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To achieve the complex task of interpreting what we see, our brains rely on statistical 
regularities and patterns in visual data. Knowledge of these regularities can also 
be considerably useful in visual computing disciplines, such as computer vision, 
computer graphics, and image processing. The field of natural image statistics studies 
the regularities to exploit their potential and better understand human vision. With 
numerous color figures throughout, Image Statistics in Visual Computing covers 
all aspects of natural image statistics, from data collection to analysis to applications 
in computer graphics, computational photography, image processing, and art.

The authors keep the material accessible, providing mathematical definitions where 
appropriate to help you understand the transforms that highlight statistical regularities 
present in images. The book also describes patterns that arise once the images are 
transformed and gives examples of applications that have successfully used statistical 
regularities. Numerous references enable you to easily look up more information 
about a specific concept or application. A supporting website also offers additional 
information, including descriptions of various image databases suitable for statistics.

Collecting state-of-the-art, interdisciplinary knowledge in one source, this book 
explores the relation of natural image statistics to human vision and shows how natural 
image statistics can be applied to visual computing. It encourages you to develop novel 
insights and applications in all disciplines that relate to visual computing.
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Foreword

To me, the term natural image statistics does not merely refer to a collection
of statistics one can collect from images but signifies a paradigm shift in the
way we reason about images of natural scenery. Instead of modeling them as
a deterministic outcome of a physical process using explicit geometric entities
and illumination laws, we started considering natural images as random variables
characterized by unique statistical regularities.

In fact, these two modeling approaches, integrated in the Bayesian framework,
have proved themselves most effective for a wide range of image restoration tasks.
For example, when removing noise or blur from an image, the signal-to-noise
level becomes very low across the high-frequency band and therefore a large num-
ber of unknowns must be recovered. State-of-the-art denoising and deblurring
methods fill in this missing data based on the sparse distribution that derivative
and wavelet coefficients exhibit in natural images. Similarly, when filling holes
in an image or increasing its resolution, millions of pixels must be determined.
Non-parametric patch-based statistical models show a remarkable ability to re-
cover this seemingly missing data by exploiting various self-similarities found
within and across natural images.

The statistical investigation of natural images has also proved itself valuable
for studying the human visual system, which was exposed and adapted to this
stimulus throughout its evolution. Researchers showed, for example, that im-
age transformations based on some optimal statistical criterion, such as compact
representation, provide important insights over the response of various sensory
neurons.

These practical and theoretical implications make the search for new and more
accurate natural image priors a very active line of research in image understand-
ing, processing, and neuroscience.

The book Image Statistics in Visual Computing offers a delightful coverage
of this fascinating subject. It starts by describing fundamental concepts of human
visual perception, as well as important calibration aspects behind the collection of
natural image databases. The book thoroughly covers key image transformations
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xiv Foreword

and describes their unique statistical behavior. It devotes a chapter to Markov
random field models, which constitute the most widely used framework for defin-
ing image priors. Finally, the book surveys several important extensions of the
statistical study to the behavior of color, motion, and range images.

Raanan Fattal
School of Computer Science and Engineering
The Hebrew University of Jerusalem
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Preface

Natural images exhibit statistical regularities that differentiate them from random
collections of pixels. Moreover, the human visual system appears to have evolved
to exploit such statistical regularities. The field of natural image statistics is tradi-
tionally concerned with trying to understand how human vision operates by iden-
tifying statistical regularities in natural images that may be used in some way.

There are some amazing examples of how the human visual system is beauti-
fully optimized to observe and interpret natural images. One example that put us
on the trail of natural image statistics is described in detail in Chapter 10: Take
a large set of pixels from a collection of natural images and transform them to
cone response space. If these three color channels are then rotated using principal
components analysis, the result is a new color space that is formally decorrelated.

As it happens, the color space created this way strongly resembles a color
opponent space. It is known from many sources that the human visual system
also employs a color opponent space to encode the visual signal prior to sending
it from the eye to the brain. The beauty of this is, therefore, that human vision
actively decorrelates its visual input, provided it is observing natural images. In
practice it appears that the three decorrelated channels are closer to independence,
which is an even stronger statistical claim.

This has subsequently given rise to applications in image processing that treat
the three color channels in color opponent space as independent, simplifying an
otherwise more difficult three-dimensional problem into three one-dimensional
problems. Color transfer algorithms form a good example of a class of algorithm
in which this appoach is successfully explored.

The lesson learned from this example—and the premise for this book—is that
the field of natural image statistics is not only helpful in the study of human vi-
sion but may also create opportunities that can be exploited in visual engineering
disciplines such as computer vision, computer graphics, and image processing.
Thus, as many areas of visual computing are concerned either with producing im-
agery for observation by humans or with processing images to obtain information

xv
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xvi Preface

similar to what humans would extract, it would be prudent to understand which
statistical regularities occur in nature so they can be emulated by image synthe-
sis and analysis methods. In this book we introduce all aspects of natural image
statistics, ranging from data collection to analysis and finally their applications in
computer graphics, computational photography, image processing, and art.

We do not aim to provide an exhaustive list of all applications that use natural
image statistics in some way; instead, we see this as a book that may give readers
those all-important “aha” moments. We think that there are many possibilities
for natural image statistics to be used in a variety of applications, of which the
currently known ones only scratch the surface. We hope that this book will serve
as a trigger for new and fresh ideas, leading to novel insights and applications in
all disciplines that relate to visual computing—both in academic and industrial
settings.

To serve this purpose, we have tried to keep the book as accessible as possible.
Wherever appropriate, we provide the basic mathematics to understand the trans-
forms that emphasize some of the many statistical regularities present in natural
images. The statistical regularities and the patterns that can arise once they are
transformed are described in some detail. We then give examples of applications
that have successfully used these patterns. To keep the book manageable, we def-
initely do not aim to provide an exhaustive list of examples, nor do we intend to
describe each example in full mathematical detail. We do, however, provide many
references so that more information about any topic and specific application dis-
cussed in this book can be easily found. In that sense, we hope that the book may
serve as an entry point into a highly interesting area of research that brings to-
gether aspects of statistics, perception, neuroscience, physics, image processing,
computer vision, and computer graphics.

Cover Image
One of the most fascinating aspects of natural image statistics is their ability to de-
construct complex images of natural environments into compact descriptors. The
seemingly endless variety of nature leads to striking—and repeatedly occurring—
regularities. The image used in the cover tries to show exactly this. Starting from
a photograph of a natural scene, the maple leaves are slowly transformed to pro-
gressively simpler shapes, eventually converging to circles arranged according to
the “Dead leaves model,” discussed in Chapter 11.

Acknowledgments
We are grateful for the help offered by many friends and colleagues who have
assisted either directly or indirectly with the production of this book. In particular,
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Chapter 1

Introduction

For many reasons, including basic survival, we continuously sense the environ-
ment around us. Light is perhaps the premier carrier of information about our
environment. The signal it conveys is also the most complex to observe and in-
terpret. It should therefore not come as a surprise that a significant portion of the
human brain is dedicated to processing the light reaching our eyes (although there
appear to be significant differences between individuals in terms of how much of
the brain is devoted to the processing of visual stimuli [17]). Images—both still
and moving—contain a wealth of information: a quick look through the nearest
window is enough to tell us what the weather is like, whether we are in the coun-
tryside or the city, and what time of the day it might be. Movement in a scene
might tell us of an approaching predator or that the bus is approaching, while
color and texture may inform us about the state of ripeness of fruit or whether our
loaf of bread has gone off again.

Considering that human vision takes as input at any point in time an image
of the world through each eye—effectively two projections of the world onto the
retina—it is remarkable that we are able to infer so much of the world around us.
These two streams of flat images are sufficient to allow us to navigate complex en-
vironments, meaningfully respond to events, and recognize individuals. Anyone
who has tried to implement an algorithm to reconstruct a three-dimensional (3D)
environment from a pair of two-dimensional (2D) images knows how impossibly
difficult this is. Yet, human vision appears to accomplish this effortlessly.

Thus, human vision has the task of inferring at least some aspects of the 3D
configuration of our world, given 2D image inputs. This is known to be an un-
derconstrained problem: in essence, human vision has to invent one dimension
which has gone missing as a result of the projection of light on the retina. It
has been repeatedly shown that human vision employs many heuristics, some of
which are known. As an example, human vision generally expects a single light
source [598] that comes from above [407]. Face recognition, for instance, be-
comes significantly impaired if a human face is illuminated from below.
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There is a long history of research on the processes taking place within the
human (and animal) visual system that enable us to perceive and interpret im-
ages. Vision scientists typically study such processes through carefully con-
structed psychophysical experiments that measure overt behavior to systematic
changes in simple light patterns [498, 554, 138] or by directly measuring electro-
physiological responses while the retina is stimulated with a simple light pattern
[354].1 In the latter case, the light pattern that maximally stimulates a given cell
is known as that cell’s preferred stimulus, and it carries considerable information
about the structure and size of the cell’s receptive field. Alternatively, one could
measure behavior or cell responses while the retina is stimulated with natural im-
ages, since that is what the retina usually processes [445, 616, 151, 30, 764].

Naturally, the ability of the visual system to analyze information is very much
related to the information that is there to be processed, which just happens to
be images. The field of natural image statistics has focused on exactly this rela-
tionship. Initially the field focused on describing images such as television sig-
nals [168, 424], but it has since expanded into explicitly examining the many
links between the structure of a wide variety of image types on the one side
and the workings of the visual system on the other. In general, natural image
statistics research collects a set of natural images, transforms them according to
a statistical optimization criterion, and then evaluates whether the result in some
sense forms a reasonable description of the response properties of some neurons
[645, 234, 26, 546, 691].

The argumentation is roughly as follows. The retina has a large number of
discrete photoreceptors, so that the projection of light is spatially discretized.
Equivalently, photographs contain a large number of discrete pixels.2 The val-
ues that these elements can take is not fully random. This can, for instance, be
seen in Figure 1.1, where at the top a natural image is displayed. Below, we have
shuffled the order of the pixels. All pixels in the top image are also present in the
bottom images. However, the bottom images do not carry meaningful informa-
tion. Moreover, human vision is not well equipped to discern differences between
images such as these.

As the images at the bottom of Figure 1.1 are effectively recombinations of the
pixels of the image at the top, one may ask how many combinations of pixels there
exist for every random image [637]. Assuming that we have a small-ish image of 4
Mpix = 4�106 pixels, then the number of ways these pixels could be recombined
would be (4�106)!, which for practical purposes approaches infinity. This means
that the number of natural images that we might encounter in real life is infinitely
smaller than then number of possible combinations in which the photoreceptors
in the retina could be stimulated [395, 215, 154, 639].

1See hubel.med.harvard.edu.
2We are assuming for this discussion, as well as for the remainder of the book, that images are

digitally stored and represented, and that they are therefore spatially discretized in a pixel grid.

hubel.med.harvard.edu
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A re-combination of pixels Another re-combination of pixels

Original image

Figure 1.1. The pixels of the top image were randomly shuffled twice to form the
images at the bottom. These are only two of an almost infinite number of recom-
binations possible. Note how human vision does not easily detect differences be-
tween these two images. (Andean Cock-of-the-rock, Jurong Bird Park, Singapore,
2012)

As a consequence we might argue that natural images are in fact incredibly

rare. For every natural image there is an infinite number of stimuli that are ran-

dom combinations of pixels. Most of these random combinations, however, do

not reveal structure that can be interpreted by human vision. The subset of natural

images is sometimes called an image manifold [704]. It therefore stands to rea-

son that human vision has evolved to observe, interpret, and make sense of this

incredibly rare subset of all images [257].

Despite being a rare subset of all possible images, natural images still contain

an immense degree of variation. Within this plethora of differences are statistical

regularities that make natural images amenable to human interpretation. What are

these features that natural images have in common with each other that differenti-
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6 1. Introduction

ate them from random images? Furthermore, in what ways does the human visual
system expect “naturalness”? In this book we look at these and similar questions,
which are core to this exciting area of research called natural image statistics.

Beyond helping to understand how the human visual system works, the regu-
larities in natural images are very valuable to disciplines that rely on images, such
as computer graphics, computer vision, or image processing. Similar in spirit to
the processing blocks within the visual system, computational models can take
advantage of the regularities in natural images to produce more plausible results
or to infer information that may otherwise be lost.

If, for instance, the aim of a particular technique is to reconstruct—or in-
paint—areas of an image that may be hidden, statistical information from nearby
regions can be used to create a patch that looks similar, yet not identical, to its
neighbors [568] (see Section 5.8). In another scenario, statistical regularities
computed over a collection of images can serve as priors, guiding (optimization)
algorithms [211, 453, 667]. The distribution of edge magnitudes in natural im-
ages, for example, can aid algorithms aiming to deblur images (see Section 5.6).
In effect, this produces an expectation of how edges are typically distributed in
images, helping the deblurring algorithm in question produce a solution that con-
forms to that expectation. Likewise, an analysis of art has shown that paintings
often have the same statistics as real-world images, and thus a number of exist-
ing techniques can be used to analyze, recover, or otherwise alter paintings (for
reviews, see [279, 602, 709]).

Although the distinction is not always as clear cut, images can be analyzed
in ensembles or individually. In the first case, the statistical analysis can provide
insights about regularities and properties of general scene types and situations,
which can in turn be applied when manipulating further images of that type. In
the latter case, the information acquired by looking at an individual image is only
useful for dealing with that particular image. However, this approach has shown
to provide powerful statistics internal to the image itself [829]. Statistics are of
course also commonly used in a third way; namely, for analyzing the results of
studies or experiments often performed for assessing imaging algorithms [138],
although this is somewhat outside the scope of this book. The following sec-
tions will briefly introduce the possible applications of statistics in the context of
imaging disciplines.

1.1 Statistics as Priors
In the same way that human vision has certain expectations or heuristics regarding
its visual input, we may employ natural image statistics to guide algorithm design
to produce solutions that may be perceived as more natural or realistic. Exam-
ples include image deblurring [211] and image restoration or denoising [831] (see
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Sections 5.6–5.8). The most direct way in which this may happen is in optimization-
type algorithms.

An optimization algorithm requires an objective function—the function that is
minimized—which encodes a set of opposing characteristics that the result ought
to have. The algorithm typically begins by guessing an initial solution. The qual-
ity of the solution is then measured by inserting it into the objective function.
Then iteratively a new candidate solution is guessed and compared against the
previous best solution. There are several more or less standard choices for op-
timization processes, defining how the next guess is selected, but the main chal-
lenge is in the design of an appropriate objective function.

Objective functions usually consist of multiple terms. The first term is usually
a norm that compares the current guess against some desired goal. The closer the
image is to the goal, the smaller the number that this term returns. As this term
will admit many solutions that are mathematically equally good, extra conditions
are normally added to steer the optimization into a direction that is good according
to some other, higher-level criteria.

Thus, such additional terms are designed to penalize wrong solutions and pro-
mote more appropriate ones respectively. They act as priors in the sense that they
encode expectations regarding the mathematical shape of the solution. Often such
priors take the form of smoothness terms. When the goal of the optimization al-
gorithm is to filter or generate an image, natural image statistics have proven to
be a good source of priors, effectively allowing some statistical form of natural-
ness to be encoded. An example is the deblurring techniques mentioned earlier:
the average distribution of gradients in images can serve as a prior to suppress
spurious edges that might arise from the deblurring process [211, 667].

In the particular case of image gradients, they are found to often have small
values and only sometimes have large values, as shown in Figure 1.2. In other
words, the distribution of gradients is heavy-tailed rather than Gaussian. Note
that although here we show the results computed on a single image, this trend
holds in general for natural images. Thus, if we were to compute the gradient
distribution over a large set of natural images, we would find very similar results,
as we will see in Chapter 5. This means that it is possible to use this distribution as
a general prior in optimization problems, whenever we wish our resulting image
to have a gradient distribution that is in some sense “natural.” Accounting for the
non-Gaussian distribution of gradients has helped better solve several problems,
including image deblurring [211], image denoising [631, 686], superresolution,
and demosaicing [726].

1.2 Statistics as Image Descriptors
More often than not when manipulating images, the most useful source of infor-
mation is none other than the image itself. If the goal is to add objects to a photo-
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Figure 1.2. Image gradients are heavy-tailed, as shown in this example. The
image at the top was first converted to log space, and then the horizontal gradients
were computed. They are plotted in a linear plot (bottom left) and for visualization
in a log-linear plot (bottom right). Note that most gradients are small, leading to a
heavy-tailed distribution. (Monument Valley, USA, 2012)

graph, for instance, clues as to how the new object would look if it were actually

placed in the real scene can be obtained by analyzing the image itself. This can,

for instance, provide information regarding color and illumination (mis-)matches.

Conversely, if we wish to remove an object from an image, it is possible to

analyze regions that neighbor the pixels to be removed. Here, statistics may help

to infer what would be the most likely scene that lies behind the removed object.

In this case, no general statistical assumptions are made about the input image,

i.e., it is not desirable to try and infer a specific background based on ensemble

statistics.

Instead, statistical tools are used to analyze the scene and purely based on

those, the missing parts can be reconstructed. For instance, in the image shown in

Figure 1.3, we may want to remove the camel without making it obvious that the

resulting image was manipulated in any way. Areas surrounding the camel con-

tain pixels similar to what would likely be behind it, and as such they can be used

to estimate the missing information. Since only a single image is available, an ac-

curate reconstruction would not be possible, but relying on statistical similarities
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Figure 1.3. Inpainting example. Note that this is only an illustration, created
semi-automatically with Photoshop. See Section 5.8 for statistics-based inpaint-
ing. (Giza, Egypt, 2007)

Figure 1.4. An example of a new texture (right) that was synthesized based on the
example texture given on the left. The texture on the right was tiled nine times.

could be sufficient to produce a plausible result. Image inpainting is discussed in

more detail in Section 5.8.

Another example of where the statistics of an individual image can be mean-

ingfully used is texture synthesis. Given an example image with a desired appear-

ance, the goal of texture synthesis algorithms is to generate a texture tile with sim-

ilar appearance. There are many algorithms based on resampling [787, 195, 157]

and some that explicitly take image statistics into account [692, 581, 582]. In

the latter case, statistics based on a complex wavelet decomposition in the output

texture are forced to match those of an example texture. An example is shown in

Figure 1.4 and further discussed in Chapter 8.

There are cases where statistics can serve both as a global prior, capturing

general assumptions and expectations about images, and as a tool to analyze spe-

cific input. If, for instance, the goal is to white balance an image such that color

casts of a non-white light source are removed, one can analyze the color content
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of that image to that effect [69]. The statistical assumption made in general about
scenes is that the average reflectance of all materials is achromatic (the gray-world
assumption). This means that if we illuminate a scene with a colored light source,
the light reflected off objects (and subsequently captured in an image) would be
white only if the color of the illuminant were white. If the average color of an
image therefore deviates from gray, that difference is an indication of the color of
the light source.

In this case, the expectation that images will average to middle gray serves as
a global prior, albeit in a simple sense. On the other hand, the specific statistics
of each image, namely, the average of all its pixel values, describes that partic-
ular image and how it differs from the expected value. This technique for white
balancing, as well as variants thereof, are discussed further in Chapter 10.

1.3 Statistical Pipeline
Whether statistical regularities are computed over image ensembles or single im-
ages, a similar process takes place. First, a dataset is constructed (Chapter 3). This
may be a collection of images (an ensemble), a collection of patches selected from
one or more images, or even single pixels, depending on the application.

The dataset is then transformed from the original image space to a different
space, which allows the study of a particular aspect of the image data. This may be
a transform to the gradient domain if edges are of interest or to a different color
space, for instance. In effect, this transformation takes the form of a function
that operates on single or multiple pixels. As an example, consider a color space
transform from sRGB to the LMS color space. In this case, the function operating
on the image pixels is a matrix transformation applied to each triplet of color
values (Chapter 10). If one is studying gradients instead, two or more pixel values
are considered to determine the rate of change between them (Chapter 5). The
transform is usually designed to extract or emphasize some statistical regularity
present in images. Often, the transform is related to some aspect of human vision,
in that the transform is matched to the processing thought to occur in the human
visual system.

Once the data has been transformed to the appropriate space, the extracted
features need to be analyzed. This is achieved through statistical analysis similar
to what would be employed to compute trends in any type of data. One may aver-
age along one or more dimensions, look at the distribution of values, or construct
a model that predicts the measured data.

It is important to note that what this process typically aims to achieve is
twofold. First, statistical measures can reduce the dimensionality of the data while
retaining information relevant to a particular application. This is one of the key
factors making image statistics a very useful tool for analyzing images, which by
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their nature are rich in data. Second, the statistical analysis can aid in deriving
models for the data.

1.4 Natural Images
At this point, it is perhaps worthwhile to briefly discuss what we mean by natural
images. In the context of visual computing, an image is typically a 2D array
of (colored) pixel values. The content depicted in an image determines whether
this image could be considered natural or not. There are many images that are
not natural images, including X-rays, images produced with magnetic resonance
imaging (MRI), and forward looking infrared (FLIR) imagery. Often, an image is
considered to be the realization of a spatial stochastic process [704]. It is common
to assume that this stochastic process is stationary, which means that the statistics
are the same everywhere in the image.

It would also be prudent to limit oneself to images that have sufficient com-
plexity, ranging from surface reflectance and texture to object shapes, and to re-
quire that objects sit on a ground plane with the camera looking more or less
forward. This is consistent with how humans normally observe the world, and it
may therefore be reasonable to assume that human evolution, as well as personal
development, has occurred under similar circumstances.

To what extent human vision is the result of eons of evolution versus the result
of personal development may also impact the choice of images that are studied. If
it is assumed that the organization of human vision is due to evolution only, then
it would make sense to exclude images that depict built-up environments. On the
other hand, if individual development plays an important role, then natural image
ensembles may well include images of interiors and built-up environments.

In this book, we make no strong assumptions either way. We are interested in
natural image statistics and how they may help solve problems in visual comput-
ing. As the need arises, for certain applications it would make sense to restrict the
type of images analyzed further, or conversely expand the set of images consid-
ered. We have therefore deliberately left the title of this book at Image Statistics
rather than the perhaps more expected Natural Image Statistics. Nonetheless,
when capturing a dataset of subsequent analysis, certain care must be taken to not
inadvertently introduce bias. This topic is discussed further in Chapter 3.

1.5 Discussion
We have found that most transforms that could be applied to pixel data and which
have some bearing on human vision all more or less point into the same direction,
which is that of sparseness. Statistical distributions of transformed data tend to
have high kurtosis, which is another way of saying that the data tend to have most
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values clustered around one value, with relatively few data points far away from
this value. Such behavior is apparent when looking at distributions of gradient
magnitudes, power spectra, and wavelet coefficients, as well as principal and in-
dependent component analysis. This means that many of these transforms lead to
probability distributions that are non-Gaussian. Sparse, highly kurtotic distribu-
tions appear to be a feature of the 3D environment we live in (Chapter 11), and
this persists after projecting 3D environments to 2D images.

Another way to look at this is that the early parts of the human visual system
in some sense remove information that is expected, while keeping only data that
is informative [741]. It can therefore be argued that the human visual system aims
to reduce redundancy as much as possible [34, 342].

The knowledge of various sparse distributions has given many insights into
the way human vision operates, and it has led the way for a good number of ap-
plications in computer graphics, computer vision, and image processing. There
is, however, a trend that is apparent. If we know what statistical distributions
correspond to natural images for certain image transforms, then one could mea-
sure deviations from naturalness in the statistical sense. It is then possible to
design algorithms that enforce such naturalness to individual images or image re-
gions. This is directly exploited, for example, in the image inpainting examples
mentioned earlier. Likewise, motion deblurring often includes priors that enforce
heavy tails in gradient distributions. Natural image statistics have also found ap-
plications in image restoration, superresolution, and texture synthesis algorithms.
In each case, an input image is processed such that its improvement is guided
using image statistics.

The statistics in a sense form an oracle as to what the most likely improvement
to the image might be. Thus, in general, any algorithm that aims to enhance or
improve images could in principle be designed to take advantage of knowledge
of natural image statistics. Throughout this book, we will discuss many such
applications that already demonstrate the usefulness of image statistics, and we
will show how statistical findings provide insight into human visual processes that
can be directly applied to imaging algorithms.

The book is structured in three parts. The first part provides some useful
background in the context of human vision and perception, which we will rely
upon throughout later chapters to show how image statistics link with vision. We
also discuss the techniques and challenges related to capturing and calibrating
images for the purpose of statistical image analysis.

The second part forms the core of the book and discusses several classes of im-
age transforms. Each chapter in that part explores a different space through which
images may be transformed (including but not limited to gradients, wavelets,
and histograms). We will present the mathematical underpinnings of each trans-
form, discuss its links with human vision, and present statistical regularities that
arise. As this book focuses on imaging applications, examples from computer
graphics, computer vision, and image processing will be given in each chapter,



i
i

i
i

i
i

i
i

1.5. Discussion 13

demonstrating how that particular transform and the statistical structures within it
may be used in image-related disciplines.

Finally, the third part of the book focuses on different types of image data.
Most of the natural image statistics literature centers around luminance or in-
tensity data, ignoring aspects such as color, depth, or temporal data. While many
powerful techniques are possible without these dimensions, they undoubtedly pro-
vide a lot of additional information. To that end, the last part of the book focuses
on the statistical analysis of these dimensions and the applications that arise from
them.
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Chapter 2

The Human
Visual System

In this chapter, we briefly discuss the human visual system and human visual per-
ception. We begin by defining relevant radiometric and photometric terms. Then,
the human visual system is described by following light as it enters the eye and
is transduced into an electrical signal by the photoreceptors. We then follow the
path this signal takes through several layers of cells in the retina and onwards to
the visual cortex. Although much is known about cortical visual processing, there
is even more that remains unknown. We therefore describe cortical processing
only at a very abstract level and only sofar as is relevant in the context of natural
image statistics.

In essence, the nature of human vision is such that natural images can be ob-
served, interpreted, and understood at a level necessary to allow humans to func-
tion in a manner appropriate to their environment. Thus, this chapter concludes
with a discussion of the implications of visual processing.

2.1 Radiometric and Photometric Terms
To be able to describe light as it is observed by humans or captured and displayed
by various technologies, several important terms need to be defined. Radiometric
terminology describes light as energy. Radiometry is the science of measuring op-
tical radiation, which occurs in a range of wavelengths between 10 nm and 105 nm
and includes ultraviolet, visible, and infrared radiation. Radiometric quantities are
listed in Table 2.1.

Photometry parallels radiometry, with the important exception that quantities
are weighted according to the spectral sensitivity curve of the human visual sys-
tem (given in Figure 2.1) and therefore only extends between around 400 and
800 nm. Photometric quantities are listed in Table 2.2.

15
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16 2. The Human Visual System

Quantity Unit Description
Radiant energy (Qe) J (Joule) Total energy of a beam of radiation
Radiant flux (Pe) J/s = W (Watt) Rate of change of radiant energy
Radiant exitance (Me) W/m2 Radiant flux emitted from a delta

surface area
Irradiance (Ee) W/m2 Radiant flux striking a delta surface

area
Radiant intensity (Ie) W/sr Flux emitted into a given direction
Radiance (Le) W/m2/sr Flux per area emitted into a given

direction

Table 2.1. Radiometric quantities.

Quantity Unit Radiometric equivalent
Luminous energy (Qv) lm s Radiance energy
Luminous flux (Pv) lm (lumen) Radiant flux
Luminous exitance (Mv) lm/m2 = lx (lux) Radiant exitance
Illuminance (Ev) lm/m2 = lx (lux) Irradiance
Luminous intensity (Iv) lm/sr = cd (candela) Radiant intensity
Luminance (Lv) lm/m2/sr = cd/m2 Radiance

Table 2.2. Photometric quantities.

In human vision one further quantity is often used, which is the Troland (td),
a measure of retinal illuminance. The reason for this is that the light that hits
the retina has passed through the pupil, which has a diameter dependent on the
amount of light incident. The Troland accounts for pupil size by multiplying
luminance (in cd/m2) by the size of the pupil (in mm2).
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Figure 2.1. The photopic luminous efficiency curve.
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2.2 Human Vision
The human visual system forms a significant portion of the brain and is dedicated
to processing visual information. Light enters the eye and is eventually transduced
into an electrical signal by the photoreceptors. Through several layers of cells
with associated processing, a heavily transformed signal is passed to the lateral
geniculate nucleus (LGN), a part of the brain that can be thought of as acting as a
relay station. After a small amount of further processing, the signal travels from
the LGN to the visual cortex where it is processed by a multitude of modules, each
responsible for increasingly abstract and high-level tasks [200]. The routes that
the signal takes from the eyes to the brain and each of these modules are known
as the visual pathways.

Human vision can be studied in many different ways. Visual psychophysics,
for instance, presents meticulously designed light patterns (called stimuli) while
asking observers to perform certain tasks [258, 554, 402, 138, 699]. Task per-
formance is measured a large number of times for a sufficiently large number of
observers using systematically altered versions of the stimuli, which then allows
the experimenter to infer something about the inner workings of the human visual
system.

In neuroscience, a different approach is taken, one that involves measuring cell
responses using electrodes [357]. This cannot normally be done on humans, and
is therefore typically performed on animals with visual systems that are thought
to be comparable to those found in humans. Many aspects of low-level visual
processing have been uncovered in this manner, especially relating to receptive
fields of a variety of specific cells. The receptive field of a cell has several critical
characteristics, such as the location on the retina or in the environment to which
is responds and the specific size, shape, and pattern of light that needs to be shone
onto that cell for it to respond maximally. It is reasonable to expect that cells in
the retina have simpler receptive fields than those in the visual cortex.

Recent advances in measuring cell responses have made it possible to record
and measure groups of cells [542, 394]. Nonetheless, it remains difficult to obtain
a view of how the visual system as a whole responds to stimuli. Visual psy-
chophysics is only able to indirectly infer visual processing, while cell recordings
often include only single cells. The field of natural image statistics has emerged
as another tool for helping to understand human vision. The thought is that the
human visual system over a long period has evolved to make sense of natural
scenes, and as such is in some sense optimized for this task. It is therefore a good
idea to understand the statistical regularities of natural scenes as a further tool to
help understand human vision. Hence the emergence of natural image statistics
as a field of study.

In our opinion, natural image statistics can also be useful in designing visual
algorithms—for instance, in computer graphics, computer vision, and digital im-
age processing. In this chapter, following the visual pathway, we give an overview
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Figure 2.2. A simplified cross section of the human eye. (Adapted from [610].)
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Figure 2.3. The human retina consists of several layers of neurons that mediate
vision. (Adapted from [325].)

of the human visual system and its structure, as well as some of its idiosyncrasies.
We note that by and large the retina is easier to measure than any of the later
stages. As a result, more is known about the retina. Consequently, this chapter
focuses mostly on the processing encountered in the human eye. It is intended to
serve as background for subsequent chapters.

2.3 The Eyes
The eyes form the first part of a long chain of processing that allows humans to
“see” the world [610]. The eyes sit in sockets that allow them to rotate, a feature
that is useful for two reasons. First, it allows features of interest to be projected
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onto the fovea where vision has the highest acuity. Second, it allows humans to
follow moving objects without head movement.

Figure 2.2 shows an annotated cross section of the human eye. Light enters
the eye through the pupil, travels through the ocular media, and finally hits the
retina. The retina is a layer of neural sensors lining the back of the eye. These
sensors transduce light into a signal that is transmitted to the brain. Several layers
of neurons are present in the retina (shown in Figure 2.3). Only the photoreceptors
(i.e., the rods and cones) are sensitive to light.

2.3.1 Optical Media and the Retina
Light enters the eye through the cornea and then passes through the aqueous
humor, a cavity filled with clear liquid, before reaching the iris and the lens.
The visual field over which light can enter the eye extends to about 60 degrees
nasally and 95 degrees temporally. Vertically, the field of view extends 60 de-
grees above and 75 degrees below the horizontal meridian. Both eyes together
therefore achieve a field of view of almost 180 degrees.

The iris contains muscles to control the diameter of the pupil and thereby
helps regulate how much light passes through.1 The lens is attached to muscles
that control its shape and is used to focus on objects located at different distances
to the eye. Note, however, that the cornea performs most of the focusing due
to its curvature and refractive index (n = 1.376), while the lens contributes the
remainder [554].

After passing through the lens, light traverses the vitreous humor before reach-
ing the retina, a neurosensory layer able to transduce light into signals and trans-
mit those to the brain. The retina consists of several layers of cells as well as
several regions with different properties. Light first passes through all layers of
the retina before being transduced by the photoreceptors. The photoreceptors pass
their electrical signal to a layer of bipolar cells, which in turn transmit the signal
to the ganglion cells. Although the ganglion cells are located in the retina, they
synapse in the LGN. Their axons are collectively called the optic nerve bundle. In
between the photoreceptors and the ganglion cells, there are two layers of lateral
connections, formed by horizontal cells and amacrine cells. As such, there is al-
ready a substantial amount of visual processing occurring within the retina. This
processing is discussed further in the following sections.

As mentioned, the retina consists of a number of regions that perform some-
what different functions and are anatomically different. The central part of the
retina contains the fovea, an area of 1.5 mm in diameter. In the center of this
region is a smaller disk of 0.35 mm diameter, called the foveola, which is where
the density of photoreceptors is highest. As a result, this is where visual acuity is
highest as well. The region outside the fovea is the peripheral retina. This region
also contains the optic disk, a small area known as the blind spot.

1Recent research has shown that photo-responsive ganglion cells regulate this mechanism [318].
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starlight moonlight indoor lighting sunlight

Luminance
(log cd/m2)

Range

Visual
Function

scotopic mesopic photopic

-6 -4 -2 0 2 4 6 8

No colour vision,
poor acuity, 
rods mediate vision

Good colour vision,
good acuity, 
cones mediate vision

Figure 2.4. The ranges of luminance where the different types of photoreceptors
are operational. Rods operate in low light conditions, known as scotopic, while
cones cover the brighter range of illumination known as photopic. Some overlap
exists between the two photoreceptor types. This is known as the mesopic range.
(Adapted from [214].)
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Figure 2.5. Photopic and scotopic luminous efficiency curves.

2.3.2 Photoreceptors
Two types of photoreceptors exist in our eyes, namely, cones and rods. These
exist in different densities and fulfill different purposes [236]. Rods are sensitive
to low light levels and allow us to detect contrast, brightness, and motion—but
not color—in these conditions. The range of illumination that rod photoreceptors
operate in is termed scotopic. Cones, on the other hand, operate at higher light
levels, known as photopic conditions. In addition to contrast, motion, and bright-
ness, cones are involved in seeing color (see Figure 2.4). There exists a range
of light levels under which both rods and cones are active. This range is called
mesopic. The responsivities to different wavelengths for the rod and cone systems
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Figure 2.6. The sensitivities of the three cone types for different wavelengths.
(Adapted from [68].)

are known as the scotopic and photopic luminous efficiency, which are plotted in
Figure 2.5.

Photoreceptor Types. Three types of cones exist in the human eye and are clas-
sified according to the wavelengths that they are most sensitive to, namely, short,
medium, and long (referred to as S, M, and L). These translate to peak sensitivi-
ties of approximately 440 nm, 545 nm, and 565 nm, respectively, corresponding
roughly to blue, green, and red light, although as shown in Figure 2.6 significant
overlap exists between the L, M, and S cone sensitivities [68, 707].

As each photoreceptor integrates over a wide range of wavelengths, there are
many combinations of colored light that would lead to the same photoreceptor
output. For instance, supposing we could change a monochromatic light from
one wavelength to another and also change its intensity, it should be possible to
produce a new stimulus that leaves the output of a given cone unchanged. If two
different spectral distributions lead to the same response of all three photoreceptor
types, they are visually equivalent to humans and are referred to as metamers. A
second consequence of this integration is that a single photoreceptor type is not
able to distinguish between different colors. For color vision to occur, the outputs
of multiple cone types must be combined [700]. Processing in the retina does
indeed achieve this, as the S, M, and L cones provide sufficient information to
the remainder of the visual system to mediate color vision. Rods exist in only
one type, and as a result color vision is impaired or even absent under scotopic
lighting conditions.

Adaptation. A central property of photoreceptors, as well as many if not all cells
involved in neural activity, is that of adaptation [783]. Photoreceptors can si-
multaneously transduce a range of illumination that spans about four orders of
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magnitude [431]. Our environment has illumination levels that span from starlight
to direct sunlight, a range of about ten orders of magnitude (see Figure 2.4). Adap-
tive processes allow photoreceptors to function over this much greater range. We
experience its effect on a daily basis: it is sufficient to walk into a dark room from
bright sunlight to realize that our eyes adjust to allow us to see under the new con-
ditions. Effectively, our visual system adapts to the prevailing lighting conditions
so that we can still distinguish contrasts in the scene [774].

Adaptive processes give rise to both light and dark adaptation as well as chro-
matic adaptation. A demonstration of the latter is shown in Figure 2.7, where an
image is shown with a yellow and a cyan filter applied. To recover the correct
colors of the image, it is possible to adapt the retina to the yellow and cyan color
casts. This is achieved by staring at the fixation cross at the top of the image for
at least 30 seconds. The image below also has a fixation cross. By focusing on
this fixation cross after the adaptation period, the image should regain its normal
coloring.

Light Sensitivity. The light sensitivity of rods and cones is mediated by photo-
sensitive pigments that react with light. As light hits the photoreceptors, the pho-
tosensitive pigments break down (bleaching). In the case of rods, these photopig-
ments are completely depleted in lighting conditions above the mesopic range,
while cones are not fully depleted even in very bright conditions [179]. Photopig-
ment bleaching causes the electrical current present in a photoreceptor to change,
which results in a neural response transferred to the brain. Through this transduc-
tion process, the retina can translate light energy into a neural response, which
effectively is what allows us to see [325].

A final set of mechanisms occurring in the photoreceptors prevents them from
saturating while adapting to the enormous range of illumination in nature [180].
Several studies have shown that the photoreceptors do not respond linearly to the
full range of illumination [339, 5, 760, 179]. This nonlinearity was first stud-
ied by Naka and Rushton [525] and provides a very effective mechanism for the
compression of dynamic range. Intensities in the middle of the range lead to ap-
proximately logarithmic responses while as the intensity is increased, the response
tails off to a maximum. After that maximum is reached, further increases in inten-
sity will not lead to a corresponding increase in response of the photoreceptors,
ensuring that saturation will not occur [179].

Figure 2.8 shows the nonlinear response of the rod and cone cells to increasing
luminance values. The response for both types of photoreceptors can be modeled
with what is known as the Naka-Rushton equation:

V
Vmax

=
In

In +σn (2.1)

where V is the response at an intensity I, Vmax is the peak response at saturation,
and σ is the intensity necessary for the half-maximum response (also known as
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Figure 2.7. Adaptation is local, as can be observed in this demonstration. To see
the correct colors of the image below, first fixate on the upper cross for at least
30 seconds to allow the retina to locally adapt. By then focusing on the bottom
fixation cross, the image should appear normally colored. (Keysersberg, Alsace,
France, 2013)
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Figure 2.8. Photoreceptors respond nonlinearly to increasing luminance levels.
The Naka-Rushton equation models this nonlinearity, producing S-shaped curves
known as sigmoids.

the semi-saturation constant). The exponent n controls the slope of the function
and is generally reported to be in the range of 0.7 to 1.0 [179]. This functional
form is known as a sigmoid because it forms an S-shaped curve when plotted on
log-linear axes. In this model adaptation can be accounted for by changing the
value of σ . Moreover, this value could be used to model temporal adaptation.

Note that the response function of photoreceptors can be linked to natural
image statistics. It has been shown that the joint probability density function of
various components that make up images (illumination, reflectance, and textured
regions) leads to a lightness scale2 as function of illuminance that is remarkably
similar to the sigmoidal response function of photoreceptors that are shown in
Figure 2.8 [615]. More recently, lightness perception has been shown to directly
correlate with this sigmoidal response function [11]. Finally, temporal adaptation
is implicated in the enhancement of efficient gain control in the context of natural
images [694], as well as redundancy reduction [35, 37, 767].

Photoreceptor Mosaic. Photoreceptors are located in the retina with a somewhat
unexpected layout [8]. The S cones are sparse in the fovea and absent in the fove-
ola. In the peripheral retina, S cones are packed at regular distances [798]. The
L and M cones, on the other hand, are essentially randomly distributed over the
retina, although the ratio between the two increases toward the periphery [700].

The ratio between the L and M cones varies significantly between individu-
als [512, 630], although this has only a minor effect on the perception of color
[77, 576]. It has been postulated that this may be the result of plasticity in the

2The official definition of lightness is as follows: lightness is the attribute of visual sensation
according to which the area in which the visual stimulus is presented appears to emit more or less
light in proportion to that emitted by a similarly illuminated area perceived as the “white” stimulus.
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human visual system, whereby later processing in essence compensates for the
individual’s precise photoreceptor mosaic [531]. Similar plasticity could help ad-
just an individual’s visual system to long-term prevailing viewing conditions.

Given that at any given location in the retina there exists at most one cone,
color vision is necessarily also a spatial process: different cone types need to be
compared, and different cones are necessarily located in different positions. This
places a limitation on the visual acuity of color vision.

2.3.3 Horizontal and Bipolar Cells

The retina consists of several layers of neural cells. The photoreceptors make up
the first layer. As discussed above, their output is transmitted to a layer of bipolar
cells, which subsequently convey the signal to the ganglion cells. These in turn
carry the signal through the optic nerve to the LGN.

Bipolar cells take their input primarily from the photoreceptors and form the
start of several pathways. Some bipolar cells respond to light against a darker
background, forming the start of a so-called ON pathway. Others respond to
dark spots against a lighter background, and are part of the OFF pathway. One
could argue that the existence of separate ON and OFF pathways helps encode
polarity. There are approximately two times more retinal OFF pathways, which
encode negative contrasts, than ON pathways, which encode positive contrasts
[7]. From the bipolar cells onwards, electrical signals are transported in the form
of discrete spike trains. The firing rate of such spike trains encodes the quantity
transmitted. One can think of spike trains as encoding only positive numbers. To
also encode negative numbers (for instance, those corresponding to dark patches
against a light background), a separate pathway needs to be constructed. Both
L and M cone types are involved in both ON and OFF pathways, which can be
either chromatic or achromatic [780]. The S cones are only involved in separate
chromatic ON pathways [421].

In between the photoreceptors and the bipolar cells sits a further layer of cells
that provide lateral connectivity. These cells are known as horizontal cells. These
cells tend to have wide receptive fields, meaning that they connect to a large num-
ber of photoreceptors and bipolar cells over a significant spatial extent.

Due to the connectivity of horizontal cells, they are able to change the input
to bipolar cells dependent on signals carried from photoreceptors some distance
away. Horizontal cells provide inhibitory (opponent) signals to bipolar cells. This
means that if their input from photoreceptors is large, they reduce the input signal
available to the bipolar cells, and vice versa. Horizontal cells, therefore, form the
mechanism by which bipolar cells are able to respond to light patches on a dark
background or dark patches on a light background.

Thus, the opponent processing of the horizontal cells causes the receptive
fields of bipolar cells to be of the center-surround variety. A reasonable way to
think of such receptive fields is as if both center and surround are obtained by
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Center
Surround Center-surround

Figure 2.9. Cross-section of a center-surround receptive field. This receptive field
was created by subtracting two Gaussian profiles from each other.

maximally responding to a Gaussian-blurred version of the image, although the
size of the Gaussian filter for the surround is wider than the center. As shown in
Figure 2.9, this leads to a receptive field that resembles the classical Mexican hat
shape.

To visualize the responses carried by center-surround bipolar cells, we have
blurred a grayscale image twice and subtracted the result, shown in Figure 2.10.
The size of the receptive field was arbitrarily chosen and does not reflect actual
processing in the visual system. Note that circularly symmetric center-surround
receptive fields respond most strongly to circular features matched in size to the
filter width. Further, this type of center-surround processing also responds to
edges.

2.3.4 Amacrine and Ganglion Cells

Between the bipolar and ganglion cells lies a further layer of cells providing lateral
connectivity. This layer of amacrine cells also provides connections between ON
and OFF pathways as well as between rod and cone pathways. There exists a
large number of different amacrine cells, each with different functionality. They
appear to be involved in processes that allow the visual system to adapt to its
environment.

As a result of the multitude of amacrine cell types, the receptive fields of
ganglion cells are significantly varied [149]. They exist with center-surround re-
ceptive fields and may also show color opponency [129]. The latter happens, for
instance, when the ganglion cell is stimulated by a pathway originating with an
L cone, and it is inhibited by a pathway that started with an M cone. Thus, the
ganglion cells effectively encode a very different color space than the cones that
approximately correspond to red, green, and blue light. In fact, many ganglion
cells in the fovea are color opponent, encoding in their signal the proportion of
red against green, or alternatively the amount of yellow against blue.
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Center - Surround Surround - Center

Center Surround

Figure 2.10. The receptive field images at the bottom were processed by subtract-
ing two differently blurred achromatic versions of the input image. (Montezuma’s
Castle, Arizona, 2012)

Color opponency and spatial center-surround processing can occur simultane-
ously in a process called double opponency. Here, if the center of the receptive
field is red, then the surround will be green and vice versa. Likewise, a yellow
center will be flanked by a blue surround and vice versa. The result of such oppo-
nency is simulated in Figure 2.11.

Although the opponency is normally denoted as red-green and yellow-blue,
note that these cardinal color directions do not completely correspond to percep-
tual experience. Later modules in the visual cortex are thought to perform further
processing to arrive at the percepts of hues in terms of red, green, yellow, and blue
[159, 160, 161]. Finally, there exist ganglion cells that are selective for direction
and motion.

2.4 The Lateral Geniculate Nucleus and
Cortical Processing

The lateral geniculate nucleus (LGN) is the dominant recipient of signals trans-
mitted from the retina, and it is thought of as a relay station, effectively broad-
casting the signal to modules in the visual cortex. The receptive fields of neurons
in this area resemble those seen for ganglion cells, showing spatial and chromatic
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Input image

Center: red; surround: green Center: green; surround: red

Center: yellow; surround: blue Center: blue; surround: yellow

Figure 2.11. Double opponency demonstrated on an image of a pair of lorikeets.
Shown here are red-green, green-red, yellow-blue, and blue-yellow double oppo-
nent results. Note that these images are visualizations only; the results were cre-
ated at an arbitrary spatial scale and they were computed in sRGB color space
rather than LMS. The ratios between different cone types were approximately
taken into account. (Jurong Bird Park, Singapore, 2012)
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opponency. The LGN is organized in layers [173], termed magnocellular, parvo-
cellular, and koniocellular.

The magnocellular layers carry an achromatic center-surround signal. The
parvocellular layers mediate red-green color opponency, especially in the fovea
[147, 148]. This layer does not appear to receive input from S cones. The ko-
niocellular layers transmit several differentiated types of information, including
blue-yellow color opponency [173, 327]. The organization of the layers in the
LGN is retinotopic, in that the topology of cells reflects that of the retina. Thus,
nearby features in an image projected onto the retina will be processed by nearby
cells in the LGN. There is evidence that the ON and OFF pathways are augmented
with lagged and non-lagged responses, i.e., some signals are transmitted more
rapidly than others [175]. This would allow the calculation of temporal changes
and could form the basis for motion detection. There is also some evidence that
the spatial properties of some LGN cells change as a function of time (usually,
the spatial organization changes in a manner that looks like motion in a single
direction [162]).

Most of the signal transmitted by the LGN arrives in the visual cortex in a
module named V1, although some of the koniocellular layers transmit to the ex-
trastriate cortex and bypass V1 altogether [626, 693, 815]. Nonetheless, V1 is the
primary entry point for visual signals in the brain. From there, processing passes
through more than 30 visually responsive cortical areas [200].

Area V1 receives signals from the lateral geniculate cortex, and consists of
six different layers. Some of these layers are subdivided into sublamina [79, 476,
67]. There are further structures called blobs or patches. It is thought that the
structure of V1 relates to its function. Many cells in this area are orientation-
sensitive [355], a simulation of which is shown in Figure 2.12. This means that
their receptive fields are formed by elongated structures rather than the circularly
symmetric receptive fields in the retina and LGN [293, 319, 618]. Cells may also
be responsive to motion as well as changes to scale [777] or to binocular signals
[356, 477]. The retinotopic layout of the LGN is preserved in area V1 [199].
Area V1, like most, if not all, modules in the visual cortex has both feed-forward
as well as feed-back connections with many other processing units [38].

Other cortical areas, such as V2, V3, V4, and MT, are implicated in a variety
of different functions. Area MT, for instance, is known to be involved in the
perception of motion, while V4 may take part in color perception.

2.5 Implications of Human Visual Processing
The substrate of visual processing is organized in a way that may not be consid-
ered obvious. A small selection of features known to exist in the human visual
system were discussed in previous sections. For instance, we have presented ON
and OFF pathways, color opponency, and center-surround processing, as well
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Input image Even symmetric
filter (cosine)

Odd symmetric
filter (sine)

Magnitude

Figure 2.12. A simulation of direction-selective receptive fields. An even symmet-
ric Gabor patch (a windowed cosine, see inset, top left) was applied to the left
image, yielding the second image. An odd symmetric Gabor filter was applied to
the image as well. As an aside, the magnitude of the two receptive fields leads to
a response shown on the right. (Mont St. Michel, France, 2007)

as combinations of these. As a result, the signal that the brain receives is not a
straightforward image, but one that is already heavily processed. The organization
and structure of the human visual system leads to several important characteristics
[736], some of which are discussed in the following sections.

2.5.1 Visual Acuity

Visual acuity is defined as the resolving power of the human visual system [387].
The ability to detect and perceive fine detail is affected by various aspects of vi-
sion, including diffraction and aberrations in the ocular media, as well as photore-
ceptor density [696]. Note in particular that photoreceptor density varies across
the retina, cones being packed most densely in the fovea. This means that visual
acuity is highest in the fovea. Here, a single cone subtends approximately 28 min-
utes of arc, which means that this is also theoretically the highest resolving power
that cones could achieve. This would lead to a resolving power of about 60 cycles
per degree [104]. The rod system has lower visual acuity, pooling rod responses
to increase light sensitivity.

However, visual acuity may be limited by diffraction in the ocular media due
to the edge of the pupil. A point light source would project according to a point
spread function (PSF) on the retina. Diffraction would cause this point spread
function to consist of concentric rings of light, i.e., an Airy disk pattern. To be
able to separate a point source from a second point source some distance away,
the point spread functions of both light sources should not overlap. Two point
lights are considered sufficiently separated if the center of one PSF lies on the
first trough of the second PSF. This is formalized by Raleigh’s criterion, which
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links wavelength of light λ and the diameter of the pupil d:

a = 1.22
λ

d
(2.2)

Here, a is the angular radius of the first ring of the Airy disk pattern.
Further factors affecting visual acuity include refractive error, which occurs

if light refracted through the ocular media is not focused sharply on the retina.
Visual acuity is also dependent on the amount of illumination present in the scene
[617] and the corresponding state of adaptation of the eye.

Under certain circumstances, visual acuity may be significantly higher than
could be expected from the limitations imposed by diffraction and cone spacing
[797]. This is generally known as hyperacuity. An example of when this occurs
is during assessment of the alignment of two line segments—for instance, when
reading a caliper. This can be done with an accuracy of about five to ten times
higher than the normal resolving power of the human visual system. In essence, a
set of photoreceptors are involved in localizing the line segments. Assuming the
cones are of the L and M variety, their placement is randomized, which may help
in such localization tasks.

In some sense, hyperacuity achieves for human vision what superresolution
does in image processing. The randomization of cones helps with anti-aliasing.
One implication for the study of natural image statistics may be that image reso-
lution needs to be chosen high enough to anticipate the perception of edges and
their relative alignment.

2.5.2 Temporal Resolution

To be able to detect motion, the eye must be able to detect rates of change in the
image that falls on the retina. Some amount of time is needed to transduce light
and propagate the resulting signal to the brain. This poses a limit on how fast
or slow a signal can change and still be perceived as fluent motion [386]. For
instance, if the rate of change is too slow, then the sensation of fluent motion is
lost, and the stimulus is seen as flicker. At photopic light levels, the eye is most
sensitive to flicker at frequencies of around 15 to 20 Hz [307].

To detect two flashes of light separated in time, rods require an integration
time of 100 ms, while cones require 10 to 15 ms. Thus, the rod system is slower
to help improve light sensitivity.

2.5.3 Contrast

Contrast involves the relative values between points or regions in an image and
can be measured in many different ways. For a region in an image, it would, for
instance, be possible to compute root mean square contrast, which is the standard
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deviation of a set of pixels:

CRMS =

√
∑n2N (Ln�µL)

2

N
(2.3)

It would also be possible to normalize this measure of contrast by the mean µL:

Cnorm =
CRMS

µL
(2.4)

However, it can be argued that for complex images a more involved measure
would be appropriate—for instance, by computing the contrast on band-pass fil-
tered images [567].

If an image/stimulus is a small feature on a uniform background, then the
background luminance Lb will be close to the average luminance. In that case,
Weber contrast is appropriate. It is defined as:

CWeber =
L�Lb

Lb
(2.5)

For sinusoidal gratings, a different contrast measure is commonly used, a measure
known as Michelson contrast. This measures the differences between the peaks
and troughs of the grating:

CMichelson =
Lmax�Lmin

Lmax +Lmin
(2.6)

Humans are sensitive to contrast in images (whether natural or psychophysical
stimuli). This sensitivity depends on the frequency at which the contrast occurs,
as well overall light levels. More recently, it has been shown that contrast sen-
sitivity in natural scenes also depends on the distribution of local edges [54]. It
would be possible to plot threshold contrast against frequency, which leads to the
well-known contrast sensitivity function; this function is plotted for different light
levels in Figure 2.13 [106]. Note that for low light levels, the response is low-pass,
whereas at high light levels the response is band-pass.

2.5.4 Color Processing
Under photopic lighting conditions, the three types of cones are active, each in-
tegrating over the visible spectrum over a slightly different range and with differ-
ent peak sensitivities. Thus, human vision is trichromatic under these conditions
[814, 326]. As a result, in each region of the fovea where there are multiple cone
types active, color vision can emerge. However, as noted, different spectra may
lead to the same three integrations, which means that the output of the cones will
be identical and these different spectra cannot be differentiated. These spectra are
said to be metameric.
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Figure 2.13. Contrast sensitivity functions for different light levels [386, 433].

Trichromacy has a second implication, which is that almost any color can
be matched by mixing three other colors. This can be achieved, for instance, by
matching colors on a bipartite field, which is in essence a disk partitioned into two
halves. One of the halves displays the color to be matched, for instance, by means
of projection. The other half is illuminated by three projectors, each projecting a
given color by an amount that is user-controllable.

This method can also be used to infer the luminance of a colored patch. Here,
the colored patch is held fixed while the other half displays achromatic white in
an amount controlled by the user. The amount of light that is necessary to make
the border between the left and right half of the bipartite field minimally distinct
then represents the luminance of the colored patch [71].

When carrying out such experimentation on a display, significantly higher
accuracy can be achieved by replacing the bipartite field with a two-tone image of
a human face [400]. The accuracy gain stems from two characteristics of human
vision. First, humans appear to make the assumption that objects, including faces,
are predominantly illuminated from above (see Figure 2.14). Second, humans are
particularly adept at recognizing human faces, but only if illuminated from above.

Color opponent theory predicts that colors are perceived along three different
dimensions, namely, light-dark, red-green, and yellow-blue [328]. This is consis-
tent with perceptual experience [362] and after-images, as well as what is known
about retinal processing (see Section 2.3). There is also a strong link between
color opponent processing in the retina and statistical attributes of natural scenes,
as discussed in Section 10.3.
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Figure 2.14. Two-tone images of human faces are easily recognized if lit from
above (left). The inverted version of this image (right) is not easily recognized.
Images such as these are therefore good candidates for accurate color matching
experiments [400].

2.5.5 Visual Illusions

Human vision solves a complicated problem, which is to makes sense of the world
around us. One of complications stems from the fact that scene understanding
and navigation requires a mental image of a three-dimensional world that must
be derived from a pair of two-dimensional retinal images [413]. That this is a
complicated problem is well known and is, for instance, exemplified by the diffi-
culty of figuring out shape from shading in computer vision–related applications
[819, 589].

It appears that human vision makes many assumptions that help in image un-
derstanding. Figure 2.14 already showed an example, namely, that face recog-
nition is directly facilitated by ensuring that light comes from above. When this
assumption is broken, face recognition becomes significantly more difficult. Sim-
ilarly, a human face is more easily recognized when it is positioned right-side up.

The human visual system appears to assume that the scene being observed
does not contain anything special, i.e., there are no accidental viewpoints, light
comes from above and, possibly above all, the scene is in some sense natural.
When these expectations are broken, then the scene may be viewed as having
artefacts or, alternatively, a visual illusion may arise [283, 285].

In computer graphics, for example, achieving visual realism has been diffi-
cult for many years [608]. Only recently have modeling and rendering systems
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Figure 2.15. Cafe wall illusion. (Bristol, UK, 2006)

become available that add enough dirt, grime, and general detail that rendered
images have become difficult to differentiate from photographs. Leaving out such
detail, or omitting certain light paths because they are computationally costly to
render, may lead to images that are generally scene as plastic or fake.

Visual illusions occur when expectations are broken in specific ways. It can
be argued that human vision is betting on what is likely to be true about the world
given the evidence available [285]. Thus, the study of visual illusions may lead to
insights into human visual processing [284]. There are too many visual illusions
to list in this book; moreover, many of them involve very simple line drawings.
Illusions that can be reproduced in photographs or can be demonstrated as shaded
surfaces are less numerous.

The most common illusion that can be seen in a photograph is perhaps the cafe
wall illusion, discovered in Bristol by Richard Gregory [286] (see Figure 2.15).
Here, a set of rectangular tiles are positioned such that the horizontal grout lines
appear to be oriented differently. Due to the camera angle, however, these lines
should (and do!) all converge at the same point. In three dimensions, these lines
are parallel.

The center-surround organization found in the retina is thought to give rise to
several interesting phenomena. One consequence of center-surround processing
is the occurrence of Mach-bands [119, 483]. In essence, wherever a uniform
luminance gradient abruptly changes there may be the perception of either under-
or over-shoot. An example is shown in Figure 2.16 (top) where a linear ramp
abuts two uniform areas. At the transition point there is C0 continuity, but a
discontinuity in gradient. Processing such an image with a center-surround filter
shows the cause for the perceived under- and over-shoot as seen in Figure 2.16
(bottom).
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Stimulus showing Mach-bands (Profile of ramp)

Exaggerated response to ramp (Profile of response)

Figure 2.16. C0 continuity may lead to Mach-bands, seen as under- or over-shoot
where gradients are discontinuous.

A further consequence of center-surround processing is the Craik-O’Brien-
Cornsweet illusion, shown in Figure 2.17. This figure contains a step edge flanked
by ramps that smoothly vary their gradients [541, 674, 133, 401]. As a result, a
step edge is seen, suggesting that the left part of the image is lighter than the right
part. The shape of the ramps is chosen such that they generate little to no response
from center-surround mechanisms in the retina (see Figure 2.18). As the step edge
in the center does evoke a response from these mechanisms, the resulting percept
is similar as that which would be generated by an actual step edge flanked by
uniform regions.

A consequence of this type of retinal processing is that the visual cortex re-
ceives a signal that highly emphasizes edges. Perceiving the structure of a scene
in between edges may be based on a process called filling-in [197, 291, 423, 771],
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Craik-O’Brien-Cornsweet illusion (Luminance profile)

Masking the middle part reveals that the left and right parts have the same luminance

Figure 2.17. The Craik-O’Brien-Cornsweet illusion. In the top panel, the left and
right quarter of the image will appear to have a different gray level. Masking the
center half of the image reveals that the actual luminance levels are identical.

suggesting that the brain completes its perception of a scene predominantly on the
basis of edges. One may therefore expect edges and their statistics to be of crucial
importance in human vision. Edge statistics are discussed further in Section 5.3.3.

An alternative suggestion is that filling-in is aided by other statistical regular-
ities in natural images, specifically the nature of the power spectrum [150], which
is known to give a relation between power and frequency of 1/ f 2. Chapter 6 is
devoted to this particular natural image statistic, which has proven to be one of
the most ubiquitous.

That the Craik-O’Brien-Cornsweet illusion may have yet a different and
higher level explanation can be seen in Figure 2.19 [593]. Here, the edge of
the image is changed to suggest curvature in depth, and this appears to enhance
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Figure 2.18. The Craik-O’Brien-Cornsweet illusion passed through a center-
surround filter. Note that there is virtually no response for most of the image,
except near the edge.

Figure 2.19. The Craik-O’Brien-Cornsweet illusion becomes stronger if it is placed
in context. Here, for instance, the shape of the image suggests a 3D surface, which
enhances the effect [593].

the effect. It may be that this simple change to the figure increases the probability
that the luminance profile is due to illumination, and that the human visual system
is able to detect this. This effect can be enhanced further by embedding it into a
scene that affords further 3D cues, as demonstrated in Figure 2.20. Incidentally,
the strength of this illusion also relates to the assumption that light comes from
above. Thus, while center-surround processing may be involved, it is by no means
the only component of human visual processing that contributes to this variant of
the illusion.
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A 3D stimulus showing a Cornsweet-type profile

Masking the center part shows that top and bottom parts have identical luminance

Figure 2.20. The Craik-O’Brien-Cornsweet illusion becomes stronger if it is placed
in context. Here, for instance, the shape of the image suggests a 3D surface, which
enhances the effect [593]. (Image used by permission from Dale Purves.)
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Chapter 3

Image Collection
and Calibration

To analyze the world around us, we first need to capture a representation of it.
Although information in the real world spans many different modalities, current
technologies can only capture a subset of that wealth of information. A photo-
graph of a natural scene will only show a small portion of that scene, compressed
to two dimensions and capturing only a subset of the spectral information avail-
able. Image statistics, consequently, capture not only regularities in nature but
also inherently those of the image acquisition process. To that end, before pro-
ceeding to analyze images using the statistical tools that we will present in the
remainder of this book, we will explore different capture possibilities and under-
stand their respective limitations.

The statistical analysis of images typically involves the collection of large
ensembles. Various image data sets are already available and some existing sets
will be discussed in Section 3.3, but in order to create new ensembles, several
points need to be considered. One might need to create new ensembles if the
intended application involves a specific class of images, such as high dynamic
range imagery, or if the study is to understand human (or animal) vision under
specific viewing conditions.

Advances in camera technology have made the capture of higher resolution,
higher dynamic range, or even hyperspectral imagery possible. Each such type of
image presents its own advantages in terms of information gain but also its own
specific challenges regarding capture, calibration, and analysis.

Issues relating to the collection of accurate image ensembles of different types
of imagery will be discussed in Section 3.1. Before analyzing the collected im-
ages, it is prudent to remove artifacts and irregularities that are due to the camera,
lens, or the settings used to capture the scenes. These can include noise, distor-
tions due to imperfections of the lens, or variations from changes in illumina-
tion, or even weather conditions. The calibration process and preprocessing steps
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42 3. Image Collection and Calibration

necessary to account for such irregularities will be covered in Section 3.2. Finally,
existing image collections suitable for image statistics applications are discussed
in Section 3.3.

3.1 Image Capture
In most digital imaging applications, image data is typically captured, processed,
and displayed as a 2D pixel grid, where each pixel is encoded as a triplet of 8-bit
numbers. This representation is the most common form of digital imagery and
the one we will use for the remainder of this book, unless otherwise specified.

Although adequate for most applications, traditional images have a number of
limitations in terms of resolution, color gamut, spectral information, and dynamic
range. Additionally, the type of intended application will pose further restrictions
on the required number, resolution, and type of images. Finally, the choice of cap-
ture device and image modality (e.g., multi-spectral, depth, RGB) will profoundly
affect the regularities and effects that can be measured within an ensemble. As
such, a number of issues need to be considered before capturing images for an
ensemble. The following largely depend on the aims of the study:

� Type of imagery. For most purposes, traditional imagery as discussed
above is typically sufficient. To fully capture the visible information in
real environments, however, additional imaging modalities are necessary.
For instance, high dynamic range (HDR) images can capture a wider range
of luminance values, making them more appropriate for scenes of more ex-
treme lighting (such as indoor scenes or night scenes where artificial light
sources are much brighter than the rest of the scene), while panoramas or
wider angle images can capture a larger part of the field of view—or even
the full scene in the case of spherical panoramas. Some examples will be
discussed in more detail in the following sections, although a comprehen-
sive account of all image modalities is beyond the scope of this book.

� Number of images. Generally, the accuracy and confidence of statistical
findings increases with larger sample sizes [138]. However, in the case of
image statistics, the trade-off between number of images and data collection
time often needs to be resolved. The number of images appropriate for a
particular study largely depends on its aims, with studies varying from a
few hundred [825, 640, 654] to a few thousand images [316, 352].

� Camera. The selection of capture device will of course largely depend on
the image modality of interest. For standard digital imaging, although most
cameras currently available on the market offer high-resolution acquisition,
a several trade-offs may need to be considered, including noise, the quality
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of lens optics, and controllability of the camera settings. These issues will
be discussed further in Section 3.2.

3.1.1 Photographer and Camera Bias

When collecting images for statistical analysis, the camera settings, lens charac-
teristics, and composition of the images can all introduce bias. Depending on the
application, some forms of bias may be desirable or even necessary. For instance,
in studies linking statistical regularities of natural scenes to properties of the vi-
sual system, the field of view and orientation of images may be chosen such that
they approximate the image formed in the retina [751]. In such a scenario, it is
likely that most images will be oriented such that the horizon is in fact horizon-
tal and will contain both land and sky. The inclusion or exclusion of such forms
of bias is likely to influence the statistical regularities that arise from an image
collection.

Figure 3.1 shows the effect of orientation bias for a simple scenario. For
this example, 50 landscape images were considered. A subset of these images is
shown in Figure 3.1a. A 400� 400 square was cropped from the center of each
image and averaged to produce the result in Figure 3.1b. As these images were
captured with aesthetic composition in mind, the horizon was aligned with the
horizontal axis with the image, resulting in the horizontal structure still visible in
Figure 3.1b. In contrast, Figure 3.1c was produced by applying a random rotation
to each image, thereby removing the orientation bias of the photographer and the
resulting structure in the average image.

Although Figure 3.1c could be seen as a less biased representation of the “av-
erage landscape,” either version can be useful depending on the application. Hu-
mans tend to see a horizontally aligned world, and therefore Figure 3.1b is a closer
representation of the average natural scene according to the human visual system.
Other forms of bias, however, such as lens distortions, fixed pattern noise, or a
limited type of images (e.g., only including images of one location when ana-
lyzing natural images in general) are not inherent to the application of subject
of the study but are introduced by the researcher. Much like in experimental de-
sign [138], such forms of bias should be avoided or corrected for where possible.
These are further discussed in the context of image correction and calibration in
Section 3.2.

3.1.2 High Dynamic Range Imaging

As we saw in the previous chapter, the human visual system employs a number
of processes in order to adapt to the wide range of illumination present in nature.
Standard imaging techniques can only capture and process a subset of that range:
whereas the visual system can simultaneously adapt to around four orders of mag-
nitude [431], 8-bit imagery can only represent 256 distinct levels per channel.
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a. 12 of the 50 landscape images used

b. Average of 50 landscape images
horizontally oriented

c. Average of 50 landscape images
randomly oriented

Figure 3.1. A set of 50 landscape photographs (a) were analyzed showing the
effect of orientation bias. A 400 � 400 pixel square was cropped from the center
of each image and averaged. In (b) the images were horizontally aligned, while in
(c) a random rotation was first applied to each image, removing orientation bias.

To counter these limitations, hardware and software solutions have been de-
veloped that allow the capture, processing, and display of images with a wider
dynamic range of intensities. These solutions are known as high dynamic range
(HDR) imaging [609]. In contrast to standard imagery, HDR data is (at least
conceptually) represented using floating point numbers, allowing for a virtually
unlimited range to be represented, with practically no quantization.

Capture. HDR scenes can be captured in a number of ways. The most commonly
used approach involves capturing a series of differently exposed versions of the
scene, known as exposure bracketing, that are then merged into the HDR image
[494, 164, 511]. An example is shown in Figure 3.2. Several modern digital SLR
cameras offer automated settings for bracketing (“Auto-exposure Bracketing”),
greatly simplifying the process. The number of brackets offered typically ranges
from two or three to a maximum of nine in higher range models of each brand.
These are then merged into a single HDR image.

Recently, cameras capable of directly capturing HDR still content have be-
come available. Specialized cameras exist that are capable of capturing 360�
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a. HDR image (manually tonemapped for print) b. Exposures

Figure 3.2. A series of differently exposed versions of the same scene are merged
into a single high dynamic range image. To display or print an HDR image, the wide
dynamic range is compressed to that of the display or printed medium through
tonemapping. The result preserves more details than any single exposure can.
(Near Page, Arizona, USA, 2012)

spherical images. Some examples are the SpheroCamHDR by Spheron VR,
which uses a single-line CCD and offers up to 26 f-stops of dynamic range, and
the Civetta by Weiss AG, which uses a full frame sensor and a fish-eye lens to cap-
ture up to 30 f-stops of dynamic range. For capturing HDR video content, a cam-
era was recently developed, which simultaneously captures differently exposed
versions of the same scene [742]. Please refer to Christian Bloch’s book [66] for
an up-to-date account of HDR camera developments.

Merging. The aim of the merging process is to reconstruct a linear, floating point
representation of the illumination in the scene from the differently exposed im-
ages, which poses a number of issues. If images are not captured in RAW format,
the camera is likely to apply a nonlinearity (usually close to the sRGB curve),
which needs to be corrected. Additionally, each exposure is likely to contain
some over- and under-exposed pixels, and movement of elements in the scene or
of the camera will lead to mismatches between the exposures, which in turn can
result in ghosting artifacts.

A sequence of differently exposed images can be used directly to recover the
response curve. A commonly used method is proposed by Debevec and Ma-
lik [164]. By exploiting a property of both physical film and digital sensors known
as reciprocity (meaning that halving the irradiance hitting the sensor E and simul-
taneously doubling the exposure time ∆t will result in the same pixel values p),
a linear system is derived. The solution to that yields the inverse function g�1 to
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the camera response curve. Additional methods for recovering the response curve
of a camera and for converting image data to accurate radiometric quantities are
discussed in Section 3.2.

After the response curve g is obtained, the image irradiance En for a given
pixel of an exposure n can be computed given the exposure time ∆tn and the value
of that pixel pn as follows:

En =
g�1(pn)

∆tn
(3.1)

If a sufficient number of exposures is collected, each part of the scene should be
correctly exposed in at least one of the images. The irradiance value for a given
pixel p in the HDR image can then be computed as a weighted average of the
corresponding pixels of each exposure.

Several weighting functions have been proposed in the literature. Mann and
Picard [494] merge the exposures using certainty functions computed from the
derivatives of the response curves for each differently exposed image. A simpler
approach is used in [164] where a hat function suppressing values that are likely
to be under- or over-exposed is applied. Finally, inspired by signal theory, Mit-
sunaga and Nayar [511] propose a weighting function that takes into account the
signal-to-noise ratio. Despite their differences, any of these approaches will yield
satisfactory results. More recently, a solution for merging image at larger expo-
sure intervals was developed, allowing for scenes with extreme dynamic ranges
to be captured with relatively few exposures [742].

Many software packages are capable of merging exposures into an HDR im-
age [66]. The Adobe Photoshop package offers a “Merge to HDR” function that
allows for manual control over the image alignment. Other packages include
HDRSoft’s Photomatix [320] and HDRShop [163], both of which offer batch pro-
cessing functionality. Finally, a free option that is only available for Apple com-
puters is Greg Ward’s Photosphere [20] (see anyhere.com), which is also an excel-
lent viewer for HDR image collections. For more information regarding available
HDR software and creative solutions, refer to [66] or to http:\hdrlabs.com.

Although many algorithms exist currently for correcting ghosting artifacts due
to movement in the scene (many included in the software discussed above), it
cannot be guaranteed that they will not affect the statistical properties of the re-
sulting images [609]. As such, unless the effect of such algorithms is of interest,
we recommend using images with no such artifacts for the purposes of statistical
analysis. Thus, to minimize ghosting and alignment artifacts, scenes with min-
imal movement should be chosen and the camera should ideally be placed on a
tripod.

3.1.3 Field of View
Different lenses and camera setups can capture different portions of the scene.
Any given scene can be thought of as projected onto a sphere with the observer

anyhere.com
http:\hdrlabs.com
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Figure 3.3. A given scene can be represented by a (hemi)sphere, resulting in a
360-degree field of view. Any image from that scene forms a slice on the sphere.
To capture the complete scene, several overlapping slices are necessary.

or imaging device placed at its center, while a given image can be seen as a slice
of that sphere (Figure 3.3). The angle subtended by the image is the field of
view (FoV) of the lens. A fish-eye lens can capture almost 180 degrees of the
hemisphere and therefore has a wide FoV, while a zoom lens will only be able to
capture a smaller slice and thus has a narrower FoV.

To study entire scenes or to remove bias due to orientation or composition, the
complete sphere representing a scene can be captured in the form of a panorama.
Panoramic images are increasingly finding applications within computer graphics
applications. Such images are often combined with the HDR techniques described
earlier to capture accurate scene illumination for relighting or compositing [609,
66], or they are used for creating immersive virtual reality environments [118,
720].

With the exception of a few specialized (and considerably expensive) camera
systems such as the SpheroCamHDR by SpheronVR1 or the Ladybug series by
PointGray,2 commercially available lenses can capture at most 180 degrees of
visual angle. To capture the complete sphere for a scene, an FoV of 360 degrees
horizontally and 180 degrees vertically is necessary. This is typically achieved by
capturing and combining (stitching) a series of images, with each image capturing
a partially overlapping slice of the hemisphere. Figure 3.4 shows a 2D illustration
of this process.

As with HDR capture, to be able to combine a series of images into a panorama,
the overlapping parts of consecutive images need to align correctly. In addition,
the exposure settings of the camera need to remain the same for the whole scene.

1http://www.spheron.com/en/spheron-cgi/products/spherocam-hdr.html
2http://www.ptgrey.com/products/ladybug2/ladybug2_360_video_camera.asp

http://www.spheron.com/en/spheron-cgi/products/spherocam-hdr.html
http://www.ptgrey.com/products/ladybug2/ladybug2_360_video_camera.asp


i
i

i
i

i
i

i
i

48 3. Image Collection and Calibration

Figure 3.4. To capture a panorama, a sequence of overlapping images is taken
by rotating the camera on the focal point (shown as a red dot). To combine the
images into the panorama, stitching algorithms find matching features between
images and as such require some amount of overlap between subsequent shots
(the red slice in the image).

Note that especially in outdoor photography, it is likely that a single exposure
setting will not be enough to capture the full dynamic range of the scene both
towards and against the sun. To capture such scenes, techniques from the pre-
vious section can be combined with the ones discussed here. Namely, for each
panoramic slice, multiple exposures can be shot and combined [66].

Although with some luck and a very stable hand, it is possible to shoot artifact-
free panoramas handheld; to ensure that images can be correctly aligned and
stitched, using a tripod is recommended. Ideally, the nodal point of the tripod
head should coincide with the focal plane of the camera, usually indicated with a
symbol similar to 
. Such tripod heads are known as panorama heads and can be
either manually constructed3 or commercially obtained.4

Once an image sequence covering the full hemisphere has been captured,
stitching algorithms can be employed to combine them into a single panoramic
image [718, 80]. Interestingly, some of these algorithms rely on statistical regu-
larities themselves [456]; one example will be discussed in Chapter 5. Stitching
algorithms first detect features on each of the images and, using feature matching
techniques, align correspondences. Once the images are aligned, distortions and
variations in exposure or color may be removed and finally the images are blended

3http://www.stockholmviews.com/diyphotogear/pano_head.html
4http://wiki.panotools.org/Heads

http://www.stockholmviews.com/diyphotogear/pano_head.html
http://wiki.panotools.org/Heads
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into a single image. Currently, stitching functionality is offered both in general
image editing packages such as Adobe Photoshop and dedicated packages such
as the open-source Hugin.5

Statistical Analysis of Panoramas. Despite the obvious benefit of depicting the
whole scene rather than a portion of it, panoramic images pose additional chal-
lenges in terms of analysis, especially in the context of image statistics. Inevitably,
to store, analyze, and view panoramas, a mapping between the spherical scene and
a 2D representation is necessary, a problem similar to that faced by map design-
ers. Several different projections have been employed, both in mapping and in
panoramic imaging, to achieve such a mapping [111, 643].

To analyze panoramic images, the 2D rectangular mapping of the 3D scene
can be directly considered. However, distortions due to the projection chosen
may affect the statistical regularities that arise. For instance, straight lines may
no longer appear straight. Alternatively, techniques that operate on spherical
surfaces may be employed, such as spherical harmonics [335, 484] or spheri-
cal wavelets [657]. For a more detailed discussion on the statistical analysis of
spherical panoramas, please refer to the work of Dror et al. [182, 185].

3.1.4 Multispectral and Hyperspectral Imaging
Image modalities discussed so far are limited in their representation of the visible
spectrum. HDR technologies allow for a wider range of intensities to be captured,
but color is typically restricted to a three-channel encoding. Light in nature is de-
fined along a continuous spectrum of wavelengths and the human visual system
is capable of perceiving light between 400 and 700 nm [774] (see Figure 3.6). As
we have briefly discussed in the previous chapter, the human visual system can
obtain a sufficiently accurate representation of the visible spectrum from three
types of photoreceptors, each with a wide response centered at different wave-
lengths. Another way to think about it would be that the visual system “samples”
the spectrum using three overlapping sample ranges.

Similarly, typical camera sensors filter light using three filters with differ-
ent sensitivities. The filters are placed over the sensor pixels in a specific pat-
tern [526]. A commonly used pattern, known as Bayer pattern [40], and the sen-
sitivities of an example camera are shown in Figure 3.5. Although the sensitivities
of cameras are different to those of the photoreceptors in the visual system, their
purpose is similar [683]. They aim to capture a representation of visible light with
the least amount of data possible.

This representation is sufficient for most imaging scenarios. However, some
applications, such as studies of animal vision [500, 143], might require either a
denser representation of the visible spectrum or information outside the visible
(by humans) spectrum. Similarly, to accurately study the responses of human
photoreceptors, the full spectrum may need to be captured [640].

5http://hugin.sourceforge.net/

http://hugin.sourceforge.net/
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a. Spectral sensitivities of Nikon D300 camera b. Typical Bayern pattern

Figure 3.5. The spectral sensitivities of a Nikon D300 camera are shown on the
left (adapted from [683]). Although very different quantitatively to the sensitivi-
ties of the three types of photoreceptors in the visual system, conceptually they
serve a similar purpose: they sample the light spectrum using three overlapping
responses. On the right, a typical filter array is shown. Such an array is placed on
the camera sensor to filter incoming light.

400 450 500 550 600 650 700 750ultraviolet infrared
Wavelength (nm)

Figure 3.6. An illustration of the visible spectrum.

Three main solutions are available for capturing spectral data. Tunable6 or
fixed narrow-band filters are often used to acquire spectral data in the context of
image statistics, each filter capturing a narrow slice of the spectrum [78, 302, 303,
116]. Although this is a simple solution and can be used in conjunction with non-
specialist cameras, it poses similar issues to HDR capture as it requires the same
scene to be imaged multiple times. If objects in the scene move, occluded parts
of the scene will be missing in some spectral bands.

Instead of sampling the spectral dimension, a prism or diffraction grating may
be used to capture the full spectral distribution. In this case, however, only limited
spatial resolution is possible. At the extreme, a single point is sampled (e.g.,
through a spectrometer) or a scanline (e.g., pushbroom scanning) [635]. More
recently, an occlusion mask was employed to increase the spatial resolution of the
prism-based approach, albeit at the cost of increased signal to noise ratio [186].

The third class of spectral imaging is known as Fourier Transform spec-
troscopy [45, 42]. Using an interferometer and a set of movable mirrors, an

6For example, http://www.spectralcameras.com/varispec.

http://www.spectralcameras.com/varispec
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interferrence pattern can be captured and subsequently analyzed to obtain the
spectral distribution of the incoming light. This form of spectroscopy is used
mostly in chemistry research and is typically limited to a single point of light.

The filter-based approach has often been used in the context of image statistics
as it offers the most flexibility in terms of capture. Since each image depicts
the same 2D scene at a different band of wavelengths, existing image processing
techniques may be directly applied to the data, simplifying the analysis of the
resulting data. Several hyper- and multi-spectral databases of natural and urban
imagery collected using such an imaging system are discussed in Section 3.3.

3.1.5 Depth and Range Capture
All image modalities discussed so far map a 3D scene to a 2D representation,
resulting in the loss of depth information. Within real environments, our visual
system makes use of several cues to determine depth in the scene [554]. Cues
such as perspective or atmospheric haze are still available in 2D images, while
motion parallax and binocular cues cannot be reproduced without stereo or motion
information.

Broadly, a 3D representation of a scene can be obtained through reconstruc-
tion from one or more two-dimensional images of the same scene [719, 660] or
through 3D scanning [142, 27, 50]. The former class of approaches offers inter-
esting applications in the context of computer vision and graphics [50]. Inherent
limitations of the registration and reconstruction processes, however, mean that
3D data generated through such methods is unlikely to be an accurate representa-
tion of the real scene geometry.

The latter class of 3D acquisition processes, namely 3D scanning, takes many
forms, each with its respective benefits, limitations, and suitable applications. In
contrast to the 2D reconstruction solutions discussed earlier, where normal 2D
cameras can be used, 3D scanning is achieved through specialized devices and
optical systems. The remainder of this section will give an overview of the main
3D scanning techniques, focusing in particular on the ones best suited for cap-
turing the geometry of natural scenes and environements and will briefly discuss
issues related to processing 3D scanning data.

Contact Scanning. The most accurate way to obtain 3D geometry information is
through contact scanning systems, where a mechanical arm or probe is physically
moved over the surface to be scanned. Such systems are found mostly in manu-
facturing and offer a high degree of accuracy but require contact with the scanned
objects.

Structured Light. With this approach, a pattern of light with known character-
istics is projected onto the object. Deformations in the pattern are then used
to recover the geometry of the object. This method allows for an entire two-
dimensional field of view to be captured at the same time and, as such, is one
of the most efficient means of capturing geometry. Additionally, depending on
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Surface

Laser source

Image sensor

θ° Lens

Laser point

Surface
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a. Triangulation scanning—point b. Triangulation scanning—stripe

Figure 3.7. An illustration of triangulation-based laser scanning using a point laser
source and a laser stripe.

the pattern used and the precision of the calibration process, this method can
achieve very accurate reconstruction [644, 551, 623, 513]. Recently, structured
light–based solutions employing infrared light have been used to great success in
Microsoft’s Kinect.

As this class of 3D scanning techniques relies on light being reflected from
the surface that is scanned, transparent and translucent objects as well as geomet-
ric configurations that lead to inter-reflections are likely to distort the recovered
geometry [432, 292]. Additionally, structured light methods offer a limited spatial
range and thus are better suited for scanning small-scale scenes such as objects or
indoor environments.

Triangulation-based Scanning. This form of 3D scanning illuminates the object
using a laser point light source and relies on trigonometric triangulation to de-
termine the distance between the scanned surface and the scanner. To achieve
that, a sensor is placed at a known distance and angle from the laser source. As
the light from the laser source reflects off the object surface towards the sensor,
the distance can be calculated from the position of the reflected light on the 2D
sensor [123, 142]. This form of scanning is illustrated in Figure 3.7.

As the laser source is approximately a point light source, only a single point
of the surface is captured each time. To reconstruct the whole surface, the laser
ray may be fanned into a stripe, effectively capturing a scanline of the 3D surface.
Using mirrors, the laser stripe can be swept over the object, capturing the full
surface, as illustrated in Figure 3.7b [48, 155].

Although triangulation 3D scanners can achieve a high degree of accuracy,
they are restricted to a range of a few meters and are therefore suitable for small
to medium scale scenes, such as cultural heritage applications [459]. Addition-
ally, the laser source needs to be at a certain distance from the imaging sensor
(baseline) to enable the triangulation calculation.
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Surface

Outgoing light pulse

Image sensor

Returning light pulse

Distance d

Figure 3.8. An illustration of the time of �ight principle. A pulse of light re�ects
off the object surface and is captured by a sensor element in the camera. As the
speed of light is known, the distance between the camera and the object can be
computed.

Commercial examples of this technology include the DLT Laser Range Scan-
ner7 and the Konica Minolta series of laser scanners.8

Time of Flight Cameras. An alternative 3D scanning solution is implemented in
time of �ight (ToF) cameras. The principle behind this technology relies on the
known speed of light c. A pulse of light is sent to the object and the time t it takes
for the pulse to return to the camera is measured. From this, the distance to the
surface can be computed as d = tc

2 [301]. Figure 3.8 shows an illustration of the
ToF principle.

ToF cameras typically consist of an illumination element, such as infrared
light [436] or a laser source [373], a lens, and an image sensor, such as a CMOS
sensor.9 Unlike triangulation systems, the illumination element can be placed
very near the sensor, allowing for very compact designs. Since the travel time of
the light pulse is extremely short, the accuracy of such a system depends highly
on the precision of the timing measurements and the type of light source selected.
Additionally, since the sensing element of a ToF camera needs to detect light, it is
inherently sensitive to ambient light and scattering. Many commercial solutions
employ the time of flight technology for 3D scanning. Some examples include
the Leica10 and Riegl11 range scanners.

3D scanned data typically takes the form of a 3D point cloud. Depending
on the scene, discontinuities and holes may be present in the point cloud. In
computer graphics applications, such holes may be filled and the resulting mesh
may be smoothed for further processing (e.g., model acquisition) [778, 156]. Al-
though such processing is appropriate in applications where visual artefacts are
undesirable, depth information may be distorted and therefore not suitable in the

7http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-3932/6095_read-8882/
8http://sensing.konicaminolta.us/technologies/laser-triangulation/
9Fotonic range cameras: http://www.fotonic.com/content/Products/Default.aspx.

10http://www.leica-geosystems.us/forensic/
11http://www.riegl.com/

http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-3932/6095_read-8882/
http://sensing.konicaminolta.us/technologies/laser-triangulation/
http://www.fotonic.com/content/Products/Default.aspx
http://www.leica-geosystems.us/forensic/
http://www.riegl.com/
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context of scene statistics. Statistical applications that make use of range data are
discussed in detail in Chapter 11.

3.2 Post-processing and Calibration
When measuring the statistical regularities of an image ensemble, some care is
necessary to ensure that irregularities, artifacts, and nonlinearities due to the cam-
era, lens, or shooting conditions do not affect the results. To avoid such effects,
the properties of the equipment used need to be accounted for. Moreover, to en-
sure that the images are calibrated and, therefore, pixel values between them are
directly comparable, properties of the scene need to be measured.

3.2.1 Radiometric Calibration

Images captured with a digital camera are typically encoded in a device-dependent
space, which represents the response of the particular sensor. Although SLR cam-
eras often offer settings for sRGB and Adobe RGB encodings, due to manufactur-
ing restrictions and tolerances, actual sensor responsivities may deviate from the
ideal sRGB curve. In order to map pixel values to real-world radiometric quan-
tities, the response function of the camera, which is the mapping between sensor
illuminances to pixel values, needs to be known first. Although this information
is not generally available, the nonlinearities for a particular camera or sensor can
be recovered through the use of calibrated input [719].

The relationship between scene radiance and pixel values can be recovered
in two ways, and the process is known as camera characterization. Specialized
equipment can be used, such as a radiance meter, which can measure the response
of the camera to particular wavelengths [610]. More commonly, a specific color
target (such as the GretagMacbeth ColorChecker Chart) can be used in conjunc-
tion with a spectrophotometer to match measured XYZ values to the RGB values
captured by the camera [503, 562].

Once a number of matches between patches (which are either measured or
known through a color target) and corresponding pixels in the image are made, a
mapping needs to be determined for all possible RGB values. Lookup tables store
the data of such measured/captured pairs [361], which can be used for future ref-
erence. If a large enough number of samples is collected so that the camera’s
gamut is densely populated, then XYZ values corresponding to RGB samples not
in the lookup table can be estimated using three-dimensional interpolation. Al-
ternatively, if the number of samples available is not sufficient for interpolation, a
function can be fitted to the available data, at the cost of increased computational
complexity [338]. More recently, a comprehensive database of the space of pos-
sible and plausible camera responses was created, allowing for accurate modeling
of camera responses with fewer parameters [290].
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Figure 3.9. Longitudinal (left) and lateral (right) chromatic aberrations are shown
(adapted with permission from [610]).

3.2.2 Lens Aberrations

The lens is responsible for focusing the light coming from the scene to an image
plane (which may be a sensor in digital cameras or the film in analog cameras).
For many applications, it is sufficient to model the camera as a simple pinhole
whereby no lens is present and the aperture through which the light enters is a
point. To model the various effects of an optical system to the image, however,
more complex lenses need to be considered.

Lenses can consist of a single element, in which case they are referred to
as simple lenses or multiple elements, called compound lenses. For a detailed
description and models of lenses, the reader is referred to [799, 677, 610]. As-
suming Gaussian optics (lenses are arranged along a single reference axis, and
all light rays make only small angles φ with this axis, so that sin(φ) � φ and
cos(φ)� 1), the relationship between the focal length of a lens f , the distance to
an object s0, and the distance behind the lens where the image is formed (si) is
given by:

1
f
=

1
s0

+
1
si

(3.2)

Imperfections in the design or construction of such lenses can cause them to vi-
olate the assumption of Gaussian optics. These deviations are known as aber-
rations and can be broadly categorized as chromatic, where the optical system
behaves differently for different wavelengths, and monochromatic, where the dis-
tortions in the image are apparent in all color channels.

Chromatic Aberrations. Lens elements can have wavelength-dependent indices
of refraction, resulting in different colors focusing in slightly different places.
This causes longitudinal or axial chromatic aberration, which appears as chro-
matic image blur [75] (see Figure 3.9). Typically this form of aberration is man-
aged optically, using a pair of thin lenses with different refractive indices, known
as achromatic doublets. Such systems can reduce longitudinal aberration effects
but not always completely remove them.

Another type of chromatic aberration is lateral chromatic aberration, which
is the result of different wavelengths hitting the image plane at slightly different
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b. Coma c. Astigmatisma. Spherical aberration

Figure 3.10. Three of the four blurring aberrations.

positions. This is more commonly known as color fringing and can be reduced
digitally. This can typically be achieved by realigning the color channels of the
image [491], which can compensate for the effect of the color shifting to some
extent. Alternatively, for a more accurate reconstruction, a more complete char-
acterization of the optical system can be utilized [389].

One particular case of chromatic aberration specific to digital cameras, es-
pecially ones using a charge coupled device sensor (CCD), is known as purple
fringing. This effect is caused by a combination of factors that operate in ad-
dition to the lens aberrations described earlier. Highlights in the scene that are
overly bright can cause some of the CCD quantum-wells to flood, creating the
visual effect of blooming. Additionally, a false color effect can be created by the
demosaicing process [398].

A number of digital solutions are available for correcting the effects of chro-
matic aberrations in images with various levels of accuracy. DxO Optics handles
chromatic aberrations by taking into account the characteristics of the lens where
possible [188]. A similar approach is also found in PTLens [198]. Adobe Pho-
toshop (version CS4 tested) provides simple sliders to account for red/cyan and
blue/yellow shifting.

Monochromatic Aberrations. A wider range of artifacts in images appears as the
result of monochromatic aberrations. These include blurring aberrations and ge-
ometric distortions. Blurring aberrations can be further divided into spherical
aberration, coma, astigmatism, and Petzval field curvature.

Spherical lenses are commonly used in optical systems as they are relatively
easy to manufacture, but their shape is not ideal for the formation of a sharp image.
Spherical aberrations are the consequence of light rays farther from the lens axis
(marginal) focusing at a different position than rays passing through the middle
of the lens. When marginal rays focus nearer the lens than the principal rays,
the effect is known as positive or undercorrected spherical aberration, while a
marginal focus farther away from the lens than the paraxial focus causes negative
or overcorrected spherical aberration [772]. (See Figure 3.10a.)

Comatic aberrations cause objects farther from the optical axis to appear dis-
torted. Positive coma occurs when marginal rays focus farther away from the
optical axis than principal rays, while negative coma is the oposite effect, namely,
the marginal rays focusing closer to the optical axis. (See Figure 3.10b.)
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A third type of blurring aberration is known as astigmatism and is the result
of off-axis rays of different orientations focusing at slightly different positions.
The meridional plane for an off-axis object point is defined by that point and the
optical axis. The plane orthogonal to the meridional plane is known as the saggital
plane. Rays along these two planes focus at different positions on the optical axis.
As such, if the lens is focused such that the meridional image is sharp, blur will
occur in the saggital direction and vice versa. (See Figure 3.10c.)

A final aberration considered here is a consequence of the field curvature.
The image and object planes are generally considered to be planar. However, in
the case of spherical lenses they are in fact spherical, which is known as Petzval
field curvature. Regions of the image farther from the optical axis increasingly
deviate from the planar assumption. This is more evident when a planar image
plane is used (such as a sensor), in which case the image is less sharp towards the
periphery [610].

The effect of blurring aberrations can be reduced in post-processing by sharp-
ening the image or during the image capture by using smaller aperture settings and
thus only allowing rays closer to the optical axis to enter. Optical solutions do ex-
ist and generally involve the use of lens doublets or carefully designed lenses.
These solutions, however, complicate the design of the optical system and are, as
a result, found in more expensive lenses.

A different class of monochromatic aberrations consists of radial distortions.
These cause straight lines in the scene to appear curved in the resulting image and
can be corrected digitally either manually or using information about the charac-
teristics of the lens that was used. Radial distortions are the result of deviations
from a linear projection model and are more pronounced for wider angle lenses.

Although interactions between the various lens elements of a complex optical
system can produce some less well-defined distortions, the two main types con-
sidered here are barrel and pincushion distortions, shown in Figure 3.11. Barrel
distortion is the result of decreasing lateral magnification and it causes straight
lines to curve away from the image center. Pincushion distortion occurs in lenses
with increasing lateral magnification and causes straight lines to curve towards
the image center [794].

Radial distortions can be adequately estimated as a fourth-degree polynomial:

x0 = x(1+κ1r2 +κ2r4) (3.3)

y0 = y(1+κ1r2 +κ2r4) (3.4)

where r2 = x2 + y2 and κ1,2 are the radial distortion parameters [719]. Several
methods have been proposed in the literature for estimating the distortion parame-
ters of Equation (3.4). In the simplest case, by photographing a test scene contain-
ing straight lines, the distortion parameters can be adjusted until the lines in the
resulting image are also straight [196, 75]. This process can, of course, be sim-
plified even further if the lens characteristics are provided by the manufacturer.
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Figure 3.11. This figure demonstrates the effect of barrel (middle) and pincushion
(right) distortions on an image (left). In this case, the distortions are exaggerated
and overlaid with a grid for demonstration purposes.

More complex solutions have also been proposed, combining image alignment
with distortion parameter estimation [648, 706] or by recovering the radial distor-
tion characteristics together with intrinsic camera parameters [124, 712, 308].

Barrel and pincushion distortions are not the only possible geometric distor-
tions. The interactions of the various lens elements and their resulting distortions
can result in effects that require more complex solutions. In these cases, ap-
proaches using calibrated targets can still be of use. Various software packages
offer solutions that reduce or remove the effect of radial distortions. Options such
as DxO Optics or PTLens use lens-specific information while other solutions ex-
ist that require more manual input, such as Hugin or the Lens Correction module
in Adobe Photoshop.

Vignetting. Vignetting is a common artifact appearing in photographs, which
causes areas of the image further from the center to appear darker. Although
this effect often goes unnoticed and sometimes can even be added to images for
artistic purposes, the magnitude differences it causes can be large. It has been
found that for certain optical systems, the amount of light reaching the corners of
the image can be several times less than the light going through the center [821].
Such differences may affect the results in statistical or computer vision applica-
tions.

Several factors contribute to vignetting [75]. Mechanical vignetting can be
caused by lens extensions or accessories that physically block parts of the lens.
Optical vignetting arises when rays arrive from an oblique angle. Parts of the
lens may be obstructed by the rim of the barrel, reducing the effective aperture
and thus allowing less light to enter the lens for these angles. Finally, a third
cause of vignetting is known as natural vignetting and is the effect of natural light
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falloff. The severity of this effect depends on the angle θ that light rays exit the
rear element and hit the image sensor and, for simple lenses, can be modeled as
cos4(θ) falloff [269].

Both optical and natural vignetting can be reduced digitally after the image is
captured. The simplest approaches for estimating the vignetting for a given optical
system involve capturing a photograph of a uniformly colored and illuminated
surface [75, 719]. Using such an image, the vignetting function can be computed
and its effect can then be removed from subsequent images taken using the same
system.

A limitation of this approach is that it requires such a calibration image to be
captured with the same camera and lens as the image(s) to be corrected [22, 390].
This may not always be possible. To that end, information from a single image
can be used to reduce the effects of vignetting. This can be achieved by locat-
ing slow intensity variations in the radial direction [821]. Alternatively, in cases
where multiple overlapping images are available (for instance, when capturing
a panorama), corresponding pixels that appear in more than one image can help
recover the vignetting function [467, 269].

3.2.3 Noise

Noise can be a major cause of image degradation and can be defined as any ran-
dom variation in brightness or color in the image caused by the sensor, circuitry,
or other parts of the camera. Noise can have various sources, each requiring dif-
ferent treatment. Some common types of image noise will now be discussed.

Fixed Pattern Noise. Fabrication errors can cause different pixels of a sensor ar-
ray to have different responses to constant illumination. This is known as fixed
pattern noise and appears in two forms. Dark signal non-uniformity (DSNU)
(DSNU) is the fixed offset from the average across each pixel of the image sensor,
occurring even when no illumination is present. Photo response non-uniformity
(PRNU) is the variation in the responsivity of pixels under constant illumination.

Fixed pattern noise can depend on camera settings and conditions such as ex-
posure time and temperature but can be removed, either in the camera hardware
or in post-processing. In the latter case, DSNU can be removed simply by captur-
ing and subtracting an image with no illumination (for instance, by keeping the
lens cap on) in otherwise the same conditions as the images to be calibrated. To
additionally remove noise due to PRNU under various illumination levels, an im-
age of a flat, uniformly lit surface can be captured with the illumination set such
that it nearly saturates the sensor pixels. Then using the DSNU calibration image
described previously and the new image, the response of each pixel can be lin-
early interpolated for a particular set of conditions (temperature, camera settings,
etc.) [765].
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Dark Current. Even if no light reaches the sensor, electrons can still reach the
quantum-wells, generating dark current shot noise. The severity of this type of
noise is affected by temperature and consequently can be reduced by cooling the
sensor [610].

Photon Shot Noise. The number of photons collected by each individual quantum-
well of an image sensor is not constant for a given intensity. Due to this random-
ness, a given pixel can receive more or fewer photons than the average. The
distribution of photons arriving at the sensor can be modeled by Poisson statistics
(mean µ equals variance σ2). As such, if the intensity of the source increases, so
will the variance in the signal. Since the signal-to-noise ratio can be defined as
SNR = µ/σ = N/

p
N =
p

N, where N is the mean number of photons hitting the
image sensor, large values of N cause the SNR to be large too, thus reducing the
effect of this type of noise.

Most of the noise sources discussed do not depend on illumination levels in
the scenes. As such, in darker scenes, the signal-to-noise ratio becomes smaller,
effectively amplifying the effect of noise in the image. Although dark current and
fixed pattern noise can be minimized though the use of appropriate calibration,
other noise sources (including photon shot noise) cause less predictable patterns.
The reader is referred to the work by Healey and Kondepudy [321] for a detailed
account on noise estimation and camera calibration.

3.3 Image Databases
The previous sections dealt with issues related to constructing an image collection
from scratch. Although collecting a novel set of images allows for full control
over the capture and calibration procedures as well as the scene selection, many
existing databases are available and suitable for statistical analysis and related
applications. This section will describe some of these databases. The aim of this
section is not to provide a comprehensive list of all image databases available but
rather to highlight collections that have been constructed with a high degree of
accuracy in mind.

3.3.1 Van Hateren’s Natural Image Database
This dataset is one of the largest and earliest collections of natural images used
in natural image statistics literature [316, 352]. Although the images encode only
intensities and are therefore monochromatic, they are calibrated and represent a
wide variety of natural scenes.

� Number of images: 4212

� Image resolution: 1536�1024 pixels
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� Channels: 1 (Intensity only)

� URL: http://bethgelab.org/datasets/vanhateren/

3.3.2 University of Texas at Austin Databases
This collection contains over a thousand high-resolution RGB images of natural
scenes [252] and a smaller set of images (90) taken around the University of
Texas at Austin campus, containing manmade objects, buildings, and people [90].
Additionally, data for hand-segmented contours are provided for 20 images [253].
The images are provided as PPM files, directly converted from the RAW sensor
data, and the camera sensitivity functions are given on the database webpage to
allow for conversions to other color spaces. Figure 3.12 shows a few sample
images from the natural image set.

� Number of images: 1204 (natural), 90 (campus), 20 (hand segmented)

� Image resolution: 4284�2844 pixels

� Channels: 3 (RGB)

� URL: http://www.cps.utexas.edu/natural_scenes/db.shtml

3.3.3 UPenn Natural Image Database
Similar to the Van Hateren database (Section 3.3.1), this collection focuses on nat-
ural scenes, specifically scenes depicting baboon habitat in Botswana. It contains
around four thousand images, which are calibrated and available in different for-
mats. The database can be accessed and browsed through an online gallery page,
which allows for a custom selection of images to be downloaded easily. The aim
of this database is to represent the type of environment where the human visual
system initially evolved [740].

Figure 3.12. A small set of natural images from the University of Texas at Austin
database [252]. (The images are shown with kind permission from the author, who
retains the copyright.)

http://bethgelab.org/datasets/vanhateren/
http://www.cps.utexas.edu/natural_scenes/db.shtml
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� Number of images: approximately 4000

� Image resolution: 3040�2014 pixels

� Channels: 3 (sRGB)

� URL: http://tofu.psych.upenn.edu/~upennidb/

3.3.4 The Barcelona Calibrated Images Database

Both natural and urban scenes were included in this database. In contrast to most
other collections, the natural scenes also include snow and sea landscapes in ad-
dition to foliage. An approximately diffuse gray sphere was placed in front of the
camera in all images, to allow for recovery of the illumination. The database is
calibrated and provided in three device-independent forms, namely, CIE XYZ and
two LMS cone response spaces [697, 708]. Particular effort has gone into the ac-
curate calibration and camera response recovery for this database [761, 561, 559].

� Number of images: 448 in 7 categories

� Image resolution: 567�378 pixels

� Channels: 3 (XYZ or LMS)

� URL: http://www.cvc.uab.es/color_calibration/

3.3.5 HDR Photographic Survey

This is one of the very few high dynamic range image databases and it has been
constructed with significant care going towards accurate color and luminance re-
production [203]. It contains more than a hundred HDR images of natural and
urban scenes, all of which are given as linear, calibrated data. To obtain radio-
metrically accurate quantities, the images need to be multiplied with a luminance
factor, which is provided separately. Additionally, for many of the images, col-
orimetric measurements and corresponding color appearance data is given for se-
lected patches. Although the database contains a variety of scenes, we note that
their choice may be biased towards more extreme examples of dynamic range and
as such, they may not be an accurate representation of luminance distributions
overall. Figure 3.13 shows a few example images from this database as well as
their luminance histograms.

http://tofu.psych.upenn.edu/~upennidb/
http://www.cvc.uab.es/color_calibration/
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Linearly compressed

Manually tonemapped

Figure 3.13. Some example images from the HDR Photographic Survey [203].
The top row has been manually tonemapped, while the images in the bottom row
have been linearly compressed. The histograms in the insets show the luminance
distributions of the images in logarithmic scale. (The images are shown with kind
permission from the author, who retains the copyright.)

� Number of images: 106

� Image resolution: varied, around 10–12 MP

� Channels: 3 (RGB)

� URL: http://www.cis.rit.edu/fairchild/HDR.html

3.3.6 IPL Calibrated Color Image Database

This calibrated database was recently constructed for the purpose of studying
chromatic adaptation using color statistics. It contains small scale scenes, such
as plants and office objects, as well as ten pages of the Munsell Book of Color.
All images were captured under two controlled illuminations, namely, CIE D65
and A [440]. Although many databases include varied illumination, the advan-
tage of this collection comes from the controlled setup used, where all scenes are
captured with the same set of illuminations.

� Number of images: 130 plus ten pages of the Munsell Book of Color

� Image resolution: 1000�1280 pixels

http://www.cis.rit.edu/fairchild/HDR.html
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� Channels: 3 (CIE XYZ)

� URL: http://isp.uv.es/data_color.htm

3.3.7 McGill Calibrated Color Image Database

This collection contains images in nine different image classes, including animals,
textures, and shadows. Calibration data is provided on the database website to
allow conversions to linear RGB data or to LMS cone responses [544]. Although
many of the image collections discussed include natural images, this database
contains a number of more unusual image classes.

� Number of images: 850

� Image resolution: 786�576 pixels (scaled down from 1920�2560 pixels,
which are available by contacting the database owners)

� Channels: 3 (RGB)

� URL: http://tabby.vision.mcgill.ca/

3.3.8 Hyperspectral Images of Natural Scenes

These two collections contain both natural and urban scenes captured in Portu-
gal, which were originally obtained for studying phenomena relating to color
vision [527, 240, 239]. The scenes were illuminated by direct sunlight and no
artifical light sources. Calibration data is provided to convert scene reflectances
to radiances. Note that only eight images from each of the sets are available on-
line.

2002 Collection

� Number of images: 30

� Image resolution: cropped from 1024�1024 pixels, maximum 820�820
pixels

� Channels: 33 spectral measurements

� URL: http://personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral_
images_of_natural_scenes_02.html

http://isp.uv.es/data_color.htm
http://tabby.vision.mcgill.ca/
http://personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral_images_of_natural_scenes_02.html
http://personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral_images_of_natural_scenes_02.html
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2004 Collection

� Number of images: 25

� Image resolution: cropped from 1024�1344 pixels

� Channels: 33 spectral measurements

� URL: http://personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral_
images_of_natural_scenes_04.html

3.3.9 Real-World Hyperspectral Images Database
Recently, a collection of 50 hyperspectral images was compiled, including both
natural and artificial scenes [116]. Each scene consists of 31 narrow-band spectral
measurements of approximately 10 nm in bandwidth, spanning the range between
420 nm and 720 nm, which approximately coincides with the visible spectrum
according to the human visual system. An example scene with a subset of the
spectral measurements is shown in Figure 3.14.

� Number of images: 50

� Image resolution: 1392�1040 pixels

� Channels: 31 spectral measurements

� URL: http://vision.seas.harvard.edu/hyperspec/

420 nm 460 nm 500 nm 540 nm

580 nm 620 nm 660 nm 700 nm

420 nm 460 nm 500 nm 540 nm

580 nm 620 nm 660 nm 700 nm

a. Spectral bands

b. Spectral bands (mapped to RGB) c. RGB scene
Figure 3.14. A sample image from the Hyperspectral Database presented in [116].
(The images are shown with kind permission from the author, who retains the
copyright.)

http://personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral_images_of_natural_scenes_04.html
http://personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral_images_of_natural_scenes_04.html
http://vision.seas.harvard.edu/hyperspec/
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3.3.10 Bristol Hyperspectral Images Database

Although this is a smaller set than other hyperspectral datasets discussed, it is
one of the oldest such collections [560]. The database contains natural scenes,
captured with a custom-made hyperspectral camera [78].

� Number of images: 29

� Image resolution: 256�256 pixels

� Channels: 31 spectral measurements

� URL: http://www.cvc.uab.es/color_calibration/Bristol_Hyper/

3.3.11 Amsterdam Library of Object Images (ALOI)

Unlike the other collections discussed, this database focuses on small objects,
depicted in isolation, under controlled illuminations [259]. The database contains
1000 small objects, each photographed using 8 different illumination directions, 3
camera positions, 12 illumination colors and 72 object viewpoints. Additionally,
wide baseline stereo images are provided for 750 of the objects.

Several other object databases exist [532, 529, 420], but ALOI is the largest
and most comprehensive to our knowledge both in terms of individual objects
included and viewpoint and illumination variations. Although this type of im-
agery is likely to mostly find applications in evaluating computer vision and im-
age processing algorithms, we include it here due to the wealth of data it provides.
Figure 3.15 shows a series of illumination directions and camera positions for a
single object.

C1

C2

C3

L1 L2 L3 L4 L5 L6 L7 L8

Figure 3.15. A series of illumination directions (L1 to L8) and camera positions
(C1 to C3) for one object from the ALOI database. Please refer to [259] for details.
(The images are shown with kind permission from the author, who retains the
copyright.)

http://www.cvc.uab.es/color_calibration/Bristol_Hyper/
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� Number of images: 110,250

� Image resolution: 768�576 pixels

� Channels: 3

� URL: http://staff.science.uva.nl/~aloi/

3.3.12 Caltech-256 Object Category Dataset
This collection groups over 30,000 images in 256 distinct categories. Each cate-
gory contains a minimum of 80 images, collected from internet sources (Google
Image search). Although this database by its nature is uncalibrated, we include it
here because of the large number of categories included, which could be used in
studies focusing on the analysis of images of different categories. Details on the
categories used and the collection procedure are described in [288]. This collec-
tion supersedes the previous Caltech-101 database [208].

� Number of images: 30,607 (in 256 categories)

� Image resolution: varied

� Channels: 3 (RGB)

� URL: http://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001

3.3.13 Brown Range Image Database
This database consists of 197 range images of both natural and urban scenes. The
images have a vertical field of view of 80 degrees and horizontal of 259 degrees,
and were captured using a laser range-finder with a rotating mirror. An example
range image and the corresponding intensities are shown in Figure 3.16. The
database is described in more detail in [350, 447].

� Number of images: 197

� Image resolution: 444�1440 pixels

� Channels: 4 (depth, intensity, bearing, and inclination)

� URL: http://www.dam.brown.edu/ptg/brid/range/index.html

http://staff.science.uva.nl/~aloi/
http://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001
http://www.dam.brown.edu/ptg/brid/range/index.html
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a. Range image

b. Corresponding intensities

Figure 3.16. An example image from the Brown Range Image Database. The
range data is visualized by normalizing and compressing the depth values with an
exponent of 0.3. (The images are shown with kind permission form the author,
who retains the copyright.)
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Chapter 4

First-Order
Statistics

Digital images consist of an array of pixels, each representing the average incom-
ing illumination from a small part of the scene. Effectively, each pixel of a digital
camera sensor integrates light over a small area, storing it as a single number. If
we were to use a very low resolution sensor consisting of a single pixel, our dig-
ital image would simply be a single number representing the average light in the
scene—this is, after all, what a photometer does. This is illustrated in Figure 4.1.

Our visual system performs a similar task as photoreceptors in the retina, spa-
tially sample light (see Chapter 1). Some creatures such as mollusks, however,

Scene

Lens
Sensor

Figure 4.1. Pixels on the camera sensor integrate light from the scene, effectively
capturing the average incoming illumination over a small area of the scene.
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72 4. First-Order Statistics

sense light in a way more akin to our single-pixel camera example, suggesting
that useful information may be found in images even at the single pixel level,
without any spatial information [555].

4.1 Histograms and Moments
The distribution of pixel values in images can be represented with histograms.
For a given intensity vector I, we define its histogram H with B bins of width V
as follows:

H = f(h(1),v(1)), ...,(h(B),v(B))g (4.1)

B =

⌈
max(I)�min(I)

V

⌉
(4.2)

h(i) =
N

∑
p=1

P(I(p), i), i 2 [1,B] (4.3)

v(i) = min(I)+(i�1)V (4.4)

P(I(p), i) =

 i =
⌊

I(p)�min(I)
V

+1
⌋

0 otherwise
(4.5)

where H is the set of all pairs (h(i),v(i)) for all i 2 [1,B] corresponding to the
number of elements and value of the ith bin of the histogram. I(p) is the value
of the pth pixel of vector I, which contains a total of N pixels, and P(I(p), i)
represents the probability of a pixel I(p) belonging to a bin i.

Figure 4.2 shows the intensity histograms of some example images. By visual
inspection, we can already surmize that the shape of a histogram depends on the
content of the image: scenes with uniform illumination (top left) will typically
have an approximately Gaussian shape (top right). If, on the other hand, there are
shadows and highlights present (bottom left), the histogram will likely exhibit a
bimodal distribution (two peaks corresponding to the different parts of the bottom-
right image in Figure 4.2).

Although such high-level characterization and understanding of histograms
might be useful in photography, to derive an analytical description of the shape
of an image histogram, properties of the intensity distribution may be computed,
such as its mean and variance. Statistical moments are commonly employed to
quantitatively describe the shape of a distribution. The kth moment of a distribu-
tion can be computed as follows:

mk =
N

∑
p=1

(I(p)� c)k

N
(4.6)
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0 50 100 150 200 250

0 50 100 150 200 250

Figure 4.2. The top image is uniformly illuminated, leading to an approximately
Gaussian distribution. In the bottom image, parts of the scene are in the shade
while other parts are brightly illuminated, leading to a bimodal distribution.

where c can be any constant. Generally, if c = 0, then the above equation com-
putes the raw moments of the distribution, while setting c = µ gives us the central
moments (i.e., centered at the mean). The first moment corresponds to the mean µ

of the distribution and the second is the variance σ2 (which is by itself the square
of the standard deviation σ ).

The meaning of further moments is less straightforward but the skewness S and
kurtosis κ of a distribution relate to the third and fourth moments, respectively.
More specifically, the skewness and the kurtosis are defined as:

S =
m3

σ3 (4.7)

κ =
m4

σ4 (4.8)

respectively, where m3 and m4 are the third and fourth central moments, respec-
tively. Skewness encodes asymmetry in the distribution while kurtosis closely
relates to sparseness. Figure 4.3 shows some example distributions with specific
values for mean, standard deviation, skewness, and kurtosis.
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S = 0.00
S = 0.00
S = -0.50
S = -0.50
S = 0.50
S = 0.50

κ = 3.00
κ = 20.00
κ = 3.00
κ = 20.00
κ = 3.00
κ = 20.00

μ = 0.0
μ = 0.0
μ = -1.0
μ = -1.0
μ = 1.0
μ = 1.0

σ = 0.10
σ = 0.30
σ = 0.10
σ = 0.30
σ = 0.10
σ = 0.30

a. Different mean and standard deviation 
S = 0.00, κ = 3.00

b. Different skewness and kurtosis
μ = 0.0, σ = 0.1

Figure 4.3. Probability distributions with specific mean, standard deviation, skew-
ness, and kurtosis values from sets of random numbers drawn from the Pearson
system [376].

4.1.1 Image Moments and Moment Invariants

In our analysis so far, we have treated images as one-dimensional vectors of in-
tensity values, whereby the intensity of a pixel p is given by I(p). We can expand
this definition to consider the horizontal and vertical position of a pixel and define
its intensity value at position x,y as I(x,y), where x 2M and y 2 N and M,N 2 R
are the dimensions of the image. The moments of a 2D image I(x,y) can now be
defined as:

m j,k =
M

∑
x=1

N

∑
y=1

(x j� cx)(yk� cy)I(x,y) (4.9)

where j,k define the order of the moment in the horizontal and vertical direction,
respectively. Setting cx,cy to 0 leads to the raw moments of the image, while
cx = m1,0/m0,0 and cx = m0,1/m0,0 lead to central moments m0i, j.

Similar to (4.6), the above definition can be normalized by the number of
pixels or area of the image. Using the formulation in (4.9), the area m0,0 can
computed as:

m0,0 =
M

∑
x=1

N

∑
y=1

I(x,y) (4.10)

The first-order moments m1,0 and m0,1 correspond to the centroids of the image,
while second-order central moments can be used to determine the orientation of
an image.

Image moments offer a very powerful basis for representing and describing
images. An image can be uniquely described and reconstructed by its (raw)
moments—a property known as the uniqueness theorem [233] (although this is
not a case for a general distribution). By manipulating or combining moments,
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image descriptors can be constructed that can characterize images uniquely up to
certain transformations. That is they are invariant to specific transformations.

In the simplest case, we can consider the central image moments. As they
effectively align the image centroid with the origin of the coordinate space, they
are invariant to translations—they remain constant, irrespective of the position
of the image (or segment of interest) within the coordinate space. In addition
to translational invariance, moments can be combined and manipulated to define
bases that are scale, rotation, and other property invariant [233]. Such bases are
known as moment invariants and were first introduced in the pioneering work of
Hu et al. [349], where a set of moments φ1,��� ,7 was introduced to obtain rotational
invariance. These are the following:

φ1 = m02,0 +m00,2 (4.11)

φ2 = (m02,0�m00,2)
2 +4m021,1 (4.12)

φ3 = (m03,0�3m1,2)
2 +(3m2,1�m00,3)

2 (4.13)

φ4 = (m03,0 +m01,2)
2 +(m02,1 +m00,3)

2 (4.14)

φ5 = (m03,0�3m01,2)(m
0
3,0 +m01,2)((m

0
3,0 +m01,2)

2

�3(m02,1 +m00,3)
2)+(3m02,1�m00,3)(m

0
2,1 +m00,3)

� (3(m03,0 +m01,2)
2)� (m02,1 +m00,3)

2)

(4.15)

φ6 = (m02,0�m00,2)((m
0
3,0 +m01,2)

2� (m02,1 +m00,3)
2)

+4m01,1(m
0
3,0 +m01,2)(m

0
2,1 +m00,3)

(4.16)

φ7 = (3m02,1�m00,3)(m
0
3,0 +m01,2)((m

0
3,0 +m01,2)

2

�3(m02,1 +m00,3)
2)� (m03,0�3m01,2)(m

0
2,1 +m00,3)

� (3(m03,0 +m01,2)
2� (m02,1 +m00,3)

2)

(4.17)

Figure 4.4 shows the Hu moments for an image with different transformations.
Scale and rotation does not affect the resulting moments, while blur does.

Since then, several different moment invariants have been proposed, initially
for improved rotational invariance and later for achieving invariance to affine
transforms [229, 230, 715], convolution [232, 714], and even elastic transforma-
tions [228]. Because of the descriptive power of such bases, in conjunction with
their ability to ignore image transforms or degradations [231], moment invariants
have found applications in fields as varied as character recognition [230, 802],
forgery detection [485], and mesh simplification [725].

4.1.2 Histogram Adjustments
Despite their simplicity, first-order statistics have now found several applications
in image processing. Studies have shown correlations between first-order statis-
tical regularities in images and properties of the illuminant [610, 4], which has
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0.0243    
0.0003

0.5621    
0.2618    
0.0791    
0.0540    
0.0035    
0.0243    
0.0003

0.5621    
0.2618    
0.0791    
0.0540    
0.0035    
0.0243    
0.0003

0.5945    
0.2616    
0.0787    
0.0537    
0.0035    
0.0242    
0.0003

φ1
φ2
φ3
φ4
φ5
φ6
φ7

Figure 4.4. Rotation and scaling transformations lead to the same Hu mo-
ments [349] while blurring the image does not. More recent moment invariants
have been developed to handle blurring as well as other transforms [233].

proven useful in areas such as white balancing. Moreover, transferring statistical
moments between images in appropriate color spaces has been demonstrated in
what is now known as color transfer [607]. These color-related applications are
discussed in detail in Chapter 10.

First-order statistics can also be computed on a single image basis. By manip-
ulating the distribution of values within a single image, a variety of effects can be
achieved. For instance, the contrast of an image that only covers a small portion
of the available range of intensities can be increased by adjusting the pixel values
such that the full range of intensities is more equally represented. This process is
known as histogram equalization and an example can be seen in Figure 4.5.

A more general version of histogram equalization is histogram matching,
where the histogram of a source image (Is) is matched to that of a given target
(It ). First, the cumulative histograms of the source and target are computed:

Cs(i) =
B

∑
i=1

hs(i) (4.18)

Ct(i) =
B

∑
i=1

ht(i) (4.19)

after which an image is matched to another according to these two cumulative
histograms:

I0(p) = vt

(
C�1

t

(
Cs

(
I(p)�min(I)+1

V

)))
(4.20)

Here, a cumulative histogram C is defined as a function mapping a bin index to a
cumulative count. The inverse function C�1 acts as a reverse lookup on the his-
togram, returning the bin index (and therefore the intensity value) corresponding
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a. Original low-contrast image

b. Adjusted result

0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

 
Original
Adjusted

Histograms

0 50 100 1500.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cumulative Histograms

Original
Adjusted

Figure 4.5. Histogram equalization can increase the contrast of a low contrast
image (top left) by reshaping the intensity distribution more equally. The equalized
resulting image is shown at the bottom left.

to a given count. An example of this technique applied on a source-target pair of
intensity images is shown in Figure 4.6.

4.2 Moment Statistics and Average Distributions
Histogram moments have been used in the context of natural image statistics as
a means to characterize images of specific classes. Depending on the content of
images, different values will arise for the various moments as we will see in this
section.

In a large-scale image statistics study, Huang and Mumford analyzed more
than 4000 grayscale images of natural scenes (taken from the database created
by J. H. van Hateren [316]; see Section 3.3.1) by computing central moments of
logarithmic histograms [352]. The values found for the mean, standard deviation,
skewness, and kurtosis were, respectively, µ = 0, σ = 0.79, S = 0.22, and κ =
4.56. The value of the skewness shows that the distribution is not symmetric,
which can be attributed, at least partly, to the presence of sky in many of the
images, resulting in a bias towards higher intensities. In addition to that, the
values of both the skewness and the kurtosis show that the distribution is non-
Gaussian.
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0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Cumulative histograms

Input
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Output

Figure 4.6. The source image (top left, red) is matched to the target (top right,
green) using histogram matching to produce the image at the bottom (blue). The
corresponding cumulative histograms are shown.
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Figure 4.7. The linear and log intensity histograms found by Brady and Field from
their analysis of 46 natural images. (Adapted from [74].)

A less skewed distribution was found by Brady and Field [74] in their anal-
ysis of 46 logarithmically transformed natural images, while the linear images
resulted in a distribution skewed towards darker values. Although no exact values
were provided for the moments of the distributions, Figure 4.7 shows the result-
ing histograms for both cases. As can be seen from these examples, although in
both cases natural images were used and analyzed, the results can vary. Gener-
ally, the distribution of log intensities for natural images does not deviate far from
Gaussian.

Results, however, do depend on the choice of images. In all the examples
given, the images used to compute the distributions were captured using tradi-
tional imaging techniques and therefore were restricted in terms of the dynamic
range they could represent (e.g., 8 bits in [585] and 12 bits in [352, 74]). As
discussed in Section 3.1.2, high dynamic range (HDR) imaging allows for scenes
with more extreme illumination to be captured. HDR images have been analyzed
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Teller dataset Debevec dataset

Figure 4.8. The log luminance histograms for the environment map collections
analyzed in [182].

and compared to traditional imagery in a small set of studies, indicating marked
differences between high dynamic range (HDR) and low dynamic range (LDR)
ensembles [182, 185, 585].

Dror et al. analyzed HDR environment maps to determine statistical regulari-
ties in real-world illumination [182, 185]. Environment maps capture the full field
of view from a particular viewpoint and represent it as a hemisphere (or sphere—
see Section 3.1.3). The illumination arriving at the centre of the hemisphere is
thus fully represented in such an image. Figure 4.8 shows the histograms for the
two different datasets used in this study.

In a more recent study, Pouli et al. collected and analyzed images of four dif-
ferent scene categories for the purpose of determining the statistical differences
between HDR and LDR imagery [585]. For each scene, a series of nine differently
exposed images was captured to form the HDR image. The best-exposed image
of the series was then selected to form the corresponding LDR ensemble, effec-
tively constructing two sets depicting the same scenes but using different capture
techniques (example images from these datasets can be seen in Figure 6.14).

Figure 4.9 shows the average logarithmic histograms for the HDR and LDR
sets discussed as well as the images from the HDR Photographic Survey [203].
Visual analysis of the histograms quickly shows considerable differences both
between LDR and HDR as well as between scene classes. Unsurprisingly, given
the 32-bit encoding of the HDR images, the quantization seen toward the left of
the LDR ensembles is absent in the HDR histograms. On the other hand, long
tails can be observed in the HDR distributions towards higher luminance values,
which can be attributed to the presence of light sources or highlights that cannot
be adequately represented with LDR imagery.

Looking at specific differences across the different image classes, a few more
observations arise. In the LDR case, the average histograms of all datasets look
very similar. When captured in HDR though, the same scenes lead to significant
differences between categories.
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Figure 4.9. Log histograms for the HDR and LDR datasets from [585]. Different
scene types lead to much larger differences when captured in HDR.
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Figure 4.10. Skewness and kurtosis values for the histograms in Figure 4.9.

Although the two capture methods lead to measurable differences, it is im-
portant to note that only qualitative conclusions can be drawn from this data. As
the HDR images are linear but not radiometrically calibrated, their pixel values
are correct up to a scaling factor, which may be different for each image. Conse-
quently, to draw quantitative conclusions regarding distributions of radiances in
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real scenes, a fully calibrated HDR set would be necessary. To some extent, this
is fulfilled by the HDR Photographic Survey [203]. However, the scenes in this
collection were selected with the aim of depicting both deep shadows and bright
highlights within the same image and thus their distributions may be biased.

4.3 Material Properties
Histograms of image categories, as we have seen, already hint at differences be-
tween scene types. In the general scenarios we have discussed so far, however,
they do not offer sufficient discriminative power. For instance, although the av-
erage distributions for natural and manmade scenes may have measurable dif-
ferences (e.g., Figure 4.9), it would not be possible to accurately categorize the
content of any given image as one or the other based solely on its histogram. If we
shift our focus to more specific image classes or properties, however, histograms
and their moments have been found to be more descriptive.

One notable example is the analysis of materials [225, 226, 227, 516]. Human
observers are very capable of making accurate judgements about material proper-
ties of objects and surfaces around them. Although the appearance of objects de-
pends on complex interactions between light, material properties, and geometry,
psychophysical evidence suggests that simple cues may be sufficient for assess-
ing whether a surface is matte or glossy [41]. It is reasonable to expect that such
cues may be directly or indirectly linked to statistical properties of images. For
instance, Figure 4.11 shows renderings of the same object but with different ma-
terial properties and their corresponding histograms. The shape of the histogram
changes significantly with material changes even though both the lighting and
geometry remain constant in the three images.

To determine whether a link between the perception of materials and statisti-
cal proprties exists, Motoyoshi et al. [517] studied the perceived surface qualities
of various materials and analyzed their relation to the associated histograms and
specifically their skewness. For patches of simple materials with mesostructure,
such as stucco or crumpled paper, they found a correlation between histogram
skewness and specular intensity, while an inverse relation was observed between
skewness and the diffuse reflectance of the material. In addition to the physi-
cal properties of the materials, perceptual attributes of lightness and glossiness
were also measured. Figure 4.12 shows the perceptual attributes and physical
material properties in relation to the image skewness for a stucco material, while
Figure 4.13 gives the skewness for the images in Figure 4.11.

Although skewness measurements correlate with material glossiness both
physically and perceptually, it is important to note that such correlation only
holds when certain assumptions are present [14]. Crucially, images are expected
to depict surfaces of nearly constant albedo (the proportion of incident light re-
flected by a surface) and illumination. If these assumptions are violated, skewness
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 Diffuse
Glossy
Very glossy

a. Diffuse material b. Glossy material c. Very glossy material

Intensity Histograms

Figure 4.11. The three images were generated in a 3D modeling program using
different properties of the Phong material so that they look progressively glossier.
Their log intensity histograms are shown in the bottom row. The histograms were
computed only on the pixels within the sphere.
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Figure 4.12. As the diffuse re�ectance of the surface increases, the lightness
rating as perceived by the observers also increases while the corresponding his-
togram skewness decreases (left). An increase in specular intensity also results
in an increased rating of glossiness as well as higher skewness value (right).
(Adapted from [517].)

measurements will likely not be indicative of specific material properties. This is
demonstrated in Figure 4.14, where the image of the diffuse object (Figure 4.11a)
is inverted, therefore changing the skewness of its histogram to a value close to
that of Figure 4.11b (s= 0.3273). Despite the increased skewness, the object does
not appear glossier, indicating that other aspects need to be considered, such as
additional histogram moments or percentile statistics [670].
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Figure 4.13. Skewness measurements from the images shown in Figure 4.11.
Similar to the findings of Motoyoshi et al. [517], skewness increases proportionally
to the glossiness of the material.

a. Diffuse sphere b. Inverted c. Histograms

Figure 4.14. The image of the diffuse object (a) is inverted to produce (b). Al-
though this process changes the skewness of the distribution as the correspond-
ing histogram is mirrored (c), it does not change the perceived glossiness of the
object. Instead, the object appears as if it is illuminated from the opposite direc-
tion, indicating that skewness alone may not be a sufficient indicator for material
glossiness.

4.4 Nonlinear Compression in Art

First-order statistics have also seen very widespread use in the study of paint-
ings. Paintings form a very interesting category of images as they are generally
abstracted or manipulated representations of real scenes, purposefully created for
human viewers. Different creative styles can represent the same scene in totally
different ways—from almost realistic to completely abstract—eliciting different
reactions and emotions. Yet, despite art often representing a reduced, abstracted,
or modified version of reality, we are not only capable of visually processing it
but also find it aesthetically pleasing and engaging.

In an effort to understand the regularities in art and how the compare with real
scenes, first-order (as well as higher-order) statistics have been extensively used to
examine different properties of art [273, 274, 275, 277, 276, 278]. This included
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various epochs of art, including properties of the illuminants, differences between
epochs or cultures, and the relationship between image statistics and either the
human visual system, personal preference, or real-world scenes.

One particularly interesting aspect of art studied in this work is the nonlin-
earity of intensities found in paintings compared to real-world illumination and
the nonlinearities in the visual system [277, 275, 273]. As we have seen in Sec-
tion 3.1.2, the range of illumination in natural scenes far exceeds the capabilities
of modern cameras and displays, requiring nonlinear compression schemes to
preserve detail in the scene while reducing its dynamic range to fit within more
restricted devices. The human visual system faces a similar problem, as discussed
in Section 2.3.2, employing a sigmoidal compression in the photoreceptors [525].

Unsurprisingly, artists are also confronted with this issue, especially given the
limited range that can be represented with paints on a canvas. Graham and col-
leagues compared a set of paintings to calibrated photographs of natural scenes
to determine how the nonlinearity employed in paintings relates to natural scene
illumination and the responses of photoreceptors [273]. Images in both sets were
processed with a difference-of-Gaussians (DoG) filter, simulating ganglion re-
sponses, and with Gabor filters, simulating cortical responses. Further, images
were analyzed both in linear and logarithmic (simulating the photoreceptor re-
sponses) domain. Skewness and kurtosis statistics were collected for each trans-
form and image class (art or natural).

Interestingly, paintings tend to have a significantly lower skewness and sparse-
ness than natural scenes, both when pixels are analyzed directly and after filtering
with a DoG in the linear case, but this relation reverses in the log domain, as
shown in Figure 4.15. As the paintings already represent a compressed version
of real-world intensities, they are less affected by the effect of the logarithmic
compression [273]. Although nonlinearities in the way light is represented in art
are common, no single function was found capable of modeling this compression
across all art [274], suggesting that much like tonemapping photographic images
of high dynamic range, no single solution will work for all scenes [99].

In addition to learning about artists’ nonlinear compression, art has also been
analyzed using statistics to estimate elements involved in the process of painting,
including the position of light sources in Caravaggio-style paintings, whether op-
tical projections were used, the position and properties of a virtual camera that
would have taken the picture if it were a photograph, and a 3D version of the
scene [135, 382, 710, 826]. Finally, a number of researchers in addition to Gra-
ham have examined distinguishing art from different periods from either each
other or from real scenes [770, 146, 451, 496] or to digitally restore art [556] us-
ing first-order statistics combined with higher-order statistics. For a more detailed
review of this area, we refer the reader to [233].
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Figure 4.15. Natural scenes exhibit much higher sparseness (kurtosis) in the
linear case. However if intensities are logarithmically compressed, artistic images
have sparser distributions than natural scenes. (Adapted from [273].)

4.5 Dark-Is-Deep Paradigm
Photographs can capture in a two-dimensional array of pixels the appearance of a
complex scene. Looking at an image, we can easily form an understanding about
the shape of the depicted objects, the illumination, or the materials within the
image. In the previous section we have seen how simple histogram statistics may
be linked with material appearance in images. Substantial effort has been devoted
to algorithms that can similarly recover information about the geometry and the
estimation of the light sources present in the scene. Depth and shape, however,
have been linked both perceptually and in terms of image reconstruction to the
intensities of image pixels [743, 599, 438].

The Shape from Shading (SFS) problem was first formulated by Horn in the
context of computer vision and can be understood as the extraction or recovery
of 3D geometry from a 2D image using shading information [340]—essentially
relating luminance with depth. The intuitive simplicity of this idea has led to a
remarkable amount of follow-up research, spanning several decades [819]. Al-
though many of the SFS methods perform well in restricted situations, where the
materials and illumination are well controlled, estimations tend to be less accurate
in more general scenarios.

Human vision also relies on certain assumptions about the scene to interpret
the shape of the objects. Mathematically, without prior information about the il-
lumination in a scene, it is impossible to determine the geometry of an object.
Consider, for instance, the spheres in Figure 4.16; without knowledge of the lo-
cation of the illumination we cannot accurately determine whether the shapes are
convex or concave. Despite this ambiguity, the third shape is perceived as con-
cave while the others appear convex. On the other hand, if all shapes are rotated
by 90 degrees as shown in Figure 4.17 such a distinction cannot be made.

One of the main priors that the human visual system uses to determine shape
is the “light from above” assumption [599] (although evidence suggests that a
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Figure 4.16. Although it is impossible to accurately determine whether these ob-
jects are concave or convex from this viewpoint, the third sphere is perceived as
concave while the remaining objects are seen as convex. Our visual system em-
ploys priors to make such assessment relating both to the direction of the illumina-
tion and global convexity.

Figure 4.17. Unlike the objects in Figure 4.16, it is harder to assess the convexity
of these objects as illumination appears to come from either side.

left bias also exists [492, 506]). This is not surprising, as our visual system has
evolved both genetically and personally in environments where illumination typ-
ically comes from above. Further, Langer et al. have found evidence that a global
convexity assumption exists when assessing shape [439].

Although in such simple examples image intensity appears to be related to
depth and geometry—at least to the extent that it conforms to the assumptions
discussed—natural scenes consist of much more complex configurations (varying
material properties, structure at different scales, translucency, and so on). To
derive links between 2D image content and 3D depth, more complex statistics
need to be considered. A detailed discussion of depth and range statistics and
their connection to 2D statistical regularities is given in Chapter 11.

4.6 Summary
Statistical analysis and manipulation of image histograms can be used to derive
powerful descriptors. Using well-chosen assumptions, first-order statistics have
been linked to depth in scenes as well as material properties. However, these
statistics do not capture spatial relations between pixels as the position of pixels
is not considered. Figure 4.18 shows an example of two very different images that
would result in identical first-order statistics when spatial information is ignored.
The right image is constructed by randomly permuting the pixels of the left image,
yet it appears unnatural—it carries no recognizable information.
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Figure 4.18. The right image was created by randomly permuting the pixels of the
image on the left, resulting in identical first-order statistics. (Bryce Canyon, USA,
2009)

As they only assess single-pixel properties, the histogram-based statistics dis-
cussed in this chapter are the simplest to compute and interpret. To further explore
the spatial relations between pixels and their associations with aspects of human
vision, more complex transforms are necessary. These will be discussed in the
following chapters.
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Chapter 5

Gradients, Edges,
and Contrast

The information contained within a single pixel is essentially just a color, which
is normally represented with three values. As discussed in Chapters 4 and 10, we
can derive useful information from the analysis of individual pixel values. We
can even perform some very elegant image manipulations with the information
contained in single pixels. Nonetheless, the information obtained by analyzing
single pixels is still very limited. In particular, a single pixel cannot, in principle,
tell us anything about the structures depicted in the image. Does the image, say
the one in Figure 4.18, depict a bird? Is there a tree present, and if so, where
does it start or stop? Is the tree closer to us than the bird or farther away? The
information present in a single pixel is not enough to answer such questions.

As Figures 1.1 and 4.18 demonstrated, simply rearranging the location of the
pixels completely eliminates the visible structure. While this demonstration again
emphasizes that single pixels by themselves do not tell us anything about struc-
ture, it also suggests a way to get at structural information. Pixels do in fact have
one more critical piece of information: their relative location. The change in color
or luminance between pixels placed at specific locations is the key to discovering
more about the content of an image.

5.1 Real-World Considerations
Since we usually try to infer something about the real-world scenes depicted in
images, it will be worthwhile to spend a few minutes thinking about the real
world. From a physical point of view, every point of humanity’s natural envi-
ronment is filled with some form of matter. Some of this matter is in solid form
(e.g., rocks, trees, glass), some in liquid form (e.g., ink, milk, water), and some-
times in gaseous form (e.g., fog, clouds, air). We tend to call spatially localized

89



i
i

i
i

i
i

i
i
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regions of similar material “objects,” with gaseous media such as air being a spe-
cial case of object. In other words, the real world is completely filled with objects.
Thus, the surface of one object always abuts against the surface of another object,
which means that a surface is really just a transition region between two kinds of
matter.

5.1.1 Perceptual Consequences
Light is structured by its interaction with objects. In most cases, the surface of
an object (and occasionally, such as in subsurface scattering, a very short dis-
tance under the surface) is solely responsible for the altering of the properties of
light rays [610]. Since objects are spatially localized regions of similar material,
neighboring points on an object’s surface will tend to affect light in a similar way.
Likewise, different objects are usually made of different materials and thus will
tend to affect light in different ways.

Perceptually, then, it can be said that the visual world consists solely of sur-
faces, the properties of which we infer from how they structure light [263]. As a
simple example, we can reverse the observations given earlier: if two neighboring
points affect light in the same way, it is very likely that they come from the same
object. If they affect light (significantly) differently, then they probably belong to
different objects.

5.1.2 Image Space Consequences
Obviously, images are constructed from light rays that have previously interacted
with real-world objects. It is not surprising, then, that some of the same light
structures used by the visual system to infer properties of the real world are also
present in images. For an image, therefore, we have the observation that two-
dimensional images consist entirely of surfaces, and the place where two surfaces
meet is called an edge. If two neighboring points in an image affect light in the
same way, it is very likely that they come from the same surface. If they affect
light (significantly) differently, then they probably belong to different surfaces.
Thus, by looking for strong changes in luminance or color between neighboring
points, we can find edges in an image.

The next part of this chapter examines methods for looking at luminance
changes. Following this, methods for looking specifically at edges will be ex-
amined.

5.2 Gradients
There are two common methods for determining the magnitude of the change in
the luminance function: using the first derivative and using the second derivative.
The simplest approach to calculating the first derivative is to compare a given
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pixel with some subset of its neighbors, which provides a description of how the
luminance in the image changes as a function of spatial direction. There are four
primary methods for calculating a discrete approximation of the gradient: forward
difference, backward difference, central difference, and the Söbel operator. The
first three can be derived from a Taylor polynomial around the pixel of interest x.

5.2.1 The Forward Difference Method
To derive an estimate of the gradient at a given pixel location, we can start with a
Taylor polynomial, where we try to calculate the value at the next point in a func-
tion based on the current value and the derivatives of the function at the current
point. More specifically, we can employ a weighted sum of the derivatives, which
in one spatial dimension leads to:

I(x+h) =
∞

∑
n=0

I(n)(x)
n!

hn (5.1a)

= I(x)+hI0(x)+
h2

2!
I00(x)+ ... (5.1b)

where I(x) is the value at pixel x, I(x+h) is the value at x+h with h being some
constant, and I(n)(x) is the nth-order derivative of I evaluated at point x. Rewriting
Equation (5.1b) to isolate the first derivative I0 yields:

I0(x) =

I(x+h)� I(x)�
∞

∑
n=2

hn

n!
I(n)(x)

h
(5.2)

Given that gradients are effectively measures of the derivative of a function, we
could ignore the higher-order terms, and rather than compute derivatives, we can
compute gradients. If we additionally assume that the step between pixels h is
1, then we obtain the forward difference method for calculating the gradient D =
(Dx,Dy) at a pixel (see Figure 5.1). Since we are dealing with a two-dimensional
image, horizontal and vertical differences are calculated separately:

Dx(i, j) = I(i+1, j)� I(i, j) (5.3a)
Dy(i, j) = I(i, j+1)� I(i, j) (5.3b)

where I(i, j) is the luminance for pixel (i, j), Dx is the horizontal gradient and Dy
is the vertical gradient. Commonly, gradients are computed in log space, which
has the advantage that they represent contrasts, as pixel ratios become pixel dif-
ferences:

Dx(i, j) = log I(i+1, j)� log I(i, j) (5.4a)
Dy(i, j) = log I(i, j+1)� log I(i, j) (5.4b)



i
i

i
i

i
i

i
i

92 5. Gradients, Edges, and Contrast

I(i,j)I(i-1,j) I(i+1,j)

I(i,j-1)

I(i,j+1)

Forward differences
Dx = I(i+1,j) - I(i,j)
Dy = I(i,j+1) - I(i,j)

Figure 5.1. Forward difference method for calculating gradients.

We can construct a pair of convolution kernels to represent the forward difference
operator:

∂

∂x
=
[
�1 1

]
(5.5a)

∂

∂y
=

[
�1

1

]
(5.5b)

A vector valued gradient image (dIx,dIy) can then be computed by applying these
convolution kernels to the input image I in log space:

dIx = log I � ∂

∂x
(5.6a)

dIy = log I � ∂

∂y
(5.6b)

It is important to note that the high-order terms are omitted. This means that
this method yields only an approximation of the first derivative—albeit a rather
accurate one for small values of h. The error can be estimated from the truncated
terms and has the order O(h).

5.2.2 The Backward Difference Method
The backward difference method is essentially the same, with the exception that
the left pixel I(i�1, j) is compared to the pixel of inters I(i, j) rather than I(i+1,
j) (see Figure 5.2). Since the step h between pixels is now negative, every odd-
powered derivative in the series also becomes negative:

I(x�h) =
∞

∑
n=0

I(n)(x)
n!

(�h)n (5.7a)

= I(x)�hI0(x)+
h2

2!
I00(x)� h3

2!
I00(x)+ ... (5.7b)

Rewriting Equation (5.7b) to isolate the first derivative I0 yields:

I0(x) =

I(x)� I(x�h)�
∞

∑
n=2

(�h)n

b!
I(n)(x)

h
(5.8)
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I(i,j)I(i-1,j) I(i+1,j)

I(i,j-1)

I(i,j+1)

Backward differences
Dx = I(i,j) - I(i-1,j)
Dy = I(i,j) - I(i,j-1)

Figure 5.2. Backward difference method for calculating gradients.

The gradients are therefore computed in horizontal and vertical directions using:

Dx = log I(i, j)� log I(i�1, j) (5.9a)
Dy = log I(i, j)� log I(i, j�1) (5.9b)

where, similar to the previous section, we have also added the log space compu-
tation.

The convolution kernel for the backward difference operator is the same as
for the forward difference. The two operators differ merely in which of the cells
is the pixel of interest. Just as with the forward difference, the high-order terms
are truncated. The error, then, still has the order O(h).

5.2.3 The Central Difference Method
Combining the forward and the backward difference methods yields a more accu-
rate and robust technique called the central difference method, which is illustrated
in Figure 5.3:

I(x+h)� I(x�h) =
(

I(x)+hI0(x)+
h2

2!
I00(x)+

h3

3!
I00(x)+ ...

)
(5.10a)

�
(

I(x)�hI0(x)+
h2

2!
I00(x)� h3

3!
I00(x)+ ...

)
= 2

(
hI0(x)+

h3

3!
I000(x)+ ...

)
(5.10b)

Rewriting Equation (5.10b) to isolate the first derivative I0 yields:

I(x+h)� I(x�h)
2

= hI0(x)+
h3

3!
I000(x)+ . . . (5.11)

Ignoring the higher-order terms, assuming h is 1, moving into log space, and
computing the horizontal and vertical gradients separately yields:

Dx(i, j) = (log I(i+1, j)� log I(i�1, j))/2 (5.12a)
Dy(i, j) = (log I(i, j+1)� log I(i, j�1))/2 (5.12b)
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I(i,j)I(i-1,j) I(i+1,j)

I(i,j-1)

I(i,j+1)

Central differences
Dx = (I(i+1,j) - I(i-1,j))/2
Dy = (I(i,j+1) - I(i,j-1))/2

Figure 5.3. Central difference method for calculating gradients.

I(i,j)I(i-1,j) I(i+1,j)

I(i,j-1)

I(i,j+1)

I(i+1,j-1)

I(i+1,j+1)I(i-1,j+1)

I(i-1,j-1)

I(i,j)I(i-1,j) I(i+1,j)

I(i,j-1)

I(i,j+1)

I(i+1,j-1)

I(i+1,j+1)I(i-1,j+1)

I(i-1,j-1)

Dx =   I(i+1,j-1) + 2 I(i+1,j) + I(i+1,j+1)
        - I(i -1,j-1)  - 2 I(i -1,j) - I(i -1,j+1)
Dy =   I(i-1,j+1) + 2 I(i,j+1) + I(i+1,j+1)
        - I(i -1,j-1)  - 2 I(i,j -1) - I(i+1,j -1)

Söbel operator

Figure 5.4. Söbel operator for calculating gradients.

We likewise construct a pair of convolution kernels for the central difference op-
erator:

∂

∂x
=
[
�1/2 0 1/2

]
(5.13a)

∂

∂y
=

�1/2
0
1/2

 (5.13b)

These convolution kernels can then be applied according to Equations (5.6a) and
(5.6b) to compute the gradient image.

Since the second derivative term in the forward difference method cancels
out the second derivative term in the backward difference method, the error is of
order O(h2). Although the central difference method is more accurate, it has the
disadvantage that oscillating functions can yield a zero derivative.

5.2.4 The Söbel Operator
The forward and backward difference methods both incorporated a single neigh-
boring pixel into the computation. The central difference examines two neighbors
and is more accurate. The Söbel operator additionally includes diagonal neigh-
bors (Figure 5.4) and is the most accurate of the basic methods. To calculate a
gradient using the Söbel operator, convolution kernels with the following weights
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-1.0

0.0

1.0

sin(x)

d2 sin(x) / dx2 = -sin(x)
d sin(x) / dx = cos(x)

d2 / dx2 = 0
d / dx    = max/min

Figure 5.5. A sinusoidal texture gradient. The luminance function and its first and
second derivatives (both normalized to [–1, 1]) are plotted. Note that where the
second derivative is 0 the luminance function has maximum variation, i.e., the first
derivative is either at its maximum or minimum.

are applied to the image:

∂

∂x
=

�1 0 1
�2 0 2
�1 0 1

 (5.14a)

∂

∂y
=

 1 2 1
0 0 0
�1 �2 �1

 (5.14b)

Once again, these kernels are convolved with the logged input image to produce
the vector-valued gradient image as per Equations (5.6a) and (5.6b).

5.2.5 Second Derivative Methods

Intuitively, the place of greatest change in luminance will be important. The
places of greatest change in the luminance function correspond to the maxima
in the first derivative. Since it is not always easy in practice to uniquely identify
maxima, many applications take advantage of the fact that maxima in the first
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derivative will show up as zero crossings in the second derivative. Figure 5.5 vi-
sualizes the relationship between the luminance function and its derivatives. The
top of the figure shows a simple horizontal sinusoid. The lower part of the graph
shows the luminance function, as well as its first and second derivatives. The
vertical bars represent the location of maximal luminance changes.

There are several common ways of estimating the second derivative. The most
common is the Laplacian, which is the divergence of the gradient operator. The
Laplacian ∇2 can be calculated as ∇2 = ∂ 2

∂x2 +
∂ 2

∂y2 , or as a single convolution
kernel, applied to the image:

∇
2I = I �

0 1 0
1 �4 1
0 1 0

 (5.15)

This is a 2D convolution, which is separable, meaning that it can also be written as
the sum of two 1D convolutions. In that case, a straightforward pair of convolution
kernels would be:

∂ 2

∂x2 =
[
1 �2 1

]
(5.16a)

∂ 2

∂y2 =

 1
�2

1

 (5.16b)

The Laplacian of an image is then given by:

∇
2I = I � ∂ 2

∂x2 + I � ∂ 2

∂y2 (5.17)

Wherever the Laplacian of an image becomes small, the gradient of the image
will be either at a maximum or a minimum.

5.2.6 Gradient Magnitude
In all cases, it is common to ignore the direction of the gradient, and instead
calculate the mean gradient magnitude at a given location:

D(i, j) =
√

Dx(i, j)2 +Dy(i, j)2 (5.18)

In some cases, however, one may choose to keep the vertical and horizontal gradi-
ent magnitudes separate (as, for instance, in Levin’s motion deblurring technique
[453]):

D(i, j) =
[
jDx(i, j)j
jDy(i, j)j

]
(5.19)
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Figure 5.6. Gradient distributions for a collection of natural images: Dx and Dy
are the horizontal and vertical gradients (first derivative of the luminance function),
respectively, and Dxx and Dyy are the horizontal and vertical second derivatives
[586].

5.2.7 Gradient Statistics

Although gradients can carry considerable information, especially about the tex-
ture of objects and surfaces, little is known about the statistics of gradients in
natural images. It is known, however, that the gradient histogram has a very sharp
peak at zero (see Figure 5.6) and then falls off very rapidly (with long tails at
the higher gradients) [639, 637, 352, 350, 182, 185]). The distribution can be
modeled as:

exp(�xα) (5.20)

with α < 1 [457, 489, 684]. The reason for the specific shape of the gradient dis-
tribution seems to be precisely the observations outlined earlier: images contain
many large surfaces that tend to be smooth and somewhat homogeneous. Such
surfaces will have gradient magnitudes near zero. There will, of course, be a
few high-contrast edges, which will yield very high gradients [32]. Interestingly,
similar objects tend to cluster together, which means that the transition from one
object to another will be similar in any direction. This is reflected in the symmetry
of the gradient distribution around the central peak. It has also been shown that
the gradient histogram is roughly invariant to changes in scale [215, 350, 639].

5.2.8 Single-Image Gradient Statistics

Instead of assessing average statistics over ensembles, it is possible to compute
gradient statistics on a single image. Specifically, it is interesting to look at small
patches and assess the probability of such patches recurring elsewhere in the
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image [829]. To characterize a 5 � 5 patch p centered at pixel location (x,y),
first its mean gradient magnitude D̄p is computed:

D̄p(x,y) =
2

∑
i=�2

2

∑
j=�2

D(i+ x, j+ y) (5.21)

Then, an empirical density d is computed for each patch within a neighborhood
of radius r around the patch. This neighborhood has an area A = π r2:

d(p;r) = ∑
p j2A

G
(
kp�p jk2

2
)

A
(5.22)

where G is a Gaussian kernel. We can then calculate an average density for each
mean gradient magnitude:

d̄(r,Dp) =
∑Dp j=Dp d(p j;r)

n
(5.23)

where n is the number of elements over which we sum. The average number of
matching nearest neighbors N with a distance r can then be computed as:

N(r,Dp) = A d̄(r,Dp) (5.24)

Calculations such as these, if carried out on a large set of images, reveal that
within each image, smooth patches occur frequently, whereas structured patches,
i.e., those with sharp gradients, occur less often. Moreover, patches tend to occur
in clusters, meaning that a given patch is more likely to occur nearby than far-
ther away. However, the distance over which a patch has a matching counterpart
depends on its gradient content. In particular, the higher the mean gradient mag-
nitude, the larger the search space r should be. This notion has been empirically
quantified with the following expression, relating search radius to mean gradient
magnitude:

r(Dp) = a+b exp(Dp/10) (5.25)

It was found that the variables a and b depend on the average number of matching
neighbors N as follows:

a = 5 �10�3N +0.09N0.5�0.044 (5.26)

b = 7.3 �10�4 +0.3234N0.5�0.35 (5.27)

The interpretation of these equations is that a patch has a certain amount of con-
trast, quantified by its mean gradient magnitude Dp. The search radius to find
a given number N of matching patches for this patch is then given by Equa-
tion (5.25).
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Conversely, for a given patch and search radius, it is possible to calculate the
number of matching neighbors N that are likely to be found:

N(r,Dp) =

(
�b+

p
b2�4ac

2a

)2

(5.28)

where

a = 0.001(5+0.73exp(Dp/10)) (5.29)

b = 0.1(0.9+3.24exp(Dp/10)) (5.30)

c =�0.1(0.44+3.5exp(Dp/10)+ r) (5.31)

Applications which might benefit from knowing the search radius to find sim-
ilar patches include, for example, image denoising [829]. The Non-Local Means
denoising algorithm replaces the center pixel in a patch with the mean value of
center pixels found in similar patches elsewhere in the image [84]. The standard
algorithm limits the search space to a relatively small and fixed neighborhood. By
making the search space adaptive as described earlier, however, it is possible to
find better candidate patches and therefore obtain better results. More recently, it
was shown that denoising results may benefit from a combination of single-image
statistics and ensemble statistics [515].

It was also discovered that matching patches can be found at different spa-
tial scales. In other words, an image can be repeatedly downsampled by some
factor, leading to a stack of images (an image pyramid). Searching matching
patches between scales will find strong candidates in nearby scales at nearby lo-
cations. In essence, this means that patches are self-similar across scales. This
is a concept that will return several times throughout this book, in particular with
the discussion of wavelets in Chapter 8. Local self-similarity, detected within a
single image, has been used in an image and video upscaling application [245].

Finally, we note that the likelihood of similar patches occurring drops off with
distance. This is also seen with single pixel values, which can be computed with
the autocorrelation function, or equivalently with the Fourier transform. Such
correlations are the topic of Chapter 6.

5.3 Edges
As stated in Section 5.1.2, an edge is the meeting of two surfaces. It follows,
then, that an edge contains information about both surfaces and as such provides
a highly localized, very dense set of insights into the surfaces—or objects—on
either side.
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Figure 5.7. Two color images and the gradient histograms of grayscale versions of
the images, calculated using the central difference method. (Lago di Garda, Italy,
2012; Caerphilly Castle, UK, 2010)

5.3.1 Definition of an Edge

The term edge has many definitions, which can differ considerably for different
application domains. Given the observations already mentioned, though, it is
clear that an edge is essentially a region of rapid or even maximal change in some
underlying function. Quite often, edges are regions where there is a discontinuity.
For the real world, the function can be seen as the type of matter across spatial
location, and the edges of an object—its surface—are discontinuities in type of
matter. For images, the underlying function is image luminance or color across
spatial location, and edges are large, sudden changes in luminance. For light
field photography, the underlying function is either radiance or intensity across
light rays [256]. For 3D volume recordings, the function is often material density
across spatial location. Note that it is even possible to extend this definition of
edges to concepts, with edges in conceptual space. For our present purposes,
however, we will restrict ourselves to color or luminance magnitude functions
(Figure 5.7).

5.3.2 Edge Detection Processes

Since both the first derivative and second derivative methods for calculating gradi-
ents examine neighboring pixels to determine how much the luminance function



i
i

i
i

i
i

i
i

5.3. Edges 101

Figure 5.8. The gradient magnitudes that are above a low (top) or high (bottom)
threshold are shown in white.

changes (making them very local), they would seem to be natural choices for dis-
covering edges. All we need to do is to decide precisely what we mean by a large
change in luminance. At first blush, this would seem to be simple: we simply
look for zero crossings if we are using a second derivative or really big gradients
if we are using a first derivative. In practice, it is not so easy. For example, we
could take the two images from Figure 5.7. Both images have large, relatively
homogenous regions such as lakes, the sky, and buildings. There are also a few
high-contrast edges, such as the edges of the mountains or the silhouette of the
buildings. The gradient histograms for these pictures are shown in the second row
of Figure 5.7 with a focus on the gradients with strengths between �0.5 and 0.5.
As expected, there is a sharp peak at zero, confirming that there are many pixels
in relatively homogeneous regions. The plots also exhibit heavy tails, showing
that there are some strong edges.

Figure 5.8 shows the effects of two different threshold values (a low threshold
in the top row and a higher threshold in the bottom row. Neither result is really
satisfactory. The top row has too many edges, especially in the water, mountains,
and buildings. The bottom row, on the other hand, is missing large, important
edges (such as part of the castle or mountains) and yet still has some edges in
the water. Although there are many reasons for these and similar difficulties,
one central issue is that no surface is perfectly homogeneous. Thus, small local
inhomogeneities will lead to small local fluctuations in luminance and therefore
in the first derivative. This is particularly true for textured objects. Likewise, the
presence of noise will lead to spurious, large changes in the gradient.
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Figure 5.9. The effect of filtering. The gradients (top) that are above the same low
threshold used in Figure 5.8 and the gradient histograms (bottom) are shown for
the two images after they have been smoothed with a Gaussian filter.

To help reduce the effect of noise and highly local edges, many edge detec-
tion procedures add a number of steps and constraints. The first step that is often
taken is to reduce the local fluctuations by preprocessing the image with a lo-
cal smoothing operator like a Gaussian filter. The top row in Figure 5.9 shows
the gradient histograms of the two images from Figure 5.7 after they have been
smoothed with a Gaussian filter. The bottom row shows the gradients in the im-
age that are above the same low threshold used in the top row of Figure 5.8. As
expected, the histograms have become even more spiked around zero, leading to
higher kurtosis.

Finally, if we remember that edges are merely the meeting places of two sur-
faces or objects and that an object is a spatially localized region of similar matter,
it becomes clear that edges have another useful property: they are spatially ex-
tended. In other words, edges will cover many neighboring pixels, especially if
they are important edges. Thus, one can use the presence or absence of an edge in
a neighboring pixel to strengthen or weaken the response of an edge detector at a
given pixel. This is part of the reason that local smoothing operators help to find
“important” edges (anything that is extended over a larger space will be partly
spared by a low-band pass filter). For a more detailed discussion of edge detec-
tion methods, we recommend several standard computer vision books, including
Shapiro and Stockman’s [669] and Forsyth and Ponce’s [237].
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5.3.3 Edge Statistics

Edges play a central role in most theories of human visual perception. In fact,
many theories focus solely on edges, ignoring any surface or texture qualities.
This can be seen, for example, in the first computational theory of visual per-
ception [498]. In Marr’s theory, the human visual system first extracts important
primitives in an image, which should reflect geometric structure as well as illumi-
nation effects, such as highlights. In practice, these features are extracted using
the zero crossings of a Laplacian of a 2D Gaussian, which yields edges.

Although the features are sometimes modified to make bars or blobs, nearly all
features in the implementation of Marr’s theory can be considered to be “edges
with some width or length.” These (edge-like) features jointly form the primal
sketch. The edges are then grouped into coherent units, and some depth informa-
tion for the newly-formed units is extracted to make the 2.5D sketch. Naturally,
further processing occurs at subsequent stages of the model. For the present pur-
poses, though, we can see that essentially everything in the image is discarded
with the exception of edges. Note that Marr’s primal sketch can be formalized
into a scale-invariant representation of edges [564], leading to a sparse represen-
tation that models the probability distribution of edges in natural images.

Arguably, nearly all modern computational theories of human visual percep-
tion follow Marr’s basic model to a surprising degree, especially with regard to
the focus on edges. This emphasis is to some degree justifiable, since most physi-
ological studies on the neural basis of early visual processing show that one of the
first steps in the visual cortex is to extract edges [355, 735]. Of course, subsequent
stages extract color, motion, depth, and many other useful features, but edges do
seem to be a critical first stage.

Given this central role that edges play, it is very surprising that there are very
few empirical studies on the statistics of edges in natural images. There are, of
course, many theoretical discussions of what edges in an image should do, going
back as far as the Gestalt psychologists, who had a lot to say about edges and their
role in perceptual organization (for more on the Gestalt laws, please see [414]).
Very little work, however, has been done what what edges actually do.

While it is true that a considerable amount of work has been done in the ma-
chine learning and computer vision fields on learning to detect edges and segment
images using a wide variety of filters and that many of these methods rely on the
(learned) statistics in image corpuses, most of the statistical descriptions of edge
variations in an image corpus are hidden in various classifiers (see, for example,
Konishi et al. [417]). Thus, these studies do not provide any explicit information
about the statistics of gradients or edges.

A few studies have examined the statistics of edges as well as specific edge
properties such as collinearity (e.g., [253, 427]). Much of this work has focused
on finding empirical evidence showing that the various Gestalt laws of perceptual
organization can be derived from image statistics. The most intense focus has
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been on the law of similarity and the law of good continuation. The first law
essentially states that similar elements will be grouped together into a coherent
whole.

The second law has two major components. First, in a refinement of the law
of similarity, it states that elements with similar orientations will be grouped to-
gether. Second, and more critically, it asserts that when several elements intersect,
elements that have similar orientations will be joined into one continuous unit. In
other words, the human visual system will try wherever possible to join neighbor-
ing edges into long, smooth contours.

Empirical evidence for the these laws comes from Geisler and colleagues
[253], who extracted edges (using a multistage procedure based on Gabor func-
tions; see Chapter 8) from 20 images representing a wide range of natural (i.e.,
not manmade) scenes. After extracting the edges, they examined the geometrical
relationship between all pairs of edges, focusing on the distance between edge
centers, the orientation difference, and the direction of the second edge relative
to the orientation of the first edge. Among other things, they found that regard-
less of the separation of two edges or their orientation, the two edges will most
likely have the same orientation. This is even more the case when the two edge
segments are near to each other and when they are collinear. They also found that
for similarly oriented edges, regardless of how far apart they were, there is a high
probability that the second edge is nearly co-circular (i.e., tangent to the same
circle). This is reflected in the Gestalt law of good continuation. Using a very
different methodology, Krüger and Wörtgötter [427] found very similar results.

Gradients and edges detection processes have also been applied to the study
of art. Several researchers have examined the statistics of various categories of art
and compared them to each other as well as to real scenes (including comparing
a painting of a specific scene to a photograph of that exact scene), in part to learn
about how humans represent or encode visual information [277, 278, 603]. They
have found that, in general, the statistics of most art are very similar to those of
real-world scenes.

5.4 Linear Scale Space
As was mentioned in Section 5.3, one of the first steps in edge detection is often
to smooth the image with a Gaussian filter in order to remove the very local,
very high-frequency edges. How much the image is blurred will determine which
edges get removed. Some edges like the leaves of a tree are very small, with lots
of rapid changes in direction and thus only visible in the higher-frequency range.
These disappear quickly with little blurring. Other edges, like the trunk of a tree,
are larger, with fewer rapid changes and as such, they are visible in the high,
middle, and possibly even lower frequencies. Thus, if we want to capture the
leaves or fine texture details, we should blur very little. Of course, since both the
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coarse edges and the fine edges are visible with little blur, it will be hard to decide
with little blur if an edge is a fine detail or coarse without additional processing.
If, on the other hand, we want to focus on the larger, more spatially extended,
coarser structure in an image, then blurring a lot will make these easier to see
since they will remove the finer edges.

So, what do we do if we want to clearly see the coarse structure as well as the
fine details at the same time? Or to remove the coarse and only focus on the fine
detail? One way to do this is to look at the image at a number of different blur
levels simultaneously. This is the core of scale-space theory, in which an image
is represented as a family of one-parameter, smoothed images. The parameter is
the size of the smoothing function used. Scale spaces have been applied to an
incredible variety of fields in computer vision and computer graphics, including
image segmentation, image denoising, medical imaging, optical flow,1 texture
analysis, shape-from-texture, object recognition, image matching, even temporal
changes (for a recent overview, see [732]).

In 1959, Taizo Iijima axiomatically derived scale space (as cited in [788]).
Since the original article was in Japanese, it was not widely read. A little over
twenty years later, the idea was independently (re-)introduced by Witkin [800],
who focused on one-dimensional signals. The idea was immediately seized upon
by the psychophysicist Jan Koenderink [411], who applied it to image analysis
and used it to explain many aspects of human visual perception.

Tony Lindeberg was central in further developing the mathematical and the-
oretical basis of scale space, as well as determining a number of its proper-
ties. A very thorough overview of the various methods for deriving linear scale
space—including discrete versions of the operators—can be found in Lindeberg’s
book [464]. In brief, by assuming a few very general qualities, it can be shown
that the Gaussian kernel is the only possible choice for the smoothing kernel. Per-
haps the most critical property of the smoothing kernel is that the smoothed ver-
sions should be simplifications of the original signal. This criterion (often called
causality) means that no new properties should be introduced by the smoothing
(see Figure 5.10). Other critical properties include that the operator not require
any special knowledge of the structures in the image (e.g., it should be linear,
scale invariant, isotropic, and shift invariant).

Figure 5.10 shows on the left side a simple one-dimensional signal, at several
different scales (the original is at the bottom). Notice that the curve becomes
smoother the more it is blurred. That is, higher-frequency information is being
increasingly suppressed. On the right, the zero crossings in the second derivative
are shown as a function of increasing blur. Several critical things can be seen
here. First, no new zero crossings are introduced as the width of the blur kernel
is increased. Second, and perhaps more critically, the zero crossings form paths

1In the human vision literature, this concept is often referred to as optic �ow. Here we follow the
computer vision literature and refer to this phenomenon as optical �ow.
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a. 1D signal smoothed at different scales b. Zero-crossings at different scales

σ σ
Figure 5.10. Scale-space example for a one-dimensional signal. (a) A one-
dimensional signal (bottom) is convolved with a Gaussian kernel of increasing
width. (b) The zero crossings in the second-order derivative are shown as a func-
tion of increasing kernel size σ . Notice that no new zero crossings are introduced
by the blur and that the zero crossings form paths across the blur levels. The
change of features as a function of blur level is referred to as deep structure.

through scale space [800]. The nature of features across scales is referred as deep
structure and can be used to infer rather interesting properties of edges in images.

One issue with scale-space approaches that can be seen from this figure is that
dependent on the scale at which a signal is analyzed, zero crossings are detected
at different spatial locations. In other words, edges drift across scale space. This
is generally an undesirable property of scale-space approaches. This can, how-
ever, be overcome by processing the signal with edge-preserving or edge avoid-
ing filters such as anisotropic diffusion [570] or the bilateral filter [747, 557].
Edge-preserving scale-space decompositions can also be obtained by carefully
designing filters that can be steered to smooth edges of specific strengths while
avoiding others [205, 207, 558]. Such methods have found many applications
in visual computing disciplines as they allow images to be processed at differ-
ent scales, while minimizing the artefacts caused by traditional scale-space ap-
proaches [753].

For a two-dimensional image I(x,y), the family of one-parameter, smoothed
images can be represented as (see the leftmost column of Figure 5.11):

I(x,y; t) = g(x,y; t)� I(x,y;0) (5.32)

for t > 0 where t is the scale parameter and g is the Gaussian kernel:

g(x,y; t) =
1

(2πt)
e

x2+y2
2t (5.33)

The semicolon implies that the convolution is only applied over the variables
before the semicolon. The value t defines the scale. Koenderink proved that
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Gaussian filted images

Difference of Gaussians

Zero crossings between
successive Difference of
Gaussians images

Input image

Figure 5.11. An input image was filtered several times with increasing blur ker-
nels (first column). Pairs of successively filtered images where then subtracted to
create a difference-of-Gaussians stack (second column). Then, pairs of difference
of Gaussian images were tested to detect zero crossings for each pixel (third col-
umn), effectively forming the 2D equivalent of Figure 5.10. (Falknerei Potzberg,
Germany, 2013)
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convolution of the image with a Gaussian filter is the general solution to the heat
diffusion equation (for a homogeneous medium with uniform conductivity [411]):

∂t I = ∇
2I (5.34)

In other words, the different scales can be thought of as how heat (or in this case,
luminance) would spread over time with the scale parameter t representing time.
As the second and third columns of Figure 5.11 show, detecting zero crossings
of the second derivative in image space leads at appropriately chosen scales to an
edge detector. It has also been shown that, given specific assumptions, scale space
can be seen as a special case of wavelets. For more on wavelets, see Chapter 8.

5.4.1 The N-Jet and Feature Detectors
Linear scale spaces become really useful for image statistics once one realizes
that differentiation commutes with convolution:

∂

∂x
(I �g) = I � ∂g

∂x
(5.35)

Thus, rather than convolving the image with a Gaussian and then calculating the
derivative, we can convolve the original image with a Gaussian derivative oper-
ator. This naturally leads to a multiscale consideration of gradients as a form of
feature detection.

As we saw in Equation (5.1b), the Taylor expansion shows how the luminance
for a given pixel is related to its neighbors based on a weighted combination of
derivatives of increasing order. Similarly, scale space uses a set of derivatives up
to a given order. More specifically, the set of derivatives up to the order N (at a
given scale t) is referred to as the local N-Jet. The set of derivatives up to a given
order N for all scales is the multiscale local N-Jet.

By combining Gaussian derivatives, a number of feature detectors can be read-
ily constructed. In order to ensure that the detectors have certain properties, how-
ever, it is first necessary to construct a local coordinate system. For an edge de-
tector, for example, it would be useful if the local coordinate system were aligned
with the edge, thus ensuring rotational invariance of the detector. Since—as was
shown earlier (see Figure 5.5)—the first derivative is at a maximum for edges, it
is possible to define the axes in terms of the first derivative and thereby ensuring
that the edge detector is aligned with the edge. We can do this by defining one
axis v of the local coordinate system as the direction of the gradient (and thus the
perpendicular to the edge) and the other axis u as perpendicular to the direction
of the gradient.

Now that we have an edge-aligned coordinate system, edges can be located
by looking for maxima in the first-order derivative. This is often done using the
second-order derivative, which crosses zero at maxima and minima in the first-
order derivative. To determine if a given zero crossing is a maxima or a minima,
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we can look at the third derivative, which will be less than zero for maxima. Thus,
the 3-Jet carries information about edges. Since the first derivative perpendicu-
lar to the gradient (that is, along u) is by definition zero, the equations simplify
considerably within the local coordinate system. An edge can be defined as those
points where the second-order derivative along the axis v is zero and the third is
less than zero:

I00v = 0 (5.36a)
I000v < 0 (5.36b)

As Lindeberg [464] pointed out, due to the discrete nature of an image, the actual
zero crossing in the second-order derivative might be between pixels. Interpolat-
ing in the second-order derivative to find zero crossings using the constraint that
the third-order derivative needs to be negative is an easy way to obtain subpixel
edge detection.

Likewise, ridge detectors can be constructed by looking for zero crossings in
Iuv that satisfy the condition that I002u � I002v < 0. Blob detectors are constructed
from maxima or minima in the Laplacian. Junction detectors use a measure of
curvature that can be constructed by combinations of Gaussian derivative opera-
tors. By selecting the scale(s) at which the feature detector’s response is strongest,
it is possible to automatically detect the proper scale(s) for examining a given
feature[464].

5.4.2 Implications for Human Perception

A considerable amount of work has been done connecting different properties of
scale spaces to aspects of the human visual system. For example, Koenderink has
suggested that the early stages of the human visual system use multiscale local
N-Jets to represent the input [412]. It has also been shown that the structure of
receptive fields in the retina can be modeled using a Gaussian scale space [465].
Likewise, the “center-surround” nature of receptive fields in early visual areas can
also be modeled using the Laplacian of the Gaussian. More intriguingly, the lay-
out of receptive field sizes on the retina (a linear increase in receptive field size as
a function of distance from the retina) is precisely the layout that is predicted if
the retina were trying to create a scale-space representation [465]. Finally, the fact
that there are massive downward connections from higher visual areas to lower
visual areas is consistent with scale-space theory [732], and it suggests that the
lower area receptive fields may be modified (something for which there is some
physiological evidence; see, for example, [18]). Once nonlinear scale spaces are
allowed, even more aspects of human vision (in particular, higher visual process-
ing) can be explained. For more on the relationship between scale space and
human vision, we recommend [732].
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5.4.3 Scale-Space Statistics

Several researchers have created created a wide variety of feature detectors using
scale-space theory and tested them on natural images (e.g., [250, 378, 411, 466,
487]). Interestingly, a large amount of this work is directly interested in deriving
3D shape information from the 2D image information, usually by focusing on the
distortions that shape information should undergo during perspective projection.
Although these works present statistics on the recovered depth, edge, and orienta-
tion values, they focus on the accuracy of the detectors and less on the statistical
analysis of natural images.

Salden and colleagues have provided extensive discussions of how one can
use scale space to construct complete feature representation systems that are ap-
propriate for natural images (see, for example, [642]). Altough the statistical
regularities of those features in natural images remains an interesting prospect for
future research, there is some research on the statistical properties of the feature
detector. Lindeberg [464], for example, extensively examined how one might ex-
tract specific structures from images, including testing these detectors on sample
images. In this work he also derived the statistical properties that one should ex-
pect from the detectors, then he examined synthetic images to see if the feature
detectors functioned as expected. For example, he determined how the number
of extrema should decrease as a function of scale (the density of extrema is es-
sentially inversely proportional to the scale parameter). The expected pattern was
more or less obtained. Since noise data was used, however, this study is more
focused on the statistics of the detector than of images.

Edge statistics were assessed in scale space by Pedersen and colleagues [565].
They examined Van Hateren’s database (see Section 3.3.1)) using a 3-Jet to deter-
mine edge statistics. In particular, they point out that when constructing an edge
detector, at least three dimensions need to be described. Specifically, any given
edge will have an orientation, a position within the receptive field, and a blur or
scale level. They show that ideal step edges form a two-dimensional manifold in
this space that depends solely on the orientation and the ratio of the position to
the scale. They then construct a nine-dimensional 3-Jet space, consisting of the
two first-order derivatives (Ix and Iy), the three second-order derivatives( Ixx, Iyy,
and Iyx) and the four third-order derivatives and project the edge manifold into
this space. In this theoretical part, they show that the ideal step edges still trace a
2D manifold.

The data is then whitened and contrast normalized. Whitening is essentially
the removal of first- and second-order correlations. As discussed in Section 7.1.1,
this can be achieved with the aid of principal components analysis. As a result,
the covariance matrix of each nine-dimensional data point becomes the identity
matrix. Contrast normalization subsequently takes these data points and divides
each point by its norm.
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After whitening (see Section 7.1.1) and contrast normalization of the data (to
eliminate the effects of lighting and thus be able to focus on geometry), they
show that all 3-Jets of ideal step edges will lie on a eight-dimensional sphere in
the nine-dimensional space, and thus the distance between and two 3-Jets can be
measured by their angular separation. Finally, in the empirical part, they measure
the angular distance between the ideal edge manifold and the measured 3-Jets,
obtaining the full probability curve for all points in the image. They found that
most of the points in an image are very close to the edge manifold, regardless
of the scale! In other words, the 3-Jets of the points in the images are clustered
near the ideal edge manifold. Furthermore, the edge statistics are roughly scale
invariant. They conclude that natural images are extremely sparse, with most of
the points in an image clustering around low-dimensional structures like edges,
blobs, ridges, and junctions.

5.5 Contrast in Images
An alternative method of assessing relations between pixels is through the com-
putation of contrast. Simple measures of contrast are discussed in Section 2.5.3.
Recall in particular Weber’s contrast:

CWeber =
L�Lb

Lb
(5.37)

This measure is intended for uniform patches on uniform backgrounds. It can be
extended to measure contrast in images in the form of center-surround processing
(see Section 2.3.4) and is typically computed as a difference of Gaussians. First,
we apply to the image a Gaussian filter twice, but with different spatial extents,
leading to Lcenter and Lsurround. These are then subtracted and optionally normal-
ized to yield a contrast measure for each pixel [723]:

CDoG =
Lcenter�Lsurround

Lsurround (5.38)

This computation gives rise to the filter profile shown in Figure 2.9. If we apply
such processing to an image, then we obtain results such as shown in Figure 5.12.

In essence, such center-surround processing can be seen as a method to ex-
tract edges from an image; it serves as a rudimentary edge detector. As discussed
in Section 2.3.4, such processing also occurs in the human visual system. It re-
moves spatial correlations [36, 703, 25] and effectively returns a zero response
in regions where there are no contrasts. This can also be seen as removing im-
age components that are predictable and therefore uninformative. Conversely, the
information that is left is unpredictable and therefore informative [741]. Alter-
natively, it can be understood by saying that surfaces are consistent [289]; edges
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Figure 5.12. Example of center-surround processing. Here, we applied separate
processing to each of the three RGB color channels. The filter parameters were
σcenter = 6.25 and σsurround = 12.5 pixels. (Doubtful Sound, New Zealand, 2012)
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Figure 5.13. Magnitude distribution of difference-of-Gaussian processing, per-
formed on the linearized landscape images of Figure 5.14 (left) and the high dy-
namic range forest images of Figure 7.8 (right).

form discontinuities that are transmitted to the brain. Anything in between edges
is thought to be inferred by the human visual system from the edges alone, a
process known as filling-in [771, 423, 291, 197, 533, 150].

As gradients compute differences between neighboring pixels and center-
surround processing computes differences between pixel areas, one would expect
that histograms of the magnitude of difference of Gaussian responses follow the
same behavior as gradient histograms. That this is indeed the case is shown in
Figure 5.13, where a center-surround computation was carried out on two im-
age ensembles. The 15 images of the first ensemble are shown in Figure 5.14,
whereas the second ensemble is shown in Figure 7.8. The first ensemble con-
sists of 15 landscape images, whereas the second ensemble consists of 15 high
dynamic range forest scenes, which do not contain significant amounts of sky.

The forest image ensemble produces a longer tail for positive gradients, which
is likely due to the fact that these images were captured in high dynamic range.
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Figure 5.14. An ensemble of 15 images containing landscapes. (Various, South
Island, New Zealand, 2012)

The landscape image ensemble was linearized prior to the calculations. The shape
of both plots suggests that a highly kurtotic distribution is present, consistent with
the idea that center-surround processing removes unimportant information. High
dynamic range imaging, which is a closer representation of light available in
scenes than afforded by conventional images, appear to exhibit higher kurtosis,
an issue also seen in moment statistics, which were discussed in Section 4.2.

It has been suggested that negative center-surround responses to natural im-
ages are more numerous than positive responses [31]. The difference between the
number of negative versus positive responses was measured to be as high as 50%.
This could be an explanation for the fact that there are twice as many OFF path-
ways in the human visual system as there are ON pathways (see Section 2.3.3).
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Unfortunately, we were not able to reproduce this result. For the HDR forest
ensemble the ratio between positive and negative responses is 1:1.15. In other
words, the negative responses are 15% more numerous. Given that landscape im-
ages tend to have bright sky near the top of the image, with darker ground and
foreground areas, we carried out the same experiment on the 15 landscape im-
ages of Figure 5.14. Here, the ratio is 1:1.025, albeit that in this case the positive
responses were slightly more numerous (by 2.5%).

So far, we have relatively arbitrarily fixed the size of the center Gaussian to
σ center = 6.25 pixels and the surround to σ surround = 1.5 pixels. There is of course
no reason to believe that these values are in some sense optimal. Further, hu-
man vision is sensitive to contrasts at different scales as modeled by the contrast
sensitivity function (see Section 2.5.3). This has led to the development of con-
trast measurements that take different spatial scales into account, which can be
obtained by first band-pass filtering the image [567]. Typically, center-surround
processing at different spatial scales begins by creating a stack of Gaussians, as
outlined in Section 5.4. To create differences of Gaussians at different scales,
pairs of neighboring scales are simply subtracted.

Finally, note that contrast as well as luminance values vary greatly across an
image. Moreoever, contrast and luminance values tend to vary independently.
Interestingly, human vision appears to process contrast and luminance separately,
showing yet another form of adjustment to statistical regularities in natural scenes
[495].

This also affects adaptation in the human visual system, as saccadic eye move-
ments will continuously cause the retina to focus on different patches with cor-
respondingly different local contrasts and luminances [244]. This means that
human vision does not tend to approach a state of full adaptation, as the retina
is presented with different luminance and contrast statistics every few hundred
milliseconds or so. This is important to maintain vision. Consider a situation
whereby every photoreceptor is fully adapted to its input. In that case, the semi-
saturation constant σ of Equation (2.1) would equal its input I, and as a result, the
response of every photoreceptor would be the same, namely, half-maximal. If all
photoreceptors emit the same signal, vision would essentially be blind! Non-
stationary statistics combined with saccadic eye movements prevent this from
happening.

Of course, motion of objects in scenes will also cause significant deviations
from the zero response and are therefore particularly salient. The temporal ele-
ment of image statistics is further discussed in Chapter 12.

5.6 Image Deblurring
When taking a photograph of a scene, it is not uncommon that either the camera or
an object in the scene moves. The longer the aperture is open, the more likely this
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is to be the case. As a result, all or part of the image will be blurred. A number of
approaches for sharpening an image have been proposed. One type of approach,
blind motion deconvolution, essentially treats the photograph as the result of a
convolution between an unknown sharp image and an equally unknown blurring
kernel. The goal is to estimate the blur kernel so that it can be deconvolved with
the blurred image to yield the sharp image. Naturally, this is an underspecified
problem, so additional constraints are needed; recently, a number of researchers
have employed natural image statistics to provide them.

For example, gradient distributions derived from natural images can be used
to estimate the blur kernel [211]. They can be effectively modeled with a hyper-
Laplacian distribution [425]:

p(x) ∝ exp
(
�αjxjβ

)
(5.39)

The heavy-tailed distribution of gradient histograms was shown to be best mod-
eled if parameter β was set to approximately 2/3 [425]. Hyper-Laplacian distri-
butions have also been successfully applied to applications such as transparency
separation [455], image segmentation [324] and superresolution [726] (see Sec-
tion 5.7).

Of course, other image statistics approaches are possible, for instance, by uti-
lizing the typical 1/ f β distribution of power spectra (Section 6.4.2), which would
hold for sharp images but not necessarily for blurred ones [112]. An interaction
between power spectra and wavelets can also be used [371, 530].

All of these approaches assume camera motion—that is, that there is a single
blur kernel for the entire image. In an alternate approach, the gradient structure
can be used to find those pixels that are blurred and segment them from the rest
of the image, as demonstrated by Levin [453]. Specifically, a correspondence is
found between the gradient distribution and the blur present in the image, allowing
the discovery of the blur kernel for a given image.

One primary feature of motion blurring is the attenuation of higher frequen-
cies. This shows in the slope of the power spectra (by increasing β ) as well as
in gradient histograms (in particular by removing the longer tails at the higher
gradients). Levin attempts to recover the blur kernel by applying different blurs
to the image to find the one that produces a gradient histogram that matches the
blurred one. This requires a non-blurred image or image region. Using a com-
pletely different image tends not to produce reliable results (due to differences in
the underlying gradient histogram). Since much terrestrial motion tends to be hor-
izontal, the majority of the effects of motion blurring are also horizontal. Thus,
the vertical gradients can, under some circumstances, be used to calculate the blur
of the horizontal components. In a further refinement, Shan et al. [667] employ
an iterative alternation between optimizing the blur kernel and the sharp image
using priors from natural image statistics.
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5.7 Superresolution
There is a growing field of work that aims to infer information from an image
that is not actually present in the image. Image deblurring is one example, where
sharpness is recreated. One core application in this area is superresolution, which
essentially tries to increase the resolution of an image by intelligently guessing
what the missing higher-frequency information is. For example, Fattal notes that
there is a difference between shadow edges and texture edges [206]. Not only are
humans sensitive to these differences, but information about what type of edge
is present at a pixel can be found in the gradient structure. The unique intensity
falloff found at the edge of a shadow—the penumbra—seems to be used by hu-
man vision to find shadows and separate illumination changes from reflectance
changes [270].

Following this insight, Fattal et al. examined 15 indoor images, looking at
the statistics of pixels in a small area to see if the sharpness of an edge in the
high-resolution image could be estimated from the low-resolution version of the
image. To do this, they calculated a gradient field (using central differences) and
then searched for the nearest edge (along the gradient) for each pixel. Finally,
they determined how much the luminance changes along that edge, how far the
edge is from the pixel, and how sharp the edge is. They found a clear dependency
between the three measures and the continuity profiles exhibited by the image
intensities, and they were able to use this information to improve the quality of a
superresolution technique.

In a different approach, Tappen et al. [726] use the gradient distribution to
fill in the holes produced when a high-resolution image is produced from a low-
resolution image. They also apply the same procedure to yield a full-color image
from an achromatic image.

5.8 Inpainting
No imaging system is perfect. All imaging systems contain intrinsic noise and
occasionally yield results with holes (sometimes due simply to self-occlusion).
This is also true of the human visual system. The “blind spot,” which is the section
of the retina where the optic nerve leaves the eye, has no photoreceptors. Yet we
do not see a blank spot there. Aside from that, there are many situations whereby
it is desirable to remove an object from an image—for instance, a photograph
shot through a wire fence may benefit from the removal of the fence. Distracting
objects may also need to be removed, requiring algorithms to guess what may
have been behind those objects.

There is a range of computer graphics algorithms for “hole filling” or image
completion, which can be captured under the title inpainting [51, 134]. Inpainting
techniques can be divided into several classes based on the central algorithm. The
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Input image Input image with mask applied

Inpainted result

Figure 5.15. An example of inpainting using Crimini’s [134] algorithm. After re-
gions from an image (top left) are deleted (top right), the hole is filled (bottom)
using this and similar images. (Castilla y Leon, Spain, 2010)

three typical categories are texture synthesis, methods relying on partial differen-
tial equations, and exemplar-based techniques.

The first category, texture synthesis, is generally considered to be the oldest
form of inpainting, likely originating with Fournier et al. [241]. These methods
have as their goal the synthesis of a new image patch that is perceptually similar
to a user-defined patch. For example, the technique developed by Heeger and
Bergen [323] generates stochastic textures using a straightforward model of the
human visual system. Specifically, their method takes a white noise patch—of
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arbitrary size—and alters it using, in part, a pyramid-based histogram matching
algorithm so that the first-order statistics of a series of oriented spatial-frequency
filters are similar to those of the patch. For more on such filters, see Chapter 6. A
wavelet-based approach to texture synthesis is discussed in Section 8.14.

The second class of approaches is based on the theory of variational methods
and partial differential equations (PDE). One of the first of these was proposed
by Bertalmio et al. [51], who used an iterative procedure, where edges (detected
using gradients) at the border of the missing region are extended into the miss-
ing region. Chan and Shen [117] extended this model using the theory of total
variation, as well as an anistropic diffusion based on the strength of the gradients.
Bertalmio et al. [52] also proposed a hybrid approach, which uses PDE-like meth-
ods to fill in the structure of an image and then applies texture synthesis methods
to finish by filling in the texture.

Finally, there are the examplar approaches, which use image statistics to find
optimal replacements for the missing texture, usually by assuming that a patch
similar to the missing bit can be found somewhere in the remaining image. For
example, Hirani and Totsuka [332] use a combination of spectral and spatial infor-
mation to find the replacement patch. The seminal work of Efros et al. [195, 194]
has done much to define the field of exemplar-based inpainting. Levin [458] sug-
gested that the missing section can be filled in based on the gradients at the bound-
ary region as well as some term that maximizes the match to the global gradient
histogram.

Likewise, Criminisi et al. [134] included information from gradients in the
algorithm that decides which regions should be completed first. They then select
a small patch of pixels around the region to be completed and then find similar
patches elsewhere in the image. Image editing can also proceed entirely in the
gradient domain. In that case, an image can be reconstructed by solving the Pois-
son equation. This allows gradients to be directly interpolated into the missing
region [568, 673]. Alternatively, the patch-copying procedure can be treated as a
global optimization of a Markov random field [416] (see Chapter 9).



i
i

i
i

i
i

i
i

Chapter 6

Fourier Analysis

As mentioned in the previous chapter, the interaction of light rays with an object
systematically alters light according to the surface properties of the object. This
means that the pattern of change across a set of light rays provides direct, reliable
information about the object. This can also be seen by permuting the pixels of an
image (Figure 6.1). Although the exact same pixels are available in both images,
the permutation has resulted in the loss of meaningful information. Thus, a statis-
tical assessment of an image based on individual pixels alone will give only very
partial insight into the structure of an image.

Of course, the structure in images is of central interest to the human visual
system. It should not be surprising, then, that considerable attention has been di-
rected toward investigating second- and even higher-order statistics. It has been
shown, for example, that people can discriminate almost without effort between
images that differ in their second-order statistics [381, 100]. Second-order statis-
tics are those that typically involve covariances or correlations between pairs of
pixels.

In Chapter 5, we showed that looking at the difference between pairs of neigh-
boring pixels provided a large amount of information about structure. Gradient
analysis is, however, very limited in that it requires the two pixels to be neighbors.
In this chapter we address ways to analyze relationships between pixels that are
not necessarily adjacent in images. In a given image, the probability that neigh-
boring pixels have similar values tends to be high, whereas pixels some distance
away have less ability to predict a pixel’s color. This phenomenon is described by
the autocorrelation function, which gives the correlation between pixels at differ-
ent points in image space. It is explained in more detail in Section 6.1.

Although the autocorrelation function could provide useful insights into im-
age structure, it tends to be computationally inefficient to compute in image space.
An equivalent analysis can be performed in frequency space by examining the
power spectrum. This requires the use of Fourier transforms, which are intro-
duced in Section 6.2. The equivalence of the autocorrelation function and the
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Figure 6.1. The pixels of the image on the left were permuted to create the image
on the right, in the process destroying higher-order structure that prevents the
image to be meaningfully interpreted. (Westonbirt Arboretum, UK, 2011)
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Figure 6.2. A sine function encodes a single frequency, in this case at one cycle
per inch.

power spectrum is known as the Wiener-Khintchine theorem, which states that
these form a Fourier transform pair. This is explained in Section 6.3.

The power spectrum encodes how much of each spatial frequency is available
in the image. Spatial frequencies are measures of the number of oscillations (cy-
cles) from dark to light per unit of length of the image (Figure 6.2). In vision
research it is common to express this as the number of cycles per degree (cpd)—
effectively a measure of oscillations per unit of visual angle (α in Figure 6.3).
The two ways to express spatial frequencies convey the same information,
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Length of grating g

Position of
observer

Visual Angle a

Distance of
observer d

a = tan-1 (g / d)
cpd = 1/a
because the length g
spans 1 cycle

Figure 6.3. The angular frequency (in cycles per degree, cpd) depends on the
size g at which a sine wave is displayed as well as the distance d between the
observer and the display.

although the latter assumes that the distance between the observer and the display
is known. The importance of power spectral analysis is discussed in Section 6.4.

Finally, Fourier decompositions return complex valued elements. The magni-
tude of the complex numbers gives information of the frequency content, whereas
the angle provides information regarding the position within the image, also
known as phase. There have been attempts to discover statistical regularities
in the phase content of images, but although most information that characterizes
an image is known to be encoded into the phase spectrum, analyses of the phase
structure of images have not been as overwhelmingly successful as frequency-
domain analysis. Fourier-based phase structure is discussed further in Section 6.5.

6.1 Autocorrelation
The autocorrelation function is a special case of cross-correlation. Cross-correlation
is a measure of how similar an image is to a mask. Assume we have an image I
and a mask M, with the mask having a size of mx�my pixels, which is smaller
than the size of the image (nx�ny). Image and mask will have means µI and µM
and standard deviations σI and σM , respectively.

Each pixel in the image now forms the center of a region the size of the mask.
The similarity of the region with the mask can then be computed using the nor-
malized cross-correlation r(x,y):

r(x,y) =
mx/2�1

∑
xs=�mx/2

my/2�1

∑
ys=�my/2

I(x+ xs,y+ ys) M(xs +mx/2,ys +my/2)
σI σM

(6.1)
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Input image

Mask

Cross-
correlation

Figure 6.4. Cross-correlation between an image and a template yields values
between –1 and 1 for each pixel. (Eden Project, Cornwall, UK, 2011)

The normalized cross-correlation r(x,y) produces values between �1 and 1. It
will be close to 1 if the region around (x,y) closely resembles the pattern encoded
by the mask. Such a measure is thus useful to detect specific patterns in images.
An example is shown in Figure 6.4. Here, the spikes show where the hexagonal
template was matched best against the input image.

When such a cross-correlation is computed between the image and a displaced
version of the same image, we measure autocorrelation as a function of displace-
ment. If for a given displacement a high autocorrelation is found, then this could
be interpreted as an indication that the image exhibits periodicity with a frequency
commensurate with this displacement. The autocorrelation function ra as a func-
tion of displacement (u,v) is given by:

ra(u,v) =
nx�1

∑
xs=0

ny�1

∑
ys=0

I(u+ xs,v+ ys) I(xs,ys)

σ2
I

(6.2)

This function is essentially the cross-correlation of an image with itself, and
is therefore a direct consequence of the formulation of the cross-correlation in
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Figure 6.5. The autocorrelation for the left image is shown on the right. The auto-
correlation was computed for each of the red, green, and blue channels separately,
leading to slight color variations in this image. (Olympia, Greece, 2010)

Equation (6.1). An example is shown in Figure 6.5, where the autocorrelation
was computed for each of the red, green, and blue channels separately.

The autocorrelation for the green channel is shown as a surface in Figure 6.6.
The zero displacement is shown in the middle of the surface as a large spike.
For natural images, larger displacements tend to lead to smaller autocorrelation
values. Note also that this image has produced some direction sensitivity, with
the autocorrelation remaining at higher values in the vertical direction compared
with similar horizontal displacements.

The computation of the autocorrelation function as in Equation (6.2) is ex-
pensive to compute. In effect it has a time complexity of O(n2

x n2
y), which is not

practical for decent-sized images. However, it can be shown that the autocorrela-
tion function is equivalent to the power spectrum, which is computed in Fourier
space. In fact, when applied to natural image ensembles, the power spectrum
shows striking statistical regularities. To discuss these findings, we first briefly
explain Fourier transforms (Section 6.2) and show that the autocorrelation and
power spectrum constitute a Fourier transform pair (Section 6.3).

6.2 The Fourier Transform
The Fourier transform is exceptionally important in digital image processing,
computer vision, and other fields, but it is also important in the statistical analysis
of natural images. We therefore briefly review its construction and its properties.
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Figure 6.6. The autocorrelation function for the green channel of the left image of
Figure 6.5 is shown here. The spike in the middle of the plot coincides with a zero
displacement.

We begin by noting that sinusoids—sines and cosines—are periodic functions for
all k 2 Z:

sin(x+2π k) = sin(x) (6.3)
cos(x+2π k) = cos(x) (6.4)

A sinusoidal function g(x)=A sin(2π f x+θ) is periodic with frequency f , ampli-
tude A, and phase θ . The period T0 of this function is 1/ f . We can add sinusoids
with different periods and if these periods are integer multiples of a base period
(i.e., they are commensurable), then the resulting sum is also periodic. Figure 6.7
shows some examples.

We can add a large number of sinusoids together using this same progression,
i.e., g(x)=∑n A sin(2π f x/2n+θ), as shown in Figure 6.8. As each frequency is a
harmonic, i.e., an integer multiple of a base frequency, a step edge is beginning to
form, although there is still some undershoot and overshoot of the signal near the
edge (known as the Gibbs phenomenon). In general, arbitrary periodic waveforms
can be built by summing harmonically related sines and cosines.

Conversely, given an arbitrary periodic waveform, it is possible to find its
trigonometric series representation, known as the trigonometric Fourier series of
a signal. A trigonometric Fourier series is generally written as:

g(x) = a0 +
∞

∑
n=1

an cos(2π f nx)+
∞

∑
n=1

bn sin(2π f nx) (6.5)
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I(x,y) = sin (2π (nx/2 - x) 1 sine

2 sines

3 sinesI(x,y) = sin (2π (nx/2 - x) + sin (π (nx/2 - x) + sin (π/2 (nx/2 - x)

I(x,y) = sin (2π (nx/2 - x) + sin (π (nx/2 - x)

Figure 6.7. Sines with commensurable periods are summed, leading to a new
signal which is also periodic.

Figure 6.8. Summing a large number of sinusoids (500 in this case) approximates
a step edge.

with �∞ < x < ∞. Thus, a specific signal g(x) can be represented by the coeffi-
cients a0, an, and bn, which can be computed as follows [827]:

a0 = f
∫

1/ f
g(x) dx (6.6)

an = 2 f
∫

1/ f
g(x) cos(2π f nx)dx n 6= 0 (6.7)

bn = 2 f
∫

1/ f
g(x) sin(2π f nx)dx (6.8)

A Fourier series will converge to g(x) if this function has continuous first and
second derivaties over a period T0 = 1/ f , except possibly at a finite number of
points where it may have finite jump discontinuities. A Fourier series is defined
over a period 1/ f . Outside this interval, the Fourier series converges to a periodic
extension of g(x).

With the exception of certain special cases, the trigonometric Fourier series
may alternatively be expressed in terms of cosines alone by noting that:

an cos(2π f nx)+bn sin(2π f nx) = An cos(2π f nx+θn) (6.9)

As a result, the trigonometric Fourier series is then:

g(x) = A0 +
∞

∑
n=1

An cos(2π f nx+θn) (6.10)
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The Fourier coefficients are now given by the amplitudes An and phases θn, which
go with frequencies f n. The coefficients An plotted against frequencies f n (where
n = 0,1,2, . . . ,∞) form the amplitude spectrum of the signal, whereas the coeffi-
cients θn plotted against frequencies f n (where n = 1,2,3, . . . ,∞) give the phase
spectrum.

A third form of the Fourier series is exponential in nature. We note that using
Euler’s formula, the cosine in (6.10) can be written as:

cos(2π f nx+θn) =
1
2

ei(2π f nx+θn)+
1
2

e�i(2π f nx+θn) (6.11)

Thus, it is possible to represent a signal g(x) as a sum of complex exponential
terms:

g(x) =
∞

∑
n=�∞

Xn e2πi f nx (6.12)

The complex coefficients Xn can be computed as follows:

Xn =
1
T0

∫
T0

g(x)e�2πi f nx dx (6.13)

which defines the exponential Fourier series. Note that these coefficients directly
relate to those of the trigonometric Fourier series, as follows:

An = 2jXnj (6.14)

θn = tan�1
(

Im Xn

Re Xn

)
(6.15)

This makes it convenient to calculate the exponential Fourier series and then de-
rive amplitude and phase spectra according to these equations.

So far we have considered only one-dimensional signals g(x). For images,
the extention to two dimensions is as follows. The Fourier transform F(u,v) as
function of an image I(x,y) is defined as:

F(u,v) = ∑
x

∑
y

I(x,y) exp(�2πi(xu+ yv)) (6.16)

Thus, an image can be transformed into an equivalent representation which is
termed Fourier space or frequency space. The reasons why such a conversion
represents frequencies will become apparent later in this section. The inverse
Fourier transform takes the frequency representation back to image space:

I(x,y) = ∑
u

∑
v

F(u,v) exp(2πi(xu+ yv)) (6.17)

With this mechanism, it is possible to convert an image to Fourier space, carry
out calculations, and then transform the result back to image space. The reason
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that one might want to go to Fourier space is that some calculations become much
more computationally efficient. Noting that for an image with n pixels the time
complexity of the forward and backward transforms is O(n logn) for efficient Fast
Fourier Transforms (FFTs), any calculation that costs O(n logn) in Fourier space,
but more in image space, becomes amenable to treatment in this space.

An example is convolution, where in image space a sliding window is moved
across the image. For every pixel, a set of neigboring pixels is weighted and
summed according to a specified filter kernel δ :

Iconv(x,y) = ∑
i

∑
j

I(i, j) δ (x� i,y� j) = I ?δ (6.18)

where the “?” is the convolution operator. Convolutions are very useful, for in-
stance to blur an image. In this case, the filter kernel is often chosen to be Gaus-
sian. Although the filter kernel could be capped, summing over only a small pixel
neighborhood around each pixel, this would make the convolution approximate.
In the formulation above, each pixel contributes to every other pixel, making the
time complexity of this operation O(n2).

The convolution theorem states that a convolution could be equivalently ex-
pressed in the Fourier domain as a multiplication of the Fourier transform of the
image and the Fourier transform of the filter kernel. Denoting the Fourier trans-
form as F [], the convolution theorem is given by:

F [I ?δ ] = c F [I] F [δ ] (6.19)

where c is a normalizing constant. We can therefore transform both image and
kernel, incurring a cost of O(n logn), followed by a multiplication that costs O(n).
Including the inverse Fourier transform results in a total cost of O(n logn), which
is especially for large images significantly cheaper than O(n2).

At this point, it is interesting to note the mathematical similarity between
convolution and cross-correlation. In 1D, the correlation between two functions
f and g is given by:

r(x) =
∫

∞

�∞

f (θ) g(x+θ)dθ (6.20)

This is the one-dimensional case of the cross-correlation function given earlier
in (6.1). Convolution in 1D is defined as:

( f ?g)(x) =
∫

∞

�∞

f (θ) g(x�θ)dθ (6.21)

Despite mathematical similarities, their interpretation and use is different. In sig-
nal processing for instance, convolutions are used to compute the output of a linear
system given a specific input. Their Fourier space equivalent is a multiplication.

Correlation is used to compare the similarity of two signals, reaching its max-
imum for the displacement at which the two signals best match. As mentioned
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in the previous section, the autocorrelation function is a special case of cross-
correlation, whereby a signal is compared to itself for different displacements.
This function has the same time complexity as convolution and is therefore also
expensive to compute in image space. However, it turns out that the autocor-
relation function can also be expressed in Fourier space, an important finding
discussed next.

6.3 The Wiener-Khintchine Theorem
The reason to discuss the Fourier transform in some detail is that there is a direct
link between computations in Fourier space and those in image space. While this
is generally the case, here we refer specifically to the relation between the autocor-
relation function (Section 6.1) and power spectra [538]. In other words, Fourier
space gives us computationally convenient access to the Fourier equivalent of the
autocorrelation function. Recall that the autocorrelation function ra(u,v) of an
image I(x,y) is the cross-correlation between the image and a displaced version
of the same image as function of the displacement (u,v).

The Wiener-Khintchine theorem [796, 397] states that the autocorrelation
function ra can be expressed as:

ra = F�1 [jF j2] (6.22)

where F is the Fourier transform of the image, and F�1 denotes the inverse
Fourier transform, as defined in Equation (6.17). Given Equation (6.14), we see
that the amplitudes squared are the Fourier equivalent of the autocorrelation func-
tion. It is therefore possible to gain information about the autocorrelation function
by analyzing the square of the amplitude spectrum, which is also known as the
power spectrum. As discussed in the following section, natural images exhibit
striking statistical regularities in their power spectra.

6.4 Power Spectra
Images contain information at different spatial scales, from the large (e.g., the
mountains in the distance of Figure 6.9) to the very small (e.g., the grass on the
left as well as the fine texture on the mountains due to vegetation). As is well
known from Fourier analysis, sharp edges, such as at the silhouette of the moun-
tains against the sky, can be described by a weighted sum of sinusoids, with higher
frequencies being weighted less (see Section 6.2 and in particular Figure 6.8). An
examination of the relative power of the different spatial frequencies reveals sev-
eral interesting trends, which are so prominent that many works in image statistics
provide an analysis of the power spectrum.
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Figure 6.9. A typical natural scene, containing details at various scales. (Milford
Sound, New Zealand, 2012)

6.4.1 Slope Computation

To compute the spectral slope of an ensemble of images, the following procedure
can be used [653]. We begin by assuming that images are square. Then, the
weighted mean intensity µ is subtracted to avoid leakage from the DC-component
of the image, with µ defined as:

µ =
∑(x,y) L(x,y)w(x,y)

∑(x,y) w(x,y)
(6.23)

Here, w(x,y) is a weight factor that is defined below.
Next, the images should be prefiltered to avoid boundary effects that are re-

lated to the Fourier transform. As the Fourier transform requires the signal to be
periodic to give a correct answer, it should be used with care when applied to im-
ages. To see this, consider a cosine grating as shown in the top left of Figure 6.10.
This grating is aligned with the image and contains an exact number of periods
between the left and right edges. The amplitude spectrum in Fourier space will
show exactly two spikes, left and right of the center of the image (we have shifted
this amplitude spectrum such that the zero frequency is in the middle of the im-
age). These spikes represent the frequency at which this cosine occurs. Edge
artifacts are carefully avoided in this image by making the signal truly periodic.

However, this can not be maintained in general, and even rotating the cosine
by 45 degrees breaks the assumption of the image being periodic. As the left and
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Cosine at 0 degrees Cosine at 45 degrees

FFT of cosine at 0 degrees: 2 spikes FFT of cosine at 45 degrees:
2 spikes plus edge effects

Figure 6.10. The top row shows two oriented cosine gratings. Underneath are
shown their amplitude spectra.

right edges of the image no longer line up (the same is true for top and bottom
images), the amplitude spectrum is no longer a pair of spikes. In fact, it is a pair of
spikes augmented with various other structures that exist because opposite edges
of the image are not lining up.

In general, images are not periodic and this means that measures ought to be
taken to minimize edge artifacts when analysing ensembles in Fourier space. This
is normally accomplished by applying a window to the image first, which tapers
pixel values to a constant value near the edges. This makes edges on opposite
sides of the image have the same value and therefore simulates a periodic signal.
The center of the image is largely unaffected to ensure that meaningful statistics
can be computed. For the cosine example, the result of windowing is shown in
Figure 6.11.
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Windowed cosine at 45 degrees FFT of windowed cosine at 45 degrees:
2 spikes plus reduced edge effects

Figure 6.11. After windowing with a Kaiser-Bessel window (left), the amplitude
spectrum shows much fewer edge artifacts (right).

There are many choices of window [305], each with some advantages and
disadvantages. A good trade-off between computability, side-lobe level, and
main-lobe width is afforded by the circular Kaiser-Bessel window with param-
eter α = 2 [305]. It is computed as follows:

w(x,y) =
I0

(
πα

√
1.0�

(
x2+y2

(N/2)2

))
I0(πα)

: 0�
√

x2 + y2 � N
2

(6.24)

Here, N is the window size. This weight function is then normalized by letting:

∑
(x,y)

w(x,y)2 = 1 (6.25)

Further, I0 is the modified zero-order Bessel function of the first kind, computed
as:

I0(x) =
∞

∑
m=0

1
m! Γ(m+1)

( x
2

)2m
(6.26)

and Γ is the gamma function, which is an extension of the factorial function:

Γ(z) =
∫

∞

0
e�t tz�1 dt (6.27)

The windowed images are then Fourier transformed, and the power spectrum
P(u,v) can be computed as the square of the magnitudes:

P(u,v) =
jF(u,v)j2

N2 (6.28)
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where F =F [I] is the Fourier transform of the image, and (u,v) are pixel indices
in Fourier space. Two-dimensional frequencies can also be represented with polar
coordinates ( f ,θ), where f is the spatial frequency and θ is the spatial orientation.
They are computed as:

f =
√

u2 + v2 (6.29)

θ = tan�1 (v/u) (6.30)

Conversion back to Cartesian coordinates is given by:

u = f cos(θ) (6.31)
v = f sin(θ) (6.32)

Although frequencies of up to N/2 cycles per image are computed, it would
be better to use only half as many of the lowest frequencies. Higher frequencies
may suffer from aliasing, noise, and low modulation transfer [653].

The estimation of the spectral slope is then performed by fitting a straight line
through the logarithm of these data points as a function of the logarithm of 1/ f .

6.4.2 Spectral Slope Analysis
The spectra of individual natural images are likely to vary, as shown in Fig-
ure 6.12. This may play a role in the rapid detection of certain scenes or objects
[59]). When averaging over a sufficiently large number of images (and across
orientation θ ), however, a clear pattern arises: the lower frequencies contain the
most power, with power decreasing as a function of frequency. In fact, on a log-
log scale, amplitude as function of frequency lies approximately on a straight
line. That is, the averaged spectrum tends to follow a power law, which can be
well modeled with:

P( f ) =
1
f β

(6.33)

where P is the power as a function of frequency f , and β is the spectral slope.
Figure 6.13 shows the results of analysing three image ensembles, namely, a

set of 133 natural images, drawn from the Van Hateren database [316] as well
as two sets of synthetic images, whereby the first set of 30 images is of subjec-
tively higher quality than the second set, which contains 18 images [612]. The
natural image ensemble yields a slope of 1.88 with a standard deviation of 0.42,
which, as discussed next, turns out to be typical for natural scenes. The high- and
low-quality image ensembles produced somewhat steeper slopes, with especially
the low-quality ensemble showing significantly less energy at high frequencies.
This is thought to be because the subjectively low quality synthetic images have
relatively little fine detail.

Several studies have reported values for the spectral slope for different im-
age ensembles. While the particulars of the image ensembles vary considerably,
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Figure 6.12. The individual power spectra are shown here for three different im-
ages (middle column). The angular power spectra are shown on the right. (Top to
bottom: Mt. Cook, New Zealand, 2012; Bryce Canyon, USA, 2009; Kea at Homer
Tunnel, New Zealand, 2012)

they tend to focus on natural scenes, which usually means simply eliminating car-
pentered environments. The average power spectral slope varies from β = 1.8 to
β = 2.4, with most values clustering around 2.0 [97, 174, 185, 215, 216, 218, 312,
350, 560, 607, 612, 639, 637, 654, 739, 746, 751, 785]. A summary of findings is
listed in Table 6.1. Note that if the power spectrum has a slope of around β � 2.0,
then the amplitude spectrum would have a slope of around α � 1.0:

A( f ) =
1
f α

(6.34)

As α hovers around 1.0 in many studies, the amplitude spectrum is therefore
often well characterized by A( f ) � 1/ f , which is why this particular statistical
regularity, found in so many studies, is variously described as the 1/ f property or
1/ f statistic.

If the power as function of frequency is given by P( f ) � 1/ f 2, this leads to
an interesting feature. By Parceval's theorem we have that the volume under the
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A: Natural image ensemble
B: High quality synthetic images
C: Low quality synthetic images

Figure 6.13. The average power spectra for 133 natural images, 30 high-quality
rendered images, and 18 lower-quality rendered images.

power spectrum is proportional to the variance of an image. This by itself relates
to the available amount of contrast. We can therefore study contrast in terms of
the power spectrum.

If we are moving through a natural environment, we do not expect the amount
of contrast of the images formed on our retinas to vary considerably. Likewise,
if we zoom in to a portion of a digital image, the contrast as measured by the
variance in the image is not likely to change much. We may therefore expect the
energy in different frequency bands to be roughly equal [216], which points at a
source of scale invariance as explained next.

A 2D image will have an energy E summed over all orientations as a function
of frequency f given by:

E( f ) = 2π f P( f ) (6.35)

If we consider a range of frequencies between f0 and n f0, zooming in to a portion
of the image will have the effect that this band of frequencies will shift to be
between a f0 and an f0, where a is a measure of how much zoom has been applied.
The energy between f0 and n f0 will also shift accordingly. To have an equal
amount of energy at all zoom levels, and thereby an equal amount of contrast
irrespective of how much an image is zoomed in to, we require that [216]:∫ n f0

f0
2π f P( f ) d f = K (6.36)

where K is a constant. This is indeed the case if P( f ) is chosen to be proportional
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Study Ensemble Size β � σ

[97] 19 2.10�0.24
[174] 320 2.30
[185]� 95 2.29
[215] 6 2.00
[216] 85 2.20
[218] 20 2.20�0.28
[312] 117 2.13�0.36
[351] 216 1.96
[560] 29 2.22�0.26
[585] 95 2.22�0.24
[585]� 95 2.24�0.14
[607] 133 1.88�0.42
[639, 637] 45 1.81
[654] 276 1.88�0.42
[739] 82 2.38
[746] 135 2.40�0.26
[751] 12,000 2.08
[785] 48 2.26

Table 6.1. Spectral slopes for natural image ensembles (Starred studies were
carried out on high dynamic range data).

to 1/ f 2, as in that case we have:∫ an f0

a f0
2πc

1
f

d f = K (6.37)

where the constant c is introduced to reflect the fact that the power spectrum is
proportional to 1/ f 2. Equation (6.37) evaluates to:

2πc
∣∣∣ log( f )

∣∣∣an f0

a f0
= K (6.38)

2πc
(

log(an f0)� log(a f0)
)
= K (6.39)

2πc log
(

an f0

a f0

)
= K (6.40)

2πc log(n) = K (6.41)

The zoom level, given by parameter a, has been factored out of this equation,
which means that the amount of energy remains constant irrespective of zoom
level. This is of course because the power spectrum behaves according to 1/ f 2.
This implies that an image with such a power spectral composition has constant
variance at all scales. In other words, it is scale invariant [215].
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Thus, images tend to have features that appear at multiple scales, which is also
a hallmark of fractal images (note that a simple linear transform of the spectral
slope yields the image’s fractal dimension [144]). In practice, this means that
we should be able to zoom in and out of an image, or travel through a natural
scene, and expect that the statistics will remain roughly constant. Thus, a scene
imaged on one’s retina or on the sensor of a camera I(x,y) could be viewed from
nearer or farther away, producing approximately I(kx,ky), where k is a constant
determining the amount of scaling [518]. Although this image is smaller or larger
than I(x,y), dependent on the value of k, it is a depiction of the same scene, and
we would therefore expect it to exhibit the same statistics. This is borne out in
the power spectrum of natural images, and it can also be seen in the analysis of
wavelet coefficients, as discussed in Section 8.8.

As argued in Section 6.3, the power spectrum and the autocorrelation function
form a Fourier transform pair. This means that the spectral slope of image ensem-
bles can be interpreted as describing relations between pairs of pixels. Intuitively,
this means that since the surface of a given object tends to be rather homogeneous,
it is expected that neighboring pixels will be similar and that the farther apart two
pixels are, the less similar they will be.

The 1/ f property of images seems to arise from several sources. Edges, for
example, show 1/ f spectra [717]. Likewise, foliage and landscapes tend to ex-
hibit fractal properties [493]. Further, the clustering of independent objects is
such that the distribution of sizes in many scenes also tends to follow a power law
[218, 638].

There is also some emerging evidence that the slope of the power spectrum
is distinct for different scene types or objects [352, 751, 785, 585]. For exam-
ple, Huang and Mumford [351] examined 216 images, which had been painstak-
ingly segmented into pixels representing 11 different categories, and found that
although the image ensemble had an average slope of 1.96, there were systematic
differences in the slopes across categories. Specifically, the slopes were 2.3, 1.8,
1.4, and 1.0 for manmade, vegetation, road, and sky pixels, respectively. Like-
wise, Webster and Miyahara [785] analyzed the power spectra and RMS-contrast
of 48 natural scenes. They found significant differences in both spectral slope and
contrast across the three scene types (2.15, 2.23, and 2.4 for the forest, close-up,
and distant meadow scenes, respectively).

Finally, Pouli et al. compared three different manmade categories (indoors,
night, and day scenes) against natural daytime scenes [585]. Example images
from their ensembles are shown in Figure 6.14. Prior to analysis, a window of
1024 � 1024 pixels was cropped from the middle of each image. This helps
avoid photographer bias, as shown in the examples of Figure 6.14. The number
of images in each ensemble as well as slopes β and their variances are listed
in Table 6.2. In this study, it was found that carpentered environments have on
average steeper slopes than natural scenes: a two-tailed, independent measures
t-test revealed that the difference between the manmade categories and the natural
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Manmade day

Manmade indoors

Manmade indoors

Natural day

Figure 6.14. Examples from four different classes of images, used to determine
to what extent natural image statistics depend on scene type [585].

one is statistically significant (t(668) = 2.64, p < 0.008), with an average slope
of β = 2.32 for the manmade image classes and β = 2.22 for the natural set.

6.4.3 Dynamic Range
In addition to examining different scene types, as noted above, Pouli et al. also
investigated whether the 1/ f statistic is dependendent on the way the data is cap-
tured [585]. In particular, one might expect that high dynamic range capture tech-
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Data Set N β σ2

Natural Day 95 2.22 0.242
Manmade Day 240 2.29 0.153
Indoors 125 2.44 0.121
Night 52 2.47 0.249

Table 6.2. For each of the LDR image ensembles from the study by Pouli et
al. [585], the number of images N is shown, as well as spectral slope β and its
variance σ2.

log HDR LDR
Data Set N β (σ2) β (σ2) t-test p
Natural Day 95 2.24 (0.144) 2.22 (0.242) t(188) = 0.390 > 0.69
Manmade
Day

240 2.34 (0.099) 2.29 (0.153) t(478) = 1.683 > 0.09

Indoors 125 2.61 (0.095) 2.44 (0.121) t(248) = 3.977 < 0.00
Night 52 2.68 (0.152) 2.47 (0.249) t(102) = 2.362 < 0.02

Table 6.3. Comparison of HDR and LDR image ensembles from the study by
Pouli et al. [585]. The number of images N is listed, as well as spectral slope β

and its variance σ2. The t-tests show that the difference between LDR and HDR
ensembles is significant for the indoors and night ensembles.

niques would allow the statistical assessment of scenes that cannot be captured
with conventional imaging techniques. Many scenes have a range between light
and dark that exceed the range captured by conventional cameras. This means
that scenes would have to be well exposed before they can be captured, which
may lead to bias in the image ensembles and therefore affect the statistical regu-
larities computed on those images. With high dynamic range imaging techniques
such limitations are removed (although in many cases there are other limitations,
for instance, regarding how much movement can be present in a scene at capture
time).

Pouli et al. assessed the 1/ f behaviour of the four aforementioned scene types,
namely natural images, manmade daytime images, nighttime images, and indoors
images [585]. The comparison of the spectral slopes found for each category, as
captured with both conventional and high dynamic range imaging techniques, is
shown in Table 6.3.

Of note in this table is that there is a significant difference between the low
dynamic range and high dynamic range capture techniques for the indoors and
night scenes only. This means that both the carpentered and natural daytime
scenes are equally well represented by both high dynamic range and low dynamic
range images, suggesting that previous studies on natural image statistics re-
main valid, even if the ensembles were captured with conventional image capture
techniques.
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On the other hand, the same is not true for nighttime and indoors images.
Here, the high dynamic range images especially produce much steeper slopes than
for the natural image ensemble. This suggests that high dynamic range imaging
is a particularly important tool for such image categories.

As spectral slopes obtained for natural images do not translate to other image
categories, it appears that any computer graphics applications that would make
use of 1/ f statistics would benefit from considering image type.

6.4.4 Dependence on Image Representation
As many studies have found similar power spectra, it is likely that this statistic
is relatively robust against image distortions, for instance due to the choice of
camera or lens system. In particular, several post-processing distortions were
evaluated, leading to the following observations [612]:

File Formats. The choice of file format does not have an appreciable effect on
the 1/ f statistic. In particular, conversion from a lossless format to a lossy for-
mat such as GIF or JPEG does not significantly alter the spectral slope, with the
exception of the smoothing parameter available in the JPEG format, which can
destroy high frequency content.

Gamma Correction. To correct for display nonlinearities in cathode ray tube
monitors, and for reason of backward compatibility also in liquid crystal dis-
plays, images should be gamma corrected. This involves applying a power func-
tion Id = I1/γ , where Id denotes the pixel values that are sent to the display. The
gamma value of typical displays hovers around 2.2–2.4. A similar nonlinearity is
encoded in many color spaces, including the often-used sRGB space. This ma-
nipulation does not appear to affect the spectral slope significantly. Figure 6.15
shows the relationship between gamma correction value and the resulting spectral
slope for the rendering shown in the same figure.

Aliasing. In image synthesis, geometry is normally sampled with point samples,
which are then taken to represent small areas. If a single sample is taken per pixel,
then this can lead to visible artifacts such as jagged edges and Moiré patterns,
collectively known as aliasing. Multiple samples per pixel will ameliorate the
effect, as more samples will provide a better estimate of the area represented by
each pixel. Aliasing does have an effect on the spectral slope, and it has been
found that at least 16 samples per pixel would be required to ensure that aliasing
is not a factor affecting the 1/ f statistic.

Rendering Parameters. When synthesizing an image, the choice of rendering pa-
rameters may affect the appearance of an image. For instance, rendering soft
shadows instead of hard shadows (i.e., using area lights rather than point lights)
could be thought to affect the power spectrum. However, it was found that this
does not have a significant effect. Likewise, computationally expensive rendering
techniques such as adding diffuse interreflection do not affect the power spectrum.
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0.4 0.8 1.2 1.6 2.0 2.4 2.8
-2.25

-2.30

-2.35

γ

Slope β

Figure 6.15. The rendering on the left was subjected to gamma correction for a
range of gamma values. The resulting spectral slope is plotted on the right.

In all, this suggests that rendering has less of an effect on the power spectrum than
modeling, corroborating the idea that the 1/ f behavior relates to the geometric
composition of a scene more than the way it is lit.

6.4.5 Angular Dependence
When power spectra are not averaged over all orientations, it is clear that there
is some variation as a function of angle: natural images tend to concentrate their
power in horizontal and vertical angles [30, 543, 638, 717, 654]. Figure 6.16
shows the angular spectra for the aforementioned natural and synthetic image
ensembles. Manmade structures especially tend to show strong vertical and hor-
izontal lines, leading to similar angular dependence, even in single images (see
Figure 6.17).

Further, in examining over 6000 manmade and 6000 natural scenes, Torralba
found that the slope varied as a function of both scene type and orientation (with
slopes of 1.98, 2.02, and 2.22 for horizontal, oblique, and vertical angles in natural
scenes and 1.83, 2.37, and 2.07 for manmade scenes) [751]. Thus, the spectral
slope may be useful in object or scene discrimination [59]. It is critical to mention
that if two images have similar spectral slopes, then swapping their power spectra
will not affect recognition as long as phase information is preserved [746, 721].

6.4.6 Temporal Dependence
It has also been shown that the pattern of change over time follows a power law.
That is, if the contrast modulation over time for a given pixel is examined, the
power spectra can also be modeled with P = 1/ f α , where P is the power as
function of frequency f , and α is the temporal spectral slope [60, 174, 192].
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Figure 6.16. Power as a function of spatial orientation for a natural image ensem-
ble, and high- and low-quality rendered image ensembles.

Temporal spectral slopes between 1.2 and 2.0 have been reported for natural im-
age sequences. The temporal spectral slope relates, perceptually, to the apparent
speed and jitter of the scene and to some degree with the apparent “purposeful-
ness” of the motion (the higher the slope is, the more persistent the motion will
be). Temporal frequency and other temporal phenomena are discussed in more
detail in Chapter 12.

6.4.7 1/f Failures

Although the 1/ f statistical regularity found in so many studies is striking, this
does not mean that it holds for all imagery. It is important to note that reliable
image statistics emerge when a large number of images are analyzed together.
Specifically, individual images may deviate from any statistics observed in en-
sembles. This implies that these results should be used with care if they are some-
how to be applied to individual images. In particular, the 1/ f statistics are prone
to failure for individual images, and then specifically at low frequencies, which
correspond to large image scales [437].

Further, some deviations from the predicted scale invariance may be observed
at high frequencies. This can be attributed to noise in images, which manifests
itself in high frequencies [830].
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Figure 6.17. The distribution of power over spatial orientation tends to produce
peaks at the horizontal and vertical direction for image ensembles. Here, a similar
effect is shown for a single image of a manmade structure. (Parthenon, Athens,
Greece, 2010)

6.5 Phase Spectra

It can be argued that although statistical regularities are present in power spectra
of natural images, much of the perceptually relevant information is encoded in
phase spectra [737, 504]. As an example, we have swapped the phase spectrum
of two images, shown in Figure 6.18. As can be seen, much of the image structure
has swapped. Thus, the image structure is largely encoded into the phase spec-
trum. Second-order statistics such as the autocorrelation function (and therefore
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Photographers with castle phaseCastle with photographers phase

PhotographersCastle

Figure 6.18. In this demonstration, the phases of the top two images are swapped
to produce the bottom to images. The amplitude spectra are retained. Note that
much of the image structure is located in the phase spectrum and has therefore
been swapped. (Left: Methoni Castle, Greece, 2010; right: Horse Shoe Bend,
Arizona, 2012)

power spectra in Fourier space) as well as variance are insensitive to signal phase.
They therefore do not adequately measure image structure.

To gain access to phase information without polluting the results with first-
and second-order information (such as means, variances, and covariances), we can
whiten the images first [737, 738]. This amounts to adjusting the spectral slope
to become flat. The autocorrelation function will therefore be zero everywhere,
except at the origin. Alternatively, Principal Component Analysis (PCA) can be
applied to whiten a signal; see Section 7.1. By removing the second moment
from consideration, it is now possible to compute skewness and kurtosis on the
whitened signal. The whitened skew Sw and whitened kurtosis κw are thus a
measure of variations in the phase spectra.

The result of applying this procedure to a set of natural images leads to the
conclusion that the whitened images are almost always positively skewed and are
always positively kurtosed. In contrast, if the phase spectrum is randomized on
the same images, the whitened skewness and kurtosis are close to zero.
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While positive skewness and kurtosis of phase spectra points in the direction
of the presence of statistical regularities in the phase spectrum, these results are
relatively weak and do not easily explain aspects of human vision. Furthermore,
they do not appear to have found employ in any graphics-related applications
that we are aware of (although it may lead to higher-order constraints in texture
synthesis algorithms). In the following section, however, we will discuss how
extending the present analysis to be localized in space leads to further and stronger
insights. Moreover, in Section 8.11 we will discuss a wavelet-based technique to
help understand phase structure.

6.6 Human Perception
There is an extremely large body of work examining the relationship between nat-
ural image statistics and human perception. At the simplest level, our ability to
discriminate two random phase textures based solely on changes in the spectral
slope has been examined [58, 59, 408, 722]. Humans are most sensitive to slopes
around 2.8 to 3.2, which would represent an image with much less high spatial
frequency content than natural images. There is some evidence (albeit contro-
versial) for a second minimum near 1.2. Rainville and Kingdom examined the
ability to detect symmetry for white noise images with different spectral slopes
and found that one participant was best for slopes near 2.8, consistent with the im-
age discrimination data [595]. The other participant was best for slopes between
1 and 2, consistent with the potential second minima.

Regardless, it is clear that humans are not maximally sensitive to changes in
spectral slopes representing natural images. The reasons for this are still unclear,
although several hypotheses have been forwarded including that the shift from 2
to 2.8 reflects blur perception [57].

Instead of attempting to determine the tuning of the visual system by mea-
suring discrimination, one can approach the problem more indirectly: one can
estimate the sensitivity of the spatial perception mechanisms from an autocorre-
lation analysis of contrast sensitivity function (which has been referred to as a
modulation transfer function of the human visual system).

It is generally accepted that human spatial perception is mediated by several,
partially overlapping spatial frequency channels (at least seven at each orientation:
see, e.g., [57]). Since similar frequencies are likely to be processed by the same
channel, the sensitivity to similar frequencies should be similar. The less similar
the frequencies are, the less correlated their sensitivity thresholds should be [61,
550, 571, 661].

Billock [57] examined the correlation between contrast sensitivity thresholds
as a function of the spatial frequency separation, and found that (for up to five
octaves) the correlation functions were power laws with slopes ranging from 2.1
to 2.4. This held not only for static stimuli but also for slowly flickering stimuli
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(up to 1 Hz). These slopes are much more in line with the slopes found in natural
images, suggesting that human spatial frequency mechanisms may be optimized
for natural images. Interestingly, more rapid flicker yielded higher slopes (around
2.6). As mentioned above, higher slopes reflects an attenuation of the higher
spatial frequencies. Billock suggested that the higher slopes for rapidly flickering
images may represent motion deblurring.

In contrast, the discrimination of temporal spectral slopes appears to be more
straightforward. Humans are most sensitive to differences in temporal spectral
slope for slopes between 1.8 and 2.0, which is very similar to the range of slopes
in natural image sequences.

The existence of spatial frequency channels in the human visual system are
also implicated in lightness perception. Dakin and Bex have shown that if the am-
plitude of the response of these channels to natural stimuli is weighted according
to their scale, i.e., with weights ws proportional to 1/ f�s, their combined response
correlates well with the perception of lightness [150]. In particular, it can explain
the Craik-O’Brien-Cornsweet [133] and White’s illusions [795].

6.7 Fractal Forgeries
Thanks in large part to the seminal work of Mandelbrot [493], many areas of
computer graphics use fractals to synthesize textures, surfaces, objects, or even
whole scenes (see, e.g., [169, 170, 566]). A subset of this work focuses on fractal
Brownian motion in general and fractal Brownian textures in specific, which bear
striking resemblance to real surfaces and textures. Since the fractal dimension of
such a fractal texture is a linear transform of the spectral slope, these works are
essentially relying on the regularities in power spectra. Many of these techniques
either explicitly or implicitly choose parameters so that the spectral slope will be
similar to natural images. Perhaps the most famous of these synthetic scenes are
the eerily familiar landscapes produced in Voss’s “fractal forgeries” [766].

6.8 Image Processing and Categorization
As mentioned in Section 6.4.7, despite the fact that a power law description clearly
captures the regularities in large collections of images, individual images tend not
to be 1/ f . It has been suggested that differences in the spectral slope between
parts of an image allow people to rapidly make some simple discriminations (e.g.,
the “pop-out” effect, see [59, 100, 381]). Others have speculated on the evolution-
ary advantage of being able to detect spectral slope [57, 59, 105, 298, 627]. Just
as knowing about the statistics of natural images in general can inform us about
how the human visual system works and how we might build more efficient com-
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puter vision and computer graphics algorithms, so too will an understanding of
the cause of variations in the statistics provide insights.

A number of potential sources for 1/ f patterns and their variations have been
identified [493, 218, 352, 638, 717, 751, 785]. For example, [352] and [785]
found different average spectral slopes for different scene categories (both within
as well as between images); at the very least, there seem to be differences between
manmade, general vegetation, forest, meadow, road, and sky elements. It has also
been shown that underwater scenes have different spectral slopes [33]. To help
further distinguish between object or scene categories, one can look at the inter-
action between power spectra and other characteristics [30, 543, 638, 717, 654].
For example, a “spatial envelope” of a scene can be constructed from the interac-
tion between power spectra and orientation combined with some information from
Principal Components Analysis (PCA; for more on the PCA see Chapter 7) [543].
This envelope yields perceptual dimensions such as naturalness, roughness, and
expansion. Similar categories tend to cluster together in this scene space. This
approach was later extended to estimate absolute depth using the relationship be-
tween power spectra and orientation and some information from wavelets (for
more on wavelets, see Chapter 8) [751].

In a related line of work, Dror and colleagues used a variety of natural im-
age statistics to estimate the reflectance of an object (e.g., metal versus plastic)
under conditions where the illumination is unknown [181]. They employed a
wide range of image statistics from simple intensity distributions through oriented
power spectra to wavelet coefficient distributions.

As noted in Section 6.6, it has been suggested that the differences between the
average spectral slope of 2.0 and the peak of human sensitivity to changes in slope
(at 2.8) is due to deblurring. Furthermore, it has been suggested that the higher
slopes for an autocorrelation analysis of human contrast sensitivity are due to mo-
tion deblurring. In an indirect examination of this claim, Dror and colleagues ex-
amined the properties of Reichardt correlator motion detections [183, 184]. While
there is considerable evidence that the human visual system uses such correlators
for the low-level detection of motion, it has also been shown using typical moving
gratings that they signal temporal frequency and not velocity. Dror demonstrated
that when stimuli that have natural image statistics are used, the response proper-
ties of Reichardt detectors are better correlated with velocity and suggest that they
make a much better basis for the synthetic processing of motion than previously
assumed (for more on motion and motion detection, see Chapter 12).

6.9 Texture Descriptors
Increasingly, the spectral slope is being used as a low-dimensional descriptor of
texture [58, 144, 428, 627, 729]. Perceptually, the primary effect of increasing
the spectral slope is to increase the coarseness of the texture [58] (as shown in
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Figure 6.19. Static, random phase patches produced by 1/f β spatial-frequency
filtering of random white noise. The values of the spectral slope are 0.8, 1.6, 2.4,
and 3.2 for the top left, top right, bottom left, and bottom right, respectively.

Figure 6.19). Indeed, Billock and colleagues have suggested that a decent model
of dynamic textures can be given with the equation A( f ) = K f�β

s f t
�α , where K

is a constant, and fs and ft are the spatial and temporal frequencies, respectively
(for more on the separability of temporal frequency, see Chapter 12).

Likewise, several researchers have suggested that the spectral slope might
provide a good estimate of the blur in an image, either by using the slope di-
rectly [76, 745] or by looking at the relative power at higher frequencies [499,
502]. The spectral slope of an image is in fact often altered to synthetically blur
an image [784, 762]. Murray and colleagues, however, have shown that the per-
ception of image blur is not well predicted by the relative energy at higher fre-
quencies [524]. Changes in the relative phases must also be taken into account.

6.10 Terrain Synthesis
The omnipresence of the 1/ f statistic may be leveraged in applications that gen-
erate images involving parameter tuning. For example, in procedural plant mod-
eling [591], the well-known fact that plants tend to exhibit a strong degree of self-
similarity is exploited. Many descriptive systems have been developed to take
advantage of this characteristic, the most prominent of which are L-systems (see,
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e.g., [170] for a review). Other areas where the 1/ f nature of natural images is
employed is in displacement mapping [130, 698] or solid texture generation [569].

Here, we show the use of 1/ f statistics in fractal terrain modeling. The sim-
plest approach is to filter a white noise field with the desired spectral slope to
produce the terrain height map [566]. In a more complex approach, called the
midpoint subdivision algorithm [241], a patch of terrain is iteratively subdivided
while displacing the subdivided patches by a random amount. As the size of the
subdivided patches decreases, the amplitude of the displacement is reduced. In
particular, halving the size of the patch corresponds to a reduction in maximum
displacement by a factor of k. Here, k is a user parameter that determines the
roughness of the terrain.

Figure 6.20 shows a set of example terrains, created by varying k between 1.5
and 2.6. In each case the number of iterations was ten, resulting in terrains consist-
ing of 524,288 triangles. The spectral slope of these images relates to parameter
k and the number of iterations (up to ten) according to the plot in Figure 6.21.

An interesting observation is afforded by showing these images to participants
in an informal perceptual experiment. Simply asking observers to indicate the
image which looks most natural resulted in the distribution shown in Figures 6.22
and 6.23. As can be seen, there is good correspondence between what observers
consider natural, and a 1/ f slope of around β = 1.86. Note that this very closely
corresponds to the average spectral slope that was found for natural images, as
discussed in Section 6.4.2.

6.11 Art Statistics
A considerable amount of research has been conducted on the frequency statistics
of art. Usually the goal is to examine the relationship between the real world
and depictions of it. The knowledge gained is used to either support theories
of how human vision works or for the (semi-) automatic analysis of art. For
example, Graham and collegues [273, 275, 277, 276, 278] examined the first- and
second-order statistics of over 900 works from many different art epochs from
both western and eastern cultures.

In one of their first works [273], they compared the statistics of 124 paintings
to a similar number of real-world images from Van Hateren’s database.1 The art
images were uncompressed TIFF photographs (taken under controlled conditions
by the museum photographer) of art works from the Herbert F. Johnson Museum
of Art, Cornell University (for more on the images, see [273]). A patch of 818 �
818 pixels for each image was extracted randomly and examined for a variety of
single pixel and frequency-based statistics. They found that the art works had a
power spectral slope of 2.46 and the world images had a slope of 2.74. Although

1They excluded photos with an undefined amount of blur.
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k = 1.50
β = 1.62

k = 1.60
β = 1.55

k = 1.70
β = 1.41

k = 2.40
β = 2.14

k = 2.50
β = 2.28

k = 2.60
β = 2.40

k = 2.10
β = 1.70

k = 2.20
β = 1.86

k = 2.30
β = 2.01

k = 1.80
β = 1.41

k = 1.90
β = 1.40

k = 2.00
β = 1.54

Figure 6.20. A set of 12 fractal terrains, generated with parameter k, resulting in a
spectral slope of β .
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Figure 6.21. The relation between terrain roughtness parameter k, the number of
iterations, and the spectral slope.
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Figure 6.22. Naturalness ratings for the images of Figure 6.21. This experiment
was carried out by means of a webpage, which showed images and asked viewers
to send an e-mail to the author, stating the number of the image which appeared
most natural.
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Figure 6.23. Naturalness ratings for the images of Figure 6.21. This experiment
was carried out using high-quality prints, whereby participants were asked to select
the print that appeared most natural.

this value is above the average found by other labs, it is not that much higher and
the difference can be explained by the exclusion of blurry images. The smaller
slope value for art implies a relatively smaller amount of higher-frequency infor-
mation (or the absense of blur in the real-world images).

A subsequent more detailed analysis revealed that beyond blur, the difference
between art and photographs seems to be driven by two factors [275]. First, east-
ern artworks have shallower slopes than western artworks. Second, abstract art
had shallower slopes (ca. 2.23) than either landscape or portrait paintings (both
roughly 2.5). Furthermore, in [274, 277], Graham and colleagues examine the lu-
minance compression between real-world (which has a high dynamic range) and
the very limited dynamic range (usually around 30:1) of paintings and found that
painters use a compressive nonlinearity. That is, they use a tone mapping algo-
rithm. They also found that once a similar nonlinearity is applied to real-world
scenes, both art and real-world scenes show similar sparsity.

In a similar line of research, Redies and colleagues examined monochrome
versions of 200 western artworks from a variety of epochs excluding modern art.
The exclusion of modern art allowed them to focus on representational art [605,
602, 410]. The statistics of the artworks were compared to those of pictures of
household objects (179 images), plant parts and natural scenes (i.e., 408 natural
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images from the Van Hateren database), and scientific illustrations (209 images).
They found a power spectral slope of 2.1 for the paintings, 2.1 for natural scenes,
2.9 for plant parts and objects (close-up views), and 1.6 for scientific illustrations.
In short, the frequency statistics of representational western art seem similar to
real-world scenes, but not to close-up views of real-world scenes.

There was an astonishingly consistent slope for the artworks: the spectral
slopes did not vary significantly with changes in country of origin, century, paint-
ing technique, or subject matter. Interestingly, they also found that representations
of faces showed 1/ f spectra even though photographs of faces are not 1/ f [604].
These and other results can be related to information from neuroscience for a
theory on aesthetics [602]. It has been shown that political cartoons, comics, and
Japenese mangas also have roughly similar power spectra (roughly 1.99, 2.04, and
2.08, respectively) [410]. Perhaps most interesting is that the spectral slope of art-
works does not vary much as a function of orientation, while it does for natural
images (which can be the basis of a simple scene discriminator in photographs).

A large body of work has focused exclusively on Jackson Pollock’s drip paint-
ings (see, for example, [728, 13, 126, 368, 9, 521, 522, 523]). While the bulk of
the work has focused on descriptive statistics of Pollock’s work, some research
addressed the issue of authenticating Pollock paintings [126, 727, 9]. Overall, it
has been extensively shown that Pollock’s artwork can be described well with a
1/ f like power spectra. It has also been shown that the slope changed systemati-
cally over the course of Pollock’s career.
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Chapter 7

Dimensionality
Reduction

Photographs of scenes typically contain a very large number of pixels. It is not
uncommon for modern cameras to have in excess of 15 megapixels, and high-end
cameras can have 80 megapixels or more. The pixels in an image can be seen as
observations of a set of processes that gave rise to this image. Light sources emit
light, all objects in the scene reflect, absorp or transmit light, and the medium
through which light travels may participate by scattering light. Some light will
eventually pass through the optical system of the camera and will be recorded as
pixels.

The number of observations made in a single image or a set of images is
usually much larger than the number of processes (think of objects in the scene).
It would be possible to see the pixels in an image, therefore, as random variables
that sample the same random process. The question then is whether it would
be possible to learn something about the underlying process that gave rise to the
samples/pixels.

If the dimensionality of the underlying process is lower than the number of
observations, then the data should form clusters in N-dimensional space. An ex-
ample is shown in Figure 7.1, where an image of a snowy scene is analyzed by
plotting 500 randomly chosen pixels in linear sRGB space. As the process that
gave rise to the scene is predominantly snowy weather, it is no surprise that the
pixels lie more or less on a straight line in 3D sRGB color space. An example
where the pixels stem from multiple processes is shown in Figure 7.2. Here, the
butterfly and its background lead to different clusterings of pixels in 3D space.

If clusters lie in lower-dimensional planes as in this example, then there exist
various types of analysis that will be able to detect what the dimensionality of the
underlying process was [91]. Principal Component Analysis (PCA) is perhaps
the most well-known algorithm that accomplishes this [563, 801, 377]. There are
many more techniques that can be used for dimensionality reduction, including

153
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Figure 7.1. We have randomly picked 500 pixels of the image shown at the top
and plotted them in linear sRGB space. As a result of the snowy weather, most
pixels ended up lying on a straight line in 3D space. (Keysersberg, Alsace, France,
2013)
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Figure 7.2. We have randomly picked 500 pixels of the image shown at the top
and plotted them in linear sRGB space. The butter�y and the background are
distinctly different processes, leading to less straightforward clustering than the
example shown in Figure 7.1. (Changi Airport butter�y garden, Singapore, 2012)
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Independent Component Analysis (ICA) [304], canonical correlation analysis
[304, 734], linear discriminant analysis [505], Fisher’s linear discriminant [221],
topic models, and latent dirichlet allocation. Both PCA and ICA are special cases
of blind source separation, which is a general collection of techniques that try
to separate a set of signals from a mixed signal without prior knowledge of the
source signals or the mixing process [3].

7.1 Principal Component Analysis
Principal component analysis (PCA—also known as the Karhunen-Loéve trans-
form or the Hotelling transform) is a common data mining and dimensionality
reduction technique that takes as input a series of n d-dimensional observations.
Its output consists of a new set of eigenvectors (or basis vectors), as well as their
eigenvalues (or weighting values). PCA is also often used in many different ap-
plication areas beyond data mining and dimensionality reduction, including data
visualization, variance calculations, factor analysis, perceptual experiment data
analysis, and of course, image statistics. The eigenvectors point to directions
of maximum variance in the data. We begin by showing how eigenvectors and
eigenvalues are computed.

The first step in applying PCA consists of choosing an appropriate set of n d-
dimensional input vectors. This can, for example, be a set of images for which the
most important “eigenimages” are of interest. Alternatively, it would be possible
to use small patches within a set of images as the input vectors. Finally, one
could use individual pixels in an image, or set of images, as n three-dimensional
observations.

In the standard definition of PCA, one then creates a d�n matrix M by con-
catenating all the input vectors. The covariance between two dimensions across
all input vectors x1 and x2 is given by:

cov(x1,x2) =

n

∑
i=1

(x1,i� x̄1)(x2,i� x̄2)

n�1
(7.1)

To facilitate the computation of a covariance matrix, the data is first centered
so that the mean value in each of the d dimensions is zero, i.e., x̄1 = x̄2 = . . . x̄d =
0. The covariance computation then simplifies to:

cov(x1,x2) =

n

∑
i=1

x1,i x2.i

n�1
(7.2)
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Note that the variance within a single dimension can be computed as var(xi) =
cov(xi,xi). The covariance matrix is then the covariance between each pair of
dimensions in our matrix of input vectors M:

C =


cov(x1,x1) cov(x1,x2) � � � cov(x1,xd)
cov(x2,x1) cov(x2,x2) � � � cov(x2,xd)
...

...
. . .

...
cov(xd ,x1) cov(xd ,x2) � � � cov(xd ,xd)

 (7.3)

As the data has zero mean, this can be efficiently computed as a matrix multipli-
cation:

C =
1

n�1
MMT (7.4)

We then wish to compute the eigenvectors and eigenvalues of this square ma-
trix. Each of the d eigenvectors has an eigenvalue that gives the length of its
corresponding eigenvector. It is then possible to sort the eigenvectors according
to their length. In that case, the longest eigenvector will point in the direction of
largest variability in the data. It is normally described as the first principal com-
ponent. The second-longest eigenvector points in the direction that exhibits the
second-most variability. In this manner, each subsequent eigenvector will explain
less variability in the data. To achieve dimensionality reduction, it would be pos-
sible to ignore all dimensions of the data for which the corresponding eigenvalues
are below some threshold.

The decomposition into eigenvalues and eigenvectors proceeds as follows. An
eigenvector of a square matrix C is a nonzero vector v such that:

Cv = λ v (7.5)

where λ is an eigenvalue. This can be rewritten as:

Cv�λ v = 0 (7.6)
(C�λ I)v = 0 (7.7)

where I is the identity matrix. There can only be a nonzero solution for v in the
above equation if:

det(C�λ I) = 0 (7.8)

In other words, the determinant of C� λ I should be zero. This equation,
known as the characteristic equation (or secular equation), is essentially a poly-
nomial equation of degree d in the variable λ . As we are applying eigenvalue
decomposition on pixels, patches of pixels, or images, the matrix C�λ I will be
real-valued, meaning that there are at most n real-valued roots to the above poly-
nomial equation. These could be computed numerically, giving a set of eigenval-
ues. By substituting these into Equation (7.5) the eigenvectors could be computed.
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In practice, eigendecomposition is achieved via a different route. There ex-
ist numerical algorithms to directly compute eigenvectors and eigenvalues [434,
641], including the QR algorithm [242, 243, 429] and Arnoldi iteration [21].

Performing PCA directly on the covariance matrix of this dimensionality is
often computationally infeasible. If small, say, 50� 50 pixel, grayscale images
are used as input to the PCA, each image is a 2500-dimensional vector, and ac-
cordingly the covariance matrix C has 6.25�106 elements.

There is, however, a trick based on linear algebra that can be used to sim-
plify this: the rank (that is, the maximum number of linearly independent rows
or columns) of the covariance matrix C is limited by the number of training ex-
amples. If there are n training examples, there will be at most n�1 eigenvectors
with nonzero eigenvalues. Therefore, if the number of input feature vectors n is
smaller than the dimensionality d of each vector, the principal component analy-
sis can be performed on a relatively small n�n sized matrix, instead of the larger
d�d sized one.

To achieve this, we calculate the covariance matrix C0 = MT M. The eigen-
value decomposition then creates n eigenvectors v0i and corresponding eigenvalues
λ 0i . It can be proven that if v0 is an eigenvector of C0 = MT M, then v = Mv0 is
an eigenvector of C = MMT , having the same eigenvalue λ . This can be seen as
follows. Let us assume that v0 is an eigenvector of MT M with eigenvalue λ . We
then have: (

MT M
)

v0 = λ v0 (7.9)

M
(
MT M

)
v0 = Mλ v0 (7.10)(

MMT )(Mv0
)
= λ

(
Mv0

)
(C)

(
Mv0

)
= λ

(
Mv0

)
(7.11)

This proves that v = Mv0 is an eigenvector of covariance matrix C.
As stated before, components with a larger eigenvalue correspond to more im-

portant features in that they explain more of the variance in the data. Conversely,
lower eigenvalues signify less important components. In order to identify how
many dimensions might be needed for dimensionality reduction, it is possible to
sort the eigenvalues. The amount of explained variance up to a dimension dk < d,
then, is the sum of all eigenvalues up to that point:

dk

∑
i=1

λi (7.12)

Depending on the desired fidelity of the smaller, reconstructed space, it is then
possible choose an appropriate cut-off point α that selects the k most important
dimensions:

k
∣∣ dk

∑
i=1

λi < α

d

∑
i=1

λi (7.13)
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The original stimuli or feature vectors (as well as any new stimulus) can then
be reconstructed using the reduced set of corresponding eigenvectors. This rep-
resentation offers the advantage that a relatively small number of components is
sufficient to encode most of the information in the images.

Nevertheless, although the computed eigenvectors are orthogonal, statistical
independence cannot be guaranteed. Natural images tend to be non-Gaussian
and thus the decomposition offered by PCA can only decorrelate the data [365].
The main consequence of this is that meaningful information is only captured by
the first few components, while further ones mostly correspond to less important
features. That this still affords useful information is demonstrated in the following
paragraph.

7.1.1 Whitening
One of the strengths of PCA is that it can be used to decorrelate data. The
eigenvalues are a measure of the variance along each dimension. If we were to
scale decorrelated data to have unit variance in each dimension, we would obtain
whitened data, i.e., data that is uncorrelated and of unit variance. This means that
we would have removed all second-order effects from the data, “second-order”
meaning variances and correlations. As such, we would be able to use the result-
ing images to study higher-order statistics. In Section 7.2, we demonstrate that
removal of second-order statistics from the data is a necessary prerequisite for
computing independent components.

7.1.2 PCA on Pixels
An example of PCA analysis of the pixels in an image is given in Figure 7.3. The
three-dimensional pixel data was analyzed, leading to three eigenvectors that are
plotted in the figure. Note that the point cloud is stretched most in the direction of
the first principal component. In this figure, we adjusted the length of the axes for
the purpose of visualization; the actual length of the second and third principal
components is significantly shorter than seen in this figure.

Applying PCA to single pixels of either individual images or ensembles of
images is useful in color applications. In essence, it is possible to decorrelate the
three color channels by running PCA on images in this manner. As discussed
in detail in Chapter 10, decorrelation of color information appears to happen in
human vision, and it has direct applications in image processing.

7.1.3 PCA on Patches
We can also apply PCA to small patches, drawn randomly from one or more im-
ages. The output is then an ordered set of patches whereby the first principal
components represent the most common modes of variation in local image re-
gions. An example is shown in Figure 7.4, where the high dynamic range input
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Figure 7.3. PCA analysis on three-dimensional pixel data produces three direc-
tions, which are ordered according to how much variation each direction explains.
(Dunedin, New Zealand, 2012)
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25 x 25 patches 100 x 100 patches50 x 50 patches

Figure 7.4. PCA run on 5000 randomly chosen patches taken from the high dy-
namic range image at the top. The first 25 principal components are shown in
reading order for patches of size 25 � 25 (bottom left), 50 � 50 (bottom middle),
and 100 � 100 (bottom right). (Westonbirt Arboretum, UK, 2009)

image was transformed to a luminance-only image. We then subtracted the mean
luminance and randomly selected 5000 patches of given size (see Figure 7.4).
The patches are then linearly transformed into one-dimensional vectors by con-
catenating the rows of the patch. As before, the resulting 5000 vectors are placed
in a matrix that can then be subjected to PCA. The resulting basis vectors vi are
then reshaped into 2D patches Vi(x,y) for visualization. Figure 7.4 shows the first
25 principal components for different patch sizes ranging from 25�25 pixels to
100�100 pixels.

Irrespective of how large the patches are, the first principal component gives
an average response, being mostly uniform in luminance distribution. The sec-
ond and third principal components tend to encode horizontal and vertical gradi-
ents/edges. The fourth and fifth principal components appear to encode horizontal
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Figure 7.5. The first 25 eigenvalues corresponding to the eigenvectors of size 100
� 100, which are shown in the bottom right of Figure 7.4.

and diagonal lines. The remaining principal components show increasingly com-
plex patterns, which are less meaningful.

The eigenvectors are only good features if the multidimensional data contains
at least a few dimensions which carry a strong signal—if the data contains signif-
icant levels of noise, then the interpretation of the eigenvectors becomes difficult.
This can usually be checked by investigating how quickly the eigenvalues fall off
as the dimensionality becomes larger: if the falloff is steep in the beginning and
then tapers off, then the first few eigenvectors are potential candidates for “good”
features. The relative importance of the eigenvectors of Figure 7.4 are plotted in
Figure 7.5. We note that the falloff is very significant for the first few components
and then tapers off, which is consistent with our ability to assign meaning to the
first few components.

Results such as these are also found in studies whereby ensembles of natural
images are taken as input [299], although in this work the patches were windowed
with a Gaussian window first. They observe that the first few principal compo-
nents begin to resemble receptive fields of simple cells, for example in cats [548].

A consequence of applying PCA to image patches is that in principle an im-
age patch can be represented to a reasonable degree by the first few components.
Effectively, a patch I(x,y) could be represented by a linear superposition of ba-
sis functions. The principal components Vi(x,y) in such a case act as the basis
functions [546]:

I(x,y) = ∑
i

wi Vi(x,y) (7.14)

For human vision, the implication is that only a few different types of recep-
tive fields can account for a relatively large proportion of our visual experience.
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While it is unlikely that the human visual system applies PCA to its input, certain
receptive fields do bear some resemblance to the patches obtained by this method.

PCA, however, assumes that either the data has a Gaussian distribution (which
is already violated, for instance, in the image of Figure 7.2, where the point cloud
is not ellipsoidal), or that linear pairwise correlations are the most important form
of statistical dependence [546]. As many, if not all natural images have higher-
order dependencies, PCA is limited in representing such images as basis func-
tions, and the technique also does not fully explain the receptive field structure in
the human visual system.

Thus, one of the main applications of PCA is in the realm of feature extraction
in that it finds a good, new set of basis vectors (or features) for the data. For this
interpretation to hold, however, the data must be distributed according to a single,
Gaussian distribution. For non-Gaussian data, or for multimodal Gaussian data,
PCA only decorrelates the axes. For highly clustered data, PCA may therefore
not be a good method.

On the other hand, the results obtained with patch-based PCA do point into
an interesting direction, which is that images may be analyzed with a small set
of basis functions that capture the dominant trends in the image. This leads to an
important concept in natural image statistics, which is that of sparse coding. It
is now believed that the human visual system aims to preserve information, but
to process and represent it sparsely, i.e., with as few neurons active as possible
[217, 546]. If the variability in the input signal can be represented by as few
neurons as possible, then this has several advantages for organism: such neuronal
activity is metabolically efficient [29], it minimizes wiring length [235] and it
increases capacity in associative memory [39].

The concept of sparse coding returns in the discussion of Independent Com-
ponent Analysis (ICA) in Section 7.2, as well as wavelets in Chapter 8.

7.1.4 PCA on Images

So far, we have discussed the application of PCA on pixels as well as on patches
of images. It is also possible to apply PCA on entire images. Each image is then
considered a separate feature vector, and are known as eigenimages. Such an ap-
proach can be useful if the set of images contain carefully constrained exemplars.
Variations in illumination, reflectance properties, location, and orientation or the
objects in the image can complicate processing severely [507, 520]. Robustness
is often a problem, in that the method does not handle outliers or noisy data very
well [358, 636].

Nonetheless, various approaches have been proposed to overcome these limi-
tations [449], which have led to various applications, including illumination plan-
ning [519], tracking of robot manipulators [528], visual inspection [813], and
human face recognition [56, 756], the latter of which is discussed in the next
section.
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7.1.5 Eigenfaces

Perhaps the most famous example of PCA in the context of image analysis is the
extraction of so-called eigenfaces within the computer vision domain [756], the
principles of which are illustrated in Figure 7.6. The input consists of n images
of p� p = d pixels. The eigenfaces are the eigenvectors resulting from the PCA
decomposition of the input face images. Since PCA is a global method, each
of the d pixels is treated as single dimension. This means that any difference in
background, lighting, pose, and size of the faces will become encoded in the PCA
eigenvectors, which usually is not desirable.

If one is interested only in the variation in appearance of the faces, then one
possibility is to bring all faces into correspondence by warping them onto a com-
mon face coordinate system. Each face will then have the exact same shape with
each pixel in the image exactly specifying the same facial features in all faces.
The only variation left will then be the one according to the facial appearance (or
texture) of the face or variations in illumination, which PCA can extract.

Figure 7.6 shows an example in which a database of 200 three-dimensional
faces (100 male, 100 female) was brought into correspondence first [65]. The
faces were then rendered onto the shape of the average face (Figure 7.6a). Fig-
ure 7.6b shows how fast the eigenvalues fall off, indicating that the first few eigen-
vectors explain a large amount of variance. Furthermore, Figures 7.6c–f show the
first four eigenvectors, or eigenfaces: the first eigenface highlights the change in
appearance from top to bottom, the second focuses on the eyebrows, the third on
the cheeks, and the fourth on the chin and cheeks (the beard region). Although
eigenfaces do not always correspond to such well-defined features, they are able
to capture the main modes of variation in the images.

It has been shown that such a separation between form on the one hand and
texture on the other hand corresponds well to human recognition performance
characteristics [300]. Furthermore, the idea that faces are represented in a vec-
tor space (known as the face space [759]) might be compatible with a represen-
tation of the average face in a coordinate system defined by PCA dimensions
[300, 450].

PCA has also been shown to be effective as a statistical approach in the re-
construction of 3D representations of human faces on the basis of a single 2D
images [24]. In this work, a low-dimensional parameterization of head shape was
learned from a large set of scans of 3D fases. A single 2D input image can then
be mapped to 3D using this parameterization.

Finally, PCA has not only been applied to analysis of static faces, but also
to the modeling of facial expressions. Indeed, applying PCA to a set of faces
varying in identity and expressions yields an interesting separation of identity and
expression axes, which is also compatible with behavioral and neurophysiological
data, suggesting a large dissociation between the two types of information [101].
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a. 40 of the 200 faces

c. Eigenvalues for the first 200 eigenvectorsb. Average face

d. The first 4 Eigenvectors (Eigenfaces)
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Figure 7.6. PCA can be used to decompose a collection of face images into a
set of components, which can be used for constructing novel faces or for face
recognition. (a) Forty of the 200 faces from the MPI face database [755]—note
that only the texture of the face varies but not its shape. (b) Average face of all 200
faces. (c) Plot of the eigenvalues of the PCA showing how quickly the values fall
off as the number of dimensions increases. (d) First four eigenvectors (Principal
components, or eigenfaces) showing where changes in the face texture happen.
(Figure used with permission from the copyright holder Christian Wallraven.)
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7.2 Independent Components Analysis
The orthogonality of the axes of PCA can be seen as a limitation. A more ad-
vanced, albeit computationally much more involved technique is Independent
Component Analysis (ICA) [365, 364, 127, 128, 366]. Rather than producing
decorrelated axes that are orthogonal as achieved with PCA, independent com-
ponents analysis finds axes that are more or less independent, but which are not
necessarily orthogonal, as shown in Figure 7.7.

Several ICA algorithms are known, including infomax [43], extended info-
max [448], fastICA [363], Jade [363], kernel ICA [28], and RADICAL [446].
Although the implementations vary, their goals are the same: represent multivari-
ate data as a sum of components in such a way that the components reveal the
underlying structure that gave rise to the observed signal.

The number of ICA algorithms available and their computational and algorith-
mic complexity make an in-depth discussion of this class of algorithms beyond
the scope of this book. However, we will discuss the general principle as well as
some of their implications for natural image statistics as well as for human vision.

While PCA measures covariances of pixels separated by varying distances,
the components that are found constitute a linear transform. This means that
although the data may be decorrelated, there is no guarantee that the resulting
components are in any way independent. In particular, only if the input data
happens to have a Gaussian distribution, then the resulting principal components
are both decorrelated and independent [640].

As we have seen, many of the statistics of natural images that are currently
known point in the direction of high kurtosis, i.e., they are highly non-Gaussian.
This has given rise to the use of ICA in examing natural image statistics, where
image patches [366] or the color components of a set of pixels (as shown in Fig-
ure 7.7) are calculated. ICA could also conceivably be used on sets of entire
images (although this would probably be prohibitively expensive computation-
ally).

ICA algorithms tend to require a set of preprocessing steps to make the prob-
lem more tractable. In particular, the data need to be centred and whitened. In
addition, data reduction is often applied. Data can be whitened by running the
PCA algorithm first, as outlined in Section 7.1.1. By keeping only the first n
components, data reduction is achieved. This ensures that only those components
are computed that will be meaningful to the problem being solved. Moreover, it
speeds up the computations required to determine independent components.

Note that if the multivariate data being analyzed has a Gaussian distribution
along each of its dimensions, there would be no higher-order statistical correla-
tions available in the data. In that case, applying PCA would not only decorrelate
the data but would also lead to the computation of independent axes. Thus, for
ICA to be meaningful, there is the requirement that the distribution of data points
is non-Gaussian.
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Figure 7.7. In this plot, we have chosen 50,000 points from the image at the top,
and applied ICA to the color channels of these points, revealing three new axes
that are not orthogonal—the main difference with PCA. Note that we only plot 500
randomly chosen points here. Further, the axes were scaled for visualization; the
pink axis does not correspond to a meaningful basis, it being drawn more than
3000 times longer than the other two axes. (Monument Valley, Arizona, 2012)
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Assuming for now that we are performing ICA on small image patches ran-
domly drawn from a set of images, the pixels I(x,y) in the patch can be repre-
sented as the linear superposition of a weighted set of basis functions Vi:

I(x,y) = ∑
i

wi Vi(x,y) (7.15)

where wi are the weights. This is the same equation as the one used for PCA
(Equation (7.14)), albeit that the assumptions used for the construction of the
basis functions are different. In particular, the assumptions made for ICA are
[365]:

� The weights wi can be seen as random variables that have a non-Gaussian
distribution. They are also assumed to be statistically independent.

� The components Vi(x,y) are invertible.

Under these assumptions, and given a large enough set of image patches, it is
possible to derive a set of components Vi without advance knowledge of any of
the weights wi. A property of linear systems is that the generative model described
by Equation (7.15) is equivalent to:

wi = ∑
x

∑
y

V�1
i (x,y)I(x,y) (7.16)

= ∑
x

∑
y

Qi(x,y)I(x,y) (7.17)

This means that either set of equations can be solved, and the components com-
puted for either system can be converted into the system by matrix inversion.
Similar to the argumentation in Section 7.1.3, we can concatenate the values in
the patches Qi to form vectors qi, and similarly rearrange the image patch I(x,y)
to vector k = k1, . . . ,km so that we can write:

wi =
m

∑
j=1

qi, j k j = qT k (7.18)

We now have an expression that relates the independent components qi to the
weights wi. Recall that these as yet unknown components could be combined by
applying the weights to each corresponding component, and then we would obtain
the original image patch, now represented by k. The weights wi can therefore be
interpreted as random variables drawn from a certain probability density function
(pdf). The probability density for each component qi is then given by pi(wi).

By the definition that the components we seek are independent, the multidi-
mensional probability density of all the n weights combined is given by:

p(w1, . . . ,wn) =
n

∏
i=1

pi(wi) (7.19)
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Unfortunately, we do not know the pdf of the weights wi. Instead, we would like
to find the pdf of the observed variable k (recall that this is a vector of pixel values
that serves as input). Due to the linear transform applied in Equation (7.18), this
pdf is given by:

p(k) = jdet(R)j
n

∏
i=1

pi (qi k) (7.20)

Here, the matrix R is the matrix that defines the linear transform in Equation (7.18),
i.e., R = fqi, jg.

Equation (7.20) constitutes the statistical model for independent component
analysis. To estimate parameters given a statistical model, a technique known
as maximum likelihood estimation is normally used. The unknown parameters
are the independent components qi. If we are using a large number A of image
patches, then we can construct an equally large number of vectors (k1, . . . ,kA).
The likelihood is then the probability of observing these input vectors given the
model parameters. The likelihood L(q1, . . . ,qn) is given in log space by:

logL(q1, . . . ,qn) = A log jdet(R)j+
n

∑
i=1

A

∑
a=1

log pi(qT
i k) (7.21)

It can be shown that if the features are uncorrelated, as they would be after
whitening using PCA, then the determinant of R will be �1. As a result, the
log-likelihood can be estimated as:

logL(q1, . . . ,qn) =
n

∑
i=1

A

∑
a=1

log pi(qT
i k) (7.22)

Of course, we would like to choose model parameters such that this log-likelihood
is maximized. Maximum likelihood estimation can be performed by standard nu-
merical optimization techniques [193, 222, 220, 510], although specific optimiza-
tion techniques have been developed in the context of ICA [365, 363].

7.3 ICA on Natural Images
One could ask what the independent components are in the context of natural im-
ages. It could be argued that these are the objects that comprise a scene [547]. It is
exactly these that provide the structure that gives rise to the pixel array that is an-
alyzed by computer algorithms as well as by the human visual system. Both PCA
and ICA, however, are generative models that are based on linear superposition.
Thus, they cannot take into account translation and rotation of objects [547].

However, it has been found that small image patches of natural image ensem-
bles can be analyzed using ICA. It should be noted here that we are still free to
choose our assumed probability density functions pi(wi). So far, ICA is a general
technique for blind source separation. To make ICA relate to natural images, the
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Figure 7.8. A set of 15 images used in the independent component analysis in
Section 7.3. (Westonbirt Arboretum, UK, 2009 and 2011)

pdfs should be chosen such as to mimic a presumed feature of human vision. A
reasonable assumption would be to argue that receptive fields in the human visual
pathway are in some sense sparse, i.e., cells preferentially respond little if at all to
most stimuli, and they respond vigorously to some stimuli to which they are tuned.
Such sparse coding is likely to occur and helps, for instance, with metabolism: a
cell that is dormant most of the time does not use precious energy.

The sparseness of a probability distribution function could, for instance, be
measured by computing the kurtosis of the observed variables. Kurtosis is, in fact,
a direct measure of how far a distribution deviates from being Gaussian. Larger
values of kurtosis indicate a sparser distribution. It would therefore be possible
to choose pdfs that maximize kurtosis. Several alternative functions have been
proposed, including [365]:

log pi(wi) =�2logcosh
(

π s/2
p

3
)
�4
p

3/π (7.23)
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Basis functions (25 × 25 pixel patches) Basis functions (50 × 50 pixel patches)

Figure 7.9. Basis functions Vi computed using 50,000 patches of size 25 � 25
(bottom left) and 50 � 50 (bottom right), drawn from the 15 images presented in
Figure 7.8.

Feature vectors (25 × 25 pixel patches) Feature vectors (50 × 50 pixel patches)

Figure 7.10. Features V–1
i = Qi computed using the 15 images presented in Fig-

ure 7.8.

As an example, we have selected 15 natural images, shown in Figure 7.8, and
created a set of 50,000 randomly chosen patches of size 25�25 or 50�50 pixels.
We then applied a fast ICA algorithm to this data [363]. A resulting set of 64
feature patches, corresponding to the basis functions Vi is shown in Figure 7.9.

The feature detector weights, i.e., those corresponding to V�1
i =Qi, are shown

in Figure 7.10. As these are the patches that would be applied to the image to
generate the encoding of an image, they could be compared to receptive fields in
the human visual system. In that context, as argued by others [44], it is interesting
to note that such basis functions reveal structures that resemble those found in the
human visual system [44].
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In particular, this technique yields Gabor-like patches—elongated structures
that are localized in space, orientation, and frequency. Their size, aspect ra-
tio, spatial frequency bandwidth, receptive field length, and orientation tuning
bandwidth are similar to those measured in cortical cells [316]. These results
lend credence to the argument that the human visual system appears to repre-
sent natural images with independent variables, each having a highly kurtotic
distribution that leads to a metabolically efficient sparse coding. A number of
researchers have shown that the statistics of art can also be captured with very
similar sparse coding, especially if a compressive nonlinearity is applied as a tone
mapper [360, 359, 410, 545].

As an example, ICA decompositions have been used in object classification,
specifically on images of human faces as well as flowers [388].

7.4 Gaussian Mixture Models
The analysis of image patches can be performed in many different ways, each
revealing subtly different information about how the human visual system may
function, and each offering different opportunities in imaging applications. We
have seen in Section 5.2.8, for example, that image patches tend to recur nearby,
both in scale and in space. In this chapter, we have shown that the human vi-
sual system appears to analyze images by removing correlations, as evidenced by
the analyzers that are revealed by applying principal component analysis to in-
dividual patches. This was taken one step further in the section on independent
components analysis, showing that independence is often achieved, rather than
mere decorrelation.

An alternative way to analyze image patches is by applying Gaussian Mixture
Models [831, 832]. A Gaussian mixture model is simply a sum of k (multivariate)
Gaussian distributions, each with a weight factor w j:

p(x) =
k

∑
i=1

w j N(xjmu j,Σ j) (7.24)

Here, the weights are prior probabilities and are therefore limited in range to 0�
w j � 1. Moreover, these weights sum to 1. See Appendix A.2 for the definition
of multivariate Gaussian distributions. Given a set of observations, which can be
individual pixels, patches, or entire images, a predetermined number of Gaussians
can be fitted. This is accomplished with numerical optimization in the form of
expectation maximization (EM) [166].

As an example, we have estimated an image with 10 and 20 Gaussians and
plotted the resulting contours in Figure 7.11. Here, a single color channel is
treated as a 2D dataset of observations. The Gaussians therefore, to some ex-
tent, represent the image. The computational complexity of the algorithm is such
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Input image

10 Gaussians 20 Gaussians

Figure 7.11. The image at the top was fitted with 10 and 20 Gaussians. (Olympia,
Greece, 2010)

that it would not be tractable to represent an image with sufficient Gaussians. This
problem could be alleviated by employing Gaussian mixtures in a scale-space ap-
proach, however [583, 733].

It is entirely possible to compute a Gaussian mixture for image patches as well
as for individual pixels. The latter case has proven a useful representation in color
transfer applications [724]. This application is discussed further in Section 10.4.

Application of Gaussian mixture models to image patches drawn from a nat-
ural image ensemble has produced interesting insights as well as applications in
image segmentation and image querying [113], as well as image restoration [831]
and image denoising [832, 583].
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One approach to image denoising would be to define the expected log-likeli-
hood of all patches occurring in a given image I [831]. This is computed by
summing the log-likelihood of each (possibly overlapping) patch Ii, after applying
a given prior p.

Ep(I) = ∑
i

log(p(Ii)) (7.25)

Note that this does not give the log probability of a full image, as patches Ii may
overlap. Given a noisy image J, the corruption can generally be modeled with:

kAJ� Ik2 (7.26)

If we would wish to find an uncorrupted image I given a corrupted image J, then
this can be expressed as a minimization problem consisting of a likelihood term
(Equation (7.26)) and a prior term (Equation (7.25)):

argminkAJ� Ik2�λ Ep(I) (7.27)

where λ controls the relative weight of the prior term. The log-likelihood of a
patch is given by:

log p(Ii) = log

(
K

∑
k=1

wk N(I jjmu j,Σ j)

)
(7.28)

where the number of Gaussian mixture components is K. This approach has
been shown to produce favorable results for both patch restoration and image
restoration tasks, as compared to various other techniques that include PCA and
ICA [831].
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Chapter 8

Wavelet Analysis

The Fourier series for periodic signals, as discussed in Chapter 6, is used in many
applications, including the analysis of natural images. It is the first example of a
signal expansion [763], and as shown before, it uses sines and cosines as its basis
functions. A Fourier expansion provides insight into which frequencies exist in
an image by means of the amplitude spectrum, as well as where they exist through
the phase spectrum.

However, a Fourier expansion does not allow an analysis of local structure.
This means that it is not possible to use a Fourier expansion to understand which
frequencies and locations exist in a local area around a given pixel of interest. In
other words, Fourier basis functions are localized in frequency, but not in space.
A further disadvantage is that discontinuities in images require a large number of
basis functions to be adequately represented. Figure 6.8, for instance, shows that
summing 500 sinusoids is only very roughly beginning to approximate a step
edge. Representations that require only a small number of basis functions to
represent the image are useful in, for instance, data compression. Wavelets, which
are discussed next, are one such example.

As discussed in Section 6.4.1, Fourier series are intended for periodic signals.
Boundary effects can be minimized by applying a window to the center of the
image. This strategy can be extended to create local Fourier bases, effectively
centering a set of windows on a grid, and applying a Fourier transform for each
window. This is known as the Gabor transform, short-time Fourier transform
(STFT), or short-term Fourier transform [422]. Such an approach gives informa-
tion about each grid location of the image and could therefore be used to assess
local information.

Given that images are typically nonstationary, i.e., their statistical structure
can vary by image location, an assessment of local features has revealed additional
patterns unique to natural images and has even revealed a correlation with saliency
[741]. In this chapter, we discuss methods that have been used in the analysis of
local structure in images—in particular, wavelets.
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Wavelets are an alternative decomposition of a function into sets of basis
functions. As opposed to the Fourier transform, it can localize the analysis in
both space and frequency, often allowing for a sparser representation [153, 490,
711]. This means that fewer basis functions are needed to represent the original
function, which is, for instance, directly exploited in image compression [668].
Wavelets are amenable to statistical analysis, and due to their spatially local form
they are able to reveal statistical regularities of local structure. In this section, we
first outline the mathematical background to wavelets, followed by a presentation
of the discoveries made by analyzing wavelet decompositions of natural images.

8.1 Wavelet Transform

An alternative to the Gabor transform is the wavelet transform, which can com-
pute a linear expansion of a signal or image by using different scalings and shifts
of a prototype wavelet. As the scale factors tend to be powers of 2—i.e., each
subsequent scale is a factor of two larger—the frequencies represented at each
scale halve. This means that the frequency axis is logarithmic rather than linear,
as is used in Fourier and Gabor transforms.

The aforementioned wavelet itself is a basis function, which is analogous to
the sines and cosines that form the bases in Fourier series. There are, however,
many different choices of basis functions, each with their own trade-offs. In all
cases, though, the basis function needs to be well localized and integrate to zero
in order to qualify as a potential wavelet.

Wavelets can be defined in terms of a single function, if suitably parameter-
ized. This function is normally called the mother wavelet and in one dimension
is denoted by ψ(x). The parameter a indicates scaling (dilation), whereas b indi-
cates translation:

ψa,b(x) =
1√
jaj

ψ

(
x�b

a

)
(8.1)

where (a,b) 2 R+�R. Examples of specific wavelets ψ are given in Section 8.4
and onwards. We can define the Fourier transform of this wavelet as:

Ψ(ω) =
∫
R

ψ(x)e�ixω dx (8.2)

Certain functions f (x) can be represented by applying a wavelet transform to
them. A requirement of such functions is that they are square-integrable, i.e.:∫

∞

�∞

j f (x)j2 dx < ∞ (8.3)
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Square-integrable functions are said to be in L2. Pairs of such functions, f (x) and
g(x), will have an inner product h f ,gi defined as:

h f ,gi=
∫

∞

�∞

f (x) g(x) dx (8.4)

where we note that the inner product of a function with itself is less than infinite
due to the requirement of square integrability: h f , f i< ∞. The wavelet transform
of a function f (x) 2 L2 is given by Wf (a,b):

Wf (a,b) = h f ,ψa,bi=
∫

∞

�∞

f (x) ψa,b(x) dx (8.5)

showing that the wavelet itself needs to be square-integrable. Using Calderóns
reproducing identity, it is possible to reconstruct the original function from the
wavelet transform:

f (x) =C�1
ψ

∫
∞

0

∫
∞

�∞

Wf (a,b)
a2 ψa,b(x) db da (8.6)

where

Cψ =
∫

∞

0

jΨ(ω)j2

ω
dω (8.7)

This inverse transform requires that the admissibility condition be satisfied, which
means that Cψ < ∞. This implies that wavelets integrate to 0, i.e.,

∫
ψ(x)dx = 0.

The wavelet transform has several interesting properties, which include shift-
ing and scaling properties, as well as localization. Here, we assume that functions
f (x) and g(x) have wavelet transforms Wf (a,b) and Wg(a,b). The shifting prop-
erty states that if g(x) = f (x� k), we have Wg(a,b) = Wf (a,b� k). The scaling
property states that if g(x) = f (x/k)/

p
k, then Wg(a,b) =Wf (a/k,b/k). If f (x) is

zero everywhere, except at a single point in space x0, i.e., f (x) = δ (x� x0), then
Wf (a,b) = ψ((x0�b)/a)/

p
a.

The wavelet transform is redundant in that a function of one variable x is
transformed into a function of two variables (a,b). It is possible to select a subset
of values for a and b and still have an invertible transformation. The coarsest
sampling that can be chosen for a and b is called the critical sampling, and is
given by:

a = 2� j (8.8)

b = k 2� j (8.9)

where k, j 2 Z are suitably chosen integers. Any coarser sampling will not al-
low the original function f (x) to be uniquely recovered. Any finer sampling will
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cause redundancy to remain. Note that a can be thought of as the reciprocal of
frequency. It can be shown that under certain conditions this sampling produces
an orthonormal basis:

ψ j,k(x) = 2 j/2
ψ(2 j x� k) j,k 2 Z (8.10)

where dilation is governed by parameter j and translation is given by k.
To simplify the subsequent discussion, we will now give an example of a

wavelet, which is also the oldest and arguably the simplest wavelet transform. It
is known as the Haar wavelet [295]:

ψ(x) =


1 x 2 [0,1/2)
�1 x 2 [1/2,1)

0 otherwise
(8.11)

We see that this function is 0 everywhere, except between 0 and 1, i.e., it has local
support. The set of functions fψ j,k j j,k 2 Zg forms an orthogonal basis in L2,
i.e., the space of all square-integrable functions.

8.2 Multiresolution Analysis
For the choice of a and b outlined above, wavelet transformations can be analyzed
as follows [489, 488]. We would like to efficiently represent a function f (x) in
some hierarchical fashion. The space of functions that we are interested in is the
set of square-integrable functions, i.e., f (x) 2 L2. We could impose a hierarchy
on this space, creating nested subspaces:

V0 �V1 �V2 � . . .� L2 (8.12)

Each of these spaces contain functions, starting with the smallest subspace V0,
the reference space, that contains only one function family. Each subsequent
subspace then extends this space. The function in V0 is known as the generating
function or father wavelet, and is denoted by φ(x). Having a generating function
allows the number of nested subspaces to be finite. In the case of the Haar wavelet,
the generating function is given by:

φ(x) =

{
1 x 2 [0,1)
0 otherwise

(8.13)

This is the box function, defined to be 1 between x = 0 and x = 1. It is also known
as the characteristic function or the indicator function. It is possible to construct
an orthonormal basis for V0 by introducing translation:

φ0,k(x) = φ(x� k) k 2 Z (8.14)
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f(x) = φ(x+2) + 2 φ(x) – φ(x–1) + φ(x–3)

-2 3210-1 4-3

φ(x+2)

-2 3210-1 4-3

φ(x)

-2 3210-1 4-3

φ(x–1)

-2 3210-1 4-3

φ(x–3)

-2 3210-1 4-3

Figure 8.1. A stepped function f (x) with steps at integer locations can be approxi-
mated by summing instances of basis functions φ0,k in reference space V 0.

Here we have introduced the subscript 0 to indicate that this family of functions
forms an orthonormal basis for the reference space V0. With this family of func-
tions we can approximate any function f (x) with step functions which are defined
at unit intervals by appropriately summing these basis functions. In particular,
we can compute scaling coefficients c(n) from the characteristic function, and
wavelet coefficients from d( j,n) from the wavelet function ψ(x) for a signal f (x):

c(n) =
∫

∞

�in f ty
f (x) φ(x�n) dt (8.15)

d( j,n) = 2 j/2
∫

∞

�∞

f (x) ψ(2 jt�n) dt (8.16)

An example for c(n) is shown in Figure 8.1.
We cannot approximate any functions that step at places other than at integer

positions within reference space V0. However, we could augment V0 with some
additional functions that create a new subspace V1. For instance, we could intro-
duce a new subspace W0 such that:

V0�W0 =V1 (8.17)
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f(x) = 0.5 φ(x + 1) – 0.5 ψ(x + 1) 
       + 0.5 φ(x)       + 1.5 ψ(x)

10-1

1

2

φ(x+1)

10-1

ψ(x+1)

10-1

φ(x)

10-1

ψ(x)

10-1

-1

Figure 8.2. A stepped function f (x) with steps at half-integer locations can be
approximated by summing instances of basis functions φ1,k in reference space V 1.

This means that W0 is the complement of V0 to V1. To extend V0 in a meaning-
ful way, we could use translated versions of ψ(x) as defined in (8.10) to form
subspace W0. Note that this function also has local support in that it is nonzero
between 0 and 1. However, it makes a step from +1 to �1 at x = 1/2. It is there-
fore not a function that is already in V0 and is orthogonal to any of the functions
φ0,k(x) in V0. The translated versions of ψ(x) are given by:

ψ0,k(x) = ψ(x� k) k 2 Z (8.18)

The functions f (x) that can be represented in V1 are now all step functions that
step at half-intervals. By going from V0 to V1 we have therefore refined our rep-
resentation, admitting more detailed functions. An example of a function that can
be represented by the basis functions in V1 =V0�W0 is given in Figure 8.2.

We note that the principle of extending a subspace V0 by W0 to obtain subspace
V1 holds for all other subspaces Vj, i.e., in general we have Vj+1 =Vj�Wj. This
also implies that by substitution Vj can be written as V0�W0�W1� . . .�Wj.
As a result, to represent a signal we only need the father wavelets φ0,k(x) from
reference space V0 in addition to wavelet functions ψ j,k(x) from all subspaces Vj,
although it is certainly possible (and often done) to construct a wavelet decom-
position by means of a sequence of scaling functions φ j,k(x) combined with a
sequence of wavelet functions ψ j,k(x).

To extend the subspace V1 to V2 and beyond, the translation of functions by k
is not sufficient. We also need to scale our basis functions, an operation known as
dilation, to be able to represent all functions that step at intervals spaced by 2� j.
The amount by which each function is scaled depends on which subspace they are
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defined in. So, for subspace Vj and Wj, our basis functions φ j,k(x) and ψ j,k(x) are
written:

φ j,k(x) = 2 j/2
φ(2 j x� k) j,k 2 Z (8.19)

ψ j,k(x) = 2 j/2
ψ(2 j x� k) j,k 2 Z (8.20)

Note that only in the reference space V0 and W0 no dilations occur, as 20 = 1.
Assuming Haar wavelets, one way to think of this decomposition is that φ0,k(x)
represents averages, while ψ j,k(x) encodes deviations from the average at some
scale. Alternatively, the scaling function acts as a low-pass filter, whereas the
wavelet function acts as a band-pass filter.

Dilating by 2 j means that in each subsequent level the range of frequencies
considered is halved/doubled. In other words, the band-pass filters with octave
bandwidths and center frequencies that are one octave apart.

If enough scales are considered, in the limit continuous functions f (x) could
be approximated. In other words, the union of all subspaces is dense. However, as
seen above, Haar wavelets do this by representing the function f (x) as a sequence
of piecewise constant segments. As the decomposition is into discontinuous func-
tions, Haar wavelets are good at representing edges but not so good at representing
smooth functions.

8.3 Signal Processing
Wavelets can be explained (and implemented) within a signal processing frame-
work. Because V0 is a subset of all functions in V1 it should be possible to write
the scaling functions in V0 as a linear combination of the basis functions in V1:

φ(x) = ∑
k2Z

hφ (k)
p

2 φ(2x� k) (8.21)

where
p

2 φ(2x� k) are the basis functions in V1. The coefficients hφ (k) are
defined as follows:

hφ(x),
p

2 φ(2x� k)i (8.22)

However, note that as φ(x) is nonzero only between 0 and 1, in the case of Haar
wavelets the number of nonzero coefficients hφ (k) is limited to 2. Similar to the
scaling function in V0, the wavelet function can be defined as:

ψ(x) = ∑
k2Z

hψ(k)
p

2φ(2x� k) (8.23)

The coefficients hψ(k) and hφ (k) are then related as follows:

hψ(k) = (�1)k hφ (1� k) (8.24)
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For Haar wavelets, it can be shown that:

φ(x) = φ(2x)+φ(2x�1) (8.25)

ψ(x) = φ(2x)�φ(2x�1) (8.26)

As a result, the nonzero filter coefficients for hφ (k) are hφ (0)= 1/
p

2 and hφ (1)=
1/
p

2. The nonzero coefficients for hψ(k) are hψ(0) = 1/
p

2 and hψ(1) =
�1/
p

2. It is therefore possible to compute coefficients for each of the (inte-
ger) elements of the input function f (x) as follows:

cφ (x) =
1p
2

f (x)+
1p
2

f (x�1) (8.27)

cψ(x) =
1p
2

f (x)� 1p
2

f (x�1) (8.28)

where the coefficients cφ (x) encode the average of f (x) and f (x� 1) and the
coefficients cψ(x) represent deviations from this average for elements f (x) and
f (x�1). To encode a signal of length n, the above coefficients would be computed
for each pair of neighboring elements so that the total number of coefficients is
n/2 for cφ (x) as well as n/2 for cψ(x). This could be written in matrix form as
follows:



c1
φ
(0)

c1
φ
(1)

c1
φ
(2)
...

c1
φ
(n/2)

c1
ψ (0)

c1
ψ (1)

c1
ψ (2)

...
c1

ψ (n/2)



=



1p
2

1p
2

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

0 0 1p
2

1p
2

0 . . . . . . . . . . . . . . . . . . . 0

0 0 0 0 1p
2

1p
2

0 . . . . . . . . . 0
. . .

. . .

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 1p
2

1p
2

1p
2

�1p
2

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

0 0 1p
2

�1p
2

0 . . . . . . . . . . . . . . . . . . . 0

0 0 0 0 1p
2

�1p
2

0 . . . . . . . . . 0
. . .

. . .

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 1p
2

�1p
2





f (0)
f (1)
f (2)

...
f (n/2)

f (n/2+1)
f (n/2+2)
f (n/2+3)

...
f (n)


(8.29)

This matrix is set up such that the resulting vector contains all the averages in
its first n/2 elements and all the differences in the remaining elements. An inter-
esting observation is that on average we may expect that the elements c1

φ
(x) have

values in the same range as the values in f (x), whereas the elements c1
ψ(x) are

on average much smaller. This has many implications for specific applications,
which will be discussed later.
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After this procedure, we have a signal that consists on average for the first
half of large values and for the second half of small values. It is now possible to
further encode the signal by repeating the procedure on c1

φ
(x):



c2
φ
(0)

c2
φ
(1)

c2
φ
(2)
...

c2
φ
(n/4)

c2
ψ (0)

c2
ψ (1)

c2
ψ (2)

...

c2
ψ (n/4)



=



1p
2

1p
2

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

0 0 1p
2

1p
2

0 . . . . . . . . . . . . . . . . . . . . . . 0

0 0 0 0 1p
2

1p
2

0 . . . . . . . . . . . 0

. . .
. . .

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 1p
2

1p
2

�1p
2

1p
2

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

0 0 �1p
2

1p
2

0 . . . . . . . . . . . . . . . . . . . . . . 0

0 0 0 0 �1p
2

1p
2

0 . . . . . . . . . . . 0

. . .
. . .

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 �1p
2

1p
2





c1
φ
(0)

c1
φ
(1)

c1
φ
(2)
...

c1
φ
(n/2)



(8.30)

As a result, by repeating this process until we have only one average of the
entire signal followed by n�1 differences, we can create a vector that represents
the final wavelet encoding:

[
cm

φ
(0) cm

ψ (0) cm�1
ψ (0) cm�1

ψ (1) cm�2
ψ (0) cm�2

ψ (1) cm�2
ψ (2) cm�2

ψ (3) . . .
]

(8.31)
where m = log2(n). Note that it is possible to exactly reconstruct the original
signal f (x) from this encoding. The first step of the inverse is given by:

[
cm�1

φ
(0)

cm�1
φ

(1)

]
=

[ 1p
2

�1p
2

1p
2

1p
2

][
cm

φ
(0)

cm
ψ(0)

]
(8.32)

Here, the two averages are reconstructed from the top-level average and differ-
ence. Repeating this process gives us four averages:


cm�2

φ
(0)

cm�2
φ

(1)

cm�2
φ

(2)

cm�2
φ

(3)

=


1p
2

0 �1p
2

0
1p
2

0 1p
2

0

0 1p
2

0 �1p
2

0 1p
2

0 1p
2




cm�1
φ

(0)

cm�1
φ

(1)

cm�1
ψ (0)

cm�1
ψ (1)

 (8.33)

This process can then be repeated a total of m= log2(n) to reconstruct the original
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function f (x). The final step in this reconstruction is:


f (0)
f (1)

...
f (n)

= R



c1
φ
(0)

c1
φ
(1)
...

c1
φ
(n/2)

c1
ψ(0)

c1
ψ(1)

...
c1

ψ(n/2)


(8.34)

where R is given by:

R=



1p
2

0 . . . . . . . . . . . . . . . 0 �1p
2

0 . . . . . . . . . . . . . . . . 0
1p
2

0 . . . . . . . . . . . . . . . 0 1p
2

0 . . . . . . . . . . . . . . . . 0
0 1p

2
0 . . . . . . . . . . 0 0 �1p

2
0 . . . . . . . . . . . 0

0 1p
2

0 . . . . . . . . . . 0 0 1p
2

0 . . . . . . . . . . . 0
0 0 1p

2
0 . . . . . . 0 0 0 �1p

2
0 . . . . . . . . 0

0 0 1p
2

0 . . . . . . 0 0 0 1p
2

0 . . . . . . . . 0
. . . . . .

0 . . . . . . . . . . . . . . . . . 0 1p
2

0 . . . . . . . . . . . . . . . . . . 0 �1p
2

0 . . . . . . . . . . . . . . . . . 0 1p
2

0 . . . . . . . . . . . . . . . . . . 0 1p
2


(8.35)

The wavelet-encoded signal consists of differences for all but the first element.
As argued above, this means that most values in the encoded signal will be smaller
than the signal’s original values. For instance, the Haar wavelet-encoded signal
of a sequence of eight numbers is given in Table 8.1. Although the average of the
signal itself is 6.5 (first column on the m = 3 row), the average of the magnitude
of the remaining coefficients is just 1.5. Another example is shown in Figure 8.3,
where the signal in the left panel is encoded using Haar wavelets. The wavelet
coefficients are then sorted by magnitude and plotted in the right panel. Note that
most coefficients are very small.

As a result, it should be possible to encode each element with fewer bits than
the original signal, leading to a simple form of data compression. If the signal
is encoded as integers, many of these small differences would be the same value.
The signal could therefore be encoded very efficiently with Huffman coding.

Moreover, it would be possible to set all elements that are smaller than a
given threshold to zero, effectively compressing the data in a lossy manner. An
example for Haar wavelets is given in Figure 8.4. Here, the signal was compressed
by a ratio of around 4:1 as the signal f (x) contained 4,096 samples, while the
reconstruction used only 1,000 wavelets.
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f (x) 8 10 3 7 6 2 7 9
m = 1 9 5 4 8 1 2 –2 1
m = 2 7 6 –2 2 1 2 –2 1
m = 3 6.5 –0.5 –2 2 1 2 –2 1

Table 8.1. The input signal f (x) is successively decomposed into wavelet coef-
ficients, leading to an average of 6.5 followed by a set of small coefficients. For
clarity we have removed the factor of 1/

p
2 so that hφ = [1 1] and hψ = [1 –1].

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0 f(x)

0 50 100 150 200 250 300
10-2

10-1

100

101 Ordered Haar Coefficients

Figure 8.3. The signal on the left is encoded using Haar wavelets, after which the
resulting coefficients are sorted by magnitude and plotted on the right. Note how
the magnitude of the coefficients is small relative to the magnitude of the signal.

8.4 Other Bases
While the Haar wavelet basis is useful in many cases, in part due to its simplicity,
and in part because it can represent sharp edges in the signal well, many coef-
ficients are required to fully reconstruct a smooth signal, as seen in Figure 8.4.
Thus, in addition to local support, smoothness is often a second requirement for
effective wavelet decomposition. The machinery required for all wavelets is sim-
ilar: the generating function φ(x) from Equation (8.13) will represent (weighted)
averages, while the wavelet function ψ(x) from Equation (8.11) will encode dif-
ferences. To efficiently encode smoother functions, the generating and wavelet
function pairs can be replaced with new basis functions. This has given rise
to many alternatives to Haar wavelets, including Daubechies [152], Coiflet, and
Symlet wavelet, as well as many others.

While the Haar wavelet can be implemented as a convolution with a filter that
has two nonzero elements (or taps) per coefficient (see Equation (8.30)), all other
wavelets require more taps. Daubechies, for instance, has developed a family of
wavelets which have an increasing number of taps [152, 19], as shown in Fig-
ure 8.5. Daubechies weights at each tap cannot be generated algorithmically, but
are typically produced numerically by the cascade algorithm [96]. Daubechies
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0 1000 2000 3000 4000
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0 Error

0 1000 2000 3000 4000
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0 f(x) - Signal length: 4096 samples

0 1000 2000 3000 4000
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0 Reconstruction from 1000 coefficients

Figure 8.4. The signal on the top left is encoded using Haar wavelets, after which
the signal is reconstructed using 1,000 coefficients. The original function con-
tained 4,096 samples, so that lossy reconstruction is achieved with low error and
a compression of around 4:1.

wavelets have a number of vanishing moments equal to half the number of taps.
A Daubechies wavelet with four taps (D4) therefore has two vanishing moments.

The importance of vanishing moments lies in the fact that its value determines
the smoothness of the functions that can be encoded. With n vanishing moments,
polynomials of degree n� 1 can be encoded. This means that a D4 wavelet can
encode constant and linear polynomials. An example demonstrating the implica-
tions for reconstruction is given in Figure 8.6. As the input function is smooth,
Daubechies D20 with ten vanishing moments can represent polynomials with de-
gree 9 and is therefore able to reconstruct the function with only 50 wavelet co-
efficients. The Haar function can only represent piecewise constant functions and
so does not perform well with only 50 coefficients. The Daubechies D20 wavelets
have allowed a compression of around 82:1, which cannot be matched by the Haar
wavelets.

The symlet wavelets improve symmetry properties relative to the Daubechies
family of wavelets. The Coiflet wavelets [55, 153] have vanishing moments in
both wavelet function as well as the scaling/generating function [353], while also
being near-symmetric.
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Figure 8.5. Daubechies wavelets are orthonormal and can be constructed with a
different number of taps. The more taps, the smoother the wavelet. Shown here
are the D4, D8, D12, and D20 wavelets.

8.5 2D Wavelets
So far we have considered functions of one variable. Images, however, are two-
dimensional, and we therefore have to extend wavelet representations to two di-
mensions. The Haar wavelet is separable, which means that an image can be
decomposed in one dimension first, followed by decomposition in the second di-
mension. In essence, the scaling function becomes:

φ(x,y) = φ(x)φ(y) (8.36)

The wavelet function is split into three wavelet functions, one each for the hori-
zontal, vertical, and diagonal directions:

ψ
H(x,y) = ψ(x)φ(y) (8.37)

ψ
V (x,y) = φ(x)ψ(y) (8.38)

ψ
D(x,y) = ψ(x)ψ(y) (8.39)

The only difference between the three functions ψH(x,y), ψV (x,y), and ψD(x,y)
lies, therefore, in which of the scaling and wavelet functions is applied and in
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Figure 8.6. Reconstruction comparison between Haar and Daubechies D20
wavelets. The signal f (x) has 4,096 samples, which are here reconstructed from
50 wavelet coefficients.

which dimension. Otherwise, the computations proceed as before. A single level
decomposition can be created by applying the 1D Haar decomposition to all the
rows of the image. As averages will be moved toward the left half of the image
and differences to the right half, each row will consist of the elements of φ(x)
followed by the elements of ψ(x).

If the procedure is repeated, but now on the columns of the image, the re-
sulting output will consist of four quadrants, as shown in the top-right panel of
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Input image Haar decomposition with one level
of detail coefficients

Haar decomposition with two levels
of detail coefficients

Haar decomposition with three levels
of detail coefficients

Figure 8.7. One, two, and three levels of Haar decomposition. Note that we
have passed the resulting images through a gamma curve (exponent 0.4) to help
visualize the coefficients.

Figure 8.7. The top-left quadrant will contain the averages φ(x,y) which is a
downsampled version of the input image. The top-right and bottom-left quadrants
contain horizontal and vertical differences. Finally, the bottom-right quadrant
contains the vertical differences of previously computed horizontal differences.
These therefore represent diagonal differences. This decomposition is said to be
separable, as horizontal and vertical calculations are carried out consecutively.

As before, these procedures can be applied recursively on the averages, lead-
ing to a hierarchical wavelet decomposition. Two- and three-level Haar decom-
positions are shown at the bottom of Figure 8.7. Of course, this procedure can
be repeated until the top-left pixel contains the image average and all other pixels
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Figure 8.8. A full Haar decomposition. Note that we have passed the resulting
images through a gamma curve (exponent 0.2) to help visualize the coefficients.
(Grand Canyon, Arizona, 2012)

store differences. An example of a full decomposition is shown in Figure 8.8.
Here, most coefficients in the image have become very small so that the encoded
image appears mostly black.

Although Haar wavelets are used extensively in image processing, they are by
no means the only wavelets amenable to image encoding. Daubechies wavelets,
for instance, can be used to encode images as shown in Figure 8.9, although note
that as these wavelets use more than two taps, boundary effects can be more of a
problem.

8.6 Contourlets, Curvelets, and Ridgelets
Further, wavelets have been extended to contourlets, which are more adaptable
to the images being encoded [172], as well as curvelets [109] and ridgelets [107,
108], which are especially adapted to edges. Consider a curved edge in an im-
age. In a conventional wavelet decomposition, the image would be partitioned as
illustrated in the left part of Figure 8.10. By introducing more orientations, and
by allowing the basis functions to follow image features more closely, a sparser
decomposition can be achieved, as shown in the right part of Figure 8.10.

8.7 Coefficient Histograms
So far, we have shown that wavelet coefficients tend to lead to smaller numbers
than the values found in the original signal/image. It has been shown that wavelet
coefficients follow a highly kurtotic distribution [215, 489]. An example for a
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Daubechies D4

Daubechies D20Daubechies D8

Input image

Figure 8.9. Two levels of Daubechies decomposition for D4, D8, D12, and D20
wavelets. Note that we have passed the resulting images through a gamma curve
(exponent 0.4) to help visualize the coefficients. (New Delhi, India, 2008)

single image is shown in Figure 8.11, where we have subjected a high dynamic
range image to the Haar wavelet transform. The kurtosis observed in each channel
is larger than 2,000, which is indeed pointing at very long tails. We have plotted
the vertical axis on a log scale for the purpose of visualization.

The highly non-Gaussian histogram distribution of wavelet coefficients can be
modeled with the generalized Laplacian function [489, 687, 85, 685] (also known
as the exponential power distribution or the generalized error distribution), as
given by:

P(x) =
β

2α Γ

(
1
β

) e�j(x�µ)/αjβ (8.40)

where Γ is the gamma function, as defined by:

Γ(x) =
∫

∞

0
e�t tz�1 dt (8.41)
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Figure 8.10. An illustration of a wavelet decomposition (left) and a contourlet
decomposition (right).
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107 HDR Haar Wavelet Coefficient Histogram

Figure 8.11. The Haar wavelet coefficients are collected into a histogram for each
of the red, green, and blue channels of the high dynamic range image depicted
on the left. The image is tonemapped for display [613], but coefficients are com-
puted on the high dynamic range original. Note the highly kurtotic shape of the
distribution. (Antelope Canyon, Arizona, 2012)

The parameters α , β , and µ can be used to fit the model to a specific image or
image ensemble. For sparse distributions as seen with wavelet coefficients, the
shape parameter β is less than 1. The parameter α scales the distribution, while
µ is the mean. Note that to model the distribution of wavelet coefficients, the
mean is zero. The variance of the distribution, as modeled with Equation (8.40),
is given by:

σ
2 =

α2 Γ(3/β )

Γ(1/β )
(8.42)

As the distribution is symmetric, the skewness is necessarily 0. The kurtosis of
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this distribution is:
Γ(5/β ) Γ(1/β )

Γ(3/β )2 �3 (8.43)

For instance, if the function fit yields a value for β of 0.5, then the kurtosis of
the distribution was Γ(10)Γ(2)/Γ(6)� 3 > 22. This would be a highly peaked
function. For the distribution shown in Figure 8.11, the value of β is around 0.15,
given that the pixel values in this image have a kurtosis of around 20,000. Also
note that the kurtosis of the original pixel values of this image is around 135.

Wavelet encodings tend to be sparse. However, there will be cases where the
encoding fails to be sparse. It has been shown that in such cases Markov random
fields (discussed in Chapter 9) can be used to represent the local non-sparseness
[803].

High values for the kurtosis of the distribution of wavelet coefficients are com-
mon in wavelet decompositions. As expected, they have also been found in con-
tourlets [575] as well as curvelets and ridgelets [177]. In fact, it appears that
high kurtosis appears whenever localized zero-mean linear kernels are used as
bases [818, 704]. Sparseness of the representation, indicated by high kurtosis in
wavelet coefficients, accounts for much of the success of wavelets in various ap-
plications. As an example, by explicitly estimating the parameters α and β , it is
possible to construct an algorithm to denoise images [687] or to efficiently en-
code images [85]. Quality assessment algorithms have also been designed using
the non-Gaussian distribution of wavelet coefficients [672, 671]. Wavelets have
also been used in the authentication of art [278, 481], steganalysis [478, 480], and
in the differentiation between photographs and photorealistic renderings [479].

8.8 Scale Invariance
One could analyze the distribution of wavelet coefficients at each scale of the
wavelet tree separately. For natural images, the result would be that each dis-
tribution would have roughly the same, highly kurtotic shape [518]. This is the
same as saying that the distribution of wavelet coefficients is invariant under scal-
ing. If the histogram of a distribution remains invariant under scaling, then so are
its associated moments [518].

It can be argued that image formation is driven by objects (which are possibly
textured [824]). The analysis of amplitude spectra of natural image ensembles
(Section 6.4.2) shows scale invariance as a result. Here, we have a different way of
expressing the same scale invariance, albeit that we could go one step further and
assess scale invariance locally in small image regions. Scale invariance returns in
the analysis of the dead leaves model in Section 11.1, where scenes are assumed
to be composed of objects that can (partially) occlude each other. For instance,
the dead leaves model gives clues as to the size distribution of objects required to
match the observed scale invariant statistics [12].
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Figure 8.12. Conditional histograms for vertical wavelet coefficients. The distance
between the pixels was 1, 2, and 4 pixels. (Grand Canyon, Arizona, 2012)

8.9 Correlations between Coefficients

A second observation that can be made about wavelet coefficients is that cor-
responding coefficients in either scale, space, or orientation tend to be highly
correlated [468]. For instance, when taking neighboring coefficients at a partic-
ular scale and orientation, their values tend to be similar. This can be seen by
computing a joint histogram of coefficients and their neighbors at some distance.
For instance, Figure 8.12 shows the conditional histogram of the vertical coef-
ficients for pixels separated by 1, 2, and 4 pixels in the vertical direction. The
bow-tie shape of the conditional histogram shows that especially small values of
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Figure 8.13. Conditional histograms for horizontal wavelet coefficients. The dis-
tance between the pixels was 1, 2, and 4 pixels. (Grand Canyon, Arizona, 2012)

one coefficient are good predictors for the value of coefficients some distance
away. This holds for horizontal and diagonal coefficients as well, as shown in
Figures 8.13 and 8.14, and also applies to contourlets [575].

This bow-tie shape suggests that there are still dependencies between the coef-
ficients [767]. The variance scales with the absolute value on the abscissa. These
dependencies cannot be further reduced with any linear transform. It is thought
that occlusion of objects is one of the main processes giving rise to image forma-
tion [287] (see Chapter 11), which is nonlinear. This tends to give rise to relatively
flat areas in images with sharp discontinuities. Such edge-like structures tend to
have substantial power across scales, orientations, and local position. This is re-
flected in the conditional coefficient histograms.
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Figure 8.14. Conditional histograms for diagonal wavelet coefficients. The dis-
tance between the pixels was 1, 2 and, 4 pixels. (Grand Canyon, Arizona, 2012)

It is interesting to note that these dependencies can be reduced by introduc-
ing a divisive normalization akin to the Naka-Rushton equation, which models
photoreceptors (see Section 2.3.2) [731, 659, 767]:

Vj =
I2

j

∑k w jk I2
k +σ2

j
(8.44)

where each coefficient I j is replaced by Vj. Neighboring coefficients in scale,
space, and orientation are indicated with Ik. The parameters σ j and w jk can be
determined from the analysis of natural images. Note that σ j represents the vari-
ance that cannot be accounted for by the neighboring coefficients.
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Figure 8.15. Complex wavelets. The top row shows the real part, the second row
shows the imaginary part, and the bottom row shows the magnitude for each of
six orientations.

Finally, we note that correlations between coefficients in a wavelet decom-
positions have been used in the field of steganography [480], image restoration
[684], and image compression [86].

8.10 Complex Wavelets
The wavelets described so far produce one real-valued coefficient per pixel. In
analogy to Fourier transforms, it is possible to design wavelet pairs that produce
complex-valued coefficients, which can be reinterpreted as representing ampli-
tude and phase. However, contrary to a Fourier decomposition, the amplitude and
phase representations of complex wavelets are localized in space.

Real-valued wavelets as discussed so far have advantages in that they can have
nonredundant orthonormal bases, allow for multiresolution decomposition and
have fast linear time algorithms to decompose and reconstruct signals and images.
However, they also have some disadvantages in image analysis and reconstruction
tasks [403, 664]:

Sensitivity to shifts. If the input is shifted by small amounts, this can lead to
major changes in the distribution and values of the coefficients. In many
image processing tasks, this is an undesirable feature.

Poor directional selectivity. Separable and real wavelets tend to have poor se-
lectivity for orientations other than horizontal and vertical.

No phase information. The discrete wavelet transform does not encode phase
information and also tends to have poor frequency resolution.
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Oscillations. Ideally wavelet coefficients are only large near edges. However,
this is not necessarily the case with real-valued wavelets, which may make
certain image processing tasks such as finding edges difficult [120].

These disadvantages can be overcome with complex wavelets. These in essence
introduce some redundancy, as every real-valued sample in the input results in
a complex-valued coefficient. Complex wavelets solve many of these problems
akin to Fourier transforms. In particular, the amplitude of a Fourier transform
is fully shift invariant. Further, in two dimensions complex wavelets are highly
directionally sensitive.

As argued in Section 6.2, the Fourier transform decomposes a signal into sine
and cosine basis functions:

eiωx = cos(ωx)+ i sin(ωx) (8.45)

As the cosine and sine components are 90 degrees out of phase with each other,
they form a Hilbert transform pair. The background to complex wavelet trans-
forms relates to the Hilbert transform in a similar fashion. A real signal f (x) can
be extended into the complex domain using [248]:

h(x) = f (x)+ ig(x) (8.46)

where g(x) is the Hilbert transform of f (x), denoted as:

g(x) = Hf f (x)g (8.47)

As mentioned above, the Hilbert transform is defined as a 90 degree rotation in
the complex plane of the input signal f (x). This makes g(x) orthogonal to f (x).
Being out of phase by a quarter period of f (x) and g(x) is also known as being in
quadrature. The Hilbert transform is given by [296]:

g(x) =
1
π

∫
∞

�∞

1
x� τ

f (x) dτ (8.48)

= f (x)
 1
π x

(8.49)

The magnitude jh(x)j and phase ∠h(x) of the complex signal h(x) are then
given by:

jh(x)j=
√

f (x)2 +g(x)2 (8.50)

∠h(x) = tan�1(g(x)/ f (x)) (8.51)

Note that the magnitude is also known as the envelope of the combined response
of f (x) and g(x).
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As any signal can be extended into the complex domain in this manner, it is
certainly also possible to create a complex scaling function (where the subscripts
c, r, and i denote complex, real, and imaginary components) [664]:

ψc(x) = ψr(x)+ iψi(x) (8.52)

Once again, the real and imaginary parts ψi(x) and ψr(x) should form a Hilbert
transform pair. A 2D example is shown in Figure 8.15, where the top row shows
the real part of six oriented wavelets, and the second row shows the imaginary
part of the same six oriented wavelets. Note that the real part of this wavelet is
an even-symmetric filter, whereas the imaginary part is odd-symmetric. The third
row in this figure plots the envelope or magnitude of these six wavelets, which
has an approximately Gaussian shape. It is then possible to compute wavelet
coefficients for a specific signal f (x) using complex wavelets [664]:

d( j,n) = 2 j/2
∫

∞

�∞

f (x) ψc(2 jt�n) dt (8.53)

The magnitude and (phase) angle can be computed from these coefficients as
before:

jdc( j,n)j=
√

dr(x)2 +di(x)2 (8.54)

∠dc(x) = tan�1(di(x)/dr(x)) (8.55)

On average, the magnitude will be small for most coefficients but may become
large for pixels that are on or near a contrast feature in a signal or image. The
value of the phase then indicates the position of the feature within the support of
the wavelet.

As with real-valued wavelet decompositions, complex wavelet decomposi-
tions can be either redundant or nonredundant. In the latter case, it is possi-
ble to construct complex wavelets that have orthonormal or biorthogonal bases
[23, 46, 213, 463, 701, 768]. It can be argued, however, that a redundant represen-
tation would be better able to overcome the shortcomings of real-valued wavelets
[664], as outlined on page 197. The resulting wavelet decomposition would be
2� redundant in one dimension [152], as the real-valued samples in the origi-
nal signal are replaced by complex-valued wavelet coefficients. Such redundant
wavelet decompositions can be efficiently constructed by means of the dual-tree
complex wavelet transform [403, 404, 405, 406, 663, 662, 664]. They can also be
naturally extended to two dimensions, allowing images to be transformed into the
complex wavelet domain. This, however, incurs a 4� redundancy.

Complex wavelets have advantages in practical applications as they are nearly
shift and rotation invariant. In particular, they have been shown to be more effec-
tive than real-valued wavelets in image and video denoising [120, 628, 811, 665,
675]. Other applications in which complex wavelets have proven useful include
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image segmentation [666], feature extraction [415, 469], texture analysis, and
synthesis [620, 317, 329], image classification [629], deconvolution [621, 372],
watermarking [189, 473], image sharpening [676], motion estimation [497], and
image and video coding [606, 695, 775]. In addition, complex wavelets are stud-
ied in the context of natural image statistics, having revealed one regularity that
is not observed in the analysis of real-valued wavelets. This is discussed in the
following section.

8.11 Correlations between Scales
Given that edges tend to persist across scales, it is to be expected that if we were
to compute correlations between scales, the structure in scenes should cause such
correlations to be high. In other words, we might expect there to be some redun-
dancy between neighboring scales in a wavelet decomposition.

However, as the filters applied in subsequent scales of a wavelet transform are
normally orthogonal, measuring the correlation of wavelet coefficients in subse-
quent scales proves problematic. This can be seen as follows. Assume that at
scales i and i+1 we have wavelet filters fi(x) and fi+1(x), which are orthogonal
by definition, so that:∫

fi(x) fi+1(x� x0)dx = 0 8x0 (8.56)

This means that the convolution of two such filters with a given signal will also
be orthogonal. As a result, the correlation between wavelet coefficients will be
zero if the two filters are truly orthogonal [216]. An example of the correlations
measured with a real-valued wavelet decomposition is shown in Figure 8.16.

Thus, a different measure is required to assess the correlations that may oc-
cur between scales. In particular, complex wavelets offer a unique opportunity
to understand how edges produce correlations (or redundancy) between scales.
Although the real and complex wavelets by themselves show the same problems
as outlined above, i.e., they are to a large extent orthogonal between scales, the
complex wavelet decomposition can be transformed from a Euclidian coordinate
space to a polar space, whereby real and complex values transform into magni-
tudes and angles.

It turns out that the amplitudes of complex wavelet coefficients tend to be
correlated across scales [216]. In fact, if the phases of image features are aligned
at similar scales in two frequency bands, the correlation between the magnitude of
complex wavelet coefficients will be high. An example of the correlations found
across scale in a single image are shown in Figure 8.17, allowing a comparison
with the real-valued wavelet composition of Figure 8.16.

We can show that these correlations are largely due to information encoded in
the phase spectrum (whereby we mean the phase spectrum as available in Fourier
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Figure 8.16. The magnitude of real wavelets shows comparatively weak correla-
tions across scale. For each of three different types of real-valued wavelets, the
correlation between two neighboring scales are shown. The smaller scales rep-
resent detail coefficients, whereas larger scales represent coarser features. (Mt.
Cook, New Zealand, 2012)
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Figure 8.17. The magnitude of complex wavelets shows strong correlations across
scale. For each of six orientations, the correlation between two neighboring scales
are shown. The smaller scales represent detail coefficients, whereas larger scales
represent coarser features. (Mt. Cook, New Zealand, 2012)

space). To this end, we have computed the Fourier transform of an image (the one
shown in Figures 8.16 and 8.17), permuted the phase spectrum, and converted
back to the spatial domain. We then computed the complex wavelet transform as
well as the correlations across scales of its amplitude spectrum. The results are
shown in Figure 8.18. Note that by removing structure from the Fourier domain
phase spectrum, correlations across scale vanish for the most part. This means
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Figure 8.18. If the phase spectrum of an image is permuted (left), then the ampli-
tude of a complex wavelet decomposition does not show strong correlations across
scale (right).

that local structure that persists across scale in a complex wavelet decomposition
is due to an image’s phase, rather than its amplitude [216].

8.12 Application: Image Denoising
Wavelets can be used for image denoising. This can, for instance, be achieved
by applying soft-thresholding on the coefficients c j,k = h f ,ψ j,ki, leading to new
coefficients c0j,k [782, 758]:

c0j,k =


c j,k� t j c j,k � t j

0 jc j,k � t j

c j,k + t j c j,k ��t j

(8.57)

This method is essentially the wavelet shrinkage denoising method [178, 176,
171, 758]. It can be extended by replacing coefficients according to some func-
tion, i.e., c0j,k = g(c j,k). Assuming that the coefficients c j,k are polluted by additive
noise:

c j,k = cs
j,k +n(i,k) (8.58)

where cs
j,k is the noise-free coefficient and n(i,k) is an independent noise com-

ponent. It is then possible to replace the observed coefficients c j,k by an optimal
linear estimate [53]:

c0j,k = c j,k
E(c2

j,k)
2

E(cs
j,k +n( j,k))2 (8.59)
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8.13 Application: Progressive Reconstruction
Wavelets can be configured to allow progressive reconstruction. Here, the wavelet
coefficients can be sorted according to magnitude. If such sorted wavelet co-
efficients are then transmitted, the receiver can start reconstructing a crude im-
age with few coefficients and refine the image as more coefficients are received
[19, 49, 115, 614]. For Haar, Coiflet, and Daubechies wavelets, an example is
shown in Figure 8.19.

8.14 Application: Texture Synthesis
This book is predominantly about natural image statistics. We see textures as
a specific form of images, namely those that have stationary statistics. In other
words, each local region of a texture has the same statistics, whereas this is not
necessarily true for natural images. As an example, a natural image depicting a
forest with a sky above it would have very different gradient statistics in the sky
than in the forest. This means that textures are in some sense more amenable to
statistical modeling than arbitrary natural images.

Textures have been described in terms of nth-order joint empirical densities
of image pixels [380] and subsequently as statistical interactions in local neigh-
borhoods by means of Markov random fields [310, 136, 254, 167] (see Chap-
ter 9). Inspired by knowledge of early visual processing in human and mam-
malian vision, textures can also be analyzed and represented at multiple spa-
tial scales with oriented linear kernels [757, 486]. These, in turn, have given
rise to the use of wavelet representations for the purpose of texture synthesis
[110, 579, 578, 323, 580, 823, 157].

Statistics of complex wavelet decompositions have also proven successful in
the area of texture synthesis. Here, correlations between pairs of coefficients
across space, scale, and orientation in an example texture form constraints, which
are augmented with a selection of additional constraints, including the expected
product of the magnitudes of coefficient pairs, marginal statistics of image pixels,
and low-pass coefficients [581]. An efficient sampling algorithm then creates
a new texture subject to these constraints. Thus, the new texture will have the
same correlations as those measured in the wavelet decomposition of the example
texture.

A texture can be represented as a two-dimensional homogeneous random field
defined on integer positions.1 Its statistical properties can be connected to human
visual perception by making the basic assumption that a set of functions can be
defined such that if we were to draw samples from two random fields X and Y

1Note that an image is not necessarily homogeneous, while a texture is assumed to be statistically
homogeneous.
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Figure 8.19. Wavelets allow images to be progressively reconstructed, which can
be used in transmission. Here, we use the best 1%, 5%, 10%, and 50% of the
wavelet coefficients (top to bottom), using three different wavelets (left to right):
Haar, Daubechies D20, and Coi�et (2).
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Input photograph

Patch Grayscale patch Synthesized patch

Patch Grayscale patch Synthesized patch

Figure 8.20. Texture synthesis examples, using analysis/synthesis on complex
wavelets [581]. (Stockholm, Sweden, 2009)

that are equal in expectation over these functions, they would be visually indistin-
guishable [380]. This is known as the Julesz conjecture. Assuming we have such
a set of functions φk, then perceptual equivalence would be obtained if:

E(φk(X)) = E(φk(Y )) 8k (8.60)

In a synthesis-by-analysis approach, one would analyze an example texture
to find that the expected value for each of these functions is a specific value ck.
The idea is then to generate a new random field such that it has the same expected
values for each of the constraint functions:

E(φk(X)) = ck 8k (8.61)
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Portilla and Simoncelli have developed an efficient sampling algorithm that can
generate such textures [581]. Rather than aim to satisfy all k constraints simulta-
neously, they treat each constraint sequentially.

Of interest, then, is the set of constraint functions that would lead to percep-
tual equivalence. It can be argued that to achieve this goal, constraint functions
that emulate the early stages of human vision can be chosen. Portilla and Si-
moncelli have demonstrated that a viable route would be to linearly decompose
an image into a multiscale representation such that the basis functions are local-
ized, oriented, and about one-octave in bandwidth [581]. Their steerable pyramid
[690, 689] includes complex filters to allow local phase information to be incor-
porated in the analysis.

The statistical constraints are then chosen on this basis using a technique akin
to greedy algorithms: one by one a new constraint is added that captures the visual
quality most noticeably missing while verifying that previously added constraints
are still relevant. The resulting constraint set contains marginal statistics on tex-
ture pixels, coefficient correlations, magnitude correlation, and cross-scale phase
statistics. An example of texture synthesis achieved with this method is shown in
Figure 8.20.
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Chapter 9

Markov
Random Fields

There are many thousands of visual illusions, most of which serve to show
that the human visual system does not, in fact, perform some form of inverse
physics but instead uses a wide variety of assumptions, simplifications, and
heuristics (see Section 2.5.5). Perhaps the most common feature of nearly all
visual processing—from simple edge detection through object recognition and
up to aesthetic judgment—is that these processes are context dependent. That is,
the same visual signal can be interpreted in many different ways depending on
the information right next to it (either spatially or temporally), on our previous
experience, and on a host of other factors.

For example, our recognition of an edge is based not just on the local lumi-
nance change from one pixel to the next but on the other luminance changes in the
image (i.e., only maxima in the gradient field are edges; see Chapter 5). Context
dependency is encoded at a very early stage in visual processing, as the center-
surround nature of receptive fields shows (see Chapter 2). In addition to this local
context dependency, there is also evidence that global context dependency is en-
coded early: it has been repeatedly demonstrated that information that is clearly
outside of a cell’s receptive field strongly influences the response of that cell, even
though by definition a cell should not be able to react to information outside its
receptive fields (see, for example, [658]).

For edges and many other low-level processes, the “outside influences” come
largely from cells that are immediate neighbors (the so-called near-field), again
a decent reflection of real-world statistics. This influence is often implemented
with simple lateral inhibitions. Some influence, however, comes from cells that
are very far away, and this is believed to occur either through the massive feedback
projections from higher visual areas down to lower visual areas or through chains
of lateral connections (i.e., propagated influence). In short, to fully describe the
statistics of real-world scenes, as well as how humans process the real world, one
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208 9. Markov Random Fields

cannot look solely at individual cells, regions, or pixels. It is critical that at least
the local neighborhood be examined. In the ideal case, global influences must
also be taken into account.

One excellent method for embedding this context dependency in visual com-
puting applications is through Markov random fields (MRFs). MRFs are based
on Ising’s work in the physics of condensed matter in the 1920s [369, 539]. After
Ising, MRFs continued to be developed and expanded, at first mostly by physicists
and mathematicians. The seminal paper from Geman and Geman in 1984 [254]
brought MRFs to the field of image processing (for a historical review of MRFs,
please see [399]).

Since the 1980s, MRFs have been successfully applied to an incredible range
of problems in computer graphics and computer vision, including denoising
and general image restoration, image segmentation, edge detection, optical flow,
shape detection, depth segmentation, and texture analysis (for more on these and
other examples, see, for example, [460]). Although most MRFs focus on highly
local context dependencies similar to the effect of retinal cells on their immediate
neighbors and other low-level visual tasks, modeling global dependencies is also
possible. Further, it is also possible to use MRFs to learn the statistical depen-
dencies in image sets (including natural image sets). This often takes the form of
estimating the parameters of some experimenter-specified model (generally using
Maximum Pseudo Likelihood Estimation or contrastive divergence).

In this chapter, we focus on the basic concepts necessary to understand MRFs
and provide a few insights into several statistical regularities that can be detected
with them. For further reading, we direct the reader to any of the many excellent
books an Markov random fields and their myriad applications, such as [64] and
[460].

9.1 Image Interpretation
In some areas of psychology, perception is thought of as a form of hypothesis
testing (see, for example, [282]). That is, given (ambiguous) information at a
specific spot on the retina (sometimes in vision research, this is called the prox-
imal stimulus), the visual systems poses hypotheses or guesses as to what the
real-world object or event (called the distal stimulus) might be. If necessary, the
visual system then searches for information. If there is not enough information
in the current proximal stimulus to confirm or disprove the hypothesis, then new
information is acquired (e.g., the person moves to get a better view). In other
words, vision is sometimes thought of as the process of inference where a set of
proximal stimuli (the retinal excitations) are assigned a value from a (limited) set
of interpretations. For example, the visual system might try to determine if the
information at a given cell came from an edge or not. Likewise, cells higher in the
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visual system might try to determine if the stimulation at a given cell came from
a tree trunk, from leaves, from the ground, or from the sky.

Within the field of image analysis using Markov random fields, this process of
inference is often called labeling. More formally, let S be a set of m observations
or sites:

S = f1, ...,mg (9.1)

where the numbers are indexes to individual observations. These might be cells
on the retina, pixels in an image, segmented regions in an image, and so on. In a
two-dimensional n1�n2 image, the set can also be written as:

S = f(i, j)j1� i� n1,1� j � n2g (9.2)

Note that connectivity between sites is important in MRFs, but this is usually
represented separately. The global order of the sites, on the other hand, is not
important. Thus, 2D images can be represented with a single parameter h, where
h = f1,2, ...,mg with m = n1�n2.

Labeling also requires the definition of a set of possible interpretations that
a site may have. This list of categories or labels can be nominal (and therefore
contain only information about identity), such as edge versus non-edge; ordinal
(containing information about the identify and ranking of categories), such as
relative depth ordering (closest surface, next closest surface,. . ., most distant sur-
face); or even interval (containing information about the identity, ranking, and
relative distance between categories), such as the intensity at a pixel (0,. . ., 255).

The class of operations that are possible on the labels is strongly dependent
on the nature of the labels. For nominal label sets, it is only possible to determine
if two sites have the same label or not. For ordinal and interval label sets, it is
possible to define operations like similarity and distance. If the labels are discrete,
the set of M labels can be written as:

L = f1, ...,Mg (9.3)

with the indices pointing to individual categories or labels. If the labels are con-
tinuous (such as a floating point representation of luminance), then the set L can
be thought of as a line in R or some portion of it:

L = [X1,X2]� R (9.4)

with X1 and X2 being the lower and upper bounds of the set, respectively.
We can then interpret the image. More specifically, we assign each site i 2 S a

value f from the set of labels L . Commonly the label at a given site i is denoted
with fi. The set f = f f1, f2, ..., fmg of labels for all m sites can be called a labeling
of the sites in S in terms of the labels in L . If all sites can be assigned a single
label then we have a mapping f , which can be written as:

f : S!L (9.5)
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Depending on the nature of the set of labels, we can create a wide variety of
maps. If the labels are fedge,non-edgeg then the mapping fi is an edge map. If
L consists of distances from the viewer, then f is a depth map. In the area of
Markov random fields, a map is often called a configuration.

If all sites have the same set of labels L , then the set of all possible configura-
tions F—which is also called the configuration space—is the Cartesian product
of the set of labels L by itself m times, with m being the number of sites. If
L is discrete, then the configuration space is combinatorial: with m sites and M
labels, there are Mm possible mappings. For example, if there is only one label,
then there is only one configuration (or interpretation of the data) regardless of
the number of sites: 1m = 1. If there are two labels, then with two sites there
are four logical possible configurations: both sites have label 1 ( f = f1,1g), both
sites have label 2 ( f = f2,2g), site 1 has label 1 and site 2 has label 2 ( f = f1,2g),
or site 1 has label 2 and site 2 has label 1 ( f = f2,1g).

9.2 Graphs
As was mentioned earlier, most visual processes are context-dependent and can
be modeled by looking at the influence of sites that are immediately adjacent to
the site of interest. This, of course, requires some formal notion of adjacency.
In essence, i and j can be thought of as being connected to one another. One
way of explicitly representing this is with a graph G = (S,E), where E is the
set of edges (i.e., the a set of adjacent sites). If two sites i, j 2 V are neighbors,
then they will have an edge (i, j) 2 E between them. One important property of
adjacency in the context of Markov random fields is that, like neighbors in real
life, the relationship is mutual. If the site i is adjacent to the site j, then j must be
adjacent to i. This is represented with an undirected graph, which is equivalent to
saying if (i, j) 2 E, then ( j, i) 2 E. Note that, as in real life, a site cannot be its
own neighbor (i, i) /2 E.

9.2.1 Neighborhood Systems
Now that we have a method for formalizing context, we need to define what we
mean by immediate or local context. The neighborhood Ni of a site i is defined
as the set of all sites that share an edge with i:

Ni = f jj8 j 2 S,(i, j) 2 Eg (9.6)

The complete set of all neighborhoods, then, is a neighborhood system:

N = fNij8i 2 Sg (9.7)

In practice, this is made easier by the fact that most images are spatially reg-
ular (in fact, they form a lattice). Thus, the set of neighbors for a given site
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S u,vSu-1,v Su+1,v

S u,v-1

S u,v+1

Su,vSu-1,v Su+1,v

S u,v-1

Su,v+1

Su-1,v-1 Su+1,v-1

Su+1,v+1Su-1,v+1

Figure 9.1. Neighborhoods: first-order or 4-neighborhood (left) and second-order
or 8-neighborhood (right).

is visually obvious. There are two common neighborhood systems in lattices,
depending on whether diagonals are allowed. The simplest case is a first-order
neighborhood (also called a 4-neighborhood), where we do not look at diagonals
(see Figure 9.1). For example, the 4-neighborhood of the site Su,v consists of:

N 1
u,v = fSu−1,v,Su+1,v,Su,v−1,Su,v+1g (9.8)

The superscript denotes that we are using a first-order neighborhood. In a second-
order neighborhood (also called an 8-neighborhood), diagonal neighbors are also
considered (see Figure 9.1). Thus, the 8-neighborhood of site Su,v consists of:

N 2
u,v = fSu−1,v,Su+1,v,Su,v−1,Su,v+1,Su−1,v−1,Su−1,v+1,Su+1,v−1,Su+1,v+1g

(9.9)
It should be mentioned that pixels at the edges of an image have fewer neighbors.
Often, this is avoided in practice by “wrapping” an image (so that in an n1� n2
image, pixel I(0,y) is connected to I(n1,y)).

If the graphs are irregular and there is no explicit concept of connection (for
example, as might occur in an edge map), we need to define some distance func-
tion dist(i, j) between sites i and j. All sites that fall within a given threshold
distance are included in the neighborhood. For example, if the location of the
sites can be interpreted spatially, then an acceptable distance function would be to
take a circle centered on the site of interest and all cells that are within a threshold
radius are considered to be within the local neighborhood. Of course, care needs
to be taken when defining both the distance function and the threshold to ensure
that the neighborhood range completely includes the initial site itself (for exam-
ple, since most edges are spatially extended, it is important to ensure that a given
edge in an edge map is within its own neighborhood calculations). If the graph
cannot be spatially interpreted, then some other form of distance function needs
to be defined.
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Single or unary Pairwise or binary Three-way cliques

Figure 9.2. The possible cliques in a 4-neighborhood: single or unary cliques
(left), pairwise or binary cliques (middle), and three-way cliques (right).

9.2.2 Cliques
The final term that is needed is a clique, which is a subgraph of G in which all the
elements are neighbors of each other. Cliques may be unary (containing just the
site itself), binary (pairs of neighbors), triplets of neighbors, and so on. The set of
all unary cliques will be referred to as C1, the set of all binary cliques as C2, and
so on. The set of all cliques C is given by:

C =C1[C2[ . . . (9.10)

Critically, cliques are ordered, so that (i, j) is not the same as ( j, i). Addition-
ally, a site can be in more than one clique. Thus, a single site is in its own unary
clique as well as possibly in one or more binary cliques. Possible cliques within
a 4-neighborhood in a lattice are shown in Figure 9.2. These include the sites
themselves (unary cliques), horizontal and vertical pairs (binary cliques), and the
three-way cliques. A maximal clique is a clique where it is not possible to add
any more sites while still retaining complete connectedness.

9.3 Probabilities and Markov Random Fields
Some of all the possible configurations f in the configuration space F are more
likely than others. Markov random fields capture this intuition more concretely
and allow us to model contextual dependencies. For an image I whose pixels
make up the set S of m sites, we can define a set F = fF1,F2, ...,Fmg of random
variables that are the actual mappings from S to L . Each site’s random variable
Fi takes one of the possible mappings fi. The probability that the actual mapping
at a specific site Fi is a particular possible mapping for that site fi is given by
p(Fi = fi), or p( fi) for short. Following standard notation, the (F = f ) term will
be shortened everywhere to f . The set or family F is called a random field.

If there were no context dependencies, then the probability that a given site
has a given interpretation p( fi) would depend only on the site itself. That is, this
probability would be conditionally independent of all other sites j:

p( fij f j) = p( fi) (9.11)

where f j is the mapping at all other sites j 6= i. As we have seen, however, this
is generally not the case and therefore context dependencies need to be modeled.
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The random field F is a Markov random field if the following two conditions are
met:

Positivity. The probability of a mapping occurring is greater than zero for all
possible mappings in the configuration space:

p( f )> 0 8 f 2F (9.12)

Markovianity. The probability that a site i takes a specific value fi is dependent
only on the local neighborhood of that site Ni

p( fij ffS�ig) = p( fijNi) (9.13)

where fS� ig is all of S except i.

9.3.1 Gibbs Distributions
The Hammersley-Clifford theorem [297] states that if the above two assumptions
are met then we can write the joint probability p( f ) as a Gibbs distribution:

p( f ) =
1
Z

e�
1
T U( f ) (9.14)

where Z is the normalizing constraint called the partition function, T is a global
parameter called the temperature (often assumed to be 1), and U( f ) is the prior
energy. The partition function is given by:

Z = ∑
f2F

e�
1
T U( f ) (9.15)

and ensures that the sum of all probabilities equals unity:

∑
f2F

p( f ) = 1 (9.16)

The prior energy U( f ) is given by:

U( f ) = ∑
c2C

Vc( f ) (9.17)

where Vc( f ) denotes the prior potentials (the values of subgraphs of G), which
depend only on fi, with i 2 c (the labels for sites within a clique). Lower energy
states U( f ) are more likely. Note that the temperature T controls the sharpness
of the distribution. The higher T is, the more evenly distributed all configurations
are. As T approaches zero, the distribution concentrates around the global energy
minima.
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In some cases, it can be convenient to rewrite the energy function as a sum of
terms, with each term relating to a clique size (single, pair, triple, etc.):

U( f ) = ∑
i2C1

V1( fi)+ ∑
i, j2C2

V2( fi, f j)+ ∑
i, j,k2C3

V3( fi, f j, fk)+ . . . (9.18)

where C1 contains the unary cliques, C2 contains the binary cliques, C3 contains
the triple cliques, and so on. Likewise, V1 denotes the potentials of the unary
cliques, and so on.

9.3.2 Auto-Models

The simplest MRF model would be to restrict our considerations solely to cliques
up to size two. If the set of sites S is a two-dimensional image and we use only a
first-order neighborhood, then the auto-model is the same as the Ising model. In
these cases, Equation (9.18) can be rewritten as:

U( f ) = ∑
i2S

V1( fi)+∑
i2S

∑
j2Ni

V2( fi, f j) (9.19)

Note that here we sum over all unary and binary cliques, and that each site is in
a unary clique and four binary cliques. Combining Equation (9.19) with Equa-
tions (9.14) and (9.15), and assuming T is 1 gives the conditional probability of a
site based on its neighbors:

P( fij fNi) =

exp

(
�V1( fi)� ∑

j2Ni

V2( fi, f j)

)
∑

fi2L
exp(�V1( fi)�V2( fi, f j))

(9.20)

In the original Ising model, there were two states L = f�1,+1g. The Potts
model provides an important extension to the Ising model by allowing the set of
labels to have more than two states. Ising also ignored unary cliques (for physi-
cally based reasons that were relevant to the specifics of the phenomenon he was
studying), leaving only binary term:

U( f ) = ∑
c2C

Vc( f ) =�β ∑
(i, j)2C2

fi f j (9.21)

where β captures the interaction between neighbors. If β > 0, then neighbors
will tend to have the same value. One can generate images using an Ising model,
with different values for β giving different images. It is also possible to use
different β for horizontal and vertical cliques, yielding anisotropic images. Inter-
estingly, as was shown in Chapter 5, the difference between pairs of neighbors is
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an approximation of the gradient, so the binary terms are essentially modeling the
first derivative properties of the image.

Since the joint probability p( f ) measures the probability that a given configu-
ration occurs, we can bias the outcome towards specific configurations by setting
the clique potentials carefully. Thus, much of the interest in MRFs is based on the
choice of potential functions (using prior knowledge about interactions between
neighboring sites and labels) so that the desired behavior arises.

9.4 MAP-MRF
MRFs and their connections with Gibbs distributions provide us with the abil-
ity to calculate the probability of different configurations. As mentioned, this is
interesting for texture generation. A simple Ising or Potts model can produce
convincing textures for different settings of the available parameters.

Within image analysis, however, MRFs present some limitations. As stated
earlier, problems in low-level vision or image analysis can be thought of as in-
ference or hypothesis testing problems: we have a given image and we want to
interpret it. The probability of a given configuration p( f ) simply tells us how
likely any given configuration is in principle (with lower energy configurations
being more likely). Often, however, we would like to know which of the many
possible configurations applies to our current image. MRFs by themselves have
no means for incorporating real observations and thus are insufficient to answer
this question. For this reason MRFs are often embedded within a Bayesian frame-
work.

Although a full treatment of Bayesian statistics is beyond the scope of this
book,1 a few comments are required. An example of how Bayesian inference can
be used in the context of MRFs is as follows. Assume that there is a real-world
from which we take some picture or observation. Due to the process of image cap-
ture, however, the information from the real-world gets slightly corrupted. If we
know what the real-world scene might have contained and have some idea of how
the information was corrupted, we could make some plausible guesses about what
the scene really contained based on the (corrupted) image. In other words, there
is a known dataset (e.g., the observed pixel values) d and the possible interpre-
tations of that dataset (the labels L ). The knowledge about how likely different
sets of interpretations or configurations are captured by p( f ), as we saw earlier.
In Bayesian statistics, this is called the a priori or prior. Knowledge about how
the information was corrupted during the observation process is captured by the
likelihood p(dj f ). Note that this is very much application-dependent. Given this
information we can calculate how likely any given interpretation or configuration

1The interested reader is directed to [460] for more on Bayesian statistics in image processing. See
also the appendix for a brief discussion on Bayes’ rule.
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f is given the observed data:

p( f jd) = p(dj f )p( f )
p(d)

(9.22)

This is called the a posterior or posterior. Note that the denominator p(d) is
a constant since the image is known, but its calculation is generally intractable.
Fortunately, this is usually not a problem as we shall see. Since we want to know
which interpretation is most likely, it is common to calculate the maximum a
priori or MAP estimate:

f�= argmax f2F p( f jd) (9.23)

Since p(d) is constant, it is not needed for the MAP, which therefore becomes:

f�= argmax f2F p(dj f )p( f ) (9.24)

In sum, when using MRFs in a Bayesian framework, we need to define a neigh-
borhood system, then define the allowable cliques, and then define the clique
potentials. This gives us the prior p( f ). We then derive the likelihood energy
based on assumptions on the underlying distributions and processes involved in
generating the dataset. Finally, we derive the posterior energy and find the maxi-
mum.

9.5 Applications
We present two examples where MRFs have been successfully used to detect
statistical regularities in the image. For more on what regularities MRFs have
been used to model, please see [460].

9.5.1 Image Restoration
One of the classic examples of how an MRF can be used is simple image restora-
tion. There are many, many different versions of this procedure. The one we
present here is based on [255]. We assume that we have an image, represented as
a two-dimensional spatial lattice, and that we only look at the first-order neigh-
borhood. The set of sites S = 1, ...,m contains the pixel locations, while the set
of labels L = 0, ...,255 contains possible 8-bit pixel luminances. The possible
cliques are the sites themselves and pairs of vertically or pairs of horizontally ad-
jacent pixels. The binary clique potential is V2( fi, f j) = βg( fi� f j) where β is a
scalar and g(.) is a function that penalizes differences between fi and f j (i.e., it
penalizes smoothness violations). Further, the assumption is made that the “cor-
rect” image was corrupted by adding white noise2 di = Fi + µi where di is the

2Note that the noise in real imaging systems is often not white. In real restoration processes
usually a Poisson distribution is assumed [254]. Interestingly, there is some evidence that electronic
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observed pixel value, Fi is the correct pixel value, and µi is a zero-mean Gaussian
distribution with variance σ2. Thus, the likelihood is:

p(dj f ) =
(

1
2πσ2

)jSj/2

exp

(
� 1

2σ2 ∑
i2S

(di� fi)
2

)
(9.25)

where jSj is the number of data points. Using an Ising model and ignoring the
unary terms gives:

p( f ) =
1
Z

exp

(
�β ∑

i, j
fi f j

)
(9.26)

which gives the a posteriori distribution of:

p( f jd) = 1
Z

e�(β ∑i, j fi f j)�( 1
2σ2 )∑i2S(di� fi)2

(9.27)

To find the solution the energy function in the exponent is minimized:

U( f ) =�

(
β ∑

i, j
fi f j

)
�
(

1
2σ2

)
∑
i2S

(di� fi)
2 (9.28)

9.5.2 Object Segmentation
Another classic application of MAP-MRF is to segment an object from the rest
of an image (part of the classic graph cut problem). Here, we present Boykov
and Jolly’s algorithm [70], which uses an auto-model. Specifically, the user se-
lects a few pixels that are a part of the object of interest and a few pixels that
are definitely not on the object of interest. The unary term focuses on the how
well the remaining pixels match a description of the object or of the background.
Although a number of potential functions are named, the one used in this imple-
mentation assigns a value to each pixel based on how well it matches the log of
two histograms (one each for object and background pixels, respectively). The
binary term governs smoothness, again with a list of potentially useful functions.
In the specific implementation, a simple penalty was used:

V2( fi) = exp
(
�
(Ii� I j)

2

2σ2 � 1
dist(i, j)

)
(9.29)

for i 6= j. This gives us the following energy function:

U( f ) = λ �∑
i2S

V1( fi)+∑
i2S

∑
j2Ni

V2( fi, f j) (9.30)

where λ � 0 is a constant that determines the relative weight of the unary term.
Minimizing the resulting energy function yields a rather successful segmentation
of the object.

noise—and thus the corrupting factor between real scene and observation—is not white, but the power
spectrum actually follows a power law [396, 647]). Using a power law rather than white noise in the
likelihood might improve the performance of MRFs in image restoration.



i
i

i
i

i
i

i
i

218 9. Markov Random Fields

9.6 Complex Models and Patch-Based
Regularities

Most of the MRF models contain relatively simple underlying functions. There
are, however, several methods for combining multiple simple models to make a
more powerful one. By combining different classes of models and learning their
parameters, it should be possible to ensure that we can adequately represent real-
world statistics. Perhaps the most promising approach to combining simple mod-
els is the Products of Experts (PoE) technique. Here, we present the approach,
followed by how it can be used with MRFs (a procedure called Field of Experts)
to learn the statistical regularities of image patches.

9.6.1 Products of Experts

High-dimensional datasets can be modeled with PoE [331]. The basic idea is
to create several straightforward models called experts, each of which is trained
to model a part of the dataset (such as one of the many dimensions in a high-
dimensional dataset) and then multiply the experts together (and then normal-
izing) to model the full dimensionality of the dataset. The multiplication over-
comes some limitations of mixture models (see Chapter 7). The experts essen-
tially model how likely a given image is given a specific set of models p(djθn)
where d is the observed data (i.e., the image) and θn represents the parameters of
model n. The joint probability is then given by:

p(djθ1, ...,θn) =
∏n p(dj fn,θn)

∑c ∏n p(cj fn,θn)
(9.31)

where c indexes all possible vectors in the dataspace (e.g., all possible images).
Using machine-learning techniques (including sampling and contrastive diver-
gence to make the problem computationally tractable), it is possible to learn the
parameters of the individual experts on a training dataset. The trained experts can
be used (with some limitations) to process new data. For example, a large num-
ber of simple experts, each of which is a mixture of a uniform distribution and
a Gaussian aligned to a single axis in the dataset, can give rise to edge detectors
when trained on a training set of images that consist of a single edge each [331].

Since natural image statistics tend to be highly kurtotic, using Student-t dis-
tributions as the basis of the experts is a viable alternative [793]. This procedure
is called a Product of T-Distribution (PoT) model. Learning the parameters of a
set of Student-t-based experts on 5 � 5 pixel image patches from a database of
natural images has produced filters that look much like those obtained in sparse
encoding approaches.
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9.6.2 Fields of Experts

Most MRFs focus on first-order neighborhoods and use simple models, meaning
they can only explicitly capture simple, very local image structures [631, 634]. It
is clear, however, that both longer-range and more complex interactions are very
important in images and need to be modeled. One approach to include larger
ranges of context using more complex models is to use Product of Experts in
a Markov random field, which is called a Field of Experts (FoE) for short. In
essence, the experts of a PoE are learned, as mentioned earlier, and then used as
priors in MRFs with very large, overlapping cliques. Student-t distributions and a
variant on the L1 norm have both been shown to be effective as the basis of such
experts [631, 634].

The Fields of Experts were tested on the Berkeley Segmentation Bench-
mark [501]. For computational reasons, the size of the image was limited to
being between three and five times as large as the patches. To test the approach,
20,000 image patches were randomly extracted (usually each 5 � 5 pixels large).
These were subsequently converted to grayscale. They then created subsets of
200 patches each (again, for computational reasons) and used a different subset
at each training step. There were usually 5,000 training steps in the experiments.
Visual inspection of the recovered filters does not immediately lead to any recog-
nizable structure. They do not look like edge detectors or any of the usual filters
found in sparse encoding approaches (or even in PoE approaches). Roth et al.
suggest that this is due to the overlap of the cliques.

A direct comparison of the models obtained under different circumstances
(e.g., clique sizes, training steps, etc.) is not possible since the partition function
cannot be evaluated. Instead, the effectiveness of different FoEs on different tasks,
such as image denoising and inpainting can be assessed. The FoE model performs
very well, showing that these models can capture some regularities in an image.

9.7 Statistical analysis of MRFs
Using MRFs within a Bayesian framework is an elegant way to perform many
computer vision tasks or even to model the human perceptual system. It is amaz-
ingly flexible and can, in principle, measure a truly astonishing variety of statis-
tical regularities. A part of this flexibility is due to the fact that the researcher is
free to specify the underlying model. Once a model is specified, it is then possible
to use a set of images as a training dataset to estimate the parameters of the model
underlying the MRF.

In most cases, however, it is unclear how well the model has represented the
images or what features it has modeled [249]. This is largely because the parti-
tion function is computationally intractable. Thus, in most cases, the success of
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learning image parameters is tested by using the MRF to perform some task such
as image denoising or image segmentation.

Zhu and Mumford [822], however, suggested that an appropriate way to see
what the models are modeling is to take advantage of the generative nature of
MRFs. That is, as mentioned earlier, it is possible to use a (trained) MRF to syn-
thesize textures. To examine the statistics of their MRF, Zhu and Mumford trained
it on 44 real-world images and then generated several images from their MRF—
a process they called sampling the MRF. Finally, they examined the statistical
moments of the marginal distributions of both real and synthesized images. As
usual, the intensity histograms of real-world images had high kurtosis and heavy
tails and the statistics were (mostly) scale invariant. The synthesized images nei-
ther visually resembled real-world images nor did their statistics. Although the
intensity histograms of the synthetic images had flat tails, they had only small
spikes. Zhu and Mumford suggested that this was due to the size of the filters
used. Adjusting the filter size improved the similarity to real-world images some-
what.

Later, several researchers simultaneously revived the idea of using a trained
MRF to synthesize images and then examine their statistical moments [391, 452,
482, 600, 549, 656]. As an example, Lyu and Simoncelli [482] trained an MRF
based on Fields of Gaussian Scale Mixtures using five images (each 512 � 512
pixels) using 5 � 5 pixel neighborhoods. The marginal statistics of the samples
turn out to be clearly non-Gaussian but not as heavy-tailed as real-world images.
The joint statistics were also close but note quite the same as real-world images.

Ranzato and colleagues [600] augmented the MRF to have two latent variables
rather than one. The first set of latent variables models pixel intensities. The
second set models image-specific pixel covariances. They call this a gated MRF.
They use a Product of Student-t model (PoT) [730] as the base MRF and they also
add the ability to model mean pixel intensities and not just pixel pair differences.
After training, they sampled the model (with patches of 160 � 160 pixels) and
assessed how similar the intensity histograms of synthesized images and random
images were to either random images or real-world images using the Kullback-
Leibler divergence. This is a measure of how different two probability distribution
functions are, as explained in the appendix. They found that adding mean pixel
intensities greatly improves the quality of the generated images. Interestingly, not
accounting for the mean pixel intensity yields intensity histograms that are closer
to random images than real ones.

Schmidt and colleagues suggest that a more flexible underlying model, a vari-
ant of Gaussian scale mixtures, might yield better results than traditional ones
[656]. They examined intensity histograms and multiscale derivatives using the
Kullback-Leibler divergence. They found that for both pairwise MRFs and Fields
of Experts, this model yields a higher kurtosis than the older models. We used
this procedure on a set of 15 images (shown in Figure 7.8) using pairwise MRF
and obtained the results shown in Figure 9.3. We also used a 3 � 3 clique Fields
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Figure 9.3. Filter marginals computed on an MRF model using a variant of Gaus-
sian scale mixtures as the underlying model [656]. They are compared with the
derivative statistics of the image patches themselves. The images used to gener-
ate these results are shown in Figure 7.8.

of Experts on the same set of images and obtained the results shown in Figure 9.4.
Note that the experts shown in this figure have a broad base and a narrow peak,
showing heavy-tailed behavior. On of the applications of this approach is image
inpainting, a result of which is shown in the bottom-right of Figure 9.5. Note
that the Fields of Experts improve the quality of the result somewhat relative to
pairwise MRFs.

Schmidt and colleagues also find that the Bayesian minimum mean squared
error estimate (MMSE) was better than MAP. As their approach lends itself not
only to analysis but also applies in a generative setting, Schmidt et al. showed its
applicability in several scenarios, including image inpainting (a result obtained
with this method is given in the bottom-left of Figure 9.5). Subsequently, they
further extended the model and showed that the synthesized images more ac-
curately matched the multiscale derivative statistics, random filter statistics, and
joint feature statistics of of real-world images [249].

Several other researchers have shown that MRFs trained on patches do reason-
ably well but are not perfect. Karklin and Lewicke [391] examined the properties
of MRFs based on multivariate Gaussians trained on 20 � 20 pixel patches from
real-world images and compared the responses to those of simulated neurons.
They found that the properties are similar to those in visual areas V1 and V2 in
the human visual system. Likewise, Osindero and Hinton [549] examined the
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Figure 9.4. Eight filter marginals computed on a 3 � 3 clique FoE model [656].

Inpainted result (pairwise MRF)

Input image Mask

Inpainted result (Fields of Experts)

Figure 9.5. Inpainting result using pairwise MRFs (bottom left) and FoE (bottom
right), generated with the method of Schmidt et al. [656]. (Dunedin, New Zealand,
2012)
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performance of a model that has several hidden layers, each with its own MRF
(conditioned on the variables in the layer above). They used 150,000 patches each
of 20 � 20 pixels to train their model. They generated 10,000 sample images and
found that the intensity histograms for the real-world patches have a high kurtosis
(8.3). The version of their model that includes lateral connections yields images
with a kurtosis of 7.3, while the version without lateral connections has a kurtosis
of 3.4.
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Beyond Two Dimensions
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Chapter 10

Color

We have so far considered statistical regularities either without specifically in-
cluding the notion of color, or deliberately ignoring color and assuming a single
luminance channel. Although this is sufficient for studying many of the regulari-
ties within natural scenes, color deserves special treatment as it is one of the most
informative aspects of the visual world. The use of color in images and art can be
used to create a specific mood and to induce particular emotions, it can serve as a
signal (e.g., to indicate fruit ripeness in nature or whether we can cross the road in
manmade environments) and even give indication about the type of environement
or time of the year [786].

In general, images are formed as light is transduced to electric signals. This
happens both in the retina as well as in electronic image sensors. Before that,
light is emitted and usually reflected several times, encountering several different
surfaces before it reaches an electronic or physiological sensor. This process is
modeled by the rendering equation, given by:

Lo(λ ) = Le(λ )+
∫

Ω

Li(λ ) fr(λ ) cos(Θ)dω (10.1)

This equation models the behavior of light at a surface: light Li impinging on
a surface point from all directions Ω is reflected into an outgoing direction of
interest, weighted by the bi-directional reflectance distribution function (BRDF)
fr. The amount of light Lo going into that direction is then the sum of the reflected
light and the light emitted by the surface point (which is zero unless the surface is
a light source). Here, we have specifically made all relevant terms dependent on
wavelength λ to indicate that this behavior happens at all wavelengths, including
all visible wavelengths. This means that Lo can be seen as a spectral distribution.

Light reaching our eyes is therefore carrying information about the intensity
and direction of illumination but also about the materials and colors of objects that
it has interacted with in its path. For a sensor—be it biological or electronic—to
be able to perceive color, special adaptations are necessary. Ideally, to accurately
represent color, the full spectrum of light should be captured. This, however,
would require a prohibitive amount of processing.

227
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Figure 10.1. The three cone photoreceptor sensitivity curves.

To reduce the amount of data, the light spectrum can instead be sampled
through cells with different sensitivities. The human retina, for instance, is pop-
ulated by three types of cone photoreceptors, while the eyes of mantis shrimp
contain at least eight visual pigments with narrowly tuned sensitivities [500] and
many species of birds are tetrachromatic [47]. In all of these cases, although the
precise form of sampling of the spectrum differs, the purpose is the same: to re-
duce the amount of data to be transmitted and processed while minimizing loss of
information.

This remains an important goal in further stages of the visual system, with
many processes relying on particular regularities in the color information of the
environment, allowing us to quickly and effortlessly understand our environment.
In this chapter, we will review the main color processes of the human visual sys-
tem and discuss how they relate to certain statistical regularities and patterns in
natural environments. We will also look at the implications and applications of
these regularities in imaging disciplines.

10.1 Trichromacy and Metamerism
The human visual system is well equipped for viewing color, and several different
processes take place in our visual pathways that mediate its perception. Several
models were proposed in the last centuries to account for the different aspects of
color vision. One of the earliest theories suggests that new colors can be created
by mixing three other colors [814, 326]. This was determined by a color matching
experiment where participants were asked to match given colors by mixing a set of
light sources with adjustable intensities. Helmholtz found that three light sources
were necessary and sufficient for matching any given color. This led to what is
now known as the Young-Helmholtz trichromatic theory.

Within the human visual system, photopic vision is indeed mediated by three
types of cone photoreceptors, each with a different peak sensitivity. Each cone
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type integrates the incident light according to a different weight function:

L =
∫

λ

Lo(λ ) l̄(λ ) dλ (10.2a)

M =
∫

λ

Lo(λ ) m̄(λ ) dλ (10.2b)

S =
∫

λ

Lo(λ ) s̄(λ ) dλ (10.2c)

where l̄(λ ), m̄(λ ), and s̄(λ ) are the weight functions (responsivities), which peak
at wavelengths that are perceived roughly as red, green, and blue (Figure 10.1),
specifically at 565 nm, 545 nm, and 440 nm [68, 707]. The letters L, M, and
S stand for “long,” “medium,” and “short” wavelengths. A spectral distribution
Lo(λ ) therefore gives rise to a triple of numbers (L,M,S), which represent the
signal that is passed on from the photoreceptors to the remainder of the human
visual system. Such triples are called tristimulus values.

An important property of this behavior is that different spectral distributions
can integrate to the same tristimulus values since each receptor type responds to
a wide range of wavelengths. Such spectral distributions are then necessarily per-
ceived to be identical, which is known as metamerism [204]. Although metameric
surfaces do not often occur in nature [239], a crucial implication of metamerism is
that with three carefully controlled light sources, the full spectrum (or nearly) can
be simulated. Because of that, we are able to build display devices that emit light
using three primaries rather than emulating the full spectral distribution, which
has shaped the way digital images are stored and managed. Digital imaging relies
on this precise process too, which is why digital images are also typically encoded
using a triplet of values per pixel. Similar to our visual system, this allows images
to be stored using a relatively small amount of data compared to what would be
required for storing their full spectral distribution.

10.2 Color as a 3D Space
The primaries used in display devices or digital imaging need not be the same as
the responsivities of the cones: tristimulus values for one choice of primaries can
be converted to tristimulus values for a different set of primaries, and although
they do not represent the same spectral distributions, through metamerism they
lead to the same percept. Consequently, the same color can be described in in-
finitely many ways by changing the set of primaries that it is defined upon. In
effect, each tristimulus value corresponds to a point in a three-dimensional space,
known as a color space, and each axis defines a channel. By shifting, scaling, and
rotating the axes defining a color space, a different space can be constructed to
achieve different goals.
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Figure 10.2. For the image shown, corresponding pixel values are plotted for all
pairs of channels in the LMS cone space (top) and the lαβ opponent space (bot-
tom). Values in the LMS space lie along the diagonal, indicating high correlation,
while this is much less so the case with lαβ . (Seamills, UK, 2009)

This treatment of color allows for two different ways of studying and using
chromatic information in images. A set of pixels in an image can be seen as a set
of coordinates within the color space of choice, which can be manipulated as a
three-dimensional manifold. Although this would ensure that relations between
pixels remain unchanged, it bears no resemblance to the workings of the visual
system and would require more complex imaging algorithms.

On the other hand, each channel can be treated as a separate entity, resulting in
three one-dimensional distributions. This, of course, is a much simpler problem
compared to its 3D counterpart, but it comes with its own set of limitations. If,
for instance, we look at the response curves of the L, M, and S cones, it is easy
to see that they have a large overlap. This, albeit necessary for the visual system,
leads to a highly correlated color space. Effectively, a given value for one channel
becomes a good predictor for the values of other channels. This is illustrated in
Figure 10.2 (top row) where the pixel values for pairs of channels are plotted for
the LMS cone space. Most values sit near the diagonal, indicating that changes in
one channel will affect the behavior of the other two as well.

10.3 Opponent Processing
Fortunately, the issue of correlation between color channels can be easily re-
solved. If an appropriate transformation is chosen, the axes of the color space
may be rotated such that data in one channel no longer predict the values in other
channels, thus reducing correlation.
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Light mediating substances

- + - + - +

Figure 10.3. The opponent processing scheme proposed by Hering [328] and
later verified by Hurvich and Jameson [362].

Further stages of the visual system employ one such solution known as the
opponent processing theory [328, 362]. It states that as proposed in the trichro-
matic theory, there are indeed three variables mediating color vision, but in this
case, instead of assigning unique color sensations to each of them, pairs of op-
ponent sensory qualities are assigned. These sensory qualities form pairs of
red-green and blue-yellow, which are responsible for color information, while a
black-white pair allows for luminance perception, illustrated in Figure 10.3. This
opponent nature of the visual system leads to sensations that are paired and mu-
tually exclusive, explaining both why color blindness removes pairs of colors as
well as why subjective experiences of reddish-green and yellowish-blue are not
possible.

An additional implication of opponent processing in the visual system is that
it reduces correlation for the input that it typically encounters. The LMS cone re-
sponses and in particular the L and M cones (approximately red and green) have a
large overlap, meaning that a particular signal is likely to excite both cone types.
It has been shown that an eigenvector decomposition of the LMS cone responses
leads to a more efficient representation, with less redundancy. In addition, this
representation matches the opponency in the visual system, suggesting that di-
mensionality reduction is its main purpose [88].

To further link the opponent processing stages of the HSV to regularities
in natural environments, Ruderman perfomed an interesting statistical experi-
ment [640]. A set of spectral images of natural scenes was captured and con-
verted to log LMS space, effectively simulating the photoreceptor responses
to the same scenes. The transformed images were then subjected to Principal
Components Analysis (PCA), which was applied on the color data. Each im-
age pixel in this analysis was treated as a point in a 3D color space (log LMS)
while spatial information was ignored. The results were striking: finding that the
eigenvectors resulting from PCA closely resemble the opponency in the visual
system.
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Figure 10.4. Before processing image data with principal component analysis,
images are reshaped such that each channel is now a single vector.

The process followed for this experiment can be summarized as follows:

1. The input spectral images are converted to the LMS cone space.

2. A square patch of 128� 128 pixels is selected from the center of each of
the images.

3. Images are logarithmically compressed to ensure that values are more sym-
metrically spread within their coordinate system.

4. Values in each of the patches are centered around their mean. This operation
is applied on each channel separately and it simulates a simplified von Kries
adaptation step [804].

L = logL −< logL > (10.3a)
M = logM −< logM > (10.3b)
S = logS −< logS > (10.3c)

5. Each of the three channels of each image patch is reshaped to a single col-
umn vector. These vectors are concatenated into a three-column matrix,
containing 16,384 LMS triples for each image. This process is repeated for
all images in an ensemble, and all subsequent matrices are appended to the
end of the initial matrix. See Figure 10.4 for an illustration.

6. Finally, principal component analysis (PCA) is performed on the resulting
matrix, rotating the axes so that they are maximally decorrelated, producing
a set of three components (eigenvectors) sorted according to the decreasing
order of their respective eigenvalues. The mathematical details of that pro-
cess are given in Section 7.1.
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Figure 10.5. The top-left image is decomposed into the l channel of the lαβ color
space, shown in the top-right image, as well as l + α and l + β channels in the
bottom-left and bottom-right images. (Seamills, UK, 2009)

By starting in LMS cone space, the rotation yields a new color space, which
surprisingly corresponds closely to the color opponency found in further stages of
the visual system. Color opponent spaces are characterized by a single achro-
matic channel, typically encoding luminance or lightness, and two chromatic
axes, which can be thought of as spanning red-green and yellow-blue (although
the axes do not precisely correspond to these perceptual hues). The chromatic
axes can have positive and negative values; a positive value can, for instance, de-
note the degree of redness, whereas a negative value in the same channel would
denote the degree of greenness. A consequence of color opponency is that we
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are not able to simultaneously perceive an object to have green and red hues.
Although we may describe objects as reddish-blue or yellowish-green, we never
describe them as reddish-green. The same holds for yellow and blue.

The color opponency of the lαβ space is demonstrated in Figure 10.5, where
the image is decomposed into its separate channels. The image representing the
α channel has the β channel reset to zero and vice versa. We have retained the
luminance variation here for the purpose of visualization. The image showing the
luminance channel only was created by setting both the α and β channels to zero.

The conversion from LMS to the aforementioned decorrelated opponent color
space lαβ is given by:

L
α

β

=
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0 0
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while the inverse transform is given by:
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Returning to Figure 10.2, it is readily visible that such a transform is quite
successful at reducing correlation in the color data. The bottom row shows plots
of corresponding pixel values for all pairs of channels in the lαβ color space,
resulting in point clouds that are much less diagonal compared with their LMS
counterparts, shown in the top row. Values in one channel no longer predict the
behavior of the other two. In addition, the transform to lαβ not only decorre-
lates data, but it effectively makes it independent [640]. These properties have
an important implication in imaging: each channel of an image can now be pro-
cessed separately without affecting the others. One particular application of this
observation is discussed in the following section.

It is worth noting here that lαβ is not the only color space that exhibits such
statistical properties. Although the lαβ space was explicitly constructed through
statistical analysis and has strong links with the opponent processing steps in
the visual system, other color spaces that are often used in imaging applications
have similar properties. For instance, both CIELab and IPT color spaces have
a nonlinear compression (albeit not logarithmic), and both encode color data in
luminance channel and two opponent channels [190, 610]. The opponency and
decorrelation properties of these and several other color spaces will be discussed
in Section 10.5.
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Source

Target Transferred result

Figure 10.6. A color transfer example. Here the green colors of the target image
(bottom left) are transferred to the source autumn scene (top left) to obtain the
result on the right. (Westonbirt Arboretum, Bristol, 2009)

10.4 Color Transfer
Images can convey information not only through the depicted objects but also
through the particular mood, color scheme, and composition of the scene. Artists
can manipulate the color palette manually to change the appearance of an image
and achieve specific effects but that can be a time-consuming process, requiring
advanced image manipulation skills. An alternative solution for editing a given
image is to find another image with the desired look and transfer properties from
that image to our original one. If the property being transferred is color, this
process is known as color transfer.

This of course is a non-obvious problem: the color in an image could be
taken to mean anything from the overall appearance or color palette (warm or
cool colors, dark or light mood, and so on) to the full color distribution in a chosen
color space. Matters are further complicated since for any chosen definition for
describing color within an image, an almost infinite number of ways to transfer it
to another exist. Let us consider the images in Figure 10.6, where the color palette
of the green landscape is transferred to an autumn foliage scene. The approach
taken here makes the whole image green overall but maintains a hint of red on
the leaves. Another possible interpretation would be to make the red leaves green
but preserve the yellow background and yet another would be to manipulate the
source such that it has exactly the same color distribution as the target.

The lack of a strict definition of what constitutes a successful transfer has
led to an expansive collection of techniques, each approaching the problem in a
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slightly different way and focusing on slightly different application areas. Many
of them though share a particular characteristic, which makes them interesting
for us in the context of color statistics. Specifically, many of the existing color
transfer techniques rely on the decorrelation afforded by opponent spaces such as
the lαβ space, discussed earlier, or CIELab to transfer properties between single
channels at a time, rather than having to consider the full 3D color distribution.
We will look at two examples of color transfer methods to demonstrate the flexi-
bility that this fortunate regularity of the color content of images allows.

10.4.1 Color Transfer through Simple Moments
One of the earliest color transfer techniques takes advantage of the decorrelation
property of lαβ and shifts and scales the pixel values of the source image to
match the mean and standard deviation from the target [607]. Each channel of
the image is processed separately in lαβ , as it allows the transfer to take place
independently in each channel, turning a potentially complex 3D problem into
three much simpler 1D problems.

Input images are assumed to be given in the sRGB space and are first con-
verted to lαβ . The colors of the source image can now be altered to approximate
those of the target. This is achieved by shifting and scaling the source distribution
such that it is aligned with that of the target. Figure 10.7 shows an example pair
of source and target images as well as their corresponding histograms before and
after transferring the colors between them.

To achieve this, the values of each channel of the source image are shifted to
a zero mean by subtracting the mean of the source from each pixel. They are then
scaled by the standard deviations of both images such that they acquire that of the
target image, and finally, they are shifted to the mean of the target by adding its
mean instead of the source mean that was originally subtracted:

l0 = ls�µs (10.6a)

l00 =
σt,l

σs,l
l0 (10.6b)

lo = l00+µt (10.6c)

Here, the subscripts s, t, and o correspond to the source, target, and output im-
ages and µ and σ are their respective means and standard deviations. Equations
(10.6a)–(10.6c) describe the distribution transfer between source and target for
the luminance channel only. This process effectively ensures that the distribu-
tions of the luminance values for the two images have the same first and second
moment. The same process is repeated for the two chromatic channels of the lαβ

space to complete the color transfer. The images can then be converted back to
their original display space.

Although this technique can be successful for a wide range of images, the
quality of the results largely depends on the composition of the source and target
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Source Target Result

L channel α channel

Source

Result

β channel

Target

Figure 10.7. An example pair of source and target images as well as their resulting
output after using the color transfer technique by Reinhard et al. [607] are shown
on the top row. The corresponding histograms are shown on the bottom row for
the three channels of the lαβ color space. (Left: Bryce Canyon, Utah, 2009; right:
Paris, France, 2008)

images. Swatches may be used to supplement this technique and allow more
control over color correspondences if the two images are too different. The user
can in this case select pairs of swatches from the source and target images to
indicate corresponding regions between them. The pixels in these swatches form
clusters in the lαβ space, allowing statistics to be computed separately for each of
the swatches. Source pixels are transformed according to the statistics of each pair
of swatches, leading to a number of possible renditions of the source image. To
construct the final image, these different renditions are blended by considering the
distance of each pixel’s color to the center of each cluster. Distances are divided
by the standard deviation of each cluster to account for different cluster sizes,
and pixels are blended using inversely proportional weights to the normalized
distances.

Despite the increased control that these swatches allow, in both the local and
global versions of this technique the transfer of colors between the two images
relies on first-order statistics, namely the mean and standard deviation of each
channel. Such statistics can provide useful information about overall tendencies
in a distribution but, as argued in Chapter 4, more information and ideally higher-
order analysis are necessary to capture more subtle variations in images.

An obvious next step is to use higher statistical moments in addition to the
mean and standard deviation to achieve a better result. For instance, the skew
and kurtosis of the distribution can be transferred to reshape the histogram of the
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Source Target Result

a
b
L

Figure 10.8. Histogram matching between two color images. (Westonbirt Arbore-
tum, Bristol, 2009)

source image to be closer to that of the target. Although such a process is con-
ceptually elegant, unfortunately it is not as effective in practice. The mean and
standard deviation of a distribution can easily be transferred analytically (Equa-
tions (10.6a), (10.6b), and (10.6c)), while higher moments such as the skew and
kurtosis require more complex solutions. Although a distribution can be uniquely
described by its moments, arbitrary moments cannot be changed on demand, thus
requiring optimization-based solutions. Even so, the improvements afforded by
transferring further moments in this way are very minor.

10.4.2 Color Transfer through Higher-Order Manipulation
In many cases a small set of statistical moments is not sufficient to adequately
describe subtleties of the color distribution of images. A much more faithful
representation can be achieved by considering the full distribution of values in
each channel. In Chapter 4, we showed how a histogram distribution can be fully
matched to another one. This process can be easily extended to a color image
by repeating the histogram matching process for each of the three channels to
achieve a result as shown in Figure 10.8.

This process ensures that the transformed image will have exactly the same
distribution as the selected target and therefore the same colors. Occasionally,
however, the resulting image may be too harsh as the transfer can amplify artifacts
that were previously invisible, indicating that higher-order properties of the image
may need to be matched or preserved to achieve a successful result. Based on this
observation, a wealth of color transfer methods have been developed, each relying
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Reference 

Source (linear)

Source (tonemapped)

Color transfer result

Figure 10.9. An example result obtained with the histogram scale-space approach
discussed here [587]. The input image (high dynamic range original—shown both
tonemapped and linearly normalized) is transformed to match the color palette of
the given reference. (Utah, USA, 2009)

on a different set of statistical properties of the images to transfer the color palette
between them without otherwise affecting the appearance of the image.

10.4.3 Histogram Features at Different Scales
Since a full histogram match is likely to push the image appearance too far, one
possibility is to only partially match the two histograms by taking advantage of
their local structure [587]. One recent solution achieves that by considering fea-
tures of the histograms in different scales. An example result from this method is
shown in Figure 10.9.

Consider, for instance, the image in Figure 10.10; a pyramid of increasingly
coarse scales can be constructed by filtering the original histogram with a Gaus-
sian kernel of increasing size. Similar to image scale-space filtering, coarser lev-
els preserve only large scale features of the histogram, which represent larger
segments of the image. On the other hand, finer scales contain more details but
each of the histogram features at those scales will correspond to smaller regions
in the image.

The color palette between the two images is transferred by reshaping the
source histogram so that it approaches that of the target. Rather than aim for an
accurate match, though, where every subtlety of the target is matched, the source
can be progressively transformed to the target by matching more and more scales,
starting from the coarsest. When all scales including the finest are matched, then
the result will be identical to the simpler histogram matching discussed earlier.
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Scale 1 (coarsest)
Scale 2
Scale 3
Scale 4 (finest)

Source image Scale 1 (coarsest) Scale 2 Scale 3 Scale 4 (finest)

Histograms for different scales

Figure 10.10. The histogram of the top-left image, shown at the bottom, is progres-
sively filtered to remove detail. The coarser features of the histogram correspond
to large coherent regions of the image with similar colors. When examining the
finer scales of the histogram, though, peaks in the histogram only contain a small
number of pixels and therefore correspond to small image segments. (Westonbirt
Arboretum, Bristol, 2009)

This leads to an interesting observation: such an approach is possible because
nearby pixels in images tend to be similar. This is a recurring property of natu-
ral scenes, which we have discussed in the context of simple luminance statistics,
edges, and higher-order properties throughout this book (e.g., see Chapters 5 or 8).
In this case, it means that by treating each feature of the filtered histograms sep-
arately, we are inherently treating the image as a collection of segments, without
ever having to explicitly segment it.

Although this approach is successful for many images, some transfers require
relatively flat areas to acquire much more extreme color transitions, which may
amplify noise or compression artifacts or simply change the appearance of the
scene in terms of contrast. As discussed in Chapter 5, edges are one of the
main streams of information within visual data, and consequently, in an appli-
cation such as color transfer it would be desired to preserve them. This, how-
ever, is not entirely straightforward as edge information is intricately linked to
the pixel values in the image and therefore to color as well. Whether edges are
recovered by adding local contrast back to the image after the transfer has taken
place [587, 588] or through an optimization scheme that aims to preserve the
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gradient distribution of the source image [807], such methods present a trade-
off between accurate matching of the color distribution and preservation of edge
content.

10.4.4 Color Transfer as a 3D Problem

Referring back to Section 10.2, we have seen how color spaces describe a three-
dimensional space. Pixels in an image are in that case given as a triplet, denot-
ing a point within that space. In all our discussion on color transfer so far, we
have focused only on techniques that manipulate each of the image channels in-
dependently. Although this description of color provides the obvious advantage
of simplifying a potentially complex 3D problem to a set of three 1D problems, it
cannot capture all subtleties in the color distribution of images.

To maintain local color information and interrelations, the 3D color distri-
bution of the two images needs to be treated as a whole; this is done so that
the source 3D distribution will be reshaped to match or approximate that of the
target. Unfortunately, translating processes, such as histogram matching or his-
togram reshaping, to more than one dimension is not straightforward and either
requires an optimization-based solution or a way to simplify the problem to fewer
dimensions.

In the latter case, a general approach that iteratively matches the two distri-
butions through 1D projections may be employed, proposed by Pitié et al. [572,
573]. Specifically, at each iteration step, the 3D distributions of the source and
target images are rotated using a random 3D rotation matrix and projected to the
axes of their new coordinate system. Each 1D projection of the source is then
matched to that of the target and the data is transformed back to its original coor-
dinate system. This process is repeated with different rotations until convergence.
An example result and the effect of an increasing number of iterations can be seen
in Figure 10.11.

Whether the color distribution is matched by manipulating each of the color
channels separately or by treating the image as a 3D color distribution, a few
important observations arise. Although all the techniques discussed have at a
high level the same overall goal, they employ widely different approaches to get
there, offering a unique view into color processing.

Another issue of note is the lack of consensus on the choice of color space
to be used for such processing. The simple moment transfer technique discussed
earlier [607] as well as many other color transfer techniques [281, 744, 812, 461,
808, 776, 474, 820, 807, 805] operate in Ruderman’s lαβ space [640], while the
histogram reshaping process uses CIELab [588].

On the other hand, the iterative projection of 1D marginals begins in RGB
and selects a random coordinate system in each iteration [573], effectively trans-
forming the image to a randomly selected color space at each step, while a similar
dimensionality reduction process has been demonstrated in the LCh space [534].
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Figure 10.11. The colors of the source image are progressively mapped to those
of the target by iteratively rotating the 3D color distributions of both images to a
randomly chosen coordinate system and matching the 1D marginal distributions
for each of the axes.

Other color spaces implicated in color transfer are YCbCr [430] and Yuv [454,
779], as well as color appearance models [514]. Finally, several authors suggest
to compute a dedicated color space for each transfer, based on PCA [419, 1, 418,
806, 2]. The following section will attempt to shed some light on the issue of
color space choice.

10.5 Color Space Statistics
Any RGB-like color space tends to be significantly correlated. This means that
a high value in, say, the red channel suggests a good probability of finding high
values in the green and blue channels for those pixels. In essence, this is a dif-
ferent way of saying that colors in natural scenes tend to be desaturated, or that
images on average tend towards gray. This feature of natural images is explic-
itly exploited in photography, where the gray-world assumption is made to infer
the color of the illumination in a scene, which is discussed in more detail in the
following section.

The high correlation of RGB-like color spaces also means that for imaging
applications such as color transfer, as we saw in the previous section, a differ-
ent color space may be necessary to ensure that changes in one channel do not
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Manmade Day (MD) Manmade Indoors (MI) Manmade Night (MN) Natural Day (ND)

Figure 10.12. Sample images from the four image categories used for the color
space analysis and the computation of PCA-based spaces.

inadvertently affect the other channels and therefore lead to unpredictable results.
A decorrelated space, such as the lαβ space proposed by Ruderman et al. [640]
allows images to be transformed to a coordinate space where values in one of their
channels predict those in other channels as little as possible. Decorrelated color
spaces are frequently used in image editing applications for this precise reason.

This is of course a desirable property as it reduces the dimensionality of the
problem at hand as we have seen, but such spaces have been found to not fully
decorrelate all images. The lαβ space, for instance, is designed around the prin-
cipal axes arising from the decorrelation of natural scenes. Consequently, con-
verting an image to that space is equivalent to rotating its data so that it is aligned
to the axes defining the lαβ space. If the content of this image is significantly
different to the types of images used for the initial derivation of that space, these
axes may or may not correctly describe most of the variation in the new data. It
is not clear, however, whether different scene categories or images possessing a
higher dynamic range would lead to a different color space or how such differ-
ences might impact applications such as color transfer.

To answer this question, a study was done comparing various color spaces in
terms of their decorrelation properties [611]. Images from different scene cate-
gories were analyzed to assess whether color spaces such as lαβ are in fact better
at decorrelating particular scene types. Each of the image categories was also
used to construct a custom PCA-based space following a similar process to that
the lαβ space discussed in Section 10.1, based on the hypothesis that a color
space constructed through decorrelation of a particular type of image would be
better at reducing correlation when processing similar images. The study focused
on both manmade and natural imagery, specifically categorizing images as day-
time manmade scenes denoted by MD, indoors manmade scenes (MI), nighttime
manmade scenes (MN), and daytime natural scenes (ND). Figure 10.12 shows a
few sample images from each of the categories used.

To compare both existing and the per-scene type color spaces, correlation
measures were employed as well as a short experiment where pairs of images
were processed using a linear color transfer method [607] and the color trans-
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Figure 10.13. Since different color spaces are defined along different ranges, nor-
malizing along a single axis is unlikely to correctly allow for comparisons between
the different spaces.

fer result was ranked as successful or not. In addition to lαβ and the PCA-based
spaces discussed, the following color spaces were also considered: CIELab (using
both illuminants D65 and E), Y xy, Yuv, Yu0v0, XYZ, RGB, and HSV [610].

10.5.1 Color Space Normalization

Different color spaces are defined for different ranges. For instance, an RGB im-
age may be defined between 0 and 1, while CIELab is not explicitly constrained.
To ensure that results from different color spaces are comparable in such an anal-
ysis, data needs to be normalized. This, however, is not straightforward since the
meaning of different channels, as well as the relations between them, vary with
color space. Consequently, simply normalizing along each of the channels will
lead to incorrect results, as illustrated in Figure 10.13.

To resolve this issue, data can be normalized according to the volume of each
color space, which is computed according to the range that each channel or axis
is expected to acquire. To approximate the volume of each of the color spaces,
the maximum and minimum achievable values for each channel are determined
by using input RGB values constrained between 0 and 1. The computed volumes
used for the normalization step are shown in Table 10.1.

Color Space Volume Color Space Volume
lαβ 6.4480 Yu0v0 0.1318
CIELab (E) 6.0447e+03 HSV 0.8333
CIELab (D65) 8.8841e+03 XY Z 1.0351
Y xy 0.2646 RGB 1.0000
Yuv 0.0879

Table 10.1. The volumes of different color spaces, approximated by a cuboid.
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10.5.2 Correlation Analysis
In Chapter 4, we saw how statistical moments can be computed for distributions.
The second moment corresponds to the variance of a dataset I of size N and is
computed as follows:

σ
2(I) =

N

∑
p=1

(I(p)� c)2

N�1
(10.7)

where c is a constant around which the data is considered. Typically this can be
taken as 0, if statistics of the data are computed with respect to the origin, or more
frequently, c is set to the mean of the data µ .

The variance of a dataset provides information about the spread of the values
within that set. To measure how more than one set varies with respect to each
other, a more general formulation of this measure is necessary, known as covari-
ance.

Cov(I,J) =
N

∑
p=1

(I(p)�µI)(J(p)�µJ)

N�1
(10.8)

For each color space, covariance matrices were computed corresponding to
the four datasets shown in Figure 10.12. Values along the diagonals of the covari-
ance matrices contain the variance within each channel, while elements off the
diagonal capture covariance values for pairs of channels:

Covs =

 Cov(s1,s1) Cov(s1,s2) Cov(s1,s3)
Cov(s2,s1) Cov(s2,s2) Cov(s2,s3)
Cov(s3,s1) Cov(s3,s2) Cov(s3,s3)

 (10.9)

where s = flαβ , CIELab (E), CIELab (D65), Yuv, Yu’v’, HSV, XYZ, RGBg
and si refers to the ith channel of that space, with i = f1,2,3g. The covariance
values for each channel pair were then averaged to a single number per image set,
representing the ability of each color space to decorrelate different classes. These
results are summarized in Figure 10.14.

As would be expected, opponent spaces lead to the lowest covariance values,
while the RGB and XYZ spaces are much more correlated. Interestingly, the
choice of white point used for the conversion to the CIELab color space was found
to drastically matter when assessing color spaces with the covariance measure.
When the achromatic illuminant E was used, CIELab resulted to much lower
covariance values compared to using the bluish D65 illuminant.

In addition to standard color spaces, ensemble-specific spaces similar to lαβ

were constructed following the procedure detailed in Section 10.3 for each of the
image ensembles shown in Figure 10.12. Since these color spaces are computed
from specific datasets representing different images categories, one would expect
that they would lead to minimal covariance for the categories they were derived
from.
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Figure 10.14. Average covariance values for the color spaces tested for each
image ensemble. Higher values suggest higher correlation and therefore indicate
spaces less suitable for edits where each channel is processed separately.
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Figure 10.15. Average covariance for the four PCA-based color spaces computed
from different image ensembles. Images from each of the ensembles were trans-
formed with all spaces to assess whether better decorrelation can be achieved
when the color space is computed from similar images.

Figure 10.15 summarizes the results for the covariance analysis of these
ensemble-specific spaces. Although all four spaces lead to lower covariance over-
all compared to standard color spaces, only for the “natural day” (ND) and “man-
made day” (MD) sets does the corresponding color space lead to better perfor-
mance. On the other hand, the PCA-based space constructed from the “manmade
night” (MN) set led to the worst performance overall. One hypothesis explaining
these results is that more varied image sets offer a better sampling of the color
gamut, therefore leading to a more descriptive decomposition.
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Figure 10.16. Percentage of successful color transfers for each color space for
each of the ensembles. E and D65 refer to CIELab with illuminants E and D65,
respectively.
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Figure 10.17. Percentage of successful color transfers for each ensemble-specific
color space for each of the ensembles. Results are also shown for per-image
PCA, carried out in the color space derived from the source image (PCA1) or the
reference image (PCA2).

To confirm whether the findings from the statistical analysis correspond with
viewers’ preferences, a short study was also conducted. Pairs of images from
the four ensembles were transformed to one of the color spaces discussed and
then used as input for the color transfer algorithm presented in Section 10.4.1. In
addition to the standard and PCA-based color spaces discussed in the previous
section, PCA spaces were this time also computed from each of the individual
input images. Participants were then shown the pair of input images as well as the
color transferred result and asked to classify it as successful or not.

Interestingly, the color space rankings from this study, shown in Figures 10.16
and 10.17 for the standard and PCA spaces, respectively, were very similar to the
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results of the previous analysis. The CIELab space led to the most successful
color transfer, followed by the PCA-based space computed from the reference
image for each transfer. Unlike the covariance analysis results, though, the choice
of white point for the color space conversion seemed to matter less.

In summary, although one may argue that decorrelating individual images
would be the most fine-grained approach to color transfer, it was found that sim-
ilarly excellent results can be obtained by simply choosing the CIELab space.
Thus, it does not appear to be necessary to expend computational resources to
deriving either category-based color spaces or image-specific color spaces for the
purpose of color transfer.

10.6 Color Constancy and White Balancing
The color of the light reaching our retinas is determined by the spectral distribu-
tion of the illumination in the scene and the reflectance properties of the surfaces
it encounters in its path to our eyes. An intriguing property of our visual system
is its ability to correctly assess the color of objects under varying illumination.
A banana will be perceived as yellow whether it is seen under the orange cast
of tungsten light or outside in sunlight, even though the precise properties of the
light reflected from its surface will be very different in these two situations. In
other words, the visual system is able to separate the effect of surface reflectance
and the prevalent illumination in a scene, effectively discounting the color of the
light source when assessing the color of an object.

This property is known as color constancy and was first experimentally demon-
strated by Edwin H. Land in his “Color Mondrian” experiment [435, 238]. A
Mondrian-like display was constructed out of colored pieces of paper, which were
illuminated by three narrow-spectrum red, green, and blue projectors that could
be individually controlled, as illustrated in Figure 10.18. In a typical experiment,
the tristimulus values of light reflected from a patch of a particular color, such
as the green patch (a) in the figure, were first measured and the projected light
was then adjusted so that a different patch, such as the orange patch (b), reflected
the same tristimulus values. Although in both cases the tristimulus values of the
light reaching the retina were identical, viewers would consistently see the green
patch as green and the orange one as orange when viewed as part of the complete
display.

Unlike the visual system, though, cameras simply capture light exactly as it
reaches the sensor. If a scene has a color cast due to the illumination, this cast
will remain visible and noticeable on the image since the conditions where the
image was captured are unlikely to match the display and viewing environment
where it is then shown. Consequently, the ability to discount or remove the preva-
lent illumination from images would be a very desirable one for cameras. This
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a

b

Figure 10.18. An illustration of the experimental setup used to demonstrate color
constancy.

is typically implemented in a process known as white-balancing, which aims to
simulate the color constancy properties of the visual system [191, 268, 238].

In color spaces such as the aforementioned LMS space, equal values of the
three components denote achromatic colors. One way to achieve such neutral
colors is to start with an equal energy spectrum, i.e., a spectral distribution which
has the same value Lo for each wavelength λ . This could happen if a scene was
illuminated by an equal-energy light source, a source that emitted the same energy
at all wavelengths. The colors that a camera will capture, then, from such a scene
can be attributed to the reflectance properties of the objects and surfaces in it.

In practice, a scene is illuminated by only one or at most a few light sources,
with an emission spectrum that is off-white. In natural scenes, for instance, the
main source of illumination is likely to be the sun, with evidence suggesting that
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a. b. c. d.

Figure 10.19. The white points shown in the bottom row were estimated for three
individual images, as well as for a collection of 128 images using the gray-world
assumption. Although when a large set of images is averaged, the result will be
approximately gray, this is not the case with individual images as the dominant
colors of the scene are likely to bias the estimation (images taken from the Zurich
Natural Images database; see Chapter 3 for more details).

this may even be encoded as a prior in human color constancy [165]. The re-
flectance properties in a scene, on the other hand, are much more variable, sug-
gesting that the local variations in color in an image are likely due to different
materials and reflectance properties. Despite this variation, a surprising finding
is that when a collection of reflectances are averaged, the result ends up being a
distribution function that is close to gray. This is known as the gray-world as-
sumption [87].

The implication of this finding is that if we were to average the colors of all
pixels in an image, and the gray-world assumption holds, the average tristimulus
value (L̄,M̄, S̄) would be a good indicator of the color of the light source. Un-
fortunately, the gray-world assumption does not always hold. Figure 10.19a–c
shows the result of averaging pixel values over single natural image, while 10.19d
shows the average pixel value over a hundred natural images. As can be seen, in
single images this assumption may or may not hold. In particular, if the surface
colors in the scene are biased towards some specific saturated color, the average
reflectance will not tend toward gray, and therefore extracted information about
the illumination will likely also be biased.

The gray-world assumption is often used to aid white-balancing in imaging
applications. After all, if we know the color of the illuminant, then we can correct
all pixels by simply dividing all pixels by the average image value. Moreover,
if we know that the display has a different white point, say (Ld,w,Md,w,Sd,w),
white-balancing can be implemented as follows:

Lwb = L
Ld,w

L̄
(10.10a)

Mwb = M
Md,w

M̄
(10.10b)

Swb = S
Sd,w

S̄
(10.10c)
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The gray-world assumption is a statistical argument that is necessary to perform
white-balancing on images in the absence of further information about the illumi-
nant, given that white-balancing is by itself an underconstrained problem [246].
Note that this procedure is best applied in a perceptual color space, such as LMS,
thereby mimicking chromatic adaptation processes that occur in the human visual
system [610]. If an image is given in a different color space, most likely the RGB
space, the image should first be converted to LMS.

The approximation of the illuminant can be improved by excluding the most
saturated pixels from the estimation [4]. Alternatively, the image can be subjected
to further statistical analysis to determine if the color distribution is due to colored
surfaces or a colored light source [251]. Here the image is first converted to the
CIELab color opponent space. Ignoring the lightest and darkest pixels, since they
do not contribute to a reliable estimate, the remaining pixels are used to computed
a two-dimensional histogram F(a,b) on the two chromatic channels a and b. In
each channel, the chromatic distributions are modeled with:

µk =
∫

k
k F(a,b)dk (10.11)

σ
2
k =

∫
k
(µk� k) F(a,b)dk (10.12)

where k = a,b. These are the mean and variances of the histogram projections
onto the a and b axes. In CIELab neutral colors lie around the (a,b) = (0,0)
point. To assess how far the histogram lies from this point, the distance D can be
computed:

D = µ�σ (10.13)

where µ =
√

µ2
a +µ2

b and σ =
√

σ2
a +σ2

b .
The measure Dσ = D/σ can be used to assess the strength of the cast. If the

spread of the histogram is small and lies far away from the origin, the image is
likely to be dominated by strong reflectances rather than illumination.

10.6.1 Computational Color Constancy as the Minkowski
Norm

It was found that while gray-world algorithms work well on some images, alter-
nate solutions, such as the white-patch algorithm [435], perform better on texture-
rich images. The white-patch algorithm assumes that the lightest pixels in an
image depict a surface with neutral reflectance, so that its color represents the
illuminant.

Both the gray-world and white-patch algorithms are special instances of the
Minkowski norm [219]:

Lp =

(∫
f p(x)dx∫

dx

)1/p

= ke (10.14)
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Algorithm Symbol Description

Gray-World e0,1,0 The average reflectance in a scene is assumed to be
achromatic; therefore, any shifts from an achromatic
average are due to illumination [87].

White-Patch (Max-RGB) e0,∞,0 The brightest patch in the scene is assumed to belong
to a surface with neutral reflectance and therefore the
color of that patch represents the color of the illumina-
tion.

Shades of Gray e0,p,0 A more general formulation of the gray-world and
max-RGB algorithms that assumes that the pth norm of
the scene is achromatic. Shown to perform best when
p = 6 [219].

General Gray-World e0,p,σ A more general version of the above, where a local re-
gion of scale σ is considered, which can be achieved
by first filtering the image.

Gray-Edge e1,p,σ The average of the derivative of the image is assumed
to be achromatic [789].

Max-Edge e1,∞,σ The maximum difference of reflectances in the scene is
assumed to be achromatic.

Second-Order Gray-Edge e2,p,σ The average of higher-order derivatives (second in this
case) is assumed to be achromatic [790].

Table 10.2. Different formulations based on the Minkowski norm can be used to
obtain different color constancy algorithms (adapted from [790]).

where f (x) denotes the image at pixel x. The average of the image is computed
for p= 1, thereby implementing the gray-world assumption. The maximum value
of the image is computed by substituting p = ∞, which represents the white-patch
algorithm, also known as Max-RGB.

A further generalized assumption can be made about images, which is that
the average difference between two pixels evaluates to gray. This is known as the
gray-edge assumption [789, 790] and can be formulated as follows [266]:(∫ ∣∣∣∣∂ n f σ (x)

∂xn

∣∣∣∣p dx
)1/p

= ken,p,σ (10.15)

Here, n is the order of the derivative, p is the Minkowski-norm, and f σ (x) =
f 
Gσ is the Gaussian-blurred image where the size of the filter kernel is given by
σ . With this formulation several color constancy algorithms can be constructed,
shown in Table 10.2. Examples of some of these methods can be seen in Fig-
ure 10.20.

Although different algorithms rely on different and increasingly complex
statistics to correctly white-balance images, no single method has yet emerged
as a universally effective solution [268]. This suggests that a single aspect of
images may not be sufficient to determine the color of the illumination, especially
in ambiguous scenarios. An overall white scene illuminated with a blue light
may look substantially similar to a blue scene illuminated with a white light. Yet
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a. Original image

c. Gray-world d. Max-RGB

e. Shades of gray f. Gray-edge

b. Manually white-balanced

Figure 10.20. Different color constancy algorithms based on the Minkowski norm
were used to white-balance the image shown at the top left (a). The algorithms
used are given in Table 10.2. The small rectangle below each image shows the
white point estimated by each algorithm and the manually white-balanced image
is given in (b). (Santorini, Greece, 2009)

most color constancy algorithms will find it hard to distinguish between them.
On the other hand, our visual system is capable of such a distinction in most
cases, perhaps by relying on a variety of higher-order statistical information in
scenes [272, 271, 280].
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10.6.2 White-Balance Algorithm Selection

Having noted that many color constancy and white-balancing algorithms exist,
with none of them universally applicable, Gijsenij and Gevers use natural image
statistics to classify an image, and then they use this classification to select the
most appropriate white-balancing algorithm for the image at hand [266, 267]. In
particular, they use the finding that the distribution of edge responses in an image
can be modeled by means of a Weibull distribution [260]:

f (x) =
γ

β

(
x
β

)γ�1

exp
(

x
β

)γ

(10.16)

The parameters β and γ have meaning in this context. The contrast of an image
(or image ensemble) is given by β , whereas γ is an indicator of grain size (i.e.,
the peakedness of the distribution). This means that higher values for β represent
images with more contrast. Higher values for γ indicate finer textures.

Fitting a Weibull distribution involves computing a Gaussian derivative filter
in both x and y directions. This results in the (βx,βy,γx,γy) set of parameters
for each color channel. The Gaussian derivative filter can be first-, second-, or
third-order. However, it was found that the order of the chosen filter is relatively
unimportant: high correlations exist between the fitted parameters [260].

It is now possible to fit Weibull parameters to the derivatives of a large num-
ber of images and correlate their values with the white-balancing algorithm that
performs best for each image. The parameter space tends to form clusters where a
specific algorithm tends to produce the most accurate result. This means that the
Weibull distribution can be used to select the most appropriate white-balancing
algorithm for each image individually [266, 267].

10.7 Summary
In this chapter, we looked at some of the regularities of color information in im-
ages and discussed a number of imaging applications that rely on them. The
human visual system has special adaptations allowing it to take advantage of the
color distribution in nature. One important such example is color opponency (Sec-
tion 10.3). The visual system re-encodes information from the photoreceptors into
three opponent channels, which effectively reduce redundancy. The same princi-
ple has been applied to images, leading to a number of color opponent spaces that
rotate image data such that correlation between the three channels is minimized.

A consequence of the decorrelation abilities of such color spaces is that each
channel can be processed separately without affecting the other two. One imag-
ing application that relies on this particular property of color opponent spaces is
color transfer, which was discussed in Section 10.4. Given a pair of source and
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reference images, color transfer methods aim to re-color the source image using
the color palette or distribution of the reference.

In Section 10.5, we described a set of experiments for guiding the selection
of a particular color space for color transfer as well as other image editing ap-
plications. Several standard color spaces were compared by means of a correla-
tion analysis as well as a simple study. In addition, custom spaces were created
through principal component analysis of large sets of images of the same category
or even single images, finding that in most cases, the CIELab color space offers
good decorrelation of color information in images.

Another important mechanism of the HVS that relies on color regularities of
natural images is color constancy, which allows us to assess the colors of objects
despite changing illumination. In the case of images, algorithms that are func-
tionally similar to the color constancy of the visual system can be used to remove
color shifts due to illumination. This process is then known as white-balancing.
In Section 10.6 we discussed a number of such methods as well as a general for-
mulation for many of them, which is based on the Minkowski norm. Finally, we
showed how image statistics can guide the selection of white-balancing algorithm,
increasing the likelihood of a correct white-point estimation.
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Chapter 11

Depth Statistics

The natural world has three spatial dimensions, and we need to percieve all
three to function within it. Although the images formed on our retinas are two-
dimensional spatial representations of the world, we employ a variety of cues in
order to determine the geometry and depth of the environment around us [343].
Some of these cues, such as binocular disparity or motion parallax, require us
to be able to move and perceive the 3D environment directly. Yet our ability
to understand depth relationships in scenes is still present even when viewing a
photograph, indicating that at least a subset of the necessary information is still
present in the 2D representation.

Statistics of 2D images can lead to powerful tools for image analysis and un-
derstanding, as we have seen throughout this book. Strong links have been found
between many statistical regularities in scenes and human perception (see Chap-
ter 1 in particular). To form a 2D image, 3D information is projected onto a
plane—be it our retinas or a camera sensor, effectively flattening depth informa-
tion and removing empty space. In 3D environments, in contrast, most space is
empty, making the information within them very sparse. Consequently, it is rea-
sonable to expect that statistical analysis of the 3D information will give rise to
even stronger regularities describing the structure within scenes [584, 713, 773].

To study 3D scenes, the first step is to capture a representation of depth infor-
mation within them. Typically, range scanners are used for this task, as they mea-
sure depth for each point in the scene. Figure 11.1 shows an example range image
for a natural scene taken from the Brown Range Image Database [350, 447], vi-
sualized with a heat map (see Section 3.1.5 for a more detailed discussion on
range and depth capture). Once range data is captured, it can be analyzed much
in the same way as intensity images. By analyzing depth rather than intensity, the
statistical properties of scene structures may be determined.

One of the earlier such studies analyzed images from the Brown Range Image
Database using a series of simple statistical tools, including gradient and wavelet
analysis [350]. Although many of the findings were similar to previously reported
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8000 m0 m

Intensity data

Range data

Figure 11.1. An example image from the Brown Range Image Database [350,
447]. The top image shows intensity data for the scene while the bottom image
shows depth, here visualized with a heat map. Note that for both intensity and
depth images, black pixels indicate areas where there is no information, such as
sky areas or highly re�ective surfaces.

statistics from analyses of 2D image collections (e.g., [352]), some interesting
features were observed.

Gradient analysis of range images suggested that the structure of scenes as
captured by such data is even sparser than would be obtained with 2D pho-
tographs. Figure 11.2 shows the logarithmic gradient distribution of the images
from the Brown database for both the range and the intensity data. The log gra-
dient distributions shown have a kurtosis of 5.1 for the vertical and 5.4 for the
horizontal gradients, while the intensity distributions lead to kurtosis values of
3.2 and 3.3, respectively.

More striking results were found in the analysis of wavelet coefficients and
bivariate statistics computed from the range data, further supporting the hypoth-
esis that natural scenes are sparse and scale-invariant. Bivariate statistics can be
used to study the correlations between pairs of pixels at a given distance [350]:

K (a,b j x) = PrfI(x1) = a, I(x2) = b j jjx1� x2jj= rg , (11.1)

where x1 and x2 represent two different positions within the image I, which are at
a distance r apart. Since images consist of mostly flat regions with discontinuities
between them, it can be expected that nearby pixels are more likely to be corre-
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Figure 11.2. Log gradient distributions for the range (left) and corresponding in-
tensity data (right) for images in the Brown Range Image Database. The increased
kurtosis in the range distributions suggests that depth information is sparser than
2D intensities of the same scenes.

lated. In addition to the qualitative differences between the two representations,
the bivariate distributions of the range data proved to be a better fit for a model
formalizing the sparseness and scale invariance properties of natural scenes. This
model will be discussed in the following section.

11.1 The “Dead Leaves” Model
One of the main goals of natural image statistics is to derive models that can
robustly describe and predict images with natural characteristics. An important
property of natural images is that they are highly non-Gaussian. Many of the
statistical regularities of natural scenes are characterized by this recurring theme.
For instance, in Chapter 5 we saw that gradient distributions both of individual
scenes and image collections are highly kurtotic, with a sharp peak at zero. Sim-
ilar distributions arise if we analyze wavelet coefficients (Chapter 8) as well as
virtually any other transform we may apply to image data.

Given the non-Gaussian nature of images, what model can adequately de-
scribe natural scenes and their structure? A prevalent example is known as the
“dead leaves” model, which has been repreatedly explored in the context of nat-
ural image formation [638, 12, 447]. Based on this model, images can be seen
as consisting of sets of elementary objects (“leaves”), whose properties such as
position and scale are drawn from a Poisson distribution, but which are indepen-
dent of each other. Objects appear in layers and partially occlude each other, like
fallen leaves would.

Figure 11.3 shows two example images generated with the dead leaves model
using circular and square primitives and an image generated using a Gaussian
model. All images are approximately scale-invariant, but the Gaussian model
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Figure 11.3. The first two images were generated with the dead leaves
model [447] using circular and square primitives, while the third image was cre-
ated using a Gaussian model. All images were constructed such that they are
approximately scale invariant.

cannot generate the distinct structures that characterize natural scenes. Lee et
al. showed that by using different primitives as in the two examples shown, or
by varying additional parameters (e.g., using ellipsoid primitives with varying
widths) this model can generate images that replicate the statistics of specific
image classes, such as natural or manmade image categories [447].

In the case of bivariate statistics (see Equation (11.1)), the dead leaves model
can be expressed as:

K (a,b j x) = [1�λ (x)] q(a)q(b)+2λ (x) hx(a+b) gx(b�a) (11.2)

where q represents the marginal distribution for a pixel, and hx, gx are distributions
with predefined shapes. Specifically, hx is similar to q, while gx is concentrated
at 0. The model effectively uses the parameter λ to control the probability of
pixels a and b being part of the same object or belonging to different objects. If
the bivariate distributions considered are looking at nearby pixels, a high λ value
will be necessary, while larger separations are modeled with a lower value for this
parameter. Despite its simplicity, the model can predict and replicate the statistical
properties of natural scenes very effectively. More strikingly, when range data is
analyzed instead of intensities, an even better fit can be achieved.

11.2 Perception of Scene Geometry
In addition to providing useful insight into scene formation, statistics of range
data can be linked to the way we perceive scene geometry. Figure 11.4 shows
some visual illusions where properties such as length and orientation are often
misperceived. Scene statistics have been related to increasingly complex percep-
tual oddities and visual illusions such as these [344, 347, 346, 345, 348].

Although we live and function in a 3D world, we perceive the environment
around us through 2D projections formed on our retinas. The loss of a dimension
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a. Horizontal/vertical 
illusion

d. Müller-Lyer 
illusion

c. Zöllner illusionb. Tilt illusion

Figure 11.4. Several oddities can be observed concerning the perception of lines
of different orientations and configurations, many of which can be related to the
statistics of 3D scenes. Some example illusions illustrating these mismatches be-
tween perception and actual scene configuration are shown here. (a) Horizon-
tal/vertical illusion: both lines are the same length but typically the vertical line is
perceived as longer. (b) Tilt illusion: the vertical line may appear to be slightly
tilted counterclockwise. (c) Zöllner illusion: the vertical lines are parallel but ap-
pear tilted. (d) Müller-Lyer illusion: both horizontal lines are the same length but
appear longer or shorted depending on the orientation of the arrowheads.

inevitably poses many ambiguitites that our visual system needs to resolve. How-
ever, in several cases, some aspects of the scene (such as distances or orientations)
may be overestimated or underestimated. An interesting theory, which has gained
growing support in recent years, explains these mismatches between real scene
properties and their perceived counterparts by hypothesizing that we rely on sta-
tistical priors that relate the appearance of scenes in 2D projections with real 3D
measurements [409, 601, 592]. A given 3D scene can lead to an infinite num-
ber of different 2D projections, all of which are mathematically valid. However,
some are statistically more likely to occur in natural scenes than others, leading to
a probability distribution for different aspects of scenes, which in turn may induce
perceptual biases.

11.2.1 Length Perception

One example is the perception of length and its relation to orientation: if the
orientation of a stimulus in a scene is changed, so is its perceived length (see
Figure 11.4a). Thus, vertical distances or lengths appear longer than horizontal,
even if they are identical, with the maximum perceived length occuring at 20 to
30 degrees from the vertical axis [577, 132, 655]. This relation is shown in blue
in Figure 11.5.

Howe et al. showed that the relation between lengths in 2D images and corre-
sponding distances in 3D data correlates very strongly with perceived length [344].
To study this phenomenon, a set of range images was captured and 2D projections
of parts of the 3D scenes were formed. Pairs of points were then randomly se-
lected from within the 2D images and their corresponding distance in the range
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Line orientation (degrees)
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Figure 11.5. The blue line shows the relation between the perceived length of
lines of the same actual length in images and their orientation. Observers gener-
ally perceive vertical lines as longer, with the maximum perceived length at 20 to
30 degrees from the vertical axis. The red line shows the statistical relationship
uncovered by Howe et al. [344] between orientation of edges and the ratio of their
length in 2D images versus their actual 3D distance. (Figure adapted from [344].)

scenes was measured. These measurements were used to compute a ratio λ be-
tween the projected length l and the real 3D distance. Figure 11.5 shows in green
the relation between λ and the orientation of the segments, which very closely
approximates the perceptual relation (shown in blue).

Other relations between real scene properties and 2D projections have also
been studied, further supporting the hypothesis that the visual system may in-
ternally employ probability distributions of scene properties to make judgments
about them [347, 346, 345, 348, 89]. Many visual illusions indicate that intersect-
ing lines at different orientations pose a challenge to our visual system [622].

11.2.2 Orientation and Angle Perception

It has long been known that human observers tend to misjudge angles in im-
ages [326, 328]. Specifically, acute angles are overestimated while obtuse angles
are underestimated [540]. The magnitude of misperception for different angles is
shown in Figure 11.6.

The tilt illusion shown in Figure 11.4b is one of the simplest line configura-
tions that can cause orientation misperception consistent with these angle mis-
matches. In such a configuration, one of the lines (in this case, the vertical gray
line) is considered in the context of another (the slanted black line). Because the
acute angle subtended by the two lines is perceived as larger than it really is, the
vertical gray line in this case will likely appear to be slightly tilted away from the
obliquely oriented black line.
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Figure 11.6. Left: human observers tend to misperceive angles. Acute angles are
overestimated while obtuse ones are underestimated. The gray bars show psy-
chophysical measurements [540], while the green line shows the predicted mis-
perception, based on the statistical analysis in [346]. Right: the green line shows
the cumulative probability of different angles occuring in physical, 3D scenes. If
plotted in degrees rather than probability, the green line in the left plot is obtained.
(Figure adapted from [346].)

Similar to perceived length mismatches, evidence from studies of range im-
ages suggests that this perceptual oddity can also be explained by the statistics
of natural scenes [346]. To study the relation between angles in 2D projections
and their corresponding physical sources in the range data, intersecting line seg-
ments were detected in images using a template-based approach. Given that data,
the probability of different configurations of intersecting lines were computed, re-
vealing that 90-degree intersections were less likely than smaller or larger angles
subtended by the two lines. Figure 11.6 (right) shows the cumulative probability
of different angles as detected in this study.

Interestingly, the probability of different physical line configurations occur-
ring in the range data was shown to be a strong predictor of the perceptual mis-
judgments of angles in images [346]. At a high level, this can be understood as
having a prior expectation of what line configurations we are likely to encounter
in our visual environment in order to resolve the ambiguity of the 2D projections
on our retina. If this is true, then projected angles would be misperceived such
that they fit with the probability of a given physical angle causing them. As can
be seen in Figure 11.6 (left), statistical findings support this hypothesis.

Specific mismatches like the ones discussed so far are not the only perceptual
aspects that can be explained by the statistical structure in natural scenes. Sta-
tistical analyses of scenes have repeatedly provided evidence that a probabilistic
model may underlie many perceptual oddities, especially in the context of scene
geometry [810, 809, 345, 348, 472]. We refer the reader to [347] for a more
detailed discussion of these phenomena.



i
i

i
i

i
i

i
i

264 11. Depth Statistics

11.3 Correlations between 2D and
Range Statistics

The previous section looked at the links between statistical properties of range
data and the way we perceive scenes. The goal of these studies is ultimately to
understand human vision by determining what priors, if any, the visual system
may use to resolve ambiguities between 3D physical scenes and their 2D pro-
jections. A similar problem is faced by computer vision and image processing:
algorithms need to make decisions about the content of scenes based on 2D repre-
sentations of them. Since a given image may be generated by an infinite number
of different configurations, some priors or assumptions are necessary to guide
algorithms through this inherent ambiguity of 2D projections.

Throughout previous chapters, we have discussed several cases where 2D im-
age statistics over large image sets have been used as priors for particular algo-
rithms (e.g., see Sections 5.6 or 5.8). However, in these examples, priors serve
as a representation of the structure that we would expect to find in a natural 2D
image. On the other hand, the studies discussed in the earlier parts of this chapter
have focused on statistics of range data describing the 3D structure of scenes.

In contrast to either of these approaches, a small set of studies has focused
on correlations between 2D statistics and their 3D counterparts. Kalkan et al.
analyzed patches in 2D and 3D scenes in order to determine the physical causes
of different types of structure in images [384, 385]. Structures in 2D images can
be categorized according to the following classes (from [384]):

� Homogeneous patches,

� Edge-like structures,

� Corners, and

� Texture.

Figure 11.7 shows examples of these structures in an image.
Although it is possible to find patches that exemplify the characteristics of

these different categories, most image patches are likely to display mixed char-
acteristics and are therefore better described in a continuum, such as using the
intrinsic dimensionality scheme [210, 426, 209]. This scheme was first intro-
duced in image processing applications by Zetsche & Barth [817] and it classifies
image patches according to the shape of their Fourier spectrum. A patch is cate-
gorized as:

� i0D if the spectrum is concentrated at the origin, as would be the case for
homogeneous patches,

� i1D if the spectrum forms a line, which is likely to occur if the patch con-
tains an edge, and
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Figure 11.7. Examples of the four types of image structure identified by Kalkan et
al. [384].

� i2D if the spectrum is neither focused at the origin nor forming a line, which
would be the case with corner or junction structures.

As most patches will not perfectly fit within a single category, the intrinsic di-
mensionality of a patch can be defined using barycentric coordinates as a point in
a triangle, as illustrated in Figure 11.8. Please refer to Felsberg and Krüger [210]
for details regarding the computation of this space.

Similar to 2D images, patches of 3D geometry also exhibit different types of
structure. In some cases, such as for continuous surfaces, 3D structures can be di-
rectly correlated to corresponding 2D patches: a homogeneous patch in an image
is likely to be caused by a smooth, continuous surface. When discontinuities oc-
cur, however, correlations between different patches are less straightforward. For
instance, an edge in a 2D patch may be caused by a depth discontinuity where one
object partially occludes another. It may also be due to texture on an otherwise
continuous surface, or it may be caused by orientation discontinuities where two
surfaces meet.

To determine whether different types of 2D structure can predict the under-
lying physical geometry, Kalkan et al. analyzed scenes where both range and
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Figure 11.8. A visualization of the intrinsic dimensionality space for image
patches. The intrinsic dimensionality of a patch is given by barycentric coordi-
nates (ci0D – ci1D). The axes can be understood as a representation of con-
trast of a patch (x-axis) and orientation invariance on the y -axis. (Figure adapted
from [210, 384].)

a. Surface 
continuity

b. Regular gap 
discontinuity

c. Orientation 
discontinuity

d. Irregular gap 
discontinuity
d. Irregular gap 
discontinuity

Figure 11.9. Different types of patch structures in 3D geometry as identified by
Kalkan et al. [384].

chromatic data was captured [384]. Four types of geometry discontinuities were
identified:

Surface continuity, where the underlying surface is homogeneous and does not
change.

Regular gap discontinuity, occurring where a small set of surfaces meet or over-
lap.

Orientation discontinuity, occurring at corners where two surfaces with differ-
ent orientations meet.
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Irregular gap discontinuity, where the 3D structure cannot be described with a
small set of surfaces and more complex interactions take place, e.g., tree
branches or leaves.

These types of surface discontinuities are illustrated in Figure 11.9 using simple
surfaces.

Based on this classification and the intrinsic dimensionality scheme described
earlier, corresponding patches in the range and 2D images were selected and cate-
gorized, allowing for correlations between 2D and 3D structures to be computed.
As would be expected, continuous surface patches in 3D correlated strongly with
homogeneous regions, and orientation discontinuities appeared as edges in im-
ages. But some less obvious correlations were found with other structure classes
as well. Regular gap discontinuities were correlated with edges, and more so, with
corner structures. Additionally, irregular gap discontinuities appeared mostly cor-
related with texture structures in their 2D counterparts [384, 385].

11.4 Depth Reconstruction
In Section 4.5, the “Dark-Is-Deep” paradigm was discussed. Extracting depth
from two-dimensional projections of a scene is and has been an actively re-
searched problem [413, 589, 819]. Since this is an underconstrained problem,
statistical priors can be employed.

Human vision often relies on contextual information to resolve undercon-
strained problems such as recognizing objects or estimating the shape of an item.
By considering not only the object in question but also the environment in which
it is placed, contextual information can help constrain the space of possible solu-
tions [553, 158]. Recently, statistical priors have served to provide context in the
problem of both object recognition [749, 748, 752] and geometric reconstruction
of scenes from 2D images [750, 336, 337].

In an attempt to estimate surface orientation in scenes, Hoiem et al. rely on
statistical learning to divide the scene into oriented surfaces. Their method relies
on two observations. First, most surfaces in outdoors images can be categorized
as either sky, ground, or vertical surfaces perpendicular to the ground. Second,
the orientation of surfaces in 3D can be determined from the appearance of cor-
responding image regions in 2D [336, 337]. Although this approach does not
recover accurate depth for each pixel in the scene, it successfully creates a geo-
metric context from a single image as shown in Figure 11.10.

Alternatively, instead of attempting to understand the scene as a whole, depth
can be recovered from images by learning the relations between image struc-
tures and their corresponding depth. As we saw in Section 11.3, even when
considered in isolation, image patches have been found to correlate to particu-
lar types of depth discontinuities [385, 384]. Although these correlations are not
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a. Original image b. Geometric context reconstruction

Sky
Vertical surface
Ground

Figure 11.10. Using a statistical learning approach, Hoiem et al. recover the geo-
metric context of the scene, classifying surfaces in the image as sky, ground, and
oriented surfaces [337]. (Gloucester, UK, 2011)

a. Original image b. Views from reconstructed virtual environment

Figure 11.11. Using global and local features, Saxena et al. trained an MRF to re-
construct 3D geometry from a single image [652]. The image (a) can be mapped
on the reconstructed geometry to form a virtual environment (b) that can be navi-
gated interactively. (Schwäbisch Hall, Germany, 2012)

strong enough to be used directly for reconstructing depth from an image, prob-
abilistic learning models, such as the Markov random fields (MRF) discussed in
Chapter 9, have been used to achieve reasonably accurate reconstructions of 3D
scenes [750, 652, 597, 596].

Saxena and colleagues combined both contextual information and local priors
in a supervised learning approach for depth recovery from a single, monocular
image [649, 651, 650, 652]. Based on the observation that local features cannot
be accurately interpreted without context, they used a set of multiscale features
to train an MRF. Images were divided into patches, for which a depth value was
computed from ground-truth 3D scanned data. Patches were then analyzed using
two types of features that looked at absolute depth in each patch and relative depth
relations between two patches [649].

These examples demonstrate that even a single image contains sufficient in-
formation to recover a representation of the underlying scene geometry. Although
the methods discussed do not aim to compute accurate depth maps, they show that
well chosen statistical priors carry significant descriptive power.
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Chapter 12

Time and Motion

The world is ever changing. Heraclitus of Ephesus stated that “Everything flows,
nothing stands still.”1 He is also the source of the more well-known saying, “You
could not step twice into the same river; for other waters are ever flowing on
to you.”2 This constant flux and change of the world is an important source of
information.

Despite the impressive range of visual abilities in different animals, there are
no known motion-blind species [72]. It seems that, biologically, motion percep-
tion is one of the most basic visual abilities. This can be especially seen in those
species with limited spatial vision: they use motion to compensate for the lack of
retinal receptors. The Copilia quadrata, for instance, moves its spotlight retina in
a particular pattern, giving it one-dimensional vision. Similarly, the carnivorous
sea snail and the jumping spider move their eyes so that the one-dimensional strip
of visual receptive cells can sense two spatial dimensions.

Since many of the changes that occur in the world are not random, tempo-
ral flux is a potential source of information not just for organic visual systems,
but also both the synthesis and computational analysis of image sequences. This
chapter examines some temporal properties with a focus on motion. It also intro-
duces some scenarios where these findings have been applied in visual computing.

12.1 The Statistics of Time
All of the statistics in this book so far have been applied to one or more spatial
locations at a given point in time. Other than technical reasons, there is noth-
ing preventing us from performing the temporal equivalent: comparing different
points in time for a given spatial location. Although such purely temporal statis-
tics are certainly possible, it is much more common to examine both space and
time simultaneously.

1As quoted by Plato [379], p. 344.
2As quoted by Plato [379], pp. 344–345.
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We could compare just two points in time. Rather than subtracting two spa-
tially neighboring pixels to get a spatial gradient (see Chapter 5), it is possible to
subtract the intensity value at one pixel for two temporally neighboring images in
an image sequence. This would give a measurement of the temporal contrast mod-
ulation. Likewise, as was shown in Chapter 6, by varying the separation (either in
space or time) of the pairs of pixels, we could examine the statistical regularities
at different frequencies (spatial or temporal, respectively).

In perhaps the first spatiotemporal analysis of image sequences, a series of
works examined the spatiotemporal properties of natural image sequences that
were not photographs. Specifically, they examined multispectral satellite image
sequences (LANDSAT multispectral scanner sequences) and were able to detect
such regularities as seasonal changes [367, 470, 471, 98].

For video sequences of terrestrial-based natural scenes, the first spatiotempo-
ral analysis seems to be that of Watson and Ahumada [781], who suggested that
time be considered like space, and thus image sequences should be represented as
a spatiotemporal volume I(x,y, t), where I(x,y) is a given image and t is the time
at which that image was taken. They then proposed that the frequency transform
of these spatiotemporal volumes be examined.

Starting with an analysis from first principles, they showed that different forms
of motion within an image sequence should trace very specific paths within the
spatiotemporal volume. For example, a vertical line moving horizontally (a com-
mon stimulus in psychophysics) should trace a diagonal path through the spa-
tiotemporal volume. Interestingly, in the frequency domain, the path lies along
a straight line in fs, ft (where fs is the frequency domain transform of x and y
and ft is the frequency domain transform of t). The slope of this line is then
�1/r where r is the horizontal speed. Thus, higher spatial frequencies will have
higher temporal frequencies, and higher velocities will have shallower slopes.
Moreover, leftwards motion will show up in the odd quadrants while rightwards
motion will show up in the even quadrants in Fourier space. Physical analysis of
real images containing a vertical line moving horizontally confirmed the theoret-
ical analysis. Moreover, the critical sampling frequency for which discretely pre-
sented motion should be seen as continuous was shown to be a linear function of
velocity.

Finally, Watson and Ahumada also demonstrated that the spatiotemporal vol-
ume can be used to create motion detectors [781]. The idea is to use pairs of
simple cells with one of the cell’s responses being adjusted by a hyperbolic filter.
The response is modified once in the spatial domain and once in the temporal
domain. The signals of the two cells are then added. Note that the sensor only
detects direction of motion, not speed. The speed is obtained by examining the
temporal frequency response of the sensors. Eckert and colleagues examined the
spatiotemporal power spectra of 14 image sequences (256 � 256 pixels � 64
frames at 30 frames per second, with no scene cuts), and found that all spectra
were separable (with an index of separability of 0.98) [192]. The power spectra
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fit the form:

P(k, f ) =
(ab)/(4π3)

((a/2π)2 + k2)3/2 ((b/2π)2 + f 2)
(12.1)

with k representing the radial spatial frequency, f representing temporal fre-
quency, and a and b representing model parameters that define the spatiotemporal
bandwidth of the signal.

Similarly, Adelson and Bergen [6] suggested that the statistical regularities
of spatiotemporal sequences can be examined with any traditional volume anal-
ysis. They also created a motion detector (the energy detector) that is formally
identical to the elaborate Reichardt Detector (see Section 12.2.1). Many oth-
ers have since used spatiotemporal volumes to analyze or manipulate image se-
quences, examining slices, tunnels, and other features in the volumes (see, e.g.,
[535, 536, 537, 619]).

Dong and Atick examined the spatiotemporal properties of a set of 1,049 com-
mercial movie clips (each clip was 64 � 64 pixels large and 64 frames long, with
a temporal resolution of 24 frames per second) and 320 clips from homemade
movies (each at 64 � 64 � 256 with a temporal resolution of 60 frames per sec-
ond3 [174]). Their basic measure was the spatiotemporal correlation R(x,y, t)
between two pixels. In a first analysis, the correlation between two pixels at the
same point in space but at two different points in time (a separation of 33 ms) was
examined. Notice that this correlation is related to a pure temporal gradient. They
found that the value of the pixel at the two times was highly correlated (R = 0.9).
In other words, whatever the intensity was at that pixel at time 1, there was a high
probability it was the same 33 ms later. The greater the difference in intensity
between two frames was, the lower the probability for that change to happen. In
fact, a visual inspection of the probability distribution suggests that it is strikingly
similar to the spatial gradient distribution, once again revealing a high kurtosis
(see Chapter 5).

Dong and Atick then examined the two-point correlation matrix for many
spatial and temporal separations, as well as the results in the frequency domain
[174]. They found that for any given temporal frequency, the spatial frequency
power spectrum follows the usual power law:

1/ f a
s (12.2)

where fs is the spatial frequency. Interestingly, the value of the slope a varied as a
function of temporal frequency. At low temporal frequencies they found that the
exponent a tends to 2 while at higher temporal frequencies a approaches 1.

The temporal frequencies showed the same behavior: for a given spatial fre-
quency, the temporal frequency power spectrum also follows a power law:

1/ f b
t (12.3)

3They also tried to avoid scene cuts in the clips, as these do not represent natural motion.
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where ft is the temporal frequency. Interestingly, it was found that the exponent
b varies as function of spatial frequency. The slope b tends to 2 for low spatial-
frequencies and b approaches 1 for higher spatial frequencies. The temporal slope
can be thought of as being related to the persistance or purposefulness of motion
[60]. A slope of 0.5 represents pure Brownian motion: the changes from frame 1
to frame 2 are completely uncorrelated with the changes from frame 2 to frame
3. Slopes greater than 0.5 represent persistent motion: any change that occurred
from frame 1 to frame 2 is likely to occur again from frame 2 to frame 3. Expo-
nents smaller than 0.5 are anti-persistent (the opposite motion is likely to occur).

Critically, if the correlation is multiplied by a power of fs (such as f m+1
s ) and

plotted as a function of the ratio of temporal to spatial frequency ft/ fs, all the
curves line up [174]. Otherwise stated:

R( fs, ft)�
1

f (m+1)
s

F( ft/ fs) (12.4)

where m is a constant and F( ft/ fs) is a function of the ratio of spatial and tem-
poral frequencies. In both the theoretical analysis and the experimental estimates
(using real image sequences), the value of m is around 2.3, which is consistent
with the slope of the power spectra for static images. Theoretrically this function,
including the value of m, can be derived by assuming a specific distribution of
relative velocities from objects at many depths [174]. This result can be linked
to human vision, in that the receptive fields of neurons are often coupled in space
and time, thereby reflecting the real-world spatiotemporal statistics. As such, re-
ceptive fields should not be characterized by their spatial and temporal properties
separately but by the ratio of temporal to spatial frequency ft/ fs [175].

The properties of natural image sequences have been compared to the visual
systems of both humans as well as flies. In one study, the spatial properties of
117 photographs, using patches of 128 � 128 pixels, were analyzed, revealing
the typical 1/ f b

s power spectrum, with b = 2.13 [311]. Note that if an observer
were to move in a straight line through a static environment that was uniformly
cluttered with objects, the predicted power spectrum would be 1/ f for a range of
observer speeds [311], which is at the lower end of the range measured by Dong
and Atick [174]. The spatiotemporal statistics were used to derive the receptive
field structure of cells early in the fly’s visual system.

Alternatively, it is possible to capture digital recordings of what a single retinal
cell would see by having people wear a specially designed photosensor-based
recording system on their head as they walk around [313, 315]. Signals captured
in this manner were also found to conform to the 1/ f property of the temporal
power spectrum, confirming the predicted value for observers moving through a
static environment. In addition, by processing the captured signal, the responses
of various stages of the visual system were simulated. Figure 12.1 shows the
differences between direct measurements of this time sequence and (simulated)
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Figure 12.1. (a) Probability distributions of the light intensity (left) and the cor-
responding photoreptor responses for a time sequence simulating the input to a
single photoreceptor. (b) Average power spectrum for consecutive sections from
the same time sequence, following approximately a 1/f t behavior, with t = –1. In
the photoreceptor-processed spectrum, higher frequencies are filtered by the low-
pass behavior of the photoreceptors and as such deviate from 1/f. (Adapted from
[315].)

photoreceptor responses for the same data in terms of intensity distribution and
power spectrum [315].

Independent component analysis (see Chapter 7) can also be performed on
image sequences [314]. A database of 216 clips taken from television signals,
each 128 � 128 pixels large and 4,800 frames long (192 seconds at 25 frames
per second) was used for this purpose. The first 288 independent components
(ICs) for a set of patches, each 12 � 12 � 12 large, were calculated. The ICs
resemble edges (or bars) moving at a constant velocity, with the direction being
perpendicular to the orientation of the bar. Interestingly, this is very similar to the
spatiotemporal receptive fields of LGN neurons [162]. The related independent
component filters (ICFs; which can be used to filter an image sequence) also re-
semble other aspects of the human visual cortex (especially in their spatial proper-
ties). Interestingly, they found a significant correlation between spatial frequency
and velocity, with low spatial frequency ICFs being tuned to faster movement than
higher spatial-frequency ICFs and fast-moving ICFs mainly being encoded at low
spatial frequencies.
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12.2 Motion

One of the strongest statistical regularities that arise when we look at spatiotem-
poral changes is that of motion. Motion has been the subject of intense interdisci-
plinary study for at least the last 150 years. A large number of theories exist about
what kinds of motion there are, what causes motion, what properties motion has,
and how motion can be processed. For a recent overview on the perception of
motion and some of the related theoretical and philosophical issues, the reader is
directed to [95, 125, 270, 736].

Before we can examine the statistical regularities of motion, we first need to
extract it. That is, we need some form of spatiotemporal transform that takes
image sequences and extractes or emphasizes motion information. We have al-
ready mentioned the one from Watson and Ahumada [781] as well as the one from
Adelson and Bergen [6]. The very first motion detector, though, was developed
a century earlier by Sigmund Exner [201]. Although Exner’s model is no longer
used, it provides an excellent (and remarkably accurate) starting point for sub-
sequent work on motion detection. Here, we present the basics of the two most
common forms of motion detection. Nearly all analyses of the statistical regu-
larities of motion start with one of these. We then examine a number of motion
regularities.

12.2.1 Correlation-Based Motion Detection

In the 1950s, Werner Reichardt examined the behavior and underlying neurophys-
iology of the beetle and the fly, with a focus on motion perception [309]. He sug-
gested that a good motion detector should see a given object as it moves through
two different points in space at two different times. Thus, it needs two temporal
gradient sensors separated by a specific distance in space and one of them should
respond with a specific temporal delay. The two signals are multiplied together to
obtained the motion signal. Since both receptors must see the same change in the
environment, this form of motion detector is called a correlator type.

The basic version of the Reichardt motion detector allows detection of motion
at a specific speed in a specific direction [309]. If an object is moving in the right
direction at the right speed, then the change in illumination caused by the object
passing over the first receptor cell will hit the multiplication point just after the
object passes the second receptor, causing the motion detector to emit a signal. By
adding a second set of pathways connecting the same two sensors to a second mul-
tiplier, and then subtracting the signals from the two multipliers, we can construct
an elaborate Reichardt detector, which is capable of detecting motion at a given
speed in the two opposed directions. Technically, the Reichardt detector mea-
sures temporal frequency [125], but Dror has shown that due to the statistics of
natural images this is a very reliable and consistent estimation of velocity [183].
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It has been shown that humans use correlator-type detectors [322, 594] (so do
flies [294]), that the tuning is done by changing spatial preferences [16, 93], and
that the detector can explain many low-level visual illusions [92, 94]. There exist
several computational implementations of the elaborate Reichardt detector (e.g.,
[137]).

12.2.2 Gradient-Based Motion Detection

In examining the encoding of television signals, Lamb and colleagues [462] noted
that the correlation approach requires many multiplications, and that any increase
in the number of velocities that should be detected required the addition of a new
multiplication unit.4 To create a more efficient encoding of television signals,
Lamb and colleagues developed a model for measuring velocity directly from
spatial and temporal gradients. First, the temporal derivative of local luminance
(∂ I(x, t)/∂ t) and the spatial derivative of local luminance (∂ I(x, t)/∂x) are cal-
culated. Then the two signals are divided. Gradient-based detectors have the
advantage that they are not dependent on pattern properties. The disadvantages
include the fact that for low spatial derivatives, any noise in temporal derivatives
is amplified.

12.3 Applications Using Statistical Motion
Regularities

Once motion has been extracted, a number of statistical regularities are noticeable.
The perception literature is full of many cases of motion-based perceptual pro-
cesses and motion illusions, such as structure-from-motion, color-from-motion,
depth-from-motion (e.g., motion paralax), heading and spatial orientation from
optical flow (see Section 12.4.2), and so on. For an overview of the perception of
motion and some of the many motion-based statistical regularities that people can
sense, please see [736].

There are also a number of applications that take advantage of spatiotempo-
ral regularities. These applications use a wide variety of approaches from simple
gradients up to scale space and Markov random fields (for example, noise reduc-
tion [187, 828], feature tracking [247], camera motion estimation [333], video
retrieval [334], motion interpretation [442, 443, 444], and object segmentation
[702]). Several others are discussed in this section.

4It has subsequently been shown that the multiplication phase can be implemented using a combi-
nation of linear and nonlinear filters and does not explicitly require multiplication. For more, please
see [125].
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12.3.1 Specular Highlights
It has been shown that the pattern of change over time can be used to extract spec-
ular highlights. Using knowledge of how caustics change in real-world scenes and
some simple geometry, specular highlights can be removed from video sequences
[716]. Similarly, a “temporal color space” can be defined, where each pixel in
an image sequence is represented in a four-dimensional space, with three color
dimensions (R, G, and B) and one temporal dimension [646]. Given knowledge
of how specular reflections change as a function of time, and that the specular
highlights generally have the same spectral distribution as the illuminant, specu-
lar highlights can then be removed and the color of the illuminant can be estimated
in an image sequence.

12.3.2 Markov Random Fields
Many researchers use Markov random fields (MRFs; see Chapter 9) with temporal
data. For example, it can be shown that with three assumptions, namely that all
luminance changes are due to translational motion, that Gaussian noise corrupts
the observation, and that slower motions are more likely to occur than faster ones,
the trained MRF model interprets several motion illusions in a manner similar to
humans [792].

MRFs can be used to track people in videos using three underlying models
(one each for edges, ridges, and optical flow) [682]. After training the models on
150 images and short sequences, results were shown to be better when all three
models were used than for any of the three models individually.

Black and colleagues used four generative models within an MRF context to
detect motion in general [62, 63]. The four models reflect changes in form (i.e.,
including translational and rotational motion), changes in illumination, changes
in specular reflections, and a catch-all for all other changes (which they call iconic
changes). Note that the iconic changes are domain-dependent and thus require a
separate model for each set of domain-specific change (e.g., a model for detecting
eye blinks needs to be represented separately from a model for mouth motion).
They tested the models on complex, real-world scenes and showed that once again
it works best when all four models are used simultaneously.

12.3.3 People Detection and Biological Motion
People are remarkably sensitive to the motion of other people. In fact, Johansson
showed that by placing dots on the joints of people and showing just the motion
of those dots (usually a set of about 15 points) is sufficient for people to recognize
how many people are present in the video and what they are doing [374, 375].
It has since been shown that these motion signals are also sufficient to tell many
other things, including what gender a walking person is (for an overview, please
see [736]). This field has come to be known as biological motion. A number of
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models of how people process biological motion signals have been proposed (see,
e.g., [114, 145, 265, 754]).

In an interesting variation, it was suggested that crowds of people can be
tracked by following corners [10]. In essence, once corners are detected, it is
assumed that only the corners on people move (background corners do not move)
and that each person has on average the same number of corners. Those assump-
tions allow humans to detect how many people are present. A measurement of the
average speed for walking in a sequence allows the detection of running later on.

12.3.4 Motion Blur

All of the photons that hit a given cell within a specific temporal window are
integrated and are perceptually treated as if they all arrived at exactly the same
instant in time [94, 270]. The temporal integration window is believed to be
about 80 ms in bright conditions and around 150 ms when we are in the dark
and our eyes are fully dark-adapted. When an object is stationary, all photons
from a specific location on the object hit the same receptor cell for the duration
of the temporal integration window. The result is that the retinal cell receives
enough photons to respond and the retinotopic location of the spot on the object
is unambiguous.

If the object is moving fast, however, light from a given spot on its surface
will sequentially hit a number of neighboring retinal cells during the temporal
integration window. This means that this spot will be seen by the retina as existing
at one instant in time at multiple locations. Thus, directly after processing by the
retinal receptors, the object will seem to be longer in the direction of motion than
it should be. Moreover, the visual system will not be able to resolve the higher
spatial frequencies, since they are spread out. Cameras exhibit similar phenomena
relating to blur since the shutter speed of modern cameras is not zero.

The human visual system, however, is built such that it can at least par-
tially compensate for this motion-based spreading. Once the visual system de-
tects that the object is moving, it automatically performs some motion deblur-
ring [270]. Several computational approaches to removing motion blur from im-
ages have been developed (see Section 5.6). Motion blur is also routinely applied
to computer-generated sequences, often with the aid of high dynamic range imag-
ing [164].

12.3.5 Shape from Dynamic Occlusion

As discussed by Reichardt, a moving object disappears from one location and ap-
pears at another location. Obviously, when the object disappears from a location
that location is not empty. One of two things can happen: either another part of
the surface of the moving object shows up (which consequently correlates with a
disappearance elsewhere) or some background texture suddenly appears.
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Likewise, at the leading edge of the figure, background texture will suddenly
disappear. The specific pattern of background texture appearances and disap-
pearances at the edges of a moving object is referred to as dynamic occlusion.
A moment of thought will show that the appearanace and disappearance of the
background will not have a match elsewhere and thus will not be picked up as a
motion signal.

These temporal contrast modulations that do not come from motion provide
a wealth of information. Obviously, they indicate that there is or was an occlud-
ing object at that location [508, 509]. It also provides reliable information that
disappearing background still exists [264]. Finally, the collection of dynamic oc-
clusion signals in an image sequence specify the shape, velocity, and degree of
transparency of the moving object [15, 73, 81, 82, 83, 121, 122, 131, 140, 141,
264, 330, 392, 393, 552, 590, 624, 679, 680, 681, 705]. For a review, see [678].
The visual process responsible for seeing a form from dynamic occlusion changes
is referred to as Spatiotemporal Boundary Formation (SBF). The class of changes
that can result in the perception of a moving bounded form extends beyond the
simple accretion and deletion of texture elements; the class includes changes in
an element’s color, orientation, or location [680].

Shipley and Kellman [681] provided a mathematical proof showing that the
orientation of a small portion of the moving object’s contour (a local edge seg-
ment or LES) may be recovered from changes of three texture elements, as long
as the elements are not spatially collinear and all three changes occur within the
temporal integration window. If the velocity of the LES is known, only two ele-
ment changes are needed. Cunningham and colleagues [139, 131] modified and
extended the proof to show how the global shape and the global velocity can also
be recovered from six element transformations. They then tested the model on
synthetic and real-world images, with decent results. Most of the failures of the
algorithm on real-world images seems to lie in the implementation of the Reichard
detectors, which are needed to separate the motion-based and non-motion-based
temporal gradients.

12.4 Optical Flow
Perhaps the most well-known and widely used motion-based technique in visual
computing is optical flow. Optical flow has its origins in James J. Gibson’s work
describing the information that a moving animal receives [261]. Optical flow is in
principle described by the temporal gradient field for an image sequence. Essen-
tially, the change in location of each point on each object in a scene is measured.
In practice, this can be performed on an image directly, rather than on the real-
world scene. If both the observer and the real-world scene are perfectly stationary,
then there will be no difference between the locations of any objects (or their two-
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Figure 12.2. Two examples of �ow fields. The field on the left shows a radially
expanding �ow, which is likely to be due to forward motion within the scene. The
movement within the right field is most likely due to camera rotation.

dimensional image projections) at any two points in time and the vector field will
be zero everywhere.

If the observer is moving forward (while looking forward), every point in
the image will move towards the borders of the image (see the left panel of Fig-
ure 12.2). This yields a radially expanding vector field; the center of the field is
the point towards which we are traveling [263]. If the observer is looking forward
but traveling to the left, all points in the image will move to the right of the image,
creating a vector field with a large global translation component. In principle, op-
tical flow can be used to determine the direction and speed of motion of a moving
observer, since the same pattern of optical flow is obtained as when the scene is
moving and the observer is static. All that is necessary is relative motion between
the observer and the scene. Although humans can use optical flow for determining
direction of travel, they often do not seem to use it in real-world conditions [306].

Optical flow is also useful in object perception. If an otherwise static scene
has a single moving object in it, this will show up as a local patch of high vector
values in an empty optical flow vector field. Likewise, if an object within a scene
has a different motion than its surrounding scene, this will also show up as a
characteristic pattern within the optical flow field [261] (see [574] for an example
of how this can be used in a computational framework). Of particular interest
is the fact that at the edge of a moving object there will be discontinuities in
the flow field. Humans can use these discontinuities to detect the shape, location,
relative depth, global motion, and transparency of the moving object (as discussed
in Section 12.3.5).

Many optical flow algorithms are gradient-based. Given that an image se-
quence is represented as a spatiotemporal volume I(x,y, t), where (x,y) are spatial
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indices and t is the temporal index (see Section 12.1), it is assumed that the total
derivative of the image intensities in both space and time is zero at all times, i.e.:

Ix(x,y, t)vx + Iy(x,y, t)vy + It(x,y, t) = 0 (12.5)

Here, the subscripts indicate partial derivatives and v = (vx,vy) is the optical flow,
which is always in the image plane and normal to the spatial image orientation
[688]. The implicit assumption made here is that any changes in intensity are due
to translation and not to changes in illumination and reflectance. This equation
would allow one to estimate an optical flow field v, for instance by defining an
error term:

E(v) = (Ix(x,y, t)vx + Iy(x,y, t)vy + It(x,y, t))
2 (12.6)

It is then possible to compute a linear least-squares estimate of v by setting the
gradient of this error term to zero [688]:

∇E(v) = Av+b = 0 (12.7)

In this formulation, the matrix A is defined as:

A =

[
I2
x Ix Iy

Ix Iy I2
y

]
(12.8)

and vector b is given by:

b =

[
Ix It
Iy It

]
(12.9)

This would give the following solution:

v =�A�1 b (12.10)

However, computing the inverse of A is problematic, as this matrix is singular and
therefore has a determinant that is always zero. To allow optimization using this
function, additional constraints can be added to the error term. The problem can
for instance be regularized by adding a global smoothness constraint, as suggested
by Horn and Schunck [341].

An alternative solution is to consider a neighborhood of pixels and select the
velocity that is most consistent with the translations observed for all pixels within
the patch. Given a patch with n pixels, the error term then becomes [475]:

E(v) =
n

∑
k=1

wi (Ix(xk,yk, t)vx + Iy(xk,yk, t)vy + It(xk,yk, t))
2 (12.11)

Following the same procedure as above, the error term can be written as:

∇E(v) =
n

∑
i=1

wi (Aiv+bi) (12.12)
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The solution to this problem is then:

v =�

(
n

∑
i=1

wi Ai

)�1 n

∑
i=1

wi bi (12.13)

Note that there is still a chance that the sum of matrices Ai is singular. In the
following, we discuss a probabilistic method that would reduce the chances of
creating a singular matrix.

12.4.1 Probabilistic Optical Flow
There are many sources of variation that cause spatiotemporal gradients in im-
ages. These include noise, quantization, lack of precision of the gradient oper-
ators (see Section 5.2 for a discussion), illumination variations, the possibility
of multiple motions within a region, and areas of low contrast, as well as the
aperture problem. As mentioned earlier, the latter is an issue that relates to both
gradient-based algorithms as well as motion-sensitive neurons in the human visual
system [769]. A single neuron receives input over a spatially localized receptive
field (an aperture). Within this aperture, the direction of the motion is necessar-
ily ambiguous (see Section 12.3.5 for more on this topic). There will be many
patterns, directions, and speeds of movement that will elicit the same response
within the neuron.

Despite all these sources of spatiotemporal variation, optical flow algorithms
are intended to detect motion. Gradient-based algorithms will suffer from low
accuracy whenever gradients are due to any of the other sources. To account for
this, optical flow detection can be restated in terms of a probabilistic framework
[688]. In this case, the probability of a vector field v given an observed image
gradient ∇I = (Ix, Iy, It) can be constructed:

P(vj∇I) (12.14)

The different types of uncertainty can be accounted for by the introduction of
Gaussian noise terms b f n1 and n2, accounting effectively for spatial and temporal
sources of uncertainty. Including these noise terms in to Equation (12.5), and
denoting (Ix, Iy) as Is, we can write:

Is(v�n1)+ It = n2 (12.15)

This describes the conditional probability P(It jv,Is). Using Bayes’ rule (see the
Appendix), we obtain:

P(vjIs, It) =
P(It jv,Is) P(v)

P(It)
(12.16)

Simoncelli and colleagues choose a zero-mean Gaussian as the prior distribution
of P(It) [688] with covariance Λp. If the variance of n1 is set to (σ1,σ1) and
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the variance of n2 is σ2, then the covariance and mean of this distribution are
given by:

Λv =

(
A

σ1kIsk2 +σ2
+Λ

�1
p

)�1

(12.17)

µv =�
Λv b

σ1kIsk2 +σ2
(12.18)

Since this distribution is Gaussian, the mean µv is also the maximum a posteriori
(MAP) estimate. This approach ensures that the matrix inversion is possible.
This statistical approach can be extended to image patches, in which case the
covariance and mean become:

Λv =

(
n

∑
i=1

wi A
σ1kIsk2 +σ2

+Λ
�1
p

)�1

(12.19)

µv =�Λv

n

∑
i=1

wi b
σ1kIsk2 +σ2

(12.20)

Finally, note that the division by σ1kIsk2 +σ2 acts as a nonlinear gain control,
which has been shown to improve performance [688]. A similar normalization
was discussed in the context of the reduction of dependencies between wavelet
coefficients in Section 8.9.

12.4.2 Statistics of Real-World Motion and Retinal Flow
Optical flow in image sequences, as well as optical flow of retinal projections, can
arise due to self-motion of the observer/camera or due to objects moving within
the environment. Optical flow due to self-motion generates much information
about the direction of movement and the structure of the environment, as well as
the presence of possible objects and obstacles [261, 262]. The speed of the flow
is also important. As an example, consider moving directly forward. In this case,
the optical flow of the projected environment on the retina (or the camera sensor)
will radiate outward from the point toward which the observer is traveling. If
any object within this expanding field generates a stationary flow field, then that
object is on a collision course with the observer/camera. A car coming out of a
side street at a speed that would lead to a collision, for instance, would remain
stationary on the retina.

It appears that such information is used by animals [441]. Further, there are
specialized regions in the brain that process optical flow. These regions take their
input from simple motion detectors earlier in the human visual system. It can
be hypothesized that statistical regularities may play a role in the analysis taking
place in these brain regions [102, 103]. This leads to two ways in which the
statistics of optical flow can be assessed. The first is to directly study motion
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signals [370, 102, 632, 103], whereas the second is to pass motion signals through
basic motion detectors first and then study the emerging statistical regularities
[212, 383, 816].

To study motion signals directly, it is possible to derive flow fields from range
databases [102, 103, 632], such as the Brown Range Image Database (see Sec-
tion 3.3.13) [350, 447]. In this manner average velocities can be analyzed. As it
turns out, looking forward in natural scenes causes the horizon to roughly separate
images into upper and lower halves. On average, the distance between the viewer
and the nearest point will be farther in the upper part of the image than in the
lower part. As a consequence, egocentric motion will cause objects located in the
upper half of the scene to move more slowly across the retina than the lower half,
an effect which can be detected in optical flows derived from range data [102].
The variance in retinal speed is lower in the lower half of the visual field, indicat-
ing more uniform retinal speed, whereas this variance is higher in the upper half
of the visual field. However, it appears that the distribution of retinal speed can
be modeled well with a log-Gaussian distribution [103].

The distribution of retinal speed depends to a large extent on the distribution
of depth values in a natural scene, showing a near-inverse relationship. However,
this changes dramatically for scenes that are non-natural [103]. For natural scenes,
the statistical relation between depth and retinal speed may help inform the human
visual system about relative depth in the scene, especially in the lower half of the
visual field.

The distribution of the directions of retinal flow is close to Gaussian for po-
sitions in the lower half of the visual field, whereas extreme non-Gaussian distri-
butions occur near the horizontal median. In this region, the distribution becomes
heavy-tailed, i.e., with a high kurtosis [103]. The direction of the optical flow as
projected on the retina is strongly dependent on the direction of movement of the
observer, especially in the lower half of the visual field.

Finally, it was found that the retinal speed and the direction of the optical flow
are largely uncorrelated [103], especially after gaze stabilization. This allows the
human visual system to encode direction and speed independently in cortical area
MT [625]

12.4.3 Statistics of Optical Flow

Rather than estimate the optical flow as it would arise after projection onto the
retina, it would be possible to directly assess the statistics of optical flow, which
is for instance of interest in the application of video retrieval [202]. This is for in-
stance possible by subjecting optical flow to principal components analysis [224]
(discussed previously in Section 7.1). In such a model, motion is decomposed into
a set of basis motions, which can then be ordered in order of prevalence. General
motion can then be described with a small number of basis motions. In addition,
the model coefficients can be derived directly from image derivatives, and there is
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therefore no requirement to compute dense image motion first. Such a model can
be applied effectively to domain-specific problems. An example is the analysis
and representation of the motion of mouths or human gait [224]. Moreover, it
is possible to incorporate such models within a Bayesian inference framework to
reliably estimate image motion in the vicinity of occlusion boundaries [223].

The statistics of optical flow are interesting also for the purpose of designing
optical flow algorithms. As argued earlier in Section 12.4, gradient-based optical
flow algorithms require a matrix inversion, which requires the matrix to be non-
singular. This has given rise to the formulation of smoothness constraints (see
Roth and Black for a discussion [633]), formulating optical flow as a Bayesian
inference problem using an appropriate posterior distribution. Using Bayes’ rule,
this can be split into a data term and a smoothness term (see Section 12.4.1).

Many smoothness constraints have been formulated, usually enforcing local
smoothness by being based on nearest-neighbor differences or other local mea-
sures of flow gradient [633]. Roth and Black argue that such smoothness con-
traints can model piecewise smooth flow, but that they cannot not model more
complex flows [633]. Global constraints, on the other hand, could account for
more arbitrary flows. The overall insight appears to be that, dependent on the
stimuli chosen, motion as captured in optical flow fields can be characterized as
“slow and smooth” [791] or “mostly slow and smooth, but sometimes fast and
discontinuous” [633].

Analyzing optical flow data derived from the Brown Range Image Database,
Roth and Black [633] come to several conclusions regarding the velocity of opti-
cal flow:

� Vertical velocity follows a roughly Laplacian distribution.

� Horizontal velocity is more prevalent than vertical motion and therefore
leads to a broader distribution.

� The heavy-tailed nature of motion is due to camera translations rather than
rotations.

The distribution of flow orientations also tends to favor horizontal directions.
Spatial derivative histograms of optical flow show the characteristic central

peak and long tails associate with sparseness and high kurtosis. This suggests
that optical flow is often smooth, but on occasion it exhibits much stronger mo-
tions. Horizontal and vertical flow gradients are largely independent, as can be
determined by analyzing joint statistics of horizontal and vertical flow gradients.
This independence can be confirmed by analyzing the flow gradients with PCA
[224, 633]. Temporal derivative histograms show similar heavy-tailed behavior,
which can be attributed to the translational component of motion [633].

These statistical findings have been used to form priors for the calculation of
optical flow with the aid of Markov random fields, and especially using the Fields
of Experts model [633], which was discussed in Section 9.6.2.
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Appendix A

Basic Definitions

In this appendix, we list a few basic definitions that are used throughout the book.

A.1 Probabilities and Bayes’ Rule
To begin, the probability of an event A occurring is often denoted p(A). The
probability of an event A occurring, given that another event B has happened,
is written as p(AjB). This is known as a conditional probability. Two events
occurring simultaneously is given by:

p(A\B) =
p(AjB) p(B)

p(B)
(A.1)

If the conditional probability of event A occuring, given that event B has already
occurred, and given the probabilities of A and B happening in isolation, we can
compute the conditional probability of B occurring, given event A. This is known
as Bayes’ rule:

p(BjA) = p(AjB) p(B)
p(A)

(A.2)

For a set of N events Bi, if we have:

N⋃
i=1

Bi = Ω (A.3)

8i 6= j : Bi
⋃

B j = /0 (A.4)

then we can compute the following probability:

p(A) =
N

∑
i=1

p(A\Bi) (A.5)
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A.2 Gaussian Distribution
A univariate Gaussian probability distribution (also known as the univariate nor-
mal distribution) is given by:

N(xjµ,σ) =
1

σ
p

2π
exp
(
� (x�µ)2

2σ2

)
(A.6)

This can be extended to multiple dimensions d, leading to the multivariate Gaus-
sian distribution:

N(xjµ,Σ) = 1
(2π)d/2

√
jΣj

exp
(
�1

2
(x�µ)T

Σ
�1(x�µ)

)
(A.7)

Here, µ is a d-dimensional vector of means and Σ is the covariance matrix.

A.3 Kullback-Leibler Divergence
The Kullback-Leibler divergence is an asymmetric measure of how different two
probability distributions are. It is also known as KL-divergence, information di-
vergence, information gain, or relative entropy. For two discrete probability dis-
tributions P and Q, this divergence is given by:

DKL(PjjQ) = ∑
i

ln
(

P(i)
Q(i)

)
P(i) (A.8)

For continuous random variables p and q, the Kullback-Leibler divergence is
given by:

DKL(pjjq) =
∫

∞

�∞

ln
(

p(x)
q(x)

)
p(x)dx (A.9)
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Image Statistics
in Visual Computing

To achieve the complex task of interpreting what we see, our brains rely on statistical 
regularities and patterns in visual data. Knowledge of these regularities can also 
be considerably useful in visual computing disciplines, such as computer vision, 
computer graphics, and image processing. The field of natural image statistics studies 
the regularities to exploit their potential and better understand human vision. With 
numerous color figures throughout, Image Statistics in Visual Computing covers 
all aspects of natural image statistics, from data collection to analysis to applications 
in computer graphics, computational photography, image processing, and art.

The authors keep the material accessible, providing mathematical definitions where 
appropriate to help you understand the transforms that highlight statistical regularities 
present in images. The book also describes patterns that arise once the images are 
transformed and gives examples of applications that have successfully used statistical 
regularities. Numerous references enable you to easily look up more information 
about a specific concept or application. A supporting website also offers additional 
information, including descriptions of various image databases suitable for statistics.

Collecting state-of-the-art, interdisciplinary knowledge in one source, this book 
explores the relation of natural image statistics to human vision and shows how natural 
image statistics can be applied to visual computing. It encourages you to develop novel 
insights and applications in all disciplines that relate to visual computing.

Computer Graphics
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