

Agile and Lean Program
Management
Scaling Collaboration Across the
Organization

Johanna Rothman

No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and
retrieval system, without written permission from the author.

Every precaution was taken in the preparation of this book.
However, the author and publisher assumes no responsibility for
errors or omissions, or for damages that may result from the use of
information contained in this book.

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book, and Practical Ink was aware of a
trademark claim, the designations have been printed in initial

capital letters or in all capitals.

© 2016 Johanna Rothman

Tweet This Book!
Please help Johanna Rothman by spreading the word about this
book on Twitter!

The suggested hashtag for this book is #agileprogrammanagement.

Find out what other people are saying about the book by clicking
on this link to search for this hashtag on Twitter:

https://twitter.com/search?q=#agileprogrammanagement

http://twitter.com
https://twitter.com/search?q=%23agileprogrammanagement
https://twitter.com/search?q=%23agileprogrammanagement

For my family. Thank you for your support.

Contents

Praise Quotes . i

Acknowledgments . iv

Foreword . v

Introduction . vii

1. Defining Agile and Lean Program Management . . . 1
1.1 Review the Twelve Principles of Agile Software

Development . 3
1.2 Review the Seven Lean Principles 4
1.3 Agile and Lean Together Create Adaptive Programs 4
1.4 A Program Is a Strategic Collection of Several

Projects . 5
1.5 Program Management Facilitates the Program to

Release . 6
1.6 Program Management Coordinates the Business

Value . 6
1.7 Agile Program Management Scales Collaboration 7
1.8 Agile and Lean Effect Change at the Program Level 9
1.9 What Program Managers Do 9
1.10 Take a Product Perspective 10
1.11 Principles of Agile and Lean Program Management 11

2. Consider Your Program Context 12

CONTENTS

2.1 Cynefin Helps with Decisions 12
2.2 Understand Your Product’s Complexity 16
2.3 Know Which Program Teams You Need 18
2.4 The Core Team Provides Business Leadership and

Value . 23
2.5 Do You Need a Core Team? 24
2.6 Principles of Consider Your Program Context . . . 25

3. Organize Your Program Teams 26
3.1 Create Your Core Team 26
3.2 Beware of Forgetting Core Team Members 28
3.3 The Product Owner Role Is Key to the Program’s

Success . 29
3.4 Organize the Software Program Team 31
3.5 Don’t Manage More than One Program Team

Yourself . 33
3.6 Principles of Organizing Your Program Teams . . 34

4. Start Your Program Right 35
4.1 A Program Charter Sets the Strategy 35
4.2 Develop the Program Charter with the Core Team 36
4.3 We Can’t Afford the Travel 37
4.4 Lead the Program Chartering Effort 38
4.5 Create Your Own Program Charter Template . . . 39
4.6 Iterate on the Program Charter and Plans 45
4.7 Create the Agile Roadmap 46
4.8 Create the Big Picture Roadmap 48
4.9 Principles of Start Your Program Right 50

5. Use Continuous Planning 52
5.1 Differentiate Between Internal and External Re-

leases . 52
5.2 What Do You Want to Release This Month? . . . 53
5.3 Create Minimum Releasables 54
5.4 Plan for External Releases 56

CONTENTS

5.5 Deliverable and Rolling Wave Planning Helps . . 57
5.6 Small is Beautiful for Programs 58
5.7 How Often Can You Replan? 59
5.8 Separate the Product Roadmap from the Project

Portfolio . 61
5.9 Ways to Rank Items in the Roadmap or Backlogs . 62
5.10 Decide How You Will Evaluate Value 67
5.11 Update the Roadmaps Often 68
5.12 Principles of Continuous Planning 68

6. Create an Environment of Delivery 70
6.1 Visualize Program Team Work 70
6.2 Keep the Program Team Work Small 72
6.3 How Features Flow Through Teams 73
6.4 How Often Can You Release Your Product? 74
6.5 Release Internally, Even with Hardware 75
6.6 Are You Integrating Chunks or Products From

Others? . 77
6.7 Manage the Risks of Integration from Other Vendors 78
6.8 Create a Culture of Delivery Throughout the Pro-

gram . 80
6.9 Principles of Create an Environment of Delivery . 80

7. Encourage Autonomy, Collaboration, and Exploration 81
7.1 Software is Learning, Not Construction 81
7.2 Scaling Agile Means Scaling Collaborative Practices 82
7.3 Create Autonomous Feature Teams 84
7.4 Create Small-World Networks to Optimize Learning 85
7.5 Communities of Practice Create Connection and

Collaboration . 87
7.6 Avoid Hierarchical Titles 88
7.7 Continuous Integration and Testing Supports Col-

laboration . 90
7.8 Beware of Technical Debt 92
7.9 Invite People to Experiment 93

CONTENTS

7.10 Principles of Encourage Autonomy, Collabora-
tion, and Exploration 93

8. Conduct Useful Meetings for Your Program 95
8.1 Explaining Status: Do Not Use Standups at the

Program Level 96
8.2 Define a Rhythm for Your Program Team 97
8.3 Organize Your Program Team Meetings 101
8.4 Program Team Meetings Solve Problems 103
8.5 Retrospect at the Program Team Level 106
8.6 Principles for Conduct Useful Meetings for Your

Program . 107

9. Estimating Program Schedule or Cost 108
9.1 Does Your Organization Want Resilience or Pre-

diction? . 109
9.2 Ask These Questions Before Estimating 110
9.3 Targets Beat Estimates 111
9.4 Generate an Estimate with a Percentage Confidence 111
9.5 Present Your Estimate as a Prediction 115
9.6 Spiral in on an Estimate 116
9.7 Supply a Three-Date Estimate 117
9.8 Do You Really Need an Estimate? 118
9.9 Beware of These Program Estimation Traps 118
9.10 Estimation Do’s and Don’ts for Program Managers 120
9.11 Principles of Estimating Schedule or Cost 122

10. Useful Measurements in an Agile and Lean Program 123
10.1 What Measurements Will Mean Something to

Your Program? 124
10.2 Never Use Team-BasedMeasurements for a Program 124
10.3 Measure by Features, Not by Teams 126
10.4 Measure Completed Features 128
10.5 Measure the Product Backlog Burnup 129
10.6 Measure the Time to Your Releasable Deliverable 132

CONTENTS

10.7 Measure Release Frequency 132
10.8 Measure Build Time 133
10.9 Other Potential Measurements 133
10.10 Measure Performance or Reliability Release Criteria 136
10.11 How toAnswer the “WhenWill You BeDone/How

Much Will Your Program Cost” Question 137
10.12 Principles . 139

11. Develop Your Servant Leadership 140
11.1 Program Managers No Longer “Drive” the Program 140
11.2 Consider Your Servant Leadership 141
11.3 How Servant Leaders Work 142
11.4 Some People Don’t Want Servant Leadership . . . 143
11.5 Welcome Bad News 145
11.6 Use the Growth Mindset 148
11.7 Ask For the Results You Want 148
11.8 Principles of Develop Your Servant Leadership: . . 150

12. Shepherd the Agile Architecture 151
12.1 Architects Write Code 152
12.2 Many Developers Become Architects 155
12.3 Encourage Iterative and Incremental Architecture 155
12.4 Architects Can Help Expose Risks 157
12.5 What the Program Architect Accomplishes Daily 158
12.6 Architecture is a Social Activity 160
12.7 Problems You May Encounter With Architecture . 161
12.8 Break the Architecture with Purpose 163
12.9 Principles of Shepherd the Agile Architecture . . . 164

13. Solve Program Problems 166
13.1 Ask For the Problems or Impediments First 166
13.2 People on the Core Team Don’t Deliver What

They Promise . 168
13.3 Your Product Owners Have Feature-itis 168
13.4 People on Teams Are Multitasking 170

CONTENTS

13.5 How to Start a Program With More People Than
You Need . 171

13.6 Principles of Solve Program Problems 173

14. Integrating Hardware Into Your Program 175
14.1 Hardware Risks Are Different Than Software Risks 175
14.2 Understand Cost and Value for Hardware 176
14.3 Understand Each Part’s Value 178
14.4 See the Work . 180
14.5 Design Incrementally and Iteratively 183
14.6 Use Continuous Design Review 183
14.7 Integrate Hardware Often 184
14.8 Manage Hardware Risks 185
14.9 Develop the Software Before the Hardware Is

Available . 186
14.10 Principles of Integrating Hardware Into Your Pro-

gram . 189

15. Troubleshooting Agile Team Issues 190
15.1 The Teams Are Not Feature Teams 190
15.2 Teams Think They Are Agile, But They Are Not . 194
15.3 The Teams Have Dependencies on Other Teams . 200
15.4 Your Features Span Several Iterations 203
15.5 You Don’t Have Frequent-Enough Deliverables . . 203
15.6 Teams Don’t Finish When They Say They Are Done 204
15.7 Principles of Troubleshooting Agile Team Issues . 206

16. Integrating Agile and Not-Agile Teams in Your Pro-
gram . 207
16.1 Waterfall Teams Are Part of Your Program 208
16.2 You Have Teams that Produce Incrementally, But

Not in an Agile Way 210
16.3 You Have Teams that Prototype and Don’t Com-

plete Features . 210

CONTENTS

16.4 Principles of IntegratingAgile andNot-Agile Teams
in Your Program 211

17. What to Do If Agile and Lean Are Not Right for You 212
17.1 Try an Incremental Life Cycle 213
17.2 Organize by Feature Team 216
17.3 Learn to Release Interim Deliverables 217
17.4 Learn How to Reduce Batch Size With a Large

Program . 217
17.5 Try Release Trains 218
17.6 Principles for What to Do if Agile and Lean Are

Not Right for You 221

Annotated Bibliography 223

Glossary . 228

More from Johanna . 231

Praise Quotes
What Readers Are Saying About

Agile and Lean Program Management: Scaling Collaboration
Across the Organization

“This is the book for everyone who is considering how to “scale”
their lean/agile processes to work in large programs. Johanna
provides straightforward and practical advice on how to go from
single project/simple product agile implementation to large, com-
plex programs while retaining the core of agility and lean thinking.
She takes us back to the fundamental principles of agile and lean
and shows how to use those principles as a foundation for true
organisational agility, building products that need multiple teams
with different interdependent streams of work while retaining the
adaptability and responsiveness that is at the core of lean and agile
thinking.”

—Shane Hastie, Chief Knowledge Engineer & Agile Practice Lead,
Software Education

“Johanna Rothman’s new book is the definitive guide to programme
management in the agile and lean world. I found it invaluable in
crystallising in my mind how to marry agile and lean principles to
programme management. It’s a book that you will turn to when
somebody asks you a tricky question that you know will be better
articulated by Johanna.”

—Owain Griffiths, Principal Consultant, ThoughtWorks

“In Agile and Lean Program Management, Johanna does a won-
derful job of blending tried and true concepts for modern software
program delivery with newer models and ideas. And, as always,

i

Praise Quotes ii

she does a great job providing practical, pragmatic approaches to
using the ideas she provides. A must-read for anyone who is either
responsible for or impacted by the planning or delivery of multi-
team software initiatives.”

—Matt Barcomb, Directing Principal, Tidal River Consulting

“Johanna has created an excellent guide to managing large (aka
enterprise) projects. By taking the large, often unwieldy, concepts
and placing them in an experienced agile/lean context, she makes
the information accessible and provides the roadmap you need to
keep your organization on track and effective.”

—Jared Richardson, Principal Consultant, Agile Artisans

“How do you scale Agile software practices (best suited for single
teams of 5-10 developers) to larger programmes spanning multiple
disciplines and multiple teams? This is the most useful description
I have seen: Johanna shows how you can apply the principles of
Lean and Agile software development with actionable, pragmatic
techniques to deliver the value your customers desire.”

—Ian Brockbank, Agile Architect and Program Manager, Cirrus
Logic, and blogger at www.badgertaming.net

“Agile and Lean Program Management provides the practical and
principled advice to make your large product efforts a success.
Johanna wisely avoids the confusion and misdirection of con-
temporary conversations around “scaling agile.” She also avoids
hierarchies, strict role definitions, and building a giant process
machine. This allowsAgile and Lean ProgramManagement to focus
on what’s really important for any large product effort: effective
communication, clear expectations, customer focus, collaboration,
and acting from principles. Johanna strikes an excellent balance
between the practical and the theoretical here—and achieves a
conversational tone even when diving into the latter. This book
feels like sitting down with a trusted colleague to chat and get some
guidance on ideas, patterns, and solutions.”

Praise Quotes iii

—Gary Pedretti, Agile Trainer and Owner, Sodoto Solutions

“Agile and Lean Program Management is a must-read for project
and program managers. Johanna weaves together deep personal
insights, pragmatic advice, and personal tips on how to influence
and motivate others towards agile program success. Concepts are
presented in a crisp, easy-to-read style that leaves you thinking
‘Of course! That is such a clear, simple approach!’ This is a book
which will surprise and inspire. And you will want to refer back to
it frequently as your agile program evolves.”

—Declan Whelan, Agile Coach, Leanintuit

“Read this book then gift it to your boss. Their boss will thank
you. Agile isn’t just about better programming, or better stand-
ups. There’s a whole lotta important stuff that goes on upfront,
before projects start executing, and it’s invisible to most people.
This beautifully written book shows how to do that work in an agile
way.”

—Clarke Ching, Author of Rolling Rocks Downhill, The Agile Busi-
ness Novel (that never mentions Agile)

“The real world presents uncomfortable challenges: non-agile teams
must be included in agile programs, features will have dependencies
across many teams and systems, people (even good people) will
fail to meet commitments, etc. This book provides a unique blend
of thought-provoking anecdotes and successful patterns for scaling
collaboration. This is a great read for programmanagers and leaders
in large organizations.”

—Catherine Swetel, Principal Consultant

Acknowledgments
I thank my Managing Product Development blog readers. Your
comments made my ideas better. I thank these people who read
and reviewed the book and provided me feedback: Matt Barcomb,
Arlo Belshee, Ian Brockbank, Clarke Ching, George Dinwiddie,
Paul Ellarby, Lior Friedman, Owain Griffiths, Matt Heusser, Gary
Pedretti, Catherine Swetel, Michael Vizdos, Rebecca Wirfs-Brock.

I thankmy editors, Rebecca Airmet and Nancy Groth. I thank Karen
Billipp for the layout and Jean Jesensky for indexing the print book.

Cover art: © Csuzda | Dreamstime.com - Team Growth Photo

Cover: Lucky Bat Books.

iv

http://www.jrothman.com/blog/mpd

Foreword
I wish this book had been published the last time I ran a major
project; it is a pragmatic and action based, but in a way that is also
consistent with theory—something that is all too rare. The Agile
community, as a whole, is riddled with rigid methods imposed
with religious zeal to support training and certification programs.
In contrast this book understands that scaling Agile is about the
assembly of different tools, methods, and practices to achieve a
result within a specific context. It has a whole section on what to
do when Agile is not a cultural match for the organization. While it
is predicated on servant leadership, it recognizes that this does not
“mean you are a pushover.” Sometimes you have to remove team
members.

The early chapters do not mandate a process, and there are few
of the engineering-type diagrams that overprescribe and over-
structure what should be seen as a service delivery. Instead, they
ask a series of questions with a range of suggested responses de-
pending upon the answer. This is not a one-size-fits-all handbook,
but a many-things-might-work, think-before-you-act assembly ap-
proach. Critically, it does not run away from the idea that man-
agement is necessary. One of the early phrases I highlighted was:
“Some people call program management scaling agile. You could
call it that. The real name is program management.” Managing
a program is a mixture of strategic and tactical needs, and the
two need to co-exist and interact to create resilient and adaptive
solutions. By combining Lean and Agile with a basic understanding
of complexity (it uses my Cynefin framework), the book sets out
a roadmap by which a program can be a unique assembly of
appropriate methods and tools derived from multiple sources.

As the world requires shorter cycle delivery against increasingly

v

Foreword vi

poorly articulated needs, we need more of this deeply pragmatic
thinking. Scaling is not about grand frameworks geared to making
people comfortable and securing training revenues. It is about
sound advice, good questions, and adaptive and flexible manage-
ment. This book is a great contribution addressing that need and I
am grateful for the opportunity to write this Foreword.

Professor Dave Snowden

Chief Scientific Officer

Cognitive Edge

Introduction
We hear a lot of buzz about “scaling agile.”

Instead of “scaling agile,” consider “scale projects to a program.”
Program management is how we move from coordinating one
project’s work to coordinating the work of several projects in a
program. When your product requires you to collaborate across the
organization, you need agile and lean program management.

Program management is not a new idea. What might be new for
you is the application of servant leadership to the programmanager
role. If you want to use agile and lean approaches, you, as a program
manager, serve the program. You trust people to do the right thing,
and manage by exception.

You use program management anytime you want to scale collabo-
rative teams across the organization. Here are some possibilities:

• You are a project manager, trying to corral a few teams
together, to release a product.

• You are a manager who needs several teams to collaborate on
one strategic objective.

• You need to have the hardware and software people work
together to release a product.

• You need Marketing or Sales or Training or some other
function(s) to work with the software people to release a
product.

You might have a difference circumstance for your program. All
programs have one thing in common—the people collaborate across
the organization to deliver the product. Whatever your product is,
you or your team alone can’t ensure that your product releases, no
matter how agile or lean you are, when your team says, “Done!”

vii

Introduction viii

Programs are strategic collections of projects with one business
objective. Programmanagers coordinate that one business objective
across the organization.

When you coordinate across the organization, you recognize the
need for the other teams—regardless of their function—to maintain
their autonomy in how they create their deliverables. For programs,
everyone comes together to serve the program’s needs. Everyone
optimizes for the program, not for their team.

Each program is unique. Some of you will have software-only
programs. Some of you will want to use this book for products
that include software, hardware, firmware, and mechanical com-
ponents. That’s why this book is based on principles, not mandates.

Principle-based agile and lean might also be new for you, too.
Remember, that if you duplicate what works in small projects to
larger programs, all you get is bloat. Bloat doesn’t deliver—at least,
not easily. Take the principles of agile and lean, and think, “How
can I apply these principles to my context?”

Whether you are a team member on a feature team, a core team
member, or the program manager, this book has something for you.
Why? Because the agile and lean program is a complex adaptive
system. Everyone has his or her own role to play. And, everyone in
the agile and lean program has to be aware of the entire rest of the
program. No one succeeds without everyone else succeeding.

This book will help you see how to use agile and lean approaches
to manage your program. Here’s to your success. Now, let’s start.

1. Defining Agile and Lean
Program Management

Imagine this scenario:

You’re the programmanager for an entire product. You
arrive at work and check your email. You discover that
one of the feature teams found a Big Hairy problem,
but they fixed it with the help of another team. Did
you need to intervene? No. Neither did the software
programmanager. Yes, your program is large enough—
18 feature teams—that you need a software program
manager also.

You’re meeting with the core team today. Ellie, the
Marketing Communications rep to the core team has
beenworking on her deliverables for a couple of weeks.
The feature teams know they have to provide per-
formance information so MarComm can finish their
glossies. MarComm knows their deliverables are key
to a successful product launch.

Once you explained how to set up a kanban in Mar-
Comm, they all got “kanban fever.” Well, it seems
that way. They love watching those stickies move
across the board. The core team understands how their
deliverables intersect with everyone else’s deliverables
now, and why it’s so critical that their parts are com-
plete and done when they commit to dates. Everyone
on the core team is talking about “done.” “We sound
just like the software teams,” they say.

1

Defining Agile and Lean Program Management 2

The program architect was concerned about the ar-
chitecture evolution just two months ago. He’d never
seen an architecture evolve. He’d always planned the
architecture in advance. Then the architecture evolved
anyway. You and the program product owner and the
software program manager all felt as if you talked him
“off the cliff.” He conceded, and was willing to try to
evolve the architecture.

Surprisingly enough, the product is simpler than he
thought—right now. He’s coding, for the first time in
years. He’s happy. So are the feature teams. They feel
as if they are part of the design thinking, not just taking
orders from some guy with his head in the clouds.

Senior management is happy with you, because every
month you demonstrate something real, even if it’s
small. It’s only been three months and you have a
release candidate. R&D has never been able to produce
something that fast. Three months into the program
and you have a working product that the company can
sell. Well, once MarComm finishes their deliverables.

Is this a fantasy? No. This is how agile and lean program manage-
ment works. In fact, with the exception of the kanban board, that is
how I worked in 1988 on a real product, in a real organization. Many
successful programs repeat these principles: build trust among the
teams on the program; deliver often to see feedback; build trust
across the organization.

Let’s review the agile and lean principles so you can consider how
to apply them to your program.

Defining Agile and Lean Program Management 3

1.1 Review the Twelve Principles of Agile
Software Development

The list below paraphrases the twelve primary principles of agile
software development. See the source for the original principles at
the Agile Manifesto Principles.

1. Deliver early and often to satisfy the customer.
2. Welcome changing requirements.
3. Deliver working software frequently.
4. Business people and developers must work together.
5. Trust motivated people to do their jobs.
6. Face-to-face conversation is the most efficient and effective

method of conveying information.
7. Working software is the primary measure of progress.
8. Maintain a sustainable pace.
9. Continuous attention to technical excellence and good design

enhances agility.
10. Simplicity—the art of maximizing the amount of work not

done—is essential.
11. The best architectures, requirements, and designs emerge

from self-organizing teams.
12. Reflect and adjust at regular intervals.

The point of the agile principles is that you collaborate across the
organization, seeing working product as a way to work with the
customer and make sure you are on track. You work in a way that
enhances technical excellence so you can accommodate change. You
inspect and adapt as you proceed, on the product and the process,
so that you can fine-tune your team and product.

http://www.agilemanifesto.org/principles.html

Defining Agile and Lean Program Management 4

1.2 Review the Seven Lean Principles

In Lean Software Development: An Agile Toolkit, POP03, Mary and
Tom Poppendieck summarized their lean approach with these seven
principles.

1. Eliminate waste.
2. Amplify learning.
3. Decide as late as possible.
4. Deliver as fast as possible.
5. Empower the team.
6. Build integrity in.
7. See the whole.

Lean principles help you see the whole process (for a team or
a program or anything in-between). You consider when to make
decisions and learn as you proceed. Lean encourages you to see the
entire product.

Use the agile and lean principles as you manage risk and solve
problems in the program. Consider how you can apply them to your
program.

The principles help you understand how to use agile and lean on
your program.

1.3 Agile and Lean Together Create
Adaptive Programs

When you use agile and lean principles, you can create and steer an
adaptive, resilient program. When I use the word, “program,” from
now on, please think “agile and lean” or “adaptive.”

Defining Agile and Lean Program Management 5

1.4 A Program Is a Strategic Collection of
Several Projects

A program is a collection of projects, where the value is in the
overall deliverable. Yes, each project may have a deliverable that’s
valuable. However, the value to the organization is when all the
projects get together and deliver their product. That is a concurrent
program. You may also have a serial program, such as delivering a
series of releases over a product’s lifetime.

Think of a smartphone as an example of a strategic collection of
several projects. One project might be the feature set that allows
the phone to make and answer a call. Another project could be the
feature set to access and leave voicemail. Another two feature sets
might be the accounting for the voice data and the download data.
The texting feature set would be another project. Do you see how
each set of features could be its own project?

Each of these projects might require one or more feature teams
working together. The teams work autonomously, however they
like, as long as they are agile or lean, delivering their completed
features often. Each project and teamworks in parallel. Each project
has its own rhythm and staff and backlog. The projects deliver a
working product as a program.

Beware of a collection of ranked backlogs with no strategic reason
behind the order. If there isn’t a larger business objective behind the
backlogs, it’s not a program. You might need to accomplish all that
work. And, if the ranked backlogs together don’t create a coherent
business value, where the entire product is more valuable than each
project, you don’t have a program.

Can you have waterfall teams with your agile and lean teams
and still have a successful program? It depends on whether the
waterfall teams have interdependencies with the agile and lean
teams. Make sure you read Integrating Agile and Not-Agile Teams
in Your Program.

Defining Agile and Lean Program Management 6

Each program needs a coherent vision behind the program so you
can create a program charter. The charter helps the feature teams
take responsibility for their tradeoffs. We’ll talk more about this
in Start Your Program Right. With a program charter in place, the
feature teams won’t need to work up and then down a hierarchy.

Some people call program management “scaling agile.” You could
call it that. The real name is program management. In program
management, you scale agile and lean collaboration practices across
the entire program, so you can release a great product.

1.5 Program Management Facilitates
the Program to Release

Program management is the coordination and facilitation of all of
the work across the organization to release the product.

The job of the program manager is to coordinate the teams so they
understand enough about each other’s risks so they can deliver. The
program manager does not and cannot do this alone. The program
is all about collaboration.

Projects are tactical; they get the work done. The
program is strategic. It ties the projects together to
bring them to delivery.

1.6 Program Management Coordinates
the Business Value

I’ve seen—and I bet you have too—programs where the software
was all done except for one small piece. The product couldn’t release
because that piece was vital to the release. Or the software was

Defining Agile and Lean Program Management 7

done but the marketing was not. Or the hardware was done, the
marketing was done, and the software was stuck.

If you employ agile approaches to programs, you get to see visible
progress (or lack thereof) at the end of each iteration or the end of
each feature in flow or as the teams create the product. You don’t
have to wait until the predicted or desired end of the program to
see the risk.

That’s one of the ways agile reduces technical and schedule risk.
The iterations or flow help you get to done across the entire
program. Each iteration helps you see how things fit together. The
demonstration at the end of an iteration (or at a milestone) shows
you where you have technical risk, which reduces schedule risk. In
general, incremental approaches reduce schedule risk and iterative
approaches reduce technical risk. Because agile combines both, you
reduce both kinds of risk. For more detail on life cycles, seeManage
It! Your Guide to Modern, Pragmatic Project Management, (ROT07).

If you use lean approaches to your program, you can reduce the
work in progress, which will allow you to maximize throughput.
A lean approach will enable you to see bottlenecks, reduce waste,
and see what is not getting done. You need both agile and lean for
a program.

You don’t have to release each iteration or feature to your cus-
tomers. You can decide when to release externally—that’s a business
decision. When you see completed work each feature or each
iteration is how you know you provide business value.

1.7 Agile Program Management Scales
Collaboration

In non-agile program management, project managers or functional
managers speak for their project teams or functional area. They
commit people, manage risks, and commit other resources, such

Defining Agile and Lean Program Management 8

as money. Notice that there is no program-specific view of the
product or transparent coordination across the functional teams.
Those programs may not have a ranked product backlog.

In program management, there is no hierarchy. Everyone col-
laborates and coordinates across the cross-functional teams. This
collaboration avoids Coordination Chaos as in TIK14.

The program teams solve problems cross-functionally. That’s a huge
difference.

Instead of functional managers committing on behalf of functional
teams, feature teams commit to the program. The program team
has the responsibility for removing obstacles so that the program
delivers the business value of the program.

Lean thinking adds the holistic view to the program. When we
add lean, we empower teams and eliminate waste. We amplify
everyone’s learning to build integrity into the product by seeing
the work in progress, sharing decisions, and having a fine-grained
definition of done. This is critical, because the more people we have,
the more chances we have to learn and to make mistakes. If we take
a lean approach at the beginning, we start with principles that make
sense for building great products.

In the same way that good project management was never about
command-and-control, good program management is not com-
mand-and-control. Good program management is servant lead-
ership. Program management enables coordination: helping the
teams and projects to collaborate to deliver some specific business
objectives.

Once your program has more than two teams, or you need to
coordinate with multiple people across the organization, releasing
your product becomes much more difficult. Program management
helps you coordinate across the organization, so that everyone
focuses on the goal: releasing a great product that works.

Defining Agile and Lean Program Management 9

1.8 Agile and Lean Effect Change at the
Program Level

Agile is about the ability to change by delivering running, tested
features that are valuable to the business and learning from that
work. Lean is about seeing the whole, the flow of your work,
building integrity into your work, and eliminating waste. If you
add the technical practices (which you must in a large program),
the program makes visible the values of simplicity, respect, and
courage. Everyone commits to their work. You create empowered
teams.

You will get increased speed as a byproduct if you have the ability
to change. You will get speed if you reduce your work in progress
(WIP) and waste.

No management can mandate agile and lean at the program level.
Feature teams who can adapt and work together with a product
focus create the agile and lean program.

As a result of transitioning to agile and lean in the teams, and using
adaptive program management, you will obtain better delivery-to-
market speed as a result.

1.9 What Program Managers Do

The program manager is the voice or the face of the program.
The program manager represents the program to the PMO (Project
Management Office) or to senior managers in the organization. As a
program manager, I reported to the Operations Committee, a team
of senior managers.

The program manager facilitates the collaboration across the orga-
nization. The program manager is a servant leader. Program man-
agement doesn’t drive anything to completion; program managers
enable the program participants to finish their work.

Defining Agile and Lean Program Management 10

1.10 Take a Product Perspective

Youmay have noticed I have been talking about your “product.” You
might have applications that you refer to as “systems.” You might
integrate several systems from other vendors. Some of you might
have something else.

I take a product-centric view of things. I suggest you do, too. If you
think all the time, “Who is the customer for this?” you might have
some insights about how to use agile and lean to deliver.

“I Think ‘Product’ Now”
I used to think about systems or applications. I’ve been a
program manager doing in-house financial applications for
years.

When I started to think about “products” instead of “applica-
tions” a funny thing happened. Other people started talking
about product, too. The product owners on the program
started to talk about their customers differently. They started
to name their users, with specific personas. I did not expect
that to happen.

Our stories got smaller. Our feature teams produced more
value, because they got to done on smaller stories faster. All
because I started talking about “product,” not “application.”

—An experienced program manager

Okay. Now you know what an agile or lean program is. Let’s talk
about how you might organize your program.

Defining Agile and Lean Program Management 11

1.11 Principles of Agile and Lean
Program Management

1. Take a product perspective. The principle is: “Business people
and developers must work together.”

2. Agile and lean approaches encourage a holistic approach
to the product where you can change more easily to meet
current needs. The principle is: “Welcome changing require-
ments. This is a competitive advantage.”

3. Program managers are servant leaders. The principles are:
“Build projects around motivated individuals,” “Trust them
to get the job done,” and “Empower the team.”

2. Consider Your Program
Context

You and all the members of your program will make multiple
decisions on a daily basis. The Cynefin Framework is a way of
thinking about your context with the intent of guiding your actions.
I use Cynefin to think about how I solve problems: Can we use
good practices that everyone else uses? Do we need to experiment
to know how to proceed? Do we have so many unknowns that we
don’t know where to start?

2.1 Cynefin Helps with Decisions

The Cynefin Framework (SNB07) is a sense-making framework you
can use to solve problems. Use it to guide your approach to your
program.

12

Consider Your Program Context 13

Cynefin Framework

Based on the fact you are working in a program, you are not in
the Obvious context. A program, by its very nature, is at least in
the Complicated context, because of the number of communication
paths.

If everyone is in a single physical location, you may be in the
Complicated context. In the Complicated context, you can see
straight cause-and-effect relationships among the different stresses
in your program. If all your teams are experienced agile or lean
teams, who know how to deliver small stories each day or so, you
might be in the Complicated context. You understand what your
unknowns are. You can use known and reasonable practices for
organizing and working on your agile program.

As soon as you and the people in your program are not in the same
location, you are no longer in the Complicated context. You have
moved into either the Complex or Chaotic context. That’s because
your communication will have delivery or communication lags and
other interferences. Problem causes or effects may be unclear and
even unknown, if only due to communication lags.

Consider Your Program Context 14

If people on your program are multitasking, or if you have people or
teams who can’t commit to the program, or if many of your feature
teams are new to agile, you are at least in the Complex context.
You may be in the Chaotic context. In either of these contexts, the
unknowns create many risks and potential problems.

In my experience, if you can say, “We have done work like this,
but never at this complexity or with this many teams, or never as
distributed as we are now,” you are in the Complex context. You
have many unknown unknowns. You will have to manage the risk
of those unknowns.

As you look at the Cynefin Framework, ask yourself: what context
reflects your reality? Howwill that context help you decidewhether
you should sense, probe, or act as an experiment first?

If you are in the Complicated part of the framework, you need
experts to solve the problems in your program. I’m not talking
about experts that create bottlenecks by working alone. Instead,
develop a community of experts—maybemost of the people on your
program, working in their Communities of Practice—to help solve
the problems.

If you are in the Complex part of the framework, consider these
actions: What experiments will you use to probe, to discover your
unknowns? And, what problems can you solve tomove the program
back to the Complicated part of the framework, where you can
know your challenges?

Cynefin is not a two-by-twomatrixwhere you locate your program,
use that to make decisions, and never return to the framework.
Instead, especially with programs of nine teams or more, different
parts of the program will have different challenges. The more
unknowable the challenges, the more that part of the program is in
the Complex part of the framework. As the teams deliver features,
they learnmore. That part of the programmoves to the Complicated
part of the framework.

Consider Your Program Context 15

Sometimes, teams in the Complicated part of the framework finish
features. As they learn, they uncover a huge “gotcha.” That might
cause them to be in the Complex part of the framework until they
run some experiments to see what they can do.

As a programmanager, how can you identify issues early when you
encounter Complex again? How can you help the program move
from Complex to Complicated?

There are no easy answers. There is no recipe. This is work. It’s the
reason why we need program management, to recognize and solve
problems across the organization.

The Cynefin Framework reveals why agile program management
can be difficult. As teams complete their features, the product
owners need to update the roadmap and the backlogs. It’s possible
the program will finish before expected. Completing—or not—other
projects or programsmay affect the organization’s project portfolio.
Certainly, one team’s feature completion might affect the ability of
other teams to deliver.

Regardless of your context, a program is emergent. With emergent
projects, you can’t plan everything at the beginning. You can see a
roadmap, plan a little, and continue learning and adapting as you
proceed. You might want to keep the same vision of the product,
but teams (with their product owners) might select different work.
Or, as your customers/product owners see the product, they might
want to change the product direction.

If the teams don’t complete features on a short, regular basis, no one
can understand what the program status is. If the core team doesn’t
solve problems that allow the program to create a product, you have
plenty of risks, many of them unknown.

Manage by principles, not practices.

Consider Your Program Context 16

With your risks, consider principles for your program, not practices.
I could try to create a recipe for you, but that won’t work. Think and
recognize your context.

2.2 Understand Your Product’s
Complexity

Your program is unique. Your program may have complexity in a
variety of areas: architecture, pressure to release, where the people
sit in relationship to each other, the languages everyone uses, and
each team’s agility.

In my experience, the overall architecture of your product can drive
much of the complexity. The more complex the architecture and
the larger your program is, the more complexity you will have to
manage. Here are some program architectures I have seen.

Large Program, One Coherent Product

In this case, you have one large product. It’s not integrating other
products or systems. Your program creates the entire product. It’s
big with multiple feature teams, which is why you have complexity
in your program.

As an example, an operating system might look like one coherent

Consider Your Program Context 17

product. Maybe a large web-based store might look like one coher-
ent product.

Inter-related products are different. If you ever say, “Platform and
layered products,” you have an example of an inter-related product.

Inter-Related Product Program

In this case, you have a platform of common services with what feel
to the customer as separate products. The GUIs may have their own
look and feel, but the GUI is not common across your program’s
product.

As an example, a smartphone is an integrated system product. Each
app on the phone has its own GUI where you set the preferences
and use the app. Each app uses services from the phone’s operating
system.

Sometimes, inter-related products integrate other products into the
one product.

It’s more likely if you integrate other vendors’ products into your
own, that you have an integrated system program.

Consider Your Program Context 18

Integrated System Product Program

In this case, customers buy your entire product. The product still
has the platform of common services. However, you have one
coherent GUI that the products have to integrate with. You might
be integrating systems or hardware from vendors.

These programs tend to need programs of programs. Different
products will run on their own schedule. Unless your vendors are
also agile and lean, you may have to manage integration risks.

2.3 Know Which Program Teams You
Need

Every program needs the ability to work across the organization.
You might need a core team, the cross-functional business team that
has members from all around the organization. The core team helps
coordinate the efforts that make the entire product a successful
deliverable.

Consider Your Program Context 19

If you have more than two feature teams, you might also need a
software program team. The software program team helps deliver
the working software. The software program manager is a delegate
to the core program team. That means that the software program
manager must have a program team of his/her own. This is true for
a large program.

You, as a program manager, need to understand which program
teams you need. Does your program require both a core team and a
software program team?Do you need a core team programmanager
and a software program team manager?

You can only manage one program team. One of the problems I
see in too many agile programs is that they have neither a core
team nor a software program team. They have many feature or
component teams. They might have Scrum-of-Scrum meetings, but
no real forum for solving the deep problems or managing the risks
that can occur across the organization.

Each program team has a responsibility to solve problems that the
teams it represents can’t solve by themselves. The program team,
whether it is a core team or a software program team, works across
the organization, solving problems and removing obstacles for the
program.

Consider Your Program Context 20

What Your Core Team Might Look Like

If you are coordinating and collaborating across the entire organi-
zation, you are managing or are a part of the core team. If you take
a look at the What Your Core Team Might Look Like, you can see
that there are plenty of potential participants on this program team.

Aside from the program manager, there is the software program
manager, the potential hardware program manager, the program
product owner, as well as the sales, deployment, legal, marketing,
finance, human resources, and investor relations project managers.
And those are only the people I could imagine. There might be other
or different people in your organization.

Do You Have A Process Program?
Sometimes, organizations run process improvement projects,
such as transitioning to agile, as if they are programs. That’s
fine. In this, your core team will look different. You might not
have feature teams in your program.

Consider Your Program Context 21

Know what kind of a program you have. Not all programs are
the same. Use a core team that makes sense for your program.

What Your Software Program Team Might Look Like

Take a look at What Your Software Program TeamMight Look Like
to see a prototype composition.

Notice that the program product owner and the program architect
might work as a triad with the software program manager to make
risk decisions. Does this mean that the program product owner does
not work with the core program manager?

It depends. It depends on who needs the program product owner.
Maybe you need a product owner team, and the program product
owner works with the core team and the technical product owner
works with the software program owner. It depends on what your
program needs.

Look at the program architect. Your feature teams need their

Consider Your Program Context 22

own architects on their teams. Sally’s project—which is its own
program—needs its own architect. That architect better talk to
the program architect. And if there’s a hardware architect, that
architect better talk to the program architect. So you might need
a cross-functional community of practice architecture team, as
illustrated in the “communities of practice” architecture team.

If you are a program manager, first, are you on the core team?
If so, do you have everyone you need? Does that team have
responsibility for deployment? (I don’t care who has responsibility
for deployment, as long as someone does.)

If you are not on the core team, are you on the technical team that
works across the technology? Does this team have responsibility for
deployment? I’m being a little touchy about deployment because
I have consulted to programs where no one was responsible for
deployment and they only discovered it when I asked, “Who’s
responsible for deployment?” I thought I was being stupid because
I didn’t see it. No, no one had thought about it. Oops.

Why do you need all these program teams? The core team might
require a different rhythm than the software program team. Since
the core team often has senior managers or senior people on it, I
recommend the core team use kanban to reduce the WIP (work in
progress). The software program teams can use iterations if that
works for them. Maybe they also use kanban; it doesn’t matter. The
two program teams address different risks at different levels.

The core program team is much more strategic. Often program
managers at this level manage budgets and project portfolio issues.
They are the ones to say, “Wait a minute. The software program
can’t succeed. We need to merge these two products.” That’s a
project portfolio issue.

The software program team is more strategic than a given project,
but is not as likely to manage budget or a project portfolio issue.

Program management, especially for many teams (think more than

Consider Your Program Context 23

20 teams) is about making sure you have a product that delivers
the business value you want from all that effort. So the software
programwill have its own risks and rhythm, which is separate from
the core team’s risks and rhythm.

If you are a program manager, make sure you know which team
you are trying to manage (coordinate and collaborate), so you can
be most effective. Remember, you can only manage one program
team. (See Don’t Manage More Than One Program Team Yourself
for more details.)

2.4 The Core Team Provides Business
Leadership and Value

The core team sets the agenda and the vision for the program. The
core team helps the feature teams when they need it, and stays out
of their way when they don’t need it. The feature teams provide
status to the core team, so that the core team can share status across
the organization. The core team can adapt their risk management,
including the program roadmap, if necessary.

Your core team delegates are essential to your program’s success.
Ask yourself—and maybe the people who could be on the core
team—these questions:

• Do you have the authority to commit to budget decisions for
this program? Can you approve spending?

• Do you have time to commit to this program?
• Are there people or project teams that you can commit to this
program?

• Can you commit other people or resources to this program?
• Can you commit to the success of this program?

When the core team members are committed to the program’s
success, they can solve problems more easily.

Consider Your Program Context 24

Here are the responsibilities of the core team before the program
starts:

• Write the program charter.
• Create the agile roadmap.
• Create the program backlog, the backlog of features.

This is what the core team does during the program:

• Iterate on the agile roadmap.
• Iterate on the program backlog, the backlog of features.
• Solve cross-functional business problems.
• Solve problems that escalate from the software program
team.

• Monitor product status and risks.
• Clear program obstacles for the teams.
• Decide when the product is ready to release.

The core team does all of this because they are responsible for the
business value of the program. Because the core team is cross-func-
tional, the people on the core team can help different departments
and projects understand how they are interdependent.

The core team embodies the principle of business people and
developers working together.

2.5 Do You Need a Core Team?

You might not need a core team if you have a small program. You
might need a software program team with a few cross-functional
people, such as the person who shepherds the product to release,
maybe called Deployment or Release.

Consider Your Program Context 25

Imagine you have a web-based product. Maybe you only have four
or five feature teams. Those feature teams want to know what
Marketing and Deployment are also doing—and they want to know
what all the software teams are doing, too. In that case, maybe you
can keep just one program team and have all the necessary people
on that team.

Try to keep the number of people on your program team to ten or
fewer. Otherwise, it’s difficult to make decisions.

If you have the core team and the software program team as a
mixed program team, be aware that you may have trouble solving
problems and managing risks. The people on the mixed program
teamwill want to solve problems at different levels, and you’ll have
too many people on your core team.

2.6 Principles of Consider Your Program
Context

1. Consider your complexity. If your organization wants to start
a brand new agile program on a highly complex architecture
with geographically distributed teams when you have not
succeeded with agile at the team level, your risks will be
different than if the entire organization has agile experience.
The principles are: “Amplify learning” and “See the whole.”

2. Define which program teams your program needs. The prin-
ciple is: “Business people and developers must work together.”

3. Consider how you will help your program team deliver what
the organization requires. The principle is: “Eliminate waste.”

3. Organize Your Program
Teams

Each program is unique. Once you understand your program con-
text, you can decide how to guide your program to success.

3.1 Create Your Core Team

Your core team are your allies across the organization. They are the
people who will help you move the product from an idea to a fully
completed and shippable product.

You need one person from each necessary function across the
organization, and not more than one person.

Back in What Your Core Team Might Look Like, you saw a picture
of a possible core team. You might not have a hardware program
manager, for example. Maybe you don’t need anyone from investor
relations to release your product.

Nomatter what, make sure that you have some form of deployment,
either in your core team or in the software program team. It doesn’t
matter which team that person sits on, as long as you have a
deployment person somewhere on a program team.

It doesn’t matter what you call the deployment person either:
Release Engineering, DevOps, IT, or something else. Make sure you
have someone whose responsibility is to make sure your product
successfully deploys.

Your core team needs people who can commit their time, and their
department’s time to solve problems, as well as budget. If you can
identify the specific person you need, that’s the best. If you only

26

Organize Your Program Teams 27

know the role, that’s okay. But you also need to know the level of
that role in the organization.

Make sure you ask the questions in The Core Team Provides
Business Leadership. That way, you know you have the right people
at the right level on the core team.

In the past, I have had problems gathering everyone on my core
teams. The sales guy didn’t want to commit to a biweekly meeting.
He was “too busy.” The MarComm woman was too frantic doing
other things. The corporate lawyer never answered his email.

I needed those people for a successful product release. Without
them, we couldn’t know if we had the right dates, if we all
understood the risks. We would be up the proverbial creek.

How could I make it worth their while to come to the core team
meetings?

I have done these things:

1. Asked a specific person by name. “Mary, can you please work
on my new program with me? I enjoyed working with you
on that last program. I’d like to do it again.” When you ask
a person by name for help, that person is more likely to say
yes. If you put out a request on email, everyone feels free to
ignore it.

2. Asked a senior manager to assign “the best person” in his
or her department. I’ve had this conversation with a se-
nior manager more than once: “John, you know that I’m
the program manager for the XYZ program, which is the
company’s #1 priority. I need someone from Training on
the core team. I need your best person, not just to represent
Training. That person will develop new training materials as
Software develops the product, and as Deployment gets ready
for release. We will be ready as an organization to release, all
on the same day. That’s why I need your very best person.”

Organize Your Program Teams 28

I use the Voice of Reason, along with the Steely Eyed Glare
and a big smile. I almost always get what I ask for.

3. I use influence, where I think, “What will make it worthwhile
for this senior manager to give me what I want?” This is why
you need to know why the organization wants to start the
program. I have discussed the program’s deliverables with
an eye to the business benefit for the senior manager.

I always tell the members of the core team that we are the best
people in the organization to work on this product—that we can
collaborate and shepherd this product to its final release. That’s why
the organization chose us.

I believe this. Why else would the organization spend money on the
program?

3.2 Beware of Forgetting Core Team
Members

When I coach program managers, sometimes they discover they
have overlooked people or key players for the core team. Sometimes
they forget because the program is small and the core team is
rolled into the software program team. Sometimes it’s because the
programmanager invites the correct people and they don’t respond
in a reasonable amount of time. Sometimes, there’s a power play at
work at a higher level in the organization. Sometimes, it’s another
reason.

Do you have some commonly “omitted” roles on your programs?
Review your core team members. Do you have everyone you need,
to release a product?

If not, ask people to participate, or enlist the senior manager in that
area to help you find the right person for your core team.

Organize Your Program Teams 29

3.3 The Product Owner Role Is Key to
the Program’s Success

It doesn’t matter if we talk about the program product owner or a
product owner on a team. Each product owner has a key role to play
on a program.

The program product owner, sometimes known as the PPO, or
the delegate to the program team, shepherds the business value of
the roadmap and of the releases. The PPO represents the product
owners to the rest of the program team. The PPO is a servant
leadership position. Your organization might call the PPO a product
manager.

The product owner, sometimes known as the PO, is the person on
the feature team who understands what the customers want and
translates that understanding to stories. Youmay also need a subject
matter expert such as an architect or senior technical person towork
with the PO. The PO, or the PO team, or the PO and the program
architect assess which features to do first, the technical challenges
with those features, and the Cost of Delay for each feature.

If you have a highly complex product with many feature teams,
consider a product owner value team.

Different Teams

Organize Your Program Teams 30

In this scenario, the feature team (product development team) im-
plements a feature. The product value team decides on the product
roadmap and ranks features—what to do when, for the program.
The project portfolio team decides when to commit to a project or
a program.

These teams work from their perspective—feature team, product, or
organization—when they make decisions.

The product owners across the program work as a product value
team, or a product owner team. When they work across the or-
ganization, they can limit the number of interdependencies and
continue to update the roadmap based on what the teams complete.

Anyone with product owner in his/her title must understand the
value of the feature under discussion, and the customer base for
this product. If a product owner doesn’t understand the customer
base for this product, the PO will not make good decisions based
on value. The PO will not be able to answer any of the questions
about risk, such as, “What do our customers need or want?” for this
product.

The product owner must also understand the product technology.
If the PO understands the technology, the team can explain, “We
can do things this way or that way.” Or, “If we implement this
feature first, we can save time on that feature second.” Or, “We can
implement the flow this way and save time for the user.” See the
discussion at Product Manager vs. Product Owner.

When the PO understands the customers and the technology, you
have a great PO. Without both, you miss the boat.

The product owners on the teams know where the product is. They
can see the product evolve every day. They have the responsibility
to make small decisions every day that help the product grow.

Use the intelligence of the product owners as a team to create and
update the agile roadmap. The smaller the features are, the easier
this is.

http://svpg.com/product-manager-vs-product-owner/

Organize Your Program Teams 31

If you have the PPO attempt to dictate the product direction
without feedback, this becomes quite difficult. Your program will
lose momentum. If the all the product owners join in collaboration
with the PPO to create the agile roadmap and the release definition,
based on what they’ve decided the teams should deliver, your
program will maintain its momentum.

3.4 Organize the Software Program
Team

Now that you have a core team, let’s see what your software
program team might look like. You might need to review the image
What Your Software Program Might Look Like.

The software program team has feature teams alone, if they can be
alone. Joe, Tim, and Henry all have stand-alone feature teams.

If more than one team works on a feature set, you might need a
program for that feature set. Collect those teams into a program.
Sally has a small program of collected feature teams.

For a software program, scale out, not up. There is no hierarchy of
project managers, unless the teams desire it. There is no hierarchy
of Scrum Masters. The teams are equal and work together.

The software program team has these responsibilities during the
program:

• Solve cross-functional technical problems.
• Review, monitor, and manage risks in the feature teams.
• Solve problems that escalate from the feature teams.
• Monitor product status.
• Clear program obstacles for the teams.
• Provide consulting to the core team about risks, product
decisions, and more.

Organize Your Program Teams 32

The software program team does not have to get large. When I run
programs, I email the program team meeting agenda (a problem
solving meeting) to everyone on the program, and say, “Here are
the people I need to attend. Everyone else: let me know if you are
attending.”

Avoid Coordination Chaos
If everyone has to participate in every meeting, your program
will never deliver a product.

If you have 20, 30, or 40 teams, ask the feature teams to
organize as “feature set” teams. That will help several teams
to become small programs inside the larger program.

Request that one person—the program manager for that fea-
ture set—participate in the software program team meetings.
That feature set team can then decide how they want to make
the information transparent to and from all the feature teams.

Youmay discover your organization has a natural limit to how big a
program can get for the software program or the hardware program.
Some managers would like to throw people at the program, in the
hopes that they can work faster because there are more people. You
may discover that it’s so hard to coordinate the communications
and interdependencies, it’s not worth the bigness. It’s worth having
the program take longer while using agile roadmaps, so the program
teams and the program manager can manage the coordination.

Every organization has a sweet spot for program size.
If you are starting with program management, try to
keep your program to nine teams or fewer. Learn how
to program-manage at that size before you start with
a larger program. You might not need more teams
than that.

Organize Your Program Teams 33

Do YouNeed a Hardware Program
Team?
You’ll notice I mentioned a hardware program team. If you
have a product that requires a hardware program team, or
a mechanical program team, organize those program teams.
Remember, once you have more than a couple of project
teams, consider organizing a small program for them. My rule
of thumb is that once I have four project teams, I have a small
program. That’s my rule of thumb. Yours might be different.

I consider firmware a special case of software. I also ask that
the firmware be updatable just as if it were software. That
way, we have the maximum flexibility for release decisions.

3.5 Don’t Manage More than One
Program Team Yourself

Some program managers whose organizations are transitioning
to agile are not always clear about which program team they
are managing. Sometimes, that’s because the organization doesn’t
always realize they need more than one program team.

You might think you can manage the core team and the software
program team, especially if you only have three to five project teams
for the software part of the program. It’s tempting.

Don’t do it.

You can manage one program team and have one kanban board.
Make sure everyone sees all the status, risks, obstacles, everything.
Or, you can have two program teams, and you will need to choose
which program team you manage.

Organize Your Program Teams 34

Once you have three or more teams, they tend to need a program
manager of their own. That’s a guideline, not a rule. In your
program, the software teams might need a program manager for
two teams, especially if they are geographically distributed. They
have more obstacles and interdependencies.

If you try to manage more than one program team, you will
not succeed at facilitating the necessary collaboration across the
organization. You will not be a useful servant leader and you will
let people down. Don’t do it.

3.6 Principles of Organizing Your
Program Teams

1. Know which program teams you need. The principles are:
“See the whole” and “Simplicity.”

2. Your core team, if you need one, is as large as you need it to
be, and as small as you canmake it. The principle is: “Amplify
learning.”

3. Make sure the core team consists of everyone you need to
release the product. The principle is: “Business people and
developers must work together.”

4. Start Your Program Right
If you want your program to succeed, start in a way that promotes
success. Use a program charter to define the vision and what done
means for the entire program. In addition, create the first agile
roadmap to show everyone the big picture, the product direction.

4.1 A Program Charter Sets the Strategy

Starting a program is a lot like starting a project. You need to know
where you’re going. You need to know what done means. That
means you need a program charter. Chartering a program creates
a shared vision for the program team and by extension, the entire
program.

A program charter’s scope is the entire product. Imagine your
product is a web site that allows people to buy antiques. There is a
search project that allows people to search and place items on wish-
lists; email to notify the potential buyer of new or existing products;
and a transaction processing project that helps people pay for what
they want.

The program charter might be something like this: “Provide an-
tique lovers a way to buy unusual items, personalized for their
tastes.” That vision infers the search, communication, and payment
projects, but doesn’t say anything about the specific projects in
the program. The program vision helps people see entire-product
possibilities.

When the program team creates a charter, they have a chance to
coalesce, to work as a program team. That’s because they learn
to define and agree on the project’s purpose, vision, and release
criteria. By the time the program team finishes the charter, they

35

Start Your Program Right 36

understand where the program is headed and what done means for
the program.

For projects, chartering has the same effect. A project charter limits
its scope to a feature set, even if the feature set is large. If you have
email as part of your product, the project team that implements
email will limit its vision to email. And, a project team (or several
small teams) can work together to write a project charter.

Once your program has more than about three teams, you may not
want everyone on the program (core team, software program team,
and feature teams) participating in the program chartering effort—
that’s too many people.

No matter how you decide to involve people, charter the program.
The program charter sets the stage for the entire program. If
necessary, each project can write its own charter based on the
program.

The charter helps everyone understand what the program needs
from them and how they can contribute. They can make the little
decisions and tradeoffs every day that add up.

Ordinarily, you bring your program team together in one room to
create the charter. But, what happens when your program is big?
Or, it’s geographically distributed? Or, you don’t even know who
is supposed to be on which program team? This is when program
management demonstrates its value—when circumstances are not
easy.

4.2 Develop the Program Charter with
the Core Team

The core team is responsible for the business value of the program.
The charter defines why the organization is working on the pro-
gram, and explains the reasons for the subordinate plans: marketing

Start Your Program Right 37

plan, the sales plan, the training plan, the deployment plan, and on
and on.

The core team is responsible for the program charter. If your
program is limited to say, 25 people or fewer, you might want to
bring all of the people together to charter the program—as long as
an experienced facilitator runs that meeting.

If your organization has told 150 people to start this program on
Monday, do not try to create a program charter with everyone. It’s
quite difficult—if not impossible—to facilitate 150 people to embrace
one vision and release criteria.

You need enough people to collaborate on the program charter so
you get feedback from the people working on the program. You
need to keep that number small enough so that you can facilitate
the people in the room.

For a program, especially if you have distributed teams, I recom-
mend you get everyone on the core team in one physical location
to create the charter. If someone says, “We don’t have the budget,”
see the ideas in We Can’t Afford the Travel.

4.3 We Can’t Afford the Travel

It’s time to charter the program, and you’re all separated by time
zone. Yourmanager says no, the organization can’t afford the travel.

Because the program is a large effort, everyone needs to be hyper-
aware of expenses and, as a result, budget wisely. That’s why getting
everyone together in one physical location to charter the program,
develop the initial product roadmap, and determine what you need
in a first release is so cost-effective.

Initiating planning with the entire program team can help.

Here’s how you sell the idea to your management. How much
would it cost for each person to come to one location for a week?

Start Your Program Right 38

Average out the costs for every person on your program team. Let’s
assume you have ten people on your program team and the average
cost is $3000 for a week of travel. That’s $30,000.

Now, what are the costs for every week of program delay? If you
assume people cost $75/loaded labor hour, then a one-week delay
on your project would be $75 multiplied by the number of people
multiplied by 40 (hours in a week). You could easily have a one-
week delay if people on the feature teams don’t know what they
are supposed to do when.

How many people do you have on your program now? If it’s 25
people, the cost of a one-week delay is $75,000. If it’s 80 people, that
number is $240,000. If it’s 150 people, that number is $450,000, for
just one week of delay.

Compare that cost to starting the program right, doing some initial
backlog preparation, bringing the program team together to prepare
for influencing each other, all that relationship-building? Priceless.
Certainly cheap compared to travel costs.

Remember, you can pay for inexpensive travel now or defects and
confusion that causes a large Cost of Delay later. Your choice.

4.4 Lead the Program Chartering Effort

The core team is responsible for the charter. As the program
manager, you can lead the program chartering effort. You cannot
and do not want to write the program charter alone. If you write
the charter alone, you lose the opportunity to help the core team
coalesce as a team.

“Working Agreements Helped Us
Charter”

Start Your Program Right 39

Wewere all accustomed to working on smaller agile projects—
one, maybe two teams. Then we had to start this large pro-
gram. We tried to write a charter, and got stuck.

We all knew how to work in agile teams, different agile teams.
We did not know how towork together.We decided to develop
our working agreements as a core team.

Once we had working agreements, we were able to charter.
Our working agreements helped us see how to work together
across the organization.

—Experienced agile project manager, transitioning to a core
team program manager

Start the program with the core team a few days before you invite
the rest of the feature teams. If you already have the feature teams
onboard, I ask the feature teams to learn how to work together for
one iteration, as in How to Start a ProgramWith More People Than
You Need. That gives the core team a chance to learn how to work
together and create the program charter.

For a program, make sure the charter is visible. I like to write the
charter, post it, and make it available so everyone on the program
can see it whenever they need to. In a sense, the charter is one
of your Big Visible Charts, even though it is not something you
measure. After all, the reason to charter the program is to make sure
everyone understands why they are spending their time working on
this endeavor.

4.5 Create Your Own Program Charter
Template

At a minimum, the program charter contains the product vision
and release criteria, so people know why they are working on the

Start Your Program Right 40

program, and how they will know when they can release the final
version of the product.

Agile Program Charter Template

Youmaywant to addmajormilestones such as trade shows or target
dates; what is driving this program, ROT07, and pointers to other
plans or the risk list.

This charter is both a charter document and a program plan. If you
need to break the document into two, consider having just the vision
and release criteria as the program charter document. You can then
have the rest of the document as the program plan.

If you have one document as your program charter, you can
workshop the program charter with the entire core team in one day
or less at the beginning of the program. I recommend this because
it’s easy and helps the core team coalesce as a team.

4.5.1 Develop the Program Vision

The program vision helps the core team create the program roadmap
and the program backlog. It also helps the feature teams make
decisions daily. The program vision may even help the projects
create their visions, if necessary.

Here are three steps to creating a program vision:

1. Define the primary customers for this product. They could

Start Your Program Right 41

be the mass market, existing customers, new customers, or a
specific market segment.

2. Define the benefit of the program. Why are you doing this
program? Answer the “why” question.

3. Define the problems this product solves.

Write as much as you need to, and then edit until you’re down to
two to four sentences. If your vision is longer than four sentences,
you haven’t described the program focus yet.

As the core teamworks through these issues, theywill becomemore
of a team. You will uncover risks at the beginning of the program.
See Identify program risks for more information about risks.

If you have a small program, and everyone is in the room, youmight
ask people to split into small groups of threes or fours, and work on
this in parallel.

Timebox this to 30 minutes. You might not create the perfect vision.
You can iterate on this after you do the next piece, the release
criteria.

4.5.2 Develop Release Criteria

Release criteria tell you what “done” means for the program. You
cannot list all the features—that would be impossible. You might
have a few scenarios of what the product should be able to do.
Maybe you have a target date in mind. Maybe you have some
performance criteria in mind.

Release criteria are the vital few criteria that tell you when the
product is done, ROT07. They are not everything you could do in
the product. As long as you remember that, you’ll be fine.

Start Your Program Right 42

Do You Need Landing Zones?
Sometimes, you have to make technical tradeoffs when you
start a program. You almost know what done means, but not
quite. Those tradeoffs provide you a landing zone.

Imagine a smartphone. You know the product developers will
need to trade off battery size with performance consumption,
heat dissipation, where the antenna is, and probably other
things I don’t know about. That’s what I mean by landing
zone.

Note your landing zones in your charter. Note how you
will resolve the zones during the program. Make sure the
resolution is on the roadmap somewhere.

If you add landing zones, describe them in away thatmakes sense to
the feature teams. You may say, “We need landing zones that trade
off power consumption and battery life” for a hardware product. For
a software-only product, you might say, “We need landing zones
that trade off database performance and footprint.”

4.5.3 Major dates

If you have major milestones, this is the place to put them. Maybe
you have a trade show. Maybe you have monthly drops from
a vendor or to a vendor/customer. Maybe you have to meet a
regulation. Whatever it is, make sure you have transparent dates.

Specify Neutral Dates
A US-based core team program manager wrote down the ma-
jor dates for his program as 6/1/2014, 8/2/2014, and 10/15/2014.

Start Your Program Right 43

Those dates meant June 1, 2014; August 2, 2014, and October
15, 2014.

When the UK-based software program team manager saw the
dates, she was concerned. “Why do we have dates that are so
close together? You have 6th Jan, 8th Feb, and what is the 15th
month anyway? I have no idea what you mean.”

The UK-based program manager suspected the dates were in
month/day/year order. She needed to check. Sure enough,
they were. Based on her surprise, the core team program
manager decided to spell out all dates. He didn’t put the
day first, but because he specified the month in spelling, not
numbers, everyone else understood what he meant.

Consider neutral dates the larger and more geographically
distributed your program is.

4.5.4 Point to the product roadmap

Your product owners or the program product owner will create and
deliver a product roadmap to the program. However, you and the
core team and/or the program team might have to collaborate to
create the first roadmap to show everyone the product direction.
(See Create the Agile Roadmap for details about how to create a
roadmap.)

4.5.5 Develop the other plans

After you create the program vision and release criteria, the other
program team members can produce their plans for their areas.
Those plans are deliverables to the core team.

Your first job might be to create a kanban where the deliverables are
the project plans for the core team. Everyone who is a delegate to

Start Your Program Right 44

the core team owes the core team a plan for their work. Otherwise,
why do they need to be on the core team? I find this is a great way to
get people off the program team who “just” want to visit. It’s okay
if they want to visit. They can watch, and not talk. They don’t get
to problem-solve or participate. The entry into any program team
is a plan.

Ask the program team members to keep their project plans short.
The plans are action-item based: what this function needs to deliver
for the program so that the product can release. That’s it.

4.5.6 Identify program risks

You might know of significant risks to your program at the start. If
you do, develop your risk list and mitigation plans now—as much
as you can.

Program Risk Template

I recommend you use high, medium, and low to describe your risks.
Many programs start with significant pieces of undefined risks. If
you try to describe them with percentages, you might encounter
these problems:

• Other people, such as senior managers, want to reduce the
significance of the risks by reducing the number percentage.

Start Your Program Right 45

That provides people with emotional relief but not risk man-
agement.

• Using numbers at the start of the program leads people
to believe you have more data than you do. One senior
developer once said to me, “I thought that was only a 60%
problem.” It wasn’t.

Consider brainstorming the list of risks you want to manage and
mitigate with your program team. That way, you can see risks at
the business level with the core team, and the risks at the technical
level with the software program team.

4.6 Iterate on the Program Charter and
Plans

It’s better for your program to have a partial charter of the product
vision and the release criteria than to wait and have a “complete”
charter. When you iterate, you show the people on your program
how to build incrementally and iterate. The program team provides
the example of working in an agile and lean way.

Don’t be afraid to iterate on the charter because nobody knows
everything at the beginning of the program. Your program team
needs time to learn, as much as the feature teams do.

Do not use an Iteration Zero to build the necessary documentation.
If you allow two weeks, it will take two weeks. However, if you
organize the program team and create a workshop to build the
vision and release criteria, the program team members will know
enough to generate the first draft of their plans. You can help the
program be more agile by asking people to iterate on their plans.

Start Your Program Right 46

4.7 Create the Agile Roadmap

The product vision is necessary but not sufficient to start your
program right. In addition to the charter, use this time to create
the first agile roadmap.

The agile roadmap provides product direction to everyone: the
product development teams, the program teams, and the sponsors.
The agile roadmap explains the product direction. The product
direction provides context to everyone.

A roadmap is a wish-list, what you want to occur. Backlogs are
what the teams do. As the teams finish their backlogs, the product
owners update the roadmap.

The roadmap has the internal and external releases, the feature
sets (also called themes), and when the product owners hope to see
features in the product. It’s a roadmap; it’s what you hope the teams
can implement.

The roadmap is a wish-list. It is not a promise to
fulfill. The roadmap is a product direction.

Just like a regular map, the teams may encounter detours along the
way. That’s why the product owners create ranked backlogs for the
teams that are much smaller in scope. The product owners update
the roadmap based on reality, just as you would if you were driving
somewhere and encountered a detour.

Make sure your roadmap is enough for your program to look ahead.
If you don’t need a six-quarter perspective, consider a six-month
perspective. One organization I know has three-month programs.
They use a 12-week perspective. They have multiple teams, so they
need to show everyone approximately when the teams need to
deliver what. But their perspective is the entire program.

Start Your Program Right 47

A Potential Agile Roadmap

As the teams complete features, the product owners update the
roadmap for this quarter. If the teams deliver at least monthly, the
product owners can update the quarter-by-quarter roadmap each
month. The product owners update both roadmaps when they need
to make decisions or change the product decisions.

The backlogs will change even if the roadmap doesn’t. Develop the
detailed backlogs for at least one and no more than three iterations.
If your teams use kanban, develop several more features than a team
would see on its kanban board.

The more prep work you do for the backlogs, the more you will
discover you will waste time. The teams need to know which
features they will work on next. The roadmap helps the teams see
the overall product direction.

Don’t spend too much time preparing stories ahead
of time. Use agile and lean to do just-in-time product
planning.

Defining and updating the roadmap takes time. Defining small
features, ranking them, and re-ranking them also takes time. Your

Start Your Program Right 48

product owners will discover it’s a fine line between providing the
teams a long-term perspective (the roadmap) and creating waste
because what the teams implement from the backlogs will change
the long-term perspective and the next backlog.

This fine line is why each team’s product owner role is a full-time
job. It’s not possible for a product owner to weave in and out on an
agile program and expect to satisfy the role. They can’t. The teams
need their product owners full time to prepare stories for the next
ranked backlog. The product owner will need to answer questions
and provide feedback about the stories they are working on now.

Product ownership on a program is full-time job. See The Product
Owner Role Is Key to the Program’s Success.

4.8 Create the Big Picture Roadmap

You can put features, feature sets, themes, or epics into your
roadmap. Youmight also like to add external milestones into the big
picture roadmap, so people understand what you need and when.
It will depend on how much you already understand about the
problem you need to solve and the duration of your program.

A feature set is a collection of related features in one area of the
product. A feature set might be:

• Several stories about login and security, all specified as stories
so that you can see their value.

• They would include what can go wrong with login, such as
malicious users.

• They would include how to create a new user, how to send a
password to someone who has forgotten a password, and so
on.

• They would be ranked, so the PO can decide which of those
features to do now and which ones to do later.

Start Your Program Right 49

A theme or an epic is a high-level statement of what you want for
a feature. It is a promise to create stories. A theme might be:

• Do electronic signature.
• Do security for login.
• Password reset.

Stories have a value as part of their definition. A theme talks only
about the features and not much about the benefits. Do you see the
difference in specificity?

The product owner might start with themes, and evolve them to
feature sets. Take the time for a requirements workshop or user
storymapping to fully specify the feature sets. Then the PO can rank
the feature sets to decide which stories in the feature set the team
will implement now and which stories the team will implement
later.

This is an example of what your one-quarter roadmap might look
like.

Start Your Program Right 50

Example of an Agile Roadmap for One Quarter

For the first internal release, the login team would do secure login,
part 1. The admin team would do Admin, Part 1 and Diagnostics,
Part 1. The platform team would do File Transfer, Part 1.

Because the teams complete their stories, the product owner can
decide which feature set, or part of a feature set youwant when. The
product owners can guide the teams to creating a walking skeleton
in order of value.

4.9 Principles of Start Your Program
Right

1. Spend enough time chartering, so you know where the pro-
gram has to go. Don’t spend so much time that you don’t
start delivering. The principle is: “Deliver early and often to
satisfy the customer.”

Start Your Program Right 51

2. Ask the technical teams for feedback on the vision and release
criteria. Do they understand those pieces of the charter? Are
those pieces clear enough for the technical teams to make
tradeoffs? The principles are: “Empower the team” and “See
the whole.”

3. Start with a high-level, big picture of your roadmap. Keep
evolving that picture, so people can see where you want
the product to go. The principle is: “Business people and
developers must work together.”

5. Use Continuous Planning
You’ve seen how to create your first roadmap and maybe even the
first couple of product backlogs for any given team. Now, consider
how you will update the roadmap and backlogs.

As you replan, consider how small you can make the features
and minimum viable products. Your program will increase its
throughput as the batch size remains small.

5.1 Differentiate Between Internal and
External Releases

If you have continuous delivery, you can deliver something inter-
nally, to your organization, every day or multiple times a day. If you
don’t have continuous delivery, you might not be able to release
every day.

Release something internally to your organization at least once
a month. Releasing that often provides the entire program with
feedback. It also provides a cadence that others will find de-
pendable. When you release internally, you build trust across the
organization. It makes sense to release as often as possible.

Internal releases help the feature teams to obtain feedback about
the product. The internal releases will also show your management
and sponsors the value of your work. Internal releases show people
inside the organization what you have completed.

External releases show your customers what you have done. Exter-
nal releases are a business decision. Maybe your customer can take
the updated product now, maybe not. However, the teams still need
feedback on their work more often than once a quarter or whenever

52

Use Continuous Planning 53

your customer can take a release. This is why you need internal
releases at least as often as once a month.

You can release internally more often than once a month. Make the
once-a-month the minimum time between internal releases.

5.2 What Do You Want to Release This
Month?

Teams need small features so they can integrate and release often.
Even though you want to release something every month, it will be
small. What do you want to release this month?

Let’s assume you have two-week iterations. Two two-week itera-
tions fit into one month. If you work in three-week iterations, you
could release at the end of each iteration. If youwork in flow,maybe
you want to release every time you complete a feature, instead of
two weeks. Maybe you want to release when you have a minimum
viable product (MVP).

I assume you release internally at least as often as once a month.
More often is great. The more often you release internally, the
more everyone—the program participants, your sponsors, anyone
interested in your program—can see your progress. Everyone sees
feedback.

The less often you release, the more the feature teams have to
estimate. With more internal releases, the product owners can
change the backlogs. It’s a win-win.

Create internal releases so everyone can see program
progress. The larger the program, the more you need
frequent internal releases.

If you use continuous delivery, you might not need the one-quarter
agile roadmap as on Example of an Agile Roadmap for One Quarter.

Use Continuous Planning 54

Your program would release features faster than a product owner
could maintain the roadmap.

Consider the lack of frequent-enough delivery an impediment. See
if the feature teams can solve this problem, or if it is a program
issue.

5.3 Create Minimum Releasables

From the big roadmap, you can generate something that allows you
to see what yourminimum viable products, yourMVPs, are for each
internal release.

Maybe the product owners for a given feature set say something
like this, “We don’t have something minimum unless at least 80% of
the features exist.” They are correct when they consider an external
release. However, your program needs minimum internal releases.

Maybe instead of a minimum viable product, the product owners
can consider a Minimal Indispensable Feature Set, MIFS (BRO14).

MVPs or MIFS will vary in size. Each feature set might need
something different for an MVP.

“OurProductGrewDifferentlyOver
Time”
We had an email system as part of our product. We had an
MVP of basic get-and-send emails in our first MVP. But, we
didn’t do forwarding or attachments until our second internal
release. We didn’t do group emails until our third internal
release. We took other features from other feature sets, even
though we were the “email” team.

I was surprised that the team didn’t have such a difficult time
with that. I had a harder time because I was the product owner.

Use Continuous Planning 55

I wanted to finish the email system, already! But, the team saw
where the product roadmap was going, and it made sense to
them. They were okay with doing different features, and they
had fun with it.

They called themselves the “Email and… Team,” because they
did email and lots of other features. They said that knowing
their MVPs made a difference for them.

—A feature team product owner

Do not try to plan specifics of the feature sets/themes for more than
one quarter at a time. Even one-quarter is a ton of planning. Note
that you need to consider your MVPs for release.

If you restrict your planning to the MVPs for the internal releases
for a quarter: what has to be in your MVPs for each internal release
each quarter and then work towards that, you will do enough
planning for most projects.

If you release something every month, you never have to do big
release planning. If you update the agile roadmap every iteration,
or after every few features when teams work in flow, you can direct
the product development without big release planning. It’s all about
MVPs, minimum viable product. As long as you select your MVP
for the feature set, or for the entire product, and create small stories,
the teams will work towards that.

ContinuousDelivery andQuarterly
Planning
If you use continuous delivery, do you still need quarterly
planning? You might.

If you need to commit across the organization or to customers,

Use Continuous Planning 56

use a roadmap. The roadmap will show people the small items
for product direction now, and the larger items later. Everyone
can see the product direction.

The fact that you do continuous delivery makes it much
easier to deliver as needed and to commit to those predicted
deliverables.

The roadmap is a wish-list. The deliverables are the reality.

5.4 Plan for External Releases

If the product owners always define MVPs, and the teams always
deliver MVPs, and the MVPs move the product towards the release
criteria, no one has to worry about what goes into external releases.

If you have continuous delivery, you don’t have to worry about
external releases. You release all the time.

You have to worry about external releases when:

• The program doesn’t release all the time.
• The feature teams don’t do continuous integration and re-
lease what they have into the mainline.

• Teams work on architecture as opposed to features (when the
feature teams don’t create features).

If you get caught in these traps, the program has problems. Either
the teams have problems at the team level, or the entire program has
problems. The product owners can start addressing these problems
by creating MVPs and making sure the teams deliver value, not
architectural stories.

Use Continuous Planning 57

5.5 Deliverable and Rolling Wave
Planning Helps

Internal releases are deliverable-based planning. The product own-
ers specify the deliverable chunks they want to see. As the teams
finish the chunks, they can take more.

Rolling wave scheduling is this:

• Schedule your next deliverable. Make sure that deliverable is
no longer than two to four weeks away.

• At the end of your first week, schedule the next deliverable.
• Repeat, after each week.

Now you always have a two-to-four week schedule with deliver-
ables.

The teams can use iterations or flow. It doesn’t matter. Each team
has this responsibility: provide a constant flow of value without
incurring technical debt. See Continuous Integration and Testing
Supports Collaboration for more information about ways to remove
technical debt.

You or the program product owner might decide that the program
can take some technical debt to meet a specific deliverable. (I don’t
recommend this.) As part of your deliverable-based planning, add
the resolution of that debt to the product roadmap or a future
backlog.

Using rolling wave budgeting and incremental budgeting is espe-
cially helpful if you have people who want to know how much the
project will cost. You can update the spend and plan numbers with
every release.

Use Continuous Planning 58

5.6 Small is Beautiful for Programs

Some people think as you create an agile and lean program, it’s
difficult to have short iterations. They tell me that because more
people and teams are on the program, you need to make the
iterations longer.

The problem is this: the more you want the benefits of agile or lean,
the more you need feedback. The larger the program, the more
frequently you need feedback. Why? You do not want to drive
the company under while it is waiting for you to complete the
program. The longer it takes to get feedback on any feature or set of
features, the more difficult it is for the company to know whether
the program is succeeding.

The larger the program, the more the organization spends on your
work. You need to deliver—at every level—often. The value of
making progress every day is that everyone gets feedback. People
learn early if anyone is going down the wrong path. You don’t have
the opportunity to bankrupt your organization because you are not
delivering.

If you Review the Twelve Principles of Agile Software Develop-
ment, and Review the Seven Lean Principles, you can see that the
principles are about delivering working software, as fast as possible.
Shorter iterations allow you to do that.

What if the people on your teams think that short iterations encom-
pass overhead for planning and estimation and, even retrospectives?
There are several reasons for that.

• When you hear the word “overhead,” you are hearing some-
one who has not yet fully transitioned to agile. Overhead
is code for “we have impediments, and we don’t yet realize
what they are, so we call them overhead.” These impediments
might be large stories, and the lack of understanding that they
can spike a large story to break it into smaller chunks; or

Use Continuous Planning 59

it could be a misunderstanding of what a minimum viable
product could be.

• Those folks might not realize how little planning they need
to do, to complete small deliverables and achieve an internal
release each month.

• If your organization has not yet started to manage the project
portfolio, people are multitasking among several projects
or features. Under those conditions, you will have trouble
building and maintaining a program of small features.

• You have a complex product, so the teams extend their
iterations to more than twoweeks to achieve some form of an
MVP. I’ll talk more about this in Shepherd the Architecture.

What if you think the iterations need to be longer? If you think
planning is overhead, I bet you don’t have small stories, or that you
are trying to use estimation to manage the product roadmap or the
project portfolio.

Start thinking about value. Start thinking about the smallest feature
that will show everyone the progress of a feature or feature set.

5.7 How Often Can You Replan?

Continuous planning works in much the same way as continuous
integration. When the feature teams integrate all the time, code
integration is easier. When you replan all the time, the planning
takes less time and is easier.

When you use continuous planning, you don’t have to have big
plans. You can plan for the next iteration (or two). You can plan for
the next deliverable (or two). You never have to have everyone in
the same room for release planning.

As the product owners see and accept the features that the teams
complete in their backlogs, they can update the roadmap as a

Use Continuous Planning 60

product value team. Continuous planning avoids the need for a
large “let’s get everyone in the same room” to plan a quarter’s worth
of work.

Very few teams can plan for a quarter at a time and meet that plan.
Your program might have interruptions from operations/support,
the rank of some features might change, and teams encounter
problems every day. If you plan for a quarter, you are not likely
to accomplish everything you plan.

With continuous planning, you update the backlogs just in time and
keep your program open to change. The smaller your planning, the
more likely the teams are to be able to achieve the vision and release
criteria.

Keep planning small. With small stories, small plan-
ning, and small teams, your program is more likely
to have faster throughput and faster feedback. Small
and frequent planning helps your program be more
resilient.

The more you can move to continuous planning, the more agile and
lean your programwill be. The point of the roadmaps is to show the
team the big picture of the product, and how that vision changes
over time. The backlogs are the specifics for each team.

The more risk you have in your program, the more feedback you
need. The more you want to keep the sponsors engaged, the more
often you might have to change the roadmap—and by extension—
the backlogs.

If you want more feedback, release more often. Can you release
every day? If not every day, what impediments do you have for
creating an internal release at least once a month? As a program
manager, remove those impediments. Then you can ask the program
product owner to update the roadmap at least as often as once a
month.

Use Continuous Planning 61

“It’s not the Plan; It’s About Plan-
ning”
I used to use amorewaterfall approach tomy programs. I tried
to plan once and have it be “the plan of record” for the entire
program.

It didn’t work so well. I was always replanning. Then I
discovered rolling wave planning, and I learned about the
value of planning, where we discussed what we could do
when, and where the risks were, versus the actual plan, which
was always out of date the next day.

Now, I use our planning as a way to understand problems and
risks. I use the planning to help make decisions over the next
few weeks. I never expect the plan to last past a couple of
weeks. But I’m in better shape because of the risk discussions
we had.

—A senior program manager

Good planning, in the sense of providing a roadmap for the teams
and reflecting the current reality depends on more feedback, not
less. When you plan less often, you don’t see your current reality.
The plans become targets, instead of plans the teams can use to
guide their work.

5.8 Separate the Product Roadmap from
the Project Portfolio

The larger your program, the more you might have projects in the
form of feature sets to sequence. I like to think of this ranking as
a form of feature portfolio management. The sequencing occurs
when you say something like this, “We need to work on enough

Use Continuous Planning 62

features for the Engine before we get to the Diagnostics module or
the Finance module.”

That might be exactly the right way to approach what is most
valuable for the program and your sponsors. That is a form of
project portfolio management. However, it is deciding what is right
for this product, not for the organization overall. Because it is for
this product, it’s not project portfolio management. (See Manage
Your Project Portfolio: Increase Your Capacity and Finish More
Projects, ROT09 for more information about an organization-wide
approach to sequencing projects and programs.)

The product owner value team ranks features and possibly projects
(as collections of feature sets) for your program. Do that, and leave
the overall project portfolio management to the people who decide
on the strategy for your organization.

5.9 Ways to Rank Items in the Roadmap
or Backlogs

Do you ever wonder how the product owner or the program product
owner decides what to do first, second, or third? As a program
manager, you might be able to help the product owner team decide
what to do when.

5.9.1 Do the shortest work first

Many product owners like to use schedule estimation as a way to
define a value for the features or feature sets. If you decide to do
the shortest features first (which might be a great way to be able
to show progress), that’s called the “weighted shortest job first.”
See The Principles of Product Development Flow: Second Generation
Lean Product Development, REI09.

Use Continuous Planning 63

The shortest job first works well when you have dependable esti-
mates and no Cost of Delay. Here are three challenges I have seen
to using weighted shortest job first: teams provide inaccurate or
long estimates; the teams have interdependencies; or the teams are
missing necessary people for them to finish features. In each of these
cases, your program will incur a Cost of Delay trying to do the
shortest work first. The teams can’t tell which work is shortest. Use
these other ideas to evaluate items in your roadmap or features in
the backlog.

5.9.2 “Is this still valuable?”

What seems like a good idea at the beginning of the program might
not be useful at all partway through the program. I recommend that
for all features not started—and even the incomplete features—the
product owner ask, “Is this still valuable?”

This question is similar to the zeroth question in project portfolio
management, “Should we do this project at all?” See Manage Your
Project Portfolio: Increase Your Capacity and Finish More Projects,
ROT09. When you ask this question about the project portfolio, you
optimize value for the entire organization. When you ask the value
question about the program feature-sets, you optimize the value for
this program. You decide whichwork not to do, which avoids waste.

5.9.3 Use business value points

When I work with clients, I often discover that they know which
features are worth more to them and which features are worth less.
The problem is they don’t know howmuch more or howmuch less.
Business value points can help.

With these points, you assign a unique number to each feature you
consider ranking out of a total number of points. Imagine you have
10,000 points and seven features. This might be your ranking:

Use Continuous Planning 64

Ranking with Business Value Points

The relative value of each feature is what matters. If one team
would normally implement all of Features 1, 2, and 3, you can
consider asking several teams towork on those features, even if they
are not normally the features the teams would implement. That’s
because those features are so much more important than all the
other features at this time.

Every time you assess the product backlog, reassign the business
value points. One iteration, you might decide you only need 10,000
points. A few iterations later, you might have five more teams and
need to use 50,000 points to decide which parts of which features
are most important now. As long as you use a unique number of
points, it doesn’t matter how many points you use. It matters that
each feature has a unique number of points.

Use Continuous Planning 65

5.9.4 Evaluate the Cost of Delay

The Cost of Delay is the cost that the organization incurs when you
have delays in the product release. The organization expects to get
a benefit from the release. If you delay the product by a month, the
cost of that delay is a month ofmaximum lost revenue. The Cost of
Delay is real and will slow your program’s momentum.

In a program, the teams might encounter many possible causes for
a Cost of Delay:

• Waiting for another team to implement a necessary feature.
• Insufficient people on a specific team, e.g., not enough DBAs
or testers, or some other scarce person.

• Experts, which lead to queues of work for that person.
• Technical debt.

As part of a program team, you might see delays when people don’t
finish their actions on time:

• Marketing Communications had a delay with finishing the
one-sheets, and there is no point releasing the product with-
out them.

• A vendor doesn’t deliver a subsystem on time.
• Hardware is not ready for installation.

There are many possible other causes of Cost of Delay. See Diving
for Hidden Treasures: Finding the Value in Your Project Portfolio
RE14.

Cost of Delay is real. Decide when you need to take the delays into
account as you rank features or work for the program.

Use Continuous Planning 66

5.9.5 Who has waste?

If you are managing a program that automates some piece of work,
the people doing the work have waste until you implement the
necessary chunks. I once worked with a program implementing the
back office application for a bank. Because the “back end” wasn’t
done, the back-office people had tomanually take the input from the
“open a checking account” feature and enter the data into the back-
end processing. There was no point in implementing more “front
office” features until the back end was complete.

Youmay have a program inwhich people have traditionally thought
in terms of the “front end” and the “back end.” If you do, you may
well see waste in all kinds of places in your product. Help people
think of features as end-to-end, not front- or back-ends. Thinking
this way could be a major change for them. People need time to
think in a new way.

Sometimes, waste is part of technical debt. If the teams don’t have
sufficient automated tests, they “waste” time doing manual testing.
I am not saying exploratory testing is a waste. I am saying that tests
you run more than once to provide yourself assurance that nothing
broke should be automated. That lack of automation is waste.

Teams new to agilemaywell have test-automation-and-buildwaste.
The earlier you discover this, the better, whether you are a product
owner or a program manager. Ranking that work is as important as
ranking features.

5.9.6 What will we learn?

Sometimes, the program needs to learn about a feature set or several
features sets. Sometimes, a team needs to evaluate several options
for a user interface. Sometimes, the architects need to experiment
with architecture or design to evaluate options. In these cases, you
trade early learning against finishing other features.

Use Continuous Planning 67

Do not mistake this learning for “Iteration Zero.” Iteration Zero
is when you get ready (and get ready and get ready) to start
work. Instead, when you schedule learning for a team, timebox the
learning and be ready to show the rest of the program the results.
The team might not be able to integrate some code. But they should
be able to answer questions.

5.9.7 What risks does this feature manage?

Your program may have customer-based risks, architectural risks,
development risks, and more. If you are sure your customers will
be perturbed unless you add this feature and soon, rank that feature
higher than others.

I often find that these risks affect each other. The customer wants
something right away. Doing that feature puts the rest of the
program at risk for delay. There seems to be no right answer. If
you see this in your program, try Cost of Delay for your feature
ranking. You may have customers who want different features now,
or you need to trade off some architectural exploration before you
can decide. Cost of Delay may help your decision.

5.10 Decide How You Will Evaluate Value

Use a combination of these evaluation approaches as you work
through the program. You might decide to implement some small
features first, to see some quick wins (weighted shortest job first).
You might decide to learn with spikes or small prototypes to inform
the architecture or design of some features (learning). Sometimes,
you look at Cost of Delay to see if teams are waiting for this feature
or that story. There is no one right answer for evaluating the items
in your roadmap or backlogs.

Do not use just the estimate of a given feature or feature set. When
you do that, the teams feel under tremendous pressure to deliver

Use Continuous Planning 68

that feature or feature set inside their estimate. If the item is large,
their estimate is likely to be wrong. The program will incur waste,
delays, and possibly technical debt.

Instead, consider how you can share the “what value is this to us
now” decision with the teams. They will help you.

5.11 Update the Roadmaps Often

The program product owner will need to update the big picture
roadmap at least once a quarter. If the feature teams release
internally at least once a month, the program product owner can
update the roadmap and change the backlogs once a month. If your
program can use continuous delivery, you can update the roadmaps
at least that often.

That means that the team product owners will need to update the
MVPs for the feature team backlogs at least once a month.

Use rolling wave planning and interim deliverables, and you never
have to do big planning.

Make your stories small—the product owners need to learn how to
do this with their feature teams—and no one has to spend a ton of
time planning. Instead, everyone spends time discussing what they
want for MVPs and what the product looks like now and should
look like in the future.

5.12 Principles of Continuous Planning

1. Generate the small picture with your MVP, minimum viable
products. The principle is: “Business people and developers
must work together.”

2. Always start from the roadmaps and move to the backlogs.
The principle is: “Amplify learning.”

Use Continuous Planning 69

3. Plan small so you can evolve the plan as your reality changes.
The principle is: “Welcome changing requirements.”

4. Update the plan as the teams complete work and reality
changes. The principle is: “Deliver working software fre-
quently.”

5. Use what the teams complete to inform the next batch of
roadmap and backlogs. The principle is: “Decide as late as
possible.”

6. Create an Environment of
Delivery

Create a program environment where the culture says, “Deliver”
every day, a little bit at a time. If the program teams deliver daily,
the feature teams are more likely to do so.

Think of this as your own DevOps culture. DevOps is a way to
create teams that know how to build and deploy. The idea is that
the team can always build. You make deployment automated and
tested. You can do one-click deployments.

Remember, youmight have a difference in the “deploy so we can see
everything inside our building” and “deploy to customers.” Every
team needs to be able to deploy anything internally at any time.
Deployment to customers is a business decision.

The people on your program teams have plenty of work in their
“day” jobs. Sometimes they see the program team work as onerous,
additional work. It doesn’t matter that the product your program
is producing might be the product to save the company. That’s
irrelevant. They havework back in their function that theirmanager
sees as quite important. Often, the program team work will feel like
multitasking to them.

How can you help them work on your program team?

6.1 Visualize Program TeamWork

You can help them by visualizing the program team work. I like
kanban boards for this, because everyone can see the flow of work
through the organization.

70

Create an Environment of Delivery 71

Possible Kanban for a Core Team

The figure Possible Kanban for a Core Team shows what you might
use for a kanban for a core team. You still have the Ranked Backlog
column. Since this is a core team, every programwill have their own
unique workflow. At minimum, track the work in the “In Progress”
and “Waiting” states. When an item is done, the task goes into the
Done column.

This is a possible kanban board. You may want to change it. If you
have research or analysis states, you would add that to your board.
If you have “In Purchasing” as a state, you would add that. Your
kanban board reflects your flow.

At the bottom are the swim lanes, where everyone can see which
items are in progress by the person working the item. If someone
needs help, the entire team can see it.

If you see the work in progress, it’s easier to help people understand
what, when, and why they need to deliver.

Don’t bury the work in meaningless milestones, such as “Beta” or

Create an Environment of Delivery 72

some other milestone. Sure, Beta does mean something to everyone
on the program. But what are the tasks everyone needs to deliver to
get to that milestone? Do deliverable-based planning to achieve that
milestone. Keep the tasks small, something people can accomplish
inside of a day or two, so they can deliver their work and not feel
as if the program has taken over their lives.

I like physical boards wherever possible, rather than electronic
boards. Even if your core team and software program teams are
experienced at agile and lean, they might be new at being a core
team or a software program team for this product. My guideline for
new agile and lean teams is to start with a physical board until their
work together becomes natural.

For example, they might want to add avatars to the board, as in
Kanban in Action, (HAM14). That personalizes the board, and helps
people know who is working on what.

6.2 Keep the Program TeamWork Small

When you keep the work small, people feel as if they are accom-
plishing something. That makes them feel good about themselves,
and sets them up to do more work. It changes their mindset.

On the other hand, if they slog through a large task, and feel as
if it’s never-ending, they don’t feel good. They are in danger of
never completing the work, even if they are minutes away from
completion (AMA11). The problem with large tasks is that you
might not be able to tell you are minutes away from completion.

When people put small tasks on their kanban boards, they are more
likely to take them and finish them. If they put large tasks, such as,
“Redo Licensing,” they are less likely to take them. If your program
teammembers create large tasks, ask them to break those down into
the component tasks. Those tasks might be:

Create an Environment of Delivery 73

• Call the meeting with sales, support, and legal on Friday.
• Prepare the handout for the meeting with the proposed
changes highlighted. Do by Thursday to send out in advance.

• Run decision by CFO after we all agree.

Now, everyone can see that “Redo Licensing” is not trivial. They
might make other suggestions, such as, “Should we have Finance in
the initial meeting?”

If you keep your program team kanban visible, everyone can
see what you are doing. Who knows? Other people might have
suggestions, too. When the program team members deliver all the
time, the feature teams are more likely to do so, also.

6.3 How Features Flow Through Teams

I’ve talked a lot about the program teams so far. You might be
wondering how the features flow through the teams. If each team
is agile, and a fully functional feature team, it’s easy.

Feature teams have all the roles they require. Each team is able
to deliver a story/feature every day or two days, following these
principles:

• Visualize the workflow, so the team can see the value stream,
bottlenecks, and any work in progress. Teams do this, in case
they become interdependent on another team.

• Keep the batch size (story size) small, as in no larger than
two days. Why? This allows everyone to integrate every-
thing all the time. It also allows the entire program to do
continuous delivery, even if that delivery is just internal. It
also allows for fast feedback and change. Small stories make
interdependencies more obvious. It allows you to separate the
business decision for product release from the actual decision
of release.

Create an Environment of Delivery 74

• Use good engineering practices such as test-driven devel-
opment, acceptance test-driven development, unit testing,
pairing, whatever you need so that you have a safety net
for your development. The technical practices we associate
with agile provide a safety net for development and allow
everyone to proceed at a sustainable pace. If you don’t use
the engineering practices, you will build technical debt and
wonder why you are breathless, putting in overtime, never
able to do what you want to do.

When the feature teams deliver all the time, they build momentum.
It’s easy for the entire program to see how to proceed.

6.4 How Often Can You Release Your
Product?

You can start by assessing how you could release your product. This
is not how often you release your product to your customers now.
This is your potential for releases. Your customers might not want
to take new product as often as you could release. However, if you
could release that often, that might change how you think about
your program.

Potential for Release Frequency

How expensive is it to release your product? The expense of release
will change your business decision about when to release your
product.

Create an Environment of Delivery 75

Separate the business decision of releasing your product from
making your software releasable.

That is, the more to the left of the continuum you are, the more you
can marry your releases to your iterations or your features, if you
prefer. Your project portfolio decisions are easier to make, and they
can occur as often as you want, as long as you get to done, every
feature or iteration.

The more to the right of the continuum you are, the more you
need to separate the business decision of releasing from finishing
features or iterations. The more to the right of the continuum, the
more important it is to be able to get to done on a regular basis, so
you can make good project portfolio decisions. Why? Because you
often have money tied up in long-lead item expenses. You have to
make decisions early for committing to hardware or non-recurring
engineering (NRE) expenses.

Why does this matter for your program?

Your program product owner and core team, the people responsible
for the business value of the program, will have to make many
decisions on a weekly basis about the risks of the program. The
more the technical teams can show progress by releasing, the more
data the core team has, the better decisions the core team can make.
It is that simple.

If you have a Software as a Service (SaaS) product, and you are not
able to release as often as once a day, you have impediments. Do
you know what those impediments are? Can you remove them?

6.5 Release Internally, Even with
Hardware

As an agile program manager, create a culture of delivery even
if you have hardware in your program. You might not be able to

Create an Environment of Delivery 76

release new hardware every month because of the expense. You
have another alternative.

When hardware developers create their product, they simulate.
They can demonstrate from their simulations. It’s possible that only
the software people understand those demonstrations, but that’s
fine. Someone has to understand those demonstrations. Have the
hardware people demonstrate their working product to the software
people.

Then, the software people get to “demonstrable” instead of re-
leasable until the hardware people make prototype hardware avail-
able to the program. Once everyone has prototype hardware, ev-
eryone can get to releasable.

Ask everyone to be able to release their part of the product at least
once each month, or in the case of software, even more often. That’s
the internal release on the roadmap. When the hardware folks do
the final debug on the hardware, they need the most up-to-date
software. Having to wait even two weeks is a two-week delay for
your program. You have a linear critical path until the software is
ready.

If every team, program team or feature team, works on small chunks
of work, they can get to done quickly. See if your teams can use
continuous integration. If so, as they integrate and build, they can
release their work for feedback. The sooner the testers provide
feedback to the developers, the fewer defects you will have overall
in the program. The sooner everyone integrates their work, the
faster the teams can see if they have problems.

The faster the feedback across the program, the less inadvertent
technical debt your program will accumulate.

If everyone releases something every day or so, you can create inter-
nal releases each month without too much fuss. It takes Autonomy,
Collaboration, and Exploration on the part of each team.

Create an Environment of Delivery 77

6.6 Are You Integrating Chunks or
Products From Others?

If you are dependent on vendors to supply chunks of your product,
create milestones that show the interdependencies. You can share
those interdependencies and update the dates for the milestones as
the program proceeds.

Consider whether you want a kanban board or a Gantt chart or
both to see the interdependencies. A kanban board helps everyone
see all deliverables and the state of those deliverables. If you are
working with vendors new to agile, you may need a Gantt chart.
Your Gantt chart won’t be accurate. However, it will help everyone
see the interdependencies and allow you to share dates.

If you can help those vendors provide you their working product
at least as often as once a month, you have your monthly internal
release.

Use rolling wave planning and deliverable-based milestones. (See
Deliverable and Rolling Wave Planning Helps.) Make sure these
vendors provide youworking product, not specifications. Youmight
also need specs to make sure everyone delivers their part of the
product that works. And, because this is an agile program, you can
expect some of the details in the specs to change, as your vendors
provide you with interim product.

Don’t let your vendors run open-loop; they need to provide working
product. Share all the dates with all your vendors. They need to see
the interdependencies also.

If you use a Gantt chart don’t believe the date, not at the beginning.
The Gantt chart’s end date is the first date you can’t prove you
can’t meet. You might want 3-point estimation (a PERT chart), or
a percentage confidence. (See the estimation discussion in Supply
a Three-Date Estimate.) But, the shape of the Gantt will help
everyone see what’s going on.

Create an Environment of Delivery 78

“Gantts Helped Everyone See De-
liverables”
I used this approach last year to deliver a brand new business
far, far sooner than anyone expected. My key driver and my
key selling point was this: we haven’t had a good track record
with this vendor; we expect them to ship us buggy software;
I’d rather find the first batch of bugs 6 weeks in, rather than
6 months in; If they don’t deliver us buggy software then…
brilliant… we can thank them, we can pat them on the back,
we have reassurance; if they do ship us buggy software 6
weeks in then we’ll need to sit down and have a long, hard
conversation, which is even better than brilliant. The vendor
didn’t like this suggestion but after the project, once they’d
finished earlier than they expected and saved themselves a
lot of (non-billable) rework, they said they’d love to continue
working that way.

The Gantt view was important because so much of that
programme’s development work needed to revolve around
that Vendor’s schedule since it was our core platform.

—Clarke Ching, Programme Manager (private communica-
tion)

6.7 Manage the Risks of Integration
from Other Vendors

Your outside vendor (or internal non-agile team) might have terrific
plans to deliver your program their monthly deliverables. They
might “yes” you and have no plans to deliver. They might be
something in-between.

If you integrate systems from other vendors, manage the risks by

Create an Environment of Delivery 79

building integration time into your backlog and schedule. How
much integration time? My guideline is that if a vendor is not
agile, ask for monthly deliverables and expect to spend a month
integrating the first time. That will provide you data.

What do you do in that month? Your feature teams start integrating
the vendor’s product. On Day One, they find a show-stopper
problem. They can’t integrate anything until the vendor fixes that
problem. Let’s assume you have a great vendor and they provide a
fix the next day. Your teams continue to integrate and three days
later they find another problem. This continues for several weeks.

Here are some ways to manage the integration risks:

• Create an integration team to manage the vendor relation-
ship, find problems, ask for fixes, and nudge the vendor into
sending more frequent updates that work.

• Allow as much time for integration as the vendor has be-
tween releases to you. If the vendor releases once a month,
allow for one month integration. Now, track the elapsed time
spent. Use that data to plan for the next integration.

• Ask the vendor to develop and release in an agile way. If your
vendor could release every day or several times a day, could
you take the product? If not, what would you have to do?

Never assume you will get a defect-free build from a vendor at any
time. Never assume your vendor-supplied build will arrive on time.
Many vendors who are waterfall have a difficult timewith frequent,
defect-free releases. Encourage your vendor and, if it fits for you,
offer to help them.

Create an Environment of Delivery 80

6.8 Create a Culture of Delivery
Throughout the Program

In programs, the feature teams will have interconnection points
with the rest of the feature teams. Ensure nothing prevents the
teams from integrating often and demonstrating informally to
anyone who will watch. This allows everyone to create a culture
of delivery, so you can get feedback and make sure you are on the
right track.

6.9 Principles of Create an Environment
of Delivery

1. An environment of delivery helps people see the small wins
as they work in the program. The principles are: “Deliver
early and often to satisfy the customer” and “Deliver working
software frequently.”

2. Look for places work can hide and expose that work. The
principles are: “Eliminate waste” and “Amplify learning.”

3. Make iterations and stories short so everyone can deliver
daily. Start with a story size that is no larger than a team day
or two team days. That allows each team to integrate into the
codebase all the time. Everyone can see the product growing
all the time. The entire program delivers. Each small win
creates more trust across the organization. The principles are:
“Deliver early and often to satisfy the customer,” “Welcome
changing requirements,” “Working software is the primary
measure of progress,” and “Simplicity.”

7. Encourage Autonomy,
Collaboration, and

Exploration
Back in A Program is a Strategic Collection of Several Projects, I
explained that program management was not scaling agile, that it
was scaling collaboration practices across the program.

First, let’s talk about what software is, and how that changes how
we think about our practices.

7.1 Software is Learning, Not
Construction

Product development—especially software development—is about
learning. We uncover requirements as we proceed. If you expect
to uncover requirements, you will learn as you proceed. Agile and
lean allow you to implement and replan as you learn.

We can’t build software the samewaywe construct or manufacture.
That’s because all new software is innovation.

Software projects help teams learn and innovate as they proceed.
We can timebox our learning. We can choose to stop doing some-
thing. We can put acceptance or release criteria around it and say,
“We have done enough for now.”

When I taught a bunch of analog chip designers agile, they said,
“This is exactly what we do. We iterate until we get the tradeoffs
right.”

81

Encourage Autonomy, Collaboration, and Exploration 82

Iterating until you get the tradeoffs right is what you do when you
learn.

When you iterate on the design, and build incrementally, you learn
throughout the development of your product. You can change as
you learn.

Agile and lean approaches assist program management by encour-
aging change. How? Agile and lean encourage change by helping
the teams realize they need to:

• Implement small chunks of work in the form of features.
• Finish that work, so it’s done.
• Integrate that work across the program, so everyone sees that
work. Retrospect at reasonable intervals.

• Repeat.

It doesn’t matter what your product is. It could be an email
application, an operating system, an embedded system, or some
other product. If you follow the model above, you will learn as
you proceed. This learning leads to change. That’s where agile
approaches are so helpful.

The rate of learning in a program is significant, because there are
many more people than there are on a single project. If you try
to treat a program as if it is a construction project, you will be
disappointed. Do not think you can “roll down” from the program
to the projects and be agile. That is hierarchical, waterfall thinking.
In agile and lean programs, we scale out from the cross-functional
teams.

7.2 Scaling Agile Means Scaling
Collaborative Practices

If you want a large program because you want an earlier release
date, your teams need to be autonomous, so they can make their

Encourage Autonomy, Collaboration, and Exploration 83

own decisions. They need to be collaborative, because they will
learn as they proceed. Some of those learnings will create inter-
dependencies. And, the teams need to be able to explore—not open-
loop, wander off exploration into nowhere, but exploration with the
intent of learning.

The way your program will succeed is if the teams communicate
through their tests and continuous integration. It all goes back
to the agile and lean principles (See the agile principles and the
lean principles) of delivering working software often as a holistic
approach.

To encourage speed on your agile program, the program product
owner needs to have feature sets on the agile roadmap, not compo-
nents.

The more specific feature sets you have, the more the teams can
create tests and integrate independently. They may still have points
of interdependence. However, the more you define specific features
inside feature sets, the more the teams can operate as feature teams,
or as feature set teams (several teams together working on one
feature set).

However, if you want to encourage exploration on your agile
program, the program product owner can have themes or epics on
the agile roadmap. If your product is brand new, sometimes called
“greenfield,” you may want to have several feature teams explore
together. The feature teams have to work interdependently on each
feature.

You may need architects to do some wayfinding, although I prefer
that teams do that collaboratively. When teams collaborate on
discovering the architecture, they not only produce features now,
they also formulate future features for the roadmap.

The larger the feature—the closer it is to a theme or an epic—the
slower the feature teams are. They must discuss with each other
what the epic means, and what the feature set(s) are for that epic.

Encourage Autonomy, Collaboration, and Exploration 84

Teams might have to map their stories together, along with their
product owners to understand what the epic is.

If you want speed, the collaborative practices are testing and
integration.

If you want exploration, the collaborative practices are story map-
ping and wayfinding, before you can consider testing and integra-
tion.

It depends on how much the product owners and the teams know
about the product solution domain.

7.3 Create Autonomous Feature Teams

I assume your program has feature teams, or is working towards
composing feature teams. Why? Because your customers buy fea-
tures. They don’t buy components, unless you sell libraries. They
don’t buy services. They don’t buy architecture or frameworks.
They buy features. Consider organizing the teams and what the
teams produce by what your customers buy. That way, you can
make Conway’s Lawwork for you, not against you. (Conway’s Law
says the product architecture reflects the communication structures
of those organizations. See the Wikipedia entry for more details.)

With a program, if you do not organize by feature teams, each
team’s Cost of Delay adds up. Single teams think they are done with
their work, only to discover later that the components don’t create
features. See The Teams Have Dependencies on Other Teams.

If your program is not yet organized into feature teams, take another
look at How Features Flow Through Teams and the suggestions
about moving from other kinds of teams to feature teams. See the
ideas in Troubleshooting Agile Team Issues.

When feature teams are autonomous, they create their own kind
of agile approach. It doesn’t matter if they use iterations, kanban,

https://en.wikipedia.org/wiki/Conway%27s_law

Encourage Autonomy, Collaboration, and Exploration 85

both, or neither. It only matters that they have a constant flow of
features through their team. If a feature team gets stuck—and this
does occur—they can ask for help. But the team needs to be able to
create their features by themselves, without relying on experts from
another team. Or, without interdependencies with other teams.
That’s what I mean by autonomous.

Each team can still ask questions of another team or teammember. I
would expect that. But each team is a fully-functioning agile team,
a team which has been practicing, learning, and improving their
agile approach.

7.4 Create Small-World Networks to
Optimize Learning

What is the “best” way to move information through your organi-
zation? The rumor mill.

One person tells someone something. That person tells someone
else. It’s viral. It’s as if the information has a mind of its own.
Can you use that network, that viral-ness for the benefit of your
program? You can, if you organize the program to do so.

That network has a name. It’s called a small-world network. If
you have ever used Wikipedia, you used a product created by a
small-world network. Anyone can edit Wikipedia. There are some
rules, mostly enforced by the community, about how people edit.
Wikipedia has the notion of collective “code” ownership. It’s natural
language, not code, but the ideas are the same.

Most of the users don’t change Wikipedia—we see no need to do
so. In your program, you would expect the developers to change
the code. You would expect the testers to change the tests and
the business analysts to change the stories, and so on. You might
have some rules about who can change what to make the program
environment run smoothly. For example, you might agree on the

http://www.wikipedia.org/

Encourage Autonomy, Collaboration, and Exploration 86

norm that no one who is not a business analyst or a product owner
can change stories less than threeweeks out. But, anyone can update
for clarity any story at any time.

Small-world networks are flexible and depend on the team mem-
bers to make them work (Here Comes Everybody: The Power of
Organizing with Organizations, SHI08). They have almost no limit
to their scaling. They don’t require hierarchy. They scale out, not
up. They have a very low transaction cost. They don’t require
management. However, they do require that you tell people that
you want them to work together.

This is a picture of what one small-world network for nine teams
might look like. Your small-world network will be different.

Possible Picture of Nine Team Small-World Network

Note that every team is connected to every other team, but not
in the same way. Some people are highly connected; some people
are much less connected. That doesn’t matter. The program can

Encourage Autonomy, Collaboration, and Exploration 87

take advantage of how people are connected, even if people are not
directly connected to each other.

7.5 Communities of Practice Create
Connection and Collaboration

When you have feature teams, people want to connect to other
people like themselves across the program. They want to connect to
other platform, middleware, UI developers. They want to connect
to other testers, analysts, writers, DBAs. If you create communities
of practice in the program, they will have a way to connect.

The feature teams take responsibility for their features. And, the
communities of practice provide people with a way to connect
across feature teams and discuss issues that allow them to explore
problems and solve them across the program. The communities of
practice help people collaborate and learn across the program.

This is an example of what three feature teams might look like if
they decided to create communities of practice from their feature
teams.

Community of Practice

Notice that each community of practice has unique members,

Encourage Autonomy, Collaboration, and Exploration 88

except for the Developer community. Because architects are also de-
velopers, the architects and developersmight overlap. Your program
will have to decide what to do: are all developers also architects?
Or, are architects, who are embedded on the teams, a subset of
the developers? Let the teams decide. Remember, architects guide
the business value of the architecture. They are not the only ones
allowed to architect. See Shepherd the Agile Architecture for more
ideas about architects and how they help shepherd the business
value of the product.

Communities of practice help the teams connect and decide when
and whether to deepen their small-world networks.

This is easier if everyone is collocated. When people are geograph-
ically distributed, their opportunities to learn from each other are
virtual and not nearly as satisfying. People will still learn from each
other when they are distributed. But they may discover it takes
longer.

7.6 Avoid Hierarchical Titles

When you start thinking of your agile program as spokes of net-
works, you realize that the teams move toward not only solving
problems themselves but also coordinating among themselves.

Think of your agile teams as spokes in a wheel.
When they all work together, the wheel turns and the
program works. When they don’t work together, the
wheel doesn’t turn and gets stuck. No momentum.

I avoid titles such as Chief architect, Chief product owner, Master
architect, Über anything, Master anything. The core or the program
team members are not part of a hierarchy.

Encourage Autonomy, Collaboration, and Exploration 89

I do use titles such as program manager, program product owner,
and when necessary, program architect. The idea behind the pro-
gram titles is that these people have a responsibility to provide
business value to the program. They are not hierarchical leaders.
They might lead a community of practice as a servant leader,
facilitating communication, removing obstacles, connecting people.
(See Develop Your Servant Leadership for more details.)

However, it is not the program architect’s job to do Big Architecture
Up Front and design the architecture for the product. On the
contrary, it is the program architect’s job to nurture the evolution
of the architecture and the business value of the architecture as
the program proceeds. It is his or her job to worry about the
most responsible moment to lead the discussion at the architecture
community of practice, “I think we know enough to say this is our
architecture for now.”

It is the program product owner’s job to define the agile roadmap
and update it as the program product owner sees the demonstra-
tions and hears from the other product owners in the product owner
community of practice.

It is the program manager’s job to create the program plan with the
core team and update it and the risk list and any other documents if
necessary and collaborate across the organization. These program
people have extra responsibilities. They are not masters or chiefs or
über anybody. They have responsibility for business value.

And, if you need a person to be the chief architect, one person to
make all the final decisions, say so. That’s okay. You might even
need one person to be the program product owner (not a chief), to
be the person to make the final decision about the roadmap and the
backlog. Say so. But make it a transparent decision.

If you’re transparent about it, everyone will respect your decision.
Your people will appreciate you for your honesty.

Encourage Autonomy, Collaboration, and Exploration 90

7.7 Continuous Integration and Testing
Supports Collaboration

I like continuous integration (CI), where each team finishes their
small chunks and integrates their work at least once a day. (When
I use CI, each team integrates multiple times each day.) It’s even
better when that small chunk is a story. You don’t need hardening
sprints. You don’t have program-level technical debt. Everyone gets
to see the product grow each day.

If you are able to use the product in-house, you can see the product,
and get feedback from the in-house users. It’s a win for everyone.

Teammembers can use continuous integration when they automate
their unit testing and much of their system testing. Testers will
still need to perform the nasty exploratory testing, which will find
defects in unexpected places. Testers can automate most of the
normal test scenarios that the team needs to run often.

When the teams automate their testing and continuously integrate
their code, something magical happens. They can collaborate at the
team level because their code works. They can solve problems in
their communities of practice and in their small world networks.
That has two significant side effects: the program moves faster,
maintaining momentum. And, the problems they escalate to the
software program team tend to be more difficult to solve.

If the program team solves only the difficult problems, not “how
do we transition to agile” problems, the program team can provide
optimal value to the program. They solve problems that prevent the
entire product from releasing, not the obstacles that prevent your
teams from even getting to a product.

If your teams do not have automated tests or are not able to
continuously integrate, solve those problems now. Do not wait
until you are midway through the program and your product
development has stopped because no one can integrate.

Encourage Autonomy, Collaboration, and Exploration 91

In the same way, if the teams do not maintain their automated
test development—both unit test and system test development—
they will be unable to discover how to fix their code if two features
clobber each other. Making features small and using small-world
networks helps with collaboration. But maintaining good support
for code with test automation and continuous integration helps too.

What can a program manager do?

1. Ask for the result you want. If you want continuous integra-
tion, explain that’s what you want. I say something like this,
“I want the system to be in a releasable state every day. At
a minimum, I would like that every week. I know that’s not
where we are now, and that’s the result I would like. What
would it take for us to get there?”

2. Assume the technical teams understand the technical prob-
lems better than you, the program manager do. If you ask for
the problem and impediments, don’t poo-poo the problems.
Treat the problems and impediments seriously. Assume the
technical people are correct about the problems.

3. Use the rule of three for each potential solution. That is, for
each problem, develop three potential reasonable solutions to
that problem. That way, everyone understands the problem
well enough. If you only have one potential solution, chances
are quite good no one understands the problem well enough
to solve it.

4. Involve the communities of practice in generating the solu-
tions to these problems. That’s what they are there for. Use
them.

5. Ask for project or feature team volunteers to try a solution
before committing the program to it. Never impose a solution
on the entire program. If no one is willing to volunteer to try
a solution, it’s not reasonable. Go back to the drawing board.

As the programmanager, listen to your teams. If they say, “We can’t

Encourage Autonomy, Collaboration, and Exploration 92

do this,” ask what would enable them to be able to do what you
desire. Consider asking them to experiment to become more agile
and lean.

Without continuous integration, your program cannot achieve con-
tinuous delivery. If you have the possibility to use continuous
delivery, what prevents you from doing so? That’s an impediment,
you as a program manager, can facilitate removing.

7.8 Beware of Technical Debt

The larger and longer your program, the more the teams need
to keep the code and tests clean. If they keep the code and tests
clean, they can use continuous integration. They can meet all
their deliverables to each other. The can collaborate across the
organization, because all the code and tests are ready and available
for them to work on at any time. If the program encounters a big
problem, such as the teams realize the current architecture won’t
work, the code is in great shape to refactor or redesign.

As a program manager, listen to your teams if they start to say, “We
feel pressured to meet a date.” My experience (and I bet yours, too)
is that when teams try to meet dates, they finesse quality.

In agile, teams finish their work. Limit the feature scope, not quality.
That’s the way to build a great product in a program.

Eliminate technical debt in each feature. Eliminate technical debt
for each iteration or feature set. Eliminate technical debt for each
release. If any team needs a hardening sprint, you have technical
debt. Find it and eliminate it.

Encourage Autonomy, Collaboration, and Exploration 93

7.9 Invite People to Experiment

One way to assist autonomy, collaboration, and exploration across
the program is to invite people to experiment.

An experiment is when you have developed a hypothesis of what is
causing a problem or impediment. You decide to try something for
some amount of time and measure the results. You need to measure,
or you’re not experimenting. At the end of that time, you assess the
results and decide what to do next.

If you invite people to experiment, or if others invite you to
experiment, no one mandates anything for anyone else. No one
holds the “secret sauce” for problem solving on the program. That’s
good, because there is no secret sauce.

The more you invite people to experiment, to create a hypothesis, to
try something for a short timebox, to measure the results and decide
what to do, the more they take the responsibility for their actions.
When they are responsible, they are more likely to succeed.

Some people might not like the word “experiment.” Consider these
words as alternatives: “trials” or “tinker with the way we work.”
Regardless of what you call it, work in short timeboxes as teams
and measure the results so you can decide what to do next.

Treat people as if they are adults and your equal. (They are equals—
they have their parts to do, as do you.) They will respond by
acting as if they are adults. If they work across the organization,
collaborating in their small-world networks as adults, you will get
the results you want—a working product.

7.10 Principles of Encourage Autonomy,
Collaboration, and Exploration

1. Autonomy, collaboration, and exploration are the foundation

Encourage Autonomy, Collaboration, and Exploration 94

for feature team success. Tell the feature teams that. The
principles are: “Continuous attention to technical excellence
and good design enhances agility” and “The best architec-
tures, requirements, and designs emerge from self-organizing
teams.”

2. Encourage small-world networks with email lists and in-
person meetings where possible. The principle is: “Amplify
learning” and “Face-to-face conversation is the most efficient
and effective method of conveying information.”

3. Create communities of practice. The principles are: “Con-
tinuous attention to technical excellence and good design
enhances agility” and “The best architectures, requirements,
and designs emerge from self-organizing teams” and “Am-
plify learning.”

8. Conduct Useful Meetings
for Your Program

In the program, people need program-level meetings for several
reasons:

• The product owners need to collaborate to update the agile
roadmap. See Use Continuous Planning.

• The product owners need to build MVP backlogs. Product
owners might build the backlog first, and ask the team to
review the backlog. They might build the backlog alone and
present it to the team. It depends on how integrated the
product owner is with the team under normal circumstances.

• The software program team needs to solve problems that the
feature teams can’t solve, and needs to present status reports
to the rest of the organization.

• The core team needs to solve problems that the software
program team can’t solve, and needs to make sure that
everyone on the core team is ready for product release.

• The core or the software program team might have a retro-
spective.

• Either program team might need to provide a status report to
the rest of the organization. Each program team might want
to have a Big Visible Chart explaining the program state at
any time. The program team will need to meet to create that
status chart or report.

You have choices for how people conduct these meetings.

95

Conduct Useful Meetings for Your Program 96

8.1 Explaining Status: Do Not Use
Standups at the Program Level

You’ll notice that none of these meetings are standup meetings. A
standup is insufficient for these meetings.

Do not use standups for program teams. Standups
will devolve into serial status meetings.

Asking “what did you complete,” or even “what did you do since
our last standup” is the wrong question. The question is irrelevant
because the program team members do not have daily micro-
commitments to each other as team members in a feature team do.

That’s because the core team members are not a real team in the
sense that they don’t have interdependent deliverables. Remember,
the core team is a group of people whose job is to shepherd the
product to release, solving business problems that would prevent
release. A standup is also irrelevant for a software program team—
too much occurred in the software program if teams are integrating
features every day or more often.

If you ask the “since the last standup” question, you create a serial
status meeting. Don’t do it. Nobody likes serial status meetings.
Program teams exist to solve problems and remove obstacles across
the organization. You, as a program manager may have to report
status up, down, and sideways. Do not make your program team
members sit through a serial status meeting.

The next question, “What are you working on now” is also irrele-
vant. Youmight need to ask about action item/kanban item progress
in a part of the meeting, but you don’t want to lead with that
question.

However, you do need to know what the obstacles are. You also
need to know what the interdependencies are. You need to know if

Conduct Useful Meetings for Your Program 97

deliverables are going to be late. And, the teams need to tell you.
That’s program management.

You don’t learn those issues in a standup. You learn them in other
ways.

8.2 Define a Rhythm for Your Program
Team

Everyone on the core team or the software program team is busy
with their other work. Define a rhythm so these busy people know
what to expect for their program commitment and when to expect
it. A program cadence shows respect for their time and the other
demands of their job.

You don’t need to maintain the same cadence throughout the
program. You might start with a biweekly (once every two weeks)
meeting and transition to a weekly meeting as the product release
date gets close.

Some program teams try to work in iterations. Some try to work in
kanban.

I recommend using kanban for each program team, so each team
can visualize their work in progress.

I also recommend you have weekly or biweekly meetings, depend-
ing on the duration of your program. The meetings provide you
with a cadence, a rhythm for your work, without having to commit
to real iterations.

The problem is that each program team solves different problems,
especially if your program is large enough.

The software program team solves technical problems. They answer
these questions:

Conduct Useful Meetings for Your Program 98

• How can we help the organization understand the progress
all the software teams are making as a whole?

• What problems are we encountering as a program?
• How can we as a program team help the teams solve those
problems or remove those obstacles?

The last two questions are more tactical approaches to the core
team’s question, “How can we help the program deliver across the
organization?” The software program teamwill limit their problem-
solving to the software program. If they see problems across the
organization that they can’t fix, they escalate that problem to the
core team.

The core team solves business value problems. They answer these
questions:

• How can we help the functions across the organization solve
their problems and obtain the information they need?

• What problems are we encountering as a program?
• How canwe as a program team help the cross-functional core
team solve those problems or remove those obstacles?

The first question addresses the strategy for the program. The
last two questions are more tactical approaches to the core team’s
question, “How can we help the business value of this program?”
The core program team will address problems across the organi-
zation. If the core team sees problems it can’t fix, you, as the core
team program manager will have to escalate the problem to your
sponsors or management.

How Often Should Your Program
TeamMeet?
Depending on the projected duration of the program, I have

Conduct Useful Meetings for Your Program 99

started programs with a biweekly program team meeting.
That helps everyone start the program and learn to work
together. As the program nears the release date, we move to
weekly program teammeetings. That’s because we have more
frequent deliverables. Meet when you need to meet. Not any
more often.

The program team is a team in the sense that everyone has the
same goal: to release the product. But, almost no one will work
together on their work. Each person is a delegate from across the
organization. The likelihood that the program team can swarm on
their problems outside the program team meetings is small. In that
sense, the program team is a group.

Maybe you can experiment with your core team meetings. It all
depends on how your program is proceeding. I recommend you
use a problem-solving meeting agenda. I have suggestions for that
agenda in Organize Your Program Team Meetings.

You can use an action item list, which I used for many years. I now
prefer a kanban board, because it shows the number of items in
progress. Here is a potential kanban board for a core team:

Conduct Useful Meetings for Your Program 100

Possible Kanban Board for a Core Team

Youmight prefer an action item list. Make sure you have some chart
that exposes the work and especially the work in progress, the WIP.

The program team is a place WIP can hide. Do not let the WIP
hide on the program team. You might be close to the end of the
program and realize that there are legal agreements to sign, pricing
to determine, training to plan, all kinds of things that the core
program team needs to deliver. The kanban board for the core team
will help that team see their WIP and manage their risks.

How to Manage Long Lead Items
Every so often, you have long lead items. Maybe you have
to order equipment. Maybe you have to commit to an out-
side vendor. Maybe you have to integrate with some other
software. You have to commit to something more than three
months in advance, well outside of an iteration. You have a

Conduct Useful Meetings for Your Program 101

long lead item. What do you do?

This is a risk to your program. Manage it as a risk.

Ask yourself, what is the smallest action I can take to see
results or action on this long-lead item? How will I know I
am getting closer to or farther away from this deliverable?
How can you visualize whether you are closer, not farther
from this deliverable? Add something every week, an inch-
pebble (ROT07), to your kanban, to ensure you make progress
on your long-lead items.

8.3 Organize Your Program Team
Meetings

Are your program team meetings too large?

“Right Size” Your Program Team
Meetings
I once coached a program manager who was attempting to
rescue a large program of 16 feature teams. Their program
team meetings were a disaster.

Each feature team had a Scrum Master. Each Scrum Master
attended the weekly software program team meetings. That
program team was not able to make decisions or remove
obstacles. The program fell further and further behind, not
because they used Scrum, but because they could not agree as
a group of 17 people.

The program manager decided to organize the program team
meetings first. She said, “You ScrumMasters are all at different
levels. Some of you are Scrum of Scrum Masters for several

Conduct Useful Meetings for Your Program 102

teams working on related feature sets. Some of you have
just one feature team working on one feature set. We have a
major risk to the program. We are not finishing our program
team work because we can’t agree on anything. I have a big
question: Do you all need to be at this meeting?

“You folks decide. Should you be at this meeting? If not, decide
how you will get the information. I will leave it up to you. I
work for you.” She sat back down and let them work for 30
minutes.

At the end of 20 minutes, they had self-organized into one
meeting of four small-program program managers. Each of
those program managers had three feature teams working on
related feature sets. In addition, there were five independent
feature team Scrum Masters. That made nine people plus the
program manager and the program product owner.

After the first program teammeeting, the independent feature
team Scrum Masters decided they didn’t need to all be there.
One of them came to each meeting, and debriefed the other
four later.

The program manager continued to email the agenda to all
the Scrum Masters in advance of each meeting, in case they
wanted to participate. She sent the minutes to everyone, also,
so everyone one felt as if they could see the information.

The program teams had a workable number of people on
them, the software program team and the feature program
teams. Everyone could make their own decisions and had a
way to help information move around the organization.

If you have a large program, look for programs within your pro-
gram. Find a way to manage the number of people at your program
team meetings. See Know Which Program Teams You Need.

If you still require a delegate from each feature team, create pro-
gram team norms about how you will make decisions. I have seen

Conduct Useful Meetings for Your Program 103

these norms work:

• People discuss issues and concerns in advance on a wiki or
some other internal project forum.

• If people haven’t read the agenda and discussion points in
advance, they don’t get to participate in a decision.

• If the people who are supposed to be on the program team
are also doing technical work, they find someone else to vote
as their proxy.

• People agree to use limited consensus so they can experiment
and measure, before they reject an idea.

You may need to build team norms for your program team if you
have never worked together before. Expect to spend time building
team norms at your first program team meeting. Be prepared to
iterate on your team norms. You will have to find the norms that
work for your team.

8.4 Program TeamMeetings Solve
Problems

A programmanager facilitates an environment for problem solving,
a form of servant leadership. It’s all about risk management, helping
people to be more agile and lean.

1. Consider a problem-solving agenda such as the one below.
2. You might decide to have Lean Coffee meetings.
3. Consider a Temperature Reading, especially for retrospec-

tives.

Conduct Useful Meetings for Your Program 104

8.4.1 How to use a problem solving meeting
agenda

I’ve used and evolved this kind of an agenda over time. Start here
and evolve it for your use.

I like to send the agenda in an email to everyone at least 24 hours in
advance. In that email, I ask, “Do you have anything for the problem
of the week?” If they do respond, I can add it. If not, they might be
ready to add it at the time of the meeting checking in.

Include the list of invited participants so everyone knows who is in
the meeting or on the call.

Include the location: meeting room or call information, if this is a
conference call.

1. Check in with everyone.
2. Visualize the kanban or milestone information. Help people

see the short-term and long-term milestones.
3. List the problem(s) of the week. (If you are having biweekly

meetings, change this to the problem of themeeting. Or, call it
“obstacle removal” or “impediment removal.” Use terms that
fit for your organization. Remember, the program team exists
to solve problems at the program team level, core team level,
or software program team level, not at the feature team level.)

• Discuss each problem. Make sure this is a problem you
can solve with this program team. Assess whether you
need to timebox the discussion. Decide if you need to
split into subteams to discuss the problem and generate
solutions. Ask yourselves if you need to escalate the
problem if you can’t solve it.

• As a program team, your goal is to resolve each problem
by the end of the meeting. But some problems are not
20-minute to one-hour problems. In that case, you need
to have a separate meeting to resolve the problem. Put

Conduct Useful Meetings for Your Program 105

the problem on your kanban board or action item list
with a time to resolve it. Don’t let this work hide. It’s
WIP.

4. Review any outstanding action items or kanban items you
have not resolved.

5. Adjourn the meeting.

Create a central repository that anyone can access. Use that reposi-
tory to raise issues and solve problems outside of the meeting. I like
meeting notes and action items on a wiki or on their own kanban
board.

After the meeting, send the minutes with action items (maybe a
picture of the kanban board or a pointer to the board) within 24
hours after the meeting.

8.4.2 How to use lean coffee meetings

When you use lean coffee, everyone brainstorms the list of issues
on stickies. You vote on the stickies. You take the highest ranking
sticky, discuss that for a short timebox. Consider selecting a timebox
of eight minutes and seeing if that works for you. You can always
decrease the timebox duration to five minutes, if you like. Do not
start with a timebox longer than eightminutes. The idea behind lean
coffee is that you discuss something as long as people have energy
around it. Longer than eight minutes and the discussion will sag.

At the end of the timebox, you thumb-vote to continue (thumb-up),
don’t care (thumb-sideways), or change the topic (thumb-down). If
you timebox your program team meetings to one hour, you may be
surprised by howmany issues you can cover in one hour. Youmight
decide to summarize the list of action items or prepare a kanban of
the actions at the end of the meeting. If so, either add another 5-10
minutes (timebox this work), or include it in the meeting.

Conduct Useful Meetings for Your Program 106

8.4.3 How to use a Temperature Reading

Virginia Satir, a family therapist, developed the temperature read-
ing. You may want to try it for your program team. Alternatively,
it’s a great way to do retrospectives with a team.

1. Appreciations. An appreciation is a personalized thank you
with the reason why. It takes the form of “First Name, I
appreciate you for (something) because (for some reason).”

2. New Information. What new information does anyone have?
3. Puzzles. What puzzles you?
4. Requests for Change. What changes would be helpful?
5. Hopes and Wishes. What hopes and wishes do you have?

8.5 Retrospect at the Program Team
Level

Program teams need to reflect and change their approaches just as
the feature teams do. They might need to inspect and adapt more
often or less often as the teams. Here are some guidelines for when
the program team needs to retrospect:

• When the program team has more WIP than they thought
was reasonable.

• When people don’t finish their deliverables to the program.
Deliverables could be training modules from the training de-
partment, or legal agreements, or automatic deployment for
the software program. These are examples, and the program
teams would track them.

• When the program teams don’t clear obstacles for anyone in
the program.

Conduct Useful Meetings for Your Program 107

Aside from a Temperature Reading, consider ways to discover the
data and then move into problem solving. Give yourselves enough
time—at least a half-day—to understand the issues and develop
action items from the retrospective.

If your program team members are geographically distributed, it is
even more important to retrospect at regular intervals. The space-
time continuum problems may manifest themselves in the feature
teams, also. Understand them and solve them.

For more possibilities for your retrospectives, see Agile Retrospec-
tives: Making Good Teams Great, (DER06) and Getting Value out of
Agile Retrospectives: A Toolbox of Retrospective Exercises, GLI15.

8.6 Principles for Conduct Useful
Meetings for Your Program

1. Define the purpose for your meetings. Make sure you have
the people you need. Timebox the meetings, if necessary, so
people don’t spend all day at the meetings. The principles are:
“Eliminate waste” and “Business people and developers must
work together.”

2. Don’t have meetings you don’t need to have. The principle
is: “Eliminate waste.”

3. Create a public online forum so everyone can see the dis-
cussions your program team is having. This will help the
transparency of your program, and help people see you are
working on removing obstacles. The principles are: “Amplify
learning” and “Business people and developers must work
together.”

9. Estimating Program
Schedule or Cost

If you have ever used waterfall approaches to programs, you and
the teams spent a fair amount of time estimating how long the
program would take or how much it would cost. Now, even if you
are using agile, your managers might want to know, “How long will
this program take?” Or, they will want to know, “How much will
this beast cost?”

Your managers asked for estimates, because back in the waterfall
days, estimates were the one way they could manage the program
risk. In waterfall, we were supposed to update the estimate at the
end of each phase. We don’t have phases in agile, so your managers
might not realize they have other ways to manage program risk at
an operations review meeting or a project portfolio management
meeting.

However, you have other levers at your disposal to manage program
risk and report status. See Useful Measurements in an Agile and
Lean Program.

The best lever you have to manage risk is the fact that you can see
working product all the time. If you use the idea of internal releases
at least each month, your managers don’t need to ask for estimates.

Managers today may ask for estimates because they think they can
add more people to your program and reduce the necessary time.
They are mistaken.

Once you have one feature team per feature set backlog, you may
not need any more teams on your program. You can ask feature
teams, “Would it be useful to work in conjunction with another
team to reduce the time?” Listen to what the feature teams say.

108

Estimating Program Schedule or Cost 109

Adding more people or more teams to your program may slow
it down, especially if the program is late. Adding more people or
teams increases the communication overhead. If the program is late,
you will encounter Brooks’ Law from The Mythical Man-Month
(BRO95).

Help your managers see that they have levers other than the
estimate for your program. In an agile or lean organization, as
long as the feature teams complete a feature every day or so,
the managers can say, “Stop” whenever the program has enough
working. Spending time estimating instead of delivering makes
little sense for an agile program.

9.1 Does Your Organization Want
Resilience or Prediction?

If your management is new to agile, they may not realize that agile
and lean provides the program resilience. Estimation is prediction,
and your teams can estimate work that is close and small with good
results. However, the larger or farther off the work is, the worse the
estimate is likely to be.

Once the teams start delivering, you can explain the value of
resilience—the ability to change fast.

Ask your management what they want: resilience or prediction?
If they say prediction, maybe they will change their minds after
the teams produce working product and continue producing more
working product.

If they say resilience, they trust the product owner value team to
rank the features. The managers also trust the teams to complete
features. Work with your managers to build trust so they don’t need
as many estimates as they used to.

Estimating Program Schedule or Cost 110

9.2 Ask These Questions Before
Estimating

If your managers still want to know how much the program will
cost or how long it will take, remind them that these questions are
the wrong questions. You, as the program manager can ask,

• How much would you like to invest in time, money, or
learning before we stop?

• Are you ready to watch the program grow as we build it so
you can stop us when you don’t want to invest anymore?

• What is the value of this project or program to you?

It’s much easier to manage investment than it is to predict an
estimate. With an agile roadmap, your sponsors can help select the
investment direction, too.

It’s easy to answer the “How much would you like to invest”
question, as long as the program always has demonstrable or
releasable product. Either your sponsors will say, “I’ve seen enough.
Please stop.” Or, they will say, “I like what I see. Please keep going.”
Or, they might say, “I sort of like what I see, and I’d like you to
change this and that, please.”

It’s easy to work with people like that. It’s much more difficult to
estimate a whole program.

But, what if your sponsors need some kind of a ballpark estimate,
something that gives them an idea of how much or how long this
program will last? You may need a gross estimate because your
sponsors may want to limit their time and money investment. They
maywant to stop before reaching NRE, Non-Recurring Engineering
expenses.

Here are some ideas.

Estimating Program Schedule or Cost 111

9.3 Targets Beat Estimates

Working toward a target, either date or budget, is much easier than
trying to estimate a large program.

If your sponsors say, “Here is your target date,” or “Don’t exceed this
budget,” that’s great. You canmanage the program risks to meet that
target date or budget. You can work towards a target, making sure
you have, at minimum, monthly deliverables that are releasable
product.

Youwill have to help the product owners focus on themost valuable
roadmap. You will have to watch the run rate for the program. You
will have to work with the feature teams to make sure they produce
monthly demonstrations or working product.

9.4 Generate an Estimate with a
Percentage Confidence

If you must estimate, try a gross estimate with a percentage confi-
dence.

Your estimate will be wrong, but if you call it a “Gross Estimate
with a Percentage Confidence,” a “Prediction,” or a “Forecast,” you
are more likely to get the result you want.

Remind your sponsors that estimates are guesses, not promises.

Assuming you have teams and they have some idea of what is in
their feature sets or backlogs, try this approach:

9.4.1 Option 1: Teams estimate their own
ranked backlogs

For a program, each team does this for its own ranked backlog:

Estimating Program Schedule or Cost 112

• Take every item on the backlog and roadmap, and use what-
ever relative sizing approach you use now to estimate. If you
have small features, you can count them. Remember, because
you are agile, you may not do the work farther out on the
roadmap. You have uncertainty, not just in sizing, but in
whether you will implement those features.

• Walk through the entire backlog, estimating as you proceed.
Don’t worry about how large the features are. Keep a count
of the large features. Decide as a team if this feature is larger
than two or three team-days. If it is, keep a count of those
features. The larger the features, the more uncertainty you
have in your estimate.

• As a team, add all your relative estimates for your features.
Add up the number of large features. Now, you have a
relative estimate which, based on your previous velocity,
means something to you. You also have a number of large
features, which will decrease the confidence in that estimate.

• Do you have 50 features, of which only five are large? Maybe
you have 75% confidence in your estimate. On the other hand,
maybe all of your features are large. I might only have 5-10%
confidence in the estimate. Why? Because the team hasn’t
completed any work yet and you have no idea how long your
work will take.

Estimating Program Schedule or Cost 113

Program Team Estimates by Team

Here’s what this might look like on a program. Assume you have
five teams, each with its own ranked backlog. Each team assesses
their backlog and turns it into an estimate with a percentage
confidence level. In this example, you have teams with confidence
levels ranging from 10% to 90%. That says the backlog items are not
small enough for the teams to estimate a reasonable size. Or, that
there is somuch risk that the teams can’t provide you amore precise
estimate.

You might want to know, “When will this program be done?” but
you can’t know it without the teams doing some work.

As a software program team, get together, and assess the total
estimate. Does the software program team need to add time for
any current obstacles? If so, add time and increase the percentage
uncertainty.

Once the software program team has some kind of an estimate,
the software program manager can bring that estimate to the core
program team.

In parallel to the software program estimation, the core team needs
to generate their estimates for their plans. Once everyone has

Estimating Program Schedule or Cost 114

estimates, the core team can assess how long they will take as a core
team. And, the software programmanager can present the software
program estimate.

Now, the core team can review the entire estimate and generate a
number for the people who asked for an estimate.

9.4.2 Option 2: Ask experts to estimate on behalf
of the teams

If you have a roadmap, but have not assigned feature teams yet,
consider asking experts in the organization. They will have estima-
tion bias. You don’t know how much estimation bias they have.

Ask the experts to estimate on behalf of the teams, using the
same percentage confidence approach above. When you report the
number to management, explain that you do not know how much
estimation bias there is in the estimate. Your sponsors would be
better off letting the teams work for a couple of weeks and seeing
results. They could then answer the questions:

• How much would you like to invest before we stop?
• What is the value of this project or program to you?”

An estimate from experts may not even be an order of magnitude
correct.

9.4.3 Option 3: You estimate on behalf of the
entire program

When my managers have asked me for a program estimate, I ask
them if they have a target date in mind. I remind them that we are
working incrementally, and we can change. I remind them that I
am a program manager, and have no ability to see into the future.

Estimating Program Schedule or Cost 115

I remind them that I can help the teams produce working product
often. But, asking me for a date is not going to make that occur
faster.

If you say something like this nicely—and it depends on your culture
as to how you say it—you may be able to understand what your
sponsors or managers do want. If your organization is new to agile,
your managers might not realize that the product owners are in
charge of when a feature is scheduled in the backlog.

Never allow a target date to compromise the quality of your
program. Maintaining technical excellence allows the teams to
maintain their sustainable pace and keep releasing, internally and
externally.

Both options 2 and 3 have problems. If anyone estimates on behalf
of the teams, the teams may have no interest in committing to that
estimate. Why would they?

All too often, managers use the estimates that other people create as
a target or “incentive” for the feature teams. That is a terrible way
to use these estimates. The teams have no control over their work.
Can the teams sustain their pace to meet these estimates? Can the
teams work as self-organizing teams to deliver?

When someone else provides teams with a target, and then tries to
force a commitment to that target, you know that Murphy’s Law is
going to sit on your program and make it impossible for the teams
to deliver working features in the desired time. Don’t do it.

9.5 Present Your Estimate as a
Prediction

I assume you have experienced agile teams. If not, the teams have
probably padded their estimates. Either that, or the features are
large epics or themes, and the uncertainty is high.

Estimating Program Schedule or Cost 116

The more experienced the teams are at agile, the better the estimate
is. The more the teams are feature teams, the better the estimate is
because the teams know how to work and learn together. If you are
new to agile, or have a mixed program (agile and non-agile teams),
you know that the estimate will be way off.

The software program manager can say, “We have an initial order-
of-magnitude prediction. But we haven’t tested this prediction with
any work, so we don’t know how accurate our estimates are.
Right now our confidence is about 5-10% (or whatever it is) in our
prediction. We’ve spent a day or so estimating, because we would
rather spend time delivering, instead of estimating. We need to do
a week or two of work, deliver a working skeleton, and then we can
tell you more about our prediction. We can better our prediction
as we proceed. Remember, back in the waterfall days, we spent a
month estimating and we were wrong. This way, you’ll get to see
product as we work.”

Use the word “prediction” as much as possible, because people
understand the word prediction. They hear weather predictions all
the time. They know about weather predictions. But when they
hear estimates of work, they think you are correct, even if you
use confidence numbers, they think you are accurate. Use the word
prediction.

Consider setting your management’s expectations by saying, “Here
is an prediction for our first milestone (internal release). We can
provide a much better estimate for the next milestone.” Incremental
estimation works as well as incremental budgeting does.

9.6 Spiral in on an Estimate

Spiraling in on a date works quite well for smaller, shorter pro-
grams. I have used this approach for four-to-eight month programs.
I offer “Quarter 2, next year,” as my first estimate. As we finish fea-

Estimating Program Schedule or Cost 117

tures and have internal releases, I update the estimate to “February-
March.” As we finish work and I can see how we deliver, I can say,
“The first couple of weeks in March, sometime.”

As we finish more work, I can work with the program product
owner to see if we still have remaining value in the roadmap and if
we need to ask teams to work outside their normal deliverables to
make that date.

9.7 Supply a Three-Date Estimate

With a three-date estimate, you offer your managers this informa-
tion:

• The earliest possible date the teams might complete the
program. This is the optimistic date.

• A more likely date the teams might complete. This is the
realistic date.

• A date by which you are sure the teams can complete the
program. This is the pessimistic date.

Never supply just one date with your estimate. That one date invites
your management to play estimation games with you. When you
supply a three-date estimate, you invite them to understand your
risks.

The longer the program, the farther out your realistic and pes-
simistic dates should be. When I have used this, I have said, “We
should have a demonstrable overall product by June 1, but I don’t
think we can release that one to our customers. We should have a
reasonable delivery date of August 15. If Murphy comes to sit on our
program, don’t expect a releasable product until October 30. And, I
should be able to update this estimate next month, when we can all
see what the teams deliver.”

Estimating Program Schedule or Cost 118

I have found that if I set my managers’ expectations about what
they can expect to see, they understand this kind of estimation.

9.8 Do You Really Need an Estimate?

I have worked on many programs in my professional life. My
managers gave me targets for demonstrations, trade shows, and
when the program had to deliver. Sometimes, my managers gave
me a “not to exceed” budget. I have never been asked the “How
much” question. That’s because the program delivered monthly
demonstrations or releases. Management could see our progress.

When it comes to delivering products, if you provide interim value,
the “How much” question goes away. Your management trusts the
program to continue delivering value.

Deliver internal releases. Show a walking skeleton and then keep
building small features. Keep ranking backlog items by value. Keep
asking the “How much do you want to invest?” question.

You won’t have to estimate the entire program.

9.9 Beware of These Program Estimation
Traps

There are plenty of potential traps when you estimate programs.
Here are some common problems:

• The backlog is full of themes. You haven’t even gotten to
epics, never mind stories. No one can make a useful predic-
tion. That’s like my saying, “I can go from Boston to China on
an airplane. It will take time.” I need more data: which time
of year? Mid-week, weekend? Otherwise, I can only provide
a ballpark, not a real estimate. Any estimate anyone provides

Estimating Program Schedule or Cost 119

will be off by orders of magnitude, and you don’t know how
many. The teamswill have to spend time breaking the themes
into feature sets, time they could spend developing working
product.

• Worse, the backlog is full of tasks, so you don’t know the
value of a story. “Fix the radio button” does not explain the
value of a story. Maybe we can eliminate the button instead
of fixing it. You don’t know if you have a valuable working
product at the end of all the tasks.

• The people estimating are not the ones who will do the work,
so the estimate is full of estimation bias. Just because work
looks easy or looks hard does not mean it is. If your senior
managers believe this estimate, they will feel disappointed
and frustrated when the teams take more time than the
estimators expected.

• The estimate becomes a target. This never works, but man-
agers do it all the time. “You estimated it would take a quarter
to do this work. Prove it!” Some managers do not understand
that an estimate is a prediction or a guess.

• The people on your program multitask, so the estimate is
wrong. See Predicting the Unpredictable: Pragmatic Approaches
to Estimating Cost or Schedule, (ROT15) for more informa-
tion.

• Managers think they can predict team size from the estimate.
This is the problem of splitting work in the mistaken belief
that more peoplemake it easier to domorework.More people
make the communications burden heavier.

Estimating a program is more difficult, because you somehow have
to add disparate estimates with different percentage confidences. A
better way to manage the issues of a program is to decide if the
program is worth funding (by value) in the project portfolio. Then,
work in an agile way. Be ready to change the order of work in the
backlog, for teams and among teams.

Estimating Program Schedule or Cost 120

As a program manager, you have two roles when people ask for
estimates: check with your sponsors and request the teams deliver
often. Ask your sponsors the questions inAsk these questions before
estimating.

Explain to the teams and product owners the results the organiza-
tion needs:

• A walking skeleton (of features in the product) and build on
it.

• Small features, so we can see the product evolve every day.

Themore the sponsors see the product take shape, the less interested
they will be in an overall estimate. They may ask for more specific
estimates (when can you do this specific feature), which is much
easier to answer.

Delivering working software builds trust. Trust obviates many
needs for estimates. If your managers or customers have never had
trust with a project or program team before, they will start asking
for estimates. Your job is to deliver working software every day, so
they stop asking.

9.10 Estimation Do’s and Don’ts for
Program Managers

There are several do’s and don’ts for estimation. Here are some
common problems:

9.10.1 Estimation don’ts:

• Never provide a single point estimate. If you provide a single
point estimate of either a date or money, people will expect

Estimating Program Schedule or Cost 121

that specific date or that much money. Even if you are just
10% over, they will think you have failed. I am serious.

• Estimating by anyone on behalf of the teams. If anyone
estimates for the teams, they have no reason to meet that
estimate. Why would they? Would you?

• Trying to enforce overtime to meet an estimate. Agile is built
on the idea of sustainable pace. Disregard that at your peril.
You will create technical debt, lose collaboration, and defeat
the idea of autonomy and exploration.

• Never let managers try to add relative estimates from teams
together. That’s like trying to add oranges from one team and
frogs from another team. You want teams to work at their
own velocity or cycle time. As long as they can create features
from a backlog, you don’t care what they call their relative
estimation.

9.10.2 Estimation do’s:

• Listen to the teams. Once they provide you with their esti-
mates, thank them and use their estimates.

• Plan to iterate. This is agile. The backlogs will change, which
means the estimates will change. It’s your job as the program
manager to explain that to your sponsors.

• Estimates expire. If your sponsors think that an estimate
is good for all time, disabuse them of that notion. Every
estimate has an expiration date. Help your sponsors see that
instead of estimates, they want to see working product.

For more details on estimates and what works and doesn’t work, see
Predicting the Unpredictable: Pragmatic Approaches to Estimating
Cost or Schedule, ROT15.

Estimating Program Schedule or Cost 122

9.11 Principles of Estimating Schedule or
Cost

1. Never add relative estimates together or compare team es-
timates. Every team works at a different pace. Each team’s
velocity is personal. The principles are: “Working software is
the primary measure of progress” and “Simplicity.”

2. Use a percentage confidence, so everyone understands that,
especially at the beginning of the program, you have no idea
how long the program will take. The principle is: “Business
people and developers must work together.”

3. Working product is better than estimation. Build working
product fast. See if working product will take the place of
estimates for your management. If necessary, work toward a
target date or budget. The principle is: “Working software is
the primary measure of progress.”

10. Useful Measurements in
an Agile and Lean

Program
Part of what you might need to do in your program team meetings
is to prepare your program’s status for the rest of the organization.
You might have some sort of Operations Review meeting. Because
the organization expects some progress on your program, youmight
need to show progress to the people who make project portfolio
decisions.

Use the information in this chapter to work with your sponsors and
learn what your management requires and how you need to show
your management progress. Working software is the best measure
of progress.

When your program delivers working product frequently, you build
trust with the people who want estimates or measurements. You
might need to review How Often Can You Release Your Product?.

You may still have to provide a run rate, or some other financial
report to those folks. On the other hand, they won’t worry about
whether your program is worth the money they have invested—
they can see the results when they see working product.

Working product builds trust in a way that any measurement does
not. That may be the best status report you can provide.

You want measurements that mean something useful at the pro-
gram level. Consider how you might explain to anyone about what
the program has completed and what remains not yet done.

As always, the best measurement is working product. However, that
is not the only measurement you can take that means something at

123

Useful Measurements in an Agile and Lean Program 124

the program level.

Working product should be your primary measure-
ment. It is how you will see progress.

10.1 What Measurements Will Mean
Something to Your Program?

Measurements come in two flavors: predictive indicators and lag-
ging indicators. Of course, you want predictive indicators. You have
a large effort.

What do you have for a one-team agile project? You have velocity,
burnup charts, and cumulative flow. Can you use these measures at
the program level?

You cannot use velocity at the program level. It is not a predictive
measure. Here’s why.

10.2 Never Use Team-Based
Measurements for a Program

I see a ton of measurement dysfunction when it comes to large
programs. Measurement is one place where if you try to say, “Here’s
what each team does. What does this mean for the program?” you
will get into trouble.

Do not even think about taking project team measurements and
adding them together. That’s like taking my husband’s weight and
mine, adding them together, dividing by two and determining our
average jean size. It makes just as much sense to try to determine

Useful Measurements in an Agile and Lean Program 125

“average” velocity or cumulative flow or average anything when
you do that with teams.

Any team-based measurement is for that team to use as their guide.

10.2.1 Do Not Use Velocity As a Program
Measure

Velocity is a team-based measurement. Teams can use velocity as
a diagnostic tool to see how they are doing. Velocity is not a good
program-level measurement.

One of the mistakes I see a lot is that managers want to take several
teams’ velocity and somehow add them together. They think this a
program measure of velocity.

Don’t do that. Velocity is personal to one team. It’s only predictive
to that team and it’s only predictive for estimation purposes. It’s not
predictive to any other team. You can see what teams are doing if
they are feature teams, and you use a product backlog burnup chart.

You can’t use velocity to predict program progress either. Why?
Because as the product owners get better at making the stories
smaller—and you want them to become better at this—the number
of stories may well increase per iteration. That will change a team’s
velocity.

But, what if you are a program manager or a product owner and
you see a team that used to produce running, tested features at a
regular clip suddenly slow down? What do you do?

The first question is this: Does it matter? Maybe this team is helping
another team. Maybe they are so far ahead on their feature set that
it doesn’t matter. Do you know?

Second, are you the right person to interfere? Is there someone else,
a project manager, a product owner, a coach, or a Scrum Master
who might lead a retrospective and ask these questions? If you are
the correct person, here are some questions you might ask:

Useful Measurements in an Agile and Lean Program 126

• Has the team encountered any obstacles recently that have
affected their ability to produce running, tested features?
(You can remove obstacles.)

• Is anyone on the team multitasking? (Make sure this team
is dedicated to your program. That is an obstacle you can
address.)

• Has the team reviewed their velocity charts or cycle time to
see what’s going on? A velocity chart or cycle time chart can
help a team solve their problems. (The teammight not realize
what’s happening. Once they know, the team can address this
concern.)

• Does the team need any help from you?

Expect the team to be able to identify its problems. If a team knows
it has a problem and can’t identify it, they can ask you for help.
I’ve seen agile teams who worked well as independent teams have
trouble integrating into a program. So far, all those teams I’ve seen
have identified their problems and needed help solving them.

You can add value by suggesting ways they can find help or by
acquiring the help they need.

10.3 Measure by Features, Not by Teams

So, we have team measurements that don’t add up. What can we
use? Feature-based measurements.

Programs are all about features. That means you measure by fea-
ture. Sometimes, multiple teams work off the same shared backlog.
Does it matter if you measure what a team does? It matters for the
team. It does not matter for the program.

But, the program manager cares about the program’s progress
on features across the teams. If the entire program has lurching
progress, as in teams that are not integrating something each day,

Useful Measurements in an Agile and Lean Program 127

that’s a problem. It means that you might have all or some of these
problems: too many features in progress, no continuous integration,
and/or the work-in-progress in the teams is too high.

So, how do you measure this? You could measure “Number of
features completed per iteration.” Why not story points? Because
customers don’t buy story points. Customers buy features. They
only buy running tested features. That’s it.

This is where the program bumps up against the project portfolio.

Now, it happens that each feature is some number of story points.
And, the way to make more features is to break them down into
smaller slices. Yes, this is gaming the system. All measurements can
be gamed. All of them. However, especially in a large effort such as a
program, you want small features. You will see progress faster with
minimum marketable features. So, it’s okay if your product owners
start making smaller features.

One way to make smaller features is to do what Pawel Brodzinski
says in Minimum Indispensable Feature Set, (BRO14):

“The reason is that most of the time I can instantly
come with the batch of work that is one third, one fifth
or one tenth of what was labelled an Minimal Viable
Product by a potential client and it would still validate
a business hypothesis behind a product. It likely means
that with a bit of effort and better understanding of the
context our clients would be able to cut it down way
further than that. It may mean that they’d be even able
to validate the basic idea without writing any software
at all.” —Pawel Brodzinski

Note that his Minimal Indispensable Feature Set is very small.

When you start measuring by features, you can create small wins.
When the program can release more often, your program builds
trust.

Useful Measurements in an Agile and Lean Program 128

10.4 Measure Completed Features

If you have an agile roadmap, you can measure the number of
features done and the number of features remaining to complete,
against the total number of features. This provides everyone with
a chance to see when the features increase, and the progress made
against the roadmap. The smaller the features on the roadmap, the
better this chart will be.

Allow for the increase of features because creating software is
about learning. As the teams finish features, they and their product
owners will realize they need to do something else. That’s fine.
Allow for it.

Program Feature Chart

This Program Feature Chart shows that things change in a program.

The roadmap will change. That means the backlogs for the teams
will change. Make that visible to everyone. Otherwise, everyone
wants to know, “Why can’t you predict this program’s cost?” Allow
for change and help other people understand the changes.

With this kind of a chart, you can discuss the inevitable changes.
And, when people ask you, “Howmuch will this program cost,” you
can ask them, “When would you like us to re-estimate the product

Useful Measurements in an Agile and Lean Program 129

backlog?”

If your programs are anything like the programs I’ve worked on,
they fall into a couple of categories: the first is the kind we have to
do, because they are critical to the organization’s success. The big
question is whenwewill release the darn thing, sowewill adjust the
roadmap and the backlog. The second is when we want to release
the darn thing as quickly as possible because we need the money,
darn it, so we have to play with the roadmap and the backlog to get
the most value out of what we’re doing. (Do you have a third?)

Did you notice the common theme here: we will have to play with
the roadmap and the backlog to get the most value out of the
program? Notice I did not say ROI (return on investment). You
cannot calculate ROI until after you release, so there’s no point in
trying to measure that right now.

Yourmanagementmightwant you tomeasure Earned Value. Earned
value is the value you derive from completed features. With earned
value, your management might be able to capitalize the investment
the program has made. You can show earned value with a product
backlog burnup chart.

10.5 Measure the Product Backlog
Burnup

The next chart is the product backlog burnup chart. This is where
you take all the feature sets, plot them next to each other on one
chart and show how they might be done in relationship to each
other.

Useful Measurements in an Agile and Lean Program 130

Product Backlog Burnup

This product backlog burnup chart is what we might have had for
a product I worked on long ago, a voicemail system.

Each part of the system has a different feature team working on
it. We had different teams for each part of the system: Alarms,
Messages, Payments, Ringback, User Admin, and CO Admin. We
had more teams, but this is a simplified version of the chart. After
the teams worked on the code for five interim releases, this is what
the chart looked like:

Useful Measurements in an Agile and Lean Program 131

Voicemail Product Backlog Burnup, After Several Interim Releases

The number of features increased over time for all of the feature
sets. Management was surprised when they saw the requirements
growth. The product backlog burnup chart, shows feature growth
with the height of each feature set in the chart.

In a sense, this is a thermometer kind of chart for each feature set.
You can see the completion of each feature set grow as the teams
deliver code into the code base.

Useful Measurements in an Agile and Lean Program 132

10.6 Measure the Time to Your
Releasable Deliverable

Since what you care about is releasable product at the program
level, measure the time to achieve it. Measure the time between
releasable deliverables. Does the product go from releasable to not
releasable?

This is a predictive indicator, believe it or not. Because you are
accustomed to releasing on a rhythm, your past time-to-release is
a predictor of your future time-to-release. Unless you know how
to shorten that time, it’s not going to become shorter without
significant effort. You can’t get feedback in less time than your time
to release. This is important to the program.

If you release internally every month, and that release is good
enough to ship, then your time to release is 30 days.

If you have continuous delivery, you might measure your time to
release in hours or minutes. If you do have a SaaS product, and you
are not releasing in hours or minutes, you may have an impediment
in your program. You, as the program manager, may need to help
solve that problem.

If your programs takes longer than 30 days to release, why? That
might be an impediment for your program. The longer it takes
for you to release, the long it takes for feedback to the product
development teams.

The larger your program, the more feedback you need. Measure it.

10.7 Measure Release Frequency

If your program starts releasing something internally every two
weeks, and some time later the program releases only once each

Useful Measurements in an Agile and Lean Program 133

three weeks, something bad has happened. The teams might have
incurred technical debt without anyone realizing it.

If your program starts releasing five times a day and builds up to
releasing every 20 minutes, you might not have problems in the
program.

Your release frequency is an indication of how easy it is to release
your product. You want internal release frequency high, regardless
of your ability to externally release.

10.8 Measure Build Time

One indication that your program is healthy is the amount of time it
takes to do a full build or a partial build. The lower the build time,
the more frequently the developers will check in and build. The
more frequently people check in and build, the more likely they are
to do continuous integration. You canmaintain momentum on your
program.

Be aware when build times increase. Or, if performance is a key fea-
ture of your product, be aware if certain scenarios have decreased
performance or reliability. If you—and the feature teams—are aware
of the build time and performance scenarios, everyone can know if
something breaks.

Measure build time as a trend. The teams might want to measure
broken builds and time to fix a build as trends, also. Build time
measurements are an indication that the code is healthy or not.

10.9 Other Potential Measurements

You may need to take and provide other measurements for your
sponsors, or for your program team.

Useful Measurements in an Agile and Lean Program 134

10.9.1 Measure run rate if you have a target
budget

If you have a target budget, measure the run rate. The run rate is
the amount of salary and overhead the program uses every week or
iteration or every month.

A cautionary note here: Do not ask people to track their time by
feature. It is rarely accurate.

If the teams find value in that total team-time per feature, they can
measure it. They might measure it to see if they can make their
features smaller so they can obtain more throughput. As a program
manager, I am interested in the aggregate number of how much we
spend per week or month, so I know where we are in relation to the
target budget. That’s the run rate.

That also provides you the excuse to ask everybody, “You’re not
working on any other project or program, are you? Because I’m
taking your salary hit on this program. So if you’re working on
something else, let me know!”

Multitasking is a disaster on a program. It’s insidious and slows a
program to a crawl faster than anything I know.

10.9.2 Consider cumulative flow, to see work in
progress

Depending on the number of teams, you might be able to look at
cumulative flow or work in progress. The more teams you have, the
more this entire graph can get too large to be effective.

Each team can considermeasuring its cumulative flow, tomake sure
they don’t have work in progress or inventory.

Useful Measurements in an Agile and Lean Program 135

10.9.3 Consider a program-level obstacle report

You might track an obstacle report, as I suggest in Manage Your
Project Portfolio, ROT09.

Program Obstacle Report

Your feature teams want to know you are looking for and removing
obstacles. They are impediments to your program. The program
teams want to know, also. As a programmanager, your primary job
is to facilitate the teams finishing their work. When feature teams
see the program team’s progress removing obstacles, they can see
and feel your progress. That progress encourages them to bring you
bad news and trust you to remove obstacles.

When you make the obstacle report public, no managers can hide
from their obstacle-removal work. The managers have to commit
to helping the program.

10.9.4 Consider other measures as diagnostic
indicators

If your program feels stuck, you might want the teams to measure
their Fault Feedback Ratios as inManage It! Your Guide to Modern,
Pragmatic Project Management, (ROT07).

You might want to measure code growth over time. If your feature
teams don’t have small growth, that might be a problem. This is a
team data point. You can measure code growth for the entire code
base. You would want to see where the code growth is larger than

Useful Measurements in an Agile and Lean Program 136

expected to do some problem-solving—not blaming! People grow
code fast when they are under pressure. Learn why people are—or
feel as if they are—under pressure. Do not blame them for being
under pressure.

If you see a high fault feedback ratio, look for bad news. Consider
more options in How Servant Leaders Work.

Youmight want to track defects/feature, although if you havemany,
I suggest doing something about that sooner rather than later. Your
technical debt will get out of control very fast, and reduce your
momentum. Remember that incurring technical debt has a cost. If
left unchecked, technical debt will prevent the teams from releasing
because the features are not actually done.

10.10 Measure Performance or
Reliability Release Criteria

I have worked on products where they existed because they pro-
vided a performance or reliability advantage over their competitors.
One way to monitor that advantage is to build the measurements
into the release criteria. Then, create product measurements that
allow you to monitor the competitive advantage with each build.

“We Learned to Measure Perfor-
mance”
I was the program manager for a database product. We sold it
based on performance.

I had the bright idea we should measure performance with an
interim release, about halfway through the program.

The performance had degraded so we were much worse than
our competitors. I didn’t ask why—I figured the developers
and architects would do that. But I did ask for each team to

Useful Measurements in an Agile and Lean Program 137

generate automated performance tests we could run against
every build. We knew what the performance needed to be.
If the performance was too slow, we could fix it then, not
accumulate technical debt.

That worked.We ended upwith eight scenarios.We had a pre-
loaded database, so we could run the tests fast. We ran them
and discovered problems as we proceeded.

I wasn’t so worried about the problems. I was worried about
our not knowing about the problems until very late in the
program.

Having performance scenarios and running automated tests
every build that represented those scenarios saved our collec-
tive tushes.

—A Senior Program Manager

10.11 How to Answer the “When Will
You Be Done/How Much Will Your

Program Cost” Question

If your management constantly asks you for estimation, they don’t
trust you or the program. A request for estimation is also a mea-
surement. It’s a qualitative measurement of your influence on
the managers and the teams. It’s a measure of how much your
management trusts you. Better you should know now, when you
can do something about it.

Back in Ask these questions before estimating, I suggested you ask
your sponsors about investment or value.

You can see that with the approaches I’ve suggested, the program
always has something to show your sponsors. You always have a

Useful Measurements in an Agile and Lean Program 138

walking skeleton. You always either had a demonstration within
the last two weeks, or you have one coming up. If you have
an agile roadmap the way I suggest, you even have at least a
monthly release, or a demo. You have a program product owner
who continues to work on the roadmap.

Armed with the roadmap and historical data about what the teams
have delivered, and the product backlog burnup chart, you can
ask the people who ask, “When will your program be done?” this
question, “What is of most value to you? Once we know what is
of most value, we can work on that first. If the backlog is already
ranked in value order, we can either take the time to estimate it,
or I can provide an estimate with a confidence level in a couple of
days.”

It’s the same kind of answer with the cost question. The only
problem is if these people ask before you’ve started anything at all.
That’s really a project portfolio question.

If your sponsors want your program to continue estimating either
schedule or budget after you have started to show them a deliver-
able each month, ask why.

• Is your program’s demonstration a feature-based demonstra-
tion or a frameworks demo? Sponsors and customers don’t
buy frameworks. The teams need to deliver features.

• Can your sponsors see progress based on your program’s
demo, or are the teams developing as components, instead
of through the architecture? Sponsors and customers cannot
see the value of components. They need to see features.

• Is there a target date or a target budget you need to know
about? If so, you can manage to that risk.

If your sponsors want your program to spend time estimating
instead of delivering, you can do that. In the past, I have explained
that all the time we spend estimating is time we don’t spend

Useful Measurements in an Agile and Lean Program 139

delivering. If you have agile or lean teams delivering features all
the time, your sponsors will understand.

10.12 Principles

1. Measure at the program level, not at the project level. The
principle is: “Build integrity in.”

2. Measure what you want to see. You want completed features.
You want releasable code. What else do you want? Measure
that. Do not measure surrogates. The more you measure
surrogates, the less you will get what you want. The principle
is: “Working software is the primary measure of progress.”

3. The feature teams are also responsible for their measure-
ments. They need to measure what they do to know if
they are going off the rails and if they have risks in their
projects. The principle is: “Build projects around motivated
individuals. Trust them to get the job done.”

4. Ask for demonstrations. Remember in the manifesto, on the
principles page, there is a line that says, “Working software
is the primary measure of progress.” Believe it. The more
your product works, the fewer measurements you need. The
principle is: “Working software is the primary measure of
progress.”

11. Develop Your Servant
Leadership

The senior people in agile and lean programs are servant leaders.
The program product owner, the program managers, the program
architect are all servant leaders. They guide and shepherd the
business value of the program. They create the environment in
which all teams and team members can contribute to the product.

If you are unsure of what a servant leader is or how it changes how
you work, this is the chapter for you.

Servant leadership is an approach to managing and leading where
the leader creates an environment in which people can do their
best work. The leader doesn’t control the work; the team does. The
leader trusts the team to provide the desired results.

Servant leaders put the needs of customers, employees, and com-
munities first. This allows you to create an environment in which
people come first. That creates business value when you ask for the
results you want.

11.1 Program Managers No Longer
“Drive” the Program

Some program managers have used the position to bully people
into working “faster.” Or, to demand that teams complete some
functionality by working overtime. Or, they would commit to a
date or functionality without the teams’ knowing whether the
work could be done, never mind in that time. One of my program
managers once told a customer, “Sure, they can do that.” We would

140

Develop Your Servant Leadership 141

have had to bend the laws of physics at the time. Our computers
were too slow then.

When organizations transition to agile, the programmanager might
want to work as a servant leader. However, the management might
want to be command-and-control. Or, at least control. You might
find it difficult to work as a servant leader in this situation. That
makes it difficult to be a servant leader to the program and manage
the managers’ expectations.

11.2 Consider Your Servant Leadership

In reality, you may work on a continuum from servant leadership
to command and control leadership.

I had a program product owner who was “too busy” to spend time
iterating on the roadmaps for our program. I pinged him several
times to update the roadmap. I explained the program was at risk.
He had other work that appeared more important to him.

I was concerned we would have no backlogs for the next month and
no updated roadmap. I made an appointment for a one-on-one with
him. We had a cordial conversation. No action on the roadmap.

I saw him the next week and said, “You have two days to update
the roadmap. If you don’t, I’ll get someone who will. You’ll be off
the program.”

He laughed at me. “I’ll do it when I get around to it.”

I said, “Don’t tempt me. Two days.”

The two days came and went. I made an appointment with his boss
and explained he was no longer on my program. Did the boss want
to assign someone new, or could I havemy pick of potential program
product owners?

His boss wanted me to give the guy a second chance. No, no way.

Develop Your Servant Leadership 142

I got my new program product owner. We had an updated roadmap
and a new backlog.

You might think I was not so serving in this instance. I didn’t yell
or swear. I admit to some eye-rolling. I served the greater needs of
the program.

Being a servant leader does not mean you are a pushover. It
means you create the environment in which people can thrive
and the feature teams can work with autonomy, collaboration, and
exploration. If people don’t know what to do, they certainly cannot
deliver.

11.3 How Servant Leaders Work

In The Case for Servant Leadership, KEI08, Kent Keith defines seven
practices of servant leaders:

1. They are self-aware.
2. They listen.
3. They serve the people who work “for” them. (Keith calls this

“Changing the Pyramid.”)
4. They help other people grow.
5. They coach people, not control them.
6. They unleash the energy and intelligence of others.
7. They work to develop their foresight, so they can act, not

react.

Program servant leaders act as stewards of the program environ-
ment. They might protect the teams from interference. They facili-
tate the teams’ work. For more information on servant leadership,
see A Journey into the Nature of Legitimate Power and Greatness,
25th Anniversary Edition, GRE02.

Develop Your Servant Leadership 143

When you ask the teams for the results you want, when you create
the environment in which the teams can deliver those results, and
when you manage by exception, you are a servant leader.

Here’s how you might use these practices.

Our managers ask us to be program managers, program architects,
or program product owners because we have shown our expertise
or competence in the past. When we are self-aware, we don’t need
to be the “smartest” or the best technical person. Instead, we are
aware of our strengths and how we can manage our weaknesses.

When we listen and decide that our job is to serve the people in
the program, what matters is how people can finish their work. It
matters that everyone has the capability to do their jobs—that we
listen for and remove impediments.

We may be the technical leader for some part of the program.
Program architects often discover they are technical leaders. One
of the most valuable actions for a servant leader is to help other
people use our expertise to improve the product or the program.
When we coach people instead of specifying their work, we help
them learn and grow.

When we deliberate about how to create an environment in which
people can be most successful, we have two opportunities. The first
is that we unleash everyone else’s capabilities. They can be even
more successful. The other is that we have the opportunity to see
the program as a whole and act before risks become problems.

11.4 Some People Don’t Want Servant
Leadership

When I coach managers and architects to improve their servant
leadership, some people say, “But, some people want me to tell
them what to do. They don’t want a servant leader. They want a
commanding leader.”

Develop Your Servant Leadership 144

If you hear that, review your program and corporate culture. Are
your managers telling you how to work? If so, you might feel as
if you need to tell others how to do their work. Do your managers
blame you for making mistakes? If so, do you blame the people on
the program if a risk comes true or someone makes a mistake?

Agile and lean provide transparency for everything—the work, the
status, who is doing what. If your organization is still blaming
people for mistakes, you might have trouble being a servant leader.

My advice is to start by protecting the program.

“I am the Wall Around the Pro-
gram”
We’re sort-of agile. We have the idea of iterations, and we
use kanban to see our work in progress. We’re not perfect
at getting to “done” all the time. And, our management still
blames us if we don’t make their imposed deadlines.

I decided the best way I could serve the software programwas
to protect the feature teams. I begged the program product
owner to define reasonable interim deliverables. And, I would
protect the feature teams from what I called “management
mayhem.”

My boss came over to me about halfway through the program
and said, “I don’t think your program is making enough
progress. What are you going to do about it?”

I replied, “Nothing. I can’t do anything about it. The teams
are working to their maximum capacity. I need to change
your mind and the other managers’ minds about what we can
accomplish in a month. Your expectations are not in line with
reality.”

He looked puzzled. I dragged him over to the product backlog
burnup chart and the total feature burnup chart and explained
that management had added more and more features without

Develop Your Servant Leadership 145

adding more time. “How realistic is this? I’ve been telling you
for weeks now, you can add what you want, but the total time
has to change. We are not magicians. You can see our progress
is steady. Your additions are exponential. That’s nuts.”

He finally understood because of my charts. He agreed that
management had unreasonable expectations.

I was the only one he spoke with, which made me happy. I
get paid to deal with management, not to let the nonsense roll
downhill. I was able to protect the program, which for me, was
an act of servant leadership.”

—A software program manager where agile is still new

11.5 Welcome Bad News

Part of listening is to welcome bad news, not just all news.

As program managers, we prefer to know that everything is going
just fine. Few programs speed along with no bumps. When you
make it easy for people to bring you bad news, you can hear and
see the actual program status.

You cannot be everywhere and hear everything. You, as a program
manager, have an obligation to see what’s happening in your
program, good and bad. Your problem is: how can you observe what
teams do? Once you can see them, you might be able to generate
several options for helping people bring you bad news.

11.5.1 Visit every team, wherever they are

I recommend you visit the feature teams. If you are all in one
city or on one campus, consider Management By Walking Around

Develop Your Servant Leadership 146

and Listening (MBWAL) as in (BCD05). If people know you’re
wandering around every Tuesday and Thursday (as an example),
they know they have an opportunity to discuss issues with you.
You might even send an email, “I intend to wander around starting
at 4pm on Thursday. Let me know if you would like me to drop by
your team and discuss anything.”

If the feature teams are all over the world, visit the teams who are
remote from you at least once a quarter. Depending on the duration
of your program, that might not be often enough. Yes, travel is
time-consuming and can be expensive. It’s more expensive to have
insufficient communication and defects.

11.5.2 Watch your facial expressions

We all react to good and bad news. How you react can change the
conversation.

“Think of Bad News as an Oppor-
tunity”
I had a program where two feature teams consistently missed
their deliverables.MarCommwas too busywith “other” things.
I wanted to pull my hair out.

One day when I was tired, I grimaced and frowned at a
program team meeting. The program product owner later
askedme, “Do youwant to hear bad news?” I said, “Of course!”
“If you don’t watch your facial expressions, you won’t hear it,”
he said.

Uh oh. I reframed how I thought of bad news to an opportunity
for improvement. I explained what I did at the next program
team meeting:

“I would like to reframe our bad news into opportunities
to improve. I welcome your ‘bad news’ and we will work

Develop Your Servant Leadership 147

together to capitalize on opportunities.”

I decided I could look serious, but not upset. I started to say,
“That’s an opportunity for problem solving!”

It was corny, but it worked. I heard more bad news than I
thought I could stomach, and we solved those problems fast.

—An experienced program manager

Sometimes, a change in your mindset can change your expressions.
Sometimes, your expression can change your mindset. Make sure
you are open to opportunities, even though sometimes those op-
portunities look like problems.

11.5.3 Consider an anonymous email box for
suggestions

I don’t normally like anonymous emails with suggestions. I would
rather have a conversation. On the other hand, if people are having
trouble and you don’t hear about it, consider an anonymous email
system. People can then email their concerns.

If you work in a low trust environment where you need an anony-
mous email box, you might have trouble with using agile for your
program. You can develop more trust by being transparent about
your work and delivering frequently. The more you deliver your
work (fixing impediments, solving problems, acquiring resources
such as labs, whatever your program needs), themore your program
will trust you.

Develop Your Servant Leadership 148

11.6 Use the Growth Mindset

Dweck describes the growth mindset inMindset: The New Psychol-
ogy of Success, (DWE07).

Comparison of Fixed and Growth Mindset

Agile and lean lend themselves to the growth mindset. Teams learn
early by experimenting and discovering what works and what
doesn’t work.

If you decide you need to coach people on the program team or in
the feature teams, consider using the growth mindset to help people
see that they can succeed. They might need to learn how, and they
can learn to do so.

11.7 Ask For the Results You Want

People live up or down to your expectations. If you expect the teams
to ask you to solve each problem, they will. If you create a hierarchy
where teams have to check with a quasi-manager (such as a Scrum
Master or agile project manager), they will.

Instead, imaginewhat would happen if you say to the teams, “Please
solve problems across the organization when you can, using your
small-world networks and Communities of Practice.”

Develop Your Servant Leadership 149

People would talk to other people. They might email, IM, use
whatever program/project wiki or electronic space you provide for
collaboration. You can’t know in advance what they will solve or
not solve.

People and teams can still use their program manager, Scrum
Master, or project manager to help solve problems. But, when you
ask people to solve problems—and don’t second-guess them—they
will. Remember, you have adults working on your program. They
pretty much know how to dress themselves, rent an apartment or
buy a house, and raise children. They solve problems now. Expect
them to do so at work.

When you ask people to solve problems, you can magnify momen-
tum in your program.

Here are some guidelines I have found useful:

11.7.1 Set expectations for being stuck

Ask people to define how long they will work alone before they ask
for help, in their teams or across the organization. My suggestion
for this time is 30 minutes. That might seem short to you. I have
found that if people spend a solid 30 minutes being stuck, as in they
cannot think of an experiment to try or their search for an answer is
fruitless, they stop working on this problem and read email or surf
the web. They spend much more than 30 minutes being stuck.

If they don’t ask someone to pair or ask the team to swarm on a
problem once they’ve spent 30 minutes being stuck, the chances
increase that they will spend a full day being stuck. They won’t say
anything until the standup—and even then, they might be reluctant
to say anything in public.

Instead, if people have a guideline about being stuck, they may act
before the day is gone.

Develop Your Servant Leadership 150

You, as a program manager, can show others how to ask for help.
Even if you don’t need help, ask for it. When you set the example,
people are more likely to ask for help.

11.8 Principles of Develop Your Servant
Leadership:

1. Trust the people on the program team and the feature teams
to do their jobs. The principle is: “Build projects around
motivated individuals. Trust them to get the job done.”

2. Look for and remove impediments that people cannot remove
themselves. The principle is: “Empower the team.”

3. Discover ways to encourage the teams to do better or more
than you can imagine. The principle is: “The best architec-
tures, requirements, and designs emerge from self-organizing
teams.”

12. Shepherd the Agile
Architecture

One of the big problems in agile and lean program management is
how to manage the product’s architecture. If you don’t shepherd
the architecture, you end up with a mess. If you create frameworks
before you have features, you will be wrong. You might have sig-
nificant rework (not refactoring) late in the program. Architecture
throughout the program is the way we manage that risk. You
might need to Encourage Iterative and Incremental Architecture,
Architects Can Help Expose Risks, and decide When Should You
Consider Architectural Stories.

The risks of deciding on the frameworks up front are considerable
in a program. On the other hand, no architectural guidance might
be a disaster on your program. Consider how your program can
create an iterative and incremental approach to architecture. Also
consider when is the most responsible moment to decide on the
product’s architecture and the frameworks.

Back in How Often Can You Release Your Product?, you saw the
potential for release frequency, based on the kind of product you
have. Now, consider when to make architectural decisions.

151

Shepherd the Agile Architecture 152

Release Frequency and the Cost of Architectural Decisions

The closer your product is to SaaS, the longer you can wait to make
many architectural decisions. You might have to make product-
guidance architectural decisions, but you often don’t have to make
many large up-front design decisions. The closer your product is
to the right side of the continuum, with hardware, the more you
might have to use set-based design approaches, or provide more
architectural guidance earlier.

The program architect should not decide alone. The program archi-
tect works with feature teams and other architects across the pro-
gram to collaborate and decide when to select which frameworks.

That makes your program architect’s job one of shepherding the
business value of the architecture, which is a social and collabora-
tive role requiring communications. The program architect helps
facilitate the autonomy, collaboration, and exploration for the
feature teams.

12.1 Architects Write Code

If we start with the premise that all architects on our program write
code, we start well.

In software programs, we are accustomed to having enterprise,
solution, or application architects. Often, those people do not sit

Shepherd the Agile Architecture 153

with the project teams. Instead, they proclaim the architecture from
afar, early in the program.

That doesn’t work in agile or lean programs. It doesn’t work in other
programs either, but we can discuss that later, over a beverage of
your choice.

In an agile or lean program, the architect is responsible for the
business value of the architecture, not for telling people what to
do. The program architect does this in many ways:

• Balances the short-term goals with the overall system in-
tegrity, risk, expediency, technical debt, anything else that
you would trade off short term goals against.

• Sustains development against technical debt. For test sys-
tems, this is the age-old problem of testing versus automating
the tests and how you automate the tests. I’m a huge fan of
automate enough and refactor your way into what you need,
because you may not know what you need until you see how
the system under development evolves.

• Writes acceptance criteria for system qualities and quality
scenarios for the product.

• Leads the definition of how a complex system is structured,
organized, and implemented. Landing zones can help guide
this effort.

• Works with a feature team in a hands-on way. No seagull
architects. No PowerPoint architects, (See Practices of an
Agile Developer for an excellent description of this, SH06).
No prophets. No police. Agile architects develop code and
develop tests.

• Works with users (or with the program product owner on
behalf of the users) to understand what the users do, how the
users work, what the users understand and don’t understand
about the system. What is the product vision? (See Develop
the Program Vision for more information.)

Shepherd the Agile Architecture 154

Architects work with the entire project team, not alone. Architects
work on all parts of the product, not just the challenging or inter-
esting parts. In fact, if there are rote parts or boring parts, maybe
that’s where the architect is needed most to automate something so
humans don’t have to do it.

Inmyworkshops and inmy executive briefings, I tell managers they
should put their most talented people, aka architects, on the things
that are agile or lean impediments. For complex programs, those are
most often the build system and test automation. I suggest they use
the architects for several iterations to make significant progress on
those problems, and get to some version of done.

Youmay have different roles for your architect, especially if you are
integrating Commercial Off the Shelf (COTS) software or vendor-
supplied products:

• Act as editor-in-chief for architecture decisions on the team.
• Guide the individual feature team architects who do the
actual work.

• Help establish new products that are based on the archi-
tecture. This means understanding re-use, and establishing
a vision for how the architecture slowly evolves as new
products come and go. Can we harvest frameworks and
products from what we have now?

• Help the business people understand and take advantage of
the architecture for new system features, third-party inte-
grations, and new product lines. The architect might use the
product vision to discuss the relative value of features with
product owners and the value of frameworks with feature
teams.

You can see that people who have architecture responsibility shep-
herd the business value of the architecture. This is not the tra-
ditional “I’ll tell you how to build it because I know everything”
position that way too many architects take.

Shepherd the Agile Architecture 155

12.2 Many Developers Become
Architects

If architects write code, and if everyone owns the code, and we
get to the final product by refactoring—which is how agile works—
some substantial number of developers will work as architects at
any given time. If your teams also pair or swarm over the code, no
one will be able to tell who is the architect and who is not. That
works quite well.

You still may need a program architect who can discuss risks with
the business people, especially on the core team.

A program architect acts as a risk manager. She
is experienced and able to talk with business and
management with ease. She shepherds the business
value of the architecture.

In Avoid Hierarchical Titles, I suggested you don’t call a program
architect a “chief” architect. You want the architect to identify with
the program, not with the organization’s hierarchy. When you use
words such as chief, master, or über, you create or reinforce a
hierarchy.

Architects may need to coach other developers, especially in how
to create iterative and incremental designs—if they know how.

12.3 Encourage Iterative and
Incremental Architecture

Many developers and architects see the big picture of the architec-
ture, before they write any code. They know where they want to
go and they want to implement the entire feature, now. That’s not
helpful in an agile and lean program.

Shepherd the Agile Architecture 156

Instead, request that the architects collaborate on evolving the
picture of the architecture over time. If they see that they have
“curlicue” features, request that the architects collaborate with the
teams to simplify the teams and the features.

Sometimes, this might mean that the teams realize they don’t
have a cross-functional team that can deliver value. When the
teams realize this, they will agitate for change. Program managers
and program architects are technical leaders who can help the
teams reorganize themselves, if necessary. See The Teams Have
Dependencies on Other Teams for an explanation of straight and
curlicue features.

I have yet to see an architecture last from initial design through the
end of a program unchanged. Maybe you have.

The risks of totally designing an architecture are too high for an
agile and lean program. Help the architects learn how to create
features iteratively and incrementally.

Here’s one way to think about iterative and incremental archi-
tecture and design. Assume you have a product with a three-tier
architecture. People have a picture of the architecture and while
security pervades the product, the base security component is in
the Platform layer.

As everyone creates features, it appears that the base security
component is violating the Principle of Least Surprise and the
Single Responsibility Principle. (The Principle of Least Surprise says
that the product should act as the users expect it to. The Single
Responsibility Principle says that one component should do one,
and only one thing. Otherwise, you have coupling.)

This is a great time to refactor the code. Refactoring the code might
not be sufficient when security violates two principles. And, you
might refactor and discover performance problems. It’s time for
iterating on the architecture.

You have several options. Consider the options in Architects Can

Shepherd the Agile Architecture 157

Help Expose Risks and Break the Architecture with Purpose.

No one could tell at the beginning of the program that security—
as you planned it—would be a problem. The more the teams create
features and refactor to patterns, the less likely the product will have
a brittle architecture. With features first, everyone can contribute to
the architecture.

I recommend as part of the release criteria, the feature teams define
any performance or reliability criteria for the product or a piece of
the product.

12.4 Architects Can Help Expose Risks

Aside from iterative and incremental development, the program
architect can help expose risks. Maybe it’s worth the time for an
architectural spike to learn about some area of the product? Back
in Software is Learning, Not Construction, I said that we can learn
about risks early to manage them.

Some product features are quite difficult to refactor in. These
include scalability, some performance issues, and reliability to name
just three. Don’t proceed with just features when these quality
attributes are critical to your product’s success.

One way to manage these risks is to verify your roadmap has
a walking skeleton (also known as the tracer bullet) approach to
developing features. When you show feature teams and product
owners the walking skeleton, they will ask, “How fast is this part?”
or “How will this part scale from 300 to 30,000 users?” You now
understand their system qualities for performance or scalability.
You can adjust the system qualities as you proceed.

What if you need to know about some parts of the architecture first,
because they will drive other program tradeoffs? You might. For
example, in a smartphone, you might need to know the screen size

Shepherd the Agile Architecture 158

because that will drive the common GUI decisions and the heat
dissipation risks.

There are several options for this kind of a potential product prob-
lem. The solution you select might depend on the kind of product
you have, based on your product’s complexity. See Understand Your
Product’s Complexity. Here are some options that might work for
you:

• Do a pre-program research project. Bring together enough
people or teams to prototype the architecture that those
people believe will support the product you need. Once you
have enough information, start the program.

• Develop an architectural roadmap integrated with the pro-
gram roadmap, so you create features and manage architec-
tural risks as you proceed.

• Integrate architecture spikeswith feature development.Maybe
your program can still develop the operating system (the
platform), and can answer other questions as you proceed.

The larger the program, the more you want to see architectural
problems early. You can’t do that if you can’t show the product
working. What would it take for your program to show a walking
skeleton of working product? That is the question your product
owners and architects can answer.

12.5 What the Program Architect
Accomplishes Daily

Architects lead by doing. Sometimes they do the hard work to pay
down technical debt that’s been accumulating for years. Sometimes
they do the hard work of seeing how the features are evolving into
an eventual framework, or two or three. And, when you have 200

Shepherd the Agile Architecture 159

or 300 or 400 people on a program, all over the world, working
in 2-week iterations, you may well need people who explore just
ahead of feature teams, so that the feature teams are free to develop
features.

There is a difference between agile on a small program of about
three teams and agile on programs of more than 10 teams. Part of
it is the communication paths. No matter how much you try to
communicate, the larger program will have more communication
issues, just because there are more people.

Coordinating the design and architecture among very large pro-
grams is a non-trivial task. It’s partly managerial and partly tech-
nical. It’s also social and communication work. See Architecture is
a Social Activity.

Evolving the architecture is not a problem that a program can solve
with hierarchy and maintain agility. And it is a difficult problem to
solve. Communities of Practice can help.

Consider these options for an architect’s daily work:

1. Use an architectural kanban based on the agile roadmap.
Decide what risks the architecture wants to address now and
how.

2. Perform architectural spikes with a feature team. This helps
a team learn how the architect thinks about problems and
solutions. In addition, working with a team spreads the
architecture knowledge so everyone can work better.

3. Lead (and don’t direct) an Architecture Community of Prac-
tice. What do you want people to know, to evolve the
architecture in a coherent way? What architecture problems
do you want to raise?What do other people want to raise and
address?

4. Provide direct coaching to people who want it.

Shepherd the Agile Architecture 160

5. Work with people and teams across the organization so they
understand how to use the current architecture and how to
evolve it.

Your program architect might explore the boundaries of the current
architecture and provide feedback to the program product owner.
When it’s time to change the boundaries, encourage the architect
to work with a team, not alone. Everyone will benefit. See Martin
Fowler’sWho Needs An Architect?, FOW03 for a wonderful descrip-
tion of what architects might and should not do in an agile project.

12.6 Architecture is a Social Activity

Architecture is guidance that allows the feature teams to un-
derstand the general—and as the program proceeds—the more
specific—patterns and frameworks to use.We hope that things don’t
change once we understand where we are headed.

However, because the feature teams make design decisions every
day, we know that the architecturemay have to adapt, if not change.
The way the architects handle this change is with communications.

Instead of thinking of the architects as the people who define the
architecture, encourage the architect to socialize her concerns about
architecture. The architect can:

• Use Communities of Practice to help explore alternatives.
• Workwith a feature team to spike a feature with architectural
implications.

• Ask and encourage people across the program to discuss
architectural qualities as they create features.

• Assess risks and architecture as the feature teams create
features.

• Manage those risks to create a coherent product.

Shepherd the Agile Architecture 161

• Ask “how did the code change? How did the tests change?”
when discussing refactoring and an incremental approach to
architecture.

• Ask, “How will this scale from 300 to 300,000 users?,” espe-
cially if the product owner wants a different scaling than
anyone expected.

The program architect is a servant leader, coaching, influencing,
and working across the program. The program architect learns
from the teams and with the teams—the learning is not a one-way
activity.

12.7 Problems You May Encounter With
Architecture

What if your product owners want to fill your iterations with
features and you don’t have time to look ahead for architectural
issues? Make your stories smaller.

You have several problems here. You have the Feature-itis problem.
Some teams may not have transitioned to agile well. Your architects
may be PowerPoint architects. Feature-itis is an indication that a
variety of peoplemay not understand how to discuss business value.
Does the program architect need to be part of the conversation
about Rank Items in the Roadmap or Backlogs? Sometimes, the
architect can help the program product owner understand value
better.

Consider these options:

1. If you are using iterations, make sure that the iterations are no
longer than two weeks. If they are already two weeks, reduce
them to one week. That will have the effect of reducing your
story size. When you reduce your story size, people will

Shepherd the Agile Architecture 162

shriek, and say, “We can’t do that!” But you will discover
either the essence of the story, or the teamwill swarm around
the story. Either is fine. If the architect can help reduce
the batch size, everyone can see how to evolve the product
towards the eventual frameworks.

2. Make sure every team provides an updated picture of the
product architecture. Use the small-world networks to make
sure every other team sees those pictures and agrees with
them.

3. Ask the program architect to lead some architectural spikes
to inform the product value team of the risks. These spikes
will also inform the feature teams when it’s time for them to
work on those features.

4. Lead the effort to determine what an MVP is, and how to
create a minimum walking skeleton.

Architects might have to work with the program manager to help
create and use the small-world networks. Architects might have
to work with the product owner value team to help create small-
enough features or MVPs to show progress. Architects might work
with feature teams to understand the risks of one alternative over
another.

Can your architects work as servant leaders, focusing on the busi-
ness value of the architecture rather than on what they think the
architecture requires? This might be a fundamental role change for
your architects.

When Should You Consider Archi-
tectural Stories?
Sometimes, the product owner needs to learn about tradeoffs
for the product. Sometimes, the teams need someone to do
an architectural spike to understand the risks and value of
implementing one way or another.

Shepherd the Agile Architecture 163

Consider the following when composing architectural stories:

When you experiment, you have a specific learning goal in
mind. You learn to manage the unknowns or risks. You might
not want more feature development until you understand the
tradeoffs of different architectures or frameworks.

This is different work than a story that starts, “As a developer”
or “As an architect.” When you have architectural stories
or spikes, you have a specific learning goal that benefits
someone, not just a developer or architect. The benefit is to
the user. Do you want to learn about performance before
you commit to a particular architecture or design? Your story
might be something like this: “As an experienced user, I want
to know that my search completes in under one second.” You
might have tests that test a variety of search types, results
return, and how the lookup works given one size of data and
another size of data. Then, the teams can explore because the
product owner (maybe working with the architect) bounded
the problem.

Architectural stories are not the problem. Stories that do not
deliver value are the problem. Make sure everyone under-
stands the value of the deliverable.

12.8 Break the Architecture with
Purpose

Sometimes, the teams proceed through their work, evolving the
feature design and the overall architecture. The teams encounter
a decision point. To quote Yogi Berra, “When you come to a fork in
the road, take it!”

People on the program might realize that to implement this feature,
they need to break a current design pattern. They might realize that

Shepherd the Agile Architecture 164

they have to trade off one architectural quality for another. Or, they
might decide that they need some exploration to understand cost or
duration for some feature or feature set.

It’s time to explore some competing designs. Here are some options
to consider:

1. Ask the program architect and at least one feature team to
develop the questions the program needs answered. Are you
trying to trade off architectural qualities (size, performance,
or usability as three examples)?

2. Start an architecture experiment. What happens if we try it
this way as opposed to the current way we are doing it?

3. Consider “competing” designs from different feature teams.

In each case, the program architect works with the team(s) to
develop the answers the program needs. The program architect
might lead the exploration as a servant leader.

When I say “competing” designs from different feature teams, the
idea is to evaluate the pros and cons of the designs, not the team
deliverables. Certainly, do not compare the teams.

Your program might decide to break the architecture. As long as
they understand their goals, the questions they want to answer,
and they timebox their work, this can create better architecture and
design for your program. Ask the teams to manage the risks and
report often on their progress.

12.9 Principles of Shepherd the Agile
Architecture

1. Integrate architecture into what each team does, all the time.
The principles are: “The best architectures, requirements, and

Shepherd the Agile Architecture 165

designs emerge from self-organizing teams” and “Decide at
the most responsible moment.”

2. The larger the program and the more complex the product,
the more you may have to consider some look-ahead ex-
ploration. The principles are: “Amplify learning” and “Build
integrity in.”

3. Expect the architecture to change. Ask the architects to learn
from the feature teams as well as the feature teams learning
from the architects. The principle is: “Continuous attention
to technical excellence and good design enhances agility.”

13. Solve Program Problems
As a program manager, you will have plenty of program problems
to solve. You will also need to help teams identify their problems.
As a servant leader, you want to help people bring you bad news
without feeling threatened or at risk. Let your teams know that you
are there to help them with their obstacles, known or unknown,
and not there to blame or punish them. Your teams will bring their
problems to you earlier when you lead like this.

13.1 Ask For the Problems or
Impediments First

When a team brings you a problem, ask these questions:

• What do you think is the cause of the problem?
• What have you tried already?
• Do you have impediments you needme/the program team/the
core team to remove?

You don’t have to ask these questions in this order. If your teams are
anything like the people I’ve worked with in the past, they have an
idea of what the problem is. They have tried some solutions. They
need you to help in some way: Maybe they need some extra servers.
Maybe you need a release/deployment team. Maybe it’s something
else.

A caution: Never say, “Don’t bring me a problem without a solu-
tion.” That’s a management trap and prevents you from discovering
and fixing problems early when they might be manageable. You
might need to help the team(s) do root cause analysis, conduct a

166

Solve Program Problems 167

retrospective, or brainstorm multiple options if they are stuck. Your
job as a servant leader is to help unstick the team. Make it easy for
people to bring you their concerns.

Back in Continuous Integration and Testing Supports Collabora-
tion, I explained my guidelines for trying to manage problems and
remove impediments. Here are some guidelines for the program
team problems and impediments:

1. Ask for the result you want.
2. Assume each person understands his/her problem better than

you do. Ask that person to explain it to you, or to the program
team.

3. Use the rule of three for each potential solution. See Behind
Closed Doors: Secrets of Great Management, BCD05 for more
information on how to use this rule for management prob-
lems.

4. Ask the program team for help in generating the solutions to
these problems.

5. Never impose a solution. If no one is willing to volunteer
to try a solution, assume it’s not reasonable. Go back to the
drawing board.

Some of the teams will need different initial solutions. Some teams
will need help making their stories smaller. Some teams will need
help learning to swarm around their features, so they finish features
earlier in the iteration. That sets each team up for success for
continuous integration.

But those impediments might be just the tip of the iceberg for your
teams. Once you start generating some options, you can start to see
what the costs are, and you can start comparing the value of those
options.

Encourage teams to experiment with their potential solutions,
especially if your program is in the Complex part of the Cynefin

Solve Program Problems 168

framework. You and the teams might not realize what the “perfect”
solution is (if one even exists). Experimentation with measurement
will help people realize what they might do to solve the problem.
See Invite People to Experiment.

13.2 People on the Core Team Don’t
Deliver What They Promise

When people on the core team don’t deliver, they put the entire
program at risk. You can explain this when you ask them for
commitments, as in Beware of Forgetting Core Team Members.

Maybe you have someone too senior, who can’t commit to program-
level work. Maybe you have someone too junior, who doesn’t have
the ability to do the work or the influence to complete it.

Use a one-on-one meeting, as in Behind Closed Doors: Secrets of
Great Management, (BCD05), so you can learn what is happening
for that person at work, and you can problem-solve together. Do
not expect to solve a problem of people not delivering at a public
meeting.

Use your servant leadership empathy and awareness to solve this
problem. You might need to help someone learn how to deliver. You
might need to ask for someone different for your program team. You
might need to have a conversation with that person’s manager or
yours to solve the problem.

13.3 Your Product Owners Have
Feature-itis

Feature-itis is when product owners decide they only want to know
about features. The product owner does not want to rank technical
debt, defects, anything that might interrupt the flow of features.

Solve Program Problems 169

The problem is this: unless you have a brand new product, you are
bound to have technical debt in any number of areas and already-
existing defects that have been around for years.

You can choose to ignore that work. You can tell the teams to ignore
that work. When the teams address technical debt and defects, they
fix things to make it easier for the team to work faster in the future.
If your product owners want to ignore fixes, they will slow the
team’s momentum. If several product owners do this, your program
can screech to a halt.

What can you do instead?

Make sure the stories that the product owners write with the teams
are small. Sometimes, product owners want to ignore fixing work
because they think the teams gold-plate the features. The smaller
the story, the less likely anyone will gold-plate.

If your teams deliver stories into the product every day or so, the
product owner can see if the team is gold-plating.When the product
owner trusts the team, the product owner can relax about the issue
of ranking technical debt and defects.

As for the teams, unless you have a reason to create technical debt,
tell them you don’t want them to. If you have a short-term deadline,
maybe you can have some debt. But, then decide when the team can
pay the debt down.

Teams should not be creating defects as they finish features. They
need to get the feature to done. If teams can’t do that, they need to
understand what their problems are, and address them.

Product owners need to review the backlog of technical debt and
defects, in addition to features on the roadmap. Teams need a way
to keep their code and tests healthy.

Discuss the business value of every item in the backlog, not just
features.

Solve Program Problems 170

13.4 People on Teams Are Multitasking

If you have people multitasking on your program and another
project, your program will be delayed. You will incur a Cost of
Delay that will affect when you can release the entire product.

Teams need to learn how to manage support work in their kanban
or in their iterations. If product owners want a team to “do more,”
the only way to do that is to make the stories smaller. With smaller
stories, it’s possible to finish and maintain a sustainable pace, a
rhythm to your work.

If teams have a ton of support work for a previously released
product that is not part of this program, that is a risk to your
program. You may have to address that with the people who want
the support.

Do you have people pulled off onto other projects? That is a sign of
a management team who is not managing the project portfolio. If
you are tracking run rate, this is a huge problem. Your program is
paying (silently) for other project or program work.

I have done these things in the past:

1. Measured the Cost of Delay somymanagers understood why
multitasking was a problem.

2. Asked the teams to shorten their iterations, so they could only
commit to a smaller number of stories. I asked them to track
new stories that they had not committed to. I brought that
data with me to the Operations Committee review meeting
and explained why the program was late. This provided the
transparency we needed.

3. Asked team members to come to me if anyone wanted them
to do something not on the program. I would then take the
request and assess it.

Solve Program Problems 171

You may have other options. Your first job is to make the multitask-
ing transparent.

Multitasking will slow your program and stop people from making
progress. Don’t allow it.

13.5 How to Start a ProgramWith More
People Than You Need

You’re starting a program. Your organization recognizes you have
a program. Your management team makes sure you have all the
people you need right now. And, your program is not ready for
them. Your eventual 150- or 200-person programdoes not needmore
than a couple of 5-to-7-person teams right now, maybe even fewer.
What do you do?

Ask the people to self-organize into collocated cross-functional
teams. If you are working on extensions to an already-existing
product, ask them to select a backlog of defects from the defect-
tracking system. Their job in the next two weeks is to: 1, fix the
defects; and 2, determine what they do not have as a process or
tools for proceeding for the program. If you are working on a brand
new product, ask them to work on an already-existing product with
the same tools they will be using for the new product. If they will
be working on a brand new product with brand new languages and
tools, ask them to create the equivalent of “Hello World” with the
new languages and tools.

Maybe they discover they have technical debt in unit or system
tests. That means that technical debt goes on the program backlog,
at the very top. Maybe they discover they don’t have sufficient
access to the build system or the version control system. Good to
know now, before they start on features. Or, they will discover they
need training or new machines or licenses for the new tools. Good
to know before they start in earnest.

Solve Program Problems 172

Maybe they cannot create collocated cross-functional teams. They
get to decide how to organize themselves, or tell you or a project
manager that they have a problem they need help solving.

The idea is that at the end of the first two-week iteration, you know
where the initial set of team-based risks are. Every project and
program has them. The larger the program, the more those risks
hide so Murphy can spring them on you just when you don’t need
them. When you have everyone, let all those people discover the
risks for you. Now you have fodder for your risk list and the teams
know their impediments. Everyone wins.

“Consider a Hackathon”
I have had “excess” team members do a hackathon to start
building automated test approaches and harnesses, prototype
new ways of getting to the desired functionality, maybe start
the Continuous Delivery pipeline. There are many things
these folks can do to benefit the program.

—Paul Ellarby, program manager

You could also do aHudson Bay Start, as inManage It! Your Guide to
Modern, Pragmatic Project Management, (ROT07) on the program
itself. But you almost certainly do not need all 200 people for that.

Whatever you do, do not let all those people hamper the program’s
progress by starting on the program—unless you really can use them
all.

As part of this first iteration, ask the program product owner to
build an agile roadmap and backlog. In my experience, too few
program product owners are ready with an agile roadmap at the
start of the program. But to not have any idea where you’re going?
Not good.

Solve Program Problems 173

If you start in with Iteration Zero, you can spend your life in
Iteration Zero, IterationMinus One, and so on. That’s death for your
program. I like to spend a day or so starting. But not much more.
Even for large programs. People need to recognize the urgency of
starting and delivering.

Once the program product owner has the agile roadmap, all the
product owners can work with this product owner to generate the
first ranked backlog for all the teams. Now, at the end of the first
iteration, the program has these deliverables:

• Everyone knows where they have technical debt in unit or
system tests.

• Everyone knows if they have adequate tooling for working
on the product.

• If they are geographically distributed, they know if they can
communicate with each other.

• The program product owner has an agile roadmap.
• The product owners have ranked backlogs for their teams.
• The teams have practiced working together, releasing some-
thing.

• The core team has completed the program charter, so the
teams now knowwhat the program vision and release criteria
are.

Not shabby for two weeks, is it?

13.6 Principles of Solve Program
Problems

1. Make sure you knowwhat’s going onwith the people on your
program team. Use one-on-ones to solve problems privately.
The principles are: “Face-to-face conversation is the most

Solve Program Problems 174

efficient and effective method of conveying information” and
“Face-to-face conversation is the most efficient and effective
method of conveying information.”

2. Do not start a program with more people than you can plan
for at the beginning. Find away for those people to contribute
while you get ready. The principle is: “Build integrity in.”

3. Make sure your program team can meet in person to learn
how to work together. The principle is: “Face-to-face conver-
sation is the most efficient and effective method of conveying
information.”

14. Integrating Hardware
Into Your Program

When your product has more than software—it has mechanical or
hardware components—youmight not see how to use agile and lean
approaches to see the product evolve and get feedback on it. You
might not be able to use agile and lean externally, for customers. You
might only be able to use agile and lean internally, to help create
the best product possible. You can use the principles of agile and
lean to see product and provide feedback, using incremental design,
integrating early, and seeing demonstrations of the entire product
as early and often as possible.

The only thing that’s inherently sequential with non-software parts
of a product is when they are ready for physical form. Every time
the engineers create a physical form for a part, it costs money. That
money is called “Non-Recurring Engineering” expenses or costs,
NREs.

NREs are part of your program’s costs. You, as a program manager,
might have to manage those costs as well as any other costs you
have. It’s possible those costs are a risk for your program.

14.1 Hardware Risks Are Different Than
Software Risks

Hardware and software product development both face common
risks:

• We might not know how to solve the problem. We need more
research before development.

175

Integrating Hardware Into Your Program 176

• We might have to iterate to understand how best to solve the
problem(s).

• We need to obtain feedback often enough to know if we are
solving the problems in a way that works.

The risks associated with hardware are different than than those
associated with software. The “problem” with hardware is that the
hardware cycles are not homogeneous. That is, the risks of mechan-
ical work are on a different cycle than the risks of analog or digital
work. The different kinds of hardware iterate with simulators at
different times. They go to physical form at different times.

One big question for your program is this: Will you gain any benefit
from early-and-often physical form for learning? The program will
incur more cost. Is it worth the value?

14.2 Understand Cost and Value for
Hardware

Back in Software is Learning, Not Construction, I discussed the idea
that software is learning, never construction. Much of hardware
development is also learning.

In addition to the learning, part of hardware development is being
ready for manufacture, for fabrication of the final design. In highly
complex hardware programs, design for manufacturing might be its
own small program.

Because we learn so much when we marry the software with the
hardware, one question to ask is this: When is the right time to start
developing physical prototypes? The prototype will have some cost.
What is the value the program could receive from that learning?

Often, the hardware and software teams use design by contract to
determine what to do where—the interface between the hardware

Integrating Hardware Into Your Program 177

and software. The earlier the hardware people deliver prototypes,
the faster the teams can learn if the design is correct. The teams
shorten the feedback loops. Is that learning worth the cost of the
prototype?

One way to think about this value is to consider the Cost of Delay.
How much longer will it take to finish the product if the software
teams can’t start until hardware is done? What if hardware has to
revise their designs based on feedback from software? Consider the
questions in Integrate Hardware Often.

Here’s an example of how to consider costs. Imagine you have
one hardware team and three software teams, a relatively small
program. What is the cost for you to wait until the ninth month
of a twelve- month program for a prototype?

Maybe your prototypes cost $10,000 each. Assume you get two
prototypes, one for the hardware team and one to share with the
software teams, a total of $20,000. Let’s assume you find at least
two problems in the first week that create a one-week delay in your
program. Assume people cost $75/loaded labor hour. You have 16
people in the software teams and five people in the hardware team.
That’s a total of 21$7540 for a one-week delay: $63,000.

Compare that cost to iterating earlier on the hardware.

I have no idea if you can create a prototype for $10,000. Your NREs
might be much higher. It’s possible that a chip could cost upwards
of $1,000,000 and take at minimum, six weeks. In that case, see some
alternatives in Manage Hardware Risks.

If you have a program of about 12 months, do you need to see a
physical prototype before the last three months, a traditional time
to prototype and then pilot? It depends on your risks.

You will incur some form of cost (NRE) whenever you have hard-
ware go to physical form. The question is this: What is the value
of that physical form to the overall program? What are the risks of
iterating in physical form?

Integrating Hardware Into Your Program 178

Remember, if you go to physical form earlier, you might be able to
end the program earlier. That’s because the product is sufficient as
is. That doesn’t happen often, but it does happen.

14.3 Understand Each Part’s Value

Let’s assume you are developing a robot. The machine has mechan-
ical arms, a custom board with the robot’s operating system on it,
and one FPGA (Field-Programmable Gate Array) to customize the
robot’s use for you.

You will have these engineering components for your robot pro-
gram:

• Mechanical work to create the arms
• Silicon board
• Operating system
• FPGA

The software teams can create the operating system in an agile way,
because the operating system is all software. However, the operat-
ing system has interactions with the board, the FPGA, and how the
arms work. The software teams can’t wait until the mechanical and
engineering teams complete their work. The software teams need
to start work now.

None of the components have much value by themselves. However,
they have tremendous value when they all work together.

The product roadmap will specify the relative value of each compo-
nent. The teams need the roadmap to determine when to have each
component and feature set of each component ready for the other
teams.

This is tricky. The teams need to deliver the most important and
valuable components first. Here is what a first quarter roadmap

Integrating Hardware Into Your Program 179

might look like. (My robot experience is quite old, so this is a
fabricated roadmap.)

One Quarter Agile Roadmap for a Robot

Because the mechanical, electrical, FPGA, and software can’t inte-
grate from the beginning, this roadmap looks a little like a kanban
with swim lanes. You might not like this roadmap. You might like to
organize your roadmap in some other way. Here are the principles
I used:

• Make the interdependencies transparent.
• Demonstrate the product as early as possible, even if it’s via
a breadboard.

Notice that some of the basic hardware and mechanical work takes
just one two-week iteration. If the product owner realizes that the
work will take longer—maybe the people who make the parts the
team expected to use no longer produce those parts—he or she
would change the roadmap to show that delay.

Integrating Hardware Into Your Program 180

The roadmap makes the value visible. There will be feature sets you
don’t need at the start of the program. If the product owner and the
teams work by value, it will be easier to see when it’s time to invest
in physical form and when you can wait.

14.4 See the Work

Sometimes, the mechanical and electrical engineering teams can
feel like a black hole to the rest of the organization. I’ve heard
statements such as, “We’re working on the keyboard. We’ll have
it for you in a couple of months.” They might. My experience is
what we get in a couple of months is the first prototype of several
we need. That’s not finished work.

One way to see the work is to ask the engineers to use a kanban
board. I recommend each component have its own kanban to see
the work in progress.

A mechanical engineering kanban might look like this picture.

Integrating Hardware Into Your Program 181

Possible Mechanical Engineering Kanban

A silicon engineering kanban might look like this picture.

Integrating Hardware Into Your Program 182

Possible Silicon Kanban

An FPGA kanban might look like this picture.

Possible FPGA Kanban

The FPGA kanban might look much more like a regular software

Integrating Hardware Into Your Program 183

kanban, up until you make the decision to go to physical form.

14.5 Design Incrementally and
Iteratively

Mechanical engineers and hardware engineers iterate on their
designs. It’s easy and inexpensive to iterate with simulators and
emulators.

Mechanical engineers use simulators to build and check their work.
So do analog and digital engineers. They can use a simulator to walk
step-by-step through their part of the product.

If you ask the mechanical and electrical engineers to design iter-
atively and incrementally—before they commit to physical form—
you can then ask for continuous design review.

14.6 Use Continuous Design Review

Mechanical and hardware engineers can use continuous integration
for their work as they simulate. They can apply those principles of
seeing feedback continuously with the rest of the program when
they use continuous design review.

In Encourage Iterative and Incremental Architecture, I suggested
the teams evolve the picture of the architecture before finalizing
their architectural decisions. Your software team might choose to
have a design review of the architecture after three features. (See
Manage It! Your Guide to Modern, Pragmatic Project Management,
ROT07 for a fuller discussion of implementing several features
before selecting an architecture.)

You can do that for the hardware pieces of your product. Depending
on how long the engineers expect the hardware effort(s) to take, you

Integrating Hardware Into Your Program 184

might ask them to review the designs every week or every other
week, if they work in two-week timeboxes.

As the engineers modify their original designs and determine what
they can do in the mechanical or hardware parts of the product,
they can explain their decisions to the software feature teams and/or
architects.

14.7 Integrate Hardware Often

The cost of moving to physical form is high with mechanical and
silicon components. However, if the program waits until the very
end to marry all the components into a product, you will encounter
the 90% Done schedule game. (That’s where you have finished 90%
of the work and have the other 90% remaining.) (See Manage It!
Your Guide to Modern, Pragmatic Project Management, ROT07 for
more information on this schedule game.)

The more integration points your program has, the easier it is to see
the entire product, not just one component.

Hardware and mechanical engineering are on different cycles from
each other, and they are each different from software. Even with
each discipline, the risks are different when the teams collaborate
together on one deliverable and when the entire program has to
collaborate to create a product.

The engineering teams simulate to see problems in their own work
and solve those problems. Each team is ready for integration at a
different time. They can’t integrate until they go to fabrication. That
changes the feedback cycle(s) for the entire program.

Questions you can ask:

• Is there an interim physical form that would provide us
value?

Integrating Hardware Into Your Program 185

• How much does that form cost us to create?
• How long is it that prototype good for?
• If there is not an interim physical form that would provide us
value, how can we obtain value and reduce risks with what
kind of form or demonstration?

Here are some sample problems you could test for and avoid with
early prototypes:

• The footprint is too large/too small.
• The design by contract work you thought was good turns out
to be wrong.

• You have a design that works but doesn’t produce the product
you want.

Those are examples. You may have other problems.

14.8 Manage Hardware Risks

Because the hardware parts run on different cycles than the soft-
ware parts, we have at least two ways to manage these risks: set-
based design (See What is Set-Based Design? SIN09) and landing
zones (See Starting with Landing Zones, (WIR11).

In set-based design, the designers iterate on the design. As they
proceed, they rule in or out designs that do not intersect with
the rest of the design components. In landing zones, the designers
discuss the parameters of what makes a successful design and then
converge on that success.

Both of these appear to be more like “implement several features
and see what architecture emerges, rather than design up front.”
It’s also about using the intelligence of an entire team.

Integrating Hardware Into Your Program 186

There’s a third option: is there a cost-effective way to make a
prototype that can provide you with feedback without having all
the properties? For example, can you use a 3D printer to check the
physical footprint, even if you can’t check heat dissipation? I don’t
know if that would work for your program or would be a waste of
time. I do know that 3D printing is much faster than going to fab
for many parts of your product.

I used a fourth option some years ago. We wanted to simulate the
traffic on an internal network to see if the design we had would
work. I asked about 20 people to meet the architect and me (I was
the program manager) in a large conference room. We organized
the people according to the types of traffic.

We had ametronome to help people walk on time.We simulated the
network traffic—what was going where and when—with people. It
wasn’t a perfect test, and it told the architect a ton of information
about how the software would work with the current hardware.
I’m not sure we would do that now—we did not have adequate
simulators back then. At the time, it was a cheap and useful
approach to help the architect realize that the hardware would not
integrate with the software as he desired.

These methods are not infallible. However, they all provide feed-
back faster and better than waiting until the end of the project/pro-
gram, when you have spent all the money and time—and you still
don’t have hardware that works.

14.9 Develop the Software Before the
Hardware Is Available

I have seen many programs develop the hardware at the same time
as the software, or even in advance. The software and hardware
people agree on designs in advance, and write them down. This is
a form of “design by contract.”

Integrating Hardware Into Your Program 187

However, there is another alternative—to develop the software
before the hardware. One of my reviewers, Ian Brockbank, said it
this way:

For the last twelve years I have worked for a company which
develops audio chips, which have acquired more and more
functionality over the years. We had an implicit assumption
that the silicon was the most important part of the develop-
ment, with software almost as an afterthought. After several
projects where the software wasn’t ready until a year or more
after the silicon (and one program which ended up being
cancelled after two chips and 4 years of development because
no-one could use it without a major extra investment in
software which the company wasn’t able to make) we finally
recognized that in some cases there is much more work on the
software side than the hardware side. We are now getting to
the point of starting software development long before there
is hardware available.

One of the most important things to do to allow this is to
have abstractions which can act sufficiently well to test the
software in advance of the hardware. We use a range of
abstractions with different levels of fidelity, from a simple
array, through emulation libraries and simulators to FPGA
instantiations of early versions of the chip, and we have found
you can do a lot with a very low-fidelity abstraction. We
have developed an advanced chip configuration package in
the main using little more than an array behind a mocking
layer for the communications. We develop advanced signal
processing algorithms for embedded DSP cores with bit-exact
emulation libraries on the PC. Only once it works in emulation
do we consider trying it against real hardware.

Integrating Hardware Into Your Program 188

Of course, this provides a provisional version of the software,
which is only as good as the understanding of how the
hardware works, so we always need to verify once the real
hardware is available. Testing against FPGAs comes next.
These allow us to test early versions/subsets of the chips
against the software, and allow the interfaces to be validated,
debugged, and refined before committing to the expense of a
full mask set and fabrication run. It does take work to allow
silicon designs to be suitable for FPGA—the porting is a full-
time role even with suitable silicon designs-–-but it definitely
pays for itself if it saves even a single respin, which can cost
millions of dollars and (even worse) put the programme back
by months.

Once the real silicon returns, there is still further verification
work—the timing on FPGA is never exactly the same as the
silicon, and there is analogue performance to consider as
well, but in my experience even the simplest abstractions can
cut out 80-90% of the dependence on real hardware during
development and save months or even years on the project
timeline.”

—Ian Brockbank, private communication

Can you develop the software before the hardware? Is it a possibility
for your program? What would have to be true for you to do so?

Integrating Hardware Into Your Program 189

14.10 Principles of Integrating Hardware
Into Your Program

1. Decide when it makes sense to move to physical form. Early
and often, or later? The principle is: “See the whole.”

2. Encourage working product. The principle is: “Deliver early
and often to satisfy the customer.”

3. Encourage technical discussion of architecture and design.
The principle is: “Continuous attention to technical excel-
lence and good design enhances agility.”

15. Troubleshooting Agile
Team Issues

As a program manager, you will see many kinds of problems in the
teams. Some of them are process problems—how can the team be
better at agile or lean to deliver value better or faster? Sometimes,
the people on the teams don’t know how to be a team or how to
diagnose their team problems.

Youmay see these problems or youmay have to ask the team to self-
assess to see the problems. You can troubleshoot these problems.

Remember, you are a servant leader. Grease the skids, eliminate the
impediments, empower people to solve problems themselves.

15.1 The Teams Are Not Feature Teams

I’ve seen component teams and single-function teams attempt to
work in an agile way. That might be better than what they did
before, but it’s not agile.

Unless you release libraries, component teams do not ship running,
tested features. They need to organize along with several other
component teams to release running, tested features. If your product
is libraries, you need component teams.

Single-function teams violate the agile tenet that the team is cross-
functional and has all the roles it needs to finish features.

Component teams and single-function teams create interdependen-
cies.

If you have a ton of interdependency issues between teams, you

190

Troubleshooting Agile Team Issues 191

might have the problem that teams are organized around architec-
ture and not around features.

Most of the component and single-function teams I have seen are a
legacy from the organization’s waterfall days. How the heck are
you going to create features, and integrate a feature every day,
working across the architecture instead of through it? That is a
huge impediment. If you have component teams, it’s even more
important that they work on small stories. That’s because the teams
will have a difficult time getting the stories done through the
architecture.

Don’t ask people to reorganize first. Instead, ask people to exper-
iment. I have had good results asking people to experiment to see
what works with self-organization, to pair or to swarm. When you
ask, explain why you recommend these alternatives: multiple eyes
on the code, everyone works together to reduce WIP and move a
feature across the board, and whatever results you want.

15.1.1 Ask the teams to experiment with
self-organization around features

• Explain to the teams that this is an experiment that “we as
an organization are running for the next x weeks.” Make x be
short, as in one or two weeks.

• The only measure of success is running tested features.
Managers do not compare teams. If managers compare teams,
the experiment will not work. This is an experiment that the
organization is going to learn from. Some teams will have
small and easy features. Some teams will not. This is not a
competition. If anyone compares teams, the teams will game
this measure and you will lose the learning.

• Stop multitasking. Get everyone to work on just one project
at one time right now. I know, this might be the most difficult
thing your organization has tried. Ignore the fact you need
experts everywhere. Assign people to only one project.

Troubleshooting Agile Team Issues 192

• Ask the component teams to self-organize as feature teams
for now. No changing managers. No changing desks. They
get to decide how. If you are a manager, no decreeing who is
a feature teamwithwhom. If you have single-function teams,
ask them to self-organize as feature teams for now.

• Ask the product owners to make the stories as small as they
can make them, preferably one or two team-days in size or
less. Tell the teams that if they don’t have the expert they
need for a story, that’s okay. They can pair, swarm, or mob
together to get the story done. But, they are not allowed to
interrupt another team.

• Create an agile roadmap of the features you want in which
internal release.

• The teams work on their backlog, or work in flow for this
week or two weeks (not any longer) to see what happens
when everyone works in feature teams of their own making
and no one multitasks, to get features to done. Remember,
this is an experiment.

• Have the teams do retrospectives themselves at the end of the
short timebox so you can see what happens. Managers might
need to supply retrospective facilitators.

• Decide what to do next. This is an experiment.

At the end of the experiment, ask the teams to assess the experi-
ment, using these questions:

1. What happened?
2. Were the experimental feature teams able to release features?
3. What happened to the teams who needed experts?
4. What was challenging about this experiment?
5. What succeeded with this experiment?
6. What failed with this experiment?
7. What did you learn from this experiment?

Troubleshooting Agile Team Issues 193

8. What will you do in the future?

This is one way to help teams learn how to collaborate and explore
with each other.

15.1.2 Ask the teams to pair around features

When you pair, two people work together to finish a piece of work.
Traditionally, two developers paired. The “driver” writes the piece
of work. The other person, the “navigator,” observes the work and
provides review, as the two people complete the work. As they work
together, they trade places, say every 15-20 minutes.

Arlo Belshee wrote a great article called Promiscuous Pairing and
Beginner’s Mind: Embrace Inexperience, (BEL06) where he explains
how you don’t need to be an expert to be an effective pair or pair
member.

When team members pair for features, they deliver. They focus. If
they need help, they don’t get stuck, because there are always two
people working on one feature, discussing what to do next.

Encourage different varieties of pairing: developer/developer; de-
veloper/tester; or even a triad, which starts to look like a swarm.

15.1.3 Ask the teams to swarm around features

When teams swarm, the entire team works towards finishing a
feature. Sometimes, teams split into smaller chunks, where people
work on what they can, and then rejoin the team. Sometimes, they
all work together, as in mob programming.

When I teach one of my agile workshops, I challenge people to take
one feature as a team and complete it within one hour.

Some teams do it by having the product owner explain what the
feature is in detail. Then the developers pair and the tester(s) write

http://mobprogramming.org/

Troubleshooting Agile Team Issues 194

tests, both automated and manual. They all come together at about
the 45-minute mark. They see if what they have done works. (It
often doesn’t.) Then the team starts to work together, to really
swarm. “What if we do this here? How about if this goes there?”

Some teams work together from the beginning. “What is the first
thing we can do to add value?” (That is an excellent question.) They
might move into smaller pairs, if necessary. Maybe. Maybe they
need touchpoints every 15-20 minutes to re-orient themselves to
say, “Where are we?” They find that if they ask for feedback from
the product owner, that works well.

If you first ask, “What is the first thing we can do to add value and
complete this story?” you are on the right track.

Note how with pairing and swarming, people don’t get stuck. They
reduce their WIP. They deliver.

15.2 Teams Think They Are Agile, But
They Are Not

There are many examples of teams thinking they are agile. Some
have hardening sprints. Some organizations have development
teams and testing teams. What I see often is developers working
on one feature, followed by testers working on that same feature. A
hardening sprint is an example of testers and developers working
to finish the software, to get it to done.

Help the teams learn how to get each story to done in one or two
days.

15.2.1 The team works in sequential iterations
of developer/tester

Teams work in sequential iterations, where first there is one itera-
tion of development for two weeks, and then one iteration of testing

Troubleshooting Agile Team Issues 195

for two weeks. If you are like some of my clients, you even overlap
the first week of testing, but you have one week of testing that
extends beyond the last week of development. I didn’t show that in
this picture. That would extend the total timebox by another week.

Staggered Development and Testing

Whenwe look at the picture of Staggered Development and Testing,
it doesn’t matter how long the development or the testing iterations
are. It matters how long the sum of the iterations are. If each
iteration is two weeks, then the sum is four weeks. If you spend
two weeks developing and three weeks testing, you have a five
week iteration. It takes five weeks to get feedback and to know if
the feature you developed is good. The feature isn’t done until the
testing is done.

You can Ask the teams to experiment with a self-organization
around features. Youmight ask the teams to swarm around features.
Youmight ask the teams to pair around features. Those are just three
options.

Maybe something else would work for your environment.

Remember, if the testing occurs after the development, the develop-

Troubleshooting Agile Team Issues 196

ers are already onto the next features. The team incurs a delay in the
feedback. The developers incur a delay because of the multitasking:
stopping what they work on now, fixing the problem, and returning
to the feature under development. Avoid staggered development
and testing. Teams that stagger their development and testing find
continuous integration or providing a continuous flow of value
difficult, if not impossible.

In the program team, ask the product owners to reduce the feature
size. The smaller the feature, the more the team can collaborate
together to keep the feedback loop small and succeed at delivering.

15.2.2 Some teams have hardening sprints

Hardening sprints are a tremendous risk to your program.

Hardening sprints are an indication of incomplete work. Teams did
not get their features to “done” in the committed time. People can
make mistakes in their estimation. But, if teams need hardening
sprints, they need to change their approach. They have technical
debt and that debt may become a program-level risk.

If you have teams who discover and fix feature defects late in
the game—when the team thinks that feature is complete—you
have added a tremendous risk to your program. The developers
multitask—they stop work on the feature they are working on now,
return to a previous feature where they might not remember all the
context, fix it—and then return to the feature they were working
on.

As a program manager, watch for these problems. You will see it in
feature teams not completing features they expected to, or in feature
teams saying they need time to fix defects or perform hardening
sprints.

Suggest that the teammeasure their cumulative flow to showwhere
the work is.

Troubleshooting Agile Team Issues 197

Make it easy for people to bring you bad news. Do not be nasty
about this problem. Help people be honest about where they are in
their agile or lean journey.

Hardening sprints or fixing defects in a feature long after it was
created are two examples of a similar problem: not getting to done
on stories. There can be many reasons for this: insufficient testing,
insufficient test automation, partial teams, people multitasking—to
name just a few.

As a program manager, encourage the feature teams to perform
retrospectives and discover why they have these problems. In
addition, encourage the product owners for those feature teams to
make the stories smaller. Smaller stories will help the teams see
their problems faster and fix them faster. A hardening sprint does
not allow you to have releasable product at all times.

Know if you have partial teams or people multitasking on your
program, especially if you have target dates or a target budget. Your
risks rise with partial teams or multitasking.

15.2.3 You have partial feature teams

A feature team has all the roles it needs to create features. It’s a
cross-functional team, of no more than nine people. (I prefer teams
of 4-6 people.)

You might not have feature teams because a team might be missing
testers, user experience people or database admins. The team is
missing some role or roles and cannot complete features by itself.

You might have this problem because the organization was “lop-
sided” to start. The managers, before you started to use agile,
thought it was fine to have many developers and “share” testers,
user experience people, or DBAs. In a serial life cycle, maybe it was
okay. It’s not okay in agile.

Troubleshooting Agile Team Issues 198

Don’t add teams of developers and create incomplete lopsided
teams.

You don’t get more throughput with extra developers without
additional testers or business analysts or writers or whatever makes
a cross-functional team in your organization. If your developers can
work alone and produce features by themselves, okay. I have yet to
see developers do that, and not be blind to their own defects.

What you care about in your program is the throughput of running
tested features. You don’t want partial teams to create work in
progress. That’s waste.

Partial feature teams is an artifact of waterfall thinking, optimizing
for resource efficiency as in This is Lean: Resolving the Efficiency
Paradox, MOA13. Your management wants to throw people at the
product. Don’t let them.

If everyone is agile, you may not need as many people as your
management thinks you do. You have continuous integration. You
have feature teams. Don’t start with more people than you need.
Say, “Thank you. The program doesn’t need more people than we
can have on fully staffed feature teams. Unless you can staff feature
teams with testers and product owners, I can’t use these developers.
They will slow us down. Thank you, anyway.”

Emphasize that youwant flow efficiency,moving features—deliverables—
through the program.

If that doesn’t convince them, estimate the Cost of Delay for partial
teams, as in Diving for Hidden Treasures: Finding the Value in Your
Project Portfolio (RE14). This is when you say, “At some point, we
will need testers for those developers,” or whatever role you are
missing. “At that time, either we have a delay while we try to
integrate someone into the team, or we will have to ask people to
multitask. That delay, which I estimate to be some-number, will
affect the entire program.”

Troubleshooting Agile Team Issues 199

15.2.4 You need experts to complete a story

If you are in the midst of your transition to agile, you have plenty of
experts. You may not have people who are generalizing specialists—
people who specialize in one area and are capable of flexing their
intellectual muscles in related areas.

Here’s an example of what I mean by a generalizing specialist. As
a developer, I loved writing platform and middleware layers. I was
not so excited about the user interface. I specialized in the platform
and secondarily in the middleware.

However, a feature isn’t a feature unless the user can see it. I needed
UI skills. I worked hard, and often with other people, to develop a
sufficient knowledge of what constituted reasonable UI approaches.
I often worked with UI designers who used paper prototypes to
determine what the UI would be. I had guidelines. I was able to
create features.

I went from a specialist in the platform to being a “full-stack”
developer. I would never call myself a UI guru. On the other hand,
with some help across the organization, I could create features.

There are other kinds of specialists, such as Database Admins, or
people who just do the financials, or diagnostics. These people have
focused on one area of the code base. They might be able to create
features, but only in that area.

Teams without specific knowledge in one area are often reluctant
to change code in that area. Or, the team may want to wait for an
expert. You have another risk, another Cost of Delay.

Teams have to learn to become the experts they need to be to be
able to help build features across the code base. They may find this
quite difficult.

You can help in several ways:

• Acknowledge that this work will be difficult for the team.

Troubleshooting Agile Team Issues 200

• If the expert is available, ask the expert to work with the
team in a short timebox, such as one week, to transition
the expert’s knowledge to the team. Make sure the expert
works with the team for that timebox, and then the expert
transitions away. If the team needs further help, can the
expert have office hours for the team to call him or her? The
goal is to not need the expert any longer.

• Ask the team members to pair around features they believe
they need an expert to complete. Sometimes, the team mem-
bers can understandwhat’s going on as pairs. Sometimes, two
heads are better than one.

• Ask the team members to swarm on the work. This works
especially well when the team members use test-driven de-
velopment and generate automated tests first, so the tests
support the team’s work.

You may have to help the teams transition past specialist thinking.

15.3 The Teams Have Dependencies on
Other Teams

Are your product development teams able to work through your
entire stack to produce a feature?

Troubleshooting Agile Team Issues 201

Implement by Feature

In the picture Implement by Feature, you can see how feature teams
would implement an entire small feature through the stack. If a
team doesn’t have the right people to deliver a full feature, what
impediments can you remove so the team does have all the people
it requires on the team to implement a full feature?

Sometimes, teams have much more complex features because they
have dependencies on other teams. I see this a lot with component
teams. Each team is able to implement their part. However, no one
can realize the value of a feature until all the component teams
finish their pieces.

Troubleshooting Agile Team Issues 202

Curlicue Features

One team I coached explained that they had “curlicue” features.
They didn’t have straight-line features. They had interdependencies
with other teams that led to large features that looked like the image,
Curlicue Features.

Sometimes, curlicue features might be an artifact of Conway’s Law.
Imagine that on your program, the middleware people are in Paris,
the UI people are in Edinburgh, the App layer 1 people are in
Denver, the App layer 2 people are in Raleigh, and the Platform
people are in San Francisco. You need all those teams to deliver
one feature. The features are large and have dependencies on other
teams.

When you hear “dependencies on other teams” or experts, you
know that The Teams Are Not Feature Teams. I’ve provided sug-
gestions for helping the teams become feature teams. At the least,
ask the teams to create kanban boards so everyone can visualize
where the feature is in its development.

Troubleshooting Agile Team Issues 203

15.4 Your Features Span Several
Iterations

What I see in some teams quite new to agile: Do your features span
iterations? Are they too large to finish in a day or so?

If so, make your features smaller. Making features smaller will help
the team see its progress. The smaller features also provide feedback
to the product owner/customer. That feedback will help the product
owner make the stories smaller and will help the team complete its
work inside the iteration. If you are using kanban, this is similar to
seeing a board not change for weeks while the same features are
still on the board, nothing moving. You are also likely doing staged
integration.

If you need help making stories smaller, try defining scenarios,
instead of stories. Then, see if you canwork by value in the scenario.
See Jeff Patton’s User Story Mapping, (PAT14), Gojko Adzic’s,
Impact Mapping: Making a big impact with software products
and projects, (ADZ12), and Adzic and Evans’ Fifty Quick Ideas to
Improve Your User Stories, (ADZ14). Review Pawel Brodzinski’s
Minimal Indispensable Feature Set, (BRO14).

15.5 You Don’t Have Frequent-Enough
Deliverables

If you have frequent internal releases—regardless of whether or not
you release your product—everyone can see the product grow.

If you don’t have monthly deliverables, ask teams to release some-
thing complete each week. That will help them see their impedi-
ments to releasing monthly.

When everyone can see the product grow, everyone can gain
feedback on the product’s progress. The product owners learn about

Troubleshooting Agile Team Issues 204

the stories—how valuable they are, how large or small they are, and
how easy or difficult they are to implement. The developers and
testers learn howwell they do at developing and testing the product.
The UX designers learn how well they do at user experience design
for this product. And so on.

When you make your product releasable often, you practice.

Some of you are saying, “We release multiple times every day. I
don’t see what’s so great about releasing once every single month.”
If you have a large program ofmore than 15 teams—especially a pro-
gram with hardware—it can be quite difficult to release anything,
never mind release a product of value once a month.

15.6 Teams Don’t Finish When They Say
They Are Done

Some teams, especially those new to agile or lean, have problems
with the idea of “done.” That’s when you start hearing about “done-
done” or “done-done-done.”

The way to get to done is to use the technical practices: automated
system testing, automated test-driven development (ATDD), test-
driven development (TDD) or behavior-driven development (BDD),
and especially continuous integration on small stories.

Some teams and product owners have a lot of trouble with the idea
of small stories. Some teams have a ton of trouble integrating the
technical practices, because they have not practiced them daily as
part of their professional lives.

You, as a program manager, can’t make teams change. You can
invite them to change. You can ask for the results you want. You
can support them and ask, “How can I help?”

Explain, “I don’t care how many features you finish in an iteration
or in flow. I care that the feature is done. Once you really get to done

Troubleshooting Agile Team Issues 205

reliably, we can start thinking about increasing velocity, if you want
to. However, in my experience, small features that are no longer
than two days long will help you accomplish several things:

• Finishing your features when you say you will.
• Seeing your progress better.
• Getting to done when you are done, and not doing more than
you need to, for a given feature.

15.6.1 Develop communities of practice to help
teams as peers

If some teams have trouble with some practices, they need help with
change. Remember, people change one person at a time. Try this
checklist:

1. Do people know what they need to do? Maybe people need
training first.

2. Do people have adequate tools to perform their jobs? Maybe
people don’t have the tools they need. If your program is
anything like the programs I’ve seen, some teams do not have
access to the same infrastructure as other teams. It’s crazy,
but true. Fix the infrastructure problem, and you have fixed
the problem.

3. Explain the risks of non-compliance with the desired results.
Some people and teams don’t realize the effect their actions
have on other people and teams.

Remember, on an agile program, the agile program manager facil-
itates the work of the projects/feature teams. The agile program
manager does not demand. The agile program manager does not
lay down the law. The agile program manager does not say, “Here’s
how it’s going to be, folks.”

Troubleshooting Agile Team Issues 206

On the other hand, the agile program manager can point out the
consequences or risks of not taking certain actions. “If we don’t
integrate as we go, we will never meet this demonstration date.”
Or, the trade show date, or the desired release date, or some other
date. Or, manage some other risk.

I’m quite happy to explain the risks to the feature teams. They are
adults. But if the software program manager explains the risks, or
even says, “I have a funny feeling about this, and I can’t explain it,
but I think this is risky, and I would like your help on managing the
risk of not integrating as we proceed,” most people will respond
and say, “Okay, let’s see how we can get closer to continuous
integration.” Or, they will say, “Hey, this is really hard,” or “This
is really expensive,” or “We know how to do it with lots of branches
which is crazy,” or “We only know how to do it if we break the
build” or any number of other problem statements.

They’re not stupid. They may be intimidated by technical practices,
but they are not stupid. And, they may have doubts about the cost
of servers or breaking the builds—doubts which are real.

15.7 Principles of Troubleshooting Agile
Team Issues

1. Help each team deliver as often as possible. The principle is:
“Deliver working software frequently.”

2. Invite teams to change. Don’t mandate a change. Instead,
create a vision of a better program with the changes. The
principle is: “Build projects around motivated individuals.
Trust them to get the job done.”

3. If teams are not retrospecting to see what causes them to
have trouble, ask them to do so. The principle is: “Reflect and
adjust at regular intervals.”

16. Integrating Agile and
Not-Agile Teams in Your

Program
You might want to use agile or lean approaches on your programs.
But, what if you have a mixture of agile and waterfall teams? Or,
maybe you have component teams instead of feature teams. Maybe
you have people who talk agile, but don’t work in an agile way.

If you are in that position, here are some alternatives to help your
program become more agile. You will have to decide how much
external help you need from coaches or trainers. Do not expect that
you can move an entire program—especially not a large one—to
agile by yourself.

Agile and lean are based around trust, autonomy, and collaboration.
You trust people to deliver unless they don’t. If they don’t, you can
ask them what their obstacles are and if they need help removing
them. Treating people like adults, and having adult expectations of
them, gives youmost of the same results as asking for the same stuff
and calling it “agile.”

People will live up to your expectations of them.

You can say, “Here are the results I want as the program manager.
If you can work this way, we will get the benefits.”

If the ideas here don’t work, consider the ideas inWhat If Agile and
Lean are Not Right for You. Agile and lean program management
are supposed to make your life easier, not more difficult.

207

Integrating Agile and Not-Agile Teams in Your Program 208

16.1 Waterfall Teams Are Part of Your
Program

Some teams don’t know or don’t want to use agile approaches on
their projects. And, they are on your program. You have possibilities
for managing the interdependencies with the agile teams.

1. Make sure you use deliverable-based planning for all the
projects. If your program uses the ideas in Create the Agile
Roadmap, you will use deliverable-based planning.

2. Ask the non-agile projects to determine their deliverable-
based milestones, preferably one each month. You can ask
the non-agile projects to deliver their deliverables once each
month.

3. Ask all projects to use an incremental approach to delivery.
No waiting until the end of the program to deliver. For many
people on the waterfall teams, this is a huge change. The
developers might not want to release their code into the code
base until it is “all done.” The testers might not know how
to test partially implemented features. And, if the testers on
the non-agile projects are still testing a previous project or
release, you will have to remove that multitasking obstacle.
You need to work with the product owners for the non-agile
teams, so they create an agile roadmap and short interim
releases.

4. Use rolling wave planning to plan the program. You don’t
have to keep a four-week wave—you can use a shorter wave.
Do not use a wave longer than four weeks. The program
needs to release something each month.

5. Ask the waterfall teams to use kanban so they can see their
WIP. You and they need to know if they have a ton of work
in progress that they are not delivering.

6. Ask each project to measure their cumulative flow. Be ready
to explain to the teams or project managers how to do this.

Integrating Agile and Not-Agile Teams in Your Program 209

Each team needs to see all their work in progress. This will
help them all see their dependencies. The more interdepen-
dencies the teams have, the more they have to talk with each
other to break them. They might need more deliverables.
They might need a kanban board to see bottlenecks across
the program. You, the software program team, and the core
team can help with these problems. But, until they see work
in progress, they won’t know what they need.

The non-agile projects will start to look like staged delivery or
design-to-schedule life cycle projects. In a sense, that’s cheating,
because they are no longer strict waterfall projects. That will work.
No one gets credit for strict adherence to waterfall or agile. People
get credit for successful projects and programs.

If you do have people who audit your program for a strict adherence
to any approach, that is a risk to your program. You can show good
software practices with any approach, even using both agile and
not agile in the same program. But, you don’t need anyone looking
over your shoulder.

If your not-agile projects have project managers, you may have to
coach the project managers into working in new and different ways.
You, the program manager, have to understand all about project
management and servant leadership. Explain the results you want
and when you need them. Treat the project managers as if they are
adults. Help the project managers learn how to manage in a servant
leadership way.

The not-agile project staff may feel as if you are “forcing” them
to transition to agile. You are not. However, they may be unaccus-
tomed to deliverable-based milestones. Invite People to Experiment
and measure their results.

You may need to provide training or a coach for these teams. Do not
expect people with a controlling-project mindset to automatically
adjust to an adaptable-project mindset.

Integrating Agile and Not-Agile Teams in Your Program 210

16.2 You Have Teams that Produce
Incrementally, But Not in an Agile

Way

Some teams think they are agile if they use the words. These teams
have large features that take at least a two-week iteration or longer
to release. The teams work on features, so they are developing
incrementally. However their increments are so large that they have
tremendous work in progress, or that they take months to finish
something before they receive any feedback. These teams cannot
complete a feature in two or even three weeks.

Ask the product owners to create feature sets that the team can help
break down into smaller features. Explain that you want the team
to integrate something that looks like a feature into the code base
every single day.

You may need to provide the team with some coaching or training.
I have met many teams who have not even read one agile book and
don’t realize how to work in an agile or lean way.

16.3 You Have Teams that Prototype
and Don’t Complete Features

Some prototyping can be quite helpful. For example, in an architec-
tural spike, the output might be a proof of concept or a prototype.
However, if a team only prototypes and never finishes features, that
is a problem.

Ask the team to create a kanban board so everyone can see the
state of the features. Ask the team to define and manage their WIP.
Ask the team to define what done means for them. Ask the team to
conduct a retrospective so they understand what they did and how
they did it.

Integrating Agile and Not-Agile Teams in Your Program 211

Now, the team and you have data. Maybe the team can take it from
here. Maybe the team needs help in someway and the kanban board
will show everyone that data.

I worked with a team that had this problem. Their testers were
multitasking on so many other projects I wondered how the team
even had the feedback on their prototypes.

Another team didn’t realize their definition of donewas inadequate.

Teams who don’t complete features need some sort of problem-
solving advice. Don’t impose help on the team until you have the
data. Consider helping them learn how to discover their data for
themselves.

16.4 Principles of Integrating Agile and
Not-Agile Teams in Your Program

1. Use deliverable-based planning for the program and for each
team. The more often each team has deliverables, the more
they will see what they have to deliver to the program and
when. With those deliverables, you will be able to see any
team’s obstacles. The principles are: “Eliminate waste” and
“Working software is the primary measure of progress.”

2. There are no prizes for “how agile any team is.” The only
thing that counts is delivering working product. The princi-
ples are: “Deliver early and often to satisfy the customer” and
“Empower the team.”

3. Only take fully-staffed teams and fully-assigned people on
your program. Do not take multitasked people on your pro-
gram. The principle is: “The best architectures, requirements,
and designs emerge from self-organizing teams.” If you have
trouble with this principle, see Troubleshooting Agile Team
Issues.

17. What to Do If Agile and
Lean Are Not Right for

You
You’ve read this book, and you think, “Okay, this is great, but it’s
not going to work for me, our program, or our organization.”

Maybe you’ve decided the culture won’t support agile and lean
now, or you have many waterfall projects in addition to some
agile projects in your program. Maybe you’re new to agile, your
iterations are longer than two weeks, and your risk is too high.
Maybe your managers want to exert too much control in the
projects over what people do (move people like chess pieces), and
not manage the project portfolio.

You have options. You do not have to run a program in waterfall.
You can take advantage of everything you know about project man-
agement, about deliverable-based planning, about cross-functional
collaborative teams, about reducing work in progress—everything
you know from agile and lean and good project management
practices to make your project successful.

This is called “thinking.”

Your organization pays you, and anyone involved in a program, to
think. Especially if you are the program manager and are supposed
to manage risks and remove obstacles.

Some of the ideas in this chapter might work for you. I encourage
you to try them. Along the way, as people relax and learn more
about agile and lean approaches, maybe you can apply more ideas.

Don’t call these ideas agile or lean. They’re not. They are reason-
able, practical, pragmatic approaches to completing programs. See

212

What to Do If Agile and Lean Are Not Right for You 213

what might work for you. I encourage you to involve the people on
your program. Whatever you do, don’t call them “best practices.”
That will kill people’s excitement about trying anything. If you need
a name for these ideas, call them “potentially useful practices.”

Invite people and teams to experiment, measure their progress, and
reflect. If the data says things aren’t working and you’ve given the
idea enough time, try something else.

The worst thing that happens is you return to waterfall with no
replanning. As we know, that is the worst thing that can happen.
Because on a program,Murphy’s Law is waiting to happen.Murphy
will make you replan.

Here are some possibilities, depending on your program risks.

17.1 Try an Incremental Life Cycle

For many years, I used staged delivery as my preferred approach,
and timeboxed everything, so we had a chance of making manage-
ment’s mandated dates.

Staged Delivery Life Cycle

What to Do If Agile and Lean Are Not Right for You 214

Design to Schedule Life Cycle

A staged delivery or design-to-schedule life cycle are incremental
life cycles. These life cycles allow you to build features, one fea-
ture at a time, integrating and testing as you proceed. For more
information on incremental life cycles, see Manage it! Your Guide
to Modern, Pragmatic Project Management, (ROT07).

Notice that not all of the features are the same size. The teams do not
necessarily align on feature boundaries. Do not kid yourself. This
could be difficult if your features are big, and you do not timebox
the features. Your teams may not be able to integrate without the
assistance of a release engineering or some sort of integration team
if the features are not small.

I have used Staged Delivery to manage a program. I found timebox-
ing to be a big help. I timeboxed the initial requirements gathering

What to Do If Agile and Lean Are Not Right for You 215

to no more than one or two weeks. I explained to the product
managers or anyone else involved, “Please provide a ranked list, as
in 1, 2, 3, 4, down to 57 or 98 or whatever by two weeks from now.
You can change it later. But we need to start on the most important
features. The most important features will drive our architectural
decisions.” We did not descend into “requirements hell.”

I also timeboxed the BDUF (Big Design Up Front) piece. All of my
experience tells me that the initial architecture will be wrong. I
much prefer it when we do three features first and then select an
architecture. However, I am not always successful convincing the
architects of this. If you aren’t successful either, timebox this effort
to no more than two weeks.

If you already have many people on the program, make sure you
have people working on learning how to work together. See How
to Start a Program With More People Than You Need and apply
those principles to this approach.

Now, you can timebox the features. For example, you can say, “Let’s
make sure we can deliver something every month. Let’s timebox all
of our features to fit into a one-month timebox.”

These life cycles are not agile approaches. They will not revolution-
ize your culture in the same way as agile does. However, if you
cannot move to two-week iterations, and complete features every
day or so in your feature teams, try these approaches.

Principles I use in an incremental life cycle:

1. Timebox everything. You don’t have to work in iterations,
but make sure you timebox features.

2. Use monthly milestones and integrate everything at least
every month. More often is better.

3. Make sure you have a product release or a demonstration at
least every once a quarter. Every month is better. Why? So
you can see the product.

What to Do If Agile and Lean Are Not Right for You 216

This is incremental work, not iterative and incremental. However,
you will see the product grow, month by month, especially if you
use two-week or one-month timeboxes.

17.2 Organize by Feature Team

Instead of organizing by architectural component, consider orga-
nizing by feature team. You don’t have to change where people sit.
That might be too much change. But do change their allegiance,
from their function, to their feature set.

Make no mistake, this has the potential to manifest enormous
change in the organization.

I introduce this in this way: “I am going to be asking for monthly,
visible deliverables by feature. The best way I know how to accom-
plish that is for people to work together in feature teams. I realize
I am asking you to split up the developer, tester, writer, business
analyst, and all the other teams that sit together. It’s okay if you
groan now. I have seen cross-functional teams that create features
work together really well.

“In addition, to make sure you folks still know who you are, and
know the issues that are difficult for you, I’d like to see you have
“Community of Practice” meetings every week or every other week.
These are learning sessions, or knowledge sharing sessions. These
are for your professional development.

“I realize this is a big change. How about if we experiment, and try
it for a month and see what happens?”

When you frame things as an experiment, you invite people to
try it. You are not mandating any change. You are asking them
to try something. Make sure you schedule a retrospective to see
what works and doesn’t work at the end of the month. Include the
retrospective on the schedule when you ask for this reorganization.

What to Do If Agile and Lean Are Not Right for You 217

17.3 Learn to Release Interim
Deliverables

Before I learned about agile, I had a guideline that the entire
program had to deliver something every month. That is, we, as a
program, had to see something visible everymonth. Believe me, this
was a struggle with hardware. We often had to see a simulation.

The best thing you can do for your program is to learn to deliver
often.Why? You build trust between the feature teams by delivering
to each other. You build trust between the program and your
management team by delivering. Delivering is crucial.

If you say to the technical teams on the program, “We might not be
ready for agile. But there’s this idea in agile that I think we can do:
Monthly deliverables. Do you think we can have every team deliver
something every month?”

Now, sit back and listen to people. Sometimes, when you say things
such as, “We might not be ready…” people take it as a challenge.
“Yes we are,” they say. Other people agree with you.

You can always say, “Here are the principles that we want to live
by;” and then suggest that releasing early and often is one of the
principles.

17.4 Learn How to Reduce Batch Size
With a Large Program

Back in Create the Big Picture Roadmap, I explained the differences
between epics, themes, and feature sets. If you have large features
on your program, it’s often because the product owners do not know
how to break apart the feature sets into small, one- or two-day
features.

What to Do If Agile and Lean Are Not Right for You 218

The teams may have to help their product owners break the epics,
themes, and feature sets into small stories. The product owners may
not have the product expertise to know how to do so.

If the product owners don’t have the time to break apart the epics,
themes, or feature sets into small stories, you have a major risk and
an impediment to your program. What else are these people doing?
I am sure they are not twiddling their thumbs. I suspect they are
not working full time on your program. You can fix that.

The smaller the batch size—the story—the faster the teams will
work. The faster they work, the faster they will integrate, maintain-
ing momentum on your program. Help the product owners reduce
batch size. The product roadmap and backlog creation is key to your
program’s success.

17.5 Try Release Trains

If you are not ready for agile, you can use release trains, and see
your product grow with each release.

The teams might work in mini-waterfalls instead of by feature. The
value of a release train is that you have to release something every
train.

When you use release trains externally, you commit to yourself and
to your customers to release your product on a particular date every
quarter. The quarter is the iteration. If you are a program manager,
you can ask your teams to consider an iteration of somewhere
between six weeks and eight weeks. At worse, you can ask your
teams to commit to an iteration of 12 weeks.

In a program, you are not an external customer—you are internal.
Because you are working with project teams—feature teams—you
don’t need marketing collateral or training to be ready internally;
you only need the software to be integrated and possibly to be
married to the hardware. That is difficult enough—you want the

What to Do If Agile and Lean Are Not Right for You 219

non-agile project teams to start learning how to use deliverable-
based planning in small chunks, and to focus on what the customer
will be able to use.

The release train is not agile, because it takes too long to obtain
feedback from a product owner or a customer. However, release
trains allow you to manage risk. These teams will likely be using
small waterfalls, unless you can convince them to use iterative or
incremental life cycles. But you as a program manager can manage
the program risk better with the train because it allows you to
obtain those small deliverables periodically. Sure, the deliverables
aren’t every two weeks; they probably aren’t every four weeks,
either. But they are more often than every six months, and that’s
an improvement.

Release trains decouple the releasing of the product from the
projects. That is, release trains set their dates in stone in advance,
and are often tied to a specific date in the quarter or the month, like
a train’s timetable. Then the contents of the train are determined by
what the teams think they can accomplish. When a feature is done,
it is eligible to be released. Release trains never extend the timebox,
just as trains never change the time they leave the station.

This is what a release train looks like:

What to Do If Agile and Lean Are Not Right for You 220

Release Train: Each train releases on the same relative day each quarter

I am using quarters here because the picture looks better; you could
use months as an alternative. You can use any periodic iteration,
such as six weeks or eight weeks—as long as you use a consistent
iteration. The iterations build a cadence for your program.

Between releases, you can ask the teams to organize so they build
by feature. Often, teams use an incremental life cycle such as
design-to-schedule or a staged delivery life cycle because they fit
the parameters of the release train so well. Some teams who are
comfortable with Rational Unified Process (RUP) use that.

You could use a kanban board to limit work in progress and still
make sure features get to done. Remember, it doesn’t matter what
life cycle the team uses; it only matters that you have finished
features in the codebase by the end of the iteration, when the train
is ready to pull away from the station.

A release train does not have the same focus and urgency a
shorter timebox has. When your timebox is eight or 12 weeks,
other problems can arise and change the backlog for the timebox.
Remember, the project team only gets feedback once their train
leaves the station.

What to Do If Agile and Lean Are Not Right for You 221

In programs, committing to a ranked backlog for a train can be
tricky. Why? Because the product owner will want to change
the roadmap more frequently than once a quarter. Changing the
roadmap can prevent the teams from completing anything.

I recommend you use kanban for the non-agile team. The team takes
take work off the queue, always working on the most important
feature. Since they are working in a timebox, does it matter which
features they work on? No.

Release trains provide you more predictability. They reduce risk,
compared to a waterfall. They do not provide the ability to change
often.

Measure your time to a releasable deliverable, as in Measure the
Time to Your Releasable Deliverable. Make sure your time to release
stays at whatever cadence you decide, and that it doesn’t increase
because you need hardening sprints.

And what about those of you who have long lead-time items, such
as hardware of some variety or mechanical engineering parts? Use
deliverable-based planning and rolling-wave scheduling, and keep
those parts of the program using release trains for their design.

Managing a program of agile and non-agile projects is a fact of
program management life; it’s not going to go away. You will need
all the tips and tricks to make it easy. Release trains are an old
technique, but you can apply them in a new way. What have you
got to lose?

17.6 Principles for What to Do if Agile
and Lean Are Not Right for You

If agile and lean are not going to work in your organization, keep
these principles in mind:

What to Do If Agile and Lean Are Not Right for You 222

1. Work by feature, whenever possible. Make those features
small, so the teams can integrate them continuously. The
principle is: “Deliver early and often to satisfy the customer.”

2. Tell the teams you want them to work in small-world net-
works, to be autonomous, collaborative, and exploratory. Just
because you’re not doing agile or lean does not mean you
can’t ask people to work in a highly collaborative way. Do
so. The principles are: “Empower the team” and “The best
architectures, requirements, and designs emerge from self-
organizing teams.”

3. Maintain your stance as a servant leader. Keep your focus
on problem-solving and obstacle removal for the feature
teams. You can still run the program teams as if they are
agile or lean teams, solving problems across the organization.
The principle is: “Business people and developers must work
together.”

Annotated Bibliography
[ADZ12] Adzic, Gojko. Impact Mapping: Making a big impact

with software products and projects. Provoking Thoughts, 2012.
Understand what you want to build.

[ADZ14] Adzic, Gojko and David Evans. Fifty Quick Ideas to
Improve Your User Stories. Neuri Consulting LLP, 2014. Many
teams struggle with user stories. This little book can help you
improve what you plan to deliver.

[AMA11] Amabile, Teresa and Steven Kramer. The Progress Princi-
ple: Using Small Wins to Ignite Joy, Engagement, and Creativity
at Work. Harvard Business Review Press, Boston, 2011. They
have completed the research that says we like to finish work in
small chunks so we can make progress.

[BEL06] Belshee, Arlo. Promiscuous Pairing and Beginner’s Mind:
Embrace Inexperience. IEEE Computer Society, 2005. We often
think pairing has to be between similar experienced people. Not
true.

[BRO14] Brodzinski, Pawel. Minimal Indispensable Feature Set at
http://brodzinski.com/2014/12/minimal-indispensable-feature-set.html,
2014. What do you really need to build? How little can that be?

[BRO95] Brooks, Frederick P. The Mythical Man-Month: Essays
on Software Engineering, Anniversary Edition (2nd Edition)
Addison-Wesley, Boston, 1995. Learn from a master.

[DER06] Derby, Esther and Diana Larsen. Agile Retrospectives:
Making Good Teams Great. Pragmatic Bookshelf, Dallas, TX
and Raleigh, NC, 2006. The classic work about retrospectives.

[DWE07] Dweck, Carol. Mindset: The New Psychology of Success.
Ballantine Books, New York, 2007. This book discusses the fixed

223

Annotated Bibliography 224

mindset and the growth mindset. If you have the fixed mindset,
you believe you can only do what you were born with. If you
have the growth mindset, you believe you can acquire new
skills and learn. The growth mindset allows you to improve,
a little at a time.

[EDM12] Edmondson, Amy C. Teaming: How Organizations Learn,
Innovate, and Compete in the Knowledge Economy. Jossey-Bass,
San Francisco, 2012. How self-organized teams really work, and
what we need to make them work in different cultures.

[FOW03] Fowler, Martin.Who Needs an Architect?, IEEE Software
July-August 2003, pp 2-4, also at http://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf.
Read this if you want to understand what architects can do for
you, and what they should not do. Wonderful article about the
value of architecture.

[GLI15] Gonçalves, Luis and Ben Linders.Getting Value out of Agile
Retrospectives: A Toolbox of Retrospective Exercises. Leanpub,
2015. More retrospective exercises for your consideration.

[GRE02] Greenleaf, Robert K. Servant Leadership: A Journey into
the Nature of Legitimate Power and Greatness, 25th Anniver-
sary Edition. Paulist Press, New York, 2002. The original and
definitive text on servant leadership. The forewords and after-
words provide significant value to understanding how servant
leaders work.

[HAC02] Hackman, J. Richard. Leading Teams: Setting the Stage for
Great Performances. Harvard Business Review Press, Boston,
2002. The classic work about what a team is, including what a
self-managing or self-organizing team is.

[HAM14] Hammarberg, Marcus and Joakim Sundén. Kanban in
Action. Manning, Shelter Island, NY, 2014. Terrific introduction
to kanban.

[KEI08] Keith, Kent M. The Case for Servant Leadership. Greenleaf

Annotated Bibliography 225

Center for Servant Leadership, Westfield, IN, 2008. Useful be-
cause it’s short, sweet, and specific.

[MOA13] Modig, Niklas and Pär Åhlström. This is Lean: Resolving
the Efficiency Paradox. Rheologica Publishing, 2013. Possibly
the best book about how managers should consider agile and
lean. A wonderful discussion of resource efficiency vs. flow
efficiency.

[PAT14] Patton, Jeff. User Story Mapping: Discover the Whole Story,
Build the Right Product. O’Reilly, Sebastopol, CA, 2014. A
terrific way to explain your stories to yourself. This book will
help you move from epics and themes to stories your feature
teams can build.

[POP03] Poppendieck, Mary and Tom Poppendieck. Lean Software
Development: An Agile Toolkit. Addison-Wesley, Boston, 2003.
The first book to provide a lean approach to software.

[REI09] Reinertsen, Donald G. The Principles of Product Devel-
opment Flow: Second Generation Lean Product Development.
Celeritas Publishing, Redondo Beach, CA, 2009. A classic for
understanding batch size and weighted shortest job first.

[BCD05] Rothman, Johanna and Esther Derby.Behind ClosedDoors:
Secrets of Great Management. Pragmatic Bookshelf, Dallas, TX
and Raleigh, NC, 2005. We describe the Rule of Three and many
other management approaches and techniques in here.

[ROT07] Rothman, Johanna. Manage It! Your Guide to Modern,
Pragmatic Project Management. Pragmatic Bookshelf, Dallas,
TX and Raleigh, NC, 2007. If you want to know more about
how to estimate task size, establish a project rhythm, or see a
project dashboard, this is the book for you. I have references
about why multitasking is crazy in here.

[ROT09] Rothman, Johanna. Manage Your Project Portfolio: In-
crease Your Capacity and FinishMore Projects. Pragmatic Book-
shelf, Dallas, TX and Raleigh, NC, 2009. Sometimes, program

Annotated Bibliography 226

managers encounter project portfolio decisions with the feature
set, or the request for people to multitask. This book helps you
manage all the work in your project portfolio. I also have more
references about why multitasking is crazy in here.

[RE14] Rothman, Johanna and Jutta Eckstein. Diving for Hidden
Treasures: Finding The Real Value in Your Project Portfolio.
Practical Ink, 2014. A book about Cost of Delay and how to
see how those costs affect your project portfolio.

[ROT15] Rothman, Johanna. Predicting the Unpredictable: Prag-
matic Approaches to Estimating Project Schedule or Cost. Prac-
tical Ink, 2015. What you need to know about estimation and
what to do when your estimate is wrong.

[SHI08] Shirky, Clay. Here Comes Everybody: The Power of Orga-
nizing with Organizations. Penguin Books, New York, 2008.
Why collaboration works, even when people don’t know each
other. It’s fascinating. Where I first learned the term “small-
world networks.”

[SIN09] Singer, David J., PhD., Captain Norbert Doerry, PhD., and
Michael E. Buckley.What is Set-BasedDesign? at http://www.doerry.org/norbert/papers/SBDFinal.pdf,
2009. A readable paper about what set-based design is and how
to use it.

[SNB07] Snowden, David J. and Mary E. Boone. A Leader’s Frame-
work for DecisionMaking inHarvard Business Review, Novem-
ber 2007. The introductory article about the Cynefin Frame-
work.

[SH06] Subramaniam, Venkat and Andy Hunt. Practices of an Agile
Developer: Working in the Real World. Pragmatic Bookshelf,
Dallas, TX and Raleigh, NC, 2006. I first learned about the term
“PowerPoint architects” from Venkat and Andy. I’d seen those
kinds of architects, of course. If you want to become an agile
developer, or an agile architect, start here.

[TIK14] Tikka, Ari.Coordination Chaos at http://www.slideshare.net/aritikka/coordination-

Annotated Bibliography 227

chaos-41883070, 2014. Learn how experts can make life much
more complicated.

[WIR11] Wirfs-Brock, Rebecca. Starting with Landing Zones at
http://wirfs-brock.com/blog/2011/07/20/introducing-landing-zones/,
2011. How to trade off architectural qualities on the way to
done.

[SHU14] Unknown. Secret to Shutterstock Tech Teams at http://bits.shutterstock.com/2014/05/08/the-
secret-to-shutterstock-tech-teams/ What a real manager does
with real teams.

Glossary
If you are not familiar with the terms I’ve used, here are the
definitions.

Adaptive: Any approach that allows you to adjust your practices or
behavior to the current reality.

Agile: You work in small chunks, finishing work that is valuable
to the customer in the order the customer specifies. The value of
working in an agile way is that you have the ability to change
quickly, because you complete work.

Backlog: Ranked list of items that need to be completed for the
product.

Cost of Delay: The revenue impact you incur when you delay a
project. Aside from “missing” a desired release date, you can incur
Cost of Delay with multitasking, or waiting for experts, or from one
team waiting for another in the program. All of these problems—
and more—lead to delay of your product release.

Community of Practice: A way to share knowledge among people
who belong to different teams, and share the same interests or
function. For example, in a program, youmight have an architecture
community of practice that helps any developer learn how to evolve
the design of the product. A test community of practice would
provide a forum for testers to discuss what and how to test.

Flow: The team takes a limited number of items to complete, and
uses the WIP limit instead of a timebox as a way to control how
much work the team takes.

Generalizing Specialist: Someone who has one skill in depth, and is
flexible enough to be able to work across the team to help move a
feature to done.

228

Glossary 229

Hardening Sprint: If a team does not complete all the work they
need for a release, they may need a hardening sprint to complete
all the testing for a release. This is an indication the teams are not
really getting to done each iteration. They have work in progress
past the end of the iteration.

Inch-pebble: Inch-pebbles are one-to-two day tasks that are either
done or not done.

Iteration: A specific timebox. For agile projects, that time is nor-
mally one to four weeks. In programs, I like even smaller iterations
because you want feedback more often and want to build momen-
tum.

Kanban: Literally the Japanese word for “signboard.” A scheduling
system for limiting the amount of work in progress at any one time.

Lean: A pull approach to managing work that looks for waste in the
system.

MVP: Minimum viable product. What is the minimum you can do,
to create an acceptable product? This is not barely good enough
quality. This is shippable product. However, this is minimal in terms
of features.

Pairing: When two people work together on one task.

Parking Lot: This is a place to put issues you don’t want to lose but
don’t necessarily want to address at this time.

Spike: If you cannot estimate a story, timebox some amount of work
(preferably with the entire team) to learn about it. Then you will be
able to know what to do after the day or two timebox.

Servant Leadership: An approach to managing and leading where
the leader creates an environment in which people can do their
best work. The leader doesn’t control the work; the team does. The
leader trusts the team to provide the desired results.

Sprint: An iteration in Scrum.

Glossary 230

Swarming: When the team works together to move a feature to
done, all together.

Technical Debt: Shortcuts a team takes to meet a deliverable.
Teams might incur technical debt on purpose, as a tactical decision.
Technical teams can have architectural, design, coding, and/or
testing debt. Program teams might have risk or decision debt—the
insufficiency of work for managing risks or making decisions.

Timebox: A specific amount of time in which the person will
attempt to accomplish a specific task.

WIP or Work in Progress: Any work that is not complete. When
you think in lean terms, it is waste in the system. Note that you do
not get credit for partially completed work in agile.

More from Johanna
I consult, speak, and train about all aspects of managing product
development. I provide frank advice for your tough problems.
I’m more interested in helping you become more effective than I
am in sticking with some specific approach. There’s a reason my
newsletter is called the “Pragmatic Manager”—that’s because I am!

If you liked this book, you might also like the other books I’ve
written:

Diving for Hidden Treasures: Finding The Real Value in Your Project
Portfolio

Predicting the Unpredictable: Pragmatic Approaches to Estimating
Project Schedule or Cost

Project Portfolio Tips: Twelve Ideas for Focusing on the Work You
Need to Start & Finish

Manage Your Job Search

Hiring Geeks That Fit

Manage Your Project Portfolio: Increase Your Capacity and Finish
More Projects

Manage It!: Your Guide to Modern, Pragmatic Project Management

Behind Closed Doors: Secrets of Great Management

In addition, I have essays in:

Readings for Problem-Solving Leadership

Center Enter Turn Sustain: Essays on Change Artistry

I’d like to stay in touch with you. If you don’t already subscribe,
please sign up for my email newsletter, the Pragmatic Manager, on

231

http://bit.do/ppvalue
http://bit.do/ppvalue
http://bit.do/predicting
http://bit.do/predicting
http://bit.ly/12porttips
http://bit.ly/12porttips
http://bit.do/myjs
http://bit.do/hgtf
http://bit.do/mypp
http://bit.do/mypp
http://bit.do/manageit
http://bit.do/BCD
https://leanpub.com/pslreader
https://leanpub.com/changeartistry
http://www.jrothman.com/pragmaticmanager/

More from Johanna 232

my website. Please do invite me to connect with you on LinkedIn,
or follow me on Twitter, @johannarothman.

I would love to know what you think of this book. If you write a
review of it somewhere, please let me know. Thanks!

Johanna

http://www.linkedin.com/in/johannarothman

	Table of Contents
	Praise Quotes
	Acknowledgments
	Foreword
	Introduction
	Defining Agile and Lean Program Management
	Review the Twelve Principles of Agile Software Development
	Review the Seven Lean Principles
	Agile and Lean Together Create Adaptive Programs
	A Program Is a Strategic Collection of Several Projects
	Program Management Facilitates the Program to Release
	Program Management Coordinates the Business Value
	Agile Program Management Scales Collaboration
	Agile and Lean Effect Change at the Program Level
	What Program Managers Do
	Take a Product Perspective
	Principles of Agile and Lean Program Management

	Consider Your Program Context
	Cynefin Helps with Decisions
	Understand Your Product's Complexity
	Know Which Program Teams You Need
	The Core Team Provides Business Leadership and Value
	Do You Need a Core Team?
	Principles of Consider Your Program Context

	Organize Your Program Teams
	Create Your Core Team
	Beware of Forgetting Core Team Members
	The Product Owner Role Is Key to the Program's Success
	Organize the Software Program Team
	Don't Manage More than One Program Team Yourself
	Principles of Organizing Your Program Teams

	Start Your Program Right
	A Program Charter Sets the Strategy
	Develop the Program Charter with the Core Team
	We Can't Afford the Travel
	Lead the Program Chartering Effort
	Create Your Own Program Charter Template
	Iterate on the Program Charter and Plans
	Create the Agile Roadmap
	Create the Big Picture Roadmap
	Principles of Start Your Program Right

	Use Continuous Planning
	Differentiate Between Internal and External Releases
	What Do You Want to Release This Month?
	Create Minimum Releasables
	Plan for External Releases
	Deliverable and Rolling Wave Planning Helps
	Small is Beautiful for Programs
	How Often Can You Replan?
	Separate the Product Roadmap from the Project Portfolio
	Ways to Rank Items in the Roadmap or Backlogs
	Decide How You Will Evaluate Value
	Update the Roadmaps Often
	Principles of Continuous Planning

	Create an Environment of Delivery
	Visualize Program Team Work
	Keep the Program Team Work Small
	How Features Flow Through Teams
	How Often Can You Release Your Product?
	Release Internally, Even with Hardware
	Are You Integrating Chunks or Products From Others?
	Manage the Risks of Integration from Other Vendors
	Create a Culture of Delivery Throughout the Program
	Principles of Create an Environment of Delivery

	Encourage Autonomy, Collaboration, and Exploration
	Software is Learning, Not Construction
	Scaling Agile Means Scaling Collaborative Practices
	Create Autonomous Feature Teams
	Create Small-World Networks to Optimize Learning
	Communities of Practice Create Connection and Collaboration
	Avoid Hierarchical Titles
	Continuous Integration and Testing Supports Collaboration
	Beware of Technical Debt
	Invite People to Experiment
	Principles of Encourage Autonomy, Collaboration, and Exploration

	Conduct Useful Meetings for Your Program
	Explaining Status: Do Not Use Standups at the Program Level
	Define a Rhythm for Your Program Team
	Organize Your Program Team Meetings
	Program Team Meetings Solve Problems
	Retrospect at the Program Team Level
	Principles for Conduct Useful Meetings for Your Program

	Estimating Program Schedule or Cost
	Does Your Organization Want Resilience or Prediction?
	Ask These Questions Before Estimating
	Targets Beat Estimates
	Generate an Estimate with a Percentage Confidence
	Present Your Estimate as a Prediction
	Spiral in on an Estimate
	Supply a Three-Date Estimate
	Do You Really Need an Estimate?
	Beware of These Program Estimation Traps
	Estimation Do's and Don'ts for Program Managers
	Principles of Estimating Schedule or Cost

	Useful Measurements in an Agile and Lean Program
	What Measurements Will Mean Something to Your Program?
	Never Use Team-Based Measurements for a Program
	Measure by Features, Not by Teams
	Measure Completed Features
	Measure the Product Backlog Burnup
	Measure the Time to Your Releasable Deliverable
	Measure Release Frequency
	Measure Build Time
	Other Potential Measurements
	Measure Performance or Reliability Release Criteria
	How to Answer the ``When Will You Be Done/How Much Will Your Program Cost'' Question
	Principles

	Develop Your Servant Leadership
	Program Managers No Longer ``Drive'' the Program
	Consider Your Servant Leadership
	How Servant Leaders Work
	Some People Don't Want Servant Leadership
	Welcome Bad News
	Use the Growth Mindset
	Ask For the Results You Want
	Principles of Develop Your Servant Leadership:

	Shepherd the Agile Architecture
	Architects Write Code
	Many Developers Become Architects
	Encourage Iterative and Incremental Architecture
	Architects Can Help Expose Risks
	What the Program Architect Accomplishes Daily
	Architecture is a Social Activity
	Problems You May Encounter With Architecture
	Break the Architecture with Purpose
	Principles of Shepherd the Agile Architecture

	Solve Program Problems
	Ask For the Problems or Impediments First
	People on the Core Team Don't Deliver What They Promise
	Your Product Owners Have Feature-itis
	People on Teams Are Multitasking
	How to Start a Program With More People Than You Need
	Principles of Solve Program Problems

	Integrating Hardware Into Your Program
	Hardware Risks Are Different Than Software Risks
	Understand Cost and Value for Hardware
	Understand Each Part's Value
	See the Work
	Design Incrementally and Iteratively
	Use Continuous Design Review
	Integrate Hardware Often
	Manage Hardware Risks
	Develop the Software Before the Hardware Is Available
	Principles of Integrating Hardware Into Your Program

	Troubleshooting Agile Team Issues
	The Teams Are Not Feature Teams
	Teams Think They Are Agile, But They Are Not
	The Teams Have Dependencies on Other Teams
	Your Features Span Several Iterations
	You Don't Have Frequent-Enough Deliverables
	Teams Don't Finish When They Say They Are Done
	Principles of Troubleshooting Agile Team Issues

	Integrating Agile and Not-Agile Teams in Your Program
	Waterfall Teams Are Part of Your Program
	You Have Teams that Produce Incrementally, But Not in an Agile Way
	You Have Teams that Prototype and Don't Complete Features
	Principles of Integrating Agile and Not-Agile Teams in Your Program

	What to Do If Agile and Lean Are Not Right for You
	Try an Incremental Life Cycle
	Organize by Feature Team
	Learn to Release Interim Deliverables
	Learn How to Reduce Batch Size With a Large Program
	Try Release Trains
	Principles for What to Do if Agile and Lean Are Not Right for You

	Annotated Bibliography
	Glossary
	More from Johanna

