNR ≃ 3 × 104. These numbers show that even when the population
difference is just about 3 ppm and the mean of TEMM is very small, the
intrinsic SNR of TEMM is very high at this sample size.

(2) For various values of Bo, Eqs. (3.22) and (7.12) give values of the ratio ǫ
and SNR of TEMM shown in Table 7.1. Eq. (7.12) also links the intrinsic SNR
of TEMM and the spatial resolution ∆v = ∆u ·∆v ·∆z (via ∆v = n/no, no—
spin density). For MRI of H2O (no = 6.69 × 1010/(µm)3), under conditions:
Bo = 1.0 T and T = 300K, the relationship between SNR and ∆v is shown
in Table 7.2 and Figure 7.1, which indicate that as the sample size decreases,
the intrinsic SNR decreases.

TABLE 7.2

Relations between Spatial Resolution ∆v (µm)3 and SNR

∆v (µm)3 1000 · 1000 · 1000 100 · 100 · 100 10 · 10 · 10 1 · 1 · 1
logSNR 4.477 2.944 1.444 -0.055

Table 7.2 and Figure 7.1 also show that when the voxel size decreases to
some scale, the intrinsic SNR of TEMM will become small and approach 1
so that TEMM cannot be accurately measured and observed. In other words,
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the spin noise may set a theoretical limit on the spatial resolution that con-
ventional MRI can achieve.

7.2.1.2 Some Applications on Spin Noise

Bloch stated [25] (“Nuclear Induction”) that “Even in the absence of any
orientation by an external magnetic field one can expect in a sample with n
nuclei of magnetic moment µ to find a resultant moment of the order (n)

1
2µ

because of statistically incomplete cancellation.”
Eq. (7.10) not only confirms Bloch’s prediction: when Bo = 0, then ǫ = 0

and Eq. (7.10) becomes σn = 1
2γ~
√
n, where 1

2γ~ = µ; but also gives a
description of the behavior of spin noise in the case of Bo 6= 0: as shown by
Eqs. (10) and (3.22) (ǫ ≃ γ~Bo

2κT ), σn decreases as Bo increases or T decreases.
These observations are reasonable and consistent.

(2) Glover and Mansfield [26] have investigated the limits of the spatial
resolution of magnetic resonance microscopy (MRM). They found that self-
diffusion (in the liquid state); the NMR line width (in the solid state); and
the diffusion, NMR line width, and few molecules per unit volume (in the
gas state) limit the achievable image resolution. They concluded that “As we
have seen there are no hard and fast limits to MRM. The boundaries are flexi-
ble. Nevertheless, there are practical limits imposed by magnetic field strength
and imaging time which currently limit practical resolution to about 1 (µm).
Ostensibly this limit has been reached.”

Table 7.2 and Figure 7.1 indicate that even in the ideal case of no thermal
noise, a meaningful MR image with spatial resolution of 1× 1× 1 (µm)3 may
not be attainable, as spin noise limits the achievable SNR. This outcome pro-
vides insight from a statistical point of view to the limit of spatial resolutions
of MRM.

(3) The basic idea and procedure of spin noise imaging (SNI) are as follows.
The ratio between the magnitude of spin noise and TEMM is about 10−7.
Because the SNR of pulse-NMR experiments for a sample of the size 200 ml
is in the range 107 − 109, the spin noise signal should be measurable.

In the absence of a radiofrequency pulse and in the presence of a constant
field gradient (e.g., the shim), the NMR noise is digitized and recorded as
a continuous sequence of packets. The individual packets are Fourier trans-
formed separately and co-added after calculation of the magnitude of the
complex data points. In some experiments of SNI [27], 31 one-dimensional
images were acquired, with the direction of the transverse magnetic field gra-
dient being rotated by 6◦ to cover a 180◦ area. The projection reconstruction
method is applied to this data set to generate final two-dimensional image.

In SNI, spin noise is treated as a kind of “signal.” The peak-to-peak spin-
noise-to-thermal-noise ratios σn/σm are typically 20 to 25 for the individ-
ual one-dimensional image. However, this ratio is evaluated experimentally.
Eqs. (7.10) and (3.22) give a theoretical estimate of the magnitude of spin
noise. It would be interesting to verify this outcome through experimental
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work of SNI.

7.2.2 Statistics of Transverse Precession Magnetizations

As described in Section 3.5.2, TPMM ~Muv(r, t) is defined as the transverse

component of free PMM ~M(r, t) in the relaxation process. Section 3.6 shows
that it is given by the solution of the Block equation (Eqs. (3.46) through
(3.48)) and its dynamic behavior is shown in Figure 3.4. Section 3.7 gives slice
TPMM profiles for various RF excitation pulses in the excitation process. All
MR signals, FID (Eq. (3.96)), PSD (Eq. (3.101)), and ADC (Eq. (3.102)) of
Section 3.8, and k-space sample (Eq. (3.110)) of Section 3.9.1 are functions
of TPMM. Section 3.9.2 indicates that TPMM also appears at the readout
sampling.

All these equations demonstrate that the magnitude of ~Muv(r, t) can be

expressed by a product of its initial value ~Muv(r, 0) (a spatial factor of the
location r) and an exponential decay (a temporal factor of the time t). The

following discussion is focused on ~Muv(r, 0). For simplicity and clarity, the

initial value ~Muv(r, 0) of TPMM ~Muv(r, t) is also called TPMM. Let t = 0
denote the time instant at the start of the free precession process of spins.
t = 0 is also understood as the time instant at the end of the forced preces-
sion process of spins. Thus, | ~M(r, 0)| = Mo

z (r). Using the complex notation,
TPMM is expressed as

Muv(r, 0) =Mu(r, 0) + iMv(r, 0) = |Muv(r, 0)|eiφMuv (r,0), (7.13)

where |Muv(r, 0)| and φMuv (r, 0) are the magnitude and the phase of TPMM
Muv(r, 0). Statistics of TPMM are given by the following property.

Property 7.3 TPMMMuv(r, 0) can be characterized by a complex Gaussian
random process with a constant mean and a almost-zero variance:Muv(r, 0) ∼
N(µMuv , σMuv → 0), where µMuv = µM0

z
sinα eiφMuv , α = ω1τp = γB1τp,

φMuv = ω0τp = γB0τp, τp is the duration of RF pulse. That is, Muv(r, 0) is
spatially deterministic with probability 1.

Proof.
Section 3.7 shows that an RF pulse transforms TEMM Mo

z (r)
~k to a free

precessing magnetization ~M(r, 0) = ~Muv(r, 0)+ ~Mz(r, 0). In the V ′−Z ′ plane
of the rotating reference frame,† ~M(r, 0) rotates at an angle α = γB1τp about
~B1. In the U − V plane of the laboratory reference frame, ~M(r, 0) rotates at

†Similar to the coordinate system {X, Y,Z} in Chapter 3, the coordinate system {U, V,Z}
is called the laboratory reference frame. A coordinate system {U ′, V ′, Z′} whose transverse
plane U ′ − V ′ is rotating clockwise at an angle frequency ω0 and its longitudinal axis Z′ is
identical to Z is called the rotating reference frame.
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an angle φMuv = γB0τp about ~B0. From Eq. (7.13),

Muv(r, 0) = |Muv(r, 0)|eiφMuv (r,0)

= | ~Muv(r, 0)|eiφMuv (r,0)

= | ~M(r, 0)| sinα eiφMuv (r,0) (7.14)

= Mo
z (r) sinα e

iφMuv (r,0).

For the magnitude of Muv(r, 0), because (i) |Muv(r, 0)| =Mo
z (r) sinα (α is

constant), and (ii) Mo
z (r) ∼ N(µMo

z
, σMo

z
→ 0), then using the transform of

random variables, |Muv(r, 0)| is characterized by a Gaussian distribution with
the mean µ|Muv | = µMo

z
sinα and the variance σ2

|Muv | = σ2
Mo

z
sin2 α→ 0, that

is, |Muv(r, 0)| ∼ N(µ|Muv |, σ|Muv | → 0).
For the phase of Muv(r, 0), because at the end of the RF excitation or at

the beginning of the relaxation, φMuv (r, 0) are the same for all r, otherwise
the incoherence of the phase φMuv (r, 0) would make Muv(r, 0) vanish. Thus,

φMuv (r, 0) = γB0τp
∆
= φMuv . That is, φMuv (r, 0) is constant for all r.

Thus, from Eq. (7.13) and using the transform of random variables,
Muv(r, 0) = |Muv(r, 0)|eiφMuv can be characterized by a Gaussian distribu-
tion: Muv(r, 0) ∼ N(µMuv , σMuv ), where the mean and the variance are

µMuv = E[|Muv(r, 0)|eiφMuv ] = µ|Muv |e
iφMuv = µMo

z
sinα eiφMuv , (7.15)

σ2
Muv

= V ar[|Muv(r, 0)|eiφMuv ] = V ar[|Muv(r, 0)|]|eiφMuv |2 = σ2
Mo

z
sin2 α→ 0.

This constant approximation ofMuv(r, 0) at any given location r leads to that
TPMM can be considered a spatially deterministic process with probability
one.

Remarks. Discussions so far were for a homogeneous spin system. 0 ≤
φMuv < 2π. φMuv = 0 and π

2 indicate that ~Muv(r, 0) is in the direction ~i

and ~j, respectively.

7.2.2.1 Observations and Discussions

Let δ(x) be a Dirac delta function and g(x|µ, σ) be a Gaussian pdf for the
random variable x. We observed that

(a) The Dirac delta function δ(x− µ) sometimes is defined as [16, 77]

δ(x − µ) ≥ 0 and

∫ +∞

−∞
δ(x− µ)dx = 1. (7.16)

By comparing Eq. (7.16) with the definition of the pdf of a random variable,
δ(x− µ) can be considered a pdf of a random variable in some sense.

(b) [16, 56] show that

δ(x− µ) = lim
σ→0

1√
2πσ

e−
(x−µ)2

2σ2 = lim
σ→0

g(x|µ, σ). (7.17)
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Thus, Eq. (7.17) implies that a Dirac delta function can be used as an ap-
proximation of the pdf of a Gaussian random variable with the fixed mean
and the almost-zero variance.

The limσ→0 g(x|µ, σ) in Eq. (7.17) can be written as g(x|µ, σ → 0) and
is known as the degenerate Gaussian pdf. Eqs. (7.16) and (7.17) show that
a delta function and a degenerate Gaussian pdf are equivalent and can be
expressed by

δ(x− µ) = g(x|µ, σ → 0). (7.18)

Therefore, the properties of the delta function can be used to simplify statis-
tical derivation in cases with degenerate Gaussians. For TPMM, we have

g(|Muv(r, 0)| | µ|Muv |, σ|Muv | → 0) = δ(|Muv(r, 0)| − µ|Muv |),

g(Muv(r, 0) | µMuv , σMuv → 0) = δ(Muv(r, 0)− µMuv ). (7.19)

7.3 Statistics of MR Signals

At the different stages of the signal detection module, MR signals take dif-
ferent forms and can be classified in different ways. For example, they may
be classified as free induction decay, RF echos, gradient echos, etc. [55, 56].
These signals are generated using various pulse sequences and their ampli-
tudes are functions of MR intrinsic parameters (e.g., spin density, T1, T2, TI)
and the operative parameters (e.g., TE , TR), etc. Because only the basic ex-
citation/reception pulse sequences are considered in this statistical study, a
simple classification—free induction decay (FID) signal, phase sensitive de-
tection (PSD) signal, analog-to-digital conversion (ADC) signal—is adopted.
This section analyzes statistics of FID, PSD, and ADC signals in terms of
statistics of their signal and noise components.

(1) FID signal. The signal component sr(t) an of FID signal is given by

Eq. (3.96). For the static gradient ~G(r, τ) = ~G = Gu~i +Gv~j +Gz~k (Section
3.6.3), the free precession frequency ∆ω(r, t) in Eqs. (3.45) through (3.48)

becomes spatially dependent only,that is, ∆ω(r, t)
∆
= γ ~G(r, t) · r = γ ~G(r) · r ∆

=
∆ω(r). With minor manipulations, Eq. (3.96) can be rewritten as

sr(t) = ωo

∫

V

|Bruv (r)| |Muv(r, 0)|e−
t

T2(r)

sin((ωo +∆ω(r))t+ φBruv
(r)− φMuv (r, 0))dr, (7.20)

where V represents the sample volume, ωo = γB0 is the Larmor frequency,
∆ω(r) is given by

∆ω(r) = γ ~G(r) · r = γ(Guu+Gvv +Gzz), (7.21)
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|Bruv (r)| and φBruv
(r) are the magnitude and phase of the transverse com-

ponent indicative of the sensitivity of the receiver coil, ~Br(r), |Muv(r, 0)| and
φMuv (r, 0) are the magnitude and phase of TPMMMuv(r, 0), and T2(r) is the
transverse relaxation time constant at r.

Eq. (7.20) is derived under several conditions: (i) the contribution of LPMM
Mz(r, t) to sr(t) is ignored because it varies slowly compared to TPMM
Muv(r, t), and (ii) approximations such as ωo ≫ ∆ω(r, t) and ωo ≫ 1

T2(r)

are adopted because they are valid in practice.
Randomly fluctuating noise currents in the sample induced mainly by the

time-varying magnetic field are also picked up by the receiver coil, which con-
stitutes a counterpart of sr(t), denoted by nr(t). Thus, a real-valued physical
signal detected by the receiver coil can be expressed as

Vr(t) = sr(t) + nr(t). (7.22)

Vr(t) is the FID signal; sr(t) and nr(t) are its signal and noise components.

(2) PSD signal. As shown in Figure 3.8, with sr(t) of Eq. (7.20) as the
input, the quadrature PSD results in a frequency shift of sr(t) by ω0 and
produces a complex-valued baseband signal component sc(t), which is given
by Eq. (3.100). With minor manipulations, sc(t) is expressed by

sc(t) =
ωo
2

∫

V

B∗
ruv

(r)Muv(r, 0)e
− t

T2(r) e−i∆ω(r)tdr. (7.23)

where ∗ represents the complex conjugate, Bruv (r) = |Bruv (r)|eiφBruv
(r),

Muv(r, 0) = |Muv(r, 0)|eiφMuv (r,0), and ∆ω(r) is given by Eq. (7.21).
sc(t) consists of a real part sI(t) (Eq. (3.97)) in the in-phase channel I and

an imaginary part sQ(t) (Eq. (3.98)) in the quadrature channel Q. Similarly,
nc(t)—the noise counterpart of sc(t)—also consists of a real part nI(t) in the
channel I and an imaginary part nQ(t) in the channel Q. Thus, the signal
component sc(t), the noise component nc(t), the in-phase signal I(t), and the
quadrature signal Q(t) are, respectively,

sc(t) = sI(t) + isQ(t) , nc(t) = nI(t) + inQ(t),

I(t) = sI(t) + nI(t) , Q(t) = sQ(t) + nQ(t). (7.24)

Therefore, the complex-valued baseband MR signal Vc(t) from the quadrature
PSD can be expressed in two ways:

Vc(t) = I(t) + iQ(t) = (sI(t) + nI(t)) + i(sQ(t) + nQ(t))

or (7.25)

Vc(t) = sc(t) + nc(t) = (sI(t) + isQ(t)) + (nI(t) + inQ(t)).

Vc(t) is the PSD signal; sc(t) and nc(t) are its signal and noise components.

(3) ADC signal. Vc(t) is sampled at the Nyquist frequency [11] (for the
given bandwidth of the anti-aliasing filter) to yield a discrete, complex-valued
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baseband signal V̂c(j), which is given by Eq. (3.102), where j denotes the time
instant. With minor manipulations, ŝc(j) is expressed by

ŝc(j) =
ωo
2

∫

V

B∗
ruv

(r)Muv(r, 0)e
− j

T2(r) e−i∆ω(r)jdr. (7.26)

Let n̂c(j), Î(j), Q̂(j), ŝI(j), ŝQ(j), n̂I(j), and n̂Q(j) be the discrete versions

of nc(t), I(t), Q(t), sI(t), sQ(t), nI(t), and nQ(t). Similar to Eq. (7.25), V̂c(j)
can be expressed in two ways:

V̂c(j) = Î(j) + iQ̂(j) = (ŝI(j) + n̂I(j)) + i(ŝQ(j) + n̂Q(j))

or (7.27)

V̂c(j) = ŝc(j) + n̂c(j) = (ŝI(j) + iŝQ(j)) + (n̂I(j) + in̂Q(j)).

The sampling is carried out by ADC. V̂c(j) is the ADC signal; ŝc(j) and n̂c(j)
are its signal and noise components.

Eqs. (7.22), (7.25) and (7.27) indicate that the randomness of MR signals
results from both their signal and noise components. Statistics of signal and
noise components of these signals are analyzed separately.

7.3.1 Statistics of Signal Components of MR Signals

Statistics of signal components of MR signals are described in the following
property.

Property 7.4 (1) The signal component sr(t) of the real-valued physical FID
signal Vr(t) (Eq. (7.22)) can be characterized by a Gaussian random process
with the mean µsr(t), the variance σ2

sr(t)
, and the autocorrelation function

Rsr(t)(t1, t2) given by

µsr(t) = cre
− t

T2 sinc(γ̄Guu0t, γ̄Gvv0t) sin((ω0 + γGzz0)t+ φBruv
− φMuv ) ,

σ2
sr(t)

→ 0 , (7.28)

Rsr(t)(t1, t2) = µsr(t1)µsr(t2) + σ2
sr(t)

δ[t2 − t1],

where cr = ω0|Bruv |µMo
z
sinαV0 is a constant, µMo

z
is the mean of TEMM,

α is the flip angle, V0 is the volume of the sample,‡ γ̄ = γ
2π and γ is the

gyromagnetic ratio, sinc(γ̄Guu0t, γ̄Gvv0t) = sinc (γ̄Guu0t)sinc(γ̄Gvv0t) is a
2-D sinc function, z0 denotes the location of the selected slice, and δ[t] is
the Kronecker delta function.§ That is, sr(t) ∼ N(µsr(t), σ

2
sr(t)

→ 0) is an

‡In the 2-D case, it represents an area. When it is specified by [−u0
2

≤ u ≤ u0
2
,− v0

2
≤ v ≤

v0
2
], V0 = u0v0.

§Kronecker delta function δ[t]—a discrete counterpart of the Dirac delta function δ(t)—is
mathematically defined as δ[t] = 1 (t = 0) and 0 (t 6= 0) [30, 54, 56].
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independent random process. It is also independent of the noise component
nr(t) of Vr(t).

(2) The real and imaginary parts sI(t) and sQ(t) of the signal compo-
nent sc(t) = sI(t) + isQ(t) of the complex-valued baseband PSD signal
Vc(t) (Eq. (7.25)) can be characterized by two real Gaussian random pro-
cesses: sI(t) ∼ N(µsI (t), σ

2
sI → 0) and sQ(t) ∼ N(µsQ(t), σ

2
sQ → 0), where

µsI (t) = ℜ{µsc(t)}, µsQ(t) = ℑ{µsc(t)} (ℜ and ℑ—the real and imaginary
parts of a complex-valued quantity, µsc(t) - the mean of sc(t)).
sI(t) and sQ(t) are independent random processes. They are independent

of each other and also independent of their corresponding noise components
nI(t) and nQ(t), respectively.
sc(t) is characterized by a bivariate Gaussian random process with the mean

µsc(t), the variance σ
2
sc(t)

, and the autocorrelation function Rsc(t)(t1, t2) given
by

µsc(t) = cce
− t

T2 sinc(γ̄Guu0t, γ̄Gvv0t)e
−iγGzz0t,

σ2
sc(t)

→ 0, (7.29)

Rsc(t)(t1, t2) = µsc(t1)µ
∗
sc(t2)

+ σ2
sc(t)

δ[t2 − t1],

where cc = ω0

2 B
∗
ruv
µMo

z
sinαV0 is a constant, and ∗ denotes the complex

conjugate. That is, sc(t) ∼ N(µsc(t), σ
2
sc(t)

→ 0) is an independent random

process. It is also independent of the noise component nc(t) of Vc(t).

(3) The real and imaginary parts ŝI(j) and ŝQ(j) of the signal component
ŝc(j) = ŝI(j) + iŝQ(j) of the discrete complex-valued baseband ADC signal

V̂c(j) (Eq. (7.27)) can be characterized by two real Gaussian random processes:
ŝI(j) ∼ N(µŝI (j), σ

2
ŝI
→ 0) and ŝQ(j) ∼ N(µŝQ(j), σ

2
ŝQ
→ 0), where µŝI(j) =

ℜ{µŝc(j)} and µQ̂I(j)
= ℑ{µŝc(j)} (µŝc(j)—the mean of ŝc(j)).

ŝI(j) and ŝQ(j) are independent random processes. They are independent
of each other and also independent of their corresponding noise components
n̂I(j) and n̂Q(j), respectively.
ŝc(j) is characterized by a bivariate Gaussian random process with the mean

µŝc(j), the variance σ
2
ŝc(j)

, and the autocorrelation function Rŝc(j)(j1, j2) given
by

µŝc(j) = ĉce
− j

T2 sinc(γ̄Guu0j, γ̄Gvv0j)e
−iγGzz0j ,

σ2
ŝc(j)

→ 0, (7.30)

Rŝc(j)(j1, j2) = µŝc(j1)µ
∗
ŝc(j2)

+ σ2
ŝc(j)

δ[j2 − j1],

where ĉc = cc, sinc(γ̄Guu0j, γ̄Gvv0j) = sinc(γ̄Guu0j)sinc(γ̄Gvv0j) is a 2-D
sinc function. That is, ŝc(j) ∼ N(µŝc(j), σ

2
ŝc(j)

→ 0) is an independent random

process. It is also independent of the noise component n̂c(j) of V̂c(j).
�
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This property is proved for the homogeneous and inhomogeneous spin sys-
tems, respectively. In the proof, the reception field ~Br,uv(r) is assumed to be
uniform over the sample; thus, its magnitude |Bruv (r)| and phase φBruv

(r)
are constant and denoted by |Bruv | and φBruv

, respectively.

Proof. (for homogeneous spin systems)
(1) For sr(t) of Vr(t). In the case of homogeneous spin systems, T2(r) = T2.

Due to φMuv (r, 0) = φMuv [Property 7.3], Eq. (7.20) becomes

sr(t) = ω0|Bruv |e−
t

T2

∫

V

|Muv(r, 0)| sin((ω0 +∆ω(r))t+ φBruv
− φMuv )dr.

(7.31)
In Eq. (7.31), because |Muv(r, 0)| is characterized by a Gaussian random pro-
cess [Property 7.3] and the integration is a linear operation, the Gaussianity
is preserved for sr(t). Thus, sr(t) can be characterized by a Gaussian random
process. Appendix 7A shows that at a given time t, the mean and the variance
of sr(t) are given by Eq. (7.28).

The almost-zero variance σ2
sr(t)

→ 0 implies that sr(t) is a temporally de-

terministic process with probability 1. Thus, for any t1 6= t2, Rsr(t)(t1, t2) =
µsr(t1)µsr(t2), i.e., sr(t) is an uncorrelated, and hence an independent ran-
dom process. As a result, its autocorrelation function can be expressed as
Eq. (7.28). The deterministic nature of sr(t) also infers that sr(t) is indepen-
dent of the noise component nr(t) of Vr(t).

(2) For sc(t) of Vc(t). The statistical property of sc(t) is proved first, because
the statistical properties of sI(t) and sQ(t) can be proved in a similar but
simpler manner.

In the case of homogeneous spin systems, T2(r) = T2. Eq. (7.23) becomes

sc(t) =
ω0

2
B∗
ruv
e−

t
T2

∫

V

Muv(r, 0)e
−i∆ω(r)tdr. (7.32)

In Eq. (7.32), becauseMuv(r, 0) is characterized by a Gaussian random process
[Property 7.3] and the integration is a linear operation, the Gaussianity is
preserved for sc(t). Thus, sc(t) can be characterized by a complex Gaussian
random process. Appendix 7A shows that at a given time t, the mean and the
variance of sc(t) are given by Eq. (7.29).

The almost-zero variance σ2
sc(t)

→ 0 implies that sc(t) is a temporally de-

terministic process with probability 1. Thus, for any t1 6= t2, Rsc(t)(t1, t2) =
µsc(t1)µ

∗
sc(t2)

, i.e., sc(t) is an uncorrelated, hence, an independent random pro-

cess. As a result, its autocorrelation function can be expressed as Eq. (7.29).
The deterministic nature of sc(t) also infers that sc(t) is independent of the
noise component nc(t) of Vc(t).
sI(t) and sQ(t) are given by Eqs. (3.97) and (3.98), respectively. Similarly

to the above proof for sc(t), it is easy to verify that sI(t) and sQ(t) can be
characterized by two Gaussian random processes with almost-zero variances:
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sI(t) ∼ N(µsI(t), σ
2
sI → 0) and sQ(t) ∼ N(µsQ(t), σ

2
sQ → 0), where µsI (t) =

ℜ{µsc(t)} and µsQ(t) = ℑ{µsc(t)}.
The almost-zero variances, σ2

sI → 0 and σ2
sQ → 0, imply that sI(t) and

sQ(t) are the temporally deterministic processes with probability 1. Therefore,
sI(t) and sQ(t) are (a) independent random processes, (b) independent of each
other, and (c) independent of their corresponding noise components nI(t) and
nQ(t), respectively.

(3) For ŝc(j) of V̂c(j). Because ŝc(j) is a discrete version of sc(t), its statistics
are essentially the same as those of sc(t). Therefore, the proof of its statistical
properties is basically the same as that for sc(t). As a result, ŝc(j) can be
characterized by a discrete, complex Gaussian random process, and its mean,
the variance, and the autocorrelation function are given by Eq. (7.30).

Similar to sI(t) and sQ(t) of sc(t), the real and imaginary parts, ŝI(j) and
ŝQ(j), of ŝc(j) are characterized by two Gaussian random processes: ŝI(j) ∼
N(µŝI (j), σ

2
ŝI
→ 0) and ŝQ(j) ∼ N(µŝQ(j), σ

2
ŝQ
→ 0), respectively. Also, they

are (a) independent random processes, (b) independent of each other, and
(c) independent of their corresponding noise counterparts n̂I(j) and n̂Q(j),
respectively.

Remarks. Eq. (7.28) shows a real-valued signal at the frequency (ω0+γGzz0)
in the laboratory reference frame. Eqs. (7.29),(7.30) show two complex-valued
baseband signals at frequency γGzz0 in the rotating reference frame. All three
signals are modulated by a 2-D sinc function. This is becauseMuv(r, 0) is con-
stant in the area [−u0

2 ≤ u ≤ u0

2 ,− v02 ≤ v ≤ v0
2 ] with probability 1 [Property

7.3] for a homogeneous spin system; therefore, its Fourier counterpart must
be a 2-D sinc function sinc(γ̄Guu0t, γ̄Gvv0t).

In Eqs. (7.31) and (7.32), if the constant parameters such as ω0, ~Bruv are
omitted, as they often were in some literature, the physical unit of the quantity
represented by the resulting formula would be different. For this reason, these
constants are kept in the derivations and proofs.

Proof. (for inhomogeneous spin systems)
In this proof, an inhomogeneous spin system is considered to consist of

several homogeneous sub-spin systems. That is, a sample can be partitioned
into several sub-samples, and each of them corresponds to a homogeneous
sub-spin system with its own spin density, T1 and T2 constants. For example,
in the uniform reception field and for a single spectral component, the brain
can be considered to consist of the cerebrospinal fluid (CSF), the gray matter
(GM), and the white matter (WM) with the different spin densities, T1 and
T2 constants [55].

This proof does not consider (i) the multiple isochromats¶ mainly caused

by the existence of inhomogeneities in the ~B0 field and the chemical shift

¶A group of nuclear spins that share the same resonance frequency is called an isochromat.
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effect, (ii) the off-resonance excitations and frequency selectivity of the RF
pulse, and (iii) the partial volume effect. The following proof is for sc(t) only,
because sr(t) can be proved in the same way and ŝc(j) is a discrete version of
sc(t).

Let the sample S be partitioned into N sub-samples Sn (n = 1, · · · , N), that

is, S =
⋃N
n=1 Sn. Each Sn corresponds to a homogeneous sub-spin system that

has TPMM Muv,n(r, 0). The subscript n denotes both the n-th sub-sample
and the n-th sub-spin system. For the n-th sub-sample Sn, its sc(t), denoted
by sc,n(t), is given by Eq. (7.32) as

sc,n(t) =
ω0

2
B∗
ruv
e
− t

T2,n

∫

V

Muv,n(r, 0)e
−i∆ω(r)tdr. (7.33)

For n = 1, · · · , N , Muv,n(r, 0) 6= 0 (r ∈ Sn) and Muv,n(r, 0) = 0 (r ∈̄ Sn),
that is,Muv,n(r, 0) is mutually exclusive. Thus, TPMM of this inhomogeneous
spin system can be expressed as

Muv(r, 0) =

N∑

n=1

Muv,n(r, 0), (7.34)

therefore

sc(t) =

N∑

n=1

sc,n(t). (7.35)

sc,n(t) (n = 1, · · · , N) are characterized by Gaussian random processes:
sc,n(t) ∼ N(µsc,n(t), σ

2
sc,n(t)

→ 0) [Property 7.4 for the homogeneous spin

system]. σ2
sc,n(t)

→ 0 implies thatsc,n(t) is a temporally deterministic pro-

cess with probability 1. This implies that sc,n(t) (n = 1, · · · , N) are indepen-
dent. Therefore, sc(t) of Eq. (7.35)—a sum of N independent Gaussian ran-
dom processes—can be characterized by a Gaussian random process. From
Eq. (7.29), at a given time t, its mean and variance are

µsc(t) =

N∑

n=1

µsc,n(t) = (

N∑

n=1

cc,ne
− t

T2,n )sinc(γ̄Guu0t, γ̄Gvv0t)e
−iγGzz0t,

σ2
sc(t)

=

N∑

n=1

σ2
sc,n(t)

→ 0, (7.36)

where the constant cc,n = ω0

2 B
∗
ruv
µMo

z,n
sinαV0,n, and µMo

z,n
, α, and V0,n are

the mean of TEMM, the flip angle, and the volume of the n-th homogeneous
sub-spin system. σ2

sc(t)
→ 0 implies that sc(t) of this inhomogeneous spin

system is temporally deterministic with probability 1. This implies that (a)
sc(t) is an independent random process; that is, its autocorrelation function
is Rsc(t)(t1, t2) = µsc(t1)µ

∗
sc(t2)

(t1 6= t2), and (b) sc(t) is independent with the

noise component nc(t) of of Vc(t).
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7.3.2 Statistics of the Noise Components of MR Signals

The noise in MRI is thermal in origin, arising from the Brownian motion of
electrons in the conductive medium. The main noise contributors are associ-
ated with the resistance of the receiver coil and the effective resistance of the
sample (observed by the receiver coil). Except for some cases such as low-field
imaging and small-volume imaging, the resistance inherent in the sample is
dominant. Let R denote the resistance or the effective resistance, the power
spectral density of the thermal noise is 4κRT , where κ is Boltzmann’s constant
and T is absolute temperature [2, 6, 14]. Statistics of the noise components—
nr(t) of FID signal, nc(t) of PSD signal, and n̂c(j) of ADC signals—are inves-
tigated based on the theory of statistical mechanics [31, 32] and the theory of
statistical communication [76], and given by the following property.

Property 7.5 (1) The noise component nr(t) of the real-valued FID sig-
nal Vr(t) (Eq. (7.22)) can be characterized by a Gaussian random process,
nr(t) ∼ N(0, σ2

nr
), with the zero mean, the power spectral density Pnr (f), the

autocorrelation function Rnr(τ), and the variance σ2
nr

given by

Pnr (f) = 4κRT

Rnr (τ) = 4κRTδ(τ) (7.37)

σ2
nr

= 4κRT,

where R is the effective resistance of the sample, τ = t2 − t1, and δ(τ) is a
Dirac delta function.

After anti-aliasing filtering

Pnr (f) = 4κRT rect(
f

∆f
)

Rnr (τ) = 4κRT∆f sinc(τ∆f) (7.38)

σ2
nr

= 4κRT∆f,

where ∆f is the bandwidth of the anti-aliasing filter, and rect( f
∆f ) is a rect-

angular function defined by

rect(
f

∆f
) =

{
1 |f | ≤ ∆f

2 ,

0 |f | > ∆f
2 .

(7.39)

The front-end amplification further degrades σ2
nr

by the noise figure F to
4κRT∆fF .
nr(t) is stationary, additive, and independent of the signal component sr(t).

(2) The real and imaginary parts, nI(t) and nQ(t), of the noise compo-
nent nc(t) = nI(t) + inQ(t) of the complex-valued baseband PSD signal Vc(t)
(Eq. (7.25)) can be characterized by two real Gaussian random processes with
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the zero mean, the power spectral densities PnI (f), PnQ(f), the autocorrela-
tion functions RnI (τ), RnQ(τ), and the variances σ2

nI
, σ2

nQ
given by

PnI (f) = PnQ(f) = Pnr (f)

RnI (τ) = RnQ(τ) = σ2
nr
sinc(τ∆f) (7.40)

σ2
nI

= σ2
nQ

= σ2
nr
,

where τ = t2 − t1, ∆f is the bandwidth of the lowpass filter (LPF) H(f) in
the quadrature PSD and is equal to that of the anti-aliasing filter.
nI(t) and nQ(t) are independent of each other. They are stationary, addi-

tive, and also independent of their corresponding signal components sI(t) and
sQ(t), respectively.
nc(t) can be characterized by a bivariate Gaussian random process with zero

mean and variance σ2
nc
: nc(t) ∼ N(0, σ2

nc
), where σ2

nc
= 2σ2

nr
. It is stationary,

additive, and independent of its signal component sc(t).

(3) The real and imaginary parts, n̂I(j) and n̂Q(j), of the noise component
n̂c(j) = n̂I(j) + in̂Q(j) of the discrete complex-valued baseband ADC signal

V̂c(j) (Eq. (7.27), j = ∆t, 2∆t, · · · , (∆t = 1/∆f)) can be characterized
by two real Gaussian random processes with zero mean; the power spectral
densities Pn̂I (f), Pn̂Q(f); the autocorrelation functions Rn̂I (τ), Rn̂Q(τ); and
the variances σ2

n̂I
, σ2

n̂Q
given by

Pn̂I (f) = Pn̂Q(f) = Pnr (f)

Rn̂I (τ) = Rn̂Q(τ) = σ2
nr
δ[τ ] (7.41)

σ2
n̂I

= σ2
n̂Q

= σ2
nr
,

where τ = j2 − j1, δ[τ ] is a Kronecker delta function.
n̂I(j) and n̂Q(j) are independent random processes. They are independent

of each other. They are also stationary, additive, and independent of their
corresponding signal components ŝI(j) and ŝQ(j), respectively.
n̂c(j) = n̂I(j)+in̂Q(j) can be characterized by a bivariate Gaussian random

process with the zero mean and the variance σ2
n̂c
: n̂c(j) ∼ N(0, σ2

n̂c
), where

σ2
n̂c

= 2σ2
nr
. It is an independent random process. It is stationary, additive,

and independent of the signal component ŝc(j). �

Proof.
(1) For nr(t) of Vr(t). It is known that a noise voltage always develops across

the ends of a resistor. In fact, this noise arises in any conductor medium
because of the Brownian motion of electrons from thermal agitation of the
electrons in the structure. Brownian motion of (free) particles is described by
the Wiener-Lévy process, which is the limiting case of the random walk and
is characterized by a Gaussian distribution. [11, 77]

In MRI, randomly fluctuating noise currents through the effective resis-
tance of the sample are picked up by the receiver coil and becomes the noise
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component nr(t) of FID signal Vr(t). Thus, nr(t) can be characterized by a
Gaussian random process. It has two characteristics: the zero mean and the
constant power spectral density:

µnr = E[nr(t)] = 0 and Pnr (f) = 4κRT. (7.42)

From Eq. (7.42), the autocorrelation function and variance of nr(t) are
Rnr (τ) = F−1{Pnr (f)} = 4κRTδ(τ) and σ2

nr
= V ar[nr(t)] = Rnr (0) =

4κRT , respectively. Therefore, nr(t) ∼ N(0, σ2
nr
).

In Eq. (7.42), f is implicitly assumed to be in (−∞,+∞). After anti-aliasing
filtering with the bandwidth ∆f , the power spectral density of nr(t) is given
by the first formula of Eq. (7.38); thus, the autocorrelation function and vari-
ance of nr(t) are Rnr (τ) = F−1{4κ RTrect( f

∆f )} = 4κRTsinc(τ∆f) and

σ2
nr

= V ar[nr(t)] = Rnr(0) = 4κRT∆f , respectively. Note, after anti-aliasing
filtering, nr(t) can be expressed as αn(t) cos(ωot+ φn(t)).

Because the autocorrelation function Rnr (τ) of nr(t) only depends on the
time lags τ (not the time instants t) and nr(t) is characterized by a Gaussian
random process, nr(t) is stationary in both the wide and the strict sense.

Because sr(t) is induced by TPMM of spins in the sample and nr(t) is
due to thermal noise in the sample (which are two different physical sources),
they are additive. And because sr(t) is a temporally deterministic process
with probability 1 [Property 7.4], nr(t) and sr(t) are independent.

(2) For nc(t) of Vc(t). nr(t) is split into the in-phase (I) and the quadrature
(Q) channels, passes the ideal lowpass filter (LPF) h(t) (Figure 3.8), and
becomes nI(t) and nQ(t). Because LPF is a linear operation, the properties of
nr(t) - Gaussianity, additive, and independent of its signal component sr(t)—
are also preserved for nI(t) and nQ(t), that is, nI(t) ∼ N(0, σ2

nI
), nQ(t) ∼

N(0, σ2
nQ

), and are additive and independent of their corresponding signal
components sI(t) and sQ(t).

For an ideal LPF h(t), |H(f)| = |F{h(t)}| = 1. Let the bandwidth of H(f)
be ∆f—the same as the anti-aliasing filter. Then, the power spectral densities
of nI(t) and nQ(t) are PnI (f) = PnQ(f) = |H(f)|2Pnr (f) = 4κRTrect( f

∆f ).

Thus, the autocorrelation functions and variances of nI(t) and nQ(t) are
RnI (τ) = RnQ(τ) = σ2

nr
sinc(τ∆f) and σ2

nI
= σ2

nQ
= σ2

nr
, respectively.

Because RnI (τ) and RnQ(τ) only depend on the time lags τ (not the time
instants t) and nI(t) and nQ(t) are characterized by Gaussian random pro-
cesses, nI(t) and nQ(t) are stationary in both the wide and the strict sense.
nc(t) = nI(t) + inQ(t) is viewed as the thermal noise resulting from 2-D

Brownian motion; thus, nc(t) can be characterized by a 1-D complex Gaussian
random process and its pdf is [50]

p(nc(t)) = π−1(σ2
nc
)−1 exp(−(n∗

c(t)(σ
2
nc
)−1nc(t))

= π−1(2σ2
nr
)−1 exp(−(nI(t) + inQ(t))

∗(2σ2
nr
)−1(nI(t) + inQ(t)))

= (2πσ2
nr
)−1 exp(−(n2

I(t) + n2
Q(t))/(2σ

2
nr
)) (7.43)
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= (2πσ2
nI
)−1/2 exp(−(n2

I(t))/(2σ
2
nI
)) · (2πσ2

nQ
)−1/2 exp(−(n2

Q(t))/(2σ
2
nQ

))

= p(nI(t)) · p(nQ(t)).

p(nc(t)) is the joint pdf of nI(t) and nQ(t), that is, p(nI(t), nQ(t)) = p(nc(t)).
Thus, Eq. (7.43) shows that p(nI(t), nQ(t)) = p(nI(t))p(nQ(t)). Therefore,
nI(t) and nQ(t) are independent.
nc(t) has the following two characteristics: the zero mean and the constant

power spectral density:

µnc = E[nc(t)] = E[nI(t)] + iE[nQ(t)] = 0,

Pnc(f) = PnI (f) + PnQ(f) = 8κRTrect

(
f

∆f

)
. (7.44)

From Eq. (7.44), the autocorrelation function and variance of nc(t) are

Rnc(τ) = F−1{Pnc(f)} = 8κRTsinc(τ∆f)

σ2
nc

= Rnc(0) = 8κRT = 2σ2
nr
. (7.45)

Thus, nc(t) ∼ N(0, σ2
nc
), where σ2

nc
= 2σ2

nr
. Because nI(t) and nQ(t) are

stationary, additive, and independent of their signal components sI(t) and
sQ(t), nc(t) is stationary, additive, and independent of its signal component
sc(t).

It can be verified that nI(t) and nQ(t) can be expressed as 1
2αn(t) cosφn(t)

and − 1
2αn(t) sinφn(t). Thus, nc(t) can be expressed as 1

2αn(t)e
−iφn(t).

(3) For n̂c(j) of V̂c(j). Because n̂c(j) is a discrete version of nc(t), its statis-
tics are essentially the same as those of nc(t). Therefore, the proof of its
statistical properties is basically same as that for nc(t). As a result, n̂c(j) is
characterized by a bivariate Gaussian random process with zero mean and
variance σ2

n̂c
: n̂c(j) ∼ N(0, σ2

n̂c
), where σ2

n̂c
= 2σ2

nr
. It is stationary, additive,

and independent of the signal component ŝc(j).
Similar to nI(t) and nQ(t) of nc(t), the real and imaginary parts, n̂I(j)

and n̂Q(j), of n̂c(j) are (a) characterized by two Gaussian random processes:
n̂I(j) ∼ N(0, σ2

n̂I
) and n̂Q(j) ∼ N(0, σ2

n̂Q
); (b) independent of each other;

and (c) stationary, additive, and independent of their corresponding signal
components ŝI(j) and ŝQ(j), respectively.

However, sampling makes the differences in the autocorrelation functions
Rn̂I (τ), Rn̂Q(τ), and Rn̂c(τ).

According to the Sampling theorem, in order to avoid aliasing, the time
interval ∆t of the readout samples should be less than or equal to the
reciprocal of the bandwidth ∆f of the baseband signal component sc(t),
which is restricted by the anti-aliasing filter. Appendix 7B shows that when
∆t = 1

∆f and the samples are taken at j = l∆t (l - integers), for j1 6= j2,

Rn̂I (j2 − j1) = Rn̂Q(j2 − j1) = 0; because n̂I(j) and n̂Q(j) have the zero
means µn̂I(j) = µn̂Q(j) = 0, we have Rn̂I (j2 − j1) = µn̂I (j1)µ

∗
n̂I(j2)

and
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Rn̂Q(j2 − j1) = µn̂Q(j1)µ
∗
n̂Q(j2)

. This implies that both n̂I(j) and n̂Q(j) are

the uncorrelated, hence the independent random processes. For j1 = j2,
Rn̂I (j2 − j1) = Rn̂I (0) = σ2

nr
and Rn̂Q(j2 − j1) = Rn̂Q(0) = σ2

nr
. Thus,

letting j2 − j1 = τ , we obtain Rn̂I (τ) = Rn̂Q(τ) = σ2
nr
δ[τ ].

For n̂c(j), because n̂I(j) and n̂Q(j) are independent random processes with
zero means, it is easy to verify that for j1 6= j2,

E[n̂c(j1)n̂
∗
c(j2)] = E[n̂c(j1)]E[n̂∗

c(j2)] = 0,

which implies that n̂c(j) is an independent random process.

Remarks. Eq. (7.37) shows that before anti-aliasing filtering, the noise com-
ponent nr(t) of FID signal Vr(t) is an uncorrelated, hence independent random
process. Eq. (7.38) shows that after anti-aliasing filtering, nr(t) is not an in-
dependent random process, except for some time points ti and tj that satisfy
(ti − tj)∆f = τ∆f = nπ (n = 1, 2, · · ·). Eq. (7.40) shows that the real and
imaginary parts, nI(t) and nQ(t), of the noise component nc(t) of PSD signal
Vc(t) are not independent random processes. Its exception is the same as nr(t)
(after anti-aliasing filtering). However, as shown by Eq. (7.41), the real and
imaginary parts, n̂I(t) and n̂Q(t), of the noise component n̂c(t) of ADC signal

V̂c(t) are the uncorrelated, hence, independent random processes.
Remarks. In the above proof, nr(t) and nc(t) are expressed as αn(t) cos(ωot+

φn(t)) and 1
2αn(t)e

−iφn(t), respectively. It is worth comparing them with
Eqs. (7.20) and (7.23), where sr(t) is a narrowband signal with frequencies
ωo +∆ω(r) and sc(t) is a baseband signal with frequencies ∆ω(r).

7.3.3 Statistics of MR Signals

In terms of the statistics of their signal and noise components, the statistics
of MR signals are given by the following property.

Property 7.6 (1) The real-valued physical FID signal Vr(t) (Eq. (7.22)),
the complex-valued baseband PSD signal Vc(t) (Eq. (7.25)), and the discrete
complex-valued baseband ADC signal V̂c(j) (Eq. (7.27)) can be characterized
by Gaussian random processes:

Vr(t) ∼ N(µVr(t), σ
2
Vr
),

Vc(t) ∼ N(µVc(t), σ
2
Vc
), (7.46)

V̂c(j) ∼ N(µV̂c(j)
, σ2
V̂c
),

where the means µVr(t) = µsr(t), µVc(t) = µsc(t); and µV̂c(j)
= µŝc(j), (µsr(t),

µsc(t); and µŝc(j) are given by Property 7.4); the variances σ2
Vr

= σ2
nr
, σ2

Vc
=

σ2
nc
, and σ2

V̂c
= σ2

n̂c
, (σ2

nr
, σ2

nc
, and σ2

n̂c
are given by Property 7.5).

V̂c(j) is an independent random process, that is, its autocorrelation function
RV̂c(j)

(j1, j2) is given by

RV̂c(j)
(j1, j2) = µV̂c(j1)

µ∗
V̂c(j2)

+ σ2
V̂c
δ[j2 − j1], (7.47)
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where δ[j] is the Kronecker delta function.

(2) The signal components—sr(t) of Vr(t), sc(t) of Vc(t), and ŝc(j) of
V̂c(j)—can be characterized by Gaussian random processes with almost-zero
variances: sr(t) ∼ N(µsr(t), σ

2
sr → 0), sc(t) ∼ N(µsc(t), σ

2
sc → 0), and

ŝc(j) ∼ N(µŝc(j), σ
2
ŝc
→ 0), where the means µsr(t), µsc(t), and µŝc(j) are

given by Property 7.4.
The noise components—nr(t) of Vr(t), nc(t) of Vc(t), and n̂c(j) of V̂c(j)—

can be characterized by Gaussian random processes with zero means nr(t) ∼
N(0, σ2

nr
), nc(t) ∼ N(0, σ2

nc
), and n̂c(j) ∼ N(0, σ2

n̂c
), where the variances

σ2
nr
, σ2

nc
, and σ2

n̂c
are given by Property 7.5. n̂c(j) is an independent random

process.
The noise components nr(t), nc(t), and n̂c(j) are stationary, additive, and

independent of their corresponding signal components sr(t), sc(t), and ŝc(j).
In detail, for PSD signal V (t), sI(t) and sQ(t) of sc(t) = sI(t) + isQ(t) are

characterized by two Gaussian random processes: sI(t) ∼ N(µsI (t), σ
2
sI → 0)

and sQ(t) ∼ N(µsQ(t), σ
2
sQ → 0), where µsI(t) = ℜ{µsc(t)} and µsQ(t) =

ℑ{µsc(t)}. They are independent random processes and are independent of
each other.
nI(t) and nQ(t) of nc(t) = nI(t)+ inQ(t) are characterized by two Gaussian

random processes: nI(t) ∼ N(0, σ2
nI
) and nQ(t) ∼ N(0, σ2

nQ
), where σ2

nI
=

σ2
nQ

= σ2
nr
. They are independent random processes and are independent of

each other.
nI(t) and nQ(t) are stationary, additive, and independent of their corre-

sponding signal components sI(t) and sQ(t), respectively.

For ADC signal V̂ (j), ŝI(j) and ŝQ(j) of ŝc(j) = ŝI(j) + iŝQ(j) are char-
acterized by two Gaussian random processes: ŝI(j) ∼ N(µŝI (j), σ

2
ŝI
→ 0)

and ŝQ(j) ∼ N(µŝQ(j), σ
2
ŝQ
→ 0), where µŝI(j) = ℜ{µŝc(j)} and µŝQ(j) =

ℑ{µŝc(j)}. They are independent random processes and are independent of
each other.
n̂I(j) and n̂Q(j) of n̂c(j) = n̂I(j)+in̂Q(j) are characterized by two Gaussian

random processes: n̂I(j) ∼ N(0, σ2
n̂I
) and n̂Q(j) ∼ N(0, σ2

n̂Q
), where σ2

n̂I
=

σ2
n̂Q

= σ2
nr
. They are independent random processes and are independent of

each other.
n̂I(j) and n̂Q(j) are stationary, additive, and independent of their corre-

sponding signal components ŝI(j) and ŝQ(j), respectively.

(3) The real and imaginary parts, I(t) and Q(t), of Vc(t) can be char-
acterized by Gaussian random processes: I(t) ∼ N(µI(t), σ

2
I ) and Q(t) ∼

N(µQ(t), σ
2
Q), where the means µI(t) = ℜ{µsc(t)} = µsI(t) and µQ(t) =

ℑ{µsc(t)} = µsQ(t), and the variances σ2
I = σ2

nI
and σ2

Q = σ2
nQ

(σ2
nI

= σ2
nQ

=

σ2
nr
). They are independent: E[I(t)Q(t)] = µI(t)µQ(t).

The real and imaginary parts, Î(j) and Q̂(j), of V̂c(j) can be characterized
by Gaussian random processes: Î(j) ∼ N(µÎ(j), σ

2
Î
) and Q̂(j) ∼ N(µQ̂(j), σ

2
Q̂
),
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where the means µÎ(j) = ℜ{µŝc(j)} = µŝI (t) and µQ̂(j) = ℑ{µŝc(j)} = µŝQ(t),

and the variances σ2
Î
= σ2

n̂I
and σ2

Q̂
= σ2

n̂Q
(σ2
n̂I

= σ2
n̂Q

= σ2
nr
). They are

independent: E[Î(j)Q̂(j)] = µÎ(j)µQ̂(j). Furthermore, Î(j) and Q̂(j) are inde-
pendent random processes. That is, for j1 6= j2,

E[Î(j1)Î(j2)] = µÎ(j1)µÎ(j2) and E[Q̂(j1)Q̂(j2)] = µQ̂(j1)
µQ̂(j2)

. (7.48)

�

Proof.
(1) Signal components of sr(t) of Vr(t), sc(t) of Vc(t), and ŝc(j) of V̂c(j)

are characterized by Gaussian random processes with the almost-zero vari-
ances: sr(t) ∼ N(µsr(t), σsr → 0), sc(t) ∼ N(µsc(t), σsc(t) → 0), and
ŝc(j) ∼ N(µŝc(j), σŝc(j) → 0) [Property 7.4]. Noise components of nr(t)

of Vr(t), nc(t) of Vc(t), and n̂c(j) of V̂c(j) are characterized by Gaussian
random processes with zero means: nr(t) ∼ N(0, σ2

nr
), nc(t) ∼ N(0, σ2

nc
),

n̂c(j) ∼ N(0, σ2
n̂c
) [Property 7.5]. sr(t) and nr(t), sc(t) and nc(t), and ŝc(j)

and n̂c(j) are independent [[Property 7.4 and Property 7.5]. Thus, each of
Vr(t) = sr(t) + nr(t), Vc(t) = sc(t) + nc(t), and V̂c(j) = ŝc(j) + n̂c(j) repre-
sents a sum of two independent Gaussian random processes. Therefore, Vr(t),
Vc(t), and V̂c(j) can be characterized by Gaussian random processes with
the means of their signal components as the means and with the variances
of their noise components as the variances. That is, Vr(t) ∼ N(µsr(t), σ

2
nr
),

Vc(t) ∼ N(µsc(t), σ
2
nc
), and V̂c(j) ∼ N(µŝc(j), σ

2
n̂c
).

The signal component ŝc(j) of ADC signal V̂c(j) is a temporally determin-
istic process with probability 1 [Property 7.4]. The noise component n̂c(j)
of ADC signal V̂c(j) is an independent random process with zero mean, and
n̂c(j) and ŝc(j) are independent [Property 7.5]. Thus, it is easy to verify that
V̂c(j) = ŝc(j) + n̂c(j) is an independent random process. Therefore, its auto-
correlation function can be expressed by Eq. (7.46).

(2) The proofs are given in the Proofs of Property 7.4 and Property 7.5.

(3) The signal components sI(t) and sQ(t) are characterized by two Gaus-
sian random processes with almost-zero variance: sI(t) ∼ N(µsI(t), σ

2
sI → 0)

and sQ(t) ∼ N(µsQ(t), σ
2
sQ → 0) [Property 7.4]. The noise components nI(t)

and nQ(t) are characterized by two Gaussian random processes with zero
means: nI(t) ∼ N(0, σ2

nI
) and nQ(t) ∼ N(0, σ2

nQ
) [Property 7.5]. sI(t) and

nI(t), sQ(t) and nQ(t) are independent [Property 7.4 and Property 7.5]. Thus,
each of I(t) = sI(t) + nI(t) and Q(t) = sQ(t) + nQ(t) represents a sum of
two independent Gaussian random processes. Therefore, I(t) and Q(t) can be
characterized by Gaussian random processes with the means of their signal
components as the mean and with the variances of their noise components as
the variances. That is, I(t) ∼ N(µsI (t), σ

2
nI
) and Q(t) ∼ N(µsQ(t), σ

2
nQ

).
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Signal components sI(t) and sQ(t) are the temporally deterministic pro-
cesses with probability 1 [Property 7.4]. Noise components nI(t) and nQ(t)
are the random processes with zero means, and they are independent [Property
7.5]. Thus, I(t) and Q(t) are independent, that is, E[I(t)Q(t)] = µI(t)µQ(t).

The Gaussianity of Î(j) and Q̂(j), that is, Î(j) ∼ N(µÎ(j), σ
2
n̂I
) and

Q̂(j) ∼ N(µQ̂(j), σ
2
n̂Q

), as well as the independence of Î(j) and Q̂(j), that

is, E[Î(j)Q̂(j)] = µÎ(j)µQ̂(j), can be proved in the same way as for I(t) and

Q(t) shown above.
Signal components ŝI(j) and ŝQ(j) are the temporally deterministic pro-

cesses with probability 1 [Property 7.4]. Noise components n̂I(j) and n̂Q(j)
are the independent random processes with zero means [Property 7.5]. Thus,
Î(j) and Q̂(j) are independent random processes, that is, Eq. (7.48) is proved.

7.4 Statistics of k-Space Samples

By defining the spatial frequency, k-space sample, and revealing the underly-
ing mechanism that transforms the ADC signal to a k-space sample; Section
3.9 shows that a k-space sample is an alternative representation of ADC signal
in terms of the spatial frequency. The one-to-one relation between the ADC
signal and k-space sample can be seen from Eq. (3.110), a k-space version of
the MR signal equation.

As indicated in Section 3.9.1, Eq. (3.110) actually shows the unique
relation between ŝc(j)—the signal component of the ADC signal V̂c(j)—
and Ms(ku(j), kv(j))—the signal component of the rectilinear k-space
sample M(ku(j), kv(j)).

‖ Letting the noise component of k-space sample
M(ku(j), kv(j)) be denoted byMn(ku(j), kv(j)), which is a counterpart of the
noise component n̂c(j) of the ADC signal V̂c(j), we have M(ku(j), kv(j)) =
Ms(ku(j), kv(j)) +Mn(ku(j), kv(j)). The k-space sample is a complex-
valued quantity. Letting MR (ku(j), kv(j)) and MI(ku(j), kv(j)) denote its
real and imaginary parts, we have M(ku(j), kv(j)) = MR(ku(j), kv(j)) +
iMI(ku(j), kv(j)). Similar to Eq. (7.27), The k-space sample can be expressed
in two ways:

M(ku(j), kv(j)) =MR(ku(j), kv(j)) + iMI(ku(j), kv(j))

or (7.49)

‖As stated in Section 7.2.1, in this and the following chapters, the Cartesian coordinate
system {X, Y,Z} is denoted by {U, V,Z}. That is, the coordinate (x, y) is replaced by
(u, v).
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M(ku(j), kv(j)) =Ms(ku(j), kv(j)) +Mn(ku(j), kv(j)),

with

Ms(ku(j), kv(j)) =MsR(ku(j), kv(j)) + iMsI (ku(j), kv(j))

Mn(ku(j), kv(j)) =MnR(ku(j), kv(j)) + iMnI (ku(j), kv(j))

MR(ku(j), kv(j)) =MsR(ku(j), kv(j)) +MnR(ku(j), kv(j))

MI(ku(j), kv(j)) =MsI (ku(j), kv(j)) +MnI (ku(j), kv(j)),

where MsR(ku(j), kv(j)) and MnR(ku(j), kv(j)) are the signal and noise
components of the real part MR(ku(j), kv(j)) of the k-space sample
M(ku(j), kv(j)), whileMsI (ku(j), kv(j)) andMnI (ku(j), kv(j)) are the signal
and noise components of the imaginary partMI(ku(j), kv(j)) of the k-space
sample M(ku(j), kv(j)). The above expressions can also be applied to the
radial k-space sampleM(k(j), θ(j)) defined in Section 3.9.

In the image reconstruction,M(ku(t), kv(t)) andM(ku(j), kv(j)) are used
to denote the continuous and discrete rectilinear k-space data and abbreviated
asM(ku, kv);M(m∆ku, n∆kv) is used to denote the rectilinear k-space sam-
ple and abbreviated as M(m,n). Similarly, M(k(t), θ(t)) and M(k(j), θ(j))
are used to denote the continuous and discrete radial k-space data and abbre-
viated asM(k, θ);M(n∆k,m∆θ) is used to denote the radial k-space sample
and abbreviated as M(n,m). In the following, unless specified, the general
term “k-space sample” is commonly used. Statistics of k-space samples are
given by the following property.

Property 7.7 (1) k-space samples M(ku, kv) and M(k, θ) can be charac-
terized by a complex Gaussian random process N(µM, σ

2
M) with the mean

µM = µV̂c(j)
and the variance σ2

M = σ2
V̂c
. It is an independent random pro-

cess; that is, its autocorrelation function RM is given by

RM((ku1 , kv1), (ku2 , kv2)) = µM(ku1 ,kv1 )
µ∗

M(ku2 ,kv2 )
+ σ2

Mδ[ku2 − ku1 , kv2 − kv1 ]
RM((k1, θ1), (k2, θ2)) = µM(k1,θ1)µ

∗
M(k2,θ2)

+ σ2
Mδ[k2 − k1, θ2 − θ1], (7.50)

where ∗ represents the complex conjugate and δ[m,n] is a 2-D Kronecker delta
function.

(2) The signal component of the k-space sample,Ms(ku, kv) andMs(k, θ),
can be characterized by complex Gaussian random processes N(µMs

, σ2
Ms

)
with the mean µMs = µV̂c(j)

and the variance σ2
Ms
→ 0. The noise component

of the k-space sample, Mn(ku, kv) and Mn(k, θ), can be characterized by
complex Gaussian random processes N(µMn

, σ2
Mn

) with mean µMn
= 0 and

the variance σ2
Mn

= σ2
V̂c
.

Mn(ku, kv) and Mn(k, θ) are stationary, additive, and independent of
Ms(ku, kv) andMs(k, θ), respectively.

(a) Rectlinear samples. The real and imaginary parts of the signal com-
ponent Ms(ku, kv), that is, MsR(ku, kv) and MsI (ku, kv), are characterized
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by two real Gaussian random processes:MsR(ku, kv) ∼ N(µMsR
, σ2

MsR
→ 0)

and MsI (ku, kv) ∼ N(µMsI
, σ2

MsI
→ 0), where µMsR

= ℜ{µŝc(j)} = µŝI (j)
and µMsI

= ℑ{µŝc(j)} = µŝQ(j). They are independent random processes and
are independent of each other.

The real and imaginary parts of the noise componentMn(ku, kv), that is,
MnR(ku, kv) andMnI (ku, kv), are characterized by two real Gaussian random
processes:MnR(ku, kv) ∼ N(0, σ2

MnR
) andMnI (ku, kv) ∼ N(0, σ2

MnI
), where

σ2
MnR

= σ2
n̂I

and σ2
MnI

= σ2
n̂Q

(σ2
n̂I

= σ2
n̂Q

= σ2
nr
). They are independent

random processes and are independent of each other.
MnR(ku, kv) andMnI (ku, kv) are stationary, additive, and independent of

their correspondingMsR(ku, kv) andMsI (ku, kv).
(b) Radial samples. The real and imaginary parts of the signal compo-

nent Ms(k, θ), that is, MsR(k, θ) and MsI (k, θ), are characterized by two
real Gaussian random processes: MsR(k, θ) ∼ N(µMsR

, σ2
MsR

→ 0) and

MsI (k, θ) ∼ N(µMsI
, σ2

MsI
→ 0), where µMsR

= ℜ{µŝc(j)} = µŝI (j) and

µMsI
= ℑ{µŝc(j)} = µŝQ(j). They are independent random processes and are

independent of each other.
The real and imaginary parts of the noise component Mn(k, θ), that is,

MnR(k, θ) and MnI (k, θ), are characterized by two real Gaussian random
processes: MnR(k, θ) ∼ N(0, σ2

MnR
) and MnI (k, θ) ∼ N(0, σ2

MnI
), where

σ2
MnR

= σ2
n̂I

and σ2
MnI

= σ2
n̂Q

(σ2
n̂I

= σ2
n̂Q

= σ2
nr
). They are independent

random processes and are independent of each other.
MnR(k, θ) andMnI (k, θ) are stationary, additive, and independent of their

correspondingMsR(k, θ) andMsI (k, θ).

(3) The real part of the k-space sample,MR(ku, kv) andMR(k, θ), can be
characterized by a real Gaussian random process N(µMR

, σ2
MR

) with mean
µMR

= ℜ{µŝc(j)} = µŝI (j) and variance σ2
MR

= σ2
n̂I
. It is an independent

random process.
The imaginary part of the k-space sample, MI(ku, kv) and MI(k, θ), can

be characterized by a real Gaussian random process N(µMI
, σ2

MI
) with mean

µMI = ℑ{µŝc(j)} = µŝQ(j) and variance σ2
MI

= σ2
n̂Q

. It is an independent
random process.

The real part and the imaginary part of the k-space sample are independent.
In the above, σ2

MR
= σ2

MI
(σ2
n̂I

= σ2
n̂Q

= σ2
nr
).

�

Proof.
Eq. (3.110) maps the signal component ŝc(j) of ADC signal V̂c(j) (in the

time domain) to the signal componentMs(kx(j), ky(j)) of the k-space sam-
ple M(kx(j), ky(j)) (in the spatial frequency domain). Similarly, the noise

component n̂c(j) of ADC signal V̂c(j) is mapped to the noise component
Mn(kx(j), ky(j)) of the k-space sampleM(kx(j), ky(j)). Thus, the ADC sig-

nal V̂c(j) = ŝc(j) + n̂c(j) and k-space sample M(ku(j), kv(j)) = Ms(kx(j),
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ky(j)) +Mn(kx(j), ky(j)) has a one-to-one relationship. In other words, the
k-space sample is an alternative representation of the ADC signal in terms of
spatial frequency. Therefore, statistics of k-space sample are the same as those
of V̂c(j), which are given by Eqs. (7.46), (7.47), and (7.48). This unique one-
to-one relation also holds between ADC signal V̂c(j) and the radial k-space
sampleM(k(j), θ(j)).

Remarks on the second formula of Eq. (7.50). It seems to be thatM(0, θ1)
andM(0, θ2) should be correlated, because the location k = 0 belongs to all
views. This is a misconception. As shown in the above proof, the k-space sam-
ple is an alternative representation of the ADC signal. The k-space sample and
ADC signal have a one-to-one relationship.M(0, θ1) andM(0, θ2) correspond
to two ADC signals V̂c(j1) and V̂c(j2), which are acquired at the different time
instants j1 and j2 (j1 6= j2). See Section 3.9.2.2 and Figure 3.12. Property 7.6
(Eq. (7.47)) shows that V̂c(j1) and V̂c(j2) are independent. Therefore,M(0, θ1)
andM(0, θ2) are independent.

We can prove the independence of k-space samples, that is, Eq. (7.50), in a
different way—from the viewpoint of data sampling and image reconstruction.

A Fourier transform has the following property: if s(t)
F⇐⇒ S(f) (here F

represents Fourier transform), then

s(t)

∞∑

k=−∞
δ(t− k∆t) F⇐⇒ 1

∆t

∞∑

k=−∞
S(f − k 1

∆t
),

where ∆t is the sampling period. This property shows that equal sampling in
one domain (image or k-space) amounts to replication in the corresponding
transform domain. Applications of this property to MR image reconstruction
can be found in [35, 53, 54, 56].

[76, 77] show that Fourier series expansion of a periodic random process∗∗

has two properties: (i) it converges mean square to the process and (ii) its co-
efficients are uncorrelated. In the rectilinear sampling as shown in Figure 3.10,
whenM(ku(j), kv(j)) are acquired at Cartesian grids with the spacings ∆ku
and ∆kv in k-space, then in the image domain the resulting images are repli-
cas with periods equal to the reciprocals of the sample spacings 1

∆ku
and

1
∆kv

, and consequently constitute a 2-D spatial, periodic process. The cor-
relation of pixel intensities in this periodic process is periodic with those
periods. Thus, this periodic process is a periodic random process; therefore,
Fourier series coefficients of this periodic random process—k-space samples
M(ku(j), kv(j))—are uncorrelated, and hence statistically independent.

This reasoning can be extended to radial sampling, which is shown in Fig-
ure 3.12. When M(k(j), θ(j)) are acquired at polar grids with the spacings

∗∗A random process x(t) is periodic in the sense, if its autocorrelation function R(τ) is
periodic, that is, if R(τ + T ) = R(τ) for every τ . The period of the process is the smallest
T satisfying the above equation.
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∆k and ∆θ in k-space, then theoretically we can form Cartesian grids with
sufficiently small spacings ∆ku and ∆kv such that each point in the polar grid
is surrounded by four different points in a Cartesian grid, that is, the eight
points in Cartesian grids that surround two adjacent points in polar grids are
different. Suppose thatM(ku(j), kv(j)) are sampled with these fine spacings,
then eachM(k(j), θ(j)) which is sampled at a point in polar grids will have an
interpolated value of four surroundings M(ku(j), kv(j)), that is, a weighted
average. Due to the independence ofM(ku(j), kv(j)), any twoM(k(j), θ(j))
are uncorrelated, and therefore statistically independent. In this extension,
we assume that there is no aliasing artifact in image reconstruction caused by
reduced sampling periods ∆ku and ∆kv.

[76] also shows that Fourier series coefficients are approximately uncorre-
lated for any process whose spectral density is approximately constant over
intervals large compared to the sample spacing. In the radial sampling of
PR, Eq. (3.128) shows that the sample spacings ∆k and ∆θ must satisfy the
requirements: ∆k ≤ 1

FOVr
and ∆θ ≤ 2∆p

FOVr
. This means that ∆k and ∆θ

must be sufficiently small; it follows that the spectral density over intervals
large compared to these small ∆k and ∆θ can be considered approximately
constant. With this approximation, Fourier series coefficients of this random
process (i.e., the reconstructed images)—k-space samplesM(k(j), θ(j))—are
uncorrelated, and therefore independent due to Gaussianity.

7.5 Statistical Interpretation of MR Image Reconstruc-

tion

Two k-space sampling schemes (rectilinear and radial) lead to two basic MR
image reconstruction methods: Fourier transform (FT) and projection recon-
struction (PR). In the 2-D case, they are abbreviated as 2DFT and 2DPR.
Based on mathematical descriptions and computational implementations of
these two methods given in Section 3.10, this section provides signal process-
ing paradigms for 2DFT and 2DPR and presents a statistical interpretation
of MR image reconstruction.

7.5.1 Signal Processing Paradigms

For the 2DFT shown in Section 3.10.1, by properly choosing the sampling
parameters (the sampling spacing: ∆ku,∆ku) and the image parameters (the
image size: FOVu, FOVv ; the pixel size: δu, δv), an I × J MR image can be
reconstructed using 2-D DFT on I×J samples directly acquired from k-space
in the Cartesian grids. The signal processing paradigm for 2DFT is shown in
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Eq. (7.51),

I × J rectilinear k − space samplesM(m∆ku, n∆kv)
(m = 1, · · · , I, n = 1, · · · , J)

⇓
for a given point (u, v)

⇓
x(u, v) = ∆ku∆kv

∑I/2−1
m=−I/2

∑J/2−1
n=−J/2

M(m∆ku, n∆kv)Φ(m∆ku, n∆kv)e
i2π(um∆ku+vn∆kv)

⇓
an I × J MR image X(u, v),

(7.51)

where Φ is the filter function.
For the transform-based 2DPR method shown in Section 3.10.2, by prop-

erly selecting a filter function, an I × J MR image can be reconstructed on
M ×N samples acquired from k-space in the polar grids. FBP is numerically
implemented by a 1-D Fourier transform and a backprojection described in
Section 3.10.2. The signal processing paradigm given by Eq. (7.52) depicts
these operations and the associated signal flow in 2DPR:

M ×N radial k − space samplesM(n∆k,m∆θ)
(m = 0, · · · ,M − 1, n = 1, · · · , N)

⇓
for a given point (u, v)

⇓
M filtered projections

t(u′,m∆θ) = ∆k
∑N/2−1

n=−N/2M(n∆k,m∆θ)|n∆k|ei2πu′n∆k

at the m−th view (m=0,···,M−1)︷ ︸︸ ︷
t(u′,m∆θ)

⇓
1 backprojected data

x(u, v) = ∆θ
∑M−1

m=0 t(u
′,m∆θ)

⇓
an I × J MR image X(u, v),

(7.52)

where ∆k and ∆θ are the radial and angular sample periods, and u′ =
u cosm∆θ + v sinm∆θ.

For the convolution-based 2DPR method shown in Section 3.10.2, by prop-
erly selecting a convolution function and an interpolation function, an I × J
MR image can be reconstructed onM ×N samples acquired from the k-space
in the polar grids. FBP is numerically implemented by two convolutions and
a backprojection (in terms of the measured projections) described in Section
3.10.2. The signal processing paradigm given by Eq. (7.53) depicts these op-
erations and the associated signal flow in 2DPR.
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M ×N radial k − space samplesM(n∆k,m∆θ)
(m = 0, · · · ,M − 1, n = 1, · · · , N)

⇓
for a given point (u, v)

⇓
M ×N measured projections

p(l∆p,m∆θ) = ∆k
∑N/2−1

k=−N/2M(k∆k,m∆θ)ei2πkl∆k∆p

at the m−th view (m=0,···,M−1)︷ ︸︸ ︷
p(−N/2∆p,m∆θ) · · · p((N/2− 1)∆p,m∆θ)

⇓
M ×N convolved projections

t(n∆p,m∆θ) = ∆p
∑N/2−1
l=−N/2 p(l∆p,m∆θ)q((n− l)∆p)

at the m−th view (m=0,···,M−1)︷ ︸︸ ︷
t(−N/2∆p,m∆θ) · · · t((N/2− 1)∆p,m∆θ)

⇓
M interpolated data

sm(u, v) = ∆θ
∑∞

n=−∞ t(n∆p,m∆θ)ψ(u
′ − n∆p)

at the m−th view (m=0,···,M−1)︷ ︸︸ ︷
sm(u, v)
⇓

1 backprojected data

x(u, v) =
∑M−1

m=0 sm(u, v)

⇓
an I × J MR image X(u, v)

(7.53)

where ∆k and ∆θ are the radial and angular sample periods, ∆p is the spacing
between two measured projections in one view,†† q and ψ are the filter and
interpolation functions, and u′ = u cosm∆θ + v sinm∆θ.

Although 2DFT and 2DPR are two different MR image reconstruction
methods, a common feature exists. That is the Fourier transform. In the sig-
nal processing paradigm of 2DFT, Fourier transform is performed on I × J
rectilinear k-space samples. In the signal processing paradigm of 2DPR, both
the transform-based and the convolution-based methods perform 1-D Fourier
transform on N radial k-space samples in each view.

In 2DPR, in addition to 1-D Fourier transform in each view, the transform-
based and the convolution-based methods share the backprojection over all
views. Furthermore, there is another unrevealed common feature in these two
methods. That is the use of the measured projection. This is clear in the
convolution-based method, because FBP is performed on M × N measured
projections. It is unclear in the transform-based method, because FBP is

††Statistics of the measured projections are given in Appendix 7C.



Statistics of MR Imaging 197

directly performed on k-space samples. To get insight into this, we can revisit
Eq. (3.143), in which the |k| filter implicitly utilizes Eq. (3.141)—the definition
of the measured projection. As a new variable in MR image reconstruction,
the measured projection and its statistics are given in Appendix 7C.

7.5.2 Statistical Interpretations

Section 7.4 shows that k-space samples come from an independent Gaussian
random process and are the input to the image reconstruction algorithms;
thus, Section 7.5.1 actually demonstrates that

1) When MR data acquisition consists of I × J k-space samplesM(m∆ku,
n∆kv) (1 ≤ m ≤ I, 1 ≤ n ≤ J) in Cartesian grids (for 2DFT) or ofM ×N k-
space samplesM(n∆k,m∆θ) (0 ≤ m ≤M−1, 1 ≤ n ≤ N) in radial grids (for
2DPR) and the reconstructed MR image X(kδx, lδy) (1 ≤ k ≤ I, 1 ≤ l ≤ J)
consists of I × J pixels, then MR image reconstruction (via 2DFT or 2DPR)
constitutes a transform from a set of I × J or M × N random variables to
another set of I × J random variables.

2) These new I × J random variables x(k, l) (1 ≤ k ≤ I, 1 ≤ l ≤ J) form a
new random process, sometimes referred to as a 2-D random field. Each pixel
value x(k, l) is a value in the state space of a corresponding random variable in
this process and the whole image X(k, l) is a configuration (i.e., a realization)
of the entire random process.

3) Statistics of the MR data in the imaging domain are propagated to the
statistics of the MR image in the image domain through image reconstruction.
Chapter 8 discusses this transform process and the statistics of an MR image.

7.6 Appendices

7.6.1 Appendix 7A

This appendix proves Eqs. (7.28) and (7.29).

Proof.
(1) For Eq. (7.28). Let p(|Muv|(r, 0)) denote pdf of the magnitude of TPMM

|Muv|(r, 0). Applying Property 7.3 and Eq. (7.19) to Eq. (7.31), the mean of
sr(t) is given by

µsr(t) = E[sr(t)]

=

∫

|Muv |
sr(t)p(|Muv|(r, 0))d|Muv(r, 0)|

=

∫

|Muv |
δ(|Muv(r, 0)| − µ|Muv |)d|Muv(r, 0)| (7.54)
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(

∫

V

ω0|Bruv | |Muv(r, 0)|e−
t

T2 sin((ω0 +∆ω(r))t + φBruv
− φMuv )dr)

=

∫

V

ω0|Bruv |µ|Muv |e
− t

T2 sin((ω0 +∆ω(r))t+ φBruv
− φMuv )dr.

For the slice at z0 with unity thinkness (dz = 1), dr = dudv. In the 2-D
case, the sample volume V becomes an area; let it be specified by [−u0

2 ≤ u ≤
u0

2 ,− v02 ≤ v ≤ v0
2 ]. For a constant gradient (Eq. (7.21)), Eq. (7.54) becomes

µsr(t) =

∫ u0/2

−u0/2

∫ v0/2

−v0/2
ω0|Bruv |µ|Muv |e

− t
T2 (7.55)

sin((ω0 + γGzz0)t+ γ(Guu+Gvv)t+ φBruv
− φMuv )dudv,

where Gu, Gv and Gz are gradients. After some trigonometric manipulations
(see Eq. (7.59)) and using Property 7.3, Eq. (7.55) becomes

µsr(t) = ω0|Bruv |µM0
z
sinαV0 e

− t
T2 (7.56)

sinc(γ̄Guu0t, γ̄Gvv0t) sin((ω0 + γGzz0)t+ φBruv
− φMuv ) ,

where V0 = u0v0, γ̄ = γ
2π , sinc(γ̄Guu0t, γ̄Gvv0t) = sinc(γ̄Guu0t)sinc(γ̄Gvv0t)

is a 2-D sinc function.
The variance of sr(t) is given by

σ2
sr(t)

= V ar[sr(t)]

=

∫

|Muv|
(sr(t)− µsr(t))2p(|Muv|(r, 0))d|Muv(r, 0)| (7.57)

=

∫

|Muv|
(sr(t))

2δ(|Muv(r, 0)| − µ|Muv |)d|Muv(r, 0)| − µ2
sr(t)

= 0.

σ2
sr(t)

= 0 is understood as σ2
sr(t)

→ 0 because it is the result of di-

rectly applying δ(|Muv|−µ|Muv |)—a limiting expression for the Gaussian pdf
g(|Muv||µ|Muv |, σ|Muv | → 0).

(2) For Eq. (7.29). Let p(Muv(r, 0)) denote pdf of TPMM Muv(r, 0). Ap-
plying Property 7.3 and Eq. (7.19) to Eq. (7.32), the mean of sc(t) is given
by

µsc(t) = E[sc(t)]

=

∫

Muv

sc(t)p(Muv(r, 0))dMuv(r, 0)

=
ω0

2
B∗
ruv
e−

t
T2

∫

Muv

δ(Muv(r, 0)− µMuv )dMuv(r, 0) (7.58)

(

∫

V

Muv(r, 0)e
−i∆ω(r)tdr)

=
ω0

2
B∗
ruv
µMuve

− t
T2

∫

V

e−i∆ω(r)tdr.
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Similar to sr(t), in the 2-D case, dr = dudv, the sample volume V is replaced
by the area specified by [−u0

2 ≤ u ≤ u0

2 ,− v02 ≤ v ≤ v0
2 ]. Thus, using Eq. (7.21)

∫

V

e−i∆ω(r)tdr =

∫

V

(cos(∆ω(r)t) − i sin(∆ω(r)t))dr

=

∫ u0/2

−u0/2

∫ v0/2

−v0/2
(cos γ(Guu+Gvv +Gzz0)t− i sin γ(Guu+Gvv +Gzz0)t)dudv

=

∫ u0/2

−u0/2

∫ v0/2

−v0/2
[cos γ(Guu+Gvv)t cos γGzz0t− sin γ(Guu+Gvv)t sin γGzz0t

−i sinγ(Guu+Gvv)t cos γGzz0t− i cos γ(Guu+Gvv)t sin γGzz0t]dudv

= V0sinc(γ̄Guu0t, γ̄Gvv0t) cos γGzz0t− iV0sinc(γ̄Guu0t, γ̄Gvv0t) sin γGzz0t
= V0sinc(γ̄Guu0t, γ̄Gvv0t)e

−iγGzz0t. (7.59)

Therefore, Eq. (7.58) becomes

µsc(t) =
ω0

2
B∗
r,uvµMuvV0 e

− t
T2 sinc(γ̄Guu0t, γ̄Gvv0t)e

−iγGzz0t . (7.60)

The variance of sc(t) is given by

σ2
sc(t)

= V ar[sc(t)]

=

∫

Muv

|sc(t)− µsc(t)|2p(Muv(r, 0))dMuv(r, 0) (7.61)

=

∫

Muv

|sc(t)|2δ(Muv(r, 0)− µMuv )dMuv(r, 0)− |µsc(t)|2 = 0.

Similar to the interpretation of Eq. (7.57), σ2
sc(t)

= V ar[sc(t)] = 0 is under-

stood as σ2
sc(t)

= V ar[sc(t)]→ 0.

7.6.2 Appendix 7B

This appendix proves the second formula in Eq. (7.41).

Proof.
For the rectilinear k-space sampling shown in Figure 3.10 and described

in Section 3.9.3.1, let FOVu and FOVv be the dimensions of a rectangular
field of view, ∆ku and ∆kv be the sample periods at ku and kv directions of
k-space. According to the Sampling theorem [11, 54–56], in order to avoid to
aliasing, ∆ku and ∆kv should satisfy the conditions

∆ku ≤
1

FOVu
and ∆kv ≤

1

FOVv
. (7.62)

When the frequency encoding is used in the U direction, Eq. (3.115) shows
that

∆ku =
1

2π
γGu∆t, (7.63)
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where γ is the gyromagnetic ratio, Gu is the amplitude of the frequency encod-
ing gradient, ∆t is the time interval between the readout samples. Eqs. (7.62)
and (7.63) give

∆t ≤ 1
1
2πγGu · FOVu

. (7.64)

In Eq. (7.64),Gu·FOVu is the dynamic range of magnetic field strength over
the dimension FOVu caused by the frequency encoding gradient Gu. Thus,
1
2πγGu · FOVu is the corresponding (temporal) frequency range and should
be equal to the bandwidth ∆f of the baseband signal ŝc(j). Taking ∆t = 1

∆f

and substituting it into RnI (τ) and RnQ(τ) of Eq. (7.40), τ = j2 − j1 = l∆t
(l is an integer), we have

Rn̂I (l∆t) = Rn̂Q(l∆t) = σ2
nr
sinc(l∆t∆f) = 0. (7.65)

This is also known as orthogonal [77]. Due to E[n̂I(t)] = E[n̂Q(t)] = 0, samples
of n̂I(t) and n̂Q(t) taken at j = ∆t, 2∆t, · · ·, n∆t are uncorrelated, and
therefore independent.

For the radial k-space sampling shown in Figure 3.12 and Section 3.9.3.2,
let FOVr be the dimensions of a circular field of view and ∆k be the sample
periods. According to the Sampling theorem, in order to avoid aliasing, ∆k
should satisfy the condition

∆k ≤ 1

FOVr
. (7.66)

When frequency encoding is used in the radial direction, Eq. (7.63) leads to

∆k =
1

2π
γG∆t, (7.67)

where G =
√
G2
u +G2

v, ∆t is the time interval between the readout samples.
Eqs. (7.66) and (7.67) give

∆t ≤ 1
1
2πγG · FOVr

. (7.68)

Similar to the above rectilinear k-space sampling, 1
2πγG·FOVr should be equal

to the bandwidth ∆f of the baseband signal ŝc(j). By taking ∆t = 1
∆f , we

have that samples n̂I(t) and n̂Q(t) at j = ∆t, 2∆t, · · · , n∆t are independent.
Thus, for the real and imaginary parts n̂I(j) and n̂Q(j) of the noise compo-

nent n̂c(j) of the sampled complex-valued baseband signal V̂c(j), the samples
n̂I(j) and n̂Q(j) at j = ∆t, 2∆t, · · · (∆t = 1

∆f ) are independent. Therefore,

due to the zero mean, the autocorrelation functions of n̂I(j) and n̂Q(j) can
be expressed as σ2

nr
δ[j2 − j1].
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7.6.3 Appendix 7C

This appendix provides further discussion on the measured projection and
shows its statistics.

7.6.3.1 The Measured Projection

The theoretical representation. When the constant gradients Gu and Gv
are applied, by rotating the rectangular U–V coordinate system with an angle
θ = tan−1(Gv

Gu
), the resulting U ′–V ′ coordinate system and U–V coordinate

system are related by

u′ = u cos θ + v sin θ and v′ = −u sin θ + v cos θ. (7.69)

A gradient G oriented at the angle θ and the gradients Gu, Gv are related by

Gu = G cos θ and Gv = G sin θ. (7.70)

Using Eq. (3.108) and Eqs. (7.69) and (7.70), the exponential item in
Eq. (3.110) becomes

ku(j)u + kv(j)v =
γ

2π
(uGu + vGv)j =

γ

2π
G(u cos θ + v sin θ)j =

γ

2π
Gu′j.

(7.71)
Thus, by ignoring the constant c′, the k-space version of MR signal equation

(3.110) in the U ′–V ′ coordinate system is

M(ku′(j), kv′(j)) =

∫

u′

∫

v′
Muv(u

′, v′, 0)e−i2π(
γ
2πGu

′j)du′dv′. (7.72)

When θ varies, let the rotating rectangular coordinate (u′, v′) be replaced
by the polar coordinate (k, θ). In k-space, let

M(ku′(j), kv′ (j)) =M(k(j), θ(j)) and k(j) =
γ

2π
Gj. (7.73)

In Eq. (7.72), by defining

∫

v′
Muv(u

′, v′, 0)dv′ =
∫

v′
Muv(u

′, v′)dv′ = p(u′, θ(j)), (7.74)

it becomes

M(k(j), θ(j)) =

∫

u′

p(u′, θ(j))e−i2πk(j)u
′

du′ = Fu′{p(u′, θ)}. (7.75)

That is,

p(u′, θ(j)) =
∫

k

M(k(j), θ(j))ei2πk(j)u
′

dk = F−1
k {M(k(j), θ(j))}, (7.76)
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where F−1
k represents Inverse FT with respect to k. Eq. (7.75) is the MR

signal equation in a polar (k, θ) coordinate system.
Eq. (7.74) shows that p(u′, θ) is the line integral of the object function

Muv(u
′, v′) over v′. This expression is exactly the same as the projection used

in X-ray CT. Therefore, p(u′, θ) defined by Eq. (7.74) is a kind of projec-
tion. Eqs. (7.75) and (7.76) provide an operational definition of p(u′, θ). They
directly relate p(u′, θ) to k-space measurement. Thus, p(u′, θ) is called the
measured projection. Eqs. (7.75), (7.73) and (7.72) show that, at a given view,
1-D FT of the projection equals 2-D FT of the object function. This is the
version of the Fourier Slice theorem in MR 2DPR [18, 37, 54, 56].

Remarks. In mapping the temporally sampled ADC signal V̂c(j) to the
radial k-space sampleM(k(j), θ(j)), although a time index j corresponds to
a location (k(j), θ(j)) in k-space, the relation between the time index j and
the angle θ(j), however, is characterized by a staircase function (as indicated
in Section 3.9 and shown by Figure 3.12). That is, for a given view θm (m =
0, 1, · · · ,M − 1) and a set of time indices j1, j2, · · · · · · , jn, θ ∼ j dependence is
θ(j1) = θ(j2) = · · · · · · = θ(jn) = θm. This θ ∼ j relationship that results from
the radial k-space sampling scheme is the basis for defining and formulating
the measured projection.

A practical representation. Using a typical and conventional notation
adopted in computed tomography, that is, letting l take a value of u′,
Eq. (7.76) can be written as

p(l, θ) =

∫ +∞

−∞
M(k, θ)ei2πkldk. (7.77)

In practice, the measured projection p(l, θ) is computed by

p(l, θ) =

∫ +∞

−∞
(M(k, θ) · 1

∆k
comb(

k

∆k
) · rect( k

W
))ei2πkldk. (7.78)

where ∆k is the radial k-space sample period (see Section 3.9.3, Figure 3.12,
and Eq. (3.123)), comb( k

∆k ) is a comb function defined by

comb(
k

∆k
) = ∆k

+∞∑

n=−∞
δ(k − n∆k), (7.79)

rect( kW ) is a rect function defined by

rect(
k

W
) =





1 (−W2 ≤ k ≤ W
2 )

0 (otherwise),
(7.80)

and W is the window width.
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In Eq. (7.78),M(k, θ) represents the continuous radial k-space data in the
view θ, and k ranges from −∞ to +∞;

M(k, θ) · 1

∆k
comb(

k

∆k
) =

+∞∑

n=−∞
M(n∆k, θ)δ(k − n∆k)

represents the discrete radial k-space data in the view θ, k ranges from −∞
to +∞;

M(k, θ) · 1

∆k
comb(

k

∆k
) · rect( k

W
) =

+N/2∑

n=−N/2
M(n∆k, θ)δ(k − n∆k)

represents the discrete radial k-space data in the view θ, k ranges from −N2 to

+N
2 , where N = [ W∆k ] ([x] denotes the integer part of x). Thus, the integral of

Eq. (7.78) represents an Inverse Fourier transform of N radial k-space samples
(in the radial direction) in the view θ. In practice, θ is also discretized asm∆θ,
where m = 0, 1, · · · ,M − 1 and (M − 1)∆θ = π.

7.6.3.2 Statistics of the Measured Projections

Statistics of the measured projection p(l, θ) are given by the following prop-
erty.

Property 7.8 The measured projection p(l, θ) defined by Eq. (7.78) can be
characterized by a Gaussian random process: p(l, θ) ∼ N(µp(l,θ), σ

2
p), with the

mean µp(l,θ) and the variance σ2
p given by

µp(l,θ) = F−1
k {µM(k,θ)} and σ2

p =
σ2

M

∆k
W, (7.81)

where µM(k,θ) and σ2
M are the mean and the variance of the radial k-space

sampleM(k, θ) of Eq. (7.50).
The correlation of the measured projections p(l1, θ1) and p(l2, θ2) is given

by

Rp((l1, θ1), (l2, θ2)) = µp(l1,θ1)µ
∗
p(l2,θ2)

+
σ2

M

∆k
Wδ[l1 − l2, θ1 − θ2], (7.82)

where ∗ denotes the complex conjugate, and δ[∆l,∆θ] is a 2-D Kronecker
delta function. That is, p(l, θ) is an independent random process.

�

Proof.
In Eq. (7.78), because M(k, θ) · 1

∆kcomb(
k
∆k ) · rect( kW ) =M(n∆k,m∆θ)

represents a (truncated) Gaussian random process [Property 7.7] and the
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Fourier transform is a linear operation, p(l, θ) can be characterized by a Gaus-
sian random process. Eqs. (7.81) and (7.82) are proved in the following three
steps.

S.1. The continuous radial k-space data over an infinite radial extent in a
view θ,M(k, θ), are used; the corresponding projection is given by

p̃(l, θ) =

∫ +∞

−∞
M(k, θ)ei2πkldk. (7.83)

This is a hypothetical case. The mean of p̃(l, θ) is

µp̃(l,θ) = E[p̃(l, θ)] =

∫
E[M(k, θ)]ei2πkldk =

∫
µM(k,θ)e

i2πkldk, (7.84)

where µM(k,θ) is the mean of the k-space dataM(k, θ) given by Eq. (7.50).
The correlation Rp̃((l1, θ1), (l2, θ2)) of p̃(l1, θ1) and p̃(l2, θ2), using Property

7.7, is

Rp̃((l1, θ1), (l2, θ2)) = E[p̃((l1, θ1)p̃
∗(l2, θ2)]

= E[

∫ +∞

−∞
M(k1, θ1)e

i2πk1l1dk1

∫ +∞

−∞
M∗(k2, θ2)e

−i2πk2l2dk2]

=

∫ +∞

−∞

∫ +∞

−∞
E[M(k1, θ1)M∗(k2, θ2)]e

i2π(k1l1−k2l2)dk1dk2

=

∫ +∞

−∞

∫ +∞

−∞
µM(k1,θ1)µ

∗
M(k2,θ2)

ei2π(k1l1−k2l2)dk1dk2

+σ2
M

∫ +∞

−∞

∫ +∞

−∞
δ[k1 − k2, θ1 − θ2]ei2π(k1l1−k2l2)dk1dk2. (7.85)

The first item on the right side of Eq. (7.85) equals µp̃(l1,θ1)µ
∗
p̃(l2,θ2)

. The

second item is the covariance of p̃(l1, θ1) and p̃(l2, θ2):

Cp̃((l1, θ1), (l2, θ2)) = σ2
M

∫ +∞

−∞

∫ +∞

−∞
δ[k1 − k2, θ1 − θ2]ei2π(k1l1−k2l2)dk1dk2.

(7.86)
When p̃(l1, θ1) and p̃(l2, θ2) are in the different views, that is, θ1 6= θ2,

Cp̃((l1, θ1), (l2, θ2)) = 0 . (7.87)

When p̃(l1, θ1) and p̃(l2, θ2) are in the same view, that is, θ1 = θ2,

Cp̃((l1, θ1), (l2, θ2))

= σ2
M

∫ +∞

−∞

∫ +∞

−∞ (k1 6=k2)
δ[k1 − k2, 0]ei2π(k1l1−k2l2)dk1dk2
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+σ2
M

∫ +∞

−∞

∫ +∞

−∞ (k1=k2)

δ[k1 − k2, 0]ei2π(k1l1−k2l2)dk1dk2

= σ2
M

∫ +∞

−∞
ei2πk(l1−l2)dk

= σ2
Mδ(l1 − l2) . (7.88)

Thus, from Eqs. (7.87) and (7.88), Cp̃((l1, θ1), (l2, θ2)) can be expressed as

Cp̃((l1, θ1), (l2, θ2)) = σ2
Mδ(l1 − l2)δ[θ1 − θ2]. (7.89)

Therefore, Eq. (7.85) becomes

Rp̃((l1, θ1), (l2, θ2)) = µp̃(l1,θ1)µ
∗
p̃(l2,θ2)

+ σ2
Mδ(l1 − l2)δ[θ1 − θ2]. (7.90)

Eq. (7.90) shows that p̃(l, θ) is an independent random process. The variance
of p̃(l, θ), from Eq. (7.89), is

σ2
p̃ = Cp̃((l, θ), (l, θ)) = σ2

Mδ(0). (7.91)

S.2. The discrete radial k-space data over an infinite radial extent in a view
θ,M(k, θ) · 1

∆k comb(
k
∆k ), are used; the corresponding projection is given by

p̂(l, θ) =

∫ +∞

−∞

(
M (k, θ) · 1

∆k
comb

(
k

∆k

))
ei2πkldk . (7.92)

This is also a hypothetical case. From Eq. (7.92), p̂(l, θ) can be expressed as

p̂(l, θ) =

∫ +∞

−∞
M(k, θ)

+∞∑

n=−∞
δ(k − n∆k)ei2πkldk

=

+∞∑

n=−∞
M(n∆k,m∆θ)ei2πn∆k l. (7.93)

The mean of p̂(l, θ) is

µp̂(l,θ) = E[p̂(l, θ)] =

+∞∑

n=−∞
µM(n∆k,m∆θ)e

i2πn∆k l, (7.94)

where µM(n∆k,m∆θ) is the mean of the k-space dataM(n∆k,m∆θ) given by
Eq. (7.50).

From Eqs. (7.83) and (7.92), we have

p̂(l, θ) = p̃(l, θ) ⋆ comb(∆k l), (7.95)
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where ⋆ denotes the convolution and comb(∆k l) = F−1
k { 1

∆kcomb(
k
∆k )}. That

is,

p̂(l, θ) =
1

∆k

+∞∑

n=−∞
p̃
( n

∆k

)
δ
(
l − n

∆k

)
. (7.96)

Thus, the correlation Rp̂((l1, θ1), (l2, θ2)) of p̂(l1, θ1) and p̂(l2, θ2), using

Eq. (7.90), is

Rp̂((l1, θ1), (l2, θ2)) = E[p̂((l1, θ1)p̂
∗(l2, θ2)]

= E

[(
1

∆k

+∞∑

n1=−∞
p̃
( n1

∆k

)
δ
(
l1 −

n1

∆k

))( 1

∆k

+∞∑

n2=−∞
p̃
( n2

∆k

)
δ
(
l2 −

n2

∆k

))∗]

=
1

(∆k)2

+∞∑

n1=−∞

+∞∑

n2=−∞
E
[
p̃
( n1

∆k

)
p̃∗
( n2

∆k

)]
δ
(
l1 −

n1

∆k

)
δ
(
l2 −

n2

∆k

)

=
1

(∆k)2

+∞∑

n1=−∞

+∞∑

n2=−∞
µp̃

( n1

∆k
, θ1

)
µ∗
p̃

( n2

∆k
, θ2

)
δ
(
l1 −

n1

∆k

)
δ
(
l2 −

n2

∆k

)

+
σ2

M

(∆k)2

+∞∑

n1=−∞

+∞∑

n2=−∞
δ
( n1

∆k
− n2

∆k

)
δ[θ1 − θ2]δ

(
l1 −

n1

∆k

)
δ
(
l2 −

n2

∆k

)
. (7.97)

The first item on the right side of Eq. (7.97) equals µp̂(l1, θ1)µ
∗
p̂(l2, θ2). The

second item is the covariance of p̂(l1, θ1) and p̂(l2, θ2),

Cp̂((l1, θ1), (l2, θ2))

=
σ2

M

(∆k)2
δ[θ1 − θ2]

+∞∑

n1=−∞

+∞∑

n2=−∞
δ
( n1

∆k
− n2

∆k

)
δ(l1 −

n1

∆k
)δ
(
l2 −

n2

∆k

)
. (7.98)

When p̂(l1, θ1) and p̂(l2, θ2) are in different views, that is, θ1 6= θ2,

Cp̂((l1, θ1), (l2, θ2)) = 0. (7.99)

When p̂(l1, θ1) and p̂(l2, θ2) are in the same view, that is, θ1 = θ2,

Cp̂((l1, θ1), (l2, θ2))

=
σ2

M

(∆k)2

+∞∑

n1=−∞

+∞∑

n2=−∞
δ
( n1

∆k
− n2

∆k

)
δ
(
l1 −

n1

∆k

)
δ
(
l2 −

n2

∆k

)

= σ2
M∆k

+∞∑

n1=−∞

+∞∑

n2=−∞
δ(n1 − n2)δ(n1 − l1∆k)δ(n2 − l2∆k)

= σ2
M∆k

+∞∑

n2=−∞

(
+∞∑

n1=−∞
δ(n1 − n2)δ(n1 − l1∆k)

)
δ(n2 − l2∆k)
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= σ2
M∆k

+∞∑

n2=−∞
δ(n2 − l1∆k)δ(n2 − l2∆k)

= σ2
Mδ((l1 − l2)∆k)

=
σ2

M

∆k
δ(l1 − l2). (7.100)

Thus, from Eqs. (7.99) and (7.100), Cp̂((l1, θ1), (l2, θ2)) can be expressed as

Cp̂((l1, θ1), (l2, θ2)) =
σ2

M

∆k
δ(l1 − l2)δ[θ1 − θ2]. (7.101)

Therefore, Eq. (7.97) becomes

Rp̂((l1, θ1), (l2, θ2)) = µp̂(l1,θ1)µ
∗
p̂(l2,θ2)

+
σ2

M

∆k
δ(l1 − l2)δ[θ1 − θ2]. (7.102)

Eq. (7.102) shows that p̂(l, θ) is an independent random process. The variance
of p̂(l, θ), from Eq. (7.101), is

σ2
p̂ = Cp̂((l, θ), (l, θ)) =

σ2
M

∆k
δ(0). (7.103)

S.3. The discrete radial k-space data over a finite radial extent in a view θ,
M(k, θ) · 1

∆kcomb(
k
∆k · rect( kW ), are used; the measured projection is given by

p̄(l, θ) =

∫ +∞

−∞
(M(k, θ) · 1

∆k
comb(

k

∆k
· rect( k

W
))ei2πkldk. (7.104)

This is a practical case. From Eq. (7.104), p̄(l, θ) can be expressed as

p̄(l, θ) =

∫ +W/2

−W/2
M(k, θ)

+∞∑

n=−∞
δ(k − n∆k)ei2πkldk

=

+N/2∑

n=−N/2
M(n∆k,m∆θ)ei2πn∆k l. (7.105)

The mean of p̄(l, θ) is

µp̄(l,θ) = E[p̄(l, θ)] =

+N/2∑

n=−N/2
µM(n∆k,m∆θ)e

i2πn∆k l. (7.106)

Eq. (7.106) shows that the mean of p̄(l, θ) is the Fourier transform (with re-
spect to k) of the mean of the k-space dataM(n∆k,m∆θ) given by Eq. (7.50).

From Eqs. (7.92) and (7.104), we have

p̄(l, θ) = p̂(l, θ) ⋆ Wsinc(Wl), (7.107)
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where ⋆ denotes the convolution and sinc(Wl) = F−1{rect( kW )} is a sinc
function. That is,

p̄(l, θ) =

∫
p̂(v, θ)Wsinc(W (l − v))dv. (7.108)

Thus, the correlation Rp̄((l1, θ1), (l2, θ2) of p̄(l1, θ1) and p̄(l2, θ2), using
Eq. (7.102), is

Rp̄((l1, θ1), (l2, θ2)) = E[p̄((l1, θ1)p̄
∗(l2, θ2)]

= E[(

∫
p̂(v1, θ)Wsinc(W (l1 − v1))dv1)(

∫
p̂(v2, θ)Wsinc(W (l2 − v2))dv2)∗]

=

∫ ∫
E[p̂(v1, θ)p̂

∗(v2, θ)]Wsinc(W (l1 − v1))Wsinc(W (l2 − v2))dv1dv2

=

∫ ∫
µp̂(l1,θ1)µ

∗
p̂(l2,θ2)

Wsinc(W (l1 − v1))Wsinc(W (l2 − v2))dv1dv2

+
σ2

M

∆k
W 2δ[θ1 − θ2]

∫ ∫
δ(v1 − v2)sinc(W (l1 − v1))sinc(W (l2 − v2))dv1dv2. (7.109)

The first item on the right side of Eq. (7.109) equals µp̄(l1, θ1)µ
∗
p̄(l2, θ2).

The second item is the covariance of p̄(l1, θ1) and p̄(l2, θ2)

Cp̄((l1, θ1), (l2, θ2)) =
σ2

M

∆k
W 2δ[θ1 − θ2]

∫ ∫
δ(v1 − v2)sinc(W (l1 − v1))sinc(W (l2 − v2))dv1dv2. (7.110)

When p̄(l1, θ1) and p̄(l2, θ2) are in the different views, that is, θ1 6= θ2,

Cp̄((l1, θ1), (l2, θ2)) = 0 . (7.111)

When p̄(l1, θ1) and p̄(l2, θ2) are in the same view, that is, θ1 = θ2,

Cp̄((l1, θ1), (l2, θ2))

=
σ2

M

∆k
W 2δ[θ1 − θ2]

∫
sinc(W (l1 − v2))sinc(W (l2 − v2))dv2

=
σ2

M

∆k
Wsinc(W (l1 − l2))δ[θ1 − θ2]. (7.112)

p̄(l, θ) and M(k, θ) are discretized as p̄(n∆p,m∆θ) and M(n∆k,m∆θ).
Section 3.9.3.2 shows that 1

N∆p < ∆k. By assuming 1
N∆p = 1

i∆k (i > 1—an

integer), we have ∆p∆k = i
N , which leads toW (l1−l2) = N∆k·(n1−n2)∆p =

i(n1 − n2). Thus, Eq. (7.112) becomes

Cp̄((l1, θ1), (l2, θ2)) =
σ2

M

∆k
W

sin i(n1 − n2)π

i(n1 − n2)π
=





0 (l1 6= l2)

σ2
M

∆kW (l1 = l2)

. (7.113)
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Thus, from Eqs. (7.111) and (7.113), Cp̄((l1, θ1), (l2, θ2)) can be expressed
as

Cp̄((l1, θ1), (l2, θ2)) =
σ2

M

∆k
Wδ[l1 − l2, θ1 − θ2]. (7.114)

Therefore, Eq. (7.109) becomes

Rp̄((l1, θ1), (l2, θ2)) = µp̄(l1,θ1)µ
∗
p̄(l2,θ2) +

σ2
M

∆k
Wδ[l1 − l2, θ1 − θ2]. (7.115)

Eq. (7.115) shows that p̄(l, θ) is an independent random process. The variance
of p̄(l, θ), from Eq. (7.114), is

σ2
p̄ = Cp̄((l, θ), (l, θ)) =

σ2
M

∆k
W. (7.116)

Problems

7.1. In the Proof of Property 7.2 (Section 7.2.1.1), one outcome of the argu-
ments of (a) and (b) is σs = 0. Prove it.

7.2. In the Proof of Property 7.5 (Section 7.3.2), nr(t) and nc(t) are expressed
as αn(t) cos(ωot+ φn(t)) and

1
2αn(t)e

−iφn(t), respectively. Prove it.

7.3. In the proof of Property 7.5, we state that

E[n̂c(j1)n̂
∗
c(j2)] = E[n̂c(j1)]E[n̂∗

c(j2)] = 0.

Prove it.

7.4. Prove Eq. (7.59).
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8

Statistics of MR Imaging

8.1 Introduction

Chapter 7 indicated that the statistics of MR imaging in its data domain
propagate to its image domain through image reconstruction. Following this
insight, an investigation into the statistics of MR imaging is conducted for
the images generated using typical MR data acquisition schemes and basic
image reconstruction methods: rectilinear k-space sampling/Fourier transform
(FT), and radial sampling/projection reconstruction (PR). This approach is
performed at three levels of the image: a single pixel, any two pixels, and a
group of pixels (i.e., an image region).

In MR image analysis and other applications, pixel intensity is always as-
sumed to have a Gaussian distribution. Because an MR image is complex
valued, its magnitude image is widely utilized, and its phase image is used in
some cases, Gaussianity should be elaborated in a more detailed fashion. This
chapter shows that (1) pixel intensity of the complex-valued MR image has a
complex Gaussian distribution, (2) its real and imaginary parts are Gaussian
distributed and independent, and (3) its magnitude and phase components
have non-Gaussian distributions but can be approximated by independent
Gaussians when the signal-to-noise ratio (SNR) of the image is moderate or
large.

Characterizing spatial relationships of pixel intensities in MR imaging is an
important issue for MR image analysis/processing and other applications. Al-
though theoretical and experimental studies indicate that the pixel intensities
of an MR image are correlated, the explicit statements and/or the analytic
formulae on the correlation have not been given. This chapter shows that (1)
pixel intensities of an MR image are statistically correlated, (2) the degree of
the correlation decreases as the distance between pixels increases, and (3) pixel
intensities become statistically independent when the distance between pixels
approaches infinity. These properties are summarized as spatially asymptotic
independence (SAI). This chapter also gives a quantitative measure of the
correlations between pixel intensities, that is, the correlation coefficient of the
pixel intensities of an MR image decreases exponentially with the distance
between pixels. This property is referred to as the Exponential correlation
coefficient (ECC).
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An MR image appears piecewise contiguous. This scenario suggests that
each image region (i.e., a group of pixels) may possess some unique statistics.
This chapter proves that each image region is stationary and ergodic (hence
satisfies ergodic theorems). Thus, an MR image is a piecewise stationary and
ergodic random field. Furthermore, the autocorrelation function (acf) and the
spectral density function (sdf) of pixel intensities in an image region of an
MR image are derived and expressed in analytic formulae.

Six statistical properties of an MR image—Gaussianity, spatially asymp-
totic independence, exponential correlation coefficient, stationarity, ergodic-
ity, autocorrelation function, and spectral density function—are described in
the order of a single pixel =⇒ any two pixels =⇒ a group of pixels. In addi-
tion to theoretical derivations and proofs, experimental results obtained using
real MR images are also included. Theoretical and experimental results are in
good agreement. These statistics provide the basis for creating stochastic im-
age models and developing new image analysis methodologies for MR image
analysis, which are given Chapters 9, 10, and 11.

8.2 Statistics of the Intensity of a Single Pixel

This section analyzes the statistics of the intensity of a single pixel in an MR
image. It first derives probability density functions (pdfs) of (1) the complex-
valued pixel intensity, (2) its real and imaginary parts, and (3) its magnitude
and phase components, and the associated statistical parameters. Then it
proves and interprets the Gaussianity of the pixel intensity of an MR image.
For the convenience of description, all proofs and derivations of these statistics
are given in Appendix 8A.

In general, x(i, j) and xi,j are used to represent a pixel intensity at the
location (i, j) in a 2-D image. When the pixel location (i, j) is not required,
it is convenient to change notations slightly by suppressing the location index
(i, j), that is, simply to use x. Let x be a pixel intensity of the complex-valued
MR image, xR and xI be its real and imaginary parts, and xs and xn be its
(underlying) signal and noise components. Similar to Eq. (7.49), we have

x = xR + ixI = (xsR + xnR) + i(xsI + xnI )

or (8.1)

x = xs + xn = (xsR + ixsI ) + (xnR + ixnI ),

where xsR and xnR are the signal and noise components of the real part xR
of the pixel intensity x, and xsI and xnI are the signal and noise components
of the imaginary part xI of the pixel intensity x. xR and xI are real-valued
quantities, xs and xn are complex-valued quantities.
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8.2.1 Gaussianity

Property 8.1a The real and imaginary parts, xR and xI , of any single pixel
intensity x in a complex-valued MR image are characterized by two real Gaus-
sian variables: xR ∼ N(µxR , σ

2
xR

), and xI ∼ N(µxI , σ
2
xI
), where the means

µxR = xsR and µxI = xsI , and the variances σ2
xR

= σ2
xnR

and σ2
xI

= σ2
xnI

(σ2
xnR

= σ2
xnI

∆
= σ2). xR and xI are independent: p(xR, xI) = p(xR)p(xI).

The pixel intensity x is characterized by a complex Gaussian random vari-
able: x ∼ N(µx, σ

2
x), and its pdf is given by

p(x) = π−1(σ2
x)

−1 exp(−(x− µx)∗(σ2
x)

−1(x− µx)), (8.2)

where ∗ represents the complex conjugate, and the mean µx and the variance
σ2
x are∗

µx = E[x] = xs = xsR + ixsI ,

(8.3)

σ2
x = E[(x− µx)(x − µx)∗] = E[xnx

∗
n] = 2σ2.

Property 8.1b Let ρ and θ denote the magnitude and the phase of the
pixel intensity x of a complex-valued MR image: ρ = |x| =

√
x2R + x2I and

θ = ∠x = tan−1(xI/xR). The joint pdf of ρ and θ is given by

p(ρ, θ|φ) = ρ

2πσ2
exp(−ρ

2 + ν2 − 2νρ cos(θ − φ)
2σ2

) (ρ > 0, −π ≤ θ < π),

(8.4)
where

ν = |µx| =
√
x2sR + x2sI and φ = ∠µx = tan−1(xsI /xsR). (8.5)

Property 8.1c The pdf of the magnitude ρ of the pixel intensity x of a
complex-valued MR image is given by

p(ρ) =
ρ

σ2
exp(−ρ

2 + ν2

2σ2
)I0(

νρ

σ2
) (ρ > 0), (8.6)

where I0(x) is the modified Bessel function of the first kind of zero order [1]
defined by

I0(x) =
1

2π

∫ 2π

0

ex cos(θ−φ)dθ =
∞∑

n=0

x2n

22n(n!)2
. (8.7)

∗The relationship between σ2
x and the variance σ2

M of k-space samples depends on image
reconstruction methods. For the filtered 2DFT, Section 8.3.1.1 shows that σ2

x = 1
N
σ2
Mf(0),

where N is the number of k-space samples used in the image reconstruction, f(0) is a factor
determined by the filter function, for example, for the Hanning filter, f(0) = 0.375.
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Eq. (8.6) is known as a Rician distribution. The moments of ρ are given by

E[ρn] = (2σ2)
n
2 Γ(1 +

n

2
) 1F1(−

n

2
; 1;− ν2

2σ2
), (8.8)

where Γ(x) is the Gamma function [1] defined by

Γ(α) =

∫ ∞

0

xα−1e−xdx = (α− 1)Γ(α− 1), (8.9)

and 1F1[α;β; y] is the confluent hypergeometric function of the first kind [1, 76]
defined by

1F1[α;β; y] = 1+
α

β

(y)

1!
+
α(α+ 1)

β(β + 1)

(y2)

2!
+· · ·+α(α+ 1) · · · (α+ n− 1)

β(β + 1) · · · (β + n− 1)

(yn)

n!
· · · .

(8.10)

An extension of Property 8.1c Let the signal-to-noise ratio (SNR) of the
pixel intensity x of a complex-valued MR image be defined by ̺ = ν

σ . When
̺ = 0, pdf of ρ becomes

p(ρ) =
ρ

σ2
exp(− ρ2

2σ2
), (8.11)

which is a Rayleigh distribution. The moments of ρ in this limiting case are

E[ρn] = (2σ2)
n
2 Γ(1 +

n

2
). (8.12)

When ̺→∞, pdf of ρ becomes

p(ρ) =
1√
2πσ

exp(− (ρ− ν)2
2σ2

), (8.13)

which is a Gaussian distribution. The central moments of ρ in this limiting
case are

E[(ρ− ν)2k−1] = 0 and E[(ρ− ν)2k] = 1 · 3 · · · (2k − 1)σ2k, (8.14)

where k = 1, 2, · · ·. Generally, when ̺ ≥ 2
√
2, Eq. (8.6) can be approximated

by a Gaussian distribution Eq. (8.13).
The Rician distribution Eq. (8.6), Rayleigh distribution Eq. (8.11), and

approximate Gaussian distribution Eq. (8.13) with various SNR are shown in
Figure 8.1.

Property 8.1dThe pdf of the phase deviation δθ = θ−φ of the pixel intensity
x of a complex-valued MR image is given by

p(δθ) =
1

2π
exp(− ν2

2σ2
) +

ν cos(δθ)√
2πσ

exp

(
−ν

2 sin2(δθ)

2σ2

)
Φ

(
ν cos(δθ)

σ

)
,

(8.15)
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where −π ≤ θ < π, Φ(x) is the cumulative distribution function (cdf) of
N(0, 1), defined by

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt. (8.16)

An extension of Property 8.1d Let the SNR of the pixel intensity x of
a complex-valued MR image be defined by ̺ = ν

σ . When ̺ = 0, pdf of δθ
becomes

p(δθ) =





1
2π (−π ≤ δθ < π)

0 otherwise,
(8.17)

which is a uniform distribution. The moments of δθ in this limiting case are

E[(δθ)2k−1] = 0 and E[(δθ)2k] =
π2k

2k + 1
, (8.18)

where k = 1, 2, · · ·. When ̺→∞, the pdf of δθ becomes

p(δθ) =





1√
2π(σ/ν)

exp(− (δθ)2

2(σ/ν)2 ) (−π ≤ δθ < π)

0 otherwise,

(8.19)

which is a Gaussian distribution. The moments of δθ in this limiting case are

E[(δθ)2k−1] = 0 and E[(δθ)2k] = 1 · 3 · · · (2k − 1)(σ/ν)2k , (8.20)

where k = 1, 2, · · ·. Generally, when SNR ̺ ≥ 1, Eq. (8.15) can be approxi-
mated by a Gaussian distribution (8.19).

pdf Eq. (8.15), the uniform distribution Eq. (8.17) and the approximate
Gaussian distribution Eq. (8.19) with various SNR are shown in Figure 8.2.

Property 8.1e When SNR ̺ is moderate or large (as specified in the Ex-
tensions of Property 8.1c and Property 8.1d), the magnitude ρ and the phase
θ of the pixel intensity x of a complex-valued MR image are approximately
independent, that is.,

p(ρ, θ|φ) ≃ p(ρ)p(θ|φ). (8.21)

Proof.
Proofs for Property 8.1a—Property 8.1e and their extensions are given in

Appendix 8A.

Remarks on Gaussianity. This section shows that (1) the single pixel in-
tensity of a complex-valued MR image has a complex Gaussian distribution,
(2) its real and imaginary parts are Gaussian distributed and independent,
and (3) its magnitude and phase deviation are approximately Gaussian dis-
tributed and independent when the signal-to-noise ratio of image is moderate
or large. Gaussianity of MR image is interpreted and understood in this sense.
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FIGURE 8.1

Rician pdfs (Eq. (8.6)) with various SNR. Among them, Rayleigh pdf
(Eq. (8.11)) with the zero SNR and the approximate Gaussian pdf (Eq. (8.13))
with the moderate or larger SNR.
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FIGURE 8.2

pdfs Eq. (8.15) with various SNR. Among them, the Uniform pdf (Eq. (8.17))
with the zero SNR, and the approximate Gaussian pdf (Eq. (8.19)) with the
moderate or larger SNR.
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8.3 Statistics of the Intensities of Two Pixels

This section analyzes the statistics of the intensities of any two pixels in an
MR image. It first gives a qualitative description: (1) the intensities of any
two pixels in MR image are statistically correlated, (2) the degree of the cor-
relation decreases as the distance between the pixels increases, and (3) pixel
intensities become statistically independent when the distance between pixels
approaches infinity. These properties are summarized as spatially asymptotic
independence, abbreviated as SAI. Then it gives a quantitative description:
the correlation coefficient of pixel intensities decreases exponentially with the
distance between pixels. This property is referred to as the exponential cor-
relation coefficient, abbreviated as ECC.

This section shows that the correlation and the correlation coefficient are
the functions of (1) MR imaging parameters, (2) statistics of MR signals
and noise, (3) pixel intensities, and (4) the distance between pixels. For the
convenience of description, the major steps of the proofs of SAI and ECC are
outlined in this section, and the details of these proofs are given in Appendices
8B. The more extended discussions and results are reported in [3–5].

8.3.1 Spatially Asymptotic Independence

Property 8.2 Pixel intensities of MR image are spatially asymptotically
independent.

The SAI of an MR image reconstructed by 2DFT and 2DPR methods is
proved progressively and probabilistically, respectively, in the following two
subsections.

8.3.1.1 The SAI of an MR Image by FT

Proof.
Because 2-D FT and other functions used in the rectilinear k-space data

acquisition are separable, for simplicity, 1-D notation is used in this proof.
k and u denote the locations in k and x spaces, and M(k) and x(u) denote
the k-space data and the pixel intensity. Sections 3.9 and 3.10 give detailed
descriptions of rectilinear k-space sampling and the 2DFT image reconstruc-
tion method. Eq. (3.130) shows that pixel intensity x(u) generated by 2DFT
method can be expressed by

x(u) = F−1{M(k) · 1

∆k
comb(

k

∆k
) · rect( k

W
) · filt( k

W
)}, (8.22)

where F−1 denotes the inverse FT, ∆k and W are the sampling period and
window width in k-space, and comb (the sampling function), rect (the trun-
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cating function), and filt (the filter function) are defined by

comb

(
k

∆k

)
= ∆k

∞∑

m=−∞
δ(k −m∆k)

rect

(
k

W

)
=

{
1 |k| ≤ W

2
0 otherwise

(8.23)

filt

(
k

W

)
= Φ

(
k

W

)
rect

(
k

W

)
,

where δ(k) is the Dirac Delta function; filt( kW ) is a real, even, and normal-

ized; and Φ( kW ) can take different forms, for example, Hanning, Hamming
functions, etc [6, 8, 11–16, 54–56, 76].

The different combinations of the four factors on the right side of Eq. (8.22)
constitute four different k-space data acquisition schemes:

1)M(k) represents the continuous k-space data over the infinity extent of
k-space;

2)M(k) · 1
∆kcomb(

k
∆k ) represents the discrete k-space data over the infinity

extent of k-space;
3)M(k) · 1

∆k comb(
k
∆k ) · rect( kW ) represents the discrete k-space data over

a finite extent of k-space;
4)M(k) · 1

∆k comb(
k
∆k ) · rect( kW ) · filt( kW ) represents the filtered, discrete

k-space data over a finite extent of k-space.

1) and 2) represent two hypothetical cases; 3) is a practical case in which a
Gibbs ringing artifact occurs [3, 17, 54–56]; and 4) is a commonly used case in
which Gibbs ringing artifact is reduced [3, 17, 54–56]. SAI is proved through
these four cases, progressively.

Case 1) The continuous k-space data over the infinity extent of k-space,
M(k), were used. x̃(u) is adopted to denote the corresponding pixel intensity:

x̃(u) = F−1{M(k)}. (8.24)

Appendix 8.B shows that the correlation Rx̃(u1, u2) between x̃(u1) and x̃(u2)
is given by

Rx̃(u1, u2) = µx̃(u1)µ
∗
x̃(u2)

+ σ2
Mδ(∆u), (8.25)

where µx̃(u) denotes the mean of x̃(u), ∗ represents the complex conjugate,
∆u = u1 − u2 is the distance between two pixels at u1 and u2, and σ

2
M is the

variance ofM(k).
1a) When u1 6= u2, Eq. (8.25) becomes

Rx̃1,x̃2 = µx̃(u1)µ
∗
x̃(u2)

, (8.26)

which shows that x̃(u1) and x̃(u2) are uncorrelated.
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1b) When u1 = u2, Eq. (8.25) gives the variance σ2
x̃ of x̃(u)

σ2
x̃ = σ2

Mδ(0), (8.27)

where δ(0) is used as a notation here as well as in Eq. (8.31). Because δ(t) is
undefined for t = 0, its interpretation is given at the end of Section 8.3.1.1:
Remarks on the variance of FT MR image.

Case 2) The discrete (i.e., the sampled) k-space data over the infinity
extent of k-space,M(k) · 1

∆kcomb(
k
∆k ), were used. x̂(u) is adopted to denote

the corresponding pixel intensity:

x̂(u) = F−1{M(k) · 1

∆k
comb(

k

∆k
)} = x̃(u) ⋆ comb(∆k u), (8.28)

where ⋆ denotes the convolution. Appendix 8B shows that the correlation
Rx̂(u1, u2) between x̂(u1) and x̂(u2) is given by

Rx̂(u1, u2) = µx̂(u1)µ
∗
x̂(u2)

+
σ2

M

∆k
δ(∆u), (8.29)

where µx̂(u) denotes the mean of x̂(u).
2a) When u1 6= u2, Eq. (8.29) becomes

Rx̂ = µx̂(u1)µ
∗
x̂(u2)

, (8.30)

which shows that x̂(u1) and x̂(u2) are uncorrelated.
2b) When u1 = u2, Eq. (8.29) gives the variance σ2

x̂ of x̂(u)

σ2
x̂ =

σ2
M

∆k
δ(0), (8.31)

where the factor 1
∆k , by comparing with Eq. (8.27), indicates the difference

between the discrete and the continuous data.

Case 3) The discrete k-space data over a finite extent of k-space,M(k) ·
1
∆kcomb(

k
∆k ) · rect( kW ), are used. FT reconstruction with this type of data

acquisition is known as the basic FT. x̄(u) is adopted to denote the corre-
sponding pixel intensity:

x̄(u) = F−1{M(k) · 1

∆k
comb(

k

∆k
) · rect( k

W
)} = x̂(u) ⋆W sinc(Wu), (8.32)

where sinc(Wu) = sin(πWu)/(πWu) is a sinc function. Appendix 8B shows
that the correlation Rx̄(u1, u2) between x̄(u1) and x̄(u2) is given by

Rx̄(u1, u2) = µx̄(u1)µ
∗
x̄(u2)

+
σ2

M

∆k
W sinc(W∆u). (8.33)
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3a) When u1 6= u2, Eq. (8.33) shows that the degree of correlation of x̄(u1)
and x̄(u2) is characterized by

σ2
M

∆k
Wsinc(W∆u). (8.34)

Appendix 8B shows that
σ2
M

∆kWsinc(W∆u) is confined to the main lobe of

sinc(W∆u). Thus, |σ
2
M

∆kWsinc(W∆u)| monotonically decreases from 1 to 0
(approaching, but not equalizing) as |∆u| increases from 0 to its maximum.
This finding shows that x̄(u1) and x̄(u2) are correlated and the degree of
correlation decreases as the distance between pixels increases. In the limiting
case of |∆u| → ∞, due to lim sinc(W∆u) = 0, we have

lim
∆u→∞

Rx̄(u1, u2) = µx̄(u1)µ
∗
x̄(u2)

, (8.35)

which shows that x̄(u1) and x̄(u2) are uncorrelated, and therefore indepen-
dent [Property 8.1]. Thus, pixel intensities of MR image reconstructed by the
basic FT are SAI, which are also demonstrated by the curves of Eq. (8.34) in
Figure 8.8 of Appendix 8B.

3b) When u1 = u2, due to sinc(0) = 1, Eq. (8.33) gives the variance σ2
x̄ of

x̄(u)

σ2
x̄ = σ2

M

W

∆k
. (8.36)

Case 4) The filtered, discrete k-space data over a finite extent of k-space,
M(k) · 1

∆kcomb(
k
∆k ) ·rect( kW ) ·filt( kW ), are used. FT reconstruction with this

type of data acquisition is known as filtered FT. x(u) is adopted to denote
the corresponding pixel intensity:

x(u) = F−1{M(k) · 1

∆k
comb(

k

∆k
) · filt( k

W
)} = x̂(u) ⋆ φ(Wu), (8.37)

where

φ(Wu) = F−1{filt( k
W

)}. (8.38)

Eq. (8.37) is obtained by merging rect( kW ) of Eq. (8.22) into filt( kW ), which

also contains a factor rect( kW ) (see Eq. (8.23)). Appendix 8B shows that the
correlation Rx(u1, u2) between x(u1) and x(u2) for Hanning and Hamming
filtering is given by

Rx(u1, u2) = µx(u1)µ
∗
x(u2)

+
σ2

M

∆k
Wsinc(W∆u)f(W∆u). (8.39)

where

f(W∆u) =





1.5
(W∆u)4−5(W∆u)2+4 (a. Hanning)

0.0064 (W∆u)4−16.5(W∆u)2+248.375
(W∆u)4−5(W∆u)2+4 (b. Hamming).

(8.40)
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Other filter functions have been examined. For example, the second term in

Eq. (8.39) for the Bartlett filter is
σ2
M

∆kW
2(1−sinc(W∆u))

(πW∆u)2 . Because (1) their ex-

pressions cannot be factorized as the product of a sinc(W∆u) and a f(W∆u)
as shown in Eq. (8.39), and (2) Hamming and Hanning filters possess the
desirable property of being compact in the k-space domain and having low
sidelobes in the image domain, those filter functions are not included in this
book. The performances of Hanning and Hamming filtering in terms of har-
monic and spectral analysis are given in Appendix 8C.

4a) When u1 6= u2, Eq. (8.39) shows that the degree of the correlation of
x(u1) and x(u2) is characterized by

σ2
M

∆k
Wsinc(W∆u)f(W∆u). (8.41)

Appendix 8B shows that |σ
2
M
∆kWsinc(W∆u)f(W∆u)|monotonically decreases

from 1 to 0 (approaching, but not equalizing) as |∆u| increases from 0 to its
maximum. This finding shows that x(u1) and x(u2) are correlated and the
degree of correlation decreases as the distance between pixels increases. In
the limiting case of |∆u| → ∞, due to (1) lim sinc(W∆u) = 0 and (2)
f(W∆u) = 0, 0.0064 (Hanning, Hamming filter), Eq. (8.39) becomes

lim
∆u→∞

Rx(u1, u2) = µx(u1)µ
∗
x(u2)

, (8.42)

which shows that x(u1) and x(u2) are uncorrelated, and therefore indepen-
dent [Property 8.1]. Thus, pixel intensities of an MR image reconstructed by
filtered FT are SAI, which are also demonstrated by the curves of Eq. (8.41)
in Figures 8.9 and 8.10 of Appendix 8B, for Hanning and Hamming filters,
respectively.

4b) When u1 = u2, due to sinc(0) = 1, Eq. (8.39) gives the variance σ2
x of

x

σ2
x = σ2

M

W

∆k
f(0), (8.43)

where f(0) = 0.375, 0.3974 for Hanning, Hamming filter, respectively.

Remarks on the variances of FT MR image. The variances of pixel intensi-
ties of FT MR images in the four cases of the above proof—Eqs. (8.27), (8.31),
(8.36), and (8.43)—are summarized below.

Case 1): continuous, infinite k-space sampling, x̃(u): σ2
Mδ(0)

Case 2): discrete, infinite k-space sampling, x̂(u): σ2
Mδ(0)

1
∆k

Case 3): discrete, finite k-space sampling, x̄(u): σ2
M

W
∆k

Case 4): filtered, discrete, finite k-space sampling, x(u): σ2
M

W
∆kf(0)

The Continuous Fourier Transform (CFT) is used in the proof. FTs in
Eqs. (8.24), (8.28), (8.32), and (8.37) do not use a scale coefficient 1

N as N -
points Discrete Fourier Transform (DFT) does. Here, N is the number of the
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samples in k-space truncated by a window with width W , which is specified
by (N − 1)∆k < W < N∆k. If this coefficient is applied in Eqs. (8.24),
(8.28), (8.32), and (8.37), the following observations can be obtained. In the
case 1, the variance in Eq. (8.27) should be σ2

x̃ = limN→∞ 1
N2 (σ

2
Mδ(0)) =

σ2
M limN→∞ 1

N ( 1
N δ(0)) = σ2

M limN→∞ 1
N −→ 0.† Similarly, the variance

in Eq. (8.31) of case 2 should be σ2
x̂ = limN→∞ 1

N2 (
σ2
M
∆k δ(0)) =

σ2
M

∆k lim

N→∞ 1
N −→ 0. In case 3, the variance in Eq. (8.36) should be σ2

x̄ = 1
N2 (σ

2
M

W
∆k ).

Let W
∆k ≃ [ W∆k ] + 1 = N ([x] is the integer part of x), we have σ2

x̄ = 1
N σ

2
M,

which is identical to that in the Direct FFT MR image [54–56]. Also, the
variance in Eq. (8.43) of case 4 should be σ2

x = 1
N2 (σ

2
M

W
∆kf(0)) =

1
N σ

2
Mf(0)

(f(0) = 0.375, 0.3974 for Hanning and Hamming filter).
Cases 1 and 2 are hypothetical. In case 3, the variance σ2

x̄ = σ2
M( W∆k )

2

shows the effect of the finite samples in MR data acquisition on the recon-
structed (basic FT) image, which is inevitably linked with the Gibbs ringing
artifact. In case 4, the variance σ2

x = σ2
M( W∆k )

2f(0) shows the impact of filter-
ing (apodization) in MR data acquisition on the reconstructed (filtered FT)
image, which, due to f(0) < 1, reduces the variance caused by reducing Gibbs
ringing artifact. The above discussion shows that (1) CFT and DFT analysis
can provide consistent results, and (2) CFT analysis is simpler than DFT and
may lead to some new important outcomes.

The correlations shown by Eqs. (8.25), (8.29), (8.33), and (8.39) and the
variances shown by Eqs. (8.27), (8.31), (8.36), and (8.43) are in 1-D notation.
Using 2-D notation, the correlations and variances in the above four cases are,
respectively,

Rx̃((u1, v1), (u2, v2)) = µx̃1µ
∗
x̃2

+ σ2
M δ(∆u,∆v),

Rx̂((u1, v1), (u2, v2)) = µx̂1µ
∗
x̂2

+
1

(∆k
)2σ2

M δ(∆u,∆v),

Rx̄((u1, v1), (u2, v2)) = µx̄1µ
∗
x̄2

+ (
W

∆k
)2σ2

M sinc(W∆u,W∆v),

Rx((u1, v1), (u2, v2)) = µx1µ
∗
x2

+ (
W

∆k
)2σ2

Msinc(W∆u,W∆v)f(W∆u,W∆v),

σ2
x̃ = σ2

Mδ(0, 0),

σ2
x̂ = σ2

Mδ(0, 0)
1

(∆k)2
,

σ2
x̄ = σ2

M(
W

∆k
)2,

σ2
x = σ2

M(
W

∆k
)2f(0, 0) . (8.44)

†Here we consider limN→∞
1
N
δ(0) = 1, because 1 =

∫ 1/2N
−1/2N

δ(t)dt ≃ 1
N
δ(0).
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8.3.1.2 The SAI of an MR Image by PR

Proof. (for Filtering by Fourier transform)
The principle of Filtering by Fourier transform in the PR of an MR im-

age is mathematically described by Eqs. (3.146) and (3.147). It is a two-step
approach:

A) Computing the filtered projections in each view θ by

t(u′, θ) = F−1
k {M(k, θ) · 1

∆k
comb(

k

∆k
) · |k| · rect( k

Wk
)}, (8.45)

B) Computing the backprojection over all views by

x(u, v) =

∫ π

0

t(u′, θ)dθ = ∆θ

M−1∑

m=0

t(u′,m∆θ), (8.46)

where ∆k and ∆θ are the radial and angular sampling periods as shown in
Figure 3.12, k = n∆k and θ = m∆θ specify the locations of the samples in
k-space, (u, v) is the coordinate of the pixel center in the image,

u′ = u cos θ + v sin θ (8.47)

is the projection of the vector u~i + v~j onto U ′-axis specified by the view
angle θ, 1

∆kcomb(
k
∆k ) is a comb function (defined in Eq. (8.23)), |k| is the

filter function, and rect( k
Wk

) is a rect function with the width Wk (defined

in Eq. (8.23)). Thus, the SAI of an MR image reconstructed via Filtering
by Fourier transform is proved at two stages: the filtered projection and the
backprojection.

A) The SAI of the filtered projections t(u′, θ). The different combinations of
the four factors on the right side of Eq. (8.45) form different k-space data ac-
quisition schemes. Correspondingly, they generate four versions of the filtered
projections. Their statistics are discussed below.

A-1) The continuous k-space data over the infinity radial extent,M(k, θ),
were used; t̃(u′, θ) is adopted to denote the projection in the view θ

t̃(u′, θ) = F−1
k {M(k, θ)}. (8.48)

Appendix 8D shows that the correlation R
t̃
((u′1, θ1), (u

′
2, θ2)) of t̃(u′1, θ1)

and t̃(u′2, θ2) is given by

R
t̃
((u′1, θ1), (u

′
2, θ2)) = µ

t̃(u′
1,θ1)

µ∗
t̃(u′

2,θ2)
+ σ2

Mδ(u
′
1 − u′2)δ[θ1 − θ2], (8.49)

where µ
t̃(u′,θ)

is the mean of t̃(u′, θ), ∗ denotes the complex conjugate, σ2
M

is the variance ofM(k, θ), and δ(u′1 − u′2) and δ[θ1 − θ2] are the Dirac delta



226 Statistics of Medical Imaging

and Kronecker delta functions, respectively. From the notations of Eq. (8.46),
δ[θ1 − θ2] is equivalent to δ[m1 −m2].

A-2) The discrete k-space data over the infinity radial extent, M(k, θ) ·
1
∆kcomb(

k
∆k ), were used; t̂(u′, θ) is adopted to denote the projection in the

view θ

t̂(u′, θ) = F−1
k {M(k, θ)

1

∆k
comb(

k

∆k
)} = t̃(u′, θ) ⋆ comb(∆k u′), (8.50)

where ⋆ denotes the convolution.
Appendix 8D shows that the correlation R

t̂
((u′1, θ1), (u

′
2, θ2)) of t̂(u′1, θ1)

and t̂(u′2, θ2) is given by

R
t̂
((u′1, θ1), (u

′
2, θ2)) = µ

t̂(u′
1,θ1)

µ∗
t̂(u′

2,θ2)
+
σ2

M

∆k
δ(u′1 − u′2)δ[θ1 − θ2], (8.51)

where µ
t̂(u′,θ)

is the mean of t̂(u′, θ).

A-3) The discrete k-space data over a finite radial extent,M(k, θ) 1
∆kcomb

( k
∆k )rect(

k
Wk

), are used; t̄(u′, θ) is adopted to denote the projection in the
view θ

t̄(u′, θ) = F−1
k {M(k, θ)

1

∆k
comb(

k

∆k
)rect(

k

Wk
)} = t̂(u′, θ) ⋆ Wksinc(Wku

′)).

(8.52)
Appendix 8D shows that the correlation Rt̄((u

′
1, θ1), (u

′
2, θ2)) of t̄(u′1, θ1)

and t̄(u′2, θ2) is given by

Rt̄((u
′
1, θ1), (u

′
2, θ2)) = µt̄(u′

1,θ1)
µ∗
t̄(u′

2,θ2)
+
σ2

M

∆k
Wksinc(Wk(u

′
1− u′2))δ[θ1 − θ2],

(8.53)
where µt̄(u′,θ)

is the mean of t̄(u′, θ) and sinc(Wk(u
′
1−u′2)) is a sinc function.

A-4) The filtered, discrete k-space data over a finite radial extent,M(k, θ)
1
∆kcomb(

k
∆k )|k|rect( k

Wk
), are used; t(u′, θ) is adopted to denote the projection

in the view θ

t(u′, θ) = F−1
k {M(k, θ)

1

∆k
comb(

k

∆k
)|k|rect( k

Wk
)} = t̂(u′, θ) ⋆ φ(Wk u

′),

(8.54)
where

φ(Wku
′) = F−1

k {|k| · rect
(
k

Wk

)
} = W 2

k

2
sinc(Wku

′)− W 2
k

4
sinc2

(
Wku

′

2

)
.

(8.55)
Appendix 8D shows that the correlation Rt((u

′
1, θ1), (u

′
2, θ2)) of t(u′1, θ1)

and t(u′2, θ2) is given by

Rt((u
′
1, θ1), (u

′
2, θ2)) = µt(u′

1,θ1)
µ∗
t(u′

2,θ2)
+
σ2

M

∆k
f(Wk(u

′
1−u′2))δ[θ1−θ2], (8.56)
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where µt(u′,θ) is the mean of t(u′, θ), and

f(Wk(u
′
1 − u′2)) = F−1

k {(|k|rect(
k

Wk
))2}|(u′

1−u′
2)

=
W 3
k

2

(
1

2
sinc(Wk(u

′
1 − u′2))

+
cos(πWk(u

′
1 − u′2)) − sinc(Wk(u

′
1 − u′2))

(πWk(u′1 − u′2))2
)
. (8.57)

The second item on the right side of Eq. (8.56)

σ2
M

∆k
f(Wk(u

′
1 − u′2))δ[θ1 − θ2] (8.58)

is the covariance of t(u′1, θ1) and t(u′2, θ2) and, hence, provides a measure
of the correlation between them. For the filtered projections in the different
views θ1 6= θ2, due to δ[θ1 − θ2] = 0, they are uncorrelated. For the filtered
projections in the same view θ1 = θ2, we have the following.

a) When u′1 6= u′2, Appendix 8D shows that |f(Wk(u
′
1 − u′2))| of Eq. (8.57)

almost monotonically decreases as |u′1−u′2| increases from 0 to its maximum.
This result indicates that t(u′1, θ1) and t(u′2, θ2) are correlated and the de-
gree of the correlation decreases as the distance between them increases. In
the limiting case of |u′1 − u′2| → ∞, due to sinc(Wk(u

′
1 − u′2)) → 0 and

1
(πWk(u′

1−u′
2))

2 → 0, |f(Wk(u
′
1 − u′2))| → 0; thus, Eq. (8.56) becomes

lim
|u′

1−u′
2|→∞

Rt((u
′
1, θ1), (u

′
2, θ2)) = µt(u′

1,θ1)
µ∗
t(u′

2,θ2)
, (8.59)

which implies that t(u′1, θ1) and t(u
′
2, θ2) are uncorrelated.

b) When u′1 = u′2, Eq. (8.58) gives the variance σ
2
t of the filtered projection

t(u′, θ). Appendix 8D shows that

σ2
t = σ2

M

Wk

∆k
(
1

12
W 2
k ). (8.60)

B) SAI of the pixel intensities x(u, v). Appendix 8D shows that after the
backprojection over all views, the correlation Rx((u1, v1), (u2, v2)) of the pixel
intensities x(u1, v1) and x(u2, v2) is given by

Rx((u1, v1), (u2, v2))

= µx(u1,v1)µ
∗
x(u2,v2)

+
σ2

M

∆k

∫
f(Wk∆r cos(θ −∆φ))dθ

= µx(u1,v1)µ
∗
x(u2,v2)

+∆θ
σ2

M

∆k

M−1∑

m=0

f(Wk∆r cos(m∆θ −∆φ)). (8.61)
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where
∆r cos(θ −∆φ) = ∆r cos(m∆θ −∆φ) = u′1 − u′2 , (8.62)

and ∆r and ∆φ are given by

∆r =
√
(u1 − u2)2 + (v1 − v2)2 and ∆φ = tan−1(

v1 − v2
u1 − u2

). (8.63)

Using Eqs. (8.62) and (8.57), f(Wk∆r cos(m∆θ − ∆φ)) of Eq. (8.61) be-
comes

f(Wk∆r cos(m∆θ −∆φ)) =
W 3
k

2

(
1

2
sinc(Wk∆r cos(m∆θ −∆φ)

+
cos(πWk∆r cos(m∆θ −∆φ)) − sinc(Wk∆r cos(m∆θ −∆φ))

(πWk∆r cos(m∆θ −∆φ))2

)
. (8.64)

Eqs. (8.62) and (8.63) show that (u′1 − u′2) is the projection of the distance
∆r (i.e., the vector (u1 − u2)~i + (v1 − v2)~j) onto the U ′-axis (i.e., the view
direction) specified by the view angle m∆θ. Thus, Eq. (8.61) indicates that
the correlationRx((u1, v1), (u2, v2)) between two pixel intensities x(u1, v1) and
x(u2, v2) is determined by the projections ∆r cos(m∆θ−∆φ) of the distance
∆r = ||(u1, v1), (u2, v2)|| on each U ′-axis specified by the view angle m∆θ.

The second item on the right side of Eq. (8.61)

∆θ
σ2

M

∆k

M−1∑

m=0

f(Wk∆r cos(m∆θ −∆φ)) (8.65)

is the covariance of x(u1, v1) and x(u2, v2) and hence provides a measure of
the correlation between them.

a) When (u1, v1) 6= (u2, v2), Appendix 8D shows that excluding a few

points,
∑M−1
m=0 f(Wk ∆r cos(m∆θ−∆φ)) of Eq. (8.65) monotonically decreases

as ∆r increases from 0 to its maximum. This result indicates that x(u1, v1)
and x(u2, v2) are correlated and the degree of the correlation decreases as
the distance between them increases. In the limiting case of ∆r → ∞, due
to sinc(Wk∆r cos(m∆θ −∆φ)) → 0 and 1

(πWk∆r cos(m∆θ−∆φ))2 → 0 for each

m = 1, · · · ,M − 1,
∑M−1

m=0 f(Wk ∆r cos(m∆θ − ∆φ)) → 0; thus, Eq. (8.61)
becomes

lim
∆r→∞

Rx((u1, v1), (u2, v2)) = µx(u1,v1)µ
∗
x(u2,v2)

, (8.66)

which implies that x(u1, v1) and x(u2, v2) are uncorrelated.
b) When (u1, v1) = (u2, v2), Eq. (8.65) gives the variance σ2

x of the pixel
intensity x(u, v). Appendix 8D shows that σ2

x is given by

σ2
x = σ2

M

Wk

∆k
(π

1

12
W 2
k ) =

1

3
σ2

M

Wk

∆k
SWk

, (8.67)

where SWk
= 1

4πW
2
k is the area of a circular region with Wk as its diameter

in k-space of the radial sampling.
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In the radial k-space sampling as shown in Figure 3.12, let Wk

∆k ≃ N be the
number of k-space samples in each view. If N is viewed as a line density, then
Wk

∆kSWk
of Eq. (8.67) can be thought as the total number of k-space samples

in the circular region specified by the |k| filter. Thus, Eq. (8.67) essentially
represents a scaled, total variance of all k-space samples used in the image
reconstruction via Filtering by Fourier transform.

Proof. (for Filtering by Convolution)
The principle of Filtering by Convolution in PR of MR image is described

by Eqs. (3.148) through (3.151). Based on the measured projections, it is a
three-step approach:

a) Computing the convolution t(u′, θ) in each view θ by

t(u′, θ) = p(u′, θ) ⋆ q(u′) , (8.68)

where u′ = u cos θ + v sin θ (Eq. (8.47)), p(u′, θ) is the measured projection
(Sections 3.9.3.2 and 7.6.3), q(u′) is a properly selected convolution function,
and ⋆ denotes the convolution.

b) Computing the interpolation sθ(u, v) in each view θ by

sθ(u, v) = t(u′, θ) ⋆ ϕ(u′), (8.69)

where ϕ(u′) is a properly selected interpolation function.
c) Computing the backprojection x(u, v) over all views by

x(u, v) =

∫ π

m=0

sθ(u, v)dθ = ∆θ

M−1∑

0

sm(u, v), (8.70)

where M∆θ = π.
In the computation, θ and u are discretized: θ = m∆θ (m = 0, 1, · · · ,M−1),

u′ = u cos(m∆θ)+v sin(m∆θ) and is approximated by n∆p, ∆p is the spacing
between two adjacent measured projections p(n∆p,m∆θ).

Unlike the progressive proof of SAI for Filtering by Fourier transform, the
proof of SAI for Filtering by Convolution is probabilistical through the above
three steps.

1) Let x(ui, vi) be the intensity of the pixel at (ui, vi) in the image. The
correlation Rx((u1, v1), (u2, v2)) between x(u1, v1) and x(u2, v2) is given by

Rx((u1, v1), (u2, v2))

= E[x(u1, v1)x
∗(u2, v2)]

= E[(

M−1∑

m1=0

sm1(u1, v1))(

M−1∑

m2=0

s∗m2
(u2, v2))]

=

M−1∑

m=0

E[sm(u1, v1)s
∗
m(u2, v2)]

+

M−1∑

m1=0

M−1∑

m2=0(6=m1)

E[sm1(u1, v1)]E[s∗m2
(u2, v2)]. (8.71)
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This is because all measured projections p(n∆p,m∆θ) are independent (Sec-
tion 7.6.3, Property 7.8); therefore, in different views m∆θ, the resultant con-
volved projections t(n∆p,m∆θ) in each view, and hence the interpolated data
sm(ui, vi) in each view, are uncorrelated.

When the nearest-neighbor interpolation (Section 3.10.2.1) is used, the in-
terpolated data in the m-th view is given by

sm(ui, vi) = t(nmi∆p,m∆θ), (8.72)

where nmi = Arg minn{|u′i−n∆p|} (u′i = ui cos(m∆θ)+vi sin(m∆θ)). Thus,
the first term on the right side of Eq. (8.71) becomes

M−1∑

m=0

E[sm(u1, v1)s
∗
m(u2, v2)]

=

M−1∑

m=0

E[t(nm1∆p,m∆θ)t∗(nm2∆p,m∆θ)]. (8.73)

Because the convolution function q is bandlimited: q(n) ≃ 0 (|n| > n0), the
convolved projections t(n∆p,m∆θ) are determined by some (not all) mea-
sured projections p(l∆p,m∆θ) (n − n0 ≤ l ≤ n + n0) in each view (m∆θ).
Thus, when two pixels (u1, v1) and (u2, v2) are spatially separated sufficiently
such that two intervals [nm1 − n0, nm1 + n0] and [nm2 − n0, nm2 + n0] do not
overlap, that is,

|nm2 − nm1 | > 2n0, (8.74)

then Eq. (8.73) becomes

M−1∑

m=0

E[sm(u1, v1)s
∗
m(u2, v2)]

=

M−1∑

m=0

E[t(nm1∆p,m∆θ)]E[t∗(nm2∆p,m∆θ)], (8.75)

This is because under the condition (8.74), the measured projections con-
tributed to t(nm1∆p,m∆θ) and those contributed to t(nm2∆p,m∆θ) are no
overlap and therefore become uncorrelated. Thus, by substituting Eq. (8.75)
into Eq. (8.71), we have

Rx((u1, v1), (u2, v2)) = E[x(u1, v1)]E[x∗(u2, v2)]. (8.76)

2) Due to the use of nearest-neighbor interpolation,

u′i = ui cos(m∆θ) + vi sin(m∆θ) ≃ nmi∆p (i = 1, 2), (8.77)

we have
(nm2 − nm1)∆p = ∆r cos(m∆θ −∆φ), (8.78)
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where

∆r =
√
(u1 − u2)2 + (v1 − v2)2 and ∆φ = tan−1

(
v1 − v2
u1 − u2

)
. (8.79)

Thus, through Eqs. (8.74), (8.78), and (8.76), we have

if |∆r cos(m∆θ −∆φ)| > 2n0∆p,

then Rx((u1, v1), (u2, v2)) = E[x(u1, v1)]E[x∗(u2, v2)].
(8.80)

3) For some values of angles (m∆θ−∆φ), |∆r cos(m∆θ−∆φ)| may not be
greater than 2n0∆p. Because (ui, vi) is arbitrary in the image andm uniformly

takes a value on [0,M − 1], it is reasonable to assume that (m∆θ −∆φ)
△
= ϑ

is uniformly distributed on [0, 2π].

p(ϑ) =





1
2π [0, 2π]

0 elsewhere.
(8.81)

Let γ0 be the smallest ϑ in [0, π2 ], that is, 0 < γ0 ≤ ϑ ≤ π
2 such that

∆r cosϑ < 2n0∆p. In order to limit the probability of the occurrence of the
event ∆r cosϑ < 2n0∆p (i.e., the probability for two pixel intensities to be
correlated) to be a small value (1 − P0) (say, 0.05) for 0 < ϑ < 2π, we have
to make

P (γ0 ≤ ϑ ≤
π

2
) =

∫ π/2

γ0

p(ϑ)dϑ =
1

2π
(
π

2
− γ0) <

1

4
(1− P0), (8.82)

which leads to γ0 ≥ π
2P0. Thus, Eq. (8.80) can be stated as

if ∆r > 2n0∆p
cos(π

2 P0)

△
= dr,

then Rx((u1, v1), (u2, v2)) = E[x(u1, v1)]E[x∗(u2, v2)],

(8.83)

with probability greater than P0. It is important to note that P0 is the proba-
bility for two pixel intensities to be uncorrelated.

Eq. (8.83) implies that for the fixed parameters (∆p and n0), when the
distance dr (hence ∆r) becomes larger, the probability P0 will be larger,
that is, pixel intensities will be more likely to be uncorrelated and hence
independent. In the limiting case of dr → ∞, P0 must approach 1, that is,
pixel intensities approach statistically independent with P0 = 1 when the
distance between pixels approaches infinity.

Eq. (8.83) can be rewritten as (1 − P0) = 2
π sin−1(2n0∆p

dr ). Figure 8.4
shows the curve of (1 − P0) versus dr, that is, the probability for two pixel
intensities to be correlated versus the distance between these two pixels. It
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FIGURE 8.3

The SAI in a PR MR image. For given parameters n0 and ∆p, the probabil-
ity for two pixel intensities to be correlated, 1 − P0 (the vertical axis), is a
monotonically decreasing function of the distance between the pixels, dr (the
horizontal axis): (1 − P0) =

2
π sin−1(2n0∆p

dr ).

demonstrates that (a) when dr decreases and equals 2n0∆p
‡, (1 − P0) = 1;

(b) when dr increases, (1 − P0) monotonically decreases; and (c) when dr
approaches infinity, (1− P0) approaches zero, that is, P0 −→ 1.

8.3.2 Exponential Correlation Coefficient

Property 8.3 The magnitude of the correlation coefficient of pixel intensities
of the MR image decreases exponentially with the distance between pixels.
Proof.

This property is proved in the following six (6) steps.
1) Property 8.2 (SAI) implicitly shows that the correlations of pixel in-

tensities of the MR image are spatially shift invariant. This is because the
correlations of pixel intensities are determined only by the distances between
pixels, not by their locations. Property 8.1 (Gaussianity) shows that the pixel
intensities of an MR image have Gaussian distributions. Thus, the pixel inten-
sities of an MR image form a spatial, stationary (in the both wide and strict
sense), Gaussian random process (also called a random field).

‡In order to obtain accurate interpolated data sm(u, v) in each view (m) through the
nearest-neighbor interpolation, the spacing ∆p between two adjacent convolved projections
t(n∆p,m∆θ) in each view (m∆θ) must be sufficiently small (see Eq. (8.72)). Assume it be
a one-tenth pixel size. no is the bandwidth of the convolution function q. For the parallel
projection, no ≃ 2 [18, 49]. Thus, 2n0∆p is about a fraction of the pixel size and is called
the correlation distance.
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Property 8.2 (SAI) explicitly indicates the degree of correlations of pixel
intensities of MR image decreases as the distance between pixels increases.
This property leads to another property of MR image, Markovianity, which
implies that the MR image is embedded in a Markov random field (MRF)
with the proper neighborhood system. Markovianity is proved based on SAI
and is given in Section 9.3.1. Therefore, pixel intensities of MR image form a
spatial, stationary, Gaussian, Markov random process (field).

2) Let xi1 , · · · , xin represent the intensities of n pixels at i1, · · · , in along a
straight line in an MR image§. By defining

yi =
xi − µxi

σxi

(i = i1, · · · , in), (8.84)

where µxi and σ2
xi

are the mean and variance of xi, and letting Ry(i, j) and
rx(i, j) be the correlation of y and the correlation coefficient of x, respectively,
we have

Ry(i, j) = E[yiy
∗
j ] = E[

(xi − µxi)(xj − µxj )
∗

σxiσxj

] = rx(i, j). (8.85)

Eqs. (8.84) and (8.85) show that yi is the normalized xi and the correlation
Ry(i, j) of y is the correlation coefficient rx(i, j) of x. From 1). It is easy
to verify that {yi1 , · · · , yin} is also a spatial, stationary, Gaussian, Markov
random process, but with zero mean.

3) Due to the Gaussianity of yi and E[yi] = 0, the nonlinear and linear m.s.
estimations of yin in terms of yi1 , · · ·, yin−1 result in the identical solution [77].
That is

E[yin |yin−1 , · · · , yi1 ] =
in−1∑

i=i1

aiyi, (8.86)

where coefficients ai (i = i1, · · · , in−1) are determined by the orthogonality
principle [77]

E[(yin −
in−1∑

i=i1

aiyi)yj ] = 0 (j = i1, · · · , in−1). (8.87)

4) Because {yi1 , · · · , yin} is Markov process with the proper order neighbor-
hood systems,¶ say the k-th order, Eqs. (8.86) and (8.87) can be expressed
as

E[yin |yin−1 , · · · , yi1 ] = E[yin |yin−1 , · · · , xin−k
] =

in−1∑

i=in−k

aiyi, (8.88)

§This straight line can be in different orientations in the image: horizontal, vertical, tilted,
and passes through the centers of pixels.
¶Markovianity of the MR image and its proof are given in Chapter 9.
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and

E[(yin −
in−1∑

i=in−k

aiyi)yj ] = 0 (j = in−k, · · · , in−1). (8.89)

respectively. Using the vector and matrix forms, Eq. (8.89) becomes

ℜyA = Ry, (8.90)

where

ℜy =




Ry(in−k, in−k) Ry(in−k+1, in−k) · · · · · ·
Ry(in−k, in−k+1) Ry(in−k+1, in−k+1) · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
Ry(in−k, in−2) Ry(in−k+1, in−2) · · · · · ·
Ry(in−k, in−1) Ry(in−k+1, in−1) · · · · · ·

· · · · · · Ry(in−2, in−k) Ry(in−1, in−k)
· · · · · · Ry(in−2, in−k+1) Ry(in−1, in−k+1)
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · Ry(in−2, in−2) Ry(in−1, in−2)
· · · · · · Ry(in−2, in−1) Ry(in−1, in−1)



, (8.91)

A =




ain−k

ain−k+1

· · ·
· · ·
ain−2

ain−1



, (8.92)

Ry =




Ry(in, in−k)
Ry(in, in−k+1)
· · ·
· · ·
Ry(in, in−2)
Ry(in, in−1)



. (8.93)

5) For every in > in−1 > · · · · · · > i2 > i1, let in− in−1 = si1 , in−1− in−2 =
si2 , · · ·, in−k+2− in−k+1 = sik−1

, in−k+1− in−k = sik . Due to the stationarity
of {yi1 , · · · , yin}, ℜy and Ry can be represented as

ℜy =




Ry(0) Ry(sik) · · · · · ·
Ry(sik) Ry(0) · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
Ry(si3 + · · ·+ sik) Ry(si3 + · · ·+ sik−1

) · · · · · ·
Ry(si2 + si3 + · · ·+ sik) Ry(si2 + si3 + · · ·+ sik−1

) · · · · · ·
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· · · · · · Ry(si3 + · · ·+ sik−1
+ sik) Ry(si2 + · · ·+ sik−1

+ sik)
· · · · · · Ry(si3 + · · ·+ sik−1

) Ry(si2 + · · ·+ sik−1
)

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · Ry(0) Ry(si2)
· · · · · · Ry(si2) Ry(0)



, (8.94)

and

Ry =




Ry(si1 + si2 + · · ·+ sik−1
+ sik)

Ry(si1 + si2 + · · ·+ sik−1
)

· · ·
· · ·
Ry(si1 + si2)
Ry(si1 )



, (8.95)

respectively. It is easy to verify that ℜT
y
= ℜy and Ry(0) = V ar[yi] = 1.

6) By substituting ℜy Eq. (8.94) and Ry Eq. (8.95) into Eq. (8.90) and using
the mathematical induction method, we obtain the solution for the coefficient
vector A

A =




ain−k

ain−k+1

· · ·
· · ·
ain−2

ain−1




=




0
0
· · ·
· · ·
0
ec·si1



, (8.96)

where c is a constant.
By substituting Eqs. (8.94) through (8.96) into Eq. (8.90), we obtain a

meaningful insight into this solution. That is;



Ry(si2 + si3 + · · ·+ sik−1
+ sik)

Ry(si2 + si3 + · · ·+ sik−1
)

· · ·
· · ·
Ry(si2 )
1



· ec·si1 =




Ry(si1 + si2 + · · ·+ sik−1
+ sik)

Ry(si1 + si2 + · · ·+ sik−1
)

· · ·
· · ·
Ry(si1 + si2)
Ry(si1)



. (8.97)

Because |Ry(si1)| ≤ 1 and si1 > 0, c must be negative. Thus, letting c = −α
(α > 0), we have

Ry(s) = e−α·s. (8.98)
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Remarks on ECC. (i) In general, the coefficient vector A of Eq. (8.96) should
be A = (0, 0, · · · · · · , 0, bc·si1 )T (b > 0, c < 0). T denotes the transpose.
Because bc·si1 = ec·si1 ln b and ln b can be merged into the constant c, we use
ec·si1 . Because −1 ≤ Ry(si1) ≤ 1, we should have Ry(si1) = ±ec·si1 , that is,
|Ry(si1)| = ec·si1 . (ii) In the proof of ECC, the single index i or j are used
to represent the location of the pixel x, s = ||i, j|| is used to represent the
distance between two pixels along a straight line with any orientations in the
image. Generally, let (i1, j1) and (i2, j2) be the locations of two pixels and
m = i2 − i1, n = j2 − j1, we have s = s(m,n) =

√
m2 + n2. (iii) For a given

coordinate system, i, j, m, n can be either positive or negative. However,
s(m,n) is always positive and symmetric with respect to either m, or n, or
both of them. (iv) Eqs. (8.149) and (8.154) of Appendix 8B show that the
correlation coefficient is determined by the parameters in data acquisition and
image reconstruction. Thus, the constant α is determined by these parameters.
Becausem and n are the numbers of pixels, α is dimensionalityless. Thus, from
Eq. (8.98), we have

|ry(m,n)| = e−α
√
m2+n2

(α > 0). (8.99)

Experimental results of ECC. For a 2-D random process x, the corre-
lation coefficient is defined by [21, 22, 77]

rx(k, l) =
E[(x(i, j) − µx(i,j))(x(i + k, j + l)− µx(i+k,j+l))∗]

σx(i,j)σx(i+k,j+l)
, (8.100)

where µx and σx are the mean and the standard deviation of x. rx(k, l) is
estimated by [21, 22]

r̂x(k, l) =
1

NiNj

Ni−k∑

i=1

Nj−l∑

j=1

(x(i, j)− µ̂x(i,j))(x(i + k, j + l)− µ̂x(i+k,j+l))∗
σ̂x(i,j)σ̂x(i+k,j+l)

,

(8.101)
where µ̂x, σ̂

2
x, and r̂x(k, l) are the sample mean, sample variance, and sample

correlation coefficient of x, and Ni and Nj are the numbers of the samples of
x at i and j directions. For a real-valued MR image, Eq. (8.101) is simplified
as

r̂x(k, l) =
1

Nß̄

∑

(i,j),(i+k,j+l)∈ß̄

(x(i, j)− µ̂x(i,j))(x(i + k, j + l)− µ̂x(i+k,j+l))
σ̂x(i,j)σ̂x(i+k,j+l)

,

(8.102)
where ß̄ denotes the nonbackground of the image, Nß̄ is the number of non-
background pixels in the image, and

µ̂x(i,j) =
1
NR

∑
(i,j)∈R x(i, j),

σ̂2
x(i,j) =

1
NR

∑
(i,j)∈R(x(i, j) − µ̂x(i,j))2,

(8.103)
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where R is an image region that the pixel (i, j) belongs to, NR is the number
of pixels in R, ß̄ = ∪R, and Nß̄ =

∑
NR.

An example is shown in Figure 8.4 to demonstrate the ECC of an MR image.
A gray matter (GM) regional MR image (Nß̄ = 7806, µ̂x = 152.24, σ̂2

x = 65.30)
is shown in Figure 8.4a. A 2-D (128×128) surface plot of its sample correlation
coefficients |r̂x(k, l)| calculated using Eq. (8.102) is shown in Figure 8.4b.
Because (i) rx(k, l) is symmetric over k and/or l, and (ii) r̂x(k, l) ≃ 0 (k > 128
and/or l > 128), we only display r̂x(k, l) for 0 ≤ k, l < 128. In order to
demonstrate the details of the decreasing pattern of |rx(k, l)|, Figure 8.4c
shows a 2-D (16× 16) surface plot of |r̂x(k, l)| for 0 ≤ k, l < 16. On the basis
of this plot, the contours (from the origin (0, 0) outward) give the regions
of |r̂x(k, l)| < 0.8, 0.6, 0.4, 0.2, subsequently. Figure 8.4.d shows a curve
of |r̂x(0, l)| (0 ≤ l < 128), that is, a line of profile. In order to demonstrate
the details of the decreasing pattern of |r̂x(0, l)|, Figure 8.4e shows its first 16
values (0 ≤ l < 16) on the solid line, and also an exponential function e−0.8·l in
the dash line. The plots and curves in Figures 8.4b to 8.4e demonstrate ECC.
The absolute value of correlation coefficients |r̂x(k, l)| damp out very quickly,
become very smaller after 10 lags, and are very well fitted by an exponential
function.

The surface plots and the curves in Figure 8.5 and Figure 8.6 demonstrate
ECC for the regional MR images of white matter (WM) and the cerebrospinal
fluid (CSF), respectively. In Figure 8.5, Nß̄ = 6595, µ̂x = 132.35, σ̂2

x = 63.43,
and the fitting exponential function is e−1.0·l. In Figure 8.6, Nß̄ = 2912,
µ̂x = 211.45, σ̂2

x = 464.93, and the fitting exponential function is e−0.9·l.
The difference between the curve of the sample correlation coefficient and

the fitting exponential function in Figure 8.6e (CSF) is greater than those
in Figure 8.4e (GM) and Figure 8.5e (WM), this may be caused by (i) the
lesser number of samples in the estimation: 2912 pixels (CSF) versus 7806
(GM) and 6595 (WM), and (ii) the larger variance of samples: 464.93 (CSF)
versus 65.30 (GM) and 63.43 (WM). It is worth noting that the contours of
the equal values of the sample correlation coefficient in Figure 8.5c (WM) are
more “directional” than those in Figure 8.4c (GM) and Figure 8.6c (CSF).
The reason for this may be that GM and CSF are more homogeneous than
WM, which may include white tracks and some white lesions, for example,
multiple sclerosis as in this example. However, in all these three cases (GM,
WM, and CSF), the exponential fittings are quite good. Figures 8.4 through
8.6 demonstrate that the theoretical and experimental results are in good
agreement.

Remarks on SAI and ECC. Although both SAI and ECC characterize the
spatial, statistical relationship of pixel intensities of an MR image, some dif-
ferences between them are worth discussing. Based on the statistics of k-space
samples (Property 7.7), SAI is derived using the Gaussianity of pixel inten-
sities only (Property 8.1). It shows that the degree of correlation of pixel
intensities monotonically decreases as the distance between pixels increases.
It can be seen from Figures 8.10 through 8.11. However, this monotonically
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FIGURE 8.4

ECC of MR image: (a) a regional gray matter (GM) image, (b) 2-D plot of
|r̂x(k, l)| (0 ≤ k, l ≤ 128), (c) 2-D plot of |r̂x(k, l)| (0 ≤ k, l ≤ 16), (d) 1-D
curve of |r̂x(0, l)| (0 ≤ l < 128), (e) 1-D curves of |r̂x(0, l)| (0 ≤ l < 16) (the
solid line) and e−0.8·l (the dash line).
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FIGURE 8.5

ECC of MR image: (a) a regional white matter (WM) image, (b) 2-D plot of
|r̂x(k, l)| (0 ≤ k, l ≤ 128), (c) 2-D plot of |r̂x(k, l)| (0 ≤ k, l ≤ 16), (d) 1-D
curve of |r̂x(0, l)| (0 ≤ l < 128), (e) 1-D curves of |r̂x(0, l)| (0 ≤ l < 16) (the
solid line) and e−1.0·l (the dash line).
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FIGURE 8.6

ECC of MR image: (a) regional cerebrospinal fluid (CSF) image, (b) 2-D plot
of |r̂x(k, l)| (0 ≤ k, l ≤ 128), (c) 2-D plot of |r̂x(k, l)| (0 ≤ k, l ≤ 16), (d) 1-D
curve of |r̂x(0, l)| (0 ≤ l < 128), (e) 1-D curves of |r̂x(0, l)| (0 ≤ l < 16) (the
solid line) and e−0.9·l (the dash line).
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decreasing pattern is exponential has not been assessed.
As shown in the proof, ECC is derived using Gaussianity (Property 8.1),

SAI (Property 8.2, which further leads to Stationarity, Property 8.4), and the
Markovianity of an MR image (Property 9.2). That is, more constraints are
imposed. As a result, the correlation a coefficient of pixel intensities exponen-
tially decreases with the distance between pixels. This theoretically derived
conclusion has been verified by two experimental approaches. The first one
directly estimates correlation coefficients using real MR images; the computed
sample correlation coefficients are well fitted by exponential functions, which
are shown in Figures 8.4 through 8.6. The second approach is to use large
amounts of real k-space data to build (by observation) a model for the spec-
tral density function (sdf) and then derive an autocorrelation function (acf)
by FT of sdf, which is an exponential function [23]. More details on this second
approach are shown in Property 8.6 and its discussion.

8.4 Statistics of the Intensities of a Group of Pixels

By a commonly accepted concept, a region refers to a group of pixels that are
connected to each other and their intensities have the same mean and the same
variance. An image region is a union of these regions, which may be or not
be adjacent to each other. An MR image appears piecewise contiguous. This
scenario suggests that each image region may possess some unique statistical
properties. This section proves that pixel intensities in each image region form
a spatial, stationary and ergodic random process, and hence satisfy ergodic
theorems, and then derives the autocorrelation function (acf) and spectral
density function (sdf) of pixel intensities in each image region.

8.4.1 Stationarity

A definition of the weak stationary random process is given in [24]: Let
[Xt; , t ∈ I] be a random process (continuous or discrete time). The random
process is said to be weakly stationary (or wide-sense stationary or stationary
in the weak (or wide) sense) if the mean

E[Xt] = E[X ] ; all t ∈ I,

that is, the left-hand side does not depend on t, and the correlation

RX(t, t+ τ) = RX(τ) ; all t, τ : t, t+ τ ∈ I,

that is, the left-hand side does not depend on t. Thus, we have

Property 8.4a Pixel intensities in an image region of an MR image form a
spatial, stationary random process in the wide sense.
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Proof.
By the concept of the image region, pixel intensities in an image region have

the same mean and the same variance, which are constant. From SAI Property
8.2, the correlation of pixel intensities, Rx((i1, j1), (i2, j2)), only depends on
the distance between two pixels in the image; that is, it does not depend
on their spatial locations in the image. Thus, pixel intensities in each image
region form a spatial, stationary random process in the wide sense.

A precise definition of the strict stationary random process is also given
in [24]. Its simple version can be stated as: a random process [Xt; , t ∈ I] is
said to be strict stationary if the joint cdfs for all possible finite selections of
random variables in the random process are unchanged by time shift. Thus,
we have

Property 8.4b Pixel intensities in an image region of an MR image form a
spatial, stationary random process in the strict sense.
Proof.

Gaussianity (Property 8.1) shows that pixel intensities in an image region
of an MR image form a Gaussian random process with a constant mean and
variance. Property 8.4a shows that this random process is weak stationary;
that is, the correlations of pixel intensities are unchanged by (pixel) location
shift. These parameters (the mean and the correlation (via the variance))
completely describe all joint pdfs and hence cdfs of the Gaussian process.
Thus, the resulting joint cdfs are unchanged by (pixel) location shift. There-
fore, pixel intensities in each image region of the MR image form a spatial,
stationary random process in the strict sense.

Remarks on Stationarity. An MR image is a piecewise stationary random
field.

8.4.2 Ergodicity

Section 7.5.2 indicates that (i) MR image reconstruction is a transform from
a set of M × N random variables (k-space samples) to another set of I × J
random variables (pixel intensities), and (ii) these I×J random variables form
a random process and the resultant image is a (one) realization of this random
process. Image processing and analysis techniques often require estimates of
some parameters of this random process (e.g., the mean, variance, etc.) from
the given image. Thus, it is necessary to assess if the spatial averages of pixel
intensities (e.g., the sample mean, the sample variance, etc.) over a spatial
extent of the image (the one realization of the underlying random process)
converge to their corresponding ensemble averages, which normally require
many realizations of this random process, that is, if these spatial averages
satisfy ergodic theorems.

There are several convergences, for example, (i) in the mean square, (l.i.m.),
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(ii) with probability 1 (a.s. - the strong law of large number), (iii) with prob-
ability (the weak law of large number), and (iv) in the distribution. Based
on the types of convergence, several mean ergodic theorems have been proved
under the different conditions and with various applications [24].

However, an ergodic process is not the same as a process that satisfies an
ergodic theorem. A discrete random process [Xn; , n ∈ I] is said to satisfy an
ergodic theorem if there exists a random variable X̂ such that in some sense

lim
n→∞

1

n

n∑

i=1

Xi = X̂.

The concept of ergodicity has a precise definition for random process applica-
tion. One such definition is given in [24]: A random process is said to be ergodic
if for any invariant event, F , either m(F ) = 0 or m(F ) = 1 (here m is the
process distribution). Thus, if an event is “closed” under time shift, then it
must have all the probability or none of it. Because ergodicity is a sufficient
condition of the well-known Birkhoff-Khinchin ergodic theorem [24], we first
prove that pixels intensities in an image region of MR image form an ergodic
process, and then prove that this process satisfies an ergodic theorem.

Property 8.5a Pixel intensities in an image region of MR image form an
ergodic process.
Proof.

Stationarity (Property 8.4b) shows that pixel intensities in an image re-
gion of an MR image form a stationary random process. SAI (Property 8.2)
shows that this process is spatially asymptotically independent. A stationary,
asymptotically independent random process is ergodic [24].

Property 8.5b Pixel intensities in an image region of an MR image satisfy
ergodic theorem, at least with probability 1.
Proof.

Because the random process formed by pixel intensities in an image region
of an MR image is stationary (Property 8.4b) and ergodic (Property 8.5a), this
process satisfies Birkhoff-Khinchin ergodic theorems [24]. That is, all spatial
averages converge to the corresponding ensemble averages of the process, at
least with probability 1.

Remarks on ergodicity. An MR image is a piecewise ergodic random field.

8.4.3 Autocorrelaton and Spectral Density

Property 8.6 The autocorrelation function (acf) of pixel intensities in an
image region is

γm,n = e−α
√
m2+n2

, (8.104)
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where α is a dimensionalityless constant given in Property 8.3. The spectral
density function (sdf) of pixel intensities in an image region is

pk,l =
α

(2π)2
(k2 + l2 + (

α

2π
)2)−

3
2 . (8.105)

Proof.
Let γm,n = rx(m,n); here |rx(m,n)| = e−α

√
m2+n2

is given by Eq. (8.99).
It is easy to verify that γm,n possesses the following properties:





γ0,0 = 1

γ∞,n = γm,∞ = γ∞,∞ = 0

|γm,n| ≤ 1.

(8.106)

Thus, for the pixels in an image region that form a stationary random process
(Property 8.4), γm,n can serve as the acf of this stationary random process
[21, 25].

The sdf of a stationary random process is the Fourier transform of its acf
[21, 25, 77]. Let pk,l be this sdf; then it is

pk,l = F2{γm,n} =
∫ ∞

−∞

∫ ∞

−∞
γm,ne

−i2π(km+ln)dmdn, (8.107)

where F2 denotes the 2-D Fourier transform, and k, l, m, n are temporally
treated as the continuous variables. Using the polar coordinates (r, θ) and
(ρ, φ) 



m = r cos θ

n = r sin θ
and




k = ρ cosφ

l = ρ sinφ,
(8.108)

and note that γm,n and pk,l are circularly symmetric around the origin, γm,n
and pk,l can be rewritten as

γm,n = γ√m2+n2 = γr and pk,l = p√k2+l2 = pρ. (8.109)

Substituting Eq. (8.109) into Eq. (8.107), we have

pρ =

∫ ∞

0

rγr

(∫ 2π

0

e−i2πρr cos(θ−φ)dθ

)
dr. (8.110)

The inner integral is the Bessel function of the first kind of zero order, that
is, ∫ 2π

0

e−i2πρr cos(θ−φ)dθ = 2πJ0(2πρr) , (8.111)

thus, Eq. (8.110) becomes

pρ = 2π

∫ ∞

0

rγrJ0(2πρr)dr. (8.112)
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The relation between pρ and γr in Eq. (8.112) is known as the zero-order
Hankel transform [1, 16, 26].

Because r2 = m2 + n2, Eq. (8.104) can be written as

γr = e−αr (r ≥ 0). (8.113)

Substituting Eq. (8.113) into Eq. (8.112), we have [1, 16, 26]

pρ = 2π

∫ ∞

0

re−αrJ0(2πρr)dr =
1

2π
(
α

2π
)(ρ2 + (

α

2π
)2)−

3
2 . (8.114)

Because ρ2 = k2 + l2, Eq. (8.105) is proved.

An Experimental verification of Property 8.6. Under the four as-
sumptions ((a)–(d)) on MR k-space data and the two assumptions ((e) and
(f)) on MR image:

(a) The signal distribution must be Gaussian (with zero mean),
(b) The noise distribution must be Gaussian (white),
(c) The noise must be additive and uncorrelated to the signal,
(d) The data samples (signal + noise) must be mutually independent,
(e) The image (the Fourier transform of the data) must be stationary,
(f) The images must be ergodic,

and based on the observations of a large number of real experimental MR
images, [23] shows a model for the spectral density function of MR image. In
the k-space domain, this model is

Ps(ku, kv) = c · (k2u + k2v + (
ǫ

2π
)2)−3/2, (8.115)

where ps(ku, kv) is an ensemble average signal power at position (ku, kv), ǫ
is a parameter depending on the texture of the experimental object, and the
coefficient c is given by

c = CNR2 ǫn

2(2π)2
pn, (8.116)

where pn is the average power of the noise, n is the number of pixels in the
image, and CNR is the contrast-to-noise ratio of the image defined by

CNR2 =

∑
i,j(xi,j − x̄)2
(n− 1)σ2

n

− 1 ≃
∫ ∫

ps(ku, kv)dkudkv
npn/2

, (8.117)

where x̄ is the sample mean of the image and σ2
n is the variance of the real

(or the imaginary) part of the noise. From Eq. (8.115), [23] shows that auto-
correlation function of MR image should be

ρm,n = e−
ǫ

res

√
m2+n2

, (8.118)

where res denotes the resolution of the image.
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By directly comparing Eq. (8.115) with (8.105), Eq. (8.118) with (8.104), we
find that they are almost identical. Eq. (8.115) and Eq. (8.105) show α = ǫ.
With α = ǫ, Eq. (8.118) and Eq. (8.104) only differ by a scale 1

res . [23]
shows that res

ǫ represents the average size of the distinct details of objects in
the image; ǫ is about 25, a typical value for MR images. ǫ is dimensionless.
Property 8.6 shows that α is also a dimensionless constant, determined by the
parameters in data acquisition and image reconstruction algorithms.

Eqs. (8.116) and (8.117) show c = (CNR2 npn
2 ) ǫ

(2π)2 = (
∫∫

ps(ku, kv)

dkudkv)
ǫ

(2π)2 . Because the integration of a signal spectrum is over the en-

tire k-space,
∫ ∫

ps(ku, kv)dkudkv is a constant for a given MR image. Let it
be denoted by Pk. We have c = Pk

ǫ
(2π)2 . In Eq. (8.105), the coefficient is α

(2π)2 .

Thus, Eq. (8.115) and Eq. (8.105) only differ by a scale Pk.
We have theoretically derived a formula Eq. (8.104) for the acf in the image

domain and further derived a formula Eq. (8.105) for the sdf in the spectrum
domain. [23] has experimentally formed a formula Eq. (8.115) for the sdf
and further given a formula Eq. (8.118) for the acf. Two completely different
approaches produce near-identical results.

Remarks on sdf. The experimental approach of [23] encountered a problem
as it noted “For one particular detail, Eq. (8.115) (i.e., Eq. (11) in [23]) does
not fit the measurements: in the case of the modulus images, the power of the
central point is much larger than predicted by Eq. (8.115).” Therefore, “The
aim is to determine a value for c which will make the modeled Ps as close as
possible to the actual spectral power Ps,act for all data points except for the
central point where ku = kv = 0.” The following explanation may reveal the
underlying reason for this problem.

In our approach, the correlation coefficient of pixel intensities, rx(m,n), is
used as the acf that possesses the properties given by Eq. (8.106) [21, 22]. In
the approach of [23], the correlation of pixel intensities, Rx(m,n)

‖, is used as
the acf [27, 43, 76]. For a stationary random process x, Rx(m,n) and rx(m,n)
are related by

Rx(m,n) = |µx|2 + σ2
x · rx(m,n), (8.119)

where µx and σ2
x are the mean and variance of this process.

If µx = 0, then Rx(m,n) = σ2
x · rx(m,n), which leads to

F2{Rx(m,n)} = σ2
x · F2{rx(m,n)}. (8.120)

F2{Rx(m,n)} and F2{rx(m,n)} give Eq. (8.115) and Eq. (8.105), respectively,
which are almost identical and only different by a scale of σ2

x.
If µx 6= 0, then

F2{Rx(m,n)} = F2{|µx|2}+ σ2
x · F2{ry(m,n)}. (8.121)

‖In this case, acf and sdf are related by the Wiener-Khinchin theorem and can be computed
by Image-FFT2 [NIH Image], a public domain image processing and analysis software pack-
age.
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F2{|µx|2} = |µx|2δ(0, 0) is the spectrum at the single point ku = kv = 0,
where the Delta function δ(0, 0) is not theoretically defined. However, for a
given MR image, the numerical calculation of the spectrum using its k-space
data can generate a value for ku = kv = 0 that is very large. For all ku and
kv other than ku = kv = 0, F2{Rx(m,n)} = σ2

x · F2{rx(m,n)}, which is the
same as that in the case of µx = 0. Thus, the problem reported in [23] is not
surprising. It is caused by using Rx(m,n), not by rx(m,n).

8.5 Discussion and Remarks

8.5.1 Discussion

Although six statistical properties of an MR image are described in a natural
order of “a single pixel =⇒ any two pixels =⇒ a group of pixels,” the proofs
of these properties as shown in this chapter are somewhat interlaced, and is
illustrated in Figure 8.7.

The Gaussianity of the pixel intensity of an MR image was addressed in
complete fashion: (i) pdfs and the moments of the complex-valued pixel in-
tensity, its real and imaginary parts, its magnitude and phase components,
and (ii) the Gaussian approximation of pdfs of the magnitude and phase have
been proved.

SAI provides a qualitative measure of the statistical relationship of pixel
intensities. Its proof reveals that using finite extent of k-space data for image
reconstruction and the filtering for reducing Gibbs ringing artifact introduces
and enhances the correlation of pixel intensities in the resultant image. SAI is
also referred as strongly mixing [24]. It leads to another important property
of MR imaging, Markovianity, which is discussed in Chapter 9.

SAI

Gaussianity

Markovianity

Ergodicity

Stationarity

acf and sdf

ECC

monotonical decrease

spatial shift invariant

FIGURE 8.7

The interrelationships in proving six statistical properties of MR imaging.
Markovianity and its proof are given in Chapter 9.
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ECC offers a quantitative measure of the statistical relationship of pixel
intensities. Its proof actually indicates that autocorrelation of a Gaussian,
stationary, Markov random process with zero mean should be exponential.
ECC (hence SAI) has been verified by real MR images.

The piecewise contiguous appearance of an MR image is characterized by
stationarity, which is sometimes known as spatial shift invariant. Because pixel
intensities of an MR image are correlated, the independent, identical distribu-
tion (iid) is no longer validated for an MR image, especially for its parameter
estimation. Ergodicity provides an alternative way to estimate ensemble av-
erages via spatial averages.

Theoretically derived formulae of the acf and sdf and their experimentally
observed counterparts are almost identical. The derivation of the sdf also
reveals the underlying reason for a problem encountered in the experimental
computation of sdf.

8.5.2 Remarks

A framework of statistics of MR imaging was presented in this chapter. Six
intrinsic properties of MR imaging were proved and verified by the experimen-
tal results obtained using real MR images. These statistics will be used as the
basis for establishing stochastic models and developing new image analysis
methodologies for MR imaging, and will be presented in Chapters 9, 10 and
11.

CFT-based analysis is used in the derivations and proofs. It shows that
CFT-based analysis (i) gives the identical results as DFT-based analysis, (ii)
is simpler than DFT-based analysis, and (iii) leads to some new important out-
comes. Six statistical properties are confined for the conventional MR images
generated by typical MR data acquisition schemes and image reconstruction
methods (the rectilinear k-space sampling/FT and the radial sampling/PR).
The strategy and methods used in the derivations and proofs can be extended
to the more advanced MR imaging protocols.

8.6 Appendices

8.6.1 Appendix 8A

This Appendix proves Property 8.1a through Property 8.1e and their exten-
sions.

Proof.

1) Proof of Property 8.1a. Signal processing paradigms of Section 7.5.1 show
that all operations in the numerical implementation of MR image reconstruc-
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tion (2DFT and 2DPR) are linear. Let L represent these linear operations.
By applying L to k-space samples and using Eqs. (7.49) and (8.1), we have

x = xR + ixI = L{M} = L{MR}+ iL{MI}
or (8.122)

x = xs + xn = L{M} = L{Ms}+ L{Mn}.

Because L is a linear operator andM is characterized by a Gaussian random
process, the Gaussianity of x = L{M} can be generally assessed. However,
for the purpose of deriving a more precise description of the statistics of single
pixel intensity, the following proof is given.

Eq. (8.122) can be rewritten in more detail as

(xsR + xnR) + i(xsI + xnI ) = L{(MsR +MnR)}+ iL{(MsI +MnI )}
or (8.123)

(xsR + ixsI ) + (xnR + ixnI ) = L{(MsR + iMsI )}+ L{(MnR + iMnI )}.

Thus, the statistical properties of MsR , MnR , MsI , and MnI in the MR
imaging domain are preserved in the corresponding xsR , xnR , xsI , and xnI in
the MR image domain. Based on Property 7.7, that is, (i) the signal compo-
nents, xsR and xsI , of the pixel intensity x are characterized by two Gaussian
random variables: xsR ∼ N(µxsR

, σ2
xsR
→ 0) and xsI ∼ N(µxsI

, σ2
xsI
→ 0);

(ii) the noise components, xnR and xnI , of the pixel intensity x are char-
acterized by two Gaussian random variables: xnR ∼ N(0, σ2

xnR
) and xnI ∼

N(0, σ2
xnI

) with σ2
xnR

= σ2
xnI

∆
= σ2; and (iii) xnR and xnI are stationary,

additive, and independent of the corresponding xsR and xsI .
Therefore, the real and imaginary parts, xR = xsR+xnR and xI = xsI +xnI ,

of the pixel intensity x (each of them is a sum of two independent Gaussian
random variables) are characterized by two Gaussian random variables: xR ∼
N(µxsR

, σ2
xnR

) and xI ∼ N(µxsI
, σ2
xnI

). σ2
xsR
→ 0 and σ2

xsI
→ 0 imply that

xsR and xsI are constant with probability 1, that is, µxsR
= xsR and µxsI

=

xsI . Also due to σ2
xnR

= σ2
xnI

= σ2, we have xR ∼ N(xsR , σ
2) and xI ∼

N(xsI , σ
2).

Because xsR and xsI are constant with probability 1, xnR and xnI are
independent with zero mean, it is easy to verify that

E[xRxI ] = E[(xsR + xnR)(xsI + xnI )] = E[[xR]E[xI ], (8.124)

which implies that xR and xI are uncorrelated, and hence independent. Thus,
the joint pdf of xR and xI is simply the product of the pdfs of xR and xI

p(xR, xI) = p(xR)p(xI) =
1

2πσ2
exp

(
− (xR − xsR)2 + (xI − xsI )2

2σ2

)
.

(8.125)
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The mean and variance of the pixel intensity x are

µx = E[x] = E[(xsR + xnR) + i(xsI + xnI )] = xsR + ixsI ,

(8.126)

σ2
x = E[(x − µx)(x − µx)∗] = E[(xnR + ixnI )(xnR + ixnI )

∗] = 2σ2.

Due to (x − µx)(x− µx)∗ = ((xR + ixI)− (xsR + ixsI ))((xR + ixI)− (xsR +
ixsI ))

∗ = (xR − xsR)2 + (xI − xsI )2, Eq. (8.125) can be rewritten as

p(xR, xI) = π−1(σ2
x)

−1 exp(−(x− µx)∗(σ2
x)

−1(x− µx)), (8.127)

which is a standard expression of a 1-D complex Gaussian pdf, p(x), of the
random variable x = xR + ixI [30, 50].

Remarks. A Gaussian distribution of the complex-valued pixel intensity
can also be assessed from another point of view. Property 7.7 indicates that
k-space samples are independent Gaussian samples with finite 1st and 2nd
moments. Section 7.5.1 shows that all operations in MR image reconstruc-
tion are linear. The number of k-space samples used in image reconstruction
are often very large. Thus, according to the Central Limit theorem [77], the
pixel intensity of the resultant complex-valued MR image has an asymptotic
Gaussian distribution. This is consistent with the above proof.

2) Proof of Property 8.1b. The complex-valued pixel intensity x can be
expressed by a rectangular version xR + ixI or a polar version ρeiθ, that is,

x = xR + ixI = ρeiθ. (8.128)

The relationship between (xR, xI) and (ρ, θ) is given by

xR = ρ cos θ and xI = ρ sin θ, (8.129)

where ρ > 0, −π ≤ θ < π. Similarly, the mean of x can also be expressed in a
rectangular version or a polar version, that is, µx = xsR + ixsI = νeiφ. Thus,
we have

xsR = ν cosφ and xsI = ν sinφ, (8.130)

where ν > 0, −π ≤ φ < π.
By substituting Eqs. (8.129) and (8.130) into Eq. (8.125) and noticing that

the Jacobi factor J = |∂(xR,xI)
∂(ρ,θ) | = ρ, we obtain

p(ρ, θ|φ) = ρ

2πσ2
exp

(
−ρ

2 + ν2 − 2νρ cos(θ − φ)
2σ2

)
. (8.131)
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3) Proof of Property 8.1c. By integrating Eq. (8.4) with respect to θ over
[−π, π], we have

p(ρ) =

∫ π

−π
p(ρ, θ|φ)dθ = ρ

σ2
exp

(
−ρ

2 + ν2

2σ2

)
· 1

2π

∫ π

−π
e

νρ

σ2 cos(θ−φ)dθ.

(8.132)
By substituting Eq. (8.7) into Eq. (8.132), we obtain Eq. (8.6). Furthermore,
the moments of ρ are

E[ρn] =

∫ ∞

0

ρnp(ρ)dρ =
1

σ2

∫ ∞

0

ρn+1 exp

(
−ρ

2 + ν2

2σ2

)
I0

(ρν
σ2

)
dρ

=
1

σ2

∫ ∞

0

ρn+1 exp

(
−ρ

2 + ν2

2σ2

) ∞∑

k=0

(νρ/σ2)2k

22k(k!)2
dρ

=
1

σ2
exp

(
− ν2

2σ2

) ∞∑

k=0

(ν)2k

(2σ2)2k(k!)2

∫ ∞

0

ρ2k+n+1 exp

(
− ρ2

2σ2

)
dρ

= (2σ2)
n
2 exp

(
− ν2

2σ2

) ∞∑

k=0

1

(k!)2

(
ν2

2σ2

)k
Γ
(
k +

n

2
+ 1
)

= (2σ2)
n
2 exp

(
− ν2

2σ2

)
(1 + (

n

2
+ 1)(

ν2

2σ2
)

+
1

(2!)2

(
ν2

2σ2

)2 (n
2
+ 2
)(n

2
+ 1
)
+ · · ·)Γ

(
1 +

n

2

)

= (2σ2)
n
2 exp

(
− ν2

2σ2

)
Γ
(
1 +

n

2

)
1F1

(
n

2
+ 1; 1;

ν2

2σ2

)

= (2σ2)
n
2 Γ(1 +

n

2
) 1F1

(
−n
2
; 1;− ν2

2σ2

)
, (8.133)

where I0(x) is the modified Bessel function of the first kind of zero order given
by Eq. (8.7), Γ(x) is the Gamma function given by Eq. (8.9), and 1F1(a; b;x)
is the confluent hypergeometric function given by Eq. (8.10) [1, 30, 76]. The
last step in Eq. (8.133) is based on 1F1(a; b;−x) = 1F1(1 − a; b;x) [31, 32].

Proof of the extension of Property 8.1c. The zero SNR ̺ = 0 with the
finite-valued variance σ2 implies ν = 0. Thus, I0(

νρ
σ2 ) = 1 [76] and Eq. (8.6)

becomes Eq. (8.11). In this limiting case, the moments of ρ is

E[ρn] =
1

σ2

∫ ∞

0

ρn+1 exp

(
− ρ2

2σ2

)
dρ = (2σ2)

n
2 Γ
(
1 +

n

2

)
. (8.134)

It is known [33, 34, 76] that I0(x) ≃ ex√
2πx

(x ≫ 1). When SNR ̺ is very

large, I0(
νρ
σ2 ) ≃ exp(νρ/σ2)√

2πνρ/σ2
. Substituting this approximation into Eq. (8.6)
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yields

p(ρ) = γn

√
ρ

2πνσ2
exp

(
− (ρ− ν)2

2σ2

)
, (8.135)

where γn is a constant to ensure that
∫∞
0 p(ρ)dρ = 1. p(ρ) of Eq. (8.135) has a

maximum value of 1√
2πσ2

at ρ = ν. In the region around ν, p(ρ) changes very

slowly; and in the region |ρ− ν| >> 0, the exponential factor exp(− (ρ−ν)2
2σ2 ) is

dominant. Thus, by replacing ρ with ν in the first factor of Eq. (8.135) and
normalizing Eq. (8.135) by γn = 1, we obtain Eq. (8.13). In this limiting case,
the central moments of ρ is given by

E[(ρ− ν)n] = 1√
2πσ

∫ ∞

0

(ρ− ν)n exp
(
− (ρ− ν)2

2σ2

)
dρ. (8.136)

The SNR ̺→∞ is caused by very large ν, or very small σ, or both, in all three
situations; the integral

∫∞
0

can be approximated by
∫∞
−∞. Thus, Eq. (8.136)

can be rewritten as

E[(ρ− ν)n] ≃ 1√
2πσ

∫ ∞

−∞
(ρ− ν)n exp

(
− (ρ− ν)2

2σ2

)
dρ. (8.137)

It is easy to verify that E[(ρ− ν)2k−1] = 0 and E[(ρ− ν)2k ] = 1 ·3 · (2k− 1)σ2

for k = 1, 2, 3, · · ·.
It has been shown [30, 35, 36] that when SNR ̺ ≥ 2

√
2, Eq. (8.6) is well

approximated by Eq. (8.13). The quantitative evaluation and curve illustration
of Eqs. (8.6), (8.11), and (8.13) can be found in [11, 35].

4) Proof of Property 8.1d. By integrating Eq. (8.4) with respect to ρ over
(0,∞), we have

p(δθ) =

∫ ∞

0

p(ρ, θ|φ)dρ

=
1

2πσ2

∫ ∞

0

ρ exp

(
−ρ

2 + ν2 − 2νρ cos δθ

2σ2

)
dρ

=
1

2πσ2
exp

(
−ν

2 sin2 δθ

2σ2

)∫ ∞

0

ρ exp

(
− (ρ− ν cos δθ)2

2σ2

)
dρ

=
1

2πσ2
exp

(
−ν

2 sin2 δθ

2σ2

)∫ ∞

− ν cos δθ
σ

σ(σt + ν cos δθ) exp

(
− t

2

2

)
dt

=
1

2π
exp(− ν2

2σ2
) +

ν cos δθ√
2πσ

exp

(
−ν

2 sin2 δθ

2σ2

)
Φ

(
ν cos δθ

σ

)
,(8.138)

which is Eq. (8.15), and Φ(ν cos δθ
σ ) is cdf of N(0, 1) given by Eq. (8.16).
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Proof of the extension of Property 8.1d. The zero SNR ̺ = 0 with the
finite-valued variance σ2 implies that ν = 0. Thus, p(δθ) of Eq. (8.15) equals
1
2π , which gives Eq. (8.17). In this limiting case, it is easy to verify Eq. (8.18).
When SNR ̺ is very large, δθ is very small, which leads to sin δθ ≃ δθ,

cos δθ ≃ 1, Φ(ν cos δ
σ ) ≃ 1; exp(− ν2

2σ2 ) ≃ 0. Thus, Eq. (8.15) becomes
Eq. (8.19). Similar to the proof of Eq. (8.14), it is easy to verify Eq. (8.20).

It has been shown [35] that when SNR ̺ ≥ 1, Eq. (8.15) is well approximated
by Eq. (8.19). The quantitative evaluation and curve illustration of Eqs. (8.15),
(8.17), and (8.19) can be found in [11, 35].

5) Proof of Property 8.1e. Eqs. (8.13) and (8.19) show that when SNR
̺ ≥ 2

√
2,

p(ρ)p(δθ) ≃ ν

2πσ2
exp

(
− (ρ− ν)2 + ν2(δθ)2

2πσ2

)

=
ν

2πσ2
exp

(
−
ρ2 − 2νρ(1− ν

2ρ (δθ)
2) + ν2

2πσ2

)
. (8.139)

Similar to the approximations used in the proof of Eq. (8.13) (that is, in
the region around ρ = ν, Eq. (8.139) changes very slowly, and in the region
|ρ − ν| >> 0, the exponential is a dominated factor of Eq. (8.139)), ν in
the first factor of Eq. (8.139) is replaced by ρ, and the fraction ν

2ρ in the

numerator of the exponential factor of Eq. (8.139) becomes 1
2 , which leads to

1− ν
2ρ (δθ)

2 ≃ 1− 1
2 (δθ)

2 ≃ cos(δθ) (using the first two items of a Taylor series

expansion of cos(δθ)). Thus, Eq. (8.139) becomes

p(ρ)p(δθ) ≃ ρ

2πσ2
exp

(
−ρ

2 + ν2 − 2νρ cos(δθ)

2πσ2

)
. (8.140)

With δθ = θ − φ, Eq. (8.140) is identical to Eq. (8.4). Thus, we obtain
p(ρ)p(θ|φ) ≃ p(ρ, θ|φ), that is, when SNR ̺ is moderate or large (as described
in the Extensions of Properties 8.1c and 8.1d), the magnitude ρ and the phase
θ of the pixel intensity x of a complex-valued MR image are approximately
statistically independent.

8.6.2 Appendix 8B

This appendix proves SAI (Property 8.2) for FT MR imaging.

Proof.

1) Proof of Eq. (8.25) inCase 1). Let RM(k1, k2) be the correlation between
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k-space samplesM(k1) andM(k2); then from Eq. (7.50), we have

RM(k1, k2) = µM(k1)µ
∗
M(k2)

+ σ2
Mδ[k1 − k2], (8.141)

where µM(k) and σ2
M are the mean and the variance of M(k), and δ[x] is

the Kronecker Delta function [6, 8, 16]. Thus, from Eq. (8.24) and using
Eq. (8.141), the correlation of x̃1 and x̃2 is

Rx̃(u1, u2) = E[x̃(u1)x̃
∗(u2)]

= E[

∫ ∞

−∞
M(k1)e

i2πk1u1dk1

∫ ∞

−∞
M∗(k2)e

−i2πk2u2dk2]

=

∫ ∞

−∞

∫ ∞

−∞
E[M(k1)M∗(k2)]e

i2π(k1u1−k2u2)dk1dk2

=

∫ ∞

−∞

∫ ∞

−∞
µM(k1)µ

∗
M(k2)

ei2π(k1u1−k2u2)dk1dk2

+σ2
M

∫ ∞

−∞

∫ ∞

−∞
δ[k1 − k2]ei2π(k1u1−k2u2)dk1dk2

= µx̃(u1)µ
∗
x̃(u2)

+ σ2
Mδ(u1 − u2), (8.142)

where δ(x) is the Dirac Delta function. In Eq. (8.142),
∫∞
−∞ ei2πx(x1−x2)dx =

δ(x1 − x2) is used [12, 27, 76].

2) Proof of Eq. (8.29) in Case 2). From Eq. (8.28) and using Eq. (8.23),
we have

x̂(u) =
1

∆k

∞∑

m=−∞
x̃
( m
∆k

)
δ
(
u− m

∆k

)
. (8.143)

From Eq. (8.143) and using Eq. (8.25), the correlation of x̂1 and x̂2 is

Rx̂(u1, u2) = E[x̂(u1)x̂
∗(u2)]

=
1

(∆k)2

∞∑

m=−∞

∞∑

n=−∞
E[x̃

( m
∆k

)
x̃∗
( n

∆k

)
]δ
(
u1 −

m

∆k

)
δ
(
u2 −

n

∆k

)

=
1

(∆k)2

∞∑

m=−∞

∞∑

n=−∞
µx̃( m

∆k )µ
∗
x̃( n

∆k )
δ
(
u1 −

m

∆k

)
δ
(
u2 −

n

∆k

)

+
σ2

M

(∆k)2

∞∑

m=−∞

∞∑

n=−∞
δ
( m
∆k
− n

∆k

)
δ
(
u1 −

m

∆k

)
δ
(
u2 −

n

∆k

)

= µx̂(u1)µ
∗
x̂(u2)

+
σ2

M

∆k
δ(u1 − u2) (8.144)

In Eq. (8.144), δ(ax) = 1
|a|δ(x) and

∫ +∞
−∞ δ(x − x1)δ(x − x2)dx = δ(x1 − x2)

are used [12, 27, 76].

3) Proof of Eq. Eq. (8.33) in Case 3), that is, SAI for the basic FT MR
image. From Eq. (8.32) and using Eq. (8.29), the correlation of x̄(u1) and
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x̄(u2) is

Rx̄(u1, u2) = E[x̄(u1)x̄
∗(u2)]

= E[

∫ ∞

−∞
x̂(v1)Wsinc(W (u1 − v1))dv1

∫ ∞

−∞
x̂∗(v2)]Wsinc(W (u2 − v2))dv2]

=

∫ ∞

−∞

∫ ∞

−∞
E[x̂(v1)x̂

∗(v2)]Wsinc(W (u1 − v1))Wsinc(W (u2 − v2))dv1dv2

=

∫ ∞

−∞

∫ ∞

−∞
µx̂(v1)µ

∗
x̂(v2)

Wsinc(W (u1 − v1))Wsinc(W (u2 − v2))dv1dv2

+
σ2

M

∆k

∫ ∞

−∞

∫ ∞

−∞
δ(v1 − v2)Wsinc(W (u1 − v1))Wsinc(W (u2 − v2))dv1dv2

= µx̄(u1)µ
∗
x̄(u2)

+
σ2

M

∆k
W 2

∫ ∞

−∞
sinc(W (u1 − v2))sinc(W (u2 − v2))dv2

= µx̄(u1)µ
∗
x̄(u2)

+
σ2

M

∆k
Wsinc(W (u1 − u2)). (8.145)

In Eq. (8.145), sinc(x) = sinc(−x) and sinc(x) ⋆ sinc(x) = sinc(x) are used
[12, 27, 76]. Eq. (8.145) is identical to Eq. (8.33).

In Eq. (8.145), when
σ2
M

∆kWsinc(W (u1−u2)) = 0, Rx̄ = µx̄(u1)µ
∗
x̄(u2)

, x̄(u1)

and x̄(u2) become uncorrelated. Thus, the second term on the right side of
Eq. (8.145) provides a measure of the correlation of x̄(u1) and x̄(u2), which
depends on the imaging parameters (σ2

M, ∆k, W ) and is a function of the
distance (u1− u2) between two pixels. When u1 = u2, it gives the variance of

the pixel intensity σ2
x̄ = V ar[x̄(u)] =

σ2
M

∆kW .
The following discussion shows the monotonically decreasing magnitude of

the second term on the right side of Eq. (8.145). In rectilinear k-space sampling
and FT reconstruction, when N k-space samples are acquired and N pixels
are reconstructed, a necessary condition for choosing the window width W is
(N − 1)∆k < W < N∆k, which can be expressed as

W = (N − ǫ)∆k (0 < ǫ < 1) . (8.146)

This condition ensures that the exact (i.e., no more or no less than) N samples
are acquired. In this case, the pixel size∗∗ is δu = FOV

N = 1
N∆k and the

distance between two pixels at u1 and u2 is ∆u = u1 − u2 = mδu, (|m| ≤
(N − 1)). Thus, we have

W∆u =
N − ǫ
N

m; . (8.147)

∗∗This pixel size is known as the appealing pixel size [54] or the Fourier pixel size [56].
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By substituting Eqs. (8.146) and (8.147) into the second term on the right
side of Eq. (8.145), its magnitude is

cb(m) =
σ2

M

∆k
W |sinc(N − ǫ

N
m)| =





σ2
M

∆kW (m = 0)

ǫσ2
M|sinc( ǫNm)| (m 6= 0).

(8.148)

For simplicity, the normalized cb(m) is used, which is given by

cbn(m) = (
σ2

M

∆k
W )−1cb(m) =





1 (m = 0)

ǫ
N−ǫ |sinc( ǫNm)| (m 6= 0).

(8.149)

In Eq. (8.149), when |m| varies from 0 to (N−1), due to | ǫNm| < 1, sinc( ǫNm)
is confined in the main lobe of sinc( ǫNm), where |sinc( ǫNm)| monotonically
decreases from 1 to 0 (approaching but not equalizing) as |m| increases from
0 to (N − 1).

An example is used to illustrate cbn(m) in Eq. (8.149). In this example, the
number of k-space samples and the number of pixels are the same: N = 256,
and ǫ = 0.9, 0.09, 0.009. Thus, the window width is 255.1∆k (very close to
(N − 1)∆k), 255.91∆k (between (N − 1)∆k and N∆k), and W = 255.991∆k
(very close to N∆k). With these settings, the curves of cbn(m) are shown in
Figure 8.8. The curves in Figure 8.8a show that cbn(m) sharply decreases from
1 to the almost zero as |m| increases, starting from 0. In Figure 8.8b, only the
first 16 values of cbn(m) (0 ≤ m < 16) are shown to clearly demonstrate the
decreasing pattern of cbn(m); there is virtually no correlation for |m| > 1. In
Figure 8.8c, the cbn(m) axis uses the log scale to clearly show the values of
cbn(m) (0 ≤ m < 16) for the various window widths W . Correlations remain
for |m| > 1 even though they are very small. The curves in Figures 8.8a
through 8.8c demonstrate SAI in the basic FT MR image. The impact of the
window width W on SAI is not essential. From Eqs. (8.145) and (8.148) and

noticing that
σ2
M

∆kW is the variance of x̄, cbn(m) of Eq. (8.149) is actually the
magnitude of the correlation coefficient of intensities of two pixels separated
by m pixels.

4) Proof of Eq. (8.39) in Case 4), that is, SAI for the filtered FT MR image.
From Eq. (8.37) and using Eq. (8.29), the correlation of x(u1) and x(u2) is

Rx(u1, u2) = E[x(u1)x
∗(u2)]

= E[

∫ ∞

−∞
x̂(v1)φ(W (u1 − v1))dv1

∫ ∞

−∞
x̂∗(v2)]φ(W (u2 − v2))dv2]

=

∫ ∞

−∞

∫ ∞

−∞
E[x̂(v1)x̂

∗(v2)]φ(W (u1 − v1))φ(W (u2 − v2))dv1dv2

=

∫ ∞

−∞

∫ ∞

−∞
µx̂(v1)µ

∗
x̂(v2)

φ(W (u1 − v1))φ(W (u2 − v2))dv1dv2
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FIGURE 8.8

SAI in the basic FT MR image. cbn(m) of Eq. (8.149) is a measure of the
correlation of pixel intensities with respect to the distance between pixels.
N = 256, W1 = 255.1∆k, W2 = 255.91∆k, and W3 = 255.991∆k. Except
for the vertical axis in (c) that uses the log scale, all axes in (a) through (c)
are the linear scale. (a) 0 ≤ m < 256, (b) 0 ≤ m < 16, and (c) 0 ≤ m < 16.



258 Statistics of Medical Imaging

+
σ2

M

∆k

∫ ∞

−∞

∫ ∞

−∞
δ(v1 − v2)φ(W (u1 − v1))φ(W (u2 − v2))dv1dv2

= µx(u1)µ
∗
x(u2)

+
σ2

M

∆k

∫ ∞

−∞
φ(W (u1 − v2))φ(W (u2 − v2))dv2

= µx(u1)µ
∗
x(u2)

+
σ2

M

∆k
φ(W (u1 − u2)) ⋆ φ(W (u1 − u2))

= µx(u1)µ
∗
x(u2)

+
σ2

M

∆k
F−1{(filt( k

W
))2}|(u1−u2)

= µx(u1)µ
∗
x(u2)

+
σ2

M

∆k
F−1{(Φ( k

W
)rect(

k

W
))2}|(u1−u2)

= µx(u1)µ
∗
x(u2)

+
σ2

M

∆k
Wsinc(W (u1 − u2))f(W (u1 − u2)). (8.150)

where Φ( kW ) and f(W∆u) are given by

Φ(
k

W
) =





1
2 (1 + cos(2πkW )) (a. Hanning)

α+ (1− α) cos(2πkW ) (b. Hamming),
(8.151)

and

f(W∆u) =





1.5
(W∆u)4−5(W∆u)2+4 (a. Hanning)

0.0064 (W∆u)4−16.5(W∆u)2+248.375
(W∆u)4−5(W∆u)2+4 (b. Hamming, α = 0.54).

(8.152)
respectively. In the derivation of Eq. (8.150), the property that both filt and
φ are even functions is used. Eq. (8.150) is identical to Eq. (8.39).

In Eq. (8.150), when
σ2
M

∆kWsinc(W (u1−u2))f(W (u1−u2) = 0, Rx(u1, u2) =
µx(u1)µ

∗
x(u2)

, x(u1) and x(u2) become uncorrelated. Thus, the second term

on the right side of Eq. (8.150) provides a measure of the correlation of
x(u1) and x(u2), which depends on the imaging parameters (σ2

M, ∆k, W )
and the filter function Φ, and is a function of the distance (u1 − u2) be-
tween two pixels. When u1 = u2, it gives the variance of pixel intensity

σ2
x = V ar[x(u)] =

σ2
M

∆kWf(0) (f(0) = 0.375, 0.3974 for Hanning, Hamming
filtering, respectively).

The following shows the monotonically decreasing magnitude of the second
term on the right side of Eq. (8.150). By substituting Eqs. (8.146) and (8.147)
into the second term on the right side of Eq. (8.150) and using Eq. (8.148),
its magnitude is

cf (m) =
σ2

M

∆k
W |sinc(W∆u)f(W∆u)|

=





σ2
n

∆kWf(0) (m = 0)

ǫσ2
M|sinc( ǫNm)f(N−ǫ

N m)| (m 6= 0) .

(8.153)
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For simplicity, we use the normalized cf (m) given by

cfn(m) =

(
σ2

M

∆k
Wf(0)

)−1

cf (m)

=





1 (m = 0)

ǫ
N−ǫ |sinc( ǫNm)f(N−ǫ

N m)|/f(0) (m 6= 0).
(8.154)

When the Hanning filter Φ( kW ) of Eq. (8.151.a) is used, |f(W∆u)| of
Eq. (8.152.a) monotonically decreases from its maximum to 0 as |∆u| increases
from δu (a pixel size) to∞. When the Hamming filter Φ( kW ) of Eq. (8.151.b) is
used, using calculus, it has been shown that |f(W∆u)| of Eq. (8.152b) mono-
tonically decreases from its maximum at ∆u = δu to 0.0054 at ∆u = 6δu,
then slightly increases to 0.0064 as |∆u| increases from 6δu to∞. Because this
increment is so small and so slow, |f(W∆u)| of Eq. (8.152b) can be consid-
ered constant for 6δu < ∆u < ∞. Thus, for Hanning and Hamming filters,
|f(W∆u)| decreases from its maximum to 0 or 0.0064, respectively, as |∆u|
increases from δu to ∞.

Because (1) |sinc( ǫNm)| sharply decreases from 1 to very small values as

|m| increases from 0 to (N − 1), and (2) |f(N−ǫ
N m)| decreases as |m| increases

from m = 1 to (N − 1), therefore, when |m| increases from 0 to (N − 1),
|sinc( ǫNm)f(N−ǫ

N m)| decreases from 1 to 0 (approaching but not equalizing).
An example is used to illustrate cfn(m) of Eq. (8.154). In this example,

the settings are the same as those used in the example for the basic FT:
N = 256, ǫ = 0.9, 0.09, 0.009. With these settings, the curves of cfn(m) are
shown in Figures 8.9 and 8.10, for Hanning and Hamming filters, respectively.
The curves in Figures 8.9a and 8.10a show that cfn(m) (0 ≤ m < 256)
sharply decreases from 1 to almost zero as |m| increases, starting from 0. In
Figures 8.9b and 8.10b, only the first 16 values of cfn(m) (0 ≤ m < 16)
are shown to clearly demonstrate the decreasing patterns of cfn(m); there is
virtually no correlation for |m| > 3. In Figures 8.9c and 8.10c, cfn(m) axis
uses the log scale to clearly show the values of cfn(m) (0 ≤ m < 16) for various
window widths W . Correlations exist for |m| > 3 even though they are very
small. The curves in Figures 8.9c and 810.c demonstrate SAI in the filtered FT
MR images with Hanning and Hamming filtering, respectively. The impact of
the window width W on SAI is not essential. From Eqs. (8.150) and (8.153),

and noticing that
σ2
M

∆kWf(0) is the variance of x, cfn(m) of Eq. (8.154) is
actually the magnitude of the correlation coefficient of intensities of two pixels
separated by m pixels.
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FIGURE 8.9

SAI in the Hanning-filtered FT MR image. cfn(m) of Eq. (8.154) is a measure
of the correlation of pixel intensities with respect to the distance between
pixels. N = 256, W1 = 255.1∆k, W2 = 255.91∆k, and W3 = 255.991∆k.
Except for the vertical axis in (c), which uses the log scale, all axes in (a)
through (c) use the linear scale. (a) 0 ≤ m < 256, (b) 0 ≤ m < 16, and (c)
0 ≤ m < 16.
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FIGURE 8.10

SAI in the Hamming-filtered FTMR image. cfn(m) of Eq. (8.154) is a measure
of the correlation of pixel intensities with respect to the distance between
pixels. N = 256, W1 = 255.1∆k, W2 = 255.91∆k, and W3 = 255.991∆k.
Except for the vertical axis in (c), which uses the log scale, all axes in (a)
through (c) use the linear scale. (a) 0 ≤ m < 256, (b) 0 ≤ m < 16, and (c)
0 ≤ m < 16.
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8.6.3 Appendix 8C

In this appendix we discuss and summarize the correlations of pixel intensities
in FT MR imaging. We will show (1) the effects of various MR data acquisi-
tion schemes and image reconstruction procedures on the correlations of the
resultant image, (2) the similarities and differences in the correlations in the
basic FT and the filtered FT MR images, and (3) the impacts of different
filter functions on the correlations in FT MR image.

(1) The correlations of pixel intensities in the four cases of FT MR imaging
in Section 8.3.1.1 are given by Eqs. (8.25), (8.29), (8.33), and (8.39). Eq. (8.25)
in Case 1 and Eq. (8.29) of Case 2 show that when MR data, either continuous
or discrete (Nyquist criterion must be satisfied), were acquired in the entire k-
space, there was no Gibbs ringing artifact and a true image could be generated.
Pixel intensities in the reconstructed image were uncorrelated. This can be
interpreted as resulting the independence of k-space samples being preserved
by the linear and orthogonal FT over an infinite number of samples.

Eq. (8.33) of the Case 3 shows that when the sampled MR data are acquired
in a truncated k-space, Gibbs ringing artifact is introduced and the resultant
image is an estimate of the true image. Pixel intensities in this image are
correlated (see Eq. (8.33)), which is characterized by SAI. Eq. (8.39) of the case
4 shows that when the filtered, sampled MR data are acquired in a truncated
k-space, Gibbs ringing artifact is reduced and the resultant image is a better
estimate of the true image. Pixel intensities in this image are correlated (see
Eq. (8.39)), which is also characterized by SAI, but in a changed pattern.

Eqs. (8.33) and (8.39) reveal that the finite sampling with a rectangular
function in k-space results in the blurring with a sinc function in x-space, as
shown by sinc(W∆u) in (8.33) and (8.39). This is one underlying reason that
causes the correlation of pixel intensities in basic and filtered FT MR images,
even though the degree of this correlation is very small. In filtered-FT MR
imaging, the filtering (i.e., apodization for reducing Gibbs ringing artifact) is
another underlying reason for introducing the correlation of pixel intensities,
as shown by f(W∆u) in Eq. (8.39).

(2) The similarities and differences in SAI in the basic FT and the filtered
FT MR images are given below. Figure 9 demonstrates SAI for MR images
reconstructed by basic FT. In Figures 8.9a and 8.9b, there is virtually no corre-
lation for m ≥ 1. The details shown in Figure 8.9c demonstrate that the mag-
nitude of the correlation coefficient is less than 0.01, 0.001, 0.0001, for m ≥ 1
(for the window width W = 255.1∆k, W = 255.91∆k, W = 255.991∆k).
Thus, in practice, pixel intensities can be considered as approximately uncor-
related for m ≥ 1. Figures 8.10 and 8.11 demonstrate SAI for MR images re-
constructed by filtered FT. Similarly, in Figures 8.10a, 8.10b, 8.11a, and 8.11b,
there is virtually no correlation for m ≥ 3. The details shown in Figures 8.10c
and 8.11c demonstrate that the magnitude of the correlation coefficient is less
than 0.001, 0.0001, 0.00001, for m ≥ 3 (for the window width W = 255.1∆k,
W = 255.91∆k, W = 255.991∆k). Thus, in practice, pixel intensities can be
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considered approximately uncorrelated for m ≥ 3.
By comparing Eq. (8.39) with Eq. (8.33), we notice that a new factor in

the correlation, f(W∆u), is introduced in the filtered FT. By comparing Fig-
ures 8.10c,and 8.11c with Figure 9.c, we find that the filtering operation
(which has been used to reduce Gibbs ringing artifact) widens the range of
the correlation of pixel intensities from m = 1 in the basic FT, to m = 3 in
the filtered FT; but reduces the degree of the correlation by an order beyond
this range (m ≥ 1 in the basic FT and m ≥ 3 in the filtered FT).

(3) The impacts of various filter functions (which are used to reduce Gibbs
ringing artifact) on the correlations of pixel intensities in the resultant FT MR
images are given below. The filter functions used in filtered FT MR imaging
are also known as windows in signal analysis. Here, we only discuss Hamming
and Hanning filters because the performances of the rectangular and Bartlett
filters are poor and the Kaither-Bessel filter is computationally expensive. The
comprehensive studies of windows [11–15] show that the spectra of Hamming
and Hanning windows have (i) the same mainlobe width 8π

N , (ii) the peak
sidelobe levels −41 db and −31 db, (iii) the sidelobe rolloff rate −6 db/oct
and −18 db/oct, respectively. That is, a Hamming window has the lower peak
sidelobe and a Hanning window has the steeper sidelobe rolloff.

In this study, from Eqs. (8.37), (8.38), and (8.23), we have

x(u) = x̂(u) ⋆ F−1{Φ( k
W

)rect(
k

W
)}, (8.155)

where Φ( kW ) is given in Eq. (151), which are Hanning and Hamming filters.
The results in Section 8.3.1.1 (Remarks on the variances of FT MR image) in-
dicate that the variance of pixel intensities in Hamming- and Hanning-filtered
FT MR images are 0.3974( 1

N σ
2
n) and 0.375( 1

N σ
2
n), respectively. That is about

6% difference. Figures 8.10c and 8.11c show that the magnitude of the corre-
lation coefficient in a Hanning-filtered FT MR image damps out more rapidly
than that in Hamming’s after six lags. Thus, the Hanning window is a more
preferred choice in terms of the smaller variance and the more quickly de-
creasing correlation.

8.6.4 Appendix 8D

This appendix proves Eqs. (8.49), (8.51), (8.53), (8.56)–(8.60), (8.61)–(8.67),
and SAI of the filtered projection t(u′,m∆θ) and the pixel intensity x(u, v).

The filtered projection t(u′, θ) is computed by Eq. (8.45), and the measured
projection p(l, θ) is computed by Eq. (7.78). These two equations have the
common factors M(k, θ) · 1

∆kcomb(
k
∆k ) · rect( k

Wk
). This fact shows that the

filtered projection t(u′, θ) is the filtered (by |k|) measured projection p(l, θ).
Thus, statistics of p(l, θ) can be utilized as the input for the |k| filter to derive
statistics for t(u′, θ). That is, three steps (S.1, S.2, and S.3) in the proof of
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Property 7.8 can be directly applied to the three steps (A-1, A-2, and A-3) of
this proof.

Proof.

A-1) Proof of Eq. (8.49). By using the identical procedures in S.1 of the
Proof of Property 7.8 to derive Eq. (7.90), that is, using u′, R

t̃
, and µ

t̃
to

replace l, Rp̃, and µp̃, respectively, we have

R
t̃
((u′1, θ1), (u

′
2, θ2)) = µ

t̃(u′
1,θ1)

µ∗
t̃(u′

2,θ2)
+ σ2

Mδ(u
′
1 − u′2)δ[θ1 − θ2]. (8.156)

A-2) Proof of Eq. (8.51). By using the identical procedures in S.2 of the
Proof of Property 7.8 to derive Eq. (7.102), that is, using u′, R

t̂
, and µ

t̂
to

replace l, Rp̂, and µp̂, respectively, we have

R
t̂
((u′1, θ1), (u

′
2, θ2)) = µ

t̂(u′
1,θ1)

µ∗
t̂(u′

2,θ2)
+
σ2

M

∆k
δ(u′1 − u′2)δ[θ1 − θ2]. (8.157)

A-3) Proof of Eq. (8.53). By using the identical procedures in S.3 of the
Proof of Property 7.8 to derive Eq. (7.112), that is, using u′, Rt̄, and µt̄ to
replace l, Rp̄, and µp̄, respectively, we have

Rt̄((u
′
1, θ1), (u

′
2, θ2)) = µt̄(u′

1,θ1)
µ∗
t̄(u′

2,θ2)
+
σ2

M

∆k
Wksinc(Wk(u

′
1− u′2))δ[θ1 − θ2].

(8.158)

A-4) Proof of Eq. (8.56), SAI of the filtered projection t(u′, θ), and
Eq. (8.60).

a) Proof of Eq. (8.56). From Eq. (8.54) and using Eq. (8.157), the correlation
Rt((u

′
1, θ1), (u

′
2, θ2)) of the filtered projections t(u′1, θ1) and t(u

′
2, θ2) is

Rt((u
′
1, θ1), (u

′
2, θ2)) = E[t(u′1, θ1)t

∗(u′2, θ2)]

= E[(t̂(u′1, θ1) ⋆ φ(Wku
′
1))(t̂

∗
(u′2, θ2) ⋆ φ(Wku

′
2))]

= E[

∫
t̂(v1, θ1)φ(Wk(u

′
1 − v1))dv1 ·

∫
t̂
∗
(v2, θ2)φ(Wk(u

′
2 − v2))dv2]

=

∫ ∫
E[t̂(v1, θ1)t̂

∗
(v2, θ2)]φ(Wk(u

′
1 − v1))φ(Wk(u

′
2 − v2))dv1dv2

=

∫ ∫
µ
t̂(v′1,θ1)

µ∗
t̂(v′2,θ2)

φ(Wk(u
′
1 − v1))φ(Wk(u

′
2 − v2))dv1dv2
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+
σ2

M

∆k

∫ ∫
δ(v1 − v2)δ[θ1 − θ2]φ(Wk(u

′
1 − v1))φ(Wk(u

′
2 − v2))dv1dv2

= µt(u′
1,θ1)

µ∗
t(u′

2,θ2)

+
σ2

M

∆k
δ[θ1 − θ2]

∫
φ(Wk(u

′
1 − v2))φ(Wk(u

′
2 − v2))dv2

= µt(u′
1,θ1)

µ∗
t(u′

2,θ2)

+
σ2

M

∆k
δ[θ1 − θ2](φ(Wk(u

′
1 − u′2)) ⋆ φ(Wk(u

′
1 − u′2)))

= µt(u′
1,θ1)

µ∗
t(u′

2,θ2)

+
σ2

M

∆k
δ[θ1 − θ2]F−1

k {(Fu′
1−u2
{φ(Wk(u

′
1 − u′2))})2}

= µt(u′
1,θ1)

µ∗
t(u′

2,θ2)

+
σ2

M

∆k
δ[θ1 − θ2]F−1

k {(k · rect(
k

Wk
))2}|(u′

1−u′
2)
. (8.159)

We have shown that

F−1
k {(k · rect(

k

Wk
))2}|(u′

1−u′
2)

=
W 3
k

2
(
1

2
sinc(Wk(u

′
1 − u′2))

+
cos(πWk(u

′
1 − u′2))− sinc(Wk(u

′
1 − u′2))

(πWk(u′1 − u′2))2
)

∆
= f(Wk(u

′
1 − u′2)). (8.160)

By substituting Eq. (8.160) into Eq. (8.159), we obtain Eq. (8.56).

b) Proof of SAI of t(u′, θ). The second item on the right side of Eq. (8.56)
provides a measure of the correlation of the filtered projection t(u′, θ). To
prove SAI of t(u′, θ), it is sufficient to analyze f(Wk(u

′
1 − u′2)) of Eq. (8.57).

For simplicity of discussion, let

f1(Wk(u
′
1 − u′2)) = 1

2sinc(Wk(u
′
1 − u′2))

f2(Wk(u
′
1 − u′2)) = cos(πWk(u

′
1−u′

2))−sinc(Wk(u
′
1−u′

2))
(πWk(u′

1−u′
2))

2

f(Wk(u
′
1 − u′2)) = W 3

k

2 (f1(Wk(u
′
1 − u′2)) + f2(Wk(u

′
1 − u′2))).

Because f(Wk(u
′
1 − u′2)) is an even function, the proof is shown for Wk(u

′
1 −

u′2) > 0 only.
Similar to the general sinc function, f1(Wk(u

′
1−u′2)) consists of a main lobe

and the side lobes. The peaks of the side lobes occur atWk(u
′
1−u′2) = (n+ 1

2 )π
(n = 1, 2 · · · ). Their magnitudes are much smaller than that of the peak of the
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main lobe (which is 0.5 in this case) and monotonically decrease as (u′1 − u′2)
increases. In the limiting case of (u′1 − u′2)→∞, f1(Wk(u

′
1 − u′2))→ 0. That

is, f1(Wk(u
′
1− u′2)) has an oscillating attenuation pattern for small (u′1− u′2),

overall decreases, and becomes almost zero when (u′1 − u′2) becomes large.
The numerator of f2(Wk(u

′
1 − u′2)) is an oscillating function but bounded:

| cos(πWk(u
′
1−u′2))−sinc(Wk(u

′
1−u′2))| < 2. Its denominator (πWk(u

′
1−u′2))2

monotonically increases as (u′1 − u′2) increases. As a result, except for some
very small (u′1 − u′2) (e.g., as we have shown f2(0) = − 1

3—see the paragraph
c) below), f2(Wk(u

′
1− u′2)) overall decreases (with the tiny, local fluctuations

caused by its numerator) and becomes almost zero when (u′1 − u′2) becomes
large. In the limiting case of (u′1 − u′2)→∞, f2(Wk(u

′
1 − u′2))→ 0.

Thus, for not very small (u′1 − u′2), f(Wk(u
′
1 − u′2)) overall decreases and

becomes almost zero as (u′1 − u′2) increases. This decrease becomes faster
and smoother due to cancellations of the tiny, local fluctuations between
f1(Wk(u

′
1− u′2)) and f2(Wk(u

′
1− u′2)). In the limiting case of (u′1− u′2)→∞,

f(Wk(u
′
1−u′2))→ 0. Therefore, except for some small (u′1−u′2), f(Wk(u

′
1−u′2))

is almost monotonically decreasing as (u′1 − u′2) increases.
These justifications have been confirmed by simulation results. The simu-

lations shown in Figure 8.11 is performed at the view θ = π
4 . The horizontal

axes (u′1−u′2) in Figure 8.11a–d are in the unit of the pixel. The corresponding
vertical axes represent f1, f2, f , and |f |. Because the magnitudes of f1, f2,
and f become extremely small for large (u′1 − u′2), the curves are displayed
for (u′1 − u′2) < 64 only.
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FIGURE 8.11

Simulation results of Eq. (8.160) normalized by
W 3

k

2 , that is, f(Wk(u
′
1 − u′2))

of Eq. (8.57) normalized by
W 3

k

2 . (a) The first item f1(Wk(u
′
1 − u′2)), (b) the

second item f2(Wk(u
′
1−u′2)), (c) f(Wk(u

′
1−u′2)) itself, and (d) the magnitude

|f(Wk(u
′
1 − u′2))|.
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Figure 8.11a shows that f1(Wk(u
′
1−u′2)) has a basic pattern of sinc function.

Figure 8.11b shows that f2(Wk(u
′
1−u′2)) is overall decreasing for (u′1−u′2) > 1.

Figure 8.11c shows that f1(Wk(u
′
1 − u′2)) has small fluctuations for small

(u′1− u′2) and virtually no fluctuations for (u′1− u′2) > 32. Figure 8.11d shows
that except for a few isolated values (e.g., (u′1−u′2) = 3 and 8), |f(Wk(u

′
1−u′2))|

almost monotonically decreases as (u′1 − u′2) increases.
c) Proof of Eq. (8.60). The second item on the right side of Eq. (8.56), that

is, Eq. (8.58), is the covariance of t(u′, θ). When u′1 = u′2, it gives the variance
of t(u′, θ), denoted by σ2

t .
When u′1 = u′2, the second item of f(Wk(u

′
1 − u′2)) in Eq. (8.57), that is,

f2(Wk(u
′
1 − u′2)), becomes 0

0 . We have shown that f2(0) = − 1
3 . Thus, from

Eqs. (8.57) and (8.58), the variance of the filtered projection t(u′, θ) in one
view is

σ2
t = σ2

M

Wk

∆k

W 2
k

2

(
1

2
− 1

3

)
= σ2

M

Wk

∆k

(
1

12
W 2
k

)
. (8.161)

B) Proof of Eq. (8.61), SAI of the pixel intensity x(u, v), and Eq. (8.67).

a) Proof of Eq. (8.61). From Eq. (8.46) and using Eq. (8.56), the correlation
Rx((u1, v1), (u2, v2)) of the pixel intensities x(u1, v1) and x(u2, v2) is given by

Rx((u1, v1), (u2, v2)) = E[x(u1, v1)x
∗(u2, v2)]

= E[

∫ π

0

t(u′1, θ1)dθ1

∫ π

0

t∗(u′2, θ2)dθ2]

=

∫ π

0

∫ π

0

E[t(u′1, θ1)t
∗(u′2, θ2)]dθ1dθ2

=

∫ π

0

∫ π

0

Rt((u
′
1, θ1), (u

′
2, θ2))dθ1dθ2

=

∫ π

0

∫ π

0

µt(u′
1,θ1)

µ∗
t(u′

2,θ2)
dθ1dθ2

+
σ2

M

∆k

∫ π

0

∫ π

0

f(Wk(u
′
1 − u′2))δ[θ1 − θ2]dθ1dθ2

= µx(u1,v1)µ
∗
x(u2,v2)

+
σ2

M

∆k

∫ π

0

f(Wk(u
′
1 − u′2))dθ

= µx(u1,v1)µ
∗
x(u2,v2)

+∆θ
σ2

M

∆k

M−1∑

m=0

f(Wk(u
′
1 − u′2)). (8.162)

Using Eq. (8.47), (u′1−u′2) in the m-th view specified by θ can be expressed
as

u′1 − u′2 = (u1 − u2) cos θ + (v1 − v2) sin θ = ∆r cos(θ −∆φ), (8.163)

where ∆r is the distance between two pixel centers (u1, v1) and (u2, v2) in the
image, and ∆φ is the angle between the line linking these two centers and the
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U -axis, given by

∆r =
√
(u1 − u2)2 + (v1 − v2)2 and ∆φ = tan−1

(
v1 − v2
u1 − u2

)
. (8.164)

By substituting Eq. (8.163) into Eq. (8.162) and using θ = m∆θ (m = 0, 1, · · · ,
M − 1) and M∆θ = π, we obtain Eq. (8.61).

Eqs. (8.163) and (8.164) show that (u′1−u′2) is the projection of the distance
∆r (i.e., the vector (u1 − u2)~i + (v1 − v2)~j) onto the U ′-axis (i.e., the view
direction) specified by the view angle m∆θ. When m takes values from 0 to
M − 1, the projection u′1 − u′2 = ∆r cos(m∆θ − ∆φ) may be positive, or
negative, or zero, or equal to ∆r (its maximum) or −∆r (its minimum). That
is,

−∆r ≤ ∆r cos(m∆θ −∆φ) ≤ ∆r. (8.165)

The dimensionality of Wk—the width of the window for |k| filter—is the
inverse of the length L−1. The dimensionality of ∆r cos(m∆θ − ∆φ) is the
length L. Thus, Wk∆r cos(m∆θ − ∆φ) has no dimensionality, that is, it is
just a number, which may be positive, zero, or negative.

Using Eq. (8.163), Eq. (8.162) indicates that the correlation Rx ((u1, v1),
(u2, v2)) between two pixel intensities x(u1, v1) and x(u2, v2) in MR image
reconstructed via Filtering by Fourier transform is determined by the pro-
jections ∆r cos(m∆θ −∆φ) of the distance ∆r = ||(u1, v1), (u2, v2)|| on each
U ′-axis specified by m∆θ (m = 0, 1, · · · ,M − 1).

b) Proof of SAI of x(u, v). The second item on the right side of Eq. (8.61) is
the covariance of x(u1, v1) and x(u2, v2); hence, Eq. (8.65) provides a measure
of the correlation of pixel intensities x(u1, v1) and x(u2, v2). To prove SAI of

x(u, v), it is sufficient to analyze
∑M−1
m=0 f(Wk∆r cos(m∆θ −∆φ)).

SAI of the filtered projection t(u′, θ) of Section 8.3.1.2.A implies that each
individual f(Wk∆r cos(m∆θ − ∆φ)) (m = 0, 1, · · · ,M − 1) almost mono-

tonically decreases as ∆r increases. Thus,
∑M−1
m=0 f(Wk∆r cos(m∆θ − ∆φ))

almost monotonically decreases as ∆r increases. This monotonically decreas-
ing pattern becomes more evident due to the cancellation of the tiny, local
fluctuations among M individual f(Wk∆r cos(m∆θ − ∆φ)). In the limiting
case of ∆r →∞, due to f(Wk∆r cos(m∆θ−∆φ))→ 0 (m = 0, 1, · · · ,M −1),
we have

lim
∆r→∞

M−1∑

m=0

f(Wk∆r cos(m∆θ − φ))→ 0. (8.166)

Eq. (3.126) shows that

M ≃ π

2
N, (8.167)
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where N is the number of the radial k-space samples in each view. Thus, M
is quite large. In Eq. (8.61), we rewrite

∆θ
M−1∑

m=0

f(Wk∆r cos(m∆θ − φ)) =M∆θ
1

M

M−1∑

m=0

f(Wk∆r cos(m∆θ − φ)),

(8.168)

where 1
M

∑M−1
m=0 f(Wk∆r cos(m∆θ−φ)) is an estimate of the mean of f(Wk∆r

cos(θ −∆φ)), that is, the sample mean. On the other hand, in Eq. (8.61), θ
varies from 0 to π and uniformly takes values m∆θ (m = 0, 1, · · · ,M − 1). It
is reasonable to assume that θ has a uniform distribution over [0, π]. That is,
the pdf of θ, p(θ), is

p(θ) =





1
π [0, π]

0 elsewhere.
(8.169)

Thus, in Eq. (8.61), we rewrite

∫ π

0

f(Wk∆r cos(θ − φ))dθ = π

∫ π

0

f(Wk∆r cos(θ − φ))p(θ)dθ, (8.170)

where
∫ π
0 f(Wk∆r cos(θ − φ))p(θ)dθ is the mean of f(Wk∆r cos(θ − φ)). Be-

cause M∆θ = π, Eq. (8.168) and Eq. (8.170) are equivalent.
As the mean or the sample mean, its variance is much smaller than those of

its individual samples. Thus,
∑M−1
m=0 f(Wk∆r cos(m∆θ − φ)) is almost mono-

tonically decreasing as ∆r increases.
These justifications have been confirmed by simulation results. The simula-

tion shown in Figure 8.12 and Figure 13 is for a 256×256 image (i.e., I = 256).
In its reconstruction, N ≃

√
2I = 362 and M ≃ π

2N = 569. In Figures 8.12
and 8.13, the horizontal axis ∆r is in the unit of the pixel. The vertical axis
shows the normalized magnitude |∑M−1

m=0 f(Wk∆r cos(m∆θ−φ))|. Figure 8.12
shows a 2-D plot and Figure 8.13 shows a line profile at the view θ = π

4 . Be-

cause the magnitudes of |∑M−1
m=0 f(Wk∆r cos(m∆θ − φ))| become very small

for large ∆r, the surface and the curve of |∑M−1
m=0 f(Wk∆r cos(m∆θ − φ))|

are only displayed for ∆r < 64 and < 32, respectively.
Figures 8.12 and 8.13 show that (1) except a few points (e.g., ∆r = 3),

|∑M−1
m=0 f(Wk∆r cos(θ− φ))| is monotonically decreases as ∆r increases, and

(2) there is no virtual correlation for ∆r > 8.
c) Proof of Eq. (8.67). The second item in the right side of Eq. (8.61),

i.e., Eq. (8.65), is the covariance of x(u, v). When (u1, v1) = (u2, v2), it gives
variance of x(u, v), denoted by σ2

x. From Eqs. (8.65) and (8.60), σ2
x is given

by

σ2
x = σ2

M

Wk

∆k
∆θ

M−1∑

m=0

1

12
W 2
k = σ2

M

Wk

∆k
(π

1

12
W 2
k ) =

1

3
σ2

M

Wk

∆k
SWk

, (8.171)
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FIGURE 8.12

A 2-D plot of the second item of Eq. (8.162) normalized by ∆θ
σ2
M

∆k , that is,

Eq. (8.65) normalized by ∆θ
σ2
M
∆k , shows that |

∑M−1
m=0 f(Wk∆r cos(m∆θ−φ))|

monotonically decreases as ∆r increases and becomes almost zero when ∆r
is large. This simulation result is for a 256× 256 image. In its reconstruction,
N = 362, and M = 569.
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FIGURE 8.13

A line profile in the 2-D plot of Figure 8.12. This line profile is at the view
m∆θ = π

4 . It shows that except for a few points, for example, ∆r = 3,

|∑M−1
m=0 f(Wk∆r cos(m∆θ−φ))| monotonically decreases as ∆r increases and

becomes almost zero for ∆r > 8.
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where SWk
= 1

4πW
2
k is the area of a circular region with Wk as its diameter

in the k-space of radial sampling.

Problems

8.1. Derive Eq. (8.55) and give an intuitive interpretation.

8.2. Derive Eq. (8.133).

8.3. Derive Eq. (8.138).

8.4. Prove Eq. (8.148) and Eq. (8.153).

8.5. Prove Eq. (8.152) and justify the monotonically decreasing patterns.

8.6. Derive Eq. (8.160).

8.7. Derive Eq. (8.161).

8.8. Figure 8.12 shows a 2-D plot of the normalized magnitude |∑M−1
m=0 f(Wk∆r

cos(m∆θ−φ))| with M = π
2N = 569. Make 2-D plots for M = 284 and

M = 1136, respectively, and interpret the results.
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9

Stochastic Image Models

9.1 Introduction

Chapters 6 and 8 describe statistical properties of X-ray CT imaging and MR
imaging at three levels of the image: a single pixel, any two pixels, and a
group of pixels (i.e., an image region). When a probabilistic distribution of
any pixel intensity with respect to all other pixel intensities in the image is
viewed as a stochastic model for the image, then this model can be thought of
as the statistical property of an image at its image level. In this way, statistical
properties at the three bottom levels of X-ray CT and MR images described
in Chapters 6 and 8 can be integrated into those at this top level to build
stochastic models. Thus, this chapter is a continuation of Chapters 6 and 8.

Chapters 2 and 3 show that X-ray CT imaging and MR imaging are based
on different physical phenomena and their imaging principles are very differ-
ent. Chapters 5 and 7 show that data acquired in X-ray CT and MR imaging
processes represent different physical quantities and their statistical properties
are also different. However, Chapters 6 and 8 show that X-ray CT imaging
and MR imaging have the very similar statistical properties. For example, in
these two types of images, the intensity of a single pixel has a Gaussian distri-
bution; intensities of any two pixels are spatially asymptotically independent;
intensities of a group of pixels (i.e., an image region) form a stationary and er-
godic random process. These common statistical properties suggest that these
two imaging modalities may have some fundamental and intrinsic links.

One possible reason for X-ray CT imaging and MR imaging having very
similar statistical properties may be the fact that they both belong to non-
diffraction computed tomographic imaging, which is briefly discussed in Chap-
ter 4. In nondiffraction CT imaging, the interaction model and the external
measurements (e.g., projections) are characterized by the straight line inte-
grals of some indexes of the medium and the image reconstruction is based
on the Fourier slice theorem. The convolution reconstruction method (FBP)
for X-ray CT and the projection reconstruction method (PR) for MRI have
shown this common feature.

The common statistical properties at the three bottom levels of X-ray CT
and MR images also suggest that we can create unified stochastic models for
both X-ray CT and MR images. Based on our view of a stochastic image

275
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model (i.e., a probabilistic distribution of any pixel intensity with respect to
all other pixel intensities in the image), these stochastic image models, in fact,
are the probability density functions (pdfs) of the image. This chapter shows
two stochastic image models. The first model can be treated as a special case,
that is, a simple version of the second model.

The use of stochastic models depends on the application and especially on
the image quality. Chapters 5 and 7 indicate that the imaging SNR is one of
the fundamental measures of image quality. Chapters 6 and 8 show that the
statistical properties of X-ray CT and MR images are related to the image
SNR. This chapter will show that SNR plays an important role in the model
selection and the model order reduction.

9.2 Stochastic Model I

Let IMG(J,K) denote an image consisting of J pixels and K image regions;
xi,j denotes the intensity of the pixel at (i, j) in the image (1 ≤ i ≤ Ji, 1 ≤
j ≤ Jj , JiJj = J). Rk and IMGRk

(k = 1, · · · , K) represent the k-th image
region and the k-th region image, respectively. All image regions are mutually
exclusive.

Chapter 6 and Chapter 8 show that every pixel intensity has a Gaussian dis-
tribution, any two pixel intensities are spatially asymptotically independent,
and each image region is a stationary, ergodic Gaussian random process. How-
ever, Appendix A of Chapter 6 and Appendix E of Chapter 8 also show that
when the image signal-to-noise ratio (SNR) is sufficiently large, pixel inten-
sities of the image can be considered statistically independent. This section
describes a stochastic model for the image whose pixel intensities are statisti-
cally independent, and gives a general discussion of the relationship between
the independence of pixel intensities and the SNR of the image.

9.2.1 Independent Finite Normal Mixture

Property 9.1 The pdf f(xi,j) of the pixel intensity xi,j with respect to all
other pixel intensities in the image is a sum of the weighted marginal pdfs
g(xi,j |θk) (k = 1, · · · , K) of the pixel intensity xi,j ,

f(xi,j) =
K∑

k=1

πkg(xi,j |θk), (9.1)

where the weight πk is the probability of the occurrence of the image region
Rk in the image, that is,

πk = P (R = Rk), (9.2)
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which is characterized by a multinomial distribution (MN) [77] given by

0 < πk < 1 and

K∑

k=1

πk = 1, (9.3)

each marginal pdf g(xi,j |θk) is a Gaussian characterized by the mean µk and
the variance σ2

k of each image region given by

g(xi,j |θk) =
1√
2πσk

exp(− (xi,j − µk)2
2σ2

k

), (9.4)

with the parameter vector given by

θk = (µk, σk). (9.5)

Eq. (9.1) is a new pdf and known as the independent Finite Normal Mixture,
abbreviated iFNM.

Proof.

1) For convenience of the derivation, IMG(J,K) is simplified to IMG.
Because its K image regions are mutually exclusive, we have

IMG =

K⋃

k=1

IMGRk
, (9.6)

where
⋃

represents the union. Thus

0 < πk = P (Rk) < 1, (9.7)

and
K∑

k=1

πk =

K∑

k=1

P (Rk) = P (

K⋃

k=1

Rk) = 1. (9.8)

πk is characterized by a multinomial distribution.
2) Property 6.1 and Property 8.1 show that the pixel intensity in either

the X-ray CT image or the MR image has a Gaussian distribution. Because
(a) the intensities of pixels in an image region have the same mean and the
variance, and (b) a Gaussian distribution is uniquely determined by its mean
and variance, pixel intensities in an image region can be characterized by a
(one) Gaussian distribution. Thus, for the pixel (i, j) ∈ Rk, the pdf of xi,j is
given by Eq. (9.4).

3) From 1) and 2), the probability for a pixel (i, j) being in the k-th image
region Rk, that is, the probability for a pixel intensity xi,j having N(µk, σk)
distribution, is πkg(xi,j |θk). Thus, the probability for a pixel (i, j) being in
the image, that is, the probability of a pixel intensity xi,j with respect to all

other pixel intensities in the image, is
∑K
k=1 πkg(xi,j |θk).
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4) It is clear that
K∑

k=1

πkg(xi,j |θk) > 0, (9.9)

and

∫ ∞

−∞

K∑

k=1

πkg(xi,j |θk)dxi,j =
K∑

k=1

πk

∫ ∞

−∞
g(xi,j |θk)dxi,j =

K∑

k=1

πk = 1. (9.10)

Thus,
∑K
k=1 πk g(xi,j |θk) is a pdf and denoted by f(xi,j).

Note: All pixel intensities xij are independently identically distributed
(i.i.d.) samples drawn from iFNM (Eq. (9.1)).

9.2.2 Independence and Signal-to-Noise Ratio

Property 6.6 shows that for X-ray CT image with high SNR, its pixel intensi-
ties are approximately independent. Eq. (6.54) gives its proof. This situation is
also observed in MR images. Eq. (8.44) has essentially same form as Eq. (6.54),
and will be discussed further in Section 9.4.2. In the following, we elaborate
on the relationship between the correlation of pixel intensities and the SNR
of the image from a general statistics theory.

Let xi1,j1 and xi2,j2 be two pixel intensities, xi1,j1 ∼ N(µ1, σ1) and xi2,j2 ∼
N(µ2, σ2). Let Cx((i1, j1), (i2, j2)) and Rx((i1, j1), (i2, j2)) be their covariance
and correlation, respectively. From the definition of the correlation coefficient
rx((i1, j1), (i2, j2)), we have

rx((i1, j1), (i2, j2)) =
Cx((i1, j1), (i2, j2))

σ1σ2
, (9.11)

which leads to

Rx((i1, j1), (i2, j2)) = µ1µ2 + rx((i1, j1), (i2, j2))σ1σ2. (9.12)

Eq. (9.12) can be rewritten as

Rx((i1, j1), (i2, j2)) = µ1µ2(1 +
1

µ1

σ1

µ2

σ2

rx((i1, j1), (i2, j2))). (9.13)

In Eq. (9.13), µ1

σ1
and µ2

σ2
represent the signal-to-noise ratio (SNR). Let

SNR1 =
µ1

σ1
and SNR2 =

µ2

σ2
; (9.14)

we have

Rx((i1, j1), (i2, j2)) = µ1µ2(1 +
1

SNR1SNR2
rx((i1, j1), (i2, j2))). (9.15)
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Thus, when SNR is sufficiently large, the second item in parenthesis on the
right side of Eq. (9.15) becomes very small and can be ignored. Under this
condition (an approximation), Eq. (9.15) becomes

Rx((i1, j1), (i2, j2)) ≃ µ1µ2 = E[xi1,j1 ]E[xi2,j2 ], (9.16)

which implies that xi1,j1 and xi2,j2 are approximately uncorrelated, and hence
independent.

1
SNR1SNR2

rx((i1, j1), (i2, j2)) of Eq. (9.15) is a measure of the correlation
of pixel intensities xi1,j1 and xi2,j2 . To illustrate the relation between this
measure and the SNR of pixel intensities, numerical examples are shown in
Table 9.1, where |rx((i1, j1), (i2, j2))| ≤ 1, for example, 0.5.

TABLE 9.1

Relation between SNR and a Measure of Correlations of Pixel Intensities

SNR1 = SNR2 ≥ 2.24/3.5 db 7.07/8.5 db 22.4/13.5 db
1

SNR1SNR2
rx((i1, j1), (i2, j2)) < 0.100 0.010 0.001

The pixel intensity xi,j consists of two components: signal and noise. The
signal component and noise component are viewed as deterministic and ran-
dom, respectively. The correlation between pixel intensities is mainly deter-
mined by their noise components. Eq. (9.14) shows that SNR can be increased
by either reducing the noise power or increasing signal strength, or doing both.
In each of these three cases, the noise power is reduced either absolutely or
relatively (with respect to the signal strength). As a result, the correlation
between the noise components of two pixel intensities becomes weaker. Thus,
the stronger SNR and the weaker correlation are consistent.

9.3 Stochastic Model II

9.3.1 Markovianity

This section shows that the pixel intensities of X-ray CT and MR images form
a Markov process, that is, a Markov random field (MRF) with the proper
neighborhood system. This property is called Markovianity. MRF involves
multiple pixels. Because pixels in an MRF neighborhood may not be required
to be in one group (e.g., in an image region), Markovianity is not addressed in
Chapter 6 and Chapter 8, where statistical properties of X-ray CT and MR
images are described at the three levels (a single, two, and a group of pixels)
of the image.
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9.3.1.1 Markov Random Field

SAI (Property 6.2 and Property 8.2) and ECC (Property 8.3) show that when
the spatial separation between pixels becomes sufficiently large, the magnitude
of the correlation of pixel intensities becomes very small and can be negligible.
This property represents a special case of the local dependence, which can be
characterized by a Markov process or Markov field [2, 77].

Markov process. In this concept, a random process x(n) is a p-th-order
Markov, if the conditional probability of x(n) given the entire past is equal
to the conditional probability of x(n) given only x(n− 1), · · · ,x(n−p). Thus,
let xi (i = 1, 2, · · ·) be discrete random variables, a random process is called
p-th-order Markov if

P (xn|xn−1,xn−2, · · · ,x1) = P (xn|xn−1, · · · ,xn−p). (9.17)

In a Markov process, the transfer probability is defined by

Pij(n, s) = P (xn = ai|xs = aj) (n > s), (9.18)

and has the properties

1) Positive

Pij(n, s) > 0 and
∑

j

Pij(n, s) = 1; (9.19)

2) Reversal
Pij(n, s) = P (xn = ai|xs = aj) (n < s); (9.20)

3) Transitional

Pij(n, s) =
∑

k

Pik(n, r)Pkj(r, s) (n > r > s), (9.21)

which is the discrete version of the Chapman–Kolmogoroff equation.

Markov random field. In this concept, a 2-D random field is a Markov,
if at every pixel location we can find a partition

∫ +
(the future), N (the

present), and
∫ −

(the past) of the 2-D lattice L providing support to the sets
of random variables x+, xN , and x− such that

P (x+|xN ,x
−) = P (x+|xN ), (9.22)

which is illustrated in Figure 9.1.

Lattice. A 2-D lattice L is defined by a set of pairs of integers

L = {(i, j), 1 ≤ i, j ≤M}. (9.23)
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· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

✈

• - the future, ∗ - the present, · - the past.

FIGURE 9.1

An illustration of the 2-D lattice and the local dependence P (•|∗, ·) = P (•|∗).

Neighborhood of pixels. The neighborhood Ni,j of the pixel (i, j) ((i, j) ∈ L)
is a subset of L, that is, Ni,j ⊂ L. Ni,j and Nk,l are the neighborhoods of
pixels (i, j) and (k, l) if and only if

(i, j) /∈ Ni,j and (k, l) /∈ Nk,l,

(k, l) ∈ Ni,j ⇐⇒ (i, j) ∈ Nk,l.
(9.24)

Extent of Neighborhood. Let d = ||(i, j), (k, l)|| denote the distance between
centers of pixels (i, j) and (k, l) in the unit of the pixel; d is an integer. Let

p be the order of the neighborhood of pixel (i, j), N p
i,j . If d ≤

√
2
p−1

, then
pixels (k, l) ∈ N p

i,j . This criterion is valid for p = 1, 2, 3.

Clique. Clique c is a subset of L, in which every pair of distinct pixels in
c are mutual neighbors, that is, they are in the neighborhoods of each other.
Note, by this definition, that individual pixels are cliques.∗ A function defined
on the clique, known as the clique function, is described in Chapter 11.

Neighborhood system. A collection of subsets of L described by

N = {Ni,j |(i, j) ∈ L, Ni,j ⊂ L}, (9.25)

forms a neighborhood system on the lattice L, which can also be understood
as an ordered class of cliques

C = {ci,j |(i, j) ∈ L, ci,j ⊂ L}. (9.26)

∗For the pixels located on the edges of an image, their neighborhoods and cliques are
specially defined.
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i,j} N p

i,j = {k : k ≤ p}

FIGURE 9.2

A structure of a neighborhood system up to the 6th order in which the p-th-
order neighborhood system N p consists of all lower-order systems N k (k < p)
and additional pixels marked by p.

Figure 9.2 shows a neighborhood system up to the 6th order, where each
square represents a pixel. The integer inside each square represents the lowest
order of the neighborhood system to which the pixel belongs. Thus, for an
arbitrary pixel, say (i, j), its p-th-order neighborhood system N p

i,j consists of

all its lower-order neighborhood systems: N p
i,j =

⋃p
k=1N k

i,j = {k : k ≤ p}.
Figure 9.3 shows cliques in the 1st and 2nd order neighborhood systems

(N p, p = 1, 2). The clique c depends on the order of the neighborhood systems
(p) and the number of pixels in the clique (q). For example, a clique may
consist of two pixels (horizontal and vertical pair) in N 1, or two pixels (45◦

and 135◦ diagonal pair) in N 2, or three pixels (triangle) in N 2, etc.

Markov random field. Let xi,j (i, j = 1, 2, · · ·) be discrete random variables,
a discrete 2-D random field is called a Markov [8, 24, 25, 27, 28, 31] on (L, N ),
if and only if ∀(i, j) ∈ L, the probability mass function

(a) P (xi,j = xi,j) > 0,

(b) P (xi,j = xi,j |xk,l = xk,l, (k, l) 6= (i, j))

= P (xi,j = xi,j |xk,l = xk,l, (k, l) ∈ Ni,j).

(9.27)

Eq. (9.27) can be simplified to

P (xi,j) > 0 and P (xi,j |xL−(i,j)) = P (xi,j |xNi,j ). (9.28)

Gibbs random field. Let x = {xi,j} (1 ≤ i, j ≤ M) be defined on L.
A probability density function, often known as the Gibbs distribution and
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FIGURE 9.3

Clique types in the second-order neighborhood system N 2.

abbreviated GD, is defined by

pG(x) = Z−1 exp(−β−1
∑

c

Vc(x)), (9.29)

where the partition function Z =
∑

x
exp(−β−1

∑
c Vc(x)) is a normalized

constant, β is a constant (also known as the temperature),
∑

c Vc(x) is an
energy function, and Vc(x) is the clique potential of clique c. pG(x) specifies
a random field called Gibbs random field (GRF), which is defined on (C,L).

MRF describes the local properties of x, while the Gibbs distribution pro-
vides a global description of x. N of Eq. (9.25) and C of Eq. (9.26) in the
definition of the neighborhood system suggest that there are some intrinsic
links between MRF and the Gibbs distribution. The Hammersley–Clifford
theorem [9–14, 24] describes the equivalence between MRF and GRF.

For any neighborhood systemN , x is an MRF with respect toN (Eq. (9.27))
if and only if pG(x) is a Gibbs distribution with respect to C (Eq. (9.29)).

It has been shown that this equivalence can be expressed as

P (xi,j = x|xL−(i,j)) =
e−β

−1 ∑
c:(i,j)∈c Vc(xi,j=x)

∑
xi,j

e−β
−1

∑
c:(i,j)∈c Vc(xi,j)

. (9.30)

Eq. (9.30) indicates that the local characteristics of x described by MRF with
respect to N can be evaluated by a measure given by Gibbs distribution with
respect to C via clique potentials Vc. The ability to move between local and
global descriptions is a big advantage of MRF and GRF over other models,
and provides the basis for MRF generation, which is described in Appendix
9A.
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9.3.1.2 Markovianity

Based on the definition of MRF, a set of necessary and sufficient conditions
for a random field (RF) to be an MRF is given and proved in the following
assertion.

Assertion Let L be a 2-D finite lattice, N a neighborhood system on L, x =
{xi,j} (1 ≤ i, j ≤ M) a 2-D discrete RF on (L,N ). Necessary and sufficient
conditions for x to be an MRF are that ∀(i, j) ∈ L and ∀(k, l) ∈ L−Ni,j−(i, j);
xi,j and xk,l are conditionally independent of the neighborhood of (i, j) or
(k, l), that is,

P (xi,j , xk,l|xNi,j ) = P (xi,j |xNi,j )P (xk,l|xNi,j ) , (9.31)

where Ni,j denotes the neighborhood of (i, j) and P (⋆|∗) represents the con-
ditional probability.

Proof

As shown by Eq. (9.28), a discrete 2-D RF x is called an MRF on (L,N )
if and only if ∀(i, j) ∈ L,

P (xi,j) > 0 and P (xi,j |xL−(i,j)) = P (xi,j |xNi,j ). (9.32)

Necessary. From the Bayesian theorem, we have

P (xi,j , xk,l|xNi,j ) = P (xi,j , xk,l, xNi,j )/P (xNi,j )

= P (xi,j |xk,l, xNi,j )P (xk,l, xNi,j )/P (xNi,j ) (9.33)

= P (xi,j |xk,l, xNi,j )P (xk,l|xNi,j ).

If x is an MRF, then P (xi,j |xk,l, xNi,j ) = P (xi,j |xL−(i,j)) = P (xi,j |xNi,j ).
Thus, Eq. (9.33) becomes Eq. (9.31), that is, the condition Eq. (9.31) is met.

Sufficient. From the Bayesian theorem, we have

P (xi,j |xL−(i,j)) = P (xi,j |xk,l, xNi,j )

= P (xi,j , xk,l, xNi,j )/P (xk,l, xNi,j ) (9.34)

= P (xi,j , xk,l|xNi,j )/P (xk,l|xNi,j ).

If the condition Eq. (9.31) is met, then P (xi,j |xL−(i,j)) = P (xi,j |xNi,j ), that
is, the condition Eq. (9.32) is met, then x is an MRF.
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Applying the above necessary and sufficient conditions to X-ray CT and
MR images and using SAI (Property 6.2 and Property 8.2), the Markovianity
of X-ray CT and MR images is given and proved below.

Property 9.2 X-ray CT and MR images are embedded in an MRF with a
proper neighborhood system in terms of pixel intensities and their correlations.

Proof

Let ||(i, j), (k, l)|| denote the distance (in the unit of pixel size) between
pixels at (i, j) and (k, l). Based on SAI (Property 6.2 and Property 8.2),
when ||(i, j), (k, l)|| increases to a value, say m, the correlation of two pixel
intensities becomes very small and negligible. For instance, in an X-ray CT
image,m = 2 for the parallel projection andm = 7 for the divergent projection
(Figure 6.3); in an MR image, m = 1 for the basic FT image (Figure 8.8)
and m = 3 for the filtered FT MR image (Figures 8.9 and 8.10). Thus, when
||(i, j), (k, l)|| ≥ m, xi,j and xk,l can be considered conditionally uncorrelated,
and hence independent due to Gaussianity, that is,

P (xi,j , xk,l|(||(i, j), (k, l)|| ≥ m))

= P (xi,j |(||(i, j), (k, l)|| ≥ m))P (xk,l|(||(i, j), (k, l)|| ≥ m)). (9.35)

∀(i, j) ∈ L, we can select a neighborhood Ni,j for it such that ∀(k, l) ∈
L −Ni,j − (i, j), ||(i, j), (k, l)|| ≥ m. Thus, Eq. (9.35) is equivalent to

P (xi,j , xk,l|xNi,j ) = P (xi,j |xNi,j )P (xk,l|xNi,j ). (9.36)

Therefore, the sufficient condition Eq. (9.31) is satisfied. Therefore, for such
selected neighborhood systems, pixel intensities in X-ray CT and MR images
form an MRF.

Property 9.2 leads to a procedure for selecting this neighborhood system.
Figure 9.2 shows the neighborhood systems up to the 6th order, where each
square represents a pixel. The integer number inside each square represents
the lowest order of the neighborhood system to which that pixel belongs. The
distance between the centers of two adjacent pixels, in either the horizontal
or vertical direction, is the pixel, that is, counted by the integer m.

As an example, the numerical values of the curve in Figure 8.9b,
cfn(m1,m2), which is for the 2-D case† are given in Table 9.2. Suppose
that under the condition cfn(m1,m2) < 0.1, pixel intensities can be approx-
imately considered independent; then by mapping Table 9.2 onto Figure 9.2

†The curves in Figures 8.8–8.10 are for the 1-D case. Because 2-D FT and all other functions
used in FT imaging are separable, the correlations of pixel intensities for the 2-D case are
the products of those in two 1-D cases; thus, cfn(m1,m2) = cfn(m1)cfn(m2).
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(1.0000 sits on (i, j) and each number sits on each pixel), the constraint
cfn(m1,m2) > 0.1 will define a region that is exactly the 3rd-order neighbor-
hood of (i, j). This example shows that MR images reconstructed by filtered
FT can be considered embedded in an MRF with the 3rd-order neighborhood
system under the condition cfn(m1,m2) > 0.1.

Generally, the threshold t in the condition cfn(m1,m2) > t can be different.
When t is smaller, the order of the neighborhood system will be higher, which
gives a more accurate MRF model, but also requires more computations in
the MRF model-based image analysis. Therefore, the choice of t should be
dictated by a trade-off between accuracy and efficiency.

TABLE 9.2

cfn(m1,m2) of Eq. (8.154) over the Neighborhood Systems

m2 m1 = −3 −2 −1 0 +1 +2 +3
−3 .00000 .00000 .00001 .00003 .00001 .00000 .00000
−2 .00000 .01778 .08337 .13333 .08337 .01778 .00000
−1 .00001 .08337 .39100 .62530 .39100 .08337 .00001
0 .00003 .13333 .62530 1.0000 .62530 .13333 .00003

+1 .00001 .08337 .39100 .62530 .39100 .08337 .00001
+2 .00000 .01778 .08337 .13333 .08337 .01778 .00000
+3 .00000 .00000 .00001 .00003 .00001 .00000 .00000

9.3.2 Correlated Finite Normal Mixture

X-ray CT and MR images consist of piecewise contiguous and mutually ex-
clusive image regions. By using the same notation of Section 9.2, IMG, Rk
and IMGRk

denote the image, its k-th image region and k-th region image.

IMG =
⋃K
k=1Rk. Let K = {1, 2, · · · , K} be an ordered set of the labels and

each image region Rk (k = 1, · · · , K) be labeled by a k ∈ K.
A pixel (i, j) is also given a label yi,j . In the k-th image region Rk, because

all pixel intensities xi,j have the same mean µk and variance σ2
k (the defini-

tion of the image region) and have the same Gaussian distribution N(µk, σk)
(Property 6.1 and Property 8.1), the pixel label is assigned based on the fol-
lowing role: if (i, j) ∈ Rk, then yi,j = k.

Thus, each pixel (i, j) in an image has two signatures: an intensity xi,j and
a label yi,j . Hence, the image can be viewed to have two layers: an intensity
layer x = {xi.j} that is directly observed and a context layer y = {yi.j} that
seems to be hidden.

It is clear that if xi,j ∼ N(µk, σk), then yi,j = k; or, if yi,j = k, then
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xi,j ∼ N(µk, σk). This relationship can be expressed as‡

{xi,j ∼ N(µk, σ
2
k)} ⇐⇒ {yi,j = k} .

Because x = {xi.j} is embedded in an MRF with respect to a selected neigh-
borhood system (Property 9.2), the one-to-one correspondence between the
intensity xi,j and the label yi,j of the pixel (i, j) leads to y = {yi.j} is
also embedded in an MRF with respect to the same neighborhood system
as x = {xi.j}.

A stochastic model for X-ray CT and MR images is described by the fol-
lowing property.

Property 9.3 Let xi,j and yi,j be the intensity and label of the pixel (i, j)
in the image, and Ni,j be the neighborhood of (i, j). The conditional pdf
f(xi,j |x6=i,j) of a pixel intensity given all other pixel intensities in the image
is a sum of the penalized marginal pdfs g(xi,j |θk) (k = 1, · · · , K) of the pixel
intensity xi,j ,

f(xi,j |x6=i,j) =
K∑

k=1

P (yi,j = k|yNi,j )g(xi,j |θk), (9.37)

where K is the number of image regions in the image, the conditional proba-
bility P (yi,j = k|yNi,j ) is the penalty of the marginal pdf, given by

P (yi,j = k|yNi,j ) = pG(yi,j) = Z−1 exp(−β−1
∑

c

Vc(yi,j)), (9.38)

where pG denotes Gibbs pdf (Eq. (9.29)), Z is the partition function, β is a
constant, and Vc(yi,j) is the clique potential. Each marginal pdf g(xi,j |θk) is a
Gaussian characterized by the mean µk and variance σ2

k of each region image,
given by

g(xi,j |θk) =
1√
2πσk

exp(− (xi,j − µk)2
2σ2

k

), (9.39)

with θk = (µk, σk) as a parameter vector. Eq. (9.37) is a new pdf and known
as the correlated Finite Normal Mixture, abbreviated cFNM.

Proof

Based on Property 9.2 (Markovianity) and Eq. (9.28), we have

f(xi,j |x6=i,j) = P (xi,j |xL−(i,j)) = P (xi,j |xNi,j ). (9.40)

Using the Bayesian theorem, we have

P (xi,j |xNi,j ) =

K∑

k=1

P (xi,j , yi,j = k|xNi,j )

‡The partial volume effect is not considered here.
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=

K∑

k=1

P (xi,j , yi,j = k, xNi,j )/P (xNi,j )

=

K∑

k=1

P (xi,j |yi,j = k, xNi,j )P (yi,j = k, xNi,j )/P (xNi,j )

=
K∑

k=1

P (yi,j = k|xNi,j )P (xi,j |yi,j = k)

=
K∑

k=1

P (yi,j = k|yNi,j )g(xi,j |θk) . (9.41)

Eqs. (9.40) and (9.41) give Eq. (9.37).

With MRF-GD equivalence, the MRF description P (yi,j = k|yNi,j ) equals
the GD description pG(yi,j = k)§, which gives Eq. (9.38).

The proof for the marginal pdf g(xi,j |θk) is the same as that in the proof
of Property 9.1.

Because (a) f(xi,j |x6=i,j) = P (xi,j |xNi,j ) > 0 and (b) the integration of
f(xi,j |x6=i,j) = is

∫ ∞

−∞
f(xi,j |x6=i,j)dxi,j =

∫ ∞

−∞
P (xi,j |xNi,j )dxi,j

=

K∑

k=1

P (yi,j = k|yNi,j )

∫ ∞

−∞
g(xi,j |θk)dxi,j

=

K∑

k=1

P (yi,j = k|yNi,j ) = 1 , (9.42)

f(xi,j |x6=i,j) = of Eq. (9.37) is a new pdf, which is called the correlated Finite
Normal Mixture, abbreviated cFNM.

9.4 Discussion

9.4.1 Mixture Models and Spatial Regularity

cFNM (Eq. (9.37)) and iFNM (Eq. (9.1)) are derived from different ap-
proaches; however, they have a similar function form of pdf. This similarity

§This is based on Besag pseudolikelihood [60], PL(y) =
∏

(i,j) PG(yi,j |yNi,j
) =

∏
(i,j){exp(−

1
β

∑
c:(i,j)∈c Vc(yi,j = k))/

∑
yi,j

exp(− 1
β

∑
c:(i,j)∈c Vc(yi,j))}.
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suggests that there are some intrinsic links between them. Indeed, iFNM is a
special case, that is, a simple version, of cFNM.

When pixel intensities xi,j are statistically independent, f(xi,j |x6=i,j) of
Eq. (9.37) can be expressed as

f(xi,j |x6=i,j) = f(xi,j)

=

K∑

k=1

P (xi,j , yi,j = k)

=

K∑

k=1

P (yi,j = k)P (xi,j |yi,j = k)

=

K∑

k=1

P (yi,j = k)g(xi,j |θk), (9.43)

Section 9.3.2 shows that P (yi,j = k) is equivalent to P ((i, j) ∈ Rk) - the
probability of the occurrence of the k-th image region in the image. From
Property 9.1, P (yi,j = k) = P ((i, j) ∈ Rk) = πk. Thus, Eq. (9.43) becomes

f(xi,j) =
K∑

k=1

πkg(xi,j |θk). (9.44)

which is Eq. (9.1).
The common items in Eqs. (9.37) and (9.1) are the marginal pdf g(xi,j |θk),

which is a Gaussian characterizing the kth image region in the image. The
difference between Eq. (9.37) and Eq. (9.1) is the penalty P (yi,j = k|yNi,j )
and the weight πk, which are characterized by a Gibbs distribution (GD) and
a multinomial distribution (MN), respectively.

In cFNM, the probability of yi,j = k is conditional: p(yi,j = k|yNi,j ). That is,
the GD prior represents a regional constraint modulated by the neighborhood
on which GD and MRF are based. Neighborhood-based modulation imposes
spatial regularity on the regional constraint. In iFNM, the probability of yi,j =
k is unconditional: p(yi,j = k). That is, the MN prior represents a regional
constraint only, and the spatial regularity is not imposed.

The difference between iFNM and cFNM can be briefly stated as follows.
iFNM is a spatially independent model and can be fully characterized by the
histogram of the image data. It is clear that images with the same histogram
may have very different structures. cFNM imposes certain spatial regularity
to overcome this shortcoming. It is a model that can be adapted to structural
information or spatial dependence.

9.4.2 Mixture Models and Signal-to-Noise Ratio

Section 9.3.2 gives a general description of the independence and the signal-
to-noise ratio of pixel intensities. This section provides a discussion of the



290 Statistics of Medical Imaging

interrelationship between iFNM and cFNM and the signal-to-noise ratio of
the image. The MR image is used as an example for this discussion.

cFNM is more general but complicated; iFNM is simpler but requires in-
dependence. The following discussion provides insights into if iFNM can be
utilized as an approximation of cFNM. For the convenience of discussion, the
fourth formula of Eq. (8.44) is copied below

Rx((u1, v1), (u2, v2)) = µx1µ
∗
x2

+ (
W

∆k
)2σ2

Msinc(W∆u,W∆v)f(W∆u,W∆v), (9.45)

where Rx((u1, v1), (u2, v2)) is the correlation of two pixel intensities x(u1, v1)
and x(u2, v2), σ

2
M is the variance of k-space samples, W and ∆k are the

window width and the spacing of k-space sampling, ∆u = u1 − u2, ∆v =
v1 − v2, sinc(⋆, ∗) is a 2-D sinc function, and f(⋆, ∗) is a 2-D filter function
used in filtered FT MR imaging.

Let E[x(u1, v1)] = µx1e
iφ1 , E[x(u2, v2)] = µx2e

iφ2 . From the eighth formula
of Eq. (8.44), the signal-to-noise ratio of the pixel intensity can be expressed
by SNR1 = µx1/(

W
∆kσM

√
f(0, 0)) and SNR2 = µx2/(

W
∆kσM

√
f(0, 0)). Thus,

Eq. (9.45) can be rewritten as

Rx((u1, v1), (u2, v2)) = µx1µx2e
i(φ1−φ2)

(1 +
e−i(φ1−φ2)

SNR1 · SNR2 · f(0, 0)
sinc(W∆u,W∆v)f(W∆u,W∆v)). (9.46)

When SNR is large, for example, SNR ≥ 10, the second term inside the
parentheses on the right side of Eq. (9.46) becomes very small and can be
neglected. Thus, Eq. (9.46) can be approximated by

Rx((u1, v1), (u2, v2)) ≃ E[x(u1, v1)]E[x∗(u2, v2)], (9.47)

which implies that when SNR is large, pixel intensities are approximately
uncorrelated, and hence independent. Therefore, iFNM can be utilized as an
approximation of cFNM.

9.4.3 Mixture Models and Hidden Markov Random Field

Generally, a Hidden Markov random process is derived from the Hidden
Markov Model (HMM), that is, a stochastic process generated by a Markov
chain (MC) in which its state sequence cannot be observed directly, only
through a sequence of the observations. Each observation is assumed to be
a stochastic function of the state sequence. We consider a 2-D case, Hidden
Markov random field, abbreviated HMRF [16–18, 62].

A HMRF is defined on two random fields: an (observable) intensity field
x and a (hidden) context field y. We have shown that for X-ray CT and
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MR imaging, both x and y are MRF with respect to the same neighborhold
system. In some literature, these two fields are assumed to be conditional
independent, that is,

P (x|y) =
∏

i

P (xi|yi).

The cFNM model in Eq. (9.37) is defined on two MRFs: the intensity field x
and the context field y. This section discusses some relationships between the
cFNM model and the HMRF model.

1) In cFNM, the spatial regularity p(yi,j = k|xNi,j ) is derived from the
correlations of pixel intensities xi,j of the observed image x. As a result, the
order of the neighborhood system and the cliques can be selected with the
required accuracy and a clearly physical meaning. In HMRF, spatial regularity
is assessed by the assumed Markovianity of the hidden contextual field y. It
follows that the selections of the neighborhood systems and the cliques are
based on some assumptions that are quite arbitrary.

2) cFNM has an explicit expression Eq. (9.37) that directly links spatial
regularity with image structure and characteristics, for example, the num-
ber of image regions K, the region property (µk, σk), and the pixel property
(Gaussianity). HMM does not directly show these relationships.

3) cFNM has its independent counterpart iFNM. cFNM and iFNM have
almost identical formulae. Their interrelationship offers advantages in image
analysis. Although iFNM is viewed as degenerated HMRF, iFNM and HMRF
have very different expressions.

4) For cFNM, Eq. (9.37) is a pdf that can be directly used to form the
conditional expectation in the Expectation-Maximization (EM) algorithm [21,
64], the pseudolikelihood [24, 30], and the mean field-like approximations [51,
61, 62] in parameter estimation. It is difficult to use HMRF to perform these
tasks.

5) In some applications, for example, in image analysis, cFNM and HMRF
are also different. The standard EM algorithm and its modified version can
be directly applied to iFNM and cFNM, respectively. However, it is not so
straightforward for HMRF. In cFNM model-based image analysis, pixels are
classified into proper image regions with the highest penalized (imposed by
spatial regularity) marginal probability. The HMRF model-based approach
often adopts Maximum a Posteriori (MAP) operation; its procedure and in-
terpretation are not so direct and clear as in a cFNM model-based approach.
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9.5 Appendix

9.5.1 Appendix 9A

This appendix describes MRF image generation and Gibbs sampler, which
are based on [28].

9.5.1.1 From Physical Systems to Images

Analogy between Boltzmann factor and Gibbs distribution. In physics, let Ω =
{ω} denote the possible configurations of a system. If the system is in thermal
equilibrium with its surroundings, then the probability, or Boltzmann factor,
of ω ∈ Ω is given by

p(ωs) =
e−βe(ωs)

∑
ω e

−βe(ω) , (9.48)

where e(ω) is the energy function of ω and β = 1
κT , κ is Boltzmann’s constant

and, T is the absolute temperature [25–27]. The physical system tends to be
in the low energy state (the most stable) with the higher probability.

The Boltzmann factor (Eq. (9.48)) is identical to the Gibbs distribution
(Eq. (9.29)) whose energy function is in terms of the clique potentials. There-
fore, minimizing the energy function e(ω) of Boltzmann factor (i.e., seeking
the most stable state of a physical system) is equivalent to the maximizing
the Gibbs distribution.

Equivalence between Gibbs distribution and Markov random field. Section
9.3.2 describes MRF-GRF equivalence. Thus, the maximizing Gibbs distribu-
tion will lead to generating a most like configuration of MRF. As a benefit of
this equivalence, the ability to move between the global and local descriptions
provides us with a simple and practical way of creating an MRF via specifying
clique potentials, which is easy, instead of local characteristics, which is nearly
impossible.

Correspondence between annealing and relaxation. The physical annealing
process (gradually reducing temperature of a system) leads to low-energy
states, that is, the most probable states under the Gibbs distribution. The
result of maximizing the Gibbs distribution, for given initial states, is a highly
parallel relaxation algorithm.

When pixel intensities and the image regions are viewed as states of a
lattice-based physical system, the above-mentioned analogy, equivalence, and
correspondence can be applied to the generation of MRF images. For sim-
plicity of description, we use 1-D notation. For a 2-D lattice L of pixels (i, j)
given by

L = {(i, j) : 1 ≤ i, j ≤M}, (9.49)

adopting a simple numbering, that is. the row-ordering, of pixels

t = j +M(i− 1), (9.50)
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and letting
N =M2, (9.51)

we have a 1-D set of pixels

S = {s1, · · · , st, · · · , sN}. (9.52)

Let x = {xs, s ∈ S} be an MRF over a neighborhood {Ns, s ∈ S} with the
state space

Λ = {1, · · · , k · · · , K}, (9.53)

its configuration space is Ω =
∏
s Λ, and the Gibbs distribution is given by

pG(x) =
1
Z e

−∑
c:s∈c Vc(x)/T (x ∈ Ω).

9.5.1.2 Statistical Relaxation

Reference [28] introduces a Bayesian paradigm using MRF for the analysis of
images. In [28], Theorem A (relaxation), Theorem B (annealing), and The-
orem C (ergodicity) establish the convergence properties of the relaxation
algorithm. For MRF image generation and Gibbs sampler, we summarize the
underlying principles in the following four assertions. Assertion 1 states GRF-
MRF equivalence. Assertion 2 shows that the local characteristics can be ob-
tained from the global description. Assertion 3 describes the invariance over
the permutations. Assertion 4 states the statistical relaxation rule.

Assertion 1 (Equivalence) Let N be a neighborhood system. Then x is an
MRF with respect to N if and only if pG(x) is a Gibbs distribution with
respect to C.
Assertion 2 (Markovianity) Fix s ∈ S, x = {x1, · · · , xs, · · · , xN ) ∈ Ω. If P (x)
is Gibbs, then

P (xs = k|xr, r 6= s) =
e−

∑
c:s∈c Vc(xs=k)/T

∑
xs∈Λ e

−∑
c:s∈c Vc(xs)/T

. (9.54)

Assertion 3 (Invariance) In a homogeneous MRF, the probability mass func-
tion is invariant under permutations of pixels,¶ and for any pixel s

P (xs = k) =
1

K
. (9.55)

Assertion 4 (Statistical relaxation rule) Given the state of the system at
time t, say x(t), one randomly chooses another configuration η and computes
the energy change (here we still use the Boltzmann factor)

∆ε = ε(η)− ε(x(t)) (9.56)

¶{s1, s2, · · · , sN} is one permutation of {1, 2, · · · , N}.
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and the quantity

q =
p(η)

p(x(t))
= e−β∆ε. (9.57)

If q > 1, the move to η is allowed and x(t+ 1) = η; if q ≤ 1, the transition is
made with probability q. Thus, we can choose ξ such that 0 ≤ ξ ≤ 1 uniformly
and set

x(t+ 1) = η (q ≥ ξ),

x(t+ 1) = x(t) (q < ξ).
(9.58)

The following example illustrates that the physical system tends to be in
the low energy state with the higher probability. Assume the current state has
energy ε0 and two new states have energies ε1 and ε2. The energy changes are
∆ε1 = ε1 − ε2 and ∆ε2 = ε2 − ε2.

Case 1. ∆ε1 < 0, ∆ε2 < 0, and ∆ε1 > ∆ε2 =⇒ ε1 > ε2.
In this case, q1 > 1, q2 > 1, and q1 < q2. The change will be ε0 −→ ε2.
Case 2. ∆ε1 > 0, ∆ε2 > 0, and ∆ε1 > ∆ε2 =⇒ ε1 > ε2.
In this case, q1 < 1, q2 < 1, and q1 < q2. The change will be ε0 −→ ε2.
Case 3. ∆ε1 > 0, ∆ε2 < 0, and ∆ε1 > ∆ε2 =⇒ ε1 > ε2.
In this case, q1 < 1, q2 > 1, and q1 < q2. The change will be ε0 −→ ε2.

9.5.1.3 Gibbs Sampler

As shown in Section 7.5.2, an image is a configuration (i.e., a realization) of
the underlying random field, and the pixel intensity is a value of the corre-
sponding random variable in the state space of this random field. With this
understanding and the four assertions above, MRF generation is organized as
follows.

First, generate an initial configuration. Let it be denoted by x(0). Suppose
x(0) is homogeneous (Assertion 3). The state space is Λ = {1, · · · , k, · · · , K}
and the pixel intensities xi,j(0) (1 ≤ i, j ≤ M) should be uniformly dis-
tributed. This can be done in the following way. Generate a random vector
y = (y1, · · · , yn, · · · , yN) (n = j+M(i−1) andN =M2) uniformly distributed
on [0, 1]; assign xi,j(0) (1 ≤ i, j ≤M) a value k ∈ Λ based on yn ∈ [0, 1].

Then change the 2-D index i, j (1 ≤ i, j ≤ M) to a 1-D index n (1 ≤
n ≤ N) via n = j +M(i − 1) and N = M2. Permute these 1-D indexes and
denote them as (s1, · · · , sn, · · · , sN). Visit each sn in natural order, say, the
raster scan. During visiting the sn, for each value k ∈ Λ, compute all clique
potentials Vc(xsn) based the potential assignment rules and the current pixel
intensities {xs1(0), · · · , xsn(0), · · ·xsN (0)} (Assertion 1); further compute the
local conditional probabilities of Eq. (9.54) (Assertion 2). Then assign a new
value xsn(1) to replace xsn(0) (i.e., update) based on the uniformly distributed
yn ∈ [0, 1] (Assertion 4). Note, only one replacement can be done for one visit
to (s1, · · · , sn, · · · , sN ).



Stochastic Image Models 295

After visiting all pixels in (s1, · · · , sn, · · · , sN), a new configuration x(1) is
generated. By repeating this type of visit Niter times, we obtain a sequence of
configurations x(1),x(2), · · · ,x(Niter). Theorems A through C [28] show that
they converge to an MRF.

Thus, the corresponding algorithm of the Gibbs sampler consists of the
following major steps:

1) Initialize an M ×M lattice by assigning pixel intensities randomly from
Λ = {1, 2, · · · , K}. Call this initial configuration x(0) (Assertion 3).

2) For s from 1 to N =M2,
a) Permute N pixels (s1, · · · , sN ) and set an order for visiting each

pixel;
b) Design and compute clique potential functions (Assertion 1);
c) Compute the local probability for each k ∈ Λ based on Eq. (9.54)

(Assertion 2);
d) Set the intensity of the pixel s based on the statistical relaxation rule

(Assertion 4).
3) Repeat 2) Niter times.

Using this algorithm, the various MRF configurations with different res-
olutions (M × M) are generated. Then the correlated Gaussian noise with
different variances σ2

0 are superimposed on each resolution of each MRF con-
figuration.

Examples of MRF images generated using the above approach are shown in
Figure 9.4, where M = 64, N = 4096, Λ = {1, 2, 3, 4}, and Niter = 200. Four
types of cliques in the 2nd-order neighborhood system (the horizontal, the
vertical, and two diagonal) are used. The region means are set to −45, −15,
15, and 45. σ2

0 = 20. Statistical procedures such as random vectors generation,
permutations, correlated data matrix, etc., are provided by the International
Mathematical and Statistical Library (IMSL) [57]. The algorithm has been
implemented in Macintosh computers. Other examples of MRF images are
used in Chapters 11 and 12.

Gibbs sampler has been used in many applications, for example, image
analysis (segmentation and the restoration), simulated image generation, and
partial volume study, etc. [32, 33, 33, 36, 57–59].

Problems

9.1. Prove Eq. (9.30).

9.2. Based on Eq. (9.48), show that the physical system tends to be in the
low energy state with the higher probability.
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FIGURE 9.4

Examples of MRF configurations generated using Gibbs sampler.

9.3. Following the major steps given in Appendix 9.3, write a program to
generate MRF image with different parameters and discuss the results.
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10

Statistical Image Analysis – I

10.1 Introduction

In most cases, images generated by X-ray CT and MR are all-inclusive. That
is, these two imaging modalities cannot directly produce the images of the
selected tissue types or organ systems. For example, when the human abdomen
is imaged by X-ray CT, the liver, kidney, stomach, pancreas, gallbladder,
adrenal glands, spleen, etc., are all shown in the resultant image; when a cross
section of the human brain is imaged by MRI, the scalp, bone, gray matter,
white matter, and cerebrospinal fluid, etc., are all included in the resultant
image. In order to obtain an image of the selected targets of interest, an image
processing or image analysis method is often required.

Generally, imaging refers to an operation or a process from the data to the
picture. X-ray CT represents an operation from photon measurements to a
2-D display of the spatial distribution of the relative linear attenuation co-
efficient (RLAC); MRI represents a process from free induction decay (FID)
signal measurements to a 2-D display of the spatial distribution of the ther-
mal equilibrium macroscopic magnetization (TEMM). Image processing refers
to an operation or a process from the picture to the picture. The commonly
used image processing approaches may include but are not limited to trans-
form, enhancement, and restoration. Image analysis refers to an operation or
a process from the picture to the “data.” Here, data may include some im-
age primitives such as edges or regions as well as some quantities and labels
related to these primitives. This chapter and the following chapters focus on
image analysis.

Various image analysis methods have been developed, and some of them are
applied to X-ray CT andMR images. The graph approach [1, 3, 5], the classical
snakes and active contour approaches [5, 6, 8, 9], the Level set methods [10–
13], and Active Shape model (ASM) and Active Appearance model (AAM)
approaches [] are edge-based approaches. Fuzzy connected object delineation
[15–18, 20–22] and Markov random field (MRF) [24, 26, 28, 30, 32, 34, 36,
38] are the region-based approaches. This and the next chapter describe two
statistical image analysis methods for X-ray CT and MR images based on the
stochastic models I and II given in Chapter 9, respectively.

In analyzing the so-called all-inclusive images as illustrated by the exam-
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ples given in the beginning of this section, the first step is to determine how
many image regions are presented in the image. After this number is de-
tected, the second step is to estimate region parameters, for example, the
mean and variance, etc. After these parameters are estimated, the third step
is to classify each pixel to the corresponding image regions. By implementing
these three steps, an all-inclusive image is partitioned into the separated im-
age regions; each of them represents a tissue type or an organ system. The
above detection-estimation-classification approach forms an unsupervised im-
age analysis technique; it is a model-based, data driven approach.

10.2 Detection of Number of Image Regions

Property 9.1 shows that an image whose pixel intensities are statistically inde-
pendent can be modeled by an independent Finite Normal Mixture (iFNM).
Let the image be denoted by IMG(J,K); J and K are the numbers of pixels
and image regions, respectively. iFNM pdf is given by

f(x) =
∑K
k=1πkg(x|θk), (10.1)

where x denotes the pixel intensity, θk = (µk, σ
2
k) (k = 1, · · · , K) is the

parameter vector of the k-th image region Rk (µk – the mean, σ2
k – the

variance), g(x|θk) is a Gaussian pdf of pixel intensities in the k-th image
region given by

g(x|θk) =
1√
2πσ2

k

exp(− (x− µk)2
2σ2

k

), (10.2)

and πk (k = 1, · · · , K) represents the probability of the occurrence of the kth
image region in the image and is characterized by a multinomial distribution

0 < πk < 1 and
∑K

k=1πk = 1. (10.3)

The 3K-dimensional model parameter vector of iFNM (Eq. (10.1)) is defined
as

r = (π1, µ1, σ
2
1 , · · · · · · , πK , µK , σ2

K)T. (10.4)

In this section and Appendix, for the purpose of derivation, pdf f(x) of
Eq. (10.1) is also written as f(x|r) or f(x, r).

Based on Eq. (10.1), detecting the number of image regions is actually the
selecting the order of iFNM model. Traditionally, this is implemented by two
types of approaches: (1) hypothesis test [40, 41], and (2) power spectrum
analysis [42, 43]. The hypothesis test is a general standard method. It first
establishes a null hypothesisH0 : the order isK0 and an alternative hypothesis
H1 : the order is notK0, then creates test statistics and derives its distribution;
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and finally decides to accept or reject H0 based on a given confidence level.
Power spectrum analysis is particularly useful for time series such as AR,
MA, ARMA models. It may include residual flatness and final prediction error
(FPE) methods. By checking the flatness of a power spectrum or minimizing
prediction error, it determines the order of the models. This section describes
a new type of approach for selecting the order of the model.

10.2.1 Information Theoretic Criteria

In Information Theory [44, 45], the relative entropy, also known as Kullback-
Leibler divergence (KLD),∗ provides a way to compare the true pdf and the
estimated pdfs. Thus, in statistical identification, the minimization of KLD
defines a reasonable criterion for choosing an estimated pdf to best fit the
true one [46, 47]. As shown in Appendix 10A, the maximization of the mean
log-likelihood provides a practical means to minimize KLD, and the use of
the maximum likelihood estimate of parameters of pdf leads to various In-
formation Theoretic Criteria (ITC) [41, 43, 47, 48, 51–53]. For a parametric
family of pdfs, the model that best fits the observed data is one that gives a
minimum value of ITC.

Thus, selecting the order of the iFNM model is formulated as a model fitting
problem, and ITCs provide criteria to evaluate the goodness-of-fit. Several
commonly used ITCs are An Information Criterion (AIC) [47, 55, 56] and
Minimum Description Length (MDL) [42, 48, 50]. They are defined by

AIC(K) = −2 log(L(r̂ML)) + 2Ka and

MDL(K) = − log(L(r̂ML)) +
1
2Ka log J,

(10.5)

respectively, where J is the number of independent observations, K is the
order of the model, Ka is the number of free adjustable model parameters,
r̂ML is the ML estimate of the model parameter vector, and L(r̂ML) is the
likelihood of the ML estimate of the model parameters.

AIC and MDL address the following general problem. Given a set of inde-
pendent observed data and a family of models, that is, a parametric family of
pdfs, the model that best fits the observed data is one that gives the minimum
value of AIC or MDL. Let K0 be the correct order of the model; it should
satisfy

K0 = Arg{min1≤K≤Kmax AIC(K)}

K0 = Arg{min1≤K≤Kmax MDL(K)},
(10.6)

where Kmax is an up-limit of all possible K.

∗“Divergence” rather than “Distance” is used because Kullback-Leibler measure is not
symmetric.
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In Eq. (10.5), for the iFNM model of Eq. (10.1), the likelihood of ML
estimate of the model parameter vector r is

L(r̂ML) =

J∏

j=1

f(xj |r̂ML) =

J∏

j=1

K∑

k=1

π̂kMLg(xj |θ̂kML), (10.7)

where π̂kML and θ̂kML = (µ̂kML , σ̂
2
kML

) are the ML estimates of πk and θk =
(µk, σ

2
k), and the number of free adjustable model parameters in r is

Ka = 3K − 1, (10.8)

which is due to
∑K
k=1πk = 1, only (3K− 1), parameters in r of Eq. (10.4) are

independent.
[43] indicates that in the large sample limit, MDL may give the correct

value of K0 while AIC may give an overestimated value of K0.
In addition to these commonly used ITCs, Appendix 10B proposes a new

one. It is based on the principle of minimizing the maximum joint differential
entropy of the observed data and the model parameters [59–63]. By seeking
maximum entropy, it is able to find a family of models that has the most
uncertainty compared with other families. That is, the selected family will
include most (all possible) models. By minimizing this maximum entropy, it
is able to find one model in this family that has the least uncertainty. That is,
the chosen model will best fit the observed data. This min-max approach is
based on the joint pdf of x and r f(x, r); the commonly used ITCs are based
on the conditional pdf of x on r f(x|r).

10.3 Estimation of Image Parameters

The prerequisite for using a information theoretic criterion is to find the ML
estimate of the parameter vector r. The ordinary way to obtain ML parameter
estimate is to take the derivative of the likelihood function L(r) with respect
to r and let it equal zero, that is,

DL(r) = ∂L(r)
∂r

= 0. (10.9)
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It is readily demonstrated thatML estimates of theKa (= 3K−1) parameters
of the model Eq. (10.1) satisfy the equations





∑J
j=1(g(xj |θk)− g(xj |θK)) = 0

∑J
j=1

πkg(xj |θk)
f(xj |r) (xj − µk) = 0

∑J
j=1

πkg(xj |θk)
f(xj |r) ( 1

σ2
k2
− 1) = 0.

(10.10)

It has been verified that the likelihood equation Eq. (10.10) cannot be solved
explicitly. This implies that iterative methods must be used. The most success-
ful iterative algorithms—Newton–Raphson method and Method of Scoring—
require the inversion of the Hessian matrix (D2L) and of the Fisher informa-
tion matrix (DLDLT ) of the high rank ((3K−1)×(3K−1)) and always suffer
from the numerical singularity. In order to avoid these problems, two algo-
rithms, Expectation-Maximization (EM) [64] and Classification-Maximization
(CM) [65], are utilized for ML parameter estimation of iFNM Eq. (10.1).

10.3.1 Expectation-Maximization Method

EM algorithm first estimates the likelihood of the complete (not observed
directly) data through the incomplete (observed) data and the current pa-
rameter estimates (E-step) and then maximizes the estimated likelihood to
generate the updated parameter estimates (M-step). The procedure cycles
back and forth between these two steps. The successive iterations increase
the likelihood of the estimated parameters and converge (under regularity
conditions) to a stationary point of the likelihood [64]. [66] applies the EM
algorithm to the ML parameter estimation of iFNM in the case K = 2. Ap-
pendix 10C gives a derivation of the EM algorithm in the case K > 2. The
algorithm at the m-th iteration is shown below.

E-step: computing the probability membership z
(m)
jk ,

z
(m)
jk =

π
(m)
k g(xj |θ(m)

k )

f(xj |r(m))
(m = 0, 1, 2, · · ·). (10.11)

M-step: computing the updated parameter estimates,





π
(m+1)
k = 1

J

∑J
j=1 z

(m)
jk

µ
(m+1)
k = 1

Jπ
(m+1)
k

∑J
j=1 z

(m)
jk xj (m = 0, 1, 2, · · ·)

σ2
k
(m+1)

= 1

Jπ
(m+1)
k

∑J
j=1 z

(m)
jk (xj − µ(m+1)

k )2.

(10.12)
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The algorithm starts from an initial estimate r(0) and stops when a stopping
criterion

|π(m+1)
k − π(m)

k | < ε (1 ≤ k ≤ K) (10.13)

is satisfied, where ε is a prespecified small number.

10.3.2 Classification-Maximization Method

The CM algorithm is also a two-step iterative procedure. It can be viewed as
a modified K-mean cluster algorithm [65]. It first classifies the entire observed
data into the different groups (i.e., image regions) using ML classification
criterion and the current parameter estimates (C-step) and then generates the
updated parameter estimates in each group according to the ML estimation
procedure (M-step). The algorithm at the m-th iteration is shown below.

C-step: data xj is classified into group Gk0 if the modified Mahalanobis

distance djk0 from xj to the current mean estimate µ
(m)
k0

of the k0-th class is
minimized, that is,

xj ∈ Gk0 , if k0 = Arg{ min
1≤k≤K

djk}, (10.14)

where

djk = (xj − µ(m)
k )T (σ2

k
(m)

)−1(xj − µ(m)
k ) + log σ2

k
(m)

. (10.15)

M-step: the updated parameter estimates are given by





π
(m+1)
k = 1

J J
(m+1)
k

µ
(m+1)
k = 1

Jπ
(m+1)
k

∑
xj∈Gk

xj (m = 0, 1, 2, · · ·)

σ2
k
(m+1)

= 1

Jπ
(m+1)
k

∑
xj∈Gk

(xj − µ(m+1)
k )2,

(10.16)

where J
(m+1)
k is the number of the data that belong to the group Gk. The

algorithm starts from an initial estimate θ
(0)
k (k = 1, · · · , K) and stops when

the condition
θ
(m+1)
k = θ

(m)
k (k = 1, · · · , K) (10.17)

is satisfied.

10.3.3 Discussion

Two algorithms have been applied to the simulated data and X-ray CT and
MR images and the satisfied results are obtained. Two algorithms increase the
likelihood of the estimated parameters over the iterations. Thus, algorithms
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guarantee convergence to a local maximum. Computer simulations show that
for very well-structured data, algorithms converge to the global maximum.
However, a general theoretical convergence analysis has not been done. Some
statements regarding the convergence of K-means clustering algorithm and
EM algorithm are given in [67, 68]. Even though the final estimates obtained
by the two algorithms are quite close, differences between them do exist. First,

the EM algorithm requires the initial estimates π
(0)
k (k = 1, · · · , K) of the

weights and the settings of the stopping threshold ε; the CM algorithm does
not. Second, computations showed that the EM algorithm needs many more
iterations than CM. Third, the CM algorithm seems to have more evident
meaning than EM for image analysis (especially for segmentation), but it can
only provide an approximate ML estimate. For to these reasons, a hybrid
algorithm (CM generates the initial parameter estimates and EM produces
the final estimates) has been developed and utilized.

10.4 Classification of Pixels

Having determined the number K0 of image regions and obtained an ML
estimate r̂ML of the model parameter r, the classification of pixels into dif-
ferent image regions actually becomes a statistical decision problem. Several
classifiers are available in statistical decision theory.

Bayesian classifier: If both the priori probability and the cost (loss) func-
tions are known, it will minimize the total expected loss.

Minimax classifier: If the priori probability is not available, it will minimize
the total expected loss under the worst possible conditions.

Neyman-Pearson classifier: If neither the priori probability nor the loss
functions are available, it will maximize the detection probability for the fixed
false-alarm probability.

10.4.1 Bayesian Classifier

The statistical image analysis technique described in this chapter uses the
Bayesian classifier, which we will show is actually a likelihood ratio classifier.
Let p(k|x) denote the probability that x comes from the k-th image region
(1 ≤ k ≤ K0). If the classifier decides that x comes from the k-th image region
when it actually comes from the l-th image region, then this decision produces
a loss denoted by Lkl. Because K0 image regions are under consideration, the
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total expected loss of assigning x to the k-th image region will be

rk(x) =

K0∑

l=1

Lklp(l|x). (10.18)

rk(x) is sometimes called the risk. The Bayesian classifier computes all risks
rk(x) (1 ≤ k ≤ K0) and chooses the minimum risk among all rk(x) to make
a decision.

Because

p(l|x) = p(x|l)p(l)
p(x)

, (10.19)

Eq. (10.18) will be

rk(x) =
1

p(x)

K0∑

l=1

Lklp(x|l)p(l). (10.20)

For a given x, with respect to all k (1 ≤ k ≤ K0), p(x) is constant; thus

rk(x) =

K0∑

l=1

Lklp(x|l)p(l). (10.21)

When K0 = 2, we have

r1(x) = L11p(x|1)p(1) + L12p(x|2)p(2)

r2(x) = L21p(x|1)p(1) + L22p(x|2)p(2).
(10.22)

If r1(x) < r2(x), then

(L11 − L21)p(x|1)p(1) < (L22 − L12)p(x|2)p(2). (10.23)

Because the loss in the correct decision is less than the loss in the incorrect
decision, that is, Lll < Lkl, we have

p(x|1)
p(x|2) >

(L22 − L12)p(2)

(L11 − L21)p(1)
. (10.24)

Normally, the zero loss is assigned to the correct decision and the equal losses
are assigned to the incorrect decisions, that is, Lll = 0 and Llk = Lkl; thus
Eq. (10.24) becomes

p(x|1)
p(x|2) >

p(2)

p(1)
. (10.25)

The above equation represents a likelihood ratio criterion.

Applying Eq. (10.25) to iFNM (Eq. (10.1)), we have

p(x|k) = g(x|θ̂kML) and p(k) = π̂kML . (10.26)
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According to the classification criterion Eq. (10.25), the pixel xj (1 ≤ j ≤ J)
will be classified into the k-th (1 ≤ k ≤ K0) image region if

π̂kMLg(xj |θ̂kML) > π̂lMLg(xj |θ̂lML) (l = 1, · · · , K0, l 6= k). (10.27)

That is,

xj ∈ Rk0 if k0 = Arg{ max
1≤k≤K0

π̂kMLg(xj |θ̂kML)}, (10.28)

where Rk0 denotes the k0-th image region.

10.5 Statistical Image Analysis

The detection of the number of image regions (Section 10.2), the estimation
of image parameters (Section 10.3), and the classification of pixels into image
regions (Section 10.4) form an iFNM model-based statistical image analysis
method. The method is performed in the following fashion:

1. For a given number K of image regions, the EM or CM algorithm is
applied to compute the ML estimate r̂ML of the model parameters, and
then the value of AIC(K) or MDL(K) is computed.

2. By repeating step 1 for all possible K from Kmin to Kmax, the number
K0 that minimizes AIC(K) or MDL(K) is chosen as the correct number
of image regions.

3. Using the number K0 and the corresponding ML estimate r̂ML, the
Bayesian classifier is applied to classify pixels into K0 groups so that an
image is partitioned into distinctive image regions.

This method is a fully automated, unsupervised data-driven approach. In
the following several subsections, we apply it to simulated images, the physical
phantom image, and X-ray CT and MR images to demonstrate its operations
and performance. The method is applied to both local, region of interest (ROI)
images and global, entire CT and MR images. The partitioned region images
are displayed either by their mean values in one image or by their original
density values in separated images. In order to show the details, some images
are displayed in color using an RGB Look-Up table.

10.5.1 Simulated Images

Two 64 × 64 MRF images were created by Gibbs Sampler (Appendix 9A of
Chapter 9) and then superimposed with independent Gaussian samples to
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(a) (b)

(c) (d)

FIGURE 10.1

Two MRF images (a) and (b) with different SNRs. The partitioned region
images: the black, dark grey, light grey, and white, (c) and (d).

TABLE 10.1

Settings of Images in Figures 10.1.(a) and (b).

k 1 2 3 4
πk 0.207764 0.233643 0.310547 0.248047
µk −45.0000 −15.0000 15.0000 45.0000

Image Size - 64 × 64, Number of pixels J = 4096,
Number of image regions K0 = 4.

simulate images with iFNM distribution. They are shown in Figures 10.1a
and 10.1b.

The settings of these two MRF images are given in Table 10.1.† Gaussian
samples represent noise from N(0, σ2

0), where σ
2
0 are equal to 5 and 10, for im-

†The purpose of setting the means of image regions to both negative and positive values is
to simulate pixel intensities of the X-ray CT image where the CT number of the air, water,
and bone are negative, zero, and positive.
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TABLE 10.2

MDL(K) Values for Simulated MRF images (Figures 10.1.a and
10.1.b) with K = 2 ∼ 6

K 2 3 4 5 6
Figure 10.1.a MDL(K) 19684 17464 14766 14779 14791
Figure 10.1.a MDL(K) 19708 18107 16184 16196 16209

ages in Figure 10.1.a and 10.1.b, respectively. The signal-to-noise ratio (SNR)
of the image is defined as

SNR =
K∑

k=1

πkSNRk and SNRk =
µ2
k

σ2
0

.

More detailed discussion on SNR is given in Section 12.2.1.2. Thus, for im-
ages in Figure 10.1.a and 10.1.b, the SNR are equal to 23.2 db and 20.2 db,
respectively.

The detection results are shown in Table 10.2. The minimum value of MDL
computed using Eq. (10.6) occurs at K0 = 4, which is correct. The partitioned
four region images are shown in Figures 10.1.c and 10.1.d, displayed by mean
values of pixel intensities in each image region (in the black, dark grey, light
grey, and white). Visual examinations indicate that there is not any classifi-
cation error. A detailed performance analysis on these two images is given in
Section 12.2.

10.5.2 Physical Phantom Image

A physical phantom is made of six cylinders that are inserted in parallel
in a base and arranged in a circle. The cross-section of these cylinders is
perpendicular to the axis of the cylinder, which is along the direction of the
movement of the scanner bed. Figure 10.2.a shows the image of a cross-section
of this phantom. The size of this image is 81 × 81 pixels, which is truncated
from a default circular X-ray CT image.

These six cylinders are made of four types of homogeneous materials: Bone,
Teflon, Poly (Eth. and Prop.), and 013A (A and B).‡ In Figure 10.1.a, from
the top-left, and clockwise, they are Teflon, Poly (Eth.), 013A (B), 013A (A),
Poly (Prop), and Bone. The image of the background (air) is excluded in the
image analysis. That is, only the images of cylinders are analyzed.

By assuming Kmin = 2 and Kmax = 6, MDL(K) values computed using
Eq. (10.6) are shown in Table 10.3. Results in Table 10.3 suggest that this
phantom image has K0 = 5 region images. Each individual region image is
shown in Figures 10.2.b–10.2.f. They represent the transition zones (b), Poly
(Eth and Prop) (c), 013A(A and B) (d), Teflon (e), and Bone (f).

‡These cylinders are the test rods used in quality assurance (QA) of the X-ray CT scanner.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 10.2

X-ray CT image of a physical phantom (a). The partitioned region images:
(b) Transition zones, (c) Poly (Eth and Prop), (d) 013A(A and B), (e) Teflon,
and (f) Bone.

The number of types of materials in the phantom is 4 and the number of
the region images in the phantom image (suggested by the MDL information
theoretic criterion) is 5. These results seem contradictory. But, it is believed
to be reasonable. The explanation is as follows.

In the image reconstruction of X-ray CT imaging (Chapter 2), an interpola-
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TABLE 10.3

MDL(K) Values for the Physical Phantom
Image (Figure 10.2.a) with K = 2 ∼ 6

K 2 3 4 5 6
MDL(K) 3452 3355 3279 3116 3246

tion procedure is applied. As a result, in the reconstructed images, a transition
zone between two adjacent but distinctive image regions always occurs. Pixel
intensities in this zone are different from those in the two adjacent image re-
gions and are usually between them. In other words, there is not an ideal sharp
edge between adjacent image regions even though they are homogeneous.

The transition zone normally does not represent the true type of tissue or
organ. It is a product of the image reconstruction and often occurs at the edges
of image regions. The width of this transition zone is about 1 ∼ 2 pixels. In
some cases, it can be interpreted as the partial volume effect.

In Figure 10.3.(a), the X-Y plane defines an 81×81 image; the Z axis defines
pixel intensity. The almost flat top surfaces of six vertical “cylinders” represent
the pixel intensities at a cross-section of six cylinders of four types of materials.
The side surfaces of six vertical “cylinders” represent the pixel intensities in
these transition zones that appear as rings at the edges of image regions.
Figure 10.3.b shows a line profile at y = 40 that passes through two vertical
“cylinders,” It is clear that several pixels are on the slopes of the side surfaces
of vertical “cylinders,” and their intensities are between the background and
the physical materials of cylinders. As mentioned earlier, the background (air,
CT number –1000) is excluded in the image analysis. For display purposes, in
Figure 10.3, CT number of the background is set to −200.

10.5.3 X-Ray CT Image

Figure 10.4 shows a cross-sectional X-ray CT image of the chest. For the
purpose of image analysis, a region of interest (ROI) that corresponds to the
lower part of the right lung is truncated from the image in Figure 10.4 and
shown in Figure 10.5 (a) - grayscale, (b) - color). The size of this ROI image
is 81× 81 pixels. Images in Figures 10.5, 10.6, and 10.7 are displayed in colors
that are designed using RGB Look-Up table with CT number −1000 as the
blue and +1000 as the red.

The number of image regions in this ROI image is unknown. Using an
information theoretic criterion to this ROI image, MDL values computed by
Eq. (10.6) are given in Table 10.4 that indicate that this number is K0 = 6.
The partitioned region images with K = 2, · · · , 8 are shown in Figures 10.6.a–
10.6.h, that are displayed by the mean values of pixel intensities in each image
region. From the images in Figure 10.6, we observed that when K < 6, some
major image regions are lumped into one image region, but the results are
still meaningful; when K > 6, no essential differences in the partitioned region
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(a)

(b)

FIGURE 10.3

(a) A 2-D histogram of the phantom image in Figure 10.2.a. The flat plateaus
represent the homogeneous image regions, and the inclined surfaces represent
the transition zones between image regions and the background. (b) A line
profile at y = 40. Several pixels are on the sloping surfaces and form the
transition zones.

images will be generated.
ForK0 = 6, images of each individual image region are shown in Figure 10.7,

which represent six types of tissues: (a) the lung air; (b) the lung parenchyma
and fibrosis; (c) the pleura, blood vessels, and bronchi; (d) a tumor and the
tissues outside lung; (e) the dense bone (with a spot of tumor); and (f) the
sponge bone. Quantitative feature information is summarized in Table 10.5.
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FIGURE 10.4

A cross-sectional X-ray CT image of the chest.

(a) (b)

FIGURE 10.5

An image of the region of interest (ROI) outlined by the red line box in
Figure 10.4.

TABLE 10.4

MDL(K) Values for the ROI Image (Figure 10.5) with K = 2 ∼ 9

K 2 3 4 5 6 7 8 9
MDL(K) 45794 45896 45073 44985 44914 44956 45004 44922

TABLE 10.5

Characteristics of the Region Images in Figure 10.7

Name of Tissue Size cm2 Feature
Figure 7.a Lung air 37 −857
Figure 7.b Parenchyma, fibrosis 23 −691
Figure 7.c Pleura, blood vessel, bronchi 14 −301
Figure 7.d Tumor, tissues outside lung 45 −12
Figure 7.e Dense bone 18 107
Figure 7.f Sponge bone 10 266
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 10.6

ROI image of Figure 10.5 is partitioned into 2, · · · , 8 region images shown in
(a) through (h).
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(a) (b)

(c) (d)

(e) (f)

FIGURE 10.7

Images of the 1st, 2nd, 3rd, 4th, 5th, and 6th regions. They represent (a) the
lung air; (b) the lung parenchyma and fibrosis; (c) the pleura, blood vessels,
and bronchi; (d) a tumor and the tissues outside lung; (e) the dense bone
(with a spot of tumor); and (f) the sponge bone.
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(a) (b)

FIGURE 10.8

A sagittal MR image of the head (a). The partitioned region images are dis-
played in five grey levels—white, light grey, grey, dark grey, and black—in
(b).

TABLE 10.6

MDL(K) Values for MRI Image (Figure 10.8.(a)) with K = 2 ∼ 9

K 2 3 4 5 6 7 8 9
MDL(K) 41165 41155 41140 41049 41065 41080 41097 41144

10.5.4 MR Image

A 64 × 64 sagittal MR image of the head is shown in Figure 10.8(a). It is
generated by using a quadtree method from the original 256 × 256 image
and quantized at 256 grey levels. By assuming Kmin = 2 and Kmax = 9,
MDL values computed by using Eq. (10.6) are given in Table 10.6. It shows
that this image has five image regions. The partitioned five region images
are obtained using iFNM model-based image analysis method and shown in
Figure 10.8.(b) displayed in five grey levels: black, dark grey, grey, light grey,
and white. Information on these five image regions are shown in Table 10.7.
These results are meaningful, as expected.

TABLE 10.7

Characteristics of MR Region Images in Figure 10.8.(b).

Greylevel Tissue Type Pixel # Mean Data Range
White Air 1098 27 24–30
Light grey Scalp 795 48 31–63
Grey CSF pathway, cerebrum 827 75 64–88
Dark grey Grey and white matters 1083 100 89–106
Black Skin 293 171 107–247
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10.6 Appendices

10.6.1 Appendix 10A

Starting from the relative entropy and using the notation f(x|r) for pdf f(x)
(r is the model parameter vector), this appendix outlines the derivation of
ITC. The fundamental work on the definition of the information criterion was
done by Akaike. The following description is basically based on [47, 55, 56].

1) The minimization of the Kullback-Leibler divergence (KLD) defines a
reasonable criterion for choosing an estimated pdf to best fit the true pdf.

Let x be a discrete random variable (rv) with the probability mass function
(pmf) f(x|r), where r = (r1, · · · , rK)T is a parameter vector associated with
f(x|r).§ Let xi (i = 1, · · · , J) be the outcomes of x. In Information Theory,
the quantity defined by

H(f(x|r)) = −∑J
i=1f(xi|r) log f(xi|r) = E[− log f(x|r)] (10.29)

is known as the entropy of f(x|r) [69]. It is a measure of the uncertainty.¶

Let f(x|r) and f̂(x|r) be the true and estimated pmfs of rv x, respectively.
The quantity defined by

DKL(f(x|r) ‖ f̂(x|r)) =
∑J

i=1f(xi|r) log
f(xi|r)
f̂(xi|r)

= E[log
f(x|r)
f̂(x|r)

] (10.30)

is known as the relative entropy or Kullback-Leibler divergence (KLD) be-

tween f(x|r) and f̂(x|r). It is a noncommutative measure of the difference
between the true and estimated pmfs. Eq. (10.30) can be expressed as

DKL(f(x|r) ‖ f̂(x|r)) =
∑J
i=1f(xi|r) log f(xi|r)−

∑J
i=1f(xi|r) log f̂(xi|r).

(10.31)

Based on Eq. (10.29), in Eq. (10.31), −∑J
i=1f(xi|r) log f(xi|r) = H(f(x|r))

is the entropy of f(x|r), −∑J
i=1f(xi|r) log f̂(xi|r) = H(f(x|r), f̂(x|r)) is the

cross-entropy of f(x|r) and f̂(x|r).
KLD is nonnegative, DKL(f(x|r) ‖ f̂(x|r)) ≥ 0, and equal to the zero if and

only if f(x|r) = f̂(x|r).‖ The smaller the value of DKL(f(x|r) ‖ f̂(x|r)), the
more similar f(x|r) and f̂(x|r) are. Thus, minimizing DKL(f(x|r) ‖ f̂(x|r))

§Compared with the parameter vector r of Eq. (10.4), each component rk here represents
(πk, µk, σ

2
k) in Eq. (10.4).

¶The base of the logarithm in Eq. (10.29) can be 2, e, or 10. Thus, the unit of entropy may
be in bit, nat, or dit. In this manuscript, log denotes the natural logarithms, that is, the
base e and the nat are used.
‖This nonnegative property is a result known as Gibbs’ inequality.
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defines a reasonable criterion for choosing an estimate f̂(x|r) to best fit the
true f(x|r).

2) The maximization of the mean log-likelihood provides a practical way to
minimize KLD.

For the continuous rv x, pmf in Eqs. (10.29) through (10.31) is replaced

by pdf and the summation
∑J

i=1 in Eq. (10.31) is replaced by the integration∫
x
accordingly. In this appendix, for simplicity, the notation f(x|r) is used

to represent both pmf and pdf. In practice, rv x may be used to characterize
the outputs of a system, observations of a process, or measurements of a pro-
cedure, etc. The pmf or pdf f(x|r) is viewed as a statistical model for these
data. For a K× 1 vector r, f(x|r) is a K-th-order model. In statistical identi-
fication, there is a typical case in which (a) the parametric families of the pmf
or pdf have the same functional form f but with a different parameter vector
r, and (b) f is known and r is to be estimated. In this case, the estimated

pmf or pdf f̂(x|r) is determined by the parameter estimate r̂. For this reason,

in the following, f̂(x|r) is replaced by f(x|r̂), and KLD DKL(f(x|r) ‖ f̂(x|r))
of Eq. (10.31) is replaced by DKL(f(x|r) ‖ f(x|r̂)).

Let x1, · · · , xJ be n independent observations of rv x with pmf or pdf f(x|r).
The sample mean of the log-likelihood log f(xi|r̂) is given by

1

J

J∑

i=1

log f(xi|r̂) =
1

J
log

J∏

i=1

f(xi|r̂), (10.32)

which is an estimate of the mean of log f(x|r̂)

E[log f(x|r̂)] =
J∑

i=1

f(xi|r) log f(xi|r̂). (10.33)

As n increases indefinitely, Eq. (10.32) approaches
∑J

i=1f(xi|r) log f(xi|r̂) (in
the discrete case) or

∫
x f(x|r) log f(x|r̂)dx (in the continuous case) with Prob-

ability one. In this appendix, for simplicity, Eq. (10.32) is called the mean one
log-likelihood. The Maximum Likelihood Estimate (MLE) r̂ML of the model
parameter r maximizes the mean log-likelihood of Eq. (10.32), that is,

r̂ML = Arg{max
r̂

1

J

J∑

i=1

log f(xi|r̂)}. (10.34)

In Eq. (10.31), the first item on the right side of
∑J

i=1f(xi|r) log f(xi|r) is
common to all estimate r̂, thus minimizing DKL(f(x|r) ‖ f(x|r̂)) is equivalent
to maximizing

∑J
i=1f(xi|r) log f(xi|r̂). Therefore, the maximization of the

mean log-likelihood, that is, the use if MLE r̂ML of the parameter vector,
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provides a practical way to minimize KLD.

3) An Information Criterion.

When the estimate r̂ is sufficiently close to the true value r, DKL(f(x|r) ‖
f(x|r̂) of Eq. (10.31) is measured by 1

2 (r̂− r)TJ(r̂ − r) [46, 47], that is,

2DKL(f(x|r) ‖ f(x|r̂) = (r̂− r)TJ(r̂ − r), (10.35)

where J is the Fisher information matrix whose (ij)-th element is given by

Jij = E[(∂ log f(x|r)
∂ri

)(∂ log f(x|r)
∂rj

)], and T denotes the transpose.

Because MLE r̂ML is asymptotically efficient [70] under regularity condi-
tions, the mean log-likelihood of Eq. (10.32) is most sensitive to the deviation
of the estimated f(x|r̂ML) from the true f(x|r). Thus, in statistical identifi-
cation, the desirable model should minimize KLD DKL(f(x|r) ‖ f(x|r̂ML)).
However, there may be a difference between DKL(f(x|r) ‖ f(x|r̂ML)) and
DKL(f(x|r) ‖ f(x|r̂)) of Eq. (10.13).

Let MLE r̂ML be restricted in a lower k-dimensional subspace ϑ of r
(k < K) that does not include the true value r. Assume that r̂ is also re-
stricted in ϑ and yields the maximum of E[log f(x|r̂)]. Because √n(r̂ML − r̂)
is asymptotically distributed as a Gaussian with zero mean and variance
matrix J−1 [47, 71, 72], if r̂ is sufficiently close to r, the distribution
n(r̂ML − r̂)TJ(r̂ML − r̂) = 2nDKL(f(x|r̂) ‖ f(x|r̂ML)) can be approximated
by a χ2-distribution with the degree of freedom Ka under certain regularity
conditions and for sufficiently large n [46]. Thus, we have

E[2nDKL(f(x|r) ‖ f(x|r̂ML))] = 2nDKL(f(x|r) ‖ f(x|r̂)) +Ka, (10.36)

where E denotes the mean of the approximated distribution, and Ka is the
number of free adjustable parameters in r for maximizing the mean log-
likelihood of Eq. (10.32). Therefore, when r̂ is replaced by r̂ML and the quan-

tity 2n( 1J
∑J

i=1 log f(xi|r) − 1
J

∑J
i=1 log f(xi|r̂ML)) is used as an estimate of

2nDKL(f(x|r) ‖ f(x|r̂)), a value Ka should be added to it to correct the bias
introduced by replacing r̂ with r̂ML.

Thus, E[2nDKL(f(x|r) ‖ f(x|r̂ML))] can be estimated by

2n(
1

J

∑J
i=1 log f(xi|r)−

1

J

∑J
i=1 log f(xi|r̂ML)) + 2Ka. (10.37)

For a given data set x, the first term in Eq. (10.37), that is, 2
∑J
i=1 log f(xi|r),

is common to all competing models. This term can be dropped for the purpose
of comparing the values of Eq. (10.37). As a result, an information criterion
of the parameter r is given by

−2∑J
i=1 log f(xi|r̂ML) + 2Ka

∆
= AIC(r̂ML), (10.38)

where AIC stands for An Information Criterion. AIC(r̂ML) can be interpreted
as an estimate of −2nE[log f(x|r̂ML)]. It is clear that when there are sev-
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eral specifications of f(x|r̂ML) corresponding to several models, the minimum
value of AIC(r̂ML) leads to the best fitting model.

4) Other Information Theoretic Criteria (ITC).

The above analysis directly links the mean of KLD evaluated at MLE of
model parameters with the log-likelihood computed at MLE of model param-
eters and the number of free adjustable parameters. The logarithm uses the
base e, that is, log = loge = ln, the natural logarithm. When the base 2 is
used, log = log2. As indicated in the footnote, the unit of entropy is the bit.

Let f(x|r) represent the true distribution of data, observations, or a precise
calculated theoretical distribution, and let f(x|r̂) be a model, description, or
approximation of f(x|r). When the logarithm with the base 2 is adopted,
KLD measures the mean number of extra bits required to encode samples
from f(x|r) using a code based on f(x|r̂), rather than using a code based on
f(x|r).

When several models are used to encode the observed data, [42, 48, 50] de-
veloped a criterion that selects a model that yields the minimum code length.
For a sufficiently large number of samples, the criterion is given by

−∑J
i=1 log f(xi|r̂ML) +

1

2
Ka logn

∆
= MDL(r̂ML), (10.39)

where MDL stands for Minimum Description Length. The first term is half of
the corresponding one in AIC; the second term has an extra factor 1

2 logn.
[41] developed a Bayesian approach. In this approach, each competing

model is assigned a prior probability; the model that yields the maximum
posterior probability is selected as the best fitting one. This criterion is given
by

−2∑J
i=1 log f(xi|r̂ML) +Ka logn

∆
= BIC(r̂ML), (10.40)

where BIC stands for Bayesian Information Criterion. It is the same as MDL
(by a factor 2). A prior probability actually introduces a penalty term for the
additional parameters that is stronger than that of the AIC.

10.6.2 Appendix 10B

Starting from the joint differential entropy and using the notation f(x, r) for
pdf f(x) (r is the model parameter vector), this appendix gives the derivation
of a new information theoretic criterion, called minimizing maximum entropy
(MME).

In Appendix 10A, An Information Criterion (AIC) [47, 55, 56, 73, 74] repre-
sents an unbiased estimate of the mean Kulback–Liebler divergence between
the pdf of the selected model and the estimated pdf. The Minimum descrip-
tion length (MDL) [42, 48, 50, 75] is based on minimizing code length. The
Bayesian Information Criterion (BIC) [41] maximizes posterior probability.
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The derivation of this new information theoretic criterion is based on the
principle of minimizing the maximum joint differential entropy of the observed
data and the model parameters [59–63]. Entropy is a measure of the average
uncertainty in random variables [44]. By seeking maximum entropy, it is able
to find a family of models (i.e., a group of pdfs) that has the most uncertainty
compared with other families. That is, the selected family will include most
models. By minimizing this maximum entropy, it is able to find one model
in this family (i.e., a specific pdf) that has the least uncertainty. That is, the
chosen model will best fit the observations. This minimizing the maximum
entropy (MME) procedure can be viewed as a two-stage operation: “max” is
for a family selection, and “min” is for a member determination.

Let x be a random variable, r = (r1, · · · , rK)T a K × 1 parameter vector of
pdf of x, and r̂K = (r̂1, · · · , r̂K)T the estimate of r.∗∗ In this case, the model
order is the dimension K of the model parameter vector r. Furthermore, let
f(x, r̂) be the joint pdf of x and r̂, f(x|r̂) the conditioned pdf of x on r̂, and
f(r̂) the pdf of r̂. The relationship of these three pdfs is

f(x, r̂) = f(x|r̂)f(r̂), (10.41)

and the corresponding entropy relationship [44, 76, 77] is

H(f(x, r̂)) = H(f(x|r̂)) +H(f(r̂)). (10.42)

Based on Jaynes’ Principle, “Parameters in a model which determine the
value of the maximum entropy should be assigned the values which minimizes
the maximum entropy,” [59, 60], if r̂K0 is a such estimate, then it should
minimize

max
r̂K

H(f(x, r̂)) = max
r̂K

H(f(x|r̂)) + max
r̂K

H(f(r̂)). (10.43)

Entropy can be interpreted as the negative of the expected value of the log-
arithm of the pdf. The negative of the logarithm of the likelihood of maximum
likelihood estimates of parameters is a simple and natural estimate of the max-
imum conditional entropy [42, 47]. Thus, for a given data set {x1, · · · , xJ}, if
xi (i = 1, · · · , J) are identically independently distributed, then

max
r̂K

H(f(x|r̂)) = − logL(x1, · · · , xJ |r̂ML) = −
J∑

i=1

log f(xi|r̂ML), (10.44)

where r̂ML = (r̂1ML , · · · , r̂KML)
T is the ML estimate of r̂, and

L(x1, · · · , xn|r̂KML) is the likelihood of ML estimates of the parameters.
For the fixed variance σ2, the Gaussian distribution N(0, σ2) has the largest

entropy log
√
2πeσ [44, 76–78]. Under certain general conditions, MLE r̂ML

∗∗Compared with the parameter vector r of Eq. (10.4), each component rk here represents
(πk, µk, σ

2
k) in Eq. (10.4).
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has an asymptotic Gaussian distribution; thus, if r̂kML (k = 1, · · · , K) are
independent, then

max
r̂K

H(f(r̂)) = H(f(r̂ML)) =

K∑

k=1

H(f(r̂kML)) =

K∑

k=1

log
√
2πeσr̂kML

,

(10.45)
where σ2

r̂kML
is the variance of ML estimate r̂kML of the parameter rk.

Substituting Eq. (10.44) and Eq. (10.45) into Eq. (10.43), r̂K0 should min-
imize

max
r̂K

H(f(x, r̂)) = −
n∑

i=1

log f(xi|r̂ML) +

K∑

k=1

log
√
2πeσr̂kML

. (10.46)

Define

−
n∑

i=1

log f(xi|r̂ML) +

K∑

k=1

log
√
2πeσr̂kML

∆
= MME(r̂ML), (10.47)

where MME stands for minimizing the maximum entropy; the correct order
of the model, K0, should satisfy

K0 = Arg{min
K

MME(r̂ML)}. (10.48)

10.6.3 Appendix 10C

This appendix describes the derivation of EM algorithm for estimating the
model parameters of iFNM (Eq. (10.1)) for the image IMG(J,K) (J – the
number of pixels and K – the number of image regions).

Define the K × 1 vector ek (1 ≤ k ≤ K) whose components are all zero
except its k-th component equal to unity, that is,

ek = (ekk = 1, ekl = 0, l = 1, · · · , k − 1, k + 1, · · · , K)T . (10.49)

Assume that a K × 1 discrete random vector (rv) e takes the values ek (1 ≤
k ≤ K) and its probability mass function (pmf) is defined by

v(e = ek) = πk. (10.50)

Also assume that the K × 1 vectors zj (1 ≤ j ≤ J) are independently
identically distributed (i.i.d.) samples of rv e. The unity component in zj
(1 ≤ j ≤ J) indicates an unknown k-th image region (1 ≤ k ≤ K) associated
with the pixel intensity xj (1 ≤ j ≤ J).

Because the observed (incomplete) data xj (1 ≤ j ≤ J) are i.i.d. samples
from iFNM pdf (Eq. (10.1)), xj—given zj—are independent of the conditional
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pdf g(xj |zj , θk). Let yj (1 ≤ j ≤ J) be the complete data of xj , that is, yj is
characterized by both xj and zj

yj = (xj , zj)
T , (10.51)

the pdf of yj , denoted by u(yj), is given by

u(yj) = p(xj , zj) = g(xj |zj , θk)v(zj |πk). (10.52)

Using the vector-matrix form, let

x = (x1, · · · · · · , xJ )T ,

y = (y1, · · · · · · , yJ)T ,

Z = (z1, · · · · · · , zJ )T ,

(10.53)

where Z is a J ×K matrix, the complete data of x are defined by

y = (x,Z)T . (10.54)

Based on Eq. (10.52), the pdf of complete data y are given by

u(y|r) = g(x|Z, θ)v(Z|π), (10.55)

where θ = (θ1, · · · , θK)K and π = (π1, · · · , πK)T are K × 1 vectors. Thus, the
log-likelihood of i.i.d. data x1, · · · , xJ is

log u(y|r) =
J∑

j=1

(log g(xj |zj , θk) + log v(zj |π)) . (10.56)

Let
g(xj |θ) = (log g(xj |e1, θ), · · · , log g(xj |eK , θ))T , (10.57)

and
v(π) = (log v(e1|π), · · · , log v(eK |π))T , (10.58)

Eq. (10.56) can be rewritten as

log u(y|r) =
J∑

j=1

zTj (g(xj |θ) + v(π)). (10.59)

The first step in the EM algorithm, the E-step, is to evaluate the expecta-
tion of the log-likelihood Eq. (10.59) by using the incomplete data x and the
current parameter estimate r(m),

Q(r, r(m)) = E(log u(y|r)|x, r(m)), (10.60)
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where (m = 1, 2, · · ·) denotes the iteration. From Eq. (10.59),

Q(r, r(m)) =

J∑

j=1

(
E(zj |x, r(m))

)T
(g(xj |θ(m)) + v(π(m))). (10.61)

Thus, based on the definitions of zj , g(xj |θk) and πk, we have

E(zj |x, r(m)) = (z
(m)
j1 , · · · , z(m)

jK )T
△
= z

(m)
j , (10.62)

where

z
(m)
jk =

π
(m)
k g(xj |θ(m)

k )

f(xj |r(m))
(10.63)

is called probability membership.

The second step in the EM algorithm, the M-step, is to compute the updated
estimate r(m+1) by maximizing the estimated likelihood,

r(m+1) = Arg max
r
{Q(r, r(m))} . (10.64)

From Eqs. (10.61) and (10.62),

r(m+1) = Arg max
r
{
J∑

j=1

(z
(m)
j )T (g(xj |θ) + v(π))}. (10.65)

Because the parameter vectors θ (in g) and π (in v) are distinct, the first
and second terms on the right side of Eq. (10.65) can be maximized separately.

For π, noting the constraint
∑k

j=1 πk = 1 and using the Lagrangian multiplier,

maxπ
∑J
j=1 (z

(m)
j )Tv(π) leads to

π
(m+1)
k =

1

J

J∑

j=1

z
(m)
jk . (10.66)

For θ, using π
(m+1)
k and noting that g(xj |θk) is distributed as N(µk, σ

2
k),

maxθ
∑J

j=1 (z
(m)
j )Tg(xj |θ) leads to

µ
(m+1)
k =

1

Jπ
(m+1)
k

J∑

j=1

z
(m)
jk xj , (10.67)

σ2
k
(m+1)

=
1

Jπ
(m+1)
k

J∑

j=1

z
(m)
jk (xj − µ(m+1)

j )2. (10.68)
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Thus, the EM algorithm for ML parameter estimation of iFNM becomes
iteratively computing, starting from an initial estimate r(0), Eq. (10.63) (E-
step) and Eq. (10.66) through Eq. (10.68) (M-step), until a specified stopping
criterion

|π(m+1)
k − π(m)

k | < ε (1 ≤ k ≤ K) (10.69)

is satisfied, where ε is a prespecified small number.

Rigorously speaking, µ
(m+1)
k of Eq. (10.67) and σ2

k
(m+1)

of Eq. (10.68) are
not the true ML estimates of µk and σ2

k. This is because their (m + 1)-th
estimates depend on the (m + 1)-th estimate of πk and µk, not on (m)-th
estimates.

Problems

10.1. What conditions and assumptions are used in the derivation of the min-
imizing maximum entropy (MME) of Appendix 10B?

10.2. In the derivation of An Information Criterion (AIC), f(x|r) is used,
in the derivation of minimizing maximum entropy (MME), f(x, r) is
used. Explain why these two probabilities lead two different information
theoretic criteria.

10.3. Chapter 12 gives the Cramer-Rao Low Bounds (CRLB) of the variance
of the ML estimate r̂kML . Can these CRLBs be used to replace σ2

r̂kML

in Eq. (10.47)?

10.4. Derive Eq. (10.66).

10.5. Derive Eqs. (10.67) and (10.68).

10.6. In Eq. (10.69), if we set ε = 1
J (J – the number of pixels in the image),

what is the physical meaning of the stopping criterion of Eq. (10.69)?
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11

Statistical Image Analysis – II

11.1 Introduction

Advanced image analysis techniques, including those applied to medical im-
ages, utilize the spatial relationship of pixels in the images. This relationship
is mainly determined by the properties of the intensities and geometries of
pixels, either local or global. Among various frameworks of image analysis
techniques such as listed in Section 10.1, descriptors such as “connectivity,”
“continuity,” “smoothness,” and “hanging togetherness,” etc., are often em-
ployed to characterize spatial relationships of pixels.

In the graph approach [1–4], edge contour detection is formulated as a
minimum cost (the weighted shortest) path problem on a graph. The path cost
function is determined by local image properties: pixel location, intensity, and
gradient. It is application specific. Criteria for the continuity of arcs and/or
segments of edges are different and user specified.

In the classical snakes and active contour approaches [4, 6–8], by minimiz-
ing the total energy defined by the models, the edge curve at the points of
maximal magnitude of the gradients are located via the external energy while
the smoothness of the edge curve is kept via the internal energy.

Level set methods [9, 9, 11, 12]—a variational approach—seek a mini-
mizer of a functional by solving the associated partial differential equations
(PDEs) [13, 14]. These PDEs guide the interface—the evolution of the zero-
level curve—toward the boundary of the optimal partitions.

In the Active Shape model (ASM) and Active Appearance model (AAM)
approaches [14–17, 19, 19–22], the corresponding points on each sample of a
training set of annotated images are marked and aligned. Eigen-analysis is
then applied to build a statistical shape model. Given enough samples, such
a model is able to synthesize any image of normal anatomy. By adjusting the
parameters that minimize the difference between the synthesized model image
and a target image, all structures, represented and modeled in the image, are
segmented.

In Fuzzy Connected object delineation [21, 22, 25, 26], the strength of Fuzzy
Connectedness (FC) assigned to a pair of pixels is the strength of the strongest
of all paths between this pair, and the strength of a path is the weakest affinity
between pixels along the path. The degree of affinity between two pixels is
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determined by the spatial nearness, region homogeneity, and the expected
object feature. A Fuzzy connected object with a given strength, containing a
seed pixel, consists of a pool of pixels such that for any pixel inside the pool,
the strength of FC between it and the seed is greater than the given strength
and otherwise less than the given strength.

Markov random field (MRF) [24–39] is a widely used stochastic model for
image segmentation (to yield homogeneous regions) and restoration (to smooth
regions), because of its ability to impose regularity properties using contextual
information. The advantages of MRF-Gibbs equivalence allow us to charac-
terize the local spatial relationships between neighboring pixels via clique
potentials and the global spatial relationships among all pixels via Gibbs dis-
tribution.

Chapter 9 of this book gives two stochastic models: iFNM and cFNM, to
X-ray CT and MR images. Chapter 10 provides an iFNM model-based image
analysis method. It has been used to the the images whose pixel intensities
are statistically independent. For images with high SNR, pixel intensities can
be considered approximately independent. This chapter describes a cFNM
model-based image analysis method. It has been used for images whose pixel
intensities are statistically correlated. That is a general case. Similar to other
image analysis techniques listed in the above brief survey, a cFNM model-
based image analysis method utilizes the spatial relationship of pixels; how-
ever, unlike those image analysis technique, the spatial relationship of pixels
used in this method is evaluated by correlations of pixel intensities, explic-
itly and quantitatively. Statistical properties of pixel intensities described in
Chapters 6 and 8 are integrated in the cFNM model.∗

The cFNM model-based image analysis method consists of three steps: the
detection of the number of image regions, the estimation of the model pa-
rameters, and the classification of pixels into distinctive image regions. A
sensor array signal processing method is developed for detection; it is an
eigenstructure approach and is independent of the cFNM model. An extended
Expectation-Maximization (EM) algorithm is proposed for the estimation; it
is an EM-MAP operation with the newly developed design of clique poten-
tials. Classification still uses the Bayesian classifier. The entire image analysis
method is a data-driven approach.

∗In statistics, second-order statistics such as the correlation and covariance are the simplest
and the most commonly used measures for characterizing the relationship of random vari-
ables. In visual pattern discrimination, it has been shown that second-order statistics are
the important characteristics of human vision [44].
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11.2 Detection of the Number of Image Regions

The iFNM model-based image analysis method described in Chapter 10 uti-
lizes Information Theoretic Criteria (ITC) to detect the number of image
regions in an image. The underlying reason for this approach is as follows.
When pixel intensities are statistically independent, they are i.i.d. samples of
the iFNM pdf. Thus, ML estimates of parameters of the iFNM pdf can be
easily computed via the EM or CM algorithm, and the mean log-likelihood of
ML estimates gives a practical way to minimize Kullback-Leibler divergence
(KLD), which leads to a procedure to seek an estimated pdf to best fit the
true cFNM pdf.

When pixel intensities are not statistically independent, they are not i.i.d.
samples of cFNM pdf. As an impact, it is very difficult to establish the log-
likelihood of ML estimates of parameters of the cFNM pdf. Even though this
log-likelihood could be formed by ignoring the correlations among pixel inten-
sities, computing ML estimates of parameters of the cFNM pdf, as shown in
Section 11.3, is a complicated task. This section describes a new approach. It
translates the image region detection problem into a sensor array processing
framework. The samples from all sensors are utilized to estimate the covari-
ance matrix which is a description of the overall signal environment of this
converted sensor array system. By applying eigenstructure analysis to this co-
variance matrix, the number of distinctive image regions can be detected by
counting the sources in the converted sensor array system via information the-
oretic criteria. This new detection scheme is a non-model-based, data-driven
approach.

11.2.1 Array Signal Processing Approach

The conversion of an image to an analog sensor array system is performed
in the following three steps. As shown in Figure 11.1, (1) By sampling the
observed image in two dimensions with a certain step size, a sequence of sub-
images is created; (2) by sampling each sub-image in two-dimensions with a
certain step size, a sequence of sub-sub-images is created for each sub-image;
and (3) by averaging the pixel intensities in each sub-sub-image, a sequence of
data is created for each sub-image. In the proposed approach, as shown in Fig-
ure 11.2, the distinctive region images are referred to as sources, the sampled
sub-images are referred to as sensors, and the averaged data of each sub-sub-
image are referred to as samples or observations of that sensor. The sampled
images and the averaged data have the following statistical properties.

A) Based on the statistical properties—Spatially asymptotical independence
(SAI) (Property 6.2 for X-ray CT and Property 8.2 for MRI), we have the fol-
lowing observations. (i) Pixel intensities in each sensor (i.e., each sub-image)
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Y
⇓
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⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

Y4,1 → x4(1) Y12,1 → x12(1)

Y4,2 → x4(2) Y12,2 → x12(2)

Y4,3 → x4(3) Y12,3 → x12(3)

Y4,4 → x4(4) Y12,4 → x12(4)

FIGURE 11.1

The first sampling (Eq. (11.3)) creates the sensors; the second sampling
(Eq. (11.5)) and the averaging (Eq. (11.6)) form the samples. x4(k) and x12(k)
are shown as examples.

are statistically independent, while the corresponding pixel intensities in dif-
ferent sensors are statistically correlated; and (2) pixel intensities in the dif-
ferent sub-sub-images of the same sensor are statistically independent; as a
result, the samples of the same sensor are statistically independent, while the
corresponding samples in different sensors are statistically correlated.

B) Two sampling processes used in the above conversion comprise an oper-
ation called image skipping, which has a minimum loss of statistical precision.
This can be intuitively verified from the fact that all sub-images and sub-sub-
images of Figure 11.1 have a very similar pattern. As a consequence, all sam-
ples of sensors have the same distribution. Based on statistical properties—
Gaussianity (Property 6.1 for X-ray CT and Property 8.1 for MRI) and the
Central-Limit theorem—all samples of sensors have a Gaussian distribution.

Thus, samples of each sensor of this converted sensor array system are i.i.d.
and samples across sensors are correlated. The following sections describe the
details of this conversion and the problem formulation.

11.2.1.1 Sensor Array System Conversion

For a given image denoted by

IMG : {Y (i, j), 1 ≤ i, j ≤ I}, (11.1)
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sampling it with a step L in both dimensions forms L2 sub-images denoted
by

IMGl : {Yl(i, j), 1 ≤ i, j ≤ J} (l = 1, · · · , L2), (11.2)

where J = I/L. This sampling procedure is mathematically described by

Yl(i, j) = Y (iL− L+ 1 + lL, jL− L+ l− lLL), (11.3)

where lL denotes the integer part of l−1
L . An example is given in Figure 11.1,

where for a 64×64 MRF image (IMG), its sixteen 16×16 sub-images (IMGl)
are generated by sampling with step L = 4.

For each sub-image IMGl, (l = 1, · · · , L2), sampling it with step N in both
dimensions forms N2 sub-sub-images denoted by

IMGlk : {Ylk(i, j), 1 ≤ i, j ≤M} (k = 1, · · · , N2), (11.4)

where M = J/N . This sampling procedure is mathematically described by

Ylk(i, j) = Yl(iN −N + 1 + kN , jN −N + k − kNN), (11.5)

where kN denotes the integer part of k−1
N . An example is given in Figure 11.1,

where for two sub-images image IMGl (l = 4, 12), their corresponding four
8× 8 sub-sub-images (IMGlk) are generated by sampling with step N = 2.

For each sub-sub-image, IMGlk, (l = 1, · · · , L2, k = 1, · · · , N2) averaging its
M×M pixel intensities forms a sample. The k-th sample in the l-th sub-image
IMGl, denoted by xl(k), is given by

xl(k) =
1

M2

M∑

i=1

M∑

j=1

Ylk(i, j). (11.6)

An example is given in Figure 11.1, where for two sub-images IMGl (l =
4, 12), their four samples (xl(k)) are generated by averaging 8 × 8 pixel
intensities in the corresponding sub-sub-images IMGlk.

The above sampling and averaging procedures generate L2 sub-images
IMGl (l = 1, · · · , L2) and N2 samples xl(k) (k = 1, · · · , N2) for each sub-
image IMGl. As defined earlier, the distinctive region images are referred
to as sources, and the sampled sub-images are referred to as sensors. When
IMG is composed of q distinctive region images and is sampled into L2 = p
sub-images (e.g., in Figure 11.1, q = 4 and p = 16), an analog sensor ar-
ray system with q sources and p sensors is formed. It is shown in Figure 11.2,
where IMGRm represents them-th region image and sm(k) is them-th source
signal. Figures 11.1 and 11.2 provide a way to conceptually imagine this ana-
log sensor array system: (a) sources transmit signals (i.e., pixel intensities)
and sensors receive these signals, (b) an output (a sample) of a sensor is the
mixture of the source signals.

In the first sampling, when the sampling step L is moderate or large (e.g.,
L ≥ 3), the correlations of pixel intensities in each sub-image IMGl are very
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Sensor outputs xl(k) (l = 1, · · · , p) are mixtures of source signals sm(k) (m = 1, · · · , q).
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FIGURE 11.2

An analog sensor array system with q sources and p sensors. Source signals
sm(k) and sensor outputs xl(k) are related via Eq. (11.9). xl(k) are computed
via Eq. (11.6) and an example is shown in Figure 11.1.

small and can be ignored (SAI—Property 6.2 for X-ray CT and Property 8.2
for MRI). That is, pixel intensities in each sub-image IMGl are statistically
independent. Thus, pixel intensities in each sub-sub-image IMGlk and pixel
intensities over sub-sub-images of the same sub-image IMGlk (for the same
l) are statistically independent. As a result, the samples (an average of M ×
M pixel intensities in a sub-sub-image) of the same sensor are statistically
independent.

Because the samplings are uniform and the image regions are randomly
distributed over the image, the resulting L2 sub-images IMGl (l = 1, · · · , L2)
and N2 sub-sub-images IMGlk (k = 1, · · · , N2) (for the same l) have es-
sentially identical patterns.† Thus, the samples (an average of M ×M pixel
intensities in a sub-sub-image) of the same sensor have essentially identical
distribution. Because of the Gaussianity of pixel intensity (Property 6.1 for
X-ray CT and Property 8.1 for MRI) and the Central Limit theorem, this
distribution is Gaussian.

Therefore, for a given l, the samples (Eq. (11.6)) are independently identi-
cally distributed (with a Gaussian). That is, N2 samples xl(k) from the l-th
sub-image IMGl (i.e., N

2 outputs from the l-th sensor of this analog sensor
array system) are i.i.d.

†This implies that the corresponding pixel intensities—most but not every one—in the
sampled images are similar to each other.
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11.2.1.2 Problem Formulation

Let s(i, j) and n(i, j) be the signal and noise components of pixel intensity
Y (i, j) (1 ≤ i, j ≤ I). We have

Y (i, j) = s(i, j) + n(i, j). (11.7)

Let Rm and IMGRm (m = 1, · · · , q) denote the m-th image region and the
m-th region image, respectively; then

IMGRm(i, j) =




Y (i, j) (i, j) ∈ Rm

0 (i, j) ∈̄ Rm.
(11.8)

By this definition, we have IMG =
⋃q
i=1 IMGRm . Here,

⋃
denotes the union

of sets.
Based on Eqs. (11.6) through (11.8), the kth sample of the l-th sensor of

this sensor array system, xl(k) of Eq. (11.6), can be expressed as

xl(k) =

q∑

m=1

almsm(k) + nl(k), (11.9)

where nl(k) is the average of the noise components of pixel intensities in
IMGlk, sm(k) is the average of the signal components of pixel intensities in
IMGRm

⋂
IMGlk, and alm is the ratio of the number of pixels in IMGRm

⋂

IMGlk and the number of pixels in IMGlk. Here,
⋂

denotes the intersection
of sets.

Eq. (11.9) indicates that the average of all pixel intensities in a sub-sub-
image equals the weighted summation of the mean estimates of all region
images in that sub-sub-image plus the average of the noise in the same sub-
sub-image. Using vector-matrix notations

x(k) = (x1(k), · · · · · · , xp(k))T ,

s(k) = (s1(k), · · · · · · , sq(k))T ,

n(k) = (n1(k), · · · · · · , np(k))T ,

A =



a11 · · · · · · a1q
...

...
ap1 · · · · · · apq


 ,

(11.10)

Eq. (11.9) can be written as

x(k) = As(k) + n(k). (11.11)

It is important to understand the meanings of the quantities sm(k) of
Eq. (11.9) and (s1(k), · · · · · · , sq(k)) of Eq. (11.10). For a given k, sm(k)—the
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average of the signal components of pixel intensities in IMGRm

⋂
IMGlk—is

the mean estimate of the m-th region image in the sub-sub-image IMGlk.
Over all ks, sm(k) gives the mean estimate of the m-th region image in the
sub-image IMGl. s1(k), · · · · · · , sq(k) gives the mean estimate of the 1st, 2nd,
· · ·, q-th region images at the k-th sample. A mixture of s1(k), · · · · · · , sq(k)—
the weighted sum of them—and the noise component nl(k) forms the outputs
of the l-th sensor—the k-th sample of the l-th sensor—of this analog sen-
sor array system. In short, s1(k), · · · · · · , sq(k) are the samples of the source
signals.

Sections 6.4 and 8.4 show that pixel intensities are stationary and ergodic
within the image region (Property 6.3 and 6.4 for X-ray CT and Property 8.4
and 8.5 for MRI). In order to make pixel intensities stationary and ergodic
over the entire image, we convert the real-valued image to the complex-valued
image using the following procedure.

For a real-valued image IMG : {Y (i, j), 1 ≤ i, j ≤ I}, its complex-valued
image is IMG : {Y (i, j)eiφ(i,j), 1 ≤ i, j ≤ I}, where i =

√
−1, φ(i, j) are

the samples from a random variable with uniform distribution on [−π, π] and
independent of Y (i, j). Clearly, the mean of the complex data Y (i, j)eiφ(i,j)

equals zero. As a result of this data conversion, x of Eq. (11.10) is a Gaussian
random vector with zero mean, stationary, and ergodic.

Thus, the signal component s of x of Eq. (11.10) is a complex, stationary,
ergodic, Gaussian vector with a zero-mean vector and a p×p (positive definite)
covariance matrix

Cs = E[s(k)s†(k)], (11.12)

where † denotes the conjugate and transpose; the noise component n of x of
Eq. (11.10) is a complex, stationary, ergodic, Gaussian vector, additive and
independent of s, with a zero mean vector and a p× p covariance matrix

Cn = E[n(k)n†(k)] = σ2I, (11.13)

where σ2 is the variance of the image (a constant), and I is an identity matrix.
Therefore, the covariance matrix Cx of x(k) is

Cx = ACsA
† + σ2I. (11.14)

Thus, the signal environment of this converted sensor array system can be
characterized by a complex Gaussian pdf given by [43, 50]

f(x) = π−p|Cx|−1 exp(−x†C−1
x

x). (11.15)

Under the condition that p > q, for the full column rank matrix A of
Eq. (11.10) and the non-singular matrix Cs of Eq. (11.12), the rank of ACsA

†

is q. Thus, the problem of the detection of the number of image regions is con-
verted to a problem of determining the rank of matrix ACsA

†. This situation
is equivalent to the (p−q) smallest eigenvalues of ACsA

† being equal to zero.
Let the eigenvalues of Cx be

λ1 ≥ λ2 ≥ · · · ≥ λp; (11.16)
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then the smallest (p− q) eigenvalues of Cx are all equal to σ2:

λq+1 = λq+2 = · · · = λp = σ2. (11.17)

This implies that the number of image regions q can be determined from the
multiplicity of the smallest eigenvalues of the covariance matrix Cs, which
can be estimated from the outputs of the converted sensor array system, x(k)
(k = 1, · · · , N2).

When the covariances Cx with different multiplicities of the smallest eigen-
values are viewed as different models, the problem of detecting of the number
of image regions is translated as a model fitting problem.

11.2.1.3 Information Theoretic Criterion

As shown in Section 10.2, the model fitting problem can be resolved by
applying Information Theoretic Criteria (ITC) [41, 47, 48]. Similar to the
iFNM model-based image analysis method, we adopt the Minimum Descrip-
tion Length (MDL) criterion [42, 48, 50], which is defined by

MDL(K) = − log(L(r̂ML)) +
1

2
Ka log J, (11.18)

where J is the number of independent observations, K is the order of the
model, Ka is the number of free adjustable model parameters, r̂ML is ML
estimate of the model parameter vector, and L(r̂ML) is the likelihood of an
ML estimate of the model parameters.

For this converted sensor array system (p sensors, q sources, J = N2 i.i.d.
samples), assume that the number of sources is k (0 ≤ k ≤ p − 1); then

the ranks of the covariance matrix ACsA
† and Cx are k. Let C

(k)
x be the

covariance matrix associated with the assumed number k, and λi and vi (i =

1, · · · , k) be the eigenvalues and eigenvectors of C
(k)
x , respectively. It is known

that

C(k)
x

=

k∑

i=1

(λi − σ2)vivi
† + σ2I, (11.19)

where I is a p × p identity matrix. Thus, pdf f(x) of Eq. (11.15) is parame-
terized with a vector given by

θ(k) = (λ1, · · · , λk, σ2,vT1 , · · · ,vTk ). (11.20)

and is denoted f(x|θ(k)).
Using C

(k)
x , the log-likelihood of f(x|θ(k)) is given by

N2∑

i=1

log f(x|θ(k))
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=

N2∑

i=1

log(π−p|C(k)
x
|−1 exp(−x†(i)C(k)

x

−1
x(i)))

= −N2 log |C(k)
x
| −N2Tr{C(k)

x

−1
Ĉx}, (11.21)

where a constant term −pN2 log π is omitted and Ĉx is the sample covariance
matrix given by

Ĉx =
1

N2

N2∑

i=1

x(i)x†(i). (11.22)

[52] shows that the ML estimate of θ(k) is given by

θ
(k)
ML = (λ̂1, · · · , λ̂k, σ̂2, v̂T1 , · · · , v̂Tk ), (11.23)

where λ̂i and v̂i (i = 1, · · · , k) are the eigenvalues and eigenvectors of the

sample covariance matrix Ĉx, respectively; σ̂
2 = 1

p−k
∑p
i=k+1 λ̂i; and λ̂1 >

λ̂2 > · · · λ̂k. Using Eq. (11.23), Eq. (11.21) becomes

N2∑

i=1

log f(x|θ(k)) = N2(p− k) log
( ∏p

i=k+1 λ̂
1//(p−k)
i∑p

i=k+1 λ̂i/(p− k)

)
. (11.24)

The item inside the parentheses represents a ratio of the geometric mean and
the arithmetic mean of the (p− k) smallest eigenvalues of Ĉx.

For the number Ka of independently adjustable parameters of Eq. (11.18),
Eq. (11.20) or (11.23) indicates

Ka(k) = k(2p− k). (11.25)

This number is obtained by observing the following facts. C
(k)
x is spanned by k

real eigenvalues and k complex p-dimensional eigenvectors. The total number

of parameters for spanning C
(k)
x is 2pk + k. Due to the constraints of mutual

orthogonality and normality of the eigenvectors, k(k − 1) and 2k degrees of
freedom are lost. Thus, the number of free adjusted parameters is k(2p− k).

By applying Eqs. (11.24) and (11.25), Eq. (11.18) becomes

MDL(θ̂ML(k)) = −N2(p− k) log
( ∏p

i=k+1 λ̂
1//(p−k)
i∑p

i=k+1 λ̂i/(p− k)

)
+

1

2
k(2p− k) logN2,

(11.26)
where k (k = 1, · · · , p− 1) is an assumed source number. In Eq. (11.26), the
first term is the negative of the log-likelihood of Eq. (11.24), computed at the

ML estimate θ̂ML(k). This term measures how well the model fits the data.
The second term is a measure of model complexity. Thus, the best estimate
q̂ of the source number q is selected such that MDL(θ̂ML(k)) is minimized:

q̂ = Arg{ min
0<k≤p−1

MDL(θ̂ML(k))}. (11.27)
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(a) (b)

FIGURE 11.3

Two simulated 64× 64 MRF images.

11.2.2 Examples of Detection Results

This eigenstructure method has been validated for several types of images:
simulated images, X-ray CT, and MR images.

11.2.2.1 Simulated Images

TABLE 11.1

Eigen / MDL Values of Two
Simulated Images in Figure 11.3

IMG (a) IMG (b)

k λ̂k MDL(k) λ̂k MDL(k)
0 3060 1970 1292 1281
1 357 881 255 641
2 240 698 159 528
3 84 507 87 460
4 59 493 68 458
5 49 503 54 465
6 43 514 39 477
7 35 518 32 505
8 22 523 29 535
9 18 550 25 561

10 13 578 16 585
11 11 613 16 622
12 9 647 13 652
13 8 683 9 683
14 6 716 8 717
15 4 749 5 749
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(a) (b)

FIGURE 11.4

X-ray CT image. Two 64×64 ROI images of the lung. The image (a) is original
and the image (b) is an image obtained by merging four region images with
the higher values of pixel intensities into one region image.

Two 64× 64 MRF images were created by Gibbs Sampler (Appendix 9A of
Chapter 9) and then were superimposed with correlated Gaussian samples to
simulate images with cFNM distribution. Each image has four image regions
(black, dark gray, light gray, and white) as shown in Figure 11.3. Applying
the eigenstructure method to these two images, results are given in Table
11.1, where one column shows the eigenvalues of Eq. (11.23) and another
column shows MDL values of Eq. (11.26). The minimum value of MDL occurs
at index k = 4, which indicates that the method gives the correct solution.
These results are consistent with the results in Figure 10.1 and Table 10.2,
where the iFNM model-based image analysis method is utilized the similar
MRF images. The parameter settings used here are: I = 64, L = 4, J = 16,
N = 8, and M = 2 (I, L, J,N , and M are defined by Eqs. (11.1) through
(11.6)).

Extensive simulation studies have been done. More details are given in Ap-
pendix 9A of Chapter 9 and Section 12.2. In these studies, for given images
with resolution I × I, various combinations of L and N are used to obtain
different settings (I, L, J,N,M). The detection results obtained using the dif-
ferent settings are all correct.

11.2.2.2 X-Ray CT Image

Due to the lack of ground truth or gold standard, the detected number of
image regions (e.g., the number of tissue types) in the real medical images are
always questioned. To validate this eigenstructure approach in real medical
images, the following strategy is applied.

Figure 11.4a shows a 64× 64 X-ray CT image of a region of interest (ROI),
which corresponds to the lower part of the right lung of a subject. Apply-
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ing this eigenstructure method to this ROI, results are given in the leftmost
columns of Table 11.2. It shows that this ROI has nine image regions. These
image regions represent lung air, parenchyma, fibrosis, pleura, blood vessel,
bronchi, tumor/tissues outside lung, dense bone, and trabecular bone. By
merging four image regions with the higher pixel intensities (that is, CT num-
bers) into one region, that is, replacing the pixel intensities in these four
regions by their averaged mean value, a new image of the same ROI with six
image regions is created, which is shown in Figure 11.4b. Applying this eigen-
structure method to this new image, the results are given in the rightmost
columns of Table 11.2: it has six image regions. This is a correct solution. The
parameter settings used in this example are: I = 64, L = 4, J = 16, N = 8,
and M = 2.

Remarks. Images in Figure 11.4 and Figure 10.5 are similar, but the de-
tection results in Table 11.2 and Table 10.4 are different. These facts are not
surprising. The main reason is that the image sizes in Figure 11.4 and Fig-
ure 10.5 are 64×64 and 81×81, respectively, the former is truncated from the
latter. Thus, information of these two images are different. Other reasons are
(1) q = 9 in Table 11.2 is computed by this eigenstructure method; it is a non-
model based, data-driven approach; q = 6 in Table 10.4 is computed by iFNM
model based, data-driven approach. (2) In this eigenstructure method, pixel
intensities of the image are statistically correlated; in the iFNM model-based
method, pixel intensities are assumed to be statistically independent.

TABLE 11.2

Eigen / MDL Values of Two X-ray CT
ROI Images in Figure 11.4.

IMG (a) IMG (b)

k λ̂k MDL(k) λ̂k MDL(k)
0 351059 4698 474455 3726
1 13708 2347 16710 1387
2 5670 1834 7655 993
3 1888 1389 2581 682
4 944 1176 1810 597
5 722 1043 1031 520
6 254 833 599 496
7 236 783 523 513
8 87 653 399 526
9 55 639 283 544

10 41 646 213 574
11 30 654 178 609
12 19 661 148 644
13 9 679 128 680
14 8 714 89 713
15 6 749 81 749
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11.2.2.3 MR Image

FIGURE 11.5

MR image. A 64× 64 sagittal image of the head.

TABLE 11.3

Eigen / MDL Values
of MR Image in
Figure 11.5

IMG

k λ̂k MDL(k)
0 3243 1978
1 298 806
2 244 674
3 78 479
4 75 472
5 49 457
6 31 463
7 26 494
8 24 527
9 20 558

10 17 588
11 13 619
12 11 653
13 9 685
14 6 714
15 3 749
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A 64× 64 sagittal MR image of the head is shown in Figure 11.5, which is
the same as the image in Figure 10.8a. Applying the eigenstructure method
to this image, the obtained results are given in Table 11.3. It shows that this
image has five image regions. This result is consistent with the results in Fig-
ure 10.8 and Table 10.6, where the iFNM model-based image analysis method
is utilized for this MR image. Five region images are shown in Figure 10.8b
and described by the information shown in Table 10.7, which is meaningful
as expected. The parameter settings used in this example are I = 64, L = 4,
J = 16, N = 8 and M = 2,

11.2.3 Relationships to Other Related Methods

The earlier version of the eigenstructure method described in Section 11.2.1
was called Block processing. As shown in Section 11.2.1, the settings (I, L, J,
N,M) in the sensor array system conversion lead to L2 J×J data blocks and
L2×N2 M ×M data blocks. This section describes the relationship between
this method and other image (signal) analysis methods.

11.2.3.1 Independent Component Analysis

[53, 54] apply second-order independent component analysis (ICA) methods
to optical and fMRI image analysis, respectively. The prototype patterns in
[53] and the component maps in [54], sm(i) (m = 1, · · · , q, i = 1, · · · , I),
are defined as source signals, where m denotes the m-th prototype pattern
or component map and i denotes the i-th pixel in the images. The observed
images xl(i) (l = 1, · · · , L, i = 1, · · · , I) are defined as observations, where l
denotes the l-th frame or time point and i denotes the i-th pixel in the images.
The observations xl(i) and the sources sm(i) are linked by a linear mixture
model

xl(i) =

q∑

m=1

almsm(i), (11.28)

which can be written in matrix form as

x(i) = As(i). (11.29)

[53, 54] show that the joint diagonalization of two symmetric matrices (whose
elements are the measurable correlations of observations) leads to a solution
for the mixing matrix A, and therefore for the estimates of the source signals
s(i).

Ignoring the noise term of Eq. (11.11), Eqs. (11.29) and (11.11) are identical.
Although the present approach and ICA method demonstrate some similari-
ties, they are quite different. The major differences are:
• The aims of [53, 54] are to separate the sources, and second-order ICA

methods are applied to each pixel in the image. The present method is to
detect the number of sources (not to separate them), and an eigenstructure
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method is used on the covariance matrix (not on each pixel), which is a de-
scription of the entire signal environment of the converted sensor array system
and which is computed from the observations.
• In [53, 54], the linear mixture model represents a pixel in the observed

image (i.e., an observation) as a weighted summation of the pixels in the dif-
ferent prototype patterns or component maps (i.e., sources). In the present
approach, the linear mixture model represents the average of all pixels in a
sub-sub-image (i.e., an observation) as the weighted summation of the mean
estimates of all object region images (i.e.,the sources) in that sub-sub-image.
Thus, the mixing matrices A of Eqs. (11.11) and (11.29) have different con-
tents.
• The ICA method requires that the source signals be independent and

the number of sources be known. Assessing this independence and detecting
the source number become a common concern in many applications of ICA.
As demonstrated in Section 11.2.1, this eigenstructure method validates the
independence of source signals and detects the source number. Therefore, for
some image analysis applications, integrating this eigenstructure method with
ICA procedures is good choice.

11.2.3.2 Time Series Model

[34] utilized a p-th-order Autoregressive (AR) model for the forward predic-
tion error. Because the prediction errors are independent, Gaussian likelihood
can be easily formed. Carefully studying the covariance matrix of the present
method shows that the correlation represented by the matrix of Eq. (11.22) is
a p-th-order forward correlation. The patterns of the forward correlation and
the forward prediction error are very similar. However, the difference is that
the present method does not require models such as AR, SAR, GMRF, etc.,
to form these statistics [34, 55].

11.2.3.3 Multispectral Image Analysis

[36] proposed a multispectral image processing method for MR brain im-
age segmentation. It assumed that the corresponding pixels in the different
spectral images (T1, T2, and PD) are correlated and the pixels in the same
spectral image are independent. If the sub-images generated by the first sam-
pling process of the present method are treated as different spectral images,
then [36] and the present method are essentially the same in nature, and
the results obtained by the present method can also be used in multispectral
image processing.

11.2.3.4 Multivariate Image Analysis

The procedures developed in the present method are for 2-D image processing.
They can be easily applied to 3-D and 4-D image processing with minor
modifications. For a single volume image (i.e., 3-D), when the sampling step
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is L, L3 sub-images will be generated. For multiple volume images (e.g., 4-D
with time as the fourth independent variable), the sampling procedure is no
longer needed. In this case, the four-dimensional data array will be reformatted
as a reorganized three-way array [56], and the resulting covariance matrix will
represent the spatio-temporal multivariate Gaussian environment.

11.2.3.5 Some Remarks

A sensor array signal processing approach is developed for detecting the num-
ber of image regions. For the structural image, this number provides the nec-
essary information for unsupervised image analysis. For the functional image,
this number and its change may indicate the occurrence of the functional
activities (Note: fMRI here is under a single stimulus condition, that is, not
orthogonal.)

This eigenstructure approach is a non-model based, data-led operation. Ex-
cept for the basic image statistics such as Gaussianity and SAI, it does not
refer to any model or hypothesis. It detects the number of image regions in
a correlated image environment. The theoretical and simulated/experimental
results obtained using this approach were shown to be in good agreement.

11.3 Estimation of Image Parameters

In iFNM model-based image analysis (Chapter 10), both detection and classi-
fication processes require estimates of the model parameters. In cFNM model-
based image analysis, although the detection process (Section 11.2) does not
require estimates of the model parameters, the classification process (Section
11.4), does require these estimates.

To find the estimates of parameters of cFNM pdf (Eq. (9.37)), for the
convenience of derivations, some modifications of the notations are made as
follows. In Eq. (9.37), let

πk|Ni,j
= P (yi,j = k|yNi,j ), (11.30)

and define

r = (r1, · · · , rk, · · · , rK)T and rk = (πk|Ni,j
, µk, σ

2
k). (11.31)

Eq. (9.37) can be written as

f(xi,j |x6=i,j , r) =
K∑

k=1

πk|Ni,j
· g(yi,j|µk, σ2

k). (11.32)

As a result of these modifications, by comparing Eq. (11.32) with Eq. (9.1),
cFNM and iFNMmodels have a unified form. r, the parameter vector of cFNM
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pdf, is inserted in f of Eq. (11.32) for the purpose of parameter estimation
only. πk|Ni,j

may vary for each pixel (i, j). It is temporally treated in the
same way as µk and σ2

k, that is, as an index k only dependent parameter. The
justification of this treatment is given in Appendix 11A. πk|Ni,j

and (µk, σ
2
k)

are computed separately.
As shown in Chapter 9, a pixel has two descriptors: a value and a label.

An image is characterized by two layers: an intensity field and a context field.
In the iFNM model, these two fields are independent Gaussian random fields,
and no spatial regularity is imposed. In the cFNM model, they are MRF fields
with the same neighborhood system, and the spatial regularity is characterized
by the correlations of pixel intensities in the intensity field and imposed by
the relations of labels in the context field. The implementation of parameter
estimation is regulated by these relations.

11.3.1 Extended Expectation-Maximization Method

Some commonly used MRF model-based image analysis methods adopt the
following approach for the parameter estimation. Parameters µk and σk are
estimated first, and the estimates µ̂k and σ̂k are obtained by various means.
The assignments of the labels {yi,j} over the pixel array are then performed
by a Maximum a posteriori (MAP) operation based on pG(yi,j) of Eq. (9.38).
The main problem with this approach is that the parameters µk and σk are
estimated only once at the beginning of the process. Consequently, they may
not fit the updated labels {yi,j}, that is, the complete data.

To overcome this drawback, parameter estimates µ̂k, σ̂k and label assign-
ments {yi,j} (hence, the parameter estimate π̂k|Ni,j

) should be updated in
an interplay fashion based on the observed image {xi,j}. The mixture of the
Expectation-Maximization (EM) algorithm and the Maximum a posteriori
(MAP) algorithm is ideally suited to problems of this sort, in which it produces
maximum-likelihood (ML) estimates of parameters when there is a mapping
from the observed image{xi,j} (the incomplete data) to the underlying labels
{yi,j} (the complete data).

This EM-MAP algorithm consists of two connected components. Compo-

nent 1 is a standard EM algorithm. For given labels y(n) = {y(n)i,j } ((n)

denotes the n-th iteration in updating y estimate), {π(n)
k|Ni,j

} is estimated

based on MRF-GD equivalence; an EM algorithm is then applied to the im-
age x = {xi,j} based on the cFNM pdf of Eq. (11.32) to generate the ML

parameter estimates {µ(m+1)
k , σ

2(m+1)
k } ((m) denotes the m-th iteration in

estimating {µk, σ2
k}). Component 2 is a MAP algorithm. y(n) is updated to

y(n+1) by an operation similar to the Gibbs sampler and then followed by a

new estimate π
(n+1)
k|Ni,j

and another E-M cycle. This EM-MAP algorithm, start-

ing from (n) = 0 and (m) = 0, is repeated until the selected stopping criteria
are met.

We use a new notation in the derivation of the ML and MAP estimates.
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Let f(z, θ) be the likelihood function of the parameter θ, z the observations.

Conventionally, the ML estimate of θ is expressed by θ̂ = argmaxθ{f(z, θ)}.
In order to link this ML estimate with an iteration algorithm that numerically
generates this ML estimate, a notation θ(m+1) = argmaxθ(m){f(z, θ(m))} is
adopted; here (m) denotes the m-th iteration.

Unlike conventional EM algorithm development, instead of maximizing the
expectation of the likelihood of the parameters that is shown in Appendix 10C
of Chapter 10, we directly maximize the likelihood itself. The justification of
this approach is given in Appendix 11A. It shows that the likelihood of the
estimated parameters of cFNM Eq. (11.32) L, given y(m), is‡

L(r(m)) =
∏

(i,j)

f(xi,j |x6=i,j , r(m))

=
∏

(i,j)

K∑

k=1

π
(n)
k|Ni,j

· g(xi,j |µ(m)
k , σ

2(m)
k ). (11.33)

Because
∑K

k=1 π
(n)
k|Ni,j

= 1, ML estimates of parameters of the cFNM

Eq. (11.32), r(m+1), can be obtained by

r(m+1) = arg max
r(m){lnL(r(m)) + λ(

K∑

k=1

π
(n)
k|Ni,j

− 1)}, (11.34)

where λ is a Lagrangian multiplier. Appendix 11A shows that the solutions
of Eq. (11.34) are given by the following EM-MAP algorithm, which consists
of two components.

• Component 1 - EM algorithm

E-step: computing Bayesian probability z
(m)
(i,j),k for every (i, j) and k.

π
(n)
k|Ni,j

is determined through MRF-GD equivalence Eq. (9.38)

π
(n)
k|Ni,j

= P (y
(n)
i,j = k|y(n)Ni,j

) = pG(y
(n)
i,j |y

(n)
Ni,j

)

=
1

Z
exp(− 1

β

∑

c:(i,j)∈c
Vc(y

(n)
i,j )), (11.35)

which remains unchanged in one E-M cycle. Vc(y
(n)
i,j ) is the potential of the

clique c, and its assignment is described in Section 11.3.2;

z
(m)
(i,j),k =

π
(n)
k|Ni,j

g(xi,j |µ(m)
k , σ

(m)
k )

f(xi,j |x6=i,j , r(m))
; (11.36)

‡The underlying pdf of the likelihood L(r(m)) is f(xi,j |x 6=i,j, r
(m)), a cFNM pdf Eq. (11.32);

it is not the marginal pdf g(xi,j |µ
(m)
k , σ

2(m)
k ), a Normal pdf.
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M-step: computing the updated estimates of parameters µ
(m+1)
k and

σ
2(m+1)
k :

µ
(m+1)
k =

∑
i,j z

(m)

(i,j),k
xi,j

∑
i,j z

(m)

(i,j),k

σ
2(m+1)
k =

∑
i,j z

(m)

(i,j),k
(xi,j−µ(m+1)

k )2

∑
i,j z

(m)

(i,j),k

.

(11.37)

E- and M-steps start from an initial estimate (for a given y(n)) and stop by
checking if the likelihood quits changing,

|L(r(m+1))− L(r(m))| < ǫ, (11.38)

where ǫ is a prespecified small number.
The conditional probability of the underlying label y = {yi,j}, given image

x = {xi,j}, is P (y|x) = P (x,y)/P (x). Because P (x) is fixed and its likelihood
for a given x is constant, P (y|x) ∝ P (x|y)P (y). Thus, a configuration of y,
y(n+1), can be obtained by a MAP operation over all y(n),

y(n+1) = arg max
y(n){P (x|y(n))pG(y

(n))}. (11.39)

Appendix 11B shows that the conditional field y given x, y|x, is also an
MRF and its energy function U(y(n)|x) is

U(y(n)|x) = 1

2

∑

i,j

((
xi,j − µ(m)

k

σ
(m)
k

)2 + lnσ
2(n)
k +

1

β

∑

c:(i,j)∈c
Vc(y

(n)
i,j )). (11.40)

Thus, the MAP operation (Eq. (11.39)) is equivalent to an energy minimiza-
tion (minimizing Eq. (11.40)) and is performed as follows:

• Component 2 - MAP algorithm
MAP-step: computing the updated underlying labels

y(n+1) = arg min
y(n){U(y(n)|x)}, (11.41)

that can be implemented by the Iterated Conditional Modes (ICM) algo-
rithm [30]. We utilize a method that is similar to Gibbs Sampler [28] for

computing π
(n)
k|Ni,j

of Eq. (11.35) and updating y(n+1) of Eq. (11.41). This

method is described in Section 11.3.3. The MAP algorithm stops when the
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proper iterations have been performed.

This EM-MAP algorithm is summarized below:

(0) Modeling the image {xi,j} as an iFNM (Eq. (10.1)) and applying the
standard EM algorithm (Eqs. (10.11)–(10.13)) to generate initial pa-
rameter estimates;

(1) MAP algorithm, estimating the pixel labels Eq. (11.41);

(2) EM algorithm:
(2.a) E-step, computing the Bayesian probability Eq. (11.36),
(2.b) M-step, computing the updated parameter estimates Eq. (11.37),
(2.c) Back to (2.a) and repeating until Eq. (11.38) is met,

(3) Back to (1) and repeating until the selected stopping criterion is met.

11.3.2 Clique Potential Design

11.3.2.1 New Formulations of Clique and Its Potential

The clique c in an MRF is a set of sites in which the distinct sites are in the
neighborhood of each other. Cliques in the first-and second-order neighbor-
hood systems (N p, p = 1, 2) are shown in Figure 9.3. The clique c depends on
the order p of neighborhood systems and the number q of pixels in the clique.
For example, a clique may consist of two pixels (horizontal and vertical pair)
in N 1, or two pixels (45◦ and 135◦ diagonal pair) in N 2, or three pixels (tri-
angle) in N 2, etc. We use a new expression cp,q to denote a clique consisting
of q pixels in the p-th-order neighborhood system. Thus, the third term in the
parentheses on the right side of Eq. (11.40) becomes

1

β

∑

c:(i,j)∈c
Vc(y

(n)
i,j ) =

1

β

∑

cp,q: (i,j)∈cp,q

∑

p

∑

q

Vcp,q (y
(n)
i,j ). (11.42)

An example in Section 9.3.1.2 shows that the MR image is embedded in a
third-order neighborhood system N 3. In a 2-D image, for the order p = 1, 2, 3,
the number of pixels in the cliques is q = 2, 3, 4, 5.

Most MRF model-based image analysis methods use pairwise cliques (c1,2
and c2,2) only. The lack of explanation why using these cliques only is sufficient
becomes a common concern. Assignments of clique potentials Vcp,q are quite
arbitrary. For instance, for the pairwise cliques c = {(i, j), (k, l)}, its potential
may be 



c1,2(yi,j) = −1 or 0 (yk,l = yi,j)

c1,2(yi,j) = +1 (yk,l 6= yi,j).

The absence of justifications (either in the physical meaning or in the quan-
titative values) of why these assignments causes questions. After reviewing
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the commonly used methods for assigning clique potentials that are given in
Appendix 11C, a new and general approach has been developed. Using this
method, each clique potential has a unique, meaningful, reasonable assignment
and is consistent with the energy minimization in the MAP operation.

The Markovianity of X-ray CT and MR imaging (Property 9.2) is derived
from SAI, which describes correlations of the pixel intensities. Thus, the clique
potential that characterizes the relations of pixel labels may be related to the
correlations of the pixel intensities. Let r(i,j),(k,l) be the correlation coefficient
(abbreviated c.c. in this section) of pixel intensity xi,j and xk,l. The potential
of a clique consisting of multiple pixels is defined as the magnitude of c.c. of
the intensities of a pair of pixels that has the longest distance in the clique,
that is,

Vcp,q (y
(n)
i,j ) = |r(i′,j′),(k′,l′)|, (11.43)

where ||(i′, j′), (k′, l′)|| = max{||(i, j), (k, l)||}; here ||(i, j), (k, l)|| denotes the
distance between pixels (i, j) and (k, l).§ This new definition implies that the
potential of the clique in the label field y = {yi,j} is defined by the second-
order statistics of pixel intensity in the image field x = {xi,j}.

Because |r(i,j),(k,l)| = |E[
(
xi,j−µi,j

σi,j

) (
xk,l−µk,l

σk,l

∗)
]| (* denotes the conju-

gate), it represents a normalized (by the standard deviation) power at a pixel.

Thus, Vcp,q (y
(n)
i,j ); hence, the third term in the parentheses on the right side of

Eq. (11.40), represents the normalized cross-power of pixels in the cliques of
the pixel (i, j). The first and second terms in the parentheses the right side of

Eq. (11.40), that is, (
xi,j−µ(n)

k

σ
(n)
k

)2+lnσ
2(n)
k , represent the normalized self-power

of pixel (i, j) and its noise power. Thus, the sum of the self-, cross-, and noise
power at each pixel over all pixels, that is,

∑

i,j

((
xi,j − µ(n)

k

σ
(n)
k

)2 + ln σ
2(n)
k +

1

β

∑

c:(i,j)∈c
Vc(y

(n)
i,j ))

gives the real normalized energy of pixel intensities in the image. Therefore,
the clique potential defined by Eq. (11.43) has clear physical meaning and
makes the potential (the cross-power), the self-power, and the noise power
consistent.

11.3.2.2 Clique Potential Assignment

Based on Figures 9.2 and 9.3 and the new expression of the clique, it is clear
that a clique cp,q contains the cliques cs,t that are in the same or lower order
neighborhood systems s ≤ p with the less number of pixels t < q. For instance,
in Figure 9.3, a 2 × 2 square-clique c2,4 in N 2 contains four triangle-cliques

§The notation ||(i, j), (k, l)|| for representing the distance between pixels ||(i, j) and (k, l)||
has been used in the proof of Property 9.2.



Statistical Image Analysis – II 353

c2,3 and two pair-cliques c2,2 in N 2, as well as four pair-cliques c1,2 in N 1.
Thus, a new procedure for assigning the clique potential is formed as follows.
For a clique cp,q, (a) the potentials Vcs,t (s ≤ p, t < q) are assigned first and
the potential Vcp,q is then assigned; (b) the potentials are assigned to a value

of Eq. (11.43) when all y
(n)
k,l ((k, l) ∈ cp,q) are the same or to an another value

otherwise. This procedure makes potential assignments for all cliques unique.
ECC (Property 6.3 and Property 8.3) shows that the magnitude of the c.c.

of pixel intensities is given by

|r(i,j),(k,l)| = |rm,n| = exp(−α
√
m2 + n2), (11.44)

where m = ||i − k|| and n = ||j − l|| are the distances in the unit of pixel.
r(i,j),(k,l) only depends on the distances between pixels, and does not depend
on pixel locations. Substituting Eq. (11.44) into Eq. (11.43), we have

Vcp,q (y
(n)
i,j ) =

1

β
exp(−α ·max

√
m2 + n2). (11.45)

We noticed that for a given neighborhood system N p, all its cliques have
the same max

√
m2 + n2. For instance, for N 2, max

√
m2 + n2 in cliques

c2,2, c2,3, and c2,4 are the same¶:
√
2. It is easy to verify that for p =

1, 2, 3, max
√
m2 + n2 =

√
2
p−1

. Using
√
2
p−1

to replace max
√
m2 + n2 in

Eq. (11.45), which corresponds to the smallest clique potential (hence, the
smallest normalized cross-power), we have

Vcp,q (y
(n)
i,j ) =

1

β
exp(−α

√
2
p−1

). (11.46)

This new clique potential assignment is closely related to the energy mini-
mization that is used in cFNM model-based image analysis.

11.3.3 Energy Minimization

11.3.3.1 Energy Minimization

In order to minimize U(y(n)|x) of Eq. (11.40) using the procedure described
above and the potential assignment given by Eq. (11.46), we adopt the follow-

ing approach. For a given clique cp,q : (i, j) ∈ cp,q, if all y(n)k,l ((k, l) ∈ cp,q) in
the clique are the same, the potential Vcp,q (y

(n)
i,j ) should be “rewarded” such

that U(y(n)|x) is toward its ideal minimum energy
∑
i,j((

xi,j−µ(n)
k

σ
(n)
k

)2+lnσ
2(n)
k )

as if the cross-power vanished; if at least one y
(n)
k,l ((k, l) ∈ cp,q) in the clique is

¶This may be an interesting result relating the maximum distance between pixels in cliques
and the order of the neighborhood systems that the cliques belong to.
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different, the potential Vcp,q (y
(n)
i,j ) should be “penalized” such that U(y(n)|x) is

toward a non-ideal minimum energy
∑
i,j((

xi,j−µ(m)
k

σ
(m)
k

)2+lnσ
2(n)
k )+ 1

βVcp,q (y
(n)
i,j )

as if the cross-power remains with a reasonable value Eq. (11.46). For each

(i, j), Vcp,q (y
(n)
i,j ) are updated by updating y(n) = {y(n)i,j } via (n+ 1) −→ (n),

which leads to U(y(n)|x) being eventually minimized.

That is, given a pixel (i, j) in the image x and other labels y
(n)
6=(i,j), the

energy minimization sequentially updates each y
(n)
(i,j) to y

(n+1)
(i,j) by minimizing

U(y
(n)
(i,j)|x, y

(n)
6=(i,j)) with respect to y(i,j).

11.3.3.2 Final Expression of Clique Potential

Thus, with the goal of minimizing energy Eq. (11.40), the clique potential is
finally expressed by

Vcp,q (y
(n)
i,j ) =

1

β
exp(−α

√
2
p−1

)(1− γ
∏

cp,q: (k,l),(i,j)∈cp,q
δ[y

(n)
k,l − y

(n)
i,j ]), (11.47)

where γ is a constant and δ[z] is a Kronecker delta function.
The constants α, β, and γ in Eqs. (11.46) and (11.47) are given as follows.

For γ = 1,

Vcp,q (y
(n)
i,j ) =





0 (all y
(n)
k,l = y

(n)
i,j , (k, l), (i, j) ∈ cp,q)

1
β exp(−α

√
2
p−1

) (otherwise);

(11.48)
and for γ = 2,

Vcp,q (y
(n)
i,j ) =





− 1
β exp(−α

√
2
p−1

) (all y
(n)
k,l = y

(n)
i,j , (k, l), (i, j) ∈ cp,q)

+ 1
β exp(−α

√
2
p−1

) (otherwise),

(11.49)
Using Eq. (11.48) or Eq. (11.49) is a choice of applications, but Eq. (11.48)
seems to be more meaningful. The constant β in currently used MRF model-
based image analysis methods is selected empirically [32, 33, 36, 57, 58]. We
adopt β = 1 [36]. Experimental results of the ECC of Section 8.3.2 shows that
α = 0.8 ∼ 1.0.

Remarks. (1) In most currently used MRF model-based image analysis
methods, the single pixel clique [31] is not discussed. Revisiting Eq. (11.40),

(
xi,j−µ(m)

k

σ
(m)
k

)2 actually represents the potential of the single pixel clique po-

tential. In this view, all clique potentials are assigned by the magnitude of
c.c. of corresponding pixel intensities and this assignment is unique—neither
omission nor duplication. (2) A common view regarding the advantages of
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using the MRF model in image analysis is that it can impose spatial regu-
larity in processing using the contextual information of the image. This new
clique potential assignment method shows that the contextual information
of an image can be expressed by the correlation of pixel intensities and the
spatial regularity can be imposed eventually based on the correlation of pixel
intensities.

11.4 Classification of Pixels

11.4.1 Bayesian Classifier

In some sense, image analysis can be viewed as an operation to classify pix-
els in the image into the underlying image regions. For the cFNM model of
Eq. (11.32), after the number K0 of image regions is detected using the sensor
array signal processing method (Section 11.2) and the model parameters r are
estimated using the extended EM method (Section 11.3), the classification is
performed using the Bayesian classifier. The pixel (i, j) is classified into the
k0 (k0 = 1, · · · , K) image region Rk0 , if and only if

k0 = arg max
1≤k≤K0

{πk|Ni,j
· g(yi,j |µk, σ2

k)}. (11.50)

That is, the pixel (i, j) is classified into the k0 image region with the highest
probability over all other image regions. It has been shown that Bayesian
classification and the energy minimization are consistent.

11.5 Statistical Image Analysis

The detection of the number of image regions (Section 11.2), the estimation
of image parameters (Section 11.3), and the classification pixels into image
regions (Section 11.4) form an cFNM model-based statistical image analysis
method. The method is performed in the following fashion:

1. By converting an image to an analog sensor array system, the numberK0

of image regions in the image is detected by an eigenstructure method,
which is a non-model-based approach and does not require parameter
estimates.

2. With the detected numberK0 of image regions, parameters of the cFNM
model are estimated by an extended EM algorithm, that is, a MAP-EM
operation with new design of clique potentials.
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(a) (b)

(c) (d)

FIGURE 11.6

A Proton Density (PD) weighted MR image of the intracranial (IC) (a), the
partitioned region images of the cerebrospinal fluid (CSF) (b), the gray matter
(GM) (c), and the white matter (WM) (d).

3. Using the number K0 and the corresponding ML-MAP estimate r̂, the
Bayesian classifier is applied to classify pixels into K0 groups so that an
image is partitioned into distinctive image regions.

This method is a fully automated, unsupervised data-driven approach. The
following examples demonstrate its applications in image analysis.

11.5.1 MR Images

Three proton density (PD) weighted MR images of the intracranial (IC) are
shown in Figures 11.6a, 11.7a, and 11.8a. By applying the eigenstructure de-
tection method, the number of image regions in these three images are all
K0 = 3. Using the cFNM model-based image analysis method described in
this chapter, each of these image is partitioned into three region images. They
are images of the cerebrospinal fluid (CSF) (Figures 11.6b, 11.7b, and 11.8b),
the gray matter (GM) (Figures 11.6c, 11.7c, and 11.8c), and the white matter



Statistical Image Analysis – II 357

(a) (b)

(c) (d)

FIGURE 11.7

A Proton Density (PD) weighted MR image of the intracranial (IC) (a), the
partitioned region images of the cerebrospinal fluid (CSF) (b), the gray matter
(GM) (c), and the white matter (WM) (d).

(WM) (Figures 11.6d, 11.7d, and 11.8d). In the processing, the cliques c2,2
are used and the iteration number n=3.

11.6 Appendices

11.6.1 Appendix 11A

This appendix proves Eqs. (11.36) and (11.37).

Proof

In parameter estimation, the likelihood of the estimated parameters requires
that the observed data must be independently, identically distributed (i.i.d.).
In an image x = {xi,j} characterized by cFNM, although xi,j are identically
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(a) (b)

(c) (d)

FIGURE 11.8

A Proton Density (PD) weighted MR image of the intracranial (IC) (a), the
partitioned region images of the cerebrospinal fluid (CSF) (b), the gray matter
(GM) (c), and the white matter (WM) (d).
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distributed with a cFNM pdf, they are not independent. As a result, the like-
lihood of the estimated parameters of the cFNM model cannot be expressed
as a product of values of the cFNM pdf at each pixel.

There has been intensive discussion recently regarding the likelihood
L(r(m)) of Eq. (11.33). [59] proposed a consistent procedure based on a penal-
ized Besag pseudo-likelihood [60]; the likelihood is approximated as the prod-
uct of the values of the pdf at each observation. [61, 62] use a mean field-like
approximation based on the mean field principle of statistical physics [63]; an
observation does not depend on other observations that are all set to constants
independent of that observation. In both cases, the likelihood is factorized as
a product of values of the underlying pdf at each observation.

These results lead to the cFNM pdf being approximated by an iFNM pdf.
Hence, pixel intensities {xi,j} characterized by cFNM are i.i.d. It follows that
πk|Ni,j

, which may vary for each pixel (i, j), is temporally treated in the
same way as µk and σk, that is, as an index k only dependent parameter.
However, πk|Ni,j

and (µk, σk) are computed by Eq. (11.35) and Eq. (11.37),

separately. Consequently, because
∑K

k=1 π
(n)
k|Ni,j

= 1, from Eq. (11.33) we have

a Lagrangian equation

L = lnL(r(m)) + λ(

K∑

k=1

π
(n)
k|Ni,j

− 1), (11.51)

where λ is a Lagrangian multiplier.

By taking partial derivatives with respect to λ, π
(n)
k|Ni,j

, µ
(m)
k and σ

2(m)
k and

set them to equal zero,





∂L
∂λ = 0

∂L

∂π
(n)

k|Ni,j

= ∂ lnL
∂π

(n)

k|Ni,j

+ λ = 0

∂L

∂µ
(m)
k

= ∂ lnL
∂µ

(m)
k

= 0

∂L

∂σ
2(m)
k

= ∂ lnL
∂σ

2(m)
k

= 0,

(11.52)
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we have




∑K
k=1 π

(n)
k|Ni,j

− 1 = 0

∑
i,j

g(xi,j |µ(m)
k ,σ

(m)
k )

f(xi,j |x 6=i,j,r(m))
+ λ = 0

∑
i,j

π
k|N

(n)
i,j

g(xi,j |µ(m)
k ,σ

(m)
k )(xi,j−µ(m+1)

k )

f(xi,j |x 6=i,j,r(m))
= 0

∑
i,j

π
k|N

(n)
i,j

g(xi,j |µ(m)
k ,σ

(m)
k )((xi,j−µ(m+1)

k )2−σ2(m)
k )

f(xi,j |x 6=i,j,r(m))
= 0.

(11.53)

The second equation of Eq. (11.53) leads to

λ = −I · J. (11.54)

Let
π
(n)
k|Ni,j

g(xi,j |µ(m)
k , σ

(m)
k )

f(xi,j |x6=i,j , r(m))
= z

(m)
(i,j),k; (11.55)

we obtain, from the third equation of Eq. (11.53),

µ
(m+1)
k =

∑
i,j z

(m)
(i,j),kxi,j∑

i,j z
(m)
(i,j),k

, (11.56)

and subsequently from the fourth equation of Eq. (11.53)

σ
2(m+1)
k =

∑
i,j z

(m)
(i,j),k(xi,j − µ

(m+1)
k )2

∑
i,j z

(m)
(i,j),k

. (11.57)

Note: σ
2(m+1)
k is determined by µ

(m+1)
k , not by µ

(m)
k .

From Eq. (11.30) (the definition of π
(n)
k|Ni,j

) and Eq. (9.38) (MRF-GD equiv-

alence), π
(n)
k|Ni,j

is determined by

π
(n)
k|Ni,j

= P (y
(n)
i,j = k|y(n)Ni,j

)

= pG(y
(n)
i,j |y

(n)
Ni,j

)

=
1

Z
exp(− 1

β

∑

c:(i,j)∈c
Vc(y

(n)
i,j )), (11.58)

where c : (i, j) is the clique at the pixel (i, j) and Vc(y
(n)
i,j ) is the potential of

the clique c : (i, j). π
(n)
k|Ni,j

remains unchanged in one E-M cycle.
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11.6.2 Appendix 11B

This appendix proves that y|x is an MRF and its energy function is given by
Eq. (11.40).

Proof

As shown in Section 9.4, an HMRF, that is, given the context field y, the
intensity field x is conditionally independent‖ [32, 36, 62], that is,

P (x|y(n)) =
∏

i,j

P (xi,j |y(n)i,j ) =
∏

i,j

1
√
2πσ

2(n)
k

exp(− (xi,j − µ(n)
k )2

2σ
2(n)
k

). (11.59)

An approximation of pG(y
(n)) in Eq. (9.29) is the Besag pseudo-likelihood [60],

i.e.,

pG(y
(n)) =

∏

i,j

pG(y
(n)
i,j |y

(n)
Ni,j

) =
∏

i,j

(
1

Z
exp(−1

η

∑

c:(i,j)∈c
Vc(y

(n)
i,j ))). (11.60)

Thus, we have

P (x|y(n))pG(y
(n)) =

1

(
√
2πZ)I·J

exp(−1

2

∑

i,j

(
xi,j − µ(m)

k

σ
(m)
k

)2 + lnσ
2(m)
k +

2

η

∑

c:(i,j)∈c
Vc(y

(n)
i,j ))). (11.61)

Let

U(y(n)|x) ∆
=

1

2

∑

i,j

((
xi,j − µ(m)

k

σ
(m)
k

)2 + lnσ
2(m)
k +

2

η

∑

c:(i,j)∈c
Vc(y

(n)
i,j )), (11.62)

from Eqs. (11.61) and (11.62), we can verify

∑

y(n)

(∫

x

P (x|y(n))pG(y
(n))dx

)

=
1

(
√
2πZ)I·J

∑

y(n)

(∫

x

exp(−U(y(n)|x))dx
)

= 1 , (11.63)

and

(
√
2πZ)I·J =

∑

y(n)

(∫

x

exp(−U(y(n)|x))dx
)

∆
= Zy|x. (11.64)

‖In some sense, this conditional independence can be understood as a result of the one-to-
one correspondence {yi,j = k} ⇐⇒ {xi,j ∼ N(µk , σ

2
k)}.
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Thus, Eq. (11.61) can be written as

P (x|y(n))pG(y
(n)) =

1

Zy|x
exp(−U(y(n)|x)). (11.65)

Therefore, from Eq. (11.65) and the relation P (y|x) ∝ P (x|y)pG(y), we have
that the conditional field y given x, that is, y|x, is an MRF and the en-
ergy function of the corresponding GD is U(y(n)|x) Eq. (11.62). Let η = 2β;
Eq. (11.62) gives Eq. (11.40).

11.6.3 Appendix 11C

This appendix reviews clique potential assignment approaches used in other
MRF model-based image analysis methods and compares them with the ap-
proach described in Section 11.3.

(1) The strategy of using the correlation coefficient for clique potential
assignment (Section 11.3) has been echoed by an approach reported in [55],
which proposed a spatial correlation-basedmethod for neighbor set selection in
the simultaneous autoregressive (SAR) and Gauss-Markov (GMRF) random
field image models.∗∗ In that approach, the additive noise was assumed to be
uncorrelated for the SAR model

E[e(s)e(s⊕ r)] = 0 (∀s), (11.66)

and correlated for the GMRF model

E[e(s)e(s⊕ r)] =





−θrρ (r ∈ N )

ρ (r = 0)

0 otherwise,

(11.67)

where s ∈ Ω, Ω = {s = (i, j) : i, j ∈ J}, J = {0, 1, · · · ,M − 1}; the neighbor
sets are defined as N = {r = (k, l) : k, l ∈ {−(M − 1), · · · ,−1, 0, 1 · · · , (M −
1)}; k2+ l2 > 0}, and ⊕ denotes modulo M addition in each index. The most
likely neighbor sets for the given model are those that satisfy

max{SCF (r)− 1

ρ
E[e(s)e(s⊕ r)]} < ξmax, (11.68)

where ξmax is the correlation error desired for the model, SCF (r) is the sample
correlation function estimated by

SCF (r) =
∑

s∈Ω

η(s)η(s ⊕ r)/
∑

s∈Ω

η2(s) (∀r ∈ Ω), (11.69)

∗∗Property 9.2 provides a procedure for selecting a neighborhood system to an MRF field.
See the example in Section 9.3.1.2 given by Table 9.2.
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where η(s) is the residual image given by

η(s) = y(s)−
∑

r∈N
θ̂y(s⊕ r) (∀s ∈ Ω), (11.70)

where y(s) =
∑

r∈N θry(s⊕r)+e(s) is the model equation; and θ̂ = {θ̂r : r ∈
N} is an estimate of the interaction coefficient vector that can be obtained
by min

∑
r∈N (SCF (r) − 1

ρE[e(s)e(s⊕ r)])2.

Reviewing this approach, we find that 1
ρE[e(s)e(s⊕ r)] in Eq. (11.68) is the

correlation coefficient of e(s), SCF (r) in Eq. (11.68), and Eq. (11.69) is an
estimate of the correlation coefficient of e(s). Thus, this method, in fact, is to
minimize the maximum error between the estimated correlation coefficients
and the desired correlation coefficients. It is also clear that the interaction
coefficient vector θ̂ = {θ̂r : r ∈ N} is a set of correlation coefficients. Due

to the lack of knowledge of these correlation coefficients, θ̂ must be estimated
by minimizing

∑
r∈N (SCF (r) − 1

ρE[e(s)e(s ⊕ r)])2, which is very intensive
computationally. Therefore, in neighborhood system selection, the strategy of
Section 11.3 and this approach are the same with regard to nature (both are
based on correlation coefficient), but the former will be straightforward and
much simpler.

(2) The strategy of using the correlation coefficient for clique potential
assignment (Section 11.3) has also been mirrored by currently used MRF
modeling methods.

[32] chooses a prior in which pixels of the same type as their neighbors are
rewarded and pixels that differ from their neighbors are penalized. Thus, the
potentials of two pixel cliques in a second-order neighborhood system are

Vc(y) =





1− 2δ[yi − yj] (yj : 4 first-order neighbors)

(1− 2δ[yi − yj ])/
√
2 (yj : 4 second-order neighbors),

(11.71)

where δ[x] denotes the Kronecker Delta function.
In [36], the potentials of two pixel cliques in a second-order neighborhood

system in the 3-D case are

Vc(y) =





1− δ[yi − yr] (yr : 6 first-order neighbors)

(1 − δ[yi − yr])/√γ (yr : 12 second-order neighbors),
(11.72)

where γ = 2; and for 8 third-order neighbors, γ = 3.
In [31], the associated clique potentials in a second-order neighborhood

system are defined as

Vc(y) =




−ξ (all yi,j in clique are equal)

+ξ (otherwise),
(11.73)
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where ξ is the specified parameter. For the single pixel clique, its potential is

Vc(y) = αk (yi,j = qk), (11.74)

where αk controls the percentage of pixels in each region type.
Comparing the above listed methods and the strategy of Section 11.3, we

find that (1) parameter settings of clique potentials in the former are “hard”
(e.g., +ξ versus −ξ, or +1 versus −1, or +1 versus 0), and those in the latter
are “adaptive,” (2) the settings in the former are somewhat heuristic and those
in the latter are reasonable and consistent with the statistical properties of
X-ray CT and MR images.

Problems

11.1. Prove Eq. (11.9).

11.2. Give an interpretation of the source signals sm(k) (m = 1, · · · , q) of
Eq. (11.9).

11.3. Prove that the complex data Y (i, j)eiφ(i,j) have zero mean.

11.4. Prove that x of Eq. (11.10) is a Gaussian random vector with zero mean.

11.5. Prove that x of Eq. (11.10) is stationary and ergodic.

11.6. Verify that the covariance matrix S of Eq. (11.12) is positive definite.

11.7. Prove Eq. (11.24).

11.8. Verify that for a given neighborhood system N p, all its cliques have the
same max

√
m2 + n2.

11.9. Prove that for p = 1, 2, 3, max
√
m2 + n2 =

√
2
p−1

.

11.10. Prove Eq. (11.63).

11.11. Justify that the clique potential assignment (Eq. (11.47)), the energy
minimization (Section 11.3.3), and the Gibbs sampler (Appendix 9A of
Chapter 9) are consistent.

11.12. Elaborate on Bayesian classification (Eq. (11.50)) and the energy mini-
mization are consistent.
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12

Performance Evaluation of Image Analysis

Methods

12.1 Introduction

With the rapid development of image analysis techniques [1–39], an increasing
interest has been directed toward the performance evaluation of these tech-
niques. Commonly used evaluation criteria may include accuracy, precision,
efficiency, consistency, reproducibility, robustness, etc. In order to make assess-
ments based on these criteria (e.g., the accuracy), observers often compare the
results obtained using these techniques with the corresponding ground truth
or the gold standard.

The ground truth may be seen as a conceptual term relative to the knowl-
edge of the truth concerning a specific question. The gold standard may be
seen as the concrete realization of the ground truth or an accepted surrogate
of truth [40]. Due to the complexity of the structures of living objects and
the irregularity of the anomalies, the ground truth or the gold standard of
these structures and anomalies is unknown, inaccurate, or even difficult to
establish. As a result, subjective criteria and procedures are often used in the
performance evaluation, which can lead to inaccurate or biased assessments.

This chapter describes two approaches for the precise and quantitative eval-
uation of the performance of image analysis techniques. Instead of comparing
the results obtained by the image analysis techniques with the ground truth or
the gold standard, or using some statistical measures, these two approaches
directly assess the image analysis technique itself. The first approach gives
analytical assessments of the performance of each step of the image analy-
sis technique. The second approach is focused on the validity of the image
analysis technique with its fundamental imaging principles.

The first approach is applied to the iFNM model-based image analysis
method (Chapter 10), which consists of three steps: detection, estimation, and
classification. (1) For detection performance, probabilities of over- and under-
detection of the number of image regions are defined, and the corresponding
formulas in terms of model parameters and image quality are derived. (2) For
estimation performance, both EM and CM algorithms are showed to produce
asymptotically unbiased ML estimates of model parameters in the case of
no-overlap. Cramer-Rao bounds of the variances of these estimates are de-

371
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rived. (3) For classification performance, a misclassification probability for
the Bayesian classifier is defined, and a simple formula, based on parameter
estimates and classified data, is derived to evaluate classification errors.

The results obtained by applying this method to a set of simulated im-
ages show that, for images with a moderate quality (SNR > 14.2 db, i.e.,
µ/σ ≥ 5.13), (1) the number of image regions suggested by the detection
criterion is correct and the error-detection probabilities are almost zero; (2)
the relative errors of the weight and the mean are less than 0.6%, and all
parameter estimates are in the Cramer-Rao estimation intervals; and (3) the
misclassification probabilities are less than 0.5%. These results demonstrate
that for this class of image analysis methods, the detection procedure is ro-
bust, the parameter estimates are accurate, and the classification errors are
small.

A strength of this approach is that it not only provides the theoretically
approachable accuracy limits of image analysis techniques, but also shows the
practically achievable performance for the given images.

The second approach is applied to the cFNM model-based image analysis
method (Chapter 11), which also consists of three steps: detection, estima-
tion, and classification. (1) For detection performance, although the cFNM
model-based image analysis method uses a sensor array eigenstructure-based
approach (which is different from the information criterion-based approach
used in the iFNM model-based image analysis method), the probabilities of
over- and under-detection of the number of image regions are defined in a sim-
ilar way. The error-detection probabilities are shown to be functions of image
quality, resolution, and complexity. (2) For estimation performance, when the
EM algorithm is used, the performances of iFNM and cFNM model-based
image analysis methods are similar. (3) For classification performance, the
cFNM model-based image analysis method uses the MAP criterion to assess
its validity with the underlying imaging principles and shows that the results
obtained by MAP are toward the physical ground truth that is to be imaged.

12.2 Performance of the iFNM Model-Based Image

Analysis Method

This section analyzes the iFNM model-based image analysis method of Chap-
ter 10. It evaluates its performance at three steps: detection, estimation, and
classification.
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12.2.1 Detection Performance

This subsection describes the detection performance of the iFNM model-based
image analysis method. It first defines the probabilities of over- and under-
detection of the number of image regions, then derives their expressions in
terms of the signal-to-noise ratio, resolution, and complexity of the image,
and finally shows some results.

12.2.1.1 Probabilities of Over-Detection and Under-Detection of
the Number of Image Regions

Let IMG(J,K) denote an image of J pixels (xj , j = 1, · · · , J) and K image
regions (Rk, k = 1, · · · , K). The iFNM model-based image analysis method
(Chapter 10) uses an information criterion, Minimum Description Length
(MDL), to detect the number of image regions [41–43]. For the simplicity
of the derivation, Eq. (10.5) is rewritten in the following form:

IK = − lnLK(r̂) + pK(J), (12.1)

where IK represents MDL(K), and r̂ is the maximum likelihood (ML) estimate
of the model parameter vector r of Eq. (10.4). The first term of Eq. (12.1) is
the log-likelihood of the ML estimate of the model parameters and is given
by

LK(r̂) =

J∏

j=1

f(xj |r̂), (12.2)

and the second term of Eq. (12.1) is a chosen penalty function of K and J
and equals

pK(J) = (0.5 ln J)(3K − 1), (12.3)

where (3K − 1) is the number of free-adjustable parameters of iFNM.
The information theoretic criterion says that, given a set of J independent

observations (x1, · · · , xJ ) and a family of models (i.e., a parameterized family
of pdfs f(x|r)), the model that best fits the observed data is one that gives
the minimum IK . Thus, let K0 and K1 denote the correct and the suggested
(by the information criterion) number of image regions, respectively, then the
probabilities of over-detection and under-detection of the number of image
regions can be defined by

Pov(K1 −K0 > 0) = P (IK1 < IK0),

Pud(K1 −K0 < 0) = P (IK1 < IK0), (12.4)

respectively. Let Pe(K1 − K0 6= 0) denote the error-detection probability,
which represents either Pov or Pud under the different relations between K1

and K0. Eq. (12.4) can be written as

Pov = Pe (K1 > K0) and Pud = Pe (K1 < K0). (12.5)
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Substituting Eq. (12.3) into Eq. (12.1) and then applying Eq. (12.1) to IK0

and IK1 in Eq. (12.4), we have

Pe = P (lnLK0(r̂)− lnLK1(r̂) < (1.5 lnJ)(K0 −K1)). (12.6)

In Eq. (12.2), when σ̂2
k > 1

2π , (k = 1, · · · , K) (this condition is always
satisfied in medical images), 0 < f(xj |r̂) < 1. [44] shows that lnw =∑∞

k=1(−1)k+1 (w−1)k

k (0 < w ≤ 2). Using the linear term (w − 1) of this
series representation as an approximation of lnw (Section A.5 of Appendix
12A gives a detailed discussion on this approximation) and applying this sim-
plification to Eq. (12.4), we have

lnLK(r̂) =

J∑

j=1

ln f(xj |r̂) ≃
J∑

j=1

f(xj |r̂)− J. (12.7)

Assuming that π̂k = 1/K and σ̂2
k = σ̂2 (k = 1, · · · , K)∗, Eq. (12.7) becomes

lnLK(r̂) =
1√

2πKσ̂

J∑

j=1

K∑

k=1

exp(− (xj − µ̂k)2
2σ̂2 )− J. (12.8)

Pixel xj is a sample from the iFNM f(x|r̂). After classification, however, xj
belongs to one and only one component of iFNM f(x|r̂), say g(x|θk); that is,
to one and only one image region, say Rk. Let n0 = 0, nK = J . Without loss
of generality, assume {xnk−1+1, · · · · · · , xnk} ∈ Rk (k = 1, · · · , K). [44] also

shows that e−
1
2w =

∑∞
k=0(−1)k

(w/2)k

k! (−∞ < w <∞). Using the linear term

(1 − 1
2w) of this series representation as an approximation of e−

1
2w (Section

A.5 of Appendix 12A gives detailed discussion on this approximation) and
applying this simplification to Eq. (12.8), we have

lnLK(r̂) ≃ 1√
2πKσ̂

K∑

k=1

nk∑

j=nk−1+1

exp(− (xj − µ̂k)2
2σ̂2 )− J (12.9)

∗(1) When πks are very different, the minor regions (i.e., regions with smaller πk) may be
ignored in the image analysis. The performance evaluation of this section is confined to
the case where all πk are similar. As a result, the error-detection probability will truthfully
represent the detection ability of the image analysis technique itself and will not be affected
by the sizes of regions which are difficult to be assumed generally. (2) σ2

ks are determined
by two factors: the inhomogeneity in each object and the total noise. Inhomogeneity in each
object causes a slow variation of gray levels in each image region, which can be taken into
account in the region mean estimation. In this way, σ2

k will be solely affected by noise. When
σ2
ks are different, Eq. (12.21) is used to define σ̂2. (3) The above two assumptions (with

respect to πk and σ2
k) can be satisfied by some simulation methods. For example, when the

Gibbs sampler [28, 33] is used to generate a Markov random field image and Gaussian noise
is superimposed on the image, then the sizes of the image regions can be controlled (to be
similar), the means of the image regions will be different, and the variances of the image
regions will be the same. Examples are given in the following sections.
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≃ 1√
2πKσ̂

[J − 1

2

K∑

k=1

nk∑

j=nk−1+1

(xj − µ̂k)2
σ̂2 ]− J. (12.10)

Define
K∑

k=1

nk∑

j=nk−1+1

(xj − µ̂k)2
σ̂2 = YK , (12.11)

Eq. (12.10) becomes

lnLK(r̂) ≃ 1√
2πKσ̂

[J − 1

2
YK ]− J. (12.12)

Because
∑nk

j=nk−1+1

(xj−µ̂k)2

σ̂2 has a χ2 distribution with the degree of free-

dom (nk − nk−1 − 1); YK has a χ2 distribution with the degree of freedom∑K
k=1(nk − nk−1 − 1) = J −K [45].

Applying Eq. (12.12) to LK0(r̂) and LK1(r̂) in Eq. (12.6) with σ̂ = σ̂0 (when
K = K0) and σ̂ = σ̂1 (when K = K1), we have

Pe = P (
1

K1σ̂1
YK1 −

1

K0σ̂0
YK0

< (3
√
2π ln J)(K0 −K1) + 2J(

1

K1σ̂1
− 1

K0σ̂0
)), (12.13)

In the following sections and the appendices, σ0 is the true value and σ̂0 is its
estimate. Let 




Z = 1

K1σ̂1
YK1 − 1

K0σ̂0
YK0

∆1 = (3
√
2π ln J)(K0 −K1)

∆2 = 2J( 1

K1σ̂1
− 1

K0σ̂0
)

∆ = ∆1 +∆2.

(12.14)

Eq. (12.13) becomes
Pe = P (Z < ∆). (12.15)

Appendix 12A shows that the pdf of Z is

h(z) =





Ce
K0σ̂0

2 z[
∑m

l=0(
l
m) (2m−l)!

a2m−l+1 (−z)l] (z < 0)

Ce−
K1σ̂1

2 z[
∑m

l=0(
l
m) (2m−l)!

a2m−l+1 (z)
l] (z ≥ 0),

(12.16)
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where 



(lm) = m!
l!(m−l)!

m = J−K0

2 − 1 or m = J−K1

2 − 1

a = K0σ̂0+K1σ̂1
2

C = 1
(m!)2 (

K0σ̂0K1σ̂1
4 )m+1.

(12.17)

Pov and Pud are given by

Pov = Pud =

m∑

l=0

(m2m−l)
γl+1e0

(γ + γ−1)2m−l+1
(∆ < 0), (12.18)

Pud =

m∑

l=0

(m2m−l)
(γl+1 + γ−l−1(1− e1))

(γ + γ−1)2m−l+‘1
(∆ ≥ 0), (12.19)

where 



γ =

√
K1σ̂1
K0σ̂0

e0 =
∑l
j=0

(−K0σ̂0
2 ∆)j

j! e
K0σ̂0

2 ∆

e1 =
∑l
j=0

(
K1σ̂1

2 ∆)j

j! e−
K1σ̂1

2 ∆.

(12.20)

Although Pov and Pud have the same functional form in the case that ∆ < 0
(see Eq. (12.18)), their values are different. This is because the parameters
used in Eq. (12.18), for example, K1 and σ̂1, have different values in the over-
and under-detection cases, respectively. ∆ > 0 occurs only in the case of
under-detection: either σ̂ is very large or γ = 1, which leads to ∆2 = 0. From
Eqs. (12.18) through (12.20), it is clear that the error-detection probabilities
of the number of image regions, Pov and Pud, are functions of the number of
pixels (J), the number of image regions (K0, K1), and the variances of the
image (σ̂0, σ̂1).

12.2.1.2 Error-Detection Probabilities and Image Quality

When the variance of the entire image is defined by

σ̂2 =
K∑

k=1

π̂kσ̂
2
k, (12.21)
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then, using the theory of Analysis of Variance [46], Appendix 12B shows that,
when the image is partitioned into K0 and K1 image regions, we have

σ̂2
1(1 +

K1∑

k=1

π̂k
µ̂2
k

σ̂2
1

) = σ̂2
0(1 +

K0∑

k=1

π̂k
µ̂2
k

σ̂2
0

). (12.22)

Define the signal-to-noise ratios SNRk and SNR of the k-th image region
and of the entire image, respectively, by

SNRk =
µ̂2
k

σ̂2 and SNR =

K∑

k=1

π̂kSNRk. (12.23)

Then Eq. (12.22) becomes

σ̂2
1(1 + SNR(K1)) = σ̂2

0(1 + SNR(K0)), (12.24)

where SNR(K0) and SNR(K1) are the SNRs of the partitioned images with
K0 andK1 image regions, respectively. Thus, γ in Eqs. (12.18) through (12.20)
actually is

γ2 =
K1

K0

√
1 + SNR(K0)

1 + SNR(K1)
. (12.25)

Eqs. (12.18), (12.19), and (12.25) show that the error-detection probability
Pov and Pud are functions of SNR, J ,K0, andK1. SNR is a measure of image
quality; J is an indicator of image resolution (for a fixed field of view); K0

and K1 are indicators of image complexity. Thus, error-detection probabilities
depend on image quality, resolution, and complexity. This is a very sensible
result and establishes a theoretical guideline for error detection in any image
whose intensities follow the iFNM model.

12.2.1.3 Results of Detection Performance

1) Results from simulated images

Figure 12.1 shows twelve simulated images labeled a to l. As mentioned
earlier (in the footnote), the regions of each image are generated by a Gibbs
sampler [28, 33] and have been corrupted by Gaussian noise. The settings and
the variances σ2

0 (as well as the signal-to-noise ratios SNR) of these images
are given in Tables 12.1 and 12.2, respectively†.

The detection results are summarized in Table 12.3. It shows that the num-
ber of image regions indicated by MDL criterion is correct for all 12 images:
K1 = Arg{min1<K<7 IK} = 4 is equal to the correct number of image regions,
K0 = 4. This result demonstrates that the MDL criterion has a very robust

†The purpose of making the region means take on values from the negative to the positive is
to simulate X-ray CT images. SNR (db) = 10 log10 (SNR), SNR is defined by Eq. (12.23).
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a b c

d e f

g h i

j k l

FIGURE 12.1

Twelve simulated images with different variances.

detection performance for images with moderate and high SNR. Probabilities
of over- and under-detection of the number of image regions, Pov and Pud (by
±1), are also summarized in Table 12.3, which shows that for images with
SNR > 14.2 db, both Pov(+1) and Pud(−1) are almost zero.

Table 12.3 also shows that Pov decreases and Pud increases as σ2
0 increases.

This result can be conceptually explained as follows. When σ2
0 increases, the

intervals (x
′

k, x
′′

k ) and (x
′

l, x
′′

l ), which are intensity ranges of pixels in the k-
th and l-th image regions, may partially overlap. This overlapping will cause
some image regions to merge into one region. As a result, the over-detection
probability will decrease and the under-detection probability will increase.

This observation can also be quantitatively illustrated as follows. For the
images shown in Figures 12.1c, 12.1f, and 12.1i, their pdfs, h(z) of Eq. (12.16),
are shown in Figures 12.2 and 12.3, respectively, where J = 4096, K0 = 4,
K1 = 5 and 3 (over and under), σ2

0 = 10, 40, 70. These curves can be roughly
approximated by Gaussian pdfs, that is, Z ∼ N(µ, σ2), where the mean µ and
the standard deviation σ are determined by the location of the peak of h(z)
and 1√

2πh(µ)
, respectively. Let Z ′ = Z−µ

σ ; Z
′

will have a standard Gaussian

distribution, that is, Z ′ ∼ N(0, 1). For Z = ∆, the corresponding value for
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TABLE 12.1

Settings of the Images in Figures 12.1a–12.1l.

k 1 2 3 4
πk 0.207764 0.233643 0.310547 0.248047
µk -45.0000 -15.0000 15.0000 45.0000
σ2
k σ2

0 σ2
0 σ2

0 σ2
0

Image size - 64×64, Number of pixels J = 4096,
Number of image regions K0 = 4.

TABLE 12.2

Variance σ2
0 and Signal-to-Noise Ratio SNR(db) of Images in Figures 12.1a–l.

a b c d e f g h i j k l
σ2
0 1 5 10 20 30 40 50 60 70 80 90 100
db 30.2 23.2 20.2 17.2 15.4 14.2 13.2 12.4 11.7 11.2 10.7 10.2

TABLE 12.3

Detection Results.

MDL(K)
K = 2 K = 3 K = 4 K = 5 K = 6 K1 Pov(+1) Pud(−1)

a 19662 15964 11471 11484 11496 4 8.1 · 10−20 ≃ 0
b 19684 17464 14766 14779 14791 4 2.8 · 10−32 ≃ 0
c 19708 18107 16184 16196 16209 4 ≃ 0 ≃ 0
d 19754 18741 17595 17608 17621 4 ≃ 0 2.9 · 10−33

e 19793 19095 18385 18398 18411 4 ≃ 0 3.3 · 10−16

f 19829 19329 18884 18897 18910 4 ≃ 0 1.6 · 10−7

g 19863 19496 19212 19225 19238 4 ≃ 0 8.4 · 10−3

h 19895 19622 19435 19448 19460 4 ≃ 0 6.2 · 10−1

i 19926 19719 19593 19606 19618 4 ≃ 0 9.9 · 10−1

j 19955 19797 19709 19722 19735 4 ≃ 0 ≃ 1
k 19983 19861 19798 19811 19824 4 ≃ 0 ≃ 1
l 20011 19915 19870 19882 19895 4 ≃ 0 ≃ 1

Images in Figures 12.1a–l (K0 = 4)
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FIGURE 12.2

The pdfs of over-detection in the case where σ2
0 = 10, 40, 70 (curves from

left to right).
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FIGURE 12.3

The pdfs of under-detection in the case σ2
0 = 10, 40, 70 (curves from left to

right).

Z ′ is ∆′ = ∆−µ
σ . Thus, the error-detection probability, Pe = P (Z < ∆)

of Eq. (12.15), can be approximated by the cumulative distribution function
(cdf) of Z ′ at Z ′ = ∆′, that is, Φ(∆′) of Eq. (12.51). For images in Figures 12.1.
a − l, Φ(∆′) are given in Table 12.4. Because Φ(∆′) (cdf of the standard
Gaussian) monotonically increases with ∆′, Table 12.4 shows that the over-
detection probability decreases and the under-detection probability increases
as the variance of the image increases.
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TABLE 12.4

Approximated Probabilities of Over- and Under-Detection of the
Number of Image Regions for Images in Figures 12.1a–l.

µ σ ∆ Pov(+1) µ σ ∆ Pud(−1)
a −205 18.4 −473 Φ(−14.5) −906 5.57 −1752 Φ(−152)
b −94 5.49 −251 Φ(−28.6) −344 2.49 −627 Φ(−114)
c −68 3.26 −198 Φ(−39.9) −216 1.75 −371 Φ(−88.6)
d −53 1.90 −168 Φ(−60.5) −133 1.21 −203 Φ(−57.9)
e −48 1.35 −159 Φ(−82.2) −101 0.94 −139 Φ(−40.4)
f −50 1.02 −163 Φ(−111.) −83. 0.78 −104 Φ(−26.9)
g −50 0.82 −163 Φ(−138.) −71. 0.68 −80. Φ(−13.2)
h −48 0.69 −159 Φ(−161.) −61. 0.61 −61. Φ(+0.00)
i −46 0.60 −155 Φ(−182.) −53. 0.55 −44. Φ(+16.4)
j −43 0.54 −148 Φ(−194.) −45. 0.51 −28. Φ(+33.3)
k −37 0.48 −137 Φ(−208.) −37. 0.49 −13. Φ(+49.0)
l −32 0.45 −126 Φ(−209.) −30. 0.46 3.0 Φ(+71.7)

a b c

d e f

FIGURE 12.4

X-ray CT image of a physical phantom (a) and its five components (b ∼ f).

2) Results from a real image

Figure 12.4a shows a real X-ray CT phantom image that is shown in Section
10.5.1. For convenience of description, some contents of Section 10.5.1 are
used in this section. This physical phantom consists of six cylinders (made of
four types of materials: Poly, 013A, Teflon, and Bone) with nearly the same
diameters. These cylinders are mounted on a base in such a way that their axes
are parallel to each other and equiangularly located on a circle. The resolution
of the X-ray CT scanner that was used to generate this image is 1.5×1.5×5.0
mm3. While imaging, the axes of the cylinders are set parallel to the moving
direction of the scanner bed. Thus, the image shown in Figure 12.4.a includes
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images of the cross-sections of all cylinders.‡ In Figure 12.4.a, starting from
the top-left location, in clockwise order, are Teflon, Poly, 013A, 013A, Poly,
and Bone. The partitioned image regions by the iFNM model-based image
analysis method are shown in Figures 12.4b-f.

TABLE 12.5

Ground Truth of the Images in Figures 12.4a.

k 1 2 3 4 5
πk 0.2664 0.2167 0.2370 0.1354 0.1445
µk −319.0 −120.0 60.00 800.0 1300.0
σ2
k 18926 635.0 158.8 28224 74529

Image size - 64× 64, Number of pixels J = 4096,
Number of image regions K0 = 5.

First, we elaborate the ground truth of this real image. Qualitatively, the
image in Figure 12.4.a consists of six circular disks and six circular rings. six
disk images represent the cross-sections of six cylinders. six ring images are
the results of (1) partial volume effect (i.e., part of a pixel is in the air and
the other part of this pixel is inside the cylinder) and (2) interpolation in
image reconstruction (i.e., even though the pixel is entirely inside either air or
a cylinder, its intensity is an interpolated value of the air’s and the cylinder’s
intensities). Thus, the intensities of the ring pixels and the disk pixels are
different. Therefore, the image shown in Figure 12.4a has five image regions:
ring, Poly, 013A, Teflon, and Bone. The last four image regions represent four
types of materials and the first one does not represent a specific material.
However, they are all components of this real X-ray CT image.

Quantitative information, that is, the ground truth, of the image in Fig-
ure 12.4.a is summarized in Table 12.5. πk (k = 1, · · · , 5) are determined by
the size of the cylinders. Here, we assume that each ring is closed (i.e., no
break). µk (k = 2, · · · , 5) are the given CT numbers of those materials. µ1 is
an averaged value of the CT numbers of air and µk (k = 2, · · · , 5), weighted
by πk (k = 2, · · · , 5). As stated in the footnote, σ2

k (k = 2, · · · , 5) are de-
termined by two factors: the inhomogeneity in each object (characterized by
σ2
ki
) and the total noise (characterized by σ2

kn
): σ2

k = σ2
ki

+ σ2
kn
. In this real

image, σki ≃ 0.05µk and σkn ≃ 0.20µk. σ
2
1 is the average of σ2

k (k = 2, · · · , 5),
weighted by πk (k = 2, · · · , 5). The signal-to-noise ratio of each component is

given by SNRk =
µ2
k

σ2
k
. The SNR of this ground truth image is 12.6 db.

Then we describe the detection results, which are given in Table 12.6. They
shows that the number of image regions indicated by the MDL criterion is

‡The background (air) is excluded in the image analysis.
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TABLE 12.6

Detection Results.

K 2 3 4 5 6 K1 Pov(+1) Pud(−1)
MDL(K) 3452 3355 3279 3116 3246 5 ≃ 0 5.1× 10−1

Images in Figures 12.4a (K0 = 5).

correct:K1 = Arg{min1<K<7 IK} = 5 is equal to the correct number of image
regions K0 = 5. Probabilities of over- and under-detection of the number of
image regions are Pov(+1) ≃ 0 and Pud(−1) ≃ 51%, which are similar to
Pov(+1) ≃ 0 and Pud(−1) ≃ 62% of the image in Figure 12.1h (Table 12.3),
where SNR = 12.4 db (Table 12.2).

12.2.2 Estimation Performance

This subsection describes the estimation performance of the iFNM model-
based image analysis method. It first shows that both the EM and CM algo-
rithms produce asymptotically unbiased ML estimates of model parameters in
the case of no-overlap, then derives Cramer-Rao bounds of variances of these
estimates, and finally shows some results.

12.2.2.1 Asymptotically Unbiased ML Estimates of FNM Model
Parameters

1) ML Estimates of iFNM Model Parameters

Let IMG(J,K) denote an image of J pixels (xj , j = 1, · · · , J) and K
image regions (Rk, k = 1, · · · , K). The iFNM model-based image analysis
method (Chapter 10) uses the EM algorithm to estimate the model param-
eters. Eqs. (10.11)-(10.13) are the EM solution derived by maximizing the
expectation of iFNM likelihood function (Appendix 10C of Chapter 10). By
maximizing the iFNM likelihood function itself, the ML estimates of iFNM
model parameters can be obtained. The joint likelihood of J independent
pixel intensities xj (j = 1, · · · , J) is given by Eq. (12.2). The ML estimate
r̂ = {(π̂k, µ̂k, σ̂2

k), k = 1, · · · , K} of iFNM model parameters of Eq. (10.4) can
be obtained by

maximizing L = lnL(r̂) + λ(

K∑

k=1

πk − 1) (12.26)

over the parameter set {(πk, µk, σ2
k), k = 1, · · · , K} and a Lagrangian multi-

plier λ.
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The solutions of Eq. (12.26) are





λ̂ = −J

π̂k = 1
J

∑J
j=1 zjk

µ̂k = 1

Jπ̂k

∑J
j=1 zjkxj

σ̂2
k = 1

Jπ̂k

∑J
j=1 zjk(xj − µ̂k)2,

(12.27)

where k = 1, · · · , K and the quantities

zjk =
π̂kg(xj |θ̂k)
f(xj |r̂)

(12.28)

are known as Bayesian probabilities of the j-th pixel to be classified into the
k-th image region for every j = 1, · · · , J and k = 1, · · · , K.

2) Bayesian Probability zjk and Probability Membership z
(m)
jk

Theoretically, any Gaussian random variable X takes the values from the
interval (−∞, ∞). In medical imaging, due to the physical limitations, any
X that represents a measured quantity (such as pixel intensity) takes values
from the interval (−M, M), where M > 0. That is, X has a truncated
Gaussian distribution. In the iFNM model, each Gaussian random variable
Xk (k = 1, · · · , K) that represents pixel intensity xk takes values from the
interval (x

′

k, x
′′

k ).
§ If all these intervals are mutually exclusive, then it is said

that the random variables Xk (k = 1, · · · , K) are no-overlapping.
The Bayesian probability zjk of Eq. (12.28) and the probability membership

z
(m)
jk of Eq. (10.11) are identical in their functional forms. However, they are
different. zjk cannot be really computed, because it requires the parameter

estimates (π̂k, µ̂k, σ̂
2
k) that are unknown and to be determined. While z

(m)
jk

can be computed using the incomplete data ({xj , j = 1, · · · , J}) and the

current parameter estimates (π
(m)
k , µ

(m)
k , σ2

k
(m)

), and will be used to compute

the updated parameter estimates (π
(m+1)
k , µ

(m+1)
k , σ2

k
(m+1)

).
It is easy to prove that Bayesian probabilities zjk of Eq. (12.28) have two

properties

K∑

k=1

zjk = 1 (j = 1, · · · , J) and E{zjk} = πk (k = 1, · · · , K). (12.29)

§This notation and {xnk−1+1, · · · , xnk} ∈ Rk of Section 12.2.1.1 are equivalent, that is,

x
′

k < {xnk−1+1, · · · , xnk} ≤ x
′′

k .
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Suppose that an image consists of K image regions, Rk (k = 1, · · · , K). In
the case of no-overlap, after classification, {xnk−1+1, · · · · · · , xnk} ∈ Rk, (k =
1, · · · , K). This is equivalent to the condition g(xj |θk) = 0 if xj /∈ Rk. Thus,
from Eq. (12.28)

zjk =





1 (xj ∈ Rk)

0 (xj /∈ Rk).
(12.30)

Eq. (12.30) is also true for the probability membership, z
(m)
jk . It can be

verified by numerical simulations. Two examples are used here to show the

evolution of z
(m)
jk in the EM algorithm. Example 1 is for the no-overlap case

and example 2 is for the overlap case. In these examples, two pixels x2048 and
x2049 are randomly selected from two 64× 64 images shown in Figures 12.1a
and 12.1h. After classification, each of these two pixels is classified into one
of the four image regions. The results are summarized in Tables 12.7 and
12.8. In the case of no-overlap (example 1, as shown in Table 12.7), for each

j, when k is correct, z
(m)
jk increases with m until it reaches 1; when k is

incorrect, z
(m)
jk decreases with m until it reaches 0. When m = 20: z

(20)
2048,2 =

1, z
(20)
2048,k = 0 (k 6= 2); z

(20)
2049,3 = 1, z

(20)
2049,k = 0 (k 6= 3). In the case of

overlap (example 2, as shown in Table 12.8), for each j, when k is correct,

z
(m)
jk increases (toward 1); when k is incorrect, z

(m)
jk decreases (toward 0); z

(m)
jk

may not reach 1 or 0. When m = 55: z
(55)
2048,2 = 0.994, z

(55)
2048,k ≃ 0 (k 6= 2);

z
(55)
2049,3 = 0.999, z

(55)
2049,k ≃ 0 (k 6= 3). Tables 12.7 and 12.8 also show that

the likelihood monotonically increases with m until the stopping criterion is
satisfied.

TABLE 12.7

z
(m)
j,k of EM Algorithm – Example #1: Pixels from Image in Figure 12.1a

z
(m)
2048,k z

(m)
2049,k

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 lnL
m=1 0.288 0.452 0.224 0.035 0.033 0.218 0.452 0.296 −19934

5 0.306 0.485 0.205 0.004 0.001 0.190 0.479 0.330 −19646
10 0.171 0.613 0.215 0.001 0.000 0.203 0.543 0.254 −19606
15 0.000 0.791 0.209 0.000 0.000 0.222 0.748 0.030 −17759
18 0.000 0.989 0.011 0.000 0.000 0.069 0.931 0.000 −15492
19 0.000 1.000 0.000 0.000 0.000 0.002 0.998 0.000 −13905
20 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 −11762
21 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 −11762

3) Asymptotically Unbiased ML Estimates of iFNM Model Parameters

EM, CM, and ML solutions for estimating iFNM model parameters are
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TABLE 12.8

z
(m)
j,k of EM Algorithm – Example #2: Pixels from Image in Figure 12.1h

z
(m)
2048,k z

(m)
2049,k

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 lnL
m=1 0.112 0.594 0.282 0.012 0.005 0.180 0.623 0.192 −20485

11 0.000 0.714 0.286 0.000 0.000 0.182 0.813 0.005 −19603
21 0.000 0.943 0.057 0.000 0.000 0.059 0.941 0.000 −19502
31 0.000 0.996 0.004 0.000 0.000 0.004 0.995 0.000 −19413
41 0.000 0.996 0.004 0.000 0.000 0.000 0.999 0.001 −19391
51 0.000 0.994 0.005 0.000 0.000 0.000 0.999 0.001 −19389
53 0.000 0.994 0.006 0.000 0.000 0.000 0.999 0.001 −19389
55 0.000 0.994 0.006 0.000 0.000 0.000 0.999 0.001 −19389

shown in subsections 10.3.1, 10.3.2, and 12.2.2.1.1, respectively. This subsec-
tion first shows that EM and CM solutions provide ML estimates of iFNM
model parameters in the case of no-overlap. Eq. (12.27) is the ML solution,
but it cannot be really used to compute the parameter estimates because
zjk depends on the parameter estimates (π̂k, µ̂k, σ̂

2
k) (k = 1, · · · , K), which

are unknown and to be determined. Eq. (12.27), however, is an intuitively
appealing form for the solution of Eq. (12.26), and is also analogous to the
corresponding EM solution Eq. (10.12). Section 12.2.2.1.2 established that, in

the case of no-overlap, zjk = z
(m)
jk . Thus, Eq. (10.12) (EM solution) will be

exactly the same as Eq. (12.27) (ML solution). Moreover, Eq. (10.16) (CM

solution) is a special case of Eq. (10.12) when z
(m)
jk = 1. Therefore, in the case

of no-overlap, Eqs. (10.12) and (10.16) produce ML estimates of the iFNM
model parameters.

Section 12.2.2.1.2 also showed that in the case of overlap, zjk ≃ z(m)
jk . That

is, parameter estimates by EM algorithm may not be exactly the same as that
by the ML procedure. The reason for this difference is that the EM solution
is obtained by maximizing the expectation of the iFNM likelihood function,
while the ML solution is obtained by maximizing the iFNM likelihood function
itself.

Next, this subsection shows that the EM and CM solutions provide asymp-
totically unbiased ML estimates of iFNM model parameters in the case of
no-overlap. In the case of no-overlap, the expectation of π̂k of Eq. (12.27), by
using Eq. (12.29), is

E{π̂k} =
1

J

J∑

j=1

E{zjk} = πk. (12.31)

The expectation of µ̂k of Eq. (12.27), using Eq. (12.30), is

E{µ̂k} =
1

Jπ̂k

J∑

j=1

E{zjkxj} =
1

Jπ̂k

∑

xj∈Gk

E{xj} = µk. (12.32)
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The expectation of σ̂2
k of Eq. (12.27), using Eq. (12.30), is

E{σ̂2
k} =

1

Jπ̂k

J∑

j=1

E{zjk(xj − µ̂k)2}

=
1

Jπ̂k

∑

xj∈Gk

E{(xj − µ̂k)2} = σ2
k(1−

1

Jπ̂k
), (12.33)

which finally leads to
lim
J→∞

E{σ̂2
k} = σ2

k. (12.34)

Thus, (π̂k, µ̂k, σ̂
2
k) are the asymptotically unbiased ML estimates of (πk, µk, σ

2
k)

in the case of no-overlap. Therefore, (π
(m+1)
k , µ

(m+1)
k , σ2

k
(m+1)

) of Eqs. (10.12)
and (10.16) are the asymptotically unbiased ML estimates of (πk, µk, σ

2
k)

under the same condition. The stopping criterion of the EM algorithm is
Eq. (10.13): |L(m+1) − L(m)| < ǫ. When this criterion is satisfied, as shown

in Tables 12.7 and 12.8, the probability memberships z
(m)
jk (j = 1, · · · , J, k =

1, · · · , K) do not change with further iterations. From Eq. (10.12), π
(m)
k , µ

(m)
k ,

σ
2(m)
k (k = 1, · · · , K) will not change. The stopping criterion of CM algorithm

is Eq. (10.17): µ
(m+1)
k = µ

(m)
k and σ2

k
(m+1)

= σ2
k
(m)

(k = 1, · · · , K). When
this criterion is satisfied, there will be no pixel interchange among the image
regions in future iterations. Thus, when the stopping criteria (Eqs. (10.13) and
(10.17)) are satisfied, the classification of pixels into image regions will not
change. Therefore, in the case of no-overlap, the EM and CM algorithms pro-
duce asymptotically unbiased ML estimates of the iFNM model parameters
when the stopping criteria are satisfied.

12.2.2.2 Cramer–Rao Low Bounds of Variances of the Parameter
Estimates

1) For Weight Estimation

Parameters θk and πk of the iFNM model are linked by πk = P (θ = θk),
which shows that πk is the probability of occurrence of the k-th component
g(xj |θk) of iFNM. The discrete distribution P (θ = θk) can be expressed by
the matrix

(
θ = θ1, · · · , θk, · · · , θK
pθ = π1, · · · , πk, · · · , πK

)
or

(
θ = θk, θ 6= θk
pθ = πk, pθ = 1− πk

)
. (12.35)

Thus

E

[(
∂ ln pθ
∂πk

)2
]
=
∑

θ

(
∂ ln pθ
∂πk

)2

pθ =
1

πk(1− πk)
. (12.36)
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Because E(π̂k) = πk and x takes J independent values, the Cramer–Rao Low
Bound of variance of the estimate π̂k is

V ar{π̂k} ≥
(
JE

[(
∂ ln pθ
∂πk

)2
])−1

= J−1πk(1− πk) ∆
= CRLBπ̂k

. (12.37)

Eq. (12.37) indicates that the Cramer–Rao Low Bound of variance of the
estimate π̂k is the same as that of p in a binomial distribution B(n, p) [45]. This
is because we treat the multinomial distribution θ = θk, (k = 1, · · · , K) as a
binomial distribution: θ = θk versus θ 6= θk. [47, 48] use a fuzzy classification
variable and the theory of overlap to prove that in the case of no-overlap
among all classes, V ar{π̂k} ≥ J−1πk(1 − πk), which is exactly the same as
Eq. (12.37).

2) For Mean Estimation

From Eq. (12.26), we have

∂ lnL
∂µk

= (σ2
k)

−1
J∑

j=1

zjk(xj − µk). (12.38)

Due to independence among xj ,

E

[(
∂ lnL
∂µk

)2
]
= (σ2

k)
−2[

J∑

j=1

E(zjk
2(xj − µk)2)

+

J∑

i,j=1,i6=j
E(zik(xi − µk))E(zjk(xj − µk))]. (12.39)

In the case of no-overlap, Eq. (12.39) becomes

E

[(
∂ lnL
∂µk

)2
]
= (σ2

k)
−2

∑

xj∈Gk

E(xj − µk)2 = Jπk(σ
2
k)

−1. (12.40)

Because E(µ̂k) = µk, the Cramer–Rao Low Bound of variance of µ̂k is

V ar{µ̂k} ≥
(
E

[(
∂ lnL
∂µk

)2
])−1

= σ2
k/Jπk

∆
= CRLBµ̂k . (12.41)

[49] shows that the pixels in each image region form a truncated Gaussian
stochastic process that is (spatially) stationary and ergodic in mean and vari-
ance. Thus, instead of ensemble averaging using many independent images,
the mean of an image region can be estimated by spatially averaging over the
pixels inside that image region (i.e., by the sample mean) of just one image.
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In order to form this sample mean, the Bayesian probabilities, zjk, must be
assigned for every j = 1, · · · , J and k = 1, · · · , K. The above derivation shows
that the EM and CM algorithms can solve this assignment and finally lead
to the sample mean. The Cramer-Rao Low Bound of variance of the sample
mean (with the sample size Jπ̂k) is σ

2
k/Jπ̂k [45], which is exactly the same as

Eq. (12.41).

3) For Variance Estimation

From Eq. (12.26), we have

∂ lnL
∂σ2

k

=
1

2
(σ2
k)

−2
J∑

j=1

zjk((xj − µk)2 − σ2
k). (12.42)

Due to independence among xj ,

E

[(
∂ lnL
∂σ2

k

)2
]
=

1

4
(σ2
k)

−4[

J∑

j=1

E(zjk
2((xj − µk)2 − σ2

k)
2)

+

J∑

i,j=1,i6=j
E(zik((xi − µk)2 − σ2

k))E(zjk((xj − µk)2 − σ2
k))]. (12.43)

In the case of no-overlap, Eq. (12.43) becomes

E

[(
∂ lnL
∂σ2

k

)2
]
=

1

4
(σ2
k)

−4
∑

xj∈Gk

E((xj − µk)2 − σ2
k)

2

=
1

4
(σ2
k)

−4
∑

xj∈Gk

E((xj − µk)4 − σ4
k). (12.44)

Because E(xj − µk)4 = 3σ4
k, Eq. (12.44) is

E

[(
∂ lnL
∂σ2

k

)2
]
=

1

2
Jπkσ

−4
k . (12.45)

The bias of the estimate σ̂2
k is defined by b(σ2

k) = E(σ̂2
k) − σ2

k. Thus, from

Eq. (12.33), b(σ2
k) = −

σ2
k

Jπk . Therefore, the Cramer-Rao Low Bound of variance

of the estimate σ̂2
k is

V ar{σ̂2
k} ≥

(
1 +

∂b(σ2
k)

∂σ2
k

)
·
(
E

[(
∂ lnL
∂σ2

k

)2
])−1

= (2σ4
k/Jπk)(1 −

1

Jπk
)

∆
= CRLBσ̂2

k
. (12.46)
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In the limiting case, because limJ→∞

(
1 +

∂b(σ2
k)

∂σ2
k

)
= 1, CRLBσ̂2

k
=

2σ4
k/Jπk. The Cramer-Rao Low Bound of variance of the sample variance

(with the sample size Jπk) is (2σ4
k/Jπk)(1 − 1

Jπk ) [45], which is exactly the

same as Eq. (12.46). This result indicates that both the EM and CM algo-
rithms finally lead to the sample variance.

Eqs. (12.37), (12.41), and (12.46) show that the Cramer–Rao Low Bounds
of variances of the iFNM model parameter estimates are functions of σ2

k, J ,
and πk. More specifically, these bounds will decrease when (a) image quality
becomes better (i.e., higher SNR or lower σ2

k), (b) the resolution is higher
(i.e., larger J), and (c) the complexity is less (i.e., smaller K0 or bigger πk).
These observations are similar to and consistent with the discussions under
detection performance (Section 12.2.1.2).

12.2.2.3 Results of Estimation Performance

The relative error and the estimation interval of parameter estimates are uti-
lized to illustrate the accuracy of estimates. The relative errors of the param-
eter estimates are defined by

επ = max1≤k≤4{ π̂k−πkπk }

εµ = max1≤k≤4{ µ̂k−µkµk }

εσ = max1≤k≤4{ σ̂
2
k−σ

2
k

σ2
k

},

(12.47)

the estimation intervals of the parameter estimates are defined by

̟π̂k = (πk −
√
CRLBπ̂k , πk +

√
CRLBπ̂k)

̟µ̂k = (µk −
√
CRLBµ̂k , µk +

√
CRLBµ̂k)

̟σ̂2
k
= (σ2

k −
√
CRLBσ̂2

k
, σ2

k +
√
CRLBσ̂2

k
),

(12.48)

where (πk, µk, σ
2
k) and (π̂k, µ̂k, σ̂

2
k) are the true, and the estimated values of

the parameters, (CRLBπ̂k , CRLBµ̂k , CRLBσ̂2
k
) are given by Eqs. (12.37),

(12.41), and (12.46).

1) Results from simulated images

The simulated images shown in Figure 12.1 are also used here for evaluating
estimation performance. The parameter settings (i.e., the true values of the
parameters) are listed in Table 12.1. The parameter estimates and the Cramer-
Rao Low Bounds of the variances of these estimates are summarized in Table
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12.9. Eq. (12.37) shows that the Cramer–Rao Low Bounds of the variances of
weight estimates do not depend on the variance σ2

0 of the image. Eqs. (12.41)
and (12.46) show that the Cramer–Rao Low Bounds of the variances of mean
and variance estimates depend on the variance σ2

0 of the image and increase
as σ2

0 increases. These facts are also reflected in Table 12.9.
The accuracy of the estimation can be evaluated by judging if the relative

errors are small and the estimates π̂k, µ̂k, and σ̂2
k fall into these estimation

intervals. Using Tables 12.1 and 12.9, the results are summarized in Table
12.10, which shows that for the images with SNR > 14.2 db, the relative
errors of the weight and the mean are less than 0.6%; all parameter estimates
are in the Cramer-Rao estimation intervals.¶

2) Results from the real image

For the real image shown in Figure 12.4a, the ground truth is given in Table
12.5. The parameter estimates and Cramer–Rao Low Bounds of the variances
of these estimates are given in Table 12.11. Using Tables 12.5 and 12.11, we
note that the relative errors of the weights and the means (k = 2, · · · , 5) are
less than 8.4% and 2.1%, respectively, π̂k ∈ ̟π̂k (k = 2, · · · , 5), µ̂k ∈ ̟µ̂k
(k = 2, · · · , 5), and σ̂2

k ∈ ̟σ̂2
k
(k = 5).‖

For the image shown in Figure 12.1h (its SNR = 12.4 db is similar to
SNR = 12.6 db of this real image), π̂k ∈ ̟π̂k (k = 1, 2, 4), µ̂k ∈ ̟µ̂k (k =

1, 2, 3, 4). These results show that the estimation performance for the images
in Figures 12.1h and 12.4a are very similar.

12.2.3 Classification Performance

Let IMG(J,K) denote an image of J pixels (xj , j = 1, · · · , J) and K image
regions (Rk, k = 1, · · · , K). The iFNM model-based image analysis method
(Chapter 10) uses a Bayesian classifier to classify pixels into image regions.
The decision rule in pixel classification is

xj ∈ Rk0 if π̂k0g(x|θ̂k0) > π̂kg(x|θ̂k) (k = 1, · · · , K0, k 6= k0). (12.49)

Suppose an image is partitioned into K0 image regions, R1, · · · ,RK0 . Then
the probability of misclassification, given that the true image region is Rk0 ,
is [50]

Pmis(•|k0) = π̂k0

K0∑

k=1,k 6=k0

∫

Rk

g(x|θ̂k0)dx

¶Only the variances of the 2nd image region of images in Figures 12.1.a - 12.1.c and 12.1.f
are slightly outside ̟σ̂2

2
.

‖Here we consider only the second through fifth image regions (i.e., Poly, 013A, Teflon, and
Bone), because the first image region (rings) does not represent any real physical object,
and is a product of image reconstruction.
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TABLE 12.9

Estimation Results (Images in Figures 12.1a–l)

k π̂k µ̂k σ̂2
k CRLBπ̂k CRLBµ̂k CRLBσ̂2

k
a 1 0.207764 −45.0016 1.02169 0.00004 0.00117 0.00235

2 0.233643 −14.9936 0.94865 0.00004 0.00104 0.00208
3 0.310547 15.0057 1.00741 0.00005 0.00078 0.00157
4 0.248047 44.9790 0.98504 0.00005 0.00098 0.00196

b 1 0.207764 −45.0042 5.11387 0.00004 0.00587 0.05875
2 0.233643 −14.9844 4.72885 0.00004 0.00522 0.05224
3 0.310547 15.0146 5.03336 0.00005 0.00393 0.03930
4 0.248047 44.9520 4.92275 0.00005 0.00492 0.04921

c 1 0.207764 −45.0048 10.1955 0.00004 0.01175 0.23502
2 0.233643 −14.9783 9.45399 0.00004 0.01044 0.20899
3 0.310547 15.0214 10.0634 0.00005 0.00786 0.15723
4 0.248047 44.9320 9.85142 0.00005 0.00984 0.19685

d 1 0.207538 −45.0210 20.1751 0.00004 0.02350 0.94007
2 0.233939 −14.9820 19.1059 0.00004 0.02090 0.83595
3 0.310581 15.0403 20.0926 0.00005 0.01572 0.62893
4 0.247943 44.9080 19.6336 0.00005 0.01969 0.78740

e 1 0.206936 −45.0667 29.7995 0.00004 0.03525 2.11516
2 0.234568 −15.0128 29.0683 0.00004 0.03135 1.88088
3 0.310768 15.0607 30.3491 0.00005 0.02358 1.41509
4 0.247749 44.8940 29.4103 0.00005 0.02953 1.77165

f 1 0.207425 −45.0305 40.5117 0.00004 0.04700 3.76028
2 0.233631 −15.0033 38.0433 0.00004 0.04180 3.34378
3 0.311782 15.0780 41.3012 0.00005 0.03145 2.51572
4 0.247160 44.9020 39.0368 0.00005 0.03937 3.14961

g 1 0.209074 −44.9135 52.0223 0.00004 0.05875 5.87544
2 0.230335 −14.9907 45.0555 0.00004 0.05224 5.22466
3 0.314779 15.0809 53.7758 0.00005 0.03931 3.93082
4 0.245811 44.9460 48.4869 0.00005 0.04921 4.92125

h 1 0.211273 −44.7658 63.6950 0.00004 0.07051 8.46063
2 0.224996 −15.0240 50.5216 0.00004 0.06270 7.52351
3 0.320597 15.0782 68.4264 0.00005 0.04717 5.66038
4 0.243132 45.0580 57.3469 0.00005 0.05906 7.08661

i 1 0.214228 −44.5700 75.8200 0.00004 0.08226 11.5159
2 0.216772 −15.1219 54.0811 0.00004 0.07315 10.2403
3 0.330609 15.0692 86.3911 0.00005 0.05503 7.70440
4 0.238390 45.2783 65.2230 0.00005 0.06889 9.64567

j 1 0.217733 −44.3372 88.2984 0.00004 0.09401 15.0411
2 0.206143 −15.2758 56.4073 0.00004 0.08359 13.3751
3 0.344258 15.0501 107.650 0.00005 0.06289 10.0629
4 0.231866 45.5868 72.3280 0.00005 0.07874 12.5984

k 1 0.221723 −44.0702 101.176 0.00004 0.10576 19.0364
2 0.193388 −15.4692 57.8880 0.00004 0.09404 16.9279
3 0.360892 15.0107 132.279 0.00005 0.07075 12.7358
4 0.223996 45.9524 79.0594 0.00005 0.08858 15.9449

l 1 0.226134 −43.7729 114.403 0.00004 0.11751 23.5018
2 0.178967 −15.6751 58.8092 0.00004 0.10449 20.9986
3 0.379492 14.9407 159.894 0.00005 0.07862 15.7233
4 0.215405 46.3330 85.7858 0.00005 0.09843 19.6850
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TABLE 12.10

The Relative Errors and Estimation Intervals of the Parameter
Estimates of the Images in Figures 12.1a–l

π̂k Figures 12.1a–f SNR ≥ 14.2 db επ < 0.4% π̂k ∈ ̟π̂k
µ̂k Figures 12.1–h SNR ≥ 12.4 db εµ < 0.6% µ̂k ∈ ̟µ̂k
σ̂2
k Figures 12.1a–f SNR ≥ 14.2 db εσ < 5.0% σ̂2

k ∈ ̟σ̂2
k

TABLE 12.11

Estimation Results (Images in Figures 12.4.a)

k π̂k µ̂k σ̂2
k CRLBπ̂k CRLBµ̂k CRLBσ̂2

k
× 106

1 0.2348 −634.6 56271 0.00044 160.4 6.020
2 0.2167 −122.5 125 0.00038 6.6 0.008
3 0.2460 58.9 488 0.00041 1.5 0.001
4 0.1467 815.5 307284 0.00026 470.4 26.11
5 0.1558 1290.2 62701 0.00028 1164.5 170.9

= π̂k0

K0∑

k=1,k 6=k0
(Φ(

x
′′

k − µ̂k0
σ̂k0

)− Φ(
x

′

k − µ̂k0
σ̂k0

)), (12.50)

where •|k0 represents the event that x comes from Rk0 but is classified (by
the classifier) as coming from Rk (k 6= k0): x

′

k < x ≤ x
′′

k , and Φ(y) is cdf of
the standard Gaussian random variable given by

Φ(y) =
1√
2π

∫ y

−∞
e−

x2

2 dx. (12.51)

12.2.3.1 Results of Classification Performance

1) Results from simulated images

The simulated images shown in Figure 12.1 are used here for evaluating
classification performance. Image analysis is implemented using the iFNM
model-based image analysis method of Chapter 10. The resultant images are
shown in Figure 12.5, with the same labelings as for Figure 12.1. Image re-
gions are represented by the mean values of pixels in each image region. In
Figure 12.5, four grAy levels (white, light gray, dark grey, and black) are used
for the four image regions.

Comparing these images with their counterparts in Figure 12.1 shows that,
for the images in Figure 12.5a–12.5d, there is almost no classification error; for
the images in Figure 12.5e–12.5f, there is a very small amount of error; for the
images in Figure 12.5g–12.5l, there are some errors. These errors are mainly
due to isolated pixels inside one image region being misclassified into another
image region. The region shapes, however, are all preserved. This type of er-
ror occurs due to the fact that the Bayesian criterion (Eq. (12.49)) actually
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a b c

d e f

g h i

j k l

FIGURE 12.5

Partitioned image regions of twelve simulated images shown in Figure 12.1.

is based on Bayesian Probability (Eq. (12.28)) and Probability Membership
(Eq. (10.11)), which treat pixels as being statistically independent and do not
apply any spatial and statistical relationships among pixels (e.g., connected-
ness and correlation) in the classification process. This type of error can be
removed using smoothing operations [51, 52].

Quantitatively, the classification results are summarized in Table 12.12.
The interval (x

′

k, x
′′

k ] in Table 12.12 represents the intensity range of the pix-
els classified in the k-th image region. It shows that for the images in Fig-
ures 12.5a–12.5d, the pixel intensities in the different image regions do not
overlap; for the images in Figures 12.5e–12.5f, the pixel intensities have a
small overlap (in some image regions); for the images in Figures 12.5g–12.5l,
the pixel intensities have some overlap. Using Table 12.12 and Eq. (12.50),
the misclassification probabilities are given in Table 12.13. Table 12.14 sum-
marizes the classification performance, which shows that for the images with
SNR > 14.2 db, the misclassification probabilities are less than 0.5%. Mis-
classification probabilities < 0.015%, < 0.447%, and < 4.678% are equivalent
to the misclassifications of less than 1, 20, and 200 pixels, respectively, in this
simulation study.
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TABLE 12.12

Classification Results (Images in Figures 12.5a–l)

R1 : (x
′

1, x
′′

1 ] R2 : (x
′

2, x
′′

2 ] R3 : (x
′

3, x
′′

3 ] R4 : (x
′

4, x
′′

4 ] overlap
a −48, −42 −18, −12 11, 18 42, 48 No
b −52, −37 −21, −7 6, 22 38, 52 No
c −56, −34 −24, −4 2, 25 35, 55 No
d −60, −31 −30, −2 0, 29 30, 58 No
e −63, −30 −30, −1 0, 30 31, 61 Partial
f −66, −30 −30, −1 −1, 30 31, 64 Partial
g −69, −30 −30, −1 −1, 31 31, 66 Y es
h −71, −29 −29, −2 −1, 31 31, 68 Y es
i −73, −29 −29, −2 −2, 32 32, 70 Y es
j −75, −29 −29, −3 −3, 32 32, 72 Y es
k −77, −28 −28, −4 −4, 33 33, 73 Y es
l −78, −28 −28, −5 −5, 34 34, 75 Y es

TABLE 12.13

Misclassification Probabilities for the Images in
Figures 12.5

Pmis(•|1) Pmis(•|2) Pmis(•|3) Pmis(•|4)
a 0.00000 0.00000 0.00000 0.00000
b 0.00000 0.00000 0.00000 0.00000
c 0.00000 0.00000 0.00000 0.00000
d 0.00009 0.00010 0.00015 0.00004
e 0.00060 0.00127 0.00114 0.00075
f 0.00189 0.00447 0.00399 0.00211
g 0.00404 0.00720 0.00917 0.00556
h 0.00509 0.01100 0.01494 0.00771
i 0.00790 0.01447 0.02229 0.01194
j 0.01117 0.01750 0.03171 0.01277
k 0.01221 0.02236 0.03900 0.01626
l 0.01586 0.02433 0.04678 0.01971

TABLE 12.14

Classification Performance for the Images in Figures 12.5

a− d No overlap 17.2 db ≤ SNR ≤ 30.2 db Pmis < 0.015%
e − f Small overlap 14.2 db ≤ SNR ≤ 15.5 db Pmis < 0.447%
g − l Some overlap 10.2 db ≤ SNR ≤ 13.2 db Pmis < 4.678%
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TABLE 12.15

Classification Results (Images in Figures 12.4)

R1 : (x
′

1, x
′′

1 ] R2 : (x
′

2, x
′′

2 ] R3 : (x
′

3, x
′′

3 ] R4 : (x
′

4, x
′′

4 ] R5 : (x
′

5, x
′′

5 ]
−975, −130 −130, −104 −60, 83 83, 936 936, 1447

TABLE 12.16

Misclassification Probabilities for the Images in
Figure 12.4.

Pmis(•|1) Pmis(•|2) Pmis(•|3) Pmis(•|4) Pmis(•|5)
0.00042 0.00000 0.03386 0.04801 0.01225

2) Results from the real image

For the real image shown in Figure 12.4.a, the partitioned images are given
in Figure 12.4.b - 12.4.f which represent the images of the rings, Poly, 013A,
Teflon, and Bone, respectively. Quantitatively, the classification results are
summarized in Tables 12.15 and 12.16, which show that the pixel intervals
have some overlap and the misclassification probabilities are less than 4.9%.
These misclassification probabilities and those for the image in Figure 12.5.h
(SNR=12.4 db) are of the same level.

12.3 Performance of the cFNM Model-Based Image

Analysis Method

This section analyzes the cFNM model-based image analysis method of Chap-
ter 11. It evaluates its performance at three steps: detection, estimation, and
classification. Compared with the performance evaluation of the iFNM model-
based image analysis method in Section 12.2, this evaluation is very brief.

1) For detection performance, the cFNM model-based image analysis
method translates the image region detection problem into a sensor array
processing framework and detects the number of image regions based on the
signal eigenstructure of the converted array system. The detection scheme
still uses the information theoretic criterion (ITC), but the likelihood func-
tion (i.e., the first term of the expression for ITC) is not based on the cFNM
pdf. Because the ITC is used, the probabilities of over- and under-detection
of the number of image regions are defined in the same way as in the case of
the iFNM model-based image analysis method (Section 12.2.1).

It has been shown that error-detection probabilities are functions of the
image quality, resolution, and complexity. The simulation results show that
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for images with moderate quality, the probability of over-detection of the
number of image regions is negligible, and the probability of under-detection
of the number of image regions is very small. These results are similar to those
in the iFNM model-based image analysis method.

2) For estimation performance, the cFNM model-based image analysis
method used the EM algorithm (with Gibbs distribution or MRF as a pri-
ori). Its performance is essentially the same as that of the iFNM model-based
image analysis method given in Section 12.2.2.

3) For classification performance, the cFNM model-based image analysis
method uses the MAP criterion. A strategy has been developed to assess the
validity of using MAP with the underlying imaging principles. That is, the
results obtained using MAP are judged if they are toward the physical ground
truth that is to be imaged. To elaborate this strategy, MR images are used as
an example.

In statistical physics, let Ω = {ω} denote the possible configurations of a
nuclear spin system. If the system is in thermal equilibrium with its surround-
ings, then the probability, or Boltzmann’s factor, of ω is given by

p(ω) =
1∑

ω exp(−γε(ω))
exp(−γε(ω)), (12.52)

where ε(ω) is the energy function of ω and γ = 1
κT , κ is the Boltzmann’s

constant, and T is the absolute temperature [53–56]. Eq. (12.52) indicates
that the nuclear spin system tends to be in the low energy state, or with the
higher probability to be in the low energy state.

In MR imaging, pixel intensities represent thermal equilibrium macroscopic
magnetization (TEMM), that is, the vector sum of nuclear spin moments
in unit volume. Chapter 9 shows that pixel intensities of MR images are
characterized by an MRF X or a corresponding Gibbs distribution P (x).

P (x) =
1∑

x
exp(−β−1

∑
c Vc(x))

exp(−β−1
∑

c

Vc(x)), (12.53)

which, in the functional form, is identical to the Boltzmann’s factor
Eq. (12.52).

Eq. (12.52) and Eq. (12.53) characterize the same nuclear spin system in the
microscopic and the macroscopic states, respectively. Thus, given an image x,
maximizing the posterior probability P (y|x) = P (x|y)P (y), that is, seeking
a configuration ŷ for the underlying MRF or for the corresponding Gibbs
distribution, is actually to seek a thermal equilibrium of the nuclear spin
system. This thermal equilibrium is well defined and is the physical ground
truth to be imaged.

Given the interplay between the microscopic and macroscopic states of a
process and of the analytical modeling of the propagations from one to the
other, we can account for the geometric locality of the pixels/spins as well as
for their probabilistic dynamics suited to the underlying structure of an image
and its perturbations.
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12.4 Appendices

12.4.1 Appendix 12A

This appendix derives pdf of Z, Eq. (12.16), and the probabilities of the over
and under-detection of the number of image regions, Pov Eq. (12.18) and Pud
Eq. (12.19).

A.1 pdf of Z

This section proves Eq. (12.16).

Proof.

YK of Eq. (12.11) has a χ2 distribution with a degree of freedom (J −K).
Its pdf is

pYK (y) =





1

2
J−K

2 Γ( J−K
2 )

e−
y
2 y

J−K
2 −1 (y > 0)

0 (y ≤ 0).

(12.54)

Let ZK0 = 1

K0σ̂0
YK0 and ZK1 = 1

K1σ̂1
YK1 . Their pdfs are

pZK (z) =





(
K0σ̂0

2 )
J−K0

2

Γ(
J−K0

2 )
e−
K0σ̂0

2 zz
J−K0

2 −1 (z > 0)

0 (z ≤ 0),

(12.55)

pZK (z) =





(
K1σ̂1

2 )
J−K1

2

Γ(
J−K1

2 )
e−
K1σ̂1

2 zz
J−K1

2 −1 (z > 0)

0 (z ≤ 0).

(12.56)

Assume that ZK0 and ZK1 are independent. The pdf h(z) of Z = ZK1 − ZK0

is

h(z) =

∫ ∞

−∞
pZK1

(u)pZK0
(u− z)du

=





∫∞
0 pZK1

(u)pZK0
(u− z)du (z < 0)

∫∞
z
pZK1

(u)pZK0
(u− z)du (z ≥ 0).

(12.57)

Substituting Eqs. (12.55), (12.56) into Eq. (12.57), using formula [44]

∫ ∞

0

xne−axdx =
n!

an+1
(a > 0) , (12.58)
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for the case z < 0, and by using formula [44]

∫ ∞

u

xne−bxdx = e−bu
n∑

k=0

n!

k!
· uk

bn−k+1
(u > 0, b > 0), (12.59)

and the mathematical induction method for the case z ≥ 0, we have

h(z) =





Ce
K0σ̂0

2 z
∑m0

l=0(
l
m0

) (m0+m1−l)!
am0+m1−l+1 (−z)l (z < 0)

Ce−
K1σ̂1

2 z
∑m0

l=0(
l
m0

) (m0+m1−l)!
am0+m1−l+1 (z)

l (z ≥ 0),

(12.60)

where 



(lm0
) = m0!

l!(m0−l)!

m0 = J−K0

2 − 1 and m1 = J−K1

2 − 1

a = K0σ̂0+K1σ̂1
2

C = 1
m0!m1!

(K0σ̂0
2 )

J−K0
2 (K1σ̂1

2 )
J−K1

2 .

(12.61)

It has been verified that
∫∞
−∞ h(z)dz = 1.

A.2 Thresholds ∆1, ∆2, and ∆

∆1, ∆2, and ∆ of Eq. (12.14) are functions of J , K0, and K1. Intensive
simulations∗∗ showed that they have the following properties:

(1) ∆1(K1 > K0) < 0 and ∆1(K1 < K0) > 0,
(2) ∆2(K1 6= K0) ≤ 0 and monotonically increases with σ0,
(3) |∆2(K1 > K0)| < |∆2(K1 < K0)|,
(4) ∆ < 0 for small and moderate σ0 and ∆ > 0 only for very large σ0.

These findings can be justified as follows.
For (1), it is straightforward to verify using the definition in Eq. (12.14).
For (2), because the frequency of occurrence of |K1 − K0| = 1 is higher

than that of |K1 − K0| > 1, we set |K1 − K0| = 1 in the simulations. In
the case of over-detection (K1 > K0), a new region (say, the l-th region,

∗∗About the simulation study. A Gibbs Sampler algorithm has been developed (Appendix
9A of Chapter 9) based on the theory in [28]. The algorithm has been implemented on
Macintosh computers with IMSL [57]. Using this algorithm, the various MRF configura-
tions with different resolutions (256×256, 128×128, and 64×64) were generated. The MRF
shown in Figures 12.1 and 12.5 is one of them. Then Gaussian noise with different variances
σ2
0 = 1, 5, 10i, 100(j + 1), 500(k + 2) (i = 1, · · · , 10, j = 1, · · · , 9, k = 1, · · · , 8) was superim-

posed on each resolution of each MRF configuration. Finally, the iFNM model-based image
analysis method (Chapter 10) was applied to these (over 600) images to perform detection,
estimation, and classification.



400 Statistics of Medical Imaging

1 ≤ l ≤ K1) with a few pixels is created. This newly created region has a
large variance (but not very large) and a very small weight (π̂l ≃ 0) such that
π̂lσ̂

2
l is very small. Other regions (say, the k-th region, 1 ≤ k ≤ K1 and k 6= l)

are essentially the same as the original regions. Thus σ̂2
1 =

∑K1

k=1 π̂kσ̂
2
k ≃∑K1

k=1, k 6=l π̂kσ̂
2
k ≃

∑K0

k=1 π̂kσ̂
2
k = σ̂2

0 , or σ̂1 is slightly larger than σ̂0. As a
result, K1σ̂1 > K0σ̂0. In the case of under-detection (K1 < K0), some regions
(say, the i-th and j-th regions, 1 ≤ i, j ≤ K0) are merged into one region
(say, the l-th region, 1 ≤ l ≤ K1). This newly merged region has a very large
variance and a big weight (π̂l = π̂i+ π̂j) such that π̂lσ̂

2
l ≫ π̂iσ̂

2
i + π̂jσ̂

2
j . Other

regions (say, the k-th region, 1 ≤ k ≤ K1 and k 6= l) remain almost the same

as the original regions. Thus, σ̂2
1 =

∑K1

k=1 π̂kσ̂
2
k ≫

∑K0

k=1 π̂kσ̂
2
k = σ̂2

0 . As a
result, K1σ̂1 > K0σ̂0 (even though K1 < K0). So, in both of the above cases,
∆2 = 2J( 1

K1σ̂1
− 1

K0σ̂0
) ≤ 0. The equality occurs if and only if K1σ̂1 = K0σ̂0.

Simulations also showed that when σ0 increases, σ̂0 and σ̂1 increase. Therefore,
∆2 will monotonically increase.

For (3), we also set |K1 − K0| = 1. From the discussion in (2) above, we
know that ∆2 = 2J( 1

K1σ̂1
− 1

K0σ̂0
) ≤ 0, but due to σ̂1 ≃ σ̂0 (K1 > K0)

and σ̂1 ≫ σ̂0 (K1 < K0), | 1

K1σ̂1
− 1

K0σ̂0
| is close to zero when K1 > K0

and | 1

K1σ̂1
− 1

K0σ̂0
| is quite different from zero when K1 < K0. Therefore,

|∆2(K1 > K0)| < |∆2(K1 < K0)|.
For (4), in the case of over-detection (K1 > K0), because ∆1 < 0 and

∆2 < 0, we have ∆ < 0. In the case of under-detection (K1 < K0), due to
|∆1| ∝ ln J when ∆1 ≥ 0 and |∆2| ∝ J when ∆2 < 0; therefore, for the not
very large σ0, ∆ = ∆1 + ∆2 < 0. For very large σ0, | 1

K1σ̂1
− 1

K0σ̂0
| is very

small so that ∆2 becomes very small. As a result, ∆ = ∆1 +∆2 > 0.

A.3 Probabilities Pov and Pud

This section proves Eq. (12.18) and Eq. (12.19).

Proof.

For the probability of over-detection Pov, because ∆ < 0, from Eqs. (12.5),
(12.15), and (12.14) and using Eq. (12.60), we have

Pov =

∫ ∆

−∞
h(z)dz =

γm1−m0

(γ + γ−1)
m0+m1+1

m0∑

l=0

(m1

m0+m1−l)[γ(1 + γ2)le0], (12.62)

where

γ =

√
K1σ̂1
K0σ̂0

and e0 =
l∑

j=0

(−K0σ̂0
2 ∆)j

j!
e
K0σ̂0

2 ∆. (12.63)
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For the probability of under-detection Pud, because ∆1 > 0 and ∆2 < 0, ∆
may be negative (when σ2

0 is small or moderate) or positive (when σ2
0 is very

large). When ∆ < 0, Pud has the same functional form as in Eq. (12.62) but
with different values of the same parameters. When ∆ > 0, from Eqs. (12.5),
(12.15), and (12.14) and using Eq. (12.60), we have

Pud =

∫ ∆

−∞
h(z)dz =

∫ 0

−∞
h(z)dz +

∫ ∆

0

h(z)dz =
γm1−m0

(γ + γ−1)
m0+m1+1

m0∑

l=0

(m1

m0+m1−l)[γ(1 + γ2)l + γ−1(1 + γ−2)l(1− e1)], (12.64)

where

γ =

√
K1σ̂1
K0σ̂0

and e1 =

l∑

j=0

(K1σ̂1
2 ∆)j

j!
e−
K1σ̂1

2 ∆. (12.65)

Thus, Eq. (12.62) finally becomes

Pov =

m0∑

l=0

(m1

m0+m1−l)
γm1−m0+l+1e0

(γ + γ−1)m1+m0−l+1
. (12.66)

Eq. (12.64), when ∆ ≥ 0, becomes

Pud =

m0∑

l=0

(m1

m0+m1−l)
γm1−m0+l+1(1 + γ−2l−2(1− e1))

(γ + γ−1)m0+m1−l+1
, (12.67)

and when ∆ < 0, becomes

Pud =

m0∑

l=0

(m1

m0+m1−l)
γm1−m0+l+1e0

(γ + γ−1)m1+m0−l+1
e0. (12.68)

Because J >> K0 and J >> K1,
J−K0

2 − 1 ≃ J−K1

2 − 1, that is, m0 ≃ m1

(Eq. (12.61)). Letm0 ≃ m1
∆
= m, Eqs. (12.60) and (12.61) become Eqs. (12.16)

and (12.17), and Eqs. (12.66), (12.68), and (12.67) become Eqs. (12.18) and
(12.19), respectively.

A.4 Special Cases

When γ = 1, ∆2 in Eq. (12.14) becomes zero, which leads to ∆ = ∆1. Thus,
Eq. (12.15) becomes

Pe = P (Z < ∆) = P (Z < ∆1), (12.69)

and Eqs. (12.18) and (12.19) become

Pov =

m∑

l=0

(m2m−l)e0
22m−l+1

and Pud =

m∑

l=0

(m2m−l)(2 − e1)
22m−l+1

. (12.70)
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respectively. Also, when γ = 1, the pdf h(z) of Eq. (12.16) is symmetric, that
is, h(z) = h(−z).

One of the possible cases for γ = 1 is the case of correct detection (K1 = K0)
and accurate estimation (π̂k = πk, µ̂k = µk, σ̂

2
k = σ2

k). In this special case, ∆1

of Eq. (12.14) becomes zero, which leads to ∆ = 0. As a result, Eqs. (12.18)

and (12.19) become Pov(0) =
∫ 0

−∞ h(z)dz and Pud(0) =
∫ 0

−∞ h(z)dz, respec-
tively. Using h(z) = h(−z), we obtain Pov(0) = Pud(0) = 0.5.

The interpretation is as follows. Let K1 take various values (e.g., K1 =
1, · · · , 100). K0 is one of them. Pov(0) = Pud(0) = 0.5 indicates that K1

approaches K0 with probability 1: 50% from the left side (under-detection
side) and 50% from the right side (over-detection side), in this special case.

A.5. About ln w ≃ w− 1 and e
− 1

2
w ≃ 1− 1

2
w

Here we justify these two simplifications used in Section 12.2.1.1. [44] shows
that

lnw =
∞∑

k=1

ak =
∞∑

k=1

(−1)k+1 (w − 1)k

k

= (w − 1)− 1

2
(w − 1)2 +

1

3
(w − 1)3 − · · · (0 < w ≤ 2). (12.71)

In our case, w = f(xj |r̂). As indicated in Section 12.2.1.1, 0 < f(xj |r̂) <
1. Thus, let ak = (−1)k+1 (w−1)k

k ; we have |ak| < 1 and |ak+1

ak
| < 1 (k =

1, 2, · · · · · ·). [44] also shows that

e−
1
2w =

∞∑

k=0

bk =

∞∑

k=0

(−1)k (w/2)
k

k!

= 1− w

2
+

1

2!

(w
2

)2
− 1

3!

(w
2

)3
+ · · · (−∞ < w <∞). (12.72)

In our case, w =
(
xj−µ̂k

σ̂

)2
. As indicated in Section 12.2.1.1, pixel xj belongs

to a (one) Gaussian component of iFNM. This means that with probability

70%, |xj − µ̂k| < σ̂, that is, w < 1. Thus, letting bk = (−1)k (w/2)k

k! , we have

|bk| < 1 and | bk+1

bk
| < 1 (k = 1, 2, · · · · · ·).

For lnw, when more terms in the series representation Eq. (12.71) (say,
a1 + a2 + a3) are used to approximate lnw, then it will be more accurate
than the linear term a1 = w − 1. However, by taking this approximation,
the log likelihood lnLK(r̂) of Eq. (12.7) will become too complicated for the
derivation of a formula similar to Eq. (12.12). Another linear approximation,
α1w−α2, may be a better choice than (w−1) for approximating lnw, because
it improves the accuracy and still keeps the simplicity of the approximation.
Similarly, for e−

1
2w, β1− β2w may be a better choice than b0 + b1 = 1− w

2 for

approximating e−
1
2w.
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If we use lnw ≃ α1w − α2 and e−
1
2w ≃ β1 − β2w, then we can show that

Eqs. (12.12) and (12.13) will be

lnL(r̂) ≃ α1√
2πKσ̂

[β1J −
β2
2
YK ]− α2J, (12.73)

and

Pe = P (
1

K1σ̂1
YK1 −

1

K0σ̂0
YK0)

<
1

α1β2
(3
√
2π ln J)(K0 −K1) + 2J

β1
β2

(
1

K1σ̂1
− 1

K0σ̂0
)), (12.74)

respectively. Using Eq. (12.14), Eq. (12.74) becomes

Pe = P (Z <
1

α1β2
∆1 +

β1
β2

∆2)
∆
= P (Z < ∆

′

1 +∆
′

2), (12.75)

where ∆
′

1 = 1
α1β2

∆1 and ∆
′

2 = β1

β2
∆2.

Graphically, it is easy to verify that α1, α2 > 1 and 0 < β1, β2 < 1.
More precisely, these coefficients can be determined by minimizing the errors
|(α1w−α2)− lnw| and |(β1−β2w)−e− 1

2w|. This minimization can be numeri-
cally implemented by a least squares error fitting approach: minα1,α2

∑
i(α1wi

−α2 − lnwi)
2 and minβ1,β2

∑
i(β1 − β2wi − e−

1
2wi)2, over a set of wi.

For example, by uniformly taking ten data points (samples) wi over (0, 1)
and using the above least squares error approach, the numerical study shows
that α1β2 = 0.9814 and β1

β2
= 2.5068. α1β2 ≃ 1 could be the result of the

fact that the opposite effects caused by lnw and e−
1
2w cancel each other. This

result leads to ∆′
1 ≃ ∆1 and ∆′

2 < ∆2 (because ∆2 < 0), that is, probability
P ′
e = P (Z < ∆′

1 +∆′
2) is less than Pe = P (Z < ∆1 +∆2). This observation

has also been verified by other data samples wi. Therefore, the probability Pe
of Eq. (12.13) is consistent with P ′

e (which are obtained using more accurate

linear approximations of lnw and e−
1
2w) and also can be used as an upper

limit of P ′
e.

12.4.2 Appendix 12B

This appendix derives Eq. (12.22).

Proof.

From [46], we have

K∑

k=1

Jk∑

j=1

(xj − µ̂)2 =
K∑

k=1

Jk(µ̂k − µ̂)2 +
K∑

k=1

Jk∑

j=1

(xj − µ̂k)2, (12.76)
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where 



Jk = Number of xj ∈ Rk

µ̂ = 1
J

∑J
j=1 xj

µ̂k = 1
Jk

∑Jk

j=1 xj

J =
∑K

k=1 Jk.

(12.77)

Because
K∑

k=1

Jk(µ̂k − µ̂)2 =

K∑

k=1

Jkµ̂k
2 − Jµ̂2, (12.78)

and (from Eq. (12.21)),

K∑

k=1

Jk∑

j=1

(xj − µ̂k)2 = Jσ̂2, (12.79)

Eq. (12.76) becomes

K∑

k=1

Jk∑

j=1

(xj − µ̂)2 + Jµ̂2 =

K∑

k=1

Jkµ̂k
2 + Jσ̂2. (12.80)

For a given image,
∑K

k=1

∑Jk

j=1(xj − µ̂)2 + Jµ̂2 is constant. Thus, we have

K1∑

k=1

Jkµ̂k
2 + Jσ̂2

1 =

K0∑

k=1

Jkµ̂k
2 + Jσ̂2

0 . (12.81)

Eq. (12.81) leads to Eq. (12.22).

Problems

12.1. Prove the properties of Eq. (12.29).

12.2. Derive Eq. (12.37).

12.3. Derive Eq. (12.41).

12.4. Derive Eq. (12.46).

12.5. The mathematical induction method is used in the derivation of
Eq. (12.60). Show the details of this mathematical induction.
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