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Introduction

Welcome to CUDA for Engineers. The goal of this book is to give you direct, 
hands-on engagement with personal high-performance computing. If you follow 
along on our foray into the CUDA world, you will gain the benefit of massive 
parallelism and be able to perform computations on a basic gaming computer 
that until very recently required a supercomputer. The material presented in 
this book will help you make sense of more sophisticated CUDA literature and 
pursue your own CUDA projects.

Let’s get started by explaining CUDA and our strategy for getting up to speed as 
efficiently as possible.

What Is CUDA?
CUDA is a hardware/software platform for parallel computing created and sup-
ported by NVIDIA Corporation to promote access to high-performance parallel 
computing. The hardware aspect of CUDA involves graphics cards equipped 
with one or more CUDA-enabled graphics processing units (GPUs). The NVIDIA 
CUDA Toolkit software provides a development environment based on the C/C++ 
family of programming languages [1].

The GPU-based approach to massively parallel computing used by CUDA is 
also the core technology used in many of the world’s fastest and most energy-
efficient supercomputers. The key criterion has evolved from FLOPS (floating 
point operations per second) to  FLOPS/watt (i.e., the ratio of computing pro-
ductivity to energy consumption), and GPU-based parallelism competes well in 
terms of FLOPS/watt. In fact, between June 2012 and December 2013, the list 
of the top ten most energy-efficient supercomputers in the world changed from 
being 100% based on IBM’s Blue Gene system (containing PowerPC CPUs) to 
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100% based on NVIDIA’s GPU systems [2]. In this rapid shift to GPU-based com-
puting, the ratio of computation to power consumption more than doubled and 
continues to increase.

What Does “Need-to-Know” Mean for 
Learning CUDA?

GPU-based parallel computing is truly a game-changing technology. You need 
to know about GPU-based parallel computing to keep up with developments in 
fields related to applied computation, engineering design and analysis, simu-
lation, machine learning, vision and imaging systems, or any number of other 
computing-intensive fields. GPU-based parallel computing reduces the time 
for some computing tasks by orders of magnitude, so big computations (like 
training a machine learning system on a large data set) that took weeks can 
now happen in hours, and moderate-sized computations (like producing a 3D 
contour plot) that took minutes can happen interactively in real time. And these 
gains can be achieved at very reasonable costs in terms of both developer effort 
and the hardware required. You need to know about CUDA because CUDA is 
currently the best-supported and most accessible platform for tapping into the 
power of GPU-based parallel computing.

We will also do our best to provide you with everything you need to know (and 
as little as possible of what you do not need to know!) to get you to your first 
direct experiences with CUDA. This book is not intended to be an encyclopedic 
guide to CUDA; good books of that sort are already available. We will provide 
links to such reference resources, and we hope you will explore them as you 
develop a sophisticated working knowledge of CUDA. The challenge with such 
guides, however, is that they assume that the reader already knows enough 
about  parallel computing and CUDA to make sense of their lingo and context. 

Our goal here is to present the essentials of CUDA in a clear, concise manner 
without assuming specialized background or getting lost in a jungle of details. 
We aim for the most direct path to meaningful hands-on experiences. You will 
not need to read 100 pages of background material before actively engaging with 
CUDA. We provide short appendices if you need to set up a basic CUDA-enabled 
system or catch up on the essentials of C programming. Your first hands-on 
engagement with CUDA that involves running some standard sample programs 
comes in Chapter 1, “First Steps,” and by the end of Chapter 3, “From Loops to 
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Grids,” you should be running small CUDA programs you have created yourself. 
The ensuing chapters present numerous complete examples that you can build, 
run, and modify, as well as suggested projects to provide additional hands-on 
CUDA experience. Get ready for a fast and exciting ride, focused on what you 
really need to know to get up to speed with CUDA.

What Is Meant by “for Engineers”?
Our focus is a technically literate engineering audience. If you are a practicing 
engineer or a university student with a year’s worth of engineering courses, this 
book is for you. The examples presented, intended to be readily recognizable 
and to directly connect engineers to CUDA-powered computing, include the 
following:

• Visualizing functions in two dimensions (2D) and three dimensions (3D)

• Solving differential equations while changing the initial or boundary
conditions

• Viewing/processing images or image stacks

• Computing inner products and centroids

• Solving systems of linear algebraic equations

• Monte Carlo computations

We assume that you have some, but not necessarily extensive, computing 
 experience. An introductory computing course using C or C++ provides an ideal 
foundation. If your previous experience involves some other programming 
language, Appendix C, “Need-to-Know C Programming,” is designed to get you 
quickly up to speed. When you can create applications with functions that involve 
arrays and for loops, you have the essential background to appreciate the 
contrast between serial computing typical of CPU-based systems and parallel 
computing implemented on the GPU with CUDA.

 As for mathematics, some previous exposure to differential equations, finite 
difference approximations, and linear algebra will be helpful for some of the 
examples, but here too we provide the essentials. Brief descriptions of rele-
vant math and engineering concepts are provided at the start of examples that 
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involve specialized background so you can appreciate even the examples that lie 
outside your specialty area.

Equally important as the necessary background is what you do not need to jump 
into CUDA with us. You do not need to be a computer scientist or an experienced, 
professional programmer. You do not need to have a background in any particular 
technical field. You do not need to have access to high-end or exotic computing 
systems.

What Do You Need to Get Started 
with CUDA? 

You need to have access to a computer—not even a particularly fancy computer—
with a CUDA-enabled GPU: something on the order of a decent gaming sys-
tem. You also need some special software that is freely available and readily 
accessible. If you are fortunate enough to be associated with an organization 
that provides you with access to CUDA-enabled computing resources, then 
you are ahead of the game. However, we definitely want to include those of you 
who will be using your personal computer as your CUDA platform. Appendix A, 
“Hardware Setup,” and Appendix B, “Software Setup,” will walk you through the 
details of setting up your own system. We aim to support users across a range 
of operating systems, so specifics are included to enable you to build and run 
applications under Windows and UNIX-like systems including Linux and OS X.

How Is This Book Structured?
In addition to this introduction, there are nine chapters and four appendices. The 
chapters lay out the need-to-know path for most readers, while the appendices 
deal with background issues or topics off the critical path. Our presentation 
encourages you to be actively engaged with CUDA. To get the most out of the 
book, plan on creating, testing, and modifying the applications (which we will 
refer to as apps) as you work through the chapters. 

• Chapter 1, “First Steps,” provides an active start into the CUDA world that
checks out your CUDA system. You will run existing sample CUDA apps to
ensure that you have a CUDA-enabled system and run a couple simple C
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codes to make sure that you are ready to create, compile, and execute pro-
grams. These first C codes evaluate a function that calculates the distance 
from a reference point for a set of input values: first one input value at a time 
and then for an array of input values. These apps serve as the initial candi-
dates for parallelization with CUDA.

• If you run into issues with any of these basic CUDA requirements, take a
detour into the appendices. Appendix A, “Hardware Setup,” covers how to
check if you have a CUDA-enabled GPU and how to obtain and install one if
you don’t. Appendix B, “Software Setup,” shows you how to install CUDA soft-
ware, and Appendix C, “Need-to-Know C Programming,” covers the essential
aspects of C programming.

• After reading the necessary appendices and completing Chapter 1, “First
Steps,” you are ready for Chapter 2, “CUDA Essentials,” which presents the
basic CUDA model for parallelism and essential extensions of C for CUDA
programming.

The rest of the book is organized around a sequence of example apps that intro-
duce and implement fundamental CUDA concepts.

• Chapter 3, “From Loops to Grids,” shows how to parallelize the distance
function evaluation codes introduced in Chapter 1, “First Steps.” This process
presents the bare essentials of parallel computing with CUDA and introduces
the typical pattern of transferring data between CPU and GPU. We also briefly
introduce unified memory, which may allow you to streamline your develop-
ment process. By the end of Chapter 3, “From Loops to Grids,” you will be
ready for hands-on experience using our example programs to create your
own CUDA apps. This chapter also includes the first reference to Appendix D,
“CUDA Practicalities: Timing, Profiling, Error Handling, and Debugging,”
which discusses CUDA development tools.

• Chapter 4, “2D Grids and Interactive Graphics,” extends the distance function
evaluation example to higher dimensions. Once we have created a 2D array of
data (which can be treated as an image), we’ll take advantage of the opportu-
nity to provide just enough about OpenGL interoperability to enable graphical
display with real-time keyboard/mouse interactivity. We’ll also introduce
the basics of simulation using differential equations, and we will launch the
simulation code simultaneously for numerous initial conditions to implement
a parallel stability analysis.
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• In Chapter 5, “Stencils and Shared Memory,” we start to deal with the reality that
the computations in different threads are not always independent. The sim-
plest case, and also one of the most common, involves threads that interact
with their neighbors in a computational grid, leading to what is called a stencil
pattern. We present the basics in an intuitive image filtering context and then
introduce an alternate stencil to solve for a steady-state temperature dis-
tribution. The discussion takes us through the concepts of tiling and shared
memory that are useful in a wide variety of applications.

• Chapter 6, “Reduction and Atomic Functions,” deals with the challenging
scenario of thread interaction in which all the threads interact during the
computation. We start with the simple example of computing the dot product
of two vectors to identify the challenges (and some solutions), and then pro-
ceed to a more interesting application involving centroids.

• Chapter 7, “Interacting with 3D Data,” ventures into parallel computing with
3D grids, which builds directly on earlier looks at 1D and 2D grids. We then
explore slicing, volume rendering, and raycasting as methods that employ 2D
grids to achieve interactive visualization of data from the 3D grid.

• Chapter 8, “Using CUDA Libraries,” provides an introduction to CUDA libraries
so you will have some idea of what kinds of preexisting codes are available
and when and how you might want to use them. We use CUDA libraries to
present both new apps and re-implementations of select apps from previous
chapters.

• When you get to the end of this book, there will still be plenty of things to learn
and materials left to explore. Chapter 9, “Exploring the CUDA Ecosystem,”
directs you to additional CUDA resources, including books, blogs, websites,
videos, and examples, that will continue to enhance your CUDA experience.

To put it all together, Figure 0.1 shows a flowchart of ways to work through the 
book.
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Conventions Used in This Book
This book uses the following conventions:

• To distinguish from normal English, programming code, filenames, and menu
selections are typeset in a special monospace font.

• Titled sidebars provide information that is contextually connected but inde-
pendent from the flow of the text.

• We often refer to UNIX-like systems including Linux and OS X simply as Linux.

• We refer to complete working example programs as applications or, for
short, apps.

• We use an arrow (⇒) to show nested menu selections.

• Following common usage, “one-dimensional,” “two-dimensional,” and
“three-dimensional” are abbreviated as 1D, 2D, and 3D, respectively.

• Some figures have been altered to enhance grayscale contrast. Full-color
versions are available at www.cudaforengineers.com.

• Each chapter ends with a list of suggested projects to provide the reader with
opportunities for additional hands-on CUDA experiences.

• A number enclosed in square brackets formatted as plain text indicates a
reference located at the end of the current chapter or appendix.

Code Used in This Book
Codes for apps presented in this book are available online through the 
 www.cudaforengineers.com website. While the book contains some snippets 
and “skeleton” codes, code that appears labeled as a Listing that includes line 
numbers is intended to be real working code. We have made a serious attempt 
to make sure that the codes have been tested and run successfully on multiple 
systems including Windows 7, Windows 8.1, Linux (Ubuntu 14.04 LTS), and 
OS X 10.10 (with one clearly identified exception that occurs at the very end of 
Chapter 3, “From Loops to Grids.”)

http://www.cudaforengineers.com
http://www.cudaforengineers.com
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The codes presented in this book have been created with a high priority on being 
concise, readable, explainable, and understandable. As a result, the codes typi-
cally do not include the error-checking and performance-evaluation function ality 
that would be present in commercial codes. These topics are covered in Appendix D, 
“CUDA Practicalities: Timing, Profiling, Error Handling, and Debugging,” so you 
can add those functionalities as desired. 

CUDA apps can be developed using either C or C++ programming style. We 
primarily use a C programming style to minimize the programming background 
required of the reader.

User’s Guide
Our mission in writing CUDA for Engineers is to get a broad technical audience 
actively involved in GPU-based parallel computing using CUDA. Thinking meta-
phorically, we are inviting you to take a trip into the land of GPU-based parallel 
computing, and CUDA for Engineers is the guidebook for that trip. The travel 
guidebook analogy is appropriate in numerous ways, including the following:

• If you only read the guidebook and never actually make the trip, the book has
not really accomplished its intended mission. Please take the trip!

• Most guidebooks deal with things you need to do before starting the trip.
Instead of inoculations and passports, the hardware setup and software
setup required for the trip are covered in Appendices A and B, respectively.

• Travel to foreign lands often involves dealing with a new language and perhaps
a specific dialect. For this trip, the language is C, and the dialect is CUDA. If
you are comfortable with C (or C++), you are in good shape. If C is still foreign
to you, the basics needed to start the trip are covered in Appendix C.

• Guidebooks generally provide a list of must-see places and must-do activities.
Our must-see places are in Chapters 1 and 2, where you will experience the
power of CUDA sample codes and gain initial exposure to the special CUDA
dialect. The must-do activity is in Chapter 3, where you’ll see how to convert
serial C codes into parallel CUDA codes.

• For those desiring the more extensive CUDA tour, just proceed through the
chapters in sequence.
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• Abbreviated and targeted trips are possible, and the departure point is
Chapter 3, where we create our first parallel applications. If you have a sense
of urgency to get to a particular destination, jump right into Chapter 3. If it
makes sense to you, just push forward from there. If not, back up to Chapters 1
and 2 (and/or the appendices) to fill in the gaps as you encounter them. From
there you can proceed in various directions:

• If your goal involves interactive graphics, scientific visualization, gaming,
and the like, proceed to Chapters 4 and 7.

• If your goal is scientific computing, partial differential equations, or image
processing, proceed to Chapters 5 and 6.

• If your primary goal is to utilize existing CUDA-powered libraries, jump
directly to Chapter 8.

• Long tour or short, it is nice to see new things, but actually doing new things
enhances the long-term impact of the experience. So don’t just read. When
codes are presented, create, compile, and execute them. Modify them, and
test out your modifications. Do some of the projects at the end of each chap-
ter, or start up a project of your own.

• On some tours you go solo, and sometimes you travel with a group and a
guide. We have worked hard to produce a book that provides good support for
a solo trip. However, if you end up using the book in a classroom setting, by all
means take advantage of opportunities to interact with instructors and class-
mates. Asking and answering questions is a great way to learn, and a second
pair of eyes is perhaps the best debugging tool.

• On any trip, things may go awry or additional directions or scheduling infor-
mation may be needed. Material for addressing such issues is located in
Appendix D and Chapter 9, which provides pointers to additional resources to
help you start “exploring the CUDA ecosystem.”

Historical Context
This book is the result of several years of adventures into CUDA territory that 
started with research projects involving volumetric medical imaging, registra-
tion of 2D and 3D imaging (i.e., fluoroscopy and CT scans), and novel approaches 
to  computer-aided design and additive manufacturing. As the utility and 
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importance of CUDA became apparent, it also became clear that sharing the 
appreciation of CUDA was the right thing to do. The result was a special topics 
course on applications of CUDA offered to students from a wide range of depart-
ments with no prerequisites other than an introductory computing class. The 
writing of this book follows the third offering of the course, which has evolved to 
include system setup, exploration of CUDA Samples, a very fast introduction to 
C programming, CUDA’s model for parallelism—along with the few things 
beyond basic C needed to implement it—and a survey of useful CUDA features 
including atomic functions, shared memory, and interactive graphics. All of that 
happens in the first half of a 10-week quarter, and the remaining time is dedi-
cated to projects and presentations. Each student in the class gives a short pre-
sentation of their project topic in week 5 and then a final presentation in week 10 
of what they have accomplished. Class meetings in between are a combination of 
consulting hours and presentations (by instructor or guest speakers) on experi-
ences creating and using CUDA-powered applications. In terms of the contents 
of the book, the course translates roughly as follows:

• System setup and initial CUDA Sample run: Appendices A and B, Chapter 1.

• Brief introduction to C: Appendix C.

• CUDA, its model for parallelism, and language essentials: Chapters 2 and 3.

• Interactive graphics: Chapter 4.

• Shared memory: First part of Chapter 5.

• Atomic functions: First part of Chapter 6.

• Project: Turn the students loose to explore the remainder of Chapters 5–9
for project inspiration, encourage active writing of code, and provide as much
help as possible getting over hurdles that arise.

While the organization of the book has some relation to the course, the content 
is largely the result of a mostly unguided foray into the CUDA world, which turns 
out to be a big place where it is not hard to get lost. We have filtered through a 
lot of material including books, sample codes, research papers, and seminar 
presentations, with the goal of getting down to the gist of what engineers from 
outside the field would really need to know to get a handle on what can be done 
with a powerful parallel computing tool like CUDA and understand how they can 
actually make use of that tool themselves. It is our sincere hope that the result 
is a book that can fulfill the dual purposes of enabling individual learning and 
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supporting classroom experiences, and we sincerely hope that this book helps 
to make your voyage into the world of CUDA more efficient, more enjoyable, 
more rewarding, and less overwhelming.
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Chapter 1

 First Steps

The goal of this chapter is to get you to plunge right into the world of parallel 
computing with CUDA. We’ll start by running a sample app provided with the 
CUDA Toolkit. The sample app provides both serial and parallel implementa-
tions so you can compare performance measures to get an initial feel for how 
CUDA can enhance your computing capabilities. Note that the procedures for 
building and executing apps depend on your operating system, and we’ll provide 
enough detail to get the sample running under Windows and Linux/OS X. At the 
end of the chapter, we present two simple C apps that will provide initial candi-
dates for parallelization with CUDA.

This chapter contains several crucial checkpoints that direct you to the appendices 
if there is an issue or capability that needs attention. Please believe us when we 
tell you that a trip to the appendices is likely to save you more time than you will 
lose by forging ahead without verifying that the checkpoint criterion is satisfied.

That said, we now encounter the first checkpoint: You need to be working on a 
CUDA-enabled system that has a CUDA-enabled graphics card and CUDA devel-
opment software. If there is any question about the status of your system, go to 
Appendix A, “Hardware Setup,” to verify your hardware status and Appendix B, 
“Software Setup,” to verify your software status.

Running CUDA Samples
Let’s start by running a sample app, the nbody CUDA Sample, to get a meaningful 
initial CUDA experience. The app computes, and provides graphic visualization 
of, the motions of a large number of gravitationally interacting masses.
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CUDA SAMPLES UNDER WINDOWS

If you are on a fully CUDA-enabled Windows system, you have a CUDA-enabled 
GPU and software including an appropriate driver for the GPU, the CUDA Toolkit, 
and Microsoft Visual Studio with NVIDIA’s Nsight plug-in. The code and discus-
sions in this book are based on CUDA 7.5, Nsight Visual Studio Edition 4.7, and 
Visual Studio Community 2013 with 64-bit compilation (specified by setting the 
Solution Platforms selection to x64 not Win32).

Here we also assume that you know how to locate and run the CUDA Samples. 
This is another checkpoint: If you do not know how to find or run a CUDA Sample, 
go directly to Appendix B, “Software Setup,” and return after you have learned to 
run CUDA Samples.

Go to the CUDA Samples folder shown in Figure 1.1, where you will see subfold-
ers for the various categories of CUDA Samples and the highlighted bin folder.

Figure 1.1 The CUDA Samples folder
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Navigate to the bin/win64/Release subfolder where the executable files are 
stored, as shown in Figure 1.2. Checkpoint: If you do not see these executable 
files in the Release folder, go to Appendix B, “Software Setup,” for directions 
on building the CUDA Sample codes into executables.

In the Release folder, find the executable for the nbody sample, which is high-
lighted in Figure 1.2, and double-click to start an interesting and relevant appli-
cation. Two windows should open: a graphics window, shown in Figure 1.3, and 
a console window with a command-line interface (the last line of which should 
verify your GPU model number and compute capability), shown in Figure 1.4. 
(You may need to move the graphics window so you can see the contents of the 
console window.) The nbody application simulates the gravitational interaction 
between thousands of particles and displays a graphical version of the resulting 
motion. The title bar of the graphics window also contains some details includ-
ing the number of bodies in the simulation, the number of binary interactions 
computed per second, the total GFLOPS, and the precision.

Figure 1.2 The Release folder with the CUDA Sample executables
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Figure 1.3 Graphical output from the nbody simulation

Figure 1.4 nbody console window providing optional command-line arguments
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It is also useful to be able to run CUDA Samples from a command prompt, which 
you can do as follows. First, let’s note another checkpoint: If you run into any 
questions carrying out the suggestions in the following paragraph, go to 
Appendix B, “Software Setup,” to locate the answers.

Start Visual Studio and open a Visual Studio Command Prompt (available in 
the TOOLS menu). Using the File Explorer, copy the address of the Release folder 
(where the CUDA Samples executables reside). Change to the Release folder by 
typing cd at the command prompt and pasting in the folder address, then execute 
the command nbody to run the simulation.

CUDA SAMPLES UNDER LINUX

Let’s start with a checkpoint: If you run into any questions carrying out the 
suggestions in the following paragraph, go to Appendix B, “Software Setup,” to 
locate the answers.

Open a command line and cd to your NVIDIA_CUDA-7.5_Samples/5_
Simulations/nbody directory. Build the nbody executable using make (if you 
have not already done so), then type ./nbody to run the simulation. Using a simi-
lar procedure, you can build and run whichever CUDA Samples are of interest.

ESTIMATING “ACCELERATION”

In the lingo of the GPU-based parallel community, getting a computation to run 
N times as fast is called “Nx acceleration.” (This imprecise use of “acceleration” 
may be painful to those of us who have studied dynamics, but we’ll just have to 
get over it since the lingo is not likely to change.)

This is a good time to generate some initial acceleration estimates, and the 
nbody app actually provides a means of doing so. The nbody console window 
provides a list of optional arguments that can be employed when nbody is run 
from the command prompt. We are going to use three of those options, and you 
may want to experiment with some of the others:

• The –benchmark option makes the simulation run in a mode that suppresses
the graphics output and produces quantitative performance estimates.

• The –cpu option makes the simulation execute on the CPU instead of the GPU.

• The –fp64 option makes the simulation run using double-precision 64-bit
arithmetic instead of single-precision 32-bit arithmetic.
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The nbody console window also displays the disclaimer “The CUDA Samples 
are not meant for performance measurement,” so let’s do some nbody bench-
mark tests to get some rough acceleration estimates but maintain a bit of 
healthy skepticism and not read too much into the results.

Start by running nbody –benchmark (./nbody –benchmark in Linux/OS X) 
and noting results, including the number of GFLOPS reported after execution 
on the GPU. Next, run nbody with the flags –benchmark –cpu and note the 
corresponding numbers for execution on the CPU. Repeat both tests with the 
additional –fp64 option.

On our notebook computer with a GeForce 840M, the GPU produced a single-
precision GFLOPS estimate that exceeded the CPU estimate by a factor of about 
120x. Using double precision, the GPU produces an acceleration of about 6x. 
Here we reach another checkpoint: You should actually run these computations 
and get a concrete idea of the acceleration achieved on your system before you 
continue reading.

Note that the disclaimer is well-founded in that the CPU implementation may not 
be fully optimized while the GPU implementation has been heavily optimized. 
(In fact, the docs subfolder of the nbody sample includes a full GPU Gems paper 
on optimizing the GPU implementation.) Despite the disclaimer, we can learn 
a couple things from these initial tests: (1) GPU-based parallelism can provide 
significant gains in computational throughput, and (2) the performance multi-
plier achieved by a GeForce card is significantly higher for single-precision than 
for double-precision computations.

The speed-ups you achieve may well reflect the CUDA rule of thumb that you 
can gain an initial increase in performance when you first parallelize your 
computation on the GPU; you can often gain a second performance increase by 
choosing the right memory model (we’ll discuss the available choices) and/or 
buying a higher-end GPU (especially if double precision is important to you, and 
you can afford a Tesla card); and the third big increase in performance typically 
requires advanced tuning involving hardware-specific details. Our discussions 
will focus on the first two speed-ups, and we’ll refer you to other sources for 
information about the third.

That wraps up our look at the nbody sample, but let’s run one more sample 
before we move on. Run the volumeRender sample from the 2_Graphics 
directory (as shown in Figure 1.1) to interact with a 3D data set by moving the 
mouse to change your view of the data in real time. We’ll be creating our own 
version of a 3D visualization app in Chapter 7, “Interacting with 3D Data.”
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Feel free to continue exploring the CUDA Samples, but you are now ready to 
move on to the next section.

Running Our Own Serial Apps
The time has come to move beyond the CUDA Samples and build/run apps of our 
own. In this section we present the code for two apps, dist_v1 and dist_v2, 
that do the same task. Each app computes an array of distances from a refer-
ence point to each of N points uniformly spaced along a line segment. This task 
is chosen to be about as simple as possible while still having meaning for engi-
neers, and you will have little trouble imagining how to generalize these apps to 
perform the more general task of evaluating other functions for specified input 
values.

Note that while dist_v1 and dist_v2 perform the same task, they are orga-
nized to accomplish that task in different ways:

• The dist_v1 app has a single for loop that scales the loop index to create
an input location and then computes/stores the distance from the reference
location. Here we create a distance() function that computes the distance
from the reference location for a single point, and call the function N times.

• The dist_v2 app starts by creating the array of input points, then passing
a pointer to that array to the distanceArray() function that we define
to compute/store to the entire array of distance values as the result of a sin-
gle call.

The apps dist_v1 and dist_v2 will serve as our initial candidates for paral-
lelization in Chapter 3, “From Loops to Grids.” The code listings are presented 
here, and detailed explanations with instructions for creating, building, and exe-
cuting each app are presented in Appendix C, “Need-to-Know C Programming.” 
This brings us to another checkpoint: You need to be able to build and run both 
dist_v1 and dist_v2; if you run into any trouble doing so, go to Appendix C, 
“Need-to-Know C Programming,” to find the information to resolve the trouble.

dist_v1

The code for the dist_v1 app consists of one file, main.cpp, which is shown in 
Listing 1.1. The corresponding Linux Makefile is shown in Listing 1.2.
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Listing 1.1 dist_v1/main.cpp
  1 #include <math.h> // Include standard math library containing sqrt
  2 #define N 64 // Specify a constant value for array length
  3
  4 // A scaling function to convert integers 0,1,...,N-1
  5 // to evenly spaced floats ranging from 0 to 1
  6 float scale(int i, int n)
  7 {
  8   return ((float)i)/(n - 1);
  9 }
 10
 11 // Compute the distance between 2 points on a line
 12 float distance(float x1, float x2)
 13 {
 14   return sqrt((x2 - x1)*(x2 - x1));
 15 }
 16
 17 int main()
 18 {
 19   // Create an array of N floats (initialized to 0.0)
 20   // We will overwrite these values to store our results.
 21   float out[N] = {0.0f};
 22
 23   // Choose a reference value from which distances are measured
 24   float ref = 0.5f;
 25
 26   /* for loop to scale the index to obtain coordinate value,
 27   *  compute the distance from the reference point,
 28   *  and store the result in the corresponding entry of out */
 29   for (int i = 0; i < N; ++i)
 30   {
 31     float x = scale(i, N);
 32     out[i] = distance(x, ref);
 33   }
 34
 35   return 0;
 36 }

Listing 1.2 dist_v1/Makefile
NVCC = /usr/local/cuda/bin/nvcc
NVCC_FLAGS = -g -G -Xcompiler -Wall
main.exe: main.cpp
    $(NVCC) $(NVCC_FLAGS) $< -o $@

dist_v2

The code for dist_v2 consists of three files: main.cpp (shown in Listing 1.3), 
aux_functions.cpp (shown in Listing 1.4), and the header file aux_
functions.h (shown in Listing 1.5). The Linux Makefile is shown in Listing 1.6.
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Listing 1.3 dist_v2/main.cpp
  1 #include "aux_functions.h"
  2 #include <stdlib.h> // supports dynamic memory management
  3
  4 #define N 20000000 // A large array size
  5
  6 int main()
  7 {
  8   float *in = (float*)calloc(N, sizeof(float));
  9   float *out = (float*)calloc(N, sizeof(float));
 10   const float ref = 0.5f;
 11
 12   for (int i = 0; i < N; ++i)
 13   {
 14     in[i] = scale(i, N);
 15   }
 16
 17   distanceArray(out, in, ref, N);
 18
 19   // Release the heap memory after we are done using it
 20   free(in);
 21   free(out);
 22   return 0;
 23 }

Listing 1.4 dist_v2/aux_functions.cpp
  1 #include "aux_functions.h"
  2 #include <math.h>
  3
  4 float scale(int i, int n)
  5 {
  6   return ((float)i) / (n - 1);
  7 }
  8
  9 float distance(float x1, float x2)
 10 {
 11   return sqrt((x2 - x1)*(x2 - x1));
 12 }
 13
 14 void distanceArray(float *out, float *in, float ref, int n)
 15 {
 16   for (int i = 0; i < n; ++i)
 17   {
 18     out[i] = distance(in[i], ref);
 19   }
 20 }

Listing 1.5 dist_v2/aux_functions.h
  1 #ifndef AUX_FUNCTIONS_H
  2 #define AUX_FUNCTIONS_H
  3
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  4 // Function to scale input on interval [0,1]
  5 float scale(int i, int n);
  6 // Compute the distance between 2 points on a line
  7 float distance(float x1, float x2);
  8 // Compute scaled distance for an array of input values
  9 void distanceArray(float *out, float *in, float ref, int n);
 10
 11 #endif

Listing 1.6 dist_v2/Makefile
  1 NVCC = /usr/local/cuda/bin/nvcc
  2 NVCC_FLAGS = -g -G -Xcompiler -Wall
  3
  4 all: main.exe
  5
  6 main.exe: main.o aux_functions.o
  7   $(NVCC) $^ -o $@
  8
  9 main.o: main.cpp aux_functions.h
 10   $(NVCC) $(NVCC_FLAGS) -c $< -o $@
 11
 12 aux_functions .o: aux_functions.cpp aux_functions.h
 13   $(NVCC) $(NVCC_FLAGS) -c $< -o $@

Here we reach the chapter’s final checkpoint: Before proceeding, you need to 
have run dist_v1 and dist_v2 and, using a debugger, verified that the dis-
tance values computed start at 0.5 (the distance from a scaled value of 0 to the 
reference point at 0.5), decrease toward zero near the middle of the array, and 
increase back to 0.5 (corresponding to the distance from 0.5 to a scaled value 
of 1.0). If you encounter any trouble, read the necessary portions of Appendix C, 
“Need-to-Know C Programming,” before going on.

Summary
In this chapter, we ran some CUDA Samples to get an immediate experience 
with GPU-based parallel computing. We also presented two serial apps that 
will serve as initial candidates for parallelization: dist_v1 provides about the 
simplest example for parallelization, and dist_v2 illustrates a useful structure 
and more typical data flow.

You should now be ready to move on to Chapter 2, “CUDA Essentials,” for a 
discussion of CUDA’s model of parallel computing, after which, in Chapter 3, 
“From Loops to Grids,” we’ll get down to the actual business of parallelization 
with CUDA.
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Suggested Projects
Projects 1–5 are about running some of the other CUDA Samples.

1. Run deviceQuery from 1_Utilities to find out information about the
CUDA GPUs on your system (if you did not already do so in Appendix A,
“Hardware Setup”).

2. Run Mandelbrot from 2_Graphics. Simulation options will appear in the
command window. You can quit the simulation with the Esc key.

3. Run volumeFilter from 2_Graphics. Simulation options will appear in
the command window.

4. Run smokeParticles from 5_Simulations. Right-click on the simulation
to see interaction options.

5. Run fluidsGL from 5_Simulations. Left-click and drag on the simulation
to play with fluid particles (r resets the simulation).

6. We defined distance() to return sqrt((x2 - x1)*(x2 - x1)). An
alternative way to compute the square root of a square is to use absolute
value. Create an alternative implementation of distance() based on abso-
lute value. See http://en.cppreference.com/w/c/numeric/math for informa-
tion on common mathematical functions.

http://en.cppreference.com/w/c/numeric/math
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Chapter 2

 CUDA Essentials

Our discussion in Chapter 1, “First Steps,” left off with the function 
 distanceArray(), which computes distance values from a reference point 
to an array of input locations. The computation is completely serial; the values 
are computed in a sequence as the index i in a for loop increments over the 
range of input array elements. However, the computation of any one of the 
distance values is independent of the other computations. In a serial implemen-
tation, we do not take advantage of the independence and instead wait until one 
entry in the array is computed before moving on to the next. There is no partic-
ular downside to the serial approach if you are using a simple system that can 
only do one computation at a time. However, with general purpose GPU (GPGPU) 
computing we have access to hundreds or thousands of hardware units that 
can compute simultaneously. To take advantage of the many processors at our 
disposal, we change from a serial model, in which computing tasks happen one 
at a time while the others wait their turn, to a parallel model, in which a large 
number of computations execute simultaneously. This chapter describes CUDA’s 
model for parallelism, the basic language extensions, and the application 
programming interface (API) for creating CUDA apps [1,2].

CUDA’s Model for Parallelism
The change from serial to parallel CUDA computing involves a change in both 
hardware and software. The hardware change involves chips that include mul-
tiple computing units and mechanisms for scheduling computations and data 
transfers. The software change involves an API and extensions to the program-
ming language.
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Host and Device
To refine our terminology a bit, host refers to the CPU and its memory, and device 
refers to the GPU and its memory.

The most essential property of a GPU that enables parallelization is that the 
device contains not one or several computing units (like a modern multicore 
CPU) but hundreds or thousands of computing units. If you can organize your 
computation into a large number of independent subtasks, the numerous com-
puting units give you the capability to perform many of those tasks in parallel; 
that is, to execute tasks simultaneously instead of sequentially. Realizing such 
parallelization involves some major organizational questions: How does a par-
ticular computing unit know which subtask to perform? How do a large number 
of computing units get access to the instructions and data they need without 
causing a major communications traffic jam?

CUDA employs the single instruction multiple thread (SIMT) model of paralleliza-
tion. CUDA GPUs contain numerous fundamental computing units called cores, 
and each core includes an arithmetic logic unit (ALU) and a floating-point unit 
(FPU). Cores are collected into groups called streaming multiprocessors ( SMs).

We parallelize a computing task by breaking it up into numerous subtasks called 
threads that are organized into blocks. Blocks are divided into warps whose size 
matches the number of cores in an SM. Each warp gets assigned to a particular 
SM for execution. The SM’s control unit directs each of its cores to execute the 
same instructions simultaneously for each thread in the assigned warp, hence 
the term “single instruction multiple thread.”

Executing the same instructions is not just an exercise in redundancy, because 
each thread performs distinct computations using unique index values that are 
provided by CUDA [3]. The SIMT approach is scalable because computational 
throughput can be increased by providing more SMs to share the computing 
load. Figure 2.1 illustrates the contrast between the architecture of a CPU and 
a GPU. The CPU has a few computing cores occupying a small portion of the 
chip and a large area dedicated to control and cache to help those few cores run 
fast. It is a general rule (and a recurring CUDA theme) that the time required to 
access data increases with the distance between the computing core and the 
memory location where the data is stored. The time that a core spends waiting 
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for data is called latency, and a CPU is designed to minimize latency by dedicat-
ing lots of space to storing data where it can be accessed quickly.

The allocation of space on the GPU is very different. Most of the chip area is ded-
icated to lots of computing cores organized into SMs with a shared control unit. 
Instead of minimizing latency (which would require a significant amount of cache 
per core), the GPU aims to hide latency. When execution of a warp requires data 
that is not available, the SM switches to executing another warp whose data 
is available. The focus is on overall computing throughput rather than on the 
speed of an individual core.

Now we are ready to consider the software aspect of CUDA’s SIMT implemen-
tation. The essential software construct is a special kind of function called a 
kernel that spawns a large collection of computational threads organized into 
groups that can be assigned to SMs. In CUDA jargon, we launch a kernel to 
create a computational grid composed of blocks of threads (or threadblocks). 
In order to replace sequential computations, we need a way to tell each thread 
which part of the computation to do; that is, which entry of the input to process 
and/or which entry of the output to compute/store. CUDA addresses this need by 
providing each thread with built-in index variables. These CUDA index variables 
replace the loop index in serial code. The process of launching a kernel, creating 
a computational grid, and indexing the blocks and threads is presented in the 
next section.

Figure 2.1 Illustration of architecture difference between CPU and GPU. 
(Figure from the CUDA Programming Guide, used with permission of 
NVIDIA Corporation.)
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Need-to-Know CUDA API and 
C Language Extensions

The basic tasks needed for CUDA parallelism include the following:

• Launching a kernel with specified grid dimensions (numbers of blocks and
threads)

• Specifying that functions should be compiled to run on the device (GPU), the
host (CPU), or both

• Accessing and utilizing block and thread index values for a computational
thread

• Allocating memory and transferring data

Let’s start with specifying a kernel launch. As discussed above, a kernel is a 
kind of function and a kernel launch looks very much like a regular function call; 
that is, it starts with a name such as aKernel and ends with parentheses con-
taining a comma-separated argument list. Now for the language extension: To 
indicate the parallel nature and to specify the dimensions of the computational 
grid, the grid dimensions and block dimensions (inside triple angle brackets or 
triple chevrons) are inserted between the name and the parentheses holding 
the arguments:

aKernel<<<Dg, Db>>>(args)

Note that Dg, the number of blocks in the grid, and Db, the number of threads in 
a block, together constitute the execution configuration and specify the dimen-
sions of the kernel launch.

This establishes the syntax for launching a kernel, but there is still the issue of 
how to declare a function that is called from the host but executed on the device. 
CUDA makes this distinction by prepending one of the following function type 
qualifiers:

• __global__ is the qualifier for kernels (which can be called from the host
and executed on the device).

• __host__ functions are called from the host and execute on the host. (This is
the default qualifier and is often omitted.)
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• __device__ functions are called from the device and execute on the device.
(A function that is called from a kernel needs the __device__ qualifier.)

• Prepending __host__ __device__ causes the system to compile separate
host and device versions of the function.

Dynamic Parallelism
As of CUDA 5.0, it is possible to launch kernels from other kernels on CUDA devices 
of compute capability 3.5 or above [1,4,5,6]. Calling __global__ functions from the 
device is referred to as dynamic parallelism, which is beyond the intended scope 
of this book.

Kernels have several notable capabilities and limitations:

• Kernels cannot return a value, so the return type is always void, and kernel
declarations start as follows:

__global__ void aKernel(typedArgs)

• Kernels provide dimension and index variables for each block and thread.

Dimension variables:

• gridDim specifies the number of blocks in the grid.

• blockDim specifies the number of threads in each block.

Index variables:

• blockIdx gives the index of the block in the grid.

• threadIdx gives the index of the thread within the block.

• Kernels execute on the GPU and do not, in general, have access to data stored
on the host side that would be accessed by the CPU.

Developments in Memory Access
Recent developments aim to unify access to the memory available to the CPU 
and one or more GPUs. We will cover what needs to be done to manage memory 
transfer between host and device. The alternative of unified memory access is 
introduced near the end of Chapter 3, “From Loops to Grids.”
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The CUDA Runtime API provides the following functions for transferring input 
data to the device and transferring results back to the host:

• cudaMalloc() allocates device memory.

• cudaMemcpy() transfers data to or from a device.

• cudaFree() frees device memory that is no longer in use.

Kernels enable multiple computations to occur in parallel, but they also give up 
control of the order of execution. CUDA provides functions to synchronize and 
coordinate execution when necessary:

• __syncThreads() synchronizes threads within a block.

• cudaDeviceSynchronize() effectively synchronizes all threads in a grid.

• Atomic operations, such as atomicAdd(), prevent conflicts associated with
multiple threads concurrently accessing a variable.

In addition to the functions and qualifiers described above, CUDA also provides 
support for some additional useful data types:

• size_t: dedicated type for variables that indicate amounts of memory.

• cudaError_t: dedicated type for variables used in error handling.

• Vector types: CUDA extends the standard C data types to vectors of length up
to 4. Individual components are accessed with the suffixes .x, .y, .z, and .w.

Essential Use of Vector Types
CUDA uses the vector type uint3 for the index variables, blockIdx and 
threadIdx. A uint3 variable is a vector with three unsigned integer components.

CUDA uses the vector type dim3 for the dimension variables, gridDim and 
blockDim. The dim3 type is equivalent to uint3 with unspecified entries set to 1. 
We will use dim3 variables for specifying execution configurations.
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Summary
You now have access to the tools needed to start creating apps that take advan-
tage of the parallel computing power of the GPU using CUDA, and that is just 
what we will start doing in Chapter 3, “From Loops to Grids.”

Suggested Projects
1. Go to the CUDA Zone and enroll as a registered CUDA developer (if you have

not already done so).

2. View the video at www.nvidia.com/object/nvision08_gpu_v_cpu.html to see
an entertaining demonstration of the contrast between serial and parallel
execution.

3. Read the “Introduction” to the CUDA Programming Guide at http://docs
.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf.

4. Watch the video, “GPU Computing: Past, Present, and Future,” by David Luebke,
from the 2011 GPU Tech Conference to get an interesting perspective on the
origins and directions of GPU computing. (Do not worry about the occasional
unfamiliar term. Think of this talk as an opportunity to gain exposure to CUDA
jargon.) The video can be found at http://on-demand-gtc.gputechconf.com/
content/includes/gtc/video/stream-david-luebke-june2011.html.
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Chapter 3

 From Loops to Grids

We are now ready to apply the basics presented in Chapter 2, “CUDA Essentials,” 
to parallelize the C codes presented in Chapter 1, “First Steps,” and Appendix C, 
“Need-to-Know C Programming.” Recall that we created two versions of the 
distance app. In dist_v1 we used a for loop to compute an array of distance 
values. In dist_v2 we created an array of input values and then called the 
function distanceArray() to compute the entire array of distance values 
(again in serial using a for loop). In this chapter, we use CUDA to parallelize the 
distance apps by replacing serial passes through a loop with a computational 
grid of threads that can execute together.

We will be creating, building, and executing new apps, but the focus is on par-
allelization with CUDA. If you run into problems with non-CUDA-specific issues 
such as building and executing C apps, please refer to Appendix C, “Need-to-
Know C Programming.”

Parallelizing dist_v1
For this initial foray into parallelization, we’ll go through the steps of getting 
from the code for dist_v1 to the parallel version dist_v1_cuda before pre-
senting the complete code, which appears in Listing 3.1. Here are the basic steps 
that you should follow along with:

1. Create a dist_v1_cuda project containing a kernel.cu file:

a. In Linux, create a dist_v1_cuda directory and create the file kernel.cu
within that directory.
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b. In Visual Studio, create a new CUDA 7.5 Runtime Project named dist_
v1_cuda, which will include a kernel.cu file. Delete the sample code
from kernel.cu.

2. Copy and paste the contents of dist_v1/main.cpp into kernel.cu. Modify
the code in kernel.cu as follows:

a. Delete #include <math.h> because CUDA-internal files already
include math.h, and insert #include <stdio.h> to enable printing
output to the console.

b. Below the current #define statement, add another, #define TPB 32,
to indicate the number of threads per block that will be used in our kernel
launch.

c. Copy the entire for loop and paste a copy just above main(). We’ll return
to edit this into a kernel definition.

d. Replace the for loop in main() with the kernel call distanceKernel<<<N/
TPB, TPB>>>(d_out, ref, N); which consists of three elements:

i. The function name distanceKernel.

ii. Triple chevrons enclosing the execution configuration parameters. In
this case, we specify N/TPB blocks (2) each with TPB threads (32).

iii. The list of arguments including a pointer to the output array d_out, the
reference location ref, and the array length N.

e. Convert the copy of the for loop above main() into a kernel definition as
follows:

i. Replace the first line of the loop (everything before the braces) with the
kernel declaration consisting of the following:

1. The qualifier __global__

2. The return type void

3. The function name distanceKernel

4. Parentheses enclosing a comma-separated list of typed arguments
(float *d_out, float ref, int len)
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ii. Insert as the first line inside the braces the following formula for com-
puting an index i (to replace the loop index of the same name, which
has now been removed) using the built-in index and dimension vari-
ables that CUDA provides with every kernel launch:

const int i = blockIdx.x*blockDim.x + threadIdx.x;

iii. Change the name of the array on the left-hand side of the assignment
from out[i] to d_out[i]

iv. Insert as the last line inside the braces the following printf()
statement:

printf("i = %2d: dist from %f to %f is %f.\n", i, ref, x,
d_out[i]);

f. Prepend the qualifier __device__ to the definitions of scale() and
distance().

g. Manage storage as follows:

i. At the start of main(), remove the statement defining out (which will
not be used here) with the following code to create a device array d_
out that can store N floats:

float *d_out;
cudaMalloc(&d_out, N*sizeof(float));

ii. Just above the return statement at the end of main(), free the memory
allocated for d_out with the following:

cudaFree(d_out);

To make sure all the pieces come together properly, the code for dist_v1_
cuda/kernel.cu is shown in Listing 3.1.

Listing 3.1 dist_v1_cuda/kernel.cu
  1 #include <stdio.h>
  2 #define N 64
  3 #define TPB 32
  4
  5 __device__ float scale(int i, int n)
  6 {
  7   return ((float)i)/(n - 1);
  8 }
  9
 10 __device__ float distance(float x1, float x2)
 11 {
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 12   return sqrt((x2 - x1)*(x2 - x1));
 13 }
 14
 15 __global__ void distanceKernel(float *d_out, float ref, int len)
 16 {
 17   const int i = blockIdx.x*blockDim.x + threadIdx.x;
 18   const float x = scale(i, len);
 19   d_out[i] = distance(x, ref);
 20   printf("i = %2d: dist from %f to %f is %f.\n", i, ref, x, d_out[i]);
 21 }
 22
 23 int main()
 24 {
 25   const float ref = 0.5f;
 26
 27   // Declare a pointer for an array of floats
 28   float *d_out = 0;
 29
 30   // Allocate device memory to store the output array
 31   cudaMalloc(&d_out, N*sizeof(float));
 32
 33   // Launch kernel to compute and store distance values
 34   distanceKernel<<<N/TPB, TPB>>>(d_out, ref, N);
 35
 36   cudaFree(d_out); // Free the memory
 37   return 0;
 38 }

A few comments are in order before building and executing the parallelized app. 
We hope that your efforts in following along have gotten you to the point where 
you can now look at the complete listing and have a reasonable idea of the moti-
vation for and purpose of all the components of the code.

We also want to remind you of some special aspects of kernel functions since 
they provide our primary tool for parallelization in CUDA. The big thing to 
remember is that the kernel (distanceKernel in this case) executes on the 
device, so it cannot return a value to the host; hence the mandatory return type 
void. The kernel generally has access to device memory, not to host memory, 
so we allocate device memory for the output array using cudaMalloc() (rather 
than host memory using malloc()) and use the name d_out where the prefix 
d_ serves as a convenient (but definitely not mandatory) reminder that d_out is 
a device array. Finally, note that the kernel definition is written as if we only have 
to write code for a single thread. Everything that happened previously with loops 
is now taken care of by the fact that each thread can determine i, its overall 
index in the computational grid, from the index and dimension variables pro-
vided automatically to each thread by CUDA.
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Choosing the Execution Configuration
Note that choosing the specific execution configuration that will produce the best 
performance on a given system involves both art and science. For now, let’s not 
get hung up in the details and just point out that choosing the number of threads 
in a block to be some multiple of 32 is reasonable since that matches up with the 
number of CUDA cores in an SM. There are also limits on the sizes supported for 
both blocks and grids. A handy table including those limits can be found in the 
CUDA C Programming Guide [1]. One particularly relevant limit is that a single 
block cannot contain more than 1,024 threads. Since grids may have total thread 
counts well over 1,024, you should expect your kernel launches to include lots of 
blocks, and plan on doing some execution configuration experiments to see what 
works best for your app running on your hardware. For such larger problems, 
reasonable values to test for the number of threads per block include 128, 256, 
and 512.

E XECUTING dist_v1_cuda

With the code complete, it is time to build and execute the app. Since the code 
now includes a kernel launch (which is not part of C/C++), we need to invoke the 
NVIDIA C Compiler, nvcc. In Windows, Visual Studio recognizes the .cu extension 
and automatically invokes the nvcc compiler, so go ahead and press F7 to build 
the app. Under Linux, build the app with the Makefile shown in Listing 3.2 that 
specifies compilation using nvcc.

Listing 3.2 dist_v1_cuda/Makefile
NVCC = /usr/local/cuda/bin/nvcc
NVCC_FLAGS = -g –G –Xcompiler -Wall

main.exe: kernel.cu
    $(NVCC) $(NVCC_FLAGS) $^ -o $@

Note that in Listing 3.1 we included the standard input/output library on line 1 
and inserted a printf() statement on line 20 to print results to the screen, so 
now you can execute the app and view the output printed to the terminal. Verify 
that the values agree with those computed using the serial apps dist_v1 and 
dist_v2.

Notes on printf()
Be advised that using printf() from a kernel is not supported for GPUs with 
compute capability less than 2.0. If you are not familiar with printf() (or inserting 
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strings into the output stream, cout, for the C++ inclined), please see your favorite 
C/C++ language reference. We are doing this for expediency, but be advised that 
printf() should not be considered as a general purpose debugging tool.

More on Debugging
The usual C/C++ debugging tools provided by Visual Studio or gdb are not capable 
of displaying the values in device memory, but there are CUDA-specific debugging 
tools available for this purpose. A discussion of CUDA debugging tools, including 
methods for inspecting values stored in device memory, is provided in Appendix D, 
“CUDA Practicalities: Timing, Profiling, Error Handling, and Debugging.”

The first thing you may notice is that the printed output is not necessarily presented 
with the index ordered from 0 to 63. This is a fundamental difference between 
serial and parallel apps: In a serial app, we get to specify the order in which com-
putations are performed in a loop. In the CUDA approach to parallelism, we give up 
some control of the order of computations to gain the computational acceleration 
associated with the massive parallelism provided by hundreds or thousands of 
processors doing multiple evaluations at the same time.

The second thing to check (and the issue of paramount importance) is that the 
distance values correspond with the ones you computed with the serial distance 
apps, dist_v1 and dist_v2. All the parallelization in the world is not helpful if 
it produces incorrect outputs!

Parallelizing dist_v2
The first parallelized distance app, dist_v1_cuda, is atypical in that it does 
not involve a significant amount of input data. Now we are ready to parallelize 
the second distance app, dist_v2, a more typical case that involves processing 
an array of input values. The plan for processing an array of data on the GPU is 
straightforward:

1. Create an array in device memory (on the GPU) whose type and size matches
that of the input array stored in host memory (on the CPU side).

2. Create an array in device memory to store the output data. (There will be
occasions where you choose to store the output by overwriting the input
array, but let’s consider separate input and output arrays for now.)
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3. Copy the input array from host memory to the corresponding array in device
memory.

4. Launch a kernel to perform the computation and store the output values in
the output device array.

5. Copy the output array from device memory to the corresponding array in host
memory.

6. Free the memory allocated to hold the device arrays.

The steps listed above fit in nicely with the organization we established for 
dist_v2, which included a main.cpp file (primarily to contain the code for 
main()), a separate file (named aux_functions.cpp) to hold code defining 
auxiliary functions, and a header file (named aux_functions.h) for inclusion 
of prototypes for functions like distanceArray() that are “visible” and can be 
called from other files (including main.cpp).

Since Step 4 involves a CUDA kernel call, we will replace aux_functions.cpp 
(and its corresponding header file) with kernel.cu (and its corresponding 
header file, which is called kernel.h). The full codes are shown in Listings 3.3, 
3.4, and 3.5, along with the Makefile in Listing 3.6.

Listing 3.3 dist_v2_cuda/main.cpp
  1 #include "kernel.h"
  2 #include <stdlib.h>
  3 #define N 64
  4
  5 float scale(int i, int n)
  6 {
  7   return ((float)i)/(n - 1);
  8 }
  9
 10 int main()
 11 {
 12   const float ref = 0.5f;
 13
 14   float *in = (float*)calloc(N, sizeof(float));
 15   float *out = (float*)calloc(N, sizeof(float));
 16
 17   // Compute scaled input values
 18   for (int i = 0; i < N; ++i)
 19   {
 20     in[i] = scale(i, N);
 21   }
 22
 23   // Compute distances for the entire array
 24   distanceArray(out, in, ref, N);
 25
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 26   free(in);
 27   free(out);
 28   return 0;
 29 }

The code for dist_v2_cuda/main.cpp is almost the same as dist_v2/
main.cpp except that the scale() function is moved to main.cpp and 
kernel.h is included instead of aux_functions.h. All the significant changes 
occur in the new definition of distanceArray() contained in kernel.cu.

Listing 3.4 dist_v2_cuda/kernel.cu
  1 #include "kernel.h"
  2 #include <stdio.h>
  3 #define TPB 32
  4
  5 __device__
  6 float distance(float x1, float x2)
  7 {
  8   return sqrt((x2 - x1)*(x2 - x1));
  9 }
 10
 11 __global__
 12 void distanceKernel(float *d_out, float *d_in, float ref)
 13 {
 14   const int i = blockIdx.x*blockDim.x + threadIdx.x;
 15   const float x = d_in[i];
 16   d_out[i] = distance(x, ref);
 17   printf("i = %2d: dist from %f to %f is %f.\n", i, ref, x, d_out[i]);
 18 }
 19
 20 void distanceArray(float *out, float *in, float ref, int len)
 21 {
 22   // Declare pointers to device arrays
 23   float *d_in = 0;
 24   float *d_out = 0;
 25
 26   // Allocate memory for device arrays
 27   cudaMalloc(&d_in, len*sizeof(float));
 28   cudaMalloc(&d_out, len*sizeof(float));
 29
 30   // Copy input data from host to device
 31   cudaMemcpy(d_in, in, len*sizeof(float), cudaMemcpyHostToDevice);
 32
 33   // Launch kernel to compute and store distance values
 34   distanceKernel<<<len/TPB, TPB>>>(d_out, d_in, ref);
 35
 36   // Copy results from device to host
 37   cudaMemcpy(out, d_out, len*sizeof(float), cudaMemcpyDeviceToHost);
 38
 39   // Free the memory allocated for device arrays
 40   cudaFree(d_in);
 41   cudaFree(d_out);
 42 }
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There are a few aspects of dist_v2_cuda/kernel.cu worth noting:

1. The distanceKernel() function is slightly different from the version in
dist_v1_cuda/kernel.cu. Here, the arguments include a pointer, d_in,
to an array of input values that have already been scaled.

2. The new definition of distanceArray() performs all five of the steps in
the plan outlined above. Input and output device arrays are declared and
allocated on lines 23–28; input data is copied from the host array to the
device array on line 31; the GPU-parallelized execution results from the
kernel call on line 34; the output distance values are copied from device to
host on line 37; and the memory allocated for the device arrays is freed on
lines 40–41.

3. The function, distanceArray() calls the kernel function, distance-
Kernel(). Such functions are referred to as wrapper or launcher functions.

Execution Configuration Involves Integer Arithmetic
The kernel execution configuration is specified so that each block has TPB threads, 
and there are N/TPB blocks (since N is the value of len passed by the function 
call). We have used #define to set TPB = 32 and N = 64, so this works out to 
2 blocks of 32 threads, just as we had before, but remember that the dimension 
variables are vectors of type int and use integer arithmetic. If you set N=65, you 
would still get 65/32 = 2 blocks of 32 threads, and the last entry in the array would 
not get computed because there is no thread with the corresponding index in the 
computational grid. The simple trick to ensure the grid covers the array length is 
to change the specified number of blocks from N/TPB to (N+TPB-1)/TPB to ensure 
that the block number is rounded up. This also means that the grid index can 
exceed the maximum legal array index, and a control statement is then needed in 
the kernel to prevent execution with indices that would exceed array dimensions 
and produce segmentation violation errors. We’ll stick with the simple version 
here, but we’ll put the more reliable specification to work in future apps.

Recall that the grid and block dimensions within the triple chevrons actually have 
type dim3. In this 1D context, the integer values are interpreted as the .x com-
ponents of a dim3 whose unspecified .y and .z components have the default 
value 1. The execution configuration <<<len/TPB, TPB>>> is shorthand for 
<<<dim3(len/TPB, 1, 1), dim3(TPB, 1, 1)>>>. We’ll introduce meaning-
ful values for the .y and .z components when we get to higher dimensional grids.
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Listing 3.5 dist_v2_cuda/kernel.h
  1 #ifndef KERNEL_H
  2 #define KERNEL_H
  3
  4 // Kernel wrapper for computing array of distance values
  5 void distanceArray(float *out, float *in, float ref, int len);
  6
  7 #endif

Listing 3.6 dist_v2_cuda/Makefile
  1 NVCC = /usr/local/cuda/bin/nvcc
  2 NVCC_FLAGS = -g -G -Xcompiler -Wall
  3
  4 all: main.exe
  5
  6 main.exe: main.o kernel.o
  7   $(NVCC) $^ -o $@
  8
  9 main.o: main.cpp kernel.h
 10   $(NVCC) $(NVCC_FLAGS) -c $< -o $@
 11
 12 kernel.o: kernel.cu kernel.h
 13   $(NVCC) $(NVCC_FLAGS) -c $< -o $@

With all the code in hand, you can now build and execute dist_v2_cuda. 
Verify that the distance values are correctly computed, and take a moment 
to notice that essentially all of the CUDA code is sequestered in kernel.cu. 
Compare the distanceArray() prototypes in dist_v2/aux_functions.h 
and dist_v2_cuda/kernel.h. Note that the prototypes are identical, but 
the function definition has changed. In software development terms, we have 
changed the implementation while maintaining the interface. This approach 
provides a model for creating CUDA-powered versions of existing applications.

Standard Workflow
Looking at what typically appears, let’s identify the parts of the workflow that 
represent CUDA’s costs and benefits. The costs should be rather obvious: creating 
mirror arrays and transferring data between host and device are additional 
tasks that are not needed when doing serial computation on the CPU. In return 
for the costs of these “overhead” memory operations, we get access to the 
benefits associated with the ability to execute operations concurrently on the 
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hundreds or thousands of processing cores on the GPU. These considerations 
lead directly to a simple game plan for using CUDA productively:

• Copy your input data to the device once and leave it there.

• Launch a kernel that does a significant amount of work (so the benefits
of massive parallelism are significant compared to the cost of memory
transfers).

• Copy the results back to the host only once.

Nothing about this is set in stone, but it does provide a useful rule of thumb, and 
at this point, you have all the tools you need to execute this typical workflow. 
However, before we move on to higher dimensional problems, let’s go off on a 
quick tangent to look at an alternative approach that can enable you to simplify 
your development process.

Simplified Workflow
While the standard workflow detailed above constitutes the “dominant paradigm,” 
some see it as involving too much bookkeeping so the good folks at NVIDIA put 
their heads together and provided a streamlined alternative called unified 
memory. This approach breaks down the barrier between host memory and 
device memory so that you can have one array that is (or at least appears to be) 
accessible from both host and device.

UNIFIED MEMORY AND MANAGED ARRAYS

The good news is that unified memory relieves you from having to create sepa-
rate copies of an array (on the host and the device) and from explicitly calling for 
data transfers between CPU and GPU. Instead, you can create a single managed 
array that can be accessed from both host and device. In reality, the data in the 
array needs to be transferred between host and device, but the CUDA system 
schedules and executes those transfers so you don’t have to. Note that managed 
memory arrays involve a tradeoff between development efficiency and exe-
cution efficiency. Letting the system manage the data transfers may simplify 
and accelerate the process of developing your app, but there is no guarantee 
that the system will “automagically” manage the data transfers as well as you 
can. There may come a stage in your development process where you find that 
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the bottleneck in your code involves data transfers, and you may decide at that 
point it is worth taking explicit control of allocating storage and transferring 
data. More on that topic later when we get more into the details of performance 
issues, but for now let’s look at the basics of unified memory and implement a 
managed memory version of the distance app.

Important notes regarding unified memory:

• Unified memory has particular system requirements, including a GPU with
compute capability not less than 3.0 and a 64-bit version of either Linux or
Windows [1]. (Unified memory is not currently available on OS X.)

• The other large potential benefit is significant for those of you who prefer
object-oriented C++ code; unified memory addressing is much better suited to
dealing with transfer of structured data and helps to avoid “deep copy” issues [2].

• Concerns about performance costs of managed arrays may be alleviated when
GPUs shift from software emulation of unified memory to implementation in
hardware.

DISTANCE APP WITH cudaMallocManaged()

When we parallelized dist_v2 to create dist_v2_cuda, we followed the 
dominant paradigm by creating redundant arrays and by explicitly transfer-
ring data back and forth between host and device across the PCIe bus using 
cudaMemcpy().

Here we look at the details of the streamlined implementation made possible 
with the introduction of unified memory so that a single array is accessible 
from both host and device. The essential addition to the CUDA extensions of C 
is the function cudaMallocManaged(), which we will use to allocate memory 
for managed arrays (after declaration of an appropriate pointer, just as with 
cudaMalloc()).

Once again, we will keep the discussion short and get right into the code for a 
version of the distance app that takes advantage of unified memory as shown in 
Listing 3.7. There are a number of changes worth noting:

• The code for distanceArray() is greatly simplified since there is no need
to allocate arrays or explicitly call for a data transfer; all the function has to
do is launch the compute kernel (and call cudaDeviceSynchronize() to
make sure that execution is complete before returning).
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• Only a single version is created of each of the relevant arrays. In main(),
pointers are declared to in and out. Unified memory is allocated for the arrays
using cudaMallocManaged() and then freed with cudaFree() after the
computation is completed.

• For purposes of concise presentation, we chose to put all the code in a single file.
This time we create a .cu file rather than the .cpp file used in Chapter 1, “First
Steps,” when the code included only C code with no CUDA language extensions.

• Note the qualifier (or lack thereof) for each function:

• scale() is called within the for loop executed on the CPU to generate the
input data. The appropriate qualifier is __host__, but we can leave it out
because it is the default qualifier.

• distance(), which is called from within the kernel and will execute on
the GPU, gets qualified with __device__.

• distanceKernel(), which like all kernels can be called from the host
and executed on the device, gets the qualifier __global__ and the return
type void.

Listing 3.7 dist_v2_cuda_unified/kernel.cu
  1 #include <stdio.h>
  2 #define N 64
  3 #define TPB 32
  4
  5 float scale(int i, int n)
  6 {
  7   return ((float)i)/(n - 1);
  8 }
  9
 10 __device__
 11 float distance(float x1, float x2)
 12 {
 13   return sqrt((x2 - x1)*(x2 - x1));
 14 }
 15
 16 __global__
 17 void distanceKernel(float *d_out, float *d_in, float ref)
 18 {
 19   const int i = blockIdx.x*blockDim.x + threadIdx.x;
 20   const float x = d_in[i];
 21   d_out[i] = distance(x, ref);
 22   printf("i = %2d: dist from %f to %f is %f.\n", i, ref, x, d_out[i]);
 23 }
 24
 25 int main()
 26 {



ptg22232966

CHAPTER 3 FROM LOOPS TO GRIDS

46

 27   const float ref = 0.5f;
 28   // Declare pointers for input and output arrays
 29   float *in = 0;
 30   float *out = 0;
 31
 32   // Allocate managed memory for input and output arrays
 33   cudaMallocManaged(&in, N*sizeof(float));
 34   cudaMallocManaged(&out, N*sizeof(float));
 35
 36   // Compute scaled input values
 37   for (int i = 0; i < N; ++i)
 38   {
 39     in[i] = scale(i, N);
 40   }
 41
 42   // Launch kernel to compute and store distance values
 43   distanceKernel <<<N/TPB, TPB>>>(out, in, ref);
 44   cudaDeviceSynchronize();
 45
 46   // Free the allocated memory
 47   cudaFree(in);
 48   cudaFree(out);
 49
 50   return 0;
 51 }

Once again, we have come to the point where we need to build and execute the 
app, then inspect the results to see if the computation produced correct results. 
(The Linux Makefile shown in Listing 3.2 can be used to build this project.) We 
included a printf() statement on line 22 to print the results to the console, 
but you can also inspect the results using your debugging tools.

In Linux, you can view the values in the managed array using cuda-gdb the 
same way you view the values of any variables (with print out[0]@64).

Using Visual Studio under Windows, you may see out in the Locals pane, but 
only a single value is available there. However, you can view the other values as 
follows:

1. Set a breakpoint at line 47, just before freeing the memory.

2. Start debugging (F5).

3. Select DEBUG ⇒ QuickWatch (Shift+F9).

4. When the QuickWatch window opens, enter out,64.

5. Click the triangle next to the name to open the list of entries in out.
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For a closer look at CUDA-specific debugging tools, see Appendix D, “CUDA 
Practicalities: Timing, Profiling, Error Handling, and Debugging.”

Summary
In this chapter, we used CUDA to create dist_v1_cuda and dist_v2_cuda, 
the parallel versions of dist_v1 and dist_v2.

dist_v2_cuda provided a nice example of typical workflow in a CUDA app. 
Here is a concise recap of what happened (and what generically happens in 
CUDA apps):

• Create input and output host arrays that provide the input data and a place to
which results will be copied.

• Declare pointers and allocate memory for analogous input and output arrays
on the device.

• Copy the input data from the host array to the corresponding array on the device.

• Launch a kernel on the device to do the computing and write the results to the
output device array.

• Copy the results from the output device array to the corresponding array on
the host.

• Free the memory allocated for the arrays.

Congratulations are in order because you have crossed the threshold into the world 
of massively parallel computing. Now you can (and should!) start modifying the 
example apps and the CUDA Samples to create your own CUDA-powered apps. 
Note that we have maintained our “need-to-know” approach to get across the 
CUDA threshold as quickly and clearly as possible. We implemented the stan-
dard CUDA workflow (with separate copies of arrays on host and device and 
explicit calls for data transfers) and touched briefly on the simplified develop-
ment approach that becomes possible with unified memory.

While we have achieved our initial goal of becoming CUDA-capable as quickly 
as possible, it is worth noting that we have leapt ahead without worrying about 
important things (error handling, CUDA debugging, timing, and profiling) that 
you will need (or at least really want) to know about when you take on larger 
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CUDA projects. Those subjects are discussed in Appendix D, which you should 
now have the background to read. At this point, we recommend that you proceed 
on to the next chapter and read about the practicalities in Appendix D whenever 
you reach a point where you need to know about the specifics of error handling, 
debugging, timing, and profiling.

Suggested Projects
1. Experiment with changing the number of elements in the distance array.

What, if any, problems arise if you define N to be 128? 1024? 63? 65?

2. Compute a distance array with 4,096 elements, and experiment with changing
TPB. What is the largest block size (and smallest number of blocks) you can
run on your system? Note that the answer to this question depends on the com-
pute capability of your GPU. Refer to the CUDA C Programming Guide [1] to see
if your result agrees with limit listed there for “maximum number of threads per
block.”
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Chapter 4

 2D Grids and Interactive 
Graphics

In this chapter, we see that the CUDA model of parallelism extends readily to 
two dimensions (2D). We go through the basics of launching a 2D computational 
grid and create a skeleton kernel you can use to compute a 2D grid of values for 
functions of interest to you. We then specialize the kernel to create dist_2d, 
an app that computes the distance from a reference point in the plane to each 
member of a uniform 2D grid of points. By identifying the grid of points with pixels 
in an image, we compute data for an image whose shading is based on distance 
values.

Once we are generating image data, it is only natural to take advantage of 
CUDA’s graphics interoperability (or graphics interop for short) capability, 
which supports cooperation with standard graphics application programming 
interfaces (APIs) including Direct3D [1] and OpenGL [2]. We’ll use OpenGL, and 
maintaining our need-to-know approach, we’ll very quickly provide just the 
necessities of OpenGL to get your results on the screen at interactive speeds.

By the end of this chapter you will have run a flashlight app that interactively 
displays an image with shading based on distance from a reference point that 
you can move using mouse or keyboard input and a stability app that inter-
actively displays the results of several hundred thousand numerical simulations 
of the dynamics of an oscillator. This experience should get you to the point 
where you are ready to start creating your own CUDA-powered interactive apps.
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Launching 2D Computational Grids
Here we expand on our earlier examples that involved a 1D array (points dis-
tributed regularly along a line segment) and move on to consider applications 
involving points regularly distributed on a portion of a 2D plane. While we will 
encounter other applications (e.g., simulating heat conduction) that fit this 
scenario, the most common (and likely most intuitive) example involves digital 
image processing. To take advantage of the intuitive connection, we will use 
image-processing terminology in presenting the concepts—all of which will 
transfer directly to other applications.

A digital raster image consists of a collection of picture elements or pixels 
arranged in a uniform 2D rectangular grid with each pixel having a quantized 
intensity value. To be concrete, let’s associate the width and height directions 
with the x and y coordinates, respectively, and say that our image is W pixels wide 
by H pixels high. If the quantized value stored in each pixel is simply a number, 
the data for an image matches exactly with the data for a matrix of size W x H.

As we move on from 1D to 2D problems in CUDA, we hope you will be pleasantly 
surprised by how few adjustments need to be made. In 1D, we specified integer 
values for block and grid sizes and computed an index i based on blockDim.x, 
blockIdx.x, and threadIdx.x according to the formula

int i = blockIdx.x*blockDim.x + threadIdx.x;

Here we reinterpret the expression on the right-hand side of the assignment 
as the specification of a new index c that keeps track of what column each pixel 
belongs to. (As we traverse a row of pixels from left to right, c increases from 
its minimum value 0 to its maximum value W-1.) We also introduce a second 
index r to keep track of row numbers (ranging from 0 to H-1). The row index is 
computed just as the column index is, but using the .y components (instead of 
the .x components), so the column and row indices are computed as follows:

int c = blockIdx.x*blockDim.x + threadIdx.x;
int r = blockIdx.y*blockDim.y + threadIdx.y;

To keep data storage and transfer simple, we will continue to store and trans-
fer data in a “flat” 1D array, so we will have one more integer variable to index 
into the 1D array. We will continue to call that variable i, noting that i played 
this role in the 1D case, but in other places (including the CUDA Samples) you 
will see variables named idx, flatIdx, and offset indexing the 1D array. We 
place values in the 1D array in row major order—that is, by storing the data from 
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row 0, followed by the data from row 1, and so on—so the index i in the 1D array 
is now computed as follows:

int i = r*w + c;

To describe the 2D computational grid that intuitively matches up with an image 
(or matrix or other regular 2D discretization), we specify block and grid sizes 
using dim3 variables with two nontrivial components. Recall that an integer 
within the triple chevrons of a kernel call is treated as the .x component of a 
dim3 variable with a default value of 1 for the unspecified .y and .z components. 
In the current 2D context, we specify nontrivial .x and .y components. The 
.z component of the dim3, which here has the default value 1, will come into 
play when we get to 3D grids in Chapter 7, “Interacting with 3D Data.”

Without further ado, let’s lay out the necessary syntax and get directly to parallel 
computation of pixel values with a 2D grid.

SYNTAX FOR 2D KERNEL LAUNCH

The 2D kernel launch differs from the 1D launch only in terms of the execution 
configuration. Computing data for an image involves W columns and H rows, and 
we can organize the computation into 2D blocks with TX threads in the x-direction 
and TY threads in the y-direction. (You can choose to organize your 2D grid into 
1D blocks, but you will run into limits on both maximum block dimension and 
total number of threads in a block. See the CUDA C Programming Guide [3] for 
details.)

We specify the 2D block size with a single statement:

dim3 blockSize(TX, TY); // Equivalent to dim3 blockSize(TX, TY, 1);

and then we compute the number of blocks (bx and by) needed in each direction 
exactly as in the 1D case.

int bx = (W + blockSize.x - 1)/blockSize.x ;
int by = (H + blockSize.y – 1)/blockSize.y ;

The syntax for specifying the grid size (in blocks) is

dim3 gridSize = dim3(bx, by);

With those few details in hand, we are ready to launch:

kernelName<<<gridSize, blockSize>>>(args)
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DEFINING 2D KERNELS

The prototype or declaration of a kernel to be launched on a 2D grid will look 
exactly as before: it starts with the qualifier __global__ followed by return 
type void and a legal name, such as kernel2D, and ends with a comma- 
separated list of typed arguments (which better include a pointer to a device 
array d_out where the computed image data will be stored, along with the 
width and height of the image and any other required inputs). The kernel2D 
function begins by computing the row, column, and flat indices and testing that 
the row and column indices have values corresponding to a pixel within the 
image. All that is left is computing the value for the pixel.

Putting the pieces together, the structure of a typical 2D kernel is given in 
Listing 4.1.

Listing 4.1 “Skeleton” listing for a kernel to be launched on a 2D grid. Replace INSERT_CODE_
HERE with your code for computing the output value.
  1 __global__
  2 void kernel2D(float *d_out, int w, int h, … )
  3 {
  4   // Compute column and row indices.
  5   const int c = blockIdx.x * blockDim.x + threadIdx.x;
  6   const int r = blockIdx.y * blockDim.y + threadIdx.y;
  7   const int i = r * w + c; // 1D flat index
  8
  9   // Check if within image bounds.
 10   if ((c >= w) || (r >= h))
 11     return;
 12
 13   d_out[i] = INSERT_CODE_HERE; // Compute/store pixel in device array.
 14 }

A Note on Capitalization of Variable Names
We need to refer to parameter values such as the width and height of an image 
inside of function definitions where they are considered as input variables, but the 
input value in the function call will typically be a constant value specified using 
#define. We will follow the prevailing convention by using uppercase for the con-
stant value and the same name in lowercase for the input variable. For example, 
the function kernel2D() in Listing 4.1 has the prototype

void kernel2D(uchar4 *d_out, int w, int h, … )

and the function call
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#define W 500
#define H 500
kernel2D<<<gridSize, blockSize>>>(d_out, W, H, … )

indicates that the input values for width and height are constants, here with value 500.

One  detail worth dealing with at this point is a common data type for images. 
The quantized value stored for each pixel is of type uchar4, which is a vector 
type storing four unsigned character values (each of which occupies 1 byte 
of storage). For practical purposes, you can think of the four components of 
the uchar4 (designated as usual by suffixes .x, .y, .z, and .w) as specifying 
integer values ranging from 0 to 255 for the red, green, blue, and alpha (opacity) 
display channels. This format for describing pixel values in an image is often 
abbreviated as RGBA.

Putting the pieces together, the structure of a typical 2D kernel for computing an 
image is given in Listing 4.2.

Listing 4.2 “Skeleton” listing for computing data for an image. RED_FORMULA, GREEN_
FORMULA, and BLUE_FORMULA should be replaced with your code for computing desired val-
ues between 0 and 255 for each color channel.
  1 __global__
  2 void kernel2D(uchar4 *d_output, int w, int h, … )
  3 {
  4   // Compute column and row indices.
  5   int c = blockIdx.x*blockDim.x + threadIdx.x;
  6   int r = blockIdx.y*blockDim.y + threadIdx.y;
  7   int i = r * w + c; // 1D flat index
  8
  9   // Check if within image bounds.
 10   if ((r >= h) || (c >= w)) {
 11 return;
 12   }
 13
 14   d_output[i].x = RED_FORMULA;    //Compute red
 15   d_output[i].y = GREEN_ FORMULA; //Compute green
 16   d_output[i].z = BLUE_ FORMULA;  //Compute blue
 17   d_output[i].w = 255; // Fully opaque
 18 }

dist_2d

Let’s tie the general discussion of 2D grids together with our earlier exam-
ples involving distance apps by coding up an app that produces a 2D array of 
distances from a reference point, and then we’ll adapt the app to produce an 
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array of data for an RGBA image. Listing 4.3 provides all the code for computing 
distances on a 2D grid.

Listing 4.3 Computing distances on a 2D grid
  1 #define W 500
  2 #define H 500
  3 #define TX 32 // number of threads per block along x-axis
  4 #define TY 32 // number of threads per block along y-axis
  5
  6 __global__
  7 void distanceKernel(float *d_out, int w, int h, float2 pos)
  8 {
  9   const int c = blockIdx.x*blockDim.x + threadIdx.x;
 10   const int r = blockIdx.y*blockDim.y + threadIdx.y;
 11   const int i = r*w + c;
 12   if ((c >= w) || (r >= h)) return;
 13
 14   // Compute the distance and set d_out[i]
 15   d_out[i] = sqrtf((c - pos.x)*(c - pos.x) +
 16 (r - pos.y)*(r - pos.y));
 17 }
 18
 19 int main()
 20 {
 21   float *out = (float*)calloc(W*H, sizeof(float));
 22   float *d_out; // pointer for device array
 23   cudaMalloc(&d_out, W*H*sizeof(float));
 24
 25   const float2 pos = {0.0f, 0.0f}; // set reference position
 26   const dim3 blockSize(TX, TY);
 27   const int bx = (W + TX - 1)/TX;
 28   const int by = (W + TY - 1)/TY;
 29   const dim3 gridSize = dim3(bx, by);
 30
 31   distanceKernel<<<gridSize, blockSize>>>(d_out, W, H, pos);
 32
 33   // Copy results to host.
 34   cudaMemcpy(out, d_out, W*H*sizeof(float), cudaMemcpyDeviceToHost);
 35
 36   cudaFree(d_out);
 37   free(out);
 38   return 0;
 39 }

The kernel, lines 6–17, is exactly as in Listing 4.1 but with a result computed 
using the Pythagorean formula to compute the distance between the location 
{c, r} and a reference location pos. (Note that we have defined pos to have 
type float2 so it can store both coordinates of the reference location {pos.x, 
pos.y}.) The rest of the listing, lines 19–39, gives the details of main() starting 
with declaration of an output array of appropriate size initialized to zero. Lines 
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22–23 declare a pointer to the device array d_out and allocate the memory 
with cudaMalloc(). Line 25 sets the reference position, and lines 26–29 set 
the kernel launch parameters: a 2D grid of bx × by blocks each having TX × TY 
threads. Line 31 launches the kernel to compute the distance values, which are 
copied back to out on the host side on line 34. Lines 36–37 free the allocated 
device and host memory, then main() returns zero to indicate completion.

Next we make a few minor changes to produce an app that computes an array 
of RGBA values corresponding to a distance image. The full code is provided in 
Listing 4.4.

Listing 4.4 Parallel computation of image data based on distance from a reference point in 2D
  1 #define W  500
  2 #define H  500
  3 #define TX 32 // number of threads per block along x-axis
  4 #define TY 32 // number of threads per block along y-axis
  5
  6 __device__
  7 unsigned char clip(int n) { return n > 255 ? 255 : (n < 0 ? 0 : n); }
  8
  9 __global__
 10 void distanceKernel(uchar4 *d_out, int w, int h, int2 pos)
 11 {
 12   const int c = blockIdx.x*blockDim.x + threadIdx.x;
 13   const int r = blockIdx.y*blockDim.y + threadIdx.y;
 14   const int i = r*w + c;
 15   if ((c >= w) || (r >= h)) return;
 16
 17   // Compute the distance (in pixel spacings)
 18   const int d = sqrtf((c - pos.x) * (c - pos.x) +
 19 (r - pos.y) * (r - pos.y));
 20   // Convert distance to intensity value on interval [0, 255]
 21   const unsigned char intensity = clip(255 - d);
 22
 23   d_out[i].x = intensity; // red channel
 24   d_out[i].y = intensity; // green channel
 25   d_out[i].z = 0; // blue channel
 26   d_out[i].z = 255; // fully opaque
 27 }
 28
 29 int main()
 30 {
 31   uchar4 *out = (uchar4*)calloc(W*H, sizeof(uchar4));
 32   uchar4 *d_out; // pointer for device array
 33   cudaMalloc(&d_out, W*H*sizeof(uchar4));
 34
 35   const int2 pos = {0, 0}; // set reference position
 36   const dim3 blockSize(TX, TY);
 37   const int bx = (W + TX - 1)/TX;
 38   const int by = (W + TY - 1)/TY;
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 39   const dim3 gridSize = dim3(bx, by);
 40
 41   distanceKernel<<<gridSize, blockSize>>>(d_out, W, H, pos);
 42
 43   // Copy results to host.
 44   cudaMemcpy(out, d_out, W*H*sizeof(uchar4), cudaMemcpyDeviceToHost);
 45
 46   cudaFree(d_out);
 47   free(out);
 48   return 0;
 49 }

Here the distance is computed in pixel spacings, so the reference position, pos, 
now has type int2, and the distance d has type int. The distance value is then 
converted to intensity of type unsigned char, whose value is restricted to 
the allowed range of 0 to 255 using the function clip(). The output arrays, out 
and d_out, have the corresponding vector type uchar4. The assignments 
d_out[i].x = intensity and d_out[i].y = intensity store the inten-
sity value in the red and green channels to produce a yellow distance image. 
(We set the blue component to zero and the alpha to 255, corresponding to full 
opacity, but you should experiment with other color specifications.)

Live Display via Graphics Interop
Now that we can construct apps that produce image data, it makes sense to 
start displaying those images and exploring what CUDA’s massive parallelism 
enables us to do in real time.

Real-time graphic interactivity will involve CUDA’s provision for interoperability 
with a standard graphics package. We will be using OpenGL, which could be (and 
is) the subject of numerous books all by itself [2,4,5], so we will take our usual 
need-to-know approach. We introduce just enough OpenGL to display a single 
textured rectangle and provide a few examples of code to support interactions 
via keyboard and mouse with the help of the OpenGL Utility Toolkit (GLUT). The 
idea is that the rectangle provides a window into the world of your app, and you 
can use CUDA to compute the pixel shading values corresponding to whatever 
scene you want the user to see. CUDA/OpenGL interop provides interactive 
controls and displays the changing scene as a texture on the displayed rectangle 
in real time (or, more accurately, at a rate comparable to the ~60Hz refresh rate 
typical of modern visual display systems).
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Here we present the code for a sample app that opens a graphics window and 
interactively displays an image based on distance to a reference point that 
can be changed interactively using keyboard or mouse input. We call the app 
flashlight because it produces a directable circle of light whose intensity 
diminishes away from the center of the “spot.” Figure 4.1 shows the screenshot 
of the app in its finished state.

This entire app requires a total of less than 200 lines of code, which we have 
organized into three files:

• main.cpp contains the essentials of the CUDA/OpenGL set up and interop. It
is about 100 lines of code (half of the total), and while we will provide a brief
explanation of its contents, you should be able to create your own apps by
using flashlight as a template by making only minor changes to main.cpp.

• kernel.cu contains the essential CUDA code, including the clip() function
described above, the definition of the kernelLauncher() function, and the
definition of the actual kernel function (here distanceKernel()), which
must write its output to a uchar4 array.

• interactions.h defines the callback functions keyboard(), mouseMove(),
and mouseDrag() to specify how the system should respond to inputs.

Figure 4.1 Interactive spot of light in the finished application
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While we will go through the entire code, the important point is that you can use 
the flashlight app as a template to readily create your own apps in just a few 
steps:

1. Create a new app based on flashlight by making a copy of the code
directory under Linux or by creating a new project using flashlight as a
template in Visual Studio under Windows.

2. Edit the kernel function to produce whatever data you want to display.

3. In interactions.h, edit the callback functions to specify how your app should
respond to keyboard and mouse inputs, and edit printInstructions() to
customize the instructions for user interactions.

4. Optionally, edit the #define TITLE_STRING statement in interactions.h
to customize the app name in the title bar of the graphics window.

Listings 4.5, 4.6, 4.7, and 4.8 show all the code necessary to display a distance 
image on your screen using CUDA/OpenGL interop, and we will walk you 
through the necessities while trying not to get hung up on too many details.

Listing 4.5 flashlight/main.cpp
  1 #include "kernel.h"
  2 #include <stdio.h>
  3 #include <stdlib.h>
  4 #ifdef _WIN32
  5 #define WINDOWS_LEAN_AND_MEAN
  6 #define NOMINMAX
  7 #include <windows.h>
  8 #endif
  9 #ifdef __APPLE__
 10 #include <GLUT/glut.h>
 11 #else
 12 #include <GL/glew.h>
 13 #include <GL/freeglut.h>
 14 #endif
 15 #include <cuda_runtime.h>
 16 #include <cuda_gl_interop.h>
 17 #include "interactions.h"
 18
 19 // texture and pixel objects
 20 GLuint pbo = 0;     // OpenGL pixel buffer object
 21 GLuint tex = 0;     // OpenGL texture object
 22 struct cudaGraphicsResource *cuda_pbo_resource;
 23
 24 void render() {
 25   uchar4 *d_out = 0;
 26   cudaGraphicsMapResources(1, &cuda_pbo_resource, 0);
 27   cudaGraphicsResourceGetMappedPointer((void **)&d_out, NULL,
 28 cuda_pbo_resource);
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 29   kernelLauncher(d_out, W, H, loc);
 30   cudaGraphicsUnmapResources(1, &cuda_pbo_resource, 0);
 31 }
 32
 33 void drawTexture() {
 34   glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, W, H, 0, GL_RGBA,
 35 GL_UNSIGNED_BYTE, NULL);
 36   glEnable(GL_TEXTURE_2D);
 37   glBegin(GL_QUADS);
 38   glTexCoord2f(0.0f, 0.0f); glVertex2f(0, 0);
 39   glTexCoord2f(0.0f, 1.0f); glVertex2f(0, H);
 40   glTexCoord2f(1.0f, 1.0f); glVertex2f(W, H);
 41   glTexCoord2f(1.0f, 0.0f); glVertex2f(W, 0);
 42   glEnd();
 43   glDisable(GL_TEXTURE_2D);
 44 }
 45
 46 void display() {
 47   render();
 48   drawTexture();
 49   glutSwapBuffers();
 50 }
 51
 52 void initGLUT(int *argc, char **argv) {
 53   glutInit(argc, argv);
 54   glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);
 55   glutInitWindowSize(W, H);
 56   glutCreateWindow(TITLE_STRING);
 57 #ifndef __APPLE__
 58   glewInit();
 59 #endif
 60 }
 61
 62 void initPixelBuffer() {
 63   glGenBuffers(1, &pbo);
 64   glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo);
 65   glBufferData(GL_PIXEL_UNPACK_BUFFER, 4*W*H*sizeof(GLubyte), 0,
 66 GL_STREAM_DRAW);
 67   glGenTextures(1, &tex);
 68   glBindTexture(GL_TEXTURE_2D, tex);
 69   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 70   cudaGraphicsGLRegisterBuffer(&cuda_pbo_resource, pbo,
 71 cudaGraphicsMapFlagsWriteDiscard);
 72 }
 73
 74 void exitfunc() {
 75   if (pbo) {
 76     cudaGraphicsUnregisterResource(cuda_pbo_resource);
 77     glDeleteBuffers(1, &pbo);
 78     glDeleteTextures(1, &tex);
 79   }
 80 }
 81
 82 int main(int argc, char** argv) {
 83   printInstructions();
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 84   initGLUT(&argc, argv);
 85   gluOrtho2D(0, W, H, 0);
 86   glutKeyboardFunc(keyboard);
 87   glutSpecialFunc(handleSpecialKeypress);
 88   glutPassiveMotionFunc(mouseMove);
 89   glutMotionFunc(mouseDrag);
 90   glutDisplayFunc(display);
 91   initPixelBuffer();
 92   glutMainLoop();
 93   atexit(exitfunc);
 94   return 0;
 95 }

This is the brief, high-level overview of what is happening in main.cpp. Lines 
1–17 load the header files appropriate for your operating system to access the 
necessary supporting code. The rest of the explanation should start from the 
bottom. Lines 82–95 define main(), which does the following things:

• Line 83 prints a few user interface instructions to the command window.

• initGLUT initializes the GLUT library and sets up the specifications for the
graphics window, including the display mode (RGBA), the buffering (double),
size (W x H), and title.

• gluOrtho2D(0, W, H, 0) establishes the viewing transform (simple
orthographic projection).

• Lines 86–89 indicate that keyboard and mouse interactions will be specified
by the functions keyboard, handleSpecialKeypress, mouseMove, and
mouseDrag (the details of which will be specified in interactions.h).

• glutDisplayFunc(display) says that what is to be shown in the window
is determined by the function display(), which is all of three lines long. On
lines 47–49, it calls render() to compute new pixel values, drawTexture()
to draw the OpenGL texture, and then swaps the display buffers.

• drawTexture() sets up a 2D OpenGL texture image, creates a single
quadrangle graphics primitive with texture coordinates (0.0f, 0.0f), (0.0f, 1.0f),
(1.0f, 1.0f), and (1.0f, 0.0f); that is, the corners of the unit square, corre-
sponding with the pixel coordinates (0, 0), (0, H), (W, H), and (W, 0).

• Double buffering is a common technique for enhancing the efficiency of
graphics programs. One buffer provides memory that can be read to “feed”
the display, while at the same time, the other buffer provides memory into
which the contents of the next frame can be written. Between frames in a
graphics sequence, the buffers swap their read/write roles.



ptg22232966

LIVE DISPLAY VIA GRAPHICS INTEROP

61

• initPixelBuffer(), not surprisingly, initializes the pixel buffer on
lines 62–72. The key for our purposes is the last line which “registers” the
OpenGL buffer with CUDA. This operation has some overhead, but it enables
low-overhead “mapping” that turns over control of the buffer memory to
CUDA to write output and “unmapping” that returns control of the buffer
memory to OpenGL for display. Figure 4.2 shows a summary of the interop
between CUDA and OpenGL.

• glutMainLoop(), on line 92, is where the real action happens. It repeatedly
checks for input and calls for computation of updated images via display
that calls render, which does the following:

• Maps the pixel buffer to CUDA and gets a CUDA pointer to the buffer mem-
ory so it can serve as the output device array

• Calls the wrapper function kernelLauncher that launches the kernel to
compute the pixel values for the updated image

• Unmaps the buffer so OpenGL can display the contents

• When you exit the app, atexit(exitfunc) performs the final clean up by
undoing the resource registration and deleting the OpenGL pixel buffer and
texture before zero is returned to indicate completion of main().

Figure 4.2 Illustration of alternating access to device memory that is mapped to 
CUDA to store computational results and unmapped (i.e., returned to OpenGL 
control) for display of those results
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Of all the code in main.cpp, the only thing you need to change when you create 
your own CUDA/OpenGL interop apps is the render() function, where you will 
need to update the argument list for kernelLauncher().

Listing 4.6 flashlight/kernel.cu
  1 #include "kernel.h"
  2 #define TX 32
  3 #define TY 32
  4
  5 __device__
  6 unsigned char clip(int n) { return n > 255 ? 255 : (n < 0 ? 0 : n); }
  7
  8 __global__
  9 void distanceKernel(uchar4 *d_out, int w, int h, int2 pos) {
 10   const int c = blockIdx.x*blockDim.x + threadIdx.x;
 11   const int r = blockIdx.y*blockDim.y + threadIdx.y;
 12   if ((c >= w) || (r >= h)) return; // Check if within image bounds
 13   const int i = c + r*w; // 1D indexing
 14   const int dist = sqrtf((c - pos.x)*(c - pos.x) +
 15 (r - pos.y)*(r - pos.y));
 16   const unsigned char intensity = clip(255 - dist);
 17   d_out[i].x = intensity;
 18   d_out[i].y = intensity;
 19   d_out[i].z = 0;
 20   d_out[i].w = 255;
 21 }
 22
 23 void kernelLauncher(uchar4 *d_out, int w, int h, int2 pos) {
 24   const dim3 blockSize(TX, TY);
 25   const dim3 gridSize = dim3((w + TX - 1)/TX, (h + TY - 1)/TY);
 26   distanceKernel<<<gridSize, blockSize>>>(d_out, w, h, pos);
 27 }

The code from kernel.cu in Listing 4.6 should look familiar and require 
little explanation at this point. The primary change is a wrapper function 
kernelLauncher() that computes the grid dimensions and launches the kernel. 
Note that you will not find any mention of a host output array. Computation and 
display are both handled from the device, and there is no need to transfer data to 
the host. (Such a transfer of large quantities of image data across the PCIe bus 
could be time-consuming and greatly inhibit real-time interaction capabilities.) 
You will also not find a cudaMalloc() to create space for a device array. The 
render() function in main.cpp declares a pointer d_out that gets its value 
from cudaGraphicsResourceGetMappedPointer() and provides the CUDA 
pointer to the memory allocated for the pixel buffer.

The header file associated with the kernel is shown in Listing 4.7. In addition 
to the include guard and kernel function prototype, kernel.h also contains 
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forward declarations for uchar4 and int2 so that the compiler knows of their 
existence before the CUDA code (which is aware of their definitions) is built or 
executed.

Listing 4.7 flashlight/kernel.h
  1 #ifndef KERNEL_H
  2 #define KERNEL_H
  3
  4 struct uchar4;
  5 struct int2;
  6
  7 void kernelLauncher(uchar4 *d_out, int w, int h, int2 pos);
  8
  9 #endif 

Listing 4.8 flashlight/interactions.h that specifies callback functions controlling 
interactive behavior of the flashlight app
  1 #ifndef INTERACTIONS_H
  2 #define INTERACTIONS_H
  3 #define W 600
  4 #define H 600
  5 #define DELTA 5 // pixel increment for arrow keys
  6 #define TITLE_STRING "flashlight: distance image display app"
  7 int2 loc = {W/2, H/2};
  8 bool dragMode = false; // mouse tracking mode
  9
 10 void keyboard(unsigned char key, int x, int y) {
 11   if (key == 'a') dragMode = !dragMode; // toggle tracking mode
 12   if (key == 27)  exit(0);
 13   glutPostRedisplay();
 14 }
 15
 16 void mouseMove(int x, int y) {
 17   if (dragMode) return;
 18   loc.x = x;
 19   loc.y = y;
 20   glutPostRedisplay();
 21 }
 22
 23 void mouseDrag(int x, int y) {
 24   if (!dragMode) return;
 25   loc.x = x;
 26   loc.y = y;
 27   glutPostRedisplay();
 28 }
 29
 30 void handleSpecialKeypress(int key, int x, int y) {
 31   if (key == GLUT_KEY_LEFT)  loc.x -= DELTA;
 32   if (key == GLUT_KEY_RIGHT) loc.x += DELTA;
 33   if (key == GLUT_KEY_UP)    loc.y -= DELTA;
 34   if (key == GLUT_KEY_DOWN)  loc.y += DELTA;
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 35   glutPostRedisplay();
 36 }
 37
 38 void printInstructions() {
 39   printf("flashlight interactions\n");
 40   printf("a: toggle mouse tracking mode\n");
 41   printf("arrow keys: move ref location\n");
 42   printf("esc: close graphics window\n");
 43 }
 44
 45 #endif 

The stated goal of the flashlight app is to display an image corresponding to 
the distance to a reference point that can be moved interactively, and we are now 
ready to define and implement the interactions. The code for interactions.h 
shown in Listing 4.8 allows the user to move the reference point (i.e., the center 
of the flashlight beam) by moving the mouse or pressing the arrow keys. Pressing 
a toggles between tracking mouse motions and tracking mouse drags (with the 
mouse button pressed), and the esc key closes the graphics window. Here’s a 
quick description of what the code does and how those interactions work:

• Lines 3–6 set the image dimensions, the text displayed in the title bar, and
how far (in pixels) the reference point moves when an arrow key is pressed.

• Line 7 sets the initial reference location at {W/2, H/2}, the center of the image.

• Line 8 declares a Boolean variable dragMode that is initialized to false. We
use dragMode to toggle back and forth between tracking mouse motions and
“click-drag” motions.

• Lines 10–14 specify the defined interactions with the keyboard:

• Pressing the a key toggles dragMode to switch the mouse tracking mode.

• The ASCII code 27 corresponds to the Esc key. Pressing Esc closes the
graphics window.

• glutPostRedisplay() is called at the end of each callback function telling
to compute a new image for display (by calling display() in main.cpp)
based on the interactive input.

• Lines 16–21 specify the response to a mouse movement. When dragMode is
toggled, return ensures that no action is taken. Otherwise, the components
of the reference location are set to be equal to the x and y coordinates of the
mouse before computing and displaying an updated image
(via glutPostRedisplay()).
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• Lines 23–28 similarly specify the response to a “click-drag.” When dragMode
is false, return ensures that no action is taken. Otherwise, the  reference
location is reset to the last location of the mouse while the mouse was
clicked.

• Lines 30–36 specify the response to special keys with defined actions. (Note
that standard keyboard interactions are handled based on ASCII key codes [6],
so special keys like arrow keys and function keys that do not generate stan-
dard ASCII codes need to be handled separately.) The flashlight app is set
up so that depressing the arrow keys moves the reference location DELTA
pixels in the desired direction.

• The printInstructions() function on lines 38–43 consists of print state-
ments that provide user interaction instructions via the console.

While all the code and explanation for the flashlight app took about nine 
pages, let’s pause to put things in perspective. While we presented numbered 
listings totaling about 200 lines, if we were less concerned about readability, the 
entire code could be written in many fewer lines, so there is not a lot of code to 
digest. Perhaps more importantly, over half of those lines reside in main.cpp, 
which you should not really need to change at all to create your own apps 
other than to alter the list of arguments for the kernelLauncher() function 
or to customize the information displayed in the title bar. If you start with the 
 flashlight app as a template, you should be able to (and are heartily encour-
aged to) harness the power of CUDA to create your own apps with interactive 
graphics by replacing the kernel function with one of your own design and by 
revising the collection of user interactions implemented in interactions.h.

Finally, the Makefile for building the app in Linux is provided in Listing 4.9.

Listing 4.9 flashlight/Makefile
  1 UNAME_S := $(shell uname)
  2
  3 ifeq ($(UNAME_S), Darwin)
  4   LDFLAGS = -Xlinker -framework,OpenGL -Xlinker -framework,GLUT
  5 else
  6   LDFLAGS += -L/usr/local/cuda/samples/common/lib/linux/x86_64
  7   LDFLAGS += -lglut -lGL -lGLU -lGLEW
  8 endif
  9
 10 NVCC = /usr/local/cuda/bin/nvcc
 11 NVCC_FLAGS = -g -G -Xcompiler "-Wall -Wno-deprecated-declarations"
 12
 13 all: main.exe
 14
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 15 main.exe: main.o kernel.o
 16   $(NVCC) $^ -o $@ $(LDFLAGS)
 17
 18 main.o: main.cpp kernel.h interactions.h
 19   $(NVCC) $(NVCC_FLAGS) -c $< -o $@
 20
 21 kernel.o: kernel.cu kernel.h
 22   $(NVCC) $(NVCC_FLAGS) -c $< -o $@

Windows users will need to change one build customization and include 
two pairs of library files: the OpenGL Utility Toolkit (GLUT) and the OpenGL 
 Extension Wrangler (GLEW). To keep things simple and ensure consistency of 
the library version, we find it convenient to simply make copies of the library files 
(which can be found by searching within the CUDA Samples directory for the 
filenames freeglut.dll, freeglut.lib, glew64.dll, and glew64.lib), 
save them to the project directory, and then add them to the project with 
PROJECT ⇒ Add Existing Item.

The build customization is specified using the Project Properties pages: Right-
click on flashlight in the Solution Explorer pane, then select Properties ⇒ 
Configuration Properties ⇒ C/C++ ⇒ General ⇒ Additional 
Include Directories and edit the list to include the CUDA Samples’ 
common\inc directory. Its default install location is C:\ProgramData\
NVIDIA Corporation\CUDA Samples\v7.5\common\inc.

Application: Stability
To drive home the idea of using the flashlight app as a template for creat-
ing more interesting and useful apps, let’s do exactly that. Here we build on 
 flashlight to create an app that analyzes the stability of a linear oscillator, and 
then we extend the app to handle general single degree of freedom (1DoF) sys-
tems, including the van der Pol oscillator, which has more interesting behavior.

The linear oscillator arises from models of a mechanical mass-spring-damper 
system, an electrical RLC circuit, and the behavior of just about any 1DoF system 
in the vicinity of an equilibrium point. The mathematical model consists of a 
single second-order ordinary differential equation (ODE) that can be written in 
its simplest form (with suitable choice of time unit) as x″ + 2bx′ + x = 0, where x is 
the displacement from the equilibrium position, b is the damping constant, and 
the primes indicate time derivatives. To put things in a handy form for finding 
solutions, we convert to a system of two first-order ODEs by introducing the 
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velocity y as a new variable and writing the first-order ODEs that give the rate of 
change of x and y:

′x = y
′y =  − x −2by = f x, y , t, …( )

As a bit of foreshadowing, everything we do from here generalizes to a wide 
variety of 1DoF oscillators by just plugging other expressions in for f(x, y, t, …) 
on the right-hand side of the y-equation. While we can write analytical solutions 
for the linear oscillator, here we focus on numerical solutions using finite difference 
methods that apply to the more general case. Finite difference methods com-
pute values at discrete multiples of the time step dt (so we introduce tk = k * dt, 
xk = x(tk), and yk = y(tk) as the relevant variables) and replace exact derivatives 
by difference approximations; that is, x′ →  (xk+1 – xk) / dt, y′ →  (yk+1  – yk) / dt. Here 
we apply the simplest finite difference approach, the explicit Euler method, by 
substituting the finite difference expressions for the derivatives and solving for 
the new values at the end of the time step, xk+1 and yk+1, in terms of the previous 
values at the beginning of a time step, xk and yk, to obtain:

x
k+1

= x
k
+dt*y

k

y
k+1

= y
k
+dt* −x

k
−2by

k( )
We can then choose an initial state {xo , yo} and compute the state of the system at 
successive time steps.

We’ve just described a method for computing a solution (a sequence of states) 
arising from a single initial state, and the solution method is completely serial: 
Entries in the sequence of states are computed one after another.

However, stability depends not on the solution for one initial state but on the 
solutions for all initial states. For a stable equilibrium, all nearby initial states 
produce solutions that approach (or at least don’t get further from) the equilibrium. 
Finding a solution that grows away from the equilibrium indicates instability. For 
more information on dynamics and stability, see [7,8].

It is this collective-behavior aspect that makes stability testing such a good can-
didate for parallelization: By launching a computational grid with initial states 
densely sampling the neighborhood of the equilibrium, we can test the solutions 
arising from the surrounding initial states. We’ll see that we can compute hun-
dreds of thousands of solutions in parallel and, with CUDA/OpenGL interop, see 
and interact with the results in real time.
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In particular, we’ll choose a grid of initial states that regularly sample a rect-
angle centered on the equilibrium. We’ll compute the corresponding solutions 
and assign shading values based on the fractional change in distance, dist_r 
(for distance ratio) from the equilibrium during the simulation. To display the 
results, we’ll assign each pixel a red channel value proportional to the  distance 
ratio (and clipped to [0, 255]) and a blue channel value proportional to the 
inverse distance ratio (and clipped). Initial states producing solutions that are 
attracted to the equilibrium (and suggest stability) are dominated by blue, while 
initial states that produce solutions being repelled from the equilibrium are 
dominated by red, and the attracting/repelling transition is indicated by equal 
parts of blue and red; that is, purple.

Color Adjustment to Enhance Grayscale Contrast
Since it is difficult to see the difference between red (R) and blue (B) when viewing 
figures converted to grayscale, the figures included here use the green (G) channel 
to enhance contrast and brightness according to the formula G = 0.3 + (R –B) / 2. 
Full color images produced by the stability app are available at 
www.cudaforengineers.com.

The result shown in the graphics window will then consist of the equilibrium (at 
the intersection of the horizontal x-axis and the vertical y-axis shown using the 
green channel) on a field of red, blue, or purple pixels. Figure 4.3 previews a 
result from the stability application with both attracting and repelling regions.

Figure 4.3 Stability map with shading adjusted to show a bright central repelling 
region and surrounding darker attracting region

http://www.cudaforengineers.com
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We now have a plan for producing a stability image for a single system, but 
we will also introduce interactions so we can observe how the stability image 
changes for different parameter values or for different systems.

With the plan for the kernel and the interactions in mind, we are ready to look at 
the code. As promised, the major changes from the flashlight app involve a 
new kernel function (and a few supporting functions), as shown in Listing 4.10, 
and new interactivity specifications, as shown in Listing 4.11.

Listing 4.10 stability/kernel.cu

  1 #include "kernel.h"
  2 #define TX 32
  3 #define TY 32
  4 #define LEN 5.f
  5 #define TIME_STEP 0.005f
  6 #define FINAL_TIME 10.f
  7
  8 // scale coordinates onto [-LEN, LEN]
  9 __device__
 10 float scale(int i, int w) { return 2*LEN*(((1.f*i)/w) - 0.5f); }
 11
 12 // function for right-hand side of y-equation
 13 __device__
 14 float f(float x, float y, float param, float sys) {
 15   if (sys == 1) return x - 2*param*y; // negative stiffness
 16   if (sys == 2) return -x + param*(1 - x*x)*y; //van der Pol
 17   else return -x - 2*param*y;
 18 }
 19
 20 // explicit Euler solver
 21 __device__
 22 float2 euler(float x, float y, float dt, float tFinal,
 23 float param, float sys) {
 24   float dx = 0.f, dy = 0.f;
 25   for (float t = 0; t < tFinal; t += dt) {
 26     dx = dt*y;
 27     dy = dt*f(x, y, param, sys);
 28     x += dx;
 29     y += dy;
 30   }
 31   return make_float2(x, y);
 32 }
 33
 34 __device__
 35 unsigned char clip(float x){ return x > 255 ? 255 : (x < 0 ? 0 : x); }
 36
 37 // kernel function to compute decay and shading
 38 __global__
 39 void stabImageKernel(uchar4 *d_out, int w, int h, float p, int s) {
 40   const int c = blockIdx.x*blockDim.x + threadIdx.x;
 41   const int r = blockIdx.y*blockDim.y + threadIdx.y;
 42   if ((c >= w) || (r >= h)) return; // Check if within image bounds
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 43   const int i = c + r*w; // 1D indexing
 44   const float x0 = scale(c, w);
 45   const float y0 = scale(r, h);
 46   const float dist_0 = sqrt(x0*x0 + y0*y0);
 47   const float2 pos = euler(x0, y0, TIME_STEP, FINAL_TIME, p, s);
 48   const float dist_f = sqrt(pos.x*pos.x + pos.y*pos.y);
 49   // assign colors based on distance from origin
 50   const float dist_r = dist_f/dist_0;
 51   d_out[i].x = clip(dist_r*255); // red ~ growth
 52   d_out[i].y = ((c == w/2) || (r == h/2)) ? 255 : 0; // axes
 53   d_out[i].z = clip((1/dist_r)*255); // blue ~ 1/growth
 54   d_out[i].w = 255;
 55 }
 56
 57 void kernelLauncher(uchar4 *d_out, int w, int h, float p, int s) {
 58   const dim3 blockSize(TX, TY);
 59   const dim3 gridSize = dim3((w + TX - 1)/TX, (h + TY - 1)/TY);
 60   stabImageKernel<<<gridSize, blockSize>>>(d_out, w, h, p, s);
 61 }

Here is a brief description of the code in kernel.cu. Lines 1–6 include  kernel.h 
and define constant values for thread counts, the spatial scale factor, and the time 
step and time interval for the simulation. Lines 8–35 define new device functions 
that will be called by the kernel:

• scale() scales the pixel values onto the coordinate range [-LEN, LEN].

• f() gives the rate of change of the velocity. If you are interested in studying
other 1DoF oscillators, you can edit this to correspond to your system of interest.
In the sample code, three different versions are included corresponding to
different values of the variable sys.

• The default version with sys = 0 is the damped linear oscillator discussed
above.

• Setting sys = 1 corresponds to a linear oscillator with negative effective
stiffness (which may seem odd at first, but that is exactly the case near the
inverted position of a pendulum).

• Setting sys = 2 corresponds to a personal favorite, the van der Pol oscil-
lator, which has a nonlinear damping term.

• euler() performs the simulation for a given initial state and returns a float2
value corresponding to the location of the trajectory at the end of the  simulation
interval. (Note that the float2 type allows us to bundle the position and
velocity together into a single entity. The alternative approach, passing a
pointer to memory allocated to store multiple values as we do to handle
larger sets of output from kernel functions, is not needed in this case.)
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Lines 34–35 define the same clip() function that we used in the flashlight 
app, and the definition of the new kernel, stabImageKernel(), starts on line 38. 
Note that arguments have been added for the damping parameter value, p, and 
the system specifier, s. The index computation and bounds checking in lines 
40–43 is exactly as in distanceKernel() from the flashlight app. On 
lines 44–45 we introduce {x0, y0} as the scaled float coordinate values 
(which range from –LEN to LEN) corresponding to the pixel location and compute 
the initial distance, dist_0, from the equilibrium point at the origin. Line 47 
calls euler() to perform the simulation with fixed time increment TIME_STEP 
over an interval of duration FINAL_TIME and return pos, the state the sim-
ulated trajectory has reached at the end of the simulation. Line 50 compares 
the final distance from the origin and to the initial distance. Lines 51–54 assign 
shading values based on the distance comparison with blue indicating decay 
toward equilibrium (a.k.a. a vote in favor of stability) and red indicating growth 
away from equilibrium (which vetoes other votes for stability). Line 52 uses the 
green channel to show the horizontal x-axis and the vertical y-axis which intersect 
at the equilibrium point.

Lines 57–61 define the revised wrapper function kernelLauncher()with the 
correct list of arguments and name of the kernel to be launched.

Listing 4.11 stability/interactions.h

  1 #ifndef INTERACTIONS_H
  2 #define INTERACTIONS_H
  3 #define W 600
  4 #define H 600
  5 #define DELTA_P 0.1f
  6 #define TITLE_STRING "Stability"
  7 int sys = 0;
  8 float param = 0.1f;
  9 void keyboard(unsigned char key, int x, int y) {
 10   if (key == 27)  exit(0);
 11   if (key == '0') sys = 0;
 12   if (key == '1') sys = 1;
 13   if (key == '2') sys = 2;
 14   glutPostRedisplay();
 15 }
 16
 17 void handleSpecialKeypress(int key, int x, int y) {
 18   if (key == GLUT_KEY_DOWN) param -= DELTA_P;
 19   if (key == GLUT_KEY_UP)   param += DELTA_P;
 20   glutPostRedisplay();
 21 }
 22
 23 // no mouse interactions implemented for this app
 24 void mouseMove(int x, int y) { return; }
 25 void mouseDrag(int x, int y) { return; }
 26
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 27 void printInstructions() {
 28   printf("Stability visualizer\n");
 29   printf("Use number keys to select system:\n");
 30   printf("\t0: linear oscillator: positive stiffness\n");
 31   printf("\t1: linear oscillator: negative stiffness\n");
 32   printf("\t2: van der Pol oscillator: nonlinear damping\n");
 33   printf("up/down arrow keys adjust parameter value\n\n");
 34   printf("Choose the van der Pol (sys=2)\n");
 35   printf("Keep up arrow key depressed and watch the show.\n");
 36 }
 37
 38 #endif

The description of the alterations to interactions.h, as shown in Listing 4.11, 
is also straightforward. To the #define statements that set the width W and 
height H of the image, we add DELTA_P for the size of parameter value incre-
ments. Lines 7–8 initialize variables for the system identifier sys and the 
parameter value param, which is for adjusting the damping value.

There are a few keyboard interactions: Pressing Esc exits the app; pressing 
number key 0, 1, or 2 selects the system to simulate; and the up arrow and down 
arrow keys decrease or increase the damping parameter value by DELTA_P. 
There are no planned mouse interactions, so mouseMove() and mouseDrag() 
simply return without doing anything.

Finally, there are a couple details to take care of in other files:

• kernel.h contains the prototype for kernelLauncher(), so the first line of
the function definition from kernel.cu should be copied and pasted (with a
colon terminator) in place of the old prototype in flashlight/kernel.h.

• A couple small changes are also needed in main.cpp:

• The argument list for the kernelLauncher() call in render() has
changed, and that call needs to be changed to match the syntax of the
revised kernel.

• render() is also an appropriate place for specifying information to be
displayed in the title bar of the graphics window. For example, the sample
code displays an application name (“Stability”) followed by the values of
param and sys. Listing 4.12 shows the updated version of render() with
the title bar information and updated kernel launch call.
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Listing 4.12 Updated render() function for stability/main.cpp
  1 void render() {
  2   uchar4 *d_out = 0;
  3   cudaGraphicsMapResources(1, &cuda_pbo_resource, 0);
  4   cudaGraphicsResourceGetMappedPointer((void **)&d_out, NULL,
  5 cuda_pbo_resource);
  6   kernelLauncher(d_out, W, H, param, sys);
  7   cudaGraphicsUnmapResources(1, &cuda_pbo_resource, 0);
  8   // update contents of the title bar
  9   char title[64];
 10   sprintf(title, "Stability: param = %.1f, sys = %d", param, sys);
 11   glutSetWindowTitle(title);
 12 }

RUNNING THE STABILITY VISUALIZER

Now that we’ve toured the relevant code, it is time to test out the app. In 
Linux, the Makefile for building this project is the same as the Makefile for the 
 flashlight app that was provided in Listing 4.9. In Visual Studio, the included 
library files and the project settings are the same as described in flashlight. 
When you build and run the application, two windows should open: the usual 
command window showing a brief summary of supported user inputs and a 
graphics window showing the stability results. The default settings specify the 
linear oscillator with positive damping, which you can verify from the title bar 
that displays Stability: param = 0.1, sys = 0, as shown in Figure 4.4(a). 
Since all solutions of an unforced, damped linear oscillator are attracted toward 
the equilibrium, the graphics window should show the coordinate axes on a dark 
field, indicating stability. Next you might test the down arrow key. A single press 
reduces the damping value from 0.1 to 0.0 (which you should be able to verify 
in the title bar), and you should see the field changes from dark to moderately 
bright, as shown in Figure 4.4(b). The linear oscillator with zero damping is neu-
trally stable (with sinusoidal oscillations that remain near, but do not approach, 
the equilibrium). The explicit Euler ODE solver happens to produce small errors 
that systematically favor repulsion from the origin, but the color scheme cor-
rectly indicates that all initial states lead to solutions that roughly maintain their 
distance from the equilibrium. Another press of the down arrow key changes 
the damping parameter value to −0.1, and the bright field shown in Figure 4.4(c) 
legitimately indicates instability.

Now press the 1 key to set sys = 1 corresponding to a system with negative 
effective stiffness, and increase the damping value. You should now see the axes 
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on a bright field with a dark sector (and moderately bright transition regions), as 
shown in Figure 4.5. In this case, some solutions are approaching the equilib-
rium, but almost all initial conditions lead to solutions that grow away from the 
equilibrium, which is unstable.

(a) (b)

(c)

Figure 4.4 Stability visualization for the linear oscillator with different damping 
parameter values. (a) For param = 0.1, the dark field indicates solutions 
attracted to a stable equilibrium. (b) For param = 0.0, the moderately bright 
field indicates neutral stability. (c) For param = -0.1, the bright field indicates 
solutions repelled from an unstable equilibrium.
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Setting the damping param = 0.0 and sys = 2 brings us to the final case 
in the example, the van der Pol oscillator. With param = 0.0, this system is 
identical to the undamped linear oscillator, so we again see the equilibrium in 
a moderately bright field. What happens when you press the up arrow key to 
make the damping positive? The equilibrium is surrounded by a bright region, so 
nearby initial states produce solutions that are repelled and the equilibrium is 
unstable. However, the outer region is dark, so initial states further out produce 
solutions that are attracted inwards. There is no other equilibrium point to go 
to, so where do all these solutions end up? It turns out that there is a closed, 
attracting loop near the shading transition corresponding to a stable period 
motion or “limit cycle” (Figure 4.6).

Note that the results of this type of numerical stability analysis should be 
considered as advisory. The ODE solver is approximate, and we only test a few 
hundred thousand initial states, so it is highly likely but not guaranteed that we 
did not miss something.

Before we are done, you might want to press and hold the up arrow key and 
watch the hundreds of thousands of pixels in the stability visualization change in 
real time. This is something you are not likely to be able to do without the power 
of parallel computing.

Figure 4.5 Phase plane of a linear oscillator with negative stiffness. A dark 
sector appears, but the bright field indicates growth away from an unstable 
equilibrium.
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Summary
In this chapter, we covered the essentials of defining and launching kernels 
on 2D computational grids. We presented and explained sample code, the 
flashlight app that takes advantage of CUDA/OpenGL interop to implement 
real-time graphical display and interaction with the results from 2D compu-
tational grids. Finally, we showed how to use flashlight as a template and 
perform modifications to make it applicable to a real engineering problem, 
numerical exploration of dynamic stability.

Suggested Projects
1. Modify the flashlight app to be a version of the “hotter/colder” game.

Provide an interface for player A to pick a target pixel. Player B then seeks
out the target pixel based on the color of the spot, which turns blue (or red)
as it is moved farther from (or closer to) the target.

Figure 4.6 Phase plane of the van der Pol oscillator. The bright central region 
indicates an unstable equilibrium. The dark outer region indicates solutions 
decaying inwards. These results are consistent with the existence of a stable 
periodic “limit cycle” trajectory in the moderately bright region.
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2. Find another 1DoF system of interest and modify the stability app to study
the nature of its equilibrium.

3. The explicit Euler method is perhaps the simplest and least reliable method
for numerical solution of ODEs. Enhance the stability app by implement-
ing a more sophisticated ODE solver. A Runge-Kutta method would be a good
next step into a major field.

4. The van der Pol limit cycle turns out to be nearly circular for param = 0.1.
Modify the stability app so the shading depends on the difference
between the final distance and a new parameter rad. Implement interactive
control of rad, and run the modified app to identify the size of the limit cycle.

References
[1] Microsoft Window s Dev Center. “Direct3D,” 2015, https://msdn.microsoft.com/

en-us/library/windows/desktop/hh309466(v=vs.85).aspx.

[2] Mason Woo, Jackie  Neider, Tom Davis, and Dave Shreiner, OpenGL Programming
Guide: The Official Guide to Learning OpenGL, Version 1.2, Third Edition. (Reading,
MA: Addison-Wesley, 1999).

[3] NVIDIA Corporation . “CUDA C Programming Guide,” NVIDIA Developer Zone,
CUDA Toolkit Documentation, 2015, http://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html#abstract.

[4] Graham Sellers, Rich ard S. Wright, Jr., and Nicholas Haemel, OpenGL Superbible:
Comprehensive Tutorial and Reference, Seventh Edition. (Boston, MA:  Addison-
Wesley, 2016).

[5] Randi J. Rost et al. , OpenGL Shading Language, Third Edition. (Boston, MA:
 Addison-Wesley, 2010).

[6] cppreference.com, “A SCII Chart,” 2015, http://en.cppreference.com/w/cpp/
language/ascii.

[7] Richard H. Rand. Lectur e Notes on Nonlinear Vibrations, Cornell University
eCommons, May 2012, http://hdl.handle.net/1813/28989.

[8] Steven H. Strogatz, Non linear Dynamics and Chaos, Second Edition. (Cambridge,
MA: Westview Press, 2014).

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#abstract
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#abstract
http://en.cppreference.com/w/cpp/language/ascii
http://hdl.handle.net/1813/28989
https://msdn.microsoft.com/en-us/library/windows/desktop/hh309466(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh309466(v=vs.85).aspx
http://en.cppreference.com/w/cpp/language/ascii


ptg22232966

79

Chapter 5

 Stencils and Shared 
Memory

In this chapter, we look at applications involving computational threads that, 
instead of being independent, are interdependent with other threads in their 
neighborhood on the computational grid. The mathematical models we will 
implement involve convolution (or correlation) operations in which data from 
threads in a neighborhood contribute to a linear combination with a constant 
array of coefficients. In the computing context, the operation is often referred 
to as filtering, and the coefficient array is a filter or stencil. Thread interactions 
can produce bottlenecks associated with multiple threads competing for access 
to the same data, so CUDA provides some capabilities for alleviating the bot-
tlenecks and enhancing performance. Most CUDA “tricks of the trade” involve 
special types of memory, and here we will focus on shared memory, which 
supports efficient sharing of information between threads in a block.

We introduce the basic ideas of stencil computations and shared memory in a 
1D example that computes the second derivative of a function from uniformly 
sampled values. We extend stencils and shared memory to 2D and create an 
app that computes and visualizes steady-state temperature distributions by 
solving Laplace’s equation using Jacobi iteration. (Note that solutions of 
Laplace’s equation also have applications in fluid mechanics, electrostatics, 
gravity, and complex variables.) We finish up by creating an app to sharpen an 
image, and we engage in some profiling studies to justify embellishments of the 
initial implementation.
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Thread Interdependence
This chapter marks a significant step forward, and we should take a moment to 
explicitly state the step we are taking. We finished up Chapter 4, “2D Grids and 
Interactive Graphics,” with a stability app that computes the time histories of an 
oscillator for a grid of initial states. We introduced a finite difference derivative 
estimate and used it to relate successive values in the time history computed by 
each thread. The derivative computation lives within a single thread, and each 
thread proceeds without reliance on any of the other threads. Each thread has 
access to its own initial state (based on its index values), but has no access to 
the state of the simulation in any other thread.

Now we are ready to apply a finite difference operator to compute the deriva-
tive of a function whose sampled values are associated with different points on 
a grid (each associated with a different thread). To be concrete, let’s consider 
computing the numerical solution u(x) of a differential equation. The computa-
tion is discretized on a grid of points xi = ih with uniform spacing h along a line 
segment, and the derivative gets replaced by the difference between values 
at neighboring points. The parallel solver launches a 1D computational grid, 
and each thread has a variable u to store the computed value of ui = u(xi). The 
coefficients in the finite difference formula now combine the values of variables 
associated with neighboring threads.

Why make such a big deal of this point? If you try to write a simple kernel that 
says “compute the difference between the value of a variable in this thread and 
the value of the same variable in the adjacent grid,” that operation is not sup-
ported in CUDA. In SIMT parallelism, each thread has access to its own version 
of each kernel variable, but no access to the versions in other threads. How do 
we get around such a restriction when we need threads to share information? 
The “naïve” approach is to allocate arrays in device global memory where each 
thread can read its input and write its output value of u. We will implement the 
global array approach and show that it does work, but it turns out to be not ter-
ribly efficient. When a large grid is launched, there may be millions of threads 
trying to read and write values to and from the same arrays, which creates 
issues with synchronization and memory traffic.

We won’t get into all the details right now, but you should be aware of the 
general principle that the farther data is stored from the processor, the longer 
it takes to process the data. We have already discussed one application of this 
principle in Chapter 3, “From Loops to Grids,” when we first copied data from 
host to device. Device memory is closer to the streaming multiprocessors (SMs), 
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so it is a preferred storage location compared to host memory, which requires 
data transfer across a relatively slow communications bus. Moreover, when we 
do have to transfer data, we want to do it as few times as possible to reduce the 
total data transfer time.

We now encounter the second application of the “nearer is faster” principle: 
There are different memory areas on the GPU, and we would prefer to use stor-
age closer to the SM. Previously, we have encountered global memory (where 
all device arrays have been stored) and register memory (where the local 
variables for each thread are stored). Global memory provides the bulk of the 
device storage capacity, but it is as far from the SMs as you can get on the GPU, 
so global memory provides universal but relatively slow memory access. (Recall 
that it is still much faster to access than host memory.) Register memory is as 
close to the SM as possible, so it offers fast access but its scope is local only to a 
single thread.

Now we introduce shared memory, which aims to bridge the gap in memory 
speed and access. Shared memory resides adjacent to the SM and provides 
up to 48KB of storage that can be accessed efficiently by all threads in a block. 
It is sensible to think of shared memory as CUDA’s primary mechanism for 
efficiently supporting thread cooperation, and in many cases (including many 
stencil computations) use of shared memory can lead to significant gains in 
performance. Without further ado, let’s get on to our examples.

Computing Derivatives on a 1D Grid
Computations using stencils and shared memory involve a bit of index book-
keeping, so we begin with a 1D example to keep the presentation as simple as 
possible. While our efforts in 1D may not achieve acceleration compared to com-
putation on the CPU, rest assured that a significant payoff will come when we 
move on to 2D. We again choose a specific example to support a concrete dis-
cussion. In particular, we choose to build on the basic finite difference method 
from Chapter 4, “2D Grids and Interactive Graphics,” adapted to dependent 
variable u and independent variable x sampled at discrete points xi with uniform 
spacing h. The forward difference estimate of the first derivative becomes

du
dx

x
n( )= u

i+1
−u

i( ) /h
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where ui = u(xi) = u(ih). A second application of the finite difference formula pro-
vides a centered difference formula for computing the second derivative:

d2u
dx 2

x
n( )= u

i+1
−2u

i
+u

i−1( ) /h2

Our first example is quite straightforward: Create an array of sampled values of 
the function sin(x) and use the centered difference formula to compute an array 
of values of the second derivative. (Differentiating sin(x) twice just introduces a 
sign change, so the results will be easy to check.)

Now we are back to the usual question that arises at the start of a new appli-
cation: How do we divide our overall computing task up into pieces that can be 
identified with the action of a thread? Again, we keep things simple and choose 
to have each thread compute one of the derivative values; that is, the thread with 
index i reads the entries in the input device array d_in necessary to com-
pute the local value of the second derivative (i.e., d_in[i-1], d_in[i],and 
d_in[i+1]), computes the derivative, and stores the value in the output matrix 
d_out[i].

IMPLEMENTING dd_1d_global

A global memory implementation of the dd_1d_global (indicating two deriv-
atives in one dimension using global memory) app is shown in Listings 5.1, 5.2, 
and 5.3.

Let’s start by discussing the details of main.cpp, shown in Listing 5.1. The 
main() function begins by computing the arrays of values for x and u (lines 
14–17) and then executes the parallel derivative computation (line 19). The 
result, stored in the array result_parallel, is then written to the .csv 
(comma separated values) file results.csv, which can be opened with a 
spreadsheet or text editor for inspection.

Listing 5.1 dd_1d_global/main.cpp

  1 #include "kernel.h"
  2 #include <math.h>
  3 #include <stdio.h>
  4
  5 int main() {
  6   const float PI = 3.1415927;
  7   const int N = 150;
  8   const float h = 2*PI/N;
  9
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 10   float x[N] = {0.0};
 11   float u[N] = {0.0};
 12   float result_parallel[N] = {0.0};
 13
 14   for (int i = 0; i < N; ++i) {
 15     x[i] = 2*PI*i/N;
 16     u[i] = sinf(x[i]);
 17   }
 18
 19   ddParallel(result_parallel, u, N, h);
 20
 21   FILE *outfile = fopen("results.csv", "w");
 22   for (int i = 1; i < N - 1; ++i) {
 23     fprintf(outfile, "%f,%f,%f,%f\n", x[i], u[i],
 24 result_parallel[i], result_parallel[i] + u[i]);
 25   }
 26   fclose(outfile);
 27 }

Now let’s proceed on to the kernel and launcher code in Listing 5.2. Hopefully, the 
ddKernel() code looks unsurprising by now. The other function in kernel.cu 
is the wrapper function ddParallel() that allocates device arrays d_in 
and d_out (lines 14–15), copies the input data to the device (line 16), launches 
ddKernel() on line 18, copies the results stored in d_out back to the host 
(line 20), and frees the device memory (lines 21–22).

Listing 5.2 dd_1d_global/kernel.cu

  1 #include "kernel.h"
  2 #define TPB 64
  3
  4 __global__
  5 void ddKernel(float *d_out, const float *d_in, int size, float h) {
  6   const int i = threadIdx.x + blockDim.x*blockIdx.x;
  7   if (i >= size) return;
  8   d_out[i] = (d_in[i - 1] - 2.f*d_in[i] + d_in[i + 1])/(h*h);
  9 }
 10
 11 void ddParallel(float *out, const float *in, int n, float h) {
 12   float *d_in = 0, *d_out = 0;
 13
 14   cudaMalloc(&d_in, n*sizeof(float));
 15   cudaMalloc(&d_out, n*sizeof(float));
 16   cudaMemcpy(d_in, in, n*sizeof(float), cudaMemcpyHostToDevice);
 17
 18   ddKernel<<<(n + TPB - 1)/TPB, TPB>>>(d_out, d_in, n, h);
 19
 20   cudaMemcpy(out, d_out, n*sizeof(float), cudaMemcpyDeviceToHost);
 21   cudaFree(d_in);
 22   cudaFree(d_out);
 23 }
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Finally, we look at the contents of kernel.h, shown in Listing 5.3. The primary 
content of the header file is the prototype for the kernel wrapper ddParallel(). 
The remaining lines constitute the include guard.

Listing 5.3 dd_1d_global/kernel.h

  1 #ifndef KERNEL_H
  2 #define KERNEL_H
  3
  4 void ddParallel(float *out, const float *in, int n, float h);
  5
  6 #endif 

The Makefile for building the app under Linux is provided in Listing 5.4.

Listing 5.4 dd_1d_global/Makefile

  1 NVCC = /usr/local/cuda/bin/nvcc
  2 NVCC_FLAGS = -g -G -Xcompiler -Wall
  3
  4 all: main.exe
  5
  6 main.exe: main.o kernel.o
  7   $(NVCC) $^ -o $@
  8
  9 main.o: main.cpp kernel.h
 10   $(NVCC) $(NVCC_FLAGS) -c $< -o $@
 11
 12 kernel.o: kernel.cu kernel.h
 13   $(NVCC) $(NVCC_FLAGS) -c $< -o $@

Build and execute the dd_1d_global app and convince yourself that it works 
as planned by inspecting the contents of results.csv. The columns show the 
values of x, sin(x), the second-derivative estimate, and the sum of the result 
and sin(x). Values in the last column uniformly close to zero indicate the validity 
(and accuracy limitations) of the finite difference approximation.

Once correct results are verified, we can turn to efficiency considerations. While 
we will engage in some profiling when we look at the image-sharpening app at 
the end of this chapter, for the moment let’s note that implementing the stencil 
computation with global memory involves redundant memory transfers that 
create unnecessary data traffic. Since each thread reads the input data asso-
ciated with its own index and those of its neighbors, every element in the input 
array gets requested three times. (d_in[i] gets requested as the right-hand 
neighbor value, center value, and left-hand neighbor value by threads with index 
i-1, i, and i+1, respectively.)
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Stencil Radius and Redundant Data Access
The number of neighbors on either side covered by the stencil is referred to as the 
radius. In 1D, the level of redundancy for our stencil with second-order accuracy 
and radius r = 1 is 2r + 1 = 3. The redundancy in N-dimensions is (2r + 1)N, so the 
issue becomes more significant as the radius and/or the dimensionality increase.

We now move on to a more efficient implementation of the stencil computa-
tion using data tiles and shared memory to increase the speed and reduce the 
redundancy of the memory transactions.

IMPLEMENTING dd_1d_shared

The basic idea of the shared memory approach is to break the large grid up into 
tiles of data that provide all the input and output required for a computational 
block. We then create input and/or output arrays to store the tile of data in shared 
memory, where it provides both fast access (because it is near the SM) and avail-
ability to all threads in the block. Here we focus on using shared memory for the 
input, because that is where the known redundant access issue arises. The goal 
is to access each piece of input data from global memory only once (to populate 
the shared memory arrays), after which the data needed by all the threads in the 
block can be obtained quickly from shared memory.

To keep the bookkeeping simple, a sensible approach is to maintain the usual 
index i (which we will refer to as the global index because it identifies the corre-
sponding element of the array in global memory) and to introduce a new local 
index s_idx to keep track of where things are stored in the shared array. Note 
that it is not sufficient just to copy the entries corresponding to the threads in the 
block; we will also need neighboring values that are covered by the stencil when 
it gets to the edges of the block. We will use the name RAD to indicate the stencil 
radius in the code, and we will need to include RAD neighboring array elements 
at the edges of the block. A common description is that handling a stencil with 
radius RAD requires that, in addition to one element for each thread in the block, 
the shared array must also include 2*RAD halo cells added at each end to 
ensure that the shared array includes all of the necessary data. The first thread 
in the block (with threadIdx.x = 0) needs to leave room for RAD neighbors 
to its left and therefore get local index s_idx = RAD. The general relation 
between the local index and thread index is s_idx = threadIdx.x + RAD.

Now that we have a systematic bookkeeping plan, we can get into the implemen-
tation details. The good news is that, since the interface to calling the derivative 
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function remains the same, no changes are needed in main.cpp or kernel.h, 
which remain exactly as shown in Listings 5.1 and 5.3. We can focus on the 
shared memory version of the kernel shown in Listing 5.5. Once we’ve computed 
the global index i and checked that it is in bounds (lines 7–8), we compute the 
local index s_idx (line 10) and declare the shared array s_in using the 
__shared__ qualifier (line 11).

Listing 5.5 dd_1d_shared/kernel.cu

  1 #include "kernel.h"
  2 #define TPB 64
  3 #define RAD 1 // radius of the stencil
  4
  5 __global__
  6 void ddKernel(float *d_out, const float *d_in, int size, float h) {
  7   const int i = threadIdx.x + blockDim.x*blockIdx.x;
  8   if (i >= size) return;
  9
 10   const int s_idx = threadIdx.x + RAD;
 11   extern __shared__ float s_in[];
 12
 13   // Regular cells
 14   s_in[s_idx] = d_in[i];
 15
 16   // Halo cells
 17   if (threadIdx.x < RAD) {
 18     s_in[s_idx - RAD] = d_in[i - RAD];
 19     s_in[s_idx + blockDim.x] = d_in[i + blockDim.x];
 20   }
 21   __syncthreads();
 22   d_out[i] = (s_in[s_idx-1] - 2.f*s_in[s_idx] + s_in[s_idx+1])/(h*h);
 23 }
 24
 25 void ddParallel(float *out, const float *in, int n, float h) {
 26   float *d_in = 0, *d_out = 0;
 27   cudaMalloc(&d_in, n*sizeof(float));
 28   cudaMalloc(&d_out, n*sizeof(float));
 29   cudaMemcpy(d_in, in, n*sizeof(float), cudaMemcpyHostToDevice);
 30
 31   // Set shared memory size in bytes
 32   const size_t smemSize = (TPB + 2*RAD)*sizeof(float);
 33
 34   ddKernel<<<(n + TPB - 1)/TPB, TPB, smemSize>>>(d_out, d_in, n, h);
 35
 36   cudaMemcpy(out, d_out, n*sizeof(float), cudaMemcpyDeviceToHost);
 37
 38   cudaFree(d_in);
 39   cudaFree(d_out);
 40 }
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Setting the Size of the Shared Array
If you create your shared array with a fixed size, the array can be created as 
follows:

__shared__ float s_in[34];

and no change to the kernel call is needed. Note that the following will produce a 
compiler error:

__shared__ float s_in[blockDim.x + 2*RAD];

If you allocate the array dynamically, the declaration requires the keyword 
extern as follows:

extern __shared__ float s_in[];

And the kernel call requires an optional third argument within the chevrons to 
specify the size of the shared memory allocation in bytes.

const size_t smemSize = (TPB + 2*RAD)*sizeof(float);
ddKernel<<<(n+TPB-1)/TPB, TPB, smemSize>>>(d_out, d_in, n, h);

Execution Configuration Parameters
There is also a fourth (optional) execution configuration parameter that specifies 
the computational stream number. Since we are not using multiple streams for 
any of the examples in this book, the default value 0 suffices for our purposes. 
For more details on using multiple streams in CUDA computation, see the “CUDA 
C Runtime” section’s “Streams” subsection in the CUDA C Programming Guide [1] 
and the Parallel Forall blog post “GPU Pro Tip: CUDA 7 Streams Simplify Concur-
rency” [2].

Once the shared array is allocated, we are ready to transfer the data from 
global memory to shared memory. The basic plan is that each thread requests 
the entry in the input array whose index matches the thread’s global index and 
stores that value in the shared array at the entry corresponding to the local 
index (i.e., s_in[s_idx] = d_in[i], which appears as line 14). The values for 
the halo cells still need to be obtained and stored, and that job is accomplished 
by the following snippet:

if (threadIdx.x < RAD) {
s_in[s_idx - RAD] = d_in[i - RAD];
s_in[s_idx + blockDim.x] = d_in[i + blockDim.x];
}
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which allocates the job to threads 0 to RAD-1, each of which read and store a 
pair of halo values, one at each end of the block. Thread 0 has s_idx = RAD, so

• s_idx-RAD is 0, and the leftmost neighbor, in[i-RAD], gets stored in the
leftmost halo cell at the beginning of the shared array.

• s_idx+blockDim.x is blockDim.x and the immediate neighbor to the
right, in[i+blockDim.x], gets stored in the leftmost halo cell at the end of
the array.

The reading and storage of halo values continues in pairs over the first RAD 
threads until the shared array is fully populated.

We are almost ready for the last kernel statement (line 22) where the desired 
finite difference estimate of the second derivative is computed and stored, but 
first we need to take care of another important bookkeeping item.

Recall that kernel launches are asynchronous. In return for access to the power 
of massively parallel computing, we give up some control of the order in which 
things are executed. In this context, it means that we cannot just assume that all 
of the input data has been loaded into the shared memory array before threads 
execute the final statement (and possibly use some arbitrary values that hap-
pened to be sitting in the memory locations allocated for the shared array). To 
ensure that all the data has been properly stored, we employ the CUDA function 
__syncthreads() (line 21), which forces all the threads in the block to com-
plete the previous statements before any thread in the block proceeds further. 
Synchronization can take time and reduce your acceleration factor, so it should 
be used as needed, and it is needed here to ensure reliable results.

Once again, build and execute the dd_1d_shared app and convince yourself 
that it works as planned by inspecting the contents of results.csv. If you are 
using Linux, the Makefile for this app is the same as the one for dd_1d_global, 
which is provided in Listing 5.4.

SOLVING LAPLACE’S EQUATION IN 2D: heat_2d

With an efficient method in hand for performing stencil computations that arise 
from derivatives, we are within reach of some real engineering applications. 
Here we compute the solution of Laplace’s equation, which governs potential 
fields. While this problem can be interpreted in many contexts, we will discuss 
the application in terms of solving for the equilibrium temperature distribu-
tion u(x) in a region with the temperature specified on the boundary. The basic 
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physics says that the rate of temperature change, u
t

∂
∂ , is proportional to the net 

flux of heat per unit volume. The net flux of heat per volume is measured by the 
divergence of the heat flow field, and the basic diffusion model specifies a heat 
flow field proportional to the gradient of the temperature distribution. Putting 
the pieces together gives

∂u
∂t

=α∇ i∇u =α∇2u =α  
∂2u
∂x 2

+ ∂2u
∂y 2

+ ∂2u
∂z 2

⎛

⎝⎜
⎞

⎠⎟

where α is the thermal conductivity and ∇ 2 is the Laplacian operator whose 
expression in 3D Cartesian coordinates is given at the far right.

Now let’s focus in on a particular problem that involves equilibrium temperature 
distributions (which do not vary over time) in a thin plate. The plate lies in the 
xy-plane with insulated faces, so there is no significant temperature variation 
across the plate (in the z-direction). The z-derivative on the right-hand side then 
vanishes, as does the t-derivative on the left-hand side, and the conductivity 
cancels out leaving 2D Laplace’s equation in Cartesian coordinates

∂2u
∂x 2

+ ∂2u
∂y 2

= 0

to be solved along with suitable boundary conditions.

We want things to be simple but nontrivial and have a specific context, so let’s 
construct an engineering scenario in which we are analyzing the steady-state 
temperature distribution in proposed designs for a plate that acts as a vertical 
support for a circular steam pipe. The plate is constructed from a square with a 
circular hole (to accommodate the pipe) and chamfers on the top corners. The 
bottom edge of the plate is in contact with the ground and therefore has tem-
perature t_g (where g stands for ground). Similarly the edge of the hole is at 
t_s (where s stands for source flowing through the pipe), and the other edges of 
the plate are in contact with the surrounding air and have temperature t_a. Our 
mission is to create an app called heat_2d to compute and visualize the steady-
state temperature in the plate as we change the following items:

• The location, size, and temperature of the pipe

• The size of the chamfer

• The temperature of the air and ground

The problem consisting of the partial differential equation plus boundary condi-
tions is summarized in Figure 5.1.
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Now we discretize for the purposes of numerical solution, and the second deriv-
atives get replaced with our previous finite difference formula with a second 
index appropriate for a 2D setting:

∂2u
∂x 2

x
i ,j( )→u

i+1,j
−2u

i ,j
+u

i−1,j

h2

∂2u
∂y 2

x
i ,j( )→u

i,j+1
−2u

i ,j
+u

i,j−1

h2

Plugging the finite difference expressions into Laplace’s equation and solving for 
ui,j gives

u
i,j
= u

i−1,j
+u

i+1,j
+u

i,j−1
+u

i,j+1( ) / 4
So the discrete sampling of the equilibrium temperature distribution is char-
acterized by the property that each value is the average of the four immediate 
neighboring values, and we have obtained a new stencil, now in 2D:

Figure 5.1 Pictorial summary of the equation and boundary conditions to be 
solved by the heat_2d app
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This stencil (often referred to as a 5-point stencil because it includes the central 
entry plus four neighbors) describes the essential property of steady-state 
solutions to the differential equation; that is, at equilibrium, the temperature at a 
grid point should be the average of the temperatures at the immediate neighbor 
points.

Perhaps the simplest approach to computing a steady-state temperature distri-
bution is to repeatedly average neighboring values by applying the stencil to the 
array of temperature values. This scheme is known as Jacobi iteration, and its 
results do converge to a solution of Laplace’s equation. (Note that the conver-
gence can be slow for large problems. For a full discussion of this and related 
methods along with their convergence properties, see Chapter 4 in Leveque’s 
Finite Difference Methods for Ordinary and Partial Differential Equations [3].)

While Jacobi iteration converges to a solution of Laplace’s equation, it most 
likely does not converge to the solution that satisfies the desired boundary 
conditions. We’ll handle this with a straightforward adjustment of the kernel. 
Instead of applying the stencil everywhere, specified boundary condition values 
are imposed at pixels outside the plate and the stencil is applied only at pixels 
within the plate.

Having specified the problem and a numerical solution strategy, let’s move on 
to implementation as shown in Listings 5.6, 5.7, 5.8, and 5.9. This app includes 
interactive graphics, so it was constructed using the flashlight app from 
Chapter 4, “2D Grids and Interactive Graphics,” as a template, and only a few 
lines of main.cpp in Listing 5.6 should be unfamiliar:

• The render() function repetitively calls a different kernel launcher to be
described below.

• The title bar will display the current values for the boundary values: t_s, t_a,
and t_g for the temperature of the source, air, and ground, respectively. Note
that these values appear as components of a boundary condition data struc-
ture defined in kernel.h as described below.

• The main() function starts off by printing a summary of available user
interactions, allocating the array to store a 2D grid of temperature values,
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and calls resetTemperature(), which launches a kernel to initialize the 
temperature array.

• There is one additional GLUT call to glutIdleFunc() that is relevant
because we want our iterative scheme to continue updating between user
interactions.

Listing 5.6 heat_2d/main.cpp

  1 #include "interactions.h"
  2 #include "kernel.h"
  3 #include <stdio.h>
  4 #include <stdlib.h>
  5 #ifdef _WIN32
  6 #define WINDOWS_LEAN_AND_MEAN
  7 #define NOMINMAX
  8 #include <windows.h>
  9 #endif
 10 #ifdef __APPLE__
 11 #include <GLUT/glut.h>
 12 #else
 13 #include <GL/glew.h>
 14 #include <GL/freeglut.h>
 15 #endif
 16 #include <cuda_runtime.h>
 17 #include <cuda_gl_interop.h>
 18 #define ITERS_PER_RENDER 50
 19
 20 // texture and pixel objects
 21 GLuint pbo = 0;     // OpenGL pixel buffer object
 22 GLuint tex = 0;     // OpenGL texture object
 23 struct cudaGraphicsResource *cuda_pbo_resource;
 24
 25 void render() {
 26   uchar4 *d_out = 0;
 27   cudaGraphicsMapResources(1, &cuda_pbo_resource, 0);
 28   cudaGraphicsResourceGetMappedPointer((void **)&d_out, NULL,
 29 cuda_pbo_resource);
 30   for (int i = 0; i < ITERS_PER_RENDER; ++i) {
 31     kernelLauncher(d_out, d_temp, W, H, bc);
 32   }
 33   cudaGraphicsUnmapResources(1, &cuda_pbo_resource, 0);
 34   char title[128];
 35   sprintf(title, "Temperature Visualizer - Iterations=%4d, "
 36 "T_s=%3.0f, T_a=%3.0f, T_g=%3.0f",
 37 iterationCount, bc.t_s, bc.t_a, bc.t_g);
 38   glutSetWindowTitle(title);
 39 }
 40
 41 void draw_texture() {
 42   glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, W, H, 0, GL_RGBA,
 43 GL_UNSIGNED_BYTE, NULL);
 44   glEnable(GL_TEXTURE_2D);



ptg22232966

COMPUTING DERIVATIVES ON A 1D GRID

93

 45   glBegin(GL_QUADS);
 46   glTexCoord2f(0.0f, 0.0f); glVertex2f(0, 0);
 47   glTexCoord2f(0.0f, 1.0f); glVertex2f(0, H);
 48   glTexCoord2f(1.0f, 1.0f); glVertex2f(W, H);
 49   glTexCoord2f(1.0f, 0.0f); glVertex2f(W, 0);
 50   glEnd();
 51   glDisable(GL_TEXTURE_2D);
 52 }
 53
 54 void display() {
 55   render();
 56   draw_texture();
 57   glutSwapBuffers();
 58 }
 59
 60 void initGLUT(int *argc, char **argv) {
 61   glutInit(argc, argv);
 62   glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);
 63   glutInitWindowSize(W, H);
 64   glutCreateWindow("Temp. Vis.");
 65 #ifndef __APPLE__
 66   glewInit();
 67 #endif
 68 }
 69
 70 void initPixelBuffer() {
 71   glGenBuffers(1, &pbo);
 72   glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo);
 73   glBufferData(GL_PIXEL_UNPACK_BUFFER, W*H*sizeof(GLubyte) * 4, 0,
 74 GL_STREAM_DRAW);
 75   glGenTextures(1, &tex);
 76   glBindTexture(GL_TEXTURE_2D, tex);
 77   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 78   cudaGraphicsGLRegisterBuffer(&cuda_pbo_resource, pbo,
 79 cudaGraphicsMapFlagsWriteDiscard);
 80 }
 81
 82 void exitfunc() {
 83   if (pbo) {
 84     cudaGraphicsUnregisterResource(cuda_pbo_resource);
 85     glDeleteBuffers(1, &pbo);
 86     glDeleteTextures(1, &tex);
 87   }
 88   cudaFree(d_temp);
 89 }
 90
 91 int main(int argc, char** argv) {
 92   cudaMalloc(&d_temp, W*H*sizeof(float));
 93   resetTemperature(d_temp, W, H, bc);
 94   printInstructions();
 95   initGLUT(&argc, argv);
 96   gluOrtho2D(0, W, H, 0);
 97   glutKeyboardFunc(keyboard);
 98   glutMouseFunc(mouse);
 99   glutIdleFunc(idle);
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100   glutDisplayFunc(display);
101   initPixelBuffer();
102   glutMainLoop();
103   atexit(exitfunc);
104   return 0;
105 }

That about does it for new aspects of main.cpp, so let’s look at the contents of 
the header file kernel.h shown in Listing 5.7:

• Line 4 forward declares the uchar4 type. nvcc knows how to handle uchar4
variables, but we need the declaration so the C++ compiler invoked through
nvcc does not produce an error.

• Lines 6–11 define the BC data structure that allows us to include all of the
boundary condition information (including the coordinates and radius of the
pipe, the size of the chamfer, and the temperatures of the source, the air, and
the ground) in a single argument.

• Lines 13–15 are the prototypes for the kernel wrapper functions (i.e., the
functions that will be called from main.cpp): kernelLauncher() and
resetTemperature().

Listing 5.7 heat_2d/kernel.h

  1 #ifndef KERNEL_H
  2 #define KERNEL_H
  3
  4 struct uchar4;
  5 // struct BC that contains all the boundary conditions
  6 typedef struct {
  7   int x, y; // x and y location of pipe center
  8   float rad; // radius of pipe
  9   int chamfer; // chamfer
 10   float t_s, t_a, t_g; // temperatures in pipe, air, ground
 11 } BC;
 12
 13 void kernelLauncher(uchar4 *d_out, float *d_temp, int w, int h,
 14                     BC bc);
 15 void resetTemperature(float *d_temp, int w, int h, BC bc);
 16
 17 #endif

Now that we know the variables in the BC structure and the functions that 
are made available from kernel.cu, we are ready to look at details of 
 interactions.h as shown in Listing 5.8. Lines 3–11 include headers used 
in interactions.h. Lines 13–19 define relevant parameter values (including 
the width and height of the computational grid, and increments for changes 
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in position and temperature), and then make necessary declarations for the 
pointer to the device array that will store the temperature values, the counter 
that keeps track of iterations since the most recent reset, and a BC structure bc 
to store the boundary conditions. (bc is initialized so the pipe is in the center of 
the plate with radius 1/10th the plate width, a chamfer of 150 grid spacings, pipe 
temperature 212°F, air temperature 70°F, and ground temperature 0°F.)

The keyboard callback function allows the user to reset or terminate the simu-
lation and provides interactive control of all the boundary conditions:

• The z resets the boundary conditions and resets iterationCount to 0.

• The s key changes the pipe temperature.

• The a key changes the air temperature.

• The g key changes the ground temperature.

• The r key changes the pipe radius.

• The c key changes the plate chamfer.

• The Esc key terminates the simulation.

The mouse() callback reads the position of a mouse click and relocates the 
center of the pipe to the selected location. The other relevant callback is idle(), 
which increments the iteration count and calls  glutPostRedisplay(), which 
in turn calls render, which calls the kernel launcher. The idle() function keeps 
the Jacobi iteration scheme updating (and converging toward the desired 
solution) in the absence of user interaction.

Listing 5.8 heat_2d/interactions.h

  1 #ifndef INTERACTIONS_H
  2 #define INTERACTIONS_H
  3 #include "kernel.h"
  4 #include <stdio.h>
  5 #include <stdlib.h>
  6 #ifdef __APPLE__
  7 #include <GLUT/glut.h>
  8 #else
  9 #include <GL/glew.h>
 10 #include <GL/freeglut.h>
 11 #endif
 12 #define MAX(x, y) (((x) > (y)) ? (x) : (y))
 13 #define W  640
 14 #define H  640
 15 #define DT 1.f // source intensity increment
 16
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 17 float *d_temp = 0;
 18 int iterationCount = 0;
 19 BC bc = {W/2, H/2, W/10.f, 150, 212.f, 70.f, 0.f}; // Boundary conds
 20
 21 void keyboard(unsigned char key, int x, int y) {
 22   if (key == 'S')  bc.t_s += DT;
 23   if (key == 's')  bc.t_s -= DT;
 24   if (key == 'A')  bc.t_a += DT;
 25   if (key == 'a')  bc.t_a -= DT;
 26   if (key == 'G')  bc.t_g += DT;
 27   if (key == 'g')  bc.t_g -= DT;
 28   if (key == 'R')  bc.rad += DT;
 29   if (key == 'r')  bc.rad = MAX(0.f, bc.rad-DT);
 30   if (key == 'C')  ++bc.chamfer;
 31   if (key == 'c')  --bc.chamfer;
 32   if (key == 'z')  resetTemperature(d_temp, W, H, bc);
 33   if (key == 27)   exit(0);
 34   glutPostRedisplay();
 35 }
 36
 37 void mouse(int button, int state, int x, int y) {
 38   bc.x = x, bc.y = y;
 39   glutPostRedisplay();
 40 }
 41
 42 void idle(void) {
 43   ++iterationCount;
 44   glutPostRedisplay();
 45 }
 46
 47 void printInstructions() {
 48   printf("Temperature Visualizer:\n"
 49 "Relocate source with mouse click\n"
 50 "Change source temperature (-/+): s/S\n"
 51 "Change air temperature    (-/+): a/A\n"
 52 "Change ground temperature (-/+): g/G\n"
 53 "Change pipe radius (-/+): r/R\n"
 54 "Change chamfer (-/+): c/C\n"
 55 "Reset to air temperature : z\n"
 56 "Exit : Esc\n");
 57 }
 58
 59 #endif 

Now we get to the specifics of the utility functions, kernels, and wrapper func-
tions in kernel.cu shown in Listing 5.9. Let’s start with the utility functions:

• divUp() is for computing the number of blocks of a specified size to cover a
computational grid.

• clip() is used to ensure that color values are of type unsigned char and
in the correct range [0, 255].
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• idxClip() keeps from sampling out of bounds. idxClip(i, N) returns an
int in the interval [0, N − 1] (i.e., the set of legal indices for an array of length N).

• flatten() computes the index in a flattened 1D array corresponding to the
entry at col and row in a 2D array (or image) of width and height. Note that
flatten() uses idxClip() to prevent from trying to access nonexistent
array entries when the stencil extends beyond the edge of the grid.

Next come the kernel functions:

• The first, resetKernel(), is particularly simple. It starts by using the
built-in CUDA index and dimension variables to compute the indices col and
row for each point on the 2D geometric grid. If the pixel lies within the bounds
of the graphics window, the flattened index idx is computed, and a default
value (chosen to be the air temperature) is saved at each point on the grid.

• tempKernel() first assigns the default color black (with full opacity) to all
pixels, then loads a tile (including the necessary halo) of existing temperature
values into shared memory.

• For points outside the domain of the plate, the kernel reapplies the specified
boundary values.

• For the points inside the problem domain, the kernel performs one step of
Jacobi iteration by applying the stencil computation to compute the updated
temperature value and writes the solution to the corresponding location in the
global memory array.

• Finally, the updated temperature values are clipped to the interval [0, 255],
converted to unsigned char values, and coded into color values with cold
regions having a strong blue component and hot regions having a strong red
component.

The kernel functions are called by wrapper or launcher functions:

• resetTemperature() calls the resetKernel() with necessary grid and
block dimensions.

• kernelLauncher() computes the necessary grid dimensions, then launches
tempKernel() to perform all the necessary computations for averaging,
reapplying boundary conditions, and computing of updated color values for
display via OpenGL interop. kernelLauncher() is called a specified number
of times by render() in main.cpp, so ITERS_PER_RENDER Jacobi iter-
ations take place between each screen update. (The screen updates occur
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imperceptibly fast, and the Jacobi iterations are happening 50 times faster 
than that even with 400,000 values to compute at each iteration.) Each call-
back function, including idle(), ends with glutPostRedisplay(), which 
calls display(), which calls for 50 kernel launches, so the Jacobi iterations 
proceed until the user intervenes.

Listing 5.9 heat_2d/kernel.cu

  1 #include "kernel.h"
  2 #define TX 32
  3 #define TY 32
  4 #define RAD 1
  5
  6 int divUp(int a, int b) { return (a + b - 1) / b; }
  7
  8 __device__
  9 unsigned char clip(int n) { return n > 255 ? 255 : (n < 0 ? 0 : n); }
 10
 11 __device__
 12 int idxClip(int idx, int idxMax) {
 13   return idx > (idxMax-1) ? (idxMax-1) : (idx < 0 ? 0 : idx);
 14 }
 15
 16 __device__
 17 int flatten(int col, int row, int width, int height) {
 18   return idxClip(col, width) + idxClip(row, height)*width;
 19 }
 20
 21 __global__
 22 void resetKernel(float *d_temp, int w, int h, BC bc) {
 23   const int col = blockIdx.x*blockDim.x + threadIdx.x;
 24   const int row = blockIdx.y*blockDim.y + threadIdx.y;
 25   if ((col >= w ) || (row >= h)) return;
 26   d_temp[row*w+col] = bc.t_a;
 27 }
 28
 29 __global__
 30 void tempKernel(uchar4 *d_out, float *d_temp, int w, int h, BC bc) {
 31   extern __shared__ float s_in[];
 32   // global indices
 33   const int col = threadIdx.x + blockDim.x * blockIdx.x;
 34   const int row = threadIdx.y + blockDim.y * blockIdx.y;
 35   if ((col >= w ) || (row >= h)) return;
 36   const int idx = flatten(col, row, w, h);
 37   // local width and height
 38   const int s_w = blockDim.x + 2*RAD;
 39   const int s_h = blockDim.y + 2*RAD;
 40   // local indices
 41   const int s_col = threadIdx.x + RAD;
 42   const int s_row = threadIdx.y + RAD;
 43   const int s_idx = flatten(s_col, s_row, s_w, s_h);
 44   // assign default color values for d_out (black)
 45   d_out[idx].x = 0;
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 46   d_out[idx].z = 0;
 47   d_out[idx].y = 0;
 48   d_out[idx].w = 255;
 49
 50   // Load regular cells
 51   s_in[s_idx] = d_temp[idx];
 52   // Load halo cells
 53   if (threadIdx.x < RAD) {
 54     s_in[flatten(s_col - RAD, s_row, s_w, s_h)] =
 55 d_temp[flatten(col - RAD, row, w, h)];
 56     s_in[flatten(s_col + blockDim.x, s_row, s_w, s_h)] =
 57 d_temp[flatten(col + blockDim.x, row, w, h)];
 58   }
 59   if (threadIdx.y < RAD) {
 60     s_in[flatten(s_col, s_row - RAD, s_w, s_h)] =
 61 d_temp[flatten(col, row - RAD, w, h)];
 62     s_in[flatten(s_col, s_row + blockDim.y, s_w, s_h)] =
 63 d_temp[flatten(col, row + blockDim.y, w, h)];
 64   }
 65
 66   // Calculate squared distance from pipe center
 67   float dSq = ((col - bc.x)*(col - bc.x) + (row - bc.y)*(row - bc.y));
 68   // If inside pipe, set temp to t_s and return
 69   if (dSq < bc.rad*bc.rad) {
 70     d_temp[idx] = bc.t_s;
 71     return;
 72   }
 73   // If outside plate, set temp to t_a and return
 74   if ((col == 0) || (col == w - 1) || (row == 0) ||
 75 (col + row < bc.chamfer) || (col - row > w - bc.chamfer)) {
 76     d_temp[idx] = bc.t_a;
 77     return;
 78   }
 79   // If point is below ground, set temp to t_g and return
 80   if (row == h - 1) {
 81     d_temp[idx] = bc.t_g;
 82     return;
 83   }
 84   __syncthreads();
 85   // For all the remaining points, find temperature and set colors.
 86   float temp = 0.25f*(s_in[flatten(s_col - 1, s_row, s_w, s_h)] +
 87 s_in[flatten(s_col + 1, s_row, s_w, s_h)] +
 88 s_in[flatten(s_col, s_row - 1, s_w, s_h)] +
 89 s_in[flatten(s_col, s_row + 1, s_w, s_h)]);
 90   d_temp[idx] = temp;
 91   const unsigned char intensity = clip((int)temp);
 92   d_out[idx].x = intensity; // higher temp -> more red
 93   d_out[idx].z = 255 - intensity; // lower temp -> more blue
 94 }
 95
 96 void kernelLauncher(uchar4 *d_out, float *d_temp, int w, int h,
 97 BC bc) {
 98   const dim3 blockSize(TX, TY);
 99   const dim3 gridSize(divUp(w, TX), divUp(h, TY));
100   const size_t smSz = (TX+2*RAD)*(TY+2*RAD)*sizeof(float);
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101   tempKernel<<<gridSize, blockSize, smSz>>>(d_out, d_temp, w, h, bc);
102 }
103
104 void resetTemperature(float *d_temp, int w, int h, BC bc) {
105   const dim3 blockSize(TX, TY);
106   const dim3 gridSize(divUp(w, TX), divUp(h, TY));
107   resetKernel<<<gridSize, blockSize>>>(d_temp, w, h, bc);
108 }

That completes the implementation discussion, and it is time to build and 
execute the heat_2d app. Listing 5.10 shows the Makefile for building this app 
in Linux. For Visual Studio users, the procedure for building and executing the 
app should be just like what you did for flashlight. If you start the app in its 
default configuration, you should see a graphics window that looks much like 
Figure 5.2.

Listing 5.10 heat_2d/Makefile

  1 UNAME_S := $(shell uname)
  2
  3 ifeq ($(UNAME_S), Darwin)
  4   LDFLAGS = -Xlinker -framework,OpenGL -Xlinker -framework,GLUT
  5 else
  6   LDFLAGS += -L/usr/local/cuda/samples/common/lib/linux/x86_64
  7   LDFLAGS += -lglut -lGL -lGLU -lGLEW
  8 endif
  9
 10 NVCC = /usr/local/cuda/bin/nvcc
 11 NVCC_FLAGS = -Xcompiler "-Wall -Wno-deprecated-declarations"
 12 INC = -I/usr/local/cuda/samples/common/inc
 13
 14 all: main.exe
 15
 16 main.exe: main.o kernel.o
 17   $(NVCC) $^ -o $@ $(LDFLAGS)
 18
 19 main.o: main.cpp kernel.h interactions.h
 20   $(NVCC) $(NVCC_FLAGS) $(INC) -c $< -o $@
 21
 22 kernel.o: kernel.cu kernel.h
 23   $(NVCC) $(NVCC_FLAGS) -c $< -o $@

Color Adjustment to Enhance Grayscale Contrast
Since it is difficult to see the difference between red (R) and blue (B) when viewing 
figures converted to grayscale, the figures included here use the green (G) channel 
to enhance contrast and brightness according to the formula G = 0.3 + (R – B) / 2. 
Full color images produced by the heat_2d app are available at 
www.cudaforengineers.com

http://www.cudaforengineers.com
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A summary of the supported interactions is printed in the console window, and 
you are encouraged to adjust the boundary conditions and watch how the tem-
perature evolves in response. You should be able to produce a variety of more 
interesting distributions, such as the one shown in Figure 5.3.

Figure 5.2 Initial configuration of the heat_2d app with color scheme adjusted 
for grayscale visibility

Figure 5.3 The heat_2d app with an edited configuration with the color scheme 
adjusted for grayscale visibility



ptg22232966

CHAPTER 5 STENCILS AND SHARED MEMORY

102

There are a couple of points that you should take away from your experience 
with the heat_2d app. First of all, you should note that when you run heat_2d, 
you are computing a solution of a partial differential equation on a decent-sized 
2D grid (640 × 640 to start, but you should experiment with changing the size) 
spanning an irregularly shaped domain on a semi-interactive time scale. The 
iteration count displayed in the title bar will give you a direct look at how fast the 
iterations are happening (keeping in mind that each iteration actually calls the 
kernel ITERS_PER_RENDER times).

Note that the stencil sum has been written out by hand in lines 86–89 of Listing 5.9. 
If you use this kernel for larger stencils (i.e., RAD > 1), you will likely want to 
replace the stencil sum with a loop structure, so now we move on to another 
stencil example that allows us to implement a stencil loop structure and do 
some profiling and performance enhancement.

SHARPENING EDGES IN AN IMAGE: sharpen

Here we employ stencil computations to create a classic image-processing 
effect: edge sharpening. We present the sharpen app, which takes an input 
image, applies an edge-sharpening stencil, and writes the sharpened image to 
an output file that you can open and view with your favorite image viewer. Since 
reading and writing standard image file formats is required, we introduce a few 
essentials from CImg, “a small, open source, and modern C++ toolkit for image 
processing” [4].

Image sharpening is again a stencil operation, and the stencil we are going to 
use is a 3 × 3 stencil of the following form:

−1 −1 −1
−1  9 −1
−1 −1 −1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

which is the difference between a Dirac delta kernel (a 1 in the middle sur-
rounded by zeroes that would reproduce the input without change) and a smoothing 
kernel. Thus the sharpening occurs by taking the original image and  subtract-
ing a blurred version (an approach that is sometimes referred to as unsharp 
 masking). Note that the stencil is now full, so in the shared memory versions, 
you will see additional code for storing halo values at the corners of the tile as 
well as at the edges.

This app does not include graphical interaction, so it can be built from as a stan-
dard CUDA 7.5 app (with the inclusion of CImg.h). The complete app includes four 
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files: sharpen/main.cpp, shown in Listing 5.11; a header file, shown in Listing 
5.12; a Makefile (for Linux users), shown in Listing 5.13; and a kernel file. We pres-
ent three versions of sharpen/kernel.cu that take advantage of shared mem-
ory to varying degrees and provide an opportunity for performance comparison:

• A glo bal version that uses no shared memory arrays (Listing 5.14)

• A shared input version that uses a shared memory array for storing the input
data (Listing 5.15)

• A shared input/output version that uses a shared memory array for loading
the input data and writing the output data (Listing 5.16)

Listing 5.11 sharpen/main.cpp

  1 #include "kernel.h"
  2 #define cimg_display 0
  3 #include "CImg.h"
  4 #include <cuda_runtime.h>
  5 #include <stdlib.h>
  6
  7 int main() {
  8   cimg_library::CImg<unsigned char> image("butterfly.bmp");
  9   const int w = image.width();
 10   const int h = image.height();
 11
 12   // Initialize uchar4 array for image processing
 13   uchar4 *arr = (uchar4*)malloc(w*h*sizeof(uchar4));
 14
 15   // Copy CImg data to array
 16   for (int r = 0; r < h; ++r) {
 17     for (int c = 0; c < w; ++c) {
 18 arr[r*w + c].x = image(c, r, 0);
 19 arr[r*w + c].y = image(c, r, 1);
 20 arr[r*w + c].z = image(c, r, 2);
 21     }
 22   }
 23
 24   sharpenParallel(arr, w, h);
 25
 26   // Copy from array to CImg data
 27   for (int r = 0; r < h; ++r) {
 28     for (int c = 0; c < w; ++c) {
 29 image(c, r, 0) = arr[r*w + c].x;
 30 image(c, r, 1) = arr[r*w + c].y;
 31 image(c, r, 2) = arr[r*w + c].z;
 32     }
 33   }
 34
 35   image.save_bmp("out.bmp");
 36   free(arr);
 37   return 0;
 38 }
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Let’s begin with a quick look at notable features of the code for sharpen/
main.cpp, shown in Listing 5.11:

• The directive #define cimg_display 0 indicates that the display capa-
bility of CImg will not be used; we will just read and write image files to be
viewed using other software.

• The first line of main() instantiates a CImg image object for input and out-
put. (Yes, there is some object-oriented C++ going on here, but we are going to
stick to the need-to-know aspects so we don’t get hung up.). Line 8 declares
image with an argument that corresponds to an image file, butterfly.bmp.

• Lines 9–10 set the variables w and h to the width and height of the input image.

• Line 13 declares and allocates a uchar4 array to hold the image data in a
C-style array.

• Lines 16–22 copy the image data from the CImg object image into the in
array. The first (red) component of the image value in column c and row r,
image(c, r, 0), gets stored as the .x component at the corresponding
position of in on line 18: in[r*w + c].x = inImage(c, r, 0);. Lines
19–20 store the green and blue components in a similar fashion.

• Line 24 calls the kernel wrapper sharpenParallel() to apply the sharpening
stencil to the input data and store the results in out.

• Lines 27–33 copy our output data (stored in the array out) to the CImg object,
image.

• Line 35 invokes the .save_bmp method (a function provided with the CImg
object) to save the sharpened results in the standard portable bitmap (.bmp)
format in a file named out.bmp.

• Line 36 frees the allocated arrays.

There is nothing notable in sharpen/kernel.h or sharpen/Makefile, so we 
can jump ahead to the kernel implementations.

Listing 5.12 sharpen/kernel.h

  1 #ifndef KERNEL_H
  2 #define KERNEL_H
  3
  4 struct uchar4;
  5
  6 void sharpenParallel(uchar4 *arr, int w, int h);
  7 #endif 
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Listing 5.13 sharpen/Makefile

  1 NVCC = /usr/local/cuda/bin/nvcc
  2 NVCC_FLAGS = -Xcompiler -Wall
  3
  4 all: main.exe
  5
  6 main.exe: main.o kernel.o
  7   $(NVCC) $^ -o $@
  8
  9 main.o: main.cpp kernel.h
 10   $(NVCC) $(NVCC_FLAGS) -c $< -o $@
 11
 12 kernel.o: kernel.cu kernel.h
 13   $(NVCC) $(NVCC_FLAGS) -c $< -o $@

Now we arrive at our primary focus: the kernel implementations starting with 
the global memory version in Listing 5.14. We hope that kernel codes are start-
ing to look somewhat familiar so that we can just mention a few notable new 
aspects:

• Lines 24–27 define the usual row, column, and flat indices. They also do
bounds checking.

• Line 28 defines the size (width or height), fltSz, of the stencil. We use the
prefix flt (as in filter) for stencil quantities.

• Lines 31–41 accumulate the stencil contributions as a nested for loop with
indices cd and rd, which are the column displacement and row displacement
from the central pixel to a specific pixel under the mask.

• Note that the input data is read from the d_in global memory array and written
to the d_out global memory array.

Listing 5.14 sharpen/kernel.cu with global memory implementation
  1 #include "kernel.h"
  2 #define TX 32
  3 #define TY 32
  4 #define RAD 1
  5
  6 int divUp(int a, int b) { return (a + b - 1) / b; }
  7
  8 __device__
  9 unsigned char clip(int n) { return n > 255 ? 255 : (n < 0 ? 0 : n); }
 10
 11 __device__
 12 int idxClip(int idx, int idxMax) {
 13   return idx > (idxMax-1) ? (idxMax-1) : (idx < 0 ? 0 : idx);
 14 }
 15
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 16 __device__
 17 int flatten(int col, int row, int width, int height) {
 18   return idxClip(col, width) + idxClip(row, height)*width;
 19 }
 20
 21 __global__
 22 void sharpenKernel(uchar4 *d_out, const uchar4 *d_in,
 23 const float *d_filter, int w, int h) {
 24   const int c = threadIdx.x + blockDim.x * blockIdx.x;
 25   const int r = threadIdx.y + blockDim.y * blockIdx.y;
 26   if ((c >= w) || (r >= h)) return;
 27   const int i = flatten(c, r, w, h);
 28   const int fltSz = 2*RAD + 1;
 29   float rgb[3] = {0.f, 0.f, 0.f};
 30
 31   for (int rd = -RAD; rd <= RAD; ++rd) {
 32     for (int cd = -RAD; cd <= RAD; ++cd) {
 33 int imgIdx = flatten(c + cd, r + rd, w, h);
 34 int fltIdx = flatten(RAD + cd, RAD + rd, fltSz, fltSz);
 35 uchar4 color = d_in[imgIdx];
 36 float weight = d_filter[fltIdx];
 37 rgb[0] += weight*color.x;
 38 rgb[1] += weight*color.y;
 39 rgb[2] += weight*color.z;
 40     }
 41   }
 42   d_out[i].x = clip(rgb[0]);
 43   d_out[i].y = clip(rgb[1]);
 44   d_out[i].z = clip(rgb[2]);
 45 }
 46
 47 void sharpenParallel(uchar4 *arr, int w, int h) {
 48   const int fltSz = 2 * RAD + 1;
 49   const float filter[9] = {-1.0, -1.0, -1.0,
 50                            -1.0,  9.0, -1.0,
 51                            -1.0, -1.0, -1.0};
 52
 53   uchar4 *d_in = 0, *d_out = 0;
 54   float *d_filter = 0;
 55
 56   cudaMalloc(&d_in, w*h*sizeof(uchar4));
 57   cudaMemcpy(d_in, arr, w*h*sizeof(uchar4), cudaMemcpyHostToDevice);
 58
 59   cudaMalloc(&d_out, w*h*sizeof(uchar4));
 60
 61   cudaMalloc(&d_filter, fltSz*fltSz*sizeof(float));
 62   cudaMemcpy(d_filter, filter, fltSz*fltSz*sizeof(float),
 63 cudaMemcpyHostToDevice);
 64
 65   const dim3 blockSize(TX, TY);
 66   const dim3 gridSize(divUp(w, blockSize.x), divUp(h, blockSize.y));
 67
 68   sharpenKernel<<<gridSize, blockSize>>>(d_out, d_in, d_filter, w, h);
 69
 70   cudaMemcpy(arr, d_out, w*h*sizeof(uchar4), cudaMemcpyDeviceToHost);
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 71   cudaFree(d_in);
 72   cudaFree(d_out);
 73   cudaFree(d_filter);
 74 }

The second implementation is shown in Listing 5.15. Notable changes include 
the following:

• Creation of the shared array s_in on line 24.

• A tile of input data is loaded into the shared array on lines 36–61, including
edge halo values on lines 50–60 and corner halo values on lines 40–49.

• The kernel launch on line 102 includes a third execution configuration param-
eter smSz that specifies the number of bytes of memory to allocate for the
shared array.

Listing 5.15 sharpen/kernel.cu for shared memory input array
  1 #include "kernel.h"
  2 #define TX 32
  3 #define TY 32
  4 #define RAD 1
  5
  6 int divUp(int a, int b) { return (a + b - 1) / b; }
  7
  8 __device__
  9 unsigned char clip(int n) { return n > 255 ? 255 : (n < 0 ? 0 : n); }
 10
 11 __device__
 12 int idxClip(int idx, int idxMax) {
 13   return idx > (idxMax-1) ? (idxMax-1) : (idx < 0 ? 0 : idx);
 14 }
 15
 16 __device__
 17 int flatten(int col, int row, int width, int height) {
 18   return idxClip(col, width) + idxClip(row, height)*width;
 19 }
 20
 21 __global__
 22 void sharpenKernel(uchar4 *d_out, const uchar4 *d_in,
 23 const float *d_filter, int w, int h) {
 24   extern __shared__ uchar4 s_in[];
 25   const int c = threadIdx.x + blockDim.x * blockIdx.x;
 26   const int r = threadIdx.y + blockDim.y * blockIdx.y;
 27   if ((c >= w) || (r >= h)) return;
 28   const int i = flatten(c, r, w, h);
 29   const int s_c = threadIdx.x + RAD;
 30   const int s_r = threadIdx.y + RAD;
 31   const int s_w = blockDim.x + 2*RAD;
 32   const int s_h = blockDim.y + 2*RAD;
 33   const int s_i = flatten(s_c, s_r, s_w, s_h);
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 34   const int fltSz = 2*RAD + 1;
 35
 36   // Regular cells
 37   s_in[s_i] = d_in[i];
 38
 39   // Halo cells
 40   if (threadIdx.x < RAD && threadIdx.y < RAD) {
 41     s_in[flatten(s_c - RAD, s_r - RAD, s_w, s_h)] =
 42 d_in[flatten(c - RAD, r - RAD, w, h)];
 43     s_in[flatten(s_c + blockDim.x, s_r - RAD, s_w, s_h)] =
 44 d_in[flatten(c + blockDim.x, r - RAD, w, h)];
 45     s_in[flatten(s_c - RAD, s_r + blockDim.y, s_w, s_h)] =
 46 d_in[flatten(c - RAD, r + blockDim.y, w, h)];
 47     s_in[flatten(s_c + blockDim.x, s_r + blockDim.y, s_w, s_h)] =
 48 d_in[flatten(c + blockDim.x, r + blockDim.y, w, h)];
 49   }
 50   if (threadIdx.x < RAD) {
 51     s_in[flatten(s_c - RAD, s_r, s_w, s_h)] =
 52 d_in[flatten(c - RAD, r, w, h)];
 53     s_in[flatten(s_c + blockDim.x, s_r, s_w, s_h)] =
 54 d_in[flatten(c + blockDim.x, r, w, h)];
 55   }
 56   if (threadIdx.y < RAD) {
 57     s_in[flatten(s_c, s_r - RAD, s_w, s_h)] =
 58 d_in[flatten(c, r - RAD, w, h)];
 59     s_in[flatten(s_c, s_r + blockDim.y, s_w, s_h)] =
 60 d_in[flatten(c, r + blockDim.y, w, h)];
 61   }
 62   __syncthreads();
 63
 64   float rgb[3] = {0.f, 0.f, 0.f};
 65   for(int rd = -RAD; rd <= RAD; ++rd) {
 66     for(int cd = -RAD; cd <= RAD; ++cd) {
 67 const int s_imgIdx = flatten(s_c + cd, s_r + rd, s_w, s_h);
 68 const int fltIdx = flatten(RAD + cd, RAD + rd, fltSz, fltSz);
 69 const uchar4 color = s_in[s_imgIdx];
 70 const float weight = d_filter[fltIdx];
 71 rgb[0] += weight*color.x;
 72 rgb[1] += weight*color.y;
 73 rgb[2] += weight*color.z;
 74     }
 75   }
 76   d_out[i].x = clip(rgb[0]);
 77   d_out[i].y = clip(rgb[1]);
 78   d_out[i].z = clip(rgb[2]);
 79 }
 80
 81 void sharpenParallel(uchar4 *arr, int w, int h) {
 82   const int fltSz = 2 * RAD + 1;
 83   const float filter[9] = {-1.0, -1.0, -1.0,
 84                            -1.0,  9.0, -1.0,
 85                            -1.0, -1.0, -1.0};
 86
 87   uchar4 *d_in = 0, *d_out = 0;
 88   float *d_filter = 0;
 89
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 90   cudaMalloc(&d_in, w*h*sizeof(uchar4));
 91   cudaMemcpy(d_in, arr, w*h*sizeof(uchar4), cudaMemcpyHostToDevice);
 92
 93   cudaMalloc(&d_out, w*h*sizeof(uchar4));
 94
 95   cudaMalloc(&d_filter, fltSz*fltSz*sizeof(float));
 96   cudaMemcpy(d_filter, filter, fltSz*fltSz*sizeof(float),
 97 cudaMemcpyHostToDevice);
 98
 99   const dim3 blockSize(TX, TY);
100   const dim3 gridSize(divUp(w, TX), divUp(h, TY));
101   const size_t smSz = (TX+2*RAD)*(TY+2*RAD)*sizeof(uchar4);
102   sharpenKernel<<<gridSize, blockSize, smSz>>>(d_out, d_in, d_filter,
103 w, h);
104
105   cudaMemcpy(arr, d_out, w*h*sizeof(uchar4), cudaMemcpyDeviceToHost);
106   cudaFree(d_in);
107   cudaFree(d_out);
108   cudaFree(d_filter);
109 }

The third version shown in Listing 5.16 creates a shared memory array for both 
reading input and writing output. The fact that only one shared array can be 
created leads to the bit of trickery that appears on lines 35–37 and 106.

Listing 5.16 sharpen/kernel.cu with input and output shared memory arrays
  1 #include "kernel.h"
  2 #define TX 32
  3 #define TY 32
  4 #define RAD 1
  5
  6 int divUp(int a, int b) { return (a + b - 1) / b; }
  7
  8 __device__
  9 unsigned char clip(int n) { return n > 255 ? 255 : (n < 0 ? 0 : n); }
 10
 11 __device__
 12 int idxClip(int idx, int idxMax) {
 13   return idx > (idxMax-1) ? (idxMax-1) : (idx < 0 ? 0 : idx);
 14 }
 15
 16 __device__
 17 int flatten(int col, int row, int width, int height) {
 18   return idxClip(col, width) + idxClip(row, height)*width;
 19 }
 20
 21 __global__
 22 void sharpenKernel(uchar4 *d_out, const uchar4 *d_in,
 23 const float *d_filter, int w, int h) {
 24   const int c = threadIdx.x + blockDim.x * blockIdx.x;
 25   const int r = threadIdx.y + blockDim.y * blockIdx.y;
 26   if ((c >= w) || (r >= h)) return;
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 27   const int i = flatten(c, r, w, h);
 28   const int s_c = threadIdx.x + RAD;
 29   const int s_r = threadIdx.y + RAD;
 30   const int s_w = blockDim.x + 2*RAD;
 31   const int s_h = blockDim.y + 2*RAD;
 32   const int s_i = flatten(s_c, s_r, s_w, s_h);
 33   const int fltSz = 2*RAD + 1;
 34
 35   extern __shared__ uchar4 s_block[];
 36   uchar4 *s_in = s_block;
 37   uchar4 *s_out = &s_block[s_w*s_h];
 38
 39   // Regular cells
 40   s_in[s_i] = d_in[i];
 41
 42   // Halo cells
 43   if (threadIdx.x < RAD && threadIdx.y < RAD) {
 44     s_in[flatten(s_c - RAD, s_r - RAD, s_w, s_h)] =
 45 d_in[flatten(c - RAD, r - RAD, w, h)];
 46     s_in[flatten(s_c + blockDim.x, s_r - RAD, s_w, s_h)] =
 47 d_in[flatten(c + blockDim.x, r - RAD, w, h)];
 48     s_in[flatten(s_c - RAD, s_r + blockDim.y, s_w, s_h)] =
 49 d_in[flatten(c - RAD, r + blockDim.y, w, h)];
 50     s_in[flatten(s_c + blockDim.x, s_r + blockDim.y, s_w, s_h)] =
 51 d_in[flatten(c + blockDim.x, r + blockDim.y, w, h)];
 52   }
 53   if (threadIdx.x < RAD) {
 54     s_in[flatten(s_c - RAD, s_r, s_w, s_h)] =
 55 d_in[flatten(c - RAD, r, w, h)];
 56     s_in[flatten(s_c + blockDim.x, s_r, s_w, s_h)] =
 57 d_in[flatten(c + blockDim.x, r, w, h)];
 58   }
 59   if (threadIdx.y < RAD) {
 60     s_in[flatten(s_c, s_r - RAD, s_w, s_h)] =
 61 d_in[flatten(c, r - RAD, w, h)];
 62     s_in[flatten(s_c, s_r + blockDim.y, s_w, s_h)] =
 63 d_in[flatten(c, r + blockDim.y, w, h)];
 64   }
 65   __syncthreads();
 66
 67   float rgb[3] = {0.f, 0.f, 0.f};
 68   for(int rd = -RAD; rd <= RAD; ++rd) {
 69     for(int cd = -RAD; cd <= RAD; ++cd) {
 70 const int s_imgIdx = flatten(s_c + cd, s_r + rd, s_w, s_h);
 71 const int fltIdx = flatten(RAD + cd, RAD + rd, fltSz, fltSz);
 72 const uchar4 color = s_in[s_imgIdx];
 73 const float weight = d_filter[fltIdx];
 74 rgb[0] += weight*color.x;
 75 rgb[1] += weight*color.y;
 76 rgb[2] += weight*color.z;
 77     }
 78   }
 79
 80   const int s_outIdx = threadIdx.y*blockDim.x + threadIdx.x;
 81   s_out[s_outIdx].x = clip(rgb[0]);
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 82   s_out[s_outIdx].y = clip(rgb[1]);
 83   s_out[s_outIdx].z = clip(rgb[2]);
 84
 85   __syncthreads();
 86   d_out[i] = s_out[s_outIdx];
 87 }
 88
 89 void sharpenParallel(uchar4 *arr, int w, int h) {
 90   const int fltSz = 2 * RAD + 1;
 91   const float filter[9] = {-1.0, -1.0, -1.0,
 92                            -1.0,  9.0, -1.0,
 93                            -1.0, -1.0, -1.0};
 94   uchar4 *d_in = 0, *d_out = 0;
 95   float *d_filter = 0;
 96
 97   cudaMalloc(&d_in, w*h*sizeof(uchar4));
 98   cudaMemcpy(d_in, arr, w*h*sizeof(uchar4), cudaMemcpyHostToDevice);
 99   cudaMalloc(&d_out, w*h*sizeof(uchar4));
100   cudaMalloc(&d_filter, fltSz*fltSz*sizeof(float));
101   cudaMemcpy(d_filter, filter, fltSz*fltSz*sizeof(float),
102 cudaMemcpyHostToDevice);
103
104   const dim3 blockSize(TX, TY);
105   const dim3 gridSize(divUp(w, TX), divUp(h, TY));
106   const size_t smSz = ((TX+2*RAD)*(TY+2*RAD)+(TX*TY))*sizeof(uchar4);
107   sharpenKernel<<<gridSize, blockSize, smSz>>>(d_out, d_in, d_filter,
108 w, h);
109   cudaMemcpy(arr, d_out, w*h*sizeof(uchar4), cudaMemcpyDeviceToHost);
110   cudaFree(d_in);
111   cudaFree(d_out);
112   cudaFree(d_filter);
113 }

A single shared array s_block is created of size smSz, but now the kernel 
launcher sharpenParallel() increases the allocated size, as specified on 
line 106. The number of uchar4 variables is now set to be the sum of the num-
ber of pixels in the input tile, ((TX+2*RAD)*(TY+2*RAD)), and the number of 
pixels in the output tile (TX*TY). Lines 36 and 37 divide up s_block to create 
the illusion of separate shared arrays for input and output.

On line 36, uchar4 *s_in = s_block creates a pointer to the beginning of 
the shared array, and on line 37 uchar4 *s_out = &s_block[s_w*s_h] 
creates a pointer at the entry beyond what is needed to store the tile of input 
data. With this set up, we can write the code as if s_in and s_out are sepa-
rate arrays, and some pointer arithmetic going on in the background makes it 
all work. On lines 81–83, the output pixel value is written to shared memory, 
and __syncthreads() is called to make sure all the output values are writ-
ten to s_out in shared memory before the shared output array contents are 
copied to d_out in global memory. After the kernel has completed, the results 
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are transferred from d_out back to the host array arr from where CImg can 
construct and write the output image file.

That completes the tour of the code, and it is time to build and run the app and 
inspect the results. (Be sure to include a copy of butterfly.bmp and CImg.h 
in the project directory before compiling the app.) We chose an input image 
butterfly.bmp that is shown along with the sharpened output image in 
Figure 5.4. The images show a giant owl butterfly, and sharpening produces 
noticeable enhancement of the vein structure in the wings.

Test the sharpen app and verify that all three versions produce the same output 
image. After verifying that the results are consistent, let’s compare performance.

We’ll generate the performance information using the NVIDIA Visual Profiler 
(NVVP ). A detailed introduction to NVVP can be found in Appendix D, “CUDA 
Practicalities: Timing, Profiling, Error Handling, and Debugging.” Start NVVP, 
open a New Session, and fill in the entry for File: with the full path to the 
executable you want to profile. You also need to fill in a Working Directory: 
giving the path to the folder where the input image is stored if the executable 
and the image are in different folders.

Profiling Tip
To ward off possible errors, you should insert the line cudaDeviceReset(); at 
the end of your application (above return 0;) and rebuild before profiling with NVVP.

(a) (b)

Figure 5.4 Images of a giant owl butterfly: (a) original and (b) sharpened
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Profiling results of the global memory version of the sharpen app are shown in 
Figure 5.5, where the first warning sign (in both the Properties tab at top-
right and the Analysis tab at the bottom) deals with Low Global Memory 
Load Efficiency, which is our cue that a shared memory implementation 
may improve memory transfer efficiency.

Profiling results of the shared input array version of the sharpen app are shown 
in Figure 5.6. The Properties tab shows that Global Store Efficiency 
is now 83.7%, up from 59.1%. The kernel Duration of 292.232 μs represents 
a 20% decrease from the previous value of 345.993 μs.

The Results tab no longer shows the Low Global Memory Load Efficiency 
warning, but there is still a Low Global Memory Store Efficiency 

Figure 5.5 Visual Profiler results for the global memory implementation of the sharpen app
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warning associated with the Global Store Efficiency of 30.7% shown in 
the Properties tab. There is also a new warning about Low Warp Execution 
Efficiency of 78.8%. This warning has to do with storing the results of the 
kernel computation, and using shared memory to store the output provides a 
possible approach for resolving this warning.

Let’s look at the results of profiling the kernel using shared memory for both 
input and output data, as shown in Figure 5.7, to determine the effectiveness of 
this approach. In the Analysis tab, at the bottom of the Visual Profiler win-
dow, select Kernel Performance and see that the Results pane shows 
a check mark on a green background along with the No Issues message. 

Figure 5.6 Profiling results for the sharpen app implementation that loads input data into a 
shared memory array
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The efficiencies in the Properties tab are now all above warning levels. The 
duration of kernel execution has also decreased further to 287.336 μs, but 
this is only about a 2% improvement over the time for the shared input array 
implementation.

The net result is that, rather than having to do a global memory store for each 
output element, the system can increase memory store efficiency by bundling 
multiple elements of the output data into a single memory transaction.

Another warning from the shared input array profiling session involved Low 
Warp Execution Efficiency (78.8%). The shared input/output version 

Figure 5.7 Profiling results for sharpenKernel() with shared memory for both input and 
output data
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raised the warp execution efficiency to 80.5% and eliminated that warning. It turns 
out that we can further improve the warp execution efficiency by adjusting the block 
dimensions. Changing the block dimensions from 32 × 32 to 128 × 8 produces 
the results shown in Figure 5.8. Now the Warp Execution Efficiency is up 
to 92.9%, and the kernel execution duration is down to 281.704 μs (another ~2% 
improvement).

Overall, the profiling results indicate that between using shared memory and 
adjusting block dimensions, a total kernel performance gain of about 25% was 
achieved. The improvement achieved by use of shared memory for the input 
array was significant both in terms of the memory transfer efficiency and kernel 

Figure 5.8 Profiling results for sharpenKernel() with shared memory for both input and 
output data and block dimensions of 128 × 8
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timing measurements. Using shared memory for the output array produced a 
significant increase in global store efficiency but only small improvement in 
kernel duration. In this case, we achieved some small gains by increasing the 
width of the block. However, tuning the execution configuration parameters is 
an empirical process; experimentation is required to determine what block 
dimensions work best for a particular system and input data, and a reasonable 
way to generate candidate block dimensions is to start by choosing values of 
blockDim.x that are multiples of 32.

Summary
In this chapter, we have looked at the situation in which computational threads, 
rather than being completely independent, need to cooperate with neighboring 
threads in the grid. We formulated uniform interaction with neighboring threads 
as a stencil computation, and we implemented code for three applications: 
computation of derivatives from sampled values of a function (dd_1d_global 
and dd_1d_shared), solving Laplace’s equation for steady-state temperature 
distribution via Jacobi iteration (heat_2d), and enhancing edges in an image 
(sharpen). We presented initial implementations using only arrays stored 
in global memory and then showed how to adjust the implementation to take 
advantage of shared memory. We finished up by using NVIDIA Visual Profiler 
(NVVP) to inspect the performance of three different versions of the kernel for 
the sharpen app: one with only global memory arrays, one with a shared input 
array, and one with a shared input/output array. We saw that, for the specific 
case of the sample image, execution parameters, and GPU used for execution 
during profiling, loading the input data into shared memory produced significant 
improvements in both global load efficiency and kernel duration. Further use of 
shared memory for storing or transferring the output data produced a signifi-
cant improvement in global store efficiency, but only a small decrease in kernel 
duration. Finally, additional small improvements were obtained by adjusting 
block dimensions.

This points out one of the realities of optimizing code: The performance 
enhancement may not scale with the time and effort that goes into the optimi-
zation. It often pays to stop and think about the expected costs and potential 
benefits before embarking on a major optimization effort. Remember that SIMT 
parallelism scales reasonably well, so sometimes the right answer is simply 
acquiring additional processors. You should also be aware of Amdahl’s law, 
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which limits the amount of speedup S that can be achieved by parallelization 
from 1 to N processors:

S N( )= 1

1−P( )+PN
where P is the fraction of the total computation that can be parallelized. For 
example, if 90% of the computing task can be parallelized, then even with 
infinitely many processors, 10% of the job needs to happen serially and the max-
imum achievable speedup due to parallelization is 10x.

Suggested Projects
1. Embellish the heat_2d app by

a. Using the 9-point Laplacian stencil:

1
20

⎛

⎝⎜
⎞

⎠⎟

1 4 1
4 −20 4
1 4 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
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b. Using a larger Laplacian stencil

c. Importing an image and segmenting or thresholding it to create a very
irregular region on which to impose boundary conditions

2. The heat_2d app provides visualization of the output and an iteration
counter, but what would you propose as a reasonable measure of conver-
gence to steady state? What would it take to implement your criterion?

3. Experiment with the sharpen app and see how the following changes affect
performance (as measured using Visual Profiler):

a. Choose sample images of different sizes.

b. Change the execution parameters (i.e., block size and grid size).

c. Choose alternate stencils of different sizes.
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Chapter 6

 Reduction and Atomic 
Functions

In this chapter we deal with computations where all of the threads interact to 
contribute to a single output. Many such computations lead to a pattern known 
as reduction, which involves an input array whose elements are combined until 
a single output value is obtained. Applications include dot products (a.k.a. inner 
products or scalar products), image similarity measures, integral properties, 
and (with slight generalization) histograms.

Threads Interacting Globally
In Chapter 5, “Stencils and Shared Memory,” we took the first serious step 
toward dealing with interaction between computational threads, but stencil 
computations only involve local interactions between threads that are nearby in 
the grid. Now we are ready to deal with computations where all of the threads 
interact to contribute to the output.

As we prepare to move forward from interactions between nearby threads that 
arise in stencil computations to more general thread interactions, there are a 
few questions that deserve considered answers before proceeding:

Q: Do reduction computations arise in real applications?

A:  Yes, they arise frequently. Dot products may begin with term-wise multiplica-
tion, but they end by summing the contributions from each of those products; 
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every entry contributes to that sum, so the operation is a reduction. Matrices 
can be thought of as lists of vectors, so matrix-vector and matrix-matrix 
multiplications involve reductions. Inertial properties (e.g., centroids and 
moments of inertia) that are obtained by summing contributions from mass 
elements involve reductions.

Q: Do reductions arise related to any of the applications we have already seen?

A:  Again, yes. When we solved for steady-state heat distribution using Jacobi 
iteration, we just started the iteration and let it run toward steady state. 
At the end of the chapter, one of the projects asked about stopping criterion: 
How do you tell that the current state is close to equilibrium so the compu-
tation can be terminated? The usual approach is to stop the computation 
once further iterations do not produce a significant change in the array of 
temperature values. Determining whether the change is significant requires 
a measure of the change in the temperature array. Whether you use the 
L2-norm (in other words the multidimensional Pythagorean formula where 
elements are combined by squaring and adding) or the L∞-norm (where ele-
ments are combined by comparing and taking the larger absolute value), all 
the elements can interact to contribute to the outcome, and the computation 
required includes a reduction.

Q:  If reductions are so common, why is it that the sample code in the CUDA 7.5 
Visual Studio template just does an element-wise operation (addition)?

A:  The element-wise operation is the part that is easy to parallelize. With no 
interaction at all between threads, it is sometimes termed embarrassingly 
parallel. Yes, we could change the element-wise operation from addition 
to multiplication and almost have a dot product; all that is left is to sum the 
results of the element-wise products, but that turns out to be the more chal-
lenging part to parallelize.

Q:  If reductions are important, shouldn’t there be code libraries that provide 
reduction implementations that I can use?

A:  Yes, there are library implementations of reductions available for your use. In 
this chapter we provide enough background so you can implement your own 
reductions. We discuss using libraries for this purpose in Chapter 8, “Using 
CUDA Libraries,” and you can go there directly if you are in urgent need of 
reduction capabilities.

With the Q&A out of the way, let’s jump into implementing some particular 
reductions starting with the dot product.
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Implementing parallel_dot
We begin by creating an app called parallel_dot to parallelize computation of 
the dot (or inner or scalar) product of a pair of input vectors. The input vectors, 
a and b, will be stored as two arrays of equal length N, and the output will be a 
single scalar quantity (stored in the variable res) equal to the sum of the prod-
ucts of the corresponding elements:

res =
idx=0

N−1

∑a idx⎡⎣ ⎤⎦*b idx⎡⎣ ⎤⎦

Since every element contributes to res, this is a classic reduction (perhaps the 
classic reduction). Any reduction requires a variable (like res) to accumulate the 
contributions from all of the threads. In CUDA’s SIMT model of parallelism, a vari-
able created in a thread (and stored in a register) is not accessible by any other 
thread. A variable declared as __shared__ (and stored in shared memory for 
the block) is not accessible to any thread outside of the block. To escape these 
limitations, the reduction will need an accumulator variable that is declared 
outside the kernel and stored in global memory.

A completely naïve approach would have each thread read a pair of correspond-
ing elements from the input arrays in global memory, multiply them together, 
and add the result to the value stored in the global accumulator variable d_res 
(the device version of the result that will get copied to res on the host side when 
we are all done). If you are starting to develop some feel for the CUDA world, the 
description of that approach should cause, if not fear and loathing, at least mild 
aversion. Yes, the input data has to be read from global memory once; there 
is no getting around that. However, there is no good reason that every thread 
should have to write its result to global memory. The global memory traffic 
can be greatly reduced by taking a tiled approach in which we break the large 
input vectors up into block-sized pieces and only update d_res once per block 
(instead of once per thread). The simplest version of the plan goes as follows:

• Create a shared memory array to store the product of corresponding entries
in the tiles of the input arrays.

• Synchronize to ensure that the shared array is completely filled before
proceeding.

• Assign one thread (e.g., with threadIdx.x == 0) to loop over the shared
array (whose data is accessible by any thread in the block) to accumulate the
contribution from the block into a register variable blockSum.
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• Perform one global memory transaction (for the whole block) to add blockSum
to the value stored in the global accumulator d_res.

The kernel for a shared memory implementation of the dot product kernel 
dotKernel() and the wrapper function dotLauncher() are shown in List-
ing 6.1. As usual, we include the header file and the standard input/output library, 
and then we define constant values including TPB (the number of threads per 
block) and ATOMIC, which we will get to shortly. The kernel starts with the usual 
global and shared index computations and bounds check on lines 8–10. The 
shared array s_prod is declared on line 12. (The s_ reminds us that the array 
is shared, and prod indicates that it will hold the product of the corresponding 
elements of the input arrays.) The entries of the input arrays at the global index 
position are multiplied, and the product is stored as the local index entry of s_prod 
on line 13. On line 14, __syncthreads() ensures that s_prod has been fully 
populated before any thread proceeds further. The way we’ve set things up, only 
the first thread (with threadIdx.x == 0) needs to proceed further. It initial-
izes the register variable blockSum = 0 on line 17, then loops over the range of 
the shared array index incrementing blockSum by the values stored in s_prod 
on lines 16–20. We’ve included a print statement on line 21 so you can check the 
blockSum values and see explicitly that the blocks do not execute in any partic-
ular order. While the accumulation within the block can be performed in a more 
parallel fashion, let’s hold off on discussion of such optional embellishments 
until we’ve created and tested an initial implementation of parallel_dot.

Finally, on lines 23–26, the block’s contribution, blockSum, is added to the value 
stored in the global accumulator d_res. Note that what really happens here is a 
read-add-store sequence of operations, and it is coded up to be performed 
in two very different ways depending on the value of ATOMIC set in the #define 
directive. With #define ATOMIC 0, regular addition occurs. With #define 
ATOMIC 1, the function atomicAdd(d_res, blockSum) is called to increase 
the value of d_res by the amount blockSum. Let’s look at the other files needed 
for the project and then perform test runs to see how things work.

Listing 6.1 parallel_dot/kernel.cu including dotKernel() and the wrapper function 
dotLauncher()

  1 #include "kernel.h"
  2 #include <stdio.h>
  3 #define TPB 64
  4 #define ATOMIC 1 // 0 for non-atomic addition
  5
  6 __global__
  7 void dotKernel(int *d_res, const int *d_a, const int *d_b, int n) {
  8   const int idx = threadIdx.x + blockDim.x * blockIdx.x;
  9   if (idx >= n) return;



ptg22232966

125

IMPLEMENTING parallel_dot

 10   const int s_idx = threadIdx.x;
 11
 12   __shared__ int s_prod[TPB];
 13   s_prod[s_idx] = d_a[idx] * d_b[idx];
 14   __syncthreads();
 15
 16   if (s_idx == 0) {
 17     int blockSum = 0;
 18     for (int j = 0; j < blockDim.x; ++j) {
 19 blockSum += s_prod[j];
 20     }
 21     printf("Block_%d, blockSum = %d\n", blockIdx.x, blockSum);
 22     // Try each of two versions of adding to the accumulator
 23     if (ATOMIC) {
 24 atomicAdd(d_res, blockSum);
 25     } else {
 26       *d_res += blockSum;
 27     }
 28   }
 29 }
 30
 31 void dotLauncher(int *res, const int *a, const int *b, int n) {
 32   int *d_res;
 33   int *d_a = 0;
 34   int *d_b = 0;
 35
 36   cudaMalloc(&d_res, sizeof(int));
 37   cudaMalloc(&d_a, n*sizeof(int));
 38   cudaMalloc(&d_b, n*sizeof(int));
 39
 40   cudaMemset(d_res, 0, sizeof(int));
 41   cudaMemcpy(d_a, a, n*sizeof(int), cudaMemcpyHostToDevice);
 42   cudaMemcpy(d_b, b, n*sizeof(int), cudaMemcpyHostToDevice);
 43
 44   dotKernel<<<(n + TPB - 1)/TPB, TPB>>>(d_res, d_a, d_b, n);
 45   cudaMemcpy(res, d_res, sizeof(int), cudaMemcpyDeviceToHost);
 46
 47   cudaFree(d_res);
 48   cudaFree(d_a);
 49   cudaFree(d_b);
 50 }

The code for the header file kernel.h is shown in Listing 6.2. It consists of the 
include guard along with the prototype for the wrapper function dotLauncher() 
so it can be called from main().

Listing 6.2 parallel_dot/kernel.h

  1 #ifndef KERNEL_H
  2 #define KERNEL_H
  3
  4 void dotLauncher(int *res, const int *a, const int *b, int n);
  5
  6 #endif
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The main.cpp for the parallel_dot app is shown in Listing 6.3. It starts with 
declarations for cpu_res (which stores the CPU reference result), gpu_res 
(which stores the GPU result), and pointers to the input arrays a and b on lines 
9–10. The input array storage is allocated and initialized (with all elements 
having value 1 to keep things simple) on lines 9–16. The serial reference result 
is computed and printed to the console on lines 18–21. The kernel wrapper 
function dotLauncher() is called on line 23 and the result of the parallel GPU 
computation is printed to the console on line 24. We finish up by freeing the 
memory allocated for the input arrays.

Listing 6.3 parallel_dot/main.cpp

  1 #include "kernel.h"
  2 #include <stdio.h>
  3 #include <stdlib.h>
  4 #define N 1024
  5
  6 int main() {
  7   int cpu_res = 0;
  8   int gpu_res = 0;
  9   int *a = (int*)malloc(N*sizeof(int));
 10   int *b = (int*)malloc(N*sizeof(int));
 11
 12   //Initialize input arrays
 13   for (int i = 0; i < N; ++i) {
 14     a[i] = 1;
 15     b[i] = 1;
 16   }
 17
 18   for (int i = 0; i < N; ++i) {
 19     cpu_res += a[i] * b[i];
 20   }
 21   printf("cpu result = %d\n", cpu_res);
 22
 23   dotLauncher(&gpu_res, a, b, N);
 24   printf("gpu result = %d\n", gpu_res);
 25
 26   free(a);
 27   free(b);
 28   return 0;
 29 }

The Makefile for compiling the app in Linux is given in Listing 6.4.

Listing 6.4 parallel_dot/Makefile

  1 NVCC = /usr/local/cuda/bin/nvcc
  2 NVCC_FLAGS = -g -G -Xcompiler -Wall
  3
  4 all: main.exe
  5
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  6 main.exe: main.o kernel.o
  7   $(NVCC) $^ -o $@
  8
  9 main.o: main.cpp kernel.h
 10   $(NVCC) $(NVCC_FLAGS) -c $< -o $@
 11
 12 kernel.o: kernel.cu kernel.h
 13   $(NVCC) $(NVCC_FLAGS) -c $< -o $@

Once again, we’ve gone through all the code, and it is time to build and execute 
the app.

The parameter values in the code specify that the input vectors have 1,024 
entries (each of which is 1) and there are 64 threads in each block, so when you 
execute the app, you should get a manageable amount of output: one line for 
the CPU reference result, one line to give the index and sum for each block, and 
one line with the GPU result. Moreover, the values should be recognizable: each 
block should sum to 64 and the final result should be 1,024.

Now, let’s change line 4 of parallel_dot/kernel.cu to #define ATOMIC 0. 
Rebuild the app and run it to see what happens. Your results should resemble 
the sample output from parallel_dot shown in Figure 6.1, and there a few 
salient features worth noting. In the first line we see that the CPU correctly 
computed that the dot product of two vectors each consisting of 1,024 entries 
of 1 is 1,024. In the next 16 lines, we see that each block of length 64 computed 

Figure 6.1 Initial output from the parallel_dot app
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the correct contribution to the dot product, and we are reminded that the blocks 
execute in an order over which we have no control. In the next to last line, we get 
the news that, while each block computed the correct contribution, the global 
accumulator does not end up with the expected value of 1,024. Instead it ends 
up, in this case, with 640—that is, 10 × 64 instead of 16 × 64—so it appears that 
the contributions from six of the blocks got lost. (Note that simply re-executing 
the app can produce both different block execution orders and different values 
of gpu_res. Try running your app repeatedly and observing the variety of values 
returned.)

What exactly is going wrong? Thread 0 in each of the 16 blocks reads a value of 
d_res from global memory, adds its value of blockSum, and stores the result 
back into the memory location where d_res is stored. The problem is that the 
outcome of these operations depends on the sequence in which they are per-
formed, and we do not have control of that sequence. 

To be concrete, let’s consider just Block_11 (with blockIdx.x == 11) and 
Block_10 (with blockIdx.x == 10), which happened to be the first two blocks 
to execute according to the output in Figure 6.1. Block_11 happened to execute 
first, and its thread 0 read a value of 0 for d_res. That same thread 0 in Block_11 
will add its blockSum of 64 and store the value 0 + 64 = 64 back in the memory 
location of d_res. The thread 0 in Block_10 is also following the same instruc-
tions, but not in a way that is synchronized with Block_11. If Block_10 happens 
to read the value of d_res before Block_11 finishes updating the value, then 
Block_10 will also read the value 0 and write the value 64. If Block_10 happens 
to read the value of d_res after Block_11 finishes writing the updated value, 
then Block_10 reads 64 and writes 128.

This situ ation, in which the outcome of a computation depends on the order of 
operations whose sequencing is uncontrollable, is called a race condition, and the 
race conditions result in undefined behavior. To cure the race condition problem, 
we need to take back some control of the order of operations—in this case, to make 
sure that once a particular thread engages a global accumulator (e.g., to perform 
a read-modify-write operation sequence), no other thread can engage the global 
accumulator until the other thread has completed its operation sequence.

CUDA’s feature for dealing with race conditions is a group of functions called 
atomic functions. The word atom comes from Ancient Greek, meaning uncutta-
ble or indivisible. An atomic function performs a read-modify-write sequence 
of operations as an indivisible unit by a mechanism that resembles the clas-
sic library book lending model. When an atomic operation reads a value, that 
variable is “checked out” and not available to others wanting to read it. When 
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the modify-write part of the operation sequence is complete, the variable is 
“returned” to the stacks where it is once again accessible to another reader.

The good news is that atomic operations do provide a cure for our race con-
dition problem. The bad news is that there is a cost: Atomic operations force 
some serialization and slow things down a bit. This is a good time for another 
reminder that obtaining incorrect results fast does not constitute computational 
acceleration. Atomics should be used as needed to get things right, and beyond 
that, use of atomics should be avoided.

Now that we’ve proposed atomics as a solution to the race condition problem, 
let’s test it out by reverting to #define ATOMIC 1 on line 4 of parallel_dot/
kernel.cu. Rebuild your app and run it, and you should see a result similar to 
Figure 6.2, which shows the correct result of 1,024. You should run the app sev-
eral times to convince yourself that the correct answer is produced reliably.

While atomicAdd() served our needs in this case, CUDA offers 10 other atomic 
functions: atomicSub(), atomicExch(), atomicMin(), atomicMax(), 
atomicInc(), atomicDec(), atomicCAS() (where CAS stands for compare 
and swap), and the three bitwise functions atomicAnd(), atomicOr(), and 
atomicXor(). Refer to the CUDA C Programming Guide for details [1].

Figure 6.2 Correct output from the parallel_dot app using atomicAdd()
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A Floating-Point Caution
Note that standard definition of reduction involves an associative 2-input, 1- output 
operator that nicely describes how we normally think of addition. However, 
 floating-point addition is only approximately associative; the exact result from 
summing a float array depends on the order of operations, and changing the 
order of summation can have a big impact when your sum includes terms with 
large differences in magnitude. This is not a numerical analysis book, so we won’t 
get into all the details (see, e.g., “What Every Computer Scientist Should Know 
About Floating-Point Arithmetic” by David Goldberg [2]), but this does explain why 
we chose input arrays of type int for our first example.

Computing Integral Properties: 
centroid_2d

In this section we apply atomic operations to perform a reduction in 2D. In 
particular, we will take as input an image of an object on a white background 
region. (We’ll choose our object to be a state map, but you can apply the app to 
the images of your choice, and the background region will be referred to as the 
exterior of the object.) The centroid is simply the average location of a pixel in 
the object. However, we can also think of the centroid as a weighted average 
location of all the pixels in the entire image, where the weighting factor is the 
occupancy function:

χ
col,row

=
0, col,row{ }∈exterior
1, col,row{ }∈interior

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

The column coordinate of the centroid, c , is obtained as the sum over all the pix-
els of the weight times the column index divided by the sum of the weights, and 
similar thinking applies to the row coordinate, r . (Since we are using c  and r  
as centroid coordinates, we’ll call the column and row indices col and row.) The 
centroid coordinates are then given by

c = row∑ col∑ χ
col,row

*col

row∑ col∑ χ
col,row

, r = row∑ col∑ χ
col,row

*row

row∑ col∑ χ
col,row
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where the sums are over all pixels; that is, col from 0 to width-1 and row 
from 0 to height-1.

The implementation of the centroid_2d app includes the usual kernel, header, 
and main files, as shown in Listings 6.5, 6.6, and 6.7. Since the app needs to 
read and write images, the app also includes CImg.h, the header file for the 
image-processing package introduced with the sharpen app in Chapter 5, 
“Stencils and Shared Memory.”

Let’s start by looking at Listing 6.5, which includes code for centroidKernel() 
and the wrapper function centroidParallel().

Listing 6.5 centroid_2d/kernel.cu

  1 #include "kernel.h"
  2 #include <stdio.h>
  3 #include <helper_math.h>
  4 #define TPB 512
  5
  6 __global__
  7 void centroidKernel(const uchar4 *d_img, int *d_centroidCol,
  8 int *d_centroidRow, int *d_pixelCount,
  9 int width, int height) {
 10   __shared__ uint4 s_img[TPB];
 11
 12   const int idx = threadIdx.x + blockDim.x * blockIdx.x;
 13   const int s_idx = threadIdx.x;
 14   const int row = idx/width;
 15   const int col = idx - row*width;
 16
 17   if ((d_img[idx].x < 255 || d_img[idx].y < 255 ||
 18 d_img[idx].z < 255) && (idx < width*height)) {
 19     s_img[s_idx].x = col;
 20     s_img[s_idx].y = row;
 21     s_img[s_idx].z = 1;
 22   }
 23   else {
 24     s_img[s_idx].x = 0;
 25     s_img[s_idx].y = 0;
 26     s_img[s_idx].z = 0;
 27   }
 28   __syncthreads();
 29
 30   // for (int s = 1; s < blockDim.x; s *= 2) {
 31   //     int index = 2*s*s_idx;
 32   //     if (index < blockDim.x) {
 33   // s_img[index] += s_img[index+s];
 34   //     }
 35   //     __syncthreads();
 36   // }
 37
 38   for (int s = blockDim.x/2; s > 0; s >>= 1) {
 39     if (s_idx < s) {
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 40       s_img[s_idx] += s_img[s_idx + s];
 41     }
 42     __syncthreads();
 43   }
 44
 45   if (s_idx == 0) {
 46     atomicAdd(d_centroidCol, s_img[0].x);
 47     atomicAdd(d_centroidRow, s_img[0].y);
 48     atomicAdd(d_pixelCount, s_img[0].z);
 49   }
 50 }
 51
 52 void centroidParallel(uchar4 *img, int width, int height) {
 53   uchar4 *d_img = 0;
 54   int *d_centroidRow = 0, *d_centroidCol = 0, *d_pixelCount = 0;
 55   int centroidRow = 0, centroidCol = 0, pixelCount = 0;
 56
 57   // Allocate memory for device array and copy from host
 58   cudaMalloc(&d_img, width*height*sizeof(uchar4));
 59   cudaMemcpy(d_img, img, width*height*sizeof(uchar4),
 60 cudaMemcpyHostToDevice);
 61
 62   // Allocate and set memory for three integers on the device
 63   cudaMalloc(&d_centroidRow, sizeof(int));
 64   cudaMalloc(&d_centroidCol, sizeof(int));
 65   cudaMalloc(&d_pixelCount, sizeof(int));
 66   cudaMemset(d_centroidRow, 0, sizeof(int));
 67   cudaMemset(d_centroidCol, 0, sizeof(int));
 68   cudaMemset(d_pixelCount, 0, sizeof(int));
 69
 70   centroidKernel<<<(width*height + TPB - 1)/TPB, TPB>>>(d_img,
 71 d_centroidCol, d_centroidRow, d_pixelCount, width, height);
 72
 73   // Copy results from device to host.
 74   cudaMemcpy(&centroidRow, d_centroidRow, sizeof(int),
 75 cudaMemcpyDeviceToHost);
 76   cudaMemcpy(&centroidCol, d_centroidCol, sizeof(int),
 77 cudaMemcpyDeviceToHost);
 78   cudaMemcpy(&pixelCount, d_pixelCount, sizeof(int),
 79 cudaMemcpyDeviceToHost);
 80
 81   centroidCol /= pixelCount;
 82   centroidRow /= pixelCount;
 83
 84   printf("Centroid: {col = %d, row = %d} based on %d pixels\n",
 85 centroidCol, centroidRow, pixelCount);
 86
 87   // Mark the centroid with red lines
 88   for (int col = 0; col < width; ++col) {
 89     img[centroidRow*width + col].x = 255;
 90     img[centroidRow*width + col].y = 0;
 91     img[centroidRow*width + col].z = 0;
 92   }
 93   for (int row = 0; row < height; ++row) {
 94     img[row*width + centroidCol].x = 255;
 95     img[row*width + centroidCol].y = 0;
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 96     img[row*width + centroidCol].z = 0;
 97   }
 98
 99   // Free the memory allocated
100   cudaFree(d_img);
101   cudaFree(d_centroidRow);
102   cudaFree(d_centroidCol);
103   cudaFree(d_pixelCount);
104 }

The kernel definition starts with declaration of a shared array s_img and the 
usual 1D indices: idx for the array in global memory and s_idx for the array 
in shared memory. row and col are derived from the 1D index (not from 2D 
kernel launch parameters) and get used only in assignments in lines 19–20. In 
fact, a 1D kernel launch is sufficient (and convenient). What changes as we move 
up to 2D is that we need to accumulate contributions for two coordinates rather 
than one. We also need the sum of the weights (which in this case is equivalent 
to the count of interior, nonwhite pixels) in the computation of each coordinate, 
so we accumulate three sums (contributions to the row sum, contributions to the 
column sum, and contributions to the pixel count). To accommodate the three 
sums, we could use three separate arrays, but here we choose to have a single 
array s_img of type uint4. The first component s_img[].x stores the column 
contributions; the second component s_img[].y stores the row contributions; 
and the third component s_img[].z stores the pixel count contributions. (We 
only need to store three quantities, so we could use uint3, but we choose uint4 
because it allows for immediate generalization to 3D centroids and two uint4 
variables use 32 bytes of memory, which is a convenient size for efficient memory 
transactions.)

In lines 17–18 pixel indices and color values are tested. If the pixel index idx lies 
beyond the input array or the image pixel corresponding to this index is white, it 
is treated as an outside pixel (and the value 0 is stored in each of the x, y, and z 
channels). Otherwise, the pixel’s contribution is added to the shared memory block. 
A call to __syncthreads() ensures that all the values to be summed for the block 
are stored in the shared array before any thread proceeds with summing.

What remains is to sum the contributions in the shared array and increment the 
global accumulators using atomic operations to avoid race conditions. In the 
dot product example, we took the very simple and entirely serial approach of 
choosing a particular thread to compute the sum for the block. We mentioned 
that more parallel (and more efficient) approaches are available, and in fact, 
there are a lot of them. In a single, now well-known presentation from 2007, 
Mark Harris demonstrated seven increasingly efficient (and tricky) embellish-
ments [3]. If you have a GPU with compute capability 3.0 or higher (based on the 
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Kepler architecture), there is a whole other set of tricks available for efficient 
reductions, as detailed in a recent post on the Parallel Forall blog [4]. Here we 
are not assuming Kepler architecture, and we limit ourselves to just two of the 
effective techniques available on pre-Kepler GPUs. Lines 30–36 (which are com-
mented out, but available for you to experiment with) implement a first approach 
to parallel summation within the block. The basic idea is to have every other 
thread (corresponding to a stride of 2) increment its value at its own index by 
the value at the neighboring index. After synchronizing threads, we then double 
the stride to 4 and have every fourth thread increment the value at its index with 
the value 2 positions higher. We continue synchronizing, doubling the stride, and 
summing while the stride is less than the block size. Upon termination of the 
loop, the block sum resides at index 0, and that value can be added to the global 
accumulator using atomicAdd(). This approach makes significant progress 
by reducing the number of sequential steps required to sum over a block from 
O(blockDim.x) to O(log(blockDim.x)) but comes up short on efficiency of 
memory access. (For details of big-O notation, see [5].)

Lines 38–43 show an implementation that is more efficient in terms of memory 
access. It does a similar set of pairwise sums, but instead of summing neigh-
bors and storing the results spaced apart in the array, it sums entries spaced 
apart in the array and stores the results in neighboring locations. Please see [4] 
for further refinements. (Note that the sums involve uint4 variables, and 
helper_math.h is included to provide the definitions of arithmetic on vector 
variables. Be prepared to take a little extra care at build time to make sure this 
code gets properly incorporated.)

Lines 52–104 give the implementation of the wrapper function centroid-
Parallel() that prepares for and calls the kernel launch. We hope that such 
things are starting to look less surprising, and that there are just a few items 
worthy of special note. Lines 53–54 declare the pointers to the image data and 
to the three accumulator variables in global device memory. Line 55 declares 
the host variables to which the results will be copied. That is followed by various 
memory operations to allocate and initialize the necessary global memory for 
the input data and global accumulator variables. Lines 70–71 launch the kernel; 
as mentioned above, the notable feature is that a 1D kernel launch is all that is 
required. Lines 74–85 copy the results back to the host and print a summary to 
the command window. Lines 88–97 use the red channel to create vertical and 
horizontal axes through the centroid location in the output image, and the kernel 
concludes by freeing up the allocated memory.

The header file centroid_2d/kernel.h, shown in Listing 6.6, consists of 
the forward declaration of a CUDA built-in vector type and the prototype for the 
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centroidParallel() function that is called in main.cpp, which is shown in 
Listing 6.7.

Listing 6.6 centroid_2d/kernel.h

  1 #ifndef KERNEL_H
  2 #define KERNEL_H
  3
  4 struct uchar4;
  5
  6 void centroidParallel(uchar4 *img, int width, int height);
  7
  8 #endif 

The file centroid_2d/main.cpp, shown in Listing 6.7, begins with the usual 
#include and #define directives and uses the CImg library for importing and 
exporting images, as we did in Chapter 5, “Stencils and Shared Memory.” The 
 centroidParallel() func  tion call is the wrapper function that calls the kernel 
function  centroidKernel(), and once the kernel call is complete, it saves the 
 resulting image.

Listing 6.7 centroid_2d/main.cpp

  1 #include "kernel.h"
  2 #define cimg_display 0
  3 #include "CImg.h"
  4 #include <cuda_runtime.h>
  5
  6 int main()
  7 {
  8   // Initializing input and output images
  9   cimg_library::CImg<unsigned char> inImage("wa_state.bmp");
 10   cimg_library::CImg<unsigned char> outImage(inImage, "xyzc", 0);
 11   int width = inImage.width();
 12   int height = inImage.height();
 13
 14   // Initializing uchar array for image processing
 15   uchar4 *imgArray = (uchar4*)malloc(width*height*sizeof(uchar4));
 16
 17   // Copying CImg data to image array
 18   for (int row = 0; row < height; ++row) {
 19     for (int col = 0; col < width; ++col) {
 20 imgArray[row*width + col].x = inImage(col, row, 0);
 21 imgArray[row*width + col].y = inImage(col, row, 1);
 22 imgArray[row*width + col].z = inImage(col, row, 2);
 23     }
 24   }
 25
 26   centroidParallel(imgArray, width, height);
 27
 28   // Copying image array to CImg
 29   for (int row = 0; row < height; ++row) {
 30     for (int col = 0; col < width; ++col) {
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 31 outImage(col, row, 0) = imgArray[row*width + col].x;
 32 outImage(col, row, 1) = imgArray[row*width + col].y;
 33 outImage(col, row, 2) = imgArray[row*width + col].z;
 34     }
 35   }
 36
 37   outImage.save("wa_state_out.bmp");
 38   free(imgArray);
 39 }

The main() function should present few, if any, new features, aside from spec-
ifying an input file corresponding to a map of the State of Washington. You can 
choose a different input file, but whatever you choose needs to be copied into the 
project folder. The Makefile for compiling the app in Linux, shown in Listing 6.8, is 
set up to make sure that the common/inc directory from the CUDA Samples 
is included to provide access to helper_math.h.

To successfully build and run the app in Visual Studio, you need to add the 
input image file to the project using PROJECT ⇒ Add Existing Item 
and make one change in the Project Properties pages. Click on the sharpen 
project in the Solution Explorer and select PROJECT ⇒ Properties ⇒ 
Configuration Properties ⇒ C/C++ ⇒ General ⇒ Additional 
Include Directories and edit the list to include the CUDA Samples’ 
common\inc directory. Its default install location is C:\ProgramData\
NVIDIA Corporation\CUDA Samples\v7.5\common\inc.

Once again, we’ve gone through all the code, and it is time to build and execute 
the app.

Listing 6.8 centroid_2d/Makefile

  1 NVCC = /usr/local/cuda/bin/nvcc
  2 NVCC_FLAGS = -g -G -Xcompiler -Wall
  3 INC = -I/usr/local/cuda/samples/common/inc
  4
  5 all: main.exe
  6
  7 main.exe: main.o kernel.o
  8   $(NVCC) $^ -o $@
  9
 10 main.o: main.cpp kernel.h
 11   $(NVCC) $(NVCC_FLAGS) $(INC) -c $< -o $@
 12
 13 kernel.o: kernel.cu kernel.h
 14   $(NVCC) $(NVCC_FLAGS) $(INC) -c $< -o $@
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The sample input image, a map showing the watershed boundaries in the State 
of Washington, is shown in Figure 6.3. The results printed to command window 
indicate that the centroid, based on contributions from 504,244 pixels, is located 
at column 530 and row 317.

Finally, the output image showing axes through the centroid is shown in Figure 6.4. 
The computed state centroid lies in southern Chelan County a few miles west of 
Wenatchee, which agrees nicely with the accepted location.

Figure 6.3 Input image showing watershed regions of Washington State. (Map 
courtesy of United States Geological Survey. http://wa.water.usgs.gov/data/realtime/
adr/interactive/index2.html)

Figure 6.4 Output image with axes locating the centroid

http://wa.water.usgs.gov/data/realtime/adr/interactive/index2.html
http://wa.water.usgs.gov/data/realtime/adr/interactive/index2.html
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Summary
In this chapter, we took on the problem of computing a reduction in which all 
the threads in a computational grid can contribute to a result. We started by 
implementing the dot product, perhaps the ultimate in recognizable applica-
tions of reduction. We used shared memory for computing the contribution 
from a thread block, introduced the issue of race conditions, and presented 
atomic functions as a means to deal with them. We also extended the reduction 
implementation to compute image centroids, and saw that a 1D computational 
grid suffices to handle this problem despite its 2D context. In each case, we 
implemented the reduction from scratch, but reduction implementations are 
also provided in standard code libraries including NVIDIA’s Thrust library. See 
Chapter 8, “Using CUDA Libraries,” for an alternative implementation of 
centroid_2d using the Thrust library.

Suggested Projects
1. A common reduction involves finding the maximum or minimum value in a

list. Modify the parallel_dot app to create an L_inf app that computes
the maximum absolute value of the entries in an array.

2. Explore how the execution time for a reduction varies with the block size
chosen for the kernel launch.

3. Assemble a collection of images with a range of sizes, and plot how the cen-
troid computation times vary with the size of the image.

4. Implement a reduction-based stopping condition for the iterations in the
heat_2d app from Chapter 5, “Stencils and Shared Memory.”
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Chapter 7

 Interacting with 
3D Data

In this chapter, we move up to apps that involve generating, visualizing, and 
interacting with data on a 3D grid. A common approach to visualization of any 
function of three variables starts by sampling the function on a grid, so almost 
any 3D contour plot produces a 3D data grid at some point in the process. In 
addition, 3D data grids are produced either experimentally or numerically by 
a variety of devices and in a wide variety of applications, including the 
following:

• Volumetric medical scanners such as computed tomography (CT) and positron
emission tomography (PET) systems. CT scans are also used for inspection of
manufactured parts.

• Direct numerical simulation (DNS) of fluid dynamics, including aerodynamics
and hydrodynamics.

• Laser Doppler velocimetry (LDV) experimental measurements of fluid velocity
fields.

• Seismic exploration methods in geology and geophysics.

• Ground-penetrating radar systems used in archaeology and civil/environmental
engineering.
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• Creating physical parts from image stacks using digital light projection
(DLP) 3D printing systems.

• Video processing (where the third dimension corresponds to time).

We will begin our 3D experience by launching a parallel computation to sample 
the values of a function on a 3D grid, and we will see that launching a 3D kernel 
involves only very minor extensions of what we did to launch 2D kernels in 
Chapter 4, “2D Grids and Interactive Graphics.” Once we can create 3D grids, 
we move on to consider visualization and interaction. Given the fundamental 
constraint that your display device (and your vision system) are 2D, we present 
methods (slicing, volume rendering, and raycasting) to derive 2D images that 
we can view and interact with by again using the flashlight app as a template 
for CUDA/OpenGL interop. The procedure presented in Chapter 4, “2D Grids 
and Interactive Graphics,” for modifying the flashlight template involved 
three steps:

• In kernel.cu, customize the kernel that computes the image to display.

• In interactions.h, customize the callback functions that specify the
actions associated with input from the keyboard and mouse, and provide the
user with an interaction guide.

• In main.cpp, modify the name and arguments of the kernel call in the
render() function, and add a statement to display some useful information
in the graphics window title bar.

Here we will do the same thing and add one additional modification: calling for 
the launch of the 3D kernel to generate the data set to be visualized. By the end 
of the chapter you will be producing screen images of the kind illustrated in 
Figure 7.1, but with more interesting data sets.

With that plan in mind, let’s get right to coding things, starting with the 3D kernel 
launch.
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(a) (b)

(c)

Figure 7.1 Sample images of a 3D distance field (inside a bounding box) produced 
using the visualization methods provided by vis_3d: (a) slicing, (b) volume 
rendering, and (c) raycasting
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Launching 3D Computational Grids: 
dist_3d

The approach to 3D grids involves a small extension of that for 2D grids, so we 
will present the idea with similar context and language. In Chapter 4, “2D Grids 
and Interactive Graphics,” we used the context of image processing where the 
meaningful indices were c for the column number and r for row number of a 
pixel in image. As we move from 2D to 3D, we expand our context from a single 
image composed of 2D rectangular pixels (short for picture elements) to an image 
stack composed of 3D voxels (short for volume elements).

In addition to the row and column indices, we need a new integer variable to index 
the images in the stack, and we will use s (which you can think of as being short 
for stratum or stack), which ranges from 0 to D-1, where D is the depth of the 
stack. We compute the row and column indices exactly as before (using the x 
and y components of CUDA’s built-in dimension and index variables blockDim, 
blockIdx, and threadIdx), and the stratum index is computed based on the 
z components:

int s = blockIdx.z * blockDim.z + threadIdx.z;

Since each row of each image has w voxels and each stratum has w*h voxels, 
the index for storing voxel data in the 1D output array becomes:

int i = c + r*w + s*w*h;

We also need 3D grid launch parameters, so in addition to TX and TY (which 
specify the number of threads across a block in the width and height directions), 
we introduce TZ, the number of threads spanning a block in the depth direction. 
All three components of the dim3 variable are now used to define the number of 
threads per block:

dim3 blockSize(TX, TY, TZ);

and all three dimensions of the grid are divided up to specify gridSize as

dim3 gridSize(divUp(W, TX), divUp(H, TY), divUp(D, TZ));

where the divUp() function performs the usual trick to ensure that the number 
of blocks is rounded up so the entire grid is covered by threads.



ptg22232966

145

LAUNCHING 3D COMPUTATIONAL GRIDS: dist_3d

Listing 7.1 shows the pieces assembled to create an app that computes a 3D 
grid of distances from a reference point. (We have again started with the sim-
ple example of computing a grid of values corresponding to distances from a 
 reference point. However, we will use this kernel almost verbatim, replacing 
 distance() with a function that computes a shading value, in the 3D 
 visualization app.)

Listing 7.1 dist_3d/kernel.cu, the app that performs parallel computation of a 3D grid of 
distances from a reference point
  1 #define W 32
  2 #define H 32
  3 #define D 32
  4 #define TX 8 // number of threads per block along x-axis
  5 #define TY 8 // number of threads per block along y-axis
  6 #define TZ 8 // number of threads per block along z-axis
  7
  8 int divUp(int a, int b) { return (a + b - 1)/b; }
  9
 10 __device__
 11 float distance(int c, int r, int s, float3 pos) {
 12   return sqrtf((c - pos.x)*(c - pos.x) + (r - pos.y)*(r - pos.y) +
 13                (s - pos.z)*(s - pos.z));
 14 }
 15
 16 __global__
 17 void distanceKernel(float *d_out, int w, int h, int d, float3 pos) {
 18   const int c = blockIdx.x * blockDim.x + threadIdx.x; // column
 19   const int r = blockIdx.y * blockDim.y + threadIdx.y; // row
 20   const int s = blockIdx.z * blockDim.z + threadIdx.z; // stack
 21   const int i = c + r*w + s*w*h;
 22   if ((c >= w) || (r >= h) || (s >= d)) return;
 23   d_out[i] = distance(c, r, s, pos); // compute and store result
 24 }
 25
 26 int main() {
 27   float *out = (float*)calloc(W*H*D, sizeof(float));
 28   float *d_out = 0;
 29   cudaMalloc(&d_out, W*H*D*sizeof(float));
 30   const float3 pos = {0.0f, 0.0f, 0.0f}; // set reference position
 31   const dim3 blockSize(TX, TY, TZ);
 32   const dim3 gridSize(divUp(W, TX), divUp(H, TY), divUp(D, TZ));
 33   distanceKernel<<<gridSize, blockSize>>>(d_out, W, H, D, pos);
 34   cudaMemcpy(out, d_out, W*H*D*sizeof(float), cudaMemcpyDeviceToHost);
 35   cudaFree(d_out);
 36   free(out);
 37   return 0;
 38 }
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We hope that you now find the majority of this code to be familiar looking and 
readable, but there are a few things that arise in the 3D setting and are worth 
pointing out:

• We use calloc to create the host array out rather than attempting static array
creation by float out[W*H*D] = {0.0}; because the storage needed for
a 3D grid of nontrivial size is likely to produce a stack overflow error.

• Note that block size specifications TX, TY, and TZ have smaller values. That
is because there is a hard limit of 1,024 threads in a single block (for GPUs
with compute capability between 2.0 and 5.2), so an 8 × 8 × 8 block has a
viable number of threads (512), but a 16 × 16 × 16 block would require 4,096
threads and cannot be successfully launched. Generally, there is no special
reason for blocks to be cubic, and you may find performance advantages in
choos ing blocks for which blockDim.x is a multiple of 32; for example,
dim3 gridSize(32, 4, 4) is viable and may offer practical advantages.

• The reference position, pos, now has type float3, and the column, row,
and stratum indices of the corresponding voxel, pos.x, pos.y, and pos.z,
appear in the 3D Pythagorean equation.

• Bounds checking is done in all directions, and threads beyond the extent of
the grid simply return without performing any computation:

if ((c >= w) || (r >= h) || (s >= d)) return;

That covers the basics of a 3D kernel launch, so it is time to build and execute 
the dist_3d app and then use the debugging tools to convince yourself the 
output is as desired. (See Suggested Project 1 at the end of the chapter for more 
detailed suggestions.) Note that the Makefile needed for building this project in 
Linux is exactly the same as the one you used for the dist_2d app.

Viewing and Interacting with 3D Data: 
vis_3d

As noted at the beginning of this chapter, current display technology is typically 2D, 
so we will focus our discussion of viewing and interaction on deriving 2D images 
that convey meaningful information about the 3D data set. The 2D display and 
interaction can then be accomplished using the flashlight app as our tem-
plate for OpenGL interop. So while the 3D data set is computed by launching a 
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3D kernel, our viewing of and interaction with images will involve a 2D kernel 
launch to compute shading data for the pixels in a 2D image.

Need-to-Know?
You may well ask what it is about the visualization issue that qualifies as need-to-
know. Admittedly, very little new CUDA-specific material appears in this section. 
However, a big part of our goal here is to communicate the relevance and useful-
ness of CUDA to the broader engineering community, and this is perhaps the best 
opportunity to do so. If you have ever started up a 3D contour plot in your favorite 
software package and been frustrated by the time required to see the results (or 
the lag to update the display when you change the viewing direction), then this is 
a need-to-know opportunity to experience the power of GPU-based parallel com-
puting with graphics interoperability.

To establish how images are produced from a 3D data set, we adopt a basic model 
that mimics what actually happens in x-ray or fluoroscopic imaging. There is 
a point source that emits rays that pass through the 3D data set and arrive at a 
planar sensor consisting of a 2D array of pixels. We’ll adopt radiology-style 
language and refer to the 3D data values as densities and the 2D array of pixel 
values as intensities. Each pixel’s intensity value is determined by the density 
values encountered along the ray (or directed line segment) from the source 
to the location of that pixel. The distinction between different viewing methods 
lies in the details of how the shading value gets computed from the density data 
along the ray, and we will look at three distinct approaches:

• Slicing: We choose a plane that cuts through the data stack and compute the
shading based on the density value where the ray hits the plane (or display a
background value if the ray misses the plane).

• Volume rendering: We compute the shading value based on integrating the
density contributions along the ray as it passes through the data stack.

• Raycasting: We consider the density function as an implicit model of a 3D
object and choose a threshold value corresponding to the object’s surface.
We find where the ray first hits the object’s surface (i.e., where the density
reaches the threshold value) and compute the shading based on the prop-
erties of the density function at the surface point. We’ll stick with the simple
model of Lambertian reflectance for which the shading depends on the angle
between the view direction and the surface normal. (The components of the
normal correspond to derivatives of the density and are computed using finite
difference approximations.)
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Now we arrive at the fundamental question in any parallel computing exercise: 
How do we identify pieces of our overall mission with the job of a single compu-
tational thread? Here we continue with the model employed in the flashlight 
app by assuming that each thread computes the intensity value for a single pixel. 
(This approach is chosen for clarity of exposition. You may be able to enhance 
performance by having each thread perform the computation for multiple rays 
and/or multiple pixels.)

Each of the methods listed above involves a computation along the part of the 
ray that passes through the box containing the data stack, so let’s begin our look 
at implementation with the ray-box intersection test. Rather than reinventing the 
wheel, let’s take advantage of a small chunk of existing code that does exactly 
this task and can be readily found in the volumeRender app in the 2_Graphics 
folder in the CUDA Samples, which in turn refer to a set of SIGGRAPH notes [1]. 
All we really need is a slightly modified form of the function intersectBox() 
and the simple data structure Ray that it employs to represent a directed line 
segment, as shown in Listing 7.2. The ray structure has two float3 components: 
The .o component is the starting point of the ray, and the .d component is the 
direction of the ray.

Listing 7.2 The Ray structure, the linear interpolation function paramRay(), and the ray-box 
intersection test intersectBox()
typedef struct {
  float3 o, d; // origin and direction
} Ray;

__device__ float3 paramRay(Ray r, float t) { return r.o + t*(r.d); }

// intersect ray with a box from volumeRender SDK sample
__device__ bool intersectBox(Ray r, float3 boxmin, float3 boxmax,
  float *tnear, float *tfar) {
  // compute intersection of ray with all six bbox planes
  const float3 invR = make_float3(1.0f)/r.d;
  const float3 tbot = invR*(boxmin - r.o), ttop = invR*(boxmax - r.o);
  // re-order intersections to find smallest and largest on each axis
  const float3 tmin = fminf(ttop, tbot), tmax = fmaxf(ttop, tbot);
  // find the largest tmin and the smallest tmax

*tnear = fmaxf(fmaxf(tmin.x, tmin.y), fmaxf(tmin.x, tmin.z));
*tfar = fminf(fminf(tmax.x, tmax.y), fminf(tmax.x, tmax.z));
return *tfar > *tnear;

}

A directed line segment from point p0 to p1 can be described by the parametric 
ray formula p(t) = p0 + t * (p0 – p1) with t varying over the interval [0,1]. In terms of 
a Ray structure (let’s call it pixRay), p0 gets stored in pixRay.o and (p1 – p0) 
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gets stored in pixRay.d. We can declare and initialize the ray from the source 
point (a float3 variable named source) to a pixel location (a float3 variable 
named pix) with the following code snippet:

Ray pixRay;
pixRay.o = source;
pixRay.d = pix - source;

The box containing the data, more specifically an axis-aligned bounding box 
(AABB), is  specified by the lower-left-front corner (given by float3 boxmin) 
and the upper-right-back corner (given by float3 boxmax). Inputs to the 
intersectBox() function include the ray description, pixRay; an AABB 
(described by boxmin and boxmax); and the pointers to two locations that can 
store float variables tnear and tfar (the parameter values at which the 
ray enters and exits the box). Note that the return type of intersectBox() is 
bool. A return value of false indicates that the ray-box intersection test failed 
(i.e., the ray missed the box). If the ray hits the box, the value true is returned, 
and the entry and exit parameter values get stored in tnear and tfar. We can 
then perform linear interpolation along pixRay using the paramRay() function 
with parameter values tnear and tfar to find the points near and far where 
the ray enters and leaves the box.

Our plan for computing a shading value for a pixel then goes as follows:

• Compute the coordinates of pix and declare/initialize pixRay.

• Perform the ray-box intersection test:

• If the ray misses the box, display a background shading value.

• If the ray hits the box, create a clipped ray (called boxRay) that extends
from near to far, and call a specialized rendering function to compute
the shading based on boxRay, the image stack of density data, and other
necessary inputs.

Now we are ready to look at the details of the shading functions. We’ll  present 
code snippets for each function, then assemble them with code based on 
flashlight to produce full listings for all the files in the vis_3d app.

SLICING

We’ll start with slice visualization because it involves the simplest computation 
along the ray. A slice plane is chosen to reveal a section through the density 
image stack. If the clipped ray, boxRay, intersects the slice plane, the shading 
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value returned is determined by the density value at the ray-plane intersection 
point. If boxRay does not intersect the slice plane, then a background shading 
value is returned. (We have chosen this background color to be different from 
the general background displayed at pixels whose ray misses the box entirely 
so that the outline of the data box is visible.)

Note that  the ray-plane intersection point will most likely not lie precisely on a 
grid point, so interpolation will be needed to estimate the density at a nongrid 
point based on values at nearby grid points.

To simplify the coordinate transformation bookkeeping, let’s choose to work in 
a reference frame attached to the 3D image stack. More specifically, let’s put the 
origin at the center of the central voxel and align the axes with the voxel index 
directions so that a voxel row lies parallel to the x-axis and a voxel column lies 
parallel to the y-axis (so an image in the stack lies parallel to the xy-plane). The 
z-direction corresponds to changing stratum (i.e., moving between images in the
stack). In this frame, the value at position {x, y, z} = {0, 0, 0} is associated with
the voxel having indices {co, ro, so} = {⎣ W/2 ⎦, ⎣ H/2 ⎦, ⎣ D/2 ⎦}. (Note that these are
intended as integer division operations so the bracketed quantities are rounded
down and {co, ro, so} have integer values.) We can then transform from spatial
coordinates to image stack coordinates by a simple translation:

c = x +c
o

r = y +r
o

s = z +s
o

We then need to determine the density value at a position corresponding to pos. 
If the components of pos have integer values that correspond to the indices of a 
voxel {c,r,s}, then the value of interest can be retrieved from the density array 
dens. If pos corresponds to a position inside the box but not on the grid of data 
points, then we’ll return a value obtained by trilinear interpolation between the 
values at the surrounding grid points. The integer parts of the coordinates pro-
vide the indices of the lower-left-front grid point of the voxel, and the fractional 
parts, which are the components of the remainder, enable interpolation between 
the values at the corners of the voxel.

The actual code for determining the density value (by accessing the neighboring 
grid values and performing the trilinear interpolation) is shown in Listing 7.3. 
Index increments along the coordinate directions are provided by dx, dy, and dz 
to help locate the density values at the corners of the surrounding voxel whose 
name is dens concatenated with a 3-digit binary number identifying a corner of 
the voxel (e.g., dens000 is the value at lower-left-front corner, and dens111 is 



ptg22232966

151

VIEWING AND INTERACTING WITH 3D DATA: vis_3d

the value at the upper-right-back corner). The formula at the end is simply what 
results from successive linear interpolations along the coordinate directions. It 
may be a bit long, but we will get to reuse it when implementing the other visual-
ization methods that follow.

Listing 7.3 Computing the density values from a 3D grid of data (or image stack) by clipping 
beyond the data box and interpolating within the data box
__device__ int clipWithBounds(int n, int n_min, int n_max) {
  return n > n_max ? n_max : (n < n_min ? n_min : n);
}

__device__ float density(float *d_vol, int3 volSize, float3 pos) {
  int3 index = posToVolIndex(pos, volSize);
  int i = index.x, j = index.y, k = index.z;
  const int w = volSize.x, h = volSize.y, d = volSize.z;
  const float3 rem = fracf(pos);
  index = make_int3(clipWithBounds(i, 0, w - 2),
    clipWithBounds(j, 0, h - 2), clipWithBounds(k, 0, d - 2));
  // directed increments for computing the gradient
  const int3 dx = {1, 0, 0}, dy = {0, 1, 0}, dz = {0, 0, 1};
  // values sampled at surrounding grid points
  const float dens000 = d_vol[flatten(index, volSize)];
  const float dens100 = d_vol[flatten(index + dx, volSize)];
  const float dens010 = d_vol[flatten(index + dy, volSize)];
  const float dens001 = d_vol[flatten(index + dz, volSize)];
  const float dens110 = d_vol[flatten(index + dx + dy, volSize)];
  const float dens101 = d_vol[flatten(index + dx + dz, volSize)];
  const float dens011 = d_vol[flatten(index + dy + dz, volSize)];
  const float dens111 = d_vol[flatten(index + dx + dy + dz, volSize)];
  // trilinear interpolation
  return (1 - rem.x)*(1 - rem.y)*(1 - rem.z)*dens000 +
    (rem.x)*(1 - rem.y)*(1 - rem.z)*dens100 +
    (1 - rem.x)*(rem.y)*(1 - rem.z)*dens010 +
    (1 - rem.x)*(1 - rem.y)*(rem.z)*dens001 +
    (rem.x)*(rem.y)*(1 - rem.z)*dens110 +
    (rem.x)*(1 - rem.y)*(rem.z)*dens101 +
    (1 - rem.x)*(rem.y)*(rem.z)*dens011 +
    (rem.x)*(rem.y)*(rem.z)*dens111;
}

With clipping and interpolation in hand, the sliceShader() function is pretty 
straightforward. The code is shown in Listing 7.4 along with some supporting 
functions:

• planeSDF() gives the signed distance from a point to a plane specified
by a normal vector (float3 norm) and a distance from the origin
(float dist).
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• rayPlaneIntersect() performs the ray-plane intersection test. If
planeSDF() returns values with opposite signs at the ray endpoints, then
the ray intersects the plane, rayPlaneIntersect()returns true, and the
intersection parameter value at is stored in t. If the plane does not cut the
ray, rayPlaneIntersect() returns false.

Listing 7.4 sliceShader() along with supporting functions planeSDF() and 
rayPlaneIntersect()

__device__ float planeSDF(float3 pos, float3 norm, float d) {
  return dot(pos, normalize(norm)) - d;
}

__device__
bool rayPlaneIntersect(Ray myRay, float3 n, float dist, float *t) {
  const float f0 = planeSDF(paramRay(myRay, 0.f), n, dist);
  const float f1 = planeSDF(paramRay(myRay, 1.f), n, dist);
  bool result = (f0*f1 < 0);
  if (result) *t = (0.f - f0) / (f1 - f0);
  return result;
}

__device__ uchar4  sliceShader(float *d_vol, int3 volSize, Ray boxRay,
  float gain, float dist, float3 norm) {
  float t;
  uchar4 shade = make_uchar4(96, 0, 192, 0); // background value
  if (rayPlaneIntersect(boxRay, norm, dist, &t)) {
    float sliceDens = density(d_vol, volSize, paramRay(boxRay, t));
    shade = make_uchar4(48, clip(-10.f * (1.0f + gain) * sliceDens),

96, 255);
  }
  return shade;
}

The inputs to the sliceShader() function include the following:

• A pointer to the array of density data named float *d_vol to remind us
that it should be a pointer to a device array

• The dimensions of the image stack, int3 volSize

• The Ray, boxRay

• A float variable gain that enables adjusting the shading intensity

• The distance float dist and normal vector float3 norm specifying the
slice plain



ptg22232966

153

VIEWING AND INTERACTING WITH 3D DATA: vis_3d

The sliceShader() function simply invokes the ray-plane intersection test 
and either returns a default value boxBackground (if the test fails) or 
computes the green color component as a function of the density at slicePoint 
where the ray intersects the plane, according to

shade.y = clip(-10.f * (1.0f + gain) * sliceDens);

where sliceDens is the density value at slicePt, gain is a multiplier for 
adjusting the intensity, and clip() converts the result to a uchar in the 
allowed range of 0 to 255.

VOLUME RENDERING

The basic idea behind volume rendering is to determine the pixel shading value 
by integrating the density contributions along boxRay. The implementation is 
shown in Listing 7.5. Here again we use the green channel, so we choose a starting 
shade with red and blue components. We’ll approximate the integral as a finite 
sum with numSteps terms each corresponding to a parameter increment dt 
and a spatial distance len. We initialize an accumulation variable (accum = 0.f;), 
then step along boxRay incrementing accum when the density value is beyond 
a value threshold. The last two lines in the for loop update the current 
position and density value. When we have finished traversing boxRay, accum is 
clipped to an allowed uchar value for storage in the green color component of 
the pixel.

Listing 7.5 volumeRenderShader()

__device__ uchar4 volumeRenderShader(float *d_vol, int3 volSize,
  Ray boxRay, float threshold, int numSteps) {
  uchar4 shade = make_uchar4(96, 0, 192, 0); // background value
  const float dt = 1.f/numSteps;
  const float len = length(boxRay.d)/numSteps;
  float accum = 0.f;
  float3 pos = boxRay.o;
  float val = density(d_vol, volSize, pos);
  for (float t = 0.f; t<1.f; t += dt) {
    if (val - threshold < 0.f) accum += (fabsf(val - threshold))*len;
    pos = paramRay(boxRay, t);
    val = density(d_vol, volSize, pos);
  }
  if (clip(accum) > 0.f) shade.y = clip(accum);
  return shade;
}
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RAYCASTING

To determine a raycast pixel shading value, we search along the ray to find the 
threshold density value and compute the shading based on the local surface 
normal vector. The code for implementing the raycastShader() is shown in 
Listing 7.6. Inputs to rayCastShader() include the following:

• A pointer to the device array where the image stack data is stored

• The dimensions of the data stack (int3 volSize)

• The ray clipped to the bounding box (Ray boxRay)

• The threshold distance value for the surface (float dist)

Listing 7.6 raycastShader()

__device__ uchar4 rayCastShader(float *d_vol, int3 volSize,
  Ray boxRay, float dist) {
  uchar4 shade = make_uchar4(96, 0, 192, 0);
  float3 pos = boxRay.o;
  float len = length(boxRay.d);
  float t = 0.0f;
  float f = density(d_vol, volSize, pos);
  while (f > dist + EPS && t < 1.0f) {
    f = density(d_vol, volSize, pos);
    t += (f - dist) / len;
    pos = paramRay(boxRay, t);
    f = density(d_vol, volSize, pos);
  }
  if (t < 1.f) {
    const float3 ux = make_float3(1, 0, 0), uy = make_float3(0, 1, 0),

uz = make_float3(0, 0, 1);
    float3 grad = {(density(d_vol, volSize, pos + EPS*ux) -

density(d_vol, volSize, pos))/EPS,
(density(d_vol, volSize, pos + EPS*uy) -
density(d_vol, volSize, pos))/EPS,

(density(d_vol, volSize, pos + EPS*uz) -
density(d_vol, volSize, pos))/EPS};

    float intensity = -dot(normalize(boxRay.d), normalize(grad));
    shade = make_uchar4(255*intensity, 0, 0, 255);
  }
  return shade;
}

The raycastShader() function returns a color value of type uchar4. The 
computation starts with a while loop that steps along boxRay until exiting the 
bounding box (so that t < 1.0f is no longer satisfied) or coming closer than a 
specified tolerance value (EPS) of the surface threshold distance dist.
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Rootfinding, Length Scales, and Signed Distance Functions
The process of locating a point where a function takes on a given value is generally 
referred to as “rootfinding.” This is another big topic that can be the subject of at 
least an entire chapter of a book [2] and is widely considered to be problematic. 
Indeed, computing roots reliably in general can be problematic. If the function 
value can change significantly on arbitrarily small scales, there may be no safe 
way to choose a step size for a root search.

Here, we do not face such problems. Our data set has a fundamental length scale 
set by the voxel spacing, and choosing a step size that is small compared to the 
voxel spacing ensures that no features are missed that can be captured by data 
sampled at that scale.

In the special case of signed distance functions, we can do even better. Evaluating 
the function (and subtracting the surface threshold value) gives the distance to 
the closest surface point, so we can safely take a step of that size. If we step in the 
right direction we will just reach the surface and locate the desired root. If we step 
in any other direction we will safely arrive at a point short of the surface where we 
can repeat the process knowing that no roots have been missed. The net result is 
that the ray-surface intersection can be found to within our chosen tolerance in 
just a few steps.

If the while loop terminates due to the ray exiting the bounding box, a default 
shading value (background color) is returned. Alternatively, if the while loop 
exit is due to encountering the threshold density value (indicating that the ray 
hit the surface), we compute the gradient at the surface point (a.k.a. the surface 
normal vector) and determine the shading value (which we choose to store in 
the green channel) based on the dot product of the gradient and the ray 
direction.

The components of the gradient grad are the derivatives of the density function 
along the coordinate directions. The float3 variables ux, uy, and uz provide 
displacements in the coordinate directions, and the formulas for computing 
grad.x, grad.y, and grad.z correspond to the finite difference technique 
introduced in Chapter 4, “2D Grids and Interactive Graphics,” applied along each 
coordinate direction.

The dot product of normalized versions of boxRay.d and grad produces the 
cosine of the angle between the ray and normal which corresponds to the 
shading for the Lambertian radiance model used to approximate the appearance 
of matte surfaces.



ptg22232966

CHAPTER 7 INTERACTING WITH 3D DATA 

156

Shading Models, Ray Tracing, and Computer Graphics
This is another big topic. There is an entire literature on modeling of surface 
appearance and lighting of scenes. For discussions of ray tracing (which accounts 
for the fact that rays can be reflected and refracted) and radiance models (which 
treat each object as both an emitter and absorber of radiation), and numerous 
other details of computer graphics, check out the classic reference [3].

CREATING THE vis_3d APP

Now that we’ve been through all of the shading functions, let’s put the pieces 
together and look at the complete code for the vis_3d app. We are once again 
building on the flashlight app from Chapter 4, “2D Grids and Interactive 
Graphics.” We start with the same set of files and build instructions, and make 
the following modifications:

• vis_3d/main.cpp, shown in Listing 7.7, includes only a few changes from
flashlight/main.cpp:

• A revised list of arguments in the call of kernelLauncher() on lines
29–30.

• A revised string for presenting information in the title bar of the graphics
window is constructed on lines 33–35.

• A call to volumeKernelLauncher() on line 91 to create the 3D data to
be visualized.

• The new createMenu() callback function appears on line 94 and enables
a pop-up menu for selecting the object/function to visualize.

• vis_3d/interactions.h, shown in Listing 7.8, sets the geometry-related
constants and window size, prints the user instructions, and defines the
revised user interactions including the pop-up menu contents and associated
actions.

• vis_3d/kernel.h, shown in Listing 7.9, includes definitions of the data types
not known to the C/C++ compiler and the prototypes for volumeKernel-
Launcher(), which launches the 3D grid and kernelLauncher() that
launches the 2D grid for rendering.

• vis_3d/kernel.cu, shown in Listing 7.10, includes the definitions of the
kernel launcher functions and the kernel functions themselves.
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In this case, the kernels call a list of device functions, including supporting 
functions; paramRay(), scrIdxToPos(), and intersectBox(), along with 
func(), for creating the 3D data grids; yRotate() for changing the view; 
and the three shading functions. To keep vis_3d/kernel.cu from becoming 
overly long, we created a separate vis_3d/device_funcs.cu file to hold the 
definitions and a CUDA header file vis_3d/device_funcs.cuh that can be 
included to make the function prototypes available.

Listing 7.7 vis_3d/main.cpp

  1 #include "interactions.h"
  2 #include "kernel.h"
  3 #include <stdio.h>
  4 #include <stdlib.h>
  5 #ifdef _WIN32
  6 #define WINDOWS_LEAN_AND_MEAN
  7 #define NOMINMAX
  8 #include <windows.h>
  9 #endif
 10 #ifdef __APPLE__
 11 #include <GLUT/glut.h>
 12 #else
 13 #include <GL/glew.h>
 14 #include <GL/freeglut.h>
 15 #endif
 16 #include <cuda_runtime.h>
 17 #include <cuda_gl_interop.h>
 18
 19 // texture and pixel objects
 20 GLuint pbo = 0;     // OpenGL pixel buffer object
 21 GLuint tex = 0;     // OpenGL texture object
 22 struct cudaGraphicsResource *cuda_pbo_resource;
 23
 24 void render() {
 25   uchar4 *d_out = 0;
 26   cudaGraphicsMapResources(1, &cuda_pbo_resource, 0);
 27   cudaGraphicsResourceGetMappedPointer((void **)&d_out, NULL,
 28 cuda_pbo_resource);
 29   kernelLauncher(d_out, d_vol, W, H, volumeSize, method, zs, theta,
 30 threshold, dist);
 31   cudaGraphicsUnmapResources(1, &cuda_pbo_resource, 0);
 32   char title[128];
 33   sprintf(title, "Volume Visualizer : objId =%d, method = %d,"
 34 " dist = %.1f, theta =  %.1f", id, method, dist,
 35 theta);
 36   glutSetWindowTitle(title);
 37 }
 38
 39 void draw_texture() {
 40   glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, W, H, 0, GL_RGBA,
 41 GL_UNSIGNED_BYTE, NULL);
 42   glEnable(GL_TEXTURE_2D);
 43   glBegin(GL_QUADS);
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 44   glTexCoord2f(0.0f, 0.0f); glVertex2f(0, 0);
 45   glTexCoord2f(0.0f, 1.0f); glVertex2f(0, H);
 46   glTexCoord2f(1.0f, 1.0f); glVertex2f(W, H);
 47   glTexCoord2f(1.0f, 0.0f); glVertex2f(W, 0);
 48   glEnd();
 49   glDisable(GL_TEXTURE_2D);
 50 }
 51
 52 void display() {
 53   render();
 54   draw_texture();
 55   glutSwapBuffers();
 56 }
 57
 58 void initGLUT(int *argc, char **argv) {
 59   glutInit(argc, argv);
 60   glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);
 61   glutInitWindowSize(W, H);
 62   glutCreateWindow("Volume Visualizer");
 63 #ifndef __APPLE__
 64   glewInit();
 65 #endif
 66 }
 67
 68 void initPixelBuffer() {
 69   glGenBuffers(1, &pbo);
 70   glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo);
 71   glBufferData(GL_PIXEL_UNPACK_BUFFER, W*H*sizeof(GLubyte) * 4, 0,
 72 GL_STREAM_DRAW);
 73   glGenTextures(1, &tex);
 74   glBindTexture(GL_TEXTURE_2D, tex);
 75   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 76   cudaGraphicsGLRegisterBuffer(&cuda_pbo_resource, pbo,
 77 cudaGraphicsMapFlagsWriteDiscard);
 78 }
 79
 80 void exitfunc() {
 81   if (pbo) {
 82     cudaGraphicsUnregisterResource(cuda_pbo_resource);
 83     glDeleteBuffers(1, &pbo);
 84     glDeleteTextures(1, &tex);
 85   }
 86   cudaFree(d_vol);
 87 }
 88
 89 int main(int argc, char** argv) {
 90   cudaMalloc(&d_vol, NX*NY*NZ*sizeof(float)); // 3D volume data
 91   volumeKernelLauncher(d_vol, volumeSize, id, params);
 92   printInstructions();
 93   initGLUT(&argc, argv);
 94   createMenu();
 95   gluOrtho2D(0, W, H, 0);
 96   glutKeyboardFunc(keyboard);
 97   glutSpecialFunc(handleSpecialKeypress);
 98   glutDisplayFunc(display);
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 99   initPixelBuffer();
100   glutMainLoop();
101   atexit(exitfunc);
102   return 0;
103 }

Next, let’s move on to specifying the user interactions; that is, editing the call-
back functions in the interactions.h, which is shown in Listing 7.8. The file 
begins by defining constants (including image dimensions, image stack dimen-
sions, and block sizes) and variables (including parameters for object dimensions, 
viewing distance, viewing direction, shading method, threshold value, and slicing 
plane normal and distance).

The new callback function mymenu() uses a switch() statement to set the 
image specification id to the integer value (which is generated by right-
clicking, to open a context menu, and then releasing the mouse with the cursor 
on a menu item). The final line of mymenu() passes id as an argument to 
volumeKernelLauncher(). The data for the 3D grid or image stack is com-
puted live (based on functions in device_funcs.cu to be described below) 
after each selection from the object menu.

The next callback function keyboard()performs specified actions according to 
the value of the unsigned char key generated by a keypress. Zoom is con-
trolled by the + and - keys (by essentially moving source). The d/D key moves 
the slicing plane, and z resets to default values. The viewing mode is selected 
by v for volume render, r for raycast, and f for slicing (because f happens to 
reside between v and r on the QWERTY keyboard layout).

Finally, handleSpecialFunctionKeypress()specifies actions based on the 
int value generated by pressing special function keys (which do not generate 
unsigned char values). The left arrow and right arrow change the value of 
theta that will get passed into a transformation in kernel.cu to rotate the 
viewing direction (by transforming the values of source and pix). The up arrow 
and down arrow keys change the value of threshold that will be passed to the 
shading functions to change the surface threshold value or the position of the 
slicing plane.

Listing 7.8 vis_3d/interactions.h

  1 #ifndef INTERACTIONS_H
  2 #define INTERACTIONS_H
  3 #include "kernel.h"
  4 #include <stdio.h>
  5 #include <stdlib.h>
  6 #ifdef __APPLE__
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  7 #include <GLUT/glut.h>
  8 #else
  9 #include <GL/glew.h>
 10 #include <GL/freeglut.h>
 11 #endif
 12 #include <vector_types.h>
 13 #define W  600
 14 #define H  600
 15 #define DELTA  5 // pixel increment for arrow keys
 16 #define NX 128
 17 #define NY 128
 18 #define NZ 128
 19
 20 int id = 1; // 0 = sphere, 1 = torus, 2 = block
 21 int method = 2; // 0 = volumeRender, 1 = slice, 2 = raycast
 22 const int3 volumeSize = {NX, NY, NZ}; // size of volumetric data grid
 23 const float4 params = {NX/4.f, NY/6.f, NZ/16.f, 1.f};
 24 float *d_vol; // pointer to device array for storing volume data
 25 float zs = NZ; // distance from origin to source
 26 float dist = 0.f, theta = 0.f, threshold = 0.f;
 27
 28 void mymenu(int value) {
 29   switch (value) {
 30   case 0: return;
 31   case 1: id = 0; break; // sphere
 32   case 2: id = 1; break; // torus
 33   case 3: id = 2; break; // block
 34   }
 35   volumeKernelLauncher(d_vol, volumeSize, id, params);
 36   glutPostRedisplay();
 37 }
 38
 39 void createMenu() {
 40   glutCreateMenu(mymenu); // Object selection menu
 41   glutAddMenuEntry("Object Selector", 0); // menu title
 42   glutAddMenuEntry("Sphere", 1); // id = 1 -> sphere
 43   glutAddMenuEntry("Torus", 2);     // id = 2 -> torus
 44   glutAddMenuEntry("Block", 3);     // id = 3 -> block
 45   glutAttachMenu(GLUT_RIGHT_BUTTON);    // right-click for menu
 46 }
 47
 48 void keyboard(unsigned char key, int x, int y) {
 49   if (key == '+') zs -= DELTA; // move source closer (zoom in)
 50   if (key == '-') zs += DELTA; // move source farther (zoom out)
 51   if (key == 'd') --dist; // decrease slice distance
 52   if (key == 'D') ++dist; // increase slice distance
 53   if (key == 'z') zs = NZ, theta = 0.f, dist = 0.f; // reset values
 54   if (key == 'v') method = 0; // volume render
 55   if (key == 'f') method = 1; // slice
 56   if (key == 'r') method = 2; // raycast
 57   if (key == 27) exit(0);
 58   glutPostRedisplay();
 59 }
 60
 61 void handleSpecialKeypress(int key, int x, int y)  {
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 62   if (key == GLUT_KEY_LEFT) theta -= 0.1f; // rotate left
 63   if (key == GLUT_KEY_RIGHT) theta += 0.1f; // rotate right
 64   if (key == GLUT_KEY_UP) threshold += 0.1f; // inc threshold (thick)
 65   if (key == GLUT_KEY_DOWN) threshold -= 0.1f; // dec threshold (thin)
 66   glutPostRedisplay();
 67 }
 68
 69 void printInstructions() {
 70   printf("3D Volume Visualizer\n"
 71 "Controls:\n"
 72 "Volume render mode : v\n"
 73 "Slice render mode : f\n"
 74 "Raycast mode : r\n"
 75 "Zoom out/in : -/+\n"
 76 "Rotate view : left/right\n"
 77 "Decr./Incr. Offset (intensity in slice mode): down/up\n"
 78 "Decr./Incr. distance (only in slice mode)   : d/D\n"
 79 "Reset parameters : z\n"
 80 "Right-click for object selection menu\n");
 81 }
 82
 83 #endif 

That takes care of the currently implemented interactions (although you are 
encouraged to experiment with creating additional interactions that you find 
useful or interesting), and we can move on to the code in kernel.cu. The 
prototypes for its public “wrapper” functions, volumeKernelLauncher() and 
kernelLauncher(), reside in kernel.h, shown in Listing 7.9, and the imple-
mentation of kernel.cu is shown in Listing 7.10. volumeKernelLauncher() 
calls volumeKernel() to launch a 3D grid to compute an image stack of data 
describing an object, and kernelLauncher() calls renderKernel() to 
launch a 2D grid to compute pixel shading values.

Listing 7.9 vis_3d/kernel.h

  1 #ifndef KERNEL_H
  2 #define KERNEL_H
  3
  4 struct uchar4;
  5 struct int3;
  6 struct float4;
  7
  8 void kernelLauncher(uchar4 *d_out, float *d_vol, int w, int h,
  9   int3 volSize, int method, int zs, float theta, float threshold,
 10   float dist);
 11 void volumeKernelLauncher(float *d_vol, int3 volSize, int id,
 12                           float4 params);
 13 #endif 
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Listing 7.10 vis_3d/kernel.cu

  1 #include "kernel.h"
  2 #include "device_funcs.cuh"
  3 #include <helper_math.h>
  4 #define TX_2D 32
  5 #define TY_2D 32
  6 #define TX 8
  7 #define TY 8
  8 #define TZ 8
  9 #define NUMSTEPS 20
 10
 11 __global__
 12 void renderKernel(uchar4 *d_out, float *d_vol, int w, int h,
 13   int3 volSize, int method, float zs, float theta, float threshold,
 14   float dist) {
 15   const int c = blockIdx.x*blockDim.x + threadIdx.x;
 16   const int r = blockIdx.y*blockDim.y + threadIdx.y;
 17   const int i = c + r * w;
 18   if ((c >= w) || (r >= h)) return; // Check if within image bounds
 19   const uchar4 background = {64, 0, 128, 0};
 20   float3 source = {0.f, 0.f, -zs};
 21   float3 pix = scrIdxToPos(c, r, w, h, 2*volSize.z-zs);
 22   // apply viewing transformation: here rotate about y-axis
 23   source = yRotate(source, theta);
 24   pix = yRotate(pix, theta);
 25   // prepare inputs for ray-box intersection
 26   float t0, t1;
 27   const Ray pixRay = {source, pix - source};
 28   float3 center = {volSize.x/2.f, volSize.y/2.f, volSize.z/2.f};
 29   const float3 boxmin = -center;
 30   const float3 boxmax = {volSize.x - center.x, volSize.y - center.y,
 31 volSize.z - center.z};
 32   // perform ray-box intersection test
 33   const bool hitBox = intersectBox(pixRay, boxmin, boxmax, &t0, &t1);
 34   uchar4 shade;
 35   if (!hitBox) shade = background; // miss box => background color
 36   else {
 37     if (t0 < 0.0f) t0 = 0.f; // clamp to 0 to avoid looking backward
 38     // bounded by points where the ray enters and leaves the box
 39     const Ray boxRay = {paramRay(pixRay, t0),
 40 paramRay(pixRay, t1) - paramRay(pixRay, t0)};
 41     if (method == 1) shade =
 42 sliceShader(d_vol, volSize, boxRay, threshold, dist, source);
 43     else if (method == 2) shade =
 44 rayCastShader(d_vol, volSize, boxRay, threshold);
 45     else shade =
 46 volumeRenderShader(d_vol, volSize, boxRay, threshold, NUMSTEPS);
 47   }
 48   d_out[i] = shade;
 49 }
 50
 51 __global__
 52 void volumeKernel(float *d_vol, int3 volSize, int id, float4 params) {
 53   const int w = volSize.x, h = volSize.y, d = volSize.z;
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 54   const int c = blockIdx.x * blockDim.x + threadIdx.x; // column
 55   const int r = blockIdx.y * blockDim.y + threadIdx.y; // row
 56   const int s = blockIdx.z * blockDim.z + threadIdx.z; // stack
 57   const int i = c + r * w + s * w * h;
 58   if ((c >= w) || (r >= h) || (s >= d)) return;
 59   d_vol[i] = func(c, r, s, id, volSize, params); // compute and store
 60 }
 61
 62 void kernelLauncher(uchar4 *d_out, float *d_vol, int w, int h,
 63   int3 volSize, int method, int zs, float theta, float threshold,
 64   float dist) {
 65   dim3 blockSize(TX_2D, TY_2D);
 66   dim3 gridSize(divUp(w, TX_2D), divUp(h, TY_2D));
 67   renderKernel<<<gridSize, blockSize>>>(d_out, d_vol, w, h, volSize,
 68     method, zs, theta, threshold, dist);
 69 }
 70
 71 void volumeKernelLauncher(float *d_vol, int3 volSize, int id,
 72   float4 params) {
 73   dim3 blockSize(TX, TY, TZ);
 74   dim3 gridSize(divUp(volSize.x, TX), divUp(volSize.y, TY),
 75     divUp(volSize.z, TZ));
 76   volumeKernel<<<gridSize, blockSize>>>(d_vol, volSize, id, params);
 77 }

The volumeKernelLauncher() gets called (and volumeKernel() executes) 
once at initiation and again whenever a new object is selected from the pop-up 
context menu while kernelLauncher() gets called (and renderKernel()
executes) at every screen refresh. volumeKernel() is identical to 
distanceKernel() from the dist_3d app (except that here we evaluate a 
function func() instead of a Pythagorean formula), so let’s focus our attention 
on the other kernel.

renderKernel() begins with the usual index computations and bounds 
checking. The source and pixel locations are then computed as follows. The 
source is chosen to be at {0.f, 0.f, -zs}, and the screen is centered on and 
perpendicular to the z-axis at a distance spacing (set to twice the depth of the 
image stack). The kinematics implementation allows the viewing system (source 
and screen) to be translated along the viewing axis (by changing zs) and rotated 
about the y-axis (by changing theta) as prescribed by lines 20–24. The coor-
dinate system used is aligned on the principal axes of the image stack and with 
the center of the stack (float3 center) at the origin. Lines 29–30 construct 
the inputs for the ray-box intersection test at line 33. If the ray misses the box, 
a background color is returned. If the ray hits the box, we construct boxRay on 
line 39 to describe the portion of the ray inside the box and pass boxRay as an 
argument to one of the shading functions based on the value of method.
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The launcher functions and shaders rely on a collection of supporting device 
functions whose code is collected into vis_3d/device_funcs.cu (and 
the associated header file vis_3d/device_funcs.cuh), as shown in 
Listings 7.11 and 7.12.

Listing 7.11 vis_3d/device_funcs.cuh

  1 #ifndef DEVICEFUNCS_CUH
  2 #define DEVICEFUNCS_CUH
  3
  4 typedef struct {
  5   float3 o, d; // origin and direction
  6 } Ray;
  7
  8 __host__ int divUp(int a, int b);
  9 __device__ float3 yRotate(float3 pos, float theta);
 10 __device__ float func(int c, int r, int s, int id, int3 volSize,
 11   float4 params);
 12 __device__ float3 paramRay(Ray r, float t);
 13 __device__ float3 scrIdxToPos(int c, int r, int w, int h, float zs);
 14 __device__ bool intersectBox(Ray r, float3 boxmin, float3 boxmax,
 15   float *tnear, float *tfar);
 16 __device__ uchar4 sliceShader(float *d_vol, int3 volSize, Ray boxRay,
 17   float threshold, float dist, float3 norm);
 18 __device__ uchar4 volumeRenderShader(float *d_vol, int3 volSize,
 19   Ray boxRay, float dist, int numSteps);
 20 __device__ uchar4  rayCastShader(float *d_vol, int3 volSize,
 21   Ray boxRay, float dist);
 22
 23 #endif 

Listing 7.12 vis_3d/device_funcs.cu

  1 #include "device_funcs.cuh"
  2 #include <helper_math.h>
  3 #define EPS 0.01f
  4
  5 __host__ int divUp(int a, int b) { return (a + b - 1) / b; }
  6
  7 __device__
  8 unsigned char clip(int n) { return n > 255 ? 255 : (n < 0 ? 0 : n); }
  9
 10 __device__ int clipWithBounds(int n, int n_min, int n_max) {
 11   return n > n_max ? n_max : (n < n_min ? n_min : n);
 12 }
 13
 14 __device__ float3 yRotate(float3 pos, float theta) {
 15   const float c = cosf(theta), s = sinf(theta);
 16   return make_float3(c*pos.x + s*pos.z, pos.y, -s*pos.x + c*pos.z);
 17 }
 18
 19 __device__ float func(int c, int r, int s, int id, int3 volSize,
 20                       float4 params) {
 21   const int3 pos0 = {volSize.x/2, volSize.y/2, volSize.z/2};
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 22   const float dx = c - pos0.x, dy = r - pos0.y, dz = s - pos0.z;
 23   // sphere
 24   if (id == 0) { return sqrtf(dx*dx + dy*dy + dz*dz) - params.x; }
 25   else if (id == 1) { // torus
 26     const float r = sqrtf(dx*dx + dy*dy);
 27     return sqrtf((r - params.x)*(r - params.x) + dz*dz) - params.y;
 28   }
 29   else { // block
 30     float x = fabsf(dx) - params.x, y = fabsf(dy) - params.y,
 31 z = fabsf(dz) - params.z;
 32     if (x <= 0 && x <= 0 && z <= 0) return fmaxf(x, fmaxf(y, z));
 33     else {
 34 x = fmaxf(x, 0), y = fmaxf(y, 0), z = fmaxf(z, 0);
 35 return sqrtf(x*x + y*y + z*z);
 36     }
 37   }
 38 }
 39
 40 __device__ float3 scrIdxToPos(int c, int r, int w, int h, float zs) {
 41   return make_float3(c - w/2, r - h/2, zs);
 42 }
 43
 44 __device__ float3 paramRay(Ray r, float t) { return r.o + t*(r.d); }
 45
 46 __device__ float planeSDF(float3 pos, float3 norm, float d) {
 47   return dot(pos, normalize(norm)) - d;
 48 }
 49
 50 __device__
 51 bool rayPlaneIntersect(Ray myRay, float3 n, float dist, float *t) {
 52   const float f0 = planeSDF(paramRay(myRay, 0.f), n, dist);
 53   const float f1 = planeSDF(paramRay(myRay, 1.f), n, dist);
 54   bool result = (f0*f1 < 0);
 55   if (result) *t = (0.f - f0) / (f1 - f0);
 56   return result;
 57 }
 58
 59 // Intersect ray with a box from volumeRender SDK sample.
 60 __device__ bool intersectBox(Ray r, float3 boxmin, float3 boxmax,
 61   float *tnear, float *tfar) {
 62   // Compute intersection of ray with all six bbox planes.
 63   const float3 invR = make_float3(1.0f)/r.d;
 64   const float3 tbot = invR*(boxmin - r.o), ttop = invR*(boxmax - r.o);
 65   // Re-order intersections to find smallest and largest on each axis.
 66   const float3 tmin = fminf(ttop, tbot), tmax = fmaxf(ttop, tbot);
 67   // Find the largest tmin and the smallest tmax.
 68   *tnear = fmaxf(fmaxf(tmin.x, tmin.y), fmaxf(tmin.x, tmin.z));
 69   *tfar = fminf(fminf(tmax.x, tmax.y), fminf(tmax.x, tmax.z));
 70   return *tfar > *tnear;
 71 }
 72
 73 __device__ int3 posToVolIndex(float3 pos, int3 volSize) {
 74   return make_int3(pos.x + volSize.x/2, pos.y + volSize.y/2,
 75 pos.z +  volSize.z/2);
 76 }
 77
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 78 __device__ int flatten(int3 index, int3 volSize) {
 79   return index.x + index.y*volSize.x + index.z*volSize.x*volSize.y;
 80 }
 81
 82 __device__ float density(float *d_vol, int3 volSize, float3 pos) {
 83   int3 index = posToVolIndex(pos, volSize);
 84   int i = index.x, j = index.y, k = index.z;
 85   const int w = volSize.x, h = volSize.y, d = volSize.z;
 86   const float3 rem = fracf(pos);
 87   index = make_int3(clipWithBounds(i, 0, w - 2),
 88     clipWithBounds(j, 0, h - 2), clipWithBounds(k, 0, d - 2));
 89   // directed increments for computing the gradient
 90   const int3 dx = {1, 0, 0}, dy = {0, 1, 0}, dz = {0, 0, 1};
 91   // values sampled at surrounding grid points
 92   const float dens000 = d_vol[flatten(index, volSize)];
 93   const float dens100 = d_vol[flatten(index + dx, volSize)];
 94   const float dens010 = d_vol[flatten(index + dy, volSize)];
 95   const float dens001 = d_vol[flatten(index + dz, volSize)];
 96   const float dens110 = d_vol[flatten(index + dx + dy, volSize)];
 97   const float dens101 = d_vol[flatten(index + dx + dz, volSize)];
 98   const float dens011 = d_vol[flatten(index + dy + dz, volSize)];
 99   const float dens111 = d_vol[flatten(index + dx + dy + dz, volSize)];
100   // trilinear interpolation
101   return (1 - rem.x)*(1 - rem.y)*(1 - rem.z)*dens000 +
102     (rem.x)*(1 - rem.y)*(1 - rem.z)*dens100 +
103     (1 - rem.x)*(rem.y)*(1 - rem.z)*dens010 +
104     (1 - rem.x)*(1 - rem.y)*(rem.z)*dens001 +
105     (rem.x)*(rem.y)*(1 - rem.z)*dens110 +
106     (rem.x)*(1 - rem.y)*(rem.z)*dens101 +
107     (1 - rem.x)*(rem.y)*(rem.z)*dens011 +
108     (rem.x)*(rem.y)*(rem.z)*dens111;
109 }
110
111 __device__ uchar4  sliceShader(float *d_vol, int3 volSize, Ray boxRay,
112   float gain, float dist, float3 norm) {
113   float t;
114   uchar4 shade = make_uchar4(96, 0, 192, 0); // background value
115   if (rayPlaneIntersect(boxRay, norm, dist, &t)) {
116     float sliceDens = density(d_vol, volSize, paramRay(boxRay, t));
117     shade = make_uchar4(48, clip(-10.f * (1.0f + gain) * sliceDens),
118 96, 255);
119   }
120   return shade;
121 }
122
123 __device__ uchar4 volumeRenderShader(float *d_vol, int3 volSize,
124   Ray boxRay, float threshold, int numSteps) {
125   uchar4 shade = make_uchar4(96, 0, 192, 0); // background value
126   const float dt = 1.f/numSteps;
127   const float len = length(boxRay.d)/numSteps;
128   float accum = 0.f;
129   float3 pos = boxRay.o;
130   float val = density(d_vol, volSize, pos);
131   for (float t = 0.f; t<1.f; t += dt) {
132     if (val - threshold < 0.f) accum += (fabsf(val - threshold))*len;
133     pos = paramRay(boxRay, t);
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134     val = density(d_vol, volSize, pos);
135   }
136   if (clip(accum) > 0.f) shade.y = clip(accum);
137   return shade;
138 }
139
140 __device__ uchar4 rayCastShader(float *d_vol, int3 volSize,
141   Ray boxRay, float dist) {
142   uchar4 shade = make_uchar4(96, 0, 192, 0);
143   float3 pos = boxRay.o;
144   float len = length(boxRay.d);
145   float t = 0.0f;
146   float f = density(d_vol, volSize, pos);
147   while (f > dist + EPS && t < 1.0f) {
148     f = density(d_vol, volSize, pos);
149     t += (f - dist) / len;
150     pos = paramRay(boxRay, t);
151     f = density(d_vol, volSize, pos);
152   }
153   if (t < 1.f) {
154     const float3 ux = make_float3(1, 0, 0), uy = make_float3(0, 1, 0),
155 uz = make_float3(0, 0, 1);
156     float3 grad = {(density(d_vol, volSize, pos + EPS*ux) -
157 density(d_vol, volSize, pos))/EPS,
158 (density(d_vol, volSize, pos + EPS*uy) -
159 density(d_vol, volSize, pos))/EPS,
160 (density(d_vol, volSize, pos + EPS*uz) -
161 density(d_vol, volSize, pos))/EPS};
162     float intensity = -dot(normalize(boxRay.d), normalize(grad));
163     shade = make_uchar4(255*intensity, 0, 0, 255);
164   }
165   return shade;
166 }

Splitting Kernel Code into Multiple Files Means
“Generate Relocatable Device Code”

We have chosen to split the CUDA code for the vis_3d app into multiple files (to 
try to keep them to a manageable size). This decision requires separate compilation 
and generation of relocatable device code. Versions of CUDA prior to 5.0 did not 
allow this; all kernel code had to be included in a single file for compilation.

Now “separate compilation” is supported, but you need to set the nvcc compiler flag 
that generates relocatable device code with --relocatable-device-code=true 
or the shorthand version -rdc=true.

To set the rdc compiler flag in Visual Studio, open the project’s Property Pages 
(by right-clicking on the project in the Property Manager pane or selecting Property 
Pages from the view menu), then selecting Configuration Properties ⇒ 
CUDA C/C++ ⇒ Common ⇒ Generate Relocatable Device Code ⇒ Yes 
(-rdc=true), as shown in Figure 7.2.
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Linux users will find that the appropriate compiler flag is included on line 11 of 
vis_3d/Makefile, as shown in Listing 7.13.

Listing 7.13 vis_3d/Makefile

  1 UNAME_S := $(shell uname)
  2
  3 ifeq ($(UNAME_S), Darwin)
  4   LDFLAGS = -Xlinker -framework,OpenGL -Xlinker -framework,GLUT
  5 else
  6   LDFLAGS += -L/usr/local/cuda/samples/common/lib/linux/x86_64
  7   LDFLAGS += -lglut -lGL -lGLU -lGLEW
  8 endif
  9
 10 NVCC = /usr/local/cuda/bin/nvcc
 11 NVCC_FLAGS=-Xcompiler "-Wall -Wno-deprecated-declarations" -rdc=true
 12 INC = -I/usr/local/cuda/samples/common/inc
 13
 14 all: main.exe
 15
 16 main.exe: main.o kernel.o device_funcs.o
 17   $(NVCC) $^ -o $@ $(LDFLAGS)
 18
 19 main.o: main.cpp kernel.h interactions.h
 20   $(NVCC) $(NVCC_FLAGS) -c $< -o $@
 21
 22 kernel.o: kernel.cu kernel.h device_funcs.cuh
 23   $(NVCC) $(NVCC_FLAGS) $(INC) -c $< -o $@
 24

Figure 7.2 Visual Studio property page showing Generate Relocatable 
Device Code set to Yes(-rdc=true) to allow kernel code in multiple files
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 25 device_funcs.o: device_funcs.cu device_funcs.cuh
 26   $(NVCC) $(NVCC_FLAGS) $(INC) -c $< -o $@

With that final detail covered, the time has come to compile and run the vis_3d 
app. You should be able to do live interactions with data sets of reasonable size. 
A laptop with a GeForce GT 640M handles a 600 × 600 image of a 512 × 512 × 512 
stack at interactive rates. (Larger 3D data sets can start to run into the limits 
of device memory, so you might want to estimate the size of the largest data 
set your GPU will accommodate.) Right-click on the graphics window to open 
a pop-up menu and select an object to visualize. View the object with each of 
the shading options and experiment with changing view directions and other 
parameters.

Screenshot images of vis_3d visualizations of a 3D image stack of distance 
data for a torus are shown in Figures 7.3, 7.4, and 7.5.

Figure 7.3 Screenshot of vis_3d slice visualization of the 3D distance stack for 
a torus
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Figure 7.4 Screenshot of vis_3d volume rendering visualization of the 3D 
distance stack for a torus

Figure 7.5 Screenshot of vis_3d raycast visualization of the 3D distance stack 
for a torus
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Summary
In this chapter, we’ve seen how to launch 3D computational kernels and how to 
achieve real-time interaction with 3D data grids (or image stacks) using three 
different visualization techniques: slicing, volume rendering, and raycasting. We 
hope you now feel empowered to embark on your own CUDA-powered 3D inter-
active projects. Here are some suggestions to help get you going.

Suggested Projects
1. Modify the dist_3d app to begin by computing the corresponding values on

the CPU. Compare the results from CPU and GPU and verify that they agree.
Time the CPU and GPU computations, and compare and contrast the execu-
tion times for various grid sizes.

2. Extend raycastShader() to handle more general data sets by implement-
ing an alternative rootfinding technique.

3. Enhance volumeRenderShader() by implementing a higher-order inte-
gration routine such as the trapezoidal rule (which averages the values at the
ends of a step along the ray instead of just taking the value at one end).

4. Figure out how to import data, and view it interactively with vis_3d. The next
time you go for a CT or MRI, request a copy of your data and visualize it.

5. Implement full 3D kinematic interaction (rather than just rotation about a
single axis).

6. Implement an eikonal equation solver to create signed distance grids from
segmented image stacks. (For details, see [4].)
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Chapter 8

 Using CUDA Libraries

In this penultimate chapter, we take a look at some of the software libraries that 
are available to provide you with access to CUDA capabilities without having to 
write all the code yourself. As we tour the libraries, we will explicitly identify 
some common parallel programming patterns and look at examples illustrating 
how the libraries make those patterns available for your use. Before we are 
done, you will see library-based alternative implementations of apps for image 
processing and computing distances, dot products, and centroids, along with 
new examples involving Monte Carlo estimation of pi (π), computing distance in 
image space, and solving systems of linear equations.

Custom versus Off-the-Shelf
Up to this point, we have focused our efforts mostly on how to create cus-
tom apps from scratch using the CUDA API and extensions of the C language. 
However, there are certain kinds of circumstances in which it makes sense to 
consider using an existing code base that you did not create yourself:

• You need a particular functionality that you cannot access readily yourself
without getting involved in a morass of details. We have already run into this
situation twice:

• Interactive graphics: Writing code that interfaces with what is displayed on
your monitor actually involves dealing with the specifics of your system and
your display device. Using an existing graphics library (such as OpenGL,
which we used in previous chapters) provides the necessary layer of
abstraction so that interactive graphics can be implemented independent
of hardware-specific details.



ptg22232966

CHAPTER 8 USING CUDA LIBRARIES

174

• Image files: Rather than get into the details of various image file formats,
we used the CImg library to import and export data from image files in the
projects involving graphics file I/O.

• You have a significant concern for code reliability and maintainability; you
want access to routines that have been written by experts and thoroughly
tested; and you want to make sure that the important functional aspects of
the code are updated in the future to ensure a long, useful lifetime.

We can now identify situations in which existing code libraries can be useful, but we 
should also acknowledge that there is some cost involved in using them—even the 
ones that are free of charge. The cost is the time and effort that you need to invest 
each time you learn to use a new library, but you should not let that deter you too 
much. As you gain experience, it becomes easier to learn to use new libraries.

We are going to take a quick tour of some relevant CUDA-powered libraries, so 
you can get some exposure to what it takes to make use of them. When it comes to 
weighing the costs and benefits, there are a couple things worth keeping in mind:

• Parallel patterns: Clearly, the cost-benefit analysis is influenced by how
often we can make use of particular coding tools, and parallel program-
ming constructs that arise in a wide variety of applications are referred to as
“parallel patterns.” Patterns also provide a useful context for creating and
communicating the structure of the apps that we design and create. Libraries
become particularly useful when they provide ready access to common parallel
patterns, so we will make explicit note of pattern capabilities that we encoun-
ter as we tour the libraries. McCool, Robison, and Reinders [1] identified the
following set of parallel patterns: superscalar sequences and task graphs,
selection, map, gather, stencil, partition, reduce, scan, and pack. In this chap-
ter alone, we will encounter about half of these.

• Foundational knowledge of CUDA: If libraries are so great, why have we dedi-
cated so much of our focus so far to writing our own apps in CUDA C? Has that
effort gone to waste? We believe that there is very little need to worry about
the effort spent learning CUDA C going to waste. Even if you end up as a heavy
user of CUDA-powered libraries (or access the power of CUDA through other
languages), your experience creating apps in CUDA C should serve you well.
You will have some direct idea of what is going on “under the hood” in the
libraries you use, and that will put you in a better to position to understand the
limitations and utilize the strengths of those libraries and languages.

Having now set the context, let’s start our tour of some CUDA-powered librar-
ies. Since there are already enough CUDA-powered libraries to make a 
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comprehensive tour impractical, our goals here are to touch on a few librar-
ies, provide illustrative examples of their use, and identify access to parallel 
patterns.

Thrust
The CUDA Toolkit Thrust documentation [2] provides a nice, concise description 
of what Thrust is all about:

Thrust is a C++ template library for CUDA based on the Standard Template 
Library (STL). Thrust allows you to implement high performance parallel applica-
tions with minimal programming effort through a high-level interface that is fully 
interoperable with CUDA C.

Thrust provides a rich collection of data parallel primitives such as scan, sort, and 
reduce, which can be composed together to implement complex algorithms with 
concise, readable source code. By describing your computation in terms of these 
high-level abstractions, you provide Thrust with the freedom to select the most 
efficient implementation automatically. As a result, Thrust can be utilized in rapid 
prototyping of CUDA applications, where programmer productivity matters most, 
as well as in production, where robustness and absolute performance are crucial.

Further information about Thrust is available at the Thrust project website [3].

Since Thrust bills itself as the C++ template library for CUDA, we should take 
a moment to describe its basis, the Standard Template Library. Throughout 
this book, we have been mostly using C style where function definitions are 
type-specific, so a function definition applies only to a single list of argument 
types. C++ provides additional flexibility by allowing functions to act on generic 
data types using C++ features called templates and overloading (which allows 
a single function name to represent different operations on different input 
types). C++ supports variable templates, class templates, and function tem-
plates (which will be most relevant to the discussion in this section). Recall 
that C++ is derived from C, and we have been compiling C with what is really a 
C++ compiler, so our development tools fully support the use of such C++ 
features.

The C++ standard library includes a variety of containers for dealing with col-
lections of variables of a given type, and the container that will be of primary use 
for our purposes is the vector, which is a sequence container with automatic 
resizing capability [4].
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Since the standard library is not the only software library that would define 
something named vector, namespaces (essentially prefix identifiers) are used 
to resolve name conflicts. In particular, everything in the C++ standard library 
has a full name that begins with std::, so a vector declaration starts with 
std::vector. (Alternatively, you can put the statement using namespace 
std; in your code file to import the whole std namespace. While this may offer 
some convenience, it can also sacrifice clarity, so we will use full names, includ-
ing the namespace prefix, in most cases.)

Thrust is the template library for CUDA and uses the namespace thrust. 
Instead of the std::vector container, Thrust offers thrust::host_vector 
and thrust::device_vector. Individual elements of Thrust vectors can be 
accessed using the C-style square bracket notation or with C++-style iterators.

Using syntax based on vectors and iterators, Thrust provides built-in capabili-
ties for allocating and freeing memory and for creating, populating, copying, and 
operating on vectors (without the necessity for any explicit calls of cudaMalloc(), 
cudaMemcpy(), or cudaFree()) . Thrust also provides commands for per-
forming a wide variety of parallel patterns, including selection, map, reduce, 
scan, and partition, along with other common operations such as sorting and 
comparing vectors. While we will be focusing on executing Thrust code on the 
GPU using CUDA, Thrust also includes “backend” implementations for OpenMP 
and threading building blocks (TBB), so Thrust code can be portable between 
GPU and multicore CPU systems [5,6,7].

Thrust provides a layer of abstraction that eliminates the need to write custom 
kernels, but that extra layer of abstraction can also make debugging somewhat 
more challenging, and some C++-specific knowledge is required.

COMPUTING NORMS WITH inner_product()

With that little bit of background, let’s jump into some Thrust examples. We’ll 
start with a simple example that uses exclusively built-in Thrust functionality 
and work our way up to adding some customization.

Listing 8.1 shows Thrust code for parallel computation of the length or norm of 
a vector corresponding to the square root of the scalar obtained by dotting the 
vector with itself (also known as the n-dimensional Pythagorean formula).

v =
i=0

N−1

∑ v
i( )2 = v iv
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The dot or inner product computation involves multiplying each entry by itself and 
summing the results, so both the map and reduce patterns occur during the 
computation.

Listing 8.1 norm/kernel.cu, computing the norm of a vector using Thrust
  1 #include <thrust/device_vector.h>
  2 #include <thrust/inner_product.h>
  3 #include <math.h>
  4 #include <stdio.h>
  5 #define N (1024*1024)
  6
  7 int main() {
  8   thrust::device_vector<float> dvec_x(N, 1.f);
  9   float norm = sqrt(thrust::inner_product(dvec_x.begin(),
 10     dvec_x.end(), dvec_x.begin(), 0.0f));
 11   printf("norm = %.0f\n", norm);
 12   return 0;
 13 }
 14

Lines 1–4 include the header files for the Thrust features used in this short 
code (along with the math and input/output libraries), and line 5 defines 
the length N of the vector. The main() function starts with declaration of a 
device_vector named dvec_x to contain N variables of type float all set 
to 1.0. Lines 9–10 compute the inner product of dvec_x with itself and take the 
square root to produce the norm. The arguments of thrust::inner_product 
include starting and ending iterators for the first and the starting iterator for the 
second input vectors (obtained with the device_vector’s member functions, 
.begin() and .end() in this case) and the initial value in the reduction follow-
ing element-wise multiplication. After printing out the value of norm, main() 
returns 0 and terminates. You should compile and run the code, then verify that 
it produces the correct result; each of the entries has value 1, so each square 
has value 1, the inner product is N, and the norm is N  or, in this case, 1,024. The 
Makefile for building this program is provided in Listing 8.2

Thrust Code Must Be Placed in a CUDA File
Note that you must put your Thrust code in a .cu file to get it to compile!

Listing 8.2 norm/Makefile
  1 NVCC = /usr/local/cuda/bin/nvcc
  2 NVCC_FLAGS = -g -G -Xcompiler -Wall
  3
  4 main.exe: kernel.cu
  5   $(NVCC) $(NVCC_FLAGS) $^ -o $@
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Now we are ready for the important question: How are you supposed to know 
about inner_product and its syntax? Finding good sample codes is one way 
to start, but when you push beyond the limits of sample codes, you will need 
access to the full documentation for Thrust. Both sample programs and the full 
API documentation are available online on the Thrust project website [3].

The documentation tab on the website also includes a link to the Thrust wiki [8], 
which provides lots of other useful items including the Quick Start Guide, FAQs, 
and documentation on error handling and debugging.

You are encouraged to explore the Thrust web pages, but right now let’s return to 
our immediate goal of finding information on the inner_product and its syn-
tax. Go to http://thrust.github.io/ and select Documentation ⇒ Thrust API 
(Doxygen) to bring up a page listing the Thrust modules beginning with iterators 
and algorithms. We are looking for the algorithm to perform an inner product, 
and (again thanks to our CUDA background) we know that a reduction is involved. 
After perhaps a bit of hunting around, we select Algorithms ⇒ Reductions 
⇒ Transformed Reductions and find documentation, as shown in Figure 8.1.
Such documentation tends to create an information-dense environment, but with
a little practice you’ll become adept at finding what you need.

In this case, the Returns section (along with the two lines of text below the 
shaded heading) confirm that this algorithm does perform the inner product 
operation we are looking for. The Parameters section describes the list 
of inputs, and the box at the bottom provides a code snippet illustrating 
usage.

Using Thrust with Arrays (Instead of Vectors)
For better or worse, the sample on this documentation page happens to use regu-
lar C arrays as inputs instead of Thrust vectors, so the iterators are not explicitly 
seen, and some pointer arithmetic is used instead. Recall that the name of an 
array is a pointer to the start of the array, so vec1, the name of the first array, 
serves as the iterator specifying the start of the first array, referred to as first1. 
(Likewise, vec2 is the value for the iterator first2 that appears as the third 
argument.) The second argument, last1, is an iterator indicating the end of vec1. 
In the sample code, this value is concocted using pointer arithmetic: vec1 points 
to the start of an array of length 3, so vec1+3 points to the end of the array 3 
elements later. If you use vectors, you will have the begin() and end() member 
functions at your disposal that return iterators, and you will not have to engage 
directly in pointer arithmetic.

http://thrust.github.io/
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It is worth noting that we have just identified an efficient solution to an earlier 
problem. In the heat_2d app in Chapter 5, “Stencils and Shared Memory,” 
we implemented Jacobi iteration to converge toward a steady-state temperature 
distribution. After setting up the boundary conditions, we started the iteration 
and just let it continue to run. At the end of that chapter, we posed the challenge 
of creating a convergence criterion to provide a quantitative basis for knowing 
when the iteration can be stopped. In Chapter 6, “Reduction and Atomic 
Functions,” we noted that a reasonable stopping criterion could be based 

Figure 8.1 Documentation for thrust::inner_product
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on the norm of the change of the temperature array between iterations, and 
thrust::inner_product enables us to compute such a norm with a single 
line of code.

COMPUTING DISTANCES WITH transform()

Next let’s look at a Thrust implementation of a dist_1d_thrust app similar to 
distance apps in Chapter 3, “From Loops to Grids.” The app once again com-
putes distances from a reference point to a sequence of points uniformly spaced 
on a line segment. The code for the app is shown in Listing 8.3, and we’ll go 
through it line by line.

Listing 8.3 dist_1d_thrust/kernel.cu
  1 #include <thrust/device_vector.h>
  2 #include <thrust/host_vector.h>
  3 #include <thrust/sequence.h>
  4 #include <thrust/transform.h>
  5 #include <math.h>
  6 #include <stdio.h>
  7 #define N 64
  8
  9 using namespace thrust::placeholders;
 10
 11 // Define transformation SqrtOf()(x) -> sqrt(x)
 12 struct SqrtOf {
 13   __host__ __device__
 14   float operator()(float x) {
 15     return sqrt(x);
 16   }
 17 };
 18
 19 int main() {
 20   const float ref = 0.5;
 21   thrust::device_vector<float> dvec_x(N);
 22   thrust::device_vector<float> dvec_dist(N);
 23   thrust::sequence(dvec_x.begin(), dvec_x.end());
 24   thrust::transform(dvec_x.begin(), dvec_x.end(),
 25 dvec_x.begin(), _1 / (N - 1));
 26   thrust::transform(dvec_x.begin(), dvec_x.end(),
 27 dvec_dist.begin(), (_1 - ref)*(_1 - ref));
 28   thrust::transform(dvec_dist.begin(), dvec_dist.end(),
 29 dvec_dist.begin(), SqrtOf());
 30   thrust::host_vector<float> h_x = dvec_x;
 31   thrust::host_vector<float> h_dist = dvec_dist;
 32   for (int i = 0; i < N; ++i) {
 33     printf("x=%3.3f, dist=%3.3f\n", h_x[i], h_dist[i]);
 34   }
 35   return 0;
 36 }
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Lines 1–4 specify the include files for the Thrust features we’ll use. The other 
included header files are math.h and stdio.h.

At this point, let’s jump ahead to describe the contents of main() and return to 
discuss the intervening code. Line 20 sets the reference location ref to 0.5, to be 
consistent with our earlier examples; then we get right into using Thrust. (Note 
that this implementation is chosen for clarity of presentation, not optimal per-
formance. An optimized version would likely combine or fuse multiple steps into 
a single, more complicated statement that would be counterproductive to our 
current purpose, so we’ll save the discussion of fusion for later in this chapter.)

Lines 21–22 create Thrust device vectors to hold the input values and the output 
distances. Lines 23–25 fill the input vector dvec_x with values uniformly spaced 
on the interval [0, 1] in two steps: sequence(d_x.begin(), d_x.end()) 
fills the vector with the sequence of values 0.0, 1.0, …, N − 1. To produce the 
desired values on [0,1], we need to divide each element by N − 1. We can perform 
the division (another occurrence of the map pattern) using thrust::transform, 
whose arguments include the first and last iterators for the input vector, the 
first iterator for the output vector, and the transformation. Since dvec_x is both 
the input and output vector, the first three arguments are dvec_x.begin(), 
dvec_x.end(), and dvec_x.begin(). The tricky part is the last argument 
that specifies the transformation. A function cannot be passed directly as an 
argument, so something more sophisticated is needed.

In this case, the transformation involves only a standard arithmetic operation, 
and we can create a passable description of the transformation using Thrust’s 
placeholder feature. The placeholder syntax uses an underscore followed by 
a digit to refer to an argument based on its position in the argument list, and 
standard arithmetic operations are indicated as usual. Thus we can now deci-
pher the fourth argument of thrust::transform. The expression _1/(N-1) 
says that the transformation output should consist of the first input (an element 
of the first input vector) divided by (N − 1). (Note that the input vector is declared 
to be of type float, so floating point division is performed.) Placeholders have 
a specific namespace, thrust::placeholders, and that’s why we have the 
using namespace directive in line 9.

In lines 26–27, we use placeholder notation again. (dvec_x[i]-ref)* 
(dvec_x[i]-ref) is the square of the distance from the reference point to the 
ith grid point, so thrust::transform(dvec_x.begin(), dvec_x.end(), 
dvec_dist.begin(), (_1 - ref)*(_1 - ref)) fills the output device 
vector dvec_dist with the squared distances. Now we need to compute the 
square root of each entry, but sqrt() is not a standard arithmetic operation; its 
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definition resides in the standard math library. The transformation we need 
here is beyond what can be done with placeholders, and a function object, or 
functor, is required.

How much more complicated is it to define a functor rather than a function? Not 
a lot; let’s look at the details. We could create our own custom function (let’s 
call it SqrtOf()) and have it compile for both CPU and GPU to call the sqrt() 
function included in the math library with the following code:

__host__ __device__
float SqrtOf(float x)
{
  return sqrt(x);
}

Creating the functor version requires only a few changes:

1. Instead of defining a function named SqrtOf, create a struct (a public class
in C++ terminology) of that name by wrapping struct SqrtOf{ }; around
the definition of the SqrtOf function.

2. In the function definition, replace SqrtOf with operator().

By making those changes to the function definition, you should have created the 
functor version appearing in lines 12–17.

Thinking About Functors
If it helps, you can think of the functor as follows. What we really did was to create 
a struct named SqrtOf that includes an alternative (or overloaded) definition 
of the function call operator (written as parentheses). While parentheses in other 
contexts group arguments or indicate precedence order, we created an alternative 
definition (that calls sqrt()) for SqrtOf(); that is, parentheses following the 
struct name SqrtOf.

That covers the code we skipped, and what remains of main() involves copy-
ing the results back to the host and printing them to the command window for 
inspection. Note that creating each host vector filled with the values from the 
corresponding device vector takes a single line (lines 30, 31), the memory for 
all of the vectors get freed automatically (without explicit calls to free() or 
cudaFree()), and the results printed to the command window agree with those 
obtained using our earlier distance apps. Finally, the Makefile for building is the 
same as norm’s, which was provided in Listing 8.2.
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Lambda expressions (lambda functions), a convenient feature of C++11, make 
passing functions into other functions cleaner and more readable. Lambda 
expressions can be used to replace functors and other anonymous functions. 
CUDA 7.5 recently introduced device lambda expressions as an experimental 
feature. Thus, now (although experimentally), we can use lambda expressions 
in our Thrust algorithms. Listing 8.4 shows the dist_1d_thrust application 
using lambdas.

Listing 8.4 dist_1d_thrust/kernel.cu with device lambda expressions
  1 #include <thrust/host_vector.h>
  2 #include <thrust/device_vector.h>
  3 #include <thrust/sequence.h>
  4 #include <thrust/transform.h>
  5 #include <math.h>
  6 #include <stdio.h>
  7 #define N 64
  8
  9 int main() {
 10   const float ref = 0.5;
 11   thrust::device_vector<float> dvec_x(N);
 12   thrust::device_vector<float> dvec_dist(N);
 13   thrust::sequence(dvec_x.begin(), dvec_x.end());
 14   thrust::transform(dvec_x.begin(), dvec_x.end(), dvec_x.begin(),
 15     []__device__(float x){ return x / (N-1); });
 16   thrust::transform(dvec_x.begin(), dvec_x.end(), dvec_dist.begin(),
 17     [=]__device__(float x){ return (x-ref)*(x-ref); });
 18   thrust::transform(dvec_dist.begin(), dvec_dist.end(),
 19     dvec_dist.begin(), []__device__(float x){ return sqrt(x); });
 20   thrust::host_vector<float> h_x = dvec_x;
 21   thrust::host_vector<float> h_dist = dvec_dist;
 22   for (int i = 0; i < N; ++i) {
 23     printf("x=%.3f, dist=%.3f\n", h_x[i], h_dist[i]);
 24   }
 25   return 0;
 26 }

The Makefile is given in Listing 8.5. Visual Studio users need to enter the 
compiler flag --expt-extended-lambda in the Additional Options box in 
Configuration Properties ⇒ CUDA C/C++ ⇒ Command Line.

Listing 8.5 dist_1d_thrust/Makefile for experimental lambda feature compatibility
  1 NVCC = /usr/local/cuda/bin/nvcc
  2 NVCC_FLAGS = -g -G -Xcompiler -Wall --std=c++11 --expt-extended-lambda
  3
  4 main.exe: kernel.cu
  5   $(NVCC) $(NVCC_FLAGS) $^ -o $@



ptg22232966

CHAPTER 8 USING CUDA LIBRARIES

184

The code can also be made shorter (and typically more efficient) by fusion; that 
is, merging the functionality of multiple steps of parallel code. A fused version of 
the functor implementation of the 1D distance app, dist_1d_fused, is shown 
in Listing 8.6.

Listing 8.6 dist_1d_fused/kernel.cu, a fused Thrust implementation of dist_1d
  1 #include <thrust/device_vector.h>
  2 #include <thrust/host_vector.h>
  3 #include <thrust/iterator/counting_iterator.h>
  4 #include <thrust/transform.h>
  5 #include <math.h>
  6 #include <stdio.h>
  7 #define N 64
  8
  9 // DistanceFrom(ref,n)(x)->sqrt((x/(n-1)-ref)*(x/(n-1)-ref))
 10 struct DistanceFrom {
 11   DistanceFrom(float ref, int n) : mRef(ref), mN(n) {}
 12
 13   __host__ __device__
 14   float operator()(const float &x) {
 15     float scaledX = x / (mN - 1);
 16     return std::sqrt((scaledX - mRef)*(scaledX - mRef));
 17   }
 18   float mRef;
 19   int mN;
 20 };
 21
 22 int main() {
 23   const float ref = 0.5;
 24   thrust::device_vector<float> dvec_dist(N);
 25   thrust::transform(thrust::counting_iterator<float>(0),
 26     thrust::counting_iterator<float>(N), dvec_dist.begin(),
 27     DistanceFrom(ref, N));
 28
 29   thrust::host_vector<float> hvec_dist = dvec_dist;
 30   float *ptr = thrust::raw_pointer_cast(&hvec_dist[0]); // debugging
 31   for (int i = 0; i < N; ++i) {
 32     printf("x[%d]=%.3f, dist=%.3f\n", i, 1.f*i/(N - 1), hvec_dist[i]);
 33   }
 34   return 0;
 35 }

Note that the entire computation is accomplished via a single call of 
thrust::transform in lines 25–27. The first two arguments are the starting 
and stopping values for a counting_iterator that serves as a virtual input 
sequence generator. The third argument gives the starting iterator for the out-
put vector, and the last argument specifies the functor DistanceFrom() to 
be applied. While the counting iterator does the equivalent of storing a regular 
sequence of values in an input array, the functor does the rest of the work: 
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It takes two arguments specifying the reference point and the array length, 
computes the coordinate value on [0, 1] corresponding to each iterator value, 
computes the distance from ref, and stores the result in dvec_dist. (The 
apparently stray pointer declaration on line 30 is a means for making the output 
data visible using debugging tools, as will be explained in detail at the end of this 
section.)

ESTIMATING PI WITH generate(), transform(), AND 
reduce()

Another well-known example that illustrates the convenience of Thrust involves 
Monte Carlo estimation of π. The plan is simple: Generate coordinates for a 
large number N of points lying in the unit square [0,1] x [0,1] and count the num-
ber N1 of those points that lie in the first quadrant of the unit circle, as illustrated 
in Figure 8.2. The working assumption is that random points in 2D are uniformly 
distributed in the area, so the ratio of the point counts should approach the area 
ratio for large N. The area of a quadrant of a circle with radius r = 1 is 1

4
πr2= π

4
, 

and the unit square has area 1 x 1 = 1, so the area ratio is π
4
 . The bottom line is 

that N1

N ≈ π
4
, so we obtain our Monte Carlo estimate of π by computing 4N1

N
.

The full Thrust implementation, shown in Listing 8.7, starts with the usual 
#include statements for the Thrust functions we will use, the math library, 
and the input output library.

Figure 8.2 For large numbers of points randomly distributed on the unit square, 
the fraction of the random points that lie within the first quadrant of the unit 
circle approaches the area ratio π

4
 .
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Listing 8.7 thrustpi/kernel.cu, a simple Thrust implementation of Monte Carlo estima-
tion of π
  1 #include <thrust/host_vector.h>
  2 #include <thrust/device_vector.h>
  3 #include <thrust/reduce.h>
  4 #include <thrust/generate.h>
  5 #include <thrust/transform.h>
  6 #include <math.h>
  7 #include <stdio.h>
  8 #define N (1 << 20)
  9
 10 using namespace thrust::placeholders;
 11
 12 int main(void)
 13 {
 14   thrust::host_vector<float> hvec_x(N);
 15   thrust::host_vector<float> hvec_y(N);
 16   thrust::generate(hvec_x.begin(), hvec_x.end(), rand);
 17   thrust::generate(hvec_y.begin(), hvec_y.end(), rand);
 18   thrust::device_vector<float> dvec_x = hvec_x;
 19   thrust::device_vector<float> dvec_y = hvec_y;
 20   thrust::transform(dvec_x.begin(), dvec_x.end(), dvec_x.begin(),
 21     _1 / RAND_MAX);
 22   thrust::transform(dvec_y.begin(), dvec_y.end(), dvec_y.begin(),
 23     _1 / RAND_MAX);
 24   thrust::device_vector<float>dvec_inCircle(N);
 25   thrust::transform(dvec_x.begin(), dvec_x.end(), dvec_y.begin(),
 26     dvec_inCircle.begin(), (_1*_1 + _2*_2)<1);
 27   float pi =
 28     thrust::reduce(dvec_inCircle.begin(), dvec_inCircle.end())*4.f/N;
 29   printf("pi = %f\n", pi);
 30   return 0;
 31 }

Line 8 specifies a value to plug in for N. Line 10 specifies the thrust::
placeholders namespace to avoid needing prefixes before the underscores in 
the placeholder expressions.

Bit Shift Operations
Note that << does not mean “much less than”; here it is a bit shift operator, so 
1<<20 means take the binary representation of the integer 1 and move the bits 20 
places to the left (in other words, 220 = 1,048,576).

The approach in main() is as straightforward as possible:

1. Create host vectors hvec_x and hvec_y to hold the x and y coordinates of N
points (lines 14–15).
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2. Use thrust::generate to populate hvec_x and hvec_y with random
numbers (lines 16–17). (Note that this uses the integer random number gen-
erator on the host.)

3. Create device vectors dvec_x and dvec_y with copies of the values of the
random data generated on the host (lines 18–19).

4. Divide the random integers by RAND_MAX (the largest integer the random
number generator can produce) using thrust::transform (with a place-
holder transformation) to produce random floats on [0,1] (lines 20–23).

5. Create a device vector dvec_inCircle to store 0 if the point lies outside the
unit circle, or 1 if the point lies within the unit circle (i.e., if x2 + y2 < 1, or,
in placeholder terminology, (_1*_1+_2*_2)<1) (lines 24–26).

6. Compute the number of points in the circle (by applying thrust::reduce
to dvec_inCircle), multiply by 4.f/N to obtain the estimate of π, and print
the result to the command window (lines 28–29).

The Makefile for building this app is the same as norm’s, which was provided in 
Listing 8.2. You should compile and run the app to verify that it produces a rea-
sonable numerical value. Hopefully, the takeaway from this example is that you 
can pretty quickly put some basic pieces together to implement parallel com-
putations without having to do any explicit parallel programming. Listing 8.8 
shows a revision of the π estimator using lambda expressions that not only fuses 
the transform and reduce steps, but also obviates the need for the device vector 
dvec_inCircle.

Listing 8.8 thrustpi/kernel.cu, fused Thrust implementation of Monte Carlo 
estimation of π
  1 #include <thrust/host_vector.h>
  2 #include <thrust/device_vector.h>
  3 #include <thrust/generate.h>
  4 #include <thrust/count.h>
  5 #include <stdio.h>
  6 #define N (1 << 20)
  7
  8 int main() {
  9   thrust::host_vector<float> hvec_x(N), hvec_y(N);
 10   thrust::generate(hvec_x.begin(), hvec_x.end(), rand);
 11   thrust::generate(hvec_y.begin(), hvec_y.end(), rand);
 12   thrust::device_vector<float> dvec_x = hvec_x;
 13   thrust::device_vector<float> dvec_y = hvec_y;
 14   int insideCount =
 15     thrust::count_if(thrust::make_zip_iterator(thrust::make_tuple(
 16 dvec_x.begin(), dvec_y.begin())), thrust::make_zip_iterator(
 17 thrust::make_tuple(dvec_x.end(), dvec_y.end())),
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 18 []__device__(const thrust::tuple<float, float> &el) {
 19 return (pow(thrust::get<0>(el)/RAND_MAX, 2) +
 20 pow(thrust::get<1>(el)/RAND_MAX, 2)) < 1.f; });
 21   printf("pi = %f\n", insideCount*4.f/N);
 22   return 0;
 23 }

All the parallel computation occurs in a single fused statement on lines 14–20. The 
combination of thrust::make_tuple and thrust::make_zip_iterator 
pair up the x and y coordinates to be operated on by the lambda expression on 
lines 18–20. The lambda expression accesses the values from dvec_x and 
dvec_y (with thrust::get<0> and thrust::get<1> respectively) and tests if 
the distance from the origin is less than the value of the argument; i.e., 1.0f. 
No vector is needed to store the result; they are summed directly by 
thrust::count_if. Note that this application can be built with the Makefile 
shown in Listing 8.5.

As a further demonstration of fusion, we present a Thrust implementation to 
replace centroid_2d/kernel.cu in the centroid_2d app from Chapter 6, 
“Reduction and Atomic Functions.” The Thrust implementation is shown in 
Listing 8.9, and it is worth noting that this code is much shorter than the previous 
version.

Listing 8.9 centroid_2d/kernel.cu with Thrust
  1 #include "kernel.h"
  2 #include <helper_math.h>
  3 #include <thrust/device_vector.h>
  4 #include <thrust/iterator/counting_iterator.h>
  5 #include <thrust/iterator/zip_iterator.h>
  6 #include <thrust/transform_reduce.h>
  7 #include <thrust/tuple.h>
  8 #include <stdio.h>
  9
 10 struct PixelFunctor {
 11   PixelFunctor(int width) : mWidth(width) {}
 12   template <typename T>
 13   __host__ __device__ int3 operator()(const T &el) {
 14     const int idx = thrust::get<0>(el);
 15     const uchar4 pixel = thrust::get<1>(el);
 16     const int r = idx / mWidth;
 17     const int c = idx - r*mWidth;
 18     int pixVal = (pixel.x < 255 || pixel.y < 255 || pixel.z < 255);
 19     return make_int3(pixVal*c, pixVal*r, pixVal);
 20   }
 21   int mWidth;
 22 };
 23
 24 void centroidParallel(uchar4 *img, int width, int height) {
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 25   thrust::device_vector<uchar4> invec(img, img + width*height);
 26   thrust::counting_iterator<int> first(0), last(invec.size());
 27   int3 res = thrust::transform_reduce(thrust::make_zip_iterator(
 28     thrust::make_tuple(first, invec.begin())),
 29     thrust::make_zip_iterator(thrust::make_tuple(last, invec.end())),
 30     PixelFunctor(width), make_int3(0, 0, 0), thrust::plus<int3>());
 31
 32   int centroidCol = res.x / res.z;
 33   int centroidRow = res.y / res.z;
 34   printf("Centroid: {col = %d, row = %d} based on %d pixels\n",
 35 centroidCol, centroidRow, res.z);
 36
 37   for (int c = 0; c < width; ++c) {
 38     img[centroidRow*width + c].x = 255;
 39     img[centroidRow*width + c].y = 0;
 40     img[centroidRow*width + c].z = 0;
 41   }
 42
 43   for (int r = 0; r < height; ++r) {
 44     img[r*width + centroidCol].x = 255;
 45     img[r*width + centroidCol].y = 0;
 46     img[r*width + centroidCol].z = 0;
 47   }
 48 }

There is a lot more to learn about Thrust, but let’s just cover one more need-
to-know issue before moving on: What do you do when you have data in a Thrust 
device vector that you want to pass to a CUDA kernel? Conversely, if you have 
data in a device array, how do you operate on it with a Thrust function? It turns 
out that both maneuvers can be achieved as follows:

• Passing CUDA device array as argument to a Thrust function. Create a device
array as usual by declaring a pointer and allocating device memory:

float *ptr;
cudaMalloc(&ptr, N * sizeof(float));

Thrust provides thrust::device_pointer as a means to create a pointer
that can be passed to Thrust functions as follows:

thrust::device_ptr<float>dev_ptr(ptr);

The device pointer can then be passed to Thrust algorithms:

thrust::fill(dev_ptr, dev_ptr+N, 1.0f);

Remember to include the header files and to free the device memory
(cudaFree(ptr);) when you are done.
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• Passing a Thrust device vector as argument to a CUDA API function or kernel.
A CUDA kernel function accepts pointers to arrays as arguments, but does
not immediately know what to do with a Thrust device vector. The solution
is provided by thrust::raw_pointer_cast, which turns out to be a very
descriptive name. (Remember to include the header file!) Once you’ve created
a device vector (e.g., thrust::device_vector<float>dvec_x(N);),
you can then create a regular pointer as follows:

float* ptrToX = thrust::raw_pointer_cast(&dvec_x[0]);

and the raw pointer is suitable for use as a kernel argument.

Related Windows Debugging Note
While thrust vectors are not set up to be directly viewable in the debugger, if you 
cast a raw pointer to a Thrust host_vector, you can enter the pointer name 
followed by a comma and the number of elements of interest in a Watch window 
to inspect the values. For example, the pointer created on line 30 of Listing 8.6 
 provides a way to view the results from inside Visual Studio. Compile the app in 
debug mode and place a break point after line 35. Start debugging, open a Watch 
window, and enter ptr,64 to view the distance values stored in hvec_dist.

We hope that is enough of an introduction to provide you with a productive start 
in Thrust, and we’ll move on to look at some other useful libraries.

cuRAND
You may have noticed that when we estimated π using Thrust, we generated 
the random point coordinates on the host (and initially stored the random coor-
dinates in host vectors). If you want to parallelize that part of the computation, 
you need to know about cuRAND, the CUDA Random Number Generation 
library.

The general description of the cuRAND library [9] explains its “flexible usage 
model” which means that there is a host API for bulk generation of random 
numbers (using functions called from the host but executed in parallel on the 
GPU) and an inline implementation that can be called from within a kernel. Our 
example for estimating π followed the bulk generation model, where we pro-
duce a large collection of random numbers and then use them in the ensuing 
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computation, so we will use the cuRAND host API to replace our previous 
approach to generating the random point coordinates. The revised code for esti-
mating π using cuRAND is shown in Listing 8.10, which adds the cuRAND header 
file, curand.h, to the included files.

Listing 8.10 thrustpi/kernel.cu based on random coordinates generated with the 
cuRAND library
  1 #include <curand.h>
  2 #include <thrust/device_vector.h>
  3 #include <thrust/count.h>
  4 #include <math.h>
  5 #include <stdio.h>
  6 #define N (1 << 20)
  7
  8 int main() {
  9   curandGenerator_t gen;
 10   curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_DEFAULT);
 11   curandSetPseudoRandomGeneratorSeed(gen, 42ULL);
 12   thrust::device_vector<float>dvec_x(N);
 13   thrust::device_vector<float>dvec_y(N);
 14   float *ptr_x = thrust::raw_pointer_cast(&dvec_x[0]);
 15   float *ptr_y = thrust::raw_pointer_cast(&dvec_y[0]);
 16   curandGenerateUniform(gen, ptr_x, N);
 17   curandGenerateUniform(gen, ptr_y, N);
 18   curandDestroyGenerator(gen);
 19   int insideCount =
 20     thrust::count_if(thrust::make_zip_iterator(thrust::make_tuple(
 21 dvec_x.begin(), dvec_y.begin())), thrust::make_zip_iterator(
 22 thrust::make_tuple(dvec_x.end(), dvec_y.end())),
 23 []__device__(const thrust::tuple<float, float> &el) {
 24 return (pow(thrust::get<0>(el), 2) +
 25 pow(thrust::get<1>(el), 2)) < 1.f; });
 26   printf("pi = %f\n", insideCount*4.f/N);
 27   return 0;
 28 }

Lines 9–11 comprise the setup for using cuRAND including the following:

• Declaring a curandGenerator_t object named gen on line 9. (You can think
of curandGenerator_t as the type created by cuRAND for referring to
random number generators.)

• Creating a specific random number generator with arguments correspond-
ing to the address of gen and choice of a specific generator. CURAND_RNG_
PSEUDO_DEFAULT selects the default pseudorandom number generator
(which is slightly simpler in that it does not require a state input) (line 10).
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• Seeding the random number generator on line 11. The arguments to
curandSetPseudoRandomGeneratorSeed() include the generator and
the seed value. 42ULL indicates the unsigned long long int with
value 42.

Next comes the creation of the device vectors dvec_x and dvec_y on lines 
12–13. Note that cuRAND lets us generate the random coordinate values on the 
GPU, so there is no need now for the host vectors hvec_x and hvec_y that we 
used previously.

We are now presented with our first opportunity to use Thrust’s pointer casting 
capabilities. We are going to use the cuRAND function curandGenerate-
Uniform() to generate a collection of uniformly distributed random numbers, 
and curandGenerateUniform() expects as arguments a curandGenerator_t 
object (to generate the random values), a pointer to a device array (where the 
values will be stored), and the number of values to generate. To store the random 
values in device arrays, we create pointers, ptr_x and ptr_y, to the initial 
element in each device vector using thrust::raw_pointer_cast() on lines 
14–15. The random values are computed with curandGenerateUniform() and 
stored in the device vectors, dvec_x and dvec_y, via their cast pointers, ptr_x 
and ptr_y, on lines 16–17. Having finished with generating the random values, 
we free up the resources used by cuRAND with curandDestroyGenerator() 
on line 18. The rest of the code is as before, and the Makefile to build it is shown 
in Listing 8.11. In Visual Studio, link cuRAND by opening the project’s property 
pages, selecting Linker ⇒ Input ⇒ Additional Dependencies ⇒ 
Edit, and adding curand.lib.

Listing 8.11 thrustpi/Makefile for building with cuRAND capability
  1 NVCC = /usr/local/cuda/bin/nvcc
  2 NVCC_FLAGS = -g -G -Xcompiler -Wall --std=c++11 --expt-extended-lambda
  3 LIBS = -lcurand
  4
  5 main.exe: kernel.cu
  6   $(NVCC) $(NVCC_FLAGS) $^ -o $@ $(LIBS)

Build and run the code to see how it works. Again, this example aims for clarity 
of presentation. For another version that aims for tighter Thrust/cuRAND 
coupling and greater efficiency, see [9].
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NPP
The NVIDIA Performance Primitives library (NPP) is a collection of parallel func-
tions that can be used for image, video, and signal processing [10]. As of version 7.5, 
NPP claims to deliver about 5–10x performance improvement compared to CPU 
implementations, and its ~1900 “processing primitives” for images and ~600 
primitives for signal processing offer even more significant opportunities for 
accelerating code development. Here we use NPP to create a library-based imple-
mentation of the sharpen app from Chapter 5, “Stencils and Shared Memory,” but 
before getting into the details of the code, a short aside about library files is needed.

Linking Library Files
Using code libraries sometimes requires inclusion of header files and/or linking 
with object files. A general discussion of how to do this in Visual Studio is given at the 
end of Appendix D, “CUDA Practicalities: Timing, Profiling, Error Handling, and 
Debugging.” Here we give the specifics for NPP. Windows users need to tell the 
system to link in the libraries nppc.lib along with nppi.lib and npps.lib, which 
have the image-processing and signal-processing functions, respectively). In 
Visual Studio, you can do this by opening the project’s property pages and selecting 
Linker ⇒ Input. You can then click on Additional Dependencies, select 
Edit, and add the necessary libraries to the list so that they appear, as shown in 
Figure 8.3.

Figure 8.3 Linker ⇒ Input ⇒ Additional Dependencies including 
nppc.lib and nppi.lib
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Linux users have the option of static linking, and if you do static linking, you also need 
to link in the cuLIBOS library. In our Makefiles, we provide a static linking approach, 
and Listing 8.12 gives a sample Makefile to link the cuLIBOS and NPP libraries.

Listing 8.12 sharpen_npp/Makefile

  1 NVCC = /usr/local/cuda/bin/nvcc
  2 NVCC_FLAGS = -g -G -Xcompiler -Wall
  3 LIBS += -lnppi_static -lnppc_static -lculibos
  4
  5 all: main.exe
  6
  7 main.exe: main.cpp
  8   $(NVCC) $(NVCC_FLAGS) $^ -o $@ $(LIBS)

If you are wondering how you are supposed to know such things, you have a couple 
resources at your disposal. Entering “CUDA NPP additional dependencies” into a 
search engine succeeded in producing useful information for dealing with this issue. 
However, this may be a situation where the CUDA Samples really become valuable. 
If you have a working CUDA Sample that uses the library of interest, you can open its 
property pages and inspect the various settings including the additional dependencies.

sharpen_npp

Listing 8.13 shows our reimplementation of the sharpen app using NPP. Note 
that in this version there is no kernel.cu, and everything is implemented in a 
single main.cpp file. We present the contents of the code then discuss how to 
go about finding the right library functions and figuring out the syntax for 
calling them.

Lis ting 8.13 sharpen_npp/main.cpp, the NPP-powered version of the sharpen app
  1 #define cimg_display 0
  2 #include "CImg.h"
  3 #include <cuda_runtime.h>
  4 #include <npp.h>
  5 #include <stdlib.h>
  6 #define kNumCh 3
  7
  8 void sharpenNPP(Npp8u *arr, int w, int h) {
  9   Npp8u *d_in = 0, *d_out = 0;
 10   Npp32f *d_filter = 0;
 11   const Npp32f filter[9] = {-1.0, -1.0, -1.0,
 12 -1.0,  9.0, -1.0,
 13 -1.0, -1.0, -1.0};
 14
 15   cudaMalloc(&d_out, kNumCh*w*h*sizeof(Npp8u));
 16   cudaMalloc(&d_in, kNumCh*w*h*sizeof(Npp8u));
 17   cudaMalloc(&d_filter, 9*sizeof(Npp32f));
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 18   cudaMemcpy(d_in, arr, kNumCh*w*h*sizeof(Npp8u),
 19 cudaMemcpyHostToDevice);
 20   cudaMemcpy(d_filter, filter, 9*sizeof(Npp32f),
 21 cudaMemcpyHostToDevice);
 22   const NppiSize oKernelSize = {3, 3};
 23   const NppiPoint oAnchor = {1, 1};
 24   const NppiSize oSrcSize = {w, h};
 25   const NppiPoint oSrcOffset = {0, 0};
 26   const NppiSize oSizeROI = {w, h};
 27
 28   nppiFilterBorder32f_8u_C3R(d_in, kNumCh*w*sizeof(Npp8u), oSrcSize,
 29     oSrcOffset, d_out, kNumCh*w*sizeof(Npp8u), oSizeROI, d_filter,
 30     oKernelSize, oAnchor, NPP_BORDER_REPLICATE);
 31
 32   cudaMemcpy(arr, d_out, kNumCh*w*h*sizeof(Npp8u),
 33 cudaMemcpyDeviceToHost);
 34   cudaFree(d_in);
 35   cudaFree(d_out);
 36   cudaFree(d_filter);
 37 }
 38
 39 int main() {
 40   cimg_library::CImg<unsigned char> image("butterfly.bmp");
 41   const int w = image.width();
 42   const int h = image.height();
 43   Npp8u *arr = (Npp8u*)malloc(kNumCh*w*h*sizeof(Npp8u));
 44
 45   for (int r = 0; r < h; ++r) {
 46     for (int c = 0; c < w; ++c) {
 47 for (int ch = 0; ch < kNumCh; ++ch) {
 48 arr[kNumCh*(r*w + c) + ch] = image(c, r, ch);
 49       }
 50     }
 51   }
 52
 53   sharpenNPP(arr, w, h);
 54
 55   for (int r = 0; r < h; ++r) {
 56     for (int c = 0; c < w; ++c) {
 57 for (int ch = 0; ch < kNumCh; ++ch) {
 58 image(c, r, ch) = arr[kNumCh*(r*w + c) + ch];
 59       }
 60     }
 61   }
 62   image.save_bmp("out.bmp");
 63   free(arr);
 64   return 0;
 65 }

The code starts, as usual, with some #include directives for the CUDA run-
time, the CImg library (to be used once again for image input and output), and 
the NPP header file along with two #define directives: We will not be using 
CImg for graphics display so cimg_display is set to 0, and kNumCh is set to 3 
to specify the number of color channels in the image data.
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The bulk of the computation, applying the stencil using NPP library functions, 
is performed by sharpenNPP() on lines 8–37. The function starts off in a 
way that should look familiar: declaration of pointers to two device arrays of 
type Npp8u (unsigned char) for d_in and d_out and one array of type 
Npp32f (float) for d_filter to hold the floating point stencil coefficients 
as defined on lines 11–13. Lines 15–21 allocate the memory for the device arrays 
and copy the input image data to the device. Lines 22–26 set the parameters for 
NPP algorithm that applies the stencil:

• oKernelSize sets the dimensions of the stencil to be 3 × 3.

• oAnchor sets the alignment point at indices {1, 1} so the 9 in the middle of
the stencil is aligned with the current pixel.

• oSrcSize sets the dimensions of the image to be processed.

• oSrcOffset sets the pixel indices at which to start applying the stencil.
{0, 0} starts the process at the first pixel.

• oSizeROI sets the pixel extent of the rectangular region of interest (ROI).
The specified values set the ROI to match the entire image.

The main work of the app occurs in the single NPP algorithm call on lines 28–30:

nppiFilterBorder32f_8u_C3R(d_in, kNumCh*w*sizeof(Npp8u), oSrcSize,
  oSrcOffset, d_out, kNumCh*w*sizeof(Npp8u), oSizeROI, d_filter,
  oKernelSize, oAnchor, NPP_BORDER_REPLICATE);

The function name nppiFilterBorder32f_8u_C3R() is deciphered as follows:

• nppi indicates an NPP image-processing algorithm.

• Filter is true to its name; it applies a filter (a.k.a. stencil).

• Border indicates that the algorithm handles cases where the stencil runs off
the edge of the image. The last argument, NPP_BORDER_REPLICATE, says
that the necessary “halo” values are equivalent to replicating the value of the
nearest pixel.

• 32f indicates that the stencil contains 32-bit floats.

• 8u indicates that the input data consists of 8-bit unsigned chars.

• C3 says that the image data has three color channels.

• R indicates operation on a rectangular ROI.



ptg22232966

NPP

197

The function ends by copying the filtered image data back to the host and freeing 
the memory allocated for the device arrays.

The rest of the main.cpp is almost the same as the sharpen app from Chap-
ter 5, “Stencils and Shared Memory,” with the exception of the data array being 
an array of unsigned chars, and the Npp8u being the NPP library’s type name 
for unsigned char.

That completes the code description, and it is time to build and run the appli-
cation. Listing 8.12 shows the Makefile needed for building this application in 
Linux. You should confirm that the sharpen_npp app reproduces the same 
output as the sharpen app for the sample image shown in Figure 5.4.

Navigating the NPP Documentation
Let’s take a moment to get some perspective on where all the NPP code came 
from. How do you find an NPP algorithm that does what you want? How do you 
determine what to pass as arguments? NPP offers thousands of algorithms, so 
finding the right one can be challenging, but it is not impossible. All of the NPP 
algorithms are described in the comprehensive documentation [10]. This virtual 
tome (currently over 3,000 pages in length) can seem overwhelming at first, so 
let’s break it down into manageable pieces.

Chapters 1–4 of the NPP Documentation (“NVIDIA Performance Primitives,” 
“General API Conventions,” “Signal-Processing Specific API Conventions,” and 
“Image-Processing Specific API Conventions”) total about 20 pages of material 
that is worth reading for general background if you plan to use NPP.

Once you’ve been through that material, you can focus on Chapter 5, “Module 
Index,” which provides a full list of NPP's modules. (Image-processing capabili-
ties include Arithmetic and Logical Operations, Color Sampling and Conversion, 
Compression, Labeling and Segmentation, Data Exchange, Filtering, Geometric 
and Linear Transformations, Morphological Operations, Statistical Operations, 
Memory Management, and Threshold/Compare Operations.) For each module, 
the functions are listed along with links to the detailed documentation.

For our example of image sharpening, we employed a 2D convolution with a cus-
tom filter, so only a few candidates had to be inspected to identify the  Convolution 
module as useful and click on the link to the relevant page number 
(p. 1221 in Version 7.5). There one finds several pages of related functions of various 
“flavors,” but, after reading the first four chapters of the NPP documentation, it 
is not too difficult to find one that has the right flavor and the appropriate specifica-
tion of input and output datatypes. We chose nppiFilterBorder32f_8u_C3R() 
for the reasons listed above (i.e., a 32-bit float filter that handles 8-bit 
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unsigned char images with three color channels, a border, and a rectangular 
ROI). Having identified a function of choice, clicking on the function name links to 
the parameter specifications (also listed above). Note that some of the more com-
plicated parameters offer links to more detailed explanations.

MORE IMAGE PROCESSING WITH NPP

Let’s embellish our app to not only sharpen an image, but to also produce an image 
that permutes (or swaps) the color channels or performs pixel-wise addition of 
shading values from a second image and computes a measure of how different the 
result is from the original image. You might take a look at the NPP documentation to 
see what functions you can find to produce images like those shown in Figure 8.4.

(a) (b)

(c) (d)

Figure 8.4 Rendering of the tricolor trefoil (a) original RGB, (b) sharpened, 
(c) colors swapped from RGB to BGR, (d) pixel-wise sum of original and
color-swapped images. (Full-color versions of these images are available at
www.cudaforengineers.com.) (Adapted from original image by Jim.belk on Wikimedia
Commons, http://commons.wikimedia.org/wiki/File:Tricoloring.png)

http://www.cudaforengineers.com
http://commons.wikimedia.org/wiki/File:Tricoloring.png
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For the specified operations, we identified the NPP function calls:

• Permuting color channels.

nppiSwapChannels_8u_C3R(d_in, kNumCh*w*sizeof(Npp8u), d_out,
kNumCh*w*sizeof(Npp8u), oSizeROI, aDstOrder);

The function name deciphers as NPP image-processing algorithm for
swapping channels in an 8-bit, 3-channel rectangular image. The only new
argument is the final one, which specifies the channel permutation. In our
example, we permute RGB➠GBR with the following specification:

const int aDstOrder[3] = {1, 2, 0};

(Note that aDstOrder[3] = {0, 1, 2} would leave the image
unchanged.) These two lines of code (definition of aDstOrder and call
of nppiSwapChannels_8u_C3R()) can be substituted for the
nppiFilterBorder32f_8u_C3R() call on lines 28–30 of Listing 8.13
to perform color swapping instead of sharpening.

• Pixel-wise addition. nppiAdd_8u_C3RSfs() performs pixel-wise summa-
tion. The function call for adding the output data, d_out, to the input image
data, d_in, and overwriting the results into d_out produces the following:

nppiAdd_8u_C3RSfs(d_in, kNumCh*w*sizeof(Npp8u), d_out,
kNumCh*w*sizeof(Npp8u), d_out, kNumCh*w*sizeof(Npp8u), oSizeROI, 1);

The suffix Sfs indicates that the function includes scaling to deal with output
ranges that may exceed the input range of 8-bit unsigned integers. Since we
can get sums of up to 255 + 255 (and all larger values would get clipped to 255,
producing washout), we specify a scale factor exponent of 1 so the sum gets
divided by 21 = 2 to ensure results on [0,255] without clipping large values.
Note that the resulting image was a bit dark, so we brightened it up by adding
a constant to every pixel value as follows:

const Npp8u aConstants[3] = {32, 32, 32};
nppiAddC_8u_C3IRSfs (aConstants, d_out, kNumCh*w*sizeof(Npp8u),
oSizeROI, 0);

• Computing image distance. nppiNormDiff_L2_8u_C3R() computes the
Euclidean distance between images (or the L2-norm of the image difference).
Note that the norm difference algorithm requires allocation of memory for
intermediate results, so a few additional lines of code are needed. The code
for setting up and calling nppiNormDiff_L2_8u_C3R() is shown in
Listing 8.14. The distance measures are computed on lines 7–8 and printed
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to the command window on lines 11–13. This snippet can be inserted below the 
NPP call that modifies the image to compute the image distance between 
the input image and the modified output image.

Listing 8.14 Snippet for computing the “distance” between images using 
nppiNormDiff_L2_8u_C3R()

  1   Npp64f *aNorm = 0;
  2   cudaMalloc(&aNorm, 3 * sizeof(Npp64f));
  3   Npp8u *pDeviceBuffer = 0;
  4   int bufferSize;
  5   nppiNormDiffL2GetBufferHostSize_8u_C3R(oSizeROI, &bufferSize);
  6   cudaMalloc(&pDeviceBuffer, bufferSize);
  7   nppiNormDiff_L2_8u_C3R(d_in, kNumCh*w*sizeof(Npp8u), d_out,
  8     kNumCh*w*sizeof(Npp8u), oSizeROI, aNorm, pDeviceBuffer);
  9   Npp64f res[3];
 10   cudaMemcpy(res, aNorm, 3*sizeof(Npp64f), cudaMemcpyDeviceToHost);
 11   for (int i = 0; i < 3; ++i) {
 12     printf("%f\n", res[i]/(w*h));
 13   }

Sample results are shown in Figure 8.4. The input image (a) is shown top-left; 
the sharpened image (b) is shown top-right; the color-swapped version (c) is 
shown lower-left; and the sum of the original and color-swapped images (d) is 
shown on lower-right. While it may not be easy to visually distinguish the original 
and sharpened images, we can distinguish them based on the normed image 
distances. Note that the image distance is computed component-wise; that is, 
with separate values for the red, green, and blue channels. If you want a single 
scalar distance, you can convert to grayscale first with the code shown in 
Listing 8.15.

Here is a summary of the results of computing distances from the input image:

• Input image. All three color channels produce a normed difference of 0.0 (The
distance between anything and itself should be zero, so this is a good sign.)

• Sharpened image. The normed difference values for red, green, and blue
channels are 0.01122, 0.01131, and 0.01129, respectively.

• Color-swapped image. The normed differences are 0.08716, 0.08813, and
0.08521 for red, green, and blue, respectively. Converting to grayscale pro-
duces a distance norm of 0.07697. Not surprisingly, the grayscale distance
measure is less sensitive to color swapping than the color specific measures.

• Sum of original and color-swapped images. The RGB normed differences are
0.05028, 0.04999, and 0.04877. Grayscale conversion gives 0.04375. Note that
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the scaled sum averages the original and color-swapped images, producing 
an image distance that is much smaller than for the color-swapped image 
but still significantly larger than for the sharpened image.

Listing 8.15 Snippet for converting to grayscale then computing image distance
  1 // Allocate memory for a double.
  2 Npp64f *pNormDiff = NULL;
  3 cudaMalloc(&pNormDiff, sizeof(Npp64f));
  4
  5 // Allocate memory for scratch buffer.
  6 Npp8u *pDeviceBufferGray = NULL;
  7 int bufferSizeGray;
  8 nppiNormDiffL2GetBufferHostSize_8u_C1R(oSizeROI, &bufferSizeGray);
  9 cudaMalloc(&pDeviceBufferGray, bufferSizeGray);
 10
 11 // Convert to grayscale.
 12 nppiRGBToGray_8u_C3C1R(d_in, kNumCh*w*sizeof(Npp8u), d_temp_gray1,
 13   w*sizeof(Npp8u), oSizeROI);
 14 nppiRGBToGray_8u_C3C1R(d_temp, kNumCh*w*sizeof(Npp8u), d_temp_gray2,
 15   w*sizeof(Npp8u), oSizeROI);
 16
 17 // Grayscale norm diff.
 18 nppiNormDiff_L2_8u_C1R(d_in, kNumCh*w*sizeof(Npp8u), d_temp,
 19   kNumCh*w*sizeof(Npp8u), oSizeROI, pNormDiff, pDeviceBufferGray);
 20
 21 // Get and print result.
 22 Npp64f res = 0;
 23 cudaMemcpy(&res, pNormDiff, sizeof(Npp64f), cudaMemcpyDeviceToHost);
 24 printf("%f\n", res/(w*h));

While some navigation skills are required to get through the documentation, 
NPP provides a large number of algorithms for image and signal processing 
that are developed, tested, and maintained by expert programmers for your 
convenience.

Linear Algebra Using cuSOLVER and 
cuBLAS

We now arrive at another area that is significant in terms of both library devel-
opment and library usage: solving systems of linear algebraic equations. The 
focus on linear algebra libraries predates GPU computing, and the significant 
and widely used CPU-based linear algebra libraries include the Basic Linear 
Algebra Subprograms (BLAS) and the higher level Linear Algebra Package 
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(LAPACK) [11]. cuBLAS  is NVIDIA’s GPU-accelerated implementation of the 
BLAS library [12]. cuSOLVER, introduced into the CUDA Toolkit in Version 7.0, is 
a GPU-accelerated analog of LAPACK [13]. cuSOLVER contains three separate 
libraries:

• cuSolverDN provides factorization and solution methods for dense matrices.

• cuSolverSP solves sparse and least-squares problems based on sparse QR
factorization.

• cuSolverRF accelerates refactorization methods used for multiple matrices
that share a sparsity pattern.

While cuBLAS and cuSOLVER provide a large number of functions, here we will 
focus on just three of them that combine to serve a useful function: solving the 
multiple linear regression or least-squares problem.

Once again, we’ll jump right into a concrete example that aims to compute a 
linear model of the hourly energy production rate (b) of a power plant based on 
four input variables: temperature (T), exhaust vacuum (V), ambient pressure (P), 
and relative humidity (H). The resulting model will express the output as a linear 
function of the inputs

c
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and if we had five sets of measurements to determine the five unknown coeffi-
cients c0, cT, cV, cH, and cP, then this would be a nice, simple 5 × 5 matrix problem 
that could be done by hand. However, thanks to a generous data donation of 
Combined Cycle Power Plant data to the University of California-Irvine Machine 
Learning Repository [14,15], over 9,500 sets of measurements are available. 
(Note that we have changed the variable names slightly for ease of presentation.) 
So, instead of a small, well-determined problem (five equations with five vari-
ables), we have a large and highly-overdetermined problem (i.e., one with many 
more equations than variables). We’ll leave it up to you to explore the full data 
set and construct an example based on the first nine sets of measurements. 
(Doing the larger computation is not the issue, but inputting the full data set and 
constructing the matrix involves reading in a .csv file, which is out of need-
to-know territory for this book.)

Each measurement corresponds to an equation with values of the measured 
variables that get multiplied by the five unknown coefficients and summed to 
produce a measured value of b. We can then collect the equations into the single 
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matrix equation Ac = b where A is the 9 × 5 matrix composed of columns that are 
the vector of measurements of each variable (e.g., the first column of A is the 
vector of measured temperatures), b is the vector (or 9 × 1 matrix) of measured 
power production rates, and we want to solve for the vector (or 5 × 1 matrix) of 
coefficients c = [c0,cT, cV, cH, cP]T. Such a system is not directly solvable, but it can 
be put into a tractable form using QR factorization [16,17]. The basic idea is that 
any matrix A can be expressed in terms of two matrices Q and R with the follow-
ing special properties:

• QR = A

• Q is orthonormal (its inverse is the same as its transpose) so QTQ = I, the
identity matrix.

• R is upper triangular.

Applying the factorization A = QR and multiplying both sides of the matrix equa-
tion by QT, we get QTQRc = QTb. The left side simplifies (because QTQ = I and IR = R), 
and we end up with Rc = QTb, which is tractable because R is upper triangular. 
The last equation only involves the last entry of c, so we can solve for that entry 
directly and back substitute to solve for the earlier entries in turn. The actual 
data for the problem is shown in Table 8.1.

With the problem description complete, we can focus on the library implemen-
tation of the three major steps:

1. The QR factorization of a dense matrix is provided by the function
cusolverDnSgeqrf(). The name combines the name of the dense matrix
library (cusolverDn), an indicator of float data type (S), and the abbreviated
command to get the QR factorization (geqrf).

2. The modified right-hand side QTb is computed with cusolverDnSormqr().
This name combines the dense matrix library, with the data type indicator,
and an abbreviation for “overwrite matrix by multiplying with Q from QR
decomposition” (ormqr).

3. Backsolve Rc = QTb for c using cublasStrsm(). Here the name consists
of the relevant library (cublas), the data type indicator (S for float), and an
abbreviation for “triangular solve matrix” (trsm).

The code for the library-based implementation of the multiple linear regression 
example is shown in Listing 8.16.
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Listing 8.16 linreg/main.cpp for solving multiple linear regression example with 
cuSOLVER and cuBLAS
  1 #include <stdio.h>
  2 #include <cuda_runtime.h>
  3 #include <cusolverDn.h>
  4 #include <cublas_v2.h>
  5
  6 #define MIN(X, Y)  ((X) < (Y) ? (X) : (Y))
  7
  8 int main() {
  9   // Create A (m by n) and b (m by 1) on host and device.
 10   const int m = 9, n = 5;
 11   const int lda = m, ldb = m;
 12
 13   float A[m*n] = {
 14     1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 15     8.34, 23.64, 29.74, 19.07, 11.8, 13.97, 22.1, 14.47, 31.25,
 16     40.77, 58.49,56.9,49.69,40.66,39.16,71.29,41.76, 69.51,
 17     1010.84, 1011.4, 1007.15, 1007.22, 1017.13, 1016.05, 1008.2,
 18     1021.98, 1010.25,
 19     90.01,74.2,41.91,76.79,97.2,84.6,75.38,78.41, 36.83};

Table 8.1 Data from the Combined Cycle Power Plant Data Set

T V P H B

8.34 40.77 1010.84 90.01 480.48

23.64 58.49 1011.40 74.20 445.75

29.74 56.90 1007.15 41.91 438.76

19.07 49.69 1007.22 76.79 453.09

11.80 40.66 1017.13 97.20 464.43

13.97 39.16 1016.05 84.60 470.96

22.10 71.29 1008.20 75.38 442.35

14.47 41.76 1021.98 78.41 464.00

31.25 69.51 1010.25 36.83 428.77

6.77 38.18 1017.80 81.13 484.31
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 20   float b[m] = {
 21     480.48, 445.75,438.76,453.09,464.43, 470.96,442.35,464, 428.77};
 22
 23   float *d_A = 0, *d_b = 0;
 24   cudaMalloc(&d_A, m*n*sizeof(float));
 25   cudaMemcpy(d_A, A, m*n*sizeof(float), cudaMemcpyHostToDevice);
 26   cudaMalloc(&d_b, m*sizeof(float));
 27   cudaMemcpy(d_b, b, m*sizeof(float), cudaMemcpyHostToDevice);
 28
 29   // Initialize the CUSOLVER and CUBLAS context.
 30   cusolverDnHandle_t cusolverDnH = 0;
 31   cublasHandle_t cublasH = 0;
 32   cusolverDnCreate(&cusolverDnH);
 33   cublasCreate(&cublasH);
 34
 35   // Initialize solver parameters.
 36   float *tau = 0, *work = 0;
 37   int *devInfo = 0, Lwork = 0;
 38   cudaMalloc(&tau, MIN(m,n)*sizeof(float));
 39   cudaMalloc(&devInfo, sizeof(int));
 40   const float alpha = 1;
 41
 42   // Calculate the size of work buffer needed.
 43   cusolverDnSgeqrf_bufferSize(cusolverDnH, m, n, d_A, lda, &Lwork);
 44   cudaMalloc(&work, Lwork*sizeof(float));
 45
 46   // A = QR with CUSOLVER
 47   cusolverDnSgeqrf(cusolverDnH, m, n, d_A, lda, tau, work, Lwork,
 48 devInfo);
 49   cudaDeviceSynchronize();
 50
 51   // z = (Q^T)b with CUSOLVER, z is m x 1
 52   cusolverDnSormqr(cusolverDnH, CUBLAS_SIDE_LEFT, CUBLAS_OP_T, m, 1,
 53 MIN(m, n), d_A, lda, tau, d_b, ldb, work, Lwork,
 54 devInfo);
 55   cudaDeviceSynchronize();
 56
 57   // Solve Rx = z for x with CUBLAS, x is n x 1.
 58   cublasStrsm(cublasH, CUBLAS_SIDE_LEFT, CUBLAS_FILL_MODE_UPPER,
 59 CUBLAS_OP_N, CUBLAS_DIAG_NON_UNIT, n, 1, &alpha, d_A,
 60 lda, d_b, ldb);
 61   // Copy the result and print.
 62   float x[n] = {0.0};
 63   cudaMemcpy(x, d_b, n*sizeof(float), cudaMemcpyDeviceToHost);
 64   for (int i = 0; i < n; ++i) printf("x[%d] = %f\n", i, x[i]);
 65
 66   cublasDestroy(cublasH);
 67   cusolverDnDestroy(cusolverDnH);
 68   cudaFree(d_A);
 69   cudaFree(d_b);
 70   cudaFree(tau);
 71   cudaFree(devInfo);
 72   cudaFree(work);
 73   return 0;
 74 }
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The code starts with directives to include the necessary libraries and define 
a useful MIN utility macro. The main() function starts with declarations of 
relevant sizes including the number of rows m and columns n in the augmented 
matrix (i.e., A with 1’s appended as its first column as the parameter that multi-
plies c0) and the leading dimension of each side (both m in this case). Lines 13–21 
hard-code the input data, and you would want to replace this with something 
that reads data from a file to handle a larger problem. Lines 23–27 allocate 
device memory and transfer the data for A and b. Lines 29–44 handle the prep 
work including calling a library function on line 43 to determine the size of the 
working buffer needed for the computation. Lines 47, 52, and 58 then call the 
three principal library functions discussed above to compute the QR factorization, 
construct the modified left-hand side, and backsolve for the vector of unknown 
coefficients that are copied back to the host and printed on lines 63–64. The 
remaining lines do the cleanup by destroying the contexts that were created and 
freeing the allocated memory.

The Makefile for running the code in Linux is shown in Listing 8.17. In Visual 
Studio under Windows, cublas.lib and cusolver.lib must be added to the 
list of additional linker input dependencies as described in the "Linking Library 
Files" sidebar earlier in this chapter. See Figure 8.3.

Listing 8.17 linreg/Makefile

  1 NVCC = /usr/local/cuda/bin/nvcc
  2 NVCC_FLAGS = -g -G -Xcompiler -Wall
  3 LIBS += -lcublas_static -lcusolver_static -lculibos
  4
  5 all: main.exe
  6
  7 main.exe: main.cpp
  8   $(NVCC) $(NVCC_FLAGS) $< -o $@ $(LIBS)

Running the code on the first nine samples in the data set produces the follow-
ing values for the unknown coefficient vector:

c = 834.18, −2.149, −0.378, −0.300, −0.209⎡⎣ ⎤⎦
T

The linear regression relationship is

b = 843.18−2.149*T −0.378*V −0.300*P −0.209*H

and we can test it by plugging in other samples from the data set (which is why 
we kept an extra sample that was not included in the computation). Substituting 
the values from the last row of Table 8.1 into the regression formula produces 
b = 483.21, which differs from the tabulated value by 0.2%.
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One last note about error handling: Methods shown in Appendix D, “CUDA 
Practicalities: Timing, Profiling, Error Handling, and Debugging,” for error 
handling are totally valid for use with the cuBLAS and cuSOLVER API, since the 
helper_cuda.h function checkCudaErrors()is capable of handling cuBLAS 
and cuSOLVER errors. While omitted for clarity here, we encourage you to wrap 
all your CUDA calls, including cuBLAS and cuSOLVER, in checkCudaErrors()
for error handling when developing cuBLAS and cuSOLVER applications.

cuDNN
Machine learning has become one of the hottest topics in GPU computing, so 
you should know about cuDNN, the NVIDIA CUDA Deep Neural Network library, 
and NVIDIA DIGITS, the deep learning training system. cuDNN includes imple-
mentations of widely used deep learning frameworks, include Caffe, Theano, 
and Torch. For details, visit the cuDNN website at https://developer.nvidia
.com/cudnn and the DIGITS website at https://developer.nvidia.com/digits.

ArrayFire
Finally, we touch briefly on ArrayFire, which is described as follows [18]:

ArrayFire is a high performance software library for parallel computing with an 
easy-to-use API. Its array based function set makes parallel programming more 
accessible.

ArrayFire may be of interest to those of you who come from a Matlab back-
ground, because the programming style more closely resembles Matlab than C. 
ArrayFire is also open source and multiplatform, so it can take advantage of 
GPU-based SIMT parallelism but can also execute on other hardware (with 
appropriate adjustment of performance expectations). Apps built with ArrayFire 
can be very concise, and if you are interested, you should check out their exam-
ples to get a more concrete feel for its capabilities.

Summary
We have sampled just a few of the CUDA-powered libraries that are at your dis-
posal. We hope the sample codes motivate you to further explore the libraries 

https://developer.nvidia.com/digits
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
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available to help you be both more effective and more efficient in your coding 
endeavors. 

Suggested Projects
1. The Thrust example that estimated π generated the random coordinates on

the interval [0,1] by generating vectors of random integers and then dividing
by the largest value produced by the random integer generator, RAND_MAX,
with both operations performed on the host. This particular random number
generator is exclusively a host function, so that computation needs to be done
on the host. However, there is no good reason not to do the division in parallel
on the device. Modify the code to generate random numbers on the host, but
to do the division in parallel on the GPU, use thrust::transform with a
device vector.

2. Consider the following issues with the cuRAND version of the π estimator
shown in Listing 8.10.

a. If you run the app multiple times, do you keep getting the same answer?
Is that a good thing or a bad thing for a Monte Carlo algorithm?

b. Experiment with changing the seed value on line 11. Does that produce
a new result? If you run the app again with the new seed value, do you
reproduce the new result?

c. Explore cuRAND to learn about states and offsets. Revise the code so
that repeated runs of the app use different sets of random numbers and
produce (appropriately) different outcomes.

3. Modify dist1D_fused to create dist2D_fused, an app that performs
the same function as dist2D from Chapter 4, “2D Grids and Interactive
Graphics,” using Thrust. A suggested approach is to use a counting iterator
to provide a virtual flat index and a functor that computes the row and col
indices, converts them to x,y coordinates, and computes the distance from
the reference point.

4. Use NPP to verify (quantitatively) that sharpen and sharpenNPP produce
the same results for a given input image.

5. Create an interactive image-processing app to demonstrate some of the
capabilities offered by NPP. (Build upon the OpenGL interop capability of the
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flashlight app or the image display capabilities of CImg or some other 
library of your choosing.)

6. Implement the π estimator using thrust::tuple and thrust::zip_
iterator, as illustrated in Listing 8.9.

7. Incorporate code for reading a standard input file format such as comma-
separated-value (CSV), and experiment with applying the linear regression
app to larger data sets.
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Chapter 9

 Exploring the CUDA 
Ecosystem

The collection of resources (including books, websites, blogs, software, and 
documentation) related to CUDA is often referred to as the “CUDA ecosystem.” 
This final chapter provides a collection of pointers to materials that may prove 
helpful in your further explorations of the CUDA ecosystem. Short descriptions 
are provided to help you identify materials that are more likely to be relevant to 
particular aspects or applications of CUDA.

The Go-To List of Primary Sources
We start off with the short list of resources you should definitely know about.

CUDA ZONE

The primary resource to take advantage of is NVIDIA’s CUDA Zone website at 
https://developer.nvidia.com/cuda-zone, which you may have already visited to 
download the CUDA toolkit and/or to register as a CUDA developer. The page 
currently offers connections to six categories of links including the following:

• About CUDA provides a very general overview and links to case studies in a
wide variety of application domains including bioinformatics, computational
fluid and structural mechanics, design automation, and imaging.

https://developer.nvidia.com/cuda-zone
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• Getting Started offers links to programming languages (we have been using
C/C++, but CUDA is also accessible from Fortran, Python, Matlab, Mathematica,
and others), compiler directives (which ask the compiler to try to parallelize
computations based on your existing code), and optimized libraries (so you
can use parallel codes written, tested, and maintained by other people). Links
are also provided to help identify CUDA-compatible hardware and to sign up
for an online parallel programming class. (More on that below.)

• Tools & Ecosystem has links to applications, libraries, analysis tools, and
tools for managing a GPU cluster.

• Academic Collaboration provides links to available education and training
materials.

• CUDA Downloads is where you go to get new versions of CUDA along with
Getting Started Guides and Release Notes.

• Resources offers a large collection of links grouped by category. A couple of
them deserve special note:

• Docs and References links to CUDA’s Online Documentation, including
Release Notes, Getting Started Guides, and Programming Guides. Spending
some time exploring the CUDA Toolkit documentation can be a very worthwhile
investment. You should plan on visiting here regularly.

• Education & Training gives links to GTC presentations and GTC Express
Webinars. GTC stands for GPU Tech Conference, an annual gathering of
GPU professionals and enthusiasts held each Spring in San Jose, California.
Each year hundreds of CUDA-related talks are presented, and the vast
majority are recorded and made available online. GTC Express Webinars
are the year-round online extension of GTC, providing talks on additional
topics. There are some very good GTC talks, and you should check out the
selection in your areas of interest.

OTHER PRIMARY WEB SOURCES

CUDA development is definitely an activity for which the internet is your friend. 
When you run into obscure errors, copying an error message and pasting it into 
your favorite search engine is one of the best ways to get useful assistance. However, 
there are a number of other particular web-based resources you should know 
about. Here are some favorites:
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• The Parallel Forall (abbreviated “||∀” by those who are more inclined toward
mathematical notation) blog, http://devblogs.nvidia.com/parallelforall/. This
blog regularly presents useful and enlightening posts by experts like Mark
Harris, Chief Technologist for GPU Computing Software at NVIDIA.

• When you do a web search for help with a particular topic or error message, if
you find a link to StackOverflow with a recent date, check it out. StackOverflow
describes itself as follows: “Stack Overflow is a question and answer site for
professional and enthusiast programmers. It’s 100% free, no registration
required.” What makes it great for our purposes is that some very knowledge-
able CUDA experts respond to questions posted there. Entering [cuda] in
the search box at StackOverflow will produce CUDA-specific results: https://
stackoverflow.com/questions/tagged/cuda.

• Wikipedia’s CUDA page, https://en.wikipedia.org/wiki/CUDA. This is a
handy location for details about compute capability of particular GPUs,
along with supported features and technical specs that depend on com-
pute capability.

ONLINE COURSES

There are three online courses to know about that contain significant CUDA 
content:

• Udacity CS344: Intro to Parallel Programming uses CUDA to introduce
essential concepts in parallel computing. The course description goes as
follows: “This class is for developers, scientists, engineers, researchers, and
students who want to learn about GPU programming, algorithms, and opti-
mization techniques.” The presenters are Professor John Owens of UC Davis
and Dr. David Luebke, Senior Director at NVIDIA Research. Students can start
the class free of charge on their own schedule. The concise and well-crafted
presentations are interspersed with quick quizzes and programming assign-
ments. It is a computer science class, so significant C/C++ programming
experience is expected, and even if you do not have the expected background,
the explanations in the early presentations are quite worth your while (includ-
ing the brilliant analogy of describing the contrast between CPU and GPU
computing in terms of school buses and sports cars).

• Heterogeneous Parallel Programming is based on a course offered at the
University of Illinois that aims at parallel systems involving CPUs and GPUs.
The early part of the course is based on CUDA, while the later portion deals

https://stackoverflow.com/questions/tagged/cuda
https://stackoverflow.com/questions/tagged/cuda
https://en.wikipedia.org/wiki/CUDA
http://devblogs.nvidia.com/parallelforall/
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with other parallel platforms (OpenCL, OpenACC, and C++AMP). The lectures 
are presented by Professor Wen-mei Hwu (whose name will appear again 
in the list of books below), and the content has been updated since the ini-
tial offering in 2012. The course, which lasts nine weeks and has run Janu-
ary through April in recent years, has been offered free of charge through 
Coursera.

• Programming Massively Parallel Processors with CUDA presents recordings
of the lectures from a course offered at Stanford in the spring of 2010. The
lectures are given by Dr. Jared Hoberock and Dr. Nathan Bell (who were both
involved in the creation of Thrust) and a handful of guest speakers. Significant
programming background is expected, and some of the material is now a
bit dated, but the explanations given in the early part of the course and the
applications discussed later are of high quality. The videos are available for
download free of charge from iTunes.

CUDA BOOKS

Since CUDA’s debut in 2007, eight years have passed, and that is about how 
many CUDA books are presently available that you should be aware of. Here are 
brief descriptions of each:

1. CUDA by Example: An Introduction to General-Purpose GPU Programming
by Jason Sanders and Edward Kandrot. Addison-Wesley: 2011. ISBN-13:
9780131387683.

This is the book that got many people, including one of the authors (DS),
started in the CUDA world. It is a well-written, attractive, compact book that
is worth a look by every CUDA learner. The example-based approach is effec-
tive and inspires active engagement. Note, however, that CUDA by Example is
aimed at experienced C programmers, not at a general technical audience. A
significant portion of the content involves dealing with  multiple computation
streams, which becomes relevant when you want to take advantage of mul-
tiple GPUs or hide latency by having one stream transfer data while another
stream is performing computations. (We consider multiple-
stream programming a more advanced topic that is not need-to-know mate-
rial for CUDA newcomers—which is why we have not broached the subject
until now.) Note also that CUDA by Example, which has been out for about
three-fourths of the entire period since CUDA’s release, is understandably
out of date in a few regards including handing of OpenGL interoperability and
reliance on utility functions (in cutil.h) that were distributed with early
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versions of the CUDA Samples but never officially supported. (These utilities 
have now been supplanted by the helper files in more recent versions of 
CUDA.) All in all, a really good book. If a second edition comes out, we will be 
buying it!

2. Programming Massively Parallel Processors: A Hands-On Approach (Applications
of GPU Computing Series) by David B. Kirk and Wen-mei Hwu. Morgan
Kaufmann: 2010. ISBN-13: 9780123814722.

This is another of the early entries in the CUDA book market. It is aimed at
a broader technical audience and assumes some (but not extensive) C pro-
gramming background and shares the goal of efficiently preparing the reader
to undertake their own CUDA projects. It provides background material intro-
ducing CUDA (as well as a chapter on OpenCL, an alternative platform for
parallel computing on heterogeneous systems) and treats examples including
matrix multiplication, MRI reconstruction, and molecular visualization.

3. CUDA Application Design and Development by Rob Farber. Morgan
Kaufmann: 2011. ISBN-13: 9780123884268.

This book assumes significant programming background but introduces CUDA
from scratch. The text is at a sufficiently advanced level to do serious treat-
ments of examples including machine learning and real-time processing of
streaming video. The author is responsible for a nice series of posts on CUDA
programming at Dr. Dobb’s Journal and is well-equipped to present nontrivial
CUDA topics in an engaging and understandable manner. (Sadly, Dr. Dobb’s
Journal has ceased operations, so new posts are no longer appearing.)

4. CUDA Programming: A Developer's Guide to Parallel Computing with GPUs
(Applications of GPU Computing Series) by Shane Cook. Morgan Kaufmann:
2012. ISBN-13: 9780124159334.

This is another book aimed at professional development of CUDA applica-
tions (in the author’s words, use of “CUDA in real applications, by real prac-
titioners”). It assumes an existing knowledge of C/C++, is recent enough to
cover Kepler hardware (i.e., GPUs with compute capability 3.X), and has an
emphasis on writing high-performance code.

5. CUDA Handbook: A Comprehensive Guide to GPU Programming by Nicholas Wilt.
Addison-Wesley: 2013. ISBN-13: 9780321809469.

This book is true to its title. It is a comprehensive handbook of all things
CUDA written by one of the originators of CUDA. It is not a book for beginners,
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but as you get into details of more significant CUDA projects, you will find that 
answers to many of your “what?” “how?” and “why?” questions reside in this 
book. With its 2013 publication date, the CUDA Handbook is more up to date 
and explicitly covers CUDA through Version 5.0 and hardware including the 
Kepler architecture.

6. Professional CUDA C Programming by John Cheng, Max Grossman, and
Ty McKercher. Wiley: 2014. ISBN-13: 9781118739327.

As it says in the title, this book is aimed at professional CUDA code devel-
opment. The organization is aimed at providing experienced coders with
exposure to the various aspects of CUDA rather than presenting examples to
engage CUDA newcomers. As the authors say in the preface, this is “a book
written by programmers, for programmers, that focus[es] on what program-
mers need for production CUDA development.” When you get to the point
where you have created significant projects and you are ready to enhance
their organization and/or performance, this book will be worth a look. If you
are one of the lucky few who has the resources to hire staff to create your
CUDA projects, your staff will likely want to have access to this book. With a
2014 release date, the content is reasonably up to date. Example codes are
designed to run on a Linux system using CUDA 6.0 or higher and hardware
architectures at or beyond Kepler (i.e., compute capability ≥ 3.0).

7. GPU Computing Gems: Emerald Edition and Jade Edition (Applications of GPU
Computing Series) edited by Wen-mei Hwu. Morgan Kaufmann: 2011.
ISBN-13: 9780123849885 (Emerald Edition), 9780123859631 (Jade Edition).

This two-volume set is in the spirit of the well-known GPU Gems series
but focuses specifically on using the GPU for computing. The two volumes
together offer dozens of examples (about 1,400 pages worth) detailing appli-
cations of GPU computing by leading practitioners in the field. When you need
code for a specific purpose, if you can find it as a GPU Gem, you can rely on
getting code that is efficient, well-tested, and reliable.

8. CUDA Fortran for Scientists and Engineers: Best Practices for Efficient CUDA
Fortran Programming by Gregory Ruetsch and Massimiliano Fatica. Morgan
Kaufmann: 2013. ISBN-13: 9780124169708.

If you are a Fortran user (or have existing Fortran codes that you want to
parallelize), this book may be for you.
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Further Sources
The sources listed previously are ones that, at the time of this writing, are 
known to exist and be of significant use. However, development of the CUDA 
ecosystem is accelerating, and the list of relevant sources continues to grow. 
Here are some links you might want to explore.

CUDA SAMPLES

It would be an oversight not to mention that the CUDA download includes a col-
lection of example codes called the CUDA Samples (or the CUDA SDK Samples 
in some earlier versions). These sample codes can be useful when you need to 
see an implementation of a particular CUDA function or feature. When you want 
to get going on a new project, if you can find a related sample code, it might pro-
vide some suggestions (and/or questions) about how to get started in the right 
direction. Samples that employ special libraries or features can also provide a 
source of information about necessary build customizations such as inclusion of 
additional header files or linking of additional library files.

CUDA LANGUAGES AND LIBRARIES

From the CUDA Zone, select Tools & Ecosystem, then check out the growing 
variety of CUDA-compatible languages and APIs (application programming 
interfaces) as well as the collection of libraries (beyond Thrust, NPP, cuRAND, 
cuSOLVER, cuBLAS, and ArrayFire introduced in Chapter 8, “Using CUDA 
Libraries”). For a list of current items, see https://developer.nvidia.com/gpu- 
accelerated-libraries. There may be a nontrivial learning curve to get started with 
new languages or libraries, but you may well make up the time and effort by 
using code that is thoroughly tested, optimized, and maintained.

MORE CUDA BOOKS

The accelerating growth of CUDA is attested to by the suddenly increasing num-
ber of books on the subject. While the “go to” books were listed previously, this 
additional list includes some more specialized research-oriented books:

1. Generation of Radiographs from 3D Anatomical Models Using the GPU: Parallel
DRR Algorithms Using CUDA GPUs by Andre Cardoso. Lambert Academic
Publishing: 2012. ISBN-13: 9783838378756.

https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
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2. CPU-Based Application Transformation to CUDA: Transformation of CPU-Based
Applications to Leverage on Graphics Processors Using CUDA by Anas Mohd
Nazlee and Fawnizu Azmadi Hussin. Lambert Academic Publishing: 2012.
ISBN-13: 9783659171215.

3. Accelerating MATLAB with GPU Computing: A Primer with Examples by Jung W. Suh
and Youngmin Kim. Morgan Kaufmann: 2013. ISBN-13: 9780124080805.

4. Designing Scientific Applications on GPUs (Chapman & Hall/CRC Numerical
Analysis and Scientific Computing Series) by Raphael Couturier. Chapman
and Hall/CRC: 2013. ISBN-13: 9781466571624.

5. GPU Power for Medical Imaging: A Practical Approach to General-Purpose
Computing with CUDA Machine Learning by Francisco Xavier. Lambert Academic
Publishing: 2014. ISBN-13: 9783659251894.

6. Parallel Computing for Data Science: With Examples in R, C++ and CUDA
(Chapman & Hall/CRC The R Series) by Norman Matloff. Chapman and Hall/
CRC: 2015. ISBN-13: 9781466587014.

7. Multicore and GPU Programming: An Integrated Approach by Gerassimos
Barlas. Morgan Kaufmann: 2015. ISBN-13: 9780124171374.

As with other aspects of CUDA, the list of available books is rapidly changing 
and keeping an eye on the “go to” sources to find out about new developments 
should be an ongoing activity.

Summary
Well, we’ve made it to the end of the book. Congratulations on your persistence, 
and we sincerely hope that the rewards will be commensurate with the invest-
ment of time and effort. If, in the process of working your way through the book, 
you have run into examples that prompt thoughts of interesting projects, then 
we have achieved our mission and you are on your way to accomplishing new 
and amazing things using the power of massively parallel computing made 
readily available with CUDA.

While many people are talking about how 3D printing (another cutting edge tech-
nology that is near and dear to our hearts) represents a major force to democ-
ratize manufacturing, you are now personally engaged in the democratization of 
parallel computing. We hope that you put the new resources at your disposal to 
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good use to further your own interests and maybe even advance the knowledge 
of humanity. Thanks again for sharing the journey, and good luck as you continue 
your travels in the exciting world of CUDA.

Suggested Projects
At this point you should be maximally qualified to pursue some further CUDA 
challenges, so here they are.

1. Identify a CUDA library, language, or API with features/functions that look
useful and apply them to a problem of personal interest.

2. Identify an interesting CUDA Sample, and figure out what it is supposed to do
and how it accomplishes that goal. Write up your description and share it with
your CUDA-savvy friends.

3. Find an interesting GTC talk to watch. (If you do not have well-identified per-
sonal interests, start with one of the keynote talks, which uniformly involve
a quality presentation of significant and interesting content.) Write up a quick
synopsis to share with interested friends.

4. Go to http://stackoverflow.com and enter [cuda] in the search box. Click on
the votes tab and read the ten top-rated questions and answers.

5. Check out some of the content from an online CUDA class.

6. Locate a copy of another CUDA book and see if you can find some content
relevant to your purposes.

7. Find a newly released CUDA book. Check out the content and presentation
style. Write a review to share with your friends.

8. Come up with the latest, greatest application of CUDA’s massively parallel
computing power.

http://stackoverflow.com
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 Hardware Setup

A CUDA-enabled parallel computing system includes both hardware and soft-
ware components. Here we deal with the necessary hardware component: 
a CUDA-enabled GPU. We start by describing how to determine if your system 
has a CUDA-enabled GPU. That procedure depends on operating system, so 
read the section (Windows, OS X, or Linux) that applies to your system. (If the 
manufacturer of your system was nice enough to put a green NVIDIA sticker in 
a visible location, you can note the model and proceed directly to the section 
on “ Determining Compute Capability.”) We then discuss how to acquire and/or 
install a CUDA-enabled GPU, which depends on your hardware platform. Once 
again, read the section that applies to you.

Checking for an NVIDIA GPU: Windows
Right-click on the desktop. If the pop-up menu does not have an entry for the 
NVIDIA Control Panel, continue to the section on “Upgrading Compute 
Capability.” If NVIDIA Control Panel is available, click to open it and then 
click the Home icon.

A sample Home window is shown in Figure A.1. The bottom line of the green 
NVIDIA CONTROL PANEL rectangle shows the model of the NVIDIA GPU 
installed on the system (here a GeForce 840M). Once you’ve identified your 
GPU, proceed to the section on “Determining Compute Capability.”
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Checking for an NVIDIA GPU: OS X
From the Apple menu, select About This Mac where the Displays tab 
provides information about both the monitor and GPU on your system, as shown 
in Figure A.2. In the case shown, the system has a GeForce GT 650M. Note the 

Figure A.1 Home screen of the NVIDIA Control Panel showing the presence of an NVIDIA GPU

Figure A.2 The Displays tab in the About This Mac window showing the 
presence of an NVIDIA GPU
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model of your graphics card (if you have one) and proceed to the section on 
“Determining Compute Capability.” If no NVIDIA GPU is listed, proceed to the 
section on “Upgrading Compute Capability.”

Checking for an NVIDIA GPU: Linux
From the command line (which can be accessed under Ubuntu via the keyboard 
shortcut Ctrl+Alt+t), enter the following command:

lspci | grep –i nvidia <Enter>

to produce a list of peripheral devices installed on your system. (ls is short 
for list and pci is the communications bus that connects between the CPU 
and peripheral devices such as your graphics card. The full list of installed 
PCI devices is piped to grep, the pattern-matching tool, to search the list for 
nvidia in a case-insensitive manner, as indicated by –i). On one of our Linux 
systems, lspci produces the following output: 01:00.0 VGA compatible 
controller: NVIDIA Corporation GF108[GeForce GT 620] (rev a1), 
indicating the presence of a GeForce GT 620 graphics card.

If your system has no installed NVIDIA card, proceed to the section on “Upgrading 
Compute Capability.” If you do have an installed NVIDIA card, note the model and 
proceed to the section on “Determining Compute Capability.”

Determining Compute Capability
The NVIDIA CUDA website provides a full list of CUDA cards and the associated 
GPU compute capability. Go to https://developer.nvidia.com/cuda-gpus to find 
the compute capability of your GPU.

The major categories of CUDA-enabled GPUs currently include Tesla, Quadro, 
NVS, GeForce, and TEGRA/Jetson. All three systems discussed above have 
GeForce cards, so we click on the link to CUDA-Enabled GeForce Products 
and look in the appropriate column (Desktop Products or Notebook 
Products) to find the listing for our GPU. The sample Windows system is a 
notebook computer with a GeForce 840M whose compute capability is 5.0. The 
sample Mac has a GeForce GT 650M that has compute capability of 3.0. The 
sample Linux system has a GeForce GT 620 that has compute capability 2.1.

https://developer.nvidia.com/cuda-gpus
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Go to the appropriate column to find your card and its compute capability. If 
you have an installed GPU with compute capability of at least 2.0 and you are 
satisfied with that, you can proceed to Appendix B, “Software Setup,” to do your 
software installation.

Why Upgrade Compute Capability?
• If you do not have an installed card with compute capability of at least 2.0, then

you need to upgrade your compute capability before you can run the codes dis-
cussed in this book.

• If you know you have a special interest in managed memory (which we use for
one example in Chapter 3, “From Loops to Grids”), you need compute capability
of at least 3.0.

• If you know you are interested in dynamic parallelism (which is not covered in
this book), you need compute capability of at least 3.5. For further details about
compute capability, see the documentation at the NVIDIA CUDA Zone or Wikipedia’s 
CUDA page: https://en.wikipedia.org/wiki/CUDA.

• If you want to do large double-precision computations, you should seriously
consider a Tesla card (which will require additional resources in terms of both
price and power connectors).

Hardware Nomenclature
While we have been loosely talking about installing a GPU, names like GeForce 
840M actually designate a graphics card, not the GPU itself. In this case, the 
graphics card includes a model GM108 GPU that has Maxwell class architecture. 
So when discussing CUDA hardware, there are four major designations: the model 
name/number of the card, the model name/number of the GPU, the compute capa-
bility, and the architecture class. For our purposes, the primary focus is on the 
graphics card name/number (because that is the most available identifier when 
inspecting your system or shopping for new hardware) and the compute capability 
(which is the info given for apps that have special requirements). However, you 
should also be aware of GPU architecture that refers to the general plan for the 
layout of the components of the GPU including processing units, memory, and so 
on. The nomenclature history of NVIDIA’s CUDA architectures goes as follows:

• Tesla: The earliest CUDA cards (starting in 2007) with compute capabilities
ranging from 1.0 to 1.3.

• Fermi: The second-generation of CUDA cards (starting in 2010) with compute
capabilities 2.0 and 2.1. A Fermi class card will suffice for almost everything in
this book.

https://en.wikipedia.org/wiki/CUDA
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• Kepler: The third-generation of CUDA cards (starting in 2012) with compute
capabilities ranging from 3.0 to 3.7. A Kepler class card can do everything cov-
ered in the book.

• Maxwell: The fourth-generation of CUDA cards (starting in 2014) with compute
capability 5.x.

• Pascal: The fifth-generation of CUDA cards is planned for release in 2016. Stay
tuned to find out if the compute capability designation continues to be based on
prime numbers (or perhaps the Fibonacci sequence)… .

Upgrading Compute Capability
The possibilities for upgrading compute capability depend on whether your 
hardware configuration is set by the manufacturer (typical of Macs and note-
books) or open for modification (typical of Windows and Linux desktop systems).

MAC OR NOTEBOOK COMPUTER WITH A CUDA-ENABLED GPU

If you use a laptop/notebook computer or a Mac, you probably have limited 
access for installing new hardware components. In such situations, a compute 
capability upgrade translates to the purchase of a system that includes a 
CUDA-enabled card.

Apple uses GPUs from different vendors in different models and years, so if you 
want to run CUDA under OS X, you need to shop around for a Mac with an NVIDIA 
graphics card.

For notebook computers, CUDA-ready systems make up a small portion of 
the market, but they are available at reasonable prices. Systems that have an 
“integrated” Intel GPU and a CUDA-enabled NVIDIA GPU (sometimes identified 
as Optimus systems) provide a good environment, because the integrated GPU 
can serve your display needs (i.e., send graphics to your monitor), while the 
NVIDIA GPU is dedicated to computing. Notebook computers with CUDA-enabled 
GPUs are often labeled as “gaming notebooks.” You can also go to NVIDIA’s 
Notebook web page (http://www.nvidia.com/object/notebooks.html) and follow 
the links there to vendors offering notebooks with your preferred GPU.

We should mention power consumption before we end the discussion of note-
book computers. Some very powerful gaming systems are now available that 

http://www.nvidia.com/object/notebooks.html
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contain the current high end of mobile GPUs; that is, cards in the GeForce 
GTX 900M series. These systems are powerful in terms of both computational 
performance and heat production; such high-end cards need to dissipate about 
100W and require serious fans and heat-exhaust ducts. It is always worth 
shopping around to find what best suits your needs, but there is currently a nice 
“sweet spot” involving systems with the GeForce 840M that offer 384 computing 
cores, compute capability 5.0, and 2 GB of GPU memory, while consuming only 
about 30W of power. Passive heat dissipation is sufficient for such systems, 
so they can be both lightweight and quiet while still packing a lot of computing 
“punch.”

DESKTOP COMPUTER

If you have a desktop PC, you should be able to install an add-on GPU, provided 
you have enough of a sense of adventure to open up your computer’s case (after 
turning off the power, of course). Once the case is open, there are two key items 
to look for:

• PCIe-3.0 x16 slots on the motherboard

• Cables from the power supply with PCIe power connectors

Figure A.3(a) shows a desktop PC with the case opened to expose the mother-
board and power supply. Figure A.3(b) shows a blow-up of the region on the 
motherboard with the peripheral connectors. The fine print at the left edge 
indicates the connector type. This system has two PCIe x16 slots: the blue con-
nector at the top labeled PCIEX16_1 and the white slot below labeled PCIEX16_2. 
(Boxes have been drawn to indicate the location of the labels.)

If your system has a PCIe x16 slot, you can install a CUDA-enabled graphics 
card. The simple approach is to install a CUDA card that gets its power directly 
from the PCIe x16 slot and needs no additional power connectors. One such 
card is the GeForce GTX 750 Ti, which has 640 cores, compute capability 5.0, 
and peak power rating of 60W (so a 300W power supply will suffice). If you really 
have a small case, you may want to check out something like a GeForce GT 620 
(with 96 cores and compute capability 2.1). The GeForce GT 620 is not exactly a 
computing powerhouse, but it is a single-height, half-width card that fits (with a 
little squeezing) into the smallest case we’ve encountered.

The desktop PC shown in the figures has two PCIe x16 slots and additional PCIe 
power connectors, so it can accommodate two CUDA graphics cards, including 
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one higher-end card that requires additional power. Figure A.4 shows the desk-
top PC with a low-power GeForce GT 610 card installed in the PCIEX16_1 slot 
and a high-power GeForce GTX 980 installed in the PCIEX16_2 slot. The box 
indicates where the additional power cables connect to the GeForce GTX 980, 
and the inset shows an enlargement of this region with the power disconnected 
to make the PCIe 6-pin and 6+2-pin connectors visible. If you have the luxury of 
two graphics cards, this configuration with a low-end card to drive the display 
and a higher-end card to do the computing is a good setup for CUDA purposes.

Once you have inspected your system for PCIe x16 slots and PCIe power connec-
tors, you’ll have an idea of what kind of graphics card is right for you. (If you can 
spot the wattage of your power supply, that is another useful piece of informa-
tion.) You can then go to the CUDA GPUs page (https://developer.nvidia.com/
cuda-gpus) and select the card of interest, then click on Specifications and 
look for details about power connectors and power supply capacity.

When you have identified a model of interest, paste the model number into a 
search engine to check details of price and availability. New GPUs hit the market 

(a) (b)

Figure A.3 (a) Desktop PC with case opened to show the hardware. The box indicates the region 
of peripheral connectors on motherboard. (b) Blow-up of peripheral connectors including two 
PCI Express x16 slots. Boxes highlight identifying labels: PCIEX16_1 and PCIEX16_2.

https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
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regularly and prices change over time, so expect to find new and improved 
opportunities. Engage in a bit of recreational GPU shopping, identify your GPU of 
choice, and place an order with your favorite vendor.

When your GPU arrives, installation should be pretty straightforward. Make sure 
your computer is turned off, then remove the cover (if the case is not already 
open from when you checked for PCIe slots, power connectors, etc.). Remove 
the GPU from its packaging and insert its “tabs” into a PCIe x16 slot. Note that it 
should only fit in one orientation (with the metal plate at the back of your case so 
that you can secure the card to the case with a screw). Fit it into the slot securely, 
connect additional power cables as necessary, and close up the case.

After powering up your system, connecting to the internet, and starting the com-
puter, your system should recognize the new hardware and download driver 
software. To check that the system recognizes your new hardware, repeat the 
“Checking for an NVIDIA GPU” process to view the graphics cards installed on 
your system. Your hardware install is now complete, and you can proceed to 
Appendix B, “Software Setup.”

Figure A.4 Desktop computer with a GPU installed in each of the two PCI Express 
x16 slots: a GeForce GT 610 in the PCIEX16_1 slot and a GeForce GTX 980 in the 
PCIEX16_2 slot. The smaller rectangle shows the additional power connections 
to the GTX 980. The larger rectangle shows an enlargement with the power 
disconnected to make the connectors visible.
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 Software Setup

Once you have a system with an appropriate GPU, all you need to enter the 
CUDA-powered world of massively parallel computing is some software. In this 
appendix, we’ll cover the software you need and how to install it. Note that the 
install procedures are operating-system dependent, so we present separate 
sections for Windows, OS X, and Linux systems.

Windows Setup
Let’s assume you have a recent vintage PC (anything that currently runs 
Windows 7 or above should suffice) and get right down to business. Key steps 
include the following:

• Create a system restore point.

• Install the Microsoft Visual Studio Integrated Development Environment (IDE).

• Install CUDA software, a single install that includes the CUDA Toolkit, CUDA
Samples, Nsight Visual Studio Edition (IDE plug-in), and the CUDA driver for
your GPU.

Note that this presentation describes the currently available versions of the 
software, namely, Microsoft Visual Studio 2013 Community Edition, Nsight 
Visual Studio Edition 4.7, and CUDA 7.5.
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CREATING A RESTORE POINT

It is prudent to create a restore point before any software install so you have a 
known functional configuration to return to in case anything unexpected occurs. 
From the Windows Start menu, select Control Panel and type “Create a 
restore point” in the search box (near the upper right corner). Click on the 
search result to open the System Protection tab in the System Properties 
window. To create a restore point, click on the Create… button near the bottom 
of the window.

INSTALLING THE IDE

There are two major pieces of software to download, the CUDA Toolkit and the 
Microsoft Visual Studio IDE. Install Visual Studio first because the CUDA Toolkit 
includes specialized Nsight software for debugging and analyzing CUDA code that 
plugs into Visual Studio. All of this software is subject to ongoing development, 
so new versions are released regularly. Here, we go through the installation of 
a combination that is known to be compatible:

• Microsoft Visual Studio 2013 Community Edition

• CUDA 7.5 with Nsight 4.7

Go to www.visualstudio.com (or enter “Visual Studio 2013 Community Edition” 
into your favorite search engine) and follow the instructions given there to down-
load and install Visual Studio. Note that the install of Visual Studio will likely take 
some time and provide an opportunity for a nice coffee break (or two).

INSTALLING THE CUDA TOOLKIT

With Visual Studio installed, you are now ready to enter the CUDA Zone. We 
mean this literally because “CUDA Zone” is NVIDIA’s name for the portion of its 
website devoted to CUDA: https://developer.nvidia.com/cuda-zone. There you 
will find information about CUDA, related tools and resources, materials to help 
you get started, training and courseware, and (most relevant for our current 
purposes) downloads (as shown in Figure B.1).

The first time you visit the CUDA Zone, scroll all the way to the bottom of 
the page, then click on the link to the Developer Program (under the GET 
INVOLVED heading). Sign up as a registered CUDA developer to make sure you 
have access to the full set of available CUDA resources.

http://www.visualstudio.com
https://developer.nvidia.com/cuda-zone
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After you have registered as a CUDA developer, return to the CUDA Zone page. 
Clicking on the CUDA Downloads icon brings you to the current CUDA Down-
loads page, as illustrated in Figure B.2.

Note that Figure B.2 shows the CUDA 7 Downloads page because CUDA 7.5 is 
currently a release candidate and, as of this writing, has not yet been officially 

Figure B.1 Links available in the CUDA Zone

Figure B.2 The CUDA Zone page for downloading CUDA 7.0
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released (which will have changed by the time you read this). If you search in 
the CUDA Zone, you can also find the download page for the release candidate 
if one is available. The download for the CUDA 7.5 release candidate is shown in 
Figure B.3. Note that the documentation links can be very useful. If the version 
you download has a Quick Start Guide, you should definitely give it a look.

Whether downloading an officially released version of CUDA or a release can-
didate, select the version that corresponds to your operating system and then 
choose one of the two executable (EXE) files: the Network Installer or the 
Local Installer. The Network Installer is much smaller, but you will 
need to be connected to the internet when you run the executable and do the 
actual software install. The Local Installer involves a much larger (and 
more time consuming) download, but the executable can run and perform the 
software install without an ongoing connection to the internet.

Click on your preferred installer. When the CUDA download is complete, 
open the executable file and click OK to verify the temporary folder where the 
extracted files will be stored. After extracting the files, the CUDA installer will 

Figure B.3 CUDA 7.5 release candidate download page
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open and go through the following steps, each of which require you to perform 
an action:

1. Perform a system compatibility check and present a license agreement that
you accept by clicking on the AGREE AND CONTINUE button.

2. Present the option of Express or Custom installation. Unless you really have
a specific reason to do something custom, select Express installation and
click NEXT to start the installation process.

3. When the installer is ready to install the CUDA driver for your GPU, a Windows
Security window pops up and asks, “Would you like to install this device
software?” You will then need to click the Install button to enable installation
of the “NVIDIA Display Adapters” driver software.

Flicker Alert!
Note that during the driver installation your screen may flicker or even go com-
pletely black for a few seconds. There is no need to panic because that is completely 
expected. (The system restore point we created before starting the install is another 
reason not to panic.)

While the installation will take several minutes, the installer conveniently takes 
care of four software components that formerly required separate installations:

• CUDA Toolkit: the basic software foundation of CUDA

• CUDA GPU Device Driver: the software that tells your specific CUDA-enabled
GPU how to work in the CUDA environment

• NSight Visual Studio Edition: the software that integrates with the IDE for
debugging and profiling CUDA code running on the GPU

• CUDA Samples: the official collection of sample CUDA applications

When the install is complete, you should see a window like the one in Figure B.4 
indicating the components that were (or were not) actually installed.

Click NEXT to proceed, then click the boxes to Launch Documentation and 
Launch Samples and click CLOSE to exit the installer (see Figure B.5).
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Figure B.4 Window displayed at the conclusion of a CUDA install

Figure B.5 CUDA installer ready to close and launch documentation and samples
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INITIAL TEST RUN

After completing the install, it is time for a couple of test runs: one to verify that 
things are working properly and one to quantify the performance of your system. 
Both of these goals can be accomplished using the CUDA Samples, a collection 
of a few dozen example CUDA applications provided with the CUDA software 
distribution.

If you selected Launch Samples at the end of your CUDA install, you already 
have a File Explorer open to the CUDA Samples folder as shown in Figure B.6.

If you did not choose Launch Samples during install, you can access the CUDA 
Samples as follows. Under Windows 7, open the Windows Start menu and 
select All Programs ⇒ NVIDIA Corporation ⇒ CUDA Samples ⇒ 
V7.5 ⇒ Browse CUDA Samples. Under Windows 8, click the arrow at the 
bottom of the Start page to get to the Apps page, scroll across to the NVIDIA 

Figure B.6 CUDA Samples/7.5 directory with the Samples_vs2013 solution file highlighted
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Corporation apps, and click on Browse CUDA Samples. Your file browser 
should then resemble Figure B.6. The folders hold collections of related code 
samples that need to be compiled and built into executables before we can 
run them. The necessary details of building executables with Visual Studio is 
covered in Appendix C, “Need-to-Know C Programming,” but for now, let’s build 
executable versions of the full set of CUDA Samples, which remarkably takes 
only two clicks of the mouse and one press of a function key. Hover the mouse 
over the Samples_vs2013 file and verify that the pop-up menu shows Type: 
Microsoft Visual Studio Solution to make sure you have the correct 
file, then double-click to open the file with Visual Studio.

When Samples_vs2013 opens, the Visual Studio window should resemble 
Figure B.7, and all you need to do is press the F7 function key to start the build 
process. (Building all the samples will take some time, so plan on an extended 

Figure B.7 The Samples_vs2013 Solution file open in Visual Studio
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coffee break at this point.) Once you start the build process, a green progress 
bar will appear at the bottom of the Visual Studio window and then disappear 
when the build is complete.

Once the build process is complete, the executable files are all available in 
a subfolder of the bin folder shown in Figure B.6. Double-click on bin ⇒ 
win64 ⇒ Release to get to the directory containing the Samples executables. 
(You may find it convenient set the File Explorer View to sort by Type, so the 
executable files appear together in alphabetical order.) You can then double-click 
on an executable file to run a particular CUDA Sample. At this point, we really 
want to verify that things are working properly, so an appropriate choice is 
the deviceQuery sample, which prints the system’s CUDA capabilities to the 
console. However, if you double-click on the icon for the deviceQuery execut-
able file, the results are printed and the console window closes too quickly for 
most people to read the output. We’ll get around this by running the sample in a 
different way:

1. In Visual Studio, select TOOLS ⇒ Visual Studio Command Prompt to
open a console window.

2. In the File Explorer, right-click on the Release folder (under bin/win64),
and select Copy address as text.

3. At the command prompt, type cd (for change directory), then right-click and
choose Paste to insert the path where the CUDA Sample executables are
located. Hit Enter to change to that folder.

4. At the command prompt, type deviceQuery <Enter> to execute the
deviceQuery sample from the command line.

You should see results from deviceQuery similar to those shown in Figure B.8, 
where the utility correctly reports one CUDA Capable Device and identifies the make 
and model of the GPU (GeForce 840M), the version of CUDA it is running (7.5), 
the compute capability (5.0), the memory capacity (2048 MB, a.k.a. 2GB), the 
number of CUDA cores on the device (384), and numerous other properties that 
may become of interest later.

If you have managed to produce a similar result on your system, then congrat-
ulations are in order because you have just completed your first execution of 
a CUDA program on your system. Admittedly the deviceQuery application 
provides only a very limited impression of your CUDA capabilities, but more 
interesting examples lie ahead.
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At this point, we have accomplished the goal of verifying that your CUDA soft-
ware is functioning (along with your CUDA-enabled graphics card). You can now 
return to Chapter 1, “First Steps,” or proceed to Appendix C, “Need-to-Know 
C Programming,” to learn the necessary aspects of C programming.

OS X Setup
While we refer to Macs running OS X as members of the class of Linux systems 
in other portions of the book (because the way programs are built is the same 

Figure B.8 Command prompt showing output from deviceQuery
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in both platforms), there are some significant differences in the CUDA setup 
procedure. This section aims to provide what you need to know about setting up 
your CUDA-enabled Mac to actually run CUDA.

DOWNLOADING AND INSTALLING THE CUDA TOOLKIT

Once you have verified that you have a CUDA-enabled GPU, you can move on to 
install the necessary software, including Xcode and the CUDA Toolkit.

Xcode is the official suite of software development tools for OS X, and it can 
be obtained free of charge through Apple’s App Store application. Once you’ve 
obtained Xcode, install the command-line tools by entering the following com-
mand in a terminal window: xcode-select --install.

Once the Xcode command-line tools are installed, you are ready to download the 
CUDA Toolkit installer from the CUDA Downloads page. Go to https://developer
.nvidia.com/cuda-downloads, select the Mac OSX option (as shown in Figure B.9), 
and then select the network or local installer. (Network installer requires 
an internet connection during the installation process.) After downloading, 
 double-click on the downloaded file to start installation of the CUDA Toolkit, 
then follow the directions prompted by the CUDA Toolkit installer.

After the installation is over, open your shell’s configuration file with TextEdit (for the 
bash shell, with open -e ~/.bash_profile) and add the following two lines:

export PAT H=/usr/local/cuda/bin:$PATH
export DYLD_LIBRARY_PATH=/usr/local/cuda/lib:$DYLD_LIBRARY_PATH

The next time you open your command-line nvcc, the NVIDIA C Compiler (which 
you will use to compile your CUDA code) should be in the system path. You can use 
the command nvcc --version to check your installed version of nvcc .

Figure B.9 CUDA 7.5 Downloads page for OS X

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
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You have now completed the OS X–specific part of the setup, and you are ready 
to proceed to the “Installing Samples to the User Directory” and “Initial Test 
Run” subsections of the “Linux Setup” section that follows.

Linux Setup
There are a number of Linux distributions (distros) that the CUDA toolkit supports. 
The Linux distros that are compatible with CUDA 7.5 are listed under the Linux 
option at https://developer.nvidia.com/cuda-downloads, as shown in Figure B.10. 
Here we describe a sample installation based on Ubuntu 14.04, which is a 
long-term support (LTS) release. For other distros, the installation procedure 
should be very similar, and the extra steps that are required are described at 
https://docs.nvidia.com/cuda/pdf/CUDA_Getting_Started_Linux.pdf.

PREPARING THE SYSTEM SOFTWARE FOR CUDA INSTALLATION

Before doing the CUDA install, make sure that you have the GNU Compiler 
Collection (GCC) instal led from the command line (which can be accessed under 
Ubuntu via the keyboard shortcut Ctrl+Alt+t) by typing gcc --version. If 
instead of a GCC version number, you get an output like command not found 
or currently not installed, then you should install gcc with the command 
sudo apt-get install gcc.

DOWNLOADING AND INSTALLING THE CUDA TOOLKIT

Go to the CUDA Downloads page https://developer.nvidia.com/cuda-downloads, 
select the Linux option (as shown in Figure B.10), then select the local or network 

Figure B.10 CUDA 7.5 Downloads page with compatible Linux distributions

https://developer.nvidia.com/cuda-downloads
https://docs.nvidia.com/cuda/pdf/CUDA_Getting_Started_Linux.pdf
https://developer.nvidia.com/cuda-downloads
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installer corresponding to your operating system. (Network installer requires 
an internet connection during the installation process.)

Clicking on the link will download a software repository package. Right-click 
on the repository package icon, select Open with the Ubuntu Software 
Center, then click on the Install button. When the repository installation is 
complete, open the command-line interface and execute the following steps:

• Update the repository information on your system with sudo apt-get
update.

• Install the CUDA Toolkit with sudo apt-get install cuda.

After the CUDA install is complete, you may be prompted to restart your com-
puter, but let’s postpone the restart and take care of updating search paths so 
your system will be able to locate the CUDA Toolkit files. Here are the necessary 
steps:

• Open your profile configuration with a text editor (e.g., gedit ~/.profile).

• At the end of the file, add the line export PATH=/usr/local/cuda/
bin:$PATH, and save the file.

• Open your UNIX shell start-up file with a text editor (e.g., gedit ~/.bashrc).
At the end of the file, add the line export LD_LIBRARY_PATH=/usr/
local/cuda/lib64:$LD_LIBRARY_PATH and save the file.

At this point, you should exit the text editor and restart your system (so that it 
will put the changes into effect). After the restart, check that the changes were 
successful with printenv | grep cuda. If your system successfully locates the 
CUDA files, you should get output resembling the following:

LD_LIBRARY_PATH=/usr/local/cuda/lib64:
PATH=/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:...

You can also use the command nvcc --version to ensure that nvcc (the 
NVIDIA C Compiler, which you will use to compile your CUDA code) is currently 
installed and included in your path.

INSTALLING SAMPLES TO THE USER DIRECTORY

The CUDA Toolkit comes with sample applications that are copied to system 
directories. Since users do not have permission to write or edit files in the system 
directories (and you will want to be able to modify the sample applications), it 
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is a good idea to copy the entire set of samples to a location where you have 
write access. The CUDA Toolkit includes a script for this purpose, and  executing 
cuda-install-samples-7.5.sh ~ copies the samples to ~/NVIDIA_
CUDA-7.5_Samples. To view your copy of the samples, make the newly created 
samples directory your current directory with cd ~/NVIDIA_CUDA-7.5_
Samples and view the sample directories with ls.

INITIAL TEST RUN

We encourage you to explore the full range of sample applications; to compile 
them all at once, go to your CUDA Samples directory and type make (note that 
this will take a while). Once all samples are compiled successfully, let’s run the 
deviceQuery sample as a simple test of CUDA capability. The deviceQuery 
sample code is located in a subdirectory of 1_Utilities, so change your 
working directory with cd 1_Utilities/deviceQuery and run the executable 
with ./deviceQuery. The results of the deviceQuery application will be dis-
played in the terminal window. Sample results from one of our test systems are 
shown in Figure B.11, where we can see that the system has a GeForce GT 650M 
GPU with compute capability 3.0, 512 MB of memory, and 384 CUDA cores.

So you’ve now run a CUDA app to verify that your CUDA software is working 
properly (along with your CUDA-enabled graphics card). You can now return to 
Chapter 1, “First Steps,” or you can continue on to Appendix C, “Need-to-Know 
C Programming,” to cover the essentials of C programming.
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Figure B.11 Output from running the deviceQuery Sample utility
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 Need-to-Know 
C Programming

This appendix covers the basics of C programming that provides our jumping 
off point for CUDA programming. We start from scratch with a general descrip-
tion of the C language and then cover the procedures for creating, compiling, 
and executing C language apps. By the end of the appendix, we will have fully 
discussed dist_v1 and dist_v2, the two distance apps that will serve as our 
initial examples for parallelization with CUDA.

Characterization of C
Here is the very short version of the three basic characteristics of the C pro-
gramming language you need to know about:

• C is a compiled language, so we will write code in a version of C that is
recognizable to humans (i.e., the code consists of familiar-looking words and
punctuation marks), and we will use a software tool called a compiler (which
can be invoked from the command line or from the Integrated Development
Environment or IDE) to convert the human-recognizable code to machine
code that the computer’s processing units can “understand” and execute.

The above description of compilation is a simplification of what actually
 happens, but the details of linkers, PTX code, and so forth, do not qualify as
need-to-know from our current perspective. (If you decide you do need to
know these details, C Programming in Easy Steps, by Mike McGrath, provides



ptg22232966

APPENDIX C NEED-TO-KNOW C PROGRAMMING 

246

a nice, concise description [1], and CUDA-specific details are covered in the 
“CUDA C Programming Guide” [2].)

Compilation is one of those classic “good news/bad news” things. The good 
news is that compiled code can be quite efficient and allow you to create pro-
grams that make efficient use of your computer’s processing capabilities. The 
bad news is that we have to pay the price of some extra effort during the code 
development process. Each time we edit code, we need to stop, recompile, 
and check for errors before running the new version of the program. We’ll 
have a firsthand look at those steps soon. (The typical alternative to a com-
piled language is an interpreted language, where an explicit compilation step 
is avoided, usually by paying a price in terms of lack of syntax checking before 
the execution and lower performance at execution time.)

• C is a typed language, so each time we define a variable we need a declaration
statement that tells the system what type of data the variable corresponds to.
Since the system knows how much memory is needed to store each data type,
type declarations are consistent with the theme of putting in a little extra effort
so the computer can use its resources efficiently when running your program.

• C arguments are passed by value (as opposed to passed by reference). For
our purposes, this becomes especially important when we discuss handling
arrays of data. When you write a function that has an array as input or output,
should the system make a copy of the array (which might turn out to be conve-
nient but use up a lot of your limited memory) to operate on? The authors of
the C language placed a premium on the efficient use of memory and chose
not to make a copy. Instead they decided to use a pointer, a single piece of
data that tells where the existing array can be found in the system memory.
(Any standard C reference book [3,4,5] will include extensive discussion of
pointers and pointer arithmetic. We will avoid getting bogged down in pointer
arithmetic.) The presentation of pointers associated with the dist_v2 app
near the end of this appendix aims to provide what you need to know about
pointers for the purposes of getting started with CUDA.

With those few generalities covered, let’s delve into the necessary details.

C Language Basics
A C program consists of a sequence of statements each having a standard 
syntax and generally ending with a semicolon. The kinds of statements we will 
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use most frequently involve declaration of variables, assignment of values, 
function definitions, function calls, and execution control. The standard syntax 
for each statement includes one or more reserved keywords, punctuation, 
and possibly some bracketing that you need to get exactly right. (Remember 
that despite all of its processing power, your computer is a very literal device 
that only knows about your actual code and not your intent in writing it. The 
bad news is that sometimes you will have to pay considerable attention to the 
details of your code; the good news is that your development environment 
should include  syntax checking tools that greatly reduce the burden on you as 
the programmer.)

Speaking of syntax details, let’s get out in front of issues related to punctuation, 
brackets, and so forth, by stating a few general rules:

• Parentheses ( ) are used for a couple of purposes:

• Grouping of arguments in functions and control statements.

• Indicating the precedence order for operations in a mathematical formula,
so (1+2)*3 evaluates to 9 while 1+(2*3) evaluates to 7. It turns out
that 1+2*3 also evaluates to 7 since multiplication has precedence over
addition, but it is generally safer to take charge of such issues explicitly
rather than assuming that the system will correctly determine your
intent.

• Braces { } are used to group sets of statements and for values in array
initializations.

• Square brackets [ ] are used for indexing entries in arrays. In array decla-
rations, an integer in square brackets indicates the number of elements in the
array.

• The number or hash sign, #, indicates preprocessor instructions. These lines
of code are not really part of the C language and do not end with a semicolon.

• We use #include to include code from other files. For example, #include
<stdio.h> includes the standard input-output header, and #include
"aux_functions.h" includes the code from the aux_functions.h file
located in the same directory.

• We use #define to simplify the management of constants (and occasionally
functions) that may appear in numerous places throughout the code.
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• The basic arithmetic operations of addition, subtraction, multiplication, and
division are indicated with the usual symbols (+, -, *, /), and two of those are
also used for other purposes:

• The asterisk, *, is also used in association with pointers (which we will
introduce below).

• The slash character, /, also shows up in file paths and, perhaps most
importantly, in comments. The double slash, //, indicates that the remain-
der of the line is a comment (i.e., not part of the code that the compiler
converts to machine language), and comments that extend across multiple
lines can be created by starting with /* and terminating with */.

Data Types, Declarations, and 
Assignments

The C language includes several built-in or primitive data types including int, 
float, double, and char, which provide representations for integers, real 
numbers, and characters. Note that we are talking about digital computing, so 
each data type is stored in a fixed amount of memory and has a finite range 
of representation. The computer’s memory is binary, and the fundamental stor-
age unit, a single 0 or 1, is a bit. It is often convenient to lump bits together into 
a group of 8 called a byte. A char, which translates to a character code, typ-
cally uses 1 byte of storage, while an int or float typically uses 4 bytes (or 32 
bits) of storage. These sizes can be system dependent (and modifiers like long, 
short, and unsigned can affect things), but C includes an operator called 
sizeof() that helps us to avoid getting hung up on such details.

Each time we introduce a new variable, we need to specify its data type so the 
system will know essential properties (notably how much memory must be allo-
cated to store a value associated with the variable). Such a specification is done 
using a declaration statement with the following syntax:

typeName variableName;

where typeName is a known data type (such as int, float, or char) and 
variableName is whatever name you choose for your variable. There are a few 
guidelines to abide by when choosing variable names:
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• Start names with a letter, not a number or special character.

• Avoid reserved keywords. (There are a few dozen keywords, and the full list is
available online [6].)

• Do not include arithmetic operators, punctuation characters, or spaces.

• Underscores are allowed and are frequently used in CUDA. (We will be seeing
a lot of names like h_out and d_out).

• Feel free to mix upper- and lowercase to make names readable. Names
in C are case sensitive, so myname and myName are both valid and distinct.
Appending words with an initial uppercase character is a useful naming con-
vention that is called camelCase because of the apparent humps.

• my name—with a white space in the middle—is not a valid name.

• my_name is a valid and distinct alternative. Connecting words with under-
scores is often referred to as snake_case or under_score.

Once we have declared a variable, we can associate a value with the variable 
using an assignment statement which has the following syntax:

myName = myValue;

where myName is the variable we declared and myValue is a value of the appro-
priate type (so you can think of a single equals sign as the assignment operator). 
For example, we can declare an integer named myInt as follows:

int myInt;

and then assign to myInt the value 8 as follows:

myInt = 8;

We can also combine these operations of declaration and assignment into a 
single initialization statement with the following syntax:

typeName varName = varValue;

so our two lines of sample code above can be replaced by the single line

int myInt = 8;

The C language not only supports all of the usual arithmetic operations (addi-
tion, subtraction, multiplication, and division) but also provides the convenient 
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alternative of combining arithmetic operations and assignment into a single 
statement known as compound or augmented assignment; for example, i += j 
is equivalent to  i = (i + j).

Defining Functions
C supports functions as a way of creating a single name as shorthand for a 
collection of statements. Functions provide an essential mechanism for orga-
nizing code into “chunks” that are testable (to enhance reliability and maintain-
ability) and reusable (to prevent repetition). Functions also provide a context for 
scoping, so we can create variables that are only locally accessible within the 
function. We will see that being able to create variables whose scope is limited 
to a particular function allows for convenient reuse of variable names, which 
actually reduces confusion rather than creating it.

The following is the basic syntax for defining a function:

returnType functionName(type0 arg0, type1 arg1, …, typeLast argLast)
{
    statement0;
     …;
    statementLast;
}

We can define a function to return a value (that could, for example, be assigned 
to a variable), and returnType specifies the data type of the value to be returned. 
The function name is followed by parentheses containing a comma-separated 
list of zero or more entries, each of which is a typed argument consisting of the 
data type (type0, etc.) followed by a white space and then the argument name 
(arg0, etc.).

Note that the definition of the generic syntax is not exactly concise, so it is useful 
to create some abbreviations:

• args is shorthand for a comma-separated sequence of arguments (i.e., it
replaces arg0, arg1, … , argLast.

• typedArgs is shorthand for a comma-separated sequence of typed arguments
(i.e., it replaces type0 arg0, type1 arg1, … ,typeLast argLast).

• statements is shorthand for a semicolon-separated sequence of statements
(i.e., it replaces statement0; statement1; … ; statementLast).
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The syntax for defining a function then simplifies to something that should be 
both easier to read and easier to remember:

returnType functionName(typedArgs)
{
    statements
}

We will return to define and execute many other functions, but for the purposes 
of creating our first program, let’s focus on creating a function named main() 
because all C programs have a main() function that specifies where to start 
and what to include in the execution of the program.

Building Apps: Create, Compile, 
Run, Debug

It is time for our first C program, and we will keep it very simple. The program 
consists of a main() function that contains code to declare variables and assign 
values to those variables. The code for the app is shown in Listing C.1.

Listing C.1 declare_and_assign/main.cpp

  1 int main()
  2 {
  3   int i;
  4   float x;
  5   i = 2;
  6   x = 1.3f;
  7
  8   return 0;
  9 }

Note that our main() takes no arguments, so the parentheses that hold the 
argument list are empty. We declare two variables, an integer i and a float x, 
and then we assign them the values 2 and 1.3f, respectively. (Appending f to 
a number indicates a float value.) At the end of main(), we follow convention 
by returning the value 0 (consistent with the declaration that main() returns an 
integer) to indicate successful completion.

We now go through the full procedure of creating, compiling, executing, and 
debugging the program before we go on to more complicated (and more inter-
esting) programs. The details of accomplishing these steps will depend on your 
platform and development software, so we provide separate descriptions for 
Windows and Linux systems.



ptg22232966

APPENDIX C NEED-TO-KNOW C PROGRAMMING 

252

BUILDING APPS IN WINDOWS

The time has come to put your development environment to work, so start Visual 
Studio, and create a new project (either from the Visual Studio Start 
Page or by selecting File ⇒ New). From the list of installed templates, select 
NVIDIA ⇒ CUDA 7.5 Runtime (if it is not already selected by default), and 
enter a name for your app. Figure C.1 shows the Visual Studio’s pop-up window 
as it should look when you are ready to hit OK to create the a new project named 
declare_and_assign, which is what this simple app aims to do. (Note that this 
particular example contains only C code and nothing specific to CUDA, but we’ll 
start now to get some practice for creating the CUDA projects that lie ahead.)

Figure C.2 shows the Visual Studio window as it appears upon opening the new 
project. The Solution Explorer pane on the left shows the files associated 
with the project, including a CUDA file named kernel.cu, which is open to 
show its code in the upper-right pane.

Figure C.1 Creating a new CUDA project in Visual Studio
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By default, a new project opens with code for a simple CUDA app that adds two 
arrays. Since this app involves only C code and not CUDA code, let’s add main.cpp 
into the project and delete kernel.cu as follows:

1. Select PROJECT ⇒ Add New Item.

2. Select C++ file, and enter the name main.cpp as shown in Figure C.3.

3. Enter the code from Listing C.1 into main.cpp.

4. Remove kernel.cu from the project by right-clicking on its icon in the
Solution Explorer pane and selecting Remove ⇒ Delete.

Having entered the code, the next steps involve compilation and execution. The 
code can be compiled/built by selecting BUILD ⇒ Build solution or using 

Figure C.2 The Visual Studio window upon creation of the new project
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the keyboard shortcut F7. You should get in the habit of taking a good look at the 
messages that appear in the Output pane (since these messages will become 
critical when we do more serious debugging), but for now what we really care 
about is seeing something like

=== Build: 1 succeeded, 0 failed, 0 skipped ===

at the end of the output messages to tell us that the executable has been suc-
cessfully created.

We can then run the executable by selecting DEBUG ⇒ Start without 
debugging or using the keyboard shortcut Ctrl+F5. Go ahead and execute 
the app. What happens? You should see a console window open with the mes-
sage Press any key to continue… and pressing a key should close the 
console window.

While this is not very exciting, it should also not be very surprising since we 
did not include any code to provide output. Why did we avoid the obligatory 
statement to print “Hello World” to the console? First of all, it would require a 
tangential discussion of input/output formats that can wait until a bit later. Second, 
and perhaps more importantly, printing items of interest to the console is an 

Figure C.3 Adding main.cpp using Visual Studio’s Add New Item window
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ill-advised way to keep track of what is happening in your programs. Instead, 
let’s start right away to become accustomed to using our development tools.

To be concrete, let’s say we want to make sure that our variables actually get 
assigned values as intended. The preferred approach is to run the program in 
debug mode, which requires that the code has been compiled in debug mode. 
So reset your Solution Configurations, located below the HELP menu, 
from Release to Debug and Solution Platforms to x64 (not win32), as 
shown in Figure C.4.

When executing in Debug mode, we can step through the execution line by line 
using the DEBUG ⇒ Step Into or the keyboard shortcut F11, but going through 
the whole program one step at a time becomes inconvenient for longer codes. 

Figure C.4 The Visual Studio window after deleting kernel.cu. The upper-right box indicates 
the Solution Configurations and Solution Platforms.
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The preferred alternative is to set specific breakpoints at which to do status checks. 
For example, let’s set a break point at line 5, where i gets assigned a value. One 
way to do this is to just click in the code pane at the start of line 5 and then select 
DEBUG ⇒ Toggle break point or use keyboard shortcut F9. A large red dot 
appears at the left edge of the pane indicating the location of the break, and you 
can click in that location to toggle the break point on and off. Now if we start 
debugging with F5 (and the breakpoint toggled on), execution proceeds to the break 
point, and you can observe the current values of the variables in the Locals 
pane, as shown in Figure C.5. At this point you should see values for i and x that 
have no specific significance because no assignments have been executed yet.

After taking an execution step (by pressing F11) so the arrow moves to line 6, 
the Locals pane should resemble that shown in Figure C.6, where i now has a 
recognizable value that is displayed in red in the Locals pane.

Figure C.5 Executing declare_and_assign in Debug mode at line 5
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After one more execution step (via F11), the information presented in the 
Locals windows has changed, as shown in Figure C.7. The value shown for i is 
now displayed in black (only the assignment from the most recent statement is 
displayed in red) and a recognizable value is displayed in red for the variable x. 
Note that the value is not exactly 1.3, but it is the best possible approximation in 
a binary system with the given level of precision.

At this point, you can step through the last line or select DEBUG ⇒ Stop 
Debugging to terminate execution. We have now completed running our first C 
app, and if you only use Windows and not Linux/OS X, you can skip ahead to the 
section on “Arrays, Memory Allocation, and Pointers.”

Figure C.6 Execution in Debug mode at line 6 after the assignment i=2
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BUILDING APPS IN LINUX

Here, we go through the process of creating an app under Linux/OS X using the 
following software:

• Use a text editor: For purposes of simplicity, our presentations in this book
use the default editors gedit on Ubuntu and TextEdit on OS X. However,
we recommend that you check out our text editor of choice, Sublime Text 3
with CUDA C++ language package, which is available on all platforms.

• gmake (GNU Make) automates the compilation/linking process.

• nvcc (NVIDIA CUDA Compiler) compiles the source code.

• cuda-gdb (NVIDIA CUDA debugger) debugs the executable.

Figure C.7 Executing in Debug mode at line 8 after both assignments
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Throughout the book, Makefiles for automating the compile/link process are 
provided when necessary. Complete documentation on GNU Make is available 
on GNU’s website [7].

To create the declare_and_assign app under Linux/OS X, we need to compile 
the source code presented in Listing C.1 and link with the necessary libraries. 
In this simple case with a single file, main.cpp, containing the source code, we 
can generate the executable from the terminal with the command:

nvcc -g -G -Xcompiler -Wall main.cpp -o main.exe

which parses as follows:

• nvcc invokes the NVIDIA CUDA compiler.

• -g (shorthand for --debug) tells the compiler to generate debug information
for the host code.

• -G (shorthand for --device-debug) tells the compiler to generate debug
information for the device code.

• -Xcompiler (shorthand for --compiler-options) combined with -Wall
tells the compiler to generate warning messages during compilation.

• main.cpp -o main.exe tells nvcc to get main.cpp as input and store the
output as main.exe.

Alternatively, we can create a Makefile that controls the generation of executables 
from the source. Makefiles offer numerous advantages that become especially 
important when the project involves multiple source files. We introduce Make-
files here, and we will provide Makefiles for our apps. The Makefile for 
declare_and_assign is given in Listing C.2.

Listing C.2 declare_and_assign/Makefile

main.exe: main.cpp
    nvcc -g -G -Xcompiler -Wall main.cpp -o main.exe

Makefile Syntax
Makefiles include variable assignments and rules. A variable assignment such as 
NVCC = /usr/local/cuda/bin/nvcc looks much like a C assignment (without 
the semicolon terminator) and allows you to just write NVCC as shorthand for the 
full path in the remainder of the Makefile. A rule consists of three parts: targets, 
dependencies, and commands. The first line of a rule consists of the target 
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(followed by a colon) and the dependencies. The remaining lines of a rule are a 
sequence of commands, each of which is indented with a TAB character. (To avoid 
problems, be sure to indent with TAB and not spaces.)

An equivalent shorthand version of the Makefile is given in Listing C.3.

Listing C.3 Shorthand version of declare_and_assign /Makefile
NVCC = /usr/local/cuda/bin/nvcc
NVCC_FLAGS = -g -G -Xcompiler -Wall

main.exe: main.cpp
    $(NVCC) $(NVCC_FLAGS) $< -o $@

Files in the Build Process
A detailed discussion of the steps in the process of building an executable app from 
source code is not on our critical path to CUDA, but here is a brief summary for those 
who are interested. We will write high-level code into source files with the extension 
.cpp for C/C++ code, .cu for source that includes CUDA code, and .h or .cuh for 
header files. The preprocessor produces another version of the C/C++/CUDA code 
with directives handled. The compiler then produces assembly code, and the assem-
bler processes the assembly code into machine code stored in object files with the .o 
extension. The linker puts the object files together to produce the executable file.

With the code and the Makefile at our disposal, we are ready to create the execut-
able app. Perform the following steps to create the declare_and_assign app:

1. Create a projects directory to store your projects. Using the cd command
in the terminal, change to the projects directory.

2. Create a directory for this project with mkdir declare_and_assign,
and change to that directory with cd declare_and_assign.

3. Create the file main.cpp with gedit main.cpp (for OS X, first
touch main.cpp and then open -e main.cpp).

4. Enter the contents of the Listing C.1 into main.cpp.

5. Create the Makefile with gedit Makefile (first, touch Makefile
and then open -e Makefile on OS X).

6. Enter the contents of the Listing C.2 into Makefile.

7. Compile the source file by typing make.
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Now that the executable is ready, run the application and inspect the results as 
shown in Figure C.8 by using the debugger as follows:

1. Load the executable into the debugger with cuda-gdb main.exe.

2. Start debugging with start and display local variables with info locals.
The first step goes to line 5 (the first execution statement), and the first info
locals shows values of i and x that have not yet been initialized to their
intended values.

3. Go to the next instruction with next, and check local variable values again.
We are now at line 6, and info locals tells us that i has now been set to 2,
but x will still be undefined.

4. Repeat the previous step to get to line 8, and observe that info locals now
shows the assigned values for both i and x. Note that the value of x is not
exactly 1.3, but it is the best possible approximation in a binary system with
the given level of precision.

5. Finish running the application with continue and leave the debugger with quit.

Figure C.8 cuda-gdb commands and results during debugging 
declare_and_assign
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We have now completed running our first C app, and we’ll move on to the other 
aspects of the C language that are essential for our purposes.

Arrays, Memory Allocation, and 
Pointers

We have now created, compiled, executed, and debugged a simple C program, 
so it is time to gradually add in the elements of C that we will need, starting with 
arrays and control statements including the for loop.

To store more than one item of a particular type, you can use an array that is an 
indexed sequence of variables of a given type. The apps dist_v1 and dist_v2 
at the end of this appendix provide examples of where we store the input values 
and/or the output values in arrays.

Let’s get concrete and think about integer input values and floating point output 
values. As with regular variables, the name of an array is established by a dec-
laration statement that looks very much like the declaration of a variable except 
that there are square brackets after the name to indicate that it is an array. In 
the declaration, a constant inside the square brackets indicates the length of the 
array. In other statements, the integer in the square brackets indicates the index 
of an element in the array.

Here let’s create an input array of integers named in. We can declare an array 
in to hold 3 integer values and an array out to hold 3 float values as follows:

int in[3];
float out[3];

There are a few important things to note regarding array declarations:

• Memory is allocated for a fixed number of entries, so the entry in the square
brackets must be a constant value specified at compile time. Dynamic resizing
of the array is not supported in C. A common way to handle this employs the
#define directive, as in the sample code below (which also includes exam-
ples of single-line and multiline comments):

#define  N 3 //Compiler directive has no semicolon.
/* The lines below declare 2 arrays.

Each array has length N. */
int  in[N];
float  out[N];
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• Recall that the indexing scheme in C starts counting at 0, so the elements of
the array are in[0], in[1], and in[2].

• As with simple variables, you can combine the declaration with assignment of
initial values. For example, int in[] = {1,2,3}; declares the array of 3
elements (here the square brackets can be left empty, as the length of the
array is inferred from the list of initial values) and assigns initial values
equivalent to in[0] = 1; in[1] = 2; in[2] = 3;.

• We are being a bit cavalier in the presentation of arrays up to this point. We have
not yet said anything to indicate that the declaration int in[] = {1,2,3};
does anything different from creating 3 integer variables and assigning each
of them sequentially a value from the list in the braces. What is really hap-
pening is that the name we declare serves as a pointer to the first element in
a contiguous block of memory of the appropriate size (equal to the number
of elements times the number of bytes per element; here N*sizeof(int)).
The element number (contained in the square brackets) tells the system how
many steps of the appropriate size (i.e., the number of bytes needed to store
each element of the given type) to take in the memory space to find the value
of the specified element in the array. We are, in fact, being intentionally cav-
alier at this point, because this distinction is not yet important. We will return
to look at the necessary details of explicitly handling pointers in the sample
codes below that include functions with arrays as inputs or outputs, and we
will cover explicit memory allocations when we discuss creating arrays on the
device (GPU) side in Chapter 2, “CUDA Essentials,” and beyond.

• Resist the urge to try to assign entire arrays in one fell swoop. Yes, you can
create another array of 3 integers by int inCopy[3]; but  inCopy = in will
not assign all of the elements of the new array inCopy to have values match-
ing the corresponding elements in in. Instead, it just generates an error
message because C just does not work that way. Such assignments need to
be accomplished one element at a time—which provides a perfect segue into
a brief discussion of control statements.

Control Statements: for, if
Control statements allow you to specify the circumstances under which cer-
tain portions of your code will (or will not) execute. In C, there are a handful of 
control statements that you need to know how to use, but for now we will focus 
on for and if.
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THE for LOOP

The for statement is the quintessential embodiment of sequential programming 
in that it involves explicit specification of an iteration or loop index variable. 
The code within the loop is repeatedly executed for one value of the loop index 
after another until an exit criterion is met. Note that the for loop is an essential 
location on our path to parallel computing with CUDA, because our initial paral-
lelizations will involve conversion of sequential for loops.

The syntax of a for loop has the following form:

for (start; test; increment)
{
    statements
}

where start is ordinarily a statement that declares the loop index variable and 
assigns it an initial value, test is a statement that specifies the exit condition, 
and increment is usually a statement that specifies how to change the value of 
the loop index after each trip through the loop. The braces contain the sequence 
of statements to be executed during each trip through the loop.

To be concrete, let’s tackle the problem mentioned previously of copying the entries 
from one array (named in) into another (named inCopy). Here is the sample code:

#define N 3
int main()
{
     int in[] = {1,2,3};
     int inCopy[N];

     for (int i=0; i < N; ++i)
     {

inCopy[i] = in[i];
     }

     return 0;
}

We start with a #define compiler directive to replace the symbol N with the 
number 3 (which serves as the constant needed for the array length), and then 
continue with the obligatory main() function. As before, we declare in and 
assign its entries the values 1 through 3. Declaration of inCopy as an array of 
3 integers is followed by the for loop using a specific instance of the syntax 
described above. The loop index is an int named i with initial value 0. (Note that 
the scope of i is limited to this loop. The same symbol appearing outside of the 
loop refers to a distinct variable, so there is no need to come up with a novel loop 
index name for each loop.) The iterations continue until i no longer has a value 
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less than N (which was replaced by 3), and ++i increases the value of i by 1 after 
each trip through the loop. Since each trip through the loop copies the ith entry in 
in into the corresponding position in inCopy, and i is initialized with value 0, 
during the first trip through the loop, inCopy[0] is assigned the value stored in 
in[0], which is 1. The value of i is increased from 0 to 1, and execution returns 
to the top of the loop. Since i has value 1 (and N has been replaced by 3), the 
continuation condition i < N is satisfied, and a second trip is made through the 
code in the loop, during which inCopy[1] is assigned the value stored in in[1]; 
that is, 2. The process continues (assigning values for entries up to and including 
inCopy[2]) until i is incremented to have value 3, at which point the continuation 
test fails and we exit from the loop. Execution proceeds to the final line in main(), 
and the integer value 0 is returned to indicate completed execution.

Recall that entries in an array in C are indexed starting at 0; this is a common 
coding pattern. To execute some code with each entry in an array (as either input 
or output), use a for loop with an iterator initialized to zero and incremented at 
each iteration with an execution test that the iterator value is less than the number 
of elements (because an array of length N has elements with indices 0, 1, …, N − 1). 
Note that some other languages use other indexing schemes, but for writing C 
code, we want to get used to counting from 0.

A final note should be made here. Our descriptions of arrays have been a bit fig-
urative to this point and have not involved any real mention of pointers. We will 
rectify this in the sample programs that follow, where we construct functions 
whose inputs and/or outputs are stored in arrays.

THE if STATEMENT

The keyword if allows you to specify that a section of code will execute only 
when a test condition is satisfied. The selection of test conditions includes 
equality (==), inequality (!=), and ordering—greater than (>), less than (<), 
greater than or equal to (>=), less than or equal to (<=). The composition of 
multiple conditions can be specified using the logical operations “and” written 
as &&, “or” written as ||, and complement or “not” written as !. C represents 
FALSE as 0, so (a > b) is really shorthand for ((a > b) != 0), which asks 
whether the truth of a > b is not FALSE.

The standard syntax is the following:

if (condition)
{
    statements
}
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You can also include else clauses to specify alternative statements to execute 
when the condition is not satisfied. The standard syntax is the following:

if (condition)
{
    statements
}
else if (condition)
{
    statements
}
else
{
    statements
}

This provides fundamental support for computations that involve doing differ-
ent things in different situations. As a concrete example, assume that we have 
declared an integer n and assigned n a value, and we want to assign y the 
rectified version of x (i.e., y = x if x > 0; y = 0 if x <= 0). The following code using 
if-else syntax will do the job:

if (x > 0)
{
   y = x;
}
else
{
   y = 0;
}

Relevant items to know about if statements:

• Semicolons terminate the statements inside the braces, but no semicolon is
needed after the braces.

• There’s more than one way to get things done, and you will see alternatives to
this structure that can be convenient (and still readable), especially when the
braces contain only one or two statements. The code for assigning to y the
rectified value of x can be written more compactly as

if (x > 0) y = x; else y = 0;

or using the ternary operator ?: as

y = (x > 0) ? x : 0;

but we find that use of braces and indentation helps make code more readable.
(We’ll see later that initial format shown with full braces and indentation is most
compatible with debugging tools.) Figure out the style that works for you, and
stick with it.
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OTHER CONTROL STATEMENTS

Control statements that combine a condition test with repeated (or looping) 
evaluation are accomplished with the keywords while and do. You can have the 
execution skip an index value with continue or escape from a loop entirely 
using break or goto. Multiple, distinct execution paths that are determined by 
the value of an expression can be specified using a switch statement with 
multiple case values and can optionally include a default path. Please refer 
to standard C language sources for complete details [5].

Sample C Programs
We are now ready to construct the first apps on our direct path to CUDA. The 
apps compute the distance from a reference point to each of N equally spaced 
points on the interval from 0 to 1. Here, we construct two versions, dist_v1 and 
dist_v2, which also appear in Chapter 1, “First Steps,” as our initial examples 
to be converted to parallel CUDA apps.

The two distance apps are designed to produce the same output, but they are 
structured in different ways:

1. dist_v1 uses a for loop to call a function that evaluates the distance for
a single input value. This version offers the simplest candidate for initial
parallelization.

2. dist_v2 has a bit more structure. The input values are stored in an array,
and the for loop is moved into a function named distanceArray(), which
is called once to compute and store all of the output distance values. Paral-
lelization of dist_v2 will take a bit more work, but it provides a structure
that is well-suited for parallelization with CUDA.

dist_v1

The code for dist_v1 is shown in Listing C.4.

Listing C.4 dist_v1/main.cpp

  1 #include <math.h>  //Include standard math library containing sqrt.
  2 #define N 64    // Specify a constant value for array length.
  3
  4 // A scaling function to convert integers 0,1,...,N-1
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  5 // to evenly spaced floats ranging from 0 to 1.
  6 float scale(int i, int n)
  7 {
  8   return ((float)i) / (n - 1);
  9 }
 10
 11 // Compute the distance between 2 points on a line.
 12 float distance(float x1, float x2)
 13 {
 14   return sqrt((x2 - x1)*(x2 - x1));
 15 }
 16
 17 int main()
 18 {
 19   // Create an array of N floats (initialized to 0.0).
 20   // We will overwrite these values to store our results.
 21   float out[N] = {0.0f};
 22
 23   // Choose a reference value from which distances are measured.
 24   const float ref = 0.5f;
 25
 26   /* for loop to scale the index to obtain coordinate value,
 27    * compute the distance from the reference point,
 28    * and store the result in the corresponding entry in out. */
 29   for (int i = 0; i < N; ++i)
 30   {
 31     float x = scale(i, N);
 32     out[i] = distance(x, ref);
 33   }
 34
 35   // It is conventional for main() to return zero
 36   // to indicate that the code ran to completion.
 37   return 0;
 38 }

This code is designed to compute an output array (named out with length N=64) 
of distance values from a reference point ref to a grid of regularly spaced points 
on the interval 0.0 to 1.0 computed by scaling the loop index i. We start by includ-
ing the header file for the standard math library (so we have access to the square 
root function sqrt()) and by specifying a constant value N (chosen to be 64) for 
the number of points and the length of the output array. The first function, scale(), 
defined on lines 6–9 converts an integer in the range 0, …, N − 1 to a floating 
point coordinate value on the interval 0.0 to 1.0, while distance(),  defined on 
lines 12–15, computes the distance between two points on a line.

The main() function begins by creating an array of N floats initialized to 0.0 
(which will be overwritten to store our output) on line 21 and setting the reference 
point from which distances are measured, ref = 0.5f on line 24. The for loop 
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then begins on line 29 and, for each value of the loop index (from 0 to N-1), the 
corresponding scaled location is computed and stored in x on line 31, and the 
distance from the reference point is computed and stored in out[i] on line 32. 
When i increments to N, the computation exits the for loop and main() 
returns the value 0 to indicate that the code has completed execution.

Convert the code in Listing C.4 to an executable app as follows:

• Under Windows

1. Open Visual Studio and create a new project named dist_v1.

2. Add a main.cpp file to the project: Select PROJECT ⇒ Add New Item,
then select C++ file, enter the name main.cpp, and click Add. The
extension .cpp stands for C++ and indicates that the contents should be
compiled as C/C++ code. Contrast to.cu files, which contain CUDA code
to be compiled with nvcc.

3. Enter the code from Listing C.4 into main.cpp.

4. Remove kernel.cu from the project by right-clicking on its icon in the
Solution Explorer pane and selecting Remove.

5. Set the compilation configuration to Debug and x64, and then select
BUILD ⇒ Build solution or F7.

6. Set a break point at line 37, and debug to inspect the results.

• Under Linux

1. Create a dist_v1 directory.

2. Create a new file main.cpp. Enter the code from Listing C.4 into main.cpp
and save the file.

3. Create the Makefile and enter the contents of Listing C.2 into Makefile.

4. Compile the source file by typing make.

5. Load the executable into the debugger with cuda-gdb main.exe.

6. Set a breakpoint at line 37 with break main.cpp:37.

7. Start debugging with run, and inspect the results.
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Using the debugging tools to inspect the results, the procedure should be just 
like what you did with declare_and_assign above, but now you need to 
inspect the values stored in an array out. This requires no adjustment under 
Linux; info locals or print out will send the list of entries in the array out 
to the terminal. In Visual Studio’s Locals pane, there will be a small triangle at 
the left side of the line where out appears, as shown in Figure C.9. Click on the 
triangle to open a scrollable list of the entries stored in out.

However you view your results, you should see values starting at 0.5 (the dis-
tance from a scaled value of 0 to the reference point at 0.5), decreasing toward 
zero near the middle of the array, and increasing back to 0.5 (corresponding to 
the distance from 0.5 to a scaled value of 1.0).

Figure C.9 The Visual Studio window with Debug execution at line 37. The triangle next to out 
in the Locals pane has been clicked to display a list of the entries in the array.
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dist_v2

In the second version of the distance app, we create an array of all the input 
coordinate values and a function that computes distance values for the entire 
input array. The first version, dist_v1, is atypical in that there is no real input 
data (other than the reference location). Here we do something more typical and 
process an array of input data to produce an array of output data. (Here the input 
data is created with an initial for loop, but the same basic workflow would apply 
for input data read from a file or an input device.) We add a bit of structure by 
putting the functions (other than main()) in a separate file, aux_functions.cpp, 
and crea ting a corresponding header file, aux_functions.h, for inclusion. 
That said, let’s get right to the code for dist_v2. The codes for main.cpp, 
aux_functions.h, and aux_functions.cpp are shown in Listings C.5, 
C.6, and C.7.

Listing C.5 dist_v2/main.cpp
  1 #include "aux_functions.h"
  2 #define N 64    // Specify a constant value for array length.
  3
  4 int main()
  5 {
  6   // Create 2 arrays of N floats (initialized to 0.0).
  7   // We will overwrite these values to store inputs and outputs.
  8   float in[N] = {0.0f};
  9   float out[N] = {0.0f};
 10
 11   // Choose a reference value from which distances are measured.
 12   const float ref = 0.5f;
 13
 14   // Iteration loop computes array of scaled input values.
 15   for (int i = 0; i < N; ++i)
 16   {
 17     in[i] = scale(i, N);
 18   }
 19
 20   // Single function call to compute entire distance array.
 21   distanceArray(out, in, ref, N);
 22
 23   return 0;
 24 }

The code in main() has only minor changes from dist_v1/main.cpp shown 
in Listing C.4. There is an in array for the scaled input values in addition to the 
out array to store the output distances, and the work of the for loop (which 
previously computed the scaled input and then computed/stored the distance 
value) is split into two pieces. The for loop in main() now just computes and 
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stores the scaled input values. The work of computing and storing the distance 
values is now relegated to distanceArray().

Note that main() includes calls to scale() and distanceArray(), whose 
definitions do not appear. We have already discussed that the compiler needs to 
know at least the function declaration or prototype in advance of the function call, 
and this need is met using the header files. In this case, we choose to define the 
auxiliary functions scale() and distanceArray() in a separate file named 
aux_functions.cpp. We then put a copy of the prototype for each of the auxiliary 
functions that should be callable from main() in the file aux_functions.h 
and include aux_functions.h at the top of main.cpp, and the compiler has 
access to all the necessary information.

The complete header file is shown in Listing C.6. The gist of the header file consists 
of the function prototypes and descriptive comments. In addition to the proto-
types, there are three compiler directives that constitute the include guard (or 
header guard), which prevents compilation errors associated with attempts at 
redundant inclusion of prototypes.

Listing C.6 dist_v2/aux_functions.h
  1 #ifndef AUX_FUNCTIONS_H
  2 #define AUX_FUNCTIONS_H
  3
  4 // Function to scale input on interval [0,1]
  5 float scale(int i, int n);
  6 // Compute the distance between 2 points on a line.
  7 float distance(float x1, float x2);
  8 // Compute scaled distance for an array of input values.
  9 void distanceArray(float *out, float *in, float ref, int n);
 10
 11 #endif

The code for aux_functions.cpp is shown in Listing C.7. The scale() and 
distance() definitions are unchanged from dist_v1. The interesting addi-
tion is distanceArray(), a function that is supposed to take an array of input 
values (along with a reference location and array length) and produce an array 
of output values. This is our first encounter with a function whose arguments 
include arrays and a good opportunity for a reminder of the statement from 
the “Characterization of C” section about how C deals with functions of arrays: 
Instead of passing a whole array, C passes the value of a pointer that speci-
fies the memory location where the array storage begins. C uses the asterisk 
to indicate pointer variable types in declarations, so distanceArray’s first 
two arguments, float *out and float *in indicate pointers to an array of 
floats.
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Listing C.7 dist_v2/aux_functions.cpp
  1 #include "aux_functions.h"
  2 #include <math.h>
  3
  4 float scale(int i, int n)
  5 {
  6   return ((float)i) / (n - 1);
  7 }
  8
  9 float distance(float x1, float x2)
 10 {
 11   return sqrt((x2 - x1)*(x2 - x1));
 12 }
 13
 14 void distanceArray(float *out, float *in, float ref, int n)
 15 {
 16   for (int i = 0; i < n; ++i)
 17   {
 18     out[i] = distance(in[i], ref);
 19   }
 20 }

The body of distanceArray() consists of a for loop that reads in[i], the 
ith  element of the input array, computes the distance to ref, and stores the 
result at out[i], the corresponding position in the output array. Note that the 
function prototype tells the compiler that in and out are pointers to floats, 
and neither the type nor the asterisk that appear in the prototype appear with 
the array name in the body of the function.

Pointer Arithmetic
Outside of declarations, the asterisk functions as the dereference operator that 
returns the value in the memory location stored by the pointer variable. While 
there are situations where explicit dereferencing is appropriate, it is not needed 
for our array operations. If the name of array is a pointer to the start of the array—
for example, in points to the start of the input array—why don’t we need an asterisk 
to access a value in the array? The answer is that we don’t just use in. We think of 
in as an array so our code contains not in, but in[i]. The compiler decomposes 
in[i] to *(in + i), which translates into English as “increment the pointer in 
by i and return the value stored at that location.” Since in points to the start of 
the input array, and the compiler knows to increment the pointer by the amount of 
memory used to store a float, in[i] returns the value of the ith element. If you 
do include an asterisk, undesirable and unexpected things will occur because bits 
stored in the array will get unintended treatment as memory addresses.
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Note that distanceArray() has return type void, which may seem a bit 
strange at first but is actually common in C. Since C passes arguments by value, 
a func tion cannot directly modify any of its arguments. If you want a C function to 
modify an entity (a variable or array element), the argument needs to be a 
pointer to the entity and not the entity itself. The pointer (the memory location of 
the entity) remains unchanged, but the function can store a new value at the 
entity’s location; and all of this can occur without the function returning any-
thing. (In Chapter 3, “From Loops to Grids,” we will see that there are important 
classes of functions that must have type void and are not allowed to return 
a value.)

It is time to build and test the app. If you are running Linux, the procedure will 
be only slightly different from for dist_v1. In addition to creating a dist_v2 
directory with files main.cpp, aux_functions.h, and aux_functions.cpp 
containing the code from Listings C.5, C.6, and C.7, respectively, you will need to 
create a new Makefile in the dist_v2 directory. The code for dist_v2/Makefile 
is given in Listing C.8. Build the app using cuda-gdb, set a breakpoint at the 
return statement at the end of main(), and verify that the results agree those 
from dist_v1.

Listing C.8 dist_v2/Makefile
NVCC = /usr/local/cuda/bin/nvcc
NVCC_FLAGS = -g -G -Xcompiler -Wall

all: main.exe

main.exe: main.o aux_functions.o
    $(NVCC) $^ -o $@

main.o: main.cpp aux_functions.h
    $(NVCC) $(NVCC_FLAGS) -c $< -o $@

aux_functions.o: aux_functions.cpp aux_functions.h
    $(NVCC) $(NVCC_FLAGS) -c $< -o $@

In Visual Studio, create a new dist_v2 project, add main.cpp to the project, 
and delete kernel.cu just as you did for dist_v1. Then add new files 
aux_functions.cpp and aux_functions.h to the project. (Note that when 
you select Project ⇒ Add New Item ⇒ C++, you can choose to add a .h file 
or a .cpp file.) Enter the code from Listings C.5, C.6, and C.7 into the appropriate 
files, and compile in Debug mode. Set a breakpoint at the return statement at 
the bottom of main(), start debugging, and inspect the results in the Locals 
pane. Verify that the in entries increase from 0 to 1 in uniform increments and 
that the distance values in out agree with those computed using dist_v1.
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Reading Messages and Warnings
If you follow the directions above, your compilation should succeed. However, 
sometimes things do not go exactly as planned, and we want to be prepared 
for such situations, so let’s create one. Comment out #include <math.h> in 
aux_functions.cpp and rebuild the app. The compiler will generate an error 
message, and the point of this detour is to get you to pay attention to the errors and 
warnings generated at compile time. Figure C.10 shows the error message as it 
appears in the Visual Studio Output pane. The “bottom line” that indicates overall 
success or failure is important, but get used to looking beyond that. Two lines 
above, we learn that the specific error (error C3861) occurred at line 11 of 
aux_functions.cpp. There are now several useful tools at your disposal for resolv-
ing the problem. You can enter error C3861 and/or identifier not found 
in a search engine and find additional information: for example, “The compiler was 
not able to resolve a reference to an identifier, even using argument-dependent 
lookup.” You can even click on the error in the Output pane to make the cursor go 
to the corresponding line in the code pane.

Figure C.10 Visual Studio Output pane showing error message generated from 
attempt at code compilation

These tools may be overkill for resolving the current issue, that sqrt is not recog-
nized because we forgot to include the math library header, but we strongly advise 
you to get into the habit of actually looking carefully at the details—and not just the 
bottom line—when you compile.

dist_v2 WITH DYNAMIC MEMORY

We have now discussed most of the critical aspects of the C language for our 
needs, but there is one more topic that requires attention. The arrays we’ve 
created so far have had small constant lengths, so the arrays were small enough 



ptg22232966

APPENDIX C NEED-TO-KNOW C PROGRAMMING 

276

to fit in the stack memory. However, stack memory is limited, and you will 
produce segmentation fault errors if you just replace #define N 64 with 
#define N 20000000 in dist_v2/main.cpp. We need to take a different 
approach for array sizes that are larger (and large arrays are very relevant in 
the CUDA world) or not known at compile time. A modified version of dist_v2 
that handles large arrays using dynamic memory management is shown in 
Listing C.9.

Listing C.9 dist_v2/main.cpp with dynamic memory management
  1 #include "aux_functions.h"
  2 #include <stdlib.h> // supports dynamic memory management
  3
  4 #define N 20000000 // A large array size
  5
  6 int main()
  7 {
  8   float *in = (float*)calloc(N, sizeof(float));
  9   float *out = (float*)calloc(N, sizeof(float));
 10   const float ref = 0.5f;
 11
 12   for (int i = 0; i < N; ++i)
 13   {
 14     in[i] = scale(i, N);
 15   }
 16
 17   distanceArray(out, in, ref, N);
 18
 19   // Release the heap memory after we are done using it.
 20   free(in);
 21   free(out);
 22   return 0;
 23 }

The revised code requires only a few changes:

• The stdlib.h header is included to support calling dynamic memory
management functions.

• We create the arrays in and out on lines 8 and 9 by explicitly declaring
pointers *in and *out to which we assign the values returned by calls to
(float*)calloc(N, sizeof(float)), which allocates (and initializes to
zero) enough contiguous memory to hold N floats. The calloc call returns
the starting location of the allocated memory, and (float*) casts the value
to be of type “pointer to float.” The net result is that the name of the array is
again a pointer to the array’s starting location in memory; but now it is heap
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memory instead of stack memory, so the array size can be both large and 
determined at runtime.

• On lines 20 and 21, we free the memory that was allocated to store the arrays.

Replace the code in dist_v2/main.cpp with the revised version in Listing C.9, 
compile in debug mode, set a breakpoint at line 20 (after the computations but 
before the memory is freed), and start debugging.

Note that a different procedure is required for viewing array values in the heap. 
Using cuda-gdb under Linux, out[5000]@100 prints the values of 100 array 
elements starting at the 5,000th element. In Visual Studio, the array entries can 
no longer be inspected in the Locals pane (which only has access to stack 
memory), and a Watch window is used instead. (Select DEBUG ⇒ Windows ⇒ 
Watch ⇒ Watch1 if a Watch window is not already open.) Typing out+5000,100 
in the Name column of the Watch window accesses 100 elments, starting with 
the 5,000th element in the array. (We are employing a bit of pointer arithmetic 
here, but do not get hung up on that detail.) Again, you may need to click on the 
triangle next to the name to view the entries on separate lines.

Having completed this appendix, you should know the essentials of C program-
ming, including declaring and defining variables and functions, simple control 
structures, and basic array operations. You should also have a basic under-
standing of the example apps dist_v1 and dist_v2 that also appear in Chapter 1, 
“First Steps,” and provide our initial case studies for parallelization with CUDA 
in Chapter 3, “From Loops to Grids.”
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 CUDA Practicalities: 
Timing, Profiling, 
Error Handling, and 
Debugging

This appendix aims to introduce some practical matters you will want to include 
in your skill set before getting too far along with your own development projects. 
In particular, we introduce the following:

• Execution timing and profiling

• Error handling

• CUDA debugging tools

Execution Timing and Profiling
When you start creating CUDA programs, you will want to be able to quantify 
the performance of your code. (If you did not care about performance, it is highly 
unlikely that you would have gotten started with CUDA.) While you can use the 
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standard C language timing methods, there are some issues with synchroni-
zation between the CPU and the GPU, so we will also look at the CUDA-specific 
timing methods provided by CUDA C and Nsight.

STANDARD C TIMING METHODS

Modern versions of the C language include a library <time.h> that provides a 
type definition clock_t for timing variables, a clock() function for getting the 
current processor time used by the program so far, and the constant CLOCKS_
PER_SEC for converting the result of clock() to seconds. The simplest way 
to present this approach is with an example, so let’s use the standard C timing 
approach to get a measurement of the kernel execution time and the time it 
takes to copy the input data from the host to the device in our sample application 
dist_v2_cuda from Chapter 3, “From Loops to Grids.”

Listing D.1 shows dist_v2_cuda/kernel.cu with timing code added. In addi-
tion to the changes made in kernel.cu, increase the size of the array by editing 
the line that sets the length of the array (N) in main.cpp as #define N 256000.

Listing D.1 dist_v2_cuda/kernel.cu with code inserted for CPU timing of memory transfer 
of input data from host to device
  1 #include "kernel.h"
  2 #include <stdio.h>
  3 #include <time.h>
  4 #define TPB 32
  5 #define M 100 // Number of times to do the data transfer
  6
  7 __device__
  8 float distance(float x1, float x2)
  9 {
 10   return sqrt((x2 - x1)*(x2 - x1));
 11 }
 12
 13 __global__
 14 void distanceKernel(float *d_out, float *d_in, float ref)
 15 {
 16   const int i = blockIdx.x*blockDim.x + threadIdx.x;
 17   const float x = d_in[i];
 18   d_out[i] = distance(x, ref);
 19 }
 20
 21 void distanceArray(float *out, float *in, float ref, int len)
 22 {
 23   float *d_in = 0;
 24   float *d_out = 0;
 25   cudaMalloc(&d_in, len*sizeof(float));
 26   cudaMalloc(&d_out, len*sizeof(float));
 27
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 28   // Record the clock cycle count before data transfer.
 29   clock_t memcpyBegin = clock();
 30   // Copy input data from host to device M times.
 31   for (int i = 0; i < M; ++i)
 32   {
 33     cudaMemcpy(d_in, in, len*sizeof(float),
 34 cudaMemcpyHostToDevice);
 35   }
 36   // Record the clock cycle count after memory transfer.
 37   clock_t memcpyEnd = clock();
 38
 39   clock_t kernelBegin = clock();
 40   distanceKernel<<<len/TPB, TPB>>>(d_out, d_in, ref);
 41   clock_t kernelEnd = clock();
 42
 43   cudaMemcpy(out, d_out, len*sizeof(float), cudaMemcpyDeviceToHost);
 44
 45   // Compute time in seconds between clock count readings.
 46   double memcpyTime =
 47     ((double)(memcpyEnd - memcpyBegin))/CLOCKS_PER_SEC;
 48   double kernelTime =
 49     ((double)(kernelEnd - kernelBegin))/CLOCKS_PER_SEC;
 50
 51   printf("Kernel time (ms): %f\n", kernelTime*1000);
 52   printf("Data transfer time (ms): %f\n", memcpyTime*1000);
 53
 54   cudaFree(d_in);
 55   cudaFree(d_out);
 56 }

Here is a summary of the highlights:

• The standard timing library is included via #include <time.h>.

• M constant is defined to repeat the data transfer M times.

• The changes in distanceArray() include

• Storing initial and final CPU times for the memory transfer via
memcpyBegin = clock(); and memcpyEnd = clock(); on
lines 29 and 37

• Looping the copy operation M times with a for loop

• Storing initial and final CPU times for the kernel via kernelBegin =
clock(); and kernelEnd = clock(); on lines 39 and 41

• Converting the difference in recorded CPU time to seconds
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Running this example on our OS X system with NVIDIA GeForce GT 650M pro-
duces the following results:

Kernel time (ms): 0.032000
Data transfer time (ms): 41.790000

The data transfer time turns out to be correct, but the kernel time is not.

Why is it that this approach seems to work for timing a memory transfer but not 
a kernel execution? This question brings up the important point that there are 
two very different classes of operations which occur in CUDA applications:

• Synchronous operations block the computation stream and prevent other
operations from proceeding.

• Asynchronous operations allow other operations to proceed while the asyn-
chronous operation is executed concurrently.

By default, data transfers are synchronous, so cudaMemcpy() finishes execu-
tion before the CPU can move on to other operations like reading the clock and 
recording the end time. Kernel launches, on the other hand, are asynchronous. 
As soon as the kernel is launched, the CPU moves on to its next task, and the 
clock value is read and assigned to kernelEnd before the kernel execution is 
complete. Now we are going to look at a CUDA-specific timing method based 
on CUDA events that is capable of timing both synchronous and asynchronous 
operations.

CUDA EVENTS

To avoid some of the issues associated with CPU/GPU synchronization and to 
provide finer resolution, CUDA includes its own timing mechanisms. The CUDA 
API includes a special data type, cudaEvent_t, along with several key func-
tions used to work with CUDA events including the following:

• cudaEventCreate()and cudaEventDestroy()for creating and destroying
events (just as their names suggest)

• cudaEventRecord()for recording the time

• cudaEventSynchronize() for ensuring completion of asynchronous
functions

• cudaEventElapsedTime() for converting a pair of event records to an
elapsed time (in milliseconds)
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Once again, the most efficient way to present these functions is to show them in 
action, so we will jump right into the CUDA event approach to timing operations 
in distanceArray(). Listing D.2 shows an updated version of kernel.cu 
that uses the CUDA event API to time both the initial transfer of data from host 
to device and the kernel execution.

Listing D.2 dist_v2_cuda/kernel.cu modified to time memory transfer from host to 
device and kernel execution using CUDA events
  1 #include "kernel.h"
  2 #include <stdio.h>
  3 #define TPB 32
  4 #define M 100 // Number of times to do the data transfer
  5
  6 __device__
  7 float distance(float x1, float x2)
  8 {
  9   return sqrt((x2 - x1)*(x2 - x1));
 10 }
 11
 12 __global__
 13 void distanceKernel(float *d_out, float *d_in, float ref)
 14 {
 15   const int i = blockIdx.x*blockDim.x + threadIdx.x;
 16   const float x = d_in[i];
 17   d_out[i] = distance(x, ref);
 18 }
 19
 20 void distanceArray(float *out, float *in, float ref, int len)
 21 {
 22   // Create event variables for timing.
 23   cudaEvent_t startMemcpy, stopMemcpy;
 24   cudaEvent_t startKernel, stopKernel;
 25   cudaEventCreate(&startMemcpy);
 26   cudaEventCreate(&stopMemcpy);
 27   cudaEventCreate(&startKernel);
 28   cudaEventCreate(&stopKernel);
 29
 30   float *d_in = 0;
 31   float *d_out = 0;
 32   cudaMalloc(&d_in, len*sizeof(float));
 33   cudaMalloc(&d_out, len*sizeof(float));
 34
 35   // Record the event that "starts the clock" on data transfer.
 36   cudaEventRecord(startMemcpy);
 37   // Copy input data from host to device M times.
 38   for (int i = 0; i < M; ++i)
 39   {
 40     cudaMemcpy(d_in, in, len*sizeof(float),
 41 cudaMemcpyHostToDevice);
 42   }
 43   // Record the event that "stops the clock" on data transfer.
 44   cudaEventRecord(stopMemcpy);
 45



ptg22232966

APPENDIX D CUDA PRACTICALITIES

284

 46   // Record the event that "starts the clock" on kernel execution.
 47   cudaEventRecord(startKernel);
 48   distanceKernel<<<len/TPB, TPB>>>(d_out, d_in, ref);
 49   // Record the event that "stops the clock" on kernel execution.
 50   cudaEventRecord(stopKernel);
 51
 52   // Copy results from device to host.
 53   cudaMemcpy(out, d_out, len*sizeof(float), cudaMemcpyDeviceToHost);
 54
 55   // Ensure timed events have stopped.
 56   cudaEventSynchronize(stopMemcpy);
 57   cudaEventSynchronize(stopKernel);
 58
 59   // Convert event records to time and output.
 60   float memcpyTimeInMs = 0;
 61   cudaEventElapsedTime(&memcpyTimeInMs, startMemcpy, stopMemcpy);
 62   float kernelTimeInMs = 0;
 63   cudaEventElapsedTime(&kernelTimeInMs, startKernel, stopKernel);
 64   printf("Kernel time (ms): %f\n", kernelTimeInMs);
 65   printf("Data transfer time (ms): %f\n", memcpyTimeInMs);
 66
 67   cudaFree(d_in);
 68   cudaFree(d_out);
 69 }

Note that we declared and created four events: startMemcpy and stopMemcpy 
for timing the data transfer and startKernel and stopKernel for timing the 
kernel execution. The cudaEventRecord() statements appear immediately 
before and after each operation (or segment of code) that we want to time, even 
for the asynchronous kernel launch. We insert the synchronization statements, 
cudaEventSynchronize(), just before the event records are converted to 
time using cudaEventElapsedTime(). Running the CUDA event timing on our 
OS X system with NVIDIA GeForce GT 650M produces the following results:

Kernel time (ms): 1.066176
Data transfer time (ms): 42.495968

Note that the data transfer time corroborates the standard C timing result, but 
this more accurate result for the kernel execution time shows that the C timing, 
which was 30 times smaller, missed a significant portion of the kernel execution.

PROFILING WITH NVIDIA VISUAL PROFILER

The CUDA Toolkit comes with NVIDIA Visual Profiler (NVVP), a cross-platform 
visual profiling tool. We present a quick tour of NVVP, but you should see the full 
documentation for details at https://docs.nvidia.com/cuda/profiler-users-guide/
index.html.

https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
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Launching NVVP (by typing nvvp in the Linux/OS X command line or by 
 double-clicking the NVVP icon in Windows) opens the visual profiler window 
shown in Figure D.1.

Once the GUI application is running, click New Session from the File menu, 
and it will pop a Create New Session dialog as shown in Figure D.2.

Enter the path of the executable file for the CUDA app you would like to profile 
and select Next. (For applications requiring command line arguments, they can 
also be given in this dialog.) The Executable Properties window will open where 
you should be able to use the default settings and just click Finish.

Unless the Run guided analysis option was unchecked, NVVP will auto-
matically run the application and generate a timeline of both host and device 
activity. Following the row labeled Compute, you should see something near 
the right edge of the timeline. Use the zoom tool and the sliders to see that it 
is actually a bar representing the kernel execution. Click on the bar to select 
 distanceKernel() (and cause other items to fade), and look at the properties 
tab to see various kernel stats including Duration, which gives a timing of the 
execution in microseconds.

Figure D.1 The NVVP window
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In addition to the timeline, the lower portion of the NVVP window provides 
a variety of tabs including Analysis, Details, Console, and Settings. 
Focusing on the Analysis tab, there are two icons suggestive of numbered and 
bulleted lists that correspond to guided analysis and unguided analysis. Guided 
mode takes the user step by step through different profiling metrics, whereas 
users select their own analysis path in unguided mode. With the Default row 
selected in the timeline, the Details tab contains a table with a row of data 
including timing for each memory copy and kernel launch in the profiled applica-
tion. In Figure D.3, the details tab is shown for the dist_v2_cuda application.

To see how the kernel performed, let’s select the guided analysis icon under the 
Analysis tab. The first step is to Examine Individual Kernels. In this 
case, there is only one kernel, which uses 100% of the GPU computation time 
and appears at the top of the Performance Critical Kernel list. Having 
identified a kernel, the next step is to Perform Kernel Analysis. NVVP 
indicates that distanceKernel() is using only a small fraction of both the 
compute capacity and the overall execution time. Most of the execution time is 

Figure D.2 Creating a new session dialog with dist_v2_cuda.exe (dist_v2_
cuda/main.exe if you use the Makefile under Linux) chosen as executable
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spent on memory transfers, and the app Performance is Bound by Memory 
Bandwidth. NVVP then prompts to Perform Memory Bandwidth Analysis , 
Perform Compute Analysis, and Perform Latency Analysis. Memory 
bandwidth analysis provides relevant stats on memory transfers and suggestions 
for enhancing performance. Compute analysis provides stats and suggestions 
on utilization of the capacity of the SMs, and latency analysis provides stats and 
suggestions relating to availability of requested data.

The bottom line here is that the dist_v2_cuda app needs to transfer a reason-
able quantity of data (typically several hundred thousand float variables from 
host to device and back), and each thread has the nearly trivial job of computing 
a single distance value. The memory bandwidth analysis indicates that the exe-
cution time is limited by the maximum rate at which data can be transferred to 
and from device memory, and there is not much to be done here to improve the 
situation.

Figure D.3 Details tab showing a row for each memory copy and kernel launch 
in the dist_v2_cuda application
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While there is not much worth doing in terms of optimizing dist_v2_cuda, the 
apps in Chapter 5, “Stencils and Shared Memory,” provide examples of identify-
ing memory transfer as a critical issue and enhancing efficiency using tiling and 
shared memory.

For completeness, let’s also look at the unguided analysis mode which produces 
the information shown in Figure D.4. Again, memory bandwidth is identified as 
the limiting factor despite achieving device memory bandwidth equal to about 
95% of the maximum capacity.

PROFILING IN NSIGHT VISUAL STUDIO

Timing and performance information can also be generated using Nsight Visual 
Studio. (If you are developing on one computer and running your CUDA code on 
another, see the Nsight documentation for details [1].) Start Visual Studio and 
select NSIGHT ⇒ Start Performance Analysis… to bring up an Activity 
page (possibly after responding to some dialogs requesting authorization to run 
Nsight Monitor) that includes several windows, as shown in Figure D.5:

Figure D.4 Information on the dist_v2_cuda app produced by NVVP in unguided analysis mode
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• At the top of the activity page, there is an Application Settings window,
in which you should not need to modify the default entries.

• Likewise, the entries in the Triggers and Actions window should not
need changing.

• The important choices occur in the Activity Type window, which presents
four options to choose from:

• Trace Application

• Trace Process Tree

• Profile CUDA Application

• Profile CUDA Process Tree

Figure D.5 Activity window opened with NSIGHT ⇒ Start performance analysis…
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We’ll start with the default Activity Type, Trace Application, which causes 
Nsight to gather information while the program runs and produce a report 
when execution ends. When Trace Application or Trace Process Tree 
is selected, the next pane down is titled Trace Settings and allows you to 
choose what to collect data on, as shown in Figure D.6. Our immediate goal is 
to gather CUDA profiling information, so you should check the box next to CUDA. 
(You can also click the triangle next to CUDA and specify which of the CUDA sub-
topics to collect information on.)

Below Trace Settings there will be three small windows:

• On the left, Connection Status shows your GPU in the list of available devices
below a big green disk (assuming Nsight has succeeded in connecting to your GPU).

Figure D.6 Activity window after selecting Trace Application and scrolling down to 
open Trace Settings and selecting CUDA
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• In the middle, Application Control provides the Launch button that is of
immediate use.

• On the right, Capture Control becomes relevant when you want to start
and stop the profiling manually.

When you click Launch in the Application Control window, your appli-
cation will run, and an activity report window will open showing a Summary 
Report of the performance data gathered. The Session Overview reports 
the total running time over which data was collected, and the CUDA Overview 
shows the percentage use of both the CPU and GPU during the collection 
period. The pull-down menu that displays Summary Report also provides 
other options that you can explore. The option of most immediate interest is 
 Timeline, which gives a visual history of the various CUDA-related operations 
that occurred during execution, as shown in Figure D.7. You can scroll through 

Figure D.7 Timeline generated for dist_v2_cuda
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the captured data and Ctrl+Drag to expand or contract the timeline about your 
chosen moment of interest.

When you create a timeline for the dist_v2_cuda app, you are likely to be 
able to see the cudaMemcpy() calls, and you should practice zooming in on 
the timeline to find the kernel execution. If you click on the corresponding bar in 
the timeline (e.g., the bar labeled distanceKernel in the Compute row), you 
can go to the lower pane and click on Row Information and Compute to see 
detailed data on the kernel including the execution time (which agrees with the 
timing from NVVP to within a few microseconds).

For now, we’ve achieved the immediate goal of being able to get kernel execution 
timings, so let’s move on to our next practical topic.

Error Handling
The CUDA functions that we use belong to the CUDA Runtime API [2]. CUDA 
Runtime API functions produce a return value of type cudaError_t that can be 
used for error checking [3]. As in the timing discussion, we will need to handle 
things a bit differently depending on whether the function is synchronous or 
asynchronous.

Again, the synchronous case is a bit simpler. Because synchronous functions 
complete before other execution proceeds, whatever errors might occur will 
have occurred before anything else can happen. So in the synchronous case, all 
we need to do is to turn our CUDA function call into an assignment of the func-
tion’s return value to a variable of type cudaError_t. For example, in the app 
dist_v2_cuda we allocated device memory to store the input array as follows:

cudaMalloc(&d_in, len*sizeof(float));

To implement the same operation in a way that alerts us to errors that might 
arise, we make this same statement appear on the right-hand side of an assign-
ment to a cudaError_t variable (here named err). We then use an if state-
ment to check whether err has the value cudaSuccess indicating that no error 
was produced. Otherwise, we use the API function cudaGetErrorString()
to get  the error description in the form of a character string. The code snippet 
below is all we need to call for the memory allocation, check for an error, obtain 
an error description (if one exists), and print it to the screen:

cudaError_t err = cudaMalloc(&d_in, len * sizeof(float));
if (err != cudaSuccess) printf("%s\n", cudaGetErrorString(err));
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If you want to avoid being left completely in the dark when things go wrong, you 
should get in the habit of adding this small amount of code every time you call a 
CUDA function.

Note that if you reuse a variable for your error checking, the type should appear 
in the statement where it is first used—and needs to be declared—but subsequent 
uses involve only assignment and not type declaration. Following the code 
snippet above to allocate memory for d_in with error checking, the allocation of 
memory of d_out with error checking is simply

err = cudaMalloc(&d_out, len * sizeof(float));
if (err != cudaSuccess) printf("%s\n", cudaGetErrorString(err));

If you want to keep things a bit cleaner, you can include a header from CUDA 
Samples, helper_cuda.h, which is found in the common/inc directory of the 
samples, and use the checkCudaErrors() function as a “wrapper” around 
your CUDA functions to print error messages to standard output. Add the line 
#include <helper_cuda.h> at the top of your code and invoke the allocation 
of GPU memory with error checking with

checkCudaErrors(cudaMalloc(&d_in, len * sizeof(float)));

The situation is a bit different for handling errors produced by kernel functions. 
The first difference to note is that the kernel itself has type void; that is, it does 
not return anything and that includes error values, so we will have to obtain errors 
from other function calls. There are also two separate classes of errors to han-
dle: synchronous errors that arise during the kernel launch (e.g., if the kernel 
launch requests amounts of memory or grid sizes that are not available) and 
asynchronous errors that arise later during the kernel execution. We can catch 
the synchronous errors by calling the built-in function cudaGetLastError() 
or cudaPeekAtLastError() immediately after the kernel launch. To catch 
the asynchronous errors, we need to make sure that the kernel execution has 
completed, which we can ensure by calling cudaDeviceSynchronize(). The 
following code snippet illustrates a kernel launch with both synchronous and 
asynchronous error handling:

distanceKernel<<<len/TPB, TPB>>>(d_out, d_in, ref);
cudaError_t errSync = cudaGetLastError();
cudaError_t errAsync = cudaDeviceSynchronize();
if (errSync != cudaSuccess)
  printf("Sync kernel error: %sn", cudaGetErrorString(errSync);
if (errAsync != cudaSuccess)
  printf("Async kernel error: %sn", cudaGetErrorString(errAsync);
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The cleaner version using the helper_cuda.h functions is as follows:

distanceKernel<<<len/TPB, TPB>>>(d_out, d_in, ref);
checkCudaErrors(cudaPeekAtLastError());
checkCudaErrors(cudaDeviceSynchronize());

where the first line is the kernel call, the second line provides information 
about kernel launch errors, and the third line provides information about 
kernel execution errors. It is worth noting that error checking is a huge help 
during development but also incurs some performance penalty, especially the 
cudaDeviceSynchronize() call, which can prevent other progress until 
the kernel finishes running. The desire for both efficient development and com-
putational performance leads many developers to employ error checking during 
development but not to include it in released applications. dist_v2_cuda’s 
kernel.cu with error checking is provided in Listing D.3.

Listing D.3 dist_v2_cuda/kernel.cu modified to handle errors
  1 #include "kernel.h"
  2 #include <helper_cuda.h>
  3 #define TPB 3200
  4
  5 __device__
  6 float distance(float x1, float x2)
  7 {
  8   return sqrt((x2 - x1)*(x2 - x1));
  9 }
 10
 11 __global__
 12 void distanceKernel(float *d_out, float *d_in, float ref)
 13 {
 14   const int i = blockIdx.x*blockDim.x + threadIdx.x;
 15   const float x = d_in[i];
 16   d_out[i] = distance(x, ref);
 17 }
 18
 19 void distanceArray(float *out, float *in, float ref, int len)
 20 {
 21   float *d_in = 0;
 22   float *d_out = 0;
 23   checkCudaErrors(cudaMalloc(&d_in, len*sizeof(float)));
 24   checkCudaErrors(cudaMalloc(&d_out, len*sizeof(float)));
 25
 26   checkCudaErrors(cudaMemcpy(d_in, in, len*sizeof(float),
 27 cudaMemcpyHostToDevice));
 28
 29   distanceKernel<<<len/TPB, TPB>>>(d_out, d_in, ref);
 30   checkCudaErrors(cudaPeekAtLastError());
 31   checkCudaErrors(cudaDeviceSynchronize());
 32
 33   checkCudaErrors(cudaMemcpy(out, d_out, len*sizeof(float), 
 34 cudaMemcpyDeviceToHost));
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 35   checkCudaErrors(cudaFree(d_in));
 36   checkCudaErrors(cudaFree(d_out));
 37 }

Note that since we are including helper_cuda.h, build settings must be 
modified in order to find the header. Listing D.4 shows the Makefile modifica-
tion that needs to be made to build the app with error handling. Visual Studio 
users can refer to the section “Using Visual Studio Property Pages” at the end 
of this appendix for details of how to specify the location of additional include 
directories.

Listing D.4 dist_v2_cuda/Makefile for building the app with error handling
  1 NVCC = /usr/local/cuda/bin/nvcc
  2 NVCC_FLAGS = -g -G -Xcompiler -Wall
  3 INC = -I/usr/local/cuda/samples/common/inc
  4
  5 all: main.exe
  6
  7 main.exe: main.o kernel.o
  8   $(NVCC) $^ -o $@
  9
 10 main.o: main.cpp kernel.h
 11   $(NVCC) $(NVCC_FLAGS) -c $< -o $@
 12
 13 kernel.o: kernel.cu kernel.h
 14   $(NVCC) $(NVCC_FLAGS) $(INC) -c $< -o $@

Now, let’s see an example of error handling by changing #define TPB 32 on 
line 3 to #define TPB 3200 and rebuilding the project. Running it gives the 
error message as follows:

CUDA error at kernel.cu:30 code=9(cudaErrorInvalidConfiguration)

Checking “CUDA Error Types” in the CUDA Runtime API Documentation’s “Data 
types used by CUDA Runtime” section, we see that code 9 has the following 
definition: “This indicates that a kernel launch is requesting resources that 
can never be satisfied by the current device. Requesting more shared memory 
per block than the device supports will trigger this error, as will requesting too 
many threads or blocks.” Thus, we indeed caught the error due to requesting 
too many threads per block (TP B) thanks to our error handling approach.

Finally, let’s get to the error avoidance part. Many errors (some that will produce 
messages and some that will just produce incorrect calculation) can be avoided 
if we take a bit of care that our computational grids are compatible with both 
the problem size and the device capabilities. Typically, we need to deal with a 
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problem with a given size (think array length for now), and we need to accomplish 
the dual goals of determining the number of blocks needed to cover the array 
length and making sure that we do not read or write beyond the end of the array. 
The usual trick to get this done simply and reliably employs some integer division 
and an if statement.

Suppose we want to compute the elements in an array of length N using blocks 
with block size TPB. If N happens to be an integer multiple of TPB, then N/TPB 
produces the requisite number of blocks. However, if N is something other than 
an exact integer multiple of TPB, then one additional block is required to cover 
the end of the array.

It turns out that no conditional test is required at this stage because there is a 
simple integer division that reliably produces the correct number of blocks:

GRIDSIZE = (N + TPB - 1)/TPB

Note, however, that if we use our standard formula to compute the index asso-
ciated with a thread, the last block will contain entries associated with index 
values greater than N-1 (which should be the largest index value in an array of 
length N). This is where the if statement comes into play.

The conditional test if(i < N){ } should be wrapped around the code con-
tained within the kernel definition to make sure that only the desired (and valid) 
entries are computed. An equivalent approach that many people find easier to 
read is to return from the kernel immediately when the test fails:

if(i >= N) return;

Again, we present an example for concreteness. The adjusted definition and 
launch of distanceKernel() become the following:

__global__
void distanceKernel(float *d_out, float *d_in, float ref, int len)
{
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  if(i >= len) return;
  d_out[i] = distance(d_in[i], ref);
}
distanceKernel<<<((len + TPB - 1)/TPB, TPB>>>(d_out, d_in, ref, len);

The issue of ensuring that the launch parameters are valid is a bit more compli-
cated because the limitations (including maximum number of threads in a block) 
are device specific. The viability of the kernel code itself is also device depen-
dent because features like double-precision arithmetic and dynamic parallelism 
depend on the compute capability of the device on which the code is executed. As 
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you develop applications, you get to choose which CUDA features to employ, but 
you are unlikely to get to choose which GPU is installed in the systems belonging 
to other people who may use your code. To deal with this reality, CUDA provides 
the following functions that inspect the installed devices so you can see if they 
meet the needs of your application:

• cudaGetDeviceCount() takes as input the address of an int variable
and returns the number of installed CUDA-capable devices in the given int
variable.

• cudaGetDeviceProperties() takes as input the address of a
 cudaDeviceProp struct and an integer device number and populates the
cudaDeviceProp struct with the properties of the device with the given number.

Listing D.5 below gives a code snippet that illustrates counting CUDA devices 
and querying their properties.

Listing D.5 Snippet for querying select CUDA device properties
  1 #include <stdio.h>
  2
  3 int main() {
  4     int numDevices;
  5     cudaGetDeviceCount(&numDevices);
  6     printf("Number of devices: %d\n", numDevices);
  7     for (int i = 0; i < numDevices; ++i) {
  8 printf("---------------------------\n");
  9 cudaDeviceProp cdp;
 10 cudaGetDeviceProperties(&cdp, i);
 11 printf("Device Number: %d\n", i);
 12 printf("Device name: %s\n", cdp.name);
 13 printf("Compute capability: %d.%d\n", cdp.major, cdp.minor);
 14 printf("Maximum threads/block: %d\n", cdp.maxThreadsPerBlock);
 15 printf("Shared memory/block: %lu bytes\n",   
 16 cdp.sharedMemPerBlock);     
 17 printf("Total global memory: %lu bytes\n", 
 18 cdp.totalGlobalMem);
 19     }
 20 }

You now have the tools necessary to check the hardware limits of the device 
your code will run on so you can make adjustments or issue warnings as desired. 
See the documentation on the CUDA Runtime API for more details on the other 
members of cudaDeviceProp, and look at the code for the deviceQuery 
CUDA Sample for details of how to access the detailed information you may 
need. (If you are on a Windows system, you can also find property information in 
Visual Studio via NSIGHT ⇒ SystemInfo ⇒ CUDA Devices.)
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Debugging in Windows
Here we take a look at the special tools Nsight provides for debugging CUDA 
code. To be concrete, let’s return again to dist_v2_cuda with the immediate 
goal of being able to inspect the values computed within the kernel.

The first thing to note is that Nsight is specifically for CUDA code, so to benefit 
from Nsight’s debugging tools, we need to set a breakpoint in a portion of the 
app involving CUDA code. A kernel function is definitely CUDA code, so let’s start 
by putting a breakpoint (just as we did for regular debugging in Visual Studio) at 
the first line in distanceKernel(). Instead of using the DEBUG menu (or F5), 
go to the NSIGHT menu and select Start CUDA Debugging.

Execution should proceed to the breakpoint at the start of the kernel, and the 
content of the Locals window should resemble that shown in Figure D.8.

We are immediately confronted with the fact that the massive parallelism that 
gives CUDA its computational power also forces us to rethink our approach to 
debugging. Since there are many computational threads all executing together, 
there is a separate set of “local” values for each of the many computational 
threads that are executing in parallel, and it is neither practical nor desirable to 
try to display such a plethora of information for human consumption. What we 

Figure D.8 Locals window when execution hits the breakpoint at the first line of 
distanceKernel()
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see from the Locals window displayed in Figure D.8 is that Nsight displays the 
variables and their values for a single representative thread. In this case, the 
information displayed involves blockIdx 0 and threadIdx 0. Reading down 
the list of variables, we can see the input value, d_in[0], is 0 and that values 
have not yet been computed for the local variable i and the output d_out[0].

Now we can start to step through the execution via menu selection (DEBUG ⇒ 
Step Into) or keyboard shortcut (F11). The updated Locals window, shown 
in Figure D.9, indicates that i (which combines blockIdx, blockDim, and 
 threadIdx in the standard way) has been computed and assigned the value 0, 
so we are inspecting values for the first of 64 threads numbered 0 through 63. 
(Note that @flatThreadIdx, which appears near the top of the Locals window, 
is an alternative shorthand for this quantity.)

Taking another step forward in the execution with F11, you should see the 
cursor jump up to the definition of the device function distance(), which gets 
called in the next line of code. Another F11 step brings us into distance() 
where sqrt() is called, and the step after that should take you to the function 
prototype for sqrt() in math.h. Since debugging the standard math library 
functions is not on our agenda and we want to get back to our own code, we now 
step out of a function rather than stepping into one. This is accomplished via 
menu (DEBUG ⇒ Step Out) or keyboard shortcut (Shift+F11). Your first 

Figure D.9 Locals window after stepping forward to the second line of 
distanceKernel()
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Shift+F11 should get you back into distance(), and a second Shift+F11 
should put the cursor at the last line of distanceKernel() and produce a 
Locals window resembling that shown in Figure D.10.

Now we see that the desired value of 0.5 has been computed and stored in 
d_out[0], but how do we see the information associated with other threads? 
Answers to this question can be found by exploring Nsight’s debugging windows 
(accessible via NSIGHT ⇒ Windows in the menu structure).

• The System Info window (which is the only entry appearing before you
Start CUDA Debugging) does not help with our current task, but is worth
exploring when you want to know details about your system and the devices
installed on it.

• The CUDA Debug Focus window allows us to choose the thread for which
local information is displayed. For example, if you restart CUDA debugging
(DEBUG ⇒ Stop Debugging followed by NSIGHT ⇒ Start CUDA
Debugging), then select NSIGHT ⇒ Windows ⇒ CUDA Debug Focus, a
window will pop-up allowing you to input the block and thread indices for the
thread you wish to inspect. As a concrete example, let’s leave the block index
entry as 0,0,0 and change the thread index entry from 0,0,0 to 1,0,0.
(Recall that our computational grid is one-dimensional, so only the first of
the three numbers in each entry is currently relevant; multidimensional grids
are covered in Chapter 4, “2D Grids and Interactive Graphics,” and Chapter 7,
“Interacting with 3D Data.”) Stepping through the computation, we see that i
gets assigned the value 1 (so we have shifted focus to the second of the 64
threads), but when we expand d_in and d_out, the values displayed are still

Figure D.10 Locals window at the last line of distanceKernel()
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those associated with index 0 instead of those associated with index 1. The prob-
lem is that the Locals window displays values of local variables and d_in and 
d_out are not local variables for any specific thread. (A thread only has access to 
the pointers that get passed as arguments to the kernel, and they provide direct 
access only to the initial element in each array (i.e., d_in[0] and d_out[0]).

A simple approach to overcoming this limitation is to create local variables so 
that each thread has a local copy of relevant data for display. For example, we 
might consider the following revised version of distanceKernel() where 
local variables y and d have been created for the input location and the output 
distance:

__global__ 
void distanceKernel(float *d_in, float *d_out, float ref, int len)
{
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  float y = d_in[i];
  float d = distance(y, ref);
  d_out[i] = d;
  printf("distance = %f\n", d_out[i]);
}

After compiling with the new version of the kernel and starting CUDA debug-
ging, we can change the CUDA focus to any allowable combination of thread and 
block indices and view the input and output values associated with z and d in the 
Locals window. (Note that local variable values may only be visible temporarily 
until the compiler optimizes them into oblivion.) At this point, however, we are still 
taking it on faith that the value computed for d gets stored properly in the d_out 
array. Following the general rule that it is dangerous and counterproductive 
programming practice to have faith in your computer (an extremely literal “crea-
ture”) understanding what you mean to accomplish, we really need to have a way 
to directly inspect and verify the results stored in d_out, so let’s continue down 
the list of windows provided by Nsight in search of such a tool:

• Start a new CUDA debugging session (DEBUG ⇒ Stop Debugging followed
by NSIGHT ⇒ Start CUDA Debugging), then select NSIGHT ⇒ Windows
⇒ CUDA Info to open a window that can provide information about numer-
ous aspects of your computation. For now, let’s just take a quick look at two of
the most relevant options. Select Warps from the drop-down menu, and you
should see two lines corresponding to the thread warps for the blocks with
index 0,0,0 and 1,0,0 as shown in Figure D.11.

At the far right, you should see an array of boxes indicating the computa-
tional lanes (one for each processing unit within a multiprocessor) where the 
threads in each warp get executed. Here the boxes are red to indicate that the 
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threads are at a breakpoint. You should also see a yellow arrow in one of the 
boxes indicating the current CUDA debug focus at threadIdx = {0,0,0} 
and blockIdx = {0,0,0}. You can shift the focus, just as we did using the 
CUDA Debug Focus window, by double-clicking on a box. Figure D.12 shows 
the CUDA Info window after shifting focus to threadIdx = {3,0,0} and 

Figure D.11 CUDA Info window showing warps with focus on threadIdx = {0,0,0} and 
blockIdx = {0,0,0}

Figure D.12 CUDA Info window showing warps with focus on threadIdx = {3,0,0} and 
blockIdx = {1,0,0} after stepping beyond the breakpoint
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blockIdx = {1,0,0} and stepping forward past the breakpoint. You can 
see that the focus arrow has moved, and you can verify in the Locals pane that 
the value of i has the corresponding value:

blockIdx.x * blockDim.x + threadIdx.x = 1*32 + 3 = 35

If you return to the drop-down menu and select Lanes, you should see a 
listing of the 32 threads in the focus warp along with their thread indices and 
activity status. While this will provide useful information for future purposes, 
it does not allow us to inspect the values stored in the d_out array, so let’s 
move on to the next (and last) window offered.

• Select NSIGHT ⇒ Window ⇒ CUDA Warp Watch ⇒ CUDA Warp
Watch 1 to open a window with a column that contains Name and Type
followed by the numbers 0 to 31. If Name and Type strike you as suggestive
of how variables are described in C, then your instincts are good, and if you
enter a variable name in a column to the right of Name, you will be rewarded by
seeing the column fill with the value of that variable for each thread in the
focus warp. If you enter i, d_in[i], and d_out[i], and step to the last line
of distanceKernel(), the CUDA WarpWatch1 window should fill with the
index number, the input value, and the output distance computed for each
thread in the focus warp as shown in Figure D.13.

To view the values for another warp, shift the focus using the CUDA Debug
Focus or CUDA Info window as discussed above. (When you shift to a new
warp, execution will likely have proceeded only to the breakpoint, so you may
need to step through the kernel code again to get to where the output values
have been computed and stored.)

So far we have progressed from viewing local values one thread at a time to 
viewing them one warp at a time. To view an entire array of values in one fell 
swoop, we will directly inspect the memory where the array is stored. Set 
a breakpoint at the last line of the kernel, and start a new CUDA debugging 
session. Select DEBUG ⇒ Windows ⇒ Memory ⇒ Memory 1 (or use the 
keyboard shortcut Alt+6) to open a memory window. In the address box, enter 
d_out,64 and select four columns. The first column gives a hex display of 
memory addresses and should not necessarily convey a lot of meaning. If the 
other columns do not contain recognizable values, right-click on the table and 
select a different display mode, for example, 32-bit Floating Point, and 
you should be able to view the computed distance values ranging from 0.5 down 
to about 0.008 and back up to 0.5, as shown in Figure D.14.



ptg22232966

APPENDIX D CUDA PRACTICALITIES

304

Figure D.13 Warp Watch 1 window at the last line of distanceKernel() 
showing first warp values for d_in[i] and d_out[i]

Figure D.14 Memory 1 window showing all 64 entries in d_out computed by 
distanceKernel() (arranged in 4 columns)
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At this point, we have achieved our goal of being able to inspect values of vari-
ables, whether local to a thread or stored in an array, at various points during 
the execution of CUDA code. For further information and alternative examples, 
refer to “Using the CUDA Debugger” in the “Nsight Visual Studio Edition” [4].

Debugging in Linux
For Linux, NVIDIA Nsight Eclipse Edition provides a GUI front-end experience. 
However, in this section, we will use the non-GUI option, cuda-gdb, which is also 
the underlying debugger in Nsight Eclipse Edition. cuda-gdb is an extended 
version of gdb (GNU Debugger) and has all the gdb functionality plus the ability 
to debug the CUDA code on the device.

CUDA-GDB on OS X
As of CUDA 7.0, CUDA-GDB is deprecated on OS X. Thus, for Mac users, remote 
debugging on Linux may be a viable option.

In contrast to profiling, when debugging is the goal, the program must be com-
piled with debug information generated. To achieve this, the flags -g and -G must 
both be passed to the compiler in the compilation command. Also, as of today, 
single-GPU CUDA debugging is still a little bit problematic for Linux. On Linux, 
if your NVIDIA GPU has CUDA compatibility 3.5 or above, there is a beta feature 
available for debugging without any additional steps. If your GPU has CUDA 
compute capability less than 3.5, you can still do single-GPU debugging, but you 
need to turn off desktop manager and debug in console mode.

Now, go ahead and build the dist_v2_cuda app with printf() removed from 
the kernel (note that it must be built with the flags -g and -G). Once the app is 
built, load the executable to cuda-gdb with cuda-gdb main.exe. If you are 
debugging with desktop manager running (with a card of CUDA compute capa-
bility of at least 3.5), enter set cuda software_preemption on to make 
sure that the debugging on single GPU with GUI feature is turned on. Figure D.15 
shows this step.

Put a breakpoint at the first line of distanceKernel() in kernel.cu with 
break kernel.cu:14 and another breakpoint at the end of main.cpp with 
break main.cpp:26, and run the program with the run command as shown 
in Figure D.16.
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Figure D.15 cuda-gdb’s software_preemption option must be turned on 
before debugging.

Figure D.16 Setting breakpoints and debugging the app



ptg22232966

DEBUGGING IN LINUX

307

Once the program pauses at line 14 of kernel.cu, the current focus and thread 
are shown along with the kernel launch parameters. Currently our index vari-
able is not set. When you execute the current line with next, print i outputs 
0, since we are in the first thread. You can see the information about current 
focus with the command cuda kernel block thread, or you can check the 
CUDA variables with print threadIdx and print blockIdx. Let’s focus 
on another thread in the same block with cuda thread 5,0,0. Now, if you 
print i, it will show 5, which is the correct value for the sixth thread. Let’s 
switch focus again to another thread in another block with cuda block 1,0,0 
thread 30,0,0. Now, since the focus is on another block, we will see line num-
ber 14 again after the switching focus prompt. Execute it with next, and check 
the index value with print i. The result is 62, since we are on block 1 and 
thread 30 (32 × 1 + 30). Figure D.17 shows focusing on different threads.

Now, let’s move to the next breakpoint, which is outside the kernel with con-
tinue. We are now in the main(). Type info locals to see the variables in 
this context. We have pointers to two host arrays, in and out. Let’s see the con-
tents of out by typing print out[0]@64. Values starting from 0.5 and ending 
at 0.5 should verify that the kernel did its job correctly. Now that the interesting 
part of the program is completed, let the program finish and exit successfully 
with continue. Figure D.18 shows these final steps.

Figure D.17 Focusing on different threads and stepping
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Note that running the program successfully does not erase breakpoints auto-
matically. Check the breakpoints set currently with info breakpoints, and 
delete the ones that are no longer necessary with delete breakpoint n, 
where n is the breakpoint number to be deleted, or delete all breakpoints at 
once with delete breakpoints.

In addition to the gdb/cuda-gdb commands/functionality demonstrated above, 
information is available about other features of gdb/cuda-gdb [5,6].

CUDA-MEMC HECK
The final CUDA tool we want to talk about is CUDA-MEMCHECK. CUDA-MEMCHECK 
is a very lightweight runtime error detector tool available on all platforms. It is 
used mainly to detect memory leaks, memory access errors, and hardware errors. 
Simply open a command prompt, change to the directory where the executable 
is stored, and enter cuda-memcheck followed by the name of the  executable 
file (e.g., cuda-memcheck main.exe under Linux or cuda-memcheck 

Figure D.18 Continuing to the breakpoint in main.cpp and checking the final 
values. Note how the dynamic array values can be printed using the operators 
[] and @ on the pointer.
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dist_v2_cuda.exe in Visual Studio). The app will then run and report on 
the presence of memory access errors. If no errors are detected, your output 
will conclude with ERROR SUMMARY: 0 errors. For more information about 
CUDA-MEMCHECK, see the online documentation [7].

Using Visual Studio Property Pages
Visual Studio projects have associated Property Pages that provide a mecha-
nism for specifying a wide variety of options for compiling and building apps. 
We will avoid getting into all the possible details and focus on two issues that are 
directly relevant for our CUDA development purposes. For apps that employ code 
libraries (e.g., the flashlight app from Chapter 4, “2D Grids and Interactive 
Graphics,” which uses OpenGL libraries), it may be necessary to tell the system 
where to find the necessary header files (to be included during compilation) and 
object files (to be linked in as part of the executable). These two operations are 
accomplished by similar methods:

1. Right-click on the project name in the Solution Explorer pane and click
on Properties at the bottom of the pop-up menu (or select Alt+F7).

2. Select Configuration Properties ⇒ C/C++ ⇒ Additional
Include Directories so that the properties page resembles Figure D.19.

3. Click on the ∨ icon that appears at the right side.

Figure D.19 Property Pages showing location of Additional Include Directories
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4. Click on <Edit…> that appears below to open the Additional Include
Directories dialog, as shown in Figure D.20.

5. Double-click in the blue bar, enter the path where the necessary header files
are located, and click OK.

6. Select Configuration Properties ⇒ Linker ⇒ Additional
Library Directories so that the properties page resembles Figure D.21.

7. Click on the ∨ icon that appears at the right side.

8. Click on <Edit…> that appears below to open the Additional Library
Directories dialog as shown in Figure D.22.

9. Double-click in the blue bar, enter the path where the necessary header files
are located, and click OK.

10. To link library files, select Linker ⇒ Input ⇒ Additional Dependencies
⇒ Edit, and add the libraries to the list as shown in Figure 8.3.

11. In the property page, Apply the change and hit OK.

Figure D.20 Additional Include Directories dialog ready for entry of 
new directory path
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Figure D.21 Property Pages showing location of Additional Library 
Directories

Figure D.22 Additional Library Directories dialog ready for entry of 
new directory path
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Symbols
/ (slash), syntax of C language, 248
_ (underscore), variable names and, 249
# (number or hash sign), syntax of C language, 247
() (parentheses), syntax of C language, 247
* (asterisk)

as dereference operator, 273
syntax of C language, 248

[ ] (brackets), syntax of C language, 247
{ } (braces), syntax of C language, 247
<<, >> (double angle brackets or chevrons), bit 

shift operators, 186
<<<, >>> (triple angle brackets or chevrons), in 

syntax for parallel computation, 28

Numbers
1D grids, computing derivatives on, 81–82
1DoF, 66
2D data

locating centroid of state map. See 
centroid_2d app

solving Laplace’s equation in 2D (heat_2d), 
88–92

2D grids
defining 2D kernel, 52–53
dist_2d app, 53–56
launching, 50–51
moving to 3D grids, 144
overview of, 49
syntax for 2D kernel launch, 51

3D data
creating vis_3d app, 156
generating relocatable device code, 167–170
launching 3D computational grids, 144–145
listing for dist_3d/kernel.cu, 145
listing for vis_3d/device_funcs.cu, 164–167

listing for vis_3d/device_funcs.cuh, 164
listing for vis_3d/interactions.h, 

159–161
listing for vis_3d/kernel.cu, 162–163
listing for vis_3d/kernel.h, 161
listing for vis_3d/main.cpp, 157–259
listing for vis_3d/Makefile, 168–169
overview of, 141–143
raycasting, 154–156
slice visualization of, 149–153
viewing and interacting with, 146–149
volume rendering, 153

3D grids
launching computational grids, 144–145
steps in, 142
uses of, 141

5-point stencil, 91

A
AABBs (axis-aligned bounding boxes), in ray-box 

intersection testing, 149
About CUDA, CUDA resources, 211
About This Mac, checking for NVIDIA GPU, 

222–223
Acceleration, estimating, 17–19
Actions/activities, Nsight Visual Studio profiling, 

289–290
Algebra, using cuSolver and cuBLAS, 201–207
ALU (Arithmetic logic unit), in CUDA model for 

parallelization, 26
Angle brackets or chevrons

bit shift operators, 186
in syntax for parallel computation, 28

APIs. See Application programming interfaces 
(APIs)

Apple computers. See Mac OS X systems

Index
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Application programming interfaces (APIs)
creating CUDA apps, 25
functions of CUDA Runtime API, 30, 292
passing Thrust device vector as argument to 

CUDA API function or kernel, 189–190
standard graphics, 49

Apps. See also by individual types
building in C programming, 251
building in Linux, 258–262
building in Windows, 252–258
estimating acceleration, 17–19
running, 13
running serial, 19–22
running under Linux systems, 17
running under Windows systems, 14–17
use in book structure, 4

Arguments
passing by value in C, 246
passing CUDA device array as argument to 

Thrust function, 189–190
passing Thrust device vector as argument to 

CUDA API function or kernel, 190
typed arguments, 250

Arithmetic logic unit (ALU), in CUDA model for 
parallelization, 26

Arithmetic operations
compound or augmented assignment, 250
in syntax of C language, 248
variable names and, 249

ArrayFire library, 207
Arrays

coefficient array. See Stencils
comparing serial and parallel computing, 25
costs and benefits of standard workflow, 42
declarations, 262–263
parallelizing dist_v2, 38–42
passing CUDA device array as argument to 

Thrust function, 189–190
producing 2D array of distances from 

reference point, 53–56
reduction, 121
running serial apps, 19–22
shared. See Shared arrays
unified memory and managed arrays, 43–47
using Thrust functions with, 178

Assignments
array declarations and, 263

in C programming, 248–250
compound or augmented, 250

Asterisk (*)
as dereference operator, 273
syntax of C language, 248

Asynchronous operations, execution timing and, 
282

Atomic functions
available in CUDA, 129
dealing with race conditions, 128–129
specifying value of ATOMIC set, 124
use in centroid_2d app, 130

Axis-aligned bounding boxes (AABBs), in ray-box 
intersection testing, 149

B
Basic Linear Algebra Subprograms (BLAS), 201
Bit shift operators (<<, >>), 186
BLAS (Basic Linear Algebra Subprograms), 201
blockDim, 29
blockIdx, 29
Blocks

about, 26
in 3D computational grid, 146
choosing execution configuration, 37
execution configuration for parallelizing 

dist_v2, 41
execution configuration of kernel launch, 28
launching kernel and, 27
organizing threads by, 26
sharing information between, 79
syntax for 2D kernel launch, 51

Books, CUDA resources, 214–218
Bottlenecks, thread, 79
Bounding boxes, terminating loops, 155
Bounds checking, in 3D computational grid, 146
Braces ({ }), syntax of C language, 247
Brackets ([ ]), syntax of C language, 247
break statements, types of control statements 

in C, 267
Breakpoints

setting for debugging, 306–308
setting when building apps, 256

Buffering
double buffering for efficiency of graphics 

applications, 60
pixel buffers, 61
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Builds
building apps in Linux, 258–262
building apps in Windows, 252–258
files in build process, 259–260

C
C programming

array declarations, 262–263
basics, 246–248
building apps (create, compile, run, debug), 

251
building apps in Linux, 258–262
building apps in Windows, 252–258
characterizations of, 245–246
control statements, 263, 267
data types, declarations, and assignments, 

248–250
defining functions, 250–251
dist_v1 sample, 267–270
dist_v2 sample, 271–275
dist_v2 sample with dynamic memory, 

275–277
foundations for working with CUDA, 3
if statements, 265–266
invoking NVIDIA C Compiler, 37
for loops, 264–265
pointer arithmetic, 273
samples, 267
syntax, 247

C++
benefits of unified memory, 44
CImg toolkit for, 102–103
CUDA development environment based on, 1
lambda functions, 183
syntax, 176
templates, 175

Cache, requirements for minimizing latency, 27
Callback functions

defined by interactions.h file, 57
keyboard and mouse, 95
vis_3d app, 159–161

calloc, creating host array out, 146
Case sensitivity

in C language, 249
capitalization of variable names, 52

Central processing units (CPUs), GPUs compared 
with, 26–27

centroid_2d app
centroid_2d/kernel.cu with Thrust, 

188–189
computing integral properties, 130–131
listing for centroid_2d/kernel.cu, 131–133
listing for centroid_2d/kernel.h, 135
listing for centroid_2d/main.cpp, 135–136
listing for centroid_2d/Makefile, 136
output image with axes locating centroid, 

136–137
Chevrons or angle brackets

bit shift operators, 186
in syntax for parallel computation, 28

CImg toolkit
for C++, 102–104
importing/exporting data from image files, 174

clip(), utility functions of heat2d app, 96
clock(), timing methods in C, 280
Code

code libraries, 122
generating relocatable device code, 167–170
libraries. See Libraries
placing Thrust code in .cu file, 177
used in book, 8–9

Color, image processing using NPP, 198–199
Command-line interface

checking for NVIDIA GPU in Linux, 223
console window, 15–17

Compilation, splitting kernel code into multiple 
files requiring separate compilation, 
167–170

Compiled languages, C as, 245
Compiler

invoking from IDE, 245
invoking NVIDIA C Compiler, 37

Computational grids
2D. See 2D grids
3D. See 3D grids

Compute capability, 223–224
Computed tomography (CT), uses of 3D data 

grids, 141
Computer graphics, impact on surface 

appearance, 156
Computing integral properties, 130–131. See also 

centroid_2d app
Console window, accessing command-line 

interface, 15–17
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Containers, in C++ standard library, 175–176
continue statements, types of control 

statements in C, 267
Control panel, checking for NVIDIA GPU in 

Windows, 221–222
Control statements, in C

if statements, 265–266
for loops, 264–265
other options, 267
overview of, 263

Conventions, used in book, 8
CPUs (central processing units), GPUs compared 

with, 26–27
CT (computed tomography), uses of 3D data 

grids, 141
.cu file, placing Thrust code in, 177
cuBLAS library, for linear algebra, 201–207
CUDA Deep Neural Network (CuDNN) library, 207
CUDA ecosystem

books, 214–218
CUDA languages and libraries, 217
CUDA samples, 217
CUDA Zone website, 211–212
online courses, 213–214
primary web sources, 212–213

CUDA events, 282–284
CUDA Random Number Generation (CuRAND) 

library, 190–192
CUDA Runtime API, 292
CUDA Toolkit

about, 1
install under Linux, 240
install under OS X, 239
install under Windows, 230

cudaDeviceSynchronize(), 30
cudaFree(), 30
cuda-gdb commands

for debugging, 258, 261
debugging Linux systems, 305–308

cudaMalloc(), allocating device memory, 36
cudaMallocManaged(), allocating memory for 

managed arrays, 44
CUDA-MEMCHECK tool, error handling with, 

308–309
cudaMemcpy(), transferring data between host 

and device, 44
cuDNN (CUDA Deep Neural Network) library, 207

cuRAND (CUDA Random Number Generation) 
library, 190–192

cuSolver library, for linear algebra, 201–207

D
Data types

C programming, 248–250
CUDA supported, 30
for images, 53
typed arguments and, 250

dd_1d_global app
computing derivatives on 1D grid, 81–82
implementing, 82
listing for dd_1d_global/kernel.cu, 83
listing for dd_1d_global/kernel.h, 84
listing for dd_1d_global/main.cpp, 82–83
listing for dd_1d_global/Makefile, 84

dd_1d_shared app, implementing, 85–88
Debugging. See also Error handling; Profiling

building apps in Windows and, 254–258
cuSolver and cuBLAS in, 207
Debug execution in Visual Studio, 270
limitations of Visual Studio or gdb, 38
in Linux systems, 305–308
viewing thrust vectors in debugger, 190
in Windows systems, 298–304

Declarations
array, 262–263
C programming, 248–250

“Deep copy” issues, benefits of unified memory 
for, 44

Deep Neural Networks, 207
#define

specifying input value of function call, 52
specifying value of ATOMIC set, 124

Degrees of freedom (DOF)
1DOF in stability app, 66–67
velocity of 1DOF ocscillators, 70

Densities, of 3D data values, 147
Depth, of stack, 144
Dereference operator (*), 273
Derivatives. See also dd_1d_global app

computing derivatives of a function, 80
computing on 1D grid, 81–82
implementing dd_1d_global app, 82–85
implementing dd_1d_shared app, 85–86
solving Laplace’s equation in 2D, 88–92
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Desktop computers, upgrading computing 
capability of GPU, 226–228

__device__ qualifier, function qualifiers, 29, 45
Device

about, 26
generating relocatable device code, 167–170
lambda, 183
passing CUDA device array as argument to 

Thrust function, 189–190
requirements for changing from serial to 

parallel computing, 25–26
transferring data between host and device, 44
volumetric medical scanners, 141

Devices, 3D data app
listing for vis_3d/device_funcs.cu, 164–167
listing for vis_3d/device_funcs.cuh, 164

Difference operator, finite
computing derivatives of a function, 80
computing derivatives on 1D grid, 81–82

Differential equations, 66–67
Differential equations, equilibrium temperature 

distribution, 88–92
Digital image processing, uses of 2D grids, 50
Digital light projection (DLP), uses of 3D data 

grids, 142
dim3 variable, CUDA supported vector types, 30
Dimension variables, kernel qualifiers, 29
Direct numerical simulation (DNS), in fluid 

dynamics, 141
Direct3D graphics APIs, 49
dist_1d app

computing distances, 180
for experimental lambda feature compatibility, 

183–184
listing for dist_1d_thrust/kernel.cu, 

180, 184–185
listing for dist_1d_thrust/kernel.cu 

with device lambda expressions, 183
listing for dist_1d_thrust/Makefile, 183

dist_2d app
computing distances on 2D grid, 54
parallel computation of image data based on 

distance from reference point in 2D grid, 
55–56

producing 2D array of distances from 
reference point, 53–54

dist_3d app, parallel computation of 3D grid of 
distances from reference point, 145

dist_v1 app
applying for loop, 19–20
C programming sample, 267–270
executing dist_v1_cuda, 37–38
listing for dist_v1/main.cpp, 267–268
parallelizing, 33–37

dist_v1_cuda app
executing, 37–38
parallelizing dist_v1, 33–37

dist_v2 app
C programming sample, 271–275
creating array of input points, 19
dist_v2_cuda/Makefile for building app 

with error handling, 295
files in, 20–22
listing for dist_v1/main.cpp with dynamic 

memory management, 276
listing for dist_v2/aux_functions.cpp, 

273
listing for dist_v2/aux_functions.h, 272
listing for dist_v2/main.cpp, 271
listing for dist_v2/Makefile, 274
listing for dist_v2_cuda/kernel.cu for 

CPU timing, 280–281
listing for dist_v2_cuda/kernel.cu 

modified for memory transfer, 283–284
modifying for error handling, 294–295
parallelizing, 38–42
sample with dynamic memory, 275–277

distanceArray() function
comparing serial and parallel computing, 25
parallelizing dist_v2, 41, 44
running serial apps, 19–22

Distances
2D array of distances from a reference point. 

See dist_2d app
3D grid of distances from a reference point, 145
computing image distance using NPP, 199–200
computing using Thrust library, 180–185
interactive display of an image based on 

distance to a reference point. See 
flashlight app

parallel distance app. See dist_v2 app
serial distance app. See dist_v1 app
signed distance functions, 155

divUp()
utility function used with 2D grid, 96
utility function used with 3D grid, 144
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DLP (digital light projection), uses of 3D data 
grids, 142

DNS (direct numerical simulation), in fluid 
dynamics, 141

do statements, types of control statements in C, 
267

Documentation, 212. See also CUDA ecosystem
DOF (degrees of freedom)

1DOF in stability app, 66–67
velocity of 1DOF ocscillators, 70

Dot product
computing norms with Thrust built-in 

functions, 176–180
parallelizing computation of. See 

parallel_dot app
dotKernel(), dot product kernel, 124
dotLauncher(), dot product wrapper function, 

124
Double buffering, for efficiency of graphics 

applications, 60
Downloads, CUDA resources, 212
Dynamic memory, in serial distance app, 276

E
Ecosystem. See CUDA ecosystem
Education & Training, CUDA resources, 212–214
Element-wise operations, ease of parallelization, 

122
else clause, using with if statements, 266
Embarrassingly parallel, threads with no 

interactions between, 122
Engineers, value of CUDA for, 3
Equilibrium. See also heat_2d app

adding stability app to flashlight app, 
67–68

solving Laplace’s equation in 2D, 88–92
Error handling. See also Debugging; Profiling

building distance app with error handling, 295
with CUDA-MEMCHECK tool, 308–309
cuSolver and cuBLAS for, 207
modifying dist_v2_cuda/kernel.cu for, 

294–295
overview of, 292–294

Errors, profiling to test for, 112–117
Events, CUDA events, 282–284
Executables, locating in bin folder, 14–15
Execution configuration

choosing for best performance, 37
of kernel launch, 28

for parallelizing dist_v2, 41
specifying computational stream number, 87

Execution timing
CUDA events and, 282–284
overview of, 279–280
standard methods in C, 280–282

F
Factorization, solving with cuSolver, 202–203
Files

in build process, 259–260
in dist_v2 app, 20–22
in flashlight app, 57
importing/exporting data from image files, 174
library files, 66
makefiles. See Makefiles

Filtering, 79. See also Stencils
Finite difference operator

computing derivatives of a function, 80
computing derivatives on 1D grid, 81–82

flashlight app
adding stability visualizer to. See stability 

app
explanation of functionality of flashlight/

interactions.h, 64–65
explanation of functionality of flashlight/

main.cpp, 60–61
files in, 57
interactive display of an image based on 

distance to a reference point, 57
listing for flashlight/interactions.h, 

63–64
listing for flashlight/kernel.cu, 62
listing for flashlight/kernel.h, 63
listing for flashlight/main.cpp, 58–60
listing for flashlight/Makefile, 65–66
as template, 58, 66

flatten(), utility functions of heat2d app, 97
Floating point operations per second (FLOPS), 1
Floating-point numbers, associative nature of 

floating-point addition in reduction, 130
Floating-point units (FPUs), in CUDA model for 

parallelization, 26
FLOPS (floating point operations per second), 1
for loops

control statements in C, 264–265
in dist_v1 app, 19–20
scale() qualifier, 45
syntax of, 264
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FPUs (floating-point units), in CUDA model for 
parallelization, 26

Function calls
kernel launch similar to, 28
specifying input value of, 52

Function objects (functor), in Thrust 
transform(), 182

Function qualifiers, 28
Functions

of CUDA Runtime API, 30
defining in C programming, 250–251
overloading, 175
parallel functions in NPP, 193
passing CUDA device array as argument to 

Thrust function, 189–190
syntax, 250–251
type qualifiers, 28

Functor (function objects), in Thrust 
transform(), 182

Fusion, 184

G
gdb

cuda-gdb commands, 258, 261, 305–308
limitations of debugging tools, 38

GeForce, CUDA-enabled GPUs, 223
General purpose GPU (GPGPU), advantages of 

parallelism and, 25
generate(), estimating Pi using built-in Thrust 

functionality, 185–189
Getting Started, CUDA resources, 212
GLEW (OpenGl Extension Wrangler), 66
Global index, referencing global memory, 85
Global memory

allocating arrays in device memory, 80–81
implementing dd_1d_global app, 82–85
profiling, 113
slow access speed of, 81
transferring data to shared memory, 87

__global__ qualifier
defining 2D kernel, 52
kernel qualifiers, 28

GLUT. See OpenGL Utility Toolkit (GLUT)
gmake, building apps in Linux, 258
goto statements, types of control statements in 

C, 267
GPGPU (General Purpose GPU), advantages of 

parallelism and, 25

Graphical processing units (GPUs)
checking for NVIDIA GPU in Linux, 223
checking for NVIDIA GPU in OS X, 222–223
checking for NVIDIA GPU in Windows, 

221–222
CPUs compared with, 26–27
CUDA-enabled parallel processing, 1–2
determining computing capability of, 223–225
Kepler GPUs, 133–134
memory areas of, 81
upgrading computing capability of, 225–228

Graphics, impact on surface appearance, 156
Graphics interoperability

adding stability app to flashlight app, 
66–69

explanation of functionality of flashlight/
interactions.h, 64–65

explanation of functionality of flashlight/
main.cpp, 60–61

explanation of functionality of stability/
interactions.h, 72–73

explanation of functionality of stability/
kernel.cu, 70–71

files in flashlight app sample, 57
listing for flashlight/interactions.h, 

63–64
listing for flashlight/kernel.cu, 62
listing for flashlight/kernel.h, 63
listing for flashlight/main.cpp, 58–60
listing for flashlight/Makefile, 65–66
listing for stability/interactions.h, 

71–72
listing for stability/kernel.cu, 69–70
OpenGL graphic package for, 56–57
running the stability visualizer app, 73–76
using flashlight app as template, 58, 66

gridDim, 29
Grids

2D. See 2D grids
3D. See 3D grids
choosing execution configuration, 37
computational grid in kernel launch, 27
computing derivatives on 1D grid, 81–82
converting loops to. See Loops, converting to 

grids
execution configuration for parallelizing 

dist_v2, 41
execution configuration of kernel launch, 28
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H
Halo cells

obtaining and storing values of, 87–88
use with shared array, 85

Hardware requirements, for changing from 
serial to parallel computing, 25–26

Hardware setup
checking for NVIDIA GPU in Linux, 223
checking for NVIDIA GPU in OS X, 222–223
checking for NVIDIA GPU in Windows, 221–222
determining computing capability of GPU, 

223–225
upgrading computing capability of GPU, 

225–228
Harris, Mark, 133
heat_2d app

listing for heat_2d/interactions.h, 95–96
listing for heat_2d/kernel.h, 94
listing for heat_2d/main.cpp, 92–94
solving for equilibrium temperature 

distribution in region with specified 
temperature, 88–89

solving Laplace’s equation in 2D, 89–92
Header guard. See Include guard
Heterogeneous Parallel Programming, online 

courses, 213–214
__host__ qualifier, function qualifiers, 28
Host

about, 26
transferring data between host and device, 44

I
IDE (Integrated Development Environment), 

invoking compiler from, 245
idxclip(), utility functions of heat2d app, 97
if statements

control statements in C, 265–266
syntax of, 265

Image files, importing/exporting data from, 174
Images

data types, 53
processing using NPP, 193, 198–201
sharpening image edges. See sharpen app
sharpening image edges using NPP. See 

sharpen_npp app
Include guard, 272
Index/indices

for 2D grids, 50–51

for 3D grids, 144
array declarations, 263
comparing serial and parallel computing, 38
in computational grids, 36, 41
global and local, 85
index variables of kernel, 29
for serial loops, 25–27

Inner products, applications of reduction. See 
parallel_dot app

inner_product(), Thrust built-in functions, 
176–180

int type, 41
Integer arithmetic, in execution configuration for 

parallelizing dist_v2, 41
Integral properties, computing, 130–131. See also 

centroid_2d app
Integrated Development Environment (IDE), 

invoking compiler from, 245
Intensities, of pixel values (2D array), 147
Interactions, flashlight app

editing callback functions, 58
explanation of functionality of flashlight/

interactions.h, 64–65
files in flashlight app, 57
listing for flashlight/interactions.h, 

63–64
Interactions, heat_2d app, 95–96
Interactions, stability app

explanation of functionality of stability/
interactions.h, 72–73

listing for stability/interactions.h, 
71–72

Interactions, visualization app
listing for vis_3d/interactions.h, 

159–161
viewing and interacting with 3D data, 146–149

Interactive graphics. See Graphics 
interoperability

Interop. See Graphics interoperability
Interpreted languages, compared with compiled, 

246
Introductory section

benefits of CUDA for engineers, 3–4
book structure, 4–6
chapter dependencies, 7
code used, 8–9
conventions used, 8
historical context, 10–12
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need-to-know GPU-based parallel computing, 
2–3

references, 10–12
user’s guide, 9–10
what is CUDA, 1–2

Iterators, C++ style, 176

J
Jacobi iteration

occuring between screen updates, 97
reduction and, 122
solving Laplace’s equation and, 91

K
Kepler GPUs, 133–134
Kernel

capabilities and limits, 29
costs and benefits of standard workflow, 43
distanceKernel() qualifier, 45
launching, 28
mandatory return type is void, 36
passing Thrust device vector as argument to 

CUDA API function or kernel, 189–190
requirements for SIMT implement of 

parallelization, 27
splitting kernel code into multiple files, 

167–170
stencil functions, 97–98

Kernel, 1D distance app
listing for dist_1d_thrust/kernel.cu, 

180, 184
listing for dist_1d_thrust/kernel.cu 

with device lambda expressions, 183
Kernel, 2D distance app

defining 2D kernel, 52–53
syntax for 2D kernel launch, 51

Kernel, 3D visualization app
listing for vis_3d/kernel.cu, 162–163
listing for vis_3d/kernel.h, 161

Kernel, computing derivative on 1D grid
kernel.cu, 83
kernel.h, 84

Kernel, computing integral properties
listing for centroid_2d/kernel.cu, 

131–133
listing for parallel_dot/kernel.h, 135

Kernel, graphics interop app
files in flashlight app, 57

listing for flashlight/kernel.cu, 62
listing for flashlight/kernel.h, 63

Kernel, launch parameters. See Execution 
configuration

Kernel, parallel dot product app
listing for parallel_dot/kernel.cu, 

124–125
listing for parallel_dot/kernel.h, 125

Kernel, sharpen app
listing for sharpen/kernel.cu with global 

memory implementation, 105–107
listing for sharpen/kernel.cu with input 

and output shared memory arrays, 
109–112

listing for sharpen/kernel.cu with shared 
memory implementation, 107–109

listing for sharpen/kernel.h, 104
Kernel, stability app

explanation of functionality of stability/
kernel.cu, 70–71

listing for stability/kernel.cu, 69–70
Kernel, temperature distribution app

kernel functions, 97
listing for heat_2d/kernel.cu, 98–100
listing for heat_2d/kernel.h, 94

kernelLauncher(), wrapper or launcher 
functions of heat2d app, 97

Keyboards
callback function, 95
callback functions in vis_3d app, 159–161
interactions in flashlight app, 60
interactions in stability app, 70

Keywords, in C language, 249

L
Lambda expressions, passing functions and, 

183–184
Lamberian radiance model, matte appearance 

and, 155
Languages. See also C programming

compiled, 245
CUDA ecosystem, 217
Interpreted, 246

Laplace’s equation, solving in 2D (heat_2d), 
88–92

Laser Doppler velocimetry (LDV), uses of 3D data 
grids, 141

Latency, comparing CPUs with GPUs, 27
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Launcher function. See Wrapper functions
LDV (Laser Doppler Velocimetry), uses of 3D data 

grids, 141
Least-squares problems, solving with cuSolver, 

202
Libraries

ArrayFire, 207
computing distances using built-in Thrust 

functionality, 180–185
computing norms using built-in Thrust 

functionality, 176–180
CUDA ecosystem, 217
cuDNN, 207
cuRAND (CUDA Random Number Generation), 

190–192
cuSolver and cuBLAS, 201–207
customization vs. off-the-shelf approach, 

173–175
documentation of Thrust library, 175–176
estimating Pi using built-in Thrust 

functionality, 185–189
image processing using NPP, 198–201
linking library files, 193–194
navigating NPP documentation, 197–198
NVIDIA Performance Primitives (NPP), 193
passing CUDA device array as argument to 

Thrust function, 189–190
passing Thrust device vector as argument to 

CUDA API function or kernel, 190
reduction and, 122
Windows system requirements for 

flashlight app, 66
Linear Algebra Package (LAPACK), 201–202
Linear algebra, using cuSolver and cuBLAS, 

201–207
Linear oscillator. See Oscillators
Linear regression, solving with cuSolver, 

203–206
Linking. See Libraries, linking library files
Linux software setup

initial test run, 242
installing CUDA samples to user directory, 

241–242
installing CUDA toolkit, 240–241
overview of, 240
preparing for CUDA installation, 240

Linux systems
building apps using C, 258–262

checking for NVIDIA GPU in Linux, 223
converting dist_v1 to executable app, 269
debugging in, 305–308
invoking NVIDIA C Compiler, 37
running CUDA samples under, 17
viewing values in managed arrays, 46

Local index, of items in shared array, 85
Locals pane, 256
Locals window. See Locals pane
Loops

for loops. See for loops
termination by exiting bounding box, 155
while loops, 155, 267

Loops, converting to grids
executing dist_v1_cuda, 37–38
overview of, 33
parallelizing dist_v1, 33–37
simplified workflow, 43–47
standard workflow, 42–43

M
Mac. See OS X
main()

building apps and, 251
in heat_2d app, 91

main.cpp
dd_1d_global app, 82–83
explanation of functionality of flashlight/

main.cpp, 60–61
files in flashlight app, 57
listing for dist_v1/main.cpp, 267–268
listing for dist_v2/main.cpp, 271
listing for flashlight/main.cpp, 58–60
listing for heat_2d/main.cpp, 92–94
listing for parallel_dot/main.cpp, 126, 

135–136
listing for sharpen_npp/main.cpp, 

194–195
listing for sharpen/main.cpp, 103–104
listing for vis_3d/main.cpp, 157–259

make. See gmake
Makefiles

building Linux apps with, 37
for compile/link process, 259–260
for dd_1d_global, 84
for dist_1d_thrust, 183
for dist_v1, 19–20
for dist_v1_cuda, 37



ptg22232966

INDEX

323

for dist_v2, 22
for dist_v2_cuda, 39, 42
for flashlight, 65–66
for heat_2d, 100–102
for parallel_dot, 126–127, 136
for sharpen, 105
for sharpen_npp, 194
for stability, 73
for thrustpi, 192

malloc(), allocating host memory, 36
Managed arrays

allocating memory for, 44
unified memory and, 43–47

Mathematics, foundations for working with 
CUDA, 3–4

Matlab, ArrayFire and, 207
Matrices

reduction and, 122
solving linear algebra problems with 

cuSolver, 203
Memory

developments in memory access, 29
dynamic memory management, 276
kernel access to device memory not host 

memory, 36
memory allocation in array declarations, 262
“nearer is faster” principle in data storage, 

80–81
overhead of parallelizing, 42
shared memory. See Shared memory
unified memory and managed arrays, 43–47

Monte Carlo estimation, of Pi, 185–189
Mouse

callback function, 95
specifying interactions for flashlight app, 

60

N
Namespaces, in resolution of naming conflicts, 

176
Naming conventions, variables, 52
nbody sample

estimating acceleration, 17–18
running under Linux systems, 17
running under Windows systems, 14–17

“Nearer is faster” principle in data storage, 
80–81

Neural networks, 207

Norms, computing using functions in Thrust 
library, 176–180

Notation, C++, 176
Notebook computers, upgrading computing 

capability of GPU, 225–226
NPP (NVIDIA Performance Primitives) library

image processing using, 198–201
linking to NPP files, 193–197
navigating NPP documentation, 197–198
overview of, 193

Nsight
debugging Linux systems, 305–308
debugging Windows systems, 298–304
profiling with Nsight Visual Studio, 288–292
requirements for running CUDA samples 

under Windows systems, 14
Number or hash sign (#), syntax of C language, 

247
nvcc

building apps in Linux, 258
handling uchar4 variables, 94
invoking NVIDIA C Compiler, 37

NVIDIA
checking for NVIDIA GPU in Linux, 223
checking for NVIDIA GPU in OS X, 222–223
checking for NVIDIA GPU in Windows, 221–222
debugging Linux systems, 305–308
debugging Windows systems, 298–304
DIGITS, 207
invoking NVIDIA C Compiler, 37

NVIDIA Performance Primitives (NPP) library
image processing using, 198–201
linking to NPP files, 193–197
navigating NPP documentation, 197–198
overview of, 193

NVIDIA Visual Profiler (NVVP)
cross platform visual profiling tool, 284–288
profiling to test for errors, 112–117

NVS, CUDA-enabled GPUs, 223
Nx acceleration, estimating acceleration, 17–18

O
ODEs (Ordinary Differential Equations), 66–67
Online courses, CUDA resources, 213–214
OpenGL Extension Wrangler (GLEW), 66
OpenGL graphics package

standard graphics APIs, 49
use in graphics interoperability app, 56–57
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OpenGL Utility Toolkit (GLUT)
explanation of functionality of flashlight/

main.cpp, 60–61
in heat_2d app, 92
use in graphics interoperability app, 56–57
Windows system requirements for 

flashlight app, 66
Operating systems

Linux. See Linux systems
Mac OS X. See OS X systems
Windows. See Windows systems

Optimus, 225
Order of execution, functions for synchronizing 

and coordinating, 30
Ordinary differential equations (ODEs), 66–67
Orthographic projection, as viewing transform, 60
Oscillators

adding stability app to flashlight app, 
66–69

numerical simulations of dynamics of, 49
running stability visualizer, 74–76
velocity of 1DOF ocscillators, 70

Overloading, function, 175
OS X hardware setup

checking for NVIDIA GPU in OS X, 222–223
determining computing capability of GPU, 

223–225
upgrading computing capability of GPU, 

225–226
OS X software setup

installing CUDA toolkit, 239–240
overview of, 238–239

OS X systems, CUDA gdb deprecated on, 305

P
Parallel computing

basic tasks, 28–30
comparing control of order of execution with 

serial computing, 38
CUDA model for, 1–2, 25–27
hardware setup for. See Hardware setup
threads in, 148

Parallel Forall, CUDA resources, 134, 213
Parallel functions, in NPP, 193
Parallel patterns, uses of libraries, 174
parallel_dot app

associative nature of floating-point addition, 
130

atomics as solution to race conditions, 
128–129

building and executing, 127–128
listing for parallel_dot/kernel.cu, 

124–125
listing for parallel_dot/kernel.h, 125
listing for parallel_dot/main.cpp, 126
listing for parallel_dot/Makefile, 

126–127
parallelizing computation of the dot product of 

pair of vectors, 123–124
parentheses (( )), syntax of C language, 247
Passing by reference, arguments, 246
Passing by value, arguments, 246
Patterns, uses of parallel patterns, 174
PCI, 226–228
Performance

choosing execution configuration, 37
costs of atomic functions, 129

Pi
estimating using cuRAND, 190–192
estimating using Thrust library, 185–189

Pixels (picture elements)
buffers, 61
describing pixel values via RGBA, 53–56
in digital raster images, 50
image processing using NPP, 199
locating centroid, 130, 137
scaling pixel values, 70

Placeholders, in Thrust transform(), 182
Pointer arithmetic, C programming, 273
Pointers, use in C, 246
pos, as reference position, 146
Preprocessors, syntax of C language, 247
Primitive data types, in C language, 248
printf() statement, support for using from a 

kernel, 37–38
Profiling. See also Debugging; Error handling

with cuSolver and cuBLAS, 207
with Nsight Visual Studio, 288–292
with NVIDIA visual profiler, 284–288
to test for errors, 112–117

Programming Massively Parallel Processors 
with CUDA, online courses, 214

Property Pages, Visual Studio, 309–311

Q
Quadro, CUDA-enabled GPUs, 223
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R
Race conditions, resulting in undefined behavior, 

128
Radar systems, uses of 3D data grids, 141
Radius, stencil, 85
Random number generation, 190–192
Raster images, uses of 2D grids, 50
Ray tracing, impact on surface appearance, 156
Ray-box intersection tests, 148–149
Raycasting

3D data, 154–156
overview of, 147
sample images of 3D distance field, 143
screenshot of vis_3d raycast visualization, 170

rayCastShader(), 153
Ray-plane intersection tests, 152
Read-modify-write sequence, atomic functions 

performing, 128–129
reduce(), estimating Pi using built-in Thrust 

functionality, 185–189
Reduction

associative nature of floating-point addition, 130
atomics as solution to race conditions, 

128–129
computing dot product of pair of vectors, 

123–124
computing integral properties, 130–131
listing for centroid_2d/kernel.cu, 131–133
listing for centroid_2d/kernel.h, 135
listing for centroid_2d/main.cpp, 135–136
listing for centroid_2d/Makefile, 136
listing for parallel_dot/kernel.cu, 

124–125
listing for parallel_dot/kernel.h, 125
listing for parallel_dot/main.cpp, 126
listing for parallel_dot/Makefile, 

126–127
output image with axes locating centroid, 

136–137
overview of, 121
threads interacting globally, 121–122

Redundancy, stencil radius and, 85
Regression, solving linear regression, 203–206
Release folder, accessing CUDA Sample 

executables, 15
Relocatable device code, splitting kernel code 

into multiple files, 167–170
render(), in heat_2d app, 91

ResetKernel(), in heat2d app, 97
resetTemperature(), in heat2d app, 97
Resources. See CUDA ecosystem
RGB (red, green, blue) color model, image 

processing using NPP, 198–199
RGBA

describing pixel values, 53–56
initializing GLUT library and, 60

Rootfinding, locating point where function takes 
on given value, 155

Runtime API
error handling and, 292
functions of CUDA Runtime API, 30

S
Samples, CUDA resources, 217
Scalability, of SIMT approach, 26
Scalar products, applications of reduction. See 

parallel_dot app
Scoping, defining functions, 250
Seismic exploration, uses of 3D data grids, 141
Separate compilation. See Relocatable device 

code
Serial computing

comparing control of order of execution with 
parallel computing, 38

comparing serial and parallel computing, 25
running serial apps, 19–22

Serialization, costs of atomic functions, 129
Shading functions

rayCastShader(), 153
sliceShader(), 151–153
volumeRenderShader(), 153

Shared arrays
declaring, 86, 133
index of items in, 85
setting size of, 87

Shared memory
bridging gap between memory access and 

speed, 81
computing derivatives on 1D grid, 81–82
declaring shared array, 133
declaring threads as shared, 123
image sharpening app, 103
implementing dd_1d_global app, 82–85
implementing dd_1d_shared app, 85
profiling, 114
sharing information between blocks, 79
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Sharing models, impact on surface appearance, 
156

sharpen app
listing for sharpen/kernel.cu with global 

memory implementation, 105–107
listing for sharpen/kernel.cu with input 

and output shared memory arrays, 
109–112

listing for sharpen/kernel.cu with shared 
memory implementation, 107–109

listing for sharpen/kernel.h, 104
listing for sharpen/main.cpp, 103–104
listing for sharpen/Makefile, 105
profiling to test for errors, 112–117
sharpening image edges, 102–103

sharpen_npp app
listing for sharpen_npp/main.cpp, 

194–195
listing for sharpen_npp/Makefile, 194
reimplementation of sharpen app using NPP, 

194
Signal processing, NPP functions for, 193
Signed distance function, 155
Single instruction multiple thread (SIMT)

limits on thread accessibility, 123
model of parallelization, 26

Slash (/), syntax of C language, 248
sliceShader() function, 151–153
Slicing

overview of, 147
sample images of 3D distance field, 143
screenshot of vis_3d slicing, 169
slice visualization of 3D data, 149–153

SMs. See Streaming multiprocessors (SMs)
Software

requirements for changing from serial to 
parallel computing, 25

requirements for SIMT implement of 
parallelization, 27

setup for Mac OS X. See Mac OS X software 
setup

setup for Windows OSs. See Windows 
software setup

stability app
explanation of functionality of stability/

interactions.h, 72–73
explanation of functionality of stability/

kernel.cu, 70–71

listing for stability/interactions.h, 
71–72

listing for stability/kernel.cu, 69–70
running the stability visualizer app, 73–76
stabilizing visualization app, 69–70

Stack (or stratum), integer variable used in 
indexing, 144

Stack overflow error, 146
StackOverflow, CUDA resources, 213
Standard Template Library (STL), Thrust based 

on, 175–176
State map, locating centroid on. See 

centroid_2d app
Steady-state temperature distribution. See also 

heat_2d app
overview of, 91
reduction and, 122

Stencils
5-point stencil, 91
computing derivatives on 1D grid, 81–82
implementing dd_1d_global app, 82–85
implementing dd_1d_shared app, 85–88
kernel functions, 97–98
listing for heat_2d/interactions.h, 95–96
listing for heat_2d/kernel.cu, 98–100
listing for heat_2d/kernel.h, 94
listing for heat_2d/main.cpp, 92–94
listing for heat_2d/Makefile, 100–102
overview of, 79
radius, 85
sharpening image edges. See sharpen app
solving Laplace’s equation in 2D (heat_2d),

88–92
thread interdependence and, 80–81

STL (Standard Template Library), Thrust based 
on, 175–176

Stratum (or stack), integer variable used in 
indexing, 144

Streaming multiprocessors (SMs)
choosing execution configuration, 37
in CUDA model for parallelization, 26–27
thread interdependences and, 80

Streams, specifying computational stream 
number, 87

Synchronous operations
error handling and, 292
execution timing and, 282

__syncthreads(), synchronization of threads, 88
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T
TEGRA/Jetson, CUDA-enabled GPUs, 223
Temperature, equilibrium temperature 

distribution. See heat_2d app
Temperature distribution, equilibrium. See 

heat_2d app
tempKernel(), kernel functions of heat2d app, 

97
Templates

C++ template library, 175–176
flashlight app as, 58, 66

Tesla, CUDA-enabled GPUs, 223
Tests, for errors, 112–117. See also Profiling
Text editors, for Linux and OS X, 258
Threadblocks, launching kernel and, 27
threadIdx, 29
Thread

about, 26
bottlenecks, 79
breaking tasks into subtasks, 26
choosing execution configuration, 37
debugging Linux systems, 307
execution configuration for parallelizing 

dist_v2, 41
execution configuration of kernel launch, 28
interacting globally, 121–122
interdependence, 80–81
launching kernel and, 27
limits on accessibility, 123
in parallel computing, 148
synchronization of, 88

threads per block (TPB), defining constant values 
in parallel_dot app, 124

Thrust library
computing distances, 180–185
computing norms, 176–180
documentation of, 175–176
estimating Pi, 185–189
passing CUDA device array as argument to 

Thrust function, 189–190
passing Thrust device vector as argument to 

CUDA API function or kernel, 190
using with arrays, 178

thrustpi app, 186–188, 190–192
<time.h>, timing methods in C, 280
Timing. See Execution timing
Tools, CUDA resources, 212

TPB (threads per block), defining constant values 
in parallel_dot app, 124

Traces, Nsight Visual Studio profiling, 289–290
Training, CUDA resources, 212–214
transform()

computing distances using built-in Thrust 
functionality, 180–185

estimating Pi using built-in Thrust 
functionality, 185–189

Triggers, Nsight Visual Studio profiling, 289–290
Type qualifiers, functions, 28
Typed arguments, defining functions in C, 250
Typed languages, C as, 246

U
uchar4 variables, nvcc handling of, 94
Udacity CS344:Intro to Parallel Programming, 

online courses, 213
uint3 variable, CUDA supported vector types, 30
Underscore ( _), variable names and, 249
Unified memory

creating a simplified workflow, 43–47
notes regarding use of, 44

Unsharp masks, 102–103
Upgrades, computing capability of GPU, 225–228

V
van der Pol oscillator

adding stability app to flashlight app, 
66

phase plane of, 76
Variables

capitalization of variable names, 52
declaring and naming in C, 248–249

Vectors
container in C++ standard library, 175–176
CUDA supported data types, 30
parallelizing computation of the dot product of 

pair of. See parallel_dot app
passing Thrust device vector as argument to 

CUDA API function or kernel, 189–190
using Thrust functions with arrays instead of 

vectors, 178
viewing thrust vectors in debugger, 190

Video processing
NPP functions for, 193
uses of 3D data grids, 142
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vis_3d app
creating, 156
listing for vis_3d/device_funcs.cu, 164–167
listing for vis_3d/device_funcs.cuh, 164
listing for vis_3d/interactions.h, 159–161
listing for vis_3d/kernel.cu, 162–163
listing for vis_3d/kernel.h, 161
listing for vis_3d/main.cpp, 157–259
listing for vis_3d/Makefile, 168–169
viewing and interacting with 3D data, 146–149

Visual Profiler. See NVIDIA Visual Profiler (NVVP)
Visual Studio

building apps in Windows, 252–258
Debug execution, 270
limitations of debugging tools, 38
messages and warnings, 275
Property Pages, 309–311

Visual Studio Community 2013, 14
Visualization of data

slice visualization of, 149–153
viewing and interacting with 3D data. See 

vis_3d app
void, mandatory return type for kernel, 36
Volume elements (voxels)

length scale set by voxel spacing, 155
moving from 2D grids to 3D grids, 144

Volume rendering
3D data, 153
overview of, 147
sample images of 3D distance field, 143
screenshot of vis_3d volume rendering, 170

volumeRenderShader(), 153
Voxels (volume elements)

length scale set by voxel spacing, 155
moving from 2D grids to 3D grids, 144

W
Warps, dividing blocks into, 26–27
Watch window, 277
Web resources

CUDA Zone website, 211–212
primary web sources, 212–213

while loops
termination by exiting bounding box, 155
types of control statements in C, 267

White spaces, in C language, 249
Wikipedia, CUDA resources, 213
Windows hardware setup

checking for NVIDIA GPU in Windows, 221–222
determining computing capability of GPU, 

223–225
Windows software setup

creating restore point, 230
initial test run, 235–238
installing CUDA toolkit, 230–234
installing IDE, 230
steps in, 229

Windows systems
building apps using C, 252–258
converting dist_v1 to executable app, 269
debugging in, 298–304
invoking NVIDIA C Compiler, 37
running CUDA samples under, 14–17
viewing thrust vectors in debugger, 190
viewing values in managed arrays, 46–47

Workflow
analyzing costs and benefits of CUDA, 42–43
unified memory simplifying, 43–47

Wrapper functions
about, 41
in vis_3d app, 161
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