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Chapter 1

Introduction and epidemiology of
meningococcal disease

Caroline Trotter, Mary Ramsay, Lee Harrison

Neisseria meningitidis

Neisseria meningitidis, the meningococcus, is a Gram-negative diplococcal
bacterium that is only found naturally in humans. The meningococcus
is part of the normal microbiota of the human nasopharynx and is com-
monly carried in healthy individuals (Chapter 2). In rare cases systemic
invasion occurs, which can lead to meningitis and/or septicemia. Other
clinical manifestations of meningococcal infection include pneumonia,
urethritis, conjunctivitis, septic arthritis, and pericarditis (Chapter 5).

The meningococcus was first described as a cause of meningitis in
1887 by Weichselbaum [1], a Viennese doctor, although a striking clinical
account of an outbreak of cerebrospinal fever in Geneva was provided by
Vieusseux in 1805 [2]. Today, the meningococcus is an important cause
of serious bacterial infections in most regions of the world.

There are twelve meningococcal capsular groups, defined on the
basis of unique capsular polysaccharides, which vary in their biochemical
composition [3]. Six of these groups (A, B, C, W, X, and Y) are responsible
for nearly all disease. The capsule serves as a major virulence factor
and capsular polysaccharides have been utilized as vaccine antigens
(Chapter 7). The meningococcus can be characterized in a variety of
other ways and molecular techniques are increasingly used in place of

© Springer International Publishing Switzerland 2016 1
I. Feavers et al. (eds.), Handbook of Meningococcal Disease Management,
DOI 10.1007/978-3-319-28119-3_1
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traditional serological methods. Subtypes are defined by variation in
the two variable regions (VR1 and VR2) of the class 1 outer membrane
protein (PorA) [4]. Another immunogenic outer membrane protein used
as a molecular marker (though historically not characterized using
serological methods) is the iron-regulated FetA protein.

Multilocus sequence typing (MLST) is used to characterize seven
‘housekeeping’ genes and determine the sequence type (ST), which can
be grouped into clonal complexes. Housekeeping genes are used because
they are generally not under selective pressure for rapid change and
therefore can be used to assess the genetic lineage of meningococci.
The European recommendation for molecular typing of meningococci
takes the form [5]:

1. capsular group;

2. PorA type;

3. FetAtype; and

4. sequence type (clonal complex), for example B: 1.19,15: F5-1:

ST33 (cc32).

Antigens employed in the new generation of vaccines designed to prevent
group B disease will also become important targets for typing, including
factor H binding protein (fHbp) (Chapter 7). Recently, whole genome
sequencing has become increasingly used for molecular characterization
of N. meningitidis, including antigen gene typing, determination of ST,
and phylogenetic analyses.

Disease surveillance

The ideal surveillance for meningococcal disease is an active,
population-based system in which clinical cases are followed up
for comprehensive laboratory testing and strain characterization.
Few countries reach this standard and may use passive rather than
active surveillance, syndromic surveillance rather than laboratory
confirmation, sentinel rather than whole population coverage, or some
combination of the above. As such, caution is required in interpret-
ing data from different jurisdictions and the true global incidence
of meningococcal disease is unknown [6]. The European Union case
definition is shown in Box 1.1 [7].
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Clinical criteria

Any person with at least one of the following five:
« Fever

« Meningeal signs

« Petechial rash

« Septic shock

« Septic arthritis

Laboratory criteria

At least one of the following four:

« Isolation of Neisseria meningitidis from a normally sterile site, including purpuric skin lesions

« Detection of Neisseria meningitidis nucleic acid from a normally sterile site, including
purpuric skin lesions

« Detection of Neisseria meningitidis antigen in CSF

« Detection of Gram-negative stained diplococcus in CSF

Epidemiological criteria
An epidemiological link by human to human transmission
Case classification

A. Possible case

« Any person meeting the clinical criteria

B. Probable case

« Any person meeting the clinical criteria and with an epidemiological link
C. Confirmed case

« Any person meeting the laboratory criteria

Box 1.1 The European Union 2008 case definition of invasive meningococcal disease [7]. CSF,
cerebrospinal fluid.

Case fatality and sequelae

The case fatality from invasive meningococcal disease (IMD) in high-
income countries is usually in the range of 5 to 15% overall. In the UK,
reported case fatality is approximately 5% [8], in Europe as a whole
approximately 9%, and 11% in the USA [9]. Case fatality rates are variable
depending on reporting practices, the age of the patient, and strain
characteristics. For example, the ST-11 clonal complex circulating in
Europe from the mid-1990s was associated with odds of death twice that
of the most common ST-41/44 complex, even after adjusting for age [10].
In a systematic review of bacterial meningitis among African children, the
median case fatality for patients hospitalized for meningococcal meningitis
was around 4%, although the range from individual studies was between
1 and 13% [11] and the quality of included studies was variable.
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A systematic review and meta-analysis of the risk of disabling sequelae
following bacterial meningitis, based on the literature published between
1980 and 2008, found that a median of 9.5% of survivors of meningo-
coccal meningitis experienced at least one major or minor sequela and
7.2% experienced a major impairment, including hearing loss, visual
disturbance, and motor deficits [12]. The risk of sequelae was highest
in low-income countries [12] and, as for mortality, may vary according
to the infecting strain. For example, in Canada in the early 1990s, 3% of
survivors of capsular group B disease had physical sequelae, compared

to 15% of survivors of group C (ST-11) disease [13].

Epidemiology of meningococcal disease

Patterns of disease

Although our knowledge of meningococcal disease epidemiology is influ-

enced by the type and quality of surveillance that is employed, there are

three basic patterns of disease.

1. Endemic disease. In much of the world, including most high-
income countries, meningococcal disease is endemic but rare, with
annual incidence of less than 5 per 100,000 and in many areas
less than 1 per 100,000 people. Cases are mainly sporadic, with
occasional small clusters of epidemiologically linked cases.

2. Hyper-endemic disease. Some countries, or particular regions
within countries, can experience prolonged periods of elevated
incidence of 5 to 20 per 100,000 people. Most accurately described
as hyper-endemic disease and often associated with the emergence
of a new meningococcal clone.

3. Epidemic disease. In certain regions of the world, particularly the
African meningitis belt, epidemics of meningococcal disease occur
periodically but irregularly [14]. The scale of these epidemics is
quite different to hyper-endemic disease; the epidemic threshold
defined by WHO is a weekly incidence of 10 per 100,000 (usually
at a district level) and over the course of an epidemic season,
cumulative incidence can be well in excess of 100 per 100,000.
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Age distribution

The burden of meningococcal disease is not equally distributed by age in
any setting. In high-income countries where disease is endemic, incidence
is usually highest in children aged less than 5 years, with infants under
1 year of age being at highest risk [15] (Figure 1.1). This correlates with
low natural immunity; Goldschneider et al first described the inverse
relationship between serum bactericidal antibodies (which increase
with age) and disease incidence (which generally decreases with age)
in seminal studies in the 1960s [16]. Often there is a smaller secondary
peak in disease incidence in teenagers and young adults, likely due to
increased exposure and transmission of meningococci in this age group
(Chapter 2). This secondary peak in incidence can be more pronounced
with particular strains, as seen with the emergence of capsular group C
ST-11 in Canada, the US, and Europe.
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Figure 1.1 Age and sex distribution of 3439 cases of notified invasive meningococcal
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and Control [15].
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Meningococcal disease is relatively rare in older adults. In hyper-
endemic settings, the youngest children are often similarly at highest risk
of disease. Between 1991 and 2003, New Zealand experienced hyper-
endemic incidence of disease due to group B/ST-41-44 clonal complex;
here incidence was 15 per 100,000 overall, but 124 and 60 per 100,000
in infants and 1- to 4-year-olds, respectively [17].

In the African meningitis belt disease tends to be more evenly dis-
tributed across age groups compared to high-income countries, whereby
individuals under 20 years of age experience a high incidence, but disease
is uncommon in adults over the age of 30 years. In Niger, the proportion
of cases in children under 5 years of age was higher in epidemic compared

to non-epidemic years [18].

Seasonality

In temperate countries, the incidence of meningococcal disease is highest
in the cold winter months. The most striking seasonality is observed in
the African meningitis belt where epidemics occur in the dry season
and end with the onset of the rains. Environmental and climatic factors,
including low humidity and high levels of dust from the Harmattan
winds, contribute to this pattern of disease [19], possibly by damaging

the mucosal surfaces, thus making invasion more likely [14].

Other risk factors

The incidence of meningococcal disease tends to be higher in males
than females. Socio-economic status is also important in high-income
countries, with a higher incidence being observed in the most deprived
populations [20]. Having contact with an infected person is a well-
established risk factor [21]. Individuals who are deficient in components
of the alternative and terminal complement pathways are highly pre-
disposed to invasive, often recurrent, meningococcal infections [22].
Patients with HIV infection have an increased risk of disease, with
a reported adjusted relative risk of 11 in a South African study [23].
Passive smoking (contact with the smoke of others) appears to be a risk

factor for disease [24,25]. Concomitant or recent influenza infection
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has also been shown to increase the risk of meningococcal disease in
some settings [26].

Capsular groups causing disease

The capsular groups causing IMD vary substantially by region and over
time (Figure 1.2). Recent epidemiology has been particularly influenced
by the use of effective protein-polysaccharide conjugate vaccines against
groups A, C, W, and Y (Chapter 7). The major trends by groups and region

are described below.

Sub-Saharan Africa

Different patterns of disease are seen across Africa where the geography
varies from desert to tropical rainforest. In Southern Africa there is a
paucity of surveillance data (except in South Africa where disease is
monitored by the national surveillance centre). Here disease is endemic,
with incidence generally less than 2 per 100,000, with groups B and W
predominating in recent years. The highest burden of meningococcal
disease anywhere in the world is experienced by countries in the Sahel
and sub-Sahel, in a region known as the African meningitis belt. First
described by Lapeyssonnie [27], the meningitis belt stretches from
Senegal in the West to Ethiopia in the East, populated by around 400
million people. The irregular but periodic nature of epidemics, of varying
magnitude, is illustrated by the time series from Chad (Figure 1.3).
Epidemic waves affecting many countries also occur; in 1996 there
were over 250,000 recorded cases and 25,000 deaths in the African
meningitis belt. Even outside of epidemics, the endemic incidence is
many times higher than that experienced in most other regions of the
world. Most epidemics in the African meningitis belt over the last 100
years have been due to group A, with some due to C, W, and more
recently X, but never group B or Y. The predominance of group A as a
cause of epidemic meningitis prompted the development of a group A
specific vaccine for Africa by the Meningitis Vaccine Project, with early
results demonstrating that the vaccine halts both transmission and

prevents invasive group A disease (Chapter 7). Due to this success,
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Figure 1.3 Periodic but irregular epidemics of meningitis in Chad, 1930 to 2012 [28].
Reproduced with permission from © Lancet Publishing Group.

overall meningitis incidence is much decreased and group W currently

predominates in the meningitis belt.

Middle East and North Africa

The burden of meningococcal disease in the Middle East and North
Africa is not well studied, but disease due to groups A, B, W, and Y has
been reported in recent years [29]. The Hajj pilgrimage in Saudi Arabia
has been a key driver for the global dissemination of hypervirulent
meningococcal strains, in particular capsular group W; less so now that

vaccination of pilgrims is compulsory.

Europe

Since at least the 1970s most meningococcal disease in Europe has
been due to capsular groups B and C. In 2012, 74% of IMD in Europe
was due to group B; effective group C conjugate vaccines have been
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used in many countries from 1999 onwards, reducing the burden of
disease due to these strains (Chapter 7). The pattern of disease is
primarily endemic, with confirmed overall incidence of 0.69 cases
per 100,000 in 2012, ranging from 1.76 (Lithuania) to 0.12 (Bulgaria)
per 100,000 per year. The trend of declining incidence continues in
many countries, despite the predominance of group B and the lack of
specific control measures. In England and Wales there were only 621
cases of confirmed group B disease in 2012/13 compared to 1210 a
decade earlier [30].

North America

In the US, the historical annual incidence of meningococcal disease
tended to fluctuate between 0.5 and 1.5 cases per 100,000 population.
However, following a peak in 1997, the incidence has fallen to histori-
cally low levels, with an incidence of 0.15 per 100,000 in 2012 [31]. The
declining incidence preceded the routine use in adolescents of quad-
rivalent meningococcal vaccines, the first of which was introduced in
2005, and declines were also noted for group B in the absence of any
immunization program. The incidence is highest in infants and there
is a peak in adolescents that has been attenuated in recent years. Most
disease in the US is caused by groups B, C, and Y, with a small percent-
age being caused by group W.

In Canada, the incidence is also highest in infants. With the wide-
spread use of group C conjugate vaccines, the incidence of group C
disease declined by 77% and was 0.03 cases per 100,000 during 2009
to 2012 [32]. Group B is by far the most common group, followed by
group Y and group C.

Latin America

The pattern of disease is endemic in Latin America, with occasional
hyper-endemic periods in particular areas. As in Europe and North
America, group A disease no longer occurs [33]. The very low incidence
rates reported by some countries, coupled with a high proportion of
meningitis without microbiological confirmation, suggests that the true
burden of disease is underestimated in this region. Groups B and C have
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dominated in recent decades, but more recently, increases in the incidence
of group W disease (mainly ST-11 clonal complex) have been observed in
several countries, including Argentina, Brazil, Chile, and Uruguay [34].
In 2011 and 2012 Chile experienced a large increase in the number of
cases of group W disease and a high reported case fatality of 25%, leading
to the implementation of a national immunization campaign in children
aged 9 months to 4 years with a quadrivalent conjugate vaccine [34].
The annual incidence of meningococcal disease in Mexico is reported to
be <0.1 per 100,000, with most isolates characterized during 2000 and
2005 being group C, followed by groups B and Y [33].

Australia and New Zealand

In Australia, meningococcal disease is endemic. Current annual incidence
is around 1 per 100,000, with most disease due to group B, following
the successful introduction of group C conjugate vaccines in 2003. In
New Zealand, the incidence of meningococcal disease is now much
lower than in the previous decade when the country experienced hyper-
endemic incidence due to the B:4:P1.7-2,4 strain. A tailor-made vaccine
was temporarily deployed from 2004 to 2008, which contributed to the
control of disease. In 2010 incidence was 2.4 cases per 100,000; typical

for a high-income endemic country.

Asia

There is in general a paucity of information from Asia, which may or
may not reflect the burden of disease and the relative priority afforded
to IMD. In India, although the burden of disease is not reliably known,
N. meningitidis is the third most common cause of sporadic bacterial
meningitis in children aged <5 years in laboratory confirmed cases.
Incidence is higher in temperate Northern versus tropical Southern India
and there have been a number of outbreaks due to group A disease in the
past decade [35]. Several other Asian countries have also experienced
localized disease outbreaks of group A or C (eg, Philippines in 2005).
China historically experienced group A epidemics until a national immu-

nization program using a group A polysaccharide vaccine in early 1980s;
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a national campaign with A+C polysaccharide took place in 2005 fol-
lowing the introduction of a hypervirulent ST-4281 group C clone [36].

Current issues

The epidemiology of meningococcal disease will continue to evolve over
the next few years, whether through natural cyclical fluctuations or due
to the expansion of meningococcal vaccination programs. Improved sur-
veillance is required in many parts of the world so that optimal preven-
tion strategies can be devised. A new vaccine designed to protect against
group B disease is now licensed (4CMenB) and it will be important to
determine its efficacy and public health impact in large scale population
based programs. Vaccine-type replacement was not a public health issue
for group C vaccination, but remains a potential threat to the success of
the monovalent group A conjugate and 4CMenB, so must be monitored
carefully (see Chapter 7).

Summary points

* The epidemiology of meningococcal disease is geographically
diverse and dynamic.

* Continued, and in many areas, improved surveillance is required to
monitor epidemiological trends, assess the global burden of disease

and evaluate the impact of immunization programs.
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Chapter 2

Carriage and transmission of
Neisseria meningitidis

Caroline L Trotter, Martin CJ Maiden

Introduction

Despite the fact that the meningococcus is a pathogen of global signifi-
cance, causing the severe syndromes of meningitis and septicemia, it
is a member of the normal microbiota of the nasopharynx of healthy
humans. Indeed, this is the natural habitat of Neisseria meningitidis, and
no other reservoir is known to exist for this bacterium. As the process of
causing disease does not contribute to person-to-person transmission of
meningococci, it is most usefully characterized as an ‘accidental pathogen’
of humans; host invasion is a dysfunctional event for both the microbe
and its host, from which neither gains any benefit [1] (Figure 2.1).
Although the significance of the carrier state has been long recognized,
it has become increasingly apparent that an understanding of carriage is
crucial to an understanding of meningococcal disease and its prevention.
Here we shall outline the important features of meningococcal carriage
and its study, and their implications for understanding disease.

Detecting the carrier state

The presence of meningococci in asymptomatic carriage has been appre-
ciated from the early 20 century, when early carriage and transmis-
sion studies were conducted in UK military populations [2]. In most of

© Springer International Publishing Switzerland 2016 15
I. Feavers et al. (eds.), Handbook of Meningococcal Disease Management,
DOI 10.1007/978-3-319-28119-3_2
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the studies conducted since that time, carriage has been detected by
conventional microbiological techniques, which remains the predomi-
nant method. Typically, a cotton-wool tipped (or similar) swab is used to
sample the back of the throat and the material is transferred directly or
indirectly on to a selective culture plate. There are various approaches to
this type of sampling and culture, with success depending on choosing
the appropriate location (uvula and/or tonsils), route of access (per-oral
preferred to per-nasal) and ensuring that the meningococci remain viable
until they are incubated for growth.

The density of growth in the nasopharynx can vary appreciably
and after incubation culture plates can exhibit anything from very few
colonies to confluent growth of putative Neisseria, which are identified

as Gram-negative, oxidase-positive diplococci. N. meningitidis has to be

Uninfected Uninfected

' ' Colonization Disease
Transmission ’ é @ @
Infection Invasion
Clearance
' Release ' Invasion '
Carriage Colonization Disease

Figure 2.1 The natural history of infection with Neisseria meningitidis in high-income
countries. Meningococcal carriage is common, at around 10% of the population, and capsulated
meningococci are released from colonized individuals in aerosols. These bacteria infect human
hosts and the great majority of these infections result in asymptomatic colonization. In adults
carriage is common and the development of disease is very rare, whilst in small children carriage is
rare but disease relatively more common. There is no onward transmission from invasive disease.
In most individuals carriage is cleared, presumably as a consequence of hostimmune responses.
Adapted from Trotter and Maiden [3].
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distinguished from related organisms, especially members of the genus
Moraxella and other Neisseria (studies prior to 1960 are of limited value
as they did not differentiate adequately between species). Biochemical
techniques have been used to do this for many years, and they can be
effective, although they are time-consuming and can lack resolution. In
particular, the detection and differentiation of Neisseria species relies on
a few biochemical characteristics that are not always reliable. Molecular
methods are increasingly used, although it has been necessary to develop
high-resolution methods for speciation: the small subunit 16S rRNA can
distinguish Neisseria from other genera, particularly Moraxella, but will
not discriminate species within the genus [4]. Other sequence-based
techniques such as multilocus sequence analysis (MLSA) and ribosomal
multilocus sequence typing (rMLST) are effective for speciation within
the genus, and the latter has been developed into a high-resolution rapid
single—single locus approach, the rplF assay [5-7]. Developments in very
high throughput ‘next generation’ sequencing (NGS) present the prospect
of the use of metagenomic techniques to monitor the frequency and density
of colonization of meningococci in the context of other organisms, but at
the time of writing the potential of these approaches has not been realized.

Most carriage studies are cross-sectional, designed to measure the
prevalence of carriage and provide a snapshot of the population. The
prevalence of carriage is determined by the acquisition rate and the
duration of carriage, which can only be determined empirically through
longitudinal studies that follow-up individuals over time. Although
less well described, the acquisition rate is important because disease is
thought to occur soon after acquisition.

The natural history of meningococcal carriage

Exposure to meningococci through respiratory droplets can result in
acquisition of carriage. For colonization to occur the bacteria must adhere
to the mucosal surface, exploit locally available nutrients (including
iron), and evade the human immune system. There are several impor-
tant structures and molecules that facilitate colonization; pili facilitate
initial attachment to the epithelial cell surfaces and opacity-associated
proteins allow a more intimate engagement [8]. Phase and antigenic
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variation of a number of surface components permits immune evasion
during infection [8].

A period of carriage may be transient or last for many months. The
duration of carriage is not well established as few longitudinal studies
of carriage have been performed. Studies in Europe have suggested
periods of nine or more months, whereas a study in Africa estimated a
much shorter duration of three months [9].

Antibiotic chemoprophylaxis may be used to eliminate carriage from
an individual and is an appropriate public health response for close con-
tacts of a case or during an outbreak (Chapter 6). Asymptomatic carriage
will otherwise resolve naturally. It is likely that carriage is an immunizing
event, although the immune responses elicited by carriage, particularly
in the mucosa, are not well characterized [10].

Given the extent of horizontal gene transfer observed in meningococci,
it is likely that carriage of multiple meningococcal strains is relatively
frequent. However, most culture-based studies have not been designed to
be able to measure this, as they tend to pick a single colony, or at most very
few, for characterization. As culturing many isolates from single throat
swabs by conventional microbiology is very time-consuming, appropri-
ately designed carriage studies using molecular techniques, especially

metagenomic approaches, provide novel means of addressing this issue.

Epidemiology of carriage

Meningococcal carriage appears to be universal among human popula-
tions with carriage prevalence varying from a few percent to a substantial
proportion of the population under study, according to time, place, host,
and bacterial factors [11]. Unfortunately, there is no reliable relationship
between carriage prevalence and disease incidence, and carriage studies
remain uninformative in predicting disease risk.

The meningococcus is a highly diverse organism. This diversity
includes surface antigens, which is perhaps to be expected in an organ-
ism that lives in close association with the human immune system, but
diversity is also evident genome wide, including in ‘housekeeping’ genes,
which are apparently not exposed to host immune responses [12]. Studies
of meningococci isolated from asymptomatic carriage and disease have
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demonstrated that not all variants are equally likely to cause invasive
disease [13]. Typically the meningococci isolated from carriage are
more diverse than collections obtained from disease. Disease isolates
are likely to belong to one of a few particular genetic types referred to
as ‘hyper-invasive lineages’. It is important to emphasize that the spread
of even the hyper-invasive meningococci is by asymptomatic carriage:
while all meningococci have to be efficient at asymptomatic carriage and
transmission, only a small subset of meningococci exhibit a propensity
to cause disease [1].

Meningococcal carriage is highly age dependent. The great majority
of studies have been conducted in industrialized societies, and in such
settings meningococcal carriage is usually very rare in infancy and increases
with age, carriage prevalence reaching a peak during the teenage years
(Figure 2.2) [14]. This has been shown to be largely due to social behavior
with carriage rates, and by extension transmission, increased by factors such
as smoking, pub and club attendance, and kissing [15]. Studies in Africa
have shown a less consistent age distribution, carriage prevalence being
generally highest in younger children aged 5 to 14 years [16].

Seminal studies suggest that the peak in meningococcal disease
incidence in infants, where carriage is rare, is due to poor immunity
following the waning of maternal antibodies [17], whilst the second
peak in disease incidence in young adults, which is characteristic of the
meningococcus, is probably attributable to increased exposure of individuals
to virulent meningococci that they have not experienced earlier in life.
The conundrum that individuals acquire immunity whilst apparently not
carrying meningococcus is yet to be resolved, but the carriage of closely
related members of the genus Neisseria may be involved.

Meningococcal carriage prevalence is generally higher in males than
females and particularly high rates of carriage have been observed in
closed or partially closed communities, such as military training estab-
lishments and university halls of residence. This is most likely due to
intense mixing of people from different geographical locations carrying
a diversity of strains [18,19]. The annual Hajj pilgrimage has provided
opportunities for the regional and global spread of meningococci [20].
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Figure 2.2 Estimates of meningococcal carriage by age in high-income countries. Swabs were
plated immediately after collection, from a systematic review and meta-analysis [14]. Circles are the
data-points included, with the larger circles representing a larger sample size. The largest circles
represent the results of the serial cross-sectional studies in teenagers aged 15 to 19 years in the

UK, before and after the introduction of the meningococcal capsular group C vaccine. Shaded area
represents 95% bias-corrected confidence intervals. Reproduced with permission from © Elsevier.

Other Neisseria species

With the exception of Neisseria gonorrhoeae, other members of the genus
have not been studied as extensively as the meningococcus, as they do
not cause disease frequently. Neisseria lactamica has attracted most
interest as it is closely related to the meningococcus and shares the same
ecological niche. The age distribution of N. lactamica is very different
from that of the meningococcus, with carriage in children more common
than carriage in adults. Following birth, children commonly acquire
N. lactamica and carriage persists for months and perhaps years [21]. It
has been proposed that carriage of this organism leads to immunity to
the meningococcus, but this has not been definitively established [22].
However, recent genomic studies have shown that at least two other
Neisseria species, N. polysaccharea and N. bergeri [23], are more closely
related to the meningococcus than N. lactamica and these species may
be important in the development of immunity. The study of these organ-
isms remains limited at the time of writing, but their interactions with
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the human host may also be important in childhood when neither the
meningococcus nor N. lactamica are routinely isolated from carriage or

in settings other than high-income countries.

Effect of vaccination on carriage

Carriage studies have assumed more importance with the realization
that herd immunity (or ‘herd protection’) acting on carriage is an impor-
tant element in the success of meningococcal protein-polysaccharide
conjugate vaccines (Chapter 7). Large-scale studies of meningococcal
carriage following the introduction of capsular group C conjugate vac-
cines in the UK showed a marked drop in the prevalence of carriage of
group C meningococci within a year, a trend that continued over sub-
sequent years [24]. Incidence of disease declined in the unimmunized,
also an indication of herd protection. As protective responses declined
in those immunized under 1 year of age, herd protection was a major
reason for the success of these vaccines, with the outbreak strain (the
hyper-invasive ST-11 complex group C meningococcus) particularly
affected by the vaccination program [10].

These observations have been highly influential in the implementa-
tion of these vaccines in other countries, the modification of the immu-
nization schedule in the UK, and the implementation of the group A
protein-polysaccharide conjugate vaccine (PsA-TT) in the African men-
ingitis belt. Evidence gathered following mass vaccination campaigns
suggests that PsA-TT can also successfully protect against carriage and
generate herd protection [25]. Most evidence suggests that plain polysac-
charide vaccines do not affect carriage and interrupt transmission [26].
The effect of outer membrane vesicle (OMV) and other noncapsular
vaccines on carriage is less clear but they are certainly not as effective
as conjugate vaccines [27].

Summary points

* Anunderstanding of carriage is central to understanding the
population and transmission dynamics of meningococci.

 Itis now appreciated that the spectacular effects of the bacterial
conjugate vaccines are due to the herd protection that they
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confer through their effect against asymptomatic carriage, which
reduces transmission.

Carriage studies have been very important in understanding the
virulence of the hyper-invasive lineages and will play a central
role if we are to understand the reasons for the high levels of
variability in invasiveness of these organisms and design effective

interventions against them.
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Chapter 3

Pathogenesis of invasive disease
Reidun @vstebg, Bernt Christian Hellerud, Mathieu Coureuil,
Xavier Nassif, Petter Brandtzaeg

Introduction

Before 1905 (the year treatment with antimeningococcal serum started)
the case fatality rate (CFR) of invasive meningococcal disease (IMD) was
70 to 90% [1]. Patients with severe sepsis or septic shock died rapidly,
usually within 24 hours. Patients with meningitis and other clinical
manifestations could live as long as 6 to 8 weeks before succumbing [1].
Since Neisseria meningitidis did not produce any recognizable exotoxin it
was hypothesized that endotoxin, a yet undefined chemical component of
Gram-negative bacteria, played an important role in the pathogenesis of
this disease. Research conducted during the last 30 years has confirmed
the crucial role of lipopolysaccharide (LPS, endotoxin) in meningococcal
disease and also documented the role of non-LPS components as proin-
flammatory molecules [2].

Transmission, adaptation, and penetration to the
circulation

N. meningitidis (Figure 3.1) is transmitted by droplets or exchange of
saliva. Infection starts within 10 days, usually 2 to 4 days after a non-
immune person has been exposed to an asymptomatic carrier or an
untreated patient. Before the symptoms develop, the transmitted viru-
lent meningococci adapt locally on specific nonciliated epithelial cells

© Springer International Publishing Switzerland 2016 25
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Figure 3.1 Cross-sectional view of the meningococcal cell nembrane. Adapted from
Rosenstein et al [7].

in the nasopharynx and tonsils (Figure 3.2) [2,3]. Bacteria evade the
immune system partly via phase and antigenic variation, altering LPS
and certain outer membrane proteins and down-regulating pili, before
passing through the mucosal barrier and penetrating into the submucosal
layer [3-5]. Subsequently they enter the circulation, most likely in the
upper respiratory tract. When reaching the circulation it is assumed that
they once more undergo phase variation of surface structures, thereby
decreasing immune recognition through molecular mimicry [4-6]. This
is accomplished by:
* up-regulating type IV pili;
e altering the terminal part of the LPS side chain to express the L3, 7, 9
epitopes; and
* adding sialic acid to LPS.
These changes result in an increased resistance to antibodies and
complement. The capsule polysaccharides consist of long sugar fila-
ments that protect meningococci from the antibacterial effect of human
blood, mainly by down-regulating phagocytosis. Survival and growth
in the blood are required for meningococci to develop into a systemic
infection. N. meningitidis has the propensity to invade the meninges
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and can be detected in both blood and/or the cerebrospinal fluid (CSF)
during clinical disease (Figure 3.2 and Table 3.1) [6].

Neisseria meningitidis and intravascular survival
The combination of bactericidal antibodies and an intact complement

system protects individuals from virulent meningococci [3,7,10-12]. When

protective antibodies are absent the bacterial growth rate in the circulation
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Survival in the bloodstream
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Blood

Factors affecting intravascular survival
« Capsule: protects against complement-mediated
bacteriolysis and phagocytosis
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Endotoxin and other
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Figure 3.2 How Neisseria meningitidis colonizes the pharynx and enters into the
bloodstream and cerebrospinal fluid. Reproduced with permission from © Massachusetts
Medical Society [7].
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varies from patient to patient infected with seemingly identical strains. This
can be observed during clonal outbreaks of N. meningitidis. The reasons for
this variation are not well understood but genetic variations in the innate
immune system (including polymorphisms of complement factor-H-like
protein, plasminogen activator inhibitor 1, and interleukin [IL]-18) may
play a role [3,6,13,14].

It has been known since the 1960s that patients presenting with clini-
cal signs of meningitis without shock have a much better prognosis than
patients with shock alone or shock and meningitis [6,8,15]. Subsequent
studies have confirmed these observations [2]. In the 1980s a classifica-
tion system for research on meningococcal disease was developed based
on the presence or absence of the two critical clinical manifestations
(meningitis and shock) [2,6,8,15]. This classification enabled patients
to be divided into four clinical presentation groups to aid studies of
pathogenesis (Table 3.2) [2,6,8,15]:

1. meningitis without shock;

2. shock without meningitis;

3. shock and meningitis; and

4. no shock and no meningitis (mild meningococcemia).

The underlying pathophysiology reflects compartmentalization of the
bacterial growth to primarily the circulation in those developing shock, or
to the subarachnoid space and meninges in those with marked symptoms
of meningitis. The difference in magnitude of bacterial growth between

Blood culture  CSF culture Plasma PlasmaLPS
(% positive) (% positive) Nm(DNA)/mL  (EU/mL)
Meningitis 50.0 84.0 <10® <0.5
Shock 93.0 59.0 2x107 43.0
Shock + meningitis 87.0 83.0 10° 9.4
Mild systemic 77.0 47.0 7.7x10° <0.5

meningococcal disease

Table 3.1 Pathophysiological characteristics of clinical presentations. Blood and
cerebrospinal fluid cultures are collected before antibiotic treatment is started. LPS (EU/mL)
denotes the median biological activity given as endotoxin units and determined by the
chromogenic limulus amebocyte lysate (LAL) assay [8,9]. Nm(DNA) denotes the median number
of N. meningitidis DNA and equals the number of live and dead bacteria as determined by real-
time polymerase chain reaction (PCR) [9]. CSF, cerebrospinal fluid; EU, endotoxin units; LPS,
lipopolysaccharide. Adapted from Brandtzaeg [6] and Ovstebo et al [9].
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these two compartments could be 1000- to 100,000-fold in the same
patient [2,3,6,8,15].

Meningococcemia: a disease of the endothelial cells
As revealed by post mortem examination and histological observa-
tion, a specific feature of meningococcal infection is the ability of the
bacteria to interact with the endothelium of small blood vessels. This
interaction leads to the formation of microcolonies throughout the
capillaries [16]. This phenomenon is very unusual during sepsis due to
Gram-negative bacteria. Indeed, N. meningitidis has been documented
to consistently adhere to endothelial cells in vivo [3,16]. It suggests that
this interaction is responsible for the specific clinical characteristics of
meningococcal infection, ie, the ability to cross the blood-brain barrier
(BBB) to cause meningitis. Furthermore, the interaction of meningo-
cocci with endothelial cells induces the thrombotic/leakage syndrome,
which in mild form is responsible for purpuric lesions, and in extensive
forms for purpura fulminans, thereby characterizing the disease clini-
cally (see Chapter 5).

In vivo N. meningitidis is encapsulated and, using a humanized mouse
model, it has recently been shown that type IV pili are responsible for
meningococcal interaction with microvessel endothelial cells [17-20].
Type IV pili are polymeric filaments found on many Gram-negative
bacteria [21], the major pilin (PilE) is assembled into fibers from a platform
in the inner-membrane [22]. Three other minor pilins are localized into
the fiber (ComP, PilX, and PilV) [23-26]. Recent data obtained in vitro

Presenting group Definition

Meningitis >100x10° leucocytes per liter cerebrospinal fluid.

Shock Persistent hypoperfusion requiring fluid therapy and
treatment with vasoactive drugs for at least 24 hours or
until death.

Shock and meningitis Shock as defined above combined with >100x10°

leucocytes per liter cerebrospinal fluid.
No shock and no meningitis (mild Absence of shock and meningitis as defined above.
meningococcemia)

Table 3.2 Definitions used in the studies of meningococcal pathophysiology. Adapted from
Brandtzaeg et al [8].
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have demonstrated that pilus-mediated adhesion is a consequence of the
interaction of both the major pilin (PilE) and the minor pilin (PilV) with
the endothelial cell receptor CD147. This initial interaction is a prereq-
uisite to the formation of large bacterial colonies on the apical surface of
endothelial cells. As the colonies grow meningococci induce a host—cell
surface reorganization, leading to the formation of filopodia-like struc-
tures that allow the bacteria to hide and resist shear stress. The signalling
induced by the type IV pili is due to activation of the f3,-adrenergic/f-
arrestins pathway [27,28]. PilE and PilV interact with the N-terminal
domain of the B,-adrenergic receptor, in turn activating the ,-arrestin
pathway. The B,-arrestin pathway is responsible for the activation of Src
tyrosine kinase, Rho GTPases (such as RhoA, Racl, and Cdc42), actin
polymerization, and leads to the accumulation of ERM proteins (Ezrin,
Radixin, and Moesin family of proteins) and ERM binding receptors
(such as ICAM-1, VCAM-1, or E-selectin) [29-31]. Since these receptors
are required for optimal leucocyte adhesion to endothelial cells it was
suggested that N. meningitidis inhibits leucocyte adhesion during infec-
tion [30,32]. In addition, Cdc42 allows the recruitment of Par3/Par6/
PKCz, which leads to the accumulation of adhesins and tight junction pro-
teins (such as VE-cadherin, ZO-1, and claudin 5) [29]. As a consequence,
proteins are depleted at the intercellular junctions, thus opening the
paracellular route that allows dissemination of N. meningitidis through
the endothelium (Figure 3.3). This opening of the paracellular route is
believed to be responsible for the crossing of the BBB and subsequent
meningeal invasion.

Another consequence of meningococcal interaction with microvessels
is the formation of thrombi. The use of the humanized animal models has
clearly shown that type IV pilus-mediated interaction with endothelial
cells was a prerequisite for the formation of thrombi. Despite this model,
the mechanisms following this interaction that lead to an increase of the
procoagulant activity remain unexplained.

The reason why some patients develop a fulminant meningococcemia
while others develop meningitis may be directly linked to the level of
bacteremia. During high-grade bacteremia (up to 108 bacteria per mL)
colonization of the peripheral microvasculature occurs throughout the
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body, where bacteria interacting with endothelial cells induce extensive
thrombosis and subsequent organ failure. By contrast, when the bactere-
mia remains low-grade (from <10° to 10* bacteria per mL), the menin-
gococci will only sparsely interact with the peripheral microvasculature
and be responsible for localized petechiae. In the latter case bacteria have

time to colonize brain vessels, cross the BBB, and invade the meninges.

Pathophysiological characteristics of clinical
presentations of meningococcal disease

Clinical meningitis without shock

The pathophysiology is characterized by a comparatively low grade bacterial
proliferation in the blood (median <10%/mL), a transition to the meninges
and subarachnoid space (which may take hours), followed by a more rapid
proliferation in the CSF (reaching levels as high as 10°%/mL). The median
time between the onset of the disease and hospital admission (onset-admis-
sion time) varied between 23 and 29 hours, in five European studies, and
the CFR was up to 1% [2,34]. Fatality is related to brain edema, herniation,
and arrest of the brain circulation. Petechiae, indicating meningococcemia,
are common (occurring in 50-60% of cases) but large ecchymoses are
uncommon [3,34,35]. Approximately half of patients have positive blood
cultures on hospital admission if no prehospital antibiotic treatment was
given (Table 3.1) [6,34]. Thus, the bacteremia appears to be transient and
not present on admission in half of these patients. In those with bactere-
mia, the bacterial load is moderate, with a median of <10® N. meningitidis
DNA copies (= number of meningococci)/mL of plasma (when measured
using real-time PCR) [35]. The median LPS (endotoxin) level in plasma is
low (<0.5 endotoxin units [EU]/mL) [9]. The levels of cardinal cytokines
(tumor necrosis factor [TNF], IL-1B, IL-6, and IL-10), key chemokines (IL-8,
MCP-1, and MIP-1a), as well as markers of complement and coagulation
activation are low in plasma [2,3,6,15].

The levels of bacteria, LPS, and key inflammatory mediators in the CSF
are several 100- to 10,000-fold higher [2,3,6,9,15]. This reflects a compart-
mentalization of the growth of meningococci primarily to the meninges
and subarachnoid space. In meningitis bacteria proliferate in the CSF and
up-regulate vascular and neutrophil adhesion molecules, facilitating the
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influx of neutrophils into the subarachnoid space, causing inflammation
and the clinical features and biochemical evidence of meningitis [35].
Appropriate antibiotic treatment stops intra- and extracranial bacterial
growth and down-regulates the intracranial inflammation and pressure.
If the intracranial pressure is not too high, the CFR is low in high-income
countries [2,36,37]. The long-term sequelae include educational diffi-
culties, deafness, seizures, diffuse brain damage, altered behavior and
sleep pattern, and concentration difficulties [37].

Shock without clinical meningitis

This clinical presentation is characterized by a rapid proliferation of the
meningococci in the circulation, leading to a harmful initiation of the
innate immune system. Few meningococci penetrate through the BBB to
cause symptoms of meningitis, although 50 to 60% of cases may reveal
a slight pleocytosis and a positive CSF culture (Table 3.1) [13]. Patients
usually develop alarming symptoms and are often hospitalized at an
early stage. Several studies reported a median onset-admission time, for
patients with shock only, of 12 hours and a CFR of 16 to 52% [2,6,16,35].
Shock without meningitis paradoxically has a higher CFR than shock
combined with meningitis [2,34]. This appears to be caused by a more
extreme proliferation of meningococci in the circulation, leading to higher
levels of LPS in patients with shock alone as compared with patients with
shock and meningitis [2,6,36]. During rapid growth in the vasculature
meningococci appear to seed the lungs, liver, spleen, heart, muscles,
and adrenals, inducing a high grade and destructive activation of the
innate immune system in these organs [38]. On hospital admission the
circulation is often hyperdynamic with low peripheral vascular resist-
ance, although infants and children may initially have an increased
vascular resistance [6,15]. The vascular response is complex and related
to the myriad effects of LPS and other cell wall components, including
generation of nitric oxide (NO) in the endothelium and the extreme
activation of the complement system, generating the anaphylatoxins
C3a, C4a, and Cb5a [2,3,6,15]. The capillary leakage increases with a
massive transcapillary flux of albumin across the endothelial barrier
— owing to a