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PREFACE

This volume contains the papers presented at the JUTAM Symposium
on Geometry and Statistics of Turbulence, held in November 1999, at the
Shonan International Village Center, Hayama (Kanagawa-ken), Japan.

The Symposium was proposed in 1996, aiming at organizing concen-
trated discussions on current understanding of fluid turbulence with empha-
sis on the statistics and the underlying geometric structures. The decision
of the General Assembly of International Union of Theoretical and Applied
Mechanics (IUTAM) to accept the proposal was greeted with enthusiasm.
Turbulence is often characterized as having the properties of mixing, inter-
mittency, non-Gaussian statistics, and so on. Interest is growing recently
in how these properties are related to formation and evolution of struc-
tures. Note that the intermittency is meant for passive scalars as well as
for turbulence velocity or rate of dissipation.

There were eighty-eight participants in the Symposium. They came from
thirteen countries, and fifty-seven papers were presented. The presenta-
tions comprised a wide variety of fundamental subjects of mathematics,
statistical analyses, physical models as well as engineering applications.
Among the subjects discussed are (a) Degree of self-similarity in cascade,
(b) Fine-scale structures and degree of Markovian property in turbulence,
(¢) Dynamics of vorticity and rates of strain, (d) Statistics associated with
vortex structures, (e) Topology, structures and statistics of passive scalar
advection, (f) Partial differential equations governing PDF's of velocity in-
crements, (g) Thermal turbulences, (h) Channel and pipe flow turbulences,
and others.

We would like to thank all the contributors for making this Proceedings
a landmark of turbulence research open to the coming next century. The
papers collected in this volume were reviewed by all members of the Local
Organizing Committee.

The assistance by the members of the Scientific committee is gratefully
acknowledged. Sincere thanks are also extended to the Advisory committee
and also to all the members of Local organizing committee for their efforts
making the Symposium very successful. We are particularly grateful to
Prof. F. Hamba as a Treasurer for this Symposium.
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Opening Address

Mathematical Physics of Turbulence

Tomomasa TATSUMI
International Institute for Advanced Studies
9-3 Kizugawadai, Kizu-cho, Kyoto 619-0225, Japan

It is my great honour and pleasure to give an official Opening Address in the
"IUTAM Symposium on Geometry and Statistics of Turbulence" on behalf of the
President of [UTAM, Professor Werner Schiehlen.

1. IUTAM

The Opening Address is intended to give the audience the scope and activity of
IUTAM, in particular on the significance of its Symposia including the present
Symposium. In this context, however, I am not talking about the the history and
statistics of IUTAM in detail but would like to draw your attension to its very origin.

IUTAM (International Union of Theoretical and Applied Mechanics) was founded
in 1947, shortly after the World War II. as an international organization under ICSU
(International Council of Scientific Unions). so it has a long history of more than
half a century.

1.1. ICAM and ICTAM

One of the main activities of IUTAM is to organize ICTAM (International Congress
of Theoretical and Applied Mechanics) every four years at various cities in the
world. ICTAM has an eminent prehistory before the War under the name of ICAM
(International Congress of Applied Mechanics) . which dates back to 1922 when an
international conference on Hydro- and Aeromechanics was held at Innsbruck. Aus-
tria, under the joint chairmanship of Theodore von Karman, then the director of
Aerodynamical Institute of Aachen Polytechnic, and Tullio Levi-Civita, an Italian
mathematician in Rome (after Battimelli (1988)).
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Karman's idea of having such an international meeting was motivated from his
recognition of a large discrepancy between the rapid developments in the field of
hydro- and aeromechanics on one hand, and only a limited space devoted to such
problems at scientific meetings on the other hand. He proposed to break the
dependence of hydro- and aeromechanics from their mother disciplines like mathe-
matics, physics and engineering.

His proposal was enthusiastically supported by Levi-Civita and they succeeded in
organizing the above-mentioned conference. In spite of the wake of the hostility
between the nations after the World War I, thirty three scientists gathered to the
conference from Germany, Austria, Holland, Scandinavia and Italy, including big
names such as Ludwig Prandtl, Karman's former teacher, and Werner Heisenberg,
who was sent by Amold Sommerfeld to report on his research on turbulence.

In this conference Karman found a new partner Jan Burgers, a young Dutch
scientist who was at Innsbruck, and they proceeded to organize an international
congress covering the wider subjects of Applied Mechanics in 1924 at Delft, the
Netherlands. This Congress was also very successful with 200 participants and 76
papers read covering the whole field of applied mechanics.

This is indeed the beginning of the series of ICAM and ICTAM which have been
held every four years except for the interruption due to the World War II.  The last
Congress was the 19th Congress held in 1996 at Kyoto, Japan and the next will be
the 20th Congress to be held in 2000 at Chicago, USA.

1.2. IUTAM Symposia

Another main activity of IUTAM is to sponsor about ten IUTAM Symposia per year
and also a few Summer and Winter Schools of intructional nature. IUTAM Sym-
posia are selected from many proposals made by the members of [IUTAM and the
participants are limited to those invited by the Symposia. The subjects of the
Symposia are all concerned with the current topics of scientific importance in the
fields of IUTAM and their Proceedings are to be published in principle by Kluwer
Academic Publishers.

Our Symposium on "Geometry and Statistics of Turbulence" is indeed one of such
IUTAM Symposia which has been supported and adopted by the General Assembly
of [IUTAM.

2. Fluid Mechanics and Turbulence
During about eighty years since the time of Innsbruck Conference. enormous develop-

ments have been achieved in the fields of Hydro- and Aeromechanics. or Fluid
Mechanics in modern usage.



2.1. Fluid Mechanics

It should be noted that such developments have been built up on the basis of the real
fluid which is associated with the compressibility and viscosity and governed by the
Navier-Stokes equation of motion. Thanks to the ingenious works on the shock wave
by Sir Geoffrey Taylor (1910) and the boundary layer by Ludwig Prandtl (1904),
all singularities accompanied with the perfect fluid without viscosity have been
regularized and given the physical reality.

Now, it is generally believed that all fluid motions, including highly complex flows
at large Reynolds numbers, can be described as the solutions of the Navier-Stokes
equation, and this belief has been well supported so far by the results of experiments
and numerical simulations. In this sense, Karman's idea of dealing with hydro- and
aeromechanics as an independent research sector from their mother disciplines seems
to be well justified.

2.2. Turbulence

Probably, only exceptional case to such a belief may be turbulence. Although our
knowledge on turbulent flows has been largely progressed in recent years, there seems
to be still lacking the consistent mathematical physics of turbulence. If we interpret
"Geometry and Statistics" of turbulence in the title of this Symposium as "Mathe-
matics and Physics", our purpose is nothing but to build up such Mathematical
Physics of Turbulence.

It is usually said that a substantial difficulty of the theory of turbulence lies in its
lack of scale-separation between the large- and small-scale components of turbulence,
which makes it impractical to employ the so-called guasi-particle description.  This
is indeed the cause of very limited success of the classical notion of the mixing
length, which was introduced to the turbulence research taking analogy from the
mean-free-path of the gas theory.

The genuine scale-separation of turbulence has been achieved by Kolmogorov
(1941), who assumed the independence of small-scale components of turbulence
from large-scale varieties of turbulent flows at large Reynolds numbers and dealt with
the equilibrium state of the small-scale components. This idea was developed by
himself into the theory of locally isotropic turbulence, resulting in the celebrated laws
of the 2/3 power variance of the velocity difference at two points or equivalently the
-5/3 power energy spectrum, both coined by the name of Kolmogorov.

Probably, the independence of the small-scale components of turbulence from the
large-scale structures can be formulated more adequately in the statistical framework
of turbulence. Now we shall attempt to explore this possibility in the velocity
distributions of turbulence.
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3. Statistics of Turbulence

It is well known that the most complete statistical description of turbulence is
provided by the probability distribution functional of its velocity field u(x. 1) at all
values of the coordinate x and the time ¢*. Actually all statistical informations of
turbulence can be derived from this velocity distribution functional.

The equation governing this distribution functional was given by Hopf (1952) in
terms of its Fourier transform or the characteristic functional. Thus, the Hopf
equation provides us with the fundamental equation of the statistical theory of
turbulence. Since, however, there is no mathematical method available for solving
this functional equation generally, we have to be satisfied by two particular solutions
given in this paper, that is the normal (Gaussian) distribution functionals for infinite
and very small values of the Reynolds number R..

3.1. Velocity Distributions

A practical method for dealing with this functional equation is to expand it into an
infinite sequence of equations for the distribution functions of the velocities at the
discrete points, x1, x2, xs, ... In this way, Lundgren (1967) and Monin (1967)
derived independently an infinite system of equations for the n-point velocity
distributions, n being positive integers. Thus, this infinite set of equations obtained
by Lundgren and Monin also constitute the fundamental equations of turbulence.

There arises, however, a serious diffuculty concerning this set of equations since
the equation for the n-th order distribution always involves the (# + 1) -th order
distribution, so that any finite subset of equations is not closed. Such unclosedness
of the equations is common to all successive approximations in turbulence and we
have to introduce a closure assumption for connecting the highest-order distribution
with those of lower-orders in order to make the equations solvable.

So far a number of closure assumptions have been proposed in relation with the
statistical moment description of turbulence, but no such work seems to have been
made for the velocity distribution formalism. Here, a closure assumption for the
velocity distributions will be proposed using an idea which is similar to Kolmogorov's
scale-separation principle mentioned in § 2.2.

3.2. One and Two-point Velocity Distributions

Denoting the velocities at two points x 1 and x:and time # by #(x.. t) and u(x, )

respectively, we define the one and two-point velocity distributions as follows:
S xi, 1) =<0 (ulxn, )-ur)> (1)
S ununxi,xat) =<0 (ulxr, )-u1) 6 (u(xs, )-u2)> (2)
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where u. (i = 1, 2) denote the stochastic variables corresponding to u(x.. ), J the
three-dimensional delta function and < > the mean value with respect to the initial
distribution.
For homogeneous turbulence, these distributions are written as,
f(ul,xl, t) =j(u1, t) (3)
f”(ul,uz;xn.xz; t) =f2j(u1.uz;r,t) (4)
with r = x» - x1and required to satisfy the condition of zero-mean velocity,

fulf(ul, t)d u1=f uzf(uz, l‘)duz

=SuifP(urucr, )dur= S uf(ur,uzr, )du=0 (5)
By the definition, these distributions must satisfy the reduction conditions,

ff(ul,t)du1=fﬂuz,t)duz=1 (6)

ffz’(un,uz;r.t)du1=f(uz, f), ff“(ul,uz:r,f)duz=/(u1’t) (7)

In general there is no relationship between f and f'” except for the reduction
condition (7), but they are related with each other in the following two limits.
Distant limit: lim, - fP(ur, uzr t) =flur t) flus, t) (8)
Coincidence limit: lim:~ o f7(ur, w2r. t) = flur, ) 6 (u2- us) (9)
Eq.(8) shows the independence of 1 and u . at far distance. while eq.(9) requires
the agreement of # . and u » for vanishing distance due to the continuity of the fluid.

3.3. Equation for One-Point Velocity Distribution

The equation governing the one-point velocity distribution f is given by Lundgren
(1967) and Monin (1967) in the following general form:

[0/0 1‘+(u1 - 0/0 x1)] f(un,xl, f)

=4 7)) 0/ w313 x1) [fl x> -x:1" X

X(uz+ 010 x2)* fP(ur, w2 x, x2 t)dxdua
“limszexa v (070 x2)* f(u2 0/0 wy) fP(ur, waxi, x2t)du:  (10)

where the presence of /' on the right-hand side makes the equation unclosed.

In homogeneous turbulence, for which (3) and (4) hold, the transfer term of eq.
(10) vanishes, and the pressure term which is written as
Tr=047)(8/0ur-8/d x) [l rl" (uz- 8/0 1)’ f*(ur,urir,t)drdu:
also vanishes since the double integral is independent of x:. Thus, eq.(10) becomes
O flun.)/d t=-lim,~ov(3/8 r f(uz: 3/0 ur) fP(ur wzr )du:(11)
Although eq.(11) is much simpler than eq.(10), it is still unclosed so that we need a
closure assumption for correlating f” with f.

3.4. Closure Assumptions

The closure assumptions proposed so far are more or less based upon the distant
relation (8) assumed for finite distances r <oo.



S uucr t) =flur t) flua t) (12)

Since this relation is satisfied by the normal distribution of /', the closure of this

kind is usually called the quasi-normal approximation. It may be obvious that such

an approximations is valid for relatively large values of r but become less satisfactory
for smaller r and eventually divergent at the vanishing r.

4. Cross-Independence

Now let us consider a new closure assumption starting from the coincidence limit
(9), which shows the independence of the velocity difference 4 u= u.- u: from the
velocity u . in the limit of » = 0. If we introduce the sum and the difference of the
velocities #,and u -, that is,

u-= —%—(ul-*-uz), u:%(u:-ul) (13)
+ inserted for convenience, such an assumption amounts to require the independence
of the cross-velocities u-and u-.

4.1. Cross-Velocity Distributions

Just like the velocity distributions of # 1 and u : have been defined by (1)~(4). the
distributions of the cross-velocities #- and u. are defined as follows:

glunrt) =< (Flulx. D+ ulxs )} -u.)> (14)

g-(urt) =<0 (Flulxe D-ulx. )} -u.)> (15)
g ur ) = <o (Flulx, D+ ulxs )} -u.)x

X0 (F{ulxs )-ulx, O} -u.)> (16)

These distributions are also required to satisfy the condition of zero-mean velocity.

Susgs(us,r, )dus=0 for wu.L r (17)

and the reduction conditions,
Sgelus.r,)du==1 (18)

S uvurdu=gu..rt), [ g uu:rtddu.=g.(u. r 1)(19)
Since g'” is another expression of £, these distributions must be connected with
each other by
S uvuerdudu =g%(u- ur.t)du.du. (20)
so that,
SN uuzr, =7 (ue ur )=22"(u- ur 1) (21)
where J =9 ((u1)a.(w2)a)/ 0 ((u-)a.(u.)a)= 2 denotes the second-order Jacobian
and « an arbitrary component.

4.2. Cross Independence

The independence of the cross-velocities # - and u - considered in the beginning of



section can be expressed as
gueu.rt) =g ur.t)g (u.rt (22)
which may be called the cross-independence in contrast to the ordinary independence
(8) of the two-point velocities #1 and u ».
It can be confirmed that the relation (22) actually satisfies the coincidence con-
dition (9) in the limit of » — 0. It follows from (14). (15) that
limr-o g (ue,r.)du-=lim~o <0 (F{ulx. N+ulx )} -u)> du.
=<0 (ulxr.t)-u)> dur=flur, t) du
lim-og-(u.r.0du. =lim -0 <6 (F{ulxe D-ulxn 0} -F(u2-u)> du.
=6 (3 (u2-u))du.=0(5(u2-u))d(H w) =0 (u2-ui)dus
Then, substituting these results to (20) and (22). we find that
lim -0 f*(uruzr.durduz=lim,~o g¢?(u-.uzr.t)du-du.
=lim,~og (wer. g - (u..r.0du-du=flur t) 6 (u2-u)d uwdu
so that
lim,- o f”(ux. uaxr. t)=_f(u1. 1) 6 (u2-u)
which is identical to the condition (9).
This indicates that the cross-independence relation (22) is satisfied with good
accuracy for small values of . Concerning the real extent of its validity. we have to
learn from experimental results as shown in the next subsection.

4.2. Kolmogorov's Local Equilibrium Hypothesis

Kolmogorov's theory of turbulence is based on the fundamental assumption of the
independence of small-scale components of turbulence from its large-scale structures.
Such an assumption is essentially similar to the cross-independence assumption (22)
employed here. The similarity is strengthened by the fact that the small-scale com-
ponents are represented commonly by the velocity difference 4 u=u>- u 1= 2u..

There exists a minor difference in the theories since Kolmogorov's theory assumes
temoral steadiness of the local equilibrium while no such restriction is imposed here.
Actually we deal with the solutions changing self-similarly in time. but even in this
case Kolmogorov's similarity is satisfied between the contemporary values of the
statistical variables.

Kolmogorov's scaling laws have been examined experimentally in several aspects
by Sreenivasan (1998) and others. Figure 1 shows the conditional mean square of
the longitudinal component 4 u . of the velocity difference at the distance r =[ r |,
for the fixed values u o of the longitudinal velocity at the middle point. The data
was taken from the grid turbulence with the Reynolds number R ;= 60. A being the
Taylor microscale.

The experimental points measured at fixed distances » /7. 7 denoting the
Kolmogorov scale, clearly show the statistical independence of the small-scale
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component < u . from the large-scale component u ». Together with the similar
result of the direct numerical simulation at R = 210, it is concluded that inertial-
range quantities show no dependence on the large-scale statistics in isotropic
turbulence. This conclusion gives an experimental support for Kolmogorov's local
equilibrium hypothesis as well as the cross-independence assumption (22) so far as
the range of r comparable to the inertial range is concerned.

. 2 .. .
Figure 1. The conditional mean of (4 u,)” conditioned on the large-scale velocity o.
Each symbols correspond to a different distance ». u ois taken as the velocity at the
middle point of the distance r, but other definition such as the average u + makes little

difference. (Sreenivasan, 1998)
5. One-Point Velocity Distribution

Now, let us proceed to obtain the one-point velocity distribution using the cross-
independence relation (22) as the closure assumption.

5.1. Closed Equation for f

First, substituting (21) and (22) into eq.(11). we obtain the following equation for
the one-point velocity distribution:
0 flur. )10 t=-lim.-ov(3/3 r)? f(u2+ 3/0 u)X
X2g (ur,)g.-(u.r.t)dur (23)
In view of the limit » — 0, we may write
r=x:-x1=4x, u.= 4 (ur-u)=%4u
u:=%(ui+ru)=u++A4u, u=u+Au
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Then, the right-hand side of eq.(23) is written as
T.=-lim,~ov 2°(0/0 4x)" [((ur+Au) - 3/0 ur)x
Xgu+ T Au, Ax,)g ($du, Ax,)d Au
=-lim.-ov(0/04x)" [((ur+2Au) - 3/3 u)X
Xguw+Au Ax,t)g (Au, Ax.1)d du
Substituting the expansion,
lim,~og(u+Adu, Ax, ) =flur+dut) =(1+Au- 3/3 ur) flu t)
into T . and taking only the lowest non-zero term, we obtain
T.=-(23)v Cel 0/0 url*flur t) (24)
Ce=1lim,~0(8/0A4x) [1Aul’g. (du Ax.t)d Au (25)
where the isotropic relation, (A u - /0 uw)* =(1/3) Aul?13/0 u:l°. has
been used. C. is a positive constant representing the curvature of the variance of
the distribution g . at the origin..

Thus, eq.(23) is written in a closed form,

O flu,)/dt=-a’/ flu 1) (26)
a’=(23)v G (27)
where /A =] 0/0 u | * and the suffix of #: has been omitted.

It may clearly be seen from eqgs.(25)~(26) that the action of the small-scale
components 4 u against the large-scale components # has solely been confined to the
integral (25) and made a constant « * in eq.(26). This proves the success of the
scale-separation by means of the cross-independence assumption.

5.2. Normal Velocity Distribution

It may be seen from eqs.(25) and (27) that C. as well as a * generally change in
time. Thus, it is necessary to specify their time-dependence in order to solve the
equation.(26). If we asume the change in time of the kinetic energy E of turbulent
fluid per unit mass and the energy dissipation ratc &£ as,
E=4 dul™»=F<u,» oy’ (28)
e=-dE/dt=%v<(du./d x,+0 u,/d x.)>oc t? (29)
(i,j =1,2.3) respectively. it follows that  * o< r~.
Then, eq.(26) is written as
0 flu,0)/dt=-adit*A\ flu t) (30)
where a *=a 't with a constant o * .
Eq.(30) can be solved generally, but here we refer only to the particular solution,
fu)=(t/dra)expl-lul’t/4a] (31)
which is the isotropic normal (Gaussian) distribution changing self-similarly in time.
It follows from (31) that the energy and the energy dissipation change in time as
E=3adit", e=3a . t’ (32)
in accordance with their assumed decay.
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Figure 2 shows the evolution of the distribution (31) in time. At ¢t = 0 it
represents a uniform distribution with zero probability density. For ¢ > 0 it grows up
as a normal distribution with increasing height and decreasing breadth in time ¢, and
for t = co it tends to the J distribution at | # |= 0 corresponding to the dead-still

state.
f(u’ t) 0.8~

u=|ul

0 1 2

Figure 2. One-point normal velocity distribution f (u, £) of isotropic turbulence.

Here I shall conclude my Opening Address, in which I took liberty of including my
own view and idea on the statistics of turbulence. Conceming the geometry of
turbulence, I entrust to the Opening Lecture by Professor Keith Moffatt.
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THE TOPOLOGY OF SCALAR FIELDS
IN 2D AND 3D TURBULENCE

H.K. Moffatt
Isaac Newton Institute for Mathematical Sciences,
20 Clarkson Road,
Cambridge CB3 0EH, UK

1 Introduction

I am honoured to present the Opening Lecture at this Symposium on the Geom-
etry and Statistics of Turbulence. I vividly recall a previous IUTAM Symposium
in Tokyo in 1983 on the subject Turbulence and Chaotic Phenomena in Fluids;
at that Symposium, I contributed a lecture with the title “Simple topological as-
pects of turbulent vorticity dynamics”. During the last two decades, increasing
attention has been paid to characteristic structures detected in both experimen-
tal work and in direct numerical simulation (DNS); indeed, it is these develop-
ments that have provided the main motivation for the present Symposium, and
that will be described in many of the lectures on the programme.

In this introductory lecture, it may be appropriate to resume the theme of
my 1983 lecture, but at a more basic level: I propose to consider the generic
structure of scalar fields in both 2D and 3D turbulence, the topological descrip-
tion of these fields, and the manner in which the topology may change with
time. I shall also seek to describe how, at the simplest level, the geometry of
these fields may be related to the most basic statistical property — the field
spectrum.

While the scalar field presents a tractable problem which it is sensible to
consider as a starting point, the problem of providing a similar description of
solenoidal vector fields such as velocity u or vorticity w in 3D is very much
more difficult. Such fields generically exhibit chaos (as for example in the ABC-
flow studied by Dombre et al 1986, or the quadratic STF-flow studied by Bajer
& Moffatt 1990); and the problem of classifying such chaotic flows appears
prohibitively difficult at present. This will continue to present a major challenge
well into the new millennium.

13
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2 Streamline topology in 2D turbulence

Consider first the problem of 2D turbulence in a periodic domain (topologically
a torus). Let ¢(z,y,t) be the streamfunction for the flow. The critical points at
any instant of ¥ are the points where Vi = 0, i.e. they are the (instantaneous)
stagnation points of the flow. Taking origin O at one such critical point, the
streamfunction has local Taylor expansion

¥ = o + cijziz; + O(|x°), (1)
where (z1,z2) = (z,y) and where
Cij = % (32'(/)/(9.’1}.6:17]) = Cji - (2)

Let A1, A2 be the eigenvalues of c;;. If we choose the axes Oz, Oy to be along
the corresponding eigenvectors, then (1.1) takes the form

x=0

¥ =0+ Mz’ + Ay’ + O(|x°). )

Non-degeneracy of the critical point means that A; A2 # 0. The index i of the
critical point is defined as the number of negative eigenvalues, i.e. ¢ = 0, 1 or
2 in this case. If i = 0, both A; and A; are positive and 9 is clearly minimal
at O; if i = 2, A; and ) are negative and ¢ is maximal at O. In either case,
the streamlines 1 = cst. are elliptic in the neighbourhood of O, the flow being
clockwise if ¢ = 0, anticlockwise if 1 = 2. If ¢ = 1, then one of (A1, A2) is positive,
the other negative, and O is a saddle point of ¢, the streamlines being locally
hyperbolic with asymptotes

zfy = +(=A2/M)"?. (4)

Regarding the periodic domain as (topologically) a torus, Euler’s index theorem

implies that
2

Z(—l)’n,- =nyg—n1+n2=0, (5)

=0
i.e. the number of elliptic points ng + n, equals the number of hyperbolic points
n1. A uniform flow for which ng + ns = n; = 0 provides a trivial example.

The streamlines through the saddle points (or separatrices) play an impor-

tant role in relation to the field topology. In general, the values of ¢ at the
critical points within the periodic box will be all different. This means that, in
general, ‘heteroclinic’ separatrices connecting one critical point to another do
not occur. All separatrices are homoclinic in the sense that each connects back
to a single critical point. They may connect in two distinct ways as indicated
in figure 1; the first is a figure-of-eight configuration, while the second may be
described as an ‘inverted figure-of-eight’.
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(@ (b)

Figure 1: Homoclinic separatrices associated with a hyperbolic stagnation point.
a) figure-of-eight structure; b) inverted figure-of-eight.

A flow may be topologically simplified through the coalescence of an elliptic
point and a hyperbolic point (leaving (5) satisfied). This generic transition may
be represented (locally in z, y and t) by the streamfunction

¥ = —x? + 3yt + 3, (6)

which, for ¢ < 0, has an elliptic critical point at (0,v/—t) and a hyperbolic
critical point at (0,—+/=t). At ¢t = 0, these points coalesce, and for ¢ > 0,
the flow has no critical points. It is interesting to note that at the instant of
coalescence, the streamline 1 = 0 has a cusp at ¢ = y = 0 (figure 2); at this
instant, the critical point is degenerate.

Conversely, a flow may be topologically ‘complexified’ by time-reversal of
this process: at any point within a flow, a local distortion may introduce a
hyperbolic-elliptic pair (otherwise known as a saddle-node bifurcation), as il-
lustrated in figure 3. This process indicates that the ‘generic’ instantaneous
separatrix structure of a 2D flow consists of an array of nested figure-of-eights
and inverted figure-of-eights, more complex flows containing higher-order nested
structures.

The existence of the streamfunction (6) indicates that the transition indic-
ated in figure 2 is kinematically possible; to show that it is dynamically possible,
we need to consider the Navier-Stokes equation in dimensionless form

9 oy, V) _ 1
E(szp) T Ty EVW- (7)
With ; given by (6), we have
6("/}17 v2"/)l) —

%(v%pl) =0, —12z (8)

0(z,y)

and (7) is not satisfied. However, if we redefine 1; as

Y1 = —z% + ¢y* + 3ty + (Re/10)z® (9)
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t<0 t=0 t>0

Figure 2: Coalescence of an elliptic point and a hyperbolic point represented by
the streamfunction ¢ = —xz2 + yt + ¢°.

(&€

Figure 3: Flow complexification, through successive introduction of hyperbolic-
elliptic pairs.
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Figure 4: Change of separatrix topology through heteroclinic connexion

then (7) is satisfied at leading order, i.e. at the order of terms linear in z and
y. Thus, the transition of figure 2 is dynamically possible, and since ¢ may
be replaced by —t, this transition is possible in either direction. (Alternative
modifications of (6) are equally possible.)

As mentioned above, heteroclinic connexions are not generally present; how-
ever, they may occur instantaneously in an unsteady flow. This is illustrated
by the streamfunction

P2(z,y,t) = 3(a? +y%) — y*/4€® — At(y — yo0)® (10)

where € is small. When ¢t = 0, there are saddle points at (0, ¢) with heteroclinic
connexion. Also, (7) is satisfied at leading order provided A = 3(e?Re)™!. As
t passes through zero, the topology of the flow changes as indicated in figure
4. The whole diagram lies within the region |x| = O(¢). Thus again, this type
of ‘heteroclinic transition’ appears to be both kinematically and dynamically
possible. Note that

6(¢27 v21/}2) 2
————= = =3zy/e" =0(1 11
3(2.9) y/ 1) (11)
but this term can be compensated by the introduction of higher-order terms in

(9).

Similar considerations apply to the vorticity field w = —V?2% in 2D turbu-
lence. The critical points of w are now those points where Vw = 0, and these
critical points are again elliptic or hyperbolic in equal numbers (for a periodic
domain). The elliptic points (maxima or minima) may be identified with the
centres of the ‘concentrated vortices’ that ultimately emerge in freely decaying
turbulence at high Reynolds number. In the Euler limit (Re = 00), the iso-
vorticity contours w = cst. move with the fluid, and so the topology of the
w-field is conserved. Thus topological transitions can now occur only through
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the agency of viscosity. Examples of such transitions can be easily constructed.
For example, a transition eliminating an inverted figure-of-eight occurs when-
ever a strong positive vortex engulfs and eliminates through viscous action a
neighbouring weak negative vortex.

3 Eddies and vortices in a 2D field of turbulence

Consider first a simple flow whose streamfunction is
¥ = Ay sinkizsinkyy + Az sin koz sin kay (12)
where ky >> ki, A1 > 0, A2 > 0. The vorticity distribution w = —V?4 is then
w = 24, k? sin kyz sin k1y + 2A42k2 sin kpz sin kyy . (13)

If A, = 0, then w = 2k and the isovorticity curves w = cst. coincide with
the streamlines 9 = cst. . The critical points are at (nn/k;, mn/k;), and the
separatrices are all heteroclinic — a degenerate situation. The number of critical
points in a square of side 7L is (k; L)2.

Suppose now that A;/A; is slowly increased from zero. The z-component
of velocity on y = 0 is

U= 8¢/6y|y=o = A1k sinkiz + Ask, sin kez, (14)

and it is easy to see that a first saddle-node bifurcation occurs at kez = 37/2
when Az/A; = 3nk?/2k2. As A;/A, increases further, more saddle-node bifur-
cations occur until A2k2 = A;k; when the number of critical points of the field
(12) has increased to (ks L)2.

Similar considerations obviously apply to the field w. Note that, when A;/A4,;

is in the range
K Ay _3mk?
B4R
the number NV of ‘eddies’ (i.e. extrema of v) per unit area is (k1 /7)2, while the
number M of ‘vortices’ (i.e. extrema of w) per unit area is (ka/m)2.
Similarly, we may seek to estimate these numbers for a field of 2D turbulence
with energy spectrum E(k) having an inertial range ~ k~* between a maximum
at k; and a viscous cut-off at k2(>> k1). The corresponding velocity vi at wave-

number k scales like (kE( ))2 ~ k2( ’\), so the number of eddies per unit
area will be of order k2 or k¥ according as A < 1 or A > 1. Similarly the number

(15)

of vortices per unit area is controlled by k?v; ~ k26— >‘) and is of order k32
or k% according as A < 5 or A > 5. Note that, for ) in the interesting range
1 < A < 5, the number of eddies per unit area is O(k?) while the number of
vortices per unit area is O(k2); this is of course consistent with the fact that far
more structure is normally seen in the vorticity field than in the v-field in DNS
of 2D turbulence.
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4 Scalar field structure in 3D turbulence

Consider now the generic structure of a scalar field s(x) in 3D. The critical
points are again those points where Vs = 0; and in the neighbourhood of a
non-degenerate critical point O, the field admits an expansion of the form

s =89 + )\1.’1)2 + )\23/2 + )\322 + O(|X|3) , (16)

where A; A2 A3 # 0. The index ¢ is again the number of negative eigenvalues, so
that ¢ = 0,1, 2 or 3; the index theorem is now

2?=0(—1)in,; =ng—ni1+nz—nz3 =20 (17)

for the case of a field periodic in all three directions (topologically, we are then
in T3). If i = 0, we have a minimum of s (denoted Mp); if i = 3, we have a
maximum (denoted M3); and if ¢ = 1 or 2, we have a saddle point of ‘type 1’
or ‘type 2’ (denoted S;,S2). The separatrix surface X : s = so through a saddle
point O is locally a cone with elliptic cross-section,

Al.’ltz + )\gyz + /\222 =0, (18)

and generically, this cone must ‘connect’ to itself in homoclinic manner. There
are four ways (figure 5) in which it can do this, in which ¥ takes the following
forms:

1. a ‘constricted’ sphere ¥; (to visualise this, tie a loop of string round the
equator of an inflated balloon and pull it tight);

2. an inverted constricted sphere ¥, (one ‘bulb’ of the closure now contains
the other);

3. a ‘pinched’ sphere X3 (push the poles of a balloon inwards till they make
contact);

4. a constricted torus ¥; (which may be knotted) (tie a string round the
small circumference of a toroidal balloon and tighten it).

(We may also pinch a torus, giving a ‘pretzel’ of two holes; and so on.)

Consider now how we may complexify an s-field starting from a region inside
a surface s = cst. of spherical topology within which there is a single extremum,
a maximum M; say. We may perturb the field in three ways (see figure 6):

1. by introducing another maximum M3 and a saddle point Sy of type 2; this
topological transition is represented by

T:: (no,nl,nz,ng) - (no,nl,nz +1,n3 + 1) (19)

and generates a separatrix surface of type ¥1;
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Figure 5: Four possible homoclinic surface connections

2. by introducing a minimum My and a saddle S;; this corresponds to the
transition
T : (no,nl,nz,n3) — (no +1,n; + 1,712,71,3) (20)

and generates a separatrix surface of type Xy;

3. by introducing two saddle points S; and S2; here M3 lies inside a torus
Y4 constricted at S, which in turn lies inside a sphere X3 pinched at S;
this corresponds to the transition

T3 : (no,nl,nz,n3) — (no,nl +1,ny + 1,n3) . (21)

The transitions T1, T3, T3 are all evidently compatible with (18).

Successive complexifications will lead to a field s whose separatrix surfaces
form a complex of nested surfaces of types X, X3, £3, X4, with (X3, 34) always
occurring as a pair with ¥4 inside ¥3. It would appear that this type of con-
struction should provide the generic structure of any scalar field s(x). Note that,
because of the possibility of the transition T3, the number n; + ny of saddles
may be much greater than the number ng + ns of extrema.

5 The passive scalar field 0(x, t) in turbulent flow

Suppose now that s = 6(x,t) is a passive scalar field satisfying the advection-
diffusion equation

Do _ 99

— = -V8 = kV?20 22
D= o +u-V0=kV (22)
in a turbulent flow u(x, t). Note first that if x = 0, then all surfaces (including
separatrix surfaces) § = cst. are frozen in the fluid; hence their topology is

invariant, and the set of numbers n = (ng,n;,n2,n3) is constant. If n = 0 at
some initial instant (e.g. if 6 = c-x at ¢ = 0, a field of uniform gradient c), then
(when £ = 0) n = 0 for all ¢ > 0: turbulence alone cannot generate maxima
or minima or saddle points of ¢; it needs the cooperation of diffusion (x > 0)
to achieve this. Some aspects of this problem have been explored by Gibson
(1968).
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Figure 6: Three topological transitions by which a scalar field may be succes-
sively complexified.

If x is small (equivalently, if the Peclet number is large) it may take a long
time for n(t) to attain statistical equilibrium, starting from a situation in which
n(0) = 0. The behaviour of n(t) as a function of time under the action of a
‘prescribed’ field of turbulence, is a problem that should be amenable to DNS.

Here, we simply speculate on the (statistical) equilibrium established after
a long time, assuming that the turbulence is statistically steady and the Peclet
number large. Suppose first that the Prandtl number Pr = v/k is < O(1).
Then (Batchelor, Howells & Townsend 1959), the spectrum I'(x) of 62 has a
k~5/3-range (ko < k < ke = (¢/k%)1/*) and a relatively steep (k~17/3) decrease
for k 2> k.. The spectrum of V@ is k2I'(k) and

(k- KT(k)Y2 ~ k2 (ko Sk S ko). (23)

By analogy with the 2D situation already considered, the increase with & in (23)
indicates that the topology of 6 is controlled at the upper end of the range, and
that the number NV = |n(t)| of critical points of  is of order k2 = (¢/%)3/% per
unit volume.

Suppose now that v/k >> 1. Then (Batchelor 1959) I'(k) ~ k=5/3 for ko <
k < ky = (¢/v®)/*, and there is a further conduction subrange

T(R)~ k™ (ky Sk S ke = (¢/vk?)1). (24)



22

In this subrange,
(k- kK°T(k)Y2 ~ k (25)

and this suggests that the topology of # is again controlled at the conduction
cut-off k., implying

N~k ~ (¢/vk?)¥* (k< V). (26)

There is reason however to doubt the validity of this result, which would imply a
large number (of order (v/x)3/2) of critical points of § within every ‘Kolmogorov
sphere’ of radius (v%/¢)}/%; within any such sphere, the velocity gradient is (as
assumed by Batchelor) approximately uniform, and it is difficult to see how
transitions of types 71, T> and T3 can be induced by such a flow on such a scale.

For this reason, it seems more likely that in all circumstances, the number
of critical points per unit volume is given by

N ~ min ((e/n3)3/4 , (e/u3)3/4) . (27)

This estimate should again be amenable to testing by DNS.
I am grateful to Boris Khesin and Paul Glendinning for helpful discussions
on the topic of this paper.
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We would like to pursue a mathematical approach to turbulence that is
able to predict bulk average quantities of experimental and practical signif-
icance. Among such bulk average quantities, the Nusselt number N, the
enhanced bulk average heat transfer due to convection, is perhaps the sim-
plest physical objective of rigorous mathematical study of turbulence.

The question we wish to address here is: what are the optimal bounds
on N as a function of Rayleigh number R? What is the effect of the Prandtl
number? Theoretical results ([1], [2], [3]) predict a maximal ultimate behav-
ior of N ~ v/R. The experimental ([4]) findings indicate however that

N~ R*

where the reported values for ¢ belong approximately to the interval [%,%

for large R. The exponents 2/7 and 1/3 have been discussed by several
authors, ([5], [6]). The recent results of ([7]) favor an exponent of 3/10 with
logarithmic corrections. We will describe below some very simple rigorous
results.

The mathematical formulation of the problem is based on the three di-
mensional Boussinesq equations for Rayleigh-Bénard convection ([8]). These
are a system of equations coupling the three dimensional Navier-Stokes equa-
tions o

—5t—+u-Vu+Vp=aAu+aRTe,, V-u=0 (1)
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to a heat advection-diffusion equation

2:’-“-+'u~VT=AT. (2)

ot
The five unknowns, incompressible velocity, v = (u,v,w), pressure p, and
temperature T are functions of position = (z,y,2) and time ¢. R is the
Rayleigh number and ¢ is the Prandtl number. e, = (0,0, 1) is the unit vector
in the vertical direction. For simplicity of exposition the equations have been
non-dimensionalized: the vertical variable z is scaled so that it belongs to the
interval [0, 1], the horizontal independent variables (z,y) belong to a square
@ C R? of side L. The boundary conditions are as follows: all functions
((u,v,w), p, T) are periodic in z and y with period L; u, v, and w vanish
for z = 0,1, and the temperature obeys T =0at z=1,T =1 at z = 0. We
write

1= [ [ 152 de dy i

for functions and vectors f. We use < - -+ > for long time average:

(f) = lim sup % Ot f(s)ds.

t—o0

We write f the horizontal average

T=g [ [ iy dady.

When a function depends on additional variables we write only the remaining
variables after integration, so for instance

1 (L (L 1
V(.01 = 2z [ [ [ 1Vu(e,y,2,0) do dy dz.

The Nusselt number is given in terms of the long time average of the
vertical heat flux:

N=1+</01b(z)dz> (3)

with

1 L L N
b(z,t) = -[-13/0 /0 w(z,y,z,t)T(z,y, 2,t) dz dy = wT(z,1). (4)
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A consequence of the equations of motion are two additional formulas for
the Nusselt number:

(IvT|*) = N (5)

and

(IIVul?) = R(N - 1). (6)

The classical result of Howard, conditioned on on assumptions about
statistical averages, is that N is bounded at very large Rayleigh numbers
by a multiple of R3. The same kind of bound can be derived without any
conditions ([9]). This bound is valid for all solutions, aspect ratios L and
Prandtl numbers o and is also valid in a rotating frame, at arbitrary rotation
speed.

The system is not isotropic: the direction of gravity is singled out. Con-
sider a function 7(z) that satisfies 7(0) = 1, 7(1) = 0, and express the
temperature as

T(z,y,2,t) =7(2) + 0(z,y, 2,1). )

The role of 7 is that of a convenient background ([10], [11], [12] ) that carries
the inhomogeneous boundary conditions; thus 8 obeys the same homogeneous
boundary conditions as the velocity. Note that, because 7 does not depend
on z,y one has

T(z,y,2,t) = T(z,t) = 0(z,y, z,t) — 0(z,1). (8)
The equation obeyed by 8 is
(B +u-V-A)I=1"—wr (9)

where we used 7' = j—:. The horizontal average of the vertical velocity van-
ishes identically because of incompressibility

w(z,t) = 0.

Therefore the quantity b(z,t) can be written as

b(z,t) = IIE/OL /OL w(z,y,2,1t) (G(x,y,z,t) —-G_(z,t)) dzdy = w(T ——T)((zl,;;
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Multiplying the equation (9) by 6 and integrating we obtain

N+ {|IVo|*) =2 <- /0 1 T'(z)b(z)dz> + /o ' (H(2))? da. (11)

We will choose the background profile 7 for simplicity to be a smooth profile
concentrated in a boundary layer of width §,

0-(3)

with P(0) = 1 and P(s) = 0 for s > 1. Using only elementary facts (fun-
damental theorem of calculus, the boundary conditions and the Schwartz
inequality) it is easy to see from (10) that

lb(z, t)| < 2|Vl )] - V(T = T)(, 1) (12)
holds for any z. Let us define
n= (VT -T)) (13)
Note that, from the definition of n and (5) it follows that
n < N.

From (12), (11) and (6) we obtain

C
N<—<+ 2D6\/R(N = 1)y/n

with
C= / (dP(s)) (14)
and p
1
D =/ s dP(s) d (15)
0
Optimizing in § < 1 we get
571 = % {R(N - l)n}i‘ +1
and letting P — s we obtain
N < 2(Rn)¥(N - 1)t +1 (16)

Thus we have proved
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Theorem 1 Let _

n=(IV(T -D|*)
Then the Nusselt number (3, 5, 6) for three dimensional Rayleigh-Bénard
convection satisfies

N <25 (Rn)® +1.

If one has no additional information then, using n < N in the inequality
above we obtain the square-root bound

N <4V/R+1

(The prefactor is not optimal. The search for optimal prefactors is better
motivated for other systems, where the power law obtained rigorously co-
incides with the one observed in experiments. When that is the case then
the rigorous results can match experiments with remarkable accuracy ([13])).
The exponent 1/3 (or anything less than 1/2 for that matter) have not been
proven rigorously for the general system. The theorem above brings in the ex-
ponent 1/3 in the general Boussinesq system conditionally, for slowly varying
n. Another way by which the Nusselt number dependence on the Rayleigh
number can be lower is if the Prandt] number is very high or in rotating ([14])
convection. If the Prandtl number is infinity then the upper bound is closer
to 1/3. The equations of motion for infinite Prandtl number Rayleigh-Bénard
convection ([15]) are

~Au+Vp=RTe,, V-u=0 (17)

coupled with the advection-diffusion equation (2). Because (17) is time in-
dependent we say that T obeys an active scalar equation.

An important observation, true even for the general case (1) is that, in
view of the boundary conditions and incompressibility, not only the vertical

component of velocity w but also its normal derivative %; vanish at the
vertical boundaries. Therefore we can write

b(z,1) ——/ dz, /21 ,5,1) ds/ (B(T(-,a,ta)z—. T(o, t))) do. (18)

Consequently

IV(T = T)( 1)l (19)
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where || f||L~ is the sup-norm. One can express %—22—';’, in terms of ' — T.
Indeed, eliminating the pressure from (17) one has

Al = —RAL(T - T) (20)

where A} is the Laplacian in the horizontal directions z and y. Using the
boundary conditions we may write this as

w = —R(Aby) " A(T = T) (21)

where (A%,)7! is the inverse bilaplacian with homogeneous Dirichlet and
Neumann boundary conditions. Taking two z derivatives then yields

*w —
—— = —RB(T - 22
S = —RB(-T) (22)
where the linear operator B is given by
0 2 -1
B = @(ADN) Ay (23)

The temperature equation obeys a maximum principle so that
0<T<1
holds pointwise in space and time. Therefore
0<|T-T|<1

holds. The operator B is not bounded in L* but obeys a logarithmic extrap-
olation estimate. This means that higher derivatives enter logarithmically in
the bound; the estimate

(IB(T =D))< C2 {1+ log, R}’ (24)

follows from the bounds in ([16]). The constant C; can be computed ex-
plicitly. Therefore, using the same kind of background as above in (11) we
obtain

Ve [ eera e [ e (|Tesd

|Lm ||V(T—T)n>dz (25)
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and consequently

N < %+2E5%C1R{1+log+ R}z\/ﬁ (26)

with C defined in (14), C; coming from (24) and
1 5
E= / 52 P(s)ds. (27)
0

optimizing in § < 1 we find

571 = [—C’lR{1+log+ R} f] +1
and then letting P — s we deduce

Theorem 2 There ezists a constant Cy such that the Nusselt number for the
infinite Prandtl number equation is bounded by

N <1+ C;R7 {1+log+R}%n%.

If no additional information is given then, using n < N in the theorem
above we recover the result

I 1 2
N <1+ C$R*{1+log, R}

of ([16]). The theorem brings in the exponent 2/7 as long as n is not varying
too much with R.

Discussion

There is no proof that the Nusselt number cannot ever scale like R for ex-
ceedingly large R. The experimental data do not seem however to encounter
this behavior. Mathematically, the Nusselt number represents the maximum
(among all possible invariant measures) of the expected value of the diameter
of the global attractor in the energy dissipation norm. The functions on the
attractor are not arbitrary, and may have certain properties that explain the
experimentally observed bounds ([11]). In this paper we showed that if the

ratio
n (VT -T))
N~ (VTR
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is small then the Nusselt number dependence on Rayleigh is depleted.
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Introduction

Although turbulence presents some of the most challenging unsolved prob-
lems in theoretical physics and applied mathematics, there are quantities
we may hope to be able to bound even when we cannot compute them ex-
actly. In this report we describe some of the ways of doing this within the
context of a flow in a shear layer with injection and suction at the bound-
aries. We obtain bounds on the rate of viscous energy dissipation, valid for
turbulent flows as well as for any laminar (steady or unsteady) flows, that
may be directly compared to that in an exact solution for a flow with the
same boundary conditions.

The quantitative study of upper bounds for turbulence was largely initi-
ated by Howard in the early 1960s with his formulation of a variational prin-
ciple for bounds on the ensemble averaged rate of energy dissipation £ for
statistically stationary flows [1]. That theory was developed by Busse and
collaborators [2] and applied to a variety of shear flow and convection prob-
lems. In this work we utilized the “background field” method, a mathemat-
ical device introduced in 1941 by Hopf [3] which has been further developed
and extended during the 1990s [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].
This approach produces estimates on long time averages of bulk dissipa-
tion without any statistical hypotheses. Applied to problems with sufficient
symmetry so that Howard’s statistical stationarity hypotheses may be in-
voked, the two approaches have been found to share a related mathematical
structure [18] and have in many cases produced similar estimates [19].
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Wang [20] recently used Hopf’s approach for general flow geometries to
show that the dissipation rate € is typically bounded independent of the
viscosity (v) when v — 0 as long as there is no flux at the boundaries. If
there is flux (a normal component) at the boundary, then Hopf’s original
estimates, where the a priori bound varies exponentially with the Reynolds
number (Re), are generally the only known limits. For the flows considered
in this work we find that the upper bound for the specific problem under
consideration with mass flux at the rigid boundaries does not exhibit such
an unphysical exponential dependence on the viscosity or the Reynolds
number. On the other hand, in many cases of turbulent shear flows along
highly symmetric smooth boundaries, the empirical logarithmic friction law
[21] suggests that € scales ~ v0 with corrections proportional to (log Re) ™2
as Re — oo. In the presence of suction, we find that the lower estimate
of any upper bound on ¢ provided by the exact solution is itself above
that predicted by the logarithmic friction law, in accord with the upper
bound. Hence this model and the analysis described here is an important
example for upper bound theory: the upper bound scaling in the vanishing
viscosity limit is sharp and only the prefactor could possibly be improved
in the high Reynolds number limit. The details of the methods of analysis
and the calculations, both analytic and computational, can be found in our
complete presentation of this project [22].

Statement of the problem

We consider a layer of incompressible (unit density) Newtonian fluid with
constant kinematic viscosity v confined between parallel rigid planes sepa-
rated by distance h. The bottom plate, at y = 0, is stationary and the top
one at y = h moves with speed U* in the z-direction. There is also uni-
form injection of fluid into the layer with speed (flux) V* on the top plane
and fluid is removed uniformly at the same speed on the bottom plane.
The velocity field is u = iu; + juy + ku, and the conditions at the (rigid)
boundaries are thus

u = —jV* at y=0, (1)
u = iU*-jV* at y=h. (2)

In the interior, the velocity field and the pressure field p(x,t) are governed
by the Navier-Stokes equations

—8—u+u-Vu+Vp = vAu 3)

ot
V.ou = 0. (4)

We consider periodic boundary conditions on all dependent variables in the
horizontal directions with periods L, and L,.
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The two nondlmensmnal control parameters of this problem are the
Reynolds number Re = =~ and the entry angle, 6, defined by tan = U* .
We use the notation

L. h L, 1/2
||fl|2=</0 dz /0 dy /0 dz|f<x,y,z>|2) , (5)

for the Ly norm and

T

<f>= limsup—l- f(t)dt. (6)
T—oo 1 Jo

for the largest possible long time average of functions of time. We identify
the largest possible long time averaged bulk energy dissipation rate per unit

mass in a solution as
e =g (Ivul3). (7)

A simple exact steady solution of the problem is the laminar flow
1—e Viulv
uz() = U" T—Retans (8)
Uy == '_V*

Uy = 0.

For 6 = 0 this solution reduces to plane Couette flow ucoyerte = iU*y/h.
For 0 < 0 < 90° and Retan® > 1 the flow has a classical boundary layer
structure near the suction plane at y = 0. That is, the velocity deviates
from a nearly constant bulk flow only in a layer of thickness

v h
6laminar = "}—* = m (9)

above the suction boundary:.
The energy dissipation rate in the steady solution is

) _ / <6u£) _ U*3 tand (10)
laminar = 3 dy = h 2tanh(%R€tan9)

Not unexpectedly, this expression reduces to the energy dissipation rate in
planar Couette flow as Re — 0 or 8 — 0:

U*2
lim  €gmingr = € =y 11
Re tan §—0 laminar Couette 72 ( )
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Large values of the Reynolds number may be achieved in various ways
for the flow geometry considered here, but we concentrate on two just par-
ticular extreme limits. First note that for fixed velocities and geometry, the
Reynolds number increases as the viscosity decreases: Re — oo as v — 0.
The laminar flow has two distinct simple limits for vanishing viscosity. For
6 = 0, ucouette retains its structure as v — 0. But for 6 # 0, the vanishing
viscosity limit is the constant flow field

lli% Wamingr = iU* = jV* (8 #0). (12)

That is, the limiting velocity vector field is constant parallel flow in the
bulk, continuous at the injection boundary, and discontinuous at the suction
boundary; 6;aminar — 0 as Re — oo at fixed 6 # 0 and h.

For § = 0, ecouette vanishes as v — 0, but for § # 0, the emerging
discontinuity at the suction boundary results in a residual dissipation:

. tanf U*3
lli% €laminar = B h (6 #0). (13)

This residual dissipation is a manifestation of 10 scaling in the vanishing
viscosity limit, i.e., the energy dissipation rate is nonvanishing and inde-
pendent of the viscosity as Re — oo. Dimensional analysis insists that € be
composed of the cube of a velocity scale divided by a length scale, exactly
the content of equation (13) with a geometry-dependent prefactor, i.e., the
angle 6. Such scaling is often associated with high Reynolds number energy
dissipation in the presence of a turbulent energy cascade, but this flow is an
example of a steady laminar flow in which the dissipation takes place on an
ever smaller length scale (§;gminar) Which disappears in the zero viscosity
limit. One of the major points of this study was to compare this laminar
dissipation rate to an upper limit valid for any solution of the Navier-Stokes
equations, even solutions corresponding to turbulent flows.

The Reynolds number also becomes large for fixed velocities and viscos-
ity as the layer thickness increases: Re — oo as h — 00. The semi-infinite
layer is a trivial limit for § = 0 at fixed U*, but for § # 0, the laminar
solution with suction on the boundary has the nontrivial limit

Jim Wigmingr = iU*(1 - e V/Slaminar) _ 5V* (6 £ 0). (14)
—00

Then the energy dissipation rate per unit horizontal area is

, b Bug\? tanf __,
Eiaminar = hl—l-»n;o v /0 ( ayz) dy = TU s (15)

independent of the viscosity.
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Summary of results

We explored the stability characteristics of the steady laminar solution
in the Re — @ plane. Energy stability theory [23] was used to search for
sufficient conditions for absolute stability, establishing that for sufficiently
large values of the injection angle (6 > 3°) or sufficiently small values of
the Reynolds number (Re < 82), the steady laminar flow is indeed abso-
lutely stable. We also used linear stability theory [24] to establish sufficient
conditions for instability, finding that for sufficiently small but nonzero an-
gles (0 < § < .001°) the laminar flow is linearly unstable at high Reynolds
numbers. This is consistent with a previous stability analysis for the semi-
infinite layer [25]. Instability of the steady flow does not prove that turbu-
lence necessarily follows, but it is highly suggestive that turbulent flows may
appear at high Reynolds numbers with sufficiently small injection angles.

Using the background field method we proved [22] that for any flow
with Reynolds numbers Re > 2V,

e<eg= ! <1+§ta 20(1—£ L)) U*s. (16)

2\/— 2 Re h

This is the explicit upper bound valid for any solution, steady, unsteady or
turbulent, of the Navier-Stokes equations with these boundary conditions.
This estimate displays the 19 scaling at high Reynolds numbers:

€ (1+8tn6)U*3 as R 00 17
= e — 00.
B™on h

Note also that the upper bound on the energy dissipation rate per unit
horizontal area of the suction boundary is finite in the limit of a semi-
infinite fluid layer:

€'S593§’11er;°h63 2\/_.

The upper bound on the energy dissipation rate—valid even for turbu-

lent solutions of the Navier-Stokes equations—scales precisely the same as

that in the steady laminar solution with regard to the viscosity as v — 0.

The laminar dissipation and the upper bound on turbulent dissipation ex-

hibit a residual dissipation in the vanishing viscosity limit when 8 # 0.
That is, both €1gminer and €p obey

(1 + 8 tan 0) U, (18)

*3
£~

F(0) as Re— oo. (19)

Hence the turbulent bound and high Reynolds number laminar energy dis-
sipation for flows in this geometry differ only by just a prefactor that de-
pends only on the injection angle. This establishes the sharpness of the
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upper bound’s scaling for these boundary conditions. This system provides
a mathematically accessible example of the delicacy of corrections to high
Reynolds number scaling—such as logarithmic terms as appearing in the
law of the wall—to perturbations in the boundary conditions. This obser-
vation is consistent with the sensitivity of logarithmic corrections to wall
roughness or other disturbances in turbulent shear flows [26, 27).
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Trying a metric on atmospheric flows
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1 Introduction

It is not obvious how to introduce, in a natural and intrinsic way, a metric struc-
ture in the configuration space of a fluid, i.e., in a space with (p, T, %) = (density,
temperature, velocity) as coordinates. Such a lack of geometric structures im-
poses many restrictions on the kind of computations that one can perform: it is
impossible to talk of “the distance” between two states of the fluid, i.e., between
two positions with coordinates (p1,T1, 1) and (p2, T2, @2) respectively; neither is
it possible to talk of “the norm” of the vector formed by the rate of change of the
dynamical variables (dp/dt,dT/dt,dii/dt); it is not possible to consider the angle
between two such vectors; there is no volume element defined in configuration
space, therefore, it does not make sense to talk about “the density” of a distribu-
tion of points in that space; etc. These limitations are too restrictive since, to name
but a few examples: 1) A norm is needed when studying the (in)stability of flows,
especially when the linear growth of the perturbations is only transient [[6]]; 2)
The angle between two directions is required in order to determine how strongly
a given perturbation projects along an optimal perturbation ([7]]; 3) A volume
element is needed in order to determine the density distribution of ensemble sim-
ulations of flows [[8]]. Therefore, it is often opted to circumvent these limitations
by introducing an acceptable, if somewhat arbitrary, metric tensor [[9, Hanifi A.,
Schmid P. and Henningson D.S., Transient growth in compressible boundary layer;
Phys. Fluids 8 (1996) 826-837.]]. In the case of incompressible, isentropic flows,
the kinetic-energy metric is justifiably employed [[6, 9]].

In [[5]] we constructed a natural metric tensor in the configuration space of
a compressible fluid in local thermal equilibrium and in uniform motion. In the
present work, we try this metric on atmospheric flows, i.e., on strongly non-uniform
flows, and show that even in this case the metric leads to interesting and useful
results. In order to avoid possible misunderstandings: we are now working on the
derivation of a metric that includes the gradients of the extensive variables from
the outset; this metric will be much better suited to deal with non-uniform flows
than the one considered in the present work.

1Corresponding author; e-mail: pasmante@knmi.nl
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2 Metric of a gas in thermal equilibrium

In [[5]] we constructed a natural metric tensor in the configuration space of a com-
pressible fluid in local thermal equilibrium and in uniform motion. In this Section,
we briefly review its derivation. The thermodynamical variables (p, T, #) can be
seen as the parameters defining the probability distribution of the microscopic,
thermal fluctuations. The distance between two probability distributions [[2]],
e.g., parametrized by (p, T, @) and by (p+dp, T + dT, @+ dif) respectively, is given
by the so-called Fisher metric [[3]]. It is computed as follows: 1) For a system
in local thermal equilibrium and occupying a volume V, the probability density
of finding N identical particles of mass m possessing a total linear momentum

M (én) and a total energy E(én) is

pn(Eni v, B, R) = explyN — BE(EN) + K- M(En))/AVNI1Z(v,8,R), (1)

where £ stands for the positions and the momenta of the particles and the grand-
canonical partition function Z(vy, 8, K) is

Z(7,8,8) = /d&v exp [’YN —BE(N)+ K- H(gN)] JEN N1 (2)
N

The intensive parameters characterizing the thermal bath are: the inverse temper-
ature [, the chemical potential u = v/ and the velocity @ = K/8. In accordance
with Galilean invariance, the chemical potential of the fluid moving with velocity
@ is shifted by an amount mu2/2 with respect to the chemical potential of the
fluid at rest. One identifies In Z(v, 3, K) as the (dimensionless) thermodynamic
grand potential, i.e., In Z(v, 8, 8) = BPV, where P = P(v, (3, R) is the pressure. 2)
In the intensive-variables coordinate system 8 := (v, 3, ) , the components of the
Fisher metric tensor, are given by g;;(0) := ((81npn/86°) (81npn/869)), where
the pointed brackets indicate an average taken over the distribution defined in (1).
These components turn out to equal,

@z 6*8P()
94) = 50505 =V ~pgi005 - (3)

In the case of an ideal gas In Z;geqi (v, 8, 8) = V 8732 exp(7y + (mx2/20)). In this
case, the metric is diagonal when expressed in the coordinate system (p, T, @); the
contribution of a volume element V' to the squared distance between two states
(p,T,%@) and (p+dp,T + dT, @ + diZ) turns out to be

2 2
(dL)?deal = % [(%e) + g (dﬁqT‘) + m,@dﬁ dﬂ:| . (4)

This metric is not flat, however, there are two, conjugate flat connections. For
more details, see [[5]].
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3 Atmospheric states

The metric described in the previous Section is the most natural one when dealing
with fluids in thermal equilibrium and in uniform motion. In practice, however,
one is more interested in non-uniform or even turbulent motion. Work is now under
way [[11]] in order to generalize the results in the previous Section to flows with
gradients in their configuration variables, e.g., in p, T and in 4. While waiting for
the results of this generalization, we decided to check the performance of (4) when
it is applied to mesoscopic-scale motions in the atmosphere. One of the first things
one wants to check is whether the three terms in eq. (5) are, statistically speaking,
of the same order of magnitude. Suppose that at two different times £; and s,
we are given two atmospheric configurations which are characterized by velocity,
temperature and density fields, i.e., by @;(R) = @(R,t;), T:(R) = T(R,t;) and by
pi(R) = p(R,t;) with i = 1 and 2, respectively. Define Ap(R) = p; — p1, AT(R) =
T, — T3, etc. From the available atmospheric data it follows that, on the average,
|Ap| € p, |AT| « T and mA# - A@ « kT. Therefore, in equation (4) we can
replace the infinitesimals di,dT” and dp by the finite differences A#, AT and Ap;
subsequently we sum the contributions from each volume element V « d°R so
that the total distance between these two atmospheric states is

Ap 2 3/AT\N®> m . ..
(7) +§(T> +ﬁAu~Au] (5)

where the quantities p, Ap, T', AT and A# are all functions of the position R.
The constants in (5) are: Boltzmann’s constant k (1.38066 x 10~23 Joule/Kelvin)
and m, the mass of an ‘air molecule’ (28.9644 x 1.67265 x 1027 kgr). Notice
that (AL)2 is a dimensionless quantity; its value is independent of the spatial
coordinate system and of the coordinates system used to describe the dynamical
variables.

Most data are available on isobaric surfaces; this turns out to be convenient for
our calculations because, when passing from the space coordinates R= (z,y, 2) to
pressure coordinates (z, y, p), the following simplifications take place: 1) Due to the
hydrostatic balance, the volume element times the density, dz dy dz p, appearing
in the integral (5) becomes g~'dz dy dp (g being the gravity constant); 2) At fixed
pressure, density and temperature are inversely proportional to each other so that
the first term in the integral (5) can be approximated as

(5),=(5),

p)p \T)p

as long as Ap « p, AT « T. Then the first two terms in the integral (5) can be
combined into one so that (5) becomes

(AL)? = /d3R p

2
(AL)? %“g’l/d:cdydp > (E) + kﬂTAa‘-Aﬁ]. (6)

2\ T
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For the sake of simplicity, we shall call the first term “the temperature contribu-
tion”. It can be shown [[10]] that, on the average, by using isobaric data with
p1 = p2 one underestimates the contribution of the first two terms in (5).

For later use, we introduce also the definition of a “distance” in terms of the
geopotential height Z(z,y, p, t):

(ALY =g [dsdydp|az], (7)

where AZ = Z(z,y,p,t2) — Z(z,y,p, t1).

All the results presented below were computed on fixed pressure levels, i.e.,
the integral over p in the integrals (6) and (7) were not performed. Moreover,
the constant of gravity g has been ignored and the results of integrating over the
horizontal coordinates (z,y) have been divided by the total area of integration.
Consequently, in the results presented below, (AL)? is dimensionless while (AL)?I
has dimensions length?.

We can express (AL)? in terms of the gradients of the geopotential ®(z, y, p, t) =
9Z(z,y,p,t) as follows: 1) Assuming hydrostatic balance, the temperature on the
p-surface is related to the vertical gradient of the geopotential by T = —R~1p(8®/p),
2) At midlatitudes, assuming geostrophic balance, the (horizontal) velocity is re-
lated to the horizontal gradient of the geopotential by @ = f~1z A V® where fis
the Coriolis parameter; therefore

AT _A0%/0p) g M Ag. Ag=—L P |ave ’
T |p 02/0p kT D

Consequently, when these assumptions are valid, a very small value of (6) with
the volume integration restricted to the extra-tropical regions means that the
corresponding geopotentials have very similar values over the 3D, extra-tropical
atmosphere. Similarly, a very small (7) restricted to the extra-tropical areas im-
plies a very small value of (6) restricted to the same extra-tropical area. However,
horizontal and vertical gradients of ®(z,y,p,t) contribute with different weights
to (6); moreover, in tropical regions and whenever deviations from geostrophy are

appreciable, it is not possible to relate (AL)2 to the geopotential gradients.

4 Data description and results

We used ECMWF analysis data on the temperature, zonal wind velocity, meridi-
onal wind velocity? and geopotential height fields on the 850, 500, 250, 100 hPa
isobars of 14 Northern hemisphere winters (December through February) corres-
ponding to the years 1982 through 1995. These data sets contain 4 time steps
per day at 00 GMT, 06 GMT, 12 GMT and 18 GMT each. We wanted to check
whether the three terms in eq. (5) are, statistically speaking, of the same order of
magnitude. We took the fields of the first 15 days in December 1995 at 00 GMT

2The vertical velocity gives a negligible contribution to the integral (1).
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and computed, separately, the two terms in eq. (6) for fields ranging from 6hs up
to 360hs after the chosen day for each of these 15 days and for each isobar; finally,
we averaged the results over the 15 initial days.

The results are presented in Figs. 1 and 2. The general picture one gets agrees
with the theoretical expectations: at short time differences, less than one day,
the growth is dominated by the deterministic part of the dynamics (“ballistic”
regime) and (AL)2  (t2 —t1)?; at later time differences, approximately between
one and five days, the time-correlation (“memory”) is lost and the motion ac-
quires a random-walk or diffusive character so that d (AL)? /dt « 2D where D is
a diffusion-like constant; finally, |AL| reaches the average distance between two
arbitrary points on the attractor and saturation sets in around a time difference
of approximately 15 days. However, a systematic, weak increase is observed also
at these relatively large time differences. Since the data has not been detrended
this trend is probably due to systematic seasonal effects; in fact, a couple of tests
that we have performed validate this conjecture.

The “temperature contribution” has approximately the same value on all pres-
sure surfaces. On the lowest and highest pressure surfaces, i.e., on the 850 hPa
and 100 hPa pressure surfaces, the square of the “temperature term” 3 (%)2 is
comparable to the kinetic energy term ;7 A Ad. On the other pressure surfaces,
the kinetic energy term is appreciably larger than the square of the “temperat-
ure term”, the largest difference occurs on the 250 hPa pressure surface where
the kinetic-energy term is one order of magnitude larger than the temperature
term. We interpret this as a manifestation of large velocity fluctuations in the
atmospheric jets. In order to check this and in order to get an idea about any
possible spatial dependence of the results, we looked at the Northern (see Fig. 1)
and Southern (not shown) extratropical and at the tropical (see Fig. 2) regions
separately. As one can see, both contributions to (AL)? are a factor 1 /8-th to
1/6-th smaller in the tropics than in the extratropics, the only exception being the
100 hPa pressure surface where they are approximately 1/2 (kinetic-energy term)
to 1/4-th (temperature term) smaller than in the extra-tropics. All the differences
between tropical and extratropical regions, as well as those between Northern and
Southern extratropical regions, are compatible with associating stronger velocity
fluctuations with the jet areas.

A similar study was performed using (AL)?,, the geopotential-height defini-
tion of the “distance” as in equation (7). For this computation we used ECMWF
analysis of geopotential height on 850, 500, 250 hPa pressure levels for the same
_period, i.e., December 1995. In this case, tropical squared “distances” are, ap-
proximately, twenty times smaller than those in the extratropics; the 250 hPa
pressure surface, which strongly overlaps with the jets, gives a squared “distance”
five times larger than the 850hPa surface. The most striking differences observed
between the geopotential-height results and those obtained with (6) are: 1) when
using the geopotential-height distance (AL)?_I, the lack of saturation even after
17days® is particularly evident on the 500 hPa and 250 hPa pressure surfaces in

3We extended the maximum time-lag to 20 days and still did not find signs of saturation on
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the extratropics, 2) in the tropical area, the tidal oscillation is more clearly visible
with the geopotential-height definition and 3) the difference between tropical and

extratropical regions is stronger with the geopotential-height distance (AL);.

5 Conclusions and comments

The definition of a “distance” as given by eq. (5) was obtained by considerations
about fluids in local thermal equilibrium and in uniform motion. In spite of this,
we have found that it gives reasonable results also in the atmosphere. More spe-
cifically: 1) Even in the jet regions, the kinetic-energy term is, at most (remember
that some density fluctuations have been neglected by taking isobaric coordin-
ates), 10 times larger than the other contributions. 2) The magnitude of the wind
and temperature terms are of the same order on the 850 hPa level over the whole
globe. The level on which the wind contribution is more dominant is the 250 hPa
surface. 3) Extra-tropical regions contribute, per unit area, approximately 5 times
the contribution of tropical ones. If one uses the geopotential-height measure then
this difference grows to become a factor of approximately 25, i.e., the geopotential
measure gives an overwhelming weight to the extra-tropical regions.

We have extended the distance definition by including humidity. It turned out
that this variable gives a contribution comparable to the temperature terms only in
the lower tropical atmosphere; this agrees with one’s expectations. We performed
other checks, like searching best analogues in the record available to us. For more
details, please refer to [[10]]. As already mentioned, we are developing the metric
generated by non-uniform flows, i.e., with gradients in the density, temperature
and velocity.
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Fig. 1. Average growth with time of the wind and temperature contributions
to the distance in the Northern extra-tropics (>30°N) on the 850mb, 500mb,
250mb and 100mb isobar levels. Notice the difference in scales.

Fig.2. As in Fig. 1 but now in the tropical region, 30°N-30°5. Notice the
difference in scales, also with respect to Fig. 1.



ON THE ANALOGY BETWEEN TWO-DIMENSIONAL
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1. Introduction

Two-dimensional flows with high Reynolds numbers have the striking prop-
erty of organizing spontaneously into coherent structures. The robustness
of Jupiter’s Great Red Spot, a huge vortex persisting for more than three
centuries in a turbulent shear between two zonal jets, is probably related to
this general phenomenon. Similarly, it is striking to observe that galaxies
themselves follow a kind of organization revealed in the Hubble classifica-
tion or in de Vaucouleur’s RY/* law for the surface brightness of ellipticals
(Binney & Tremaine, 1987). We shall discuss some analogies between stel-
lar systems and 2D vortices and show that their structure and organization
can be understood from relatively similar statistical mechanics [for a short
review on this subject see Chavanis (1998a)].

2. Equilibrium states of stellar systems and 2D vortices

2.1. THERMODYNAMICS OF STELLAR SYSTEMS

Basically, a stellar system can be considered as a collection of N point
masses in gravitational interaction described by the Hamilton equations:
m — = —
dt  ov;’ dt or;

m2
H=Z%mvf—ZG . (2)

i=1 i<j U

When N is large, it is neither feasable nor useful to describe the motion
of each individual star in detail and one is forced to recourse to statistical
methods. We shall be particularly interested in the distribution function
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f(r,v,t) which gives the average density of stars with position r and veloc-
ity v at time t. For short times, the evolution of the system is collisionless
and the distribution function is solution of the Vlasov-Poisson equations

of  Of L pof _
F=-Vd, A®=4rG / fddv 4)

where @ is the gravitational potential. At later times, the collisions will
substantially deviate the stars from their unperturbed mean field trajecto-
ries. By analogy to what happens in a gas as a result of “molecular chaos”,
one expects that the system will ultimately relax towards an isothermal
distribution R

f = Ae Pm5+9) (5)

which maximizes the Boltzmann entropy at fixed mass and energy. Sim-
ple arguments of kinetic theory show that the relaxation time is given by
trelaz ™~ %tp where tp is the dynamical time. This relaxation time is
consistent with the age of globular clusters so most methods of statistical
mechanics were initially developed for such systems.

However, the statistical mechanics of self-gravitating systems makes
problems. This is due to the unshielded long-range nature of the poten-
tial and its singularity at short distances. The problems are first apparent
when we realize that the solutions of the Boltzmann-Poisson system (4) (5)
have an infinite mass since the star density decays only as r~2 at large dis-
tances. This means that there is no equilibrium state in an infinite domain:
one can always increase entropy by spreading the density profile. One is
forced therefore to invoke incomplete relazation and use truncated models
instead of (5). The Michie-King model takes into account the escape of high
energy stars and gives relatively good fits with globular clusters. Another
possibility, used by theorists, is to work inside a box against which the stars
bounce ellastically. However, even when the system is confined to a box,
statistical equilibrium does not exist in general: for low energies, the system
takes a “core-halo” structure and can always create entropy by making the
core denser and denser (and hotter and hotter) up to a black hole singular-
ity. This instability, known as gravothermal catastrophe, can be related to
the negative specific heat of self-gravitating systems: by losing heat, they
grow hotter and evolve away from equilibrium!

For elliptical galaxies, the relaxation time is much larger than the age of
the universe and their evolution is collisionless. Yet, these systems seem to
have reached a universal equilibrium state as evidenced by de Vaucouleur’s
RY* law. In 1967, Lynden-Bell showed that the solutions of the Vlasov-
Poisson equations are not smooth but involve intermingled filaments at
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smaller and smaller scales. This is the result of a mizing process in phase
space associated for example with the damped oscillations of a protogalaxy
initially far from mechanical equilibrium. During this process, the strong
fluctuations of the gravitational field redistribute energy between stars and
provide a mechanism analogous to collisions in a gas. On account of these
fluctuations, the system is expected to achieve, on a coarse-grained scale, an
equilibrium state on a very short time scale ~ tp. This is called violent re-
lazation. Due to the collisionless nature of the evolution, the coarse-grained
distribution function can only decrease by internal mixing and must satisfy
everywhere f < 79, where 79 is the maximum phase-space density of the ini-
tial state. This results in an effective “exclusion principle”, like in quantum
mechanics, and leads to the Fermi-Dirac distribution at equilibrium

F 7o
= ) 6
f 1+ AebTo(% +2) (©)

This distribution function also suffers the infinite mass problem and specific
truncated models must be introduced. However, when the system is con-
fined to a box there exists now a global entropy maximum for any accessible
energy. For low energies, it is made of a degenerate core surrounded by a
halo of stars as calculated by Chavanis & Sommeria (1998a). Like in quan-
tum mechanics, the exclusion principle has a stabilizing role and removes
the problems associated with the singularity of the gravitational potential
at short distances.

2.2. CLASSIFICATION OF 2D VORTICES

Two-dimensional incompressible and inviscid flows are described by the
Euler equations

ow
E‘ + uVw =0 (7)
u=-zAVy, A = —w (8)

where 1 is the stream function and w the vorticity. It is often convenient to
approximate the vorticity field by a cloud of point vortices with individual
circulation <. This system has a Hamiltonian structure

dz; _ OH dy; _ OH o)
dt y;’ dt Oz
1
H = ——%;’yzlnnj (10)

where the coordinates (z,y) are canonically conjugate. Point vortices be-
have therefore like particles in interaction (like stars or electric charges)
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except that they produce directly a velocity, not an acceleration. This is
therefore a very peculiar Hamiltonian system.

The statistical mechanics of point vortices was first considered by On-
sager (1949) who showed that negative temperatures were possible. He pre-
dicted that, at negative temperatures, point vortices would cluster into
“supervortices”. His theory was further developed by Joyce & Montgomery
(1973) in a mean field approximation. They found that the equilibrium

state is given by
w = Ae P1¥ (11)

where (3 is the inverse temperature (the Lagrange multiplier associated with
the energy constraint). At negative temperatures, the mean field equation
obtained by substituting (11) into (8) is formally similar to the system
(4)(5) and the interaction is “attractive” like gravity: the vortices clus-
ter into large-scale structures. At positive temperatures, the interaction is
“repulsive” like for electric charges, and the vortices are pushed against
the boundaries. Consequently, the analogy between 2D vortices and stellar
systems is intimately related to the existence of negative temperatures in
2D turbulence! However, unlike gravity, there is no gravothermal catastro-
phe because the Hamiltonian is purely “potential”: point vortices cannot
collapse otherwise their energy would not be conserved.

The analogy between stellar systems and 2D vortices is not limited
to the point vortex approximation. The Euler equations for continuous
vorticity fields are similar to the Vlasov-Poisson system and can generate
a mixing process associated for example with the nonlinear developement
of the Kelvin-Helmholtz instability or with vortex merging. As a result,
a large-scale coherent structure is formed which can be considered as a
maximum entropy (i.e most mixed) state with distribution:

o0

w= 1 + \efooy

(12)
similar to Lynden-Bell’s statistics (Miller 1990, Robert & Sommeria 1991).
In general, the relaxation is incomplete because the fluctuations necessary
to provide ergodicity are effective only in a finite region of space and for
a finite period of time. Therefore, isolated vortices can be considered as
restricted maximum entropy states or “maximum entropy bubbles”.
Unlike the stellar case, vorticity can be positive and negative which im-
plies a wider variety of structures like monopoles, rotating or translating
dipoles or tripoles. The interesting problem in that context is to obtain a
classification of the “zoology” of vortices met in 2D flows. A step in that
direction was made by Chavanis & Sommeria (1996,1998b) in a particular
limit of the statistical theory (the strong mixing limit) where the maximiza-
tion of entropy becomes equivalent to a kind of enstrophy minimization.
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3. Relaxation towards equilibrium

3.1. DYNAMICAL FRICTION OF STARS

The relaxation of stars towards the isothermal distribution (5) was treated
by Chandrasekhar (1943) by analogy with Brownian motion. Since the de-
flections due to two-body encounters are weak but numerous, he wrote a
Fokker-Planck equation for the evolution of the distribution function

of 1 8 (AvHAvY) 0 (Av#)
at 2 0ukdvY (f At )‘Eﬂ(f At ) (13)

and calculated the moments of the velocity increments from a heuristic

Langevin equation
Av = —¢vAt + B(At). (14)

The term B(At) is a stochastic force and a dynamical friction —€v must
be introduced in order to recover the Maxwell-Boltzmann distribution at
equilibrium. When substituted in the Fokker-Planck equation, this yields

of 0 of

where D is the diffusion coefficient and £ the coefficient of dynamical
friction. The condition that the Maxwell-Boltzmann distribution (5) is a
stationary solution of (15) requires that £ and D be related according to the
Einstein formula £ = DBm which expresses the “fluctuation-dissipation”
theorem. Equation (15) can also be obtained from a general Maximum
Entropy Production Principle (Chavanis, Sommeria & Robert 1996). In this
formalism, 3 is the Lagrange multiplier associated with the conservation
of energy and the Einstein relation is automatically satisfied. The same
variational principle can be advocated for the coarse-grained relaxation of
collisionless stellar systems and leads to the equation (Chavanis 1998b):

¥ f  _Of 0 of — =
L a—v{D(a—f,—Jrﬂf(no—f)v)}. (16)

The nonlinearity f(ny — f) of the effective friction accounts for the degen-
eracy discovered by Lynden-Bell at equilibrium. From equations (15) and
(16) one can derive stationary distributions with a finite mass known as
Michie-King models (possibly degenerate, Chavanis 1998b):

—Bnoe _ ,—Bnoem
f=A(ePme — g=Pmem)  F—pyC ©

A + e~ Bmoe

(17)

These models take into account the escape of stars with energy € > €.
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3.2. SYSTEMATIC DRIFT OF POINT VORTICES

Physically, the dynamical friction experienced by a body moving through
a stellar system arises from the attraction that the body experiences for
the region of enhanced density that tails behind it as a wake behind a
ship. It is therefore the result of a polarization process: the star attracts
the surrounding mass and in response the system exerts a “back-reaction”
which is responsible for its decceleration. We can use a similar approach to
show that a point vortex in 2D turbulence experiences a systematic drift
normal to its mean field velocity. This drift can be calculated precisely with
a linear response theory which yields (Chavanis 1998c):

(V)darige = —DpyVip. (18)

The drift coefficient £ = Dy is an amuzing generalization of the Einstein
relation to the case of point vortices. The direction of the drift is consistent
with Onsager theory: when 8 < 0, the drift is “attractive” and the vortices
cluster into supervortices and when # > 0 the drift is “repulsive” and
the vortices are ejected against the boundaries. This can be understood
as follows. Consider a collection of N point vortices at equilibrium. When
B < 0, the density of these “field” vortices decreases from the center to
the periphery of the domain. A “test” vortex moving through this medium
modifies locally the vorticity field and produces a polarization cloud which
amounts typically to a rotation of the surrounding vortices. This creates
more density behind it than in front of it. Therefore, the retroaction of the
field vortices leads to a drift of the test vortex directed inward.

If we apply this reasoning to all point vortices in the system, we can
derive the following Fokker-Planck equation (Chavanis 1998c):

0

5+ (V)Vw = V(D(Vw + Brw V) (19)
for the relaxation of the average vorticity. At equilibrium the drift is pre-
cisely balanced by random scattering and the distribution (11) is settled.
Equation (19) can also be obtained from the MEPP. Its generalization to
continuous vorticity fields yields (Robert & Sommeria 1992):

%—f VD = V{D(Vw+ﬂ5(ao —B)Vw)}. (20)
Equations (19)(20) conserve energy, increase entropy and converge towards
the equilibrium distributions (11) (12). The diffusion coefficient is space de-
pendant (related to the local fluctuations of the vorticity) and can “freeze”
the system in a subdomain (Robert & Rosier 1997), giving further support
to the concept of incomplete relaxation and “maximum entropy bubbles”.



53

References

Binney, J. and Tremaine, S. (1987) Galactic Dynamics (Princeton Series in Astrophysics)

Chandrasekhar, S. (1943) Principles of stellar dynamics (Dover)

Chavanis, P.H. (1998a) From Jupiter’'s Great Red Spot to the structure of galaxies:
statistical mechanics of two-dimensional vortices and stellar systems, Annals of the
New York Academy of Sciences, Vol. 867, pp. 120-141

Chavanis, P.H. (1998b) On the coarse-grained evolution of collisionless stellar systems,
Mon. Not. R. Astr. Soc., Vol. 300, pp. 981-991

Chavanis, P.H. (1998c) Systematic drift experienced by a point vortex in two-dimensional
turbulence, Phys. Rev. E, Vol. 58, pp. R1199-R1202

Chavanis, P.H. and Sommeria, J. (1996) Classification of self-organized vortices in two-
dimensional turbulence: the case of a bounded domain, J. Fluid Mech., Vol. 314,
pPp- 267-297

Chavanis, P.H. and Sommeria, J. (1998a) Degenerate equilibrium states of collisionless
stellar systems, Mon. Not. R. Astr. Soc., Vol. 296, pp. 569-578

Chavanis, P.H. and Sommeria, J. (1998b) Classification of robust isolated vortices in
two-dimensional hydrodynamics, J. Fluid Mech., Vol. 356, pp. 259-296

Chavanis, P.H., Sommeria, J. and Robert, R. (1996) Statistical mechanics of two-
dimensional vortices and collisionless stellar systems, Astrophys. J., Vol. 471, pp.
385-399

Joyce, G. and Montgomery, D. (1973) Negative temperature states for the two-
dimensional guiding-center plasma, J. Plasma Physics, Vol. 10, pp. 107-121

Lynden-Bell, D. (1967) Statistical mechanics of violent relaxation in stellar systems, Mon.
Not. R. Astr. Soc., Vol. 136, pp. 101-121

Miller, J. (1990) Statistical mechanics of the Euler equation in two dimensions, Phys.
Rev. Lett., Vol. 65, pp. 2137-2140

Onsager, L. (1949) Statistical hydrodynamics, Nuovo Cimento Suppl., Vol. 6, pp. 279-287

Robert, R. and Rosier, C. (1997) The modelling of small scales in two-dimensional tur-
bulent flows: a statistical mechanics approach, J. Stat. Phys., Vol. 86, pp. 481-515

Robert, R. and Sommeria, J. (1991) Statistical equilibrium states for two-dimensional
flows, J. Fluid Mech., Vol. 229, pp. 291:310

Robert, R. and Sommeria, J. (1992) Relaxation towards a statistical equilibrium state in
two-dimensional perfect fluid dynamics, Phys. Rev. Lett., Vol. 69, pp. 2776-2779



Coherent Structures, Intermittency,

and Cascade



SELF-SIMILARITY AND COHERENCE IN THE TURBULENT
CASCADE

JAVIER, JIMENEZ
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1. Introduction

It has been known for some time that intermittency is an inevitable conse-
quence of multiplicative cascades, which arise naturally from two assump-
tions [8]:
1. Causal locality, which implies that a variable v,, associated with the
cascade step n, depends only on the value of a single ‘parent’ in the
preceding cascade step, so that its probability distribution p,, is

Pu(vn) = [ W (enlon-1; m)pa-1(vn-1) dvn-1. (1)

This is in contrast to more complicated functional dependences, such
as on the values of v,_; in some extended spatial neighbourhood, or
on several previous cascade stages.

2. Scale similarity, which implies that the transition probability distribu-
tion W is independent of the cascade step n, and depends only on the
ratio vy /vp_1.

The model assumes that each step generates eddies with smaller length
scales Az, usually Ag27". After the initial effects are forgotten, the proba-
bility distribution of v, is completely determined by the distribution W of
the ‘breakdown coefficients’ vy, /v,—1 [6]. These assumptions are known to
describe well some of the statistical properties of isotropic turbulence, and
in particular the scaling exponents of the velocity structure functions [11],

Sp = (|Aups[’) ~ Az, (2)
where () stands for global averaging, and
Aupg = u(z + Az/2) — u(z — Az/2). (3)
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This is so even if there is no precise implied dynamical model of how the
multiplicative process is related to the Navier-Stokes equations [7].

The converse of the previous discussion is not true, and intermittency
does not necessarily imply a multiplicative cascade. Structural observations
of numerical and experimental turbulent flows show for example that the
vorticity is partially organized into coherent filaments with large aspect
ratios, whose lifetimes are long compared to those which would correspond
to their smallest dimensions [10]. The concept of ‘scale’ is difficult to apply
to these anisotropic structures, and several models have been proposed in
which the flow is described in terms of self-similar and coherent components.

It was argued in [8, 10] that such differentiation into components is a
natural consequence of intermittency itself, and that any intermittent field,
as opposed to a set with no spatial topology, is likely to develop a coherent
component which is essentially different from the background. This is be-
cause the first of the two assumptions above is violated, and the evolution
of the field variable generically depends on global, besides local, informa-
tion. The nonlocality of the interactions introduces the average intensity
of the fluctuations as an extra scale for the cascade, self-similarity is lost,
and strong structures behave differently from weaker ones. Thus, while self-
similarity is natural for variables, it is not a generic behaviour for fields in
which several elements at the same stage of the cascade are coupled to each
other.

In such cases, such as in three-dimensional turbulence, a full description
of the strong structures should include their geometry, which controls how
they interact with the background, but this has only been possible at the
moderate Reynolds numbers accessible by numerical simulations. Such flows
have very short inertial ranges, and it is difficult in them to study structures
whose dimensions are neither in the dissipative nor in the integral range
of scales. This was nevertheless the way in which vortex filaments with
diameters of the order of the Kolmogorov scale were first identified. Only
later could similar signals be educed from experimental flows at higher
Reynolds numbers. For a summary, see [7].

It was argued theoretically in [10] that these dissipation-scale struc-
tures should only be the most obvious manifestations of coherence, and
that a continuum of both weaker and stronger ones should be expected.
The former would have larger diameters and weaker vorticities, and could
perhaps be related to the low-pressure filaments observed in some experi-
ments [3]. The latter would have diameters below the Kolmogorov scale and
velocity differences comparable to those of the presently observed vortic-
ity filaments. Reliable numerical and experimental data are lacking for the
sub-Kolmogorov scales, but the purpose of this note is to discuss whether
evidence can be found in the available experiments for, or against, organized
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structures in the inertial range of scales.

Experimental data are analyzed in the next section, of which a more ex-
tended version can be found in [9]. The structure of filtered direct numerical
simulation fields is briefly described in §3, and conclusions are offered in §4.

2. Analysis of experimental data

The scaling properties of the inertial range have traditionally been charac-
terized by the probability density functions (p.d.f.s) of the velocity differ-
ences at different separations, and in particular by their structure functions.
It has been repeatedly noted, however, that statistical moments are poor
discriminants of the differences between probability distributions [4, 9, 12],
so that, even if is found that the structure functions scale approximately as
powers, as in equation (2), it is difficult to conclude from that observation
that the p.d.f.s of the breakdown coefficients are truly independent of the
length scale.

Here we study directly the probability distributions, using three time
series of the longitudinal velocity component in approximately isotropic
turbulence in low-temperature helium gas [2]. The Reynolds numbers are
Re) = 155, 760 and 1600. The range between the integral length L, and
the Kolmogorov scale 7 is 8,400 at the highest Reynolds number, and each
set contains 10* —10° integral scales. For more details, see [9]. Only the two
highest Reynolds numbers have clear power-law ranges in their spectra, and
they are the ones used below. The remaining set, whose Reynolds number
is comparable to those of numerical simulations, does not collapse well with
them.

We first discuss the p.d.f.s of the breakdown coefficients

W(g2az) = W(eaz/2e2a4). (4)

for the averaged dissipation

1 z+Az/2 P 2d 5
= — u T.
se= g5 [ _py ¥ 5)

They are roughly symmetrical in (0, 1), and approximately bell-shaped. It
was suggested in [14] that they can be characterized by their mid-point
values, W(0.5), which is where their maxima approximately occur. This
value varies with the separation [14] and with the dissipation in the par-
ent interval, which can be expressed as a velocity scale du = (eazAz)/3,
arguing against strict self-similarity of the cascade. It is given in figure 1,
where it is seen that the fluctuations with the lowest parent dissipations
at each length scale have narrower distributions, whose taller central peaks
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12.5

Figure 1. Midpoint value of the conditional p.d.f.s of the breakdown coefficients for the
surrogate averaged dissipation, as a function of the averaging length and of the ‘parent’
velocity increment. Rey = 1600. The diagonal dashed line represents the standard Kol-
mogorov cascade. ux = v/7 is the global Kolmogorov dissipative velocity scale, and v’ is
the one-component r.m.s. velocity. Areas in which there are not enough points to collect
statistics are marked in black.

correspond to the light region in the lower diagonal strip of the figure. This
implies that eddies with weak fluctuations break down into sub-segments
whose dissipations tend to be half of that of their parents, as would be
expected in an incoherent situation in which the parents are composed of
several uncorrelated smaller pieces. More intense fluctuations have more
spread distributions, with lower central peaks, suggesting coherence. This
effect is most pronounced at the smallest scales.

Another way of characterizing the cascade is to study directly the con-
ditional probability distributions of the velocity increments as a function
of the velocity increments of their parent intervals. This was done in [9]
for the data sets discussed here. If the cascade were completely self-similar
the conditional p.d.f.s would be universal, and their means and standard
deviations would be proportional to the velocity increment of the parent
interval,

(Auag|Augaz) = Augaz /2, (Aud |Augag) = Auia, /23 (6)

The second relation assumes Kolmogorov’s inertial scaling for the energy
spectrum. The first relation in (6) is approximately satisfied by the data,
but the second one is not, and the form of the conditional distributions
depends on Az. The conditional standard deviations are given in figure 2
for several separations in the inertial range. The dotted lines are equation



61

20

-
(4]

Std.(Au AxIAuzAx)/uK
=

7

A

—-%0 -60 -40 -20 0 20 40 60 80
AuzAx/uK

(&

Figure 2. Standard deviation of the conditional distributions of the velocity increments,
as a function of the separation and velocity increments of their ‘parent’ intervals. Each
line represents a logarithmically spaced separation in the range 2Az/n = 25(x2)1600,
and is normalized with the global Kolmogorov velocity scale uy. The dotted lines would
correspond to complete self similarity of the cascade, and the open circles are the abscissae
of the velocity thresholds used to compute figure 3. Rey = 1600.

(6) and do not describe the experiments well. The measured deviations are
bounded below by a global additive ‘noise’ which is of the order of the
Kolmogorov velocity scale at that particular separation, (¢Az)!/3. This is
consistent with the idea introduced above that the breakdown of the weak
fluctuations is controlled by the background. The situation is different for
the stronger fluctuations, whose intensities depend more linearly on the
velocity differences of their parent intervals. It was shown in [9] that it is
possible to approximately describe figure 2 as the superposition of a ran-
dom additive process, corresponding to the minimum conditional standard
deviation at each separation, and a multiplicative one that generates the
linear tails. A similar conclusion was reached in [5].

Several refinements of this analysis are possible. It was for example
noted in [9] that velocity increments are used in this context as band-pass
filters to isolate a range of length scales, and that sharper filters could give
different results. It was also remarked in [13] that this and other flows are
not isotropic, and that the scaling improves if this is taken into account
by analyzing increments associated with a given mean velocity. Both cor-
rections were tested here, the former by using a five-point band-pass filter
instead of (3), and the latter by repeating the analysis only for those seg-
ments for which the mean velocity is in a narrow range around the global
mean. Figure 2 is essentially unchanged by both corrections.
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Figure 3. Top: Mean velocity, conditioned on Auay > uthr, where the threshold is
given in figure 2. Velocities and abscissae are normalized with the conditioning values,
and Az/n = 12(x2)3000, increasing in the direction of the arrow. Rey = 1600. Bottom:
Three of the velocity traces used for the averages in the top figure. Az/n = 100, usp, ~ u'.
The traces are arbitrarily offset vertically for clarity. They are consistent with: ,
a positive vortex advected along the x axis; ——-~ , a negative vortex; -------- , a vortex
layer or an stagnation flow.

2.1. EDUCED VELOCITY TRACES

To gain some understanding of the approximately self-similar intense struc-
tures implied by the linear tails of figure 2, we compiled averaged velocity
traces conditioned on strong velocity increments across a given distance.
Some precautions had to be taken to avoid the smearing that would result
from counting each structure more than once. Disjoint ‘active’ segments
were defined, each of which was the largest connected union of segments of
width Az for which Auaz > ugh,, where ug, was fixed to three times the
global r.m.s. value of Aua,. The velocities around the mid-points of all the
active segments were then extracted and averaged together. The thresholds
ughr are plotted in figure 2, and fall in the approximately linear part of the
conditional standard deviation curves. It was checked that the results are
independent of the precise threshold as long as it falls in the linear part of



63

the standard deviation curves.

The resulting conditionally averaged velocities are shown in figure 3
for separations ranging from the dissipative to the integral range of length
scales. They are roughly antisymmetric, with widths and intensities which
are consistent with those of the conditioning algorithm. Somewhat similar
traces were found in [1] for the dissipative range, and were interpreted
there as the effect of single vortices advected at an angle to the mean
stream. In the present analysis the averaged structures in figure 3 are not
representative of individual traces, some of which are shown in the bottom
part of the figure. Different traces can be interpreted as caused by different
kinds of structures. A hump of width ¢ and height us is consistent with a
positive vortex of circulation 2méus passing at a distance O(d) below the
probe (or with a negative one above it). A negative hump is also consistent
with a vortex, but a step which does not return to the mean velocity within
a distance comparable to its width can only be explained by a vortex sheet
or by a plane stagnation strain. The three kinds of traces are found in our
sample, as well as others which are harder to interpret, and neither type is
clearly dominant. Because of the relative alignment of each of them with
respect to the detection criterion, which is visible in the samples in the
bottom part of figure 3, their average results in the antisymmetric traces
found in the top of the figure. The interpretation of figure 3, and especially
of the part of the traces outside the detection interval (—0.5, 0.5), should
be that there is some coherence at all the scales tested. This is for example
not true for weaker conditioning increments, for which the averaged traces
fall to the overall mean velocity just outside the detection interval.

The traces for the smaller separations are more asymmetric than those
for the larger ones, which could be interpreted as an indication that sheets
or stagnation structures become more common at the smaller scales.

3. Direct numerical simulations

Given the difficulties in interpreting the conditional velocity traces ob-
tained from one-dimensional signals, it is tempting to compare them with
the results of similar conditioning in three-dimensional direct numerical
simulations, even if their Reynolds numbers are lower. In this section we
present two figures from an isotropic simulation at Rey = 168 [10], for which
L¢/n = 290. A plane section of the vorticity magnitude, without filtering,
is shown at the top of figure 4, and shows a complicated pattern of vortex
sheets whose width is a few Kolmogorov scales. Detailed inspection shows
that the most intense vorticity is in the form of circular vortices, some of
which are associated to sheets, presumably corresponding to the filaments
observed in three-dimensional visualizations [10].
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Figure 4. Top: Vorticity magnitude in a plane section across a triply periodic compu-
tational box of isotropic turbulence at Rex = 170 [10]. The smallest visible features are
approximately 2-3 Kolmogorov lengths across. Bottom: ‘Discrete vorticity’ magnitude in
the same plane. The velocity increments are cqmputed over Az /n = 50, which is the size
of black cross. The scale bars to the right are normalized with the global r.m.s. vorticity
magnitude.
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To obtain an equivalent representation for the velocity differences, we
define a ‘discrete vorticity’,

Qaz,i = Az eijpAug, Ag;, (7)

where ;5 is the fully antisymmetric unit tensor, and the velocity incre-
ments replace the usual derivatives. That quantity, although not a true
vector, is an approximation to the result of filtering the vorticity over a
box of size Az3, and gives a sense of how the velocity increments sepa-
rate into rotational and potential components. The magnitude of Qa; is
showed at the bottom of figure 4, and is dominated by a strong ‘vortex’
at the location of the cross. It can be shown from three-dimensional repre-
sentations that the most intense values of the discrete vorticity magnitude
are organized into roughly tubular objects, although with smaller aspect
ratios than those found in the dissipation range, and that ‘vortex’ lines of
Q4 run along their axes and connect neighbouring objects as would be ex-
pected of true vortices. It can be tested independently that a probe moving
in the neighbourhood of each of these objects, more or less perpendicularly
to their axes, would see velocity increments at scale Az which are consis-
tent with the passage of a vortex, but a two-dimensional section of Auagy
contains other structures which are difficult to explain in this way.

The comparison of the two parts of figure 4 shows that the discrete
‘vortex’ is not simply a smoothed version of a single dissipation-scale struc-
ture, but the collective effect of a particularly strong sheet and a cluster of
smaller vortex cores.

4. Conclusions

We have shown that available experimental evidence is inconsistent with a
strictly self-similar multiplicative cascade in the inertial range. A better de-
scription is that the velocity increments at scale Az are related to those at
their ‘parent’ interval by the superposition of a local multiplicative process
and of a ‘global’ additive noise whose intensity is proportional to the stan-
dard deviation of Auga,. This is consistent with the theoretical arguments
outlined in §1, which suggest that this superposition is a generic property
of cascades in fields, and results in the separation of the field into weak and
strong components with different behaviours. This separation is illustrated
here by the conditional distributions of the breakdown coefficients of the
dissipation, which are shown to depend on the relative intensity of their
parent intervals with respect to their Kolmogorov-predicted average.

The multiplicative cascade is recovered for fluctuations which are much
stronger than the background, and such fluctuations were studied both
through conditional averaging and, to a lesser extend, through visualiza-
tions of numerical fields at lower Reynolds numbers. It was noted that the
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symmetry of the conditionally obtained averages is spurious, and can be
interpreted as the superposition of different structures that include both
quasi-circular vortices and vortex or stagnation sheets. The latter seem to
become more prevalent at smaller separations.

It is impossible with the present data to distinguish between the differ-
ent structural models, but the comparison with the results of DNS suggest
that inertial-scale structures, including vortices, exist, and that at least
some of them consist of clusters of smaller structures. The dynamics of the
inertial range of scales, in isotropic turbulence or otherwise, is one of the
greatest unknowns in our present understanding of turbulence. The ambi-
guities of the present study underline the need for high Reynolds number
experiments which are more complete than time traces of one velocity com-
ponent.

This work was supported in part by the Spanish CICYT under contract
PB95-0159, and by the Training and Mobility programme of the EC under
grant CT98-0175.
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1. Introduction

The understanding of fine scale structure in turbulence is very important
in the development of turbulence theory. In the theory of fine scale motion
in turbulence, tube-like vortices are frequently assumed to represent the
phenomenon of intermittency (Townsend, 1951; Tennekes, 1968; Lundgren,
1982; Pullin and Saffman, 1993; Saffman and Pullin, 1994; Hatakeyama
and Kambe, 1997). Recently, direct numerical simulations of the turbu-
lent flows have shown that similar tube-like structures can be observed
by the visualization of intense vorticity regions in turbulence (Kerr, 1985;
She et al., 1990; Vincent and Meneguzzi, 1991; Ruetsch and Maxey, 1991;
Jimenez et al., 1993). In thic study, the universality of the fine scale struc-
ture is discussed by analyzing DNS database of various turbulent flows.
Fine scale eddies in homogeueous isotropic turbulence, turbulent mixing
layer, turbulent channel flows and MHD homogeneous turbulence are com-
pared to show the scaling law of the tube-like structures in turbulence. The
relationships between coherent fine scale eddy and the characteristic length
of turbulence are also discussed in homogeneous isotropic turbulence.

2. Universal Scaling Law of Coherent Fine Scale Eddies
2.1. INVESTIGATED FLOW FIELDS

In this study, DNS database of homogeneous isotropic turbulence, turbulent
mixing layer, turbulent channel flows and MHD homogeneous turbulence
are used. In Table 1, numerical parameters of DNS are listed. In Fig.1,
contour surfaces of the second invariant of the velocity gradient tensor
(Q = (Wi;Wi; — Si5Si5)/2) are shown for four turbulent flows with posi-
tive threshold. Figure 1 suggests that all of the investigated turbulent flows
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TABLE 1. DNS database of turbulence. HIT: homogeneous isotropic tur-
bulence, TTML: temporally developing turbulent mixing layer, TCF: tur-
bulent channel flow and MHT: MHD homogeneous turbulence (magnetic
Prandtl number = 0.1). Rey: Reynolds number based on u..,,, and ), Res:
Reynolds number based on the velocity difference and momentum thick-
ness of a mixing layer, A: the most unstable wave length in a mixing layer,
Re-: Reynolds number based on the friction velocity, h: channel half width,

| Bo|: magnitude of imposed magnetic field.

ID Re Nz X Ny x N. L. xLyxL,
HIT1 Re) = 37.1 256 x 256 x 256 2w X 2w X 2m
HIT2 Re) = 66.1 216 x 216 x 216 2w X 27 X 27
HIT3 Re) =879 216 x 216 x 216 27 X 27 X 27

TTML Res = 1034 216 x 325 x 144 4A x 6. x 8A/3
TCF1 Re. =100 128 x 129 x 128 4wh x 2h X 27h
TCF2 Re, = 180 192 x 193 x 160  4wh x 2h x 27h
MHT1 Rex = 38.3(|Bo| =0.5) 256 x 256 x 256 2T X 27 X 27
MHT2 Rex = 38.3(|Bo| =1.0) 256 x 256 x 256 2w X 27 X 27

consist of similar tube-like fine scale eddies. The characteristics of fine scale
eddies have been investigated »Hy Tanahashi et al. (1997a; 1997b) in homo-
geneous isotropic turbulence, Tanahashi et al. (1997c; 1998) in turbulent
mixing layer, Tanahashi et al. (1999a; 1999b) in turbulent channel flows
and Tanahashi et al. (1999c) in MHD homogeneous turbulence. Detailed
descriptions of DNS and characteristics of fine scale eddies can be found in
the corresponding references.

2.2. DIAMETER AND AZIMUTHAL VELOCITY OF COHERENT FINE
SCALE EDDIES

Figure 2 shows niean azimuthal velocity profiles of the tube-like fine scale
eddies in various turbulent flows. The identification scheme of the center of
the tube-like eddies is described in Tanahashi et al. (1997b). By this iden-
tification scheme, center of the swirling motion can be determined directly
from the local flow pattern on the cross-sections with the local maximum
of the second invariant along the tube-like structure. The ensemble aver-
age is conducted over the velocity distributions on these detected cross-
sections. The mean azimuthal velocity profiles in Fig. 2 are normalized by
Kolmogorov micro scale () and r. m. s. of velocity fluctuations (u..,,). The
volume averaged values of 5 and u).,, are used in homogeneous isotropic
turbulence and MHD homogeneous turbulence. In the turbulent mixing
layer, n and ul,,, at the center of the shear layer are used . In the turbu-
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Figrre 1. Contour surfaces of the second invariant in homogeneous isotropic turbulence
with Rex = 37.1 (a), turbulent mixing layer with Res = 1048 (b), turbulent channel flow
with Rer =180 (c) and MHD homogeneous turbulence with |Bo| = 1.0 (d). The level of
threshold is @* = 0.03 for (a), (c¢) and (d) and Q" = 0.056 for (b) where Q" is normalized
by n and u..,,,.

lent channel flows,  and u..,,, which are defined ac a function of y* are
used. Hereafter, the symbol * denotes a variable normalized by n and u/.,,,,.
The mean azimuthal velocity profile of the fine scale eddies in all investi-
gated flows can be approximated by the Burgers’ vortex. Mean diameter
and maximum azimuthal velocity is always about 107 and about 0.6 u/.,,,.
Under the normalization by 7 and u/,,, statistical properties of the fine
scale eddy such as pdfs of diameter, azimuthal velocity, circulation etc. in
all kinds of turbulent flows coincide very well. In the case of the turbulent
mixing layer, these fine scale eddies compose so-called large scale structure
(Brown and Roshko, 1974). Near the wall, well-known streamwise vortices
and hairpin like vortices are also identified as fine scale eddies and they
obey the same scaling law. In the case of MHD homogeneous turbulence,
imposed magnetic field causes strong anisotropy. This anisotropic feature
can be explained by the orientation of coherent fine scale eddies.
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Figure 2. Mean azimuthal velocity profiles of coherent fine scale eddies in various
turbtlent flows normalized by n and u..,,,.

Although the geometry of the flow field is different, the most expected
diameter and maximum azimuthal velocity of the tube-like eddies are 8n
and 0.5u.,,,, respectively. These features coincide with the results of the
vorticity filaments in homogeneous turbulence reported by Jimenez et al.
(1993; 1998) except for the magnitude of the azimuthal velocity. The scaling
law of the fine scale eddies implies that the educed fine scale eddies are
universal. We can call them as 'coherent fine scale structure’ in turbulence
because they show distinct coherency and universality.

2.3. THREE-DIMENSIONAL FEATURES OF COHERENT FINE SCALE
EDDIES AND CHARACTERISTIC LENGTH SCALES OF TURBULENCE

In this section, three-dimensional features of coherent fine scale eddies are
discussed using the results obtained in homogeneous isotropic turbulence
(Tanahashi et al., 1999d). Figure 3 shows the distribution of the axes
of coherent fine scale eddies in homogeneous isotropic turbulerice with
Re) = 87.9. Visualized region is selected to be 14\ x 14\ x 14\ and vi-
sualized diameters of the axes are drawn to be proportional to the square
root of the second invariant of the velocity gradient tensor on the axis.
Larger diameter corresponds to larger second invariant. The parts with
large second invariant tend to be nearly straight. In homogeneous isotropic
turbulence, length of the axes of coherent fine scale eddies shows relatively
large variance ranging from the order of the integral length scale (Ix) to
near 10 times [g as discussed later.

Each fine scale eddy has several sharp kinks and can be divided into
several segments that are defined by the parts between local minimums
of the second invariant on the axis. Most of the segments correspond to
the straight parts of the axis in Fig. 3 and the second invariant on the
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Figure 3. Axes of coherent fine scale eddies in a decaying homogeneous isotropic tur-
bulence with Rey = 87.9. Visualized region is 14X x 14X x 14\ and visualized diameters
of the axes are drawn to be proportional to /Q:.

Figure 4. Pdfs of the segment length of coherent fine scale eddies in homogeneous
isotropic turbulence. (a): segment length is normalized by A, (b): by lg.

axis show local minimums at the kinks (Tanahashi et al., 1999d). Figure
4(a) shows the probability density function (pdf) of the segment length
(I5) of coherent fine scale eddies in homogeneous isotropic turbulence. The
segment length is normalized by the Taylor micro scale (A). The pdfs of the
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Figure 5. Scatter plots of the segment length and the maximum second invariant in the
segment in homogeneous isotropic turbulence with Re) = 37.1.
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Fyure 6. Probability density function of advection velocity in the radial direction of
the segment in homogeneous isotropic turbulence with Re, = 37.1.

segment length show peaks at A for all cases. The results imply that the
coherent fine scale structure is directly related to the Taylor micro scale.
The tails of pdf for large I, /A seem to depend on Rej, as shown in Fig. 4(a).
The probability of long segments becomes high with the increase of Re).
In Fig. 4(b), the segment length is re-normalized by [r. The probability
decreases significantly at the length of {p, which indicates that segment
length is between the Kolmogorov micro scale and the integral length scale:
n<ls(= A <lIg.

The length of each segment shows strong correlation with the maxi-
mum second invariant in the segment (Q*, ). The relation between I,

c,max

and Q) for Rey = 37.1 is shown in Fig. 5. The segments having large

c,mazx
second invariant tend to be long, which coincides with the observation in
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Figure 7. Histograms of the length of the axis in homogeneous isotropic turbulence with
Re) = 87.9.

Fig. 3, and the length increases with the second invariant by a power of
1/2 (Is/ X o ( E,mm)w)- Similar correlation can be observed for the cases
with different Re,.

Furthermore, segments of the coherent fine scale eddies have relatively
large advection velocity in the radial direction. Figure 6 shows the pdf of
the radial advection velocity in the cross-sections with Q7. ,,,, for the case
of Rey = 37.1. The tadial advection velocities are normalized by u..,.. As
shown by Tanahashi et al. (1999d), the magnitudes of the axial flows along
the axis are of the order of u,,,,. Although the total advection velocity
of the fluid elements near the central axis is represented by the sum of
the axial velocity and radial advection velocity, only the radial advection
velocity is discussed because the axial velocity does not correspond to the
advection of the eddy. In the case of the stretched Burgers’ vortex, the
axial velocity is induced by the outer strain field, even though the vortex
has no advection velocity. Tanahashi et al. (1999d) also showed that the
radial advection velocity scarcely changes its direction and magnitude in
the segment. The pdfs of the advection velocity show a peak at 1.25u!...
for all cases and are independent of Rey. The largest advection velocity
-exceeds 4u;.,,.. This result suggests that the movement of the axis of the
coherent fine scale eddy is very active in turbulence.

Jimenez et al.(1993; 1998) have shown that the mean length of the
intense vorticity filaments in homogeneous turbulence is about 2 ~ 3lg
and tends to decrease with the increase of Rey. The histogram of length
of the axis are shown in Fig. 7 for Re) = 87.9. The length of the axis is
normalized by [g. For all cases, a peak of the histogram can be observed
near lg. Therefore, the most expected length is of the order of the integral

length scale. The longest one reaches to 8/g. In the present study, the mean
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Figure 8.  Characteristics of the coherent fine scale eddy in homogeneous isotropic
turbulence. The presented axis is educed from the results with Rey = 37.1

length is 2.07lg for Re) = 66.1 and 1.74lg for Rey = 87.9. Although the
definitions of the intense vorticity filaments by Jimenez et al. (1993; 1998)
and the coherent fine scale eddies in the present study are quite different,
the mean length is almost the same. However, the most expected length in
this study is shorter than that by Jimenez et al. (1993; 1998).

3. Summary

In this study, characteristics of coherent fine scale eddies in homogeneous
isotropic turbulence, turbulent mixing layer, turbulent channel flows and
MHD homogeneous turbulence are compared to show the universal scaling
law of tube-like fine scale eddies observed in fully-developed turbulence. It
is shown that tube-like eddies in all investigated turbulent flows have the
most expected diameter of 87 and the most expected maximum azimuthal
velocity of 0.5ul.,,,..

Characteristics of the coherent fine scale eddies are presented schemat-
ically in Fig. 8 using a typical axis educed in homogeneous isotropic tur-
bulence with Re) = 37.1. On the axis, the coherent fine scale eddies show
axial velocity of the order of w,,.. The coherent fine scale eddies can be
divided into several segments, length of which is of the order of the Taylor
micro scale, and each segment shows large advection velocity in the radial
direction which is also of the order of u’.,,,. The length of these eddies is
of the order of the integral length scale. Therefore, the coherent fine scale
structure includes three important characteristic length scales of turbu-
lence: 1, A and [, and all characteristic velocities of the coherent fine scale
eddies: azimuthal velocity, axial velocity and advection velocity, are of the

!
order of u;.,,,..



75

Acknowledgments

This work is partially supported by the Ministry of Education, Culture and
Sports under Grant No. 09450088.

References

Brown, G.L. and Roshko, A. (1974) On density effects and large structure in turbulent
mixing layers, J. Fluid Mech., Vol. 64, pp.775-816.

Hatakeyama, N. and Kambe, T. (1997) Statistical laws of random strained vortices in
turbulence, Phys. Rev. Let., Vol. 79, pp. 1257-1260.

Jimenez, J., Wray, A.A., Saffman, P.G. and Rogallo, R.S. (1993) The structure of intense
vorticity in isotropic turbulence, J. Fluid Mech., Vol. 255, pp. 65-90.

Jimenez, J. and Wray, A.A. (1998) The structure of intense vorticity in isotropic turbu-
lence, J. Fluid Mech., Vol. 373, pp. 255-90.

Kerr, R.M.V. (1985) Higher-order derivative correlations and the alignment of small-scale
structures in isotropic numerical turbulence, J. Fluid Mech., Vol. 153, pp. 31-58.
Lundgren, T.S. (1982) Strained spiral vortex model for turbulent fine structure, Phys.

Fluids, Vol. 25, pp.2193-2203.

Pullin, D.I. and Saffman, P.G. (1993) On the Lundgren-Townsend model of turbulent
fine scales, Phys. Fluids, Vol.A5, pp. 126-145.

Ruetsch, G.R. and Maxey, M.R. (1991) Small-scale features of vorticity and passive scalar
fields in homogeneous isotropic turbulence, Phys. Fluids, Vol. A3, pp. 1587-1597.
Ruetsch, G.R. and Maxey, M.R. (1992) The evolution of small-scale structures in homo-

geneous isotropic turbulence, Phys. Fluids, Vol. A4, pp. 2747-2760.

Saffman, P.G. and Pullin, D.I. (1994) Anisotropy of the Lundgren-Townsend model of
fine-scale turbulence, Phys. Fluids, Vol. A6, pp.802-807.

She, Z.-S., Jackson, E. and Orszag, S.A. (1990) Intermittent vortex structures in homo-
geneous isotropic turbulence, Nature, Vol. 344, pp.226-228.

Tanahashi, M., Miyauchi, T. and Yoshida, T. (1996) Characteristics of small scale vortices
related to turbulent energy dissipation, Transport Phenomena in Thermal-Fluids En-
gineering (Proc. 9th Int. Symp. Transport Phenomena), Vol. 2, pp.1256-1261, Pacific
Centre of Thermal-Fluids Engineering.

Tanahashi, M., Miyauchi, T. and Ikeda, J. (1997a) Identification of coherent fine scale
structure in turbulence, Simulation and Identification of Organized Structures in
Flows (Proc. the IUTAM Symp. Simulation and Identification of Organized Struc-
ture in Flows, 1997), pp.131-140, Kluwer Academic Publishers, 1999.

Tanahashi, M., Miyauchi, T. and Ikeda, J. (1997b) Scaling law of coherent fine scale
structure in homogeneous isotropic turbulence, Proc. 11th Symp. Turbulent Shear
Flows, Vol. 1, pp.4-17-4-22.

Tanahashi, M., Miyauchi, T. and Matsuoka, K. (1997¢) Coherent fine scale structures in
turbulent mixing layers, Turbulence, Heat and Mass Transfer(Proc. 2th Int. Symp.
Turbulence, Heat and Mass Transfer, 1997), Vol. 2, pp. 461-470, Delft University
Press.

Tanahashi, M., Miyauchi, T. and Matsuoka, K. (1998) Statistics of coherent fine scale
structure in turbulent mixing layer, Proc. IUTAM/IUCG Symp. Developments in
Geophysical Turbulence, 1998 to be published.

Tanahashi, M., Shoji, K., Das, S. K. and Miyauchi, T. (1999a) Coherent fine scale struc-
ture in turbulent channel flow (in Japanese), Trans. Jpn. Soc. Mech. Eng., Vol. 65,
No. 638, pp.3244-3251.

Tanahashi, M., Shiokawa, S., Das, S. K. and Miyauchi, T. (1999b) Scaling of fine scale
eddies in near-wall turbulence (in Japanese), J. Jpn. Soc. Fluid. Mech., Vol. 18, No.
4, pp.256-261.

Tanahashi, M., Tsujimoto, T., Karim, Md. F., Fujimura, D. and Miyauchi, T. (1999c¢)



76

Anisotropy of MHD homogeneous isotropic turbulence (2nd report: Coherent fine
scale eddies and Lorentz force) (in Japanese), Trans. Jpn. Soc. Mech. Eng., Vol. 65,
No. 640, pp.3884-3890.

Tanahashi, M., Iwase, S., Uddin, Md. A. and Miyauchi, T. (1999d) Three-dimensional
features of coherent fine scale eddies in turbulence, Turbulence and Shear Flow Phe-
nomena - 1 (Proc. 1st Int. Symp. Turbulence and Shear Flow Phenomena, 1999),
Eds. S. Banaerjee & J. K. Eaton, pp. 79-84, Begell House Inc.

Tennekes, H. (1968) Simple model for the small-scale structure of turbulence, Phys.
Fluids, Vol. 11, pp.669-761.

Townsend, A.A. (1951) On the fine-scale structure of turbulence, Proc. R. Soc. Lond.,
Vol. A208, pp.534-542.

Vincent, A. and Meneguzzi, M. (1991) The spatial structure and statistical properties of
homogeneous turbulence, J. Fluid Mech., Vol. 225, pp.1-20.



COHERENT FINE SCALE EDDIES IN TURBULENT SHEAR
FLOWS AND IT’S RELATION TO ANISOTROPY

M. TANAHASHI AND T. MIYAUCHI

Department of Mechano-Aerospace Engineering,

Tokyo Institute of Technology

2-12-1 Ohokayama, Meguro-ku, Tokyo 152-8552, Japan

1. Introduction

The relation between coherent fine scale structure and anisotropy of tur-
bulence is investigated by using DNS data of turbulent mixing layers and
turbulent channel flows. These turbulent flows include tube-like fine scale
eddies which are commonly observed in homogeneous isotropic turbulence
(Kerr, 1985; She et al., 1990; Vincent and Meneguzzi, 1991; Jimenez et al.,
1993; Tanahashi et al., 1996; Tanahashi et al., 1997a). In turbulent mixing
layers, large scale structures which were found out by Brown and Roshko
(1974) are composed of coherent fine scale eddies (Tanahashi et al., 1997c;
Tanahashi et al., 1998). In turbulent channel flows, well-known streamwise
vortices possess the same feature as the coherent fine scale eddies (Tana-
hashi et al., 1999a; Tanahashi et al., 1999b). Characteristics or fine scale
eddies in turbulent mixing layers and turbulent channel flows coincide with
those in homogeneous isotropic turbulence: the most expected diameter and
maximum azimuthal velocity are about 10 times of Kolmogorov micro scale
(n) and 0.5 times of r. m. s. velocity fluctuation (ul,,,). However, global
characteristics of turbulence statistics are quite different in these flow fields.
In this study, the origin of these difference is discussed from a viewpoint of
the coherent fine scale eddies in turbulence.

2. DNS Database and Identification of Fine Scale Eddies
2.1. DNS DATABASE

DNS data of a temporally developing turbulent mixing layer and turbulent
channel flows are analyzed. The temporally-developing turbulent mixing
layer has been simulated by using spectral methods in all directions and
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Figure 1. Contour surfaces of second invariant in a fully-developed turbulent mixing
layer (Res = 1034)

Figure 2. Contour surfaces of second invariant in a fully-developed turbulent channel
flow (Re, = 400).

Reynolds number based on initial vorticity thickness and a velocity differ-
ence across the mixing layer is 500. At a fully developed state, Reynolds
number based on momentum thickness (Res) reaches to 1034. Since the
length of the calculation domain in the streamwise direction is selected to
be 4A (A: most unstable wavelength), twice parings of large-scale structures
(Brown and Roshko, 1974) occur. DNS of turbulent channel flows was con-
ducted by using spectral methods in the streamwise and spanwise direction
and 4th-order finite difference method in the transverse direction. Reynolds
number based on the friction velocity (Re.) is 180 and 400. Detailed de-
scriptions of numerical schemes and calculation counditions can be found in
Tanahashi and Miyauchi (1995) and Tanahashi et al. (1997c) for the turbu-
lent mixing layer and Tanahashi et al. (1999a; 1999b) for turbulent channel
flow.
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Figure 3. The pdf of the inclination angle (a) and the diameter (b) of coherent fine
scale eddies in a fully-developed turbulent mixing layer (Res = 1034)

2.2. IDENTIFICATION SCHEME OF COHERENT FINE SCALE EDDIES

Figures 1 and 2 show the contour surfaces of the second invariant of the
velocity gradient tensor defined by Q = (S;;Si; — Wi;W;;)/2), where S;;
and W;; is symmetric and asymmetric part of the velocity gradient tensor
A;j = Ou;i/0u;. As reported by previous works (Moser and Rogers, 1991;
Moser and Rogers, 1993; Tanahashi and Miyauchi, 1995), the transition to
turbulence of mixing layers occurs after the first pairing and before the sec-
ond pairing of Kelvin-Helmholtz rollers. Kelvin—-Helmholtz rollers become
large by successive parings, and they consist of many fine scale eddies as
shown in Fig.1. In the case of the turbulent channel flow, streamwise vor-
tices near the wall and hairpin like vortices can be visualized by the positive
() region, which coincides with the results by the Ay—definition (Jeong et
al., 1997) and by the A-definition (Blackburn et al., 1996).

From these flow fields, coherent fine scale eddies are educed by using
the identification scheme based on the local flow pattern (Tanahashi et al.,
1997b). In this identification scheme, the cross-sections which include the
local maximum () on the axis of fine scale eddies are determined.

3. Coherent Fine Scale Eddies in Turbulent Shear Flows

Characteristics of fine scale eddies in turbulent mixing layers and turbu-
lent channel flows show similar features: the most expected diameter and
maximum azimuthal velocity are about 10n and 0.5u..,,,. However, the co-
herent fine scale eddies in two turbulent shear flows show different spatial
distribution, which is related to anisotropic nature of each turbulent flow
field.

Figure 3 shows the pdf of the inclination angle of the rotating axis of
coherent fine scale eddies and the relationships between the diameter and
the inclination angle in a turbulent mixing layer. The diameter in Fig. 3(b)
is normalized by 7 at the center of the shear layer. The inclination angle of
the rotating axis of a coherent fine scale eddy with respect to the direction
of mean vorticity vector is defined by cos0 = (w. - €,)/(] we || €w |), where
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Figure 4. The diameter (a) and the maximum azimuthal velocity (b) of the coherent
fine scale eddies as a function of the distance from the wall in a fully-developed turbulent
channel flow (Re, = 180).

we and e, represent the vorticity vector at the center of a coherent fine
scale eddy and the direction of mean vorticity vector (= (0,0,—1)) in the
mixing layer, respectively. The value of cos 8 becomes 1 for fine scale eddies
co-rotating with large-scale structure, and becomes —1 for counter-rotating
case. If the turbulence is isotropic, the pdf does not depend upon cos 6.

The probability density in Fig. 3(a) increases linearly with cos @, which
means that the number of co-rotating eddies is larger than that of counter-
rotating ones. Figure 3(b) shows that the diameter of the coherent fine
scale eddies depends on the direction of the axis. Large eddies tend to be
co-rotating. With the decrease of the diameter, the directional dependencies
become weaker. The coherent fine scale eddies with 107 diameter are dis-
tributed nearly uniformly and do not depend on cosf. These results suggest
that randomness of distribution of coherent fine scale eddy increases with
the decrease of the diameter, which seems to coincide with the assumption
of local isotropy. Tanahashi et al. (1998) have shown that the most expected
value of maximum azimuthal velocity (< up >, ) is almost independent
on cos and is about 0.5uy,,,, while the variances in < uj > are large
for the co-rotating coherent fine scale eddies. Therefore, most of fine scale
eddies with large D* and < uj > are co-rotating with the large scale
structure.

mazx

Figure 4 shows the diameter and the maximum azimuthal velocity of
the coherent fine scale eddies in the turbulent channel flow with Re, = 180
as a function of the distance from the wall. The diameter and the maximum

azimuthal velocity are normalized by n and u),,, at y© where the coherent

fine scale eddy exists. In the turbulent channel flow,  and u/,,, are defined
as a function of y*. In the wall unit, the maximum azimuthal velocity
increases and the diameter decreases with the decrease of the distance from
the wall, whereas the most expected diameter and the maximum azimuthal
velocity become independent on y* under the normalization by n and ul.,,,,

as shown in Fig. 4. They are 107 and 0.5u. . respectively.

rms
In the case of turbulent channel flows, the spatial distribution of the axes
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Figure 5. The inclination angle (a) and the tilting angle (b) of the coherent fine scale
eddies as a function of the distance from the wall in a fully-developed turbulent channel
flow (Re, = 180).

shows strong directional dependence with the decrease of the distance from
the wall. Figure 5 shows the inclination angles and the tilting angles of the
coherent fine scale eddy. The inclination angle and the tilting angle are de-
fined by the similar method of Jeong et al. (1997). The distributions of both
angles show strong dependence on direction near the wall. These structures
correspond to hairpin like eddies and streamwise vortices observed near the
wall (Tanahashi et al., 1999a; Tanahashi et al., 1999b). The variance of the
diameters becomes relatively small near the wall as shown in Fig. 4(a) and
probability of the diameters shows a very sharp peak near 10n (Tanahashi
et al., 1999b), which means that diameter of almost all coherent fine scale
eddies near the wall is about 107. Therefore, the anisotropy near the wall
occurs in the smallest coherent fine scale eddies. These results suggest that
the anisotropic feature in near-wall turbulence is significantly different from
that in free-shear turbulence from the view point of the fine scale structure.

4. Summary

In this study, spatial distribution of the coherent fine scale eddies in turbu-
lent mixing layer and turbulent channel flow are compared to understand
the relation between the anisotropy of turbulence and the coherent fine scale
eddies. In turbulent mixing layer, coherent fine scale eddies with small diam-
eter (= 107) tend to be distributed randomly in the space, while those with
relatively large diameter are co-rotating with large scale structure(Kelvin-
Helmholtz rollers). In turbulent channel flows, directional dependence or
alignment of the rotating axis appears near the wall. The aligned coherent
fine scale eddies correspond to the streamwise vortices, which are one type
of the smallest coherent fine scale eddies which has about 107 as diameter.
These results suggest that anisotropy is caused by coherent fine scale ed-
dies with relatively large diameter in the free-shear flows and by those with
smallest diameter in wall-shear turbulence.
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SHEAR STRESS AND DISSIPATION INTERMITTENCY IN
HIGH-REYNOLDS-NUMBER TURBULENCE

YOSHIYUKI TSUJI
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1. Introduction

Energy dissipation and instantaneous shear stress fluctuations are consid-
ered for high-Reynolds-number (up to R) = 10%) turbulent flow field using
the concept of maximum norm.

The instantaneous fluctuation of the Reynolds shear stress, defined as
Yij = —Uu;uj, © # J, has previously been explored in several ways. To compli-
ment these classical analyses, we apply a new idea to characterize intermit-
tency in shear stress fluctuations. Attention is paid to the rapid change in
7, with positive and negative signs, and the maximum norm is introduced
to quantify their behavior in the inertial range. With the help of multifrac-
tal analysis, the intermittency exponent, ugs, is obtained for different flow
fields (boundary layer, grid turbulence, round jet) and Reynolds numbers
(90 < Ry < 10000). It is found to be 0.1 < ps < 0.15 independent of
the mean strain rate [6]. In addition to this, the maximum norm approach
is applied to the energy dissipation field at a very high Reynolds number
to obtain its scaling behavior, including the corresponding intermittency
exponent [7].

2. Experimental Conditions

The high-Reynolds number atmospheric turbulent boundary layers are an-
alyzed, whose typical features are summarized in Table 1. We used the
x-probe for the measurements, with a sensitive length of 0.7mm and di-
ameter of 5um. The data were measured at the meteorological tower at
Brookhaven National Laboratory. The measurement station is located at
about 35 m above ground. The velocity signals are sampled by a 12-bit
A /D converter at a frequency of 5 kHz ~ 10 kHz with a low-pass filter no
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TABLE 1. U is a local mean velocity, u' and v' are r.m.s. values of streamwise
and vertical component, respectively. (¢) is the energy dissipation obtained by the
assumption of Taylor’s frozen flow hypothesis, A and n are Taylor micro scale and
Kolmogorov scale. The turbulence Reynolds number is defined as Ry = u'A/v.

U (m/s) u,v'(m/s) —(uwv)/u'v’ (e)(m?%73) A(cm) #n(mm) R»

2.82 0.77,0.49 0.39 1.06 x 1072 10.9 0.72 5,940
5.16 1.87,1.40 0.42 8.40x 1072 9.6 0.44 12,240
5.67 1.87,1.40 0.42 840 x 1072 11.3 0.46 15,630

greater than half the sampling frequency; the measurements are made for
one hour for each data set. The probe is positioned about 3 m from the
tower. As the tower is made of angle irons, the wind passes through them.
We assume that there is little effect of the tower on the measurements.
Another important problem is the wind direction. We equipped the tower
with a wind vane and observed it from the ground. The probe direction was
corrected in terms of the flow condition in case there were any dramatic
changes during the measurements. A more detailed analysis of the wind
direction is found in [2]. Since only the ;2 component is measured, we use
the character vy instead of ;2 for convenience hereafter.

3. Maximum Norm and Scaling Exponents

For statistical analysis, the time axis is divided into small boxes with length
r. The largest positive and smallest negative values of v within the box are
expressed by maz(r) and min(r), respectively (see Fig. 1). Therefore, the
difference between maz(r) and min(r) should contain the typical features
of v oscillation. We introduce the maximum norm;

M, = [maz(r) — min(r)], (1)

which is defined in each box with size r. It is, however, necessary to add
the following condition:

maz(r) > ép and min(r) < —ép. (2)

This condition is to disregard fluctuations which are contained in the
narrow band [—dp, dg]. Note also that maz(r) and min(r) have a positive
and negative sign, respectively. It is well known that a large part of vy
fluctuates around the zero value. We assume that the electrical noise may
affect these fluctuations around the zero-crossing. Although the band width
dp is set as a function of the Reynolds number [6], in a high Reynolds
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Figure 1. The horizontal axis is divided into small boxes whose size is r. The largest
and the smallest values of v fluctuation are defined as maz(r) and min(r), respectively.
The broken lines indicate the narrow band with 265 width.

number flow it is not a problem to set it as g = 0. Then the condition of
Eq. (2) is that maz(r) is positive and min(r) is negative in a finite box size
r, which is expressed in the units of sampling intervals.

3.1. SCALING EXPONENTS IN DISSIPATION FIELD

For analyzing the dissipation fluctuation, there is no additional complica-
tions on the definition of M,. Since the dissipation rate is never negative,
the definition becomes M, = maz(r). The maximum norm is a positive
random quantity which may be used to characterize intermittent fluctua-
tions.

Figure 2 shows typical examples of M, distribution in shear stress and
the dissipation field. The horizontal axis is a unit of box size r, and the
vertical one is normalized by its average, (M;,). Although the distributions
depend on the size r, they look intermittent for various box sizes in both the
dissipation and inertial ranges. In this figure, the box size is set at » = 155
which is in the inertial range, and it is apparent that the dissipation field
is more intermittent.

The maximum norm exponents, vy, are introduced as follows, in analogy
to the local energy dissipation rate, &,

(MF) [ (M) = Cy(r/L)™™ . (3)

For convenience, the characters uf and vf are used as the exponents for
the maximum norm of shear stress and dissipation, respectively. It should
be noted that, there is a significant difference between &, and M;. When
g = 1, the local averaged energy dissipation equals the total average, that
is (e,) = () = constant. However, for the maximum norm this condition

is not satisfied [6].
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Figure 2. An example of maximum norm distribution for (a) shear stress fluctuation
for the box size r = 155, (b) dissipation fluctuation for the same box size. This box size
is located within the inertial range. r has a units of sampling intervals.

We have computed the moments, (MF), and confirmed that the maxi-
mum norm, for this case, has firmly a power law distribution in the inertial
range. Thus, the slope is equal to the exponent t/f .

3.2. SCALING EXPONENTS IN SHEAR STRESS FIELD

As the shear stress, v, fluctuates with positive and negative signs, the max-
imum norm is introduced to characterize them. We have found that the
maximum norm has also a power law distribution for this case in the in-
ertial range. Experimental accuracy limited the analysis up to the sixth
order, but we have analyzed the lower-order moments which contain valu-
able information about the central region of the pdfs.

These scaling exponents are summarized in Fig. 3. The dissipation ex-
ponents, V(P (solid circles), are larger than those for the shear stress for
q > 1. Hence, the dissipation field is more intermittent, which is consistent
with the qualitative observation of < indicating the intermittent phenom-
ena. For lower-order moments (0.2 < ¢ < 0.8) the scaling exponents are
negative, and the shear stress has larger exponents.

If the locally averaged dissipation, €., is approximated by the log-normal
distribution (this condition is expressed as K62) [4], the scaling exponents
are given as

Tq=—pq(l —q)/2 = —72q(1 — q)/2, (4)
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q

Figure 8. Scaling exponents of the maximum norm for shear stress (v;f :circle) and

the dissipation fluctuation (uf :solid circle). They are compared with the exponents 7,
predicted by K62 assumption, Eq. (4), which is expressed by the dotted line. The other
model (Eq. (5)) evaluating 7, is plotted by the solid line. p-model (the parameter p is set
at the recommended value, 0.7) is plotted by dashed line.

where p (= 79) is the intermittency exponent. In Fig. 3 we compare the
predicted exponents, 74, from K62 and those obtained from the present
measurements, v and v;. We find there is good agreement between the
predicted and measured values for —0.8 < g < 3.0. However, there is a
noticeable difference in high-order moments. She et al., [5] proposed a phe-
nomenology involving a hierarchy of fluctuation structures associated with
the vortex filaments. From this they derived a relation with no adjustable
parameters, which agrees very well with uf when q is positive, but negative-
moment values differ slightly from these. Another excellent model, called
P-model [1], was plotted in the figure. The open parameter was set at the
recommended value, 0.7, and they agree well with the experimental data
for positive and negative g values.

It is remarkable that the maximum norm exponents in energy dissi-
pation match those of locally averaged dissipation, that is, uf ~ 7, We
believe this is a strong reason to believe that the maximum norm is a valu-

able quantity in characterizing the small-scale intermittency in turbulence.

3.3. INTERMITTENCY EXPONENT

There is much interest in quantifying the intermittency exponents. In this
section, the maximum norm concept is used to extract the intermittency
exponents for high Reynolds number turbulence data. The exponent using
the conventional approach yields a value of y = 0.22 for the average rate of
energy dissipation. We can get the intermittency exponent for the maximum
norm by Eq. (3), in which v; is the exponent in analogy to 72. It is found that
in the dissipation field ¥§ = 0.21 and in the shear stress v5 = 0.12; here
we use the characters up and pg to indicate the intermittency exponent
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calculated using the maximum-norm approach for dissipation and shear
stress, respectively. That is, we find pup = 0.21, us = 0.12. We wish to
make two important remarks. First, the maximum norm exponent, up,
agrees remarkably well with p derived by €,. Second, us < up; indicating
that the shear stress field is less intermittent than the dissipation field.

To explain the first remark, notice that the largest value of the dissi-
pation rate within a given box size, M,, may be a significant portion of
the locally averaged dissipation field, e,. Thus, the qualitative properties
of these two quantities may be equivalent. A more detailed discussion of
the second remark on the difference in the scaling exponent between shear
stress and dissipation is given in the reference. We should also note that
the vorticity and scalar dissipation field are more intermittent than the en-
ergy dissipation field [3]. Despite much numerical and experimental research
along this theme, a clear explanation has not yet been presented.

4. Conclusion

Shear stress and dissipation fluctuations are considered in high Reynolds
number turbulence. A new concept of the maximum norm is introduced to
characterize their spike-like oscillations. The scaling exponents, v, are nat-
urally introduced, and the intermittency exponent is obtained. The classical
scaling exponents, 7, defined by local averaged energy dissipation ¢, are
very close to v4 at least for —0.8 < g < 4.0. Therefore, the intermittency
exponents are g = 7o = 0.22 and pp = v» = 0.21, respectively. For the
shear stress fluctuation, we obtained the exponent ug = 0.12 by the max-
imum norm, thus confirming that the shear stress field is less intermittent
than the energy dissipation field.
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CHARACTERISTIC TIME SCALES AND ENERGY TRANSFER
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Abstract. Statistical properties of MHD turbulence are studied by GOY-
type shell models and direct numerical simulation. We introduce the Alfvén
effect with randomized coherent magnetic field into the shell model. It leads
to k~3/2 spectrum and is consistent with Iroshnikov-Kraichnan picture of
MHD turbulence. The PDF’s of shell models are compared with those of
wavelet coeflicients obtained from DNS data.

1. Introduction

Much attention has been payed to MHD turbulence not only in the context
of plasma physics but also in the context of turbulence theory. However, the
statistical properties of MHD turbulence are not fully understood. There
are two plausible theories for the scaling laws of homogeneous and isotropic
MHD turbulence. One is the well-known theory by Kolmogorov proposed
for hydrodynamic turbulence; it predicts k~5/3 spectrum (hereafter referred
to as K41 spectrum). The other is proposed by Iroshnikov and Kraichnan
independently[1]; it predicts k=3/2 spectrum (hereafter referred to as IK
spectrum). In the latter, the Alfvén effect plays a key role. When coherent
magnetic structures exist in MHD turbulence, the Alfvén waves introduce
the characteristic time scale 74 = (Bck)™!, which is called Alfvén time,
to the energy transfer. Since the Alfvén time is much smaller than the
hydrodynamic local time scale (vipk) ™!, the Alfvén effect weakens the energy
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transfer so that the energy dissipation rate is proportional to the Alfvén
time: € o< (Bok)~!. Then dimensional analysis yields k=32 spectrum. The
data from solar wind seem to support k~%/3 spectrum[2]. On the other
hand, the spectrum is close to k=32 in two-dimensional simulations[3].

In this paper, we study the statistical properties of MHD turbulence
by direct numerical simulation (DNS) and GOY-type shell models. We pay
special attention to the characteristic time scales in MHD turbulence and
their effect on the energy transfer.

2. GOY-type Shell model of MHD turbulence

The shell models of MHD turbulence are studied by several authors[4-7].
The extension of the original GOY-type shell model to MHD turbulence
was first studied by Biskamp[6]. Here we consider an MHD version of Sabra
model for hydrodynamic turbulence[8]. It is written as

Vi : . . . , .
o i0kn 1 ZEE ZF o + iBkny1 2701 2y — ik ZEX ZF
+ivknZ0 1 251 + iBkn 1 Zp o Zi s+ ivkn 1 2 570,
—vk2Z* + ik,BcZE + T, (1)
where ZF is a representative mode of Elsésser variable Z* = u + B

corresponding to the wavenumber k, = kgA", o, and 7 are constants,
v corresponds to diffusivity (unit magnetic Prandtl number is assumed)
and fF is an external force. As in the case of normal GOY-type mod-
els[6], the total energy Er = +.(|Z}|? + |Z;|?) and the cross helicity
He = 13,1212 = |Z,7|?) are conserved in the inviscid limit v = 0. Fur-
thermore, the magnetic quantity Hy = ¥, k®|B, |2, which can be regarded
as the squared magnetic potential in two-dimensional case or the magnetic
helicity in three-dimensional case, becomes an inviscid invariant by impos-

ing

,6_ )\26_)\26+1 v )\26_)\26___1
a A HAV 1 o AW LA ]

The term ik, BcZZ, first discussed by Gloaguen et al.[4], is introduced
to take account of the Alfvén effect in the presence of large-scale coher-
ent magnetic field. Biskamp[6] found that when Bg is a non-zero constant
the energy spectrum has two ranges of different scaling exponents; k—5/3
spectrum is observed in the lower wavenumber range and the spectrum
is flatter than k~3/2 spectrum in the higher wavenumber range (as seen in
figure 1). Although the above choice seems to be consistent with Iroshnikov-
Kraichnan picture, it does not lead to k~3/2 spectrum. The reason for this
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unexpected result is that the Alfvén term iknBch was too coherent for
constant B¢ so that the average of the nonlinear terms in eq. (1) almost
vanish for the inertial time scale.

We apply two methods for incorporating the Alfvén effect correctly: in
the first one we take small A instead of the usually chosen value A = 2; in
the second one the coherent magnetic field B, is randomized as

_ B! B.. 1
BC,n = BC + B/C,nv di,” — - 1 + g(t), Tn = ﬁc_’
n n

where ¢(t) is Gaussian white noise. Both methods are designed to relax the
coherency of the Alfvén term. In addition, forcing is introduced by fixing
foo since both constant forcing and random forcing, which are often ap-
plied to shell models, can lead to “dynamic alignment”; dynamic alignment
itself occurs in MHD turbulence, but it is undesirable for the present pur-
pose since we need turbulent behavior for a long time to obtain statistical
properties from shell models.

3. Results
3.1. NUMERICAL METHODS

The shell model (1) is numerically solved by Runge-Kutta method. The
constants are chosen as a = —0.5,8 = 1.5,y = —1. The diffusivity is
fixed to v = 2 x 1078, The first modes are fixed: Zli = 0.5 £ 0.5¢. For
constant B¢ case, three sets of the wavenumber ratio A and the number
of modes N are used: (A, N) = (2,26), (21/2,45), (2!/4,85). For random B¢
case, both the average and the fluctuation amplitude are set to be equal to
By = (Z{ — Z{)/2: Bcp = (BICQ’n)l/2 = Bj; the wavenumber ratio A is 2
and the number of modes NV is 26.

Direct numerical simulation of two-dimensional MHD turbulence is per-
formed by pseudo-spectral method. The total number of modes is 20482
The velocity field and magnetic field are analyzed by wavelet decomposi-
tion. See Ishizawa and Hattori[9] for the details of DNS.

3.2. ENERGY SPECTRUM

Figure 1 shows the energy spectrum for constant B¢ case. The spectrum is
multiplied by &3/2 to show the difference from IK spectrum clearly. Figure
1(a) shows the spectra for three values of Bo: Be/By = 0.1,0.3,1. The
spectrum is close to K41 spectrum for small k£ and it is flatter than IK
spectrum for large k. The dividing wavenumber becomes smaller as B¢ be-
comes larger. These results are observed by Biskamp|6]. Figure 1(b) shows
the spectra for different A with Bc/By = 1. The spectrum for A = 21/4
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seems to close to IK spectrum, but it still has two scaling regions. The
scaling exponent in the large wavenumber range is seen to depend on A.

Figure 1. Energy spectrum multiplied by k3/2. Constant Bc.

On the other hand, the
energy spectrum for ran-
dom B¢ case shown in fig-
ure 2 is close to IK spec-
trum.

In order to clarify why
IK spectrum is observed
for random B¢ case and
not observed for constant
Be case, the following cor-
relation between neighbor-

ing cells is calculat
& §18 ed Figure 2. Energy spectrum multiplied by

k*/2. Random Bc.
Cor(n,n+1;71) N

_ BB+ T)

Figure 3 shows this correlation. For constant B¢ case, the correlation is
small for larger n, showing that the energy is not transferred effectively.
For random B case, the correlation has a maximum of 0.35 ~ 0.5 for all
n shown in the figure. It shows that the energy is transferred effectively.

1 —_
B, = (123" +12, "), En=Ea+E,

3.3. PDF

Probability distribution function (PDF) of Re(un) for the shell models and
wavelet coefficients w7, obtained from DN S are shown in figures 4 and 5,
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Figure 3. Correlation between neighboring shells: (a) Constant B¢, (b) random Bc.

Figure 4. Normalized PDF of velocity modes: (a) Constant B¢, (b) random Bc.

respectively. Two scales are chosen: one is in the inertial range (n = 12
for shell models and j = 5 for DNS); the other is in the dissipation range
(n = 16 for shell models and j = 7 for DNS). In the inertial range, PDF of
Re(uy) is nearly Gaussian for constant B case; it has stretched tail for ran-
dom Bc case. In the dissipation range, PDF shows extremely intermittent
nature for constant B¢ case; it is almost exponential for random B¢ case.
PDF of u}g;z obtained from DNS data appears to be close to random B case
in the inertial range and to constant B¢ case in the dissipation range. Fig-
ure 6 shows PDF of the corresponding magnitudes, |u,| for shell models and

[Ej{(ziI{;Z)Q + (1@%)2}]1/2 for DNS, in the dissipation range. It shows that
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Figure 5. Normalized PDF of wavelet coefficients obtained from DNS data.

PDF of wavelet coefficients is 1.0e+01 R
similar to that of |u,| for ran- 1es00 | comsam B

dom B¢ case. Yamada et al.[10] oo | Gaussian —~~

found a universal form of PDF

in the dissipation range for hy- Loz

drodynamic case. At present, 1003 ¥

however, we have not found a 10604

form like that for magnetohy- 1.0e-05 o
drOdynanlic case. Figure 6. PDF’s of magnitude of velocity

modes and wavelet coefficients.

4. Concluding Remarks

Statistical properties of MHD turbulence are studied by GOY-type shell
models and direct numerical simulation. We have proposed the shell model
with randomized Alfvén effect. It leads to k~3/2 spectrum and is consistent
with Iroshnikov-Kraichnan picture of MHD turbulence. The present mod’
fied model would serve as a powerful tool for studying MHD turbulence.
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STATISTICS OF TRANSVERSE VELOCITY DIFFERENCES
IN TURBULENCE

VICTOR YAKHOT!
Department of Aerospace and Mechanical Engineering

Boston University
Boston, MA 02215

1. Introduction

Beginning with classic Kolmogorov papers, the ability to theoretically de-
scribe statistical properties of velocity differences became, justly or not, a
measuring stick of our understanding of turbulence. Development of tur-
bulence theory proceeded in two directions. First, the equations of motion,
resulting from the relatively simple and physically appealing second-order
closures ‘were so successful that they evolved into a design tool widely used
in engineering community [1]. Since all such models can be formulated in
terms of perturbation expansions in powers of an O(1) parameter [2], their
success in description of the large-scale features of the flow somewhat resem-
bles remarkable precision achieved by the small-parameter-lacking Hartree-
Foc approximations in prediction of the properties of atoms and molecules
in quantum mechanics. Frequent complains of mathematicians and physi-
sists about “total” lack of understanding of turbulence are typically related
to our inability even to formulate a theoretical (dynamic) framework yield-
ing the the experimentally observed small-scale structure of the flow [3].
Early attempts to attack the problem were based on various expansions in
powers of the renormalized Reynolds number (RN) Re* = u,p,sL/v where
urms and L stand for the rms velocity and integral scale of turbulence, re-
spectively. The parameter v denotes the renormalized, “dressed”, viscosity.
Since v = 4pmsL, the coupling constant, which is a measure of the strength
of nonlinear interaction, Re* = O(1). Thus, the RN as a basis for the per-
turbative treatment, must be disqualified. In fact, the expansion in powers
of Re* is equivalent to the one in powers of non-linearity.

The fatal blow to perturbative treatments of the small-scale statistics of
turbulence was discovery of intermittency or multi-scaling of turbulence
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which is formulated as follows: consider the two points x and x’ and define
r = X — x'. Assuming that the z-axis is parallel to the displacement vector
r we can measure the moments of velocity differences:

Sp=(ule +r) — u(z)" = (Au)" « ré" « (Pr)s = (1)

The parameter P in (1) stands for the rate of turbulence production which
in the steady state is equal to the mean dissipation rate £. Numerous ex-
preriments, conducted in a wide variety of flows, revealed that instead of
expected “normal” &, = n/3, the exponents £, were “strange” (anoma-
lous) and could not be derived on dimensional grounds. This means that
if a perturbative treatment is possible at all, the number of closures ( dy-
namic constraints) needed to obtain first n exponents is at least equal to n.
This fact was the main reason for the failure of Kraichnan’s “decimation”
schemes, proposed in the end of 80’s [4].

Realization of futility of the closure-based renormalized perturbation ex-
pansions to describe small-scale intermittency led, as it often happens in
life, to the opposite extreme: the closures became a taboo, not taken seri-
ously by many researchers in the field. Recently, this taboo was somewhat
shaken by a counterexample, produced by Kraichnan for the case of a pas-
sive scalar advected by a random velocity field [5]. It was shown later [6]
that Kraichnan’s anzatz corresponded to an expression for the dissipation
contribution to the equation for the probability density of the scalar dif-
ferences. Kraichnan’s suggestion, though incorrect for the scalar problem,
demonstrated the ability of a single closure model, applied directly to the
equation for the probability density, generate an infinite set of anomalous
exponents. Recent Polyakov’s operator product expansion was the first the-
oretical approach to yield a closed equation for the pdf of velocity differences
in a non-linear problem of Burgers equation driven by a random force [7].
The expression for the probability density (pdf) of velocity differences was
derived from this equation together with an explanation of the observed
bi-fractality of velocity field.

In this paper we derive an exact equation for the generating function of
velocity difference in turbulence. It is shown how combining this equation
with plausable and simple models for the pressure and dissipation terms
leads to the results which are in a good agreemnt with expremental data
on both two- and three-dimensional turbulence.

2. Equation for the Generating Function

The equations of motion are (density p = 1):

Byv; + v;0;v; = —=Bip + vV?u; + f;; Oivi=0 (2)
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where f is a forcing function mimicking the large-scale turbulence produc-
tion mechanism and in a statistically steady state the mean pumping rate
P = f.v. In what follows we will be mainly interested in the probability
density function of two-point velocity difference U = u(x’) — u(x) = Au.
The generating function is: Z =< ezp(A-U) >. It is easy to see that in
the incompressible case the equation for the generating function of velocity
differences is [8]-[9]:

072 9z
=+

ot tanar, Lt htD 3)

with
Ip =< A- Afr2U 50 [ = — ) < eM4Y(Vap(z2) — Vip(a1)) >;

D = vA < (Viv(xz) = Viv(x1))e*V > = X< (E(z+7)+ E(z))erY >
+0(A*) (4)
The most interesting and surprising feature of these equations is the fact
that, unlike in the problem of Burgers turbulence, the advectice contri-
butions are represented in (3) in a closed form. To completely close the
problem the expressions for I, and D are needed. The equations (3)-(4).
formulate the turbulence theory in terms of “only” two uknowns I, and D.
The Kolmogorov refined similarity hypothesis stating that (Au)? = ¢&,r
where ¢ is a scale-independent random process and £, is a dissipation rate
averaged over a ball of radius r around point z, can be a promising starting
point to a closure for the dissipation term D. This will be done below. The
pressure term in (3)-(4) is also of a very specific and rather limited nature:
all we have to know is the correlation functions < U;U; - - - Un AVp >.
Thus, the definite targets needed for derivation of the closed equation for
Z-functions are well-defined.

The generating function can depend only on three variables: 9, = r; 7, =

AT = Acos(8); 3 = /A2 — nZ; and
- 2

d-1

2—-d
Zt—{-[(?m3,,2+-r—3,,2+%3n23,,3+(—-)—n2-

M o297, _
- am—Ta,,a]z_ I;+1,+D (5)

where, to simplify notation we set 0; o = 3—3—5 and v(7) = v(x;). The func-
tions I, Iy and D are easily extracted from the above definitions.
3. Two-Dimensional Flow in the Inverse Cascade Range

Now we will be interested in the case of the two-dimensioanl turbulence in
the inverse cascade range. If a two-dimensional (2d) fluid is stirred by a ran-
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dom (or non-random) forcing, acting on a scale Iy = 1/ky, the produced en-
ergy is spent on creation of the large-scale (I > ;) flow which cannot be dis-
sipated in the limit of large Reynolds number as v — 0. This is a direct and
most important consequence of an additional, enstrophy conservation, law,
characteristic of two dimensional hydrodynamcs [12]. As a result, the dissi-
pation terms are irrelevant in the inverse cascade range and we set D = 0 in
(5) and hope that in two dimensions the situation is greatly simplified. This
hope is supported by recent numerical and physical experiments [11]-[13]

showing that as long as the integral scale L; t% is much smaller than the
size of the system, the velocity field at the scales L; >> [ >> If is a sta-
tionary close-to-gaussian process characterized by the structure functions
(1) with the Kolmogorov exponents &, = n/3. In a recent paper Bofetta,
Celatti and Vegrassola [13] reported the results of very accurate numerical
simulations of two-dimensional turbulence generated by a random force.
No deviations from gaussian statistics of transverse velocity differences as
well as from the Kolmogorov scaling &, = n/3 were detected. Moreover,
the measured pdf of longitudinal differences could be represented as a sum:
P(Au) = Ps(Au) + P,(Au) were Py(z) = Py(—z) and FP,(z) = —FP,(-1z)
with Ps(z) indistinguishable from the gaussian. The generating function
in the new variables can be written as: Z =< ezp(n;Au+ vd — 1n3Av)
so that the pdf of transverse velocity differences is obtained in the limit
n2 — 0. With D = 0, the solution of the problem of 2d- turbulence is re-
duced to evaluation of the pressure term I, which, when 7, — 0, which can
be rewritten as:

I, = n3 < (0yp(0) — 9yp(r))exp(vVd — 1nsAv + m2Au) > (6)

The Navier-Stokes equations are invariant under transformation: v — —v
and y — —y. That is why: < (9yp(0) — Oyp(r))(Av)™ ># 0if m =2n+1
with n > 1 and is equal to zero if m = 2n. The pressure gradient 0yp =
0,0;0;0~*Av;Av; and the difficulty in calculation of I, is in the integral
over the entire space defined by the inverse Laplacian 8—2. The huge sim-
plification, valid in 2d only, comes from the fact that all contributions
to the left side of equation (5) as well as I are independent on time.
This means that the integrals involved in the pressure terms cannot be
infra-red divergent since in a two-dimensional flow L = L(t) x t5. The
expression (6) can formally be represented as: I, =< i,(U,V,r)e?V >,
where i, = A < (V2p(2) — Vip(1))|U,V,r > is the conditional expecta-
tion value of AVp for the fixed U = Au; V = Av; r. We also have that
i, = a?i, when U, V — aU; aV. Based on this and taking into account
that < (Av)?"*1(u2 + v? + uyv;) >= 0, we have
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3, < AVp(Av)*™H! > %(Av)““((aAu)2 + (cAv)? 4+ bAuAv)  (7)

where a, b, ¢ are as yet undetermined constants. This expression is exact,
provided the coefficients a;b; ¢ are finite in the limit Iy — 0. This is the
only assumption of the theory. All, but last, terms in the right side of (7)
are equal to zero. Thus:

I = bES_ < AuAvenzAu-}-naAv > = bﬂgi < AvenzAu+n3Av >
’ r r On
62
b2z =0,m5,r) (8)

737725773

Let us consider a strirring force f = (f;,0), acting on the same scale ;.
It has been tested numerically that at the scales I > I the flow rapidly
recovers isotropy [14]. In this case in the limit 7, — 0 the information
about the forcing function disappears from the equation:

d-1
Zy + [0:0p, + ‘r_anz + %3,723,,3 -IL)Z=0 (9)

Taking I, given by the second in (8) equation and assuming that the field
Av obeys gaussian statistics (see below) we can write:

@y 925
r 0N

Iy ~ b (10)
Substituting (10) into (9 ) we discover the most remarkable and unusual
feature of the resulting equation: it can be represented as: 9,,(£Z) where
L is a differential operator which in the limit 7, — 0 does not include the
variable 7;. Integrating this equation over 7; and choosing an arbitrary
function W(ns3,r) in such a way that the remaining equation satisfy the
normalizability constraint Z(n; = n3 = 0,r) = 1, gives:

073 3 073 B yP

2Z:=0 11
or r Ons (p,-)%n3 3 (11)
and
3 2
Z = Bap(Fnd(Pr)?) (12)

with parameter v defining the width of the gaussian. The first-order dif-
ferential equation (11) tells us that the dynamics of transverse velocity
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differences is goverened by a linear Langevin equation, driven by a solution-
dependent forcing. This equation is non-local in the physical space but local
in the wave-number space.

Now let us consider the third equation for I, (8). Repeating the above proce-
dure gives an identity from which no information about generating function
can be extracted. This is explained very simply: consider the forced diffusion
equation: 8;C = kV2C + f with the same as above forcing function. The
steady state Fokker-Plank equation in this caseis: A2PZ—\? < £erC >=0,
telling us that < (£ — £)e*® >= 0 or in other words, that the dissipation
rate and scalar fluctuations are statistically independent. All this is consis-
tent with the derived linearity of dynamic equation for transverse velocity
differences. It is clear that, to obtain the above solution in this case, we
have to modify the function ¥(ns,r) accordingly.

4. Three-Dimensional Flow

The difficulty of the three-dimensional case comes from the dissipation
contributions. This is easily understood on the basis of the Navier-Stokes
equations giving £ = O(d,u3). The dissipation term can be written as:

D =< dp(Au, Av,r)e*dY > (13)

where d, = A- < (VZv(2) — V3v(1))|Au; Av;r > is a conditional expec-
tation value of AVp for fixed AU; Av : r. The dissipation term is local
in physical space and, since the displacement r = (r,0,0), d,, is invariant
as v = —v. In addition, d, is invariant as 4 — —u: and z — —z. The
combination satisfying this set of constraints in the limit 7, — 0 is:

D = ¢n30,,0,,0.Z
dA
~ k< AuAv—a;Ee”zA“"'\/d““”A” > +0(0,0,2)  (14)

The locality of this expression is clear since M = —EQl _1’3%1 The last
term in the right side of (14), simply modlﬁes the coeﬂiment in front of
the first term in the left side the equation (5) and does not generate any-
thing new. The expression (14) resembles Kolmogorov’s refined similarity
hypothesis, connecting the dissipation rate, averaged over a region of radius
r, with (Au)3. At the present time we cannot prove (14). Thus, in the limit
1o — 0:
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9 g 0* m 02
[aﬂlam+ a’”+7m_76n3 +b— r 5 a +C1738,,23,730 ] ("72 =0, 3, 7') =0
(15)

where unknown coefficients b and ¢ will be determined below. Integrating
(15) over 7, gives

2 i} 0
[0, + — + 17‘3‘3—3 + b—b—— + €309, 0:1Z (12 = 0,73, 7) = ¥(n3,7) (16)
We must choose ¥(7s3) in such a way that the generating function Z(0,0,r) =
1. Inverse Laplace transform gives the equation for the pdf P(Awv,r)

4 0 6P
or 3r OV (9 N

Since S = 0, the coefficients in (17) are chosen to give s§ = |Av|3 =
a3z Pr with an undetermined amplitude az. This is an assumption of the
present theory, not based on rigorous theoretical considerations. Seeking
the solution in a form S} =< (Av)" > ré" we obtain

OP 1438 0 I vp_ ﬂ

=0 (17)

1438 115

&= 30T g ~ 31 0.05m)"
which was derived in [15] together with 8 =~ 0.05. It follows from (17)
that: P(0,7) « r~" where k = gl(f—fg—j ~ 0.4 for § = 0.05. Very often
the experimental data are presented as P(X,r) where X = V/r# with
2u = & =~ 0.696 for B = 0.05. This gives P(X = 0,7) oc r™"t# = r—0-052
compared with the experimental data by Sreenivassan [16]: —x+u ~ —0.06.
Introducing P(V,r) = r*F(%,r) = r"F(Y,r) and —c0 < y = Ln(Y) <
00, substituting this into (17) and evaluating the Fourier transform of the
resulting equation gives:

(18)

(1- ﬂ)r%? + Br(ik — kY F zkﬁra—F =0 (19)
with the result: F o« #7(%) where (k) = ,an%iz%%Ln(r/L) with r/L <<

1. We have to evaluate the inverse Fourier transform:
00 .
F= / dhe=kv (k) (20)
—00
in the limit y = O(1) and r — 0 so that Ln(r/L) — —oo. The integral can

be calculated exactly. However, the resulting expression is very involved.
Expanding the denominator of y(k) gives :
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F= / R e (21)
and
1 Ln(§))’
F x Q(T‘)eavp(—(—-%)——) (22)

with £ = V/rT=% and Q(r) = 425 |Ln(r/L)|.

To understand the range of validity of this expression, let us evaluate
< V™ > using the expression (22) for the pdf. Simple integration, ne-
glecting O(3?) contributions, gives: < V* > r*" with o, = (14 38)(n—
B(n? + 2))/3. Comparing this relation with the exact result (18) we con-
clude that the expression for the pdf, calculated above, is valid in the range
n >> 1 and Bn << 1. The properties of the pdf in the range 3 < £ < 15
are demonstrated on Fig. 1 for r/L = 0.1; 0.01; 0.001. The log-normal dis-
tribution (22), is valid in a certain (wide but limited) range of V- variation.
It is clear from (17) that neglecting the dissipation terms (c oc 8 = 0) leads
to & = n/3, i. e. disappearence of anomalous scaling of moments of veloc-
ity differences. This result agrees with the well-developed phenomenology,
attributing intermittency to the dissipation rate fluctuations: the stronger
the fluctuations, the smaller the fraction of the total space they occupy
[1], [3]- To the best of our knowledge, this is the first work leading to mul-
tifractal distribution of velocity differences as a result of approximations
made directly on the Navier-Stokes equations. The expression (22) is sim-
ilar to the one obtained in a groundbreaking paper by Polyakov on the
scale-invariance of strong interactions, where the multifractal scaling and
the pdf were analytically derived for the first time [17]-[18]. In the review
paper [18] Polyakov noticed that the exact result can be simply reproduced
considering a cascade process with a heavy stream (particle) transformed
into lighter streams at each step of the cascade (fission). Due to relativistic
effects the higher the energy of the particle, the smaller the angle of a cone,
accessible to the fragments formed as a result of fission. Thus, the larger
the number of a cascade step, the smaller is the fraction of space occupied
by the particles [18].

5. Conclusions

The importance of exact equation (5) is in the fact that it provides a mathe-
matic framework for discussion and understanding of small-scale structure
of turbulence. The approximations and models, developed in this paper,
show how both close-to-gaussian statistics and Kolmogorov scaling in two
dimensions and anomalous scaling and intermittency in 3d appear directly
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Figure 1. Ln(P(¢,r)). From bottom to top: r/L=0.1; 0.01; 0.001, respectively.

from dynamic equations. All previous attempts were unable not only to
produce the results but even to point to feasible directions of research.
The presented above theory of two-dimensional turbulence involves only
one assumption: locality of the pressure gradient contributions to the ex-
pression for I, which is based on the rigorous conclusion that the time-
dependent large- scale features of the flow cannot enter the equation. (5).
Still, some corrections to the above results may exist. Elucidation of the
role of these corrections is an extremely important task. Numerical test of
(7), is straitforward. It has been shown recently that in accord with (7)
< Adyp|Au >=< Adyp|Av >= 0 even in a three-dimensional turbulent
flow [19].

The power of equation (5) has been demonstrated above on an example of
a theory of three-dimensional turbulence. It has been shown that (5), com-
bined with the two plausable models, can describe both anomalous scaling
and the entire pdf of transverse velocity differences. The assumptions of
the theory are: locality of the pressure gradient, as in 2d, and a model
expression, similar to Kolmogorov’s refined similarity hypothesis for the
dissipation terms. The equation (5) and the theory presented above, pro-
vide a promising intellectual and mathematical framework for discussion of
both semi-empirical and theoretical models aimed at description of exper-
imental data. Moreover, they directly point to the neccessary experiments
which can be crucial for development of “the final theory”.

The unusual symmetry of the equation for transverse velocity differences is
a new feature, never seen before. That is why, in our opinion, state-of-the-
art simulations of two-dimensional turbulence aiming at verification of the
gaussian statistics of Av is the most important and urgent task.
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ON A COMPLETE STATISTICAL CHARACTERIZATION OF
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1. Introduction

The common picture of fully developed local isotropic turbulence is that
the velocity field is driven by external fields on large scales. By this, driving
energy is fed into the system at scales larger than the integral length Lg. A
cascading process will transport this energy to smaller and smaller scales
until at the viscous length scale 1 the injected energy is finally dissipated by
viscous effects [1, 2]. It is commonly believed that this picture of a cascade
leads to the universality of the statistical laws of small scale turbulence.

The standard quantity to study the statistics of turbulent fields is the
longitudinal velocity increment of the length scale r defined as v(r) = u(z+
r) — u(z), where u denotes the velocity component in the direction of the
separation r. z is a selected reference point.

To analyze the statistical content of the velocity increments two common
ways have been established. On the one side, the structure functions have
been evaluated by supposing a scaling behavior

< (v(r)? >= /dv (v)? P(u,r) rée, (1)

where P(v,r) denotes the probability density function (pdf) for v at the
length scale r. Using the recently proposed so-called extended selfsimilarity
[3], it has become possible to evaluate the characterizing scaling exponents
¢, quite accurately c.f. [4, 5]. On the other side, it is interesting to find
out how to parameterize directly the evolution of the probability density
functions (pdf) P(v,r) c.f. [6, 7].

One major challenge of the research on turbulence is to understand
small scale intermittency, which is manifested in a changing form of P(v,r)
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or equivalently in a nonlinear g-dependence of the scaling exponents (g,
provided that the scaling assumption is valid.

For a long time, the main effort has been put into the understanding of
the ¢-dependence of ¢, (for actual reviews see [2, 5] ), although it is well
known that due to the statistics of a finite number of data points (let’s
say 107 data) the determination of scaling exponents ¢, for ¢ > 6 becomes
inaccurate [8]. In addition there are different experimental indications that
no good scaling behavior is present [9, 10].

There have been less attempts to analyze directly the pdfs. This might
be based on the fact that up to now the scaling exponents are regarded as
the simplest reduction of the statistical content and that this analysis does
not depend on model assumptions. In contrast to this, proposed parame-
terizations of the form of the pdfs [6, 7], although they are quite accurate,
are still based on some additional assumptions on the underlying statistics.
Based on the recent finding that the turbulent cascade obeys a Markov pro-
cess in the variable r and that intermittency is due to multiplicative noise
[10, 11, 12], we show in Section III that it is possible to estimate from the
experimental data a Fokker-Planck equation, which describes the evolution
of the pdfs with r. We show that this Fokker-Planck equation reproduces
accurately the experimental probability densities P(v,r) within the inertial
range (see Fig. 1). Thus, an analysis of experimental data which quantifies
the statistical process of the turbulent cascade and which neither depends
on scaling hypotheses nor on some fitting functions for pdfs is possible [13].
Having determined the correct Fokker-Planck equation for an experimental
situation of local isotropic turbulence, we show in section VI that with this
approach also the statistics of inhomogeneous turbulence can be analyzed.
Here, we present results for velocity data in a turbulent wake behind a cylin-
der. In two recent works it has been shown that the analysis of a Markov
process in r also holds for the energy dissipation averaged over distances r
(14, 15].

2. Experimental data

The results presented here are based on 107 velocity data points measured
in two different flows, namely, a free jet and a turbulent wake flow. Local
velocity fluctuations were measured with a hot wire anemometer (Dantec
Streamline 90N10). A single hot wire probe (55P01) with a spatial reso-
lution of about 1 mm as well as an x-wire probe (55P71) with a spatial
resolution of about 1.5 mm were used. The measurements were performed
with sampling frequencies up to several kHz.

For the free jet, the stability was verified by measurements of the self-
similar profiles of the mean velocity according to [16]. The turbulence mea-
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surements were performed by placing the probe on the axis of a free jet of
dry air developing downwards in a closed chamber of the size of 2 m x 1 m
x 1 m . To prevent a disturbing counterflow of the outflowing air, an outlet
was placed at the bottom of the chamber. The distance of the hot wire to
the nozzle was 125 nozzle diameters D. As a nozzle we used a convex inner
profile [17] with an opening section of D = 8 mm and an area contraction
ratio of 40. Together with a laminarizing prechamber we achieved a highly
laminar flow coming out of the nozzle. At a distance of 0.25 D from the noz-
zle, no deviation from a rectangular velocity profile was found within the
detector resolution. Based on a 12bit A/D converter resolution, no fluctu-
ations of the velocity could be found. For the experimental data used here,
the velocity at the nozzle was 45.5 m/s corresponding to a Reynolds num-
ber of 2.7 10%. At the distance of 125 D, we measured a mean velocity of
2.25 m/s, a degree of turbulence of 0.17, an integral length Lo = 67 mm,
a Taylor length 6 = 6,6 mm(determined according to [18]), a Kolmogorov
length 7 = 0.3 mm, and a Taylor Reynolds number Ry = 190.

As a second experimental system, a wake flow was generated behind a
circular cylinder inserted in a wind tunnel. Cylinders with two diameters d
of 2 cm and 5 cm were used. The wind tunnel [19] we used has the following
parameters: cross section 1.6 m x 1.8 m; length of the measuring section
2 m; velocity 25 m/s; residual turbulence level below 0.1 %. To measure
longitudinal and transversal components of the local velocity, the x-wire
probes were placed at several distances between 8 and 100 diameters of the
cylinder. Depending on the used cylinder, the Reynolds numbers based on
the cylinder diameter were of 510* and 1.210%. In the far field, the integral
length varied between 10 cm and 30 cm, the Taylor lengths were around 2
mm, the Taylor Reynolds numbers were Ry = 280 and 650.

The space dependence of the velocity increments v was obtained by
the Taylor hypotheses of frozen turbulence. For the structure functions, we
found a tendency to scaling behavior for Ly > r > 6. Intermittency clearly
emerged as r — 6, as shown in Fig.1 by the different form of the pdfs for
different scales r. Note that the velocity increments given in this paper are
normalized to the saturation value of o, = /< v% > for length scales
larger than the integral length.

3. Measurement of Kramers-Moyal coefficients

Next, we show how to determine from experimental data appropriate sta-
tistical equations to characterize the turbulent cascade. The basic quantity
for this procedure is to evaluate the cascade by the statistical dependence
of velocity increments of different length scales at the same location & [20].
Either two-increment probabilities p(vg, ro; vy, 71) or corresponding condi-
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Figure 1. Probability density functions P(v,r) determined from the experimental data
of the free jet (bold symbols) and calculated pdfs (lines) by the numerical iteration
with the experimentally determined Fokker-Planck equation (5) . The length scales
r = Lg, 0.6Lo, 0.35L¢, 0.2Lo and 0.1L¢ going from up to down. For the numerical it-
eration as initial condition, an empirical fitting function for the large scale pdf was used
which is shown by a broken line. For clarity of presentation the pdfs were shifted in
y-direction.

tional probabilities p(vg, ro|vi, 1) 1= p(ve, ro;v1,71)/p(v1,71) are evaluated
from the whole data set. (Here, we use the convention that r;;; < r;, fur-
thermore v(r;) = v; = u(z + r;) — u(z).) Investigating the corresponding
three-increment statistics, we could provide evidence that the evolution of
these statistics with different r fulfills the Chapman-Kolmogorov equation
[10, 11, 21]. Furthermore, evidence of the validity of the Markov process is
obtained as long as the step size between different r is larger than a Markov-
length L., which is in the order of the Taylor length [12]. Thus we know
[21] that the evolution of the increments v is given by a master equation
without the involvement of memory functions and that the evolution of
the pdfs P(v,r) as well as p(v,r|vy, 1) is described by a Kramers-Moyal
expansion:

d oo
—rJT:P(v, r) = Z[—%]kD(k)(v, r) P(v,r). (2)
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Here, the Kramers-Moyal coefficients D(k)(v, r) are defined by the following
conditional moments:

r 1
M® (v, r, Ar) = HA_r/dm (v2 = v1)* p(va, ralvr, 1)
D(k)(vh rl) = Alir_l’l)o M(k) ('Ula rlvAr)v (3)

where Ar = ry — r;. The presentation of the Kramers-Moyal expansion
and the definition of the Kramers-Moyal coefficients were chosen in a way
adapted to assumed scaling behavior, i.e., all was multiplied by r. Know-
ing the Kramers-Moyal coefficients and thus the evolution of P(v,r), the
differential equations for the structure functions are obtained easily [10]

d ol
Sl 75— (n),a—n
re- < (v(r))? > n2=1 TR < DMy?™ > . (4)

If the Kramers-Moyal coefficients have the form D) = d,v¢ (where d, are
constants), scaling behavior of (1) is guaranteed with ¢, = — Y92} (q—ﬂ—!m -
For a discussion of this finding in terms of multifractality and multiaffinity
see [22].

An important simplification is achieved if the fourth Kramers-Moyal
coefficient is zero. In this case the infinite sum of the Kramers-Moyal ex-

pansion (2) reduces to the Fokker-Planck equation of only two terms [21]:

—iP(v r) = -ED“)(U r) + —‘92—1)(2)(@ r)| P(v,r) (5)
dr "’ ov k ov? k v

Now, only the drift term D(!) and the diffusion term D(?) are determin-
ing the statistics completely. From the corresponding Langevin equation
characterizing the evolution of a spatially fixed increment, we know that
D) describes the deterministic evolution, whereas D(?) describes the noise
acting on the cascade. If D® shows a v-dependency one speaks of multi-
plicative noise.

In Figs. 2 and 3 we show the evaluated conditional moments M) and
M® at scale ry = L/2 for Ar = 6. For the higher Kramers-Moyal coeffi-
cients we found that M®) < 1072M (), Thus, we take the Fokker-Planck
equation as the adequate description.

The moment M1 shows a linear dependence on the velocity increment
with small second- and third-order term corrections, while M(?) can be
approximated by a polynomial of degree two in v: This behavior is found
for all scales r and for all values of Ar. It is therefore reasonable to assume
that the Kramers-Moyal coefficients show the same dependence on v as
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Figure 2. 'The moments M(I)(U,r, Ar) as a function of the velocity increment v for
r = L/2 and Ar = 6 (circles). The data are well fitted by a polynomial of degree three
(solid line), where the second and third order term are small.

Figure 3. The moment M(z)(v,r, Ar) as a function of the velocity increment v for
r = L/2, Ar = 8 (circles) and the fitting polynomial of degree two (solid line). the error
bars indicate the increasing uncertainty for large v.

the moments M(¥). With this functional dependence we could perform the
limit Ar — 0. The complete results for the coefficients D) and D) are

(b= 5):
DM, 1) = —o(r) = v(r)v + K(r)v? — ¢(r)v°
o(r) = 0.0015p"°
y(r) = 0.61pY°
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k(r) 0.0096 p
e(r) = 0.0024p"°
D@, r) = afr) = §(r)v + B(r)v?
a(r) = 0.034p'?
§(r) = 0.017p
B(r) 0.062 p°-23. (6)

Let us briefly comment this result. For the estimation of the limiting
values, we considered only Ar values larger than the Markov length. This
yields to v values larger than 1/3, in contrast to the expected value in
[10]. A puzzle (see also [25]) we have not solved yet is the finding that
the approximation for smaller d-value yields a v value of 1/3. Having es-
timations for D) and D®, it becomes possible to verify this finding by
the numerical iteration of the Fokker-Planck equation (5). Here, we start
with an approximation for the large scale pdf, as initial condition for the
iteration. In Figure 1, the result of such a numerical iteration is shown by
solid curves. We find an almost perfect accordance between the numerical
solutions and the experimental data. On the basis of this result, it is not
possible to decide the correct value of v. Within the same functional depen-
dencies of D(V) and D(®) it is possible to reproduce the pdf correctly with
different combinations of the prefactors (6). If not only the pdf of single
increments but also the conditional pdfs are taken as a testing ground for
the correctness of the extracted D(!) and D) coefficient, we see that only
the values given in (6) work well [26].

4. Anisotropic turbulence

Up to now the gained insight into details of local isotropic turbulence has
not improved essentially the understanding of real flow situations which are
commonly not local isotropic. Thus we investigated with our method, which
is mentioned above, also the disorder in the velocity field close to a cylinder.
Here, even in the case of high Reynolds numbers, pronounced large scale
structures are present. More precisely, we investigated the longitudinal and
transversal velocity measured in the near field of the turbulent wake already
mentioned.

First, we evaluated the pdf P(v,r) and found out that close to the
cylinder at large scales r the pdfs clearly deviate from a Gaussian form.
Sometimes even a double hump structure appears. The question whether
this situation can also be described by a Markov-process was verified by the
evaluation of the Chapman-Kolmogorov equation. We found again that this
equation is nicely fulfilled and thus it makes sense to evaluate the Kramers-
Moyal coefficients. The result for the first moments M is shown in Fig. 4.



114

4' v L] T T T
2_'0% (a) i
o
) On' - Z
= | =
2 % -
-4 1 1 1
-4 -2 0 2 4
Vr
4 ° T T T T T T 4 g T T T T T T
L ¢ 1 . d |
2"& © — 2F o (d) ]
~ P ] L % ]
< ol - = of m 1
o®
g “ % “
i [y ® |
-4 1 . 1 " 1 s -4 1 ! " 1 e
-4 -2 0 2 4 -4 2 0 2 4
Vr Vr

Figure 4. The moment M" (v,r, Ar) as a function of the transversal velocity increment
v for r =8.5 mm (a), 26.6 mm (b), 44.3 mm (c), and 62 mm (d); cylinder diameter 5 cm;
Ar =0,177 mm.

For small scales, M (1) has a similar form like the one found for local isotropic
turbulence. This may be taken as an indication of universal small scale
turbulence. For large scales r, we find pronounced new structures in MO,
The formerly linear behaviour changes to an n-shaped form. An important
effect is that the number of zeros (M(1)=0) changes from 1 to three. These
zeros correspond to fixed points of the deterministic part of the stochastic
process. Fixed points with negative slope are accumulation points. The
random part of the stochastic process causes fluctuations around these fixed
points. This leads to a building up of maxima in the corresponding pdfs
for large scales, which vanish as one comes to smaller scales r (see also
[27]). Thus, the symmetric arrangement of the fixed points for large scales
corresponds to higher probabilities for finite positive and negative velocity
increments. In our interpretation this is a signature of turbulent Karman
vortices passing over the detector. These vortices are rotating alternately
in opposite senses. In this way, the changing from of M (1) can be taken as a
signature of large scale coherent structures within the turbulent near field
of the wake flow.
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5. Conclusion

We have presented a method to analyze the disorder of the velocity in
a turbulent field. We showed how stochastic equations can be extracted
directly from the measured data. The presented results from isotropic tur-
bulence and from anisotropic turbulence in the near field of a turbulent
wake flow show that this method seems to work in many turbulent situ-
ations. The characterization of turbulence by Markov processes, or even
by Fokker-Planck equations, comprises that any n-increment distribution
P(Un, n} Un—1, Tn—1; - - -.U1, 1) is given, too. More precisely, these n-increment
distributions can be expressed as a product of conditioned probabilities,
which are given by the Markov process. The knowledge of the probability
of the occurrence of n increments on different length scales can be regarded
as a complete statistical description of increments.

At last we want to set our finding into the context of other contributions
to this issue. Differential equations in r, which describe the evolution of the
pdfs, are discussed by Yakhot [28] and by Nakano [29]. The estimations of
joint probabilities as an important quantity to characterize the cascade are
presented by Jimenez [30]. Our finding of a finite length L,,,, seems to be
connected to the finding of Kambe [31]. The Burger vortex represents the
coherent small scale structure (< 107). They seem to correspond to the
finding that below the length L,,,, the Markov properties is not valid any
more. The random arrangement of these vortices seem to be linked to our
finding of a stochastic Fokker-Planck process.
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STATISTICAL LAWS GOVERNED BY VORTEX
STRUCTURES IN FULLY DEVELOPED TURBULENCE

TSUTOMU KAMBE
Dept. of Physics, University of Tokyo,
Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract. Statistics of fully developed turbulence is modeled by an en-
semble of strained vortices (i.e. Burgers vortices) distributing randomly in
space, and probability density functions (pdfs) for longitudinal and transver-
sal components of velocity difference are estimated by taking statistical av-
erages of isotropy and homogeneity. It is found [15] that the pdfs tend to
close-to-exponential forms at small scales, and that there exist two scaling
ranges in the structure function of every order, which are identified as the
viscous range and inertial range respectively. The pdfs deviate increasingly
away from the Gaussian as the separation distance decreases. For the in-
ertial range (second scaling range of larger scales), scaling exponents are
obtained and found to be close to those known in the experiments and
DNSs. It is remarkable that the Kolmogorov’s four-fifths law is observed
to be valid in a small-scale range. The scaling exponents of higher order
structure functions are numerically estimated up to the 25th order. It is
found that asymptotic scaling exponents as the order increases are in good
agreement with the behavior of recent experiment of Praskovsky & Oncley
[4]. The above model analysis is considered to represent successfully the sta-
tistical behaviors at small scales (possibly less than the Taylor microscale)
and higher orders. The present statistical analysis leads to scale-dependent
probability density functions.

1. Introduction

Fully developed turbulence is structured with a number of intense elon-
gated vortices, observed in many laboratory experiments and computer
simulations [1]~[13]. Turbulence is often characterized by intermittency,
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non-Gaussian statistics with negative skewness, inertial range, multi-scaling
and so on. A natural question would be as follows: how the statistical laws in
turbulence are influenced by such structures. It is reasonable that random
distribution of discrete vortices accounts for the intermittency. The present
paper considers whether the non-Gaussian statistics with negative skewness
and the inertial range with multi-scaling are predicted by an ensemble of
strained vortices distributing randomly in space.

In the limit of high Reynolds numbers, it is considered that there is an
invariant measure in the turbulence governed by Navier-Stokes equation:
v+ (v-V)v = —Vp+vAv, V.v =0, where v is the kinematic viscosity.
A probability desnsity function (pdf) P(v,s) is defined for the turbulence,
where v is a velocity difference at two points separated by the distance s
in the field, v being either the longitudinal v;(s) or transversal v;(s). Non-
Gaussian turbulence is often investigated in terms of the structure function
defined with

Sn(8) = (V") = /v”P(v,s) dv, (1)

for the nth-order moment, where () is an ensemble average for a fixed s.
Behaviors of 9y, (s) with respect to the order n and the distance s give us
information about the above characteristics of turbulence.

In the homogeneous isotropic turbulence, the second- and third-order
structure functions satisfy the Kolmogorov equation [16, 17]:

S3(s) — 61/(%5’2(3) = —g— €S, (2)

where ¢ is the rate of energy dissipation. This exact relation holds at the
scales including the viscous range as well as the inertial range. The equation
provides the testing ground of the present model analysis, which is not
usually done in many phenomenological models of turbulence. In the limit
of vanishing viscosity, the third-order structure function in the inertial-
range is given by the four-fifths law [18]: S3(s) = —(4/5)¢ s. In this context,
the parameter ¢ would be termed more appropriately as the constant rate
of energy transfer across each wave number shell in the inertial range. The
Kolmogorov 1941 theory [16] implies the scaling properties of the structure
functions given by dimensional arguments as S,(s) ~ (¢s)*/3, so the scaling
exponent is given by (, = n/3 (referred to as K41 below). It is known
that real turbulence is a dynamical system characterized with anomalous
exponents different from the K41 phenomenology of single scaling.

We will examine the pdfs P(v,s) and the structure functions derived
from ensembles of Burgers vortices in detail. Although the model analysis
is already reported [12, 19, 20], much improvement has been done in the
recent paper [15], described below, and calculations are carried out with a
renewed scheme.
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2. Scaling exponents

In the homogeneous isotropic turbulence, the structure functions are con-
sidered to follow power laws in the inertial range as,

Sn(s) = ([v(x,8)]*) ~ s, 3)

where v(x,s) is velocity difference at a distance s either longitudinal v; or
transversal v;, and (, is the scaling exponent to be sought.

The first model predicting the scaling exponents based on pdfs would
be the lognormal theory for the rate of dissipation which however predicts
unfavorable behaviors of scaling exponent (, decreasing when the order n
becomes larger [18]. Recent models [21, 22] predicting the scaling expo-
nents of intermittent energy dissipation is based on the notion of filamen-
tary structure in turbulence. It is also proposed by [21] that the scaling
exponents are represented in the parametric form: ¢, = hn + C(1 — %),
where the following scaling law with a parameter A is assumed:

v(s) = v (s/L)h . (4)

Experimental pdfs for v; are determined by Praskovsky and Oncley [4]
at very high Reynolds number turbulence of Ry = 10® ~ 10%. This suggests
that asymptotic behavior of the scaling exponents is represented as c,SPO) =
0.16 n+const as n — 00.! In the present analysis below, it will be shown as
n becomes large that the exponent (,, asymptotes to the lines represented
as (, =~ 0.158 n + const, with different values of the constant for the even
n and odd n. It is remarkable that the proportional coefficients are almost
coincident. The experimental results of van de Water and Herweijer [23]
also favor the asymptotic behavior (,/n — 0.16, which is interpreted as
the minimum of the exponent A in (4) from the multifractal point of view.

In the theory of multifractal model, the scaling behavior (4) of the
exponent h is assumed to have a fractal distribution of dimension D(h)
in space with a probability measure du(h) for the parameter h. Then the
structure function is given by S,(s)/v} ~ [(s/L)**+3-D(h)du(h), and in
the small scale limit S,(s) is dominated with the smallest exponent and
the exponent (, is given by (., = inf, [nh + 3 — D(h)]. The function
D(h) is supposed convex with a maximum at A = 1/3. The minimum value
hmin of h, if any, corresponds to the most singular scaling. As the order n
gets larger, the moment S,(s) is dominated by the strongest singularity of
hmin- Therefore in the limit of large n, the scaling exponent would be given
asymptotically as

(n ~ nhmin +3 — D(h). (5)

YIf ¢ = 0.69 is used instead of the value (2 = 2/3 of [4], ¢°) ~ 0.17n + const .
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3. Burgers vortex

The velocity field of Burgers vortex is represented, at the point r = (0, ¢, 2)
in the cylindrical system called vortez frame V, as vg(r) = (—ag, v4(0), 2a2),
where a is assumed a positive constant. The total velocity field is a super-
position of an azimuthal circulating flow (0, v4(c), 0) and an irrotational
axisymmetric straining field (—ao, 0, 2az). The vorticity has only axial
component: wg(r) = (0, 0, w(o)). The circulating velocity and the axial
vorticity of the exact solution are given as,

wo)= g (10 [-(7)]) - = gem - (3)]

respectively, where rg = (21//(1)1/2 and K is the vortex strength. Local
rate of energy dissipation is given explicitly as £, = 4v(3a? + egqs), with
eos = (1/2)(0(0) - v/0).

It is to be noted that the Burgers vortex is an exact steady solution
of the incompressible Navier-Stokes equation [24] and also a solution in
the asymptotic limit of large time [25], and that the combined field vg(r)
is characterized with negative skewness at points satisfying a < |es¢| [1,
19, 26], while neither circulating component (¢ = 0) nor pure straining
component (vg = 0) is so.

4. Statistical Ensembles

In a laboratory frame L, the vortex structures in turbulence are assumed to
distribute randomly, isotropically and homogeneously. To begin with, the
velocity difference v at two points O and P (separated with a distance s)
in the frame L of the origin at O is to be determined, where the velocity
difference v is either v;(s) or v(s).

It is assumed that vortices in the laboratory frame are statistically in-
dependent to each other, and that only the nearest vortex dominates the
velocity difference. In the leading order, the latter would be approximated
with the state that there exists only a single Burgers vortex in space. The
vortex position is characterized by the nearest point A on the vortex axis
to the origin O. Provided that the point A is located at a distance r from
0, the difference v can be calculated by using the velocity field vg(r) for
various values of separation distance s. In this way one obtains a function
v(s). Further, the statistical averages S,(s) = (v")(s) (n = 1, 2, ---) are
also to be determined from the v(s) with respect to an ensemble of vor-
tices of all possible positions and orientations. If the function v(s) had a
scaling form like (4), then we would be led to the viewpoint similar to the
multifractal model.
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The statistical average ( - ) is taken triply so as to take account of
the isotropy, homogeneity and ensemble of various strengths and sizes of
strained vortices. First, the nearest point A of the vortex axis to the origin
O is assumed to distribute according to the Poisson distribution in 3D
space [27]. Then the probability of the point A located at a distance r
from O is given by Py (V) = (1/(V))exp(-V/(V)), whrere V denotes the
space volume of no vortex including O and (V) is its expectation. Using
V = (47 /3)r® and the relation Py(V)dV = P,(r)dr, one obtains

P,(r) = 3br? exp(=br?), (6)

where b = (T'(4/3)/r0)? and o = (r) (the expectation of 7). The probability
P,(r) corresponds to the event that there is no vortex within the distance
r from O, namely the single vortex is located at A (of distance r). An
experimental evidence of the Poisson statistics is found in [5].

Further, an ensemble of vortices of various strengths (and various sizes)
is considered. Its probability density function F(K') is assumed to be given
in the form of a gamma distribution [11, 28]: F(Rk) = 0.5C3R% exp(—CRk),
where R = K /v is the vortex Reynolds number and C is a normalizing
constant. (For the probability function of vortex size rg, see [15].) Thus,
various vortex strengths are taken into account.

The statistical analysis gives the nth-order structure function Sn(s)
dominated by a single vortex in turbulence, hence considered to predict
statistics for large n and small s. This model would describe the statistics
very well at scales less than the Taylor microscale, above which scale the
study of Friedrich ét al. [29] would be more appropriate. Their important
finding is an experimental verification of existense of a Markovlength L4,
of the order of Taylor scale, above which the process is Markovian.

Suppose that there exists a Burgers vortex (of strength K) tangent
at the point A to the sphere of radius r centered at the origin O in the
laboratory frame L. Correspondingly, we consider the vortex frame V in
which the Burgers vortex is fixed with its axis being along the z-axis of
the system (o, ¢, z) with the velocity field vg(r). The origin of the vortex
system V is taken at A in the system L. Transformation of the velocity
field between the two frames V and L is expressed in terms of the Euler
angles denoted by € collectively. The vortex position and orientation are
determined by the parameters £ and r.

5. Statistical Averages

Choosing a point P denoted by the vector s in L with |s| = s, the veloc-
ity increment between the points P and O, Av = v(P) — v(0O), can be
calculated as a function of 2, r, s and K. Denoting a stochastic variable
like one of (Av)"™ as X(f2,7,s,K), an average of X is taken first over Q.
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Figure 1. Three lowest order structure functions, S.(s) (n =1,2,3).

Figure 2. Structure functions with fitting lines in the inertial range.

The resulting value (X )sphn corresponds to the average over the spherical
surface S, of the sphere V and considered as a function of r, s and K. Next
is an average with respect to the distance r with the probability P.(r):
(X)(8,K) = [ (X)sph(r,8, K) Pr(r) dr. Thus we obtain the statistical prop-
erties of isotropy and homogeneity influenced by a single strained vortex of
strength K in turbulence. The n-th order structure function is given by

Sn(s) = / (v")(s, K) F(Rk) dRx . ®)

6. Computed Results

Figure 1 shows three lowest-order structure functions (v = v;, Ry = 2000
and ro = 2.57). It is observed that the Kolmogorov equation, 6v.S5%(s) —
Sa(s) = (4/5)es, is satisfied reasonably well below the scale s ~ 157,
where the right hand side (4/5)es is denoted by the solid straight line.
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Figure 8. Scaling exponents {» of longitudinal structure functions v.s. the order n.

Figure 4. Least square fitting to the linings of present ¢, for large n.

Only the function S;(s) is calculated for |v|, otherwise S1(s) = 0 by the
solenoidality. In Fig. 2, the structure functions (v = v;) are illustrated for
the higher orders of n = 10 ~ 30. It is observed that there exist two scaling
ranges in each structure function.

The scaling exponents in the second inertial range are plotted in Fig. 3
and compared with those obtained from other models, DNSs and experi-
ments. In the figure the dotted straight line shows the slope 0.16 predicted
by Praskovsky and Oncley [4]. In Fig. 4, two lines of least square fitting to
the present reslts for large n are shown. The slopes are estimated separately
for the even- and odd-orders, both being found to be remarkably close to
the slope 0.16.

Figure 5 shows the pdfs of (a) longitudibal velocity difference v; and (b)
transversal one vy, normalized by vy, for various values of the separation s.
It is observed that the pdfs of v; are asymmetric, resulting in the negative
skewness, while the pdfs of v; are symmetric. The properties are consistent
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Figure 5. Probability density functions for (a) vi/vrms, and (b) v¢/vrms-

with those obseerved in DNSs and experiments. The pdfs tend to close-to-
exponential forms as s gets smaller.

Taking into account the probability distribution P(rg) of vortex radius
TB, the structure functions of both longitudinal velocity difference S,(LL)(S)

and transversal velocity difference S,(LT)(.S) are estimated, assuming mutual
independence between Rr and rp. The results are shown in Fig. 6. In the

isotropic turbulence, the statistical theory [17] predicts that both of SgL)(s)
and Sl(,T)(s) have the same scaling exponent, and that SéT)(.s) = 25§L)(s) =
(2/15)(¢/v)s? in the viscous range. It is found in the figure that these
properties are approximately satisfied.

7. Scale-Dependent PDFs

An exact relation, HP + (0/0U)(GP) = 0, is known to be valid in the
homogeneous turbulence (Pope & Ching, Phys. Fl. 5 (1993), 1529), where
H(U,s) = —(ViU(x)|U), and G(U,s) = (|VxU(x)|>|U). The func-
tions H(U,s) and G(U,s) are the conditional averages with the value of
U = v(x,s) fixed. This equation is integrated immediately: P(U,s) =
(N/G(U, s)) exp[ - foU(H(x,s)/G(w,s)) dz]. Recent DNS analysis [30] im-
plies that the functions H(U,s) and G(U, s) are represented as quadratic
polynomials of U. For large values of the normalized variable u = U/V (V =
V' 52(8)), the probability function of u is given asymptotically as,

p(u,s) = C(s)u™ exp[~cs(s)lul], C(s) = D(s)/az(s),  (8)

(¢4 are numerical constants depending on the sign of u), where D(s) =
NV [Ja(s), Jo(s) = (|VxU(x)[*) and g(u,s) = G(U,s)/J2(s) ~ az(s)u?
for large u. Thus the function u?P(u) tends to an exponential form as |u]
becomes large, which is confirmed in Takahashi et al. [30]. It can be shown
that the present pdfs of Fig. 5 also have such asymptotic property.
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Figure 6. Structure functions Sgl‘)(s), S:(,L)(s) and SgT)(s), with the probability Pg(rg).

Praskovsky and Oncley [4] determined the coeffcient ¢(s) of Eq. (9) ex-
perimentally at O(R)) = 103~10*, which is represented as b(s) = b(s/nx )"
with 8 = 0.17 and b; = 0.58 (u > 0), 0.51 (u < 0). Then the pdf is repre-
sented as p(u,s) = (D(s)/g(u,s)) exp [-b(s) |u|]. Thus,

n

9(u, s)

where g(u, s) is replaced for large n by as(s)u?. Assuming N/(Jzaz)  s°,
the exponent (, for large n is expressed as (, = (0.5(;—3) n+a+5+0.5(; =~
0.17n 4 const, where f = 0.17 and (3 =~ 0.69 are used. As is shown in
Fig. 4, the exponents in the present model tend to the asymptotic slope
0.16 (with separate linings between the even and odd orders), which is
remarkably close to the above value. This value is also reported to favor
the experimental results of van de Water and Herweijer [23].

exp [—b(s) [u| ]du  sé* (for large n),

Su(s) = V"D(s)/
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1. Introduction

In this paper we present an analysis of the PDF for the longitudinal ve-
locity increment with the aid of the conditional average method (CAM).
The functional forms of the necessary averages are derived and compared
with the results of simulation. The derived PDF is categorically shown; the
Gaussian for small amplitudes, the stretched exponential for intermediate
ones and the exponential for large ones. The comparison with the PDF
obtained in high Reynolds number flows is given.

2. Conditional Averages and PDF

In a statistically homogeneous system, it is rigorously shown that the PDF
for the longitudinal velocity increment wy.(x) = u(x + re,) — u(x), where
u(x) is the = component of the velocity field at & and e, is a unit vector
along z axis, can be expressed in terms of the conditional averages for
viscous term and dissipation rate with a given value of w,. Although the
CAM can be applied to the PDF for the increments of a passive scalar(1]
and transversal velocity, we stress that the application to w,[2] is more
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interesting and important for the following reasons. (1) Statistics of w, are
the most essential to characterize the turbulence and experimentally the
most easily accessible. (2) Two conditional averages related to w, can be
interpreted in the dynamical context of the Navier-Stokes turbulence more
directly than the ones for other fields.

The conditional averages we examine are

H(w,) = v(Viu(e + res) - Viu(@)|w ) = v Viw(@)lw, ), (1)
G(wy) = v(|Vau(@ + rez) — Vau(@)lw, ) = v{|Va wr(@)Plw, ), (2)

where the average is taken with the value of w, fixed, and v the viscosity.
Combining the both averages, we are led to the PDF P(w,) in homogeneous
turbulence as

wr H(x)
P G dz| . 3
(wn)Glur) x exp | [ ZEaa (3)
If the functional forms of H and G are figured out, we are able to know the
PDF. The derivation of (3) is seen in Ref.2.

Before going to show the behavior of H and G, it is convenient to express
wy, H and G in the following dimensionless forms;

_ So(r) 1
h(ur) = —*7ESFH(wn), g(ur) = Z5Glun),  (4)

where Jo(r) = v{|Vzw,(x)|?) and Sa(r) is the second order structure func-
tion. Then the PDF becomes

Plur)g(ur) ~exp |- [ 25 ds). (5)

3. Functional Forms of Conditional Averages

In the present section we show the behavior of h and g against u, for simu-
lated turbulence and obtain their fitted functional forms, and then, attempt
to justify those forms from the view point of the turbulence dynamics.

The averages h and g are calculated for decaying turbulence simulated
on 5123 mesh points. Figures 1 and 2 are the curves of h and g against u,
for various values of r/n, 1 being the Kolmogorov length. It is interesting to
notice that h(u,) is almost independent.of separation r, while g(u,) depends
on r. We find that h and g are satisfactorily fitted by the formulae

h(ur) = crur + cour|u,|, g(ur) = ap + aq|u,| + aguf. (6)
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Figure 1. h(u,) against u,
for various values of /7.

Figure 2.  g(ur) against u,
for various values of r/7.

The parameters ¢; are almost independent of 7 in the inertial range. On
the other hand, ag increases with r, while a; and as decrease.

Next, we discuss what are H and G. To this end we investigate the
difference of velocities at @2 and x;:

wi(X, 7 ) = ui(en,t) ~wi@nt), m=X-7, @=X+5. (7)

The equation for w;(X,r,t) = w; is derived from the Navier-Stokes equa-
tion of incompressible fluids of unit density as

9
org

0
(%+VVX> w; = —Wg wi_a_X;5p+VV2X wy, (8)

where Jp is the difference of pressures at &; and x2, and V is the average
velocity at the two points. Taking the conditional average of (8) for the
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fixed value of w; with the aid of the stationary condition, we are led to

0 0
wi(r)H (wi(r)) = <wi(V Vxw; +wg— (9rk (9X 6p> i(r )> 9)
Hence w;(r)H (w;(r)) is the conditional average of the energy transfer rate.
(Note that H(w,) denotes H(wz(r)).) In order to turn to G, consider the
following identity;

wi(r)H(wi(r)) = v(V x - (wiV xws)|wi(r)) — v{|V xwil*wi(r) )
=v(Vx - (wiVxw)|wi(r)) — G(wi(r)). (10)

Thus G is the conditional averaged dissipation rate. The difference between
—w;(r)H (w;(r)) and G(w;(r)) is due to the effect of the spatial diffusion,
which increases with |w;(r)|. If the diffusion term were neglected, i.e. G ~
wyH, (3) predicts that the PDF would be the power law of w, to the
contrary to observation[3, 4]. It is of interest to indicate that the PDF
is determined by the combination of the conditional energy transfer and
energy dissipation.

Now let us model H and G. Since —w, H(w;) is the conditional average
of the energy transfer rate with the fixed value of w,, it must be expressed

as
2

—wpH(wy) ~ 2. (11)
Tr
What is 7.7 When w, is weak, Kolmogorov’s idea should be valid; 7, ~
13,28 = = 7i(r). When w, is strong, the relaxation time is regulated by
itself, i.e. the local turnover time 7, ~ r/|w,|. Both relaxational processes
must coexist, so that
w Wy |w

where ¢; are independent of r. If the above relation is non-dimensionalized
according to (4), (12) reduces to (6). Hence, the comparison of (12) with the
simulation is remarkable in the following respects; (1) the combination of
linear and quadratic in w,., and (2) the r-independence of ¢;. Of importance
is that the above derivation is not based on a perturbative way, implying
that the highest order of H is w2.

Finally turn to G. In the inertial region G(w,) = 2v{|Vgu(z)|?|w,).
For small amplitude of w,, G(w,) must be constant, which is of order of
the average di551pation rate. For large amplitude of w,, G(w,) cannot be
of order of w, because the PDF would become power-law like. For large
amplitude of wr the first term on the right hand side of (10) is dominant.
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to think that G(w,) is proportional to the energy density w2, although we
need more persuasive argument.

4. Classification of PDF

Substituting the fitted forms (6) for h(u,) and g(u,) into (5), we can com-
pute the PDF. For small amplitudes of u,, h ~ u, and g ~ const, yielding
the Gaussian PDF. For extremely large amplitudes, where the deterministic
picture is valid, A ~ u,|u,| and g ~ u2, providing the exponential PDF

Plur)g(ur) ~ exp |~ Zlu . (13)

where cp/as ~ 1/a9 is found to increase with r. The above tendency is
clearly seen in Fig.3, where the product form P(u,)g(u,) is given.

Since the Reynolds number of the present simulation is not large, we had
better refer the experimental results of high Reynolds flows[3, 4]. According
to Praskovsky and Oncley[3], P(u,) takes the form exp [—b(r)|u,|], where
b(r) o< r# with 8 = 0.17 £ 0.01 for flows with Ry = (2.0 — 12.7) x 103.
Hence, the present result (13) is consistent with the experiments of high
Reynolds numbers.

For the intermediate amplitudes the factor 1/g(u,) before the exponen-
tial in (3) has a certain effect to yield the PDF flatter than the exponential,
i.e. the stretched exponential, as seen from P(u,) in Ref.2.

Figure 8.  P(u,)g(u,) a-
gainst u, for various values
of /0.

5. Connection to Work by Yakhot

Recently how the PDF propagates in scale space was investigated exper-
imentally[5] and theoretically[6]. We want to show the connection of the
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present result with Yakhot’s model equation for P(r,w) [6];

0 A A 0
(B - ].)Pr - w%Pr = —7P - 7wa—wP, (14)
where P, = OP/0r. Here w is used for the velocity increment w, in order
to avoid the misunderstanding that w, is the derivative of velocity with
respect to r. The parameters A and B were adjusted in accordance with
the observation; B = 20 and A = (34 B)/3 = 23/3. The interesting results
obtained from (14) are seen in Ref.6.
In order to make the connection with (14) let us take derivative of the
equation HP = 0GP /0w, which is obtained from (3), with respect to r:

oG oP, 9G, oP
(H—%)PT—G&U——(HT—aw>P+Gr%, (15)

where H, and G, are derivatives of H and G with respect to r. Notice that
every term in (15) is contained in (14). The comparison of (15) to (14)
yields the following relations:

w oG
B-1=g(H-5,)
A w 0G,
7_5<Hr_aw>’ (16)
A w
7’[0——5GT.

With the use of the formulae (6), the parameters A and B can be
estimated. The agreement with Yakhot’s values is obtained partly. The
detailed comparison is referred to Ref.2.
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STATISTICS OF SMALL-SCALE STRUCTURE OF
HOMOGENEOUS ISOTROPIC TURBULENCE

Data-base analysis of direct numerical simulation

T. ISHIHARA, Y. YAMAZAKI, AND Y. KANEDA
Department of Computational Science and Engineering,

School of Engineering, Nagoya University,
Chikusa-ku, Nagoya 464-8603, Japan

1. Introduction

In order to study the properties of the inertial subrange, we have recently
generated a data-base by direct numerical simulation (DNS) with 5123 grid
points of forced homogeneous isotropic turbulence obeying the incompress-
ible Navier-Stokes (NS) equations. In the DNS, the enstrophy grows mono-
tonically in time and then attains its peak value at about ¢ = 12.0 (in eddy
turnover time units), after which the turbulence is in a quasi-steady state.
The Taylor scale Reynolds number Ry at ¢ = 12 is 126, and the energy
spectrum E(k) is close to K,e?/3k=%/3 (K, = 2.28) in the wavenumber
range 8 < k < 18. Here we study the small-scale structure of turbulence
on the basis of the data-base. Jiménez et al. [1] analyzed the structure of
intense vorticity by using a data-base with 5123 grid points of a homo-
geneous isotropic turbulent field of Ry = 169. We analyze our data-base
by paying attention mainly to the structure at length scales in the iner-
tial subrange. First, we investigate the probability distribution functions
(pdf’s) of the Eulerian and Lagrangian time-derivative fields and fourth-
order velocity moments, to study the intermittent and non-Gaussian na-
ture of turbulence. Next, in order to get some idea on the mechanism by
which the turbulence exhibits the intermittent and non-Gaussian nature,
we analyze the turbulent field from the viewpoint of vortex dynamics by
visualizing the regions with high vorticity magnitude, high dissipation, and
high enstrophy generation, as well as the regions where the vorticity and
the eigenvector of rate-of-strain tensor align well. Finally, in order to study
the flow structures at the scales of the inertial subrange, we analyze geo-
metric relations between the vorticity and rate-of-strain tensor at several
coarse-grained levels.
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Figure 1. Pdf’s of the Eulerian and Lagrangian time-derivative fields; pdf’s of the
Eulerian Oth-, 1st-, and 2nd-order time-derivative fields are indicated as u0, ul, and u2,
respectively, while those of the Lagrangian ones as v0, v1, and v2, respectively.

2. Pdf’s of the Eulerian and Lagrangian time-derivative fields

It is well known that the pdf’s of turbulent velocity fields are nearly Gaus-
sian, while those of spatial derivative fields deviate from Gaussian, showing
an intermittent nature.[2] As compared to the spatial derivatives, little is
known about the time derivatives. Since turbulence is a phenomena in space
and time, it may be of interest to know not only the spatial derivatives but
also time derivatives. Moreover, the latter derivatives, in contrast to the
former, have a direct dynamical significance, since they appear in the equa-
tions governing the fluid motion. Recently, Kaneda, et al.[3, 4] developed
a systematic method to generate the Taylor expansions in powers of time
difference of the Eulerian and Lagrangian two-time velocity correlations,
subject to given dynamics as well as initial and boundary conditions. The
expansions are obtained by computing the time-derivatives of the. Eulerian
and Lagrangian velocity fields. Figure 1 shows the pdf’s of the Eulerian
and Lagrangian time derivative fields. It can be observed that the Eule-
rian, as well as Lagrangian, time derivatives of the velocity field are more
intermittent for the higher order time derivative, and also that for given
order of the time derivative, the Lagrangian derivative is more intermittent
than the Eulerian one.

3. Fourth-order velocity moments

Statistical moments like {(e — (€))?), (|Vp|?), or {Ju x w|?) are among the
simplest measures which may show the non-Gaussian nature of turbulence,
where u, w, p and € are, respectively, velocity, vorticity, pressure, and energy
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Figure 2. Spectra of fourth-order velocity moments obtained from the DNS data at
t = 12T (black lines) and those generated by an artificial Gaussian velocity fields with
the same energy spectrum (gray lines).

dissipation rate per unit mass.[5] Here we investigate the spectra P(k),
W (k), D(k), and F(k) defined by
2 )
>= / W (k)dk,
0

(IVpl*) / k*P(k)dk, <Z—':
<(e—<e))2>=/0°°D(k)dk, and (f) =/O°°F(k)dk

where f is a fourth-order velocity moment such as |u?, |u- w|?, |u x w|?,
and |w|*. In Fig. 2, we compare the spectra of various fourth-order velocity
moments obtained from the data-base against those generated by an artifi-
cial Gaussian velocity field with the same energy spectrum. The comparison
suggests that (|u|?), (|0u/at[?), (Ju x w|?), and (u - w) are less sensitive to
the non-Gaussianity of the real turbulent field than {(e — (¢€))?), (|Vp|?),
and (|w|?).

4. Vortex dynamics

It is clear that the intermittent and non-Gaussian nature of the turbulence
is closely related to the NS dynamics. However, the detailed mechanism
which generates such flow structures is not well understood. Here we study
the flow structures from the viewpoint of vortex dynamics.
The vorticity w and its amplitude w = |w| obey, respectively,

D D wi(VAw;)

Ewi = S;jw; + vAw;, and _D—Zw = ow + — 0z
where D/Dt = 8/3t+ (u- V), w; is the ¢th component of w, S;; is the rate-
of-strain tensor, v is kinematic viscosity, and o = w;S;;w;/ w? is the rate of
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Figure 3. Iso-surface of the amplitude of vorticity (w = @ + 30.,) (top left), the total
rate of strain (s = 3+ 30,) (top right), & (@ = & + 304) (bottom left), and cos 2 = 0.98
(bottom right), where @ and 0. denotes the mean and the standard deviation of a.

enstrophy generation. Regions with large « are called active regions.[6] Let
A1 > A2 > A3 be the eigenvalues of S;; and A; be the eigenvector of Sj;
associated with ;. Then a can be expressed as a = \; cos? 8; + Az cos® 05 +
A3 cos? 03, where 0; is the angle between w and A;. Ashurst et al.[7] showed
in the analysis of their DNS data that w is well aligned with Aj in high
enstrophy regions.

Figure 3 shows the region of high w, high s = (SijSij)l/ 2 high o, and the
region where cos f; = 1. Note that s is proportional to the local dissipation.
A close inspection of the figures shows that (i) the location of high w and
that of high s are almost the same, whereas their shapes are different; in
contrast to the worm-like shape of the high w region, the shape of the high
s region is sheet-like, (ii) the location of high o region is in the immediate
neighbourhood of the high w region and the shape of the high o region is say
petal-like, and (iii) the regions with cosf2 =~ 1 do not always correspond
to high enstrophy. Regarding (i) and (ii), similar observations were also
reported in Ref. [1].
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Figure 4. Pdf’s of the cosine of the angle between w™’ and Ith eigenvector of S,(]N )
M = N = 8 (top left), M = N = 16 (top right), M = N = 0 (bottom left), and
M = 0, N = 32 (bottom right). Black solid lines are for I = 1, broken ones for I = 2,
and gray for I = 3.

5. The alignment in coarse grained fields

In order to get some idea on the flow structure at the inertial subrange
scales, we have studied the alignment between vorticity and eigenvectors of
rate-of-strain tensor computed from several coarse-grained filterings of the
same data-base. Replacing spatial derivatives by central differences with
spacing 2N A, we define the central differences at coarse grained level ‘N’,
ie.,
9A) ™ _ A(z1+ NA, 3, 35) — A@1 = NA, 23, @3)
o0z, - 2(NA) ’

where A = 27/512 is the grid spacing of the DNS data. The vorticity and
rate-of-strain tensors at coarse-grained level ‘N’ are defined by

™, ™ ) 1<BUi‘”’+%(”’)
ij ’

w = € — — ==
¢ ”kaa:] ’ 2\ 0z; Oz;

Il

respectively, where € is the alternating tensor and we have defined wfo) =

w; and Si((-)) = Sj;. Since z-derivative of sinkx is expressed as Ck coskz,
where C = (sinkd)/(kd), in the central difference scheme with spacing 9,
the scheme gives a good approximation when ké < er and 0 < € < 1. This
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consideration suggests that the central difference scheme at the coarse-
grained level ‘N’ resolves approximately the behavior of the z-derivative of
exp(ikz) for k < 128/N, where we have put € = 1/2 and § = NA. We have
studied the alignment between the vorticity and the eigenvectors of the
rate-of-strain tensor at coarse-grained levels N = 0,4, 8,16, and 32. Note
that level ‘32’ roughly resolve modes in energy containing ranges, while
levels ‘16’ and ‘8’ resolve those in the inertial ranges (8 < k < 18).

The top two figures in Fig. 4 suggest that the alignment between the
coarse-grained vorticity vector and the eigenvectors of the coarse-grained
strain tensor are almost independent of the scale of the coarse graining,
provided that it is in the inertial subrange. On the other hand, the bottom
two figures suggest that although the vorticity vector is well aligned with
the second eigenvector of the strain tensor in the original data, it is well
aligned with the first, instead of the second, eigenvector of the coarse-
grained strain, when the coarse-grained level of the rate-of-strain tensor is
at the scale of energy containing eddies.

This work was supported by “Research for the Future” Program of
the Japan Society for the Promotion of Science under the project JSPS-
RETF97P01101. The computation was carried out by the VPP500/42 sys-
tem at the computer center of Nagoya University.
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ON UNIVERSALITY OF STATISTICS OF PRESSURE FIELD
IN HOMOGENEOUS TURBULENCE
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1. Introduction

Since the source term ~f the Poisson equation for pressure is quadratic in the
velocity gradient and the PDFs for the vorticity and velocity gradients are
themselves different from Gaussian, it is quite natural to expect markedly
non-Gaussian statistics for the pressure field. Moreover the pressure and
its gradients are given by the volume integral of the source term weighted
.by the Poisson kernel, so that non-local effects in physical space as well
as local ones affect the statistics. These facts suggest that small scales of
pressure field are highly intermittent and may be influenced by large scales.

We consider how the small scales of the pressure field are scaled in
length and Reynolds number and to what extent they are affected by large
scales. Also relation bewteen pressure statistics and coherent structure in
turbulence is explored. Our approach here is to examine the changes of the
pressure and pressure gradient statistics to the Reynolds nmbers by DNS
with different forcings and to see to what extent they are universal.
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2. Numerical computation

An incompressible fluid is assumed to obey the Navier Stokes and the con-
tinuity equations:

8—u+u-V'u = —Vp+vViu+f,, (1)

ot
V-u = 0, (2)

where u is the velocity vector, p is the pressure, v the kinematic viscosity
and the density p is assumed to be unity without loss of generality. Two
kinds of forcings are considered. One is the random force f which is additive,
solenoidal, statistically homogenous and isotropic. And it is assumed to be
white in time and Gaussian with zero mean and the second order moment
given by

(i@ 0f () = Kz -2t - ) 3)
Ko=Ku®) = (f@0)= [ Be(b)at, (4)
) = {777 oo (5)

where (-) denotes the ensemble average [2]. Another is an excitation of the
Fourier modes by the instability coefficient applied at lower wavenumber
band, that is, in the wavevector representation, to replace f,(k,t) in (1)
by c(k, t)u(k) with

[ ¢(t)>0 for low band
olk,t) = { 0 otherwise (6)

where ¢(t) is determined to keep the Kq.n constant greater than unity
during the computation [1, 3]. Yeung and Pope, and Vedula and Yeung
used the additive forcing which obeys the Orstein-Uhlenbeck process [4, 5].

Runs with additive forcing are further separated into two groups. One
is a group of data (group A) computed from a series of DNSs in which
turbulence field at higher Reynolds number is succesively generated from
that of lower Reynolds number. Another is a group of data (group B) which
are generated through long time evolution from independent initial velocity
fields. When the averaging time is sufficiently long, the statistics of two
groups of data should be the same, but for the first group, practically, there
remains some statistical correlation between large scales of two turbulent
flow fields of adjacent Reynolds numbers. In the second group, on the other
hand, there is no correlation, so that the large scale flow structures at
different Reynolds numbers are different and independent.
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Figure 1. Comparison of DNS variances Fy, Fyp by various forcings. 1: F;, (group A),
2: F, (group B), 3: F, (Gotoh & Rogallo 1998), 4: F, (Vedula & Yeung 1999), 5: Fy,
(group A), 6: Fy, (group B), 7: Fy, (Gotoh & Rogallo 1998), 8; Fy, (Yeung & Pope
1989). 9; Fy, (Vedula & Yeung 1999). 10; Fy, (Voth et al. 1998). Batchelor’s values
(estimated using Gaussian approximation for the fourth order moment of the velocity

gradients.) are FPG =0.15 and ng = 3.9, repsectively.

3. Normalized variances of pressure and pressure gradient

The normalized variance of the pressure F}, and the one for the pressure
gradient Fy, are defined as

2 V)2
b oo @

where € is the average rate of energy dissipation. In the classical Kolmogorov
scaling, both F}, and Fy, are independent of R . Figure 1 shows the varia-
tion of F, and Fy, against R . F), decreases slowly with R, approximately
as Ry %2, and Fyp increases roughly as RA12 for low to moderate Ry, but
the rate of increase for Fy, becomes smaller at high end of R, irrespective
of the type of forcing. This is consistent with recent DNS studies [1, 5, 7].
On the other hand, for R between 1000 and 2000, the experimental data
of Fyy are seen to be nearly independent of R [6]. DNS values seem to ap-
proach the experimental values when the Reynolds number becomes large.
It is not known whether or not Fj, becomes independent of R, for large
Rx.
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Figure 2. Kolmogorov Scaling of the Energy spectra. Data are group B.

4. Scaling of pressure spectrum

In the K41 the pressure spectrum, defined by (p?) = [ P(k)dk, is scaled as
P(k) = /474 f,(kn) and of the form P(k) = Cpe"/3k~"/3 in the inertial
range, where f,(z) is a nondimensional function and C, is a constant of
order one. However, it has been growing to observe the facts that the K41
scaling of the pressure spectrum P(k) is not as good as the case of the
energy spectrum even for the wavenumber range kn = 0.1 ~ 1.0 [5, 1, 7]. In
fact, as seen from figures 2 and 3, collapse of energy spectrum by the K41
scaling from the data of group B is very satisfactory, while, but not good
for the K41 scaling for the pressure spectra.
Here we propose a new scaling of the pressure spectrum as

P(k) = &/*"/* Fy,¢(kn), (8)

where 7 is the Kolmogorov length and ¢ is a nondimensional function.
Figure 4 shows the pressure spectra by two kinds of forcings at various
Reynolds numbers by using the scaling (8) and compensation (k7)%/3. Col-
lapse of the curves is satisfactory, supporting the scaling (8). Another point
is that the curves extend toward lower wavenumbers horizontally as the
Reynolds number increases, implying that P(k) is proportional to k~%/3,
unlike the Kolmogorov scaling k~7/3. The k~°/3 scaling of the pressure
spectrum has also been found in other recent DNS with different forcing
[5, 7]. Physical explanation for this scaling has not been known [1]. These
observations suggest that the pressure spectrum in the inertial to higher
wavenumber range is universally scaled when Fy,, is included for the range
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Figure 8. Kolmogorov Scaling of the pressure spectra (group B) with compensation by
(kn)™/>.

Figure 4. Scaling of the pressure spectra by using Fv, and compensation by (kn)s/a.
The data are from group A, B and Gotoh & Rogallo (1999).

of Reynolds numbers studied here. However, since the experimental data
suggests that Fy, tends to be independent of Ry, which implies that the
scaling of pressure spectrum by (8) becomes independent of Ry so that
universal scaling of the pressure spectrum is achieved at large Reynolds
numbers. Further studies at large Reynolds numbers are necessary.

The above discussion means that the Reynolds number dependency of
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Figure 5. Average volume of the domains of the source term S for the Poisson equation
for the pressure normalized by Vo = LAn at S, = 20,. Data are group A.

Fyp is a key ingredient to the scaling of the pressure statistics, and it re-
quires physical explanation. A physical argument using a model field for
the source term of the Poisson equation for the pressure has recently been
presented by Gotoh and Rogallo [1]. The model is given by a random distri-
bution of dipoles consisting of a pair of positive and negative source terms.
It is found that the Reynolds number dependence of Fy, is explained by
this model as that of the effective volume over which the space integral for
the pressure gradient is done. A direct measurement of the effective volume
shown in figure 5 indeed shows that the average of the effective volume
is of the order of LAn, where L is the integral scale. In the limit of large
Reynolds numbers, we expect that the effective volume would be of the
order of ALn?, where A is a constant of the order of ten, and this leads to
independence of Fy, on R [2].
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A STATISTICAL LAW OF VELOCITY CIRCULATIONS
IN FULLY DEV_LOPED TURBULENCE
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1. Introduction

Numerical simulations of the Navier-Stokes equations allow us to investigate
the three-dimensional field of the fluid motion at Ry < 200, where R) is
the Reynolds number based on the Taylor microscale A. It is observed in
many DNSs that the region of the high amplitude vorticity has filament-
like structures and the details of the geometry of the vortex filaments has
been investigated (e.g., [3, 2]). The average radius of the cross section (R)
is observed to be 3 ~ 67, where 7 is the Kolmogorov dissipation scale.

A question arises that how the fine vortex structures are reflected in the
statistical properties of turbulence. The statistics of longitudinal velocity
increments is usually discussed in the theory of isotropic turbulence since
Kolmogorov [4]. However, the relation between the statistics and the geo-
metric picture of vortex filaments would become clearer when we discuss
the statistics of the velocity circulation I'(A), which is defined as

F(A):/ u-dl:/w-dS,
dA A

where A is a plane region with a boundary A in the whole domain D, dl
and dS are the line and the surface elements respectively and w = V X u the
vorticity. The velocity circulation is given by the vorticity over the region

tCurrent address: Department of Computational Science and Engineering, Nagoya
University, Nagoya 464-8603, Japan
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Figure 2. Typical scales of the connected
components of the strong vorticity region,
Figure 1. Normalized PDF's of the circu- the average distance d and the average di-
lation I'(a) ameter §. The line is the fitted function of
the form exp(a + b(win/@)) to the average
distance d.

A. Tt takes a large magnitude when an intense vorticity structure intersects
the region A. Cao et al. [1] studied the statistical properties of velocity
circulation using data from DNS. They found that the PDF of velocity
circulation depended on the area a of the region A and the form of PDF
varied as a function of a and has significant exponential tails when /a is
in the inertial range.

In this context, we study the relation between the statistical properties
of the circulation and the intense vorticity structure in turbulence using
the data from DNS.

2. Statistics of I'(a)

The DNS of the force-free Navier-Stokes equations was performed with the
resolution of 2562 in three dimensional torus by Yamamoto et al. [6, 5].
The sample space is generated by calculating the velocity circulations for
the snap-shot velocity field at the maximum energy dissipation rate along
all possible square contours on the grid for each fixed area a. The Taylor
microscale Reynolds number at the time is Ry = 89.5. 7 is 0.424 [grid] and
Taylor microscale is A/n = 18.6. The inertial range is located in 19 < r/n <
40.

Figure 1 shows the PDFs of the velocity circulations I'(a) normal-
ized with respect to the variance for various areas. The PDF has a sub-
stantial stretched tail compared to that of Gaussian when the area a is
0()\?) (a/n* = 19%) or O(n?) (a/n* = 4.7%). The PDF approximates
Gaussian when the v/a is as large as the integral scale L, (a/n? = 642).
The deviation from Gaussian is -estimated by computing flatness F; =
{(T'(a))*)/{(T'(a))?)2. 1t is found that the flatness of the PDF of circulation
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is substantially larger than the Gaussian value 3 or that of the longitudinal
velocity increments du;(1/a) and closer to that of the transversal velocity
increments du;(1/a), yet still larger. This suggests that the statistics of the
circulation is of different type from that of the velocity increments. The
results are consistent with those of the DNS analysis of Cao et al. [1].

3. Decomposition of the vorticity field

Let us fix a plane S C D, where D is the whole cubic domain, and consider
the scalar field wp(x)(x € S) of the vorticity component normal to the
plane S. We fix a positive threshold wy, and decompose the scalar field wy
into two components: the strong component w-, and the weak component
w<. Their definitions are as follows:

 fwn®) (Jn()] > win) (0 ()] > ww)
“’>"‘)‘{o (on(x)] < i) ° “’<(")*{wn(x> (lwn()] < ).

The motivation of the decomposition is to investigate the contributions
of the strong component often concentrated in small regions and the weak
component to the statistics of the velocity circulation separately. The strong
vorticity region {x € S : |wn(X)| > w} occupies rather a small area
fraction.

The geometry of the connected components of the strong vorticity re-
gion {x € S : |wy(x)| > wip} is studied. Six arbitrary planes which are
perpendicular to the axes of the cube are chosen and the number of the
connected components is counted. The average distance d and the average
diameter &, which are defined from the average area and the number density
of the connected components respectively is shown in Figure 2 for various
thresholds wyy,. It is found that d increases exponentially as the threshold
wth increases and that the average diameter §=Tn~ 9n for wyh = 2 ~ 3@
where @ is the r.m.s. of the normal components of the vorticity field wy.
The average diameter d is consistent with the average diameter of the vor-
tex filaments which are known from other DNS analyses. We expect that
the strong component w~ (x) corresponds to the intersections with vortex
filaments for the appropriate threshold (wy, = 2 ~ 3®).

4. Statistics of I's (a) and I'<(a)

The circulations I's (A) and '« (A) associated with the strong vorticity w
and the weak vorticity w< respectively are defined by

rs(4) = /A ws(x)dx,  To(4) = /A we(x)dx,

where A C S. It is obvious that I'(A) = ['s (A) + ['<(A).



148

Normalized PDF
Normalized PDF

Figure 3. PDFs of the circulation '« (a) Figure 4. PDFs of the circulation I's (a)
associated with the weak vorticity with associated with the strong vorticity with
wih = 30 wih = 3@

It is found that the normalized PDF of I'<(a) is less dependent on the
area a (Figure 3), that is, the statistics of I'<(a) is approximately self-
similar. The self-similarity of I'<(a) may be related to the Kolmogorov’s
picture. This suggests that the fine vortex structure is responsible for the
non self-similarity, namely intermittency, at least at this range of Reynolds
number R).

Indeed, the PDF of I's (a) depends strongly to the area a and it has
stretched tail compared to Gaussian. The normalized PDFs are shown for
wih = 3@ in Figure 4. The oscillating behavior of the PDF at the small
amplitude of |T's(a)| is due to the truncation of the vorticity field and the
finite grid size in the following reason. Let A be the grid size, then the
minimum positive value of |I's(a)| is A%w,. The existence of this finite
minimum causes jumps in PDF at I's = nAZ%wy, for integers n of small
absolute value.

The behaviors of the PDFs of I's (a) and I'<(a) are qualitatively same
as long as the average size of the connected components of w~ corresponds
to that of the intersections of the filaments (wy, = 2 ~ 3©).

5. A model of the statistics of vortex filaments

The authors considered a simplified model of the statistics of velocity cir-
culation caused by a random distribution of vortex filaments in turbulence
in [7]. Here we neglect the weaker back ground vorticity field.

Let N vortex filaments in which the vorticity is concentrated is ran-
domly distributed in the domain D. We choose a plane S in the domain D.
It is assumed that each vortices intersects with S only once and that ar-
eas of intersections are small and approximated by points. Let Y; € S(j =
1,...,N) and Z; € R(j = 1,..:,N) be the intersection point with the
plane S and the circulation of the j-th vortex respectively. By assuming
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the randomness and mutual independence of Y; and Zj, it is shown that
the circulation in the model denoted by I',(a) obeys a compound Poisson
distribution P(fa, o) whose characteristic function is given by

(7 — l)a(v)dv) ,

—_
p—t
~—

o0
©r.(a)(8) = exp (9a /

-00

where § = N/|S| is the number density of the intersections and o () is the
common probability distribution of Z;.

The tail of a compound Poisson distribution in general decays with
the order P(|[I'n(a)] > z) ~ exp(—=zlogz/c) where ¢ depends on o and
it decays slower than that of Gaussian distributions. Normalized PDF of
I'm(a) depends on the area a and approximates Gaussian for large a. We
assume the probability distribution o of the circulation is symmetric. Then
it is shown that the second moment ((T'y,(a))?) is proportional to the area.

It is easily seen from the equation (1) that the characteristic function
of the circulation I'n,(a) satisfies

(o]

(Prm(a)(8))* = Prac)(s) (2)

where C is an arbitrary positive constant, thus L.h.s. is independent of the
area a. We call the PDF corresponds to the Lh.s. (i.e. the Fourier transform
of the L.h.s. multiplied by a normalizing factor) the convoluted PDF. The
convoluted PDF of 'y, (a) is independent of the area a. The property is due
to the fact that I'y(a) is an additive process in area a.

6. Comparison between I's (a) and I'n,(a)

Here we compare the statistics of the circulation associated with the strong
vorticity I's (a) obtained from the data of DNS and the statistics of the
circulation 'y, (a) of the model in §5.

The scaling exponent of the second moment of I'y(a) is 1. The local
exponent of the second moment of I's (a) asymptotically approaches to 1
when the threshold wg, becomes large or the area a becomes large.

The convoluted PDF of the circulation I'y(a) in the model is indepen-
dent of the area a and is identical. The convoluted PDF's of the ' (a) are
computed from the data of DNS for various a and are shown in Figure
5. They tend to converge for the larger areas. From the investigation of
the second moments and the convoluted PDFs, it appears that the model
I'm(a) represents an asymptotic behavior of I', (a) for the large area.

The discrepancy found in the smaller scale may be due to the finite size
of the strong components. Since the Reynolds number achieved by the DNS
is limited, the inertial range scale is not sufficiently separated from the size
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Convoluted PDF

Figure 25.2 Convoluted PDFs of the circulation I's (a) (wen = 3@) with the parameter
C =19°p°.

of the strong components and the model may be a over-simplification for
the small scale statistics.

In the model, the probability distribution of the circulation of the fil-
aments o(7y) is a free parameter and is not determined a priori. However,
it is found that the PDF of the circulation I's (a) associated with strong
component for the area larger than A2 is reproduced well by setting o as
a two-sided exponential distribution o(v) = (1/2G) exp(—|v|/G), where G
is the average circulation of the filaments. The distribution ¢ seems to be
related to the dynamics and the stability of the filaments. The detailed
analysis of the dynamics is beyond the scope of this paper. We just point
out that the probability distribution of the circulation o of filaments plays
an important role in the statistics of velocity circulation I'(a) at the range
of Reynolds number of the DNS (R ~ 90).
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Abstract. A Lagrangian method is introduced for calculating simultane-
ous n-point correlations of a passive scalar advected by a random velocity
field, with random forcing and finite molecular diffusivity x. The method,
which is here presented in detail, is particularly well suited for studying the
£ — 0 limit when the velocity field is not smooth. Efficient Monte-Carlo
simulations based on this method are applied to the Kraichnan model of
passive scalar and lead to accurate determinations of the anomalous inter-
mittency corrections in the fourth-order structure function as a function of
the scaling exponent £ of the velocity field in two and three dimensions.
Anomalous corrections are found to vanish in the limits £ — 0 and § — 2,
as predicted by perturbation theory.

1. Introduction

Robert Kraichnan’s model of passive scalar advection by a white-in-time
velocity field has been particularly fertile ground for theoreticians trying
to develop a theory of intermittency [1, 2, 3] (see also Refs. [4, 5]). Al-

153

T. Kambe et al. (eds.), IUTAM Symposium on Geometry and Statistics of Turbulence, 153-173.
(© 2001 Kluwer Academic Publishers.



154

though the model leads to closed equations for multiple-point moments,
only second-order moments can be obtained in closed analytic form [6].
Theoretical predictions differed as to the behavior of higher-order quanti-
ties, regarding in particular the survival or the vanishing of intermittency
corrections (anomalies) in certain limits. Obtaining reliable numerical re-
sults was thus an important challenge. Until recently numerical simulations
have been based on the direct integration of the passive scalar partial dif-
ferential equation and have been limited to two dimensions[5, 7, 8]. Such
calculations are delicate; to wit, the difficulty of observing for the second-
order structure function the known high-Péclet number asymptotic scal-
ing [6]. Also, the numerical scheme used in Refs. [5, 7] involves a slightly
anisotropic velocity field which is not expected to give exactly the right
scaling laws for the passive scalar [9].

Lagrangian methods for tackling the Kraichnan model and which re-
quire only the integration of ordinary differential equations were recently
proposed independently by Frisch, Mazzino and Vergassola [10] and by Gat,
Procaccia and Zeitak [11]. Our goal here is to give a detailed presentation
of the Lagrangian method and to present new results.

In Section 2 we give the theoretical background of the Lagrangian
method for general random velocity fields which need not be white-in-time.
In Section 3 we investigate the limit of vanishing molecular diffusivity which
depends crucially on how nearby Lagrangian trajectories separate. We then
turn to the Kraichnan model which is given a Lagrangian formulation (Sec-
tion 4). Then, we show how it can be solved numerically by a Monte-Carlo
method (Section 5) and present results in both two and three space dimen-
sions (Section 6). We make concluding remarks in Section 7.

2. The Lagrangian method

The (Eulerian) dynamics of a passive scalar field 6(r,t) advected by a ve-
locity field v(7,t) is described by the following partial differential equation
(written in space dimension d):

8t0("'= t) + 'U(T, t) : Ve('l', t) = HV20('I‘, t) + f("',t), (1)

where f(7,t) is an external source (forcing) of scalar and « is the molecular
diffusivity. In all that follows we shall assume that 6(r,t) = 0 at some
distant time in the past ¢ = —T (eventually, we shall let T — o0).

In this section the advecting velocity v and the forcing f can be either
deterministic or random. In the latter case, no particular assumption is
made regarding their statistical properties.

In order to illustrate the basic idea of the Lagrangian strategy, let us
first set K = 0. We may then integrate (1) along its characteristics, the
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Lagrangian trajectories of tracer particles, to obtain

oir,t) = [ I(alsir, 0,9 ds @)

where a(s;7,t) is the position at time s < ¢ of the fluid particle which
will be at position  at time ¢. (Two-time Lagrangian positions of this type
were also used in Kraichnan’s Lagrangian History Direct Interaction theory
[12].) This Lagrangian position, which will henceforth be denoted just a(s),
satisfies the ordinary differential equation

20 —vae),  al)=r. 3)

For k > 0 we shall now give a stochastic generalization of this La-
grangian representation. Roughly, # will be the average of a random field
¢ which satisfies an advection—forcing equation with no diffusion term, in
which the advecting velocity is the sum of v and a suitable white-noise
velocity generating Brownian diffusion.

To be more specific we need to introduce some notation. We shall use
a set of n d-dimensional time-dependent random vectors

’lbi(s)'—‘{u')i,a;’i:l,...,n; a=1,...,d}, (4)

which are Gaussian, identically distributed, independent of each other and
independent of both v and f. The time dependence is assumed to be white
noise:

<'lbi,a(3)wj,ﬁ(sl)>w = 5ijfsaﬂ5(3 - Sl)~ (5)
The notation (-),, stands for “average over the w;’s for a fixed realization
of v and f”. Similarly, (-)ys stands for “average over v and f for a fixed
realization of the w;’s”. Unconditional averages are denoted just (-). Clearly,

(Y= (Crwdys = {(oghy - (6)

The white noise, which is a random distribution, is here denoted by i (s)
since it is the time derivative of the Brownian motion (or Wiener-Lévy)
process. In the numerical implementation we shall work with increments of
w(s).

We can now state the main result which is at the basis of our Lagrangian
method.

Let ¢i(r,t) (1 = 1,...,n) be the solutions of the following advection-
forcing equations :
rpi(r,t) + (v(r,1) + V2r(t)) - Voi(r,t) = f(r,1).
$i(r,-T) =0, i=12,...,n. (7)
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For any r1, ro, T3, ..., we have

0(r1) = (d(r1))y,, Vi (8)
0(r1)0(r2) = (¢i(r1)9j(r2)),,» Vi # J, (9)
0(r1)0(r2)0(r3) = ($i(r1)dj(r2)dk(r3)),

Vi, 5k, 1#35#k#1, (10)

where all the fields 0 and ¢ are evaluated at the same time ¢.
The proof of (8) is obtained by taking the mean value of (7) (only over
w) and noting that

(Vo - Vi) =KV (gi),, - (11)

(This is a standard result for linear stochastic equations having white-noise
coefficients; it is derived using Gaussian integration by parts (see Ref. [13],
Chap. 4). For similar derivations see Refs. [6, 14, 15].)

To prove (9), we first derive from (7), assuming ¢ # j,

9 (¢i(r1)di(r2)) + [v(r1) - V1 +v(ra) - V3
+V2k(w; - Vi + w; - Va)lgi(r1) ¢ (re) =
f(r)i(re) + f(r2)ei(r1), (12)

where V1 and V3 stand for Vy, and Vy,. We then average (12) (over w)
and use a relation similar to (11)

<\/2_n(1b,~ - Vi+wy - V) $i(r1)¢; (7'2)>w
= (V1 + V3) ($i(r1)e5(r)),, - (13)

(Notice that cross terms involving V; - Vy disappear because of the inde-
pendence of w; and w;.) The higher order equations in (10) and following
are proved similarly.

Because of the absence of a diffusion operator in (7), its solution has an
obvious Lagrangian representation

i(r,t) / f(ai(s),s)ds, (14)
where
d .
a(’;i s) (ai(s), 8) + V2kav;(s) (15)

a;(t) =r. (16)
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So far we have not used the random or deterministic character of v and
f. In the random case, taking the average of (8)-(10) over v and f, we
obtain

(0(r1)) = (¢(r1)), Vi (17)
(0(r1)0(r2)) = (Bi(r1)gj(r2)), Vi#j (18)
(0(r1)0(r2)0(r3)) = (¢i(r1)dj(r2)dr(r3))

Vi,j,k, 1#j5#k#A1, (19)

.................................................

Egs. (14), (15), (16), together with (17), (18) and higher orders, con-
stitute our Lagrangian representation for multiple-point moments of the
passive scalar.

Let us stress that, for moments beyond the first order, it is essential to
use more than one white noise. Indeed, we could have made use of just (8)

and written
0(r1)0(r2) = ($i(r1))w(dj(r2))w, Vi, J. (20)

(Including the case 7 = j.) It is however not possible to (v, f)-average (20)
because it involves a product of w-averages rather than just one average as
in (9).

In the more restricted context of the Kraichnan model, a functional
integral representation of nth order moments involving, as here, n white
noises has already been given in Refs. [16, 17].

3. The limit of vanishing molecular diffusivity

Interesting pathologies occur when we bring two or more Eulerian space
arguments of the moments to coincidence and simultaneously let k — 0.

This is already seen on the second-order moment (§%(r;)). From (14)
and (18), we have

02(r1)) //(f ai(s), 5)f (a(s'), &) dsds’, (21)

for any ¢ # j. The differential equations for a;(s) and a;(s) involve different
white noises. If, in the limit £ — 0, we simply ignore the v/2xw; terms in
(15), we find that all the a;(s)’s satisfy the same equation (3) and the same
boundary condition a;(t) = r;. It is then tempting to conclude that all the
a;(s)’s are identical, namely are just the Lagrangian trajectories a(s) of
the unperturbed v-flow. As a consequence, we can then rewrite (21) as

02(r)) = / / (f(a(s),5)f (a(s'), s")) dsds,
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= <(/_tTf(a(s),s)ds)2> . (22)

For a large class of random forcings f of zero mean the r.h.s. of (22)
will diverge o« T' as T' — oo. This is for example the case when f is ho-
mogeneous, stationary and short- (or delta-) correlated in time as in the
Kraichnan model. The reason of this divergence is that, although the forc-
ing has zero mean, its integral (along the Lagrangian trajectory) over times
long compared to the correlation time behaves like Brownian motion (in the
T-variable) and, thus, has a variance & T'. From this naive procedure we
would thus conclude that, when T = o0, the scalar variance becomes infinite
as k = 0.

This conclusion is actually correct when the v-flow is smooth (differen-
tiable in the space variable): this is the so-called Batchelor limit which has
been frequently investigated [6, 16, 18, 19, 20, 21]. The conclusion however
becomes incorrect when the v-flow is only Hélder continuous, i.e. its spa-
tial increments over a small distance £ vary as a fractional power of £ (e.g.
¢'/3 in Kolmogorov 1941 turbulence). As pointed out in Ref. [16] (see also
Ref. [4]), when v is not smooth the solution to (3) lacks uniqueness, so that
two Lagrangian particles which end up at the same point r; at time ¢ may
have different past histories. This is exemplified with the one-dimensional
model

d
% =—g/3 _T<s<t z(t)=e>0, (23)

where z is a deputy for a; — a;, the separation between two nearby La-
grangian particles. For € > 0, the solution of (23) is

z(s) = [62/3 + %(t - s)] e (24)

If we now set € = 0 in (24) or consider times s such that |t — s| > €2/3

obtain

, we

) 3/2
2(5) = |5 - 9] (29)
This is indeed a solution of (23) with € = 0, but there is another trivial one,
namely z(s) = 0. Related to this non-uniqueness is the fact that, when € is
small the solution given by (24) becomes independent of €, namely is given
by the non-trivial solution (25) for € = 0.

Whenever the flow v is just Holder continuous, the separation of nearby
Lagrangian particles proceeds in a similar way, becoming rapidly indepen-
dent of the initial separation. Such a law of separation is much more ex-
plosive than would have been obtained for a smooth flow with sensitive
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dependence of the Lagrangian trajectories. In the latter case we would
have z(s) = ee*t=3) (A > 0), which grows exponentially with ¢ — s but still
tends to zero with e.

We propose to call this explosive growth a Richardson walk, after Lewis
Fry Richardson who was the first to experimentally observe this rapid sep-
aration in turbulent flow and who was also much interested in the role of
non-differentiability in turbulence [22]. It is this explosive separation which
prevents the divergence of (#?(r1)) when k — 0 (and more generally of
moments with several coinciding points). Indeed, as the time s moves back
from s = t, even an infinitesimal amount of molecular diffusion will slightly
separate, say, by an amount ¢, the Lagrangian particles a;(s) and a;(s)
which coincide at s = t. Then, the Richardson walk will quickly bring the
separations to values independent of ¢ and, thus of k. Hence, the double
integral in (21), which involves points a1(s) and as(s) with uncorrelated
forces when |s — §'| is sufficiently large, may converge for T' — oo. (For it to
actually converge more specific assumptions must be made about the space
and time correlations of v and f, which are satisfied, e.g., in the Kraichnan
model.)

An alternative to introducing a small diffusivity is to work at k = 0,
with “point splitting”. For this one replaces (6?(r1)) by (6(r1)0(r'1)), where
r1 and 7'y are separated by a distance €. Eventually, ¢ — 0. In practical
numerical implementations we found that point splitting works well for
second-order moments but is far less efficient than using a small diffusivity
for higher-order moments.

4. The Kraichnan model

The Kraichnan model [6, 1] is an instance of the passive scalar equation
(1) in which the velocity and the forcing are Gaussian white noises in their
time dependence. This ensures that the solution is a Markov process in the
time variable and that closed moment equations, sometimes called “Hopf
equations”, can be written for single-time multiple-space moments such
as (6(r1,t)...0(rpn,t)). The equation for second-order moments was pub-
lished for the first time by Kraichnan [6] and, for higher-order moments,
by Shraiman and Siggia [20]. Note that Hopf’s work (23] dealt with the
characteristic functional of random flow; it had no white-noise process and
no closed equations, making the use of his name not so appropriate in the
context of white-noise linear stochastic equations. The fact that closed mo-
ment equations exist for such problems has been known for a long time
(see, e.g., Ref. [14] and references therein). We shall not need the moment
equations and shall not write them here (for an elementary derivation, see
Ref. [15]).
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The precise formulation of the Kraichnan model as used here is the
following. The velocity field v = {va, @ = 1,...,d} appearing in (1) is in-
compressible, isotropic, Gaussian, white-noise in time; it has homogeneous
increments with power-law spatial correlations and a scaling exponent ¢ in
the range 0 < £ < 2:

([’Ua(‘l’, t) - va(O, 0)][’03(1', t) - ’Uﬂ(o, 0)]) =
26(t) Dagp(r), (26)

where,

Dag(r) =7¢ |(€+d— 1) 80 — € 22| 27)

Note that since no infrared cutoff is assumed on the velocity its integral
scale is infinite; this is not a problem since only velocity increments matter
for the dynamics of the passive scalar. Note also that when a white-in-time
velocity is used in (15), the well known Ito-Stratonovich ambiguity could
appear [24]. This ambiguity is however absent in our particular case, on
account of incompressibility.

The random forcing f is independent of v, of zero mean, isotropic,
Gaussian, white-noise in time and homogeneous. Its covariance is given by :

(F(r,t) £(0,0)) = F(r/L) 4(¢), (28)

with F(0) > 0 and F (r/L) decreasing rapidly for » > L, where L is the
(forcing) integral scale.

In principle, to be a correlation, the function F (r/L) should be of pos-
itive type, i.e. have a non-negative d-dimensional Fourier transform. In our
numerical work we find it convenient to work with the step function ©(r)
which is equal to unity for 0 < r < L and to zero otherwise. Hence, the
injection rate of passive scalar variance is € = F(0)/2 = 1/2. The fact
that the function © is not of positive type is no problem. Indeed, let its
Fourier transform be written E(k) = E;(k) — E2(k), where E(k) = E;(k)
whenever E(k) > 0. Using the step function amounts to replacing in (1)
the real forcing f by the complex forcing f; +if, where f; and fy are inde-
pendent Gaussian random functions, white-noise in time and chosen such
that their energy spectra (in the space variable) are respectively E;(k) and
E,(k). Since the passive scalar equation is linear, the solution may itself
be written as 6, + 10 where 6; and 6, are the (independent) solutions of
the passive scalar equations with respective forcing terms f; and fs. Using
the universality with respect to the functional form of the forcing [25], it
is then easily shown that the scaling laws for the passive scalar structure
functions are the same as for real forcing,.
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We shall be interested in the passive scalar structure functions of even
order 2n (odd order ones vanish by symmetry), defined as

San(r; L) = ((6(r) - 6(0))*" ). (29)

From Ref. [6] (see also Ref. [15]) we know that, for L 3> r > n ~ k'/¢, the
second-order structure function is given by

So(r; L) = Coer®?, (o =2-¢, (30)

where C» is a dimensionless numerical constant. If there were no anomalies,
we would have, for n > 1,

Son(r; L) = Cop €™ rnéz, (31)

Note that (30) and (31) do not involve the integral scale L. Actually, for
n > 1, we have anomalous scaling with Sy, (r; L) o r¢?* and (o, < 1.
More precisely, we have

L\ %R
Son(r; L) = Cop €™ 7™ (7) , (32)
= N2 — (on, (33)

where the structure function now displays a dependence on the integral
scale L. Our strategy will be to measure the dependence of Sa,(r; L) on L
while the separation r and the injection rate ¢ are kept fixed and, thereby,
to have a direct measurement of the anomaly (32°™.

Let us show that, in principle, this can be done by the Lagrangian
method of Section 2 using 2n tracer (Lagrangian) particles whose trajec-
tories satisfy (15). The structure function of order 2n can be written as a
linear combination of moments of the form (8(r1)0(r2)...0(r2,)), where p
of the points are at location r and 2n — p at location 0 (p = 0,...,2n).
Because of the symmetries of the problem, p and 2n — p give the same
contribution. Thus, we need to work only with the n + 1 configurations
corresponding to p = 0,...,n. For example, we have

Sa(r; L) =2(6%(r)) - 8 <03(r)6(0)> +6 <92('r)02(0)> L (39)

Let us first consider the case of the two-point function (second-order mo-
ment). Using (14), (18) and the independence of v and f, we have

(0(r1)0(r2)) =
t t

([, [ @len,sfaston) s} ddsa) . (39
-1J-T .

w
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Here, (-)5 is an average over the forcing and (-),,, denotes averaging over
the velocity and the w’s, and a1(s1) and a9 (s9) satisfy (15) with the “final”
conditions a;(t) = riand ay(t) = ro, respectively.

In (35) the averaging over f can be carried out explicitly using (28).
With our step-function choice for F', we obtain

(0(r1) 0(r2)) = (T12(L))vw, (36)

where

To(n) = [ 1(jas(s) ~ as(s)) ds @

is the amount of time that two tracer particles arriving at r; and ro
and moving backwards in time spent with their mutual distance |a;i(s) —
ay(s)| < L. Whether the particles move backwards or forward in time is ac-
tually irrelevant for the Kraichnan model since the velocity, being Gaussian,
is invariant under reversal.

For the four-point function, we proceed similarly and use the Wick rules
to write fourth-order moments of f in terms of sums of products of second-
order moments, obtaining

(0(r1)0(r2)0(r3)0(rs)) = (T12(L)T34(L))vw
+  (T13(L)T24(L)) v
+  (T14(L)To3(L))vw- (38)

Expressions similar to Egs. (36) and (38) are easily derived for higher order
correlations.

We see that the evaluation of structure functions and moments has been
reduced to studying certain statistical properties of the random time that
pairs of particles spend with their mutual distances less than the integral
scale L. Generally, the distance between pairs of particles tends to increase
with the time elapsed but, occasionally, particles may come very close and
stay so; this will be the source of the anomalies in the scaling.

5. Numerical implementation of the Lagrangian method

In Section 4 we have shown that structure functions of the passive scalar
are expressible in terms of v-averages of products of factors T;;(L). For the
structure function of order 2n, these products involve configurations of 2n
particles, p of which end at locations r at time s = ¢ and the remaining
2n — p at location 0. In the Kraichnan model v and f are stationary, so
that after relaxation of transients, 6 also becomes stationary. We may thus
calculate our structure functions at ¢ = 0. Time-reversal invariance of the
v field and of the Lagrangian equations allows us to run the s-time forward



163

rather than backward. Also, T;;(L) is sensitive only to differences in particle
separations, whose evolution depends only on the difference of the velocities
at a; and a;. Furthermore, the v field has homogeneous increments. All this
allows us to work with 2n — 1 particle separations, namely

a;(s) =ai(s) —az(s), i=1,...,2n—1, (39)
ai(t) =7 =r; —ron. (40)

Using (15) we find that the quantities a;(s) satisfy 2n — 1 (vector-valued)
differential equations which involve the differences of velocities v(a;(s), s) —
v(a2n(s),s). The statistical properties of the solutions remain unchanged
if we subtract ag,(s) from all the space arguments. We thus obtain the
following Lagrangian equations of motion for the 2n—1 particle separations :

ﬂ%@? = 9;(s) + V2rib;(s) (41)
0;(s) = v(a;(s),s) —v(0,s), (42)
’&J,’(s) = 'll}i - '(.bgn. (43)

For numerical purposes (41) is discretized in time using the standard
Euler-Tto scheme of order one half [24]

@i(s + As) — ai(s) = VAs (Vi + V26 W), (44)

where As is the time step and the V;’s and the Wj’s (1 = 1,...,2n — 1)
are d-dimensional Gaussian random vectors chosen independently of each
other and independently at each time step and having the appropriate
correlations, which are calculated from (5) and (26), namely

(ViaVjp) =
Dop(@:) + Dop(@j) — Dap(@i — a;) , (45)
(Wi,a W) = (1 + 8ij)das, (46)

where Dqg(r) is defined in (27).

To actually generate these Gaussian random variables, we use the sym-
metry and positive definite character of covariance matrices like (45) and
(46). Indeed, any such matrix can be factorized as a product (taking V as
an example) [26]

wvev) =ccLh, (47)

where L is a nonsingular lower triangular matrix and LT is its transpose. £
can be computed explicitly using the Cholesky decomposition method [26],
an efficient algorithm to compute the triangular factors of positive definite
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matrices. It nevertheless takes O([(2n — 1)d]3/3) flops to get £ from (VQV)
and this is the most time-consuming operation at each time step. Once £
is obtained, a suitable set of variables V can be obtained by applying the
linear transformation

V=LN (48)

to a set of independent unit-variance Gaussian random variables N o com-
ing from a standard Gaussian random number generator, that is with
(Mi,aNjg) = 0ijéag. The resulting variables (V;)q then have the required
covariances.

From the a;(s)’s we obtain the quantities 7;;(L) for all the desired values
of the integral scale L, typically, a geometric progression up to the maxi-
mum value Lp,y. The easiest way to evaluate So,(r; L) is to evolve simulta-
neously the n+1 configurations corresponding to p = 0, ..., n, stopping the
current realization when all inter-particle distances in all configurations are
larger than some appropriate large-scale threshold Ly, to which we shall
come back. The various moments appearing in the structure functions are
then calculated using expression such as (38) in which the (v, w)-averaging
is done by the Monte-Carlo method, that is over a suitably large number
of realizations. We note that the expressions for the structure functions of
order higher than two involve heavy cancellations between the terms cor-
responding to different configurations of particles. For instance, the three
terms appearing in the expression (34) for the fourth-order function, all
have dominant contributions scaling as L*?~% for large L and a first sub-
dominant correction scaling as L2~¢. The true non-trivial scaling o< L$4""
emerges only after cancellation of the dominant and first subdominant con-
tributions. For small { the dominant contributions are particularly large.
In the presence of such cancellations, Monte-Carlo averaging is rather dif-
ficult since the relative errors on individual terms decrease only as the
inverse square root of the number of realizations. In practice, the num-
ber of realizations is increased until clean non-spurious scaling emerges. In
three dimensions, for Sy(r;L), between one and several millions realiza-
tions (depending on the value of £) are required. In two dimensions even
more realizations are needed. For example, to achieve comparable quality
of scaling for £ = (.75, in three dimensions 4 x 10 realizations are needed
but 14 x 10° are needed in two dimensions.

Now, some comments on the choice of parameters.

The threshold L., must be taken sufficiently large compared to largest
integral scale of interest L.« to ensure that the probability of returning
within Lyay from Ly, is negligible. But choosing an excessively large Ly, is
too demanding in computer resources. In practice, the choice of L, depends
both on the space dimension and on how far one is from the limit ¢ = 0.
In three dimensions, it is enough to take Lin = 10 Lypax. In two dimen-
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sions there is a new difficulty when £ is small. At £ = 0 the motion of
Lagrangian particles and also of separations of pairs of particles is exactly
two-dimensional Brownian motion. As it is well-known, in two dimensions,
Brownian motion is recurrent (see, e.g., Ref. [27]). Hence, with probability
one a pair of particles will eventually achieve arbitrarily small separations.
As a consequence, at £ = 0 in two dimensions, the mean square value of 6
is infinite. For very small positive £ this mean square saturates but most
of the contribution comes from scales much larger than the integral scale.
This forces to choose extremely large values of Ly, when £ is small. In
practice, for 0.6 < £ < 0.9 we take Ly, =4 X 103 Lyax and beyond £ = 0.9
we take Ly, = 10 Lyax. (The range £ < 0.6 has not yet been explored.) In
view of the accuracy of our results, we have verified that the use of larger
values for Ly, does not affect in any significant way the values of the scaling
exponents.

The molecular diffusivity & is chosen in such a way that r is truly in the
inertial range, namely, we demand (i) that the dissipation scale n ~ k¢
should be much smaller than the separation r and (ii) that the time a pair of
particle spends with a separation comparable to n, which is ~ 0%/ ~n*¢
should be much smaller than the time needed for this separation to grow
from 7 to L, which is ~ L2=¢ — r2=¢, The latter condition becomes very
stringent when £ is close to 2.

Finally, the time step As is chosen small compared to the diffusion time
n%/k at scale 7 .

6. Results

We now present results for structure functions up to fourth order. The
three-dimensional results have already been published in Ref. [10]. The
two-dimensional results are new. Some results for structure functions of
order six have been published in Ref. [28] and shall not be repeated here
(more advanced simulations are in progress).

A severe test for the Lagrangian method is provided by the second-
order structure function S3(r; L), whose expression is known analytically
[1]. Its behavior being non-anomalous, a flat scaling in L should be observed.
The L-dependence of Sy, measured by the Lagrangian method, is shown in
Fig. 1 for £ = 0.6 and d = 3 (all structure functions are plotted in log-log
coordinates). The measured slope is 1073 and the error on the constant is
3%. (These figures are typical also for other values of ¢ studied.) We observe
that, for separation r much larger than the integral scale L, correlations
between 0(r) and 6(0) are very small; hence, the scaling for the second-
order structure function is essentially given by the L-dependence of (62),
namely L2¢; the transition to the constant-in-L behavior around r = L is
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Figure 1.  3-D second-order structure function Sz ws L for £ = 0.6. Separation

r = 2.7 x 1072, diffusivity & = 1.115 x 10~2, number of realizations 4.5 x 10°.

107 } 4000000000000
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10°

10 !

Integral scale L

Figure 2. 3-D fourth-order structure function Sy vs L for £ = 0.2. Separation
r = 2.7 x 1072, diffusivity x = 0.247, number of realizations 15 x 10°.

very sharp, on account of the step function chosen for F.
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10
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Figure 3. Same as in Fig. 2 for £ = 0.9. Parameters: r = 2.7 x 1072, k = 4.4 x 1074,
number of realizations 8 x 108,

Figs. 2, 3 and 4 show the L-dependence of the fourth-order structure
function in three dimensions for £ = 0.2, 0.9 and 1.75, respectively. In each
case the scaling region (which is basically L > r) is indicated by a dashed
straight line whose slope is the anomaly. Note that, to obtain a similar
high-quality scaling as shown on these figures, a much larger number of
realizations is needed for small &; this is required to permit cancellation of
leading contributions to (34), as explained in Section 5.

The two-dimensional case, which is numerically more difficult for rea-
sons explained near the end of Section 5, is shown in Figs. 5, 6 and 7 for
& = 0.6, 0.9 and 1.75, respectively. Fig. 6 also shows the data obtained for
various values of the number of realizations. Note that if only 150 x 103
realizations are used, the anomaly (that is the slope obtained, e.g., by a
least square fit) is grossly overestimated.

Fig. 8 shows a plot of the anomaly (3"°™ vs £ in both two and three di-
mensions. The error bars (shown in 2-D only for ¢ < 1.1 to avoid crowding)
are obtained by analyzing the fluctuations of local scaling exponents over
octave ratios of values for L, a method which tends to overestimate errors.

Let us now comment on the results. In three dimensions, the error bars
near £ = 2 are exceedingly small and the data have a good fit (shown as
dashed line) of the form (3™ = g + by3/2 with v = 2 — £ (the parameters
are a = 0.06 and b = 1.13). This is compatible with an expansion in powers
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Figure 4. Same as in Fig. 2 for £ = 1.75. Parameters: r = 2.7 x 1072, x = 10™°, number

of realizations 1.5 x 10°.
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Figure 5. 2-D fourth-order structure function Sy vs L for £ = 0.6. Parameters:

r=27x 1072, k = 1.1 x 1072, number of realizations 5 x 10°.
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Figure 6. Same as in Fig. 5 for £ = 0.9. Parameters are r = 2.7 x 1072, k = 4.4 x 10~
To illustrate convergence, various numbers of realizations are shown: (1) 150 x 103, (2)
1.5 x 108, (3) 3.4 x 108, (4) from 4.8 x 10°% to 7 x 10°® (several curves superposed).
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Figure 7. Same as in Fig. 5 for £ = 1.75. Parameters: r = 2.7x 107%, k = 10™% number
of realizations 2.4 x 10°.
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Figure 8. The anomaly 2{2—(4 for the fourth-order structure function in two dimensions
(stars, upper graph) and three dimensions (circles, lower graph). Error bars in 2-D shown
only for £ < 1.1. The dashed line is the three-dimensional linear ansatz prediction (49).

of \/7 [29] in which a term o /¥ is ruled out by the Holder inequality
G4 < 2¢ = 2.

Of particular significance is that, when £ is decreased from 2 to 0, the
anomaly grows at first, achieves a maximum and finally decreases. In three
dimensions, where small-£ simulations are easier than in two dimensions, we
have good evidence that the anomaly vanishes for £ — 0 as predicted by the
perturbation theory of Gawedzki and Kupiainen [2], whose leading order
¢grom = 4¢/5 is shown as a dot-dashed straight line on Fig. 8. Note that
the next-order correction o £2 is known [30] but the convergence properties
of the {-series are not clear. The “linear ansatz” prediction for the anomaly
given in Refs. [1, 7], that is

ﬁ"éiﬁl - -;—\/8dC2 +(d - ()2, (49)

C=2-¢, (50)

is consistent with our results only near £ = 1, the point farthest from the
two limits £ = 0 and { = 2, which both have strongly nonlocal dynamics.
This suggests a possible relation between deviations from the linear ansatz
and locality of the interactions [31]. Whether this consistency for £ = 1
persists for moments of order higher than four is an open problem.

Clmom —
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The fact that the anomalies are stronger in two than in three dimensions
is consistent with their vanishing as d — oo [3]. The fact that the maximum
anomaly occurs for a value of € smaller in two than in three dimensions can
be tentatively interpreted as follows. Near £ = 0 the dynamics is dominated
by the nearly ultraviolet-divergent eddy diffusion, whereas near £ = 2 it is
dominated by the nearly infrared-divergent stretching. The former increases
with d, but not the latter. The maximum is achieved when these two effects
balance.

7. Concluding remarks

Compared to Eulerian simulations of the partial differential equation (1)
our Lagrangian method has various advantages. When calculating moments
of order 2n we do not require the complete velocity field at each time step
but only 2n — 1 random vectors, basically, the set of velocity differences
between the locations of Lagrangian tracer particles which are advected by
the flow and subject to independent Brownian diffusion. As a consequence
the complexity of the computation (measured in number of floating point
operations) grows polynomially rather than exponentially with the dimen-
sion d. Furthermore, working with tracers naturally allows to measure the
scaling of the structure functions So,(r; L) vs the integral scale L of the
forcing. Physically, this means that the injection rate of passive scalar vari-
ance (which equals its dissipation rate) and the separation r are kept fixed
while the integral scale L is varied. Anomalies, that is discrepancies from
the scaling exponents which would be predicted by naive dimensional anal-
ysis, are measured here directly through the scaling dependence on L of
the structure functions.

Actually, direct Eulerian simulations and the Lagrangian method are
complementary. Very high-resolution simulations of the sort found in Ref. [5]
are really not practical in more than two dimensions but do give access to
the entire Eulerian passive scalar field. Hence, they can and have been
used to address questions about the geometry of the scalar field and about
probability distributions.

Although we have presented here the numerical implementation of the
Lagrangian method only for the Kraichnan model, it is clear that the gen-
eral strategy presented in Sections 2 and 3 is applicable to a wide class of
random flows, for example, with a finite correlation time.

An important aspect of the results obtained for the Kraichnan model
is that they agree with perturbation theory [2] for £ — 0. As is now clear
from theory and simulations, anomalies in the Kraichnan model and other
passive scalar problems arise from zero modes in the operators governing
the Eulerian dynamics of n-point correlation functions [2, 3, 32]. It is likely



172

that some form of zero modes is also responsible for anomalous scaling in
nonlinear turbulence problems. An instance are the “fluxless solutions” to
Markovian closures based on the Navier-Stokes equations in dimension d
close to two, which have a power-law spectrum with an exponent depend-
ing continuously on d [33). Attempts to capture intermittency effects in
three-dimensional turbulence are being made along similar lines (see, e.g.,
Ref. [34]). The Kraichnan model for passive scalar intermittency puts us
on a trail to understanding anomalous scaling in turbulence.

ACKNOWLEDGMENTS

We are most grateful to Robert Kraichnan for innumerable interac-
tions on the subject of passive scalar intermittency over many years. We
acknowledge useful discussions with M. Chertkov, G. Falkovich, O. Gat,
K. Gawedzki, F. Massaioli, S.A. Orszag, 1. Procaccia, A. Wirth, V. Yakhot
and R. Zeitak. Simulations were performed in the framework of the SIVAM
project of the Observatoire de la Cote d’Azur. Part of them were performed
using the computing facilities of CASPUR at Rome University, which is
gratefully acknowledged. Partial support from the Centre National de la
Recherche Scientifique through a “Henri Poincaré” fellowship (AM) and
from the Groupe de Recherche “Mécanique des Fluides Géophysiques et
Astrophysiques” (MV) is also acknowledged.

References

1. R.H. Kraichnan, “Anomalous scaling of a randomly advected passive scalar,”
Phys. Rev. Lett. 72, 1016 (1994).

2. K. Gawedzki and A. Kupiainen, “Anomalous scaling of the passive scalar,”
Phys. Rev. Lett. 75, 3834 (1995).

3. M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, “Normal and anoma-
lous scaling of the fourth-order correlation function of a randomly advected passive
scalar,” Phys. Rev. E 2, 4924 (1995).

4. K. Gawedzki, “Intermittency of passive advection,” in Advances in Turbulence VII,
edited by U. Frisch (Kluwer Academic Publishers, London, 1998).

5. S. Chen and R.H. Kraichnan, “Simulations of a Randomly Advected Passive Scalar
Field,” Phys. Fluids 10, 2867 (1998).

6. R.H. Kraichnan, “Small-scale structure of a scalar field convected by turbulence,”
Phys. Fluids 11, 945 (1968).

7. R.H. Kraichnan, V. Yakhot, and S. Chen, “Scaling relations for a randomly advected
passive scalar,” Phys. Rev. Lett. 75, 240 (1995).

8. A.L. Fairhall, B. Galanti, V.S. L’vov, and 1. Procaccia, “Direct numerical simula-
tions of the Kraichnan model: scaling exponents and fusion rules,” Phys. Rev. Lett.
79, 4166 (1997).

9. U. Frisch and A. Wirth, “Inertial-diffusive range for a passive scalar advected by a
white-in-time velocity field,” Europhys. Lett. 35, 683 (1996).

10. U. Frisch, A. Mazzino, and M. Vergassola, “Intermittency in passive scalar advec-
tion,” Phys. Rev. Lett. 80, 5532 (1998).

11.  O. Gat, L. Procaccia, and R. Zeitak, “Anomalous scaling in passive scalar advection:
Monte Carlo Lagrangian trajectories,” Phys. Rev. Lett. 80, 5536 (1998).



12.
13.
14.

15.

16.

17.
18.

19.
20.

21.

22,
23.
24.

25.

26.
27.
28.

29.

30.

31.

32.

33.

34.

173

R.H. Kraichnan, “Lagrangian-history closure approximation for turbulence,”
Phys. Fluids 8, 575 (1965).

U. Frisch, Turbulence. The Legacy of A. N. Kolmogorov (Cambridge Univ. Press,
Cambridge, 1995).

A. Brissaud and U. Frisch, “Solving linear stochastic differential equations,”
J. Math. Phys. 15, 524 (1974).

U. Frisch and A. Wirth, “Intermittency of passive scalars in delta-correlated flow:
introduction to recent work,” in Proceedings of Turbulence Modeling and Vortex
Dynamics, (Istanbul, Turkey, 2-6 September, 1996). Springer Lect. Notes Phys.
491, 53, edited by O. Boratav, A. Eden and A. Erzan (Springer, Berlin, 1997).

D. Bernard, K. Gawedzki, and A. Kupiainen, “Slow modes in passive advection,”
J. Stat. Phys. 90, 519 (1998).

M. Chertkov, “Instanton for random advection,” Phys. Rev. E 55, 2722 (1997).
G.K. Batchelor, “Small scale variation of convected quantities like temperature in
turbulent fluid,” J. Fluid Mech. 5, 113 (1959).

R.H. Kraichnan, “Convection of a passive scalar by a quasi-uniform random strain-
ing field,” J. Fluid Mech. 64, 737 (1974).

B.I. Shraiman and E.D. Siggia, “Lagrangian path integrals and fluctuations in ran-
dom flow,” Phys. Rev. E 49, 2912 (1994).

M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, “Statistics of a passive
scalar advected by a large-scale two-dimensional velocity field: analytic solution,”
Phys. Rev. E 51, 5609 (1995).

L.F. Richardson, Collected Papers, vol. 1, edited by P.G. Drazin, (Cambridge Uni-
versity Press, 1993).

E. Hopf, “Statistical hydrodynamics and functional calculus,” J. Ratl. Mech. Anal.
1, 87 (1952).

P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations
(Springer, Berlin, 1992).

K. Gawedzki and A. Kupiainen, “Universality in Turbulence: an Exactly Soluble
Model,” in Lecture Notes in Physics 469, 71, edited by H. Grosse and L. Pittner
(Springer, Berlin, 1996).

A. Ralston and P. Rabinowitz, A First Course in Numerical Analysis (McGraw—Hill,
New York, 1978).

W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, (J. Wi-
ley & Sons, New York, 1950).

U. Frisch, A. Mazzino, and M. Vergassola, “Lagrangian dynamics and high-order
moments intermittency in passive scalar advection,” Phys. Chem. Earth (in press).
A. Pumir, B.I. Shraiman and E.D. Siggia, “Perturbation theory for the §-correlated
model of passive scalar advection near the Batchelor limit,” Phys. Rev. E 565, R1263,
(1997).

L.T. Adzhemyan, N.V. Antonov, and A.N. Vasil’ev, “Renormalization group, op-
erator product expansion, and anomalous scaling in a model of advected passive
scalar” Phys. Rev. E 58, 1823 (1998).

R.H. Kraichnan, private communication (1998).

B.I. Shraiman and E.D. Siggia, “Anomalous scaling of a passive scalar in turbulent
flow,” C. R. Acad. Sci. Paris, série II 321, 279 (1995).

U. Frisch, M. Lesieur, and P.-L. Sulem, “On crossover dimensions for fully developed
turbulence,” Phys. Rev. Lett. 37, 895 (1976); U. Frisch and J.-D. Fournier, “d-
dimensional turbulence,” Phys. Rev. A 17, 747 (1978).

V.I. Belinicher, V.S. L'vov, A. Pomyalov, and I. Procaccia, “Computing the scaling
exponents in fluid turbulence from first principles: demonstration of multiscaling,”
J. Stat. Phys. 93, 797 (1998). (see also chao-dyn/9708004.)



ANOMALOUS SCALING IN PASSIVE SCALAR ADVECTION
AND LAGRANGIAN SHAPE DYNAMICS

ITAI ARAD AND ITAMAR PROCACCIA
Department of Chemical Physics, The Weizmann Institute of
Science, Rehovot 76100, Israel

Abstract. The problem of anomalous scaling in passive scalar advection,
especially with §-correlated velocity field (the Kraichnan model) has at-
tracted a lot of interest since the exponents can be computed analytically
in certain limiting cases. In this paper we focus, rather than on the evalu-
ation of the exponents, on elucidating the physical mechanism responsible
for the anomaly. We show that the anomalous exponents (,, stem from
the Lagrangian dynamics of shapes which characterize configurations of n
points in space. Using the shape-to-shape transition probability, we define
an operator whose eigenvalues determine the anomalous exponents for all
n, in all the sectors of the SO(3) symmetry group.

1. Introduction

In the lecture at the JIUTAM symposium the work of our group on the
consequences of anisotropy on the universal statistics of turbulence has
been reviewed. This material is available in print, and the interested reader
can find it in [1, 2, 3, 4, 5, 6]. A short review is available in the proceedings of
“Dynamics Days Asia” [7]. In this paper we review some recent work aimed
at understanding the physical mechanism responsible for the anomalous
exponents that characterize the statistics of passive scalars advected by
turbulent velocity fields. We will consider isotropic advecting velocity fields,
but will allow anisotropy in the forcing of the passive scalar. In such case
the statistical objects like structure functions and correlation functions are
not isotropic. Instead, they are composed of an isotropic and non-isotropic
parts. We overcome this complication by characterizing these functions in
terms of the SO(3) irreducible representations. Any such function can be
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written as a linear combination of parts which belong to a given irreducible
representation of SO(3). We will show that each part is characterized by
a set of universal scaling exponents. The weight of each part however will
turn out to be non-universal, set by the boundary conditions.

The SO(3) classification will appear to be natural once we focus on
the physics of Lagrangian trajectories in the flow. We will see that one
can offer a satisfactory understanding of the physics of anomalous scaling
by connecting the the statistics of the passive scalar to the Lagrangian
trajectories. This connection provides a very clear understanding of the
physical origin of the anomalous exponents, relating them to the dynamics
in the space of shapes of groups of Lagrangian particles.

2. The Kraichnan Model of Passive Scalar Advection

The model of passive scalar advection with rapidly decorrelating velocity
field was introduced by R.H. Kraichnan [8] already in 1968. In recent years
[9, 10, 11, 12, 13, 14] it was shown to be a fruitful case model for under-
standing multiscaling in the statistical description of turbulent fields. The
basic dynamical equation in this model is for a scalar field T'(r,t) advected
by a random velocity field u(r,t):

[0; — koV2 + u(r,t) - V]T(r,t) = f(r,1) . (1)

In this equation f(r,t) is the forcing and kg is the molecular diffusivity.
In Kraichnan’s model the advecting field u(r,t) as well as the forcing field
f(r,t) are taken to be Gaussian, time and space homogeneous, and delta-
correlated in time:

{(wo(r,t) = w (7, )W (r, ) = (', 1)) = B (r —7)6(t = 1) , (2)

where the “eddy-diffusivity” tensor h*%(r) is defined by

ar,ﬁ

3
heP(r) = (%) (6%F — Z:—ETZ%T) , nr<A. (3)

Here 1 and A are the inner and outer scale for the velocity fields, and the
coefficients are chosen such that d,h*® = 0. The averaging (...)s is done
with respect to the realizations of the velocity field.

The forcing f is also taken white in time and Gaussian:

(f(r,t)f(r’,t')>f =Z(r -t -1t). (4)

Here the average is done with respect to realizations of the forcing. The
forcing is taken to act only on the large scales, of the order of L (with a
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compact support in Fourier space). This means that the function =(r) is
nearly constant for » < L but is decaying rapidly for r > L.

From the point of view of the statistical theory one is interested mostly
in the scaling exponents characterizing the structure functions

San(r1,72) = ((T(r1,0) = T(r2,0)f") (5)

For isotropic forcing one expects Sz, to depend only on the distance R =
|r1 — 72| such that in the scaling regime
L bon
San(R) o B o [Sa(R)]" (E) . (6)
In this equation we introduced the “normal” (n(;) and the anomalous (85,)
parts of the scaling exponents (3, = n(y—62,. The first part can be obtained
from dimensional considerations, but the anomalous part cannot be guessed
from simple arguments.
When the forcing is anisotropic, the structure functions depend on the

vector distance R = ry — ro. In this case we can represent them in terms
of spherical harmonics,

Son(R) =Y agm(R)Yem(R) (7)
4Lm

where R = R/R. This is a case in which the statistical object is a scalar
function of one vector, and the appropriate irreducible representation of the
SO(3) symmetry group are obvious. We are going to explain in the next
section that the coefficients as,,(R) are expected to scale with a universal
leading scaling exponent (éf;). The exponent will turn out to be £ dependent
but not m dependent.

Theoretically it is natural to consider correlation functions rather than
structure functions. The 2n-order correlation functions are defined as

an(’f'l, ey 7'217,) = (T(’I'I)T(”'g) e T(”?n))u,f . (8)

For separations r;; — 0 the correlation functions converges to ("), whereas
for r;; — L decorrelation leads to convergence to (T')7, - Forall rj =
O(r) < L one expects a behaviour according to

Fon(P1, ...y ran) = LPC=O(co - A ep(r/ L) Fop (71, ... . ,72n)++ ), (9)

where F, is a scaling function depending on #; which denote a set of
dimensionless coordinates describing the configuration of the 2n points.
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The exponents and scaling functions are expected to be universal, but not
the ¢ coefficients, which depend on the details of forcing.

It has been shown [11] that the anomalous exponents (3, can be ob-
tained by solving for the zero modes of the exact differential equations
which are satisfied by F,,. The equations for the zero modes read

[ - KZ V? + an]fgn(rl, rq, ...,I'Qn) =0. (10)

The operator B, = ,2;‘] Bij, and Bij are defined by

Bij = B(ri,7j) = h°F(ri — v;)0? 0r20r? . (11)

3. Lagrangian Trajectories, Correlation Functions and

Shape Dynamics

An elegant approach to the correlation functions is furnished by Lagrangian
dynamics [7, 15, 16, 17, 18]. In this formalism one recognizes that the actual
value of the scalar at position » at time ¢ is determined by the action of
the forcing along the Lagrangian trajectory from ¢t = —oo to t:

T(rot0) = [ di{S(r(a), )y (12)

with the trajectory »(¢) obeying

r(to) = 7o,

ar(t) = u(r(t),t)+VIRn(1) , (13)

and 7n is a vector of zero-mean independent Gaussian white random vari-
ables, <17"(t)77ﬂ(t’)> = 6*P§(t — t'). With this in mind, we can rewrite Fy,
by substituting each factor of T'(r;) by its representation (12). Performing
the averages over the random forces, we end up with

FQn(’I‘l, e ,7'2n,t0) = <[t; dtl s dtn [E(’I‘](tl) - Tz(tl)) te (14)

XE(Pon_1(tn) — T2n(tn)) + permutations]> (15)

u,{n,}’

To understand the averaging procedure recall that each of the trajecto-

ries 7; obeys an equation of the form (13), where u as well as {n,;}?7, are

1
independent stochastic variables whose correlations are given above. Alter-
natively, we refer the reader to section II of [18], where the above analysis

is carried out in detail.
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In considering Lagrangian trajectories of groups of particles, we should
note that every initial configuration is characterized by a center of mass,
say R, a scale s (say the radius of gyration of the cluster of particles) and
a shape Z. In “shape” we mean here all the degrees of freedom other than
the scale and R: as many angles as are needed to fully determine a shape,
in addition to the Euler angles that fix the shape orientation with respect
to a chosen frame of coordinates. Thus a group of 2n positions {r;} will be
sometime denoted below as {R,s, Z}.

One component in the evolution of an initial configuration is a rescaling
of all the distances which increase on the average like t1/¢2; this rescaling is
analogous to Richardson diffusion. The exponent {; which determines the
scale increase is also the characteristic exponent of the second order struc-
ture function [8]. This has been related to the exponent £ of (3) according
to (2 = 2 — €. After factoring out this overall expansion we are left with
a normalized ‘shape’. It is the evolution of this shape that determines the
anomalous exponents.

Consider a final shape Z¢ with an overall scale so which is realized at
t = 0. This shape has evolved during negative times. We fix a scale s > s¢
and examine the shape when the configuration reaches the scale s for the
last time before reaching the scale sg. Since the trajectories are random
the shape Z which is realized at this time is taken from a distribution
Y(Z; Zo,s — so). As long as the advecting velocity field is scale invariant,
this distribution can depend only on the ratio s/so.

Next, we use the shape-to-shape transition probability to define an operator
4(s/s0) on the space of functions ¥(Z) according to

[3(5/50)¥)(Z0) = [ d21(Z; Zo,5 — 50)¥(2) (16)

We will be interested in the eigenfunction and eigenvalues of this operator.
This operator has two important properties. First, for an isotropic statistics
of the velocity field the operator is isotropic. This means that this operator
commutes with all rotation operators on the space of functions ¥(Z). In
other words, if O, is the rotation operator that takes the function ¥(Z) to
the new function ¥(A~!Z), then

OA‘S’ = "A)’OA . (17)

This property follows from the obvious symmetry of the Kernel v(Z; Z¢, s —
Sp) to rotating Z and Z, simultaneously. Accordingly the eigenfunctions
of 4 can be classified according to the irreducible representations of SO(3)
symmetry group. We will denote these eigenfunctions as Bg,,(Z). Here
{=0,1,2,...., m=—L,—{+1,...¢ and ¢ stands for a running index if
there is more than one representation with the same £, m. The fact that
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the Bgem(Z) are classified according to the irreducible representations of
SO(3) in manifested in the action of the rotation operators upon them:

OABgtm = E Dfr?m(A)qum' (18)

m

where fogm(A) is the SO(3) £ x £ irreducible matrix representation.

The second important property of 4 follows from the é-correlation in
time of the velocity field. Physically this means that the future trajectories
of n particles are statistically independent of their trajectories in the past.
Mathematically, it implies for the kernel that

Y(Z;Zo,5 — s0) = /dzl‘)‘(z;zl,s — 8100 Z1; Zo,51 — 50), $> 81>
(19)

and in turn, for the operator, that
¥(s/s0) = ¥(s/1)¥(s1/50) - (20)

Accordingly, by a successive application of 4(s/sg) to an arbitrary eigen-

function, we get that the eigenvalues of 4 have to be of the form a4, =
(q,£)

(5/50)5%

(a:8)

(%)42" Byem(Zo) = /dZ‘y(Z; Zo,s = 30)Bym(Z) (21)

Notice that the eigenvalues are not a function of m. This follows from
Schur’s lemmas [19], but can be also explained from the fact that the rota-
tion operator mixes the different m’s (18): Take an eigenfunction Bgem(Z),
and act on it once with the operator Op%(s/so) and once with the operator
Y(s/s0)Op. By virtue of (17) we should get that same result, but this is
only possible if all the eigenfunctions with the same £ and the same g share
the same eigenvalue.

To proceed we want to introduce into the averaging process in (15) by
averaging over Lagrangian trajectories of the 2n particles. This will allow
us to connect the shape dynamics to the statistical objects. To this aim
consider any set of Lagrangian trajectories that started at t = —oo and end
up at time ¢t = 0 in a configuration characterized by a scale sq and center
of mass Ry = 0. A full measure of these have evolved through the scale L
or larger. Accordingly they must have passed, during their evolution from
time ¢ = —oo through a configuration of scale s > sy at least once. Denote
now

ugn(t,R,Z;S - So,Zo)dthdZ (22)
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as the probability that this set of 2n trajectories crossed the scale s for the
last time before reaching so, Zo, between t and t+ dt, with a center of mass
between R and R + dR and with a shape between Z and Z + dZ.

In terms of this probability we can rewrite Eq.(15) (displaying, for clar-
ity, Rp = 0 and t = 0) as

0
Fon(Ry = 0,50, Zp,t =0) = /dZ/ dt/dR pan(t, R, Z;5 — s, Zo)

0
X < /_ dty - dta [E(ra(t) = 72(12)) - E(rne1(tn) = 7an(tn)
+ perms H(S;R,Z,t) Sum, - (23)

The meaning of the conditional averaging is an averaging over all the re-
alizations of the velocity field and the random %; for which Lagrangian
trajectories that ended up at time ¢t = 0 in R = 0,80, Zo passed through
R,s,Z at time t.

Next, the time integrations in Eq.(23) are split to the interval [—o0, 1]
and [t, 0] giving rise to 2" different contributions:

1 i 0 1 1
/ dtl---/ dtn—i—/ dtl/ dtg---/ dtn+...  (24)
—00 —00 t —00 —00

Consider first the contribution with n integrals in the domain [—o0,t]. It
follows from the delta-correlation in time of the velocity field, that we can
write

< /_too dty -+ - dty, [E(rl(tl) - T‘g(tl)) - E(ran-1(tn) — r2a(tn))
+ perms ”(S;R,Z,t) >u,m,

< Ltm dty - - - dt, [E(’f‘](tl) - Tz(tl)) .. 'E('I‘gn_l(tn) - ’I‘gn(tn))

+ perms ] >u,m,
Fon(R,8,Z,t) = Fan(s,Z) . (25)

il

The last equality follows from translational invariance in space-time. Ac-
cordingly the contribution with n integrals in the domain [—o0,t] can be
written as

0
/dZan(s,Z)/ dt/dR pan(t, Ry Zss — s0,Z0) . (26)
—00

We identify the shape-to-shape transition probability:

0
V(2 Zoys — so) :/ dt/dR ban(t, B, Zis — s0,Z0) . (27)
-0
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Finally, putting all this added wisdom back in Eq.(23) we end up with

an(S(), Zo) = I+ /dZ’)’(Z;Z(),S g 80)F2n(5, Z) . (28)

Here I represents all the contributions with one or more time integrals in
the domain [t,0]. The key point now is that only the term with n inte-
grals in the domain [—o0,?] contains information about the evolution of 2n
Lagrangian trajectories that probed the forcing scale L. Accordingly, the
term denoted by I cannot contain information about the leading anomalous
scaling exponent belonging to F,,, but only of lower order exponents. The
anomalous scaling dependence of the LHS of Eq.(28) has to cancel against
the integral containing F,, without the intervention of I.
Representing now

F2n(307ZO) = Zaq,lm(SO)Bqlm(ZO)a

glm
Fan(s,Z2) = ) agm(s)Boem(2) ,
glm
I = Y IimBynm(Zo) (29)
glm

and substituting on both sides of Eq.(28) and using Eq.(21) we find, due
to the linear independence of the eigenfunctions By,

(q,2)
S

2n
aq,em(S0) = Iyom + <g) aq,em(8) (30)

To leading order the contribution of I, is neglected, leading to the conclu-
sion that the spectrum of anomalous ezponents of the correlation functions
is determined by the eigenvalues of the shape-to-shape transition probability
operator. Calculations show that the leading exponent in the isotropic sec-
tor is always smaller than the leading exponents in all other sectors. This
gap between the leading exponent in the isotropic sector to the rest of the
exponents determines the rate of decay of anisotropy upon decreasing the
scale of observation.

4. Concluding remarks

The derivation presented above has used explicitly the properties of the
advecting field, in particular the §-correlation in time. Accordingly it can-
not be immediately generalized to more generic situations in which there
exist time correlations. Nevertheless we find it pleasing that at least in the
present case we can trace the physical origin of the exponents anomaly, and
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connect it to the underlying dynamics. In more generic cases the mecha-
nisms may be more complicated, but one should still keep the lesson in
mind - higher order correlation functions depend on many coordinates, and
these define a configuration in space. The scaling properties of such func-
tions may very well depend on how such configurations are reached by the
dynamics. Focusing on static objects like structure functions of one vari-
able may be insufficient for the understanding of the physics of anomalous
scaling,.
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CORRELATION BETWEEN ENERGY AND TEMPERATURE
DISSIPATION RATES IN TURBULENT FLOWS
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Department of Mechanical Engineering,
University of Newcastle, N.S.W., 2308, Australia

Abstract.

The correlation coefficient p between the locally averaged energy and
temperature dissipation rates, € and €g respectively, is studied using mea-
surements in a plane wake, decaying grid turbulence and a round jet. In
the first two flows, € and €g are approximated by quantities, denoted by €,p
and €g,, respectively, derived from measurements using a probe comprising
a combination of 4 hot wires and 2 cold wires. In contrast to the wake, the
magnitude of p in grid turbulence calculated using €, and €4,, are com-
parable to those obtained using €;s, and e€g;5,, the isotropic counterparts of
€ and €g. In a particular flow, p decreases both with increasing wire sep-
aration and as the Taylor microscale Reynolds number R) increases. The
major effect on p appears to be associated with R, although a possible
dependence of p on the flow type cannot be discounted.

1. Introduction

By analogy to the refined similarity hypothesis (RSH) proposed by Kol-
mogorov (1962) and Obukhov (1962) for the turbulent velocity field, the
RSH for a passive scalar (RSHP) states that the nt*-order moment of the
temperature increment 60 = (2 + r) — 8(z) between two points separated
by a distance r may be expressed as (e.g. Korchaskin, 1970; Van Atta, 1971;
Antonia and Van Atta, 1975; Stolovitzky et al., 1995; Zhu et al., 1995)

((86)") ~ (/2™ 0yrlS w p o) (1)
when the separation r is in the inertial range (IR), i.e. € r € L, where
n = (1/3/<€))1/4 is the Kolmogorov length scale, L is the integral length
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scale, v is the kinematic viscosity of the fluid, (€) is the mean energy dis-
sipation rate, ¢, and €5, represent the locally averaged dissipation rates of
turbulent energy and temperature variance, (g(n) is the IR scaling expo-

nent of ((66)"). Clearly, the correlation between egr/
to the scaling of ((66)™) in RSHP.

Van Atta (1971) assumed that the probability density functions (pdfs)
of ¢, and ¢p, for IR scales are lognormally distributed and their joint pdf is
bivariate lognormal with a correlation coefficient p defined as

PG (O;)szi— B)) 2)

2 and er_”/e is important

where @ and [ represent Ine, and Iney, respectively, o, and op are the
standard deviations of a@ and #. With this assumption, the scaling ex-
ponent (g(n) is related directly to p (e.g. Antonia and Van Atta, 1975;
Meneveau et al., 1990). The correlation between ¢, and €5, is therefore
important in terms of quantifying the scaling of ((66)"), and perhaps in
a more physical sense, ascertaining the interdependence between the two
dissipative fields through their relation to the vortical structure of the flow.
Van Atta (1971) argued that p should vary only weakly with r across the
IR. Previous experimental results obtained by simply approximating € and
€p With €50 = 150(0u/0z)? and €p;5, = 35(00/0z)?, where & is the thermal
diffusivity of the fluid, have yielded apparently disparate values for p in
different flows (e.g. Antonia and Van Atta, 1975; Antonia and Chambers,
1980; Meneveau et al., 1990). However, the validity of €;5, and €g;5, as sur-
rogates for € and ¢y has been questioned. The magnitude of p may depend
on a number of factors, e.g. the Reynolds number, the separation between
the hot and cold wires as well as the type of approximation used for € and
€g. Meneveau et al. (1990) noted that the apparent discrepancy of p may
be due to the influence of the hot wire on the cold wire signal; this effect
may be significant in a turbulent jet because of the large turbulent inten-
sity of this flow. However, this explanation may not be adequate, especially
when the separation between the hot and cold wires is sufficient to avoid
any interference from the hot wire signal. The main aim of this paper is to
quantify the dependence between €, and €4, , using measurements in a plane
wake, decaying grid turbulence and a round jet. The dependence of p on
different approximations to € and €4 is studied in the first two flows. In the
round jet, parallel single hot and cold wires provide “isotropic” estimates
for € and €g; the wires are mounted on separated traversing mechanisms.
The separation between the wires is varied in order to assess its influence
on p. The dependence of p on the Taylor microscale Reynolds number R,
(= (u2)1/2/\/y, where A = (u2)1/2/(u%’1)1/2 is the Taylor microscale) is also
examined in the jet (R, = 386 — 550).
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2. Experimental Details

Three types of flows: grid turbulence, a cylinder wake and a circular jet are
investigated. Grid turbulence is generated by a square mesh (M = 24.76
mm) grid, located at the entrance of the test section. A screen, located at
a distance zp = 1.5M downstream of the grid, introduces heat into the
flow. The measurements are made at /M = 40. The wake is generated
by an aluminium circular cylinder with a diameter d = 6.35 mm. The
measurement location is z/d = 240, i.e. in the self-preserving region. Details
of the probe and its performance check can be found in Zhou and Antonia
(1999).

The jet which issues from an axisymmetric nozzle of diameter d = 55
mm, is supplied by a variable centrifugal blower. The air is heated by an
electrical fan heater located at the blower entrance. The measurement loca-
tion is at z/d = 40, where the flow is approximately self-preserving. Details
of the jet facility can be found in Xu (1999).

3. Experimental Results and Discussions

3.1. DEPENDENCE OF p ON THE APPROXIMATIONS TO € AND ¢

In the present wake and grid experiments, the true values of € and €4 are not
measured. The six-wire probe allows three of the nine velocity derivatives
which feature in € and two of the three temperature derivatives which ap-
pear in €y to be measured. Approximations to € and €g can then be obtained
using isotropy and continuity (Zhou and Antonia, 1999)

warfo(3) s (5) () G @) ©
€fap ™ K l(—gg)z +2 <g—z>2] . (4)

The validity of Eqs. (3) and (4) has been checked extensively in grid tur-
bulence (Zhou and Antonia, 1999). The values of p can then be quantified
using different approximations for € and €4, for example (€qp, €5ap) OF (€iso,
€9iso)- It has been shown (Zhou and Antonia, 1999) that, for grid turbu-
lence, important differences exist between the statistics of either €., and
€iso OT €gqp and €g;so. Since €qp and €gqp Tepresent € and ey more reliably than
€iso and €p;50, the correlation coefficient p based on (g, €gqp) may be differ-
ent from that based on (€;s0, €giso)- The values of p calculated using either
(€ap» €gap) OF (€iso, €giso) in grid and wake turbulence are shown in Figure 1
(hereafter, the asterisk represents normalization by the Kolmogorov length

and
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scale n). For grid turbulence (R) = 52), the values of p, obtained either
with (€ap, €8ap) O (€iso, €iso), agree quite well in the scaling range. They
increase steadily and reach a maximum at the centre of this range with a
magnitude of about 0.1, indicating that (€;50, €giso) Seems to represent (e,
€g) well enough for the purpose of evaluating p. This value is in close agree-
ment with that reported by Mydlarski and Warhaft (1999) at Ry = 582 for
turbulence generated by an active grid; apparently suggesting that p is ap-
proximately independent of R, at least in decreasing shearless turbulence.
For forced box turbulence, the DNS data of Wang et al. (1999) indicated
that p increases slightly with Ry. For the plane wake (R) = 40), however,
the magnitude of p, obtained using (eqp, €gap), is about 20% larger in the
scaling range than when (€50, €4i50) is used. This suggests that, for this
flow, the isotropic surrogates (€;so0, €9iso) cannot represent (¢, €g) as reliably
as in the grid flow. The magnitude of p in the wake is about twice as large
as that in the grid. The different behaviours of (€up, €gap) and (€iso, €giso) in
the wake and grid flows may reflect the influence of the mean shear and of
the structural organization in the wake. They may also indicate that local
isotropy is better satisfied in grid turbulence than in the turbulent wake.

Figure 1. Comparison of estimates of p obtained using different approximations to €
and eg. Wake: [, (€ap, €6ap); V, (€150, €0150). Grid: B, (€ap, €sap); ¥, (€iso, €0iso).

3.2. DEPENDENCE OF p ON WIRE SEPARATION S*

Intuitively, one may expect p to increase as the separation between the hot
and cold wires decreases. Too small a separation may result in the hot wire
contaminating the cold wire signal. Values of p for different separations
(s* = 2 —11) are presented in Figure 2a for the jet (Ry = 550). The
dependence of p on s* is evident even though it is not as significant as
one might have expected. For example, when s* decreases from 11 to 2, p
increases by only 10%. Using different combinations of single hot and cold
wires, p was evaluated for two different separations in the two flows (Figure
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Figure 2. Dependence of p on the wire separation. (a) jet: B, s* = 2; 0, 5.2; A, 8.6; *,
11. (b) grid: O, s* =1; W, 7. wake: ¥, 3* = 0.4; A, 3.

Figure 3. Dependence of p on Ry in the jet and comparison with other data. Present
jet: A, Rx = 386; *, 410; V, 550. Present grid: O, 52. Meneveau et al.: (], 160. Antonia
and Van Atta: @. 240.

2b). For grid turbulence, when s* increases from 1 to 7, p decreases by about
20% across the scaling range; for the wake, p decreases by about 6% when s*
increases from 0.4 to 3, in qualitative agreement with the results of Figure
2a.

3.3. DEPENDENCE OF p ON R,

To gain some insight into the Ry dependence of p, measurements are made
on the jet axis for three values of R) over the range 386 < Ry < 550.
The results are shown in Figure 3 together with the values from Antonia
and Van Atta (1975) for Ry = 240 in a co-flowing jet. The magnitude
of p increases approximately linearly with In* in the scaling range, but
decreases significantly with the increase of R). The influence of Ry on p is
much larger than that of s* (Figure 2). The smaller values of p in the grid
flow (R = 52) than in the wake (R, = 160) of Meneveau et al. (1990) and
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in the jet flows suggest that p may vary from flow to flow.

4. Conclusions

The present values of the correlation coefficient p and those reported previ-
ously show apparently large discrepancies. While different approximations
to € and €y may influence the magnitude of p in shear flows, the magnitude
of p is only reduced slightly when ¢;,, and €y;,, are used in grid turbulence.
The separation s* between hot and cold wires has been found to affect p
slightly. Neither of the previous effects can account for the above discrep-
ancies. However, the evidence of Figure 3 indicates that the effect of R)
cannot be ignored. Further, the possibility that p can depend on the nature
of the flow or initial conditions cannot be dismissed. The dependencies of p
on R, and flow type indicate that, with the assumption made by Van Atta
(1971), the scaling exponents of ((66)") should also reflect a dependence on
both Ry and the nature of the flow.
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1. Introduction

It is well known that the characteristics of the diffusion field of a scalar
quantity like the concentration of matter and temperature in turbulent
flow are remarkably different from ones in laminar flow. This fact is very
important and interesting not only in fluid mechanics as a typical nature
of turbulence, but also in engineering (e.g., mixing problems with chemical
reactions). A lot of theoretical and experimental studies have been done in
the past, and in recent years, numerical studies have been extensively made
with the development of computer systems.

In this study, a new Lagrangian numerical scheme to calculate scalar
fluctuation fields by a non-buoyant plume in grid-generated turbulence has
been developed. The Lagrangian velocities of fluid particles are simulated
by a summation of unsteady random Fourier modes|[1, 2]. The previous ran-
dom Fourier modes methods developed by Fung et al.[2] is only useful to
simulate the non-decaying homogeneous isotropic turbulence. So, firstly we
improved their random Fourier modes method to simulate the downstream
decaying turbulence. Next, the two-particle backward diffusion technique[4]
was applied to calculate the scalar statistics up to the second order mo-
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ments of scalar probability density function. The simulations of two types
of scalar fluctuation fields (a point source plume of dye solution and a line
source thermal plume) have been performed, and the simulation results are
compared with the experimental results.

2. The outline of the model
2.1. RANDOM FOURIER MODES METHOD

The details of the random Fourier modes method are shown in references1,
2]. Here the outline of the method and only the improved points are shown.
The velocity vector u is represented as a Fourier series in the limits N,

u(z,t) = i[(an X kp) cos(kn T — wnt) + (bp X k) sin(ky-x — wnt)], (1)

n=1

where k is a wavenumber vector, w is an angular frequency. Subscript n
shows a value concerned with the nth Fourier mode, k is a unit vector which
has the same direction as k, k, = k,/|kn|. an, by, k, are chosen indepen-
dently with each other, and these vectors are also independent upon the
position x, then u is satisfied with the continuity condition automatically.
k, are decided so that their directions are distributed isotropically. a,, and
b, are three-dimensional random vectors which have zero average and have
the distribution of the mean square value expressed as

T2 2 k1
lanl? = [bal” = 3 /k E(k)dk, )

where k = |k|. The overlines show the ensemble average. E(k) is an arbitrar-
ily prescribed three-dimensional energy spectrum. The angular frequencies
wp, in Eq.(1) determine the unsteadiness associated with the nth Fourier
mode, which is modeled here by w, = ky vy, where

92 fkntr
l/2

n=3 . E(k)dk. 3)

The present distribution of wave numbers k&, is on algebraic progression
(Vassilicos et al.[3])

With regard to the energy spectrum, we chose one for the low Reynolds
number turbulence proposed by Kraichnan [1]

E(k) = 16(2/7) 7u%k*ky® exp(—2k? /k2), (5)
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where v’ is a r.m.s. value of one component of velocity fluctuation u, kg is
a wave number that the spectrum shows a peak, which is given by ky =
V27 /Lg, and L is the integral length scale of the Eulerian velocity field.

The grid-generated turbulence is not homogeneous, and the intensity
of the turbulence decreases and the length scale increase in the down-
stream direction from the grid. So, in order to simulate the downstream
decaying turbulence like the grid-generated turbulence, we need incorpo-
rate the spatial variation of the turbulence intensity and length scale into
the model. Fortunately, the Kraichnan’s energy spectrum(Eq.(5)) contains
these parameters in the simple form. By using this energy spectrum, the
downstream decaying turbulence can be easily modeled by adjusting only
two parameters , i.e. ' and Lg.

The positions of particles x(t) are calculated by the following equations,

z(t + At) = z(t) + v(z(t), t) At + V2 Aty (6)

where k is a moleculer diffusion coefficient, x is a normalized white noise
vector. We should note that the influence of molecule diffusion is considered
in the last term of Eq.(6).

2.2. TWO-PARTICLE MODEL

The statistics of the scalar field are calculated by tracking the fluid particles
that transport the scalar quantity. The mean scalar value I' at the position
x and time t is calculated by the following equation,

T(x,t) = / Pi(a,0; 2, t)s(a')de, 7)

where P is the transition probability density function[4], s(x) is a function
of the scalar source distribution. P;(z',t'; x,t) means the probability den-
sity that the particle reaches =’ at time ¢’ on the condition that it existed
in the position x at time ¢t. We also consider another transition probability
density function Py(z'(), ') ¢'; (1), £ t) for the two particles, where
the superscripts (1) and (2) show the quantity concerned with particles 1
and 2. P, is the probability density that the particles arrive at the position
21 and (@’ at time ' on the condition that these existed at the position
(1) and @ at time t. The mean square value of the scalar fluctuation
(v?) is similarly given by the following equation with P,

(V(z,t)) = / Py(a'D, 2P, 0; z, z, ) s(x'V)s(z'P)da'Vda'®.  (8)
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Figure 1. Downstream variation of I' and 4’ on plume centerline for the continuous
point source.

3. Simulation results

As the targets of the simulation, two kinds of scalar diffusion fields are cho-
sen, i.e. one is the concentration field of dye solution from the continuous
point source in grid-generated turbulence by Nakamura et al.[5], and an-
other is the thermal diffusion field from the heated wire in grid-generated
turbulence by Stapountzis et al.[6].

In both case, the number of simulation trials is 10000. The turbulent
velocity fluctuation, integral length scale and time scale which are necessary
to make the simulation are determined on the basis of the experimental data
in references(5, 6]

Figure 1 presents the downstream variations of the mean concentration
I' and r.m.s. value +' of the concentration fluctuation on the plume cen-
terline in case of the continuous point source. I' and 4/ are normalized by
the injection concentration I';. The abscissa shows the distance x from the
source, and it is normalized by the grid size M. In the figure, “Sim” shows
the simulation results by the model suggested in this study, and “Exp”
shows the experimental results by Nakamura et al.[5]. The simulation re-
sults of the both I' and 4 give good agreements with experimental data.

Figure 2 and Figure 3 show the radial distributions of the mean con-
centration I' and the r.m.s. value of the concentration fluctuation ' in
case of the continuous point source, respectively. In these figures, the ab-
scissa represents the distance from the centerline z, and it is normalized
by the half width br of the mean concentration distribution. The ordinate
is normalized by the value on the plume centerline I'(0) or 4'(0). For the
mean concentration, the simulation results obey well the Gaussian curve
['(2)/T(0) = exp (—(In2)£?), € = z/br which is shown as a ”Gaussian” in
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Figure 2. Normalized mean concentration against cross-stream distance for the contin-
uous point source.

Figure 3. Normalized r.m.s. value of the concentration fluctuation against cross-stream
distance for the continuous point source.

the figure. This Gaussian curve is known to be a good approximation of
the distribution of experimental data. With regard to the r.m.s. value of
concentration fluctuation, the simulated distribution agrees well with the
experimental results shown as "Exp”.

With regard to the line source thermal plume, it was found that the
model predictions of I' and +' are consistent with the experimental results.
However, in the near region of the source, we observed some deviation
between the simulation and experimental results of ' (Figure 4). This
deviation may be caused by the “meandering effect” but the modeling of
this meandering effect is a difficult task at present, so we remains this work
in the future.
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Figure 4. Radial profile of the r.m.s. value of the temperature fluctuation for the line
source thermal plume.

4. Concluding remarks

In this research, a random Fourier modes method has been improved to
simulate the downstream decaying turbulence. The Lagrangian velocities
of fluid particles ware calculated with this improved random Fourier modes
method, and the diffusion fields were simulated by the two-particle diffusion
model in cases of a continuous point source and a continuous line source in
the grid-gernerated turbulence. The predictions of the mean and fluctuation
r.m.s. values are on the whole consistent with the experimental data. So we
conclude that the present scheme is useful to simulate the scalar fluctuation
fields in the decaying turbulence.
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Figure 4. Radial profile of the r.m.s. value of the temperature fluctuation for the line
source thermal plume.

4. Concluding remarks

In this research, a random Fourier modes method has been improved to
simulate the downstream decaying turbulence. The Lagrangian velocities
of fluid particles ware calculated with this improved random Fourier modes
method, and the diffusion fields were simulated by the two-particle diffusion
model in cases of a continuous point source and a continuous line source in
the grid-gernerated turbulence. The predictions of the mean and fluctuation
r.m.s. values are on the whole consistent with the experimental data. So we
conclude that the present scheme is useful to simulate the scalar fluctuation
fields in the decaying turbulence.
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Abstract.

Vortical structurc and its dynamics in turbulence arc investigated by
the use of the low-pressure vortex. The double spiral structure of cross-axial
vorticity is formed around a tubular vortex on which the axial vorticity is
dominant. Vortex axcs arc being re-linked by reconnections cither of tip-
type or T-type. An automatic tracking scheme of vortex axes is successfully
applicd to a turbulent ficld.

1. Introduction

It is widcly recognized that long-lived tubular vortices commonly cxist in
many kinds of turbulence. They arc characterized not only by strong ax-
ial vorticity along their axes but also by doublc spiral layers of cross-axial
vorticity wrapping around them. These spiral layers may play significant
roles in turbulence dynamics such as enhancement of mixing, diffusion and
drag, activation of turbulent motion itsclf. There arc two dynamical mecha-
nisms of generation of spiral layers. One is the Kelvin-Helmholtz instability
through which a vortex layer rolls up into numbers of thin tubular vor-
tices. The original vortex layer forms into double spiral structures around
tubular vortices. Vorticity in the laycrs is parallel to the tube. A strong
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tubular vortex thus generated tends to wrap and stretch the surrounding
background vorticity into a double spiral [2]. This is the seccond mechanism
of spiral formation, in which vorticity in spiral laycrs is perpendicular to
the tube.

It is not easy to characterize the time-dependent three-dimensional vor-
tical structures. Actually there have been proposed so far a lot of represen-
tation methods by emphasizing different aspects of vortical structures. The
low-pressure vortex we have recently introduced picks up tubular swirling
vortices irrespective of their intensity and define their central axes and core
regions [3-5]. The axes of low-pressure vortices can be used for a concise
represcntation of the flow structures.

In this paper we investigate numerical turbulence by the use of the
low-pressure vortex. The spiral structure around a low-pressure vortex is
analyzed in §2. A couple of typical reconnection mechanisms are taken up
in §3. A ncw automatic tracking scheme of vortex axes is described in §4.
Section 5 is devoted to concluding remarks.

2. Spiral Structure around a Vortex Axis

The numerical turbulence we employ in this section has evolved from a ran-
dom velocity field of relatively large scales with isotropic cnergy spectrum
E(k) « (k/ko)*exp[—2(k/ko)?], where kg = 4. The flow is periodic in the
three orthogonal directions with period 27, and the simulation is performed
by the Fouricr spectral method with 2563 modes. The temporal evolution
of cnstropy is shown in figure 1. It takes a single peak at t ~ 195. The
micro-scale Reynolds number at ¢ = 200 is 106.

Initially, vorticity-concentrated blobs arc scattered due to statistical
fluctuation of vorticity, but the intensity is relatively low. As time pro-
gresscs, these blobs are distorted and clongated more and more into layers
with intensified vorticity, some of which subsequently roll up into many
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0-008 1 of enstrophy.

0.004

0.002

N s I
0 200 400 600 800 1000



201

tubular vortices [4]. In general they are accompanied with spiral vortical
structurc. In figure 2, we draw the vorticity distribution on a cross-section of
a low-pressure vortex choscn arbitrarily at t = 200 (sce figure (d)). Figures
(a), (b), and (c) show contours of thc magnitude, the axial component, and

Fig.2 Spiral vortical structurc around a low-pressure vortex.
Contours of (a) magnitude, (b) axial componcnt, and (c) cross-
axial component of vorticity in a cross-scction shown in (d).
Darker shade implics larger valucs in (a) and (c). Vorticity is
pointed into (or out of ) the paper in gray (or whitc) arca in (b).
The coordinates of the cross-scction, e; and ez, arc mecasured
in the unit of the grid width taken in the numerical simulation.
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the cross-axial component of vorticity, respectively. The vortex axis is lo-
cated at the center. The axial component of vorticity is concentrated cir-
cularly on thc axis, while the cross-axial component forms a double spiral
wrapping around it. A similar double spiral is observed in a simple sheared
turbulence as well [2].

3. Reconnection of Vortex Axes

Low-pressure vortices which are moving about in a turbulent flow frequently
interact with each other. They are disconnected and reconnected. Two typi-
cal reconnection processes are conspicuous. One is of tip-type and the other
is of T-type. Figure 3 is an example of the tip-type reconnection, in which
two vortices link at their tips in a numerical turbulence obtained with res-
olution of 128%. This is reminiscent of the relinking of vortices by pressure
waves [6]. This type of reconnection contributes to increase of the length of
vortex axes in the mcan.

Fig.3 Tip-typc reconncction of low-pressure vortices. Two vor-
tex axes arc being linked at their tips. (a) ¢ = 265, (b) 290.

Another type of reconnection, T-type, is shown in figurc 4. There are
two long vortex axes. The one which is running from the top of the (X, Y)-
planc to the left in figure (a) has reconnected at the middle with another
onc which is going to the right in figurc (b). This T-type reconncction is
obscrved quite a few over the whole flow ficld (sce figure 5).
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Fig.4 T-type rcconnection of low-pressure vortices.
(a) t = 602, (b) 611.

4. Automatic Vortex Tracking

Since there are so many vortices in a turbulent flow, it is not casy to grasp
their movement as a whole. Therefore it may be uscful if a particular vortex
can be followed automatically. Very recently we have invented an automatic
tracking scheme of vortex axes and identified successfully the motion of
vortex axes in a collision of two orthogonal pairs of vortex tubes [1].

Here, we apply it to a decaying isotropic turbulence of the initial micro-
scale Reynolds number 34. Enstrophy decays monotonically and becomes
half around ¢t = 2. In figurc 5, we show the temporal evolution of a particular
vortex axis choscen arbitrarily at ¢ = 10 (figurc (a)) which is followed by
the present tracking scheme. The vortex axis in question is highlighted by
black thick lines. It reconnects with other vortex axes in course of time.
Those portions of axcs linked by reconnection arc depicted by gray thick
lines. Many other vortex axes arc drawn with thin lines. Vortex axes are
almost straight at most parts and kinked strongly at scveral reconnection
points where other axes arc attached to make Y-branches.

5. Concluding Remarks

We have shown that the axis of the low-pressure vortex is convenient to
represent the vortical structure of complex flow ficlds. The spiral structure
of cross-axial vorticity around a tubular vortex has been discovered with
reference to it. The topology of vortex axes changes through the tip-type
and the T-type reconncections. Their dynamical role in various turbulent
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transport processes as well as their own physical characteristics such as the
Reynolds number dependence of shape and size of the core arc interesting
future subjects. The automatic tracking scheme of vortex axes is expected
to be useful for these studies.

Fig.5 Vortex tracking. A vor-
tex axis chosen arbitrarily in
figure (a) is followed by the
automatic tracking scheme.
Thick lines denote the union
of the chosen vortex axis
(shown by black) and those
linked with it (shown by
gray). There are many other
vortex axes drawn with thin
lines. (a) t = 10, (b) 12, (c) 14.
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1. Introduction

The interaction of the vorticity vector w and the rate-of-strain tensor S
through vortex stretching is considered a primary mechanism in the gen-
eration and associated dynamics of the small scales in three-dimensional
incompressible turbulence. As described by the evolution equation for w,

Duw; 82‘%’
= S i 2 1

Sikwy, represents the response of w to S. Implicit is the coupled, nonlocal
nature of the interaction which is indicated by the equation for S,

DS;;

1 9 Sij
— = —SuSkj — (wiw; — dijwewe) — ;Hij + v —2

0xL0zk

Dt 4 @)

The quantity, II;; = 82p/8:z;i8:cj, is the pressure Hessian and represents
local and nonlocal action through the pressure field.

Experiments and simulations have revealed the presence of distinct
small-scale structures and various geometric properties of w and S. Re-
sults from direct numerical simulations (DNS) of homogeneous turbulence
show that intense w tends to concentrate into tube-like or filamentary
structures (She et al., 1991; Jimenez et al., 1993; Tanaka and Kida, 1993;
Kida and Tanaka, 1994). As observed by Kida and Tanaka (1994) (here-
inafter referred to as KT94), in homogeneous shear flow, these structures
tend to exhibit distinct spatial orientation. Preferential alignment of w with
the intermediate principal strain eigenvector, eg, is also observed (Ashurst
et al., 1987; Nomura and Elghobashi, 1992). This can be explained in terms
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of the coupled dynamics of w and S in the principal strain basis (Nomura
and Post, 1998). In this reference frame, vortex stretching and rotation of
the principal S axes, €, are effectively distinguished. The latter mechanism
is associated with misaligned w with respect to the S axes and includes both
local and nonlocal effects. By applying the assumptions of the restricted Eu-
ler problem (denoted here as RE) which considers isotropic IT (Vieillefosse,
1984), the strain basis equations show that local (misaligned) w rotates
the S axes such that w orients away from e, and towards eg or e,. Results
from DNS of isotropic furbulence (Nomura and Post, 1998) show the signif-
icance of this mechanism in the dynamics of the flow. Nonlocally-induced
through II is found to be influenced by the proximate spatial structure. In
this paper, we consider the interaction of w and S in homogeneous sheared
turbulence. DNS provide data for the analysis. Results further demon-
strate the strain basis dynamics and illustrate various geometric aspects
of the interaction. Comparison with linear simulations establish nonlinear
aspects of the structure and dynamics.

2. Results and Discussion

Results from two DNS of homogeneous sheared turbulence are presented.
These are parameterized by the initial values of the turbulent Reynolds
number, Rey = v\/v, and Shear number, Sh = Sv?/e, where S is the
mean shear. Note, 7, = Re)/Sh = (u')/S, gives the ratio of fluctuating
vorticity to mean vorticity (@ = S). In RUN1, Rey, = 24, Sh, = 1.5; thus
Tw, = 16. In RUN2, Rey, =29, Sho, =16.0; thus r,, = 1.8.

Due to the imposed mean shear, w and the principal axes of S tend to
exhibit preferential spatial orientation. Here, the S axes are denoted by e,,
eg, and e, corresponding to the principal eigenvalues, oo > 3 > v, respec-
tively. In general, the orientation of a vector may be described by the angle
pair, (Opitch, Oyaw), Where Op45cp is the angle of the vector from its projec-
tion in the z — y (horizontal) plane and 0y, is the angle of the projection
from the positive y— (spanwise) axis (Fig. la). In the early development
of the flow, as observed by KT94, amplification of ' in the direction of
the extensional strain of the mean shear, €, (445°,+90°), prevails. The
presence of W establishes a predominant misalignment of w with respect to
the S axes (Fig. 1b). This results in a locally-induced rotation of the S axes
as described by the first term on the right-hand side of,

: De 1 -
Qea_eﬁ = Tta . e,B = - ;—I—B—( %wa(Uﬂ + Ha’ﬂ ) . (3)
local nonlocal

If the eigenvectors of S initially coincide with those of the mean shear, i.e.,
€., €3, and €,, the induced rotation, De, /Dt - eg, will reorient e, and eg
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in the plane comprised of €, and €g. The sense of rotation is such that eg
is directed towards w (RE dynamics). Further amplification of w' will occur
along the reoriented S axes. If these local effects are significant, w, e,, and
e will occur primarily in the €, — € plane. Note, this plane corresponds
to a reverse “S”-shaped curve on a (sin(fpitch), Oyaw) Plot (Fig. 1c). In gen-
eral, the presence of ' in other directions (isotropic initial conditions) will
cause {2 to vary and the simultaneous reorientation of all three axes may
result in rather complex orientations in S and w.

Joint probability distributions (jpd) of (sin 8pitch, Oyaw) for w and w’ (not
shown) indicate spatial orientations which are similar to those observed by
KT94 and consistent with the described dynamics. Figure 2 shows proba-
ble orientations for e,. Here, we consider the total flow and three condi-
tional samples based on the second invariant of the velocity gradient tensor,
IT = (w?/2~S52)/2, which indicates the relative significance of rotation ver-
sus strain. In each case, the shape of the distributions generally follows the
€, — €g curve (Fig. 1c). Since the rate of locally-induced rotation is pro-
portional to the vorticity components (3), these effects may be particularly
significant in high-amplitude, rotation-dominated (I > 0) regions (Fig.
2b). However, in regions characterized by significant strain (Figs. 2c,d),
strain generation acts to promote positive # which then tends to approach
«a. This will effectively enhance the induced rotation through the prefactor
in (3) thereby retaining its significance in these regions. In regions where
both w and S are significant (II ~ 0; Fig. 2¢), reorientation of the S axes
will contribute to amplification of spanwise w which, in turn, will affect the
relative orientation of w. The S axes tend to equilibrate in these regions
as a result of this feedback (Fig. 2¢). In strain-dominated (I < 0) regions
(Fig. 2d), the orientation of the S axes is particularly sensitive to the flow
parameter r,,. Results for flows with differing r,, indicate that the extent
of rotation of e, and eg in these regions depends on the local geometry
which is associated with the relative significance of (w') to @ (Fig. 1b).

In regards to the term associated with II in (3), we consider this as
a nonlocally-induced rotation of the S axes. Recall in RE, II is assumed
isotropic. In this case, the strain basis equations are autonomous and ef-
fectively describe the local dynamics of a fluid particle. The anisotropic
component of II, which contributes to {2, then represents deviation from
RE and, in this sense, is regarded as nonlocal. As shown in Fig. 3a, the
nonlocally-induced rotation of the S axes through II, g tends to counter-
act locally-induced rotation, %wawﬂ, in high-amplitude rotation-dominated
regions (II > 0). As discussed in (Nomura and Post, 1998), these regions
are characterized by tube-like spatial structure as indicated by the strong
alignment of w with the eigenvector of I, f3, corresponding to its smallest
(nearly zero) eigenvalue. Similar structures and properties are observed in
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the shear flow. Fig. 3c shows the relative orientation of w with the eigenvec-
tors of S and II. As indicated, there is a strong tendency for w to orient in
the direction of f3 for high positive I1. Note, this tendency is much stronger
than that associated with the alignment of w with es in these regions. As
in isotropic turbulence, the corresponding spatial structure of these regions
is tube-like (Fig. 4a).

Simulation results of the linearized Navier-Stokes equations exhibit sim-
ilar local characteristics at early time. However, they lack the distinct non-
local features present in the nonlinear flow. In particular, characteristics
of II differ significantly. The strain basis components exhibit nearly sym-
metric distributions about zero. The anisotropic component II, g is no
longer significant in rotation-dominated regions (Fig. 3b). This suggests
the absence of nonlocal effects as represented by the RE problem in which
isotropic II acts to preserve the volume of a fluid element with no direc-
tional distinction. In high amplitude rotation-dominated regions in fully
nonlinear flow, Il exhibits distinct directionality with respect to w due to
the presence of spatial structure. In the corresponding regions of the linear
flow, such directionality does not exist (Fig. 3d). This indicates that the
(nonlinear) influence of the surrounding flow is absent, i.e., there is no spa-
tial coherence. Visualization of high amplitude rotation-dominated regions
in the linear flow (Fig. 4b) show elongated structures which do exhibit in-
clination from the streamwise (z;) direction as in the nonlinear flow (Fig.
4a). However, based on the characteristics of II, these structures are not
consistent with vortex tubes. It is likely that these isosurfaces represent re-
gions of concentrated w? reorganized by mean advection rather than what
are considered to be coherent structures.
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Figure 1. (a) Definition of the angles of orientation (8pitch,8yaw) Of a vector in 3-D
cartesian coordinates. (b) Diagram of €, — € plane indicating locally-induced rotation
of the principal strain axes, (c) Curve representing €, — €s plane on (sin(fpitcr), fyaw)
plot. Note: ‘o’ indicates orientation of €,, ‘e’ indicates orientation of €3, and arrows
indicate trajectories of principal axes.

(a) total flow (b)y IT >0

(c) IT~0 (d) IT<0

Figure 2. Joint probability distributions of (sin(fp.tch ), 0yaw) indicating orientation of
eigenvector e, for (a) total flow and high-amplitude (b) rotation-dominated (II > 0),
(c) comparable rotation-strain (IT ~ 0, w? > 2(w?)), (d) strain-dominated (II < 0)
conditional samples (RUN1, St = 6).
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(a) nonlinear flow (b) linear flow

(¢) nonlinear flow (d) linear flow

Figure 8. (a),(b) Scatter plots showing correlation between —I,5/(c — B) and
—wawg/4(a — B), (c)-(d) Conditional expectation of cosf indicating relative orienta-
tion between w and each of the eigenvectors of S and II (conditioned on the value of IT
with IIT < 0) (a),(c) nonlinear and (b),(d) linearized shear flow (RUN2 - St = 6.0).

(a) nonlinear flow (b) linear flow

Figure 4. Three-dimensional visualizations (64° subdomain of computational grid) of
high-amplitude rotation-dominated (II > 0) regions in (a) nonlinear and (b) linearized
shear low (RUN2 - St = 6.0) (streamwise (z1) and vertical (z3) directions shown).



MOTION OF A CURVED VORTEX FILAMENT:
HIGHER-ORDER ASYMPTOTICS
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Abstract. Three-dimensional motion of a slender vortex tube, embedded
in an inviscid incompressible fluid, is investigated based on the Euler equa-
tions. Using the method of matched asymptotic expansions in a small pa-
rameter ¢, the ratio of core radius to curvature radius, the velocity of a
vortex filament is derived to O(e3), whereby the influence of elliptical de-
formation of the core due to the self-induced strain is taken into account.
In the localized induction approzimation, this is reducible to a completely
integrable evolution equation among the localized induction hierarchy.

1. Introduction

The traveling speed U for a thin axisymmetric vortex ring in an inviscid
incompressible fluid of infinite extent is known, to third (virtually fourth)
order in a small parameter ¢ = /Ry, the ratio of core radius ¢ to the ring
radius Ry, as

U= 47:;20 {log (g) - % - §;—2 {log (%) - g] + O(é* loge)} . (1)

Here T" is the circulation carried by the ring and a particular distribution of
vorticity is assumed (Dyson 1893). The first two terms are Kelvin’s formula
which are considered as the first order. Dyson’s correction takes account
of an elliptical deformation of cross-section of the core caused by the self-
induced straining field.

In practical flows, viscous diffusion of vorticity swells the core with time.
Extending the Saffman’s first-order formula (Saffman 1970), Fukumoto &
Moffatt (1999) succeeded in constructing a formula for the third-order cor-
rection to the traveling speed of a viscous vortex ring.
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In contrast, it is not easy to render the motion of a curved vortex fil-
ament amenable to a systematic analysis. The simplest asymptotic theory
is the so called ‘localized induction approzimation (LIA) put forward by
Da Rios (1906). By limiting the domain of Biot-Savart line-integral to the
neighboring segment of length 2L and, in-addition, introducing a short cut-
off o to avoid the logarithmic infinity, we are led to the following evolution
equation for the filament curve X = X(s,t), expressed as functions of the
arclength s and the time ¢:

r 2L
X, =Ckb; C= Wlog(g), (2)
where k is the curvature, b is the binormal vector, and a subscript denotes
a differentiation with respect to the indicated variable.

A distinguishing feature is that (2) is a completely integrable evolution
equation equivalent to a cubic nonlinear Schrodinger equation (Hasimoto
1972). Langer & Perline (1991) unveiled the bi-Hamiltonian structure of (2)
behind this integrability, and manipulated a recursion operator to gener-
ate successively an infinite sequence of commuting vector fields, called the
‘localized induction hierarchy (LIH)'. The first three of them are

1
v = kb, v = §H2t + ksn + Kb, (3)
1
VO = k27t + (26T + kTe)N + (KT — Kgs — 553)1’, (4)

where 7 is the torsion and (¢, n, b) are the Frenet-Serret vectors. Observe
that, when specialized to a circle with constant curvature £ # 0 and 7 = 0,
a superposition of V) and V) is no other than (1).

This unexpected coincidence inspires us to pursue the higher-order ve-
locity of a vortex filament in three dimensions. Fukumoto & Miyazaki
(1991) showed that a vortex filament with axial velocity in the core is gov-
erned by an evolution equation comprising a summation of (3) (cf. Moore &
Saffman 1972). In the present investigation, we rule out axial flow at lead-
ing order, and make an attempt at an extension of matched asymptotic
expansions to O(€®).

2. Asymptotic development of the Biot-Savart law

The velocity v(z) of the fluid at a position z is uniquely determined from
the vorticity w(x) by the Biot-Savart law. In order to evaluate this volume
integral at points near the core, it is expedient to introduce local coordinates
(£, 7, &) moving with the filament. Here £ parameterizes the central curve of
the filament. Given a point z sufficiently close to the core, there corresponds
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uniquely the nearest point X (¢,t) on the centerline of filament. Then z is
expressed as £ = X (¢,t) + in(€,t) + yb(,t). We conveniently use the
cylindrical coordinates (7, ¢, £) such that Z = 7 cos ¢ and § = 7sin ¢. They
are rendered orthogonal by replacing ¢ with 6:

0(s,t) = ¢ — / (s, 1) ds' . (5)

Though incomplete, we begin with the following ansatz for vorticity:

w = ((z,9,1)t(,1). (6)

Using the shift-operator technique, the vector potential A for velocity, with
the vorticity being substituted from (6), is rewritten as

1 Lo t(s) . L
A(z) = G// C(x,y)'m__x_jn_gb|(1—nz)dsdzdy

= ZI;/ds{/ d:id?JC(:i,ﬂ)(l—ni‘)e“i("'v)‘g(b'v)}%;—2.(7)

where
R=|z - X(s)|. (8)

The exponential function is formally expanded in powers of Z and § as

A = :};/ds{//da‘cdgj((l—ni—i(n-V)—g}(b~V)+%[iQ(n-V)2

+2&G(n - V)(b- V) +§%(b- V)] + ki2(n - V) + k&§(b - V) + - )}% 9)

We shall know from the inner expansion that the axial component ¢ of
vorticity has the following dependence on ¢:

C(,9) = Co(r) + C11(r, &, ) cos ¢ + Cra(r, €, ) sin p + (a1 (7, €, 1) cos 24 + - - -,

(10)

where
G = O+ 2P+, u=rlPE)+, =R+
The transversal components emerge at O(e?) in the form: -
Wy = Op(KT COS P + KscosP), wy = Wg(ksCOSP — KT COSP) . (12)

Substituting (10) into (9), we get

A(z) = Ap(z) + Ag(z) + -+, (13)



where ( )
S
An(@) = - [ Lhas, (14)
00 (1)
Ay(z) = ——81;[7r /0 3¢ dy] / &R”bds—d ) / ds[(n V)+n2]——
(15)
with I . ) o
dV = 5 {[7!'/0 T2Cﬁ)dr] - i[w/o T3C(0)dr]} . (16)

The second term A, corresponds to the flow field induced by a line of
‘dipoles’, arranged on the centerline, with their axes in the binormal direc-
tion.

In the LIA, the dipole velocity field v4 = V x A4 simplifies to

d(l) K2
vy = - [sm e, — cospey| — ~cos 2¢eq
2L 9 3
+ log (—r-) (26sT + KTs)n + (KT° — Kgs — —n )] -, (17)

where non-singular terms are omitted. The first terms stand for the dipole
field. Intriguingly, the logarithmic terms are identical with the third vector
field V® of the LIH (4), except for the coefficient of k3. We are reminded
of the fact that, for the speed of a vortex ring, the logarithmic terms at
O(€?) arise also from the inner solution. This remarkable coincidence invites
a further investigation of the inner solution to higher orders.

3. Inner solution

The inner solution is addressed by solving the Euler equations in the moving
coordinates. We introduce the dimensionless variables; the radial distance r
is normalized by o, the core radius, time by R3/T" with Rg being a measure
of the curvature radius, relative velocity by I'/o and the centerline velocity
by I‘/R(O) To eliminate pressure from the Euler equations, it is advan-
tageous to handle the vorticity equation by taking the curl of the Euler
equations. We introduce the relative velocity v = X (¢,t) + ue, +veg+ wt,
where a dot stands for a derivative in ¢ with fixing £, and e, and ey are
the unit vectors in the radial and azimuthal directions respectively.

Suppose that the leading-order flow consists only of the azimuthal com-
ponent v(0) possessing both rotational and translational symmetry about
the local central axis t: v(®) = v(9)(r). We can conveniently introduce
the streamfunction v for the local flow in the plane transversal to the
t-direction.
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The solution at O(e), meeting the condition that the relative velocity is
finite at r = 0, is written out as follows:

9 = [§) - 2(x @ 5)] cos, (18)
where
2 T ' r’
) _.0)) 7T / d—r/ n, (0),n 2 n (1), (0)
Py =v {2 + o PO Jo T [v (r )] dr” 3 + ciyv\", (19)
with cgll) being a constant. The matching condition then relates C in (2) to

the flow structure in the core (Widnall, Bliss & Zalay 1971).
Fortunately p(1) is straightforwardly available:

) © 00 (0) (]2
P =kt = Gy = r[o(r)]" ¢ cos . (20)
The gradient of p(1), in turn, drives axial flow at O(e?):
w® = i (=k7 cos ¢ + ks sin @) , (21)
where (1)
@ _ o 00 ¢y o)
W =Cr—r o + WOR4Y +rév (22)

Notice that torsion and arcwise variation of curvature is vital for the pres-
ence of pressure gradient and thus of axial velocity. The streamfunction
9@ at O(e?) for flow in the transversal plane is built in parallel with the
case of a circular vortex ring.

We are now ready to deduce the third-order velocity. The vorticity equa-
tion in the axial direction has much in common with that for a circular
vortex ring. The effect of 7 and x;, which is missing in the latter case,
makes its appearance only in the following few terms:

. () s(60) M) 4 §¢® (0)
<<1)+A(72_%) o’ | ‘9[/ Tds/]QQ_+"_3<_+u(a>a_<_
0

00 " ot BT r 08 or

¢ (@
T ——— + “ae ;
n O

The third-order velocity X @ under question is included in ¢ and
u®. Relevant to the traveling speed is the terms proportional to cos ¢ and
sin ¢. The relevant part of the matching condition is

(1)
k)@~ <~3—r3 - d—r) log (2—li) [(kss — K72) cos ¢
7r er

+(26sT + KTg)sing] + -+ asr — 0. (24)

n=10X/0¢] . (23)
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After some manipulation, we eventually arrive at

r 2L oo
%)tg-(s, t) = :1‘7;108 (—U—) {nb + [%/0 ng(o)dr] (2657 + KT5)n
+(KT2 = Kgs)b + k2T — oszrch} . (25)

Determination of the coefficients C}, requires a further task.

As an example, we consider a specific vorticity distribution at O(e®) of
constant vorticity in the circular domain of unit radius surrounded by an
irrotational flow, known as the Rankine vortex:

v =r/@2n) forr<1, o® =1/2nr) forr>1. (26)
With this choice, [{°r3¢(®dr = 1/4 and

C, = g + <c§11)'— 5 ) . 27)

The disposable parameter cgll) in (19) has bearing with the freedom of

choosing the local origin r = 0, to O(e), in the n-direction (Fukumoto &

Moffatt 1999). When cﬁ’ = 5/8, the origin r = 0 sits at the form center. It

is remarkable that the choice of c(lll) = 3/8 reduces (25) to a summation of

V() and V) of the LIH provided by (3) and (4). This implies that there
is a line in the core obeying the integrable equation. Since the stagnation
point is located at the distance (5/8)eo, this ‘integrable line’ is located
between the form center-line and the stagnation line.
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1. Introduction

Interactions between intense elongated vortices and surrounding turbulent
motions are often produced artificially in engineering and environmental
flows, and they occur naturally in most homogeneous and sheared turbulent
flows. Several experimental and computational studies have been under-
taken on the instability of vortices interacting with background turbulence
(Sreedhar & Ragab (1994) and Risso et al. (1995)). These interactions are
thought to play an important role in the three- dimensionalization of the
flow fields. It is, also, of practical interest to estimate the lifetime of trailing
vortices under the influence of atmospheric turbulence.

2. Direct Numerical Simulation

Melander & Hussain (1993) conducted an idealized DNS at moderate Reynolds
numbers, and showed the followings; (1) azimuthal alignment of small-
scale vorticity, (2) merger and axisymmetrization of these vortex rings,
(3) excitation of bending waves on the columnar vortex. In this paper, the
statistics of initially isotropic homogeneous turbulence interacting with a
Lamb-Oseen vortex (with circulation T' = 40rdw,,,s = 41.23 and initial
radius rg = 0.5 = %LINT) are investigated numerically by extending the
work by Melander & Hussain. Unlike their artificial initial conditions, the
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Figure 1. (a)Distorted turbulent eddies, (b)Distortion of the columnar vortex.
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Figure 2. (a)Vorticity contours inside the vortex core at z = /2. (b)at z = 57 /6.

initial homogeneous isotropic turbulence Rey = 126, itself, is produced by
a direct numerical simulation of decaying turbulence. Statistical properties
are computed by averaging 20 cases, and they are compared with the results
of a linear RDT.

After the columnar vortex is introduced in the fully developed turbu-
lence, the vorticity field is distorted. Intense vortices are wrapped around
the vortex core (Fig.1a). This is because the differential rotation in the
mean flow causes the azimuthal component of turbulent vorticity to grow
algebraically, in proportion to time, while the other components do not
grow.

We show, in Fig.1(b), the iso-surface of w, (axial vorticity). This corre-
sponds to the surface of the columnar vortex. As time goes on, the surface
is distorted and it becomes like a spiral, indicating that bending waves are
excited on the vortex core.

Figures 2a,b show contours of w, at two horizontal cross-sections of the
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Figure 3. One-dimensional energy spectrum,E(k.).

columnar vortex at ¢ = 2.0. We can see that axisymmetric waves (with
"bubbles” and "hot spots” of vorticity) are excited on the vortex core.

3. Statistics of turbulence

Next, let us consider the statistical properties of the flow field. As a result
of the distortion of the turbulence by the mean flow, it becomes inho-
mogeneous and anisotropic. The flow field, however, remains statistically
homogeneous in the azimuthal and axial directions. The one-dimensional
energy spectrum, where the horizontal axis is k,, is shown in Fig.3. The
energy of higher wavenumbers is piled up and an inverse energy cascade
can be observed, although this tendency is weak.

The velocity correlation functions can be Fourier-decomposed in the
azimuthal and axial directions, whereas the coefficients have spatial de-
pendence on the radial coordinate, so that the two-point energy spectrum
tensors ®;;(ry, 72, t; k,m) , i.e.,

<ui(7‘1, 01, Z],t)Uj("'2, 62, 22, t)) =

Z / dk®;;(r1,72,t; k, m) explik(z; — 22) + im(6y — 63)]

m=-—00

are computed by averaging ”20 realizations”( Rey = 126) produced numer-
ically.

Figures 4a,b show the time-evolution of axisymmetric axial and radial
components, respectively. We find two peaks in Fig.4a,i.e., at the center and
at the core-surface of the Lamb-Oseen vortex. The central peak corresponds
to the excitation of axisymmetric vortex waves, whereas the peak at the
vortex surface indicates a blocking effect, i.e., the outer turbulent eddies
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Figure 4. (a)Axisymmetric axial component, (b)Axisymmetric radial component.

Figure 5. (a)Bending axial component, {(b)Bending radial component.

are blocked by the columnar vortex and they cannot penetrate inside the
core. In Fig.4b, the axisymmetric radial component grows with time, again.
Comparing two figures, we find that the axial velocity dominates near the
core surface (r ~ 1 : ’blocking’ effect) but the radial velocity dominates
away from the vortex core (r = 1.5 — 2.0 ), corresponding to the formation
of dipole vortex rings wrapped around the columnar vortex.

Figures 5a,b show the bending (m = 1) component. These are nonzero,
only inside the vortex core, where the bending component oscillate with
time, indicating the excitation of bending vortex waves. Higher (m > 2)
components are presented only inside the core, too, and they are small
compared with the axisymmetric and bending components. Thus only the
axisymmetric component grows with time outside the vortex core and the
velocity field of small scale eddies near the vortex becomes statistically
axisymmetric, within a period of two or three revolutions of the columnar
vortex.

Figure 6a shows the time-evolution of the maximum values of axisym-
metric axial component (at the vortex surface) for several k,, showing the
strength of the blocking effect. They grow with time initially, but saturate
after t= about 1.5. Similarly, the axisymmetric radial component grow
with time, as we can see in Fig.6b. They are not saturated, although satu-
ration may occur later. This is because the maximum values of the radial



221

Figure 6. Peak values of (a)axisymmetric axial component, (b)axisymmetric ra-
dial component, (c)axisymmetric axial component at the center, (d)bending radial
component.

component are attained away from the vortex surface, where the effect of
differential rotation is weaker than at the core surface. Higher (larger k)
components seem to be saturated faster than lower components.

In Figs.6c,d, the peak values at the vortex center of axisymmetric axial
component and those of bending radial component are shown. They oscil-
late with time, representing the vortex axisymmetric and bending waves
excited by the turbulence outside the vortex core, respectively. The am-
plitude of these oscillations seem to increase gradually, leading to vortex
breakdown.

4. Comparison with RDT

These findings are compared with the theoretical results based on the linear
rapid distortion theory (RDT: Miyazaki & Hunt (1999)). For simplicity,
we consider a "solid cylinder vortex”, i.e., a model vortex whose core is
replaced by a solid cylinder rotating with a constant angular velocity. Then,
quantitative comparisons with the results of DNS, inside the core and near
the core surface, are difficult (Fig.7a shows the axial component near the
core- surface). However, a fairly good agreement is found, in Fig.7b, for the
axisymmetric radial component, which grows away from the vortex core
surface.
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Figure 7. Comparison with RDT (a)axisymmetric axial component, (b)radial compo-
nent.

RDT theory tells that the energy of small scale turbulence around the
columnar vortex decays about 7% in the radial direction, grows like #?
in time, in the earlier stage of the simulation. As we have seen in Fig.6a,
nonlinear effects, such as, the inverse energy cascade due to the merger of
“vortex rings” and the breakdown of the columnar vortex caused by the
amplification of vortex waves, are observed at later times.

5. Summary

In this paper, statistical properties of turbulence around a columnar vortex
is investigated numerically. The followings are explored.
1.The intense vortices are wrapped around the columnar vortex core.

2.Bending and axisymmetric vortex waves are excited in the vortex core.

3.The turbulent eddies around the vortex core become statistically ax-
isymmetric, within a period of two or three revolutions of the columnar

vortex.

4.The outer turbulence is blocked by the columnar vortex, whereas vortex
waves are excited inside the core.The axial velocity dominates near the
core surface and radial velocity dominates away from the core surface.

5.The linear RDT can explain the behavior of the two-point energy spec-
trum tensors in the earlier stage of the simulation, but nonlinear effects,

such as, the inverse energy cascade, are observed later.
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STUDY OF THE GEOMETRY OF FLOW PATTERNS
IN A COMPRESSIBLE WAKE

On the behavior of velocity gradient tensor invariants

H. MAEKAWA
Dept. of Mechanical Engineering and Intelligent Systems,

Univ. of Electro-Communications
Chofu-city Tokyo 182-8585 JAPAN

1. Introduction

Direct numerical simulations of turbulence provide better understanding
of fine scale motions and indicate that the dissipation motion in incom-
pressible turbulence has a universal character. The fine scale motion by the
evolution equation of the velocity gradient tensor A;; in incompressible tur-
bulence has been investigated by Vielliefosse [1] and others. In compressible
turbulence, there is another kind of dissipation motion, so called dilatation
dissipation due to divv # 0. Maekawa [2](1998) extended the incompress-
ible evolution equations analyzed by Cantwell[3] (1992) for compressible
flow and found that the velocity gradient tensor was governed by a linear
second order system whose coefficients are expressed in terms of the in-
variant P and its derivatives and the invariant Q. This fact suggests that
analytical feature of A;; is characterized by the analytical features of the
invariants P and Q. Maekawa and Matsuo [4](1998) applied the solutions
of the evolution equations to explain the statistical robust tendency of ho-
mogenous isotropic compressible turbulence for initial high turbulent Mach
numbers. In what follows, low structures of inhomogeneous compressible
flow such as a wake in the invariant space are investigated. The solutions
of the evolution equations are applied to understanding the definite trends
presented in the invariant space.

2. Numerical simulations

2.1. FLOW DESCRIPTION

The initial conditions for the time-developing wake simulations consists of
linear eigenfunctions obtained from a linear stability analysis superimposed
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on the laminar mean flow. For a perfect gas with a Prandtl number of unity,
the Crocco-Busemann relation is employed to relate the mean temperature
to the mean velocity. The most unstable 2-D antisymmetric mode with a
pair of equal and opposite oblique 3-D modes are superimposed on the mean
velocity, temperature, and density profiles at the beginning of a simulation.
The code was validated by comparison between the numerical result and
the linear theory. Simulations addressed the range of wavenumber leading
to secondary transition. Then, the spanwise wavenumber was chosen to
correspond to pair of oblique waves inclined at 6 = +45° relative to the
streamwise direction, because the modal energies for the oblique modes
grow well after saturation of the fundamental mode.

2.2. SIMULATION TECHNIQUE

The technique used in this study is direct numerical solution of the com-
pressible Navier-Stokes equations without modeling assumptions. This is
naturally very expensive, even for a very low Reynolds number wake, but
this method is uniquely capable of providing the desired detailed look at
the physics. Because fully resolved information is available for the fine-
scale motions, it offers an ideal means of studying the low dynamics. To
compute the flow solution, the fully compressible equations are solved on
Cartesian grid systems having 72 x 150 x 48 points in the streamwise,
transversal and spanwise directions respectively. The algorithm employed
to solve the equations used sixth-order compact finite difference schemes. A
fourth-order Runge-Kutta algorithm was employed to integrate the equa-
tions forward in time. For time-developing wake, periodic boundary condi-
tions can be applied in the streamwise and spanwise directions. The major
gradient direction is finite with NSCBC applied at y = £10. The length
of the computational domain in the streamwise and spanwise directions is
determined from linear stability theory. In the direct numerical simulations
of the temporally evolving wake, the governing equations were nondimen-
sionalized by the characteristic physical scales such as the initial half width
§ and free stream velocity U.

3. Numerical results

3.1. EVOLUTION OF MODAL ENERGY

To illustrate the effect of Mach number, comparisons were made for simula-
tions performed at M=1 and M=2 for an initial velocity profile of Re=200.
Simulations for Re=600 were performed to minimize the effects of viscosity
on the flow field. The modal energy history of the fundamental and oblique
waves is shown in Fig.1 for Re=400, and Re=600 wakes. The modal energy
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is defined as Ex = [ 4i(a,y, )4} (e, y, B)dy where summation over ¢ from 1
to 3 is imposed, i(c,y, B) is the Fourier transform of u; in the  — 2 plane.
Several simulation data at varying time shown by arrows in Fig.1 beyond
the region of exponential growth are analyzed. When the oblique modes
grow well, the streamwise fine structures are observed.In this paper, the

results for M=1.2 and Re=600 are described.
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Fig.1 Evolution of modal energies of the fundamental and oblique
modes.

3.2. FLOW STRUCTURE IN PHYSICAL/INVARIANT SPACE

The main points to note, observed in physical space, are that high values
of the enstrophy and high rates of dissipation occur in relatively isolated
regions which tend to be highly elongated in the streamwise/transversal
direction. These observations are similar to those of incompressible mixing
layers. These structures are composed by the flow patterns characterized
by stable-focus-stretching and unstable-focus-compressing and also a few
flow patterns due to compressibility such as stable-focus-compressing. In
terms of the topology there has been a change from stable-focus-stretching
to unstable-focus-compressing and vise versa in these structures. This fact
is investigated by the solutions of the evolution equations for the invariants.
Figure 2 is the very pronounced nearly straight ridgeline extending into the
upper left quadrant. As will be examined, however, only a small fraction
of the data collects along the ridgeline. A significant fraction of the data
lies in an elliptical region about the origin in the Q-R space. In the P-
R space, as shown in Fig.3, the predominance of points collects along a
straight ridgeline of R=0. Around the region of modal energy saturation
of the 2-D fundamental disturbance, a small fraction of the data shows the
pronounced plot in the Q-R space.
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R
Fig.2 Scatter plots of Q versus R at tU/§ = 120.

P
Fig.3 Scatter plots of P versus R at tU/d = 120.

4. Homogeneous model for compressible flow

Differentiating the Euler equations with respect to z; leads to the transport
equation for the velocity gradient tensor A;;. The evolution equations for
the invariants P,Q and R are given by

dQ 4_dP 2 _, 7 o
+ ~ 3P t3P —3PQ+3R=—AwHy (1)
@ - E(Q dP T+ 1P2Q PR- —Q2 = —Ain AnmHmni + A HeiP (2)
apP 8 (18p
—20=-—-—-—
@t ©= ozx; (p 6:1:«) ®)
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where H;; = —(%(:—,%) - 3%(%3%)%1) The evolution equations for
imcompressible flov ‘re obtained from the condition of the invariant P = 0
by incompressibility. A homogeneous model, imposing the right hand sides
of the evolution equations (1) and (2) to be 0, is employed in this paper.

4.1. STATISTICS OF RIGHT HAND SIDES OF EVOLUTION EQUATIONS

Figure 4 shows the histogram of the right hand side of Aj; Hy; of the evo-
lution equation (1). Significant fraction of the plots is concentrated around
the origin. A small fraction of the data in Fig.4 lies on the large mag-
nitudes. This feature suggests that the homogenous model should not be
applied for the fraction of data. The Laplacian of p/p is a local quantity
which is directly related to the vorticity and shear. An examination of the
histogram of —(%(%%)) shows that the magnitudes are close to -2Q in
the simulated results for Re=600. We can propose a homogeneous model
for compressible flow that the right hand side of the equation (3) equals to
-2Q even for the particle lying far from the origin.

Fig.4 Histogram of A;,Hy; for the compressible wake at tU/§ = 120.

4.2. FAMILIY OF SOLUTION

Figure 5 shows the solutions of the compressible evolution equations where
DNS data at tU/§ = 120 are employed as the initial conditions. Homoge-
nous model can predict characteristics of evolving around the origin of the
invariant space. Trajectories are indicative of a slowing down of the evo-
lution of invariants for particles close to the origin and the regions where
the curvatures of the solution trajectories have highly changed. When P is
very small, the solution family projected in the Q-R space is very close to
the incompressible case. In the P-R space, a plot remains for a long time
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around the P axis. However, further examinations of the right hand sides
of the evolution equations for the points far from the origin suggest that a
small correction will be required for the homogeneous model.

Fig.5 Trajectories of the invariants of the velocity gradient tensor.

5. Conclusions

When the streamwise fine-scale structures appear in a simulated compress-
ible wake, corresponding to the saturation of oblique modes, the predom-
inance of points collects in an elliptical region about the origin with its
major axis aligned with upper left and lower right quadrants in the Q-R
space. Significant number of plots is described by the evolution equations
of the velocity gradient tensor with a homogeneous model of compressible
turbulence. Points far from the origin tend to be associated with relatively
large rates of the right hand sides of the evolution equations

A cknowledgements
This work was supported with a grant-in-aid (No. 10650163) from the
Japanese Ministry of Education and Culture.

References

1. P.Vieillefosse, (1984) Internal motion of a small element of fluid in an inviscid flow,
Physica 125 A pp.150-162.

2. H. Maekawa, (1998) Topology of fine scale motions in compressible turbulence,
NAGARE 17 pp.411-416.

3. B.J. Cantwell, (1992) Exact solution of a restricted Euler equation for the velocity
gradient tensor, Phys. of Fluids A 4 (4) pp.782-793

4. H. Maekawa and Y. Matsuo, (1998) Study of the geometry of flow patterns in
compressible isotropic turbulence, Proc. of 13th U.S. National Congress of Applied
Mechanics, FB1.



INTERACTION OF A VORTEX RING LINKED WITH A
VORTEX FILAMENT

KATSUHIRO SUZUKI, MOTONORI ABE, MASAYUKI HIRANO
AND OSAMU SANO
Department of Applied Physics,

Tokyo University of Agriculture and Technology,
Saiwai-cho 3-5-8, Fuchu, Tokyo 183-0054, Japan

Abstract. In the laboratory, we produced a system of vortices with link
helicity, i.e., a vortex ring linked with a vortex filament. Observations based
on flow visualization reveal several processes of interactions including the
topological change by reconnection.

1. Introduction

Conservation of helicity in an ideal fluid leads to a concept of topological
invariants of the field, such as the winding number of vortex lines [1]. The
idea is important for understanding not only the dynamics of an ideal fluid
but also that of nondissipative MHD [2, 3]. However, reconnection will
cause the topological change of field lines in viscous fluid, which makes
the dynamics much more complicated than that in ideal one. There are a
lot of numerical while a few experimental works in which the processes of
reconnection are reported [5, 6, 7]. Especially, to the author’s knowledge,
the dynamics of vortex tubes with link helicity has never been investigated
experimentally. The aim of the present work is to realize linked vortices in
the laboratory and study their dynamics.

2. Experimental Apparatus

Commonly, a vortex ring is produced by impulsive ejection of fluid from a
nozzle (or an orifice), while a vortex filament by strong suction. We combine
these methods to generate a system of vortices with link helicity.
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As a working medium, water in a rectangular tank of 50 x 50 x 70 cm?3
is used. In order to maintain a thin vortex filament, a pump sucks the water
through a pipe at the center of the upper surface of the tank (Figure 1). An
acrylic cylinder with a diameter of 30 cm and a height of 60 cm is installed
in the tank to keep the axial symmetry of the flow. The circulation gy of
the filament is controlled by the volume flow rate Qs of the pump.

Figure 1. General schematic of the apparatus.

The vortex ring is produced by ejecting a given volume of the fluid from
a nozzle (diameter D =10.4 cm) at the upper surface of the tank. Water
impulsively expelled by a piston from a separate chamber is led to the
nozzle through six hoses. This geometry enhances the reproducibility of the
vortices because it prevents the harmful oscillations generated by the piston
from affecting the test section. The strength I'ying of the ring is determined
by the ejection time and the ejection volume, which are controlled by a cam
and a spring driving the piston. Iy, takes discrete values, depending on
the form of the cam.

The “linked” topology of the vortices is achieved by a configuration il-
lustrated in Figure 2: the suction pipe for the maintenance of the steady
filament passes through the center of the nozzle. The inner tube is installed
in order that the fluid ejected from the nozzle may not influence the fila-
ment.
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Figure 2. Geometry of the nozzle and the suction pipe.

3. Observations

3.1. MEASUREMENT OF THE CIRCULATION

A laser-Doppler velocimeter (LDV) system (DANTEC, FlowLite Optics/
Flow Velocity Analyzer/ FLLOware system) is used to measure the velocity
field induced by each vortex. When only the vortex filament exists, the
velocity field is almost steady and axisymmetric for all the tested ranges of
Qj- According to the measurement by the LDV, the radial distribution of
the azimuthal velocity Vp (in a cylindrical coordinate system), has a peak
typical of the flow induced by a straight vortex filament, from which both
the core radius eqmy and the strength gy are evaluated. It is found that
€fmt ranges from 5.5 mm to 10 mm, and gy from 1.1 x 1073 m? s7! to
1.9 x 1072 m? s71.

Concerning the velocity field induced by the vortex ring, it is unsteady
because the ring moves downwards from the nozzle to the bottom of the
tank. Owing to this property, the core radius &g of the ring can be eval-
uated from LDV signals obtained at a single point, where the center of
the vortex core passes. In fact, a t — V. curve measured at the point can
be converted to z — V, one, by multiplying ¢ by the translational velocity
U of the ring. Then the distance between a positive maximal peak and a
negative minimum one in the latter curve corresponds to €ring. Similarly,
the circulation I';ipg of the ring can be calculated by measuring V; and V.
Utilizing the radial distribution of V;. and the vertical one of V, converted
from t — V, curves, one can execute the line integral of the velocity field
along a rectangular path around the core. Two kinds of vortex rings with
(€ring> Tring) = (5.0 mm, 1.9 X 1073 m? s™!) and (&ring, [ring) = (5.1 mm,
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2.4 x 1072 m? s7!) are employed in the present experiments. In the follow-
ing, we simply call the former “strong ring”, and the latter “weak ring”.
The major radii of both rings are 55 millimeters immediately after their
formation. The measurement described so far indicates that the Reynolds
number Re = I'y/v (o« = fimt, ring) ranges from 1.1 x 103 to 2.4 x 10%,
where v is the kinematic viscosity of water.

3.2. INTERACTION OF THE VORTICES

Interaction of the filament with the ring is examined by flow visualization
using tracer particles (neutrally buoyant polystyrene beads) and dye. We
utilized the particles for strong filaments (D = O( 1072 m? s7! )) while
dye for weak ones (Fimt = O( 1073 m? s7!)). The ring is visualized by the
particles loosely sticked inside the nozzle with glue. It is found that the
glue itself is efficient to make the ring visible, since it is well concentrated
into the core.
Based on the visualization, the following processes are observed:

1. If the strength of one of the vortices is much stronger than that of the
other, the structure with weaker circulation is broken down immedi-
ately after the outset of the interaction.

2. If only the weak ring exists, a wave with a wavenumber n =~ 8 be-
gins to appear on it about 1.5 s after its formation (Figure 3). The
wavenumber is consistent with Maxworthy’s work [4] because the ring
Reynolds number is about 5 x 103 in this case. Though the wave does
not propagate along the ring, it slowly rotates around the core at a
frequency of 0.5 Hz. After moving downwards for about 60 s, the ring
is broken just before it arrives at the bottom plane. Provided that the
filament with Ty = 1.2 x 1073 m? s7! (» Iring) coexists with this
ring, the swirling flow induced by the filament strongly distorts and
amplifies the wave, which causes faster decay of the ring at t ~ 12 s.
The filament is also broken in this case. Therefore, the vortex system
consists of vortices with weak strength (of the same order) is unstable.

3. After the formation of the strong ring alone, it proceeds downwards
to reach the bottom of the tank within 10 s, without showing insta-
bility. If the filament with the strength I'gmi = 1.9 x 1072 m? s!
(= T'ting) is simultaneously generated with this stable ring, two kinds
of interactions are observed.

(a) If the cylindrical symmetry of the system is well maintained, the
part of the filament ahead of the ring becomes thick because the
flow induced by the ring compresses it. (On the contrary, the part
behind the ring will be stretched, though it is not well visualized
in this work.) It is also observed that some tracer particles swirling
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around the filament are entrained to the ring, which may corre-
spond to the transportation of the vorticity from the filament to
the ring.

(a) (b)

Figure 3. The collapse of a vortex ring caused by a vortex filament.
(a) When only the weak ring (I'ying = 1.1 x 1073 m? s71) exists,
a wave with wavenumber n =~ 8 appears on it. (¢ = 15.8 s after
the formation of the ring.) (b) When the ring and a filament exist
(Came = 1.2 x 1072 m? s7!), the wave is amplified to break at
t = 11.8 s. (The filament is not visualized.)

(b) We can intentionally break the cylindrical symmetry of the setup,
because the position of the suction pipe can be slightly changed.
It is also observed that the symmetry can be spontaneously bro-
ken during the process of interaction. In fact, if the filament is
relatively thick (eqm¢ =~ 10mm), the filament is not compressed
but bended by the flow induced by the ring. In either cases of
broken symmetry, visualization suggests the occurrence of recon-
nection of the vortices. In Figure 4, typical process is illustrated.
After such a stage that the ring becomes wavy and the filament is
bended, it seems that a new helical filament is generated through
reconnection.

4. Summary

We produced a system of vortices with link helicity in the laboratory, and
investigated the interactions of it by flow visualization using tracers and
dye. When 't = T'ring = O(1073 m? s71), both the vortices are unstable.
When I = Tring = 0(1072 m? s71), the compression of the filament
is observed in cylindrically symmetric case, and the topological change of
vortices caused by reconnection is suggested if the symmetry is broken. For
the sake of more quantitative and precise study of the processes observed in
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present work, we are planning to introduce PIV and execute numerical

simulations in the near future.

(a)

(b)

()

Figure 4. Topological change observed when the symmetry is broken ( I'gpy &
Tiing = O(1072 m? s71)). (a) The vortex ring proceeds downwards, keeping
the linked topology. (b) The filament approaches the ring, deforming its shape.
(c) It seems that two vortices are reconnected to form a helical structure.
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MECHANISM OF FLAME PROPAGATION ALONG A
VORTEX TUBE

T. HASEGAWA, S. NISHIKI AND S. MICHIKAMI
Nagoya Institute of Technology
Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

1. Introduction

Vortex tubes are recognized as sinews of turbulence: The length of the vor-
tex tube represents the integral scale of turbulence, the spacing of the nodes
of the vortex tube represents the Taylor micro scale, and the diameter of
the vortex tube represents the 10 times the Kolmogorov scale (Tanahashi
and Miyauchi, 1999). Thus the interaction between a fine vortex tube and a
flame seems to be an essential process in turbulent combustion. The aim of
this work is to study the mechanism of flame propagation along a fine vor-
tex tube of a premixed gas when the vortex tube interacts perpendicularly
with the flame (Chomiak, 1976). It is well known that a premixed flame
propagates rapidly with a velocity similar to the maximum circumferen-
tial velocity of the vortex core. It is also known that the premixed flame
can propagate along the vortex tube when the maximum circumferential
velocity is faster than the burning velocity and the core diameter is larger
than the flame thickness (Hasegawa et al., 1995). However, the mechanism
of the flame propagation is still not clear though several models have been
proposed. In this study, the flame propagation along a fine vortex tube is
numerically simulated and the mechanism that provokes the flame to prop-
agate along the vortex tube is discussed in terms of the vorticity transport
equation.

2. Numerical Simulation

Three-dimensional conservation equations for compressible reacting flows
are solved on the basis of the following assumptions: i) The chemical reac-
tion is an one-step irreversible one with heat release, where the molecular
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weights of the reactants and products are the same. ii) The bulk viscosity,
the Soret and the Dufour effects and the pressure gradient diffusion are
neglected. iii) The specific heat at constant pressure and the specific heat
ratio are constant. iv) The equation of the state of the burned and un-
burned gases is that of an ideal gas. The physical parameters are given as
Q = 2.446x10°% J/kg, Cp, = 1.25x10%J /kg-K, A = 7.4x1072 W/mK, v =
1.4, Pr = 1.0 and Le = 1.0. The initial pressure is 0.5 MPa and the initial
temperature is 300 K, thus the adiabatic flame temperature is 2260 K and
the density ratio of the flame is 7.53. The frequency factor of the one-step
irreversible reaction of B = 3.47x10°% 1/s-K and the activation temperature
of # = 19600 K give the laminar burning velocity of u; = 0.236 m/s and
the flame thickness of § = 0.0734 mm.

A straight vortex tube is placed at the center of a volume of 1 mm x
1 mm X 2.5 mm as shown in Figure 1. The side boundaries are periodic,
but longitudinal boundaries are non-periodic and posed by non-reflecting
boundary conditions (Poinsot and Lele, 1992, Hasegawa et al., 1999). The
initial vortex tube is assumed to have a Gaussian vorticity distribution and
the circumferential velocity field is given by the following equation:

r 2
V(T)_——q- [1~exp <— r )] y F0=7T0'0Vm0

T 2rr (00/2)?

The initial parameters of the vortex tube are o = 0.156 mm and V0 =
12.4 m/s, and thus the initial Reynolds number is Re = 152. A laminar
flame is placed at £ = 1 mm to interact with the vortex tube.

Fourier spectral collocation method is used for y, z directions and 6th-
order central finite difference method is used for z direction to treat non-
periodic boundary conditions. The number of grid points is 128 in y, 2
directions, while it is 640 in z direction to keep the accuracy similar to the
spectral method. 3rd-order Runge-Kutta method is used in time integration
and the time step is selected to satisfy the CFL condition. A vector-parallel
computer (Fujitsu VPP 500) with 16 PEs is used for the numerical simu-
lation. The total memory used is 10.5 GBytes.

3. Results and Discussions

Contour lines of temperature, total vorticity and azimuthal component of
vorticity in the center cross section at ¢ = 31 us are illustrated in Figure
2. It is found that the flame propagates rapidly along the vortex tube, and
that the azimuthal component of vorticity appears near the flame front.
This azimuthal vorticity can make the flame to propagate along the vortex
tube (Hasegawa and Nishikado, 1996).
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Figure 1. Initial conditions.
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Figure 2. Production of azimuthal vorticity.
As shown in Figure 3, The proportional factor of the propagation veloc-

ity to the maximum circumferential velocity of the vortex tube increases at
the initial stage, but it becomes a constant value of 1.2. This means that
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the propagation velocity is proportional to the maximum circumferential
velocity with a factor of 1.2. The azimuthal component of vorticity induces
a similar velocity at the top of the convex flame, though the factor has a
higher value.

3
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~ azumuthal component
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2 -
£
; 1.5

T B (S .
10 20 30 40
Time (us)

=
o
!

Figure 8. Evolution of flame propagation velocity.

Next the transport equation of vorticity is analyzed to clarify the pro-
duction mechanism of the azimuthal component.
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where the first term of the right-hand side is the convection of vorticity,
the second term is the vorticity production due to stretch, the third term
is vorticity decay due to dilatation, the fourth term is the production of
vorticity due to the baroclinic torque, the fifth and the sixth terms are the
viscous diffusion and dissipation. After integrating the transport equation in
time, the azimuthal component of vorticity produced by each term is shown
in Figure 4. It is obvious that the convection term has a main effect on the
appearance of azimuthal component of vorticity in front of the convex flame.
This means that the initial vortex tube is expanded by combustion and as a
result it is twisted due to the conservation of the angular momentum. The
twisted vortex in front of the convex flame induces the velocity that pulls
the flame into the unburned vortex tube. The stretch of the vortex also
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appears simultaneously during the expansion and enhances the vorticity
that pulls the flame. Besides the baroclinic effect produces the vorticity
behind the convex flame that pushes the flame into the unburned vortex
tube. However, the production of negative vorticity behind the convex flame
due to the convection and stretch terms compensates the baroclinic effect.
The dilatation effect and the viscous dissipation reduce the vorticity behind
the flame but they play a small part. Therefore the main mechanism of
the production of azimuthal component of vorticity is attributed to the
convection and the stretch in front of the flame.

4. Conclusions

1) Azimuthal component of vorticity appears in front of the flame. 2) Flame
propagation velocity is proportional to the maximum circumferential veloc-
ity and is similar to the velocity induced by the azimuthal component of
vorticity. 3) Convection and stretch of axial vorticity produces positive az-
imuthal component in front of the flame and produces negative azimuthal
vorticity behind the flame. This negative vorticity cancels the vorticity pro-
duction due to the baroclinic effect. As a result, the azimuthal vorticity in
front of the flame, which is produced by convection and stretch, provokes
the flame propagation.
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Figure 4. Production of azimuthal vorticity due to convection, stretch, dilatation and
baroclinic terms.
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1. Introduction

In our recent paper [1] (henceforth referred to as T99), an attempt was made
to assess a mapping closure for turbulent velocity fields with non-Gaussian
probability distribution functions (PDF’s). The a priori assumption of the
Gaussian velocity statistics is not made in our mapping closure, which gen-
eralizes the results for the Burgers turbulence by Kraichnan [2] and Gotoh
and Kraichnan [3]. Our results show that further generalization is required
to reproduce the sub-Gaussian PDF (its tails fall below the Gaussian distri-
bution) observed in the direct numerical simulation (DNS) of the Burgers
equation. It is indispensable to investigate the properties related to the
sub-Gaussian PDF in order to get a clue of such generalization.
The Burgers equation for the velocity u is written as

Du 0%u
=y 1
Dt ~ V8z2 (1)
and the governing equation for the velocity gradient £ = Oz u is
D¢ 2, 0%
== —_ 2

where v is the kinematic viscosity and D/Dt = (9/0t) + u(9/0x) is the
substantial derivative. The first and the second terms in the r.h.s. of (2)
represent stretching and dissipation respectively.

We also apply the mapping closure to a generalized equation of the
Burgers equation, which is replaced the r.h.s. of equation (1) by 3, ngix‘j—.
The generalized equation includes the Korteweg-de Vries equation, the
Kuramoto-Sivashinsky equation and a hyper viscous equation. But here
we restrict ourselves to the results for the sub-Gaussian velocity case of the
Burgers equation for lack of space.
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2. Formulation of Mapping Closure

In T99, it is shown that the velocity and its gradient PDF’s relax to a
unique distribution in the Burgers turbulence even if it start from non-
Gaussian velocity distribution. In the limiting distribution, the velocity
PDF is sub-Gaussian and the velocity gradient PDF has a A-shape. The
present mapping closure has succeeded to predict that the PDF’s started
from non-Gaussian distribution relax to a unique PDF. However, it fails to
reproduce the sub-Gaussian structure in velocity PDF and the far-negative
tail of velocity gradient PDF. The former discrepancy is also noticed in [3].

The linear-dependence assumption u(z,t) = r(t)uo(z) made in [2, 3] is
equivalent to assume the Gaussianity of velocity PDF. We generalized the
map for u in T99 to investigate non-Gaussian velocity PDF,

U(.’E,t) = X(U()(Z),t), (3)
dz _
T - J(éo(2),1), (4)
Ea,t) = BX‘“"’ OX (w0, e 7(60,8) = ¥ (o, 6o, ), (5)

where up and £p are the multlvarlate Gaussian reference fields. The func-
tional form of the coordinate map J is the same as that in [2, 3].

Once the functional form of maps are determined, the governing equa-
tions of the maps are readily obtained as

o 2
BtX(UO’t) = V<% u0>, (6)
2
; Y (up,&o,t) = —YQ(Uo,fo,t)+V<g-§ U0,§o>
+m/ K (uo, &, t)dé&p, (7)
where
/ Y (uo, &, / o N /
Kluntht) = 2000, 6,0) (5 n s - Vo &)
_ <2)£> -1 a(Z(U0a£67 ), (u0,£07 ))
auO a( Uo 3 56 ) ’
2 2.
Z(U‘Oaant) = VQ(UOaé‘Oat) <<% U0> - <a 0)§0>>

Here (-|up) and (-|ug,&) denote respectively the ensemble mean condi-
: : : (9 f.9) _ O8f 8 af 8
tional on given Valufzs of ug and.- (ug, &), and Mo ts) = %fz&% - 56%@93

represents the Jacobian of f and g.
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3. PDF Tail and sub-Gaussian Velocity Model

Although the discrepancies are found only in the tail part and the PDF’s
take very small values there, the quality of closure assumption does appear
in this region. It is important to clarify the reasons for this discrepancy in
order to make an assessment of the mapping closure.

3.1. SUB-GAUSSIAN VELOCITY MODEL

We found by the DNS in T99 that if the initial velocity has appropriate sub-
Gaussian distribution then the normalized velocity PDF almost remains in
the initial sub-Gaussian. Our interest here is to examine the improvement
of the discrepancy in the far-negative tail of velocity gradient PDF by
changing the velocity PDF to be sub-Gaussian in the mapping closure.
Following the method for the evolution of Gaussian velocity PDF’s in [2,
3], the shape of the normalized velocity PDF, now the appropriate sub-
Gaussian, is fixed. And its evolution is calculated by using the integral
quantities; energy and energy dissipation, both of which are determined
by the mapping closure. The velocity gradient PDF, on the other hand,
evolves under the same equation in T99.

In the pioneering work by Kraichnan [2], who is the creator of mapping
closure and has the best knowledge of it