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Preface

Following the genomics revolution, proteomics, metabolomics, and lipidomics stud-
ies have emerged, among others, as a natural follow-up either in the investigation of
human biology or, similarly, in animal or plant studies. The combined use of these
omics fields may lead to a more comprehensive understanding of system biology.
In medical research, it may generate novel biomarkers which may be used in early
detection of disease and for the development of new screening programs. Examples
are in practical clinical patient monitoring, and in the development of new patient
disease management rules for complex diseases such as cancer and cardiovascular or
inflammatory diseases, among others. Another key objective of such comprehensive
system-level study is in the elucidation of the molecular biochemical process
associated with these biomarkers. In plant biology, relevant applications may be in
the prediction of desirable properties of novel foods or crops or in assisting genetic
manipulation-based breeding programs for new varieties, for example.

Within the omics revolution, proteins play a key role in the study of living
organisms as they provide the essential link with the genome on the one hand, while
they are also key components of the physiological metabolic pathways of cells.
Proteomics is therefore a fundamental research field which investigates the structure
or function of protein complexes consisting of multiple proteins simultaneously.
Metabolites, on the other hand, are small molecules formed from the breakdown
products of larger molecules, such as proteins, after undergoing a metabolic process
within an organism. They are involved in (cell) signaling processes through stimu-
latory and inhibitory effects on enzymes, among others. Comprehensive metabolic
profiling or metabolomics can give an instantaneous snapshot of the physiology of
the cell. Lipidomics is closely related to metabolomics but studies a specific set of
non-water-soluble molecules consisting of glycerol and fatty acids. The collection
of all lipids in an organism is referred to as lipidome, in analogy to genome,
proteome, metabolome, and so on. Although all these molecules have differences
in both structure and functions, they can all be studied experimentally using modern
spectrometric technology—specifically mass spectrometry—to assess the required
omics expression of interest.



vi Preface

Unlike measurement procedures and methodology in genomics research, which
is reasonably standardized at the time of writing, mass spectrometry is itself
a vast field with many forms and variants. Typical vehicles are time-of-flight
(MALDI) mass spectrometry, liquid chromatography-mass spectrometry (LC-MS),
and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS or
FTMS), among others. The field is therefore still very much in flux, with many
distinct mass spectrometric measurement technologies and hence also different
study designs in use. The data types generated in these studies are also very
different. They tend to have complex structures, while no consensus data analytical
approaches have yet been agreed upon. For these reasons, expert knowledge gained
with one specific measurement platform does not easily carry over to other mass
spectrometric systems. Writing a comprehensive overview text on statistical data
analytic methodology in the new mass spectrometry-based omics field would there-
fore not be realistic. Instead, we have chosen to bring together a group of established
researchers to present their expert knowledge in their specific application area
within this emerging field. With this book, we want to provide an overview of
the current status of such mass spectrometry-based omics data analysis and give
impetus to the emergence of a common view on the design and analysis of such
data and experiments. In this way, the book could support the development of more
standardized templates, research practices, and references for any data analyst such
as statisticians, computer scientists, computational biologists, analytical chemists,
and data scientists, both in the omics application fields we discuss and in related
omics fields such as glycomics.

Materials presented in this book cover a broad range of topics. First, we discuss
the preprocessing of mass spectrometry data such as data normalization, alignment,
denoising, and peak detection including monoisotopic peaks. Second, it provides
methods for identification of proteins from tandem mass spectrometry data. There
is also a chapter on a software package for the analysis of such omics data.
Additionally, it has chapters on downstream data analysis using Bayesian and
frequentist statistical predictive modeling and classification techniques. Last but
not the least, there are chapters on specific examples of biomarker detection using
proteomics, metabolomics, and lipidomics data. We hope that this book will be
suitable for the scientists, practitioners, software developers, as well as advanced
students of statistics, computer science, computational biology, and biomedical
sciences.

Gainesville, FL, USA Susmita Datta
Leiden, The Netherlands Bart J.A. Mertens
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Transformation, Normalization, and Batch
Effect in the Analysis of Mass Spectrometry
Data for Omics Studies

Bart J.A. Mertens

1 Spectrometry and Data Transformation

There is a long-standing literature on the application of transformation in spectrom-
etry data, predating the advent of mass spectrometry. A good example may be found
in the literature on infrared (IR) and near-infrared (NIR) spectrometry. An excellent
recent introduction to statistical methods in this field was written by Naes et al. [13].
The log-transform has a special significance in traditional spectrometry. A crucial
component of the appeal of the log-transform in (near) infrared spectrometry is
due to Beer’s law (1852) [2], which states that absorbance of light in a medium is
logarithmically related to the concentration of the material through which the light
must pass before reaching the detector. In other words,

I
Absorbance = log( IO) = kLC,

where I is the incident intensity of the light and I the measured intensity after
passing through the medium, with C the concentration, L the path length the light
travels through, and k the absorption constant. Another way to put this is that relative
intensity is linearly related to concentration through the log-transform as

1
log(l) =oa+ C,
B.J.A. Mertens (<)
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2 B.J.A. Mertens

where the path length, initial intensity, and absorption constants are subsumed
in the parameters «, 8. Similar formulae exist for light reflection spectrometry.
The formula has been used to provide justification for the application of classical
linear regression procedures with log-transformed univariate spectrometric intensity
readings.

The above constitutes an argument in favor of the log-transform for spectrometry
data based on non-linearity of spectral response. It is partly responsible for causing
the early literature on statistical and chemometric approaches in the analysis of spec-
trometry data to be based on the log-transformed measures. Beer’s law applies only
to (univariate) IR or NIR spectrometric readings at a single wavelength. There is no
multivariate extension of the law to cover full spectra consisting of the spectrometric
readings across an entire wavelength range. Nevertheless, the log-transform would
also be routinely applied once truly multivariate spectrometry became available,
jointly recording the spectrometric response at several wavelengths, as shown in
Fig. 1 which plots 50 NIR reflectance spectra across the range 1100-2500 nm.

Log-transforming was heavily embedded in the statistical spectrometry literature,
when modern laser-based mass spectrometry measurement became routinely avail-
able by the end of the twentieth century. Although Beer’s law does not apply to mass
spectrometry, the log-transform continues to be key to mass spectrometry-based

Fig. 1 Log infrared
reflectance measurements on
50 samples of mustard seeds
within the 1100-2500 nm
wavelength range

log(1/R)

—— +
1200 1400 1600 1800 2000 2200 2400

wavelength in nanometres
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omics data analysis. This is because the statistical reasons and rational behind the
log-transform are more enduring and powerful than the appeal to Beer’s law might
reveal. We discuss four distinct arguments in favor of the log-transform.

1.1 Scale and Order of Magnitude Effects

The first argument is associated with the objective of mass spectrometry to estimate
protein composition in complex mixtures consisting of large numbers of proteins
which may differ substantially both in the masses of the constituent proteins in the
mixture and in the abundances in which these are present. It is precisely because of
this objective that mass spectrometry has become a tool of choice in modern omics
research. Indeed modern mass spectrometric instruments are specifically engineered
to have the capability to measure protein concentrations across large ranges of
abundance, typically spanning several orders of magnitude—known as the so-called
dynamic range—and to simultaneously achieve this across a wide mass range.

Unfortunately, the spectrometry engineer’s delight then becomes the statistical
analyst’s nightmare as this property renders data which spreads across several orders
of magnitude in spectral response. A good example may be found in Fourier-
transform spectrometry, which can easily display variation across 5-6 orders of
magnitude. In extreme cases this may cause numeric overflow problems in analyses,
although use of modern professional statistical software may reduce this problem.
Taking logarithms removes the order of magnitude effects.

1.2 Skew and Influential Observations

A second issue related to the above is that spectral measures will tend to be
extremely skewed, not only within an individual (across the within-sample spectrum
responses), but also across samples or patients at a single m/z point. This may render
the data unsuitable for standard analyses such as linear discriminant or similar when
used on the original scale.

A related issue is that the skew may cause or be associated with a limited set of
highly influential observations. This is particularly troubling in omics applications,
as the spectra are typically very high-dimensional observations either when storing
the response on a large grid of m/z values which can easily range in the thousands,
or after reduction to an integrated peak list. Influential observations may affect the
robustness of conclusions reported, as results may differ substantially after removal
of a single—or isolated group of—spectra from the analysis. A good example may
be found in the calculation of a principal component decomposition as a dimension
reduction prior to application of some subsequent data-analytic procedure. Prin-
cipal component analysis is known to be sensitive to extreme observations [7],
particularly in high-dimensional applications with small sample size. The same
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phenomenon will, however, also tend to apply for other analysis approaches, such as
regression methods and discriminant procedures. Transformation to log-scale may
mitigate this problem.

1.3 Statistical Properties of Particle Counting

At some risk of oversimplification, mass spectrometers are in some sense nothing
else but sophisticated particle counters, repeating a particle counting operation at
each m/z position along the mass/charge range which is being investigated. As a
consequence, spectrometry measures tend to have statistical properties reminiscent
of those observed in Poisson (counting) processes. The variation of the spectral
response tends to be related to the magnitude of the signal itself. This implies
that multiplicative noise models are often a more faithfully description of the data.
Multiplicative error data are, however, more difficult to analyze using standard
software. Log-transforming can be used to bring the data closer to the additive error
scenario.

1.4 Intrinsic Standardization

An interesting property of log-transforming is that it may lead to intrinsic stan-
dardization of the spectral response. Imagine, for example, that we are interested
in calibrating the expected value E(Y) of some outcome Y based on two spectral
responses X; and X, and that we have a study available recording both the observed
outcome and the two spectrometry measures across a collection of samples (such as
patients). Let us also assume that we can use some generalized linear model to link
the expected outcome to the spectrometry data via some link function f and that the
true model may be written in terms of a linear combination of the log-transformed
spectral measures

JE(®Y)) = a + log(X1) —log(X)

which reduces to

FE(Y)) =a+ log<)}2).

The result is that the linear dependence of the expected outcome via the link
function on the log-transformed data actually implies regression on the log-ratio
of the spectral responses X; and X,, such that any multiplicative effect would
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cancel. This can be regarded as an implicit form of standardization through the log-
transform. It is a general property which can be used in many statistical approaches
such as (generalized) linear regression and discriminant analysis.

For spectrometry data generally and mass spectrometry particularly, generally
good advice would be to replace the raw measurements with log-transformed values
at an early stage of the analysis, by application of the transformation

log(Y + a)

with a a suitably chosen constant. See also [14] for comments about transformation
for mass spectrometry data and the log-transform in particular. Many statistical texts
will also mention the Box-Cox transform when discussing the log-transform. For
(mass) spectrometry data this approach is of limited value however, because the
optimal transform may lack the multiple justifications given above—which might
as well be used as a priori grounds for choosing the logarithm—but also because
the approach is by definition univariate, while a modern mass spectrometry reading
will consist of thousands of measures across m/z values and samples.

2 Normalization and Scaling

Normalization is an issue which is often encountered in omics data analyses, but
is somewhat resistant to a precise definition. We can identify what are usually
perceived as the main objectives of it and warn about the dangers associated with
the topic, so that we may avoid the most common pitfalls.

The objective of normalization can be loosely described as removing any
unwanted variation in the spectrometric signal which cannot be controlled for or
removed in any other way, such as by modifying the experiment, for example. This
sets it apart from batch effect, which we will discuss later. The latter can sometimes
be adjusted for or accommodated by changing the experiment so that its effects can
be either explicitly removed or adjusted for in subsequent analysis, by exploiting
the structure of the experimental design. Not all effects can be accounted for in this
manner, however.

Examples of such effects which may induce a need for normalization are
variations in the amount of material analyzed, such as ionization changes, e.g., small
changes in “spotting” sample material to plates, subtle fluctuations in temperature,
small changes in sample preparation prior to measurement, such as bead-based
processing to extract protein, differential sample degradation, sensor degradation,
and so forth. An important feature of such variation is that, while we may speculate
such variability sources are there and affect our experiment, they are difficult to
either control or predict, which typically means all we can do is try to post hoc
adjust for it, but prior to any subsequent analysis steps.

Important in devising an appropriate normalization strategy is that we should try
to remove or reduce these effects on the measured spectral data, while retaining the
relevant (biological) signal of interest. Unfortunately, this is typically problematic
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for spectrometry. This is because, as explained in the above paragraphs on trans-
formation, the spectrometric signal and its variability are typically linked, often
even after log-transform, while the unwanted sources of variation affect all measures
derived from the spectrum.

Imagine we have a study recording a mass spectrum on a dense grid of finely
spaced points along the mass range or alternatively storing the data as a sequence of
integrated peaks representing protein or peptide abundances and this for a collection
of samples (be it patients, animal, or other). We write the ordered sequence of
spectrometry measures for each ith sample unit as X; = (x;1,...,X;), with p the
number of grid points at which the spectrum is stored or the number of summary
peaks. A transformation choice favored by some analysts is to apply early on in
the analysis (possibly after first application of the log-transform) standardization to
unit standard deviation of all spectral measures at each grid point separately. In other
words, we replace the original data at each jth gridpoint with the measures x;;/std(x’)
where std(x’) is the standard deviation of the measures X' = (xy;, ..., x,;)” across
all n samples at that gridpoint. This procedure, sometimes also referred to as
reduction to z-scores, is a form of scaling. It is identical to standardization to
unit standard deviation of predictor variables in regression analysis ([16, pp. 124—
125], [15, pp. 349, 357-358]) when predictor variables are measured at different
measurement scales (different units, such as kg, cm, and mg/l). Indeed, in the early
days of regression analysis, reporting standardized regression coefficients was an
early attempt at assessing relative importance of effects.

For spectrometry data generally and mass spectrometry in particular, standard-
ization is more complicated. Measurement units are by definition identical within
a spectrum across the mass range. This would counsel against transforming to
unit standard deviation as calibrated effects then remain directly comparable across
the mass range on the original untransformed scale. There are, however, stronger
arguments against this form of standardization in spectrometry. Figure 2 illustrates
the issues. The plot shows mean (MALDI-TOF) spectra from a clinical case—control
study, after suitable transformation. To ease comparison, we plot the negative
control spectrum versus the mean case spectrum. The rectangular region highlights
and enlarges a region between 1200 and 1900 Da where most of the discriminant
effects are found between the cases and control groups, based on a discriminant
analysis. Indicated are four key peaks at 1352.4, 1467.7, 1780, and 1867.2 Da which
together summarize most of the between-group contrast between cases and controls.
Figure 3 shows different statistics calculated on the same data within the same mass
range. The top plot again shows the mean spectra for cases and controls within the
1200-1900Da region as before, while the middle graph plots a graph of weighted
discriminant coefficients obtained from a linear discriminant model calibrated from
the data. It is obvious how the discriminant analysis identifies the peaks at 1354.2
and 1467.7 Da and contrasts these with the peaks at 1780 and 1867.2 Da. The below
graph in Fig. 3 shows the first two principal components calculated on the same data
and based on the pooled variance—covariance matrix.

There are several things to note in this picture. The first is how much the principal
component and mean spectra curves resemble one another. The first component
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Fig. 2 Mean spectra for cases and controls separately in a case—control study. The negative of the
mean control group spectrum is plotted to improve readability

T
mean spectrum cases group \

=~ mean spectrum control group

1867.2D
\/\-—

\Y4
correlation weights / «— 1467.7D
second component —_—
% =) A
— first component
1 1 1 1 1 1
1200 1300 1400 1500 1600 1700 1800 1900

mass—-to-charge value (Dalton)

Fig. 3 The top plot shows mean cases and controls spectra separately. The bottom curves are the
loadings of the first two principal components across the same mass/charge range. The middle
curve shows the discriminant weights from a logistic regression model calibrated to distinguish
cases from controls with the same data
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closely approximates the mean control spectrum, while the second component does
the same for the mean cases spectrum. At first sight, this might seem all the more
remarkable, since the principal component decomposition is based on the pooled
variance—covariance matrix, and hence on the “residual spectra” X; — X,(;), where
Xq(j) denotes the mean spectrum of group g(i) to which the ith observation belongs,
with g = 1,2 for the cases and control groups, respectively. So the figure shows
two different aspects of the data. One is the systematic (mean) spectral response
(top graphs), the other are the deviations relative to the mean spectral outcome
(bottom graphs). From the figure, we can see that the component decomposition
tells us that the peaks at 1352.4 and 1467.7 Da are highly correlated and account for
much of the variation in the spectral data, as they weigh heavily in the first principal
component. Similarly, the second component summarizes much of the expression
in both peaks at 1780 and 1867.2, which are again highly correlated. Because of
this, the classification might as well be summarized as a contrasting between the
first and second principal component, since this would contrast peaks 1352.4 and
1467.7 with the expression at peaks 1780 and 1867.2 (see Mertens et al. [11] for the
full analysis).

This feature of the data where the mean expression and deviations from the
mean are closely linked as shown in the above example is typical of spectrometric
variation. It is the consequence of the connection between mean expression and
variance we mentioned above when discussing the log-transform and can be
observed in almost all spectrometry data, often even after log-transforming. To put
this differently, in spectrometry data, we will find the signal where the variance is
(even if we correct the variance calculation for systematic differences in expression,
as shown in our above example). It is for this reason that transforming to unit
standardization should be avoided with spectrometry data, unless scale-invariant
methods are explicitly used to counter this problem.

In addition to the above considerations, there are also other arguments for
avoiding reduction to z-scores or transformation to unit standard deviation. An
important argument here is that summary measures such as means and standard
deviations are prone to outliers or influential observations, which can be a particular
problem in high-dimensional statistics and with spectrometry in particular. A
specific problem with such form of standardization is that it may cause problems
when comparing results between studies. This is because systematic differences
may be introduced between studies (or similarly, when executing separate analyses
between batches—see further), due to distinct outliers which affect the estimates of
the standard deviations for standardizing between repetitions of the experiment.

Our final comment on the above standardization approach is that medians and
inter-quartile ranges (IQR) are sometimes used instead of means and standard
deviations in an attempt to alleviate some of the robustness concerns. Other authors
advocate use of some function of the standard deviation, such as the square root of
the standard deviation instead of the standard deviation itself. This is sometimes
referred to as Pareto scaling [17]. The rational for this amendment is that it
upweights the median expressed features without excessively inflating the (spectral)
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baselines. An advantage of the approach may be that it does not completely remove
the scale information from the data. Nevertheless, the choice of the square root
would still appear to be an ad hoc decision in any practical data-analytic setting.

Some authors make a formal distinction between scaling and normalization
methods and consider the first as operations on each feature across the available
samples in the study [5]. Normalization is then specifically defined as manipulation
of the observed spectral data measurements on the same sample unit (or collection
of samples taken from the same individual) (within-spectrum or within-unit nor-
malization). A potential issue with the above-described approaches to normalization
via statistical transformation is that they are based on a borrowing of information
across samples within an experiment. Another extreme form of such borrowing
is a normalization approach which replaces the original set of spectral expression
measures for a specific sample with the sample spectrum measures divided by the
sample sum, such that the transformed set of measures adds to 1. An argument
sometimes used in favor of such transformation is that it would account for system-
atic differences in abundance—possibly caused by varying degrees of ionization
or similar effects from sample to sample—such that only the relative abundances
within a sample are interpretable. Although this approach is unfortunately common,
it has in fact no biological foundation [5]. Even if arguments based on either the
physics or chemical properties of the measurement methodology could be found,
these could not be used in favor of such data-analytic approach as described
above, which we shall refer to as “closure normalization.” The problem with the
approach is that it actually induces spurious—and large—biases in the correlations
between the spectral measures which mask the true population associations between
the compounds we wish to investigate. Figure 4 shows the effect of closure
normalization on uncorrelated normal data in three dimensions. The left plot shows
scatterplots between each of the three normally distributed measures. The right
shows scatterplots of the resulting transformed variables after closure normalization.
The absolute correlations between each variable pair has increased from O (for the
original uncorrelated data) to 0.5 (after transformation). This becomes particularly
problematic should the subsequent objective be to perform some form of network
or association analysis, in which case the prior closure normalization renders results
meaningless. Similarly problems would, however, also apply to regression and
discriminant analysis.

A variant of the above closure approach to normalization which is sometimes
also used is to adjust to the maximum peak observed in a spectrum, where the
maximum is either the spectrum-specific maximum, or the maximum at that spectral
location which corresponds to the maximum mean spectrum across several samples.
Adjustment is often carried out by dividing each spectrum by its maximum at the
maximum location, such that the spectral response gets a constant expression at
the maximum location in the transformed data. Just as for closure normalization,
this procedure appears appealing on intuitive grounds at first sight, but suffers
from similar problems, as the variation at the maximum induces severe correlations
across the spectral range in the transformed data, which cannot have biological
interpretation. Both approaches should be avoided.
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Data normalized by the sum of the combined expression (closure normalization)
can be viewed as an instance of compositional data [1]. Hence, instead of applying
such normalization, one could therefore think of using special-purpose methods
from the compositional data analysis literature, or to develop or adapt such
methods for application in omics applications. This has not been attempted to our
knowledge at the time of writing. As an alternative, it should be recommended
to take a conservative approach and refrain from excessive transformation when
the consequences are not well understood or accounted for in subsequent analysis.
In such cases restricting to log-transformation as discussed earlier is safer. In any
case, the original untransformed data should always be at hand and stored to allow
verification of results through possible sensitivity analysis.

The above is only an introduction to some of the main forms of normalization
in use at this time. Many other forms exist and will undoubtedly continue to
emerge. An interesting one worth mentioning is the idea of “lagging” the spectra
by taking differences between subsequent values within the spectral range. With
log-transformed spectrometric data, this is another approach which induces ratios
between subsequent spectral intensities which eliminate multiplicative change
effects. An example is found in an interesting paper by Krzanowski et al. [10].
It has the drawback that results from subsequent statistical analysis can be more
difficulty to interpret, but it might be of use in pure prediction problems. Other forms
of standardization and normalization are also found in the literature, particularly
methods which seem to inherit more from common approaches in microarray
analysis, such as quantile normalization [6]. Ranking of spectral response including
the extreme form of reducing to binary has also been investigated. The latter can be
particularly useful as a simple approach when data are subject to a lower detection

uncorrelated normal data data after closure normalisation
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Fig. 4 Effect of closure normalization on uncorrelated data
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limit [8]. Other forms of normalization and standardization worth mentioning at
time of writing are scatter correction and orthogonal signal correction. We refer to
Naes et al. [13] for a good introduction to these methods.

Which transformations should be applied first? What is a good order of applying
distinct normalization or transformation steps? There is some difference of opinion
between researchers on the precise sequence in which various normalization proce-
dures are applied to the data. As a general rule it seems wise to apply logarithms
early and calculate means and standard deviations only after log-transforming.

The issue of normalization is closely linked to the problem of standardization
of mass spectra. Several definitions of standardization may be possible here. One
option is to define the problem as “external” standardization, which would form
part of the experiment itself (as opposed to the post-experimental data processing
we describe before) where we somehow try to change the experiment so that part
of the systematic experimental variation is either prevented from occurring or could
be accounted for through post-processing of the data. Examples would be in the
use of spike-in controls, on a sample plate, or even within the sample material
itself, so that the spectral response can be adjusted for the expression of the known
spike-in material which is added. Another example would be in the use of technical
controls on a sample plate with known concentrations. Yet another example would
be systematic equipment re-calibration to re-produce a (set of) known standards,
so that sample-to-sample variation due to experimental drift is suppressed as much
as possible. All these approaches to standardization are different from the above
described methods in that they try to circumvent known sources of variation by
changing the experiment itself, rather than post hoc attempting to adjust for it.

3 Batch Effect in Omics Studies

A batch effect is a source of unwanted variation within an experiment which
is typically characterized by the property that the effect is due to a known
structure within the experiment. Usually the structure, and thus also the existence
of the associated effect, is known in advance of the experiment but cannot be
avoided or eliminated from the measurement process. Furthermore, the effect of the
experimental structure itself may not necessarily be predictable either, even when
knowledge of the structure exists. A typical example would be distinct target plates
which are used to collect sample materials prior to analysis in some mass analyzer.
However, we can sometimes manipulate or modify the experiment to account for
the known structure so that it is rendered innocuous and cannot unduly affect
conclusions. Even better, we may be able to remove (part of) the effects due to
batch structure, by taking suitable precautions at the experimental design stage.

In contrast to genetics, batch effect is much more problematic within proteomics
and metabolomics, which is due to the measurement procedures involved. It should
also be noted that batch effect and the accommodation of it are different from
standardization and normalization issues in that we need to identify its presence
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and consider its potential effects both before and after the experiment. Before the
experiment, because we may want to tweak or change the experimental structure
to take the presence of the batch effect into account (this may involve discussion
between both statistician and spectrometrist). The objective is to change the
experimental design so as to avoid confounding of the batch structure with the
effect or group structure of interest. After the experiment, because we may wish
to apply some data-analytic approach to remove the effect (which may depend on
the experiment having been properly designed in the first place). Accounting for
batch effect in proteomic studies will hence involve two key steps.

1. To control the experimental design as much as possible in advance of the
experiment to maximize our options to either remove or account for batch effect
at the analysis stage.

2. To exploit the chosen structure afterwards to either remove or adjust for the batch
variation in the analysis.

The objectives of these steps are at least threefold.

1. To ensure experimental validity (the experiment can deliver the required results)

2. To improve robustness of the experiment (conclusions will still be valid, even
when experimental execution differs from experimental planning)

3. To improve (statistical) efficiency of effect estimates based on the data (statistical
summaries will have lower variation).

In the following discussion on batch effect we will make a distinction between the
following two types of batch effect which may occur in practical experimentation.
The first are time-fixed batch effects. Examples of these are

* plates in mass spectrometry

» freezer used for sample storage

* change of cleaning or work-up fluid for sample processing
* batches of beads or cartridges for protein fractionation

* instrument re-calibration.

In contrast, time-dependent batch effects are due to experimental structures
associated with time. Examples of these are found in the following situations:

* longitudinal experimentation, long observation tracks with repeated measure-
ment per individual

» sample collection across extended time periods, patient accrual spread across an
extended period of time

* time-indexed samples or instrument calibrations

 distinct days of measurement or sample processing.

Both types of batch effects may occur in proteomic experiments, but for different
reasons and with distinct consequences. The treatment of both types of batch effect
will also be different between the two.



Transformation, Normalization, and Batch Effect in the Analysis of Mass. . . 13

1500

o
o
o

(o]
o
o

[&)]
o
o
.
°
‘.%
®
L

spectrum median expression

N

o

o

spectrum iqr

-
=)
o
o

.%

L]

1
2
200 . 3
> s
0 . 0 e 5
0 100 200 300 400 0 200 400 600 e 6
sample sequence number spectrum median
1500
% é
s ] 600 +
= 1000 € 1 —
g g 400 é] n é]
5 £ + + *
2 500 ® 200 + €1
5 5|E T :
0 ) ) ) ) 1 2 3 4 5 6
0 100 200 300 400 batch number

sample sequence number

Fig. 5 Batch effect in a case—control study using six target plates. The vertical lines in the left-side
plots indicate transition to a new plate (batch). The distinct colors in the scatter plot represent the
different batches

3.1 Time-Fixed Batch Effects

We consider a case—control study as an example. The experiment contrasted
175 cases with 242 healthy controls. Due to the large sample size and multiple
replicate measurements per sample, sample material needed to be assigned to six
target plates prior to mass spectrometric measurement. The plates constitute a
systematic—batch—structure within the experiment. On inspecting within-sample
medians and inter-quartile ranges (IQR), systematic plate-to-plate differences were
noted, shown in Fig.5. Analysis of the data using a discriminant approach led to
correct classification of 97 % of samples. Unfortunately, on closer investigation
of the experimental design, it turned out that all case material had been assigned
sequentially to the first three plates, after which the controls samples were thawed
next and assigned to the subsequent plates. It is not possible to statistically adjust
for such perfect confounding between the plate structure and the potential between-
group effect which was the primary target of the research study. After discussion,
the study was abandoned, leading to significant loss of both experimentation time
and resources, among which the valuable sample materials.

A simple procedure exists to prevent such problems, called blocked randomiza-
tion. It consists of assigning cases and controls in equal proportions and at random
across the distinct plates. Table 1 shows such a design for a case—control study
randomizing cancer cases and healthy controls to three target plates, as reported
by Mertens et. al. [11], which gives more details about the study. In addition to
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Table 1 Block-randomized case—control study in a study using three plates

Plates
Disease group 1 2 3 Total number
Number of controls | 17 17 16 50
Number of cases 22 22 19 63
Disease stage 1 2 13 |4 1 2 13 |4 1
Cases 4 110 |4 (4| 4 ]10 |4 |4 | 3| 8
Table 2 Case—control study ca |co ca | co ca |co ca | co
assigning samples to 34 plates 4 0 1 3 0 |15 1 e
as they became available
3 0 0 9 1 0 1 |9
11 0 4 0 3 0 0 |7
5 0 1 0 0 4 0 |4
12 0 1 0 1 0
21 | 40 1 0 0 5
1 3 2 0 1 9
2 0 0 4 2 8
16 | 13 0 3 0 4
0 |15 0 |16 2 |14

The assignment order is from top-to-bottom, left-to-right

randomizing the cases and controls in roughly equal proportions across the plates,
the study also tried to have cancer stages in roughly equal distributions from plate-
to-plate. A recent overview of classical principles of statistical design for proteomics
research can be found in a paper by Cairns [3] and the references therein.

Another example is a glycomics study which assigned cases and controls to
target plates sequentially as the samples became available. By the end of the
study period, 288 samples had become available, of which 97 were cases and
191 controls. The case—control assignment to plates is shown in Table 2. As can
be seen, case—control assignment is perfectly confounded with the plate effect
for 25 out of 34 experimental batches, which makes these measurements useless
for between-group comparison. Note also how only two plates indicated in red
typescript contain appreciable numbers of both cases and controls. After analysis
of the data, it was found that the estimate of the batch effect (std) substantially
exceeded the measurement error estimate (std). No clear evidence of differential
expression of glycans between groups emerged, though it could be hypothesized
that any differences might be small and at least smaller than the observed between-
batch variation. This raised questions whether the “design” was to blame for the
failure of the study to identify differential expression.

To investigate the consequences of using a “design” as used in the above
glycomics study, we investigate a simulation study which contrasts several potential
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alternative designs. For each of these four designs we assume the same sample size
of 288 samples with 97 cases and 191 controls, just as for the original study. We
consider the following alternative scenarios:

1. Experiment 1 is a hypothetical experiment which is able to use only one plate
(no plate effects present).

2. Experiment 2 is a randomized blocked version of the original experiment which
uses three plates and distributes the cases and controls in approximately balanced
ratios of 32/65, 32/63, and 33/63 to the first, second, and third plate, respectively.

3. Experiment 3 is a perfectly confounded experiment which again uses three plates,
but assigns all 97 cases to the first plate and assigns 95 and 96 controls to the other
two plates, respectively.

4. The last experiment uses the original glycomics experiment distribution of cases
and controls to 34 plates, as shown above in Table 2.

We now simulate experimental data for each of the above four scenarios, generating
effect sizes ranging from O to 1.5 for a single glycan (univariate simulation) and
assuming between-batch effects with standard deviations op taking values 3.6, 1.8,
0.9, and 0.45. The standard deviation of the error o takes the value 1.8 throughout
(these numbers inspired by results from the real data analysis).

In the analysis of the simulated data for the above experiments, we fit linear
mixed effect models [12] to the simulated data of experiments 2, 3, and 4. The mixed
effect models correct for the known batch structure using a random effect while
estimating the between-group effect with a fixed effect term. For the first simulated
experiment a simple linear regression model is used, which is equivalent to a two-
sample pooled #-testing approach. Figures 6, 7, 8, 9, and 10 show the probabilities
to detect the between-group effect (power) across the effect size range simulated
and for the standard deviations of the batch effect indicated. As expected, we find
that the probability to detect the effect increases as the effect size grows for the
single-plate experiment [1]. The blocked experiment [3] matches the power of the
single-plate experiment regardless of the size of the batch random effect. The power
of the actually implemented glycomics experiment [4] depends on the size of the
batch effect. As the batch effect gets smaller (associated std goes to zero) then we
can eventually ignore the batch effect altogether and we obtain the same powers
as if the batch effect was not present. This is of course a confirmation of what we
would expect to find. If the batch effect is substantial however (associated std is large
relative to the size of the between-group effect), then we pay a penalty in terms
of seriously reduced powers of detecting the between-group effect. The perfectly
confounded experiment [3] performs dramatically whatever the batch effect is, since
we are forced to account for a known batch structure—irrespective of the true but
unknown population batch effect—and thus loose all power of detecting the effect of
interest. The excellent performance of the blocked version of the experiment again
emphasizes the need and importance of pro-actively designing and implementing
block-randomized experiments when batch structures are identified in advance of
the experimentation.
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3.2 Time-Dependent Batch Effects

Longitudinal experimentation with spectrometry-based omics is still in its infancy,
but we should expect this area to mature. Experience with the analysis of such data
must still develop. The same applies to pre-processing and methods for dealing with
batch effects. We can, however, already point to some aspects which are likely to
become a key concern in future applications for which omic science and technology
will have to provide credible answers. A key aspect which is liable to be an issue in
many omic studies is illustrated in Fig. 11. The figure displays a study design where
samples are collected dispersed over time and kept in storage until a decision is taken
to extract sample material and analyze the samples using some form of spectrometry
at a common point in time. Patients themselves are followed up until end of the
study—up to which point some outcome measure may be continually recorded
during the follow-up—or some pre-defined endpoint (such as cancer occurrence
or recurrence or similar outcome) prior to the study termination. A common and
relatively simple form of such a design which is often used in clinical research could,
for example, be a survival study [4, 9] with the so-called administrative censoring as
depicted in Fig. 11, where end of the study represents the censoring time. The issues
discussed in this section are, however, completely general to longitudinal study with
staggered patient entry and not restricted to study with a specific (survival) outcome.
The key issue is that such study designs are likely to suffer from potential ageing
of the sample material, prior to spectrometric measurement, such that sample age
and duration to observation of the outcome become confounded. This problem may
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Fig. 11 Longitudinal omic study design with sampling-time confounded with follow-up

severely complicate future longitudinal studies. This point does not always seem to
be realized in the present literature. This is probably also part due to the fact that
genomic or gene expression data, as discussed before, is likely not to be affected
by the same problem as would be the case for the more modern spectrometry-based
omics data, as in proteomics, for example. An excellent text describing modern
survival analysis methodology in novel high-dimensional data applications was
recently provided by van Houwelingen and Putter [18, Part [IV—Chaps. 11 and 12].

It is at time of writing not clear how this issue should be addressed in design
and analysis of longitudinal and survival studies with spectrometry-based omic data
generally. The problem is particularly important because it could affect all existing
biobanks. One could propose that instead of—or in addition to—the development
of biobanks which store sample materials, attention should be given to establishing
databanks of (omic) spectra, which are measured at pre-specified and regular time
points instead. Such an approach could break the confounding between the follow-
up time of patients which is then de-coupled from the measurement times. The
problem with the latter proposal is that the measurement devices (spectrometers)
themselves may exhibit ageing, such that the ageing problem is replaced with a
spectrometer calibration problem.

4 Discussion

We have critically discussed and contrasted the distinct issues of transformation,
normalization, and management of batch effect in the analysis of omic data.
Transformation, standardization, and normalization are typically dealt with “after”
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the experiment and usually by the data analyst or statistician involved. Batch effect
and the presence thereof is an issue that should be considered both “before” and
“after” the data-generating experiment. The objectives here should be to optimize
the design for known batch effect such that these cannot unduly affect conclusions
or invalidate the experiment. This task is usually carried out in collaboration and
prior discussion between both statistician and spectrometrist when planning the
experiment. Secondly, appropriate methods should be used after the experiment to
either eliminate or otherwise accommodate the batch effect after the experiment
when analyzing the data. The latter task will usually be carried out by the statistician
solely. Discussion of such methods falls outside the scope of this chapter.

Methodological choice in pre-processing of spectrometry data should in practice
depend on many aspects. Purpose of the study is a key consideration. If prediction
or diagnostic models are to be calibrated, then pre-processing methods which
can be applied “within-sample” without borrowing of information across distinct
samples are more attractive because this can make subsequent calibration of any
predictive rule easier. Other considerations may be ease of communication of
results, established practice (insofar it is reasonable of course), variance stabiliza-
tion, interpretability, and so forth. Our discussion has not been comprehensive but
highlighted the main ideas and approaches instead, pointing to common pitfalls,
opportunities, and future problems left to be solved.
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Automated Alignment of Mass Spectrometry
Data Using Functional Geometry

Anuj Srivastava

1 Introduction

The use of mass spectrometry data in profiling metabolites present in a specimen is
important in biomarker discovery, enzyme substrate assignment, drug development,
and many other applications. Liquid chromatography-mass spectrometry (LC-MS)
is a common data collection technique in this area and it provides information about
retention times of different metabolites. These metabolites are identified by peaks
(high y values) in observed chromatograms at the corresponding retention times
(x axis). As stated in [17], it is difficult to reproduce run-to-run retention times across
experiments/observations due to instrument instability. Different measurements can
exhibit variability in peak locations when observing the exact same specimen.
In liquid chromatography, the common causes of such shifts in peak locations
are changes in column separation temperature, mobile phase composition, mobile
phase flow rate, stationary phase age, etc. We illustrate this issue using an example
taken from [7] involving proteomics data collected for patients having therapeutic
treatments for Acute Myeloid Leukemia. This example studied earlier in [16] and
shown here in Fig. 1 displays two chromatograms in blue and red, representing
the same chemical specimen. Despite having the same chemical contents, the
chromatograms show differences in peaks locations throughout the domain. Due
to these shifts, a simple comparison of chromatograms using standard norms will
result in unusually high differences despite representing the same material. Thus,
any analysis of such data is faced with the challenge of random nonlinear shifts
in the peaks, that needs to be reconciled before drawing statistical inferences.
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Fig. 1 Example of LC-MS data samples from a proteomics study. Taken from [16]

Consequently, an important goal in LC-MS data analysis is to align peaks in a
principled way using some form of nonlinear time-warping.

The literature contains several ideas for handling the nonlinear alignment
problem although they are neither fully automatic or nor completely successful
in the alignment task. One prominent approach is to find dominant (taller) peaks
across chromatograms, match them in a certain way, and then estimate warpings
that facilitate that matching. However, the problems of detecting and matching
prominent peaks are not straightforward themselves. They are often subjective and
require human inputs. Wong et al. [18] developed a peak detection and alignment
method that is based exactly on this idea. Bloemberg et al. [2] provide a survey of
some current techniques in warping- based alignment of chromatograms, including
some computer programs associated with these techniques. Several authors have
also developed online tools for spectral alignment, see, e.g., [18]. A statistical
approach for spectral alignment and modeling, using a Gaussian mixture model,
is presented in [3].

In this paper, we present a fully automated method for alignment of chro-
matograms, by considering them as functional data and using the nonlinear time-
warping of their domains for matching peak locations. The problem of functional
data alignment has been studied by several authors, including [4, 6, 9, 14]. In our
approach, the actual alignment becomes an optimization problem with a novel
objective function which, in turn, is derived using ideas from functional information
geometry. Any two chromatograms are aligned by minimizing a distance between
them; this distance can be seen as an extension of the classical nonparametric
Fisher-Rao distance, derived originally for comparing probability density functions,
to more general class of functions. Although this distance has nice theoretical
properties (invariance to time-warping, etc.), it is too complex to be useful in
practical algorithms, especially for processing high-throughput data. This issue
is resolved using a change of variable, i.e., replacing the original functions by
their square-root slope functions (SRSFs) so that the required distance becomes
simply the L norm between their SRSFs. Now, returning to the alignment of
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several chromatograms, the basic idea is to derive a mean of the given functions
(SRSFs of chromatograms) and to align the individual SRSFs to this mean. This
procedure is iterative as the mean itself is updated using the aligned SRSFs. Upon
convergence, we obtain aligned SRSFs that can then be mapped back to aligned
chromatograms using the inverse maps. This last step relies on the fact that the SRSF
representation is invertible up to a constant. This framework, termed the extended
Fisher-Rao framework, is a fully automated procedure and does not require any
peak detection or matching. Instead, it utilizes the aforementioned metric (extended
Fisher-Rao) and a corresponding representation (SRSF) to formulate alignment as
an optimization problem.

The rest of this paper is as follows. We briefly describe the main mathematical
challenges in solving the alignment problem and highlight the limitations of a
commonly used approach based on the L norm. In Sect.3, we lay out our
mathematical framework, leading up to the presentation of the automated alignment
algorithm. This is followed by experimental results on a number of simulated and
real LC-MS datasets in Sect. 4, and the paper ends with a short conclusion in Sect. 5.

2 Fundamental Issues in Functional Alignment

As mentioned above, we view the observed chromatograms as real-valued functions
on a fixed interval. Without any loss of generality, we will use [0, 1] as domain
of these functions. Let .# momentarily denote the relevant set of real-valued
functions on [0, 1] although the precise definition of .# comes later when we present
more details. An important problem in statistical analysis of functional data (and
specifically in LC-MS data analysis) is the alignment of functions using domain
warping. The broad goal of an alignment process is to warp the retention-time
(or parameter) axis in such a way that their peaks and valleys are better aligned.
This alignment problem has also been referred to as the separation of phase and
amplitude [10], or the registration [6], or the correspondence of functions in the
given data.

Towards this goal, we need to specify the set of valid warping functions. We
will use the set of positive diffeomorphisms of [0, 1] as the set of allowed time-
warping function; we will denote it by I'. It is important to note that I" is a group
with composition as the binary operation. For any two elements y;, y, € I, their
composition y; oy, € I'. The identity function y;q(f) = ¢ forms the identity element

of T and, finally for every y € I', there exists an inverse element y~' € I such that
1

yov =V
In this context, we can pose two kinds of registration problems:

1. Pairwise Alignment Problem: Given any two functions fi and f> in .%, we define
their pairwise alignment or registration to be the problem of finding a warping
function y such that a certain energy term E[f},f> o y] is minimized. Figure 2
shows an example of this idea where f; is time-warped to align it with f;.
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Fig. 2 Illustration of pairwise alignment

2. Groupwise or Multiple Alignment: In this case we are given a set of functions
{fi € )i = 1,2,...,n}. The problem of finding a set of warping functions
{yili = 1,2,...,n} such that, for any ¢ € [0, 1], the values f;(y;(¢)) are said to be
registered with each other, is termed the problem of joint or multiple alignment.
Figure 3 shows an example of this idea where the given functions {f;} (left panel)
are aligned (middle panel) using the warping functions shown in the right panel.

We will start by considering the pairwise alignment problem and then later extend
that solution to address multiple alignment.

The main question in solving pairwise registration is: What should be the
optimization criterion E? In other words, what is a mathematical definition of a good
registration? Visually one can evaluate an alignment by comparing the locations of
peaks and valleys, but how should one do it in a formal, quantifiable and, most
importantly, automated way. Before we present our solution, we look at one of
the most popular ways of registering functional data in the current literature and
highlight its limitations.
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Fig. 3 Illustration of multiple function alignment

2.1 Problems in Using 1.>-Norm for Pairwise Registration

When searching for an objective function that measures alignment between f; and
f» o v, anatural quantity that comes to mind is the I.? norm of their difference. That
is, we can define the optimal warping function to be:

y* = arg inf [l —f20 I (1)

It is well known that this formulation is problematic, as it leads to a phenomena
called the pinching effect [10]. What happens is that in matching of f; and f, one
can squeeze or pinch a large part of f, and make this cost function arbitrarily
close to zero. An illustration of this problem is presented in Fig. 4 using a simple
example. Here a part of f; is identical to f; over [0, 0.6] and is completely different
over the remaining domain [0.6, 1]. Since f; is essentially zero and f> is strictly
positive in [0.6, 1], there is no warping that can match f; with f> over that subinterval.
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Fig. 4 Illustration of the pinching effect. The rop row shows a degenerate analytical solution to
matching under IL? norm for functions. The bottom row shows the corresponding warping function

The optimal solution is, therefore, to decimate that part of f, by using the following
y*: it coincides with 4 over [0, 0.6], climbs rapidly to 1 — € around 0.6, and then

goes slowly from 1 — € to 1 over the interval [0.6, 1]. It is easy to check that in the
limit:

lim Ifi = fs 0yl = 0.

The top-right panel of Fig.4 shows the limiting case where f; and f; o yy are
identical. In the bottom row, we provide results from a numerical procedure for
this optimization problem. Sometimes, in practice, we restrict y to have positive
bounded slope and do not obtain the same result as the theoretical limit. However,
one can still see the pinching effect in numerical implementations.

To avoid the pinching problem, one frequently imposes an additional term to the
optimization cost, a term that penalizes the roughness of y. This term, also called a
regularization term, results in the registration problem of the type:
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: 2
y* = arginf (Ifi ~f207I” + A% (7)) . )

where Z(y) is the regularization term, e.g., Z(y) = [ #()*dt and A > 0
is a constant. While this solution avoids pinching, it has several other problems
including the fact it does not satisfy inverse symmetry. That is, the registration of f;
to f, may lead to a completely different result than that of f; to f;. We illustrate this
using an example.

Example 1. As a simple example, let fi(f) = t and f>(f) = 1 + (¢ — 0.5)2. In this
case, for the minimization problem y1» = minyer | —fioy [|?, the optimal solution
is as follows. Define a warping function that climbs quickly (linearly) from 0 to 1 —¢
on the interval [0, €] and then climbs slowly (also linearly) from 1 — € to 1 in the
remaining interval [e, 1]. The limiting function, when € — 0, results in the optimal
y for this case.

For the inverse problem, y»; = minyer |[fi — /> © y||*, the optimal warping is
the following. Define a warping function that rises quickly from O to 0.5 — € in the
interval [0, €], climbs slowly from 0.5 — € to 0.5 + € in the interval [¢, 1 — €], and
finally climbs quickly from 0.5+ € to 1 in the interval [1 —e, 1]. The optimal solution
is obtained when € — 0. A numerical implementation of these two solutions,
based on the dynamic programming algorithm [1], are shown in Fig. 5. Since this
implementation allows only a limited number of possible slopes for optimal y, the
results are not as accurate as the analytical solution. Still, it is clear to see a large
difference in the solutions for the two cases.

2.2 Desired Properties in Alignment Framework

In view of these limitations of the popular L?>-norm-based framework, we first
enumerate a set of basic properties that any (alignment) objective function E should
satisfy. Actually, only the first one is a fundamental property, the remaining two are
simple consequences of the first one (and some additional structure). Still, we list
all three of them to highlight different aspects of the registration problem.

1. Invariance to Simultaneous Warping: We start by noting that an identical
warping of any two functions preserves their registration. That is, for any y € T’
and f1,f, € Z, the function pair (fi,f;) has the same registration as the pair
(fioy,fooy). What we mean by that is the application of y has not disturbed their
point-to-point correspondence. This is easy to see since y is a diffeomorphism.
The two height values across the functions that were matched, say fi(f) and
Jf2(t), for a parameter value £y, remain matched. They are now labeled f; (y (%))
and f>(y()), and the parameter value has changed to y (%), but they still have
the same parameter and, thus, are still matched to each other. This is illustrated
using an example in Fig. 6 where the left panel shows a pair f and f>. Note that
the two functions are nicely registered since their peaks and valleys are perfectly
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Fig. 6 Identical warping of fj, > by y preserves their registration

aligned. If we apply the warping function shown in the top right panel to both
their domains, we get the functions shown in the bottom. The peaks and valleys,
and in fact all the points, have the same matching as before. This motivates
the following invariance property of E. Since E is expected to be a measure of
registration of two functions, it should remain unchanged if the two functions are

warped identically. That is, for all fi,f, € .Z:

Invariance Property : E[f1,f52] = E[fioy,faoy], foral y eT .

3

2. Effect of Random Warpings: Suppose we have found the optimal warping

function y* € T, defined by
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y* = argminE[fi,fooy].
yer

Once this y* is found, the resulting matched height values are f| (¢) and f>(y *(¢)),
for all #. Now, let us suppose that we warp f; and f, by random functions, say y
and y,. What is the optimal correspondence between these new functions? It will
be given by

*

7* = argminE[f; o y1, (b0 y2) o y] = argminE[fi, o0 (20 y oy )],
yel yel

where the last equality follows from the above invariance property. The last two
equations immediately imply that y* = y, 0 y* oy, or p* = y; o y* oy
More interestingly, the optimal registration of functions and the minimum value
of E remains unchanged despite the presence of random y; and y, i.e.,

min E[fi, 2 0 y] = minE[f o y1, (a0 y2) o y] .
yer yer

This important equality intimately depends on the invariance property [Eq. (3)]
and the group structure of I'. Without the invariance property one can expect
the results of registration to be highly dependent on y; and y,. For instance, this
undesirable situation will occur if we use the > metric between the functions to
define E.

3. Inverse Symmetry: We know that registration is a symmetric property. That is,
if fi is registered to f>, then f; is also registered to f;. Similarly, if f] is optimally
registered to >0y, then f5 is optimally registered to f; oy ~'. Therefore, the choice
of E should be such that this symmetry is preserved. That is,

1

y* = argminE[f,poy] = y* = argminE[f; o y.f5] .
yer yer

This symmetry property has also been termed as inverse consistency. If the
invariance property holds, then this inverse symmetry follows immediately from
the group structure of I".

In addition to registering any two functions, it is often important to compare them
and to quantify their differences. For this, we need a proper distance function, to be
able to compare fi and f> o y*, where y* is the optimal warping of f> that registers
it with f;. One can always choose an unrelated distance function on the space, e.g.,
the IL? norm, that measures differences in the registered functions f; and f; o y*.
However, this makes the process of registration an unrelated pre-processing step for
the eventual comparison. Ideally, we would like to jointly solve these two problems,
under a unified metric. Therefore, it will be useful if the quantity inf,er E[f1, /> o ¥]
is also a proper distance in some sense. That is, in addition to symmetry, it also
satisfies non-negativity and the triangle inequality. The sense in which we want it to
be a distance is that the result does not change if we randomly warp the individual
functions in arbitrary ways.
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3 Extended Fisher-Rao Approach

In order to reach a cost function E that avoids the pinching effect, satisfies the
invariance property and, as a consequence, allows inverse symmetry and invariance
of E to random warping, we introduce a new mathematical representation for
functions.

3.1 Mathematical Background

Our general framework for alignment of chromatograms is adapted from ideas
in shape analysis of curves [5, 12] and is described more comprehensively in
[8, 13, 15]. For a broader introduction to this theory, including asymptotic results
and identifiability results, we refer the reader to these papers.

Starting fresh, this time we are going to restrict to those f that are absolutely
continuous on [0, 1]; let .% denote the set of all such functions. The new repre-
sentation of functions is based on the following transformation. Define a mapping:
0 : R — R according to:

sign(¥)/]x[,  x#0

0x) = 0 o0

“)

Note that Q is a continuous map. For the purpose of studying the function f, we will
represent it using the SRSF defined as follows:

Definition 1 (SRSF Representation of Functions). Define the SRSF of f to be
the function ¢ : [0, 1] = R, where

4t = 0G () = sign(F)IF 0

This representation includes those functions whose parameterization can become
singular in the analysis. In other words, if f(r) = 0 at some point, it does not
cause any problem in the definition of g(#). It can be shown that if the function f
is absolutely continuous, then the resulting SRSF is square integrable [11]. Thus,
we will define L2([0, 1], R) (or simply IL.?) to be the set of all SRSFs. For every
g € IL? there exists a function f (unique up to a constant) such that the given ¢ is the
SRSF of that f. In fact, this function can be obtained precisely using the equation:
f() =f(0)+ for q(s)|q(s)|ds. Thus, the representation f <> (f(0), g) is invertible.

The next question is: If a function is warped, then how does its SRSF change?
Foranf € .% and y € T, let g be the SRSF of f. Then, what is the SRSF of f o y?
This can simply be derived as:
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10 =0(§000) =sien (§000) 196001 = a0,

In more mathematical terms, this denotes an action of group I" on L.? from the right
side: L x I' — L2, given by (¢,y) = (go ) \/y One can show that this action of
I" on .2 is compatible with its action on .% given earlier, in the following sense:

SRSF
- q

actionon . | J action on L2
SRSF .
foy = (qonVy

We can apply the group action and compute SRSF in any order, and the result
remains the same. The most important advantage of using SRSFs in functional data
analysis comes from the following result. Recall that the IL.? inner-product is given

by: (v1,v2) = fo vi(B)v2(0) .

Lemma 1. The mapping 1> x I’ — 1.2 given by (¢,y) = (q o y)\/y forms an
action of I' on 1% by isometries.

Proof. That the mapping is a group action has been mentioned earlier. The proof of
isometry is an easy application of integration by substitution. For any vy, v, € L2,

1
(v1,7), (v2,7)) = /0 v (y(0) V7 Ova(y(0) /7 (1)dr

1

1
=/ vl(y(t))vz(y(t))f/(t)dt=/ v1(s)va(s)ds = (v1,v2) .
0 0

|

This lemma ensures that any framework based on this SRSF and I.? norm will satisfy
the invariance property listed in the previous section.

It is well known that the geodesics in 1.2, under the L.? Riemannian metric, are
straight lines and the geodesic distance between any two elements gy, g, € L2 is
given by ||g1 — ¢2||. Since the action of T on IL? is by isometries, the following
result is automatic. Still, for the sake of completeness, we provide a short proof.
Lemma 2. For any two SRSFs q1,q> € L2 and y € T, we have that ||(q1,y) —
(g2 V)l = llg1 — q2ll-

Proof. For an arbitrary element y € T', and ¢;, ¢, € L%, we have
1
I(g1.7) = (2.0 = /0 (@ (V7 (0) = a2(y ()7 (1) dr

1
- /0 @O ©) — )5 0di = g1 — g2l . O

An interesting corollary of this lemma is the following.
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Corollary 1. Foranyq € L> andy € I, we have ||q|| = ||(¢.y)||.

This implies that the action of I' on IL? is actually a norm-preserving transformation.
Conceptually, it can be equated with the rotation of vectors in Euclidean spaces. Due
to the norm-preserving nature of warping in this representation, the pinching effect
is completely avoided.

3.2 Pairwise Alignment Procedure

With this mathematical foundation, the pairwise alignment of chromatograms can be
accomplished as follows. Let fi, f> by functional forms of the two given spectra and
let g1, g» be the corresponding SRSFs. Then, the optimization problem is given by:

inf [lg1 — (q2. ) = inf llg2 — (q1. NI - )
yel yer

This minimization is performed in practice using a numerical approach called the
dynamic programming algorithm [1]. We have already mentioned (in Lemma 2)
that the use of SRSFs and IL?> norm satisfies the invariance property from Sect. 2.2.
We now show that the remaining two properties—effect of random warpings and
inverse symmetry—are also satisfied. Using Lemma 2 and the group structure of I"
one can show that if y* is a minimizer on the left side of Eq.(5), then (y*)~!is a
minimizer on the right side! Furthermore, using the same tools one can show that:

inf [|g1 — (g2, )| = inf [[(q1, 1) — ((g2, v2). V)|
yer yer

forany y;,y, € T.

Figure 7 shows some results from using this alignment framework using some
simple LC-MS chromatograms. In each of the four examples shown there, the left
panel shows the original chromatograms f, f>, the middle panel shows the aligned
chromatograms fi, f> o y*, and the last panel shows the optimal warping function
y*. In the first row, the level of misalignment is relatively small, and a small
warping is able to align the peaks. However, as we go down this figure, the level
of misalignment increases and it takes an increasing amount of warping to align the
peaks. This increasing warping is visible in the corresponding warping functions
in terms of their deviations from p;q, the 45° line. Noticeably, the algorithm is
quite successful in alignment of peaks for all these datasets. Furthermore, it is fully
automatic and requires no parameter tuning or any kind of manual intervention.
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Fig. 7 Pairwise alignment of LC-MS spectra using optimization given in Eq. (5). In each row we
display the original and the aligned chromatograms, along with the optimal warping functions

3.3 Multiple Alignment Algorithm

With the ability to align chromatograms in a pairwise fashion, we now extend this
idea to simultaneous alignment of multiple chromatograms. We will use a template-
based approach, where we iteratively define a template chromatogram and align
the given chromatograms to this template in a pairwise manner [using Eq. (5)]. The
template is created by taking an average of the aligned chromatograms in the SRSF
space, at each iteration. The full alignment algorithm is as follows:

Algorithm 1 (Alignment of Multiple Chromatograms). Given a set of chro-
matograms in functional form fi,f>,...f, on [0,1], let q1,q2, ..., q, denote their
SRSFs, respectively.

1. Initialize ¢; = q;fori =1,2,...,n.
2. Compute their mean according to . = ' Y, G;.
3. Fori=1,2,...,n, find y}* by solving:
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Fig. 8 Alignment of simulated chromatograms using Algorithm 1. In each row we see the original
functions, the aligned functions, and the corresponding warping functions

*_

v = arginf | — (q:. V)II* -
yer

This minimization is approximated using the dynamic programming algorithm.
4. Compute the aligned SRSFs q; = (qi, y{") and aligned functions f; = f; o v
5. Check for convergence. If not converged, go to Step 2.
6. Return the template i, the warping functions {y;* }, and the aligned functions .

We show some illustrations of this example using simulated data in Fig. 8. In this
experiment, we simulate chromatograms as superpositions of Gaussian probability
density functions with random shifts in heights and locations. Each chromatogram is
made up of either two (top row), three (middle row), or four (bottom row) Gaussian
probability density functions, and we use 20 such chromatograms in each case.
Additionally, we corrupt these chromatograms by adding white Gaussian noise at
each time 7. As can be seen in the middle panels, the algorithm is quite successful in
finding and aligning the corresponding peaks across chromatograms. In the process,
the algorithm discovers non-trivial, nonlinear warping functions that are required
for alignments. We reemphasize that this algorithm is fully automated and does not
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require any manual input, nor does it involve any parameter tuning for superior
performance. Interestingly, it not only does a good job in aligning major (taller)
peaks but it also aligns smaller peaks that can be attributed mainly to noise.

4 Experimental Results on Real Data

In this section we present some alignment results on several LC-MS datasets taken
from various sources.

1. As the first result, we utilize the proteomics dataset introduced by Koch et al. [7].
As described there, protein profiling can be used to study changes in protein
expression in reference to therapeutic treatments for diseases, and this data
involves protein profiles of patients with Acute Myeloid Leukemia. The original
data with markers corresponding to the key peaks in the data is presented in
Fig.9 (left panel). An interesting part about this dataset is that it comes with
an expert-labeling that provides a unique number to each of the major peaks.
This numbering, from 1 to 14 for each spectrum, is used only to study the
alignment but are not used in the alignment process itself. As can be seen in the
left panel, the peaks in the data are not well aligned as the corresponding numbers
demonstrate. The results of applying our alignment method are presented in
Fig. 9 (right panel). The aligned functions exhibit good registration with almost
all of the peaks lining up. There are a few exceptions involving peaks numbered
1 and 2. Since they have a very low amplitude, their registration is relatively
difficult.

We can also quantify the alignment performance using the decrease in the
cumulative cross-sectional variance of the aligned functions. For any functional
dataset {g;(t),i = 1,2,...,n,t € [0, 1]}, let
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Fig. 9 Alignment of proteomics data using the square-root slope framework with original data in
left panel and aligned functions in right panel. The aligned functions exhibit good registration of
marked peaks. Picture taken from [16]
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1 - 1 — 2
Var({gi}) = ne1 /0 Z(gi(t)_nzgi(t)> dr,
=1

i=1

denote the cumulative cross-sectional variance in the given data. For the pro-
teomics data, we found

Original Variance = Var({f;}) = 4.05, Aligned Variance = Var({f;}) = 1.13
Warping Variance = Var({j; o y*}) = 3.04.

where {f;} is the set of original functions, {f;} is the set of aligned functions, My
is the mean of the aligned functions, and {us o y;*} is the result of applying the
warping functions {y;*} to ps. From the decrease in the aligned variance and
increase in the warping variance we can quantify the level of alignment.

Figure 10 presents a zoom-in on a region of the data on the time interval
[615, 911]. The top panel is the original data where we see very poor alignment of
the peaks. The bottom panel is the corresponding aligned data using the extended
Fisher-Rao framework, where very tight alignment of the peaks and valleys have
occurred.
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Fig. 10 Zoom-in of the region (600-910) to demonstrate accurate alignment of smaller as well
larger peaks. The fop picture is before and bottom is after alignment. Picture taken from [16]
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2. Another experiment involves a set of eight chromatograms shown in the top panel
in Fig. 11. In this data, some of the major peaks are not aligned, especially in
the domain range [15, 25]. The outcome of Algorithm 1 on this data is shown
in the second row where the peaks appear to be sharply aligned throughout the
spectrum. To emphasize the quality of alignment we look at a couple of smaller
intervals in the spectrum more carefully. The zoom-ins of these smaller regions
are shown in the last two row of the figure. In each of the last two rows, we show
the before and after alignment spectra for these two domains: 0-20 and 28-50.
It can be seen in these zoom-ins that the algorithm aligns both the major and
minor peaks remarkably well. Once again, this procedure does not require any
prior peak detection or matching to reach this alignment.

3. In the third and final example, we study a set of 14 chromatograms associated
with urine samples collected at NIST. The top row of Fig. 12 shows the full
chromatograms before and after alignment. Since the misalignments in this
examples are relatively small, compared with the full range of retention times,
it is difficult to evaluate the quality of alignment in this full view. In the bottom
row, we look at magnified view of a smaller region—>5 to 15—and find the peaks
are very closely aligned after the algorithm has been applied.

5 Conclusions

The problem of alignment of mass spectrometry data is both important and
challenging task. We have utilized a recent comprehensive approach that treats chro-
matograms as real-valued functions, uses extended Fisher-Rao metric to perform
alignment of peaks and valleys in these functions. The key idea is to form SRSFs
of the given chromatograms and then to use the standard L? norm between these
functions to perform both pairwise and groupwise alignment. We demonstrate this
framework using a number of examples involving real and simulated database taken
from different spectrometry applications. The success of this alignment procedure
is clearly visible in all experiments where the peaks are nicely aligned across
observation. This procedure is fully automated and does not require any user input.
Furthermore, it aligns full chromatograms (functions) rather than simply matching
a few dominant peaks.
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Fig. 12 Alignment of LC-MS chromatograms associated 14 urine samples using Algorithm 1. The
top row shows the full chromatograms while the bottom row shows a magnified region to facilitate
a closer look at the alignment performance
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The Analysis of Peptide-Centric
Mass-Spectrometry Data Utilizing Information
About the Expected Isotope Distribution

Tomasz Burzykowski, Jiirgen Claesen, and Dirk Valkenborg

1 Introduction

In shotgun proteomics, much attention and instrument time is dedicated to the
generation of tandem mass spectra. These spectra contain information about the
fragments of, ideally, one peptide and are used to infer the amino acid sequence
of the scrutinized peptide. This type of spectrum acquisition is called a product
ion scan, tandem MS, or MS2 spectrum. Another type of spectrum is the, often
overlooked, precursor ion scan or MS1 spectrum that catalogs all ionized analytes
present in a mass spectrometer. While MS2 spectra are important to identify the
peptides and proteins in the sample, MS1 spectra provide valuable information
about the quantity of the analyte. In this chapter, we describe some properties of
MSI1 spectra, such as the isotope distribution, and how these properties can be
employed for low-level signal processing to reduce data complexity and as a tool
for quality assurance. Furthermore, we describe some cases in which advanced
modeling of the isotope distribution can be used in quantitative proteomics analysis.
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Mass-spectrometry (MS) data contain a lot of noise and redundant information. A
high-resolution MS1 mass spectrum from, e.g., an orbitrap mass spectrometer typi-
cally contains thousands of data points. Depending on the density of the biological
sample, a number of, say, 80 peptides can be found in such a mass spectrum. Each
peptide can be represented by an abundance measure and a monoisotopic mass.
In other words, the numerous data points can contain information about just 80
peptides. This means that there is a lot of irrelevant information in MS data.

In high-resolution MS, a peptide appears in a mass spectrum as a series of
locally correlated peaks, which exhibit a specific characteristic profile related to the
isotope distribution of the peptide. The use of the (expected) isotope peak-patterns
can increase effectiveness of selecting the relevant information from mass spectra
and subsequent statistical analysis of the data. In this chapter, we describe the
necessary methodological background and present several examples of the use of the
information about the isotope distribution in the analysis of peptide-centric MS data.

The remainder of the chapter is structured as follows. In Sect. 2, we discuss the
isotope distribution in more detail. In Sect. 3, we present various applications, in
which the analysis of the MS data is enhanced by the use of the expected isotope
distribution. Concluding remarks are presented in Sect. 4.

2 Isotope Distribution

Under natural conditions, particular chemical elements appear as different stable
or radioactive variants. These variants have different numbers of neutrons in their
atomic nucleus and are known as isotopes. For example, there are two stable isotopes
of carbon (C) that appear in nature: '>C and '*C. In the notation, the upper-left index
indicates the mass number or nucleon number and represents the total number of
protons and neutrons, that is, nucleons, in the atomic nucleus. Due to the difference
in the total number of nucleons, isotopes differ in mass. They also differ in their
abundance, i.e., the frequency of occurrence. Table 1 presents the stable isotopes,
their masses, and abundance for carbon (C), hydrogen (H), nitrogen (N), oxygen
(0), and sulfur (S), as defined by the IUPAC 1997 standard [20]. These are the five
chemical elements which are predominantly present in peptides and proteins.

Terrestrial molecules incorporate elemental isotopes according to their natural
abundances. Thus, a molecule can have different isotope variants with different
masses that depend on the number of different isotopes in the atomic composition
of the molecule. The probability of occurrence of these isotope variants can
be calculated given the atomic composition and the known elemental isotope
abundances. The result of this calculation is known as the isotope distribution.

For example, consider a molecule of methane (C;Hy). Its monoisotopic variant
is composed solely of the atoms of the most abundant isotopes of C and H, i.e., 1>C
and 'H, respectively. It is the lightest variant with the molecular mass (see Table 1)
of 1 x12+4x1.008=16.032. The probability of occurrence of the monoiso-
topic variant is equal to 0.9893 x (0.9999)* = 0.9889. However, another possible
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Table 1 Isotope variants of Chemical element | Isotope | Atomic mass Abundance
C,H, N, O, and S as defined 5
by the TUPAC 1997 standard Carbon C 12.0000000000 | 98.93
e 13.0033548378 1.07
Hydrogen 'H 1.0078250321 | 99.9885
’H 2.0141017780 0.0115
Nitrogen 4N 14.0030740052 | 99.632
BN 15.0001088984 0.368
Oxygen 150 15.9949146000 | 99.757

170 16.9991312000 0.038
130 17.9991603000 0.205

Phosphor 3ip 30.9737620000 | 100

Sulfur 323 31.9720707000 | 94.93
33 32.9714584300 | 0.76
343 33.9678666500 | 4.29

368 35.9670806200 0.02

T.abl.e 2‘ The }SO[OPG 2C |BC |'H |’H |Mass Probability | Nucleons
distribution of methane
1 0 4 0 16.032 | 0.988904 16
(CiHy)
0 1 4 0 17.035 |0.010696 17
1 0 3 1 17.038 | 0.000099 17
0 1 3 1 18.041 | 0.000001 18
1 0 2 2 18.044 | <108 18
0 1 2 2 19.047 |<107° 19
1 0 1 3 19.050 |<10=12 19
0 1 1 3 20.053 |<10~13 20
1 0 0 |4 20.056 | <10~'° 20
0 1 0 |4 21.059 | <10~ 21

variant is composed of one '*C-atom and four 'H-atoms. This variant has the
molecular mass of 1x 13.0032 4 4 x 1.008 = 17.035 and occurs with probability
(1—0.9893) x (0.9999)* = 0.0107. In total, there are ten different isotope variants of
a molecule of methane. Table 2 presents the isotope distribution of methane, i.e., the
molecular masses of all isotope variants and their probabilities of occurrence (com-
puted using the data from Table 1). Additionally, the total number of nucleons for
each variant has been provided. Note that, for methane, which is a simple molecule
with a small atomic mass, the monoisotopic variant is also the most abundant one.
However, for more complex and heavier molecules, this is not necessarily the case.

All the isotope variants of methane, presented in Table 2, differ in mass. However,
it can be seen that some variants have a very similar mass, close to integer values
of 16, 17, 18, 19, 20, and 21, corresponding to the total number of nucleons. If we
“aggregate” the variants with the same nucleon-content, we obtain the aggregated
isotope distribution of methane, with only six aggregated isotope variants. The
probabilities of occurrence of the first three variants, with masses of (about) 16, 17,
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and 18, are equal to 0.988904, 0.010795 (=0.010696 + 0.000099), and 0.000001,
respectively.

From the aforementioned considerations it follows that peptide molecules can
have different isotope variants. In a high-resolution mass spectrum, a peptide
produces a series of peaks that are separated by roughly 1 Thomson and that
correspond to the aggregated isotope distribution (small mass differences between
the isotope variants corresponding to a particular aggregated variant are not
visible in a spectrum). A convenient algorithm to compute the aggregated isotope
distribution on computers is the BRAIN algorithm developed by Claesen et al. [2].
A complete overview of methods for the in silico generation of isotope distributions
can be found in the review by Valkenborg et al. [28].

For instance, the left-hand side panel of Fig. 1 presents a full scan of a tryptic-
digest of bovine cytochrome C. The right-hand side panel shows a close-up of the
region near the mass of 743 m/z. In the close-up we can clearly observe a series
of locally correlated peaks, approximately separated by 0.5 m/z (as the peptide is
doubly charged) that correspond to the aggregated isotope distribution of a peptide.
It is this type of peak-clusters that would be of interest when analyzing a spectrum
to reduce complexity and asses spectral quality.

To decide whether a peak-cluster may be due to a peptide, one could check
whether the observed pattern (of the form presented in the right-hand side panel
of Fig. 1) corresponds to an aggregated isotope distribution of a peptide. This raises
an important practical issue, though: to compute the distribution, one has to know
the atomic composition of a molecule. Thus, to decide whether a particular peak-
cluster may be due to a peptide, one would have to compare the observed pattern
to the aggregated isotope distributions of all known peptides with a similar mass.
Obviously, this is not feasible, not only for computational reasons, but also because,
e.g., the observed pattern may correspond to a modified (e.g., phosphorylated)
version of a lighter peptide.

___ monoisotopic variant

intensity
intensity
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Fig. 1 A full scan of a tryptic-digest of bovine cytochrome C (left-hand side panel), with a close-
up of the region near 743 m/z (right-hand side panel)
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An alternative, more practical solution is to compare the observed peak-cluster
pattern to the expected aggregated isotope distribution for peptides with the
monoisotopic mass corresponding to the mass of the first peak in the observed
cluster. The expected distribution can be effectively computed using a model
developed by Valkenborg et al. [26]. In particular, Valkenborg et al. [26] represented
an aggregated isotope distribution by the set of ratios (termed isotopic ratios) of
the probability of occurrence of the (m + 1)-th aggregated isotope variant to the
probability of occurrence of the m-th variant (with m =1 denoting the monoiso-
topic variant). Subsequently, each ratio is modeled by a fourth-order polynomial-
regression model using the monoisotopic mass as the explanatory variable. To
estimate the coefficients of the model for the first six ratios, Valkenborg et al. [26]
used the monoisotopic mass of the theoretical “averagine” peptide proposed by
Senko et al. [22]. Alternately, Ghavidel et al. [6] estimated the coefficients by using
an in silico digest of the actual proteins included in the Human HUPO database.
By using the estimated coefficients, the expected values of the isotopic ratios for
a particular mass can be computed and compared to the ratios obtained for the
observed peak-cluster. The similarity between the expected and observed ratios
can be measured by using Pearson’s chi-squared statistic [6, 26]. If the value of
the statistic is smaller than a selected threshold, the observed peak-cluster can be
regarded as resulting from a peptide.

3 Applications

In this section, we present several applications, in which the analysis of the MS data
is enhanced by the use of the expected isotope distribution.

3.1 Enzymatic Labeling

MS measurements are influenced by different sources of variability, which can
obstruct the detection of differentially expressed proteins or peptides. To reduce
the effect of the variability on the data, a labeling approach can be considered. In
isotope labeling, peptides from one sample are coded with stable isotope tags and
mixed together with another, unlabeled sample. The stable isotope tag will result in
an increase of the peptide’s mass. Due to this increased mass, a peptide from the
labeled sample is discernable from its unlabeled counterpart in a precursor scan.
Quantification of the relative abundance is based on the observed intensities.

A relatively low-cost and open-source technique for stable isotope labeling is
the enzymatic '30-labeling, where the two '°0 atoms in the carboxyl-terminus of
a peptide are replaced with oxygen isotopes from heavy-oxygen water. Enzymatic
labeling is performed in two steps. In the first step, protein digestion is done in
normal water. In the second step, the labeling is done in heavy-oxygen water.
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Fig. 3 Effect of enzymatic '80-labeling in a mass spectrum in “stick” representation on a pooled
sample. Left panel: “sticks” can be seen as a representation of the distribution of the isotope variants
of the peptide. Right panel: labeling causes accumulation of different isotope variants in a spectrum

The oxygen replacements in the carboxyl-terminus are a continuous process and
are enzymatically catalyzed by a proteolytic reagent. This labeling reaction is
schematically depicted in Fig. 2. We assume that both oxygen-atoms on the
carboxyl-terminus will react equally favorable with the '80-atoms. Hence, in ideal
circumstances, the labeling should lead to an increase of the mass of the peptide
molecule by 4 daltons (Da).

For example, the labeled peptides from Sample II can now be pooled together
with the unlabeled peptides from Sample I and processed simultaneously by MS.
Without the enzymatic '#0-labeling, the isotope peaks, corresponding to the isotope
distribution of a peptide present in both samples, would appear at the same location
in the resulting pooled MS1 or joint mass spectrum. This is graphically illustrated
in the left panel of Fig. 3. In this situation, no distinction could be made between the
contributions of the different biological samples to the peptide peaks observed in the
joint spectrum. However, with the enzymatic '30-labeling, the isotope peaks which
correspond to the labeled peptide will shift 4 Da (in a singly charged spectrum) to
the right in the mass spectrum, as shown in the right-hand-side panel of Fig. 3. This
allows making a distinction between the peaks related to peptides from different
samples. Consequently, a direct comparison of the peptide abundance in the two
samples is possible because the abundance measurements are affected by the same
amount of machine noise. A “naive” approach to compute the relative abundance of
the peptide in the two samples would be to take the ratio of the heights of the first
and fifth peak observed for the peptide in the mass spectrum (see the right-hand-side
panel of Fig. 3), as these peaks would correspond to the monoisotopic variants of
the peptide in the unlabeled and labeled sample, respectively. However, as it can be
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observed from Fig. 3, some isotope peaks of the unlabeled peptide will still overlap
with the monoisotopic peak of the labeled peptide. Thus, even in this ideal setting,
where a mass shift of 4 Da is acquired, the ratio would yield a biased estimate of the
relative abundance, because it does not take into account the overlap of the isotope
peaks.

In practice, however, there are more problems related to the use of the enzymatic
180-labeling strategy. First, the heavy-oxygen water does not contain 100 % pure
180-water. It can also contain '°0- and !"O-atoms. We term these water impurities.
Note that, if the two carboxyl-terminus oxygen atoms are replaced by, e.g., !7O-
atoms, the peptide molecule becomes heavier by only 2, and not 4 Da, as it ideally
would be the case in 100 % pure '3O-water. Second, the speed of the enzymatic
reaction, i.e., the oxygen incorporation rate, depends on multiple unobserved factors
and therefore can differ for different peptides. As a result, at the end of the enzymatic
reaction, not all peptide molecules from Sample II may have been actually labeled.
The isotope peaks for these molecules will overlap with the peaks from Sample I,
which results in a biased estimate of the relative abundance.

These problems imply that the peaks, observed for a peptide in a spectrum, will
correspond to a complex mixture of shifted and overlapping isotope peaks that are
related to the isotope distributions of the peptide molecules in the unlabeled and
labeled samples. In order to obtain an unbiased estimate of the relative abundance
of the peptide in the two samples, the overlap of the isotope peaks has to be taken
into account [33].

Several methods that address the issue at the data analysis stage have been devel-
oped [3, 12, 13, 17, 27]. In particular, Valkenborg and Burzykowski [27] developed
a model-based approach that combines the regression framework considered by
Mirgorodskaya et al. [13] with a probabilistic model, which describes the kinetics of
the enzymatic '80-labeling reaction. An important advantage of the method is that
it allows estimating the peptide’s isotope distribution directly from the observed
data, which in turn can be used to validate whether the observed peaks are indeed
originating from a bonafide peptide. This implies that no additional MS steps are
required for quantification, while the information is unbiasedly extracted from the
observed spectra. The method is able to accommodate additional joint mass spectra
for a given peptide, which can arise from, e.g., technical replicates. Moreover, the
method can account for the possible presence of '°0- and '"O-atoms in the heavy-
oxygen water.

Figure 4 illustrates the general concept underlying the method. The figure
presents a part of a joint mass spectrum corresponding to a certain peptide. The
fifth peak of the observed part of the joint spectrum (plot at the right-hand side)
is composed out of the unobserved isotope variants of the peptide in Sample I
and Sample II before the labeling (plots at the left-hand side). Note that the first
five isotope variants of the peptide in Sample II (labeled sample) contribute to the
fifth peak of the observed part of the joint spectrum via the mass-shift probabilities
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Fig. 4 The height of the fifth peak of the observed part of the joint spectrum can be defined in
terms of the unobserved peptide peak intensities before labeling and the mass-shift probabilities.
Due to the imprecise labeling of a peptide, five potential mass shifts can occur, with probabilities
Py, P, Py, P53, and Py. In this way, the set of isotope peaks from the labeled peptide can contribute
to the fifth peak in the joint spectrum via the mass-shift probabilities

induced by the labeling. Hence, to estimate the relative abundance, Q say, of the
peptide in Sample II as compared to Sample I, we need information about the
theoretical isotope distribution of the peptides before the labeling.

Toward this aim, Valkenborg and Burzykowski [27] proposed a model, which
assumes that the expected values of the observed peak intensities in a peptide-
specific part of the joint spectrum are expressed as a linear function of the abundance
of the (aggregated) isotope variants of the peptide in Sample I and the relative
abundance Q. In particular, assume that there are M aggregated isotope variants
of the peptide. Let R,, (m=1, 2,..., M) denote the ratio of the probability of
occurrence of the m-th variant relative to the monoisotopic one (m = 1); put Ry = 1.
Let H denote the abundance of the peptide in Sample I. The model is defined by
assuming that the intensity y; (k=1, 2,..., M + 4) of the k-th peak observed in the
peptide-specific part of the joint spectrum can be expressed as follows:

min(k—1,4)
w=HRIGk<M)+HQ > PRij+e.
Jj=max(k—M,0)

where the residual errors g, follow a normal distribution with mean O and variance
o2, and I(A) is the indicator function equal to 1 when condition A is fulfilled and
0 otherwise. The coefficients of the linear function are the mass-shift probabilities
P; (j=0,1,...,4), where P; denotes the probability that the isotope distribution
of a labeled peptide will be shifted by j Da due to the incorporation of a
combination of '°0-, 170-, and '0-atoms from the heavy-oxygen water. The mass-
shift probabilities P; themselves are computed by using a Markov-chain model
with a transition-probability matrix that depends on the (assumed known) presence
of the '®O- and '7O-atoms in the heavy-oxygen water and the peptide-specific
incorporation rate A (assumed constant in time), which gives the number of the
oxygen-exchange reactions per time unit.
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Valkenborg and Burzykowski [27] applied the proposed method to a set of six
joint mass spectra obtained from the tryptic peptides of bovine cytochrome C from
LC Packings. The sample containing all peptides resulting from the tryptic-digest
was divided into two parts. One part was enzymatically labeled (overnight) with
a stable '80-isotope, with trypsin as a catalyst, while the other part remained
unlabeled. Next, the labeled and unlabeled peptides were mixed according to a
ratio Q = 1/3. Six samples from the resulting mixture were automatically spotted
on one stainless steel plate by a robot. The plate was processed by a 4800 MALDI-
TOF/TOF analyzer (Applied Biosystems) mass spectrometer, resulting in six joint
spectra.

The analysis was restricted to the parts of the six joint spectra corresponding
to three bovine cytochrome C peptides. The amino acid compositions of these
peptides were as follows: peptide CC1 (mass 1167.61 Da)—TGPNLHGLFGR;
peptide CC2 (mass 1455.66 Da)—TGQAPGFSYTDANK; and peptide CC3 (mass
1583.75 Da)—KTGQAPGFSYTDANK. Panel (a) of Fig. 5 presents the heights of
the consecutive peaks observed in the parts of the joint spectra corresponding to
peptide CC1 in the stick representation.

The estimated values of Q were equal to 0.5518 (standard error, SE = 0.0318) for
peptide CC1, 0.3340 (SE = 0.0129) for peptide CC2, and 0.3318 (SE = 0.0068) for
peptide CC3. The estimates for peptides CC2 and CC3 were in a very good agree-
ment with the targeted value of 1/3. Also, the estimated isotope distributions were
virtually identical to the theoretical ones. Thus, the model adequately described
the data for the two peptides. However, for peptide CCl1, the estimated relative
abundance was markedly different from 1/3 and the estimated isotope distribution
was statistically significantly different from the theoretical one. This suggested a
possible failure of the experimental procedure for the peptide.

{a}xm‘ {b)sﬂ(]‘
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Fig. 5 Observed (panel (a)) and estimated (panel (b)) peak heights in the parts of the six joint
spectra corresponding to the tryptic bovine cytochrome C peptide CC1 with mass 1167.61 Da and
Q = 1/3. Note that the peaks are grouped per isotope peak
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The “naive” estimates, obtained by taking the mean value of the ratio of the
heights of the first and fifth peak observed in the peptide-specific part of the joint
mass spectrum, were equal to 0.5336, 0.3473, and 0.3556, respectively. Thus, in this
case, there was not much difference between the model-based and “naive” estimates.
Valkenborg and Burzykowski [27] argued that this was likely due to the efficient
180-labeling (overnight) and the use of highly purified heavy-oxygen water, which
caused a clear separation between the labeled and unlabeled spectra. In a realistic
setting, however, labeling might be inefficient and it would be cost-efficient to use
less purified oxygen labels, which would then favor the use of the proposed model.

The model developed by Valkenborg and Burzykowski [27] assumed, among
others, that the observed peak intensities in the joint spectrum were normally
distributed with a constant residual variance. The homoscedasticity assumption was
relaxed in the model developed by Zhu, Valkenborg, and Burzykowski [32]. For the
latter model, Zhu and Burzykowski [31] proposed a Bayesian formulation.

3.2 Hydrogen/Deuterium Exchange

The isotope distribution can also be used to analyze data from hydrogen/deuterium
exchange mass spectrometry (HDXMS). HDXMS is a method to study the confor-
mation and dynamics of proteins and peptides. Hydrogen atoms from NH-groups
of peptide bonds can be replaced by deuterium. Unprotected hydrogens located
at the surface of the protein will exchange faster than hydrogens buried in the
hydrophobic core of the protein under study. Therefore, monitoring the exchange
of labile hydrogen atoms over time makes it possible to draw conclusions about
the conformation and dynamics of proteins. After exchange of one hydrogen, the
molecular mass of the protein under study will increase by approximately 1 Da. The
intensities of the isotope distribution will also change (Fig. 6).

Several methods have been proposed to determine the deuteration-level of a
protein. The simplest approach [29] calculates the number of exchanged H-atoms
by subtracting the average mass of the undeuterated ion from the average mass of
the (partially) deuterated protein. There are two potential issues with this approach.
First, the resolution and mass accuracy of the mass spectra can complicate the
calculation of the average mass of the (partially) deuterated protein. Second, the
amount of information provided by the differences in mass can be insufficient to
draw valid conclusions regarding the structure and/or dynamics of the protein under
study.

Other methods use the isotope distribution to estimate the deuteration-level. They
are based on two ideas:

* The first idea assumes that the observed isotope distribution is a combination of
the natural, non-deuterated isotope distribution, and a deuteration distribution.
Palmblad et al. [15] proposed to estimate the exchange probability (Pexch),
linked to this deuteration distribution, with a deconvolution-based approach.
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Fig. 6 HDX mass spectra for a molecule with two exchangeable hydrogens. The bars in the middle
panel show the cumulative intensity resulting from an overlap of isotope distributions of molecules
with a different number of exchanged hydrogens

The amount of deuteration, expressed as the probability of exchange, is deter-
mined by a modified version of the fast Fourier transform approach of Rockwood
and Van Orden [19]:

Dlege = FTU{FI)' % F(Ip)™ * F(Ip)"° * F(Is)" * F(Io))™ * F (Ip)} (1)

where DI, are the intensities of the expected isotope distribution of a (partially)
deuterated protein, F(I,) denotes the Fourier-transformed intensity distribution
of chemical element X, I, are the intensities of too-fast-exchanging hydrogens,
and Ip are the intensities of the deuteration distribution which is assumed to be
binomial:

ID = Bin (Pexcha nexch)7 (2)

with nexen, denoting the number of hydrogens available for exchange. This
approach, implemented in AUTOHD [15], assumes that each exchangeable
hydrogen has the same exchange probability. The probability is estimated by
minimizing the differences between the observed and the expected isotope
distribution of the deuterated protein/peptide.

The second idea is actually very similar to the approach used in the analysis of
the enzymatically '3O-labeled mass spectra. It considers the (partially) deuterated
isotope distribution as a linear combination of n + 1 mass-shifted natural isotope
distributions (Fig. 7):

DI, = Z;zowj * 1 3)
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Fig. 7 The partially deuterated isotope distribution (bottom panel) is the weighted sum of three
isotope distributions with different levels of deuteration, i.e., no deuterium (fop panel), one
deuterium atom (second panel from the top), and two deuterium atoms (third panel from the top)
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Fig. 8 Deuteration/incorporation plot of a protein with two conformational states

where DI; denotes the normalized intensity of the deuterated ith isotope variant,
Ii—; is the intensity of the undeuterated (i —j)th isotope variant, and w; is the
abundance of j exchanged deuteriums. In contrast to the method of Zhang and
Smith [29] and Palmblad et al. [15], estimating w; returns, for each time point, a
distribution of relative deuterium-content. Zhang et al. [30] discuss three different
methods to determine w, i.e., directly solving Eq. (3), ordinary least squares
minimization, or maximum-entropy method.

Plotting the determined deuteration content against the labeling time can provide
clues about the 3D structure and/or dynamics of the protein. These deuteration
incorporation plots (Fig. 8) give an intuitive idea about the kinetic exchange rate
of a protein.

For each exchangeable hydrogen a kinetic exchange rate can be estimated:

N
Di=N-3) " (4)

where N is the total number of exchangeable hydrogen atoms, and k; the exchange
rate of hydrogen i.

A commonly applied method to estimate these exchange rates is the model
proposed by Zhang and Smith [29] and Smith et al. [24]. The method heavily
relies on the determined deuterium-content without taking the uncertainty linked
to these estimates into account (Eq. 4). Another approach is to directly estimate
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the exchange rates from the observed isotope distribution [4, 18]. For each time
point ¢, the states of all exchangeable hydrogens, N, are represented by 2V labile
binary vectors, containing 1’s and 0’s, where “1” corresponds to exchanged, and
“0” to non-exchanged hydrogen. The vectors represent all possible combinations
of exchanging hydrogens in the analyzed protein or fragment, ranging from no
exchange to a full exchange of all H-atoms. The overall probability of each vector
Dior 18 calculated as the product of individual exchange probabilities:

p(Dy), =1—e " =1—p(H)),

where p(D;), denotes the probability of deuterium exchange of the ith H-atom by
time ¢.

Binary vectors with the same number of exchanged hydrogens are combined, and
their probabilities are summed. These summed overall probabilities are compared
with the normalized intensities of the protein or fragment under study using the
overall mean square deviance or the Kullback-Leibler distance as the overall
divergence measure. The exchange rates of each exchangeable H-atom are then
estimated by minimizing the overall divergence measure.

3.3 Other Application Domains

The previous sections present the cases for peptide-centric quantification and struc-
tural elucidation of proteins by controlled stable isotope labeling of the scrutinized
molecules [5]. One of the key features of the observed spectra is that they can be
interpreted as resulting from overlapping isotope distributions.

However, there are many more experimental protocols that can result in over-
lapping isotope distributions. The data analysis strategies explained earlier can
be generalized to investigate any type of MS data with intentional or artefactual
overlapping isotope distributions. This section provides a non-exhausting overview
of alternative labeling strategies and presents cases where, for example, degradative
chemical reactions, such as deamidation, can cause the overlap of isotope distribu-
tions.

It is paramount to note that any observed spectrum that contains overlapping or
non-overlapping isotope profiles can be expressed as a linear combination of the
unobserved theoretical isotope distribution of the compounds that are composing
the mass spectrum (see Fig. 9). Hence, a linear model can be defined to disentangle
and quantify the overlapping and non-overlapping isotope patterns present in a
spectrum. Equation (5) presents an example of a linear model that could be used
for a part of an observed spectrum. Assume that the observed isotope peaks Y| to
Y50 are the result of a labeling protocol. The labeling causes overlapping isotope
patterns in peaks Y to Y5 due to the three different labels (L; to L3). The fourth
label (L4) does not introduce overlap in the spectrum, as it is well separated in the
mass domain from the cluster of overlapping peptides. Nevertheless, the observed
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Fig. 9 An observed spectrum (left-hand-side plot, black bars) that can be expressed as a linear
combination (left-hand side, white bars) of the shifted theoretical isotope distributions (right-hand-
side plots) of the compounds that are composing the mass spectrum

peaks from the fourth label can be taken into account by the model. A simple fitting
scheme will yield the quantitative values corresponding to the labels (L; to L4). It
is worth noting that in this general modeling framework, the number of compounds
in the spectrum (columns of the matrix), the overlap caused by the labels (leading
zeros in the columns), and the molecular composition of the compounds (isotope
distributions /11—I43) should be known.
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An example of how model (5) can be employed is given in Fig. 9. Assume that
the objective of the experiment is to quantify the extent of protein degradation for
different wetlab protocols. The plot at the top of the right-hand-side panel of the
figure presents the theoretical isotope profile of a biomolecule in a doubly charged
mass spectrum. Due to protein degradation in the '80-water, the molecule starts
incorporating '#0-atoms, with shifts of 1 m/z (corresponding to 2 Da) as a result.
The shifted profiles, resulting from the incorporation of 1, 2, or 3 180-atoms, are
presented in the right-hand-side panel of Fig. 9. The black bars in the left-hand-side
panel of Fig. 9 depict the profile observed in the overall mass spectrum, resulting
from the overlap of the profiles shown in the right-hand-side panel. Based on this
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overall profile and using a model similar in spirit to the one given in Eq. (5), one
can estimate the proportion of molecules incorporating 1, 2, or 3 '30-atoms. The
resulting “fitted” profile, corresponding to a particular set of proportions (shown at
the top of the plot in the left-hand-side panel of Fig. 9), is shown as white bars in
the plot in the left-hand-side panel of Fig. 9.

The enzymatic '30O-labeling approach can be categorized in the subclass of
chemical labeling. Chemical labeling is the intentional modification of a peptide
or amino acid with a particular and well-known mass tag. To date, several strategies
are available for chemical labeling, for example, isotope-coded protein labels (ICPL;
[21]), Isotope-Coded Affinity Tags (ICAT; [7]), or synthetic AQUA peptides [25].
Although the latter labels are meticulously engineered to minimize the overlap of
the isotope distributions, it can happen that due to isotope impurities or incomplete
labeling a certain amount of overlap occurs that requires a modeling approach for
the accurate quantification of the label’s molecules.

Special cases of chemical labeling are tandem mass tags (TMT, Thermo Sci-
entific) and isobaric tag for relative and absolute quantification (iTRAQ, SCIEX).
These labels are constructed in such a way that no mass difference is present
between, e.g., the six labels in a TMT 6-plex; hence the term isobaric labeling.
However, the labels are developed so that, upon fragmentation, a charged reporter
ion and neutral balancer will be released from the label causing 1 Da separated
reporter ions that can be used as a proxy for their relative abundance in the
pooled sample. Despite the very low mass of these reporter ions, they do exhibit
a pronounced isotope distribution due to isotope impurities present during the
synthesis of these labels. These isotope impurities are known and communicated by
the vendor in the data sheets. The model in Eq. (5) can be adapted to correct for the
systematic biases introduced by these impurities that cause the isotope distributions
of the reporter ions to overlap. A similar approach has already been proposed by
Shadforth et al. [23].

Metabolomic labeling, e.g., SILAC [14], is a popular stable isotope labeling
strategy that labels an entire organism by growing the cell culture in a medium that
contains isotopically modified essential amino acids. Typically, arginine or lysine
is modified with stable isotopes of carbon and nitrogen, i.e., *C and 'N. For
arginine, mass shifts of 4 Da ('*Ny), 6 Da ('3Cy), and 10 Da (*’N, 4-'3Cy), compared
to the unlabeled or light variants of the organism, are common. The isotopically
modified arginines can be combined with lysine, which introduces mass shifts of
2 Da (’N,) and 6 Da (!3Cg), or the combination thereof that leads to an 8 Da
shift (SN, +'3Cg), compared to the light variant. When using a single modified
amino acid, four cell cultures can be grown with a different label incorporation.
After inducing an experimental condition to the cell culture, the four experiments
can be pooled together and processed simultaneously during sample preparation and
LC-MS measurement. The advantage of this procedure, as compared to chemical
labeling, is that in a very early stage the samples can be aggregated such that
variability introduced at the level of protein extraction, reduction, trypsinization,
etc., is the same for the pooled samples. A disadvantage is that only peptides
containing, for example, an arginine are labeled. In case of missed cleavages or
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when using proteases that do not cleave at arginine it may happen that peptides
become multiply labeled by the modified amino acid. Another attention point is
that some organisms convert arginine to proline. This arginine-to-proline conversion
causes additional modified amino acids that could be present in the spectrum
[16]. In contrast to chemical labeling, metabolomics labeling can induce different
variants of high/low mass n-tuples in the mass spectral data. Therefore, often
fragment information or equivalently, peptide identification, is required to group the
high/low mass n-tuples together. Disregarding the complexity of the data analysis,
metabolomics labeling is popular because it allows multiplexing of four samples
[8]. Furthermore, the minimum mass shift between the overlapping distributions is
4 Da that relaxes the requirement of complex isotope modeling.

A recent and interesting observation is that not only peptide or reporter ions
can overlap in a mass spectrum [9]. More specifically, the modern fragmentation
mechanism called Electron-Transfer Dissociation (ETD) is of such a complexity
that multiple reaction products may occur before a protein or peptide fragmentation
occurs. These alternative reaction mechanisms are currently being investigated [10].
From the observed isotope pattern of the fragment ion one can hypothesize that three
additional reaction pathways exist that provoke the isotope patterns to shift by steps
of 1 Da. These reaction pathways are called Electron-Transfer but no Dissociation
(ETnoD), proton transfer reaction (PTR), and hydrogen transfer reaction (HTR).
Former reactions lead to loss of hydrogen, charge, or a combination of both, causing
the reaction products to overlap with the desired fragmentation results of the ETD
reaction. To gain insight in the reaction mechanism and to deal with the nuisance
from the unwanted reactions, a model similar in spirit to Eq. (5) can be developed
to disentangle the information and remove the interference [11].

Another interesting and prevalent modification with clinical relevance is deami-
dation of proteins and peptides. Protein deamination is a biologically relevant
phenomenon, but can also be induced unintentionally by, e.g., sample handling or
protein degradation. The modification appears in mass spectrometry by shifting the
analytes isotope profile by 1 Da causing an overlap with the unmodified counter-
part. Software algorithms to deconvolute the spectral information often disregard
potential deamidation and therefore the monoisotopic mass is defectively inferred
from the observed isotope cluster. Atlas and Datta [1] presented an algorithm based
on the linear model presented schematically in Eq. (5) to correctly determine the
monoisotopic mass from an overlapping cluster of deamidated peptides.

Artefactual modifications also occur in the fields of MS-based lipidomics. Lipids
with unsaturated bonds are 1 Da lighter than their saturated counterparts and
multiple bonds can be saturated in a lipid (see Fig. 10). Apart from the bonds, the
composition of the overlapping lipids remains unchanged, making this molecule
very appropriate for the presented modeling approach as the mass shift, number
of mass shifts, and composition is often known or not needed since an approach
similar to the one used for '80-labeling can be applied with isotope information
inferred from the observed isotope peaks.
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Fig. 10 Lipids bonds can cause overlap of isotope profiles in the observed mass spectrum

4 Concluding Remarks

In peptide-centric MS, the isotope distribution offers important information about
the quantification of the biologically relevant signal in MS1 spectra. By using this
information, the processing and analysis of MS data can be made more efficient.

Information about the isotope distribution can also be applied at the stage of the
interpretation of the results of an MS experiment. For instance, it can be used to
improve the quality and confidence of peptide identifications from database-search
strategies [6].

In Sect. 3.3 we discussed the analysis of data from MS-experiments applying
labeling techniques. In such experiments, information about the form of the
overlapping isotope distributions, their number, and their mass shifts is known. This
allows the use of linear models to analyze the data. Overlapping isotope profiles can
also occur in spectra due to co-eluting peptide-homologues. However, in this case
the linear-model-based strategy is more difficult to apply, because the information
about, e.g., the number of overlapping isotope profiles or their mass shifts is not
known. Hence, disentangling arbitrary patterns of overlapping peptides is a tedious
task, though some progress can be made by using, e.g., the Bayesian approach [34].
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Probabilistic and Likelihood-Based Methods
for Protein Identification from MS/MS Data

Ryan Gill and Susmita Datta

1 Introduction

The main goal of proteomic studies is to detect biomarker proteins for the early
detection of cancer. Tandem mass spectrometry (MS/MS) plays a significant role
in the discovery of these biomarker proteins. The first step of an experiment using
tandem mass spectrometry (MS/MS) is the digestion of a mixture of proteins by
an enzyme, often trypsin. Each of the proteins is separated into peptides which are
subsequently ionized. Then selected peptide ions are fragmented in the gas phase,
and the mass-to-charge ratios and abundances or intensities of the small fragmented
ions are recorded in an MS/MS spectra.

Technological improvements have led to a greater abundance of tandem mass
spectrometry data as well as an increase in the size of generated data sets [1].
Consequently, it is not feasible to manually attempt to identify the peptides present
in the sample, and hence software tools are needed to perform this task. SEQUEST
[2] is a popular software tool which uses the precursor ion mass for each observed
spectrum to find candidate peptides from a database of protein sequences which are
sufficiently close in mass to the spectrum. Each observed spectrum is preprocessed
by finding the highest intensity peaks in each of a set of pre-specified bins
and normalizing those values to obtain an observed n-dimensional vector u. The
theoretical spectrum, denoted by v, is also computed for each of the candidate
peptides, and each theoretical spectrum is then preprocessed the same way that the
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observed spectrum was preprocessed. Then, each observed spectrum is compared
with each theoretical spectrum in its candidate list by a preliminary score S, based
on the number of predicted fragment ions that match ions in the spectrum and their
abundances as well as the number of predicted sequence ions. Finally, a further score

75

1
X =Ry — R,
corr 07 15 t;_ﬁ

is computed for each of the top 500 candidate spectra where R, = Z”ivi+r is
the discrete cross-correlation with lag t. Here Ry is the scalar dot product between
the observed and theoretical spectra. As described in [2] and [3], Xcorr gives a
measure of spatial similarity to assess the coherence of the observed and each
theoretical spectra by not only computing Ry but also by including a correction
factor to account for background correlation between the observed and theoretical
spectra by using offset values. The highest Xcorr score is reported by SEQUEST
as a peptide-spectrum match (PSM). SEQUEST is a commercial program, but there
are alternate implementations of the original SEQUEST algorithm such as Crux [3]
and Tide [4] which are freely available and which also reportedly lead to drastic
increase in speed compared with the original SEQUEST algorithm. Software for
other database search algorithms such as X! TANDEM [5], Mascot [6], MS-Tag [7],
and MS-GF [8-10] are also available.

In spite of the developments of the above-mentioned search algorithms, there
still remain uncertainties associated with the peptide and protein identifications.
Experimental errors and lack of adequate search algorithms can, sometimes,
lead to highly erroneous peptide and protein identifications from a tandem mass
spectrometry experiment; in fact, without proper filtering, it is possible that 80—
90 % of identified proteins may not be correct [11, 12]. The situation becomes
more complicated in the presence of “degenerate” peptides. A peptide is referred
to as “degenerate” if it is generated by multiple proteins. Degenerate peptides
create additional challenges for protein identification because even if the peptide
identification were known to be correct with no uncertainty, the identity of the
protein that generated it is not clearly determined. A typical situation of degeneracy
is explained through Fig. 1 (adapted from figures in [13-15]).

Figure 1 summarizes the steps in an MS/MS experiment for three proteins Py,
P,, and P3 in red, green, and blue, respectively; each of these proteins generates
two peptides: P, generates p; and p,, P, generates ps and p4, and P3 generates p,
and ps. Since p; is generated by two distinct proteins P; and P3, it is referred to as a
degenerate peptide. Note that only some peptide ions are selected for fragmentation;
some might be selected multiple times like peptide p; in Fig. 1, while others might
not be selected at all, like peptides p3 and ps. Of course, errors can occur during
peptide identification; in Fig. 1, peptide p4 is misidentified as p,. This also leads to
the incorrect conclusion that protein P, is present in the sample, and the incorrect
decision that P, is not present because of the misidentification of peptide p4 and
the fact that p; is not sampled. Degeneracy of peptides can also be an issue at the
database search stage as the example illustrates with protein P,; if an algorithm
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Fig. 1 The steps of an MS/MS experiment for the identification of peptides and proteins by
database search methods. This figure is adapted from several sources [13-15]

includes proteins for which its peptides are present, then protein P, is incorrectly
identified as present since its peptide p; is correctly identified. The proteins P; and
P5 are identified, though there may be concerns about these conclusions since other
proteins generate each of the peptides used to identify the proteins.

In recent years, several efforts have been made for providing confidences to the
peptide and protein identification. This paper first describes PeptideProphet and
ProteinProphet, among the first and still among the most popular probabilistic two-
step methods for peptide and protein identification. Then we discuss a couple of
likelihood-based one-step methods (hierarchical statistical model (HSM) and nested
mixture model (NMM)) which attempt to improve on some of the weaknesses of
two-step procedures. Finally, we compare the methods reviewed in this paper in the
Discussion section.
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2 Two-Step Process

In this section, we describe a highly regarded two-step process. In this process,
peptides are identified first using database search scores such as those provided by
SEQUEST through an algorithm called PeptideProphet. Then the resulting identi-
fied peptides along with their confidences can be used to attempt to determine the
proteins which are present in the sample using an algorithm called ProteinProphet.
A brief description of each of these two algorithms is given below.

2.1 PeptideProphet

Suppose that x, ..., x; are database search scores for a peptide. In [16], four
SEQUEST search scores are used:
In(Xcorr) ifL < Lc . . ' .
1. Xcorr = 1;&%},) ) , where L is the number of amino acids in the
mvey ML= Le

peptide, Ny is the expected number of fragment ions for a peptide with L amino
acids, L. is a threshold beyond which Xcorr does not depend on the length, and
Nc is the expected number of fragment ions for a peptide with more than L¢
amino acids.

2. AC,, the relative difference between the two highest Xcorr scores.

. In(SpRank), the natural logarithm of the rank of the preliminary score S,.

4. dy, the absolute difference of the masses of the precursor ions for the spectrum
and the assigned peptide.

(O8]

Linear discriminant analysis can be used to combine these search scores into a
single score

F(xi,....xs) =co+ Zc,-x,-

i=1

where the weights ¢, c1, ..., cs are selected to optimize the probability of a correct
classification of the peptide assignments as being correct or incorrect based on
training data where it is known which peptide assignments are correct. See Chapter
4 of [17] for details on linear discriminant analysis as well as other linear and
nonlinear methods for classifying categorical data.

This score is used to help compute the probability that a peptide score is correct.

Let F ‘—i— and F ‘— be the distributions of the discriminant scores for correct and

incorrect peptide assignments, respectively. The number of tryptic termini (NTT)
also provides useful information regarding the probability that the peptide score is

correct as discussed in [16], so let G‘+ and G‘— denote the NTT distributions for
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correct and incorrect peptide assignments, respectively. Then the probability that the
peptide assignment is correct given the discriminant scores can be computed using
Bayes’ formula

» (F,G‘—l—)p(—i—)

p (+)F G) = , (F’ G)Jr)p(ﬂ +p (F, G)—)p(—) n

el
o (1) (6)o 0+ () (6 oo

where p (+) and p(—) are prior probabilities of correct and incorrect peptide
assignments, respectively. The prior probabilities used in [16] are the observed
proportions in the training data, and the conditional distributions of the discriminant
scores for the correct and incorrect assignments are modeled by a Gaussian distri-
bution with estimated mean y and variance o> and by shifted Gamma distribution
with estimated shape, scale, and location parameters, respectively. In (1), it is
assumed that the discriminant scores and NTT distributions are independent when
conditioned on the peptide assignment status; empirical evidence is provided in [16]
to support this assumption.

An alternative to directly using the observed proportions from the training data
as the prior probabilities in (1) is to use a mixture model which simultaneously
estimates the prior and conditional probabilities based on a two-step iterative
process using the expectation-maximization (EM) algorithm [18]. Let N be the
number of spectra in the data set. Starting with initial estimates of p (+), p (—),

p (F‘+), p (F‘—), p (G‘+), and p (G‘—), the first step of each iteration of the
EM algorithm computes estimates of p (+ ‘F , G) based on (1). The second step of
each iteration updates the estimates of p (), p (—), p (F‘—i—), p (F‘—), p (G‘—i—),

and p (G’—) under the assumption that the contribution of each of the N spectra

to the distribution of correct/incorrect peptide assignments is proportional to the
current computed probability that it is correctly/incorrectly assigned. Specifically,
the prior probabilities are updated by the formulas

N

P+ = p(+

i=1

Fi, Gi)

and p (=) = 1 — p(4) where F; and G; refer to the respective values for the ith
spectrum. The parameters of the conditional distributions are computed using esti-
mates reweighted using weights proportional to the probability of a correct/incorrect
peptide assignment conditioned on the spectrum; for the Gaussian distribution
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which models the distribution of the discriminant scores for positive peptide

N
assignments, the estimated parameters are u = E p (+

Fi, GL) Fl/ (Np (+)) and

i=1

7 = 3 (4] 61 1= w7 4o .

i=1

2.2 ProteinProphet

Once estimates of the probabilities of the peptide assignments are obtained, then
the goal is to estimate the probability that a protein is present in the sample. The
probabilities of peptide assignments need not be made using PeptideProphet, or
even a database search method, but it is only reasonable to expect that the estimates
of the probability of the presence of the protein might be good if the estimates
of the probabilities for the peptide assignments are good. Temporarily ignore
the possibility of degenerate peptides for which there are multiple corresponding
proteins. Let D) includes peptide information for the jth assignment to the ith
peptide—such as discriminant scores and number of tryptic termini as used in (1).
If the independence of events for peptide assignments is assumed, then the formula

P 1T (-1 (+}2)

gives the probability that at least one peptide assignment corresponding to the
protein is correct.

Instead, ProteinProphet [13] makes the conservative estimate that, for each
peptide, the probability of all assignments being incorrect is equal to the minimum
(one minus the maximum) of the probabilities of incorrect assignments among
all assignments. Hence, the inside product in the formula for P is replaced by

1 — max;p <+ )D{) and, ProteinProphet [13] estimates the probability that a protein
is present in the sample using the formula

le—n{l—maxjp(—i-‘Dé)}. (2)

i

ProteinProphet’s use of only the maximum assignment score for each peptide when
estimating the protein probabilities may be overoptimistic since high scores for
incorrect peptide identifications may occur by chance particularly when the peptides
are assigned more than once.

To adjust for multihit proteins (proteins which correspond to multiple correctly
assigned peptides), the estimated probabilities in (1) can be modified by condi-
tioning on another random variable, the estimated number of sibling peptides for
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each given peptide; it is seen in [13] that correct peptide assignments tend to
correspond to multihit proteins, while incorrect peptide assignments are more likely
to occur with proteins for which there are no correct peptide assignments. Some
further refinements are also proposed as part of the iProphet multi-level models [19]
which update the probabilities computed by PeptideProphet conditioning on number
of sibling searches, number of replicate searches, number of sibling experiments,
number of sibling ions, and number of sibling modifications via Bayes’ theorem.
Figure 1 in [19] provides a nice figure illustrating the multi-level approach.

The description of ProteinProphet presented in [13] also provides a method for
attempting to handle degenerate peptides using the EM algorithm. Let N; be the
number of proteins that the ith peptide is assigned to, and let P, be the probability
that the sth protein is present. Then Eq. (2) is modified so that

P, = 1—1_[{1 — w/max;p (—i—)D{)}

1
with weights

Py
Ny

Zx=1PS
which give the probability that the ith peptide corresponds to the nth protein.
The algorithm begins by using uniform weights and then proceeds by iteratively
updating and recomputing the above equations until the values converge.

Since the intensity measurements in the spectra are subject to noise, incorrect
peptide identifications will likely lead to incorrect protein identifications. Moreover,
using knowledge of probabilities of the presence of proteins in a sample can affect
the probabilities that the peptide identification are correct, and it is clear that
appropriate inclusion of feedback in modeling peptides and proteins is critical in
making good inferences about each. In the following section, two one-step processes

are presented which attempt to simultaneously determine the proteins which are
present and the peptides which are correctly identified.

3 One-Step Processes

For the two one-step likelihood-based methods (HSM and NMM) reviewed in this
section, it is important to note that HSM handles the possibility of degenerate
peptides by assuming that a peptide will be in the sample if at least one of the
proteins that generate it is present in the sample. On the other hand, NMM does not
account for degeneracy, which can cause problems, particularly when estimating the
probabilities that proteins are present in complex high-level organisms.
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3.1 Hierarchical Statistical Model

The hierarchical statistical model (HSM) proposed in [14] assumes a parametric
multilayer joint distribution of five random vectors Y, V,Z, W, and S representing
N proteins with at least one peptide hit and M peptides assigned to at least one
spectrum.

In this model, Y = (Y1, ..., Yy) is a vector of indicators for the presence/absence
of the proteins in the sample where Y¥; = 1 indicates that the ith protein is present
in the sample. Letting p be the probability that a protein is present in the sample,
HSM assumes that Yj, ..., Yy are independent Bernoulli random variables with
probability mass function

fOo)=p"(1=p)'™

fori=1,...,N.
The HSM also considers a vector of independent Bernoulli variables V. =
(V1,..., Vy) for each protein indicating whether the number of peptide hits for the

protein exceeds a specified threshold 4; in particular, V; = 1 indicates that the ith
protein has more than 4 peptide hits. Then the probability mass functions for the
Bernoulli random variables can be expressed as

f (Ui)yi) =yl — yl)yi(l_vi)yo(l_)’i)vi(l _ yO)(l—}'i)(l—Ui)

where y| and y( are parameters for the Bernoulli distributions in the cases where
the protein is present or absent, respectively.

Next, Z = (Zi,...,Zy) is a vector of indicators for the presence/absence
of the peptides in the sample, and each Z; is modeled conditionally on Y with
specific parameters based on the type and number of cleavages. It is assumed

that Zj‘Y follows a Bernoulli distribution with parameters based on the type and

number of cleavages contained in a five-dimensional vector of probabilities ¢ =
(o, O, Oy, Oy, Oy ) Where an n in the index of a component of « indicates a non-
specific cleavage and an s indicates a specific cleavage (so, for example, if a protein
with a constituent peptide that is generated with one non-specific and one specific

cleavage, then o, is the probability P (Z] = I)Y,- = 1) that the peptide will be
present in the sample given that the protein is present in the sample). Letting C;

be the set of proteins that might generate peptide j, the conditional probability mass
function for the presence of the jth peptide is

1—z Zj

b))’ ) (T10-r )y

i€Cj i€C;
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In the next layer of the HSM model, W = (Wii,..., Wir, -+, Want, ..., Wary,)
is a double-indexed vector of indicators of correct assignments of present peptides
to a spectrum where Wy = 1 indicates that the kth assignment of the jth peptide
to a spectrum is correct and 7; is the number of assignments of the jth peptide to a
spectrum. Then the conditional probabilities that particular assignments are correct
given that the jth peptide is present is assumed to be Bernoulli with probability T so
that the conditional probability mass function of Wj given Z; is

f (ij‘Zj) = ZjTWfk(l — ‘()l_w‘.

Finally, S = (Si1,....Sim, -+ .Smi,...,Sur,) is a double-indexed vector of
matching scores for each peptide and potential assignment. The HSM also allows the
density to be based on an additional factor Qj; and assumes that there are different
density functions depending on whether the assignment of the kth assignment of the
Jjth peptide to a spectrum is correct so that

f (Sjk Wik =W, gjx = q) = fow (s Bow)

for w = 0, 1. Combining all of these components of the HSM, the joint density of
Y,V,Z, W, and S based on the model is assumed to have the form

}’i) ilif (Zi ij) .

The EM