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Preface

Following the genomics revolution, proteomics, metabolomics, and lipidomics stud-
ies have emerged, among others, as a natural follow-up either in the investigation of
human biology or, similarly, in animal or plant studies. The combined use of these
omics fields may lead to a more comprehensive understanding of system biology.
In medical research, it may generate novel biomarkers which may be used in early
detection of disease and for the development of new screening programs. Examples
are in practical clinical patient monitoring, and in the development of new patient
disease management rules for complex diseases such as cancer and cardiovascular or
inflammatory diseases, among others. Another key objective of such comprehensive
system-level study is in the elucidation of the molecular biochemical process
associated with these biomarkers. In plant biology, relevant applications may be in
the prediction of desirable properties of novel foods or crops or in assisting genetic
manipulation-based breeding programs for new varieties, for example.

Within the omics revolution, proteins play a key role in the study of living
organisms as they provide the essential link with the genome on the one hand, while
they are also key components of the physiological metabolic pathways of cells.
Proteomics is therefore a fundamental research field which investigates the structure
or function of protein complexes consisting of multiple proteins simultaneously.
Metabolites, on the other hand, are small molecules formed from the breakdown
products of larger molecules, such as proteins, after undergoing a metabolic process
within an organism. They are involved in (cell) signaling processes through stimu-
latory and inhibitory effects on enzymes, among others. Comprehensive metabolic
profiling or metabolomics can give an instantaneous snapshot of the physiology of
the cell. Lipidomics is closely related to metabolomics but studies a specific set of
non-water-soluble molecules consisting of glycerol and fatty acids. The collection
of all lipids in an organism is referred to as lipidome, in analogy to genome,
proteome, metabolome, and so on. Although all these molecules have differences
in both structure and functions, they can all be studied experimentally using modern
spectrometric technology—specifically mass spectrometry—to assess the required
omics expression of interest.

v



vi Preface

Unlike measurement procedures and methodology in genomics research, which
is reasonably standardized at the time of writing, mass spectrometry is itself
a vast field with many forms and variants. Typical vehicles are time-of-flight
(MALDI) mass spectrometry, liquid chromatography-mass spectrometry (LC-MS),
and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS or
FTMS), among others. The field is therefore still very much in flux, with many
distinct mass spectrometric measurement technologies and hence also different
study designs in use. The data types generated in these studies are also very
different. They tend to have complex structures, while no consensus data analytical
approaches have yet been agreed upon. For these reasons, expert knowledge gained
with one specific measurement platform does not easily carry over to other mass
spectrometric systems. Writing a comprehensive overview text on statistical data
analytic methodology in the new mass spectrometry-based omics field would there-
fore not be realistic. Instead, we have chosen to bring together a group of established
researchers to present their expert knowledge in their specific application area
within this emerging field. With this book, we want to provide an overview of
the current status of such mass spectrometry-based omics data analysis and give
impetus to the emergence of a common view on the design and analysis of such
data and experiments. In this way, the book could support the development of more
standardized templates, research practices, and references for any data analyst such
as statisticians, computer scientists, computational biologists, analytical chemists,
and data scientists, both in the omics application fields we discuss and in related
omics fields such as glycomics.

Materials presented in this book cover a broad range of topics. First, we discuss
the preprocessing of mass spectrometry data such as data normalization, alignment,
denoising, and peak detection including monoisotopic peaks. Second, it provides
methods for identification of proteins from tandem mass spectrometry data. There
is also a chapter on a software package for the analysis of such omics data.
Additionally, it has chapters on downstream data analysis using Bayesian and
frequentist statistical predictive modeling and classification techniques. Last but
not the least, there are chapters on specific examples of biomarker detection using
proteomics, metabolomics, and lipidomics data. We hope that this book will be
suitable for the scientists, practitioners, software developers, as well as advanced
students of statistics, computer science, computational biology, and biomedical
sciences.

Gainesville, FL, USA Susmita Datta
Leiden, The Netherlands Bart J.A. Mertens
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Transformation, Normalization, and Batch
Effect in the Analysis of Mass Spectrometry
Data for Omics Studies

Bart J.A. Mertens

1 Spectrometry and Data Transformation

There is a long-standing literature on the application of transformation in spectrom-
etry data, predating the advent of mass spectrometry. A good example may be found
in the literature on infrared (IR) and near-infrared (NIR) spectrometry. An excellent
recent introduction to statistical methods in this field was written by Naes et al. [13].
The log-transform has a special significance in traditional spectrometry. A crucial
component of the appeal of the log-transform in (near) infrared spectrometry is
due to Beer’s law (1852) [2], which states that absorbance of light in a medium is
logarithmically related to the concentration of the material through which the light
must pass before reaching the detector. In other words,

Absorbance D log

 
I0
I

!
D kLC;

where I0 is the incident intensity of the light and I the measured intensity after
passing through the medium, with C the concentration, L the path length the light
travels through, and k the absorption constant. Another way to put this is that relative
intensity is linearly related to concentration through the log-transform as

log
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2 B.J.A. Mertens

where the path length, initial intensity, and absorption constants are subsumed
in the parameters ˛; ˇ. Similar formulae exist for light reflection spectrometry.
The formula has been used to provide justification for the application of classical
linear regression procedures with log-transformed univariate spectrometric intensity
readings.

The above constitutes an argument in favor of the log-transform for spectrometry
data based on non-linearity of spectral response. It is partly responsible for causing
the early literature on statistical and chemometric approaches in the analysis of spec-
trometry data to be based on the log-transformed measures. Beer’s law applies only
to (univariate) IR or NIR spectrometric readings at a single wavelength. There is no
multivariate extension of the law to cover full spectra consisting of the spectrometric
readings across an entire wavelength range. Nevertheless, the log-transform would
also be routinely applied once truly multivariate spectrometry became available,
jointly recording the spectrometric response at several wavelengths, as shown in
Fig. 1 which plots 50 NIR reflectance spectra across the range 1100–2500nm.

Log-transforming was heavily embedded in the statistical spectrometry literature,
when modern laser-based mass spectrometry measurement became routinely avail-
able by the end of the twentieth century. Although Beer’s law does not apply to mass
spectrometry, the log-transform continues to be key to mass spectrometry-based

Fig. 1 Log infrared
reflectance measurements on
50 samples of mustard seeds
within the 1100–2500 nm
wavelength range
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omics data analysis. This is because the statistical reasons and rational behind the
log-transform are more enduring and powerful than the appeal to Beer’s law might
reveal. We discuss four distinct arguments in favor of the log-transform.

1.1 Scale and Order of Magnitude Effects

The first argument is associated with the objective of mass spectrometry to estimate
protein composition in complex mixtures consisting of large numbers of proteins
which may differ substantially both in the masses of the constituent proteins in the
mixture and in the abundances in which these are present. It is precisely because of
this objective that mass spectrometry has become a tool of choice in modern omics
research. Indeed modern mass spectrometric instruments are specifically engineered
to have the capability to measure protein concentrations across large ranges of
abundance, typically spanning several orders of magnitude—known as the so-called
dynamic range—and to simultaneously achieve this across a wide mass range.

Unfortunately, the spectrometry engineer’s delight then becomes the statistical
analyst’s nightmare as this property renders data which spreads across several orders
of magnitude in spectral response. A good example may be found in Fourier-
transform spectrometry, which can easily display variation across 5–6 orders of
magnitude. In extreme cases this may cause numeric overflow problems in analyses,
although use of modern professional statistical software may reduce this problem.
Taking logarithms removes the order of magnitude effects.

1.2 Skew and Influential Observations

A second issue related to the above is that spectral measures will tend to be
extremely skewed, not only within an individual (across the within-sample spectrum
responses), but also across samples or patients at a single m/z point. This may render
the data unsuitable for standard analyses such as linear discriminant or similar when
used on the original scale.

A related issue is that the skew may cause or be associated with a limited set of
highly influential observations. This is particularly troubling in omics applications,
as the spectra are typically very high-dimensional observations either when storing
the response on a large grid of m/z values which can easily range in the thousands,
or after reduction to an integrated peak list. Influential observations may affect the
robustness of conclusions reported, as results may differ substantially after removal
of a single—or isolated group of—spectra from the analysis. A good example may
be found in the calculation of a principal component decomposition as a dimension
reduction prior to application of some subsequent data-analytic procedure. Prin-
cipal component analysis is known to be sensitive to extreme observations [7],
particularly in high-dimensional applications with small sample size. The same
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phenomenon will, however, also tend to apply for other analysis approaches, such as
regression methods and discriminant procedures. Transformation to log-scale may
mitigate this problem.

1.3 Statistical Properties of Particle Counting

At some risk of oversimplification, mass spectrometers are in some sense nothing
else but sophisticated particle counters, repeating a particle counting operation at
each m/z position along the mass/charge range which is being investigated. As a
consequence, spectrometry measures tend to have statistical properties reminiscent
of those observed in Poisson (counting) processes. The variation of the spectral
response tends to be related to the magnitude of the signal itself. This implies
that multiplicative noise models are often a more faithfully description of the data.
Multiplicative error data are, however, more difficult to analyze using standard
software. Log-transforming can be used to bring the data closer to the additive error
scenario.

1.4 Intrinsic Standardization

An interesting property of log-transforming is that it may lead to intrinsic stan-
dardization of the spectral response. Imagine, for example, that we are interested
in calibrating the expected value E.Y/ of some outcome Y based on two spectral
responses X1 and X2 and that we have a study available recording both the observed
outcome and the two spectrometry measures across a collection of samples (such as
patients). Let us also assume that we can use some generalized linear model to link
the expected outcome to the spectrometry data via some link function f and that the
true model may be written in terms of a linear combination of the log-transformed
spectral measures

f .E.Y// D ˛ C log.X1/� log.X2/

which reduces to

f .E.Y// D ˛ C log

 
X1
X2

!
:

The result is that the linear dependence of the expected outcome via the link
function on the log-transformed data actually implies regression on the log-ratio
of the spectral responses X1 and X2, such that any multiplicative effect would
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cancel. This can be regarded as an implicit form of standardization through the log-
transform. It is a general property which can be used in many statistical approaches
such as (generalized) linear regression and discriminant analysis.

For spectrometry data generally and mass spectrometry particularly, generally
good advice would be to replace the raw measurements with log-transformed values
at an early stage of the analysis, by application of the transformation

log.Y C a/

with a a suitably chosen constant. See also [14] for comments about transformation
for mass spectrometry data and the log-transform in particular. Many statistical texts
will also mention the Box-Cox transform when discussing the log-transform. For
(mass) spectrometry data this approach is of limited value however, because the
optimal transform may lack the multiple justifications given above—which might
as well be used as a priori grounds for choosing the logarithm—but also because
the approach is by definition univariate, while a modern mass spectrometry reading
will consist of thousands of measures across m/z values and samples.

2 Normalization and Scaling

Normalization is an issue which is often encountered in omics data analyses, but
is somewhat resistant to a precise definition. We can identify what are usually
perceived as the main objectives of it and warn about the dangers associated with
the topic, so that we may avoid the most common pitfalls.

The objective of normalization can be loosely described as removing any
unwanted variation in the spectrometric signal which cannot be controlled for or
removed in any other way, such as by modifying the experiment, for example. This
sets it apart from batch effect, which we will discuss later. The latter can sometimes
be adjusted for or accommodated by changing the experiment so that its effects can
be either explicitly removed or adjusted for in subsequent analysis, by exploiting
the structure of the experimental design. Not all effects can be accounted for in this
manner, however.

Examples of such effects which may induce a need for normalization are
variations in the amount of material analyzed, such as ionization changes, e.g., small
changes in “spotting” sample material to plates, subtle fluctuations in temperature,
small changes in sample preparation prior to measurement, such as bead-based
processing to extract protein, differential sample degradation, sensor degradation,
and so forth. An important feature of such variation is that, while we may speculate
such variability sources are there and affect our experiment, they are difficult to
either control or predict, which typically means all we can do is try to post hoc
adjust for it, but prior to any subsequent analysis steps.

Important in devising an appropriate normalization strategy is that we should try
to remove or reduce these effects on the measured spectral data, while retaining the
relevant (biological) signal of interest. Unfortunately, this is typically problematic
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for spectrometry. This is because, as explained in the above paragraphs on trans-
formation, the spectrometric signal and its variability are typically linked, often
even after log-transform, while the unwanted sources of variation affect all measures
derived from the spectrum.

Imagine we have a study recording a mass spectrum on a dense grid of finely
spaced points along the mass range or alternatively storing the data as a sequence of
integrated peaks representing protein or peptide abundances and this for a collection
of samples (be it patients, animal, or other). We write the ordered sequence of
spectrometry measures for each ith sample unit as xi D .xi1; : : : ; xip/, with p the
number of grid points at which the spectrum is stored or the number of summary
peaks. A transformation choice favored by some analysts is to apply early on in
the analysis (possibly after first application of the log-transform) standardization to
unit standard deviation of all spectral measures at each grid point separately. In other
words, we replace the original data at each jth gridpoint with the measures xij=std.xj/

where std.xj/ is the standard deviation of the measures xj D .x1j; : : : ; xnj/
T across

all n samples at that gridpoint. This procedure, sometimes also referred to as
reduction to z-scores, is a form of scaling. It is identical to standardization to
unit standard deviation of predictor variables in regression analysis ([16, pp. 124–
125], [15, pp. 349, 357–358]) when predictor variables are measured at different
measurement scales (different units, such as kg, cm, and mg/l). Indeed, in the early
days of regression analysis, reporting standardized regression coefficients was an
early attempt at assessing relative importance of effects.

For spectrometry data generally and mass spectrometry in particular, standard-
ization is more complicated. Measurement units are by definition identical within
a spectrum across the mass range. This would counsel against transforming to
unit standard deviation as calibrated effects then remain directly comparable across
the mass range on the original untransformed scale. There are, however, stronger
arguments against this form of standardization in spectrometry. Figure 2 illustrates
the issues. The plot shows mean (MALDI-TOF) spectra from a clinical case–control
study, after suitable transformation. To ease comparison, we plot the negative
control spectrum versus the mean case spectrum. The rectangular region highlights
and enlarges a region between 1200 and 1900 Da where most of the discriminant
effects are found between the cases and control groups, based on a discriminant
analysis. Indicated are four key peaks at 1352.4, 1467.7, 1780, and 1867.2 Da which
together summarize most of the between-group contrast between cases and controls.
Figure 3 shows different statistics calculated on the same data within the same mass
range. The top plot again shows the mean spectra for cases and controls within the
1200–1900Da region as before, while the middle graph plots a graph of weighted
discriminant coefficients obtained from a linear discriminant model calibrated from
the data. It is obvious how the discriminant analysis identifies the peaks at 1354.2
and 1467.7 Da and contrasts these with the peaks at 1780 and 1867.2 Da. The below
graph in Fig. 3 shows the first two principal components calculated on the same data
and based on the pooled variance–covariance matrix.

There are several things to note in this picture. The first is how much the principal
component and mean spectra curves resemble one another. The first component



Transformation, Normalization, and Batch Effect in the Analysis of Mass. . . 7

1000 1500 2000 2500 3000 3500 4000 4500 5000
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

mass−to−charge value (Dalton)

sp
ec

tr
al

 in
te

ns
ity

cases group
control group

1867.2 D

1467.7 D
1352.4 D

1780 D
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curve shows the discriminant weights from a logistic regression model calibrated to distinguish
cases from controls with the same data



8 B.J.A. Mertens

closely approximates the mean control spectrum, while the second component does
the same for the mean cases spectrum. At first sight, this might seem all the more
remarkable, since the principal component decomposition is based on the pooled
variance–covariance matrix, and hence on the “residual spectra” xi � xg.i/, where
xg.i/ denotes the mean spectrum of group g.i/ to which the ith observation belongs,
with g D 1; 2 for the cases and control groups, respectively. So the figure shows
two different aspects of the data. One is the systematic (mean) spectral response
(top graphs), the other are the deviations relative to the mean spectral outcome
(bottom graphs). From the figure, we can see that the component decomposition
tells us that the peaks at 1352.4 and 1467.7 Da are highly correlated and account for
much of the variation in the spectral data, as they weigh heavily in the first principal
component. Similarly, the second component summarizes much of the expression
in both peaks at 1780 and 1867.2, which are again highly correlated. Because of
this, the classification might as well be summarized as a contrasting between the
first and second principal component, since this would contrast peaks 1352.4 and
1467.7 with the expression at peaks 1780 and 1867.2 (see Mertens et al. [11] for the
full analysis).

This feature of the data where the mean expression and deviations from the
mean are closely linked as shown in the above example is typical of spectrometric
variation. It is the consequence of the connection between mean expression and
variance we mentioned above when discussing the log-transform and can be
observed in almost all spectrometry data, often even after log-transforming. To put
this differently, in spectrometry data, we will find the signal where the variance is
(even if we correct the variance calculation for systematic differences in expression,
as shown in our above example). It is for this reason that transforming to unit
standardization should be avoided with spectrometry data, unless scale-invariant
methods are explicitly used to counter this problem.

In addition to the above considerations, there are also other arguments for
avoiding reduction to z-scores or transformation to unit standard deviation. An
important argument here is that summary measures such as means and standard
deviations are prone to outliers or influential observations, which can be a particular
problem in high-dimensional statistics and with spectrometry in particular. A
specific problem with such form of standardization is that it may cause problems
when comparing results between studies. This is because systematic differences
may be introduced between studies (or similarly, when executing separate analyses
between batches—see further), due to distinct outliers which affect the estimates of
the standard deviations for standardizing between repetitions of the experiment.

Our final comment on the above standardization approach is that medians and
inter-quartile ranges (IQR) are sometimes used instead of means and standard
deviations in an attempt to alleviate some of the robustness concerns. Other authors
advocate use of some function of the standard deviation, such as the square root of
the standard deviation instead of the standard deviation itself. This is sometimes
referred to as Pareto scaling [17]. The rational for this amendment is that it
upweights the median expressed features without excessively inflating the (spectral)
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baselines. An advantage of the approach may be that it does not completely remove
the scale information from the data. Nevertheless, the choice of the square root
would still appear to be an ad hoc decision in any practical data-analytic setting.

Some authors make a formal distinction between scaling and normalization
methods and consider the first as operations on each feature across the available
samples in the study [5]. Normalization is then specifically defined as manipulation
of the observed spectral data measurements on the same sample unit (or collection
of samples taken from the same individual) (within-spectrum or within-unit nor-
malization). A potential issue with the above-described approaches to normalization
via statistical transformation is that they are based on a borrowing of information
across samples within an experiment. Another extreme form of such borrowing
is a normalization approach which replaces the original set of spectral expression
measures for a specific sample with the sample spectrum measures divided by the
sample sum, such that the transformed set of measures adds to 1. An argument
sometimes used in favor of such transformation is that it would account for system-
atic differences in abundance—possibly caused by varying degrees of ionization
or similar effects from sample to sample—such that only the relative abundances
within a sample are interpretable. Although this approach is unfortunately common,
it has in fact no biological foundation [5]. Even if arguments based on either the
physics or chemical properties of the measurement methodology could be found,
these could not be used in favor of such data-analytic approach as described
above, which we shall refer to as “closure normalization.” The problem with the
approach is that it actually induces spurious—and large—biases in the correlations
between the spectral measures which mask the true population associations between
the compounds we wish to investigate. Figure 4 shows the effect of closure
normalization on uncorrelated normal data in three dimensions. The left plot shows
scatterplots between each of the three normally distributed measures. The right
shows scatterplots of the resulting transformed variables after closure normalization.
The absolute correlations between each variable pair has increased from 0 (for the
original uncorrelated data) to 0.5 (after transformation). This becomes particularly
problematic should the subsequent objective be to perform some form of network
or association analysis, in which case the prior closure normalization renders results
meaningless. Similarly problems would, however, also apply to regression and
discriminant analysis.

A variant of the above closure approach to normalization which is sometimes
also used is to adjust to the maximum peak observed in a spectrum, where the
maximum is either the spectrum-specific maximum, or the maximum at that spectral
location which corresponds to the maximum mean spectrum across several samples.
Adjustment is often carried out by dividing each spectrum by its maximum at the
maximum location, such that the spectral response gets a constant expression at
the maximum location in the transformed data. Just as for closure normalization,
this procedure appears appealing on intuitive grounds at first sight, but suffers
from similar problems, as the variation at the maximum induces severe correlations
across the spectral range in the transformed data, which cannot have biological
interpretation. Both approaches should be avoided.
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Data normalized by the sum of the combined expression (closure normalization)
can be viewed as an instance of compositional data [1]. Hence, instead of applying
such normalization, one could therefore think of using special-purpose methods
from the compositional data analysis literature, or to develop or adapt such
methods for application in omics applications. This has not been attempted to our
knowledge at the time of writing. As an alternative, it should be recommended
to take a conservative approach and refrain from excessive transformation when
the consequences are not well understood or accounted for in subsequent analysis.
In such cases restricting to log-transformation as discussed earlier is safer. In any
case, the original untransformed data should always be at hand and stored to allow
verification of results through possible sensitivity analysis.

The above is only an introduction to some of the main forms of normalization
in use at this time. Many other forms exist and will undoubtedly continue to
emerge. An interesting one worth mentioning is the idea of “lagging” the spectra
by taking differences between subsequent values within the spectral range. With
log-transformed spectrometric data, this is another approach which induces ratios
between subsequent spectral intensities which eliminate multiplicative change
effects. An example is found in an interesting paper by Krzanowski et al. [10].
It has the drawback that results from subsequent statistical analysis can be more
difficulty to interpret, but it might be of use in pure prediction problems. Other forms
of standardization and normalization are also found in the literature, particularly
methods which seem to inherit more from common approaches in microarray
analysis, such as quantile normalization [6]. Ranking of spectral response including
the extreme form of reducing to binary has also been investigated. The latter can be
particularly useful as a simple approach when data are subject to a lower detection
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limit [8]. Other forms of normalization and standardization worth mentioning at
time of writing are scatter correction and orthogonal signal correction. We refer to
Naes et al. [13] for a good introduction to these methods.

Which transformations should be applied first? What is a good order of applying
distinct normalization or transformation steps? There is some difference of opinion
between researchers on the precise sequence in which various normalization proce-
dures are applied to the data. As a general rule it seems wise to apply logarithms
early and calculate means and standard deviations only after log-transforming.

The issue of normalization is closely linked to the problem of standardization
of mass spectra. Several definitions of standardization may be possible here. One
option is to define the problem as “external” standardization, which would form
part of the experiment itself (as opposed to the post-experimental data processing
we describe before) where we somehow try to change the experiment so that part
of the systematic experimental variation is either prevented from occurring or could
be accounted for through post-processing of the data. Examples would be in the
use of spike-in controls, on a sample plate, or even within the sample material
itself, so that the spectral response can be adjusted for the expression of the known
spike-in material which is added. Another example would be in the use of technical
controls on a sample plate with known concentrations. Yet another example would
be systematic equipment re-calibration to re-produce a (set of) known standards,
so that sample-to-sample variation due to experimental drift is suppressed as much
as possible. All these approaches to standardization are different from the above
described methods in that they try to circumvent known sources of variation by
changing the experiment itself, rather than post hoc attempting to adjust for it.

3 Batch Effect in Omics Studies

A batch effect is a source of unwanted variation within an experiment which
is typically characterized by the property that the effect is due to a known
structure within the experiment. Usually the structure, and thus also the existence
of the associated effect, is known in advance of the experiment but cannot be
avoided or eliminated from the measurement process. Furthermore, the effect of the
experimental structure itself may not necessarily be predictable either, even when
knowledge of the structure exists. A typical example would be distinct target plates
which are used to collect sample materials prior to analysis in some mass analyzer.
However, we can sometimes manipulate or modify the experiment to account for
the known structure so that it is rendered innocuous and cannot unduly affect
conclusions. Even better, we may be able to remove (part of) the effects due to
batch structure, by taking suitable precautions at the experimental design stage.

In contrast to genetics, batch effect is much more problematic within proteomics
and metabolomics, which is due to the measurement procedures involved. It should
also be noted that batch effect and the accommodation of it are different from
standardization and normalization issues in that we need to identify its presence
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and consider its potential effects both before and after the experiment. Before the
experiment, because we may want to tweak or change the experimental structure
to take the presence of the batch effect into account (this may involve discussion
between both statistician and spectrometrist). The objective is to change the
experimental design so as to avoid confounding of the batch structure with the
effect or group structure of interest. After the experiment, because we may wish
to apply some data-analytic approach to remove the effect (which may depend on
the experiment having been properly designed in the first place). Accounting for
batch effect in proteomic studies will hence involve two key steps.

1. To control the experimental design as much as possible in advance of the
experiment to maximize our options to either remove or account for batch effect
at the analysis stage.

2. To exploit the chosen structure afterwards to either remove or adjust for the batch
variation in the analysis.

The objectives of these steps are at least threefold.

1. To ensure experimental validity (the experiment can deliver the required results)
2. To improve robustness of the experiment (conclusions will still be valid, even

when experimental execution differs from experimental planning)
3. To improve (statistical) efficiency of effect estimates based on the data (statistical

summaries will have lower variation).

In the following discussion on batch effect we will make a distinction between the
following two types of batch effect which may occur in practical experimentation.
The first are time-fixed batch effects. Examples of these are

• plates in mass spectrometry
• freezer used for sample storage
• change of cleaning or work-up fluid for sample processing
• batches of beads or cartridges for protein fractionation
• instrument re-calibration.

In contrast, time-dependent batch effects are due to experimental structures
associated with time. Examples of these are found in the following situations:

• longitudinal experimentation, long observation tracks with repeated measure-
ment per individual

• sample collection across extended time periods, patient accrual spread across an
extended period of time

• time-indexed samples or instrument calibrations
• distinct days of measurement or sample processing.

Both types of batch effects may occur in proteomic experiments, but for different
reasons and with distinct consequences. The treatment of both types of batch effect
will also be different between the two.
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Fig. 5 Batch effect in a case–control study using six target plates. The vertical lines in the left-side
plots indicate transition to a new plate (batch). The distinct colors in the scatter plot represent the
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3.1 Time-Fixed Batch Effects

We consider a case–control study as an example. The experiment contrasted
175 cases with 242 healthy controls. Due to the large sample size and multiple
replicate measurements per sample, sample material needed to be assigned to six
target plates prior to mass spectrometric measurement. The plates constitute a
systematic—batch—structure within the experiment. On inspecting within-sample
medians and inter-quartile ranges (IQR), systematic plate-to-plate differences were
noted, shown in Fig. 5. Analysis of the data using a discriminant approach led to
correct classification of 97 % of samples. Unfortunately, on closer investigation
of the experimental design, it turned out that all case material had been assigned
sequentially to the first three plates, after which the controls samples were thawed
next and assigned to the subsequent plates. It is not possible to statistically adjust
for such perfect confounding between the plate structure and the potential between-
group effect which was the primary target of the research study. After discussion,
the study was abandoned, leading to significant loss of both experimentation time
and resources, among which the valuable sample materials.

A simple procedure exists to prevent such problems, called blocked randomiza-
tion. It consists of assigning cases and controls in equal proportions and at random
across the distinct plates. Table 1 shows such a design for a case–control study
randomizing cancer cases and healthy controls to three target plates, as reported
by Mertens et. al. [11], which gives more details about the study. In addition to
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Table 1 Block-randomized case–control study in a study using three plates

Plates

Disease group 1 2 3 Total number

Number of controls 17 17 16 50

Number of cases 22 22 19 63

Disease stage 1 2 3 4 1 2 3 4 1 2 3 4

Cases 4 10 4 4 4 10 4 4 3 8 4 4

Table 2 Case–control study
assigning samples to 34 plates
as they became available

ca co ca co ca co ca co

4 0 1 3 0 15 1 6

3 0 0 9 1 0 1 9

11 0 4 0 3 0 0 7

5 0 1 0 0 4 0 4

12 0 1 0 1 0

21 40 1 0 0 5

1 3 2 0 1 9

2 0 0 4 2 8

16 13 0 3 0 4

0 15 0 16 2 14

The assignment order is from top-to-bottom, left-to-right

randomizing the cases and controls in roughly equal proportions across the plates,
the study also tried to have cancer stages in roughly equal distributions from plate-
to-plate. A recent overview of classical principles of statistical design for proteomics
research can be found in a paper by Cairns [3] and the references therein.

Another example is a glycomics study which assigned cases and controls to
target plates sequentially as the samples became available. By the end of the
study period, 288 samples had become available, of which 97 were cases and
191 controls. The case–control assignment to plates is shown in Table 2. As can
be seen, case–control assignment is perfectly confounded with the plate effect
for 25 out of 34 experimental batches, which makes these measurements useless
for between-group comparison. Note also how only two plates indicated in red
typescript contain appreciable numbers of both cases and controls. After analysis
of the data, it was found that the estimate of the batch effect (std) substantially
exceeded the measurement error estimate (std). No clear evidence of differential
expression of glycans between groups emerged, though it could be hypothesized
that any differences might be small and at least smaller than the observed between-
batch variation. This raised questions whether the “design” was to blame for the
failure of the study to identify differential expression.

To investigate the consequences of using a “design” as used in the above
glycomics study, we investigate a simulation study which contrasts several potential
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alternative designs. For each of these four designs we assume the same sample size
of 288 samples with 97 cases and 191 controls, just as for the original study. We
consider the following alternative scenarios:

1. Experiment 1 is a hypothetical experiment which is able to use only one plate
(no plate effects present).

2. Experiment 2 is a randomized blocked version of the original experiment which
uses three plates and distributes the cases and controls in approximately balanced
ratios of 32/65, 32/63, and 33/63 to the first, second, and third plate, respectively.

3. Experiment 3 is a perfectly confounded experiment which again uses three plates,
but assigns all 97 cases to the first plate and assigns 95 and 96 controls to the other
two plates, respectively.

4. The last experiment uses the original glycomics experiment distribution of cases
and controls to 34 plates, as shown above in Table 2.

We now simulate experimental data for each of the above four scenarios, generating
effect sizes ranging from 0 to 1.5 for a single glycan (univariate simulation) and
assuming between-batch effects with standard deviations �B taking values 3.6, 1.8,
0.9, and 0.45. The standard deviation of the error �E takes the value 1.8 throughout
(these numbers inspired by results from the real data analysis).

In the analysis of the simulated data for the above experiments, we fit linear
mixed effect models [12] to the simulated data of experiments 2, 3, and 4. The mixed
effect models correct for the known batch structure using a random effect while
estimating the between-group effect with a fixed effect term. For the first simulated
experiment a simple linear regression model is used, which is equivalent to a two-
sample pooled t-testing approach. Figures 6, 7, 8, 9, and 10 show the probabilities
to detect the between-group effect (power) across the effect size range simulated
and for the standard deviations of the batch effect indicated. As expected, we find
that the probability to detect the effect increases as the effect size grows for the
single-plate experiment [1]. The blocked experiment [3] matches the power of the
single-plate experiment regardless of the size of the batch random effect. The power
of the actually implemented glycomics experiment [4] depends on the size of the
batch effect. As the batch effect gets smaller (associated std goes to zero) then we
can eventually ignore the batch effect altogether and we obtain the same powers
as if the batch effect was not present. This is of course a confirmation of what we
would expect to find. If the batch effect is substantial however (associated std is large
relative to the size of the between-group effect), then we pay a penalty in terms
of seriously reduced powers of detecting the between-group effect. The perfectly
confounded experiment [3] performs dramatically whatever the batch effect is, since
we are forced to account for a known batch structure—irrespective of the true but
unknown population batch effect—and thus loose all power of detecting the effect of
interest. The excellent performance of the blocked version of the experiment again
emphasizes the need and importance of pro-actively designing and implementing
block-randomized experiments when batch structures are identified in advance of
the experimentation.
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3.2 Time-Dependent Batch Effects

Longitudinal experimentation with spectrometry-based omics is still in its infancy,
but we should expect this area to mature. Experience with the analysis of such data
must still develop. The same applies to pre-processing and methods for dealing with
batch effects. We can, however, already point to some aspects which are likely to
become a key concern in future applications for which omic science and technology
will have to provide credible answers. A key aspect which is liable to be an issue in
many omic studies is illustrated in Fig. 11. The figure displays a study design where
samples are collected dispersed over time and kept in storage until a decision is taken
to extract sample material and analyze the samples using some form of spectrometry
at a common point in time. Patients themselves are followed up until end of the
study—up to which point some outcome measure may be continually recorded
during the follow-up—or some pre-defined endpoint (such as cancer occurrence
or recurrence or similar outcome) prior to the study termination. A common and
relatively simple form of such a design which is often used in clinical research could,
for example, be a survival study [4, 9] with the so-called administrative censoring as
depicted in Fig. 11, where end of the study represents the censoring time. The issues
discussed in this section are, however, completely general to longitudinal study with
staggered patient entry and not restricted to study with a specific (survival) outcome.
The key issue is that such study designs are likely to suffer from potential ageing
of the sample material, prior to spectrometric measurement, such that sample age
and duration to observation of the outcome become confounded. This problem may
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Fig. 11 Longitudinal omic study design with sampling-time confounded with follow-up

severely complicate future longitudinal studies. This point does not always seem to
be realized in the present literature. This is probably also part due to the fact that
genomic or gene expression data, as discussed before, is likely not to be affected
by the same problem as would be the case for the more modern spectrometry-based
omics data, as in proteomics, for example. An excellent text describing modern
survival analysis methodology in novel high-dimensional data applications was
recently provided by van Houwelingen and Putter [18, Part IV—Chaps. 11 and 12].

It is at time of writing not clear how this issue should be addressed in design
and analysis of longitudinal and survival studies with spectrometry-based omic data
generally. The problem is particularly important because it could affect all existing
biobanks. One could propose that instead of—or in addition to—the development
of biobanks which store sample materials, attention should be given to establishing
databanks of (omic) spectra, which are measured at pre-specified and regular time
points instead. Such an approach could break the confounding between the follow-
up time of patients which is then de-coupled from the measurement times. The
problem with the latter proposal is that the measurement devices (spectrometers)
themselves may exhibit ageing, such that the ageing problem is replaced with a
spectrometer calibration problem.

4 Discussion

We have critically discussed and contrasted the distinct issues of transformation,
normalization, and management of batch effect in the analysis of omic data.
Transformation, standardization, and normalization are typically dealt with “after”
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the experiment and usually by the data analyst or statistician involved. Batch effect
and the presence thereof is an issue that should be considered both “before” and
“after” the data-generating experiment. The objectives here should be to optimize
the design for known batch effect such that these cannot unduly affect conclusions
or invalidate the experiment. This task is usually carried out in collaboration and
prior discussion between both statistician and spectrometrist when planning the
experiment. Secondly, appropriate methods should be used after the experiment to
either eliminate or otherwise accommodate the batch effect after the experiment
when analyzing the data. The latter task will usually be carried out by the statistician
solely. Discussion of such methods falls outside the scope of this chapter.

Methodological choice in pre-processing of spectrometry data should in practice
depend on many aspects. Purpose of the study is a key consideration. If prediction
or diagnostic models are to be calibrated, then pre-processing methods which
can be applied “within-sample” without borrowing of information across distinct
samples are more attractive because this can make subsequent calibration of any
predictive rule easier. Other considerations may be ease of communication of
results, established practice (insofar it is reasonable of course), variance stabiliza-
tion, interpretability, and so forth. Our discussion has not been comprehensive but
highlighted the main ideas and approaches instead, pointing to common pitfalls,
opportunities, and future problems left to be solved.
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Automated Alignment of Mass Spectrometry
Data Using Functional Geometry

Anuj Srivastava

1 Introduction

The use of mass spectrometry data in profiling metabolites present in a specimen is
important in biomarker discovery, enzyme substrate assignment, drug development,
and many other applications. Liquid chromatography-mass spectrometry (LC-MS)
is a common data collection technique in this area and it provides information about
retention times of different metabolites. These metabolites are identified by peaks
(high y values) in observed chromatograms at the corresponding retention times
(x axis). As stated in [17], it is difficult to reproduce run-to-run retention times across
experiments/observations due to instrument instability. Different measurements can
exhibit variability in peak locations when observing the exact same specimen.
In liquid chromatography, the common causes of such shifts in peak locations
are changes in column separation temperature, mobile phase composition, mobile
phase flow rate, stationary phase age, etc. We illustrate this issue using an example
taken from [7] involving proteomics data collected for patients having therapeutic
treatments for Acute Myeloid Leukemia. This example studied earlier in [16] and
shown here in Fig. 1 displays two chromatograms in blue and red, representing
the same chemical specimen. Despite having the same chemical contents, the
chromatograms show differences in peaks locations throughout the domain. Due
to these shifts, a simple comparison of chromatograms using standard norms will
result in unusually high differences despite representing the same material. Thus,
any analysis of such data is faced with the challenge of random nonlinear shifts
in the peaks, that needs to be reconciled before drawing statistical inferences.
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Fig. 1 Example of LC-MS data samples from a proteomics study. Taken from [16]

Consequently, an important goal in LC-MS data analysis is to align peaks in a
principled way using some form of nonlinear time-warping.

The literature contains several ideas for handling the nonlinear alignment
problem although they are neither fully automatic or nor completely successful
in the alignment task. One prominent approach is to find dominant (taller) peaks
across chromatograms, match them in a certain way, and then estimate warpings
that facilitate that matching. However, the problems of detecting and matching
prominent peaks are not straightforward themselves. They are often subjective and
require human inputs. Wong et al. [18] developed a peak detection and alignment
method that is based exactly on this idea. Bloemberg et al. [2] provide a survey of
some current techniques in warping- based alignment of chromatograms, including
some computer programs associated with these techniques. Several authors have
also developed online tools for spectral alignment, see, e.g., [18]. A statistical
approach for spectral alignment and modeling, using a Gaussian mixture model,
is presented in [3].

In this paper, we present a fully automated method for alignment of chro-
matograms, by considering them as functional data and using the nonlinear time-
warping of their domains for matching peak locations. The problem of functional
data alignment has been studied by several authors, including [4, 6, 9, 14]. In our
approach, the actual alignment becomes an optimization problem with a novel
objective function which, in turn, is derived using ideas from functional information
geometry. Any two chromatograms are aligned by minimizing a distance between
them; this distance can be seen as an extension of the classical nonparametric
Fisher-Rao distance, derived originally for comparing probability density functions,
to more general class of functions. Although this distance has nice theoretical
properties (invariance to time-warping, etc.), it is too complex to be useful in
practical algorithms, especially for processing high-throughput data. This issue
is resolved using a change of variable, i.e., replacing the original functions by
their square-root slope functions (SRSFs) so that the required distance becomes
simply the L

2 norm between their SRSFs. Now, returning to the alignment of
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several chromatograms, the basic idea is to derive a mean of the given functions
(SRSFs of chromatograms) and to align the individual SRSFs to this mean. This
procedure is iterative as the mean itself is updated using the aligned SRSFs. Upon
convergence, we obtain aligned SRSFs that can then be mapped back to aligned
chromatograms using the inverse maps. This last step relies on the fact that the SRSF
representation is invertible up to a constant. This framework, termed the extended
Fisher-Rao framework, is a fully automated procedure and does not require any
peak detection or matching. Instead, it utilizes the aforementioned metric (extended
Fisher-Rao) and a corresponding representation (SRSF) to formulate alignment as
an optimization problem.

The rest of this paper is as follows. We briefly describe the main mathematical
challenges in solving the alignment problem and highlight the limitations of a
commonly used approach based on the L

2 norm. In Sect. 3, we lay out our
mathematical framework, leading up to the presentation of the automated alignment
algorithm. This is followed by experimental results on a number of simulated and
real LC-MS datasets in Sect. 4, and the paper ends with a short conclusion in Sect. 5.

2 Fundamental Issues in Functional Alignment

As mentioned above, we view the observed chromatograms as real-valued functions
on a fixed interval. Without any loss of generality, we will use Œ0; 1� as domain
of these functions. Let F momentarily denote the relevant set of real-valued
functions on Œ0; 1� although the precise definition of F comes later when we present
more details. An important problem in statistical analysis of functional data (and
specifically in LC-MS data analysis) is the alignment of functions using domain
warping. The broad goal of an alignment process is to warp the retention-time
(or parameter) axis in such a way that their peaks and valleys are better aligned.
This alignment problem has also been referred to as the separation of phase and
amplitude [10], or the registration [6], or the correspondence of functions in the
given data.

Towards this goal, we need to specify the set of valid warping functions. We
will use the set of positive diffeomorphisms of Œ0; 1� as the set of allowed time-
warping function; we will denote it by � . It is important to note that � is a group
with composition as the binary operation. For any two elements �1; �2 2 � , their
composition �1 ı�2 2 � . The identity function �id.t/ D t forms the identity element
of � and, finally for every � 2 � , there exists an inverse element ��1 2 � such that
� ı ��1 D �id.

In this context, we can pose two kinds of registration problems:

1. Pairwise Alignment Problem: Given any two functions f1 and f2 in F , we define
their pairwise alignment or registration to be the problem of finding a warping
function � such that a certain energy term EŒf1; f2 ı �� is minimized. Figure 2
shows an example of this idea where f2 is time-warped to align it with f1.
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Fig. 2 Illustration of pairwise alignment

2. Groupwise or Multiple Alignment: In this case we are given a set of functions
ffi 2 F ji D 1; 2; : : : ; ng. The problem of finding a set of warping functions
f�iji D 1; 2; : : : ; ng such that, for any t 2 Œ0; 1�, the values fi.�i.t// are said to be
registered with each other, is termed the problem of joint or multiple alignment.
Figure 3 shows an example of this idea where the given functions ffig (left panel)
are aligned (middle panel) using the warping functions shown in the right panel.

We will start by considering the pairwise alignment problem and then later extend
that solution to address multiple alignment.

The main question in solving pairwise registration is: What should be the
optimization criterion E? In other words, what is a mathematical definition of a good
registration? Visually one can evaluate an alignment by comparing the locations of
peaks and valleys, but how should one do it in a formal, quantifiable and, most
importantly, automated way. Before we present our solution, we look at one of
the most popular ways of registering functional data in the current literature and
highlight its limitations.
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Fig. 3 Illustration of multiple function alignment

2.1 Problems in Using L
2-Norm for Pairwise Registration

When searching for an objective function that measures alignment between f1 and
f2 ı � , a natural quantity that comes to mind is the L2 norm of their difference. That
is, we can define the optimal warping function to be:

�� D arg inf
�2� kf1 � f2 ı �k2 : (1)

It is well known that this formulation is problematic, as it leads to a phenomena
called the pinching effect [10]. What happens is that in matching of f1 and f2 one
can squeeze or pinch a large part of f2 and make this cost function arbitrarily
close to zero. An illustration of this problem is presented in Fig. 4 using a simple
example. Here a part of f2 is identical to f1 over Œ0; 0:6� and is completely different
over the remaining domain Œ0:6; 1�. Since f1 is essentially zero and f2 is strictly
positive in Œ0:6; 1�, there is no warping that can match f1 with f2 over that subinterval.
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Fig. 4 Illustration of the pinching effect. The top row shows a degenerate analytical solution to
matching under L2 norm for functions. The bottom row shows the corresponding warping function

The optimal solution is, therefore, to decimate that part of f2 by using the following
��: it coincides with �id over Œ0; 0:6�, climbs rapidly to 1 � � around 0:6, and then
goes slowly from 1 � � to 1 over the interval Œ0:6; 1�. It is easy to check that in the
limit:

lim
�!0

kf1 � f2 ı ��k D 0 :

The top-right panel of Fig. 4 shows the limiting case where f1 and f2 ı �0 are
identical. In the bottom row, we provide results from a numerical procedure for
this optimization problem. Sometimes, in practice, we restrict � to have positive
bounded slope and do not obtain the same result as the theoretical limit. However,
one can still see the pinching effect in numerical implementations.

To avoid the pinching problem, one frequently imposes an additional term to the
optimization cost, a term that penalizes the roughness of � . This term, also called a
regularization term, results in the registration problem of the type:
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�� D arg inf
�2�

�kf1 � f2 ı �k2 C �R.�/
�
; (2)

where R.�/ is the regularization term, e.g., R.�/ D R R�.t/2dt and � > 0

is a constant. While this solution avoids pinching, it has several other problems
including the fact it does not satisfy inverse symmetry. That is, the registration of f1
to f2 may lead to a completely different result than that of f2 to f1. We illustrate this
using an example.

Example 1. As a simple example, let f1.t/ D t and f2.t/ D 1 C .t � 0:5/2. In this
case, for the minimization problem �12 D min�2� kf2� f1 ı�k2, the optimal solution
is as follows. Define a warping function that climbs quickly (linearly) from 0 to 1��
on the interval Œ0; �� and then climbs slowly (also linearly) from 1 � � to 1 in the
remaining interval Œ�; 1�. The limiting function, when � ! 0, results in the optimal
� for this case.

For the inverse problem, �21 D min�2� kf1 � f2 ı �k2, the optimal warping is
the following. Define a warping function that rises quickly from 0 to 0:5 � � in the
interval Œ0; ��, climbs slowly from 0:5 � � to 0:5 C � in the interval Œ�; 1 � ��, and
finally climbs quickly from 0:5C� to 1 in the interval Œ1��; 1�. The optimal solution
is obtained when � ! 0. A numerical implementation of these two solutions,
based on the dynamic programming algorithm [1], are shown in Fig. 5. Since this
implementation allows only a limited number of possible slopes for optimal � , the
results are not as accurate as the analytical solution. Still, it is clear to see a large
difference in the solutions for the two cases.

2.2 Desired Properties in Alignment Framework

In view of these limitations of the popular L
2-norm-based framework, we first

enumerate a set of basic properties that any (alignment) objective function E should
satisfy. Actually, only the first one is a fundamental property, the remaining two are
simple consequences of the first one (and some additional structure). Still, we list
all three of them to highlight different aspects of the registration problem.

1. Invariance to Simultaneous Warping: We start by noting that an identical
warping of any two functions preserves their registration. That is, for any � 2 �
and f1; f2 2 F , the function pair .f1; f2/ has the same registration as the pair
.f1ı�; f2ı�/. What we mean by that is the application of � has not disturbed their
point-to-point correspondence. This is easy to see since � is a diffeomorphism.
The two height values across the functions that were matched, say f1.t0/ and
f2.t0/, for a parameter value t0, remain matched. They are now labeled f1.�.t0//
and f2.�.t0//, and the parameter value has changed to �.t0/, but they still have
the same parameter and, thus, are still matched to each other. This is illustrated
using an example in Fig. 6 where the left panel shows a pair f1 and f2. Note that
the two functions are nicely registered since their peaks and valleys are perfectly
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Fig. 6 Identical warping of f1, f2 by � preserves their registration

aligned. If we apply the warping function shown in the top right panel to both
their domains, we get the functions shown in the bottom. The peaks and valleys,
and in fact all the points, have the same matching as before. This motivates
the following invariance property of E. Since E is expected to be a measure of
registration of two functions, it should remain unchanged if the two functions are
warped identically. That is, for all f1; f2 2 F :

Invariance Property W EŒf1; f2� D EŒf1 ı �; f2 ı ��; for all � 2 � : (3)

2. Effect of Random Warpings: Suppose we have found the optimal warping
function �� 2 � , defined by
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�� D argmin
�2�

EŒf1; f2 ı �� :

Once this �� is found, the resulting matched height values are f1.t/ and f2.��.t//,
for all t. Now, let us suppose that we warp f1 and f2 by random functions, say �1
and �2. What is the optimal correspondence between these new functions? It will
be given by

Q�� D argmin
�2�

EŒf1 ı �1; .f2 ı �2/ ı �� D argmin
�2�

EŒf1; f2 ı .�2 ı � ı ��1
1 /�;

where the last equality follows from the above invariance property. The last two
equations immediately imply that �� D �2 ı Q�� ı ��1

1 , or Q�� D ��1
2 ı �� ı �1.

More interestingly, the optimal registration of functions and the minimum value
of E remains unchanged despite the presence of random �1 and �2, i.e.,

min
�2� EŒf1; f2 ı �� D min

�2� EŒf1 ı �1; .f2 ı �2/ ı �� :

This important equality intimately depends on the invariance property [Eq. (3)]
and the group structure of � . Without the invariance property one can expect
the results of registration to be highly dependent on �1 and �2. For instance, this
undesirable situation will occur if we use the L2 metric between the functions to
define E.

3. Inverse Symmetry: We know that registration is a symmetric property. That is,
if f1 is registered to f2, then f2 is also registered to f1. Similarly, if f1 is optimally
registered to f2ı� , then f2 is optimally registered to f1ı��1. Therefore, the choice
of E should be such that this symmetry is preserved. That is,

�� D argmin
�2�

EŒf1; f2 ı �� ) ���1 D argmin
�2�

EŒf1 ı �; f2� :

This symmetry property has also been termed as inverse consistency. If the
invariance property holds, then this inverse symmetry follows immediately from
the group structure of � .

In addition to registering any two functions, it is often important to compare them
and to quantify their differences. For this, we need a proper distance function, to be
able to compare f1 and f2 ı ��, where �� is the optimal warping of f2 that registers
it with f1. One can always choose an unrelated distance function on the space, e.g.,
the L

2 norm, that measures differences in the registered functions f1 and f2 ı ��.
However, this makes the process of registration an unrelated pre-processing step for
the eventual comparison. Ideally, we would like to jointly solve these two problems,
under a unified metric. Therefore, it will be useful if the quantity inf�2� EŒf1; f2 ı ��
is also a proper distance in some sense. That is, in addition to symmetry, it also
satisfies non-negativity and the triangle inequality. The sense in which we want it to
be a distance is that the result does not change if we randomly warp the individual
functions in arbitrary ways.
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3 Extended Fisher-Rao Approach

In order to reach a cost function E that avoids the pinching effect, satisfies the
invariance property and, as a consequence, allows inverse symmetry and invariance
of E to random warping, we introduce a new mathematical representation for
functions.

3.1 Mathematical Background

Our general framework for alignment of chromatograms is adapted from ideas
in shape analysis of curves [5, 12] and is described more comprehensively in
[8, 13, 15]. For a broader introduction to this theory, including asymptotic results
and identifiability results, we refer the reader to these papers.

Starting fresh, this time we are going to restrict to those f that are absolutely
continuous on Œ0; 1�; let F denote the set of all such functions. The new repre-
sentation of functions is based on the following transformation. Define a mapping:
Q W R ! R according to:

Q.x/ �
�

sign.x/
pjxj; x ¤ 0

0; x D 0
: (4)

Note that Q is a continuous map. For the purpose of studying the function f , we will
represent it using the SRSF defined as follows:

Definition 1 (SRSF Representation of Functions). Define the SRSF of f to be
the function q W Œ0; 1� ! R, where

q.t/ � Q.Pf .t// D sign.Pf .t//
q

jPf .t/j :

This representation includes those functions whose parameterization can become
singular in the analysis. In other words, if Pf .t/ D 0 at some point, it does not
cause any problem in the definition of q.t/. It can be shown that if the function f
is absolutely continuous, then the resulting SRSF is square integrable [11]. Thus,
we will define L

2.Œ0; 1�;R/ (or simply L
2) to be the set of all SRSFs. For every

q 2 L
2 there exists a function f (unique up to a constant) such that the given q is the

SRSF of that f . In fact, this function can be obtained precisely using the equation:
f .t/ D f .0/C R t

0
q.s/jq.s/jds. Thus, the representation f , .f .0/; q/ is invertible.

The next question is: If a function is warped, then how does its SRSF change?
For an f 2 F and � 2 � , let q be the SRSF of f . Then, what is the SRSF of f ı �?
This can simply be derived as:
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Qq.t/ D Q

�
d

dt
.f ı �/.t/

�
D sign

�
d

dt
.f ı �/.t/

�r
j d

dt
.f ı �/.t/j D q.�.t//

p P�.t/ :

In more mathematical terms, this denotes an action of group � on L
2 from the right

side: L2 � � ! L
2, given by .q; �/ D .q ı �/p P� . One can show that this action of

� on L
2 is compatible with its action on F given earlier, in the following sense:

f
SRSF�! q

action on F # # action on L
2

f ı � SRSF�! .q ı �/p P�

We can apply the group action and compute SRSF in any order, and the result
remains the same. The most important advantage of using SRSFs in functional data
analysis comes from the following result. Recall that the L

2 inner-product is given
by: hv1; v2i D R 1

0 v1.t/v2.t/ dt.

Lemma 1. The mapping L
2 � � ! L

2 given by .q; �/ D .q ı �/p P� forms an
action of � on L

2 by isometries.

Proof. That the mapping is a group action has been mentioned earlier. The proof of
isometry is an easy application of integration by substitution. For any v1; v2 2 L

2,

h.v1; �/; .v2; �/i D
Z 1

0

v1.�.t//
p

P�.t/v2.�.t//
p

P�.t/dt

D
Z 1

0

v1.�.t//v2.�.t// P�.t/dt D
Z 1

0

v1.s/v2.s/ds D hv1; v2i :

�
This lemma ensures that any framework based on this SRSF andL2 norm will satisfy
the invariance property listed in the previous section.

It is well known that the geodesics in L
2, under the L

2 Riemannian metric, are
straight lines and the geodesic distance between any two elements q1; q2 2 L

2 is
given by kq1 � q2k. Since the action of � on L

2 is by isometries, the following
result is automatic. Still, for the sake of completeness, we provide a short proof.

Lemma 2. For any two SRSFs q1; q2 2 L
2 and � 2 � , we have that k.q1; �/ �

.q2; �/k D kq1 � q2k.

Proof. For an arbitrary element � 2 � , and q1; q2 2 L
2, we have

k.q1; �/� .q2; �/k2 D
Z 1

0

.q1.�.t//
p P�.t/ � q2.�.t//

p P�.t//2dt

D
Z 1

0

.q1.�.t// � q2.�.t///
2 P�.t/dt D kq1 � q2k2 : �

An interesting corollary of this lemma is the following.
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Corollary 1. For any q 2 L
2 and � 2 � , we have kqk D k.q; �/k.

This implies that the action of � on L
2 is actually a norm-preserving transformation.

Conceptually, it can be equated with the rotation of vectors in Euclidean spaces. Due
to the norm-preserving nature of warping in this representation, the pinching effect
is completely avoided.

3.2 Pairwise Alignment Procedure

With this mathematical foundation, the pairwise alignment of chromatograms can be
accomplished as follows. Let f1, f2 by functional forms of the two given spectra and
let q1, q2 be the corresponding SRSFs. Then, the optimization problem is given by:

inf
�2� kq1 � .q2; �/k2 D inf

�2� kq2 � .q1; �/k2 : (5)

This minimization is performed in practice using a numerical approach called the
dynamic programming algorithm [1]. We have already mentioned (in Lemma 2)
that the use of SRSFs and L

2 norm satisfies the invariance property from Sect. 2.2.
We now show that the remaining two properties—effect of random warpings and
inverse symmetry—are also satisfied. Using Lemma 2 and the group structure of �
one can show that if �� is a minimizer on the left side of Eq. (5), then .��/�1 is a
minimizer on the right side! Furthermore, using the same tools one can show that:

inf
�2� kq1 � .q2; �/k D inf

�2� k.q1; �1/ � ..q2; �2/; �/k ;

for any �1; �2 2 � .
Figure 7 shows some results from using this alignment framework using some

simple LC-MS chromatograms. In each of the four examples shown there, the left
panel shows the original chromatograms f1, f2, the middle panel shows the aligned
chromatograms f1, f2 ı ��, and the last panel shows the optimal warping function
��. In the first row, the level of misalignment is relatively small, and a small
warping is able to align the peaks. However, as we go down this figure, the level
of misalignment increases and it takes an increasing amount of warping to align the
peaks. This increasing warping is visible in the corresponding warping functions
in terms of their deviations from �id, the 45ı line. Noticeably, the algorithm is
quite successful in alignment of peaks for all these datasets. Furthermore, it is fully
automatic and requires no parameter tuning or any kind of manual intervention.
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Fig. 7 Pairwise alignment of LC-MS spectra using optimization given in Eq. (5). In each row we
display the original and the aligned chromatograms, along with the optimal warping functions

3.3 Multiple Alignment Algorithm

With the ability to align chromatograms in a pairwise fashion, we now extend this
idea to simultaneous alignment of multiple chromatograms. We will use a template-
based approach, where we iteratively define a template chromatogram and align
the given chromatograms to this template in a pairwise manner [using Eq. (5)]. The
template is created by taking an average of the aligned chromatograms in the SRSF
space, at each iteration. The full alignment algorithm is as follows:

Algorithm 1 (Alignment of Multiple Chromatograms). Given a set of chro-
matograms in functional form f1; f2; : : : fn on Œ0; 1�, let q1; q2; : : : ; qn denote their
SRSFs, respectively.

1. Initialize Qqi D qi for i D 1; 2; : : : ; n.
2. Compute their mean according to 	 D 1

n

Pn
iD1 Qqi.

3. For i D 1; 2; : : : ; n, find ��
i by solving:
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Fig. 8 Alignment of simulated chromatograms using Algorithm 1. In each row we see the original
functions, the aligned functions, and the corresponding warping functions

��
i D arginf

�2�
k	 � .qi; �/k2 :

This minimization is approximated using the dynamic programming algorithm.
4. Compute the aligned SRSFs Qqi D .qi; �

�
i / and aligned functions Qfi D fi ı ��

i .
5. Check for convergence. If not converged, go to Step 2.
6. Return the template	, the warping functions f��

i g, and the aligned functions fQfig.

We show some illustrations of this example using simulated data in Fig. 8. In this
experiment, we simulate chromatograms as superpositions of Gaussian probability
density functions with random shifts in heights and locations. Each chromatogram is
made up of either two (top row), three (middle row), or four (bottom row) Gaussian
probability density functions, and we use 20 such chromatograms in each case.
Additionally, we corrupt these chromatograms by adding white Gaussian noise at
each time t. As can be seen in the middle panels, the algorithm is quite successful in
finding and aligning the corresponding peaks across chromatograms. In the process,
the algorithm discovers non-trivial, nonlinear warping functions that are required
for alignments. We reemphasize that this algorithm is fully automated and does not
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require any manual input, nor does it involve any parameter tuning for superior
performance. Interestingly, it not only does a good job in aligning major (taller)
peaks but it also aligns smaller peaks that can be attributed mainly to noise.

4 Experimental Results on Real Data

In this section we present some alignment results on several LC-MS datasets taken
from various sources.

1. As the first result, we utilize the proteomics dataset introduced by Koch et al. [7].
As described there, protein profiling can be used to study changes in protein
expression in reference to therapeutic treatments for diseases, and this data
involves protein profiles of patients with Acute Myeloid Leukemia. The original
data with markers corresponding to the key peaks in the data is presented in
Fig. 9 (left panel). An interesting part about this dataset is that it comes with
an expert-labeling that provides a unique number to each of the major peaks.
This numbering, from 1 to 14 for each spectrum, is used only to study the
alignment but are not used in the alignment process itself. As can be seen in the
left panel, the peaks in the data are not well aligned as the corresponding numbers
demonstrate. The results of applying our alignment method are presented in
Fig. 9 (right panel). The aligned functions exhibit good registration with almost
all of the peaks lining up. There are a few exceptions involving peaks numbered
1 and 2. Since they have a very low amplitude, their registration is relatively
difficult.

We can also quantify the alignment performance using the decrease in the
cumulative cross-sectional variance of the aligned functions. For any functional
dataset fgi.t/; i D 1; 2; : : : ; n; t 2 Œ0; 1�g, let
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Fig. 9 Alignment of proteomics data using the square-root slope framework with original data in
left panel and aligned functions in right panel. The aligned functions exhibit good registration of
marked peaks. Picture taken from [16]
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Var.fgig/ D 1

n � 1

Z 1

0

nX
iD1

 
gi.t/ � 1

n

nX
iD1

gi.t/

!2
dt ;

denote the cumulative cross-sectional variance in the given data. For the pro-
teomics data, we found

Original Variance D Var.ffig/ D 4:05; Aligned Variance D Var.fQfig/ D 1:13

Warping Variance D Var.f	f ı ��
i g/ D 3:04 :

where ffig is the set of original functions, fQfig is the set of aligned functions, 	f

is the mean of the aligned functions, and f	f ı ��
i g is the result of applying the

warping functions f��
i g to 	f . From the decrease in the aligned variance and

increase in the warping variance we can quantify the level of alignment.
Figure 10 presents a zoom-in on a region of the data on the time interval

Œ615; 911�. The top panel is the original data where we see very poor alignment of
the peaks. The bottom panel is the corresponding aligned data using the extended
Fisher-Rao framework, where very tight alignment of the peaks and valleys have
occurred.
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Fig. 10 Zoom-in of the region (600–910) to demonstrate accurate alignment of smaller as well
larger peaks. The top picture is before and bottom is after alignment. Picture taken from [16]
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2. Another experiment involves a set of eight chromatograms shown in the top panel
in Fig. 11. In this data, some of the major peaks are not aligned, especially in
the domain range Œ15; 25�. The outcome of Algorithm 1 on this data is shown
in the second row where the peaks appear to be sharply aligned throughout the
spectrum. To emphasize the quality of alignment we look at a couple of smaller
intervals in the spectrum more carefully. The zoom-ins of these smaller regions
are shown in the last two row of the figure. In each of the last two rows, we show
the before and after alignment spectra for these two domains: 0–20 and 28–50.
It can be seen in these zoom-ins that the algorithm aligns both the major and
minor peaks remarkably well. Once again, this procedure does not require any
prior peak detection or matching to reach this alignment.

3. In the third and final example, we study a set of 14 chromatograms associated
with urine samples collected at NIST. The top row of Fig. 12 shows the full
chromatograms before and after alignment. Since the misalignments in this
examples are relatively small, compared with the full range of retention times,
it is difficult to evaluate the quality of alignment in this full view. In the bottom
row, we look at magnified view of a smaller region—5 to 15—and find the peaks
are very closely aligned after the algorithm has been applied.

5 Conclusions

The problem of alignment of mass spectrometry data is both important and
challenging task. We have utilized a recent comprehensive approach that treats chro-
matograms as real-valued functions, uses extended Fisher-Rao metric to perform
alignment of peaks and valleys in these functions. The key idea is to form SRSFs
of the given chromatograms and then to use the standard L

2 norm between these
functions to perform both pairwise and groupwise alignment. We demonstrate this
framework using a number of examples involving real and simulated database taken
from different spectrometry applications. The success of this alignment procedure
is clearly visible in all experiments where the peaks are nicely aligned across
observation. This procedure is fully automated and does not require any user input.
Furthermore, it aligns full chromatograms (functions) rather than simply matching
a few dominant peaks.
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Fig. 12 Alignment of LC-MS chromatograms associated 14 urine samples using Algorithm 1. The
top row shows the full chromatograms while the bottom row shows a magnified region to facilitate
a closer look at the alignment performance
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The Analysis of Peptide-Centric
Mass-Spectrometry Data Utilizing Information
About the Expected Isotope Distribution

Tomasz Burzykowski, Jürgen Claesen, and Dirk Valkenborg

1 Introduction

In shotgun proteomics, much attention and instrument time is dedicated to the
generation of tandem mass spectra. These spectra contain information about the
fragments of, ideally, one peptide and are used to infer the amino acid sequence
of the scrutinized peptide. This type of spectrum acquisition is called a product
ion scan, tandem MS, or MS2 spectrum. Another type of spectrum is the, often
overlooked, precursor ion scan or MS1 spectrum that catalogs all ionized analytes
present in a mass spectrometer. While MS2 spectra are important to identify the
peptides and proteins in the sample, MS1 spectra provide valuable information
about the quantity of the analyte. In this chapter, we describe some properties of
MS1 spectra, such as the isotope distribution, and how these properties can be
employed for low-level signal processing to reduce data complexity and as a tool
for quality assurance. Furthermore, we describe some cases in which advanced
modeling of the isotope distribution can be used in quantitative proteomics analysis.
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Mass-spectrometry (MS) data contain a lot of noise and redundant information. A
high-resolution MS1 mass spectrum from, e.g., an orbitrap mass spectrometer typi-
cally contains thousands of data points. Depending on the density of the biological
sample, a number of, say, 80 peptides can be found in such a mass spectrum. Each
peptide can be represented by an abundance measure and a monoisotopic mass.
In other words, the numerous data points can contain information about just 80
peptides. This means that there is a lot of irrelevant information in MS data.

In high-resolution MS, a peptide appears in a mass spectrum as a series of
locally correlated peaks, which exhibit a specific characteristic profile related to the
isotope distribution of the peptide. The use of the (expected) isotope peak-patterns
can increase effectiveness of selecting the relevant information from mass spectra
and subsequent statistical analysis of the data. In this chapter, we describe the
necessary methodological background and present several examples of the use of the
information about the isotope distribution in the analysis of peptide-centric MS data.

The remainder of the chapter is structured as follows. In Sect. 2, we discuss the
isotope distribution in more detail. In Sect. 3, we present various applications, in
which the analysis of the MS data is enhanced by the use of the expected isotope
distribution. Concluding remarks are presented in Sect. 4.

2 Isotope Distribution

Under natural conditions, particular chemical elements appear as different stable
or radioactive variants. These variants have different numbers of neutrons in their
atomic nucleus and are known as isotopes. For example, there are two stable isotopes
of carbon (C) that appear in nature: 12C and 13C. In the notation, the upper-left index
indicates the mass number or nucleon number and represents the total number of
protons and neutrons, that is, nucleons, in the atomic nucleus. Due to the difference
in the total number of nucleons, isotopes differ in mass. They also differ in their
abundance, i.e., the frequency of occurrence. Table 1 presents the stable isotopes,
their masses, and abundance for carbon (C), hydrogen (H), nitrogen (N), oxygen
(O), and sulfur (S), as defined by the IUPAC 1997 standard [20]. These are the five
chemical elements which are predominantly present in peptides and proteins.

Terrestrial molecules incorporate elemental isotopes according to their natural
abundances. Thus, a molecule can have different isotope variants with different
masses that depend on the number of different isotopes in the atomic composition
of the molecule. The probability of occurrence of these isotope variants can
be calculated given the atomic composition and the known elemental isotope
abundances. The result of this calculation is known as the isotope distribution.

For example, consider a molecule of methane (C1H4). Its monoisotopic variant
is composed solely of the atoms of the most abundant isotopes of C and H, i.e., 12C
and 1H, respectively. It is the lightest variant with the molecular mass (see Table 1)
of 1 � 12 C 4 � 1.008 D 16.032. The probability of occurrence of the monoiso-
topic variant is equal to 0.9893 � (0.9999)4 D 0.9889. However, another possible
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Table 1 Isotope variants of
C, H, N, O, and S as defined
by the IUPAC 1997 standard

Chemical element Isotope Atomic mass Abundance

Carbon 12C 12:0000000000 98.93
13C 13:0033548378 1.07

Hydrogen 1H 1:0078250321 99.9885
2H 2:0141017780 0.0115

Nitrogen 14N 14:0030740052 99.632
15N 15:0001088984 0.368

Oxygen 16O 15:9949146000 99.757
17O 16:9991312000 0.038
18O 17:9991603000 0.205

Phosphor 31P 30:9737620000 100
Sulfur 32S 31:9720707000 94.93

33S 32:9714584300 0.76
34S 33:9678666500 4.29
36S 35:9670806200 0.02

Table 2 The isotope
distribution of methane
(C1H4)

12C 13C 1H 2H Mass Probability Nucleons

1 0 4 0 16.032 0.988904 16
0 1 4 0 17.035 0.010696 17
1 0 3 1 17.038 0.000099 17
0 1 3 1 18.041 0.000001 18
1 0 2 2 18.044 <10�8 18
0 1 2 2 19.047 <10�9 19
1 0 1 3 19.050 <10�12 19
0 1 1 3 20.053 <10�13 20
1 0 0 4 20.056 <10�16 20
0 1 0 4 21.059 <10�17 21

variant is composed of one 13C-atom and four 1H-atoms. This variant has the
molecular mass of 1 � 13.0032 C 4 � 1.008 D 17.035 and occurs with probability
(1 � 0.9893) � (0.9999)4 D 0.0107. In total, there are ten different isotope variants of
a molecule of methane. Table 2 presents the isotope distribution of methane, i.e., the
molecular masses of all isotope variants and their probabilities of occurrence (com-
puted using the data from Table 1). Additionally, the total number of nucleons for
each variant has been provided. Note that, for methane, which is a simple molecule
with a small atomic mass, the monoisotopic variant is also the most abundant one.
However, for more complex and heavier molecules, this is not necessarily the case.

All the isotope variants of methane, presented in Table 2, differ in mass. However,
it can be seen that some variants have a very similar mass, close to integer values
of 16, 17, 18, 19, 20, and 21, corresponding to the total number of nucleons. If we
“aggregate” the variants with the same nucleon-content, we obtain the aggregated
isotope distribution of methane, with only six aggregated isotope variants. The
probabilities of occurrence of the first three variants, with masses of (about) 16, 17,
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and 18, are equal to 0.988904, 0.010795 (D0.010696 C 0.000099), and 0.000001,
respectively.

From the aforementioned considerations it follows that peptide molecules can
have different isotope variants. In a high-resolution mass spectrum, a peptide
produces a series of peaks that are separated by roughly 1 Thomson and that
correspond to the aggregated isotope distribution (small mass differences between
the isotope variants corresponding to a particular aggregated variant are not
visible in a spectrum). A convenient algorithm to compute the aggregated isotope
distribution on computers is the BRAIN algorithm developed by Claesen et al. [2].
A complete overview of methods for the in silico generation of isotope distributions
can be found in the review by Valkenborg et al. [28].

For instance, the left-hand side panel of Fig. 1 presents a full scan of a tryptic-
digest of bovine cytochrome C. The right-hand side panel shows a close-up of the
region near the mass of 743 m/z. In the close-up we can clearly observe a series
of locally correlated peaks, approximately separated by 0.5 m/z (as the peptide is
doubly charged) that correspond to the aggregated isotope distribution of a peptide.
It is this type of peak-clusters that would be of interest when analyzing a spectrum
to reduce complexity and asses spectral quality.

To decide whether a peak-cluster may be due to a peptide, one could check
whether the observed pattern (of the form presented in the right-hand side panel
of Fig. 1) corresponds to an aggregated isotope distribution of a peptide. This raises
an important practical issue, though: to compute the distribution, one has to know
the atomic composition of a molecule. Thus, to decide whether a particular peak-
cluster may be due to a peptide, one would have to compare the observed pattern
to the aggregated isotope distributions of all known peptides with a similar mass.
Obviously, this is not feasible, not only for computational reasons, but also because,
e.g., the observed pattern may correspond to a modified (e.g., phosphorylated)
version of a lighter peptide.

Fig. 1 A full scan of a tryptic-digest of bovine cytochrome C (left-hand side panel), with a close-
up of the region near 743 m/z (right-hand side panel)



The Analysis of Peptide-Centric Mass-Spectrometry Data Utilizing. . . 49

An alternative, more practical solution is to compare the observed peak-cluster
pattern to the expected aggregated isotope distribution for peptides with the
monoisotopic mass corresponding to the mass of the first peak in the observed
cluster. The expected distribution can be effectively computed using a model
developed by Valkenborg et al. [26]. In particular, Valkenborg et al. [26] represented
an aggregated isotope distribution by the set of ratios (termed isotopic ratios) of
the probability of occurrence of the (m C 1)-th aggregated isotope variant to the
probability of occurrence of the m-th variant (with m D 1 denoting the monoiso-
topic variant). Subsequently, each ratio is modeled by a fourth-order polynomial-
regression model using the monoisotopic mass as the explanatory variable. To
estimate the coefficients of the model for the first six ratios, Valkenborg et al. [26]
used the monoisotopic mass of the theoretical “averagine” peptide proposed by
Senko et al. [22]. Alternately, Ghavidel et al. [6] estimated the coefficients by using
an in silico digest of the actual proteins included in the Human HUPO database.
By using the estimated coefficients, the expected values of the isotopic ratios for
a particular mass can be computed and compared to the ratios obtained for the
observed peak-cluster. The similarity between the expected and observed ratios
can be measured by using Pearson’s chi-squared statistic [6, 26]. If the value of
the statistic is smaller than a selected threshold, the observed peak-cluster can be
regarded as resulting from a peptide.

3 Applications

In this section, we present several applications, in which the analysis of the MS data
is enhanced by the use of the expected isotope distribution.

3.1 Enzymatic Labeling

MS measurements are influenced by different sources of variability, which can
obstruct the detection of differentially expressed proteins or peptides. To reduce
the effect of the variability on the data, a labeling approach can be considered. In
isotope labeling, peptides from one sample are coded with stable isotope tags and
mixed together with another, unlabeled sample. The stable isotope tag will result in
an increase of the peptide’s mass. Due to this increased mass, a peptide from the
labeled sample is discernable from its unlabeled counterpart in a precursor scan.
Quantification of the relative abundance is based on the observed intensities.

A relatively low-cost and open-source technique for stable isotope labeling is
the enzymatic 18O-labeling, where the two 16O atoms in the carboxyl-terminus of
a peptide are replaced with oxygen isotopes from heavy-oxygen water. Enzymatic
labeling is performed in two steps. In the first step, protein digestion is done in
normal water. In the second step, the labeling is done in heavy-oxygen water.
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Fig. 2 Chemical reaction scheme for the two-step enzymatic 18O-labeling procedure

Fig. 3 Effect of enzymatic 18O-labeling in a mass spectrum in “stick” representation on a pooled
sample. Left panel: “sticks” can be seen as a representation of the distribution of the isotope variants
of the peptide. Right panel: labeling causes accumulation of different isotope variants in a spectrum

The oxygen replacements in the carboxyl-terminus are a continuous process and
are enzymatically catalyzed by a proteolytic reagent. This labeling reaction is
schematically depicted in Fig. 2. We assume that both oxygen-atoms on the
carboxyl-terminus will react equally favorable with the 18O-atoms. Hence, in ideal
circumstances, the labeling should lead to an increase of the mass of the peptide
molecule by 4 daltons (Da).

For example, the labeled peptides from Sample II can now be pooled together
with the unlabeled peptides from Sample I and processed simultaneously by MS.
Without the enzymatic 18O-labeling, the isotope peaks, corresponding to the isotope
distribution of a peptide present in both samples, would appear at the same location
in the resulting pooled MS1 or joint mass spectrum. This is graphically illustrated
in the left panel of Fig. 3. In this situation, no distinction could be made between the
contributions of the different biological samples to the peptide peaks observed in the
joint spectrum. However, with the enzymatic 18O-labeling, the isotope peaks which
correspond to the labeled peptide will shift 4 Da (in a singly charged spectrum) to
the right in the mass spectrum, as shown in the right-hand-side panel of Fig. 3. This
allows making a distinction between the peaks related to peptides from different
samples. Consequently, a direct comparison of the peptide abundance in the two
samples is possible because the abundance measurements are affected by the same
amount of machine noise. A “naïve” approach to compute the relative abundance of
the peptide in the two samples would be to take the ratio of the heights of the first
and fifth peak observed for the peptide in the mass spectrum (see the right-hand-side
panel of Fig. 3), as these peaks would correspond to the monoisotopic variants of
the peptide in the unlabeled and labeled sample, respectively. However, as it can be
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observed from Fig. 3, some isotope peaks of the unlabeled peptide will still overlap
with the monoisotopic peak of the labeled peptide. Thus, even in this ideal setting,
where a mass shift of 4 Da is acquired, the ratio would yield a biased estimate of the
relative abundance, because it does not take into account the overlap of the isotope
peaks.

In practice, however, there are more problems related to the use of the enzymatic
18O-labeling strategy. First, the heavy-oxygen water does not contain 100 % pure
18O-water. It can also contain 16O- and 17O-atoms. We term these water impurities.
Note that, if the two carboxyl-terminus oxygen atoms are replaced by, e.g., 17O-
atoms, the peptide molecule becomes heavier by only 2, and not 4 Da, as it ideally
would be the case in 100 % pure 18O-water. Second, the speed of the enzymatic
reaction, i.e., the oxygen incorporation rate, depends on multiple unobserved factors
and therefore can differ for different peptides. As a result, at the end of the enzymatic
reaction, not all peptide molecules from Sample II may have been actually labeled.
The isotope peaks for these molecules will overlap with the peaks from Sample I,
which results in a biased estimate of the relative abundance.

These problems imply that the peaks, observed for a peptide in a spectrum, will
correspond to a complex mixture of shifted and overlapping isotope peaks that are
related to the isotope distributions of the peptide molecules in the unlabeled and
labeled samples. In order to obtain an unbiased estimate of the relative abundance
of the peptide in the two samples, the overlap of the isotope peaks has to be taken
into account [33].

Several methods that address the issue at the data analysis stage have been devel-
oped [3, 12, 13, 17, 27]. In particular, Valkenborg and Burzykowski [27] developed
a model-based approach that combines the regression framework considered by
Mirgorodskaya et al. [13] with a probabilistic model, which describes the kinetics of
the enzymatic 18O-labeling reaction. An important advantage of the method is that
it allows estimating the peptide’s isotope distribution directly from the observed
data, which in turn can be used to validate whether the observed peaks are indeed
originating from a bonafide peptide. This implies that no additional MS steps are
required for quantification, while the information is unbiasedly extracted from the
observed spectra. The method is able to accommodate additional joint mass spectra
for a given peptide, which can arise from, e.g., technical replicates. Moreover, the
method can account for the possible presence of 16O- and 17O-atoms in the heavy-
oxygen water.

Figure 4 illustrates the general concept underlying the method. The figure
presents a part of a joint mass spectrum corresponding to a certain peptide. The
fifth peak of the observed part of the joint spectrum (plot at the right-hand side)
is composed out of the unobserved isotope variants of the peptide in Sample I
and Sample II before the labeling (plots at the left-hand side). Note that the first
five isotope variants of the peptide in Sample II (labeled sample) contribute to the
fifth peak of the observed part of the joint spectrum via the mass-shift probabilities



52 T. Burzykowski et al.

Fig. 4 The height of the fifth peak of the observed part of the joint spectrum can be defined in
terms of the unobserved peptide peak intensities before labeling and the mass-shift probabilities.
Due to the imprecise labeling of a peptide, five potential mass shifts can occur, with probabilities
P0, P1, P2, P3, and P4. In this way, the set of isotope peaks from the labeled peptide can contribute
to the fifth peak in the joint spectrum via the mass-shift probabilities

induced by the labeling. Hence, to estimate the relative abundance, Q say, of the
peptide in Sample II as compared to Sample I, we need information about the
theoretical isotope distribution of the peptides before the labeling.

Toward this aim, Valkenborg and Burzykowski [27] proposed a model, which
assumes that the expected values of the observed peak intensities in a peptide-
specific part of the joint spectrum are expressed as a linear function of the abundance
of the (aggregated) isotope variants of the peptide in Sample I and the relative
abundance Q. In particular, assume that there are M aggregated isotope variants
of the peptide. Let Rm (m D 1, 2, : : : , M) denote the ratio of the probability of
occurrence of the m-th variant relative to the monoisotopic one (m D 1); put R1 D 1.
Let H denote the abundance of the peptide in Sample I. The model is defined by
assuming that the intensity yk (k D 1, 2, : : : , M C 4) of the k-th peak observed in the
peptide-specific part of the joint spectrum can be expressed as follows:

yk D HRkI .k � M/C HQ
min.k�1;4/X

jDmax.k�M;0/

PjRk�j C "k;

where the residual errors "k follow a normal distribution with mean 0 and variance
�2, and I(A) is the indicator function equal to 1 when condition A is fulfilled and
0 otherwise. The coefficients of the linear function are the mass-shift probabilities
Pj (j D 0, 1, : : : , 4), where Pj denotes the probability that the isotope distribution
of a labeled peptide will be shifted by j Da due to the incorporation of a
combination of 16O-, 17O-, and 18O-atoms from the heavy-oxygen water. The mass-
shift probabilities Pj themselves are computed by using a Markov-chain model
with a transition-probability matrix that depends on the (assumed known) presence
of the 16O- and 17O-atoms in the heavy-oxygen water and the peptide-specific
incorporation rate � (assumed constant in time), which gives the number of the
oxygen-exchange reactions per time unit.
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Valkenborg and Burzykowski [27] applied the proposed method to a set of six
joint mass spectra obtained from the tryptic peptides of bovine cytochrome C from
LC Packings. The sample containing all peptides resulting from the tryptic-digest
was divided into two parts. One part was enzymatically labeled (overnight) with
a stable 18O-isotope, with trypsin as a catalyst, while the other part remained
unlabeled. Next, the labeled and unlabeled peptides were mixed according to a
ratio Q D 1/3. Six samples from the resulting mixture were automatically spotted
on one stainless steel plate by a robot. The plate was processed by a 4800 MALDI-
TOF/TOF analyzer (Applied Biosystems) mass spectrometer, resulting in six joint
spectra.

The analysis was restricted to the parts of the six joint spectra corresponding
to three bovine cytochrome C peptides. The amino acid compositions of these
peptides were as follows: peptide CC1 (mass 1167.61 Da)—TGPNLHGLFGR;
peptide CC2 (mass 1455.66 Da)—TGQAPGFSYTDANK; and peptide CC3 (mass
1583.75 Da)—KTGQAPGFSYTDANK. Panel (a) of Fig. 5 presents the heights of
the consecutive peaks observed in the parts of the joint spectra corresponding to
peptide CC1 in the stick representation.

The estimated values of Q were equal to 0.5518 (standard error, SE D 0.0318) for
peptide CC1, 0.3340 (SE D 0.0129) for peptide CC2, and 0.3318 (SE D 0.0068) for
peptide CC3. The estimates for peptides CC2 and CC3 were in a very good agree-
ment with the targeted value of 1/3. Also, the estimated isotope distributions were
virtually identical to the theoretical ones. Thus, the model adequately described
the data for the two peptides. However, for peptide CC1, the estimated relative
abundance was markedly different from 1/3 and the estimated isotope distribution
was statistically significantly different from the theoretical one. This suggested a
possible failure of the experimental procedure for the peptide.

Fig. 5 Observed (panel (a)) and estimated (panel (b)) peak heights in the parts of the six joint
spectra corresponding to the tryptic bovine cytochrome C peptide CC1 with mass 1167.61 Da and
Q D 1/3. Note that the peaks are grouped per isotope peak
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The “naïve” estimates, obtained by taking the mean value of the ratio of the
heights of the first and fifth peak observed in the peptide-specific part of the joint
mass spectrum, were equal to 0.5336, 0.3473, and 0.3556, respectively. Thus, in this
case, there was not much difference between the model-based and “naïve” estimates.
Valkenborg and Burzykowski [27] argued that this was likely due to the efficient
18O-labeling (overnight) and the use of highly purified heavy-oxygen water, which
caused a clear separation between the labeled and unlabeled spectra. In a realistic
setting, however, labeling might be inefficient and it would be cost-efficient to use
less purified oxygen labels, which would then favor the use of the proposed model.

The model developed by Valkenborg and Burzykowski [27] assumed, among
others, that the observed peak intensities in the joint spectrum were normally
distributed with a constant residual variance. The homoscedasticity assumption was
relaxed in the model developed by Zhu, Valkenborg, and Burzykowski [32]. For the
latter model, Zhu and Burzykowski [31] proposed a Bayesian formulation.

3.2 Hydrogen/Deuterium Exchange

The isotope distribution can also be used to analyze data from hydrogen/deuterium
exchange mass spectrometry (HDXMS). HDXMS is a method to study the confor-
mation and dynamics of proteins and peptides. Hydrogen atoms from NH-groups
of peptide bonds can be replaced by deuterium. Unprotected hydrogens located
at the surface of the protein will exchange faster than hydrogens buried in the
hydrophobic core of the protein under study. Therefore, monitoring the exchange
of labile hydrogen atoms over time makes it possible to draw conclusions about
the conformation and dynamics of proteins. After exchange of one hydrogen, the
molecular mass of the protein under study will increase by approximately 1 Da. The
intensities of the isotope distribution will also change (Fig. 6).

Several methods have been proposed to determine the deuteration-level of a
protein. The simplest approach [29] calculates the number of exchanged H-atoms
by subtracting the average mass of the undeuterated ion from the average mass of
the (partially) deuterated protein. There are two potential issues with this approach.
First, the resolution and mass accuracy of the mass spectra can complicate the
calculation of the average mass of the (partially) deuterated protein. Second, the
amount of information provided by the differences in mass can be insufficient to
draw valid conclusions regarding the structure and/or dynamics of the protein under
study.

Other methods use the isotope distribution to estimate the deuteration-level. They
are based on two ideas:

• The first idea assumes that the observed isotope distribution is a combination of
the natural, non-deuterated isotope distribution, and a deuteration distribution.
Palmblad et al. [15] proposed to estimate the exchange probability (Pexch),
linked to this deuteration distribution, with a deconvolution-based approach.
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Fig. 6 HDX mass spectra for a molecule with two exchangeable hydrogens. The bars in the middle
panel show the cumulative intensity resulting from an overlap of isotope distributions of molecules
with a different number of exchanged hydrogens

The amount of deuteration, expressed as the probability of exchange, is deter-
mined by a modified version of the fast Fourier transform approach of Rockwood
and Van Orden [19]:

DIcalc D F�1 fF.IC/
nC � F.IH/

nH � F.IO/
nO � F.IS/

nS � F.Isol/
nsol � F .ID/g (1)

where DIcalc are the intensities of the expected isotope distribution of a (partially)
deuterated protein, F(Ix) denotes the Fourier-transformed intensity distribution
of chemical element X, Isol are the intensities of too-fast-exchanging hydrogens,
and ID are the intensities of the deuteration distribution which is assumed to be
binomial:

ID D Bin .Pexch; nexch/; (2)

with nexch denoting the number of hydrogens available for exchange. This
approach, implemented in AUTOHD [15], assumes that each exchangeable
hydrogen has the same exchange probability. The probability is estimated by
minimizing the differences between the observed and the expected isotope
distribution of the deuterated protein/peptide.

• The second idea is actually very similar to the approach used in the analysis of
the enzymatically 18O-labeled mass spectra. It considers the (partially) deuterated
isotope distribution as a linear combination of n C 1 mass-shifted natural isotope
distributions (Fig. 7):

DIi D
Xi

jD0!j � Ii�j (3)
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Fig. 8 Deuteration/incorporation plot of a protein with two conformational states

where DIi denotes the normalized intensity of the deuterated ith isotope variant,
Ii�j is the intensity of the undeuterated (i � j)th isotope variant, and !j is the
abundance of j exchanged deuteriums. In contrast to the method of Zhang and
Smith [29] and Palmblad et al. [15], estimating !j returns, for each time point, a
distribution of relative deuterium-content. Zhang et al. [30] discuss three different
methods to determine !j, i.e., directly solving Eq. (3), ordinary least squares
minimization, or maximum-entropy method.

Plotting the determined deuteration content against the labeling time can provide
clues about the 3D structure and/or dynamics of the protein. These deuteration
incorporation plots (Fig. 8) give an intuitive idea about the kinetic exchange rate
of a protein.

For each exchangeable hydrogen a kinetic exchange rate can be estimated:

Dt D N �
XN

iD1e
�kit; (4)

where N is the total number of exchangeable hydrogen atoms, and ki the exchange
rate of hydrogen i.

A commonly applied method to estimate these exchange rates is the model
proposed by Zhang and Smith [29] and Smith et al. [24]. The method heavily
relies on the determined deuterium-content without taking the uncertainty linked
to these estimates into account (Eq. 4). Another approach is to directly estimate
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the exchange rates from the observed isotope distribution [4, 18]. For each time
point t, the states of all exchangeable hydrogens, N, are represented by 2N labile
binary vectors, containing 1’s and 0’s, where “1” corresponds to exchanged, and
“0” to non-exchanged hydrogen. The vectors represent all possible combinations
of exchanging hydrogens in the analyzed protein or fragment, ranging from no
exchange to a full exchange of all H-atoms. The overall probability of each vector
ptot;t is calculated as the product of individual exchange probabilities:

p.Di/t D 1 � e�kit D 1 � p.Hi/t;

where p(Di)t denotes the probability of deuterium exchange of the ith H-atom by
time t.

Binary vectors with the same number of exchanged hydrogens are combined, and
their probabilities are summed. These summed overall probabilities are compared
with the normalized intensities of the protein or fragment under study using the
overall mean square deviance or the Kullback–Leibler distance as the overall
divergence measure. The exchange rates of each exchangeable H-atom are then
estimated by minimizing the overall divergence measure.

3.3 Other Application Domains

The previous sections present the cases for peptide-centric quantification and struc-
tural elucidation of proteins by controlled stable isotope labeling of the scrutinized
molecules [5]. One of the key features of the observed spectra is that they can be
interpreted as resulting from overlapping isotope distributions.

However, there are many more experimental protocols that can result in over-
lapping isotope distributions. The data analysis strategies explained earlier can
be generalized to investigate any type of MS data with intentional or artefactual
overlapping isotope distributions. This section provides a non-exhausting overview
of alternative labeling strategies and presents cases where, for example, degradative
chemical reactions, such as deamidation, can cause the overlap of isotope distribu-
tions.

It is paramount to note that any observed spectrum that contains overlapping or
non-overlapping isotope profiles can be expressed as a linear combination of the
unobserved theoretical isotope distribution of the compounds that are composing
the mass spectrum (see Fig. 9). Hence, a linear model can be defined to disentangle
and quantify the overlapping and non-overlapping isotope patterns present in a
spectrum. Equation (5) presents an example of a linear model that could be used
for a part of an observed spectrum. Assume that the observed isotope peaks Y1 to
Y20 are the result of a labeling protocol. The labeling causes overlapping isotope
patterns in peaks Y1 to Y5 due to the three different labels (L1 to L3). The fourth
label (L4) does not introduce overlap in the spectrum, as it is well separated in the
mass domain from the cluster of overlapping peptides. Nevertheless, the observed
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peaks from the fourth label can be taken into account by the model. A simple fitting
scheme will yield the quantitative values corresponding to the labels (L1 to L4). It
is worth noting that in this general modeling framework, the number of compounds
in the spectrum (columns of the matrix), the overlap caused by the labels (leading
zeros in the columns), and the molecular composition of the compounds (isotope
distributions I11–I43) should be known.
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An example of how model (5) can be employed is given in Fig. 9. Assume that
the objective of the experiment is to quantify the extent of protein degradation for
different wetlab protocols. The plot at the top of the right-hand-side panel of the
figure presents the theoretical isotope profile of a biomolecule in a doubly charged
mass spectrum. Due to protein degradation in the 18O-water, the molecule starts
incorporating 18O-atoms, with shifts of 1 m/z (corresponding to 2 Da) as a result.
The shifted profiles, resulting from the incorporation of 1, 2, or 3 18O-atoms, are
presented in the right-hand-side panel of Fig. 9. The black bars in the left-hand-side
panel of Fig. 9 depict the profile observed in the overall mass spectrum, resulting
from the overlap of the profiles shown in the right-hand-side panel. Based on this
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overall profile and using a model similar in spirit to the one given in Eq. (5), one
can estimate the proportion of molecules incorporating 1, 2, or 3 18O-atoms. The
resulting “fitted” profile, corresponding to a particular set of proportions (shown at
the top of the plot in the left-hand-side panel of Fig. 9), is shown as white bars in
the plot in the left-hand-side panel of Fig. 9.

The enzymatic 18O-labeling approach can be categorized in the subclass of
chemical labeling. Chemical labeling is the intentional modification of a peptide
or amino acid with a particular and well-known mass tag. To date, several strategies
are available for chemical labeling, for example, isotope-coded protein labels (ICPL;
[21]), Isotope-Coded Affinity Tags (ICAT; [7]), or synthetic AQUA peptides [25].
Although the latter labels are meticulously engineered to minimize the overlap of
the isotope distributions, it can happen that due to isotope impurities or incomplete
labeling a certain amount of overlap occurs that requires a modeling approach for
the accurate quantification of the label’s molecules.

Special cases of chemical labeling are tandem mass tags (TMT, Thermo Sci-
entific) and isobaric tag for relative and absolute quantification (iTRAQ, SCIEX).
These labels are constructed in such a way that no mass difference is present
between, e.g., the six labels in a TMT 6-plex; hence the term isobaric labeling.
However, the labels are developed so that, upon fragmentation, a charged reporter
ion and neutral balancer will be released from the label causing 1 Da separated
reporter ions that can be used as a proxy for their relative abundance in the
pooled sample. Despite the very low mass of these reporter ions, they do exhibit
a pronounced isotope distribution due to isotope impurities present during the
synthesis of these labels. These isotope impurities are known and communicated by
the vendor in the data sheets. The model in Eq. (5) can be adapted to correct for the
systematic biases introduced by these impurities that cause the isotope distributions
of the reporter ions to overlap. A similar approach has already been proposed by
Shadforth et al. [23].

Metabolomic labeling, e.g., SILAC [14], is a popular stable isotope labeling
strategy that labels an entire organism by growing the cell culture in a medium that
contains isotopically modified essential amino acids. Typically, arginine or lysine
is modified with stable isotopes of carbon and nitrogen, i.e., 13C and 15N. For
arginine, mass shifts of 4 Da (15N4), 6 Da (13C6), and 10 Da (15N4 C13C6), compared
to the unlabeled or light variants of the organism, are common. The isotopically
modified arginines can be combined with lysine, which introduces mass shifts of
2 Da (15N2) and 6 Da (13C6), or the combination thereof that leads to an 8 Da
shift (15N2 C13C6), compared to the light variant. When using a single modified
amino acid, four cell cultures can be grown with a different label incorporation.
After inducing an experimental condition to the cell culture, the four experiments
can be pooled together and processed simultaneously during sample preparation and
LC-MS measurement. The advantage of this procedure, as compared to chemical
labeling, is that in a very early stage the samples can be aggregated such that
variability introduced at the level of protein extraction, reduction, trypsinization,
etc., is the same for the pooled samples. A disadvantage is that only peptides
containing, for example, an arginine are labeled. In case of missed cleavages or
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when using proteases that do not cleave at arginine it may happen that peptides
become multiply labeled by the modified amino acid. Another attention point is
that some organisms convert arginine to proline. This arginine-to-proline conversion
causes additional modified amino acids that could be present in the spectrum
[16]. In contrast to chemical labeling, metabolomics labeling can induce different
variants of high/low mass n-tuples in the mass spectral data. Therefore, often
fragment information or equivalently, peptide identification, is required to group the
high/low mass n-tuples together. Disregarding the complexity of the data analysis,
metabolomics labeling is popular because it allows multiplexing of four samples
[8]. Furthermore, the minimum mass shift between the overlapping distributions is
4 Da that relaxes the requirement of complex isotope modeling.

A recent and interesting observation is that not only peptide or reporter ions
can overlap in a mass spectrum [9]. More specifically, the modern fragmentation
mechanism called Electron-Transfer Dissociation (ETD) is of such a complexity
that multiple reaction products may occur before a protein or peptide fragmentation
occurs. These alternative reaction mechanisms are currently being investigated [10].
From the observed isotope pattern of the fragment ion one can hypothesize that three
additional reaction pathways exist that provoke the isotope patterns to shift by steps
of 1 Da. These reaction pathways are called Electron-Transfer but no Dissociation
(ETnoD), proton transfer reaction (PTR), and hydrogen transfer reaction (HTR).
Former reactions lead to loss of hydrogen, charge, or a combination of both, causing
the reaction products to overlap with the desired fragmentation results of the ETD
reaction. To gain insight in the reaction mechanism and to deal with the nuisance
from the unwanted reactions, a model similar in spirit to Eq. (5) can be developed
to disentangle the information and remove the interference [11].

Another interesting and prevalent modification with clinical relevance is deami-
dation of proteins and peptides. Protein deamination is a biologically relevant
phenomenon, but can also be induced unintentionally by, e.g., sample handling or
protein degradation. The modification appears in mass spectrometry by shifting the
analytes isotope profile by 1 Da causing an overlap with the unmodified counter-
part. Software algorithms to deconvolute the spectral information often disregard
potential deamidation and therefore the monoisotopic mass is defectively inferred
from the observed isotope cluster. Atlas and Datta [1] presented an algorithm based
on the linear model presented schematically in Eq. (5) to correctly determine the
monoisotopic mass from an overlapping cluster of deamidated peptides.

Artefactual modifications also occur in the fields of MS-based lipidomics. Lipids
with unsaturated bonds are 1 Da lighter than their saturated counterparts and
multiple bonds can be saturated in a lipid (see Fig. 10). Apart from the bonds, the
composition of the overlapping lipids remains unchanged, making this molecule
very appropriate for the presented modeling approach as the mass shift, number
of mass shifts, and composition is often known or not needed since an approach
similar to the one used for 18O-labeling can be applied with isotope information
inferred from the observed isotope peaks.



62 T. Burzykowski et al.

760.5
0

0.5

1.5

2.5

3.5

4.5

1

2

3

4

x 106

761 762 763

m/z

in
te

ns
ity

764 765761.5 762.5 763.5 764.5

Fig. 10 Lipids bonds can cause overlap of isotope profiles in the observed mass spectrum

4 Concluding Remarks

In peptide-centric MS, the isotope distribution offers important information about
the quantification of the biologically relevant signal in MS1 spectra. By using this
information, the processing and analysis of MS data can be made more efficient.

Information about the isotope distribution can also be applied at the stage of the
interpretation of the results of an MS experiment. For instance, it can be used to
improve the quality and confidence of peptide identifications from database-search
strategies [6].

In Sect. 3.3 we discussed the analysis of data from MS-experiments applying
labeling techniques. In such experiments, information about the form of the
overlapping isotope distributions, their number, and their mass shifts is known. This
allows the use of linear models to analyze the data. Overlapping isotope profiles can
also occur in spectra due to co-eluting peptide-homologues. However, in this case
the linear-model-based strategy is more difficult to apply, because the information
about, e.g., the number of overlapping isotope profiles or their mass shifts is not
known. Hence, disentangling arbitrary patterns of overlapping peptides is a tedious
task, though some progress can be made by using, e.g., the Bayesian approach [34].
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Probabilistic and Likelihood-Based Methods
for Protein Identification from MS/MS Data

Ryan Gill and Susmita Datta

1 Introduction

The main goal of proteomic studies is to detect biomarker proteins for the early
detection of cancer. Tandem mass spectrometry (MS/MS) plays a significant role
in the discovery of these biomarker proteins. The first step of an experiment using
tandem mass spectrometry (MS/MS) is the digestion of a mixture of proteins by
an enzyme, often trypsin. Each of the proteins is separated into peptides which are
subsequently ionized. Then selected peptide ions are fragmented in the gas phase,
and the mass-to-charge ratios and abundances or intensities of the small fragmented
ions are recorded in an MS/MS spectra.

Technological improvements have led to a greater abundance of tandem mass
spectrometry data as well as an increase in the size of generated data sets [1].
Consequently, it is not feasible to manually attempt to identify the peptides present
in the sample, and hence software tools are needed to perform this task. SEQUEST
[2] is a popular software tool which uses the precursor ion mass for each observed
spectrum to find candidate peptides from a database of protein sequences which are
sufficiently close in mass to the spectrum. Each observed spectrum is preprocessed
by finding the highest intensity peaks in each of a set of pre-specified bins
and normalizing those values to obtain an observed n-dimensional vector u. The
theoretical spectrum, denoted by v, is also computed for each of the candidate
peptides, and each theoretical spectrum is then preprocessed the same way that the
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observed spectrum was preprocessed. Then, each observed spectrum is compared
with each theoretical spectrum in its candidate list by a preliminary score Sp based
on the number of predicted fragment ions that match ions in the spectrum and their
abundances as well as the number of predicted sequence ions. Finally, a further score

Xcorr D R0 � 1

151

75X

D�75

R


is computed for each of the top 500 candidate spectra where R
 D
X

uiviC
 is
the discrete cross-correlation with lag 
 . Here R0 is the scalar dot product between
the observed and theoretical spectra. As described in [2] and [3], Xcorr gives a
measure of spatial similarity to assess the coherence of the observed and each
theoretical spectra by not only computing R0 but also by including a correction
factor to account for background correlation between the observed and theoretical
spectra by using offset values. The highest Xcorr score is reported by SEQUEST
as a peptide-spectrum match (PSM). SEQUEST is a commercial program, but there
are alternate implementations of the original SEQUEST algorithm such as Crux [3]
and Tide [4] which are freely available and which also reportedly lead to drastic
increase in speed compared with the original SEQUEST algorithm. Software for
other database search algorithms such as X!TANDEM [5], Mascot [6], MS-Tag [7],
and MS-GF [8–10] are also available.

In spite of the developments of the above-mentioned search algorithms, there
still remain uncertainties associated with the peptide and protein identifications.
Experimental errors and lack of adequate search algorithms can, sometimes,
lead to highly erroneous peptide and protein identifications from a tandem mass
spectrometry experiment; in fact, without proper filtering, it is possible that 80–
90 % of identified proteins may not be correct [11, 12]. The situation becomes
more complicated in the presence of “degenerate” peptides. A peptide is referred
to as “degenerate” if it is generated by multiple proteins. Degenerate peptides
create additional challenges for protein identification because even if the peptide
identification were known to be correct with no uncertainty, the identity of the
protein that generated it is not clearly determined. A typical situation of degeneracy
is explained through Fig. 1 (adapted from figures in [13–15]).

Figure 1 summarizes the steps in an MS/MS experiment for three proteins P1,
P2, and P3 in red, green, and blue, respectively; each of these proteins generates
two peptides: P1 generates p1 and p2, P2 generates p3 and p4, and P3 generates p2

and p5. Since p2 is generated by two distinct proteins P1 and P3, it is referred to as a
degenerate peptide. Note that only some peptide ions are selected for fragmentation;
some might be selected multiple times like peptide p1 in Fig. 1, while others might
not be selected at all, like peptides p3 and p5. Of course, errors can occur during
peptide identification; in Fig. 1, peptide p4 is misidentified as px. This also leads to
the incorrect conclusion that protein Px is present in the sample, and the incorrect
decision that P2 is not present because of the misidentification of peptide p4 and
the fact that p3 is not sampled. Degeneracy of peptides can also be an issue at the
database search stage as the example illustrates with protein Py; if an algorithm
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Fig. 1 The steps of an MS/MS experiment for the identification of peptides and proteins by
database search methods. This figure is adapted from several sources [13–15]

includes proteins for which its peptides are present, then protein Py is incorrectly
identified as present since its peptide p1 is correctly identified. The proteins P1 and
P3 are identified, though there may be concerns about these conclusions since other
proteins generate each of the peptides used to identify the proteins.

In recent years, several efforts have been made for providing confidences to the
peptide and protein identification. This paper first describes PeptideProphet and
ProteinProphet, among the first and still among the most popular probabilistic two-
step methods for peptide and protein identification. Then we discuss a couple of
likelihood-based one-step methods (hierarchical statistical model (HSM) and nested
mixture model (NMM)) which attempt to improve on some of the weaknesses of
two-step procedures. Finally, we compare the methods reviewed in this paper in the
Discussion section.
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2 Two-Step Process

In this section, we describe a highly regarded two-step process. In this process,
peptides are identified first using database search scores such as those provided by
SEQUEST through an algorithm called PeptideProphet. Then the resulting identi-
fied peptides along with their confidences can be used to attempt to determine the
proteins which are present in the sample using an algorithm called ProteinProphet.
A brief description of each of these two algorithms is given below.

2.1 PeptideProphet

Suppose that x1, : : : , xs are database search scores for a peptide. In [16], four
SEQUEST search scores are used:

1. Xcorr0 D
(

ln.Xcorr/
ln.NL/

if L < Lc
ln.Xcorr/

ln.NC/
if L � Lc

, where L is the number of amino acids in the

peptide, NL is the expected number of fragment ions for a peptide with L amino
acids, Lc is a threshold beyond which Xcorr does not depend on the length, and
NC is the expected number of fragment ions for a peptide with more than LC

amino acids.
2. �Cn, the relative difference between the two highest Xcorr scores.
3. ln(SpRank), the natural logarithm of the rank of the preliminary score Sp.
4. dM , the absolute difference of the masses of the precursor ions for the spectrum

and the assigned peptide.

Linear discriminant analysis can be used to combine these search scores into a
single score

F .x1; : : : ; xs/ D c0 C
sX

iD1
cixi

where the weights c0, c1, : : : , cs are selected to optimize the probability of a correct
classification of the peptide assignments as being correct or incorrect based on
training data where it is known which peptide assignments are correct. See Chapter
4 of [17] for details on linear discriminant analysis as well as other linear and
nonlinear methods for classifying categorical data.

This score is used to help compute the probability that a peptide score is correct.

Let F
ˇ̌̌
C and F

ˇ̌̌
� be the distributions of the discriminant scores for correct and

incorrect peptide assignments, respectively. The number of tryptic termini (NTT)
also provides useful information regarding the probability that the peptide score is

correct as discussed in [16], so let G
ˇ̌̌
C and G

ˇ̌̌
� denote the NTT distributions for
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correct and incorrect peptide assignments, respectively. Then the probability that the
peptide assignment is correct given the discriminant scores can be computed using
Bayes’ formula

p
�
C
ˇ̌̌
F;G

�
D

p
�

F;G
ˇ̌̌
C
�

p .C/
p
�

F;G
ˇ̌̌
C
�

p .C/C p
�

F;G
ˇ̌̌
�
�

p .�/

D
p
�

F
ˇ̌̌
C
�

p
�

G
ˇ̌̌
C
�

p .C/
p
�

F
ˇ̌̌
C
�

p
�

G
ˇ̌̌
C
�

p .C/C p
�

F
ˇ̌̌
�
�

p
�

G
ˇ̌̌
�
�

p .�/

(1)

where p .C/ and p .�/ are prior probabilities of correct and incorrect peptide
assignments, respectively. The prior probabilities used in [16] are the observed
proportions in the training data, and the conditional distributions of the discriminant
scores for the correct and incorrect assignments are modeled by a Gaussian distri-
bution with estimated mean 	 and variance �2 and by shifted Gamma distribution
with estimated shape, scale, and location parameters, respectively. In (1), it is
assumed that the discriminant scores and NTT distributions are independent when
conditioned on the peptide assignment status; empirical evidence is provided in [16]
to support this assumption.

An alternative to directly using the observed proportions from the training data
as the prior probabilities in (1) is to use a mixture model which simultaneously
estimates the prior and conditional probabilities based on a two-step iterative
process using the expectation-maximization (EM) algorithm [18]. Let N be the
number of spectra in the data set. Starting with initial estimates of p .C/, p .�/,
p
�

F
ˇ̌̌
C
�

, p
�

F
ˇ̌̌
�
�

, p
�

G
ˇ̌̌
C
�

, and p
�

G
ˇ̌̌
�
�

, the first step of each iteration of the

EM algorithm computes estimates of p
�
C
ˇ̌̌
F; G

�
based on (1). The second step of

each iteration updates the estimates of p .C/, p .�/, p
�

F
ˇ̌̌
C
�

, p
�

F
ˇ̌̌
�
�

, p
�

G
ˇ̌̌
C
�

,

and p
�

G
ˇ̌̌
�
�

under the assumption that the contribution of each of the N spectra

to the distribution of correct/incorrect peptide assignments is proportional to the
current computed probability that it is correctly/incorrectly assigned. Specifically,
the prior probabilities are updated by the formulas

p .C/ D
NX

iD1
p
�
C
ˇ̌̌
Fi; Gi

�

and p .�/ D 1 � p .C/ where Fi and Gi refer to the respective values for the ith
spectrum. The parameters of the conditional distributions are computed using esti-
mates reweighted using weights proportional to the probability of a correct/incorrect
peptide assignment conditioned on the spectrum; for the Gaussian distribution
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which models the distribution of the discriminant scores for positive peptide

assignments, the estimated parameters are 	 D
NX

iD1
p
�
C
ˇ̌̌
Fi; Gi

�
Fi= .Np .C// and

�2 D
NX

iD1
p
�
C
ˇ̌̌
Fi; Gi

�
.Fi � 	/2= .Np .C//.

2.2 ProteinProphet

Once estimates of the probabilities of the peptide assignments are obtained, then
the goal is to estimate the probability that a protein is present in the sample. The
probabilities of peptide assignments need not be made using PeptideProphet, or
even a database search method, but it is only reasonable to expect that the estimates
of the probability of the presence of the protein might be good if the estimates
of the probabilities for the peptide assignments are good. Temporarily ignore
the possibility of degenerate peptides for which there are multiple corresponding
proteins. Let Dj

i includes peptide information for the jth assignment to the ith
peptide—such as discriminant scores and number of tryptic termini as used in (1).
If the independence of events for peptide assignments is assumed, then the formula

eP D 1 �
Y

i

Y
j

�
1 � p

�
C
ˇ̌̌
Dj

i

��

gives the probability that at least one peptide assignment corresponding to the
protein is correct.

Instead, ProteinProphet [13] makes the conservative estimate that, for each
peptide, the probability of all assignments being incorrect is equal to the minimum
(one minus the maximum) of the probabilities of incorrect assignments among
all assignments. Hence, the inside product in the formula for eP is replaced by

1 � maxjp
�
C
ˇ̌̌
Dj

i

�
and, ProteinProphet [13] estimates the probability that a protein

is present in the sample using the formula

P D 1 �
Y

i

n
1 � maxjp

�
C
ˇ̌̌
Dj

i

�o
: (2)

ProteinProphet’s use of only the maximum assignment score for each peptide when
estimating the protein probabilities may be overoptimistic since high scores for
incorrect peptide identifications may occur by chance particularly when the peptides
are assigned more than once.

To adjust for multihit proteins (proteins which correspond to multiple correctly
assigned peptides), the estimated probabilities in (1) can be modified by condi-
tioning on another random variable, the estimated number of sibling peptides for
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each given peptide; it is seen in [13] that correct peptide assignments tend to
correspond to multihit proteins, while incorrect peptide assignments are more likely
to occur with proteins for which there are no correct peptide assignments. Some
further refinements are also proposed as part of the iProphet multi-level models [19]
which update the probabilities computed by PeptideProphet conditioning on number
of sibling searches, number of replicate searches, number of sibling experiments,
number of sibling ions, and number of sibling modifications via Bayes’ theorem.
Figure 1 in [19] provides a nice figure illustrating the multi-level approach.

The description of ProteinProphet presented in [13] also provides a method for
attempting to handle degenerate peptides using the EM algorithm. Let Ns be the
number of proteins that the ith peptide is assigned to, and let Ps be the probability
that the sth protein is present. Then Eq. (2) is modified so that

Pn D 1 �
Y

i

n
1 � wn

i maxjp
�
C
ˇ̌̌
Dj

i

�o

with weights

wn
i D PnXNs

sD1Ps

which give the probability that the ith peptide corresponds to the nth protein.
The algorithm begins by using uniform weights and then proceeds by iteratively
updating and recomputing the above equations until the values converge.

Since the intensity measurements in the spectra are subject to noise, incorrect
peptide identifications will likely lead to incorrect protein identifications. Moreover,
using knowledge of probabilities of the presence of proteins in a sample can affect
the probabilities that the peptide identification are correct, and it is clear that
appropriate inclusion of feedback in modeling peptides and proteins is critical in
making good inferences about each. In the following section, two one-step processes
are presented which attempt to simultaneously determine the proteins which are
present and the peptides which are correctly identified.

3 One-Step Processes

For the two one-step likelihood-based methods (HSM and NMM) reviewed in this
section, it is important to note that HSM handles the possibility of degenerate
peptides by assuming that a peptide will be in the sample if at least one of the
proteins that generate it is present in the sample. On the other hand, NMM does not
account for degeneracy, which can cause problems, particularly when estimating the
probabilities that proteins are present in complex high-level organisms.
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3.1 Hierarchical Statistical Model

The hierarchical statistical model (HSM) proposed in [14] assumes a parametric
multilayer joint distribution of five random vectors Y, V, Z, W, and S representing
N proteins with at least one peptide hit and M peptides assigned to at least one
spectrum.

In this model, Y D .Y1; : : : ;YN/ is a vector of indicators for the presence/absence
of the proteins in the sample where Yi D 1 indicates that the ith protein is present
in the sample. Letting � be the probability that a protein is present in the sample,
HSM assumes that Y1, : : : , YN are independent Bernoulli random variables with
probability mass function

f .yi/ D �yi.1 � �/1�yi

for i D 1; : : : ;N:
The HSM also considers a vector of independent Bernoulli variables V D

.V1; : : : ;VN/ for each protein indicating whether the number of peptide hits for the
protein exceeds a specified threshold h; in particular, Vi D 1 indicates that the ith
protein has more than h peptide hits. Then the probability mass functions for the
Bernoulli random variables can be expressed as

f
�
vi

ˇ̌̌
yi

�
D �1

yivi .1 � �1/yi.1�vi/�0
.1�yi/vi .1 � �0/

.1�yi/.1�vi/

where �1 and �0 are parameters for the Bernoulli distributions in the cases where
the protein is present or absent, respectively.

Next, Z D .Z1; : : : ;ZM/ is a vector of indicators for the presence/absence
of the peptides in the sample, and each Zi is modeled conditionally on Y with
specific parameters based on the type and number of cleavages. It is assumed

that Zj

ˇ̌̌
Y follows a Bernoulli distribution with parameters based on the type and

number of cleavages contained in a five-dimensional vector of probabilities ˛ D
.˛n; ˛s; ˛nn; ˛ns; ˛ss/ where an n in the index of a component of ˛ indicates a non-
specific cleavage and an s indicates a specific cleavage (so, for example, if a protein
with a constituent peptide that is generated with one non-specific and one specific

cleavage, then ˛ns is the probability P
�

Zj D 1
ˇ̌̌
Yi D 1

�
that the peptide will be

present in the sample given that the protein is present in the sample). Letting Cj

be the set of proteins that might generate peptide j, the conditional probability mass
function for the presence of the jth peptide is

f
�
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ˇ̌̌
y
�

D
0
@Y
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In the next layer of the HSM model, W D .W11; : : : ;W1T1 ; � � � ;WM1; : : : ;WMTM /

is a double-indexed vector of indicators of correct assignments of present peptides
to a spectrum where Wjk D 1 indicates that the kth assignment of the jth peptide
to a spectrum is correct and Tj is the number of assignments of the jth peptide to a
spectrum. Then the conditional probabilities that particular assignments are correct
given that the jth peptide is present is assumed to be Bernoulli with probability 
 so
that the conditional probability mass function of Wjk given Zj is

f
�

wjk

ˇ̌̌
zj

�
D zj


wjk.1 � 
/1�wjk :

Finally, S D .S11; : : : ; S1T1 ; � � � ; SM1; : : : ; SMTM / is a double-indexed vector of
matching scores for each peptide and potential assignment. The HSM also allows the
density to be based on an additional factor Qjk and assumes that there are different
density functions depending on whether the assignment of the kth assignment of the
jth peptide to a spectrum is correct so that

f
�

sjk

ˇ̌̌
wjk D w; qjk D q

�
D fq;w

�
sjkIˇqw

�
for w D 0; 1. Combining all of these components of the HSM, the joint density of
Y, V, Z, W, and S based on the model is assumed to have the form

f .y; z;w; s; v/ D
NY

iD1
f .yi/

NY
iD1

f
�
vi

ˇ̌̌
yi

� MY
iD1

f
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� MY

jD1

TjY
kD1
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f
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ˇ̌̌
wjk

�
:

The EM algorithm is used to iteratively update the parameters of the marginal and
conditional distributions and model the latent variables Y, Z, and W to attempt to
maximize the joint distribution. Finally, the joint distribution is used to obtain the

desired outputs: the conditional probabilities P
�

Zj D 1
ˇ̌̌
S;VI O

�
that the jth peptide

is present for j D 1; : : : ;M, and the conditional probabilities P
�

Yi D 1
ˇ̌̌
S;VI O

�
that

the ith protein is present for i D 1; : : : ;N using the estimated values of the model
parameters O .

3.2 Nested Mixture Model

The nested mixture model (NMM) proposed in [21] assumes a mixture model for
the joint density of the random variables Y, P, n, and X. Here Y D .Y1; : : : ;YN/

is a vector of indicators for the presence/absence of the proteins in the sample
where Yk D 1 indicates that the kth protein is present in the sample, P D
.P1;1; : : : ;P1;n1 ; � � � ;PN;1; : : : ;PN;nN / is a double-indexed vector of indicators of
correct assignments of present peptides to a spectrum where Pk;i D 1 indicates
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that the ith peptide of the kth protein is correctly identified, nk is the number
of peptide identifications for the kth protein, n D .n1; : : : ; nN/, and X D
.x1;1; : : : ; x1;n1 ; � � � ; xN;1; : : : ; xN;nN / is a double-indexed vector of scores for each
peptide assignment. Letting �*

1 denote the probability of a protein being present
in the model, NMM assumes that Y1, : : : , YN are independent Bernoulli random
variables with probability mass function

f .yk/ D �
��
1

�yk
�
1 � ��

1

�1�yk

for k D 1; : : : ;N: Letting �1 be the probability that the ith peptide is correctly
identified given that the kth protein is present, it is also assumed that the conditional
distribution of Pk,i given Yk has probability mass function

f
�

pk;i

ˇ̌̌
yk

�
D f1 � .1 � yk/ pk;ig�1.1�pk;i/yk.1 � �1/

pk;iyk :

Then the conditional distribution of the scores for the kth protein given Yk is modeled
by the mixture distribution

gt .xk;1; : : : ; xk;nk / D
nkY

iD1

1X
pD0

f
�

p
ˇ̌̌
y
�

fp .xk;i/

where f0 is the probability density function for a Normal random variable with mean
	 and variance �2 and f1 is the probability density function for a shifted gamma
random variable with shape parameter ˛, scale parameter ˇ, and shift parameter
� . Finally, [21] assumes that the conditional distribution of nk given Yk follows a
truncated Poisson distribution with probability mass function

hy .nk/ D e�cjlk
�
cjlk
�nk

nkŠ
�
1 � e�cjlk

�
for nk D 1; 2; : : : , where cj represents the average number of incorrect/correct
peptide identification per unit protein length for j D 0; 1, respectively. Then
combining these components of the NMM, the joint density of Y, P, n and X is
assumed to have the form

f .y; z;w; s; v/ D
NY

iD1
f .yi/
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:

Let  denote the vector of all model parameters. Then the EM algorithm is used to

estimate  , and these estimates are used to obtain P
�

Yk D 1
ˇ̌̌
xk;1; : : : ; xk;nk ; nk

�
, the

probability that the kth protein is present given the scores and number of peptide
hits for that protein, and to obtain
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P
�

Pk;i D 1
ˇ̌̌
xk;1; : : : ; xk;nk ; nk

�
, the probability that the ith peptide for the kth

protein is present given the scores and number of peptide hits for that protein.

4 Discussion

Proper inference from data produced from tandem mass spectrometry experiments
regarding proteins present in tissues and fluids can assist in providing important
biological information. Several popular probabilistic and likelihood-based methods
for protein identification from MS/MS data have been reviewed: the benchmark
two-step process of PeptideProphet followed by ProteinProphet and two likelihood-
based one-step processes HSM and NMM. It is important to note that there are
many other approaches available in the literature. See [22–24] for review of some
other two-step methods for peptide and protein identification. There are also several
other one-step protein identification procedures proposed in the literature and a
few will be discussed here briefly. ProteinFirst [25] is a two-dimensional target
decoy method which simultaneously controls the false discovery rates of proteins
and peptide-to-spectrum match levels by modifying PSM scores based on the
confidence in the protein identification score. A couple of other methods also
consider feedback from proteins when determining the peptides that are present.
An iterative procedure to compute peptide and protein probabilities simultaneously
is considered by [26] which uses the PeptideProphet results as input for confidence
concerning the peptides. Alternately, the method in [27] uses a different mechanism
for feedback, starting with peptide identification results from a database search;
these results are used to obtain a list of proteins which are further used to obtain
a peptide adjacency matrix. Then peptide identification probabilities are estimated
based on a logistic regression model and subsequently used to update the protein
list and adjacency matrix. Another approach proposed in [28] uses a tripartite graph
with three layers corresponding to the spectrum, peptide, and protein levels and
uses machine learning techniques in a single optimization procedure for protein
identification via a Barista model. The number of true proteins identified by this
method exceeds that of ProteinProphet for six different data sets in [28] over a
wide range of false discovery rate levels. A promising recent full Bayesian approach
(BHM) is proposed in [20] that incorporates the fact that proteins which share the
same biological pathway may not be independent. Instead, BHM groups the proteins
that are functionally related and uses this fact as prior information for protein
identification. Moreover, BHM fully handles the degeneracy issue and considers full
posterior inference via a Gibbs sampling scheme. Methods of integrating additional
information outside the MS/MS experiment have also been considered and are
briefly reviewed in [15].

Various criteria have been used to evaluate the performance of peptide and
protein identification procedures, and the performance of the methods has been
analyzed and compared using several data sets in the literature. In [16], a training
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dataset from [11] with ESI-MS/MS spectra generated from a control sample
with 18 purified proteins was used, and the results of PeptideProphet based on
SEQUEST database search scores are thoroughly analyzed. In this application,
peptide assignments with known validity were generated in a training dataset using
SEQUEST with a database including the sequences of the 18 control proteins and
a Drosophilia peptide database. Test data was generated using the control peptides
and a human peptide database. It is shown in Figure 3 of [16] that the estimated
distribution for the discriminant score is very close to the true distribution for the test
data. Also, the accuracy of the probability estimates of the peptide assignments for
the test data is illustrated in Figure 4 of [16] by comparing the true probability with
the computed probability. Finally, a pair of graphs in Figure 5 of [16] illustrated the
tradeoff between the fraction of identified peptide assignments which are actually
correct (sensitivity) and the fraction of identified peptide assignments which are
actually incorrect for various thresholds used to classify the peptide assignments
and the relationship between these fractions and the threshold.

Some similar analyses were also performed in [13] using the data from [11]
to evaluate the ability of ProteinProphet to make protein identifications. Figures
5 and 6 of [13] compare the true probability with the computed probability for
the presence of proteins and the relationships between the sensitivity, error rates,
and threshold for declaring a protein to be identified. One important additional
consideration in these plots was the comparison of results with or without using the
number of sibling peptides; all figures clearly showed that the results were better
when this information was included.

Comparisons have been made between PeptideProphet/ProteinProphet, HSM,
and NMM by comparing the empirical FDR (false discovery rate) versus the
estimated FDR, the sensitivity versus the specificity, and the number of true
positive proteins versus the number of false positive proteins. In [14], MS/MS
spectra data generated based on standard protein mixture [29] were studied, and
peptide and protein identification was performed using HSM, PeptideProphet, and
ProteinProphet. The results were evaluated using decoy data from Shewanella
oneidensis, and the empirical FDR was compared with the estimated FDR for each
of the methods in Figure 4 of [14]. It was found that PeptideProphet significantly
underestimates the FDR. HSM and ProteinProphet both were slightly optimistic
at low values of the empirical FDR, and conservative at high FDR. Receiver
operating characteristic curves were also presented in Figure 5 of [14] for these
methods to compare the sensitivity with the specificity (fraction of false peptides
not identified), and the sensitivity of HSM was best for sufficiently high levels of
specificity shown, followed by ProteinProphet and PeptideProphet. Additionally,
HSM and ProteinProphet were also compared in [14] for processed MS/MS spectra
data from [14] generated from a yeast (Saccharomyces cerevisiae) dataset with
peptide fragments obtained from a QSTAR mass spectrometer [30]. Database search
scores were again obtained using SEQUEST for the true data and decoy data from
Caenorhabditis elegans. It was found that ProteinProphet selects more proteins
at each threshold, and that ProteinProphet was optimistic in estimating the FDR
for low values of the empirical FDR, while HSM was always conservative in
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estimating the FDR. MS/MS spectra data generated based on standard protein
mixture [29] were also analyzed in [21], and peptide identification was performed
using PeptideProphet, ProteinProphet, HSM, and NMM with SEQUEST database
search scores. It was found that the NMM was much more conservative than the
other methods (see Figure 6b of [21]). Furthermore, it was seen that the sensitivity
of NMM far exceeded that of PeptideProphet and HSM when the specificity was
large (see Figure 6a of [21]).

Additionally in [21], NMM and PeptideProphet/ProteinProphet were compared
on another yeast dataset from [31] and scores for the peptide assignments were
computed using SEQUEST. The decoy data was created by permuting the target
sequences; [21] was unable to run HSM for this dataset because of the large protein
group sizes. Probability thresholds were selected based on the number of decoy
peptides, and it is seen in Figure 7a of [21] that the number of true peptides identified
by NMM clearly exceeded the number identified by PeptideProphet. However, when
the threshold was selected to control the number of decoy proteins, ProteinProphet
slightly outperformed NMM in terms of the number of true positive proteins for
most thresholds.

NMM and HSM were also compared in [21] for the processed MS/MS spectra
data from [14] generated from the yeast dataset. Thresholds were selected based
on the number of false positive proteins, and it is seen in Figure 8 of [21] that
the number of true detected proteins of NMM exceeded that of HSM for each
threshold (fixed number of false positives). The same data was also shown in [15],
and the number of true positives for BHM exceeded NMM and HSM for most
thresholds. The number of true positives for BHM also exceeded that of NMM and
ProteinProphet in an example in [20] and [15] on Haemophilus influenzae data from
[13] (see Figure 6 of [15]).

References

1. Yates, J. R., Ruse, C. I., & Nakorchevsky, M. (2009). Proteomics by mass spectrometry:
Approaches, advances, and applications. Annual Review of Biomedical Engineering, 11(1),
49–79.

2. Eng, J. K., McCormack, A. L., & Yates, J. R., III. (1994). An approach to correlate tandem
mass spectral data of peptides with amino acid sequences in a protein database. Journal of the
American Society for Mass Spectrometry, 5(11), 976–989.

3. Eng, J. K., Fischer, B., Grossmann, J., & Maccoss, M. J. (2008). A fast SEQUEST cross
correlation algorithm. Journal of Proteome Research, 7(10), 4598–4602.

4. Diament, B. J., & Noble, W. S. (2011). Faster SEQUEST searching for peptide identification
from tandem mass spectra. Journal of Proteome Research, 10(9), 3871–3879.

5. Craig, R., & Beavis, R. C. (2004). TANDEM: Matching proteins with tandem mass spectra.
Bioinformatics, 20(9), 1466–1467.

6. Perkins, D. N., Pappin, D. J., Creasy, D. M., & Cottrell, J. S. (1999). Probability-based protein
identification by searching sequence databases using mass spectrometry. Electrophoresis,
20(18), 3551–3567.



78 R. Gill and S. Datta

7. Clauser, K. R., Baker, P., & Burlingame, A. L. (1999). Role of accurate mass measurement
(C/� 10 ppm) in protein identification strategies employing MS or MS/MS and database
searching. Analytical Chemistry, 71(14), 2871–2882.

8. Kim, S., Gupta, N., & Pevzner, P. A. (2008). Spectral probabilities and generating functions of
tandem mass spectra: A strike against decoy databases. Journal of Proteome Research, 7(8),
3354–3363.

9. Swaney, D. L., Wenger, C. D., & Coon, J. J. (2010). Value of using multiple proteases for large-
scale mass spectrometry-based proteomics. Journal of Proteome Research, 9(3), 1323–1329.

10. Granholm, V., Kim, S., Navarro, J. C. F., Sjolund, E., Smith, R. D., & Kall, L. (2014). Fast and
accurate database searches with MSGFC Percolator. Journal of Proteome Research, 13(2),
890–897.

11. Keller, A., Purvine, S., Nesvizhskii, A. I., Stolyar, S., Goodlett, D. R., & Kolker, E. (2002).
Experimental protein mixture for validating tandem mass spectral analysis. Omics, 6(2), 207–
212.

12. Nesvizhskii, A. I., & Aebersold, R. (2004). Analysis, statistical validation and dissemination
of large-scale proteomics data sets generated by tandem MS. Drug Discovery Today, 9(4),
173–181.

13. Nesvizhskii, A. I., Keller, A., Kolker, E., & Aebersold, R. (2003). A statistical model for
identifying proteins by tandem mass spectrometry. Analytical Chemistry, 75(17), 4646–4658.

14. Shen, C., Wang, Z., Shankar, G., Zhang, X., & Li, L. (2008). A hierarchical statistical model
to assess the confidence of peptides and proteins inferred from tandem mass spectrometry.
Bioinformatics, 24(2), 202–208.

15. Sikdar, S., Gill, R., & Datta, S. (2015). Improving protein identification from tandem mass
spectrometry data by one-step methods and integrating data from other platforms. Briefings in
Bioinformatics, 17(2), 262–269.

16. Keller, A., Nesvizhskii, A. I., Kolker, E., & Aebersold, R. (2002). Empirical statistical model
to estimate the accuracy of peptide identifications made by MS/MS and database search.
Analytical Chemistry, 74(20), 5383–5592.

17. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data
mining, inference, and prediction. New York: Springer.

18. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1–38.

19. Shteynberg, D., Deutsch, E. W., Lam, H., Eng, J. K., Sun, Z., Tasman, N., et al. (2011).
iProphet: Multi-level integrative analysis of shotgun proteomic data improves peptide and
protein identification rates and error estimates. Molecular & Cellular Proteomics, 10(12),
1–15.

20. Mitra, R., Gill, R., Sikdar, S., & Datta, S. (2015). Bayesian hierarchical model for protein
identifications. Under review.

21. Li, Q., MacCoss, M., & Stephens, M. (2010). A nested mixture model for protein identification
using mass spectrometry. The Annals of Applied Statistics, 4(2), 962–987.

22. Huang, T., Wang, J., Yu, W., & He, Z. (2012). Protein inference: A review. Briefings in
Bioinformatics, 13(5), 586–614.

23. Nesvizhskii, A. I., Vitek, O., & Aebersold, R. (2007). Analysis and validation of proteomic
data generated by tandem mass spectrometry. Nature Methods, 4(10), 787–797.

24. Serang, O., & Noble, W. (2012). A review of statistical methods for protein identification using
tandem mass spectrometry. Stat Interface, 5(1), 3–20.

25. Bern, M. W., & Kil, Y. J. (2011). Two-dimensional target decoy strategy for shotgun
proteomics. Journal of Proteome Research, 10(12), 5296–5301.

26. Shi, J., & Wu, F.-X. (2012). A feedback framework for protein inference with peptides
identified from tandem mass spectra. Proteome Science, 10, 68.

27. Shi, J., Chen, B., & Wu, F.-X. (2013). Unifying protein inference and peptide identification
with feedback to update consistency between peptides. Proteomics, 13(2), 239–247.

28. Spivak, M., Weston, J., Tomazela, D., Maccoss, M. J., & Noble, W. S. (2012). Direct
maximization of protein identifications from tandem mass spectra. Molecular & Cellular
Proteomics, 11(2), M111.012161.



Probabilistic and Likelihood-Based Methods. . . 79

29. Purvine, S., Picone, A. F., & Kolker, E. (2004). Standard mixtures for proteome studies.
OMICS, 8(1), 79–92.

30. Elias, J. E., Haas, W., Faherty, B. K., & Gygi, S. P. (2005). Comparative evaluation of mass
spectrometry platforms used in large-scale proteomics investigations. Nature Methods, 2(9),
667–675.

31. Kall, L., Canterbury, J., Weston, J., Noble, M. J., & MacCoss, W. S. (2007). A semi-supervised
machine learning technique for peptide identification from shotgun proteomics datasets. Nature
Methods, 4, 923–925.



An MCMC-MRF Algorithm for Incorporating
Spatial Information in IMS Proteomic
Data Processing

Lu Xiong and Don Hong

1 Introduction to IMS Data Analysis

Imaging mass spectrometry (IMS) is a technique mapping biological molecules
like protein, lipids, and metabolites. It can be used to visualize the distribution of
molecules in biological tissue [12]. Figure 1 is an illustration of IMS technique
and IMS data. To generate IMS data, a tissue slice is divided into multiple pixels
depending on the resolution needed. Then each tissue pixel is analyzed by mass
spectrometry (MS) technique and MS data is obtained for this tissue pixel. Once we
arrange these MS data by their pixel positions, we get a set of IMS data of a hyper-
spectral type data cube. The IMS data at a specific mass-over-charge ratio (m=z
value) makes up an intensity image which maps the distribution of corresponding
molecules. At a specific pixel position, the IMS data gives the mass spectrum of this
tissue pixel.

The advantage of IMS compared with MS is that IMS data provide not only
MS information but also spatial information that visualizes the spatial distribution
of molecules. Currently, the IMS technique is one of the very few techniques
that can establish the spatial biochemical composition of the sample in the full
molecular range [1]. Unlike MS data processing [4, 5], to fully utilize IMS data, it is
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Fig. 1 A snap of IMS data. (Left) For a fixed IMS pixel, there is a corresponding mass spectrum
(MS). (Right) If an m=z value (mass-to-charge ratio) is fixed, the corresponding MS intensities for
all pixels that make up an image shows the spatial intensity of that protein

important to not only analyze mass spectra, but also incorporate spatial information
in IMS proteomic data processing. Just recently, image fusion techniques were
applied to IMS studies. “The IMS-microscopy fusion image is a predictive modality
that delivers both the chemical specificity of IMS and the spatial resolution of
microscopy in one integrated whole. Each source image measures a different aspect
of the content of a tissue sample. The fused image predicts the tissue content as if
all aspects were observed concurrently.” [14].

2 Motivation of This Study

IMS data analysis methods such as principle component analysis (PCA) [6], support
vector machine (SVM) [8], and multi-resolution analysis (MRA) method [16] did
not include the spatial interaction relationships of spectra in consideration. Hong
and Zhang proposed the elastic net algorithm for IMS data analysis (EN4IMS)
[17] and weighted elastic net (WEN) model for IMS data processing [9], and
showed classification accuracy improvement. A software package is formulated
in [10]. The EN4IMS and WEN models have certain limitations in the robustness
since the weights depend on data variance. The growth of a tumor is a continuous
process starting from one spot and then spanning to its neighboring area. If a cell
is spatially surrounded by cancer cells, then this cell should have a high probability
to be cancerous. That is to say, the class of a cell (cancer or non-cancer) is highly
determined by the class configuration of its neighboring cells. Such spatial property
can be described as locality or Markovianity in the data space. Markov random field
(MRF) [13] is a mathematical tool that describes such Markovianity in the space.
Therefore, MRF is an ideal tool to incorporate spatial information in IMS data. We
would like to use MRF as the prior distribution of pixel classes and use Markov
chain Monte Carlo (MCMC) framework to estimate the true class label of each
pixel based on the initial classification result from the MRA based methods [16].
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The classification accuracy can be expected to be improved in this way since we
fully utilize spatial information of IMS data with MRF to describe pixels classes’
spatial relations.

The remainder of the paper is organized as follows. In Sect. 3, we give a basic
description of the modeling of the study and a brief review on MRA methods for
MS proteomic data analysis. Then, a brief introduction to MRF and Ising model,
which is a specific type of MRF is given in Sect. 4. In Sects. 5 and 6, we develop the
MCMC-MRF computation framework for IMS data classification and the parameter
estimation methods. In Sect. 7, we will implement a data experiment using one data
set to train parameters and another different data set to test the model, as well as
discuss how the way the neighborhood system is defined matters to the classification
result. Final conclusion and remarks are given in Sect. 8.

3 Modeling

3.1 Data Description and MCMC-MRF Modeling

This study is based on two IMS data sets extracted from two different mouse brains
of the same species and implanted with the same type of tumor. One IMS data set
has 24 � 34 pixels resolution; the other has 44 � 64 pixels resolution. We use one
data set to train model parameters and test the model performance on another data
set. To reduce the mistakes made by the boundary pixels, we select only the central
part of cancer and non-cancer area as training and test data so that the selected pixel
class is easy to see to judge performance of tested model. The red round areas shown
in Fig. 2 are selected training and test data.

Each IMS pixel can be considered as a lattice point in MRF. Our goal is to
classify each IMS pixel to either cancer or non-cancer. As we mentioned before,
since the status (cancer or non-cancer) of a pixel is highly related to the status of
its surrounding pixels, such Markovianity can be described well by MRF. We use
MRA method [16] to do initial classification. Then each IMS pixel will get a binary
status label, �1 for cancer, 1 for non-cancer. This can be considered as a MRF.
Then we use MCMC algorithm on this MRF to do the second-round classification
to improve classification accuracy of IMS data. Details on algorithm design are
discussed in Sects. 5 and 6. MCMC-MRF implementation on IMS data analysis is
given in Sect. 7. Figure 3 represents a result of this data process.

3.2 About MRA Method

MRA is a multiscale approximation method using wavelet transforms which repre-
sents a signal in a sequence of nested subspaces {Vjg and corresponding orthogonal
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Fig. 2 We use two different IMS data set to train and test model. (Top left) Picture of the mouse
brain tissue slice where training IMS data was generated from. The dark area is cancer area. (Top
right) A snapshot of training IMS data set. The round red areas in left side and right side are cancer
training data and non-cancer training data, respectively. Resolution for this IMS data set is 24� 34
pixels. (Down left) Picture of the mouse brain tissue slice where test IMS data was generated from.
The dark areas on brain slice are cancer areas. (Down right) A snapshot of test IMS data set. The
round red areas in left side and right side are cancer test data and non-cancer test data, respectively.
Resolution for this data set is 44� 64 pixels

complement Wj of Vj in Vj�1. Space V0 represents the one that contains the finest
resolution data. The projection of the data on Vj; j D 1; 2; � � � has increasingly
coarser resolution. The beautiful computation structure of wavelet coefficients under
a selected wavelet basis representation provides efficient and effective algorithms
for data denoising and reconstruction, as well as feature extraction. For applications
of the MRA methods in MS and IMS data pre-processing, for example, one can
check [4, 5, 10] and the references therein. In IMS data processing using MRA
techniques, as discussed in [16], it first transforms each IMS pixel’s mass spectrum
to wavelet space. Then on wavelet space, the algorithm compares the statistical
difference between wavelet coefficients from cancer and non-cancer groups to select
the wavelet coefficients with large difference between two groups. These wavelet
coefficients can be used as “biomarkers” to tell cancer and non-cancer pixels apart.
The advantage of this method is that, compared with other IMS analysis methods
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Fig. 3 The input of MCMC-MRF algorithm is the classification result of MRA method. MCMC-
MRF algorithm improves the classification accuracy by incorporating spatial information

such as EN4IMS, SAM, EN, and PCA, MRA method contains a shorter list while
still achieving high classification accuracy and can capture major biomarkers. The
disadvantage of this method is that MRA doesn’t use any spatial information of IMS
data, since each IMS pixel’s mass spectrum is considered independent to each other
in the MRA method. However, in reality, IMS pixels are spatially related to each
other, and their mass spectrum is related as well. MRF can be used to incorporate
such spatial relations to enhance the classification accuracy for algorithms such as
MRA, SVM, and PCA, which didn’t consider spatial dependence of IMS data. In
next three sections, we will first introduce the basic knowledge of MRF briefly,
then describe the MCMC computing framework for the IMS data classification and
parameters estimation of MRF prior and likelihood.

4 Introduction to Markov Random Field

4.1 Definition of Markov Random Field

The MRF is an n-dimensional random process defined on a discrete lattice. Usually,
the lattice is a regular 2-dimensional grid in the plane, finite or infinite. In the 2D
setting, assume that S D f1; 2; : : : ;Ng � f1; 2; : : : ;Mg is the set of N � M points
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Fig. 4 In MRF, the value of, for example, X2;2 is only determined by the values of its neighborhood
(green pixels). Such Markov property fits the reality of cancer tissue classification problem. In
a tissue with cancer and non-cancer area, if a position is surrounded by cancer areas, then this
position has a high probability to be cancer. The same rule applies for non-cancer area. Therefore,
MRF can be an ideal tool to deal with cancer tissue classification problem

[3], called sites. For a fixed site s, define a neighborhood @s. For example, the
neighborhood of the site .i; j/ could be @.i; j/ D f.i � 1; j/; .i C 1; j/; .i; j � 1/; .i; j C
1/g. Markov property of X.S/ is defined via local conditions

P.XsjXr; r ¤ s/ D P.XsjXt; t 2 @r/; (1)

where s is a lattice point in S, Xs is the value of X at s, and @s consists of the
neighboring points of s. The random field X, which has Markov property defined in
formula (1), is called MRF. Formula (1) shows that in MRF, the probability of the
value at any point is only determined by the values configuration of its neighboring
points. For example, in the MRF shown in Fig. 4, the value of X2;2 is only determined
by values of its neighborhood (green pixels). Incorporation of prior information
into the image processing has become a widely accepted model over recent years.
There have been many improvements along this direction for image reconstruction
including MCMC/EM approach and robust homogeneous prior methods. In general,
the procedures require substantial computing effort. A model using inhomogeneous
Gaussian random field as a general prior was discussed in [2]. The model allows
rapid calculation and flexible determination of spatially varying prior parameters.

4.2 The Simplest MRF: Ising Model

Ising model is the simplest type of MRF where there are only two possible values
at any site: C1 and �1. It was proposed by a German physicist named Ernst Ising
from his magnetic substance research. Originally in magnetic substance research
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Fig. 5 Ising model is originally proposed from the research of magnetic substance to describe
the macroscopic change of particle spin direction configuration with the microcosmic interaction
of individual particle existing. C1 represents spinning up and �1 represents spinning down. We
can use this model to describe the interaction between cancer and non-cancer pixels, with �1
representing cancer and C1 representing non-cancer

Fig. 6 Illustration of
disagree edges number. The
edge between two pixels with
different values is disagree
edge, which is marked as bold
black line here. In this figure,
number of disagree edges is 6

context, C1 represents the north polarity when a particle is up and �1 represents
the north polarity when a particle is down, while the polarity direction of particles
are interacting with each other [11]. Such interaction is similar to the interaction
of cancer and non-cancer cells depending on the spatial position. Here in IMS data
analysis, we can represent a cancer pixel by a �1 site and a non-cancer pixel by a
C1 site. Figure 5 is an example of an Ising model.

The density function of Ising model is

P.X D x/ / 1

Z
exp

0
@ˇX

i�j

xixj

1
A / 1

Z
exp.�2Jdx/; (2)

where J is a constant parameter that needs to be estimated using training data,
dx is the number of disagree edges (see Fig. 6), i 	 j means pixel Xi and Xj are
neighboring to each other, Z is scale constant which will be canceled in later Ising
priors ratio.
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5 MCMC Computation Framework for IMS Data
Classification

We denote  as true classification, which is our goal to approximate, and y
as observed classification, which we already obtained from a previous existing
classification algorithm [16] without incorporating spatial information. Our task is
to estimate true classification  while the observed classification y is given. Here we
accomplish this task in a probabilistic way. We first obtain the distribution of true
classification  in the condition that the observed classification y is given, and then
we estimate  by its posterior distribution probability in each class. Therefore, we
can not only get a classification result, but also a probability value being classified
to each class. According to Metropolis–Hasting theorem, which is the key theory
of MCMC sampling, if we use Metropolis–Hasting algorithm to simulate  jy, the
simulated data will finally have a distribution converge to the true distribution of
 jy, which is f . jy/. In this way, we can estimate the true classification according to
its probability distribution when only the observed classification is available. Here
is the sampling rule of Metropolis–Hasting algorithm:

˛Œ. 0jy/j. jy/� D min

�
1;

f . 0jy/
f . jy/

�
D min

�
1;

L.yj 0/P. 0/
L.yj/P./

�
; (3)

where  jy is the original value  given observed classification y,  0jy is the new
proposed value  0 during MCMC sampling given observed classification y. The
specific expressions for likelihoods’ ratio L.yj 0/

L.yj/ and priors’ ratio P. 0/

P./ in this formula
will be given later in formulas (4) and (5). Here are the steps of MCMC sampling
algorithm:

Algorithm 1 ([15]). Start with the space of all configurations C in which each
configuration � jy is represented as a vector:

�jy D .1; 2; : : : ; n�1; n; nC1; : : : ; M�N/

with the indexing .i; j/ 7! n D .i �1/� N C j. The MCMC sampling algorithm
would have following steps:

Step 1 Start with �jy 2 C. Usually, initially assign �0 D y.
Step 2 Randomly select a pixel from �jy, for example, n.
Step 3 Propose new value � 0jy as � 0jyD.1; 2; : : : ; n�1;�n; nC1; : : : ;

M�N/ by changing the sign of the selected pixel’s value.



An MCMC-MRF Algorithm for Incorporating Spatial Information in IMS. . . 89

Step 4 Generate an uniform random number u 	 U.0; 1/. If u <

˛Œ.� 0jy/j.�jy/�, then accept .� 0jy/ as new configuration. Otherwise,
keep .�jy/ as current configuration.

Iterate above process until convergence.

Next, we will discuss the specific expressions for likelihoods’ ratio and priors’
ratio in formula (3). Since the conditional variables are independent to each other
(this is because at each site, the observed class is completely determined by its true
class and observation noise), then likelihoods’ ratio can be written as:

L.yj 0/
L.yj/ D

Q
m;n

L.yj 0/Q
m;n

L.yj/ : (4)

The prior is an Ising MRF. Then the priors’ ratio can be obtained using the
distribution formula of Ising model in formula (2):

P. 0/
P./

D
1
Z exp.�2Jd 0/
1
Z exp.�2Jd/

D expŒ�2J.d 0 � d /�: (5)

The parameter J in above formula can be estimated by training data. We will
discuss the details about how to estimate parameter J in next section. d 0 and d are
the number of disagree edges in estimation of  0 and  , respectively. The definition
of d was introduced in Sect. 4.2.

6 Parameters Estimation of MRF Prior and Likelihood

6.1 Ising MRF Prior Parameter Estimation Using MPL

In 1986, Geman and Graffigne [7] proved that the following pseudo likelihood
method can be used to approximate the likelihood of Gibbs distribution, which is
the general format of the distribution of MRF. This method converges to Gibbs
distribution with probability 1. Here is how the pseudo likelihood is defined:

PL.X/ ,
Y
i2S

P.xijxNi/ D
Y
i2S

P.xi; xNi/

P.xNi/
D
Y
i2S

P.xi; xNi/P
xi2L

P.xi; xNi/
; (6)

where L is the labeling space (or class space). For instance, the label space for Ising
model, a binary system, is L D f�1; 1g. i is the pixel index, S is the set of all pixels.
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For the Ising model, plugging its distribution from formulas (2) into formula (6),
we can obtain its pseudo likelihood:

PL.X/ D
Y
i2S

1
Z exp.�2Jdxi/P

xi2L

1
Z exp.�2Jdxi/

: (7)

To find its maximum, we take its natural log. Then,

lnŒPL.x/� D
X
i2S

8<
:�2Jdxi � ln

2
4X

xi2L

exp.�2Jdxi/

3
5
9=
; : (8)

Therefore, the Maximum Pseudo Likelihood (MPL) estimation of J is

bJ D arg max
J

flnŒPL.X/�g: (9)

Using the one-dimensional optimization method, we can find the specific value of
J that maximizes the pseudo likelihood in formula (8). This value is the estimation
value for parameter J.

6.2 Likelihood Estimation

Using the training data whose observed classification and true classification are both
known, we can estimate the likelihood. Here, we are doing binary classification.
Therefore, there are only four types of likelihoods. They are

L.y D �1j D �1/;L.y D 1j D �1/;L.y D �1j D 1/; and L.y D 1j D 1/:

For example, L.y D 1j D �1/ denotes the probability that a cancer pixel is
observed as a non-cancer pixel. We count the frequency of each instance in training
data. Then we divide these frequencies with the total sample size to obtain the
estimation of the above four likelihoods. For instance, if the case y D 1j D �1
(which means the case that a cancer pixel is observed as a non-cancer pixel by
initial algorithm without incorporating spatial information) happens 30 times, and
the total number of computed pixel is 200, then the likelihood probability L.y D
1j D �1/ D 30

200
D 0:15.
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7 Data Experiment

7.1 Model Parameter Estimations Using Training Data

First, we use the MPL method discussed in Sect. 6.1 to estimate the parameter
J in the Ising model using formula (9). To compute this, we consider the class
label configuration for all pixels and their neighboring relations. Figure 6 shows
the true configuration of training data class labels. The blue pixels are cancer
pixels (Xi D �1). Red pixels are non-cancer pixels (Xi D C1). Green pixels are
margin blank space. There are 634 valid pixels for training data shown in Fig. 7.
Plugging in values for training data to formula (8), (9) and using the one dimensional
optimization method, we obtained the result that the PL.X/ is maximized when
J D 1:0266 (Fig. 8). Therefore, the MPL estimation value for J is 1:0266. Hence,
for the experiment IMS data we use here, the priors’ ratio in acceptance probability
for MCMC sampling in formula (3) can be written as:

P. 0/
P./

D expŒ�2J.d 0 � d /� D expŒ�2 � 1:0266.d 0 � d /�: (10)

Second, we use the idea discussed in Sect. 6.2 to estimate the likelihood. We
count the frequencies of four cases happening in selected training data computed
by the initial algorithm: the case that a cancer pixel is classified as a cancer pixel
[corresponding to L.y D �1j D �1/]; the case that a cancer pixel is classified
as a non-cancer pixel [corresponding to L.y D 1j D �1/]; the case that a non-
cancer pixel is classified as a cancer pixel [corresponding to L.y D �1j D 1/];
and the case that a non-cancer pixel classified as a non-cancer pixel [corresponding
to L.y D 1j D 1/]. For example, we selected two round areas in training data, 323
IMS data pixels in total. According to the classification result by the initial algorithm
[16] which did not incorporate spatial information, 122 cancer pixels are classified
as non-cancer pixels, and the likelihood for this case is L.y D 1j D �1/ D 37

323
D

Fig. 7 True configuration of
training data class labels: the
blue pixels are cancer pixels.
Red pixels are non-cancer
pixels. Green pixels are
margin blank space. This
configuration can be used to
estimate parameter J in the
Ising MRF model using MPL
method discussed in Sect. 6.1
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Fig. 8 When J D 1:0266,
formula (8) for training data
takes maximum. Therefore,
J D 1:0266 is the estimated
value for corresponding
parameter of Ising MRF
priors’ ratio in formula (5)

1.025
−32.5418

−32.5418

−32.5418

−32.5418

−32.5418

−32.5417

−32.5417

1.0255 1.026 1.0265 1.027 1.0275

0:1146. Here are the likelihoods we computed from training data using the initial
algorithm before optimization:

8̂̂
ˆ̂<
ˆ̂̂̂:

L.y D �1j D �1/ D 122
323

D 0:3777;

L.y D 1j D �1/ D 37
323

D 0:1146;

L.y D �1j D 1/ D 130
323

D 0:4025;

L.y D 1j D 1/ D 34
323

D 0:1053:

(11)

7.2 Computation and Results on Test Data

We already estimated prior and likelihood for the acceptance probability in for-
mula (3). Now we can start the MCMC simulation discussed in Sect. 5 for test
data to estimate its true classification  with its observed classification y, which
is first computed by the initial algorithm that didn’t consider spatial information
for IMS data. The initial algorithm we use here is modified from the MRA method
for IMS proposed by Xiong and Hong in 2015 [16], which didn’t incorporate IMS
data spatial information. Usually, in order for the MRA method to obtain high
classification accuracy, there should be ten feature variables selected. Here, to leave
some potential for optimization, we only select three feature variables so that the
classification accuracy turns out to be 86%. We take this classification result as
the initial classification rate. Together with the improved results, they are shown in
Fig. 9. The acceptance probability in MCMC simulation for test data is

˛Œ. 0jy/j. jy/� D min

�
1;

f . 0jy/
f . jy/

�
D min

�
1;

L.yj 0/P. 0/
L.yj/P./

�
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Fig. 9 (Top left) Classification result using an algorithm without incorporating spatial information.
The black pixels (�1 in Ising MRF) are classified as cancer pixels and white pixels (+1 in
Ising MRF) are classified as non-cancer pixels. (Top right) Classification result of optimized
algorithm using the MCMC-MRF to incorporate spatial information. Lots of misclassifications
have disappeared. (Down left) The classification accuracy for selected test area using an initial
algorithm without incorporating spatial information is only 86.2385 %. (Down right) The opti-
mized classification accuracy for the selected test area using the MCMC-MRF to incorporate
spatial information is improved to 92.6606 %

D min

8̂<
:̂1;

Q
m;n

L.yj 0/Q
m;n

L.yj/ expŒ�2 � 1:0266.d 0 � d /�

9>=
>; : (12)

The value of likelihood L.ym;nj 0
m;n/ is estimated in formula (11). Then we follow the

MCMC simulation steps described in Algorithm 1. We start with initial estimation
�0 D y. Then propose a change of one pixel’s class estimation; generate a uniform
random number, and compare it with acceptance probability in formula (12) to
determine whether accept this proposal or not. We iterate this process for a certain
number of times until it converges. Afterwards, we gather statistics of the simulated
data to compute the posterior probability f .m;n D �1jym;n/ for each pixel. Then set
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0.5 as the probability threshold. If f .m;n D �1jym;n/ > 0:5, this means pixel Xm;n

has a higher chance to be cancer and we classify it as a cancer pixel. Otherwise,
we classify Xm;n as a non-cancer pixel. Figure 9 shows the result before and after
applying Algorithm 1. We can see the classification accuracy is improved from
86.2385 % to 92.6606 %.

In the computation process above, the neighborhood system in the Ising model
prior is defined as a 4-points neighborhood system. That is to say, for site .i; j/ the
neighborhood is

@.i; j/ D f.i � 1; j/; .i C 1; j/; .i; j � 1/; .i; j C 1/g: (13)

Only the top, bottom, left, and right adjacent pixels are considered to be
neighboring pixels in 4-point neighborhood system. However, it is more reasonable
to also consider diagonally adjacent pixels as neighboring pixels because they also
have impacts to the pixel at site .i; j/. Therefore, we can define the neighborhood for
site .i; j/ in an 8-point neighborhood system (Fig. 10) as

@.i; j/ D f.i � 1; j/; .i C 1; j/; .i; j � 1/; .i; j C 1/; .i � 1; j � 1/; .i � 1; j C 1/;

.i C 1; j � 1/; .i C 1; j C 1/g: (14)

After we modified the definition of neighborhood system in the Ising MRF
prior from a 4-point neighborhood to an 8-point neighborhood, we apply the
MCMC simulation described in Algorithm 1 to test the performance again. The
result shows the performance under the 8-points neighborhood assumption is
better than the one under the 4-point neighborhood. The classification accuracy is
improved to 94.9541 %. This shows that a more realistic definition of neighborhood
system, which describes the spatial impacts between cancel cells, leads to a better
classification result (Fig. 11).

Fig. 10 4-points neighborhood system and 8-points neighborhood system in Ising MRF. As left
figure shows, in 4-points neighborhood system, only up, down, left, right adjacent green pixels
are considered to be neighboring to pixel X. But in 8-points neighborhood system as shown in the
right figure, the diagonal adjacent pixels are also considered as neighboring to X
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Fig. 11 Classification result using the 8-point neighborhood. (Top left) The initial classification
result before optimization using an algorithm without incorporating spatial information. The black
pixels (�1 in Ising MRF) are classified as cancer pixels and white pixels (C1 in Ising MRF)
are classified as non-cancer pixels. (Top right) Classification result of optimized algorithm using
the MRF-MCMC to incorporate spatial information with the 8-point neighborhood system. (Down
left) The classification accuracy for selected test area before optimization is only 86.2385 %. (Down
right) The optimized classification accuracy for selected test area using the 8-points neighborhood
MRF is improved to 94.9541 %, better than the accuracy under the 4-point neighborhood

To take it one step further, we can define an even higher order neighborhood
system for the Ising MRF prior. Because in reality, not only do the directly adjacent
cells have impact on the surrounding central cell, but the cells close by (while are
not directly adjacent) also impact on the central cell, even though the impacts could
be weaker. Therefore, it is more reasonable to consider neighborhoods like Fig. 12
shows: the closest points are 1st order neighboring points; the second closest points
are 2nd order neighboring points, etc. Then the Ising MRF prior probability for nth
order neighborhood system is:
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P.x/ / 1

Z
exp

0
@ˇX

i�j

xixj

1
A / 1

Z
exp

0
@c1

X
i1�j1

xi1xj1 C : : :C cn

X
in�jn

xin xjn

1
A

/ 1

Z
expŒ�2J.c1dx;lD1 C : : :C cndx;lDn/�; (15)

where dx;lDi is the number of disagree edges between the ith order neighboring
pixels and the central pixel, cn is the impact coefficient from nth neighboring pixels.
It is reasonable to assume that further pixels have less impact. Therefore, Cn is
defined as inversely proportional to the Euclidean distance:

cn / 1

D.xin ; xjn/
: (16)

Here we define the 5th-order neighborhood system, as shown in Fig. 12. Then, we
plug formula (15), formula (16) to the acceptance probability in formula 3 to update
the corresponding computation in Algorithm 1 and retest the model on test data. It
turns out that the result is even better than the 8-point neighborhood assumption.
As shown in Fig. 13, the classification accuracy is improved to 95.4128 %, better
than the ones using the 1st order 4-point and 8-point neighborhood systems. This
once again shows that the more realistic the neighborhood system definition, which
describes the spatial interactions between different areas in cancer tissue more
precisely, the better classification result we can realize.

Fig. 12 (Left) The 5th-order neighborhood system. The closest pixels to X in the figure are the
1st order pixels. The furthest pixels of X in this figure are the 5th order pixels. (Right) The impact
between neighboring pixels is defined in formula (15), inversely proportional to their Euclidean
distance. In other words, the closer the pixel, the stronger the impact, and the further pixels have
weaker impact on the central pixel
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8 Conclusion and Remarks

The main idea of this work is to use MRF as prior knowledge in sampling to
incorporate the spatial relationships between different parts of cancer tissue, and
using the MCMC technique to estimate the true classification based on the observed
classification (initial classification before optimization) by approximating the prob-
ability distribution of true classification. The MCMC-MRF model parameters are
estimated using training data and the model is then tested using another data
set. The data experiment shows that this method can improve the classification
accuracy by more than 6 % compared with traditional IMS data algorithm like PCA,
SVM, and MRA method that don’t incorporate spatial information. Also, the test

Fig. 13 Comparison of classification result of the 5th-order neighborhood system before and after
the MRF-MCMC optimization. (Top left) The initial classification result before optimization. (Top
right) Classification result after the MRF-MCMC optimization to incorporate spatial information
with the 5th-order neighborhood system. (Down left) The classification accuracy for the selected
test area before optimization is only 86.2385 %. (Down right) The optimized classification
accuracy for the selected test area using the 5th-order neighborhood MRF has been improved
to 95.4128 %, better than the accuracy rate under the 1st order neighborhood system of 4-point or
8-point neighborhood
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result shows that the more realistic we define the neighborhood which precisely
describes the interactions mechanism between different parts in cancer tissue, the
better classification result we can obtain. Future work can be considered in three
aspects. First, we need to consider faster computing methods, either coding-wise
or mathematical algorithm-wise, since we experienced the time consuming of this
MCMC-MRF simulation during the test, especially when the neighborhood system
is defined as high order. Second, we can apply some statistical analysis to the
simulation result to obtain variables such as confidence interval, standard deviation,
so that we will have a better evaluation of the simulation. Instead of getting just one
class label for each pixel, we can obtain more information using statistical analysis
to the simulated data. Finally, we can consider defining a more complicated and
more precise neighborhood system with impact coefficients estimated using more
training data so that the model can describe the reality even better (Fig. 13).

Acknowledgements The authors would like to thank the anonymous referee for valuable
suggestions on the paper. D. Hong was partially supported by the Beijing High-Caliber Overseas
Talents Program and North China University of Technology, Beijing, China. We are also grateful
to Vanderbilt Mass Spectrometry Research Center for providing us IMS data in the study.

References

1. Alexandrov, T., & Kobarg, J. H. (2011). Efficient spatial segmentation of large imaging mass
spectrometry datasets with spatially aware clustering. Bioinformatics, 27(13), i230–i238

2. Aykroyd, R. G., & Zimeras, S. (1999). Inhomogeneous prior models for image reconstruction.
Journal of American Statistical Association (JASA), 94(447), 934–946.

3. Bouman, C., Sauer, K., & Saquib, S. (1995). Markov random fields and stochastic image
models. In IEEE International Conference on Image Processing.

4. Chen, S., Hong, D., & Shyr, Y. (2007). Wavelet-based procedures for proteomic MS data
processing. Computational Statistics and Data Analysis, 52, 211–220.

5. Chen, S., Li, M., Hong, D., Billheimer, D., Li, H., Xu, B., et al. (2009). A novel comprehensive
wave-form MS data processing method. Bioinformatics, 25(6), 808–814.

6. de Plas, R. V., De Moor, B., & Waelkens, E. (2007). Imaging mass spectrometry based
exploration of biochemical tissue composition using peak intensity weighted PCA. Life Science
Systems and Applications Workshop, 2007. LISA 2007. IEEE/NIH (pp. 209–212).

7. Geman, S., & Graffigne, C. (2011). Markov random field image models and their applications
to computer vision. Proceedings of the International Congress of Mathematicians, 4(5),
1496–1517.

8. Gerhard, M., Deininger, S., & Schleif, F. (2007). Statistical classification and visualization of
MALDI imaging data. Proceedings of the 20th IEEE International Symposium on Computer-
Based Medical Systems (CBMS 2007), pp. 403–405.

9. Hong, D., & Zhang, F. (2010) Weighted elastic net model for mass spectrometry imaging
processing. Mathematical Modelling of Natural Phenomena, 5(3), 115–133.

10. Liang, J., Hong, D., Zhang, F., & Zou, J. (2015). IMSmining: A tool for imaging mass spec-
trometry data biomarker selection and classification. In R. N. Mohapatra, D. R. Chowdhury,
& D. Giri (Eds.), Springer Proceedings in Mathematics & Statistics (Vol. 139, pp.155–162).
New York: Springer.

11. Lieb, E., Schultz, T., & Mattis, D. (1964). Two-dimensional Ising model as a soluble problem
of many fermions. Reviews of Modern Physics, 36, 856–871.



An MCMC-MRF Algorithm for Incorporating Spatial Information in IMS. . . 99

12. Rohner, T., Staab, D., & Stoeckli, M. (2005). MALDI mass spectrometric imaging of biological
tissue sections. Mechanisms of Ageing and Development, 126(1), 177–185.

13. Rozanov, Y. (1982). Markov random fields. New York: Springer.
14. Van de Plas, R., Yang, J., Spraggins, J., & Caprioli, R. M. (2015). Image fusion of mass

spectrometry and microscopy: a multimodality paradigm for molecular tissue mapping. Nature
Methods, 12, 366–372.

15. Wang, L., Liu, J., & Li, S. (2000). MRF parameter estimation by MCMC method. Pattern
Recognition, 33(11), 1919–1925.

16. Xiong, L., & Hong, D. (2015). Multi-resolution analysis method for IMS data biomarker
selection and classification. British Journal of Mathematics and Computer Science, 5(1),
64–80.

17. Zhang, F., & Hong, D. (2011). Elastic net-based framework for imaging mass spectrometry
data biomarker selection and classification. Statistics in Medicine, 30, 753–768.



Mass Spectrometry Analysis Using
MALDIquant

Sebastian Gibb and Korbinian Strimmer

1 Introduction

Mass Spectrometry (MS), a high-throughput technology commonly used in pro-
teomics, enables the measurement of the abundance of proteins, metabolites,
peptides, and amino acids in biological samples. The study of changes in protein
expression across subgroups of samples and through time provides valuable insights
into cellular mechanisms and offers a means to identify relevant biomarkers, e.g., to
distinguish among tissue types, or for predicting health status. In practice, however,
there still remain many analytic and computational challenges to be addressed,
especially in clinical diagnostics [32]. Among these challenges the availability
of open and easy-to-extend processing and analysis software is highly important
[1, 34].

Here, we present MALDIquant [21], a complete open-source analysis pipeline
for the R platform [48]. In the first half of this chapter we describe the methodology
implemented and available in MALDIquant. In the second half we illustrate the
versatility of MALDIquant by application to an experimental data set, showing,
how raw intensity measurements are preprocessed and how peaks relevant for a
specific outcome can be identified.
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Current documentation of specific version of MALDIquant can be found
on its homepage at http://strimmerlab.org/software/maldiquant/ where we also
provide instructions for installing the software. In addition, we provide a number
of example R scripts on the MALDIquant homepage. Direct download of the
MALDIquant software is also possible from the CRAN server at http://cran.r-
project.org/package=MALDIquant.

2 Methodology Available in MALDIquant

2.1 General Workflow

The purpose of MALDIquant is to provide a complete workflow to facilitate the
complex preprocessing tasks needed to convert raw two-dimensional MS data, as
generated, for example, by MALDI or SELDI instruments, into a matrix of feature
intensities required for high-level analysis. A typical workflow is depicted in Fig. 1.

Each analysis with MALDIquant consists of all or some of the following steps
(see also [43, 45] for related analysis pipelines). First, the raw data is imported
into the R environment. Subsequently, the data are smoothed to remove noise and
also transformed for variance stabilization. Next, to remove chemical background
noise a baseline correction is applied. This is followed by a calibration step to allow
comparison of intensity values across different baseline-corrected spectra. As a next
step a peak detection algorithm is employed to identify potential features and also
to reduce the dimensionality of the data. After peaks have been identified a peak

Raw Data Data Import

MALDIquantForeign

Smoothing and
Transformation

MALDIquant

Baseline Correction

Intensity Calibration

Peak Detection

Peak Alignment

Peak Binning

Feature Matrix Post Processing

Result

Fig. 1 Preprocessing workflow for MS data using MALDIquantForeign and MALDIquant

http://strimmerlab.org/software/maldiquant/
http://cran.r-project.org/package=MALDIquant
http://cran.r-project.org/package=MALDIquant
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alignment procedure is applied as the mass-to-charge ratios (m/z) typically differ
across different measurements and need to be adjusted accordingly. Finally, after
feature binning an intensity matrix is produced that can be used as starting point for
further statistical analysis, for example, for variable selection or classification.

In the following subsections we discuss each of these steps in more detail.

2.2 Import of Raw Data

A prerequisite of any analysis is to import the raw data into the R environ-
ment. Unfortunately, nearly every vendor of mass spectrometry machinery has
its own native and often proprietary data format. This complicates the exchange
of experimental data between laboratories, the use of analysis software, and the
comparison of results. Fortunately, there is now much effort to create generic and
open formats, such as mzXML [46] and its successor mzML [39] or imzML [54] for
Mass Spectrometry Imaging (MSI) data. Nevertheless, the support of these formats
is still limited and often conversion is needed to get the data into a suitable format
for subsequent analysis [11].

Importing of raw data in MALDIquant is performed by its sister R package
MALDIquantForeign. It offers import routines for numerous native and public
data formats. In addition to the open XML formats (mzXML, mzML) it supports
Ciphergen XML, ASCII, CSV, NetCDF, and Bruker Daltonics *flex Series files. It
can also read MSI formats like imzML and ANALYZE 7.5 [49].

A very useful feature of MALDIquantForeign is that it reads and traverses
whole directory trees containing supported file formats so that simultaneous import
of many spectra is straightforward. Furthermore,MALDIquantForeign allows to
import data from remote resources so the spectral data can be read over an Internet
connection from a website or database.

After importing the raw spectra an important step is quality control. This includes
checking the mass range, the length of each spectra, and also visual exploration
of spectra to find and remove potentially defective measurements. MALDIquant
provides functions to facilitate this often neglected task.

2.3 Intensity Transformation and Smoothing

The raw data obtained from mass spectrometry experiments are counts of ionized
molecules, with intensity values approximately following a Poisson distribution
[17, 56]. Consequently, the variance depends on the mean, as mean and variance
are identical for a Poisson distribution. However, by applying a square root transfor-
mation (f .x/ D p

x) we can convert the Poisson distributed data to approximately
normal data, with constant variance independent of mean, which is an important
requirement for many statistical tests [47]. In the preprocessing noise models other
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than the Poisson may be also assumed, which lead to different variance-stabilizing
functions such as the logarithmic transformation [13, 61]. These can be easily
applied in MALDIquant as well.

Subsequently, the transformed spectral data is smoothed to reduce small and
high-frequent variations and noise. For this purpose MALDIquant offers the
moving average smoother and the Savitzky–Golay-filter [53]. The latter is based
on polynomial regressions in a moving window. In contrast to the moving average,
the Savitzky–Golay filter preserves the shape of the local maxima.

Note that both algorithms require the specification of window size, which
according to Bromba and Ziegler [9] should be chosen to be smaller than twice
the Full Width at Half Maximum (FWHM) of the peaks.

2.4 Baseline Correction

The elevation of the intensity values in a typical Matrix-Assisted Laser
Desorption/Ionization—Time-of-Flight Mass Spectrometer (MALDI-TOF)
spectrum is called baseline and is caused by chemical noise such as matrix-effects
and pollution. It is recommended to remove these background effects to reduce their
influence in quantification of the peak intensities.

In the last few years many algorithms to adjust for the baseline have been
developed, ranging from simple methods like the subtraction of the absolute
minimum [20] or the moving minimum or median [38] to more elaborate methods
such as fitting a LOWESS curve, a spline or an exponential function against the
moving minima, respectively, median values [25, 26, 33, 37, 61, 69]. Other authors
prefer morphological filters such as TopHat [52], iterative methods as the Statistics-
sensitive Non-linear Iterative Peak-clipping algorithm (SNIP) [50], or the convex
hull approach [36].

Unfortunately, there is no automatic way to select among the available pro-
cedures to find the baseline correction method that is most suitable for a given
spectrum at hand. Instead, it is recommended to investigate multiple baseline
estimations by visual inspection [69]. As shown in Fig. 2 the algorithms can indeed
differ substantially.
MALDIquant provides three complex baseline correction algorithms that have

been selected for inclusion in MALDIquant because of their favorable properties,
such as respecting peak form and non-negativity of intensity values:

1. The convex hull algorithm [3] doesn’t need a tuning parameter and is often
very effective to find the baseline. Unfortunately, for concave matrix-effects as
common in MALDI-TOF spectra this algorithm cannot be applied—see Fig. 2b
(m=z 
 1500Da).

2. TopHat [23, 65] is a morphological filter combining a moving minimum (erosion
filter) followed by a moving maximum (dilation filter). In contrast to the convex
hull approach it has an additional tuning parameter, the window size of the
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Pankreas_HB_L_061019_G10.M19
(a) (b)

(c) (d)
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Fig. 2 Estimated baselines for a raw MALDI-TOF spectrum from Fiedler et al. [18]. The
following algorithms were applied: (a) moving median, (b) convex hull, (c) TopHat, (d) SNIP

moving window, that controls the smoothness of the estimated baseline. The
narrower the window the more of the baseline is removed but also of the peak
heights. A wider window will preserve the peak intensities and produce a
smoother baseline but will also cause some local background variation to remain
(Fig. 2c).

3. The default baseline correction algorithm in MALDIquant is SNIP [50].
Essentially, this is a local window-based algorithm in which a baseline is
reconstructed by replacing the intensities in a window by the mean of the
surrounding points, if the mean is smaller than the local intensity, with window
size decreasing iteratively starting from a specified upper limit [42].

In addition to the above MALDIquant also supports the moving-median algo-
rithm (Fig. 2a) which is commonly used in the literature but may lead to negative
intensity values after baseline subtraction.

2.5 Intensity Calibration

The intensity values in mass spectrometry data represent the relative amount of
analytes, such as peptides. The measured intensity strongly depends on preanalytical
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and environmental factors like sample collection, sample storing, room temperature,
air humidity, crystallization, etc. [4, 31, 32].

Further confounders are introduced by the so-called batch effects. These are
systematical differences that hide the true biological effect and that are caused by
different experimental conditions, for instance, a different preanalytical processing,
measurements on different days by different operators in different laboratories on
different devices [24, 27, 31].

The systematic errors can be stronger than the real biological effect, and are
best minimized already at the stage of data acquisition by strictly adhering to a
standardized preanalytical and experimental protocol [4].

Note that unlike in other omics data, such as gene expression data, batch effects
and other systematic errors can be the source of shifts both on the x-axis (m/z
values) and on the y-axis (intensity values). Hence, to ensure the validity of any
subsequent statistical analysis, great care must be taken to address both of these
shifts in preprocessing, by intensity calibration (often called normalization) and by
peak alignment/warping (see also Sect. 2.7).

Methods to calibrate peak intensities can be divided into local and global
approaches [41]. In a local calibration each single spectrum is calibrated on its own,
by matching a specified characteristic such as the median, the mean, or the Total Ion
Current (TIC) [7, 10, 41]. In contrast, global approaches use information across
multiple spectra, e.g., employing linear regression normalization [10], quantile
normalization [6], or Probabilistic Quotient Normalization (PQN) [15].
MALDIquant supports two local and one global method. Specifically, it

implements the TIC and median calibration as well as PQN. In PQN all spectra are
calibrated using the TIC calibration first. Subsequently, a median reference spectrum
is created and the intensities in all spectra are standardized using the reference
spectrum and a spectrum-specific median is calculated for each spectrum. Finally,
each spectrum is rescaled by the median of the ratios of its intensity values and that
of the reference spectrum [15].

It has been shown that applying intensity calibration is an essential step in
preprocessing [41]. Despite its simplicity TIC is often the best choice, especially
to account for effects between technical replicates [41, 55].

2.6 Peak Detection

Peak detection is a further step in processing mass spectrometry data, serving both
to identify potential relevant features and to reduce the dimensionality of the data.
MALDIquant provides the most commonly used peak detection method based

on finding local maxima [33, 44, 57, 61, 64, 70]. First a window is moved across
the spectra and local maxima are detected. Subsequently these local maxima are
compared against a noise baseline which is estimated by the Median Absolute
Deviation (MAD) or alternatively Friedman’s SuperSmoother [19]. If a local
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Fig. 3 Detail view of a MALDI-TOF spectrum from Fiedler et al. [18]. Local maxima are marked
with points (red: rejected maxima, green: peaks). The blue line represents the estimated noise
baseline as estimated by MAD

maximum is above a given Signal-to-Noise Ratio (SNR) it is considered a peak,
whereas local maxima below the SNR threshold are discarded (Fig. 3).

Some authors advocate peak detection methods based on wavelets [16, 30]. These
methods are implemented in the Bioconductor R packages MassSpecWavelet
and xcms [57] and thus are readily available if needed.

2.7 Peak Alignment

As already noted above in Sect. 2.5 not only the intensities but also the m/z values
differ across spectra, as result of the many possible sources of variation in the
acquisition of mass spectrometry data. Methods to recalibrate the m/z values of the
spectra are referred to as peak alignment or warping.

A simple approach is the Correlation Optimized Warping (COW) algorithm
[43, 66, 67]. COW is based on pairwise comparisons of spectra and maximizes the
correlation to find an optimal shift. The advantage of this approach is that correlation
is fast to compute and with the use of a reference spectrum the method is also
applicable to simultaneous alignment of multiple spectra. However, in actual data
the location shifts are typically of a nonlinear nature [25], thus methods based on
global linear shifts will often be ineffective in achieving an optimal alignment. A
possible workaround is to divide the spectrum into several parts and perform local
linear alignment instead.
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An alternative, and much more flexible approach, is Dynamic Time Warping
(DTW) which is based on dynamic programming [12, 29, 62, 63]. DTW is a pairwise
alignment approach that is guaranteed to find the optimal alignment by comparing
each point in the first spectrum to every other point in the second spectrum,
and optimizing a distance score. Dynamic programming techniques are used to
substantially shortcut computational time by means of an underlying decision tree,
[e.g., 51]. Still, DTW is a computationally very expensive algorithm that also
requires substantial computer memory, especially for multiple alignment.

As a compromise, recently the Parametric Time Warping (PTW) approach has
been suggested [5, 25, 28, 35, 68] where polynomial functions are used to stretch
or shrink a spectrum to increase the similarity between them. PTW is a very
fast methods that is also able to correct for nonlinear shifts. As in all previously
mentioned method a reference spectrum is necessary for multiple alignment. Note
that the use of a reference spectrum requires prior calibration of the intensity
values [58].

Finally, another simple strategy to align peaks is based on clustering, respec-
tively, creation of bins of similar m/z values [61, 64, 71]. This is a fast and easy
to implement approach, and in contrast to DTW, COW, and PTW it offers the
possibility to align all spectra simultaneously. However, the clustering approach is
valid only when there are relatively small shifts around the true peak position, hence
this approach is only applicable if there are only mild distortions in the m/z values.

In MALDIquant we use nonlinear warping of peaks [25, 68]. First we align the
m/z values of the peaks using PTW and subsequently we employ binning to identify
common peak positions across spectra. Note that in contrast to the standard version
of PTW we work on the peak level rather than on the whole spectrum.

Our peak alignment algorithm in MALDIquant starts by looking for stable
peaks, which are defined as high peaks in defined, coarse m/z ranges that are
present in most spectra. The m/z of the peaks is averaged and used as reference
peak list (also known as anchor or landmark peaks—see Wang et al. [67]). Next,
MALDIquant computes a LOcally WEighted Scatterplot Smoothing (LOWESS)
curve or polynomial-based function to warp the peaks of each spectra against the
reference peaks (Fig. 4). As not all reference peaks are found in each spectrum, the
number of matched peaks out of all reference peaks is reported by MALDIquant
for information.

Due to using the peaks instead of the whole spectral data the alignment approach
implemented in MALDIquant is much faster than traditional PTW, still the results
are comparable (Fig. 5). Another important advantage of our approach is that only
m/z values are used for calibration, which implies that our approach does not require
perfectly calibrated intensity values as is the case for full spectrum-based alignment
methods.

After performing alignment, peak positions of identical features across spectra
will become very similar but in general not numerically identical. Thus, as final step
grouping of m/z values into bins is needed. For this purpose MALDIquant uses the
following simple clustering algorithm: The m/z values are sorted in ascending order
and split recursively at the largest gap until all m/z values in the resulting bins are
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Fig. 4 Example warping function for four different peak lists. The x-axis represents the peak
position and the y-axis the difference from the reference peak list. The red line shows the calculated
warping function. The number of matched peaks out of all reference peaks is also shown for each
spectrum

from different samples and their individual m/z values are in a small user-defined
tolerance range around their mean. The latter becomes the new m/z value for all
corresponding peaks in the associated bin.

2.8 Subsequent Statistical Analysis

With peak alignment the task of MALDIquant to transform raw mass spectrometry
data into a matrix containing intensity measurements of potentially useful m/z values
is complete.

Subsequently, the resulting feature intensity matrix can be used with any
preferred univariate or multivariate analysis technique, e.g., to identify peaks that
are useful for predicting a desired outcome, or simply to rank features with regard
to group separation, e.g., [22].

In the following section we will describe in detail how such an analysis may be
conducted. For more examples please see the MALDIquant homepage.
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Fig. 5 Comparison of two peaks (top row and bottom row) present in four MALDI-TOF spectra
from Fiedler et al. [18]. (a, d) unaligned; (b, e) warped using the PTW algorithm; (c, f) warped
using MALDIquant’s peak based PTW

3 Case Study

3.1 Dataset

For illustration how to use MALDIquant in practical data analysis we now show in
detail how to use the software by application to the mass spectromety data published
in Fiedler et al. [18]. The aim of this study was to determine proteomic biomarkers
to discriminate patients with pancreas cancer from healthy persons. As part of their
study the authors collected serum samples of 40 patients with diagnosed pancreas
cancer as well as 40 healthy controls as training dataset. For each sample four
technical replicates were obtained. These 320 samples were processed following a
standardized protocol for serum peptidomics and subsequently analyzed in a linear
MALDI-TOF mass spectrometer. For details on the experimental setup we refer to
the original study.

Half of the patients and controls were recruited at the University Hospital
Heidelberg and the University Hospital Leipzig. Due to the presence of strong batch
effects we restrict ourselves to the samples from Heidelberg, leading to a raw data set
containing 160 spectra for 40 probands, of which 20 were diagnosed with pancreatic
cancer and 20 are healthy controls. Fiedler et al. [18] found marker peaks at m/z
3884 (double charged) and 7767 (single charged) and correspondingly suggested
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Platelet Factor 4 (PF4) as potential marker, arguing that PF4 is down-regulated in
blood serum of patients with pancreatic cancer.

3.2 Preparations

Prior to preprocessing the data we first need to set up our R environment by install
the necessary packages, namely MALDIquant [21], MALDIquantForeign,
sda, and crossval, and also download the data set:

install.packages(c("MALDIquant", "MALDIquantForeign",
"sda", "crossval"))

## load packages
library("MALDIquant")

Loading required package: methods
This is MALDIquant version 1.13 Quantitative Analysis

of Mass Spectrometry Data See ’?MALDIquant’ for more
information about this package.

library("MALDIquantForeign")

## download the raw spectra data (approx. 90 MB)
githubUrl <-
paste0("https://raw.githubusercontent.com/sgibb/",

"MALDIquantExamples/master/inst/",
"extdata/fiedler2009/")

downloader::download(paste0(githubUrl,
"spectra.tar.gz"), "fiedler2009spectra.tar.gz")

## download metadata
downloader::download(paste0(githubUrl,

"spectra_info.csv"), "fiedler2009info.csv")

3.3 Import Raw Data and Quality Control

The first step in the analysis comprises importing the raw data into the R environ-
ment. As the raw data set contains both the samples from Heidelberg and Leipzig
we filter out the samples from Leipzig, so that our final data set only contains the
Heidelberg patients and controls:
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## import the spectra
spectra <- import("fiedler2009spectra.tar.gz",
verbose=FALSE)

## import metadata
spectra.info <- read.csv("fiedler2009info.csv")

## keep data from Heidelberg
isHeidelberg <- spectra.info$location == "heidelberg"

spectra <- spectra[isHeidelberg]
spectra.info <- spectra.info[isHeidelberg,]

After importing the raw data it is recommend to perform basic checks for quality
control. Below, we test whether all spectra contain the same number of data points,
are not empty, and are regular, i.e., whether the differences between subsequent m/z
values are constant:

table(lengths(spectra))

42388
160

any(sapply(spectra, isEmpty))

[1] FALSE

all(sapply(spectra, isRegular))

[1] TRUE

Next, we ensure that all spectra cover the same m/z range. The “trim” function
automatically determines a suitable common m/z range if it is called without any
additional arguments:

spectra <- trim(spectra)

Finally, it is advised to inspect the spectra visually to discover any obviously
distorted measurements. Here, for reasons of space we only plot a single spec-
trum (Fig. 6):

plot(spectra[[47]], sub="")
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Fig. 6 Example of a raw, uncalibrated mass spectrum

3.4 Transformation and Smoothing

Next, we perform variance stabilization by applying the square root transformation
to the raw data, and subsequently use a 41 point Savitzky–Golay-Filter [53] to
smooth the spectra:

spectra <- transformIntensity(spectra, method="sqrt")

spectra <- smoothIntensity(spectra, method=
"SavitzkyGolay",halfWindowSize=20)

3.5 Baseline Correction

In the next step we address the problem of matrix-effects and chemical noise that
result in an elevated baseline. In our analysis we use the SNIP algorithm [50] to
estimate the baseline for each spectrum. Subsequently, the estimated baseline is
subtracted to yield baseline-adjusted spectra (Figs. 7, 8, and 9):

baseline <- estimateBaseline(spectra[[1]], method="SNIP",
iterations=150)

plot(spectra[[1]], sub="")
lines(baseline, col="red", lwd=2)
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Fig. 7 Baseline estimated using the SNIP method (red line)
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Fig. 8 Mass spectrum after baseline correction

spectra <- removeBaseline(spectra, method="SNIP",
iterations=150)

plot(spectra[[1]], sub="")

3.6 Intensity Calibration and Alignment

After baseline correction we calibrate each spectrum by equalizing the TIC across
spectra. After normalizing the intensities we also need to adjust the mass values.
This is done by the peak- based warping algorithm implemented in MALDIquant.
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Fig. 9 Thresholds based on signal to noise ratio (SNR): SNR=1 (red line) and SNR=2 (blue line)

In the example code the function alignSpectra acts as a simple wrapper around
more complicated procedures. For a finer control of the underlying procedures the
function determineWarpingFunctionsmay be used alternatively:

spectra <- calibrateIntensity(spectra, method="TIC")
spectra <- alignSpectra(spectra)

Next, we average the technical replicates before we search for peaks and update
our meta information accordingly:

avgSpectra <-
averageMassSpectra(spectra,
labels=spectra.info$patientID)

avgSpectra.info <-
spectra.info[!duplicated(spectra.info$patientID), ]

3.7 Peak Detection and Computation of Intensity Matrix

Peak detection is the crucial step to identify features and to reduce the dimension-
ality of the data. Before performing peak detection we first estimate the noise of
selected spectra to investigate suitable settings for the signal-to-noise ratio (SNR):



116 S. Gibb and K. Strimmer

4000 4200 4400 4600 4800 5000

0.
00

00
0.

00
10

0.
00

20

Pankreas_HB_L_061019_A10.A19
Pankreas_HB_L_061019_A10.A20
Pankreas_HB_L_061019_A10.B19
Pankreas_HB_L_061019_A10.B20

averaged spectrum composed of 4 MassSpectrum objects

mass

in
te

ns
ity

Fig. 10 Peaks identified above SNR=2 threshold

noise <- estimateNoise(avgSpectra[[1]])
plot(avgSpectra[[1]], xlim=c(4000, 5000), ylim=c(0,
0.002))
lines(noise, col="red") # SNR == 1
lines(noise[, 1], 2*noise[, 2], col="blue") # SNR == 2

In this case we decide to set an SNR of 2 (blue line) and then run the peak
detection algorithm (Fig. 10):

peaks <- detectPeaks(avgSpectra, SNR=2,
halfWindowSize=20)

plot(avgSpectra[[1]], xlim=c(4000, 5000), ylim=c(0,
0.002))
points(peaks[[1]], col="red", pch=4)

After the alignment the peak positions (mass) are very similar but not numerically
identical. Consequently, binning is required to achieve identity:

peaks <- binPeaks(peaks)
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In peak detection we choose a very low signal-to-noise ratio to keep as many
features as possible. Using the information about class labels we can now filter out
false positive peaks, by removing peaks that appear in less than 50 % of all spectra
in each group:

peaks <- filterPeaks(peaks, minFrequency=c(0.5, 0.5),
labels=avgSpectra.info$health,
mergeWhitelists=TRUE)

As final step in MALDIquant we create the feature intensity matrix, and for
convenience label the rows with the corresponding patient ID:

featureMatrix <- intensityMatrix(peaks, avgSpectra)
rownames(featureMatrix) <- avgSpectra.info$patientID
dim(featureMatrix)

[1] 40 166

This matrix is the final output of MALDIquant and contains the calibrated
intensity values for identified features across all spectra. It forms the basis for
higher-level statistical analysis.

3.8 Feature Ranking and Classification

The Fiedler et al. [18] data set contains class labels for each spectrum (healthy versus
cancer), hence it is natural to perform a standard classification and feature ranking
analysis. A commonly used approach is Fisher’s linear discriminant analysis (LDA),
see Mertens et al. [40] for details and applications to mass spectrometry analysis.
Many other classification approaches may also be applied, such as based on Random
Forests [8] or peak discretization [22].

Here, we use a variant of LDA implemented in the R package sda [2]. In
particular, we use diagonal discriminant analysis (DDA), a special case of LDA with
the assumption that the correlation among features (peaks) is negligible. Despite
this simplification this approach to classification is very effective, especially in high
dimensions [60]. In order to identify the most important class discriminating peaks
we use standard t-scores, which are the natural variable importance measure in
DDA.

As a first step in our analysis we therefore compute the ranking of features by
t-scores, and list the 10 top-ranking features in Table 1:
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Table 1 The ten top-ranking
peaks as identified in the
analysis

idx Score t.cancer t.control

8936:97 158:00 90:69 9:52 �9:52
4468:07 116:00 80:80 8:99 �8:99
8868:27 157:00 80:06 8:95 �8:95
4494:8 117:00 67:00 8:19 �8:19
8989:2 159:00 66:19 8:14 �8:14
5864:49 135:00 37:56 �6:13 6:13

5906:17 136:00 34:43 �5:87 5:87

2022:94 49:00 33:30 5:77 �5:77
5945:57 137:00 32:66 �5:71 5:71

1866:17 44:00 32:12 5:67 �5:67

library("sda")
colnames(featureMatrix) <-

round(as.double(colnames(featureMatrix)),2)
Ytrain <- avgSpectra.info$health
ddar <- sda.ranking(Xtrain=featureMatrix, L=Ytrain,
fdr=FALSE,diagonal=TRUE)

To illustrate that feature selection based on the above feature ranking is indeed
beneficial for subsequent analysis we apply hierarchical cluster analysis based on
the Euclidean distance first to the data set containing all features (Figs. 11 and 12):

distanceMatrix <- dist(featureMatrix, method="euclidean")

hClust <- hclust(distanceMatrix, method="complete")

plot(hClust, hang=-1)

Next, we repeat the above clustering on the data set containing only the best two
top-ranking peaks:

top <- ddar[1:2, "idx"]

distanceMatrixTop <- dist(featureMatrix[, top],
method="euclidean")

hClustTop <- hclust(distanceMatrixTop, method="complete")

plot(hClustTop, hang=-1)

As can be seen by comparison of the two trees, as a result of the feature selection
we obtain a nearly perfect split between the Heidelberg pancreas cancer samples
(labeled “HP”) and the Heidelberg control group (labeled “HC”).
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Fig. 11 Hierarchical clustering of patient samples using all features
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Fig. 12 Hierarchical clustering of patient samples using only the best two top-ranking peaks

The strong predictive capabilities of the first two discovered peaks can be further
quantified by conducting a cross-validation analysis to estimate the prediction error.
We use the crossval [59] package to perform a ten-fold cross validation using
the predictor containing only the two selected peaks:
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library("crossval")
# create a prediction function for the cross validation
predfun.dda <- function(Xtrain, Ytrain, Xtest, Ytest,

negative) {
dda.fit <- sda(Xtrain, Ytrain, diagonal=TRUE,
verbose=FALSE)
ynew <- predict(dda.fit, Xtest, verbose=FALSE)$class
return(confusionMatrix(Ytest, ynew,
negative
=negative))

}

# set seed to get reproducible results
set.seed(1234)

cv.out <- crossval(predfun.dda,
X=featureMatrix[, top],
Y=avgSpectra.info$health,
K=10, B=20,
negative="control",
verbose=FALSE)

diagnosticErrors(cv.out$stat)

acc sens spec ppv npv lor
0.9500000 0.9000000 1.0000000 1.0000000 0.9090909 Inf

As a result of the above analysis, we conclude that the identified peaks with mass
m/z 8937 and 4467 allow for the construction of a very low-dimensional predictor
function that is highly effective in separating cancer and control group with both
high accuracy and high sensitivity.

4 Conclusion

The large-scale acquisition of mass spectrometry data is becoming routine in many
experimental settings. In MALDIquant we have put together a robust R pipeline
for preprocessing these data to allow subsequent high-level statistical analysis. All
methods implemented in MALDIquant have been selected both for computational
efficiency and for biological validity. In this chapter we have given an overview over
the most commonly used procedures of MALDIquant as well as demonstrated their
application in detail.

A topic that has not been covered here is Mass Spectrometry Imaging
(MSI), which combines spectral measurements with spatial information [14].
MALDIquant also enables some simple MSI analysis, for practical examples
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in R we refer to the homepage of MALDIquant at http://strimmerlab.org/
software/maldiquant/ as well as the associated web page https://github.com/sgibb/
MALDIquantExamples/.
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Model-Based Analysis of Quantitative
Proteomics Data with Data Independent
Acquisition Mass Spectrometry

Gengbo Chen, Guo Shou Teo, Guo Ci Teo, and Hyungwon Choi

1 Introduction

Data independent acquisition (DIA) mode of mass spectrometry (MS) is a novel
analysis strategy for comprehensive collection of MS/MS data and simultaneous
quantification to overcome the limitation of the conventional data dependent
acquisition (DDA) mode of analysis [21]. In DDA, precursor ions in an MS1 scan
are sorted by intensity and, due to limited scan time between contiguous MS1 scans,
the ions of greater intensity are preferentially isolated and fragmented for sequence
identification (Fig. 1a). In each isolation window, mostly containing one peptide
ion, subsequent MS/MS scans record mass-to-charge (m/z) ratio and intensity of
fragment ions of the peptide, and this information provides clues to the most likely
amino acid sequence via database search or de novo sequencing methods [18]. An
identified peptide (with assigned sequence) is usually quantified by calculating the
area under the elution profile consisting of peak heights across contiguous MS1
scans, often termed the extracted ion chromatogram (XIC). We refer to the peak
area as “peptide intensity” hereafter. Hence DDA utilizes MS/MS data for peptide
identification of selected precursor ions, not for quantification. Following peptide
quantification, protein intensities are inferred using heuristic approaches such as
summation of peptide intensities within each protein [17].

Although DDA has been the platform of choice in the past decade, the idea
of DIA had emerged years before [13, 21]. In DIA, the mass range of interest
(e.g., 400–900 m/z) is segmented into a set of sequential windows, and MS/MS
spectra are acquired for all precursors in each window separately, yielding an
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Fig. 1 Instrumental framework and data structure in DDA versus DIA. (a) In DDA, peptide
ions with higher intensity in MS1 scans are prioritized for MS/MS fragmentation in order to
assign a peptide sequence to each precursor ion. For ions with identified peptide sequences, XICs
are traced from MS1 scans for peak area calculation (intensity), and the peptide intensities are
further summarized into a protein intensity in each sample. (b) In DIA, all precursor ions in each
isolation window are fragmented together, and thus more rich MS/MS data are produced without
the abundance bias of MS1 scans. This allows XIC extraction for individual fragments of each
peptide, allowing repeated quantification of peptides. The fragment intensity data can be rolled up
to peptide intensities, and then to protein intensities by summation in existing pipelines

unbiased set of precursors. Initially constrained by the low scan speed and resolving
power of old generation mass spectrometers, DIA implementation did not live up
to its expectation of drastic improvement in the peptide coverage and quantitative
accuracy. However, Gillet et al. [7] showed that DIA can be successfully performed
for the analysis of complex protein mixtures on a Qq-TOF AB SCIEX instrument
using a relatively large, 25 m/z-wide precursor isolation windows, termed SWATH-
MS (Fig. 1b). Subsequently, others groups have also reported alternative DIA setups
on Thermo Fisher Q Exactive mass spectrometers [6, 14].

Unlike DDA, note that MS/MS scans are performed for each isolation window
without preferential selection of precursor ions from MS1 scans. This allows for
unbiased MS/MS scans for all possible precursor ions, and elution profiles can
be constructed for a large number of fragment ions (quantification of fragments).
Bringing the source of quantification from MS data to MS/MS data is probably
the most important innovation of DIA-MS for quantitative proteomics. On the
downside, as elaborated in the next section, the specificity of fragments to their
precursor peptide ion is lost in DIA, which has to be recovered computationally.
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In hindsight, DDA can be thought of an extreme form of DIA: DDA is DIA
with a very small isolation window, where a small number of windows are
chosen for MS/MS fragmentation based on precursor intensity. As the scan speed
and measurement accuracy of MS instrument improve, the two frameworks are
nevertheless bound to converge to similar performance since preferential selection
of precursors is no longer necessary with faster scan speed.

2 Challenges in the Analysis of DIA-MS Data

While the DIA analysis presents a significant leap towards comprehensive quan-
tification of the proteome, an array of informatics challenges ironically stems
from the way DIA collects MS/MS spectra: all precursor peptide ions within each
MS1 isolation window are co-isolated and subjected to fragmentation to produce
multiplex MS/MS spectra. Therefore, it becomes a computational problem to assign
each fragment to their most likely mother peptide(s). In general, the size of an MS1
isolation window is inversely associated with the specificity of fragments to the
peptide precursors. For example, wide windows (e.g., 25 m/z in the initial form
of SWATH-MS [7]) tend to include co-eluting peptides and thus the complexity
of MS/MS is high. In contrast, small windows (4 m/z in MSX approach [6]) have
increased purity of MS/MS fragments to their parent peptide, but it requires far more
MS/MS scans within the fixed cycle time (between two MS1 scans) and reduces
scan time for MS/MS fragments in each isolation window, potentially compromising
the quality of quantitative MS/MS data.

Another important issue restraining the coverage improvement is the fact that
the current data extraction pipeline depends on existing spectral assay libraries
[7, 15], which are the records of mass-to-charge ratio (m/z) and retention time
coordinates of annotated MS/MS fragment peaks of known peptides [16]. Moreover,
given the library and the data from DIA experiments, it requires specialized data
extraction tools such as OpenSWATH [15], Skyline [11], or PeakView (AB Sciex)
to obtain final quantification tables (Fig. 2a), each of which applies different quality
scoring to ensure high-quality quantitative data. However, this not only means that
spectral assay library must be generated by additional DDA experiments on the
same or similar samples, but also that the quantification coverage of peptides in
DIA experiments is inherently limited by that of the spectral library. This critical
dependence has called for alternative ways to extract data without the dependence
on spectral assay libraries. DIA-Umpire [20] is the first tool of this kind, which
avoids library building exercise and builds its own internal library directly from
DIA data and performs targeted extraction using the resulting library (Fig. 2b).

Whether data are extracted in a library-dependent or library-free manner, extrac-
tion tools typically report >100,000 fragments per sample from tens of thousands
of peptides in the initially reported quantification table. However, not all fragment
intensities are reliable and reproducible enough for downstream statistical anal-
ysis since many of them are not consistently observed across multiple samples.
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Fig. 2 (a) In the library-dependent extraction (OpenSWATH, Skyline), DDA experiments are
performed to obtain a peptide-to-fragment map (spectral assay library) first. Next DIA experiments
are performed for the samples of interest, and XIC curves are extracted for the MS/MS fragments
from designated coordinates in the library (i.e., targeted extraction), and the final quantification
table is constructed after data normalization and cross-sample alignment. (b) Library-free extrac-
tion does not require pre-existing spectral assay library (DDA experiments). Instead, it builds its
own library internally using the pseudo peptide-to-fragment map and follows similar extraction
steps afterwards. This process tends to produce a lot more fragments per peptide than the library-
dependent extraction, since it typically includes putative peptide-fragment pairs in the pseudo map
construction (prior to database search)

Moreover, even in the data sets extracted using a comprehensive spectral library, not
all fragments assigned to the same precursor peptide are well correlated amongst
themselves. These observations suggest the need for careful quality control steps
such as outlier detection and selection of MS/MS fragments as well as careful
handling of missing data in the downstream statistical analysis.

As a remedy to address these issues, we will first describe a comprehensive data
analysis tool mapDIA [19] which implements crucial quality control procedures
and performs model-based statistical significance analysis on the filtered data
using a hierarchical Bayesian modeling approach [22]. We will then illustrate the
method in the analysis of recently published SWATH-MS dataset [8] featuring
renal cancer tumor tissues paired with healthy control tissues from six patients.
Using this data, we will demonstrate that the analysis of fragment-level intensity
data allows for improved sensitivity in detection of differentially expressed proteins
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compared to the analysis using the protein intensity data derived from fragment
intensities. We will also compare the results between a library-dependent extraction
tool (OpenSWATH [15]) and a library-free extraction tool (DIA-Umpire [20]).

3 mapDIA: Data Preprocessing and Differential
Expression Analysis

Here we introduce mapDIA with brief description of its data preprocessing and
statistical analysis method. mapDIA features three analysis modules: (1) intensity
data normalization, (2) data filtering procedures, and (3) statistical analysis. In this
work, we focus on detailed description of the statistical model and scoring method
for the selection of differentially expressed proteins, omitting the data normalization
and preprocessing modules. See Teo et al. [19] for the full details of the first two
modules.

3.1 Fragment Filtering and Selection

In the data preprocessing module, mapDIA performs a series of fragment fil-
tering/selection steps. The filtering removes outlying intensity observations and
also discard fragments that are poorly correlated with the other fragments within
each protein, ensuring fragment-to-fragment consistency of quantitative data within
each peptide and protein. All calculations are performed in log2 scale with proper
normalization steps applied to the initially extracted data.

We first define outlier fragment intensity as an observation that deviates more
than k times the standard deviation away from the median fragment intensity in
the same protein within the same sample. The default value of k is currently
2, yet this option is specified by the user and it should be set to a value large
enough to avoid removing too many values. Once this step is done, we set the
next cross-sample filtering criteria for individual fragments. For each fragment, the
correlation is calculated between the fragment and all other fragments belonging
to the same protein, and the fragment is retained for downstream analysis if the
median correlation is above a user-specified threshold. This step is designed to
remove a small proportion of fragments within each protein, since the majority of
fragments are likely to be positively correlated in each protein if the underlying
protein abundance sufficiently varied across the samples. For this reason, the default
threshold is set to a moderately large value 0.2 (modifiable through options).

The last fragment selection step imposes the final inclusion criteria based on the
number of fragments and peptides available for each protein. Since the benefit of
DIA data comes from repeated measurements for each peptide, it is recommended
to perform the statistical analysis with peptides with at least two fragments passing
the outlier and median correlation requirements described above. On the other
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hand, including too many peptides and fragments can introduce false positives in
the downstream statistical analysis. For this reason, mapDIA also allows the user
to choose the maximum number of fragments per peptide and maximum number
of peptides per protein. If there are more than a specified maximum number of
peptides or fragments, the software selects the fragments scoring the highest median
correlations. This measure prevents some proteins from having disproportionately
many data points and being more disposed to the risk of false positive differential
expression calls.

3.2 Statistical Model for Differential Expression Analysis

Using the filtered fragment intensity data, the current practice for statistical analysis
is to aggregate the intensity data up to peptide or protein intensity data [4, 7, 8, 10].
There are different ways to quantify peptides and proteins using this data, and the
most widely used approach is to sum the intensities over the top k most intense
fragments per peptide and top ` most intense peptides per protein afterwards,
following the logic of Silva et al. [17] used in the protein quantification in DDA
experiments. As mentioned earlier, the model in mapDIA can be applied to any of
the three levels of intensity data, and we will show that directly modeling fragment
intensities provides the greatest statistical power to detect change (fold changes) of
smaller magnitude in their performance comparison later.

The underlying probability model in mapDIA is an extension of the work by Wei
and Li [22], a Bayesian latent variable model with Markov random field prior. We
made two changes to their work: (1) the likelihood accounts for protein-peptide-
fragment hierarchy of the data, with most model parameters specified at the peptide
level; and (2) the Gamma likelihood with Gamma prior was replaced by Gaussian
likelihood with Gaussian-Inverse Gamma prior for the log2 intensity data. Here
we describe the model for fragment intensity data for comparison of two groups of
subjects (group A and group B), without rolling up the intensity to peptide or protein
level. Denoting the fragment intensity data as Y, the latent variable model can be
first written as

�.YjZ/ D
PY

pD1
�.ypjzp/;

where Z D .z1; : : : ; zP/ is the set of latent variables indicating differential
expression status for all proteins, and yp is the observed fragment intensity data
for protein p D 1; : : : ;P. For each protein p, zp D 1 if the protein is differentially
expressed between the two comparison groups, or zp D 0 otherwise. Under a set of
likelihood and prior (see below), the objective is to find the optimal latent states Z�
maximizing the posterior distribution of Z, i.e.,

Z� D argmax �.ZjY/:
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Here the joint prior distribution of Z is approximated by the Markov random field
model [1]

�.zp D z/ / exp

0
@�z � ˇ

X
k2@p

1fzk ¤ zg
1
A for z 2 f0; 1g;

where @p denotes the set of network neighbors of protein p on a previously known
biological network. Note that, if the network information is not utilized (ˇ D 0),
then the entire model becomes equivalent to a mixture model treating the latent
states as independent binary random variables, which we assume in this illustration.

To specify the marginal conditional likelihood �.ypjzp D z/, we first let .yA
q ; y

B
q /

and .yA
f ; y

B
f / denote fragment intensity data for peptide q or a single fragment f in

groups A and B, respectively. Then,

�.ypjzp D z/ D
Y

q2Ip

�.yA
q ; y

B
q jzp D z/

D
Y

q2Ip

Z
'.yA

q ; y
B
q jzp D z; �z/�.�z/d�z

D
Y

q2Ip

Z Y
f 2Ipq

'.yA
f ; y

B
f jzp D z; �z/�.�z/d�z:

where �.�z/ denotes the prior distribution of all model parameters for differential
expression status z, Ip and Ipq denote the peptide index set for protein p and
fragment index set for peptide q, respectively. Here '.�/ denotes the product of all
element-wise Gaussian densities, i.e.,

'.yA
f ; y

B
f jzp D 1;�1/ D

Y
g2fA;Bg

Y
s2Sg

1

�q

p
2�

exp

(
� .yfs � 	qg/

2

2�2q

)

'.yA
f ; y

B
f jzp D 0;�0/ D

Y
s2fSA;SBg

1

�q

p
2�

exp

(
� .yfs � 	q/

2

2�2q

)

where fragment f is from peptide q, �1 D f.	qA; 	qB; �
2
q /g and �0 D f.	q; �

2
q /g in

protein p.
The prior distribution for 	qg, the mean intensities in peptide q group g 2 fA;Bg

and 	q, or the mean intensities in peptide q group A and B, is conditional on the
variance parameter �2q and is the Gaussian distribution with mean 0 and variance
.�2q � V/. The hyperparameter V is set large enough (default value 1000) to render
this prior to be least subjective.



132 G. Chen et al.

	qgj�2q 	N .0; �2q � V/

	qj�2q 	N .0; �2q � V/:

The prior distribution for �2q , the variance of the all intensities in peptide q group
A and B, is the inverse gamma distribution with hyperparameters .a; b/. The
hyperparameters .a; b/ are set to the method of moments estimates of the inverse
gamma distribution based on the sample variance calculated assuming equal means
across the two groups (i.e., assuming non-differential expression).

Putting all elements of the model together, we can now derive the full closed
form expression of conditional marginal likelihoods for zp D 0 and zp D 1. For
zp D 0,

�.yA
q ; y

B
q jzp D 0/ D

Z
1

0

Z
1

�1

'.yA
q ; y

B
q j	q; �

2
q /'.	qj0; �2q V/IG .�2q ja; b/ d	qd�2q

D 1p
.nA C nB/V C 1

�.a C .nA C nB/=2/

�.a/

1

.2�/.nACnB/=2

� bah
b C 1

2

�P
y2yA

q ;yB
q

y2 � . 1
nACnBC1=V /.

P
y2yA

q ;yB
q

y/2
�iaC.nACnB/=2

where IG .�/ denotes the inverse gamma density function. Likewise, the closed
form expression for the case zp D 1,

�.yA
q ; y

B
q jzp D 1/

D
Z 1

0

Z 1

�1

Z 1

�1
'.yA

q j	qA; �
2
q /'.y

B
q j	qB; �

2
q /

� '.	qAj0; �2q V/'.	qBj0; �2q V/IG .�2q ja; b/ d	qAd	qBd�2q

D 1p
nAV C 1

1p
nBV C 1

�.a C .nA C nB/=2/
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1

.2�/.nACnB/=2

� bah
b C 1

2

�
SSqA � . 1

nAC1=V /.SqA/2 C SSqB � . 1
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�iaC.nACnB/=2
;

where SSqA D P
y2yA

q
y2, SqA D P

y2yA
q

y, SSqB D P
y2yB

q
y2, SqB D P

y2yB
q

y,

and ng D P
y2yg

q
Ify observedg is the number of observed intensities in peptide q

group g.
Notice that the probability model for the fragment intensity data can be directly

applied to the peptide intensity data or the protein intensity data derived from
the fragment intensities. For example, peptide intensity data can be considered as
fragment intensity data with a single fragment. Protein intensity can likewise be
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considered as a data with each protein containing one peptide and one fragment
only. All three types of data can be used to produce protein-specific probability
score of differential expression, as will be illustrated in Sect. 4.

3.3 Estimation

The model parameters ˚ D .�; ˇ/ are estimated by the iterative conditional
maximization (ICM) algorithm [1]:

1. Obtain an initial estimate OZ using simple two-sample t-tests.
2. Estimate ˚ by the value O̊ maximizing the pseudo-likelihood

Q
p �.zpjz.@p/; ˚/.

3. Carry out a single cycle of ICM based on the current values of OZ; O�; O̊ , to obtain
a new OZ. For p D 1; : : : ;P, update zp so as to maximize

�.zpjy; Oz.˝=p// /
2
4Y

q2Ip

�.yA
q ; y

B
q jzp; O�/

3
5�.zpjOz.@p/; O̊ /:

4. Repeat step 3 until OZ converges.

This estimation is performed for all pairwise comparisons specified by the user and
a single set of MRF coefficients is simultaneously applied to all comparisons.

3.4 Scoring of Differentially Expressed Proteins

From this model, the posterior probability of differential expression is calculated for
each protein as the statistical significance score in comparing two groups, which is
expressed as

Osp D �.zp D 1jy; Oz.˝=p//

D e O�1� ǑP
k2@p.1�Ozk/�.ypjzp D 1; Oz.˝=p//

e O�1� ǑP
k2@p.1�Ozk/�.ypjzp D 1; Oz.˝=p//C e O�0� ǑP

k2@p Ozk�.ypjzp D 0; Oz.˝=p//
:

If no gene neighbor information is utilized (ˇ D 0), then

Osp D �.zp D 1jy/ D e O�1�.ypjzp D 1/

e O�1�.ypjzp D 1/C e O�0�.ypjzp D 0/
;
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where yp denotes the fragment intensity data for protein p. Using these probability
scores, Newton et al. [12] allow computation of the Bayesian FDR associated with
each threshold s�

BFDR.s�/ D
P

Osp>s�

.1 � Osp/P
Osp>s�

1
:

4 Results

Simulation studies for the evaluation of the proposed model-based method had
already been conducted in the original mapDIA manuscript [19]. Here we illus-
trate the statistical analysis of a recently published renal cell carcinoma (RCC)
SWATH-MS data set, in which tumor and non-tumor control biopsy samples were
obtained from nine RCC patients. To avoid potential tumor heterogeneity across
histomorphological types, we chose to work with six clear cell RCC samples. In this
study, each tumor and control sample has been divided into two tubes and analyzed
twice as biological replicates. We first obtained the raw fragment intensity data from
the authors as processed by OpenSWATH [8], and also separately performed DIA-
Umpire extraction using all default parameters. In both sets of data, we verified the
correlation between replicates was 0.98 and above in all samples, and we then took
average of the fragment intensities for each sample.

4.1 Quality Control of Extracted DIA Data

Before applying the fragment filtering steps in mapDIA, the quantification table
from OpenSWATH consisted of 84,225 fragments from 12,346 peptides and 3088
proteins. A majority of peptides had six or fewer fragments due to the extraction
parameter setting, and most proteins were quantified by one to twenty peptides.
Based on our empirical observations, OpenSWATH with its default parameter
setting tends to report fewer fragments than the alternatives such as DIA-Umpire,
since the former tool applies scoring steps to select the “best” MS/MS fragments for
peptides as many as the user requests.

In the fragment filtering step of mapDIA, we applied two standard deviation
threshold for outlier removal and median correlation threshold of 0.2. Since the
statistical test will be based on paired tumor-control samples from the same
patients, we also required that the fragments be quantified in at least 4 of 6
samples in both conditions (tumor and control). This requirement alone reduced the
number of qualifying fragments to 26,231 (4390 peptides, 1570 proteins), indicating
serious lack of reproducible quantification across multiple DIA experiments. The
outlier and median correlation filter also removed additional fragments, eventually
filtering the data down to 11,146 fragments in 3915 peptides and 1422 proteins.
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As such, it is necessary to take caution in reading the reported counts of pro-
teins/peptides/fragments in DIA data sets: the tallies are usually before careful data
processing steps are applied and minimal reproducibility of quantification is met.

4.2 Comparison of Fragment, Peptide, and Protein
Intensity Data

The next question for the downstream analysis is how the intensity data will be used
to derive statistical analysis of differential expression. As stated earlier, the common
approach is to sum the intensity values from fragments to peptides, and then from
peptides to proteins, to have a simple numerical summary of abundance for each
protein in each sample. However, such an automated roll-up must be performed
after careful selection of fragments. Teo et al. [19] have already shown that the
common practice of choosing the top k intense fragments from the raw data is not the
most robust way to derive protein-level intensity summary. The reason behind this
observation is that individual peptide abundance can be relatively poorly correlated
with the overall protein abundance and the most intense peptides tend to contribute
to the discrepancy the most.

Figure 3a shows that the fold change estimates between tumors and controls
(obtained by mapDIA after fragment selection) are not necessarily consistent
when we use the three different intensity data. Here we derived peptide-level
intensity values by summing up the intensities from five fragments with the highest
intensity values in each sample, regardless of whether each fragment is reproducibly
quantified in other samples or not. Similarly, we then derived protein-level intensity
values by summing up the intensities from three peptides with the highest intensity
values in each sample. As the figure shows, the protein fold change estimates using
protein intensity data are poorly correlated with those estimated from the other two
levels of data, whereas the fold change estimates from the peptide intensity data
and those from the fragment intensity data are highly correlated. This suggests that
directly rolling up the fragment intensities to protein-level intensity may incur over-
estimation of effect sizes.

When we compared the three data sets in terms of mapDIA analysis, the benefit
of analyzing fragment-level intensity became even more evident: the presence
of repeated measures (fragment intensities) of peptides allowed us to detect
differentially expressed proteins with smaller magnitude of change (Fig. 3b). Note
that this observation is partly due to the fact that the protein fold change is over-
estimated in protein intensity data. Selecting differentially expressed proteins at the
probability threshold 0.94 associated with 1 % BFDR threshold, the analysis using
the fragment-level data reported 855 differentially expressed proteins, whereas
those from peptide-level and protein-level data reported 307 and 191 proteins,
respectively, indicating that there is a significant loss in statistical information (e.g.,
statistical power). However, this does not necessarily mean that the fragment-level
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Fig. 3 (a) The correlation among fold changes between tumors and corresponding controls
using the protein-level summary intensity, peptide-level summary intensity, and fragment-level
intensity. The effect size estimates are more consistent between peptide-level summary intensities
and fragment-level intensities. (b) Probability score against the log2 fold change as reported by
mapDIA when using the three different levels of input data

data is always beneficial. As it was illustrated in Teo et al. [19], it is likely that the
fragment-level analysis reports a high number of false positives if lenient criteria
were applied in the data filtering stage. To prevent inclusion of such false positives,
it will be useful to utilize the log posterior odds of differential expression reported by
mapDIA, where high positive log odds (e.g., >log(100)) typically indicates reliable
significance calls.

4.3 Library-Dependent Extraction Versus Library-Free
Extraction

We have also performed library-free data extraction using the DIA-Umpire package
on the same data and performed statistical analysis using mapDIA. We used
X!Tandem search engine [5] with high mass accuracy parameter setting (MS1
tolerance of 10 ppm, MS2 tolerance of 0.02 Da) in the internal library building
of DIA-Umpire, and quantified fragment intensities using all default parameters
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in the quantification. While DIA-Umpire also screens fragments using an array
of quality scores, their default output reported far more fragments in its internal
peptide-fragment map so that the fragment selection tool in mapDIA can play a
more influential role in the filtering step. DIA-Umpire produced fragment intensity
data consisting of 344,319 fragments from 16,064 peptides and 1921 proteins, much
greater in volume than the data extracted from OpenSWATH.

Applying the same fragment selection criteria, the number of fragments used for
the downstream statistical analysis also reduced significantly in the DIA-Umpire
data. Among the total of 344,319 fragments, only 72,691 fragments in 5406 peptides
and 1164 proteins met the criterion that the fragment intensity is present in at least
four matched tumor-control pairs. The outlier and correlation filter also removed
additional fragments from this step, resulting in a filtered list of 15,197 fragments
in 5860 peptides and 1060 proteins. In comparison to the OpenSWATH output, this
represents fewer proteins yet with a deeper coverage of each peptide.

Given the differences in the input data after filtering, we assumed that the
outcome of mapDIA analysis may also differ. At the respective probability score
thresholds associated with 1 % FDR, OpenSWATH and DIA-Umpire reported
828/3088 and 507/1921 proteins to be differentially expressed (Fig. 4a). When we
limited the comparison to the proteins that passed the outlier and median correlation
filter in both data sets, the list of differentially expressed proteins from DIA-Umpire
data was almost nested within the list of proteins from OpenSWATH.

To investigate whether the discrepancy comes from the filtered data, we com-
pared the fold change estimates from mapDIA between the two data sets. Inter-
estingly, Fig. 4b shows that the magnitude of fold change tends to be greater in
OpenSWATH than in DIA-Umpire, suggesting that the higher number of differ-
entially expressed proteins in the former may come from different quantification
method or the quality of library used in the extraction step. Given that the pattern
between the posterior probabilities and the fold changes were similar in the mapDIA
analysis of both data sets (Fig. 4c, d), we can infer that the fragment selection
step was one of the major factors contributing to the differences between the two
data extraction methods. However, since the gold standard proteins with validated
differential expression between the tumor and the control cells are not known in
this data, it is premature to conclude on the relative performance of each extraction
method in this particular data set and leave the evaluation of quantification quality
and their impact on the downstream statistical analysis to future studies.

5 Conclusion

In this work, we introduced mapDIA as one of the first comprehensive tools for
statistical analysis of quantitative proteomics data generated in the DIA mode. We
used two independent data extraction tools to obtain quantitative DIA data from a
recently published renal cancer proteomics study. We illustrated that not all MS/MS
signals reported by the data extraction tools are useful for statistical analysis since
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Fig. 4 (a) The number of differentially expressed proteins at 1 % FDR threshold, using all
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(c) The posterior probability score against the fold change estimate in mapDIA analysis using the
OpenSWATH extracted data. (d) The posterior probability score against the fold change estimate
in mapDIA analysis using the DIA-Umpire extracted data

the initial extraction does not guarantee reproducible quantification of the same
fragments across the samples even after elaborate attempts of peak alignment.
Therefore, the sensitivity of extraction methods, i.e., the ability to quantify a large
number of MS/MS fragments, should not necessarily be the sole criterion in the
evaluation of quantification methods, and more attention should be directed towards
their impact on the downstream statistical analysis.
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Related to this issue, we remark that the issue of missing data emerges as
one of the most critical challenges to the DIA data analysis, which has been
discussed in a number of previous works in the DDA setting [2, 3, 9]. In fragment
intensity data, missing data can be addressed in a more systematic manner since
the abundance of MS/MS fragments should be correlated within the same peptide
and also across different peptides in the same protein. This possibility of pattern-
based imputation using correlated fragments should also be considered together with
other mechanisms of missing values such as co-eluting precursor ions, transition
interference, or variable detection limits in the DIA. In addition, one can also re-
mine potentially misaligned low intensity peaks from the raw MS/MS data, which
must precede data imputation discussed above. To date, there is no systematic
method to address the imputation accounting for the unique structure of DIA data,
and we expect to see future development of such methods in this area.

Overall, constantly improving instrumentation for DIA analysis brings us closer
towards quantitative proteomics with a genomics-like coverage of the proteome.
However, development of rigorous informatics and statistical tools will be a
critical prerequisite for reliable interpretation of the data and successful biological
application of this technology. In the long run, we expect that the gap between
library-dependent and library-free data extraction will diminish as more spectral
assay libraries are accumulated and their qualities improve over time. At the
moment, however, both approaches seem to be complimentary in this early stage
of development, and future refinement of data extraction procedures should benefit
from the advantages of competing methods.
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The Analysis of Human Serum Albumin
Proteoforms Using Compositional Framework

Shripad Sinari, Dobrin Nedelkov, Peter Reaven, and Dean Billheimer

1 Introduction

A relatively small number of genes yield the enormous diversity in the eukaryotes
by means of posttranslational modifications of proteins. These modified proteins,
also called proteoforms, give rise to new functional capabilities and regulate the
cellular environment [13, 27]. They have been implicated in diseases such as cancer
[8] and age related dementia [22].

Identifying these proteoforms with sensitivity and specificity has been a chal-
lenge, especially when the abundance is low. Mass spectrometry immuno assay
(MSIA) is an approach developed to address these challenges. MSIA combines the
sensitivity of the immuno assay based approaches with the specificity of detection
from mass spectroscopy. Moreover, MSIA allows the simultaneous detection of
multiple proteoforms in a single assay. Nelson et al. [18] is a useful reference for
the details of this approach.
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The use of immuno based assays to enrich for proteoforms imposes a constraint
on the measurement of their concentrations. Thus the resulting peak areas capture
information on relative abundances of the proteoforms rather than their absolute
concentration. Measurements of the relative abundance of multiple components is
a characteristic of compositional data [1]. In this paper we demonstrate that the
compositional data analysis framework is ideally suited to exploring and analyzing
MSIA data. Particularly, the framework allows interpretation of complicated covari-
ance structure, guarantees consistency between analyses of a part and the whole
composition, and permits the use of standard multivariate statistical methods, all
while respecting structural constraints inherent in the observed data.

We begin by exploring the compositional nature of MSIA data in our example
of albumin proteoforms. We show how the compositional framework allows for
reference free normalization of this data. We explore the association of glycosylated
and cysteinylated albumin proteoforms with prognosis of chronic kidney disease
(CKD) in patients with Type 2 diabetes mellitus. Finally, we discuss the role of
compositional data in our application as well as in genomics and conclude with
remarks on the exploratory analysis of albumin proteoforms.

2 MSIA and Albumin Proteoforms

Our MSIA measurements comprise albumin proteoforms from 283 patients with
Type 2 diabetes mellitus. Glycosylation [26] and cysteinylation [17] of albumin
are two important post translational modifications that have been associated with
advanced CKD. Here we explore the association of these proteoforms with CKD.

Table 1 shows a small subset of the raw data. The first column is the sample
identifier and the remaining nine columns represent the raw peak areas of the nine
albumin post translational modifications.

The most abundant form is called wild type and is denoted by “wt”. The cys-
teinylated proteoforms are annotated with “.cys” and the glycosylated proteoforms
with “.gly”. The proteoforms annotated with “des” are truncated forms of wild type
protein. The data matrix consists of 283 rows and nine columns. Each row being
a composition and thus a point in S 8 which is the space of 9 part composition
given by

S 8 D
(

x D .x1; x2; : : : ; x9/ W xi > 0.i D 1; 2; : : : ; 9/;

9X
iD1

xi D 1

)
(1)

This is an 8 dimensional simplex embedded in the 9 dimensional real vector
space R

9. Table 2 gives the compositions formed from the data subset shown in
Table 1.

Typically additional information may be present that provides clinical status
associated with each sample. In our data, we have two additional columns. One
gives the CKD status of the patient and the other gives the value of the glomerular
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Table 2 Table of compositions of the small subset of the albumin data

ID des.DA des.D des.DA.cys wt wt.cys wt.gly wt.cys.gly wt.gly.gly wt.cys.gly.gly

546101 0.03 0.03 0.02 0.35 0.28 0.14 0.08 0.05 0.02

546103 0.02 0.02 0.03 0.29 0.40 0.11 0.08 0.03 0.02

546104 0.02 0.02 0.03 0.32 0.31 0.12 0.10 0.05 0.03

546105 0.03 0.03 0.03 0.36 0.33 0.11 0.06 0.03 0.01

546106 0.02 0.02 0.03 0.28 0.38 0.11 0.10 0.04 0.02

Table 3 Table of centered log ratios of the small subset of the albumin data

ID des.DA des.D des.DA.cys wt wt.cys wt.gly wt.cys.gly wt.gly.gly wt.cys.gly.gly

546101 �0.91 �0.72 �1.31 1.71 1.50 0.78 0.23 �0.23 �1.06

546103 �0.97 �1.05 �0.80 1.64 1.95 0.62 0.39 �0.56 �1.23

546104 �1.17 �1.31 �0.92 1.63 1.60 0.65 0.47 �0.29 �0.65

546105 �0.79 �0.83 �0.65 1.84 1.75 0.64 0.11 �0.61 �1.47

546106 �0.91 �1.12 �0.85 1.53 1.82 0.55 0.47 �0.54 �0.95

filtration rate (GFR) for the patient. GFR is used to determine the health of the
kidney and classify the patient in one of the three CKD status (low, medium, or
high).

The simplex S 8 is a Hilbert space with a metric defined by

d.x; y/ D
"

9X
iD1

�
log

�
xi

g9.x/

�
� log

�
yi

g9.y/

��2#1=2
(2)

Here g9.x/ is the geometric mean of vector x 2 S 8. Multiple co-ordinate systems
exist on this Hilbert space. Details of these co-ordinates as well as their equivalence
can be found in Egozcue et al. [11]. In our analysis we will use the centered log ratio
transformation which is given by

L W S 8 ! R
9

x 7�!
�

log

�
x1

g9.x/

�
; log

�
x2

g9.x/

�
; : : : ; log

�
x9

g9.x/

�� (3)

The centered log ratio allows us to look at all the proteoforms and gives a
covariance matrix that is more interpretable than the original composition, and is
suitable for exploration using the principal component analysis (PCA). Table 3 gives
the centered log ratios of compositions from Table 2. Note that centered log ratios
now sum to zero for each sample.

For some proteins a naturally occurring native or highly abundant form exists. In
applications where there is such a highly abundant form, it is the ratio with this form
that is often of most interest. In such cases, an alternate co-ordinate system named
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the additive log ratio transform [Eq. (9) in Appendix] may be more useful. Additive
log ratio transform may also be useful in parameter estimation in linear models
when all proteoforms are included as a multivariate outcome. Standard multivariate
methods, as well as multiple regression techniques, can now be applied to these
appropriately transformed data.

2.1 Normalization of Proteomic Measurements
as Compositions

In addition to providing a convenient structure to apply the usual multivariate
analyses methods, the co-ordinate transformations in the compositional setting also
perform a normalization of the data. Figure 1 shows that the variability as well as
skewness in each variable is reduced by the centered log ratio transform.

When a convenient reference standard exists, it may be included in the MSIA
assay [18, 25]. The reference standard is used to determine the absolute concen-
trations of the proteoforms from a calibration curve. Typically, it is a modified
version of the protein with a known mass-to-charge ratio. If poorly matched to the
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Fig. 1 Box plots of the log transformed raw values and the centered log ratios of albumin
proteoforms. The box plots for each proteoform indicate a decrease in overall variability and
skewness in the centered log ratios



146 S. Sinari et al.

target protein, however, the reference standard may increase the variability in the
calibrated data. For our dataset, no reference standard was used. In this situation,
taking compositional nature of the data into account and applying appropriate
transformations provides a good normalization scheme with reduction in the total
variability of measurements.

2.2 Interpretation of Multivariate Proteoform Analysis

Aitchison (see [2]) discusses the difficulty of interpretation of the PCA on the raw
data. In particular, issues arise due to lack of spherically symmetric distributions.
This is dealt by the use of logistic normal distribution [Eq. (10) in Appendix].
The centered log ratio transformed composition gives an isotropic invariant covari-
ance structure from which a measure of total variability of a composition can be
expressed as

9X
iD1

var

	
log

�
xi

g9.x/

�

(4)

and the principal components become orthonormal log linear contrasts. Subcom-
positional coherence is compatibility of inferences between the full and a subset
of the proteoforms. Such coherence in inference is guaranteed by the compositional
framework [3]. We demonstrate this coherence in the analysis of our example below.
It is also shown how ignoring the constraint can lead to misleading interpretation of
the data.

2.3 Relative Variation Biplot

A biplot is a visual aid to understand and interpret the results of a PCA. Biplots
show the structure of variables in terms of major axes of variability (principal
components). The horizontal axis is first principal component (PC1), while the
vertical axis is the second (PC2). Each point represents an individual sample.
Variables are denoted by arrows. Points may be colored, shaped, or labeled by a
classification or for identification.

A biplot resulting from the PCA of a covariance matrix of variables is called a
relative variation biplot. Any biplot can be displayed in two forms. One is called
the covariance biplot where distances between the variables are approximations of
the standard deviations of the corresponding log ratios and angle cosines between
links estimate the correlations between log ratios. Links are the difference vectors
connecting the tips of the arrows representing the variables. The second is called a
form biplot where distance between points are approximation of the distances given
by the metric in Eq. (2).
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Fig. 2 Covariance biplot of individuals with chronic kidney disease (CKD) as classified from the
measurement of their glomerular filtration rate (GFR). The albumin proteoform values are centered
log ratio (CLR). The axes are the first two principal components with first component along the
horizontal and the second along the vertical axis. The points represent individuals (about 283)
whose samples contributed to the MSIA measurements and whose CKD status were known at the
start of the study

Figures 2 and 3 are the covariance and the form relative variation biplots,
respectively, for the albumin dataset. Points are colored by the CKD status of the
individual from whom the sample was obtained. The biplots indicate that the relative
proportions of the albumin proteoforms in the sample can distinguish between
the higher CKD status (encoded as 3 and color coded as red) and the lowest CKD
status (encoded as 1 and color coded as green). The samples with lower CKD
status are mostly to the right and those with higher CKD status mostly to the left
(see Table 4). The plots also show that higher proportion of wild type albumin is
associated with lower CKD status as one would expect. Higher proportions of the
cysteinylated versions of albumin proteoforms are associated with poor CKD status.
The proportion of variance explained by the covariance and the form biplots are
73% and 70%, respectively.

These plots provide an approximation to the covariance structure of the albumin
proteoforms. An example is that of the link between the proteoforms wt and des.D
in the covariance biplot (Fig. 2). The length of the link is approximately 0.293
whereas the actual standard deviation of the log ratio is 0.283.

Aitchison [4] provides a good introduction and insights into numerous useful
properties of the relative variation biplots and proves the equivalence of the biplots
under various co-ordinate systems.
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Fig. 3 Form biplot of individuals with chronic kidney disease (CKD) as classified from the
measurement of their glomerular filtration rate (GFR). The albumin proteoform values are centered
log ratio (CLR). The axes are the first two principal components with first component along the
horizontal and the second along the vertical axis. The points represent individuals (about 283)
whose samples contributed to the MSIA measurements and whose CKD status were known at the
start of the study

Table 4 Table of patients
with negative or non-negative
loading on first principal
component (PC1) by their
CKD status

PC1 values

CKD status Negative Non-negative Total

1 35 (32 %) 75 (68 %) 110 (39 %)

2 83 (59 %) 58 (41 %) 141 (50 %)

3 22 (69 %) 10 (31 %) 32 (11 %)

Total 140 (49 %) 143 (51 %) 283

The values correspond to Form Biplot (Fig. 3)

The associations seen in the biplots can also be confirmed in the linear regression
of the proteoforms with the continuous measurement of CKD status, GFR. Each row
of Table 5 gives the coefficients of the linear regression of the proteoform with GFR.

2.4 Results Without the Unit Sum Constraint

We now look at a similar analysis with log transformed raw peaks of the proteo-
forms. Figure 4 is a form biplot and Table 6 contains the results of regression of the
log transformed raw peak areas with GFR.
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Table 5 Table of coefficients
of linear regression with
GFR. The model uses the
centered log ratios of the
proteoform. Each individual
proteoform was regressed
against GFR. These are nine
separate simple linear
regression models each with a
single proteoform as the
explanatory variable

Estimate Std. error t value Pr(> jtj)
des.DA 27.34 5.65 4.84 0.00

des.D 14.78 3.45 4.29 0.00

des.DA.cys �10.41 3.80 �2.74 0.01

wt 27.91 5.26 5.30 0.00

wt.cys �17.95 4.77 �3.77 0.00

wt.gly 34.51 9.93 3.48 0.00

wt.cys.gly �16.07 3.94 �4.08 0.00

wt.gly.gly 3.41 6.72 0.51 0.61

wt.cys.gly.gly �12.77 3.79 �3.37 0.00

Table 6 Table of coefficients
of linear regression with
GFR. The model uses the log
transformed raw peak areas of
the proteoform. Each
individual proteoform was
regressed against GFR. These
are nine separate simple
linear regression models each
with a single proteoform as
the explanatory variable

Estimate Std. error t value Pr(> jtj)
des.DA 10.33 3.52 2.93 0.00

des.D 9.66 2.80 3.45 0.00

des.DA.cys �6.39 3.03 �2.11 0.04

wt 11.34 3.42 3.31 0.00

wt.cys �4.53 2.46 �1.84 0.07

wt.gly 5.07 3.79 1.34 0.18

wt.cys.gly �4.96 2.25 �2.20 0.03

wt.gly.gly 1.53 4.09 0.37 0.71

wt.cys.gly.gly �6.77 2.81 �2.41 0.02

Although the regression tables indicate similar relationships between each prote-
oform and GFR, the strength of the association is reduced or deemed insignificant.
The picture in the biplots, however, is less clear. In Fig. 4 all proteoforms point to the
left indicating association of the total signal of albumin with CKD status. However
the association of cysteinylated proteoforms with poor CKD status is lost.

Consistency between the part, i.e., the univariate analysis (Table 5), and the whole
composition, i.e., the PCA using all proteoforms (Fig. 3), is evident for analysis done
with centered log ratios. The proteoform “wt.gly.gly” does not carry information
about the health of the kidney of the patient. This consistency is absent between the
univariate analysis (Table 6) and the corresponding PCA (Fig. 4) done with the log
transformed raw peaks of the proteoforms.

As seen in this example, consideration of compositional structure brings added
insights into the covariance structure of the components and vindicates the use of
standard analytical tools. This is consistent with observation in Lovell et al. [15],
that use of compositional framework may not lead to dramatically different results
across the board but the application of Aitchison distance [Eq. (2)] provides more
meaningful insights.



150 S. Sinari et al.

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l l

l
l

ll

l

l
l

l
l

l

ll
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

ll l
l

l

l
l

l

l

des.DA.cys

wt.cys

wt.cys.gly

wt.gly.gly

wt.cys.gly.gly

des.DA

des.D

wt

wt.gly

−4

−2

0

2

4

6

−5 0PC1

P
C

2

CKD status
l

l

l

1
2
3

Biplot of raw values of the albumin proteoforms colored by the CKD status of the individuals

Fig. 4 Form biplot of individuals with chronic kidney disease (CKD) as classified from the
measurement of their glomerular filtration rate (GFR). The albumin proteoform values are log
transformed raw peak areas. The axes are the first two principal components with first component
along the horizontal and the second along the vertical axis. The points represent individuals (about
283) whose samples contributed to the MSIA measurements and whose CKD status were known
at the start of the study

3 Discussion

The multivariate exploration of albumin proteoforms highlights the importance of
the cysteinylated proteoforms of albumin in the prognosis of diabetic patients with
CKD in our data. Such insights are absent from the analysis that does not take the
compositional constraint into account. Recently, Borges et al. [7] have shown that
cysteinylation of albumin can result from sample storage or handling. In such cases,
the consideration of compositional framework can reflect on the quality of the data.
Thus such analysis brings about better understanding of the roles of cysteinylated
versus glycosylated proteoforms of albumin in the prognosis of CKD or serves to
provide a quality check on samples. The compositional framework also provides a
convenient and interpretable normalization scheme. The normalization constant is
the mean of log transformed components. Hence the name centered log ratio. In
the albumin proteoforms this means that the variability such as batch effects due
to antibody used for immuno affinity capture is normalized. In general, all non-
proteoform specific variability is reduced.
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Many widely used high throughput technologies produce similar data that are
inherently compositional. Two prominent ones being quantification of gene expres-
sion using RNA-Seq and metagenomics, which is the study of the composition
of microbial genomes in a sample. In RNA-Seq the counts of mRNA are often
reported as a composition. The extraction of mRNA from a fixed volume of starting
material puts the unit sum constraint on the counts observed in the experiment.
Differential expression of genes between conditions is the question about change
in relative abundance with respect to a reference, called a housekeeping gene.
It is important to realize that information on absolute abundance is lost in these
measurements. Two genes may have the same level of mRNA production but one
might be differentially expressed while the other is not. However correlation induced
due to the sum constraint can lead to misleading interpretation in case of such data, if
the compositional nature is not taken into account. See Lovell et al. [15] for detailed
exposition on this issue.

Similarly, applications in metagenomics involve comparison of the compositions
within or between different conditions of genetically diverse microorganisms. The
compositional structure of microbial community here is more evident. Community
composition analysis is employed in diverse applications such as exploring the
biodiversity of habitat [23], common pathogens in clinical settings [19] or classi-
fication of the microbes into genus [10], and phylogeography [9]. Cell fractionation
techniques or size selection similar to proteomics is often used in sample collection
to create homogeneous populations of cells and enrichment of the target DNA [24].
These methods impose a compositional constraint. Statistical analysis of such data
can benefit from the use of compositional framework [14].

One limitation of compositional approach is worth mentioning. This is the
problem of essential zeros. Essential zeros arise when zero is valid value for some
parts of the composition. This is distinct from the inability to detect a signal due
to the signal being lower than the limit of detection. Such below the detection
limit zeros are called rounded zeros in the compositional literature. An example
of essential zero arises in a compositional data consisting of family budgets. Some
families may not consume alcohol and hence the money allocated to this expenditure
may be zero.

In proteomic applications, zeros are often treated as rounded zeros (e.g., below
detection limit). Thus rounded zeros are often replaced by multiplicative strategy. In
this strategy, the zeros in a composition are replaced by small non-zero values. To
maintain unit sum constraint, the non-zero components are multiplied by a suitable
value. In our data set, we replaced the zero values in raw peak areas with half of the
lowest non-zero terms for that proteoform, before computing the centered log ratios
or the log transformations. A detailed discussion on zeros as well as the several
methods of dealing with rounded zeros can be found in Martín-Fernández et al.
[16]. An important point to note is that, samples with a part value as zero lie on
the edge of the simplex which is excluded from our definition of composition for
mathematical convenience. Problems arise in extending the metric as well as the full
logistic normal distribution to the edges.
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4 Conclusions

The results of the exploratory analysis of albumin data using compositional data
framework show that changes in the proportions of the cysteinylated albumin
proteoforms can reveal information about the status of the chronic CRD in an
individual, or indicate issues with data storage and handling ex vivo. This analysis
implies that MSIA assays can be used to explore the clinical role of posttranslational
modifications of a protein. Compositional framework is essential in inference
related to such relative proportions data. The framework provides for normalization
of data and also validate the application of conventional multivariate analysis
techniques. It provides for consistency between analysis of the part and the whole
composition through the principle of subcompositional coherence. Ignoring the
limitation imposed by the summation constraint in these relative proportions data, as
is often the case, can result in loss of valuable insights or worse, lead to misleading
conclusions.
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Appendix

A Synopsis on Compositional Framework

Compositional data describe the proportion that each of D components contributes
to the whole. Coherence of inference between subset of components and the whole
composition, also called subcompositional coherence, is an important feature of the
analysis. Scale invariance is essential for such analysis.

A D part composition is defined as an element of the d-dimensional positive
simplex

S d D
(

x D .x1; x2; : : : ; xD/ W xi > 0.i D 1; 2; : : : ;D/;
DX

iD1
xi D 1

)
(5)

where d D D � 1. We will use the convention d D D � 1 in the rest of Appendix.
Thus the sample space is a subset of the space S d.

Let C denote the closure operator on R
D which normalizes the vector to a unit

sum. That is, for z 2 R
D,

C.z/ D
 

z1PD
iD1 zi

;
z2PD
iD1 zi

; : : : ;
zDPD
iD1 zi

!
2 S d (6)
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Also, we define two additional operations. For any two elements x D
.x1; x2; : : : ; xD/ and y D .y1; y2; : : : ; yD/ 2 S d and for ˛ 2 R, we define

x ˚ y D C..x1 � y1; x2 � y2; : : : ; xD � yD// (7)

˛ ˇ x D C..x˛1 ; x
˛
2 ; : : : ; x

˛
D//: (8)

The operations in Eqs. (7) and (8) are called the perturbation and power operators,
respectively. With perturbation operator as addition and power operator as the scalar
multiplication, S d acquires the structure of a d-dimensional Hilbert space [6, 21]
with a metric given by (2).

The additive log ratio transform defined as:

� W S d ! R
d

x 7�!
�

log

�
x1
xD

�
; log

�
x2
xD

�
; : : : ; log

�
xd

xD

�� (9)

and the centered log ratio (3) are alternative co-ordinate systems on this space.
The dependence structure induced by the unit sum (compositional) constraint is

often addressed by using the class of logistic normal distributions as appropriate
models of the data. For illustration, consider an element x D .x1; x2; : : : ; xD/ 2 S d.
Following Aitchison [1] the pullback of the multivariate normal distribution using
� from Eq. (9) is the logistic normal density function given by:

f .xj	;˙/ D .2�/d=2j˙ j�1=2
 

1Qk
iD1 xi

!
exp

	
�1
2
.�.x/� 	/0˙�1.�.x/� 	/



(10)

where 	 is the location parameter in R
d and ˙ is the d � d variance–covariance

matrix, .
QD

iD1 xi/
�1 is the Jacobian of the transformation. In the following, we will

denote this d-dimensional logistic normal distribution by LN d and A0 will denote
the transpose if A is a matrix.

The part S composition is orthogonal projection of the full composition, with
respect to the inner product on S d [12]. The class preserving property of logistic
normal distributions, i.e., if x 2 LN D.	;˙/ and A is an n � D matrix, then Ax 2
LN n.A	;A˙A0/ [5], ensures that the orthogonal projections satisfy the property
of subcompositional coherence.

A comprehensive review of analytical techniques and applications of composi-
tional framework is available in the book Pawlowsky-Glahn et al. [20].
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Variability Assessment of Label-Free LC-MS
Experiments for Difference Detection

Yi Zhao, Tsung-Heng Tsai, Cristina Di Poto, Lewis K. Pannell,
Mahlet G. Tadesse, and Habtom W. Ressom

1 Introduction

Mass spectrometry is an analytical technique that allows the measurement of
the mass-to-charge ratio of ions present in a sample. It is often coupled to
chromatographic techniques, such as liquid or gas (LC-MS or GC-MS), resulting
into effective approaches for the measurement of biomolecular abundance changes,
across biological samples [11]. In this chapter, we focus on variability assessment of
label-free experiments conducted by LC-MS to improve the detection of true differ-
ences in ion abundance. Label-free LC-MS methods measure relative abundance of
biomolecules without the use of stable isotope labeling [13]. However, they require
a rigorous workflow to detect differential abundances. In addition to analytical
considerations, crucial steps include: (1) an experimental design that reduces bias
during data acquisition and enables effective utilization of available resources [12];
(2) a data preprocessing pipeline that extracts meaningful features [9]; and (3) a
statistical test that identifies significant changes taking into account the experimental
design [2, 10]. Specifically, we focus on experimental design and statistical tests.
Good experimental design provides an opportunity to process and compare samples
in an unbiased manner. This benefit can diminish if the data analyst fails to conduct

Y. Zhao • T.-H. Tsai • C. Di Poto • H.W. Ressom (�)
Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
e-mail: hwr@georgetown.edu

L.K. Pannell
Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
e-mail: lpannell@health.southalabama.edu

M.G. Tadesse
Department of Mathematics and Statistics, Georgetown University, Washington, DC, USA
e-mail: mgt26@georgetown.edu

© Springer International Publishing Switzerland 2017
S. Datta, B.J.A. Mertens (eds.), Statistical Analysis of Proteomics, Metabolomics,
and Lipidomics Data Using Mass Spectrometry, Frontiers in Probability and the
Statistical Sciences, DOI 10.1007/978-3-319-45809-0_9

157

mailto:hwr@georgetown.edu
mailto:lpannell@health.southalabama.edu
mailto:mgt26@georgetown.edu


158 Y. Zhao et al.

the subsequent statistical tests in accordance with the experimental design. For
example, t-test is commonly applied for detecting differences between groups;
however, the independence assumption is not valid in a study using multiple
analytical and/or technical replicates and could lead to false positives.

Variability assessment is a key component in both the design of experiments and
the evaluation of hypothesis tests. It provides guidelines for replication assignment,
sample size calculation, and identification of significant differences in statistical
tests. In this chapter, we investigate the sources of variability arising in the
analysis of LC-MS data derived from label-free experiments focusing on peak-level
assessment of variability. Mixed effects models can accurately reflect the variability
in peak intensities of LC-MS data, and overcome the drawbacks that the t-test suffers
from, due to its failure to account for the dependence structure.

The remaining part of this chapter is organized as follows. In Sect. 2, two
commonly used peak-level methods for difference detection, i.e., a marginal t-test
and a mixed effects model, are introduced. The partition of the total variance into
different sources of variability under the mixed effects model is discussed. Section 3
explains the experimental design issues including replication assignment and sample
size calculation. Data from a pilot label-free LC-MS experiment are presented in
Sect. 4 to compare the performance of the marginal t-test against the mixed effects
model and to demonstrate the design of experiment based on the results of the
pilot study. LC-MS data from a biomarker discovery study are analyzed using
the introduced peak-level mixed effects model and the marginal t-test. The results
demonstrate the benefits of conducting a pilot experiment before a large-scale study
for appropriate assignment of replicates and calculation of the required sample size.
Other statistical methods for biomarker candidate discovery are discussed in Sect. 5.
Section 6 concludes the chapter with some discussion.

2 Statistical Methods for Difference Detection

In an LC-MS experiment for discovery of candidate biomarkers, an important step is
to identify significant differences in peak intensities between biological populations.
In a case-control design, for example, the differential analysis is performed by
assessing the evidence in the data against the null hypothesis that the population
means of the pth peak are the same. (i.e., H.p/

0 W 	.p/1 D 	
.p/
2 , where 	.p/i is the

pth peak population mean of group i, i D 1; 2. To keep the following discussion
uncluttered, we drop the peak index p hereafter.) Since the tests are performed one
at a time for multiple peaks, multiple testing correction needs to be applied to control
the false discovery rate (FDR) [1].

Given samples from different biological conditions/groups (biological repli-
cates), multiple aliquots of the same sample (analytical replicates), and multiple
injections of the same aliquot into the LC-MS (technical replicates) may be
considered in order to estimate the various sources of measurement uncertainty
and adequately evaluate the biological differences. A logarithm transformation is



Variability Assessment of Label-Free LC-MS Experiments for Difference Detection 159

usually applied to the peak intensities to ensure that the normality assumption is
satisfied [12]. In general, let yijkl denote the log-transformed intensity of a peak for
the lth technical replicate and kth analytical replicate in the jth biological sample of
group i.

2.1 A Marginal t-Test Approach

A naive way of performing difference detection is to apply a marginal t-test. For
each biological sample, the average over analytical and technical replicates is
calculated first, i.e.,

Nyij�� D 1

bc

bX
kD1

cX
lD1

yijkl; i D 1; 2; j D 1; : : : ; ai; (1)

where ai is the number of biological samples in group i, b is the number of analytical
replicates of each biological sample, and c is the number of technical replicates
of each analytical replicate. Then, a two-sample t-test with unequal variance is
performed to compare the two biological groups using the a1 and a2 averaged values
from each group.

This marginal t-test approach is easy to implement. However, it is less robust
compared to the mixed effects models introduced in Sect. 2.2, which takes into
account the dependence structure. In large-scale experiments, samples are usually
divided into multiple batches or sub-experiments. A marginal t-test approach can
only be applied within each batch/sub-experiment, potentially leading to a loss of
statistical power since smaller sample sizes are considered.

2.2 Mixed Effects Models

For an experimental design with multiple analytical and/or technical replicates, the
peak intensities of the same biological sample are correlated. The variance of the
peak intensities is a combination of the deviation due to biological differences,
analytical variations, and technical variations. A peak-level mixed effects model
with these three variance components is given by

yijkl D 	i C �j.i/ C �k.ij/ C �l.ijk/; (2)

where 	i D 	 C Gi, 	 is the average of the peak over all populations, Gi (i D
1; : : : ; g) are the group effects, such that

P
i aiGi D 0, ai is the number of subjects in

group i; �j.i/, �k.ij/, and �l.ijk/ are assumed to be normally distributed with zero mean
and variances �2˛ , �2ˇ , and �2� , respectively. All the random effects are assumed to be
mutually independent.
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Under model (2), the measurements from different biological subjects j and j0
(j ¤ j0) are independent and the correlation between measurements yijkl and yij0kl

is 0,

�.yijkl; yij0kl/ D cov.yijkl; yij0kl/p
var.yijkl/ � var.yij0kl/

D 0: (3)

For different analytical replicates k and k0 from the same biological subject j, the
measurements are dependent with correlation coefficient

�.yijkl; yijk0l/ D cov.yijkl; yijk0 l/p
var.yijkl/ � var.yijk0l/

D �2˛

�2˛ C �2ˇ C �2�
: (4)

For different technical replicates l and l0 from the same kth analytical replicate of
subject j, the correlation is stronger and is given by

�.yijkl; yijkl0/ D cov.yijkl; yijkl0/p
var.yijkl/ � var.yijkl0/

D �2˛ C �2ˇ

�2˛ C �2ˇ C �2�
: (5)

Therefore, the mixed effects model (2) captures the dependence between analytical
and technical replicates, and explicitly reflects the sources of variation in the data.

Under the mixed effects model, when the number of analytical replicates b and
the number of technical replicates c are the same for all biological samples, the
variance of the mean difference between the two biological groups is

var.Ny1��� � Ny2���/ D
2X

iD1

 
�2˛
ai

C �2ˇ

aib
C �2�

aibc

!
: (6)

From Eq. (6), we see that as the number of replicates increases, the variance gets
smaller and the difference between the two groups may be detected more easily.
We should also note that the sample size ai for each biological group has the
most influence on the variance. If we can estimate the individual components
of the variance, i.e., �2˛ , �2ˇ , and �2� , we can design the allocation of replicates
more effectively according to the estimated variances and levels of sensitivity and
specificity we wish to reach. We elaborate these considerations when discussing
experimental design in Sect. 3.

The mixed effects model (2) does not require the number of analytical and/or
technical replicates to be identical for all the subjects. When only one analytical
and technical replicate is generated (b D c D 1), the mixed effects model (2)
is equivalent to an analysis of variance (ANOVA) model, since the variance
components cannot be decomposed with a single observation. For studies with
multiple batches or sub-experiments, a mixed effects model with fixed batch effects
can be considered. For more complex designs, the mixed effects model can be easily



Variability Assessment of Label-Free LC-MS Experiments for Difference Detection 161

modified accordingly [3]. Model (2) is a peak-level model, but we can also utilize
the ion annotation information and instead of averaging the peaks with identical
identification, consider a mixed effects model with one more hierarchy that captures
the within-peak variability.

3 Replication Assignment and Sample Size Calculation

An important application of variability assessment is to offer better experimental
design for follow-up experiments. One important consideration in experimental
design is the estimation of the optimal number of biological, as well as analytical
and/or technical replications to achieve a balance between the desired statistical
power while controlling for multiple testing and the cost and time of running assays.
A pilot experiment is often conducted to obtain estimates for effect size, the number
of peaks considered, as well as the variation in biological heterogeneity, sample
preparation, and instrument measurement. Since multiple testing issues arise in
the analysis of LC-MS data, the required sample sizes are estimated controlling the
FDR. It has been shown that controlling the FDR at level q amounts to controlling
the average type I error rate ˛� over all features in the experiment at

˛� � .1 � ˇ�/
q

1C .1 � q/m0=m1

; (7)

where .1�ˇ�/ is the average power over all features, m0 and m1 are the numbers of
truly non-different and different features, respectively [1]. The number of biological
samples in each group under a balanced design can be estimated by

a D 2

�
z1�ˇ� C z1�˛�=2

ı
p


�2
; (8)

where z˛ is the ˛th percentile of the standard normal distributions; ı D j	1 �
	2j=

q
�2˛ C �2ˇ C �2� is the absolute value of effect size;  D .�2˛ C�2ˇ C�2� /=.�2˛ C

�2ˇ=bC�2�=bc/with �2˛ , �2ˇ , and �2� the variances of the random effects in model (2).
When b D c D 1, i.e., only one measurement for each biological subject, this
sample size calculation is equivalent to the commonly used two-sample t-test sample
size calculation.

4 Real Data Example

In this section, we first apply the mixed effects model (2) to an in-house pilot LC-
MS dataset and obtain estimates for the variance components. Experimental design
is discussed and the performances of the marginal t-test and the mixed effects model
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are compared through simulation studies based on the estimates from the pilot study.
Finally, we illustrate an application on LC-MS data from a hepatocellular carcinoma
(HCC) biomarker discovery study.

4.1 In-House Pilot LC-MS Dataset

The in-house pilot LC-MS experiment is designed to evaluate the sample prepa-
ration protocol, where high abundance proteins in human serum were depleted
using MARS Hu-14 column (Agilent Technologies) and a mixture of peptides
from five non-human proteins were spiked-in [20]. LC-MS/MS data were acquired
from five biological samples with three analytical and two technical replicates
using an Agilent 1200 nano-LC coupled to a ThermoFisher LTQ-Orbitrap mass
spectrometer. We used DifProWare (in-house computational tool developed by Dr.
Pannell at the University of South Alabama, Mobile, USA) to perform LC-MS data
preprocessing including deisotoping of mass spectra, peak detection, and charge
state deconvolution. Each LC-MS run was preprocessed separately. Peak detection
was performed on the basis of LC-MS data without using the MS/MS spectra.

The mixed effects model (2) is applied to estimate the variabilities introduced by
sample heterogeneity, sample preparation, and instrument measurement error, where
a single biological group is considered (i.e., g D 1), 	i D 	 is the overall mean
value, and a1 D 5, b D 3, c D 2. Figure 1 shows the estimated variance components
for all the 1082 detected peaks in the log-transformed data and Table 1 provides the
related summary statistics. Restricted maximum likelihood (REML) estimation is
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Fig. 1 Boxplot of variability assessment for the pilot LC-MS dataset. (a) Estimated variance
components. (b) Estimated variance components zooming in range .0; 0:5/
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Table 1 Variability
assessment for the pilot
LC-MS dataset

Median Q1 Q3 IQR

O�2˛ 0.0331 0.0076 0.1038 0.0962

O�2ˇ 0.1057 0.0551 0.2037 0.1486

O�2� 0.0479 0.0219 0.1212 0.0994

“Q1”, “Q3” and “IQR” represent the
first, third quartiles and interquartile range,
respectively

used to ensure that the estimates are both non-negative and unbiased. We note that
�2ˇ has the highest median estimate with a value of 0.1057 and shows the greatest

variability. The median estimate of �2� (0:0479) is slightly higher than that of �2˛
(0:0331), while the IQRs are very close (shown in Table 1). The estimation results
indicate that the sample preparation introduces the most variability in this pilot
dataset. Here, we want to emphasize that the proportions of the variance components
may vary in different LC-MS experiments. For example, in our in-house dataset, the
largest proportion of total variation is due to the analytical variance, while in the
LC-MS dataset from Oberg and Vitek’s study [12], the technical variance accounts
for the largest proportion of variability.

4.2 Comparison of Methods for Difference Detection

In this section, we compare through simulation studies the performance in detect-
ing differences using the t-test on the averages over analytical and/or technical
replicates versus the mixed effects model. The model parameters are based on
the results from the pilot LC-MS study (Sect. 4.1). The sample vectors yi D
.yi111; : : : ; yi11c; : : : ; yi1bc; : : : ; yiaibc/

> (i D 1; 2) are generated from a normal
distribution with mean vector �i and variance covariance matrix ˙i D .�st/, where
�st D �2˛C�2ˇC�2� if s D t; �st D �2˛C�2ˇ if the sth and tth components in yi are from

the same analytical replicate of the same biological subject; �st D �2˛ if the sth and
tth components in yi are from the same biological subject but different analytical
replicates; and �st D 0 if the sth and tth components in yi are from different
biological samples. The variance component values are set to their corresponding
median estimates in the in-house pilot study. The effect sizes (ı’s) are generated
from a sequence in the range from zero to 1.5, and the absolute difference between

the group means is calculated as j	1 � 	2j D ı
q
�2˛ C �2ˇ C �2� .

Single Peak Difference Detection

We first compare the two methods in identifying the difference between two
biological populations under the single peak setting. The simulation is repeated
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20,000 times. The achieved Type I error rate and power for the test statistics under
each of the two models are compared at a nominal significance level of 0.05 using
different replication assignments (Table 2).

When the number of biological samples in each group is small, the marginal t-test
is slightly conservative with Type I error rate lower than the designated significance
level. The mixed effects model, on the other hand, can effectively control the Type I
error rate around the specified level of 0.05, even for sample size as small as five. In
addition, the mixed effects model attains higher power compared to the marginal t-
test. As the number of biological subjects increases, the performance of the marginal
t-test gets closer to that of the mixed effects model in terms of both Type I error and
statistical power. When comparing different analytical and/or technical replication
assignments, increasing the number of analytical replicates leads to a greater gain
in statistical power as the sample preparation accounts for more variability than the
instrumental variations in our pilot LC-MS study.

Difference Detection with Multiple Testing

To investigate the performances of the marginal t-test and the mixed effects model in
the context of multiple testing, the same number of peaks (1082 peaks) as in the pilot
LC-MS dataset is generated. Their variances are set to the median estimates from
the pilot study. Among these 1082 peaks, 108 peaks are considered as differentially
expressed across biological groups with the same effect sizes. The simulation is
repeated 200 times. The FDR achieved by the two methods and their receiver
operating characteristic (ROC) curves are compared.

Figure 2 compares the ROC curves for an effect size of 0.5. For both the
marginal t-test and the mixed effects model, with the same number of biological
subjects, increasing the number of analytical replicates provides better performances
compared to increasing the number of technical replicates (Fig. 2a, b). We also
notice that the improvement from two analytical replicates to three is not as
significant as that from one analytical replicate to two, suggesting that with a similar
variability structure, running two analytical replicates could be sufficient in practice.
This provides a practical guideline for experimental design in how to balance the
number of injections to achieve a desired statistical power while controlling the
cost and time of running samples. Figure 2c shows that the most efficient way
to achieve better performance in identifying differentially distributed ions is to
increase the number of biological subjects in each group. Similar to the conclusion
in single peak difference detection (Section “Single Peak Difference Detection”),
the marginal t-test gives slightly lower area under the curve for small sample size,
while this difference diminishes as the number of biological subjects increases.

The achieved FDR for designated levels q for an effect size of 0.5 are compared in
Fig. 3. With five biological subjects in each group, the FDR is well controlled under
each replication assignment setting for the mixed effects model. The marginal t-test,
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Table 2 Attained Type I error rate and power for single peak difference detection at a
nominal significance level of 0.05 under different replication assignments

Effect size

0.5 0.6 0.8 1.0 1.5

Model ˛ D 0:05 Type I error Power

5B, 1A, 1T t-test 0:045 0:096 0:118 0:180 0:262 0:520

ME 0:051 0:106 0:131 0:196 0:283 0:547

5B, 1A, 2T t-test 0:042 0:099 0:130 0:202 0:296 0:579

ME 0:048 0:111 0:142 0:220 0:318 0:607

5B, 1A, 3T t-test 0:042 0:106 0:131 0:210 0:309 0:598

ME 0:048 0:115 0:144 0:231 0:332 0:626

5B, 2A, 1T t-test 0:044 0:136 0:177 0:284 0:413 0:751

ME 0:049 0:149 0:192 0:305 0:440 0:773

5B, 2A, 2T t-test 0:045 0:153 0:200 0:316 0:457 0:793

ME 0:052 0:167 0:218 0:339 0:484 0:816

5B, 2A, 3T t-test 0:045 0:154 0:202 0:323 0:466 0:808

ME 0:052 0:168 0:220 0:348 0:405 0:829

5B, 3A, 1T t-test 0:044 0:168 0:223 0:360 0:521 0:854

ME 0:050 0:183 0:242 0:386 0:550 0:872

5B, 3A, 2T t-test 0:045 0:179 0:239 0:389 0:558 0:883

ME 0:050 0:195 0:257 0:417 0:585 0:899

5B, 3A, 3T t-test 0:042 0:179 0:244 0:401 0:568 0:894

ME 0:048 0:197 0:265 0:426 0:597 0:908

10B, 1A, 1T t-test 0:049 0:180 0:239 0:392 0:560 0:888

ME 0:050 0:183 0:243 0:397 0:565 0:891

10B, 1A, 2T t-test 0:046 0:203 0:270 0:435 0:614 0:918

ME 0:047 0:206 0:275 0:440 0:619 0:921

10B, 2A, 1T t-test 0:051 0:273 0:370 0:583 0:778 0:984

ME 0:052 0:277 0:375 0:588 0:783 0:984

10B, 2A, 2T t-test 0:048 0:300 0:405 0:634 0:827 0:992

ME 0:050 0:305 0:412 0:639 0:830 0:993

10B, 3A, 3T t-test 0:051 0:390 0:522 0:766 0:916 0:999

ME 0:053 0:396 0:528 0:770 0:918 0:999

50B, 1A, 1T t-test 0:049 0:694 0:844 0:976 0:998 1:000

ME 0:049 0:694 0:844 0:976 0:998 1:000

50B, 1A, 2T t-test 0:050 0:751 0:886 0:990 1:000 1:000

ME 0:050 0:751 0:886 0:990 1:000 1:000

50B, 2A, 1T t-test 0:050 0:894 0:970 0:999 1:000 1:000

ME 0:050 0:894 0:971 0:999 1:000 1:000

50B, 2A, 2T t-test 0:049 0:927 0:984 0:999 1:000 1:000

ME 0:049 0:927 0:984 0:999 1:000 1:000

“xB, yA, zT” represents x biological samples, each with y analytical replicates, and z
technical replicates per analytical replicate. “t-test” reports the result from the marginal t-
test, and ME from the mixed effects model (2)
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Fig. 2 Receiver operating characteristic (ROC) curves in multiple testing with effect size 0.5 (“xB,
yA, zT” represents x biological samples, each with y analytical replicates, and z technical replicates
per analytical replicate). (a) Mixed effects model with a1 D a2 D 5. (b) Marginal t-test with
a1 D a2 D 5. (c) Model comparison with b D c D 2

on the other hand, yields much lower FDR than the nominal level q, indicating that
it is too conservative for small sample size. For larger number of biological subjects,
there is no significant difference between the two methods in terms of controlling
false discoveries. Figure 4 shows the FDR for different effect sizes under a nominal
FDR level of 0.05. From Fig. 4a, b, we observe that all the replication assignments
considered yield similar FDR for both the mixed effects model and the marginal
t-test. When a1 D a2 D 5, the FDR attained by the marginal t-test is much lower
than the nominal level regardless of the effect size. Figure 4c demonstrates that the
best way to improve the performance in controlling FDR is to increase the number
of biological samples.
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Fig. 3 Achieved false discovery rate (FDR) in multiple testing with effect size 0.5 and nominal
FDR level q (“xB, yA, zT” represents x biological samples, each with y analytical replicates, and
z technical replicates per analytical replicate). (a) Mixed effects model with a1 D a2 D 5. (b)
Marginal t-test with a1 D a2 D 5. (c) Model comparison with b D c D 2

4.3 Replication Assignment and Sample Size Calculation

According to the simulation studies in sections “Single Peak Difference Detection”
and “Difference Detection with Multiple Testing,” the optimal way of improving the
performances of both the marginal t-test and the mixed effects model is to increase
the number of biological subjects in each group. However, in practice, recruiting
more biological subjects may not be possible or easy, especially for rare diseases.
One option to increase the statistical power is to generate multiple replications for
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Fig. 4 Achieved false discovery rate (FDR) in multiple testing under a nominal FDR level of 0:05
(“xB, yA, zT” represents x biological samples, each with y analytical replicates, and z technical
replicates per analytical replicate). (a) Mixed effects model with a1 D a2 D 5. (b) Marginal t-test
with a1 D a2 D 5. (c) Model comparison with b D c D 2

each subject. In this section, we discuss the issues of replication assignment and
sample size calculation based on the estimates from our pilot study.

Table 3 presents the required sample size in each biological group under the
mixed effects model (2) controlling FDR at levels 0.05 and 0.1, assuming an average
power of 80 and 90 % across all peaks, respectively. The variances are assumed
to be the median estimates in the pilot study (Sect. 4.1). We observe that fewer
biological samples are required when including analytical or technical replicates.
In the current design, the numbers of analytical and technical replicates are the
same, i.e., b D c. Increasing either b or c by one unit changes the value of �2� =bc
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Table 3 Required biological samples in each group by controlling FDR at levels 0.05
and 0.1

m0=.m0 C m1/ D 0:9 m0=.m0 C m1/ D 0:95

Effect

q 1� ˇ� size 0.5 0.6 0.8 1.0 1.5 0.5 0.6 0.8 1.0 1.5

0.05 0.8 1A, 1T 104 72 40 26 11 121 84 47 30 13

1A, 2T 81 56 31 20 9 94 65 37 23 10

2A, 1T 59 41 23 14 6 68 47 26 17 7

2A, 2T 47 33 18 11 5 55 38 21 13 6

3A, 3T 34 23 13 8 3 39 27 15 9 4

0.9 1A, 1T 154 107 50 38 17 173 120 67 43 19

1A, 2T 121 84 47 30 13 136 94 53 34 15

2A, 1T 87 60 34 21 9 98 68 37 24 10

2A, 2T 71 49 27 17 7 79 55 31 19 8

3A, 3T 50 35 19 12 5 56 39 22 14 6

0.1 0.8 1A, 1T 102 71 40 25 11 119 83 46 29 13

1A, 2T 80 55 31 20 8 93 65 36 23 10

2A, 1T 58 40 22 14 6 68 47 26 17 7

2A, 2T 47 32 18 11 5 55 38 21 13 6

3A, 3T 33 23 13 8 3 39 27 15 9 4

0.9 1A, 1T 153 106 59 38 17 172 119 67 43 19

1A, 2T 120 83 46 30 13 135 93 52 33 15

2A, 1T 87 60 33 21 9 97 67 38 24 10

2A, 2T 70 48 27 17 7 79 55 30 19 8

3A, 3T 50 34 19 12 5 56 39 22 14 6

“yA, zT” represents y analytical replicates with z technical replicates for each

in Eq. (8). However, increasing the number of analytical replicates b decreases the
value of �2ˇ=b, thus, reducing the number of subjects required in each group. In our
pilot study, where sample preparation accounted for most of the variability in the
data, the inclusion of analytical replicates gives a more substantial reduction of the
number of biological subjects. It should be emphasized, however, that the need for
more biological samples cannot always be circumvented by increasing the number
of analytical or technical replicates. It is noticed that relaxing the FDR level from
0.05 to 0.1 does not change the number of required biological samples by much,
and essentially has no effect for larger effect sizes. As an example, when the number
of truly non-different peaks is 90 %, using the variance components estimated from
our pilot dataset, with one analytical and two technical replicates for each biological
subject, 55 biological samples in each group are sufficient to detect an effect size of
0.6 at 80 % power controlling the FDR at level of 0.1, while 40 biological samples
are necessary with two analytical and one technical replicates per subject.
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4.4 LC-MS Based Biomarker Identification for Hepatocellular
Carcinoma

We illustrate the application of the mixed effects model on LC-MS data from
our hepatocellular carcinoma (HCC) biomarker discovery study. The study was
conducted with sera samples from a US cohort [14]. The US participants were
recruited from the hepatology clinics at MedStar Georgetown University Hospital.
Serum samples were collected from 60 HCC cases and 129 patients with liver
cirrhosis. Mass spectrometric analysis was performed on a Q-TOF premier (Waters)
operating in positive mode. Among these samples, five HCC cases and five cirrhotic
controls were chosen to constitute a second experiment. In both experiments,
two technical replicates for each subject were considered with identical sample
preparation protocols by the same technician.

Data Preprocessing

UPLC-QTOF data were acquired in centroid mode from 50 to 850 mass-to-
charge ratio (m=z) in MS scanning using the MassLynx software (Waters). The
XCMS package [16] (Scripps Center for Metabolomics, La Jolla, CA) was used
to preprocess each LC-MS run separately. The peak matching algorithm in XCMS
takes into account the two-dimensional anisotropic nature of the data. The first
step consists of detecting the peaks cutting the UPLC-QTOF data into slices that
are a fraction of a mass unit wide then applying a model peak matched filter
on the individual slices over the chromatographic time domain. After detecting
peaks in the individual samples, the peaks are matched across samples to allow
calculation of retention time (rt) deviations and relative ion intensity comparison.
This is accomplished using a method based on kernel density estimation that
groups peaks in the mass domain [16]. These groups are then used to identify and
correct drifts in rt from run to run. We detected 1586 ions in the first experiment
and 612 in the second. Following data preprocessing, ion annotation is conducted
to identify derivative ions such as isotopes, adducts, and insource fragments by
using the R package CAMERA [17]. This ion annotation information was used
to convert the m=z values of annotated isotopes/adducts/neutral-loss fragment ions
to the corresponding neutral monoisotopic masses before searching them against
databases to find the putative identifications [14, 23].

Variance Components Estimation

The ion intensities were first log-transformed to satisfy the normality assumption.
Since there is only one analytical replicate for each subject, �2ˇ cannot be isolated in
the estimation of the random effects variances of the proposed model (2).

Figure 5 shows the boxplot of the estimated variance components for both
experiments and Table 4 provides the corresponding summary statistics. The median
estimate of .�2˛ C �2ˇ/ and �2� in Experiment 1 are significantly higher than those
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Fig. 5 Boxplot of variability assessment for LC-MS data from the HCC biomarker discovery
study. (a) Experiment 1. (b) Experiment 2

Table 4 Variability assessment for the LC-MS data from the HCC
biomarker discovery study

Experiment Median Q1 Q3 IQR

�2˛ C �2ˇ Experiment 1 0.7253 0.4207 1.2910 0.8703

Experiment 2 0.0607 0.0117 0.3741 0.3624

�2� Experiment 1 0.0578 0.0244 0.1243 0.0999

Experiment 2 0.0091 0.0036 0.0542 0.0507

in Experiment 2 with greater variation in the variance components estimates.
This might be due to the underestimation of the subject variation in the second
experiment, as the number of biological samples is much smaller compared to the
first one. On the other hand, having more subjects requires longer machine time to
run the samples, which is possibly the reason that the technical variation in the first
experiment is higher as well.

Difference Detection

To identify differentially abundant peaks among HCC cases versus cirrhotic con-
trols, both the mixed effects model and the marginal t-test are conducted. For
multiple testing consideration, the p-values are adjusted following the Benjamini–
Hochberg procedure and the threshold for significance is set to 0.1.

In the first experiment, we identified 11 significant ions by applying the mixed
effects model, while no significant ion was identified by the marginal t-test. In the
second experiment, 59 significant ions were identified by the mixed effects model
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and 52 by the marginal t-test. For the significant ions discovered in Experiment 1,
the effect sizes are all between 0.50 and 0.60. The effect size of the significant peaks
in Experiment 2 are in the range of 2.0–3.5. As the variance components could be
possibly underestimated in Experiment 2, these effect sizes may not be reliable and
the identified peaks can be false positives.

Putative identifications of the significant monoisotopic masses were found using
MetaboSearch [27] by searching against four databases: the Human Metabolite
DataBase (HMDB) [22], Metlin [15], Madison Metabolomics Consortium Database
(MMCD) [4], and LIPID MAPS [7]. Table 5 lists the selected significant peaks
with putative identification, which are discovered in both of the experiments using
the mixed effects model. Both glycodeoxycholic acid (GDCA) and its fragments,
as well as fragment of glycocholic acid (GCA), were verified by comparing their
MS/MS fragmentation patterns and retention time with those of authentic standard
compounds [14, 23]. Figure 6 shows the individual value plots of fragment of GDCA
and GDCA in both experiments. These figures illustrate that the intensities in the
two patient groups have different means. The intensities of GDCA and its fragment
are discriminately distributed between the two groups in the second experiment.
With small effect size, the mixed effects model has slightly higher power to reliably
detect candidate biomarkers for further targeted quantitation than the marginal t-test
procedure.

Table 5 Metabolites corresponding to m=z values with putative identifications among peaks
identified to be differentially abundant in the LC-MS-based HCC biomarker discovery study

FDR-adjusted p-value Raw p-value rank

Marginal Mixed Marginal Mixed Effect

Metabolite ID t-test effects t-test effects size

Experiment 1 Fragment of GDCA Adduct:
[�H2O] m=z D 414:300

rt D 200:744

0.122 0.086 1 1 0.589

Fragment of GDCA Adduct:
[�2H2O] m=z D 432:309

rt D 200:948

0.212 0.086 2 5 0.572

GDCA Adduct: [CH] m=z D
450:320 rt D 201:166

0.212 0.087 5 9 0.539

Experiment 2 Fragment of GDCA Adduct:
[�H2O] m=z D 414:302

rt D 225:705

0.051 0.043 31 34 2.742

Fragment of GDCA Adduct:
[�2H2O] m=z D 432:312

rt D 225:705

0.051 0.043 25 30 2.767

Fragment of GCA Adduct:
[�2H2O] m=z D 432:310

rt D 197:764

0.095 0.057 46 47 2.473

GDCA Adduct: [CH] m=z D
450:322 rt D 225:761

0.070 0.052 39 44 2.532
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Fig. 6 Jittered individual plots of HCC cases versus cirrhotic controls (CIRR) for selected
differentially expressed peaks with putative identification. The horizontal bar in each plot
corresponds to the sample mean. (a) Fragment of GDCA from Experiment 1. (b) Fragment of
GDCA from Experiment 2. (c) GDCA from Experiment 1. (d) GDCA from Experiment 2

5 Other Methods

In Sect. 2, we mainly discussed a marginal t-test and a mixed effects model
approaches to discover the differentially abundant metabolites. Both are univariate
approaches, in which the peak intensities are considered as random variables and
the means of different biological populations are compared. Recent nonparametric
rank tests for clustered data may also be applicable to this problem [5, 6].
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An alternative approach is to treat the biological grouping as a binary outcome
and identify the peaks that are significantly associated with the risk of being a
“case” [24]. For studies with only one measurement per subject, this can be achieved
through a logistic regression model

log

�
P.G D 1/

1 � P.G D 1/

�
D ˇ0 C ˇ1y; (9)

where G is the group label with value one for “cases,” and y is the peak intensity.
If each subject has replicates, a generalized linear mixed effects model can be
considered. The significant peaks can be identified by testing the hypothesis H0 W
ˇ1 D 0. The p-values also need to be adjusted to control either the FDR or the
family-wise error rate (FWER).

In most mass spectrometry (MS) studies, the number of features (p) is much
greater than the number of samples (n), which is referred to as a “large p, small
n” problem. Multivariable models, such as multivariable mixed effects models,
cannot be applied directly without resorting to dimension reduction or variable
selection methods. A lasso [18] method can be used to achieve variable selection
and coefficient estimation simultaneously by including an `1 penalty to the residual
sum of squares minimization problem. Under appropriate assumptions, lasso can
be shown to recover the exact support of a sparse model from data generated
by this model if the covariates are not highly correlated [21, 26]. However, the
detected peaks in an MS dataset can be highly correlated since they can be the
isotopes/fragment ions of the same metabolite. Elastic net [29] may help improve
the performance when there exists strong correlation between the predictors. By
including an `2 penalty, it encourages a grouping effect among the covariates.
Motivated by a SELDI MS study, Tibshirani et al. [19] introduced the fused lasso
method, which imposes smoothness among adjacent peaks by encouraging sparsity.
Some other regularization techniques, for example, adaptive lasso [28], SCAD [8]
and MCP [25], can also be applied in MS studies.

6 Discussion

In this chapter, we presented two peak-level methods for the analysis of LC-MS
data, a marginal t-test approach and a mixed effects model. We also discussed
experimental design issues. The mixed effects model takes into account the
correlation within analytical and technical replicates by explicitly estimating the
different sources of variability in the data.

Based on simulation studies, the commonly used t-test applied after averaging
the analytical and technical replicate measurements within each biological sample
performs slightly worse compared to the mixed effects model for small sample size.
This difference diminishes with sufficiently large samples size. Using the variance
estimates from a pilot label-free LC-MS experiment, where sample preparation
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accounts for a larger proportion of the variability in the data, increasing the
number of analytical replicates leads to more gain in statistical power compared to
increasing the number of technical replicates. Experimental design issues including
replication assignment and sample size calculation are discussed based on the
variance estimates from the pilot dataset. Performing a pilot study before large-
scale experiments is essential to determine more effectively the required sample size
and the assignment of replicates. In sum, a better understanding of the sources of
variability in LC-MS data is needed to decide on the most appropriate experimental
design and statistical methods to identify true differences in ion abundance. We
also briefly mentioned other statistical methods for high-dimensional data analysis,
which could be applied to MS based proteomics data analysis.
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Statistical Approach for Biomarker Discovery
Using Label-Free LC-MS Data: An Overview

Caroline Truntzer and Patrick Ducoroy

1 Introduction

The identification of new diagnostic, prognostic, or theranostics biomarkers is one of
the main aims of clinical research. Technologies like mass spectrometry (MS) focus
on the discovery of proteins as biomarkers and are commonly being used for this
purpose. Mass spectrometry consists in the separation by gas of charged molecules,
based on their mass-over-charge. Liquid chromatography coupled to tandem mass
spectrometry (LC-MS/MS) first involves a separation by liquid chromatography
(LC) followed by mass spectrometry in the MS and MS/MS modes. It allows the
identification and quantification of peptides and proteins in complex biological
mixtures like plasma, cell extracts, cell cultures, tissues, etc. In this way it delivers
the characterization and the quantitative comparison of the full proteome of samples
presenting specific biological status and is thus one method of choice for the
discovery of new biomarkers.

The process works as follows. Proteins extracted from the biological mixtures are
first subjected to enzymatic digestion and the resulting peptides are continuously
separated through liquid chromatography. Depending on their retention time,
peptides then enter the mass spectrometer where they are ionized. Inside the mass
spectrometer, in the MS step, the peptides are quantified in a relative way according
to the intensity of the resulting features, and in the MS/MS step peptides are
identified by determining the amino-acid sequence of the features (Fig. 1).
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Fig. 1 Label-free LC-MS/MS workflow for raw data generation

The raw data generated from one LC-MS/MS experiment provides 3-
dimensional information: one dimension for the retention time, one dimension
for the mass-over-charge value (m/z), and one dimension for the quantitation of the
abundances of the peptides.

This procedure leads to the identification and relative quantification of thousands
of peptides, and therefore the corresponding proteins. These results are then used
to find biomarkers by comparing the abundance of peptides/proteins in samples that
represent different biological conditions. Sandin et al. [1] recently discussed the
challenge of label-free MS–MS in the context of biomarker discovery. They believe
that this technique is a suitable solution when dealing with complex biological
samples and is suitable for the problem of biomarker discovery.

In this chapter we focus on a particular use of this technology, called label-free
LC-MS/MS. The relative quantification of peptides and proteins is performed in a
non-targeted way, in contrast with targeted techniques that use isotopic labeling for
quantification and which are not the topic here.

The structure of the chapter follows the different steps encountered in a study
using label-free LC-MS/MS for biomarker discovery: considerations about experi-
mental design, description of the statistical pre-processing strategies to get peptide
and protein quantification from raw data, and finally the description of statistical
methods proposed to select potential biomarkers among the quantified proteins. The
different steps are illustrated in Fig. 2.
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Fig. 2 Steps of the analysis of label-free LC-MS/MS data

The goal of this chapter is to give an overview of the statistical questions raised
by the analysis of label-free LC-MS/MS data. We do not claim to make a complete
review but we will highlight the key points of the analysis.

For ease of comprehension, only the selection of biomarkers in case of between-
group comparisons has been considered in this chapter.

2 Raw Data Generation and Experimental Design

More precisely, label-free LC-MS/MS workflow for raw data generation works as
follows.

Proteins contained in complex biological samples are first cut into small frag-
ments, namely the peptides, through an enzymatic digestion step. Those peptides
are then continuously separated through liquid chromatography by gradient elution.
Peptides arrive sequentially, given their retention time, in the ion source of the mass
spectrometer so that they are ionized. Once ionized, peptides are analyzed through
two consecutive analyzers.

1. First analyzer—MS step: it determines the intensity and the mass-over-charge
(m/z) of each ionized peptide, and it transmits the most intense peptides
(precursor ions) to the second analyzer. The relation between the m/z ratio and
the intensity is given through a spectrum with m/z in the x-axis and intensity in
the y-axis.

2. Second analyzer—MS/MS step: after the precursor ions are fractionated into
several ions, the amino-acid sequencing can be completed for the corresponding
peptide.

Thereafter the flow of one sample through the mass spectrometer is called an
injection or a run.

The resulting data are three-dimensional as each peptide is described by its
retention time, its m/z, and its intensity, proportional to its abundance in the analyzed
sample.

The mass spectrometer generates one raw file per run (about 500 Mb per file).
Each file contains relevant information about MS and MS/MS acquisitions and is
exported in proprietary data format. The MS acquisitions will be used to quantify
peptides, themselves identified thanks to MS/MS acquisitions.
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It is essential to define a specific question before generating the data because it
is this definition that will define the way data must be generated and then analyzed:
what comparisons, to what end, on what population, with how many and what type
of replicates, etc. In particular, this will orientate the experimental design.

The data are affected by different sources of variability. The most interesting
source of variability is the one generated by the biological condition of interest, for
example, the variability of proteomic contents in samples from patients undergoing
different treatments, or between diseased and healthy tissues.

Other sources of variability arise from sampling variability and technical vari-
ability of the procedures during the pre-analytical steps.

To formalize this point, total variability observed in a dataset can be divided into
between-group and within-group variability. Between-group variability corresponds
to the variability raised by the factor of interest; for example, variability observed
between two diagnostic groups constituted, respectively, by healthy and diseased
subjects. Within-group variability corresponds to biological variation between the
different samples in each group of interest, for example, the variability observed
between the healthy subjects. Within-group variability also includes technical
variability in cases of technical replicates.

2.1 Sampling Variability

For obvious reasons, whole populations cannot be sampled. To ensure conclusions
that generalize to the population, and thus make inference, sampling must be as
representative as possible of the whole population from which it was taken.

Biological variability, that is to say within-group variability, must be evaluated
for subjects/entities constituting this sample.

Biological replicates are used to assess the variability of the biomarkers of
interest that is inherent to the whole population. Figure 3, inspired by Oberg et al.
[2], illustrates the importance of these replicates. Let us suppose that the goal of
the study is to find differential biomarkers between healthy and diseased subjects.
On the left, the distribution of the abundance of one marker in a population of
healthy (green) and diseased (red) subjects is represented. On the right, two different
sampling strategies are represented. In the first one, no replicates are used. The
observed difference of means between the two subject groups (vertical segments
on Fig. 3) are different according to sampling situation Ex1 or Ex2. Results are
not robust. In the second strategy, several subjects are drawn from each population.
Estimated means are now better estimations of the true means in each of the sub-
populations. Multiple biological replicates also reduce the variance of the calculated
statistics.

Moreover, for the discovery of robust biomarkers, between-group variability
should be larger than the within-group variability in the population. If there is
only a single biological replicate per condition, between-group and within-group
variability may be confounded.
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Fig. 3 Examples of sampling strategies

Note that from a biological point of view, this sampling variability may depend
on the nature of the sample (tissue, cell extracts, etc.).

2.2 Technical Variability

Besides biological replicates, technical variability reflects all that is not related to
biological variability. This technical variability may come from sample preparation,
instrument calibration, peptide detection, etc. Technical variability should ideally
be smaller than biological variability and must not be confounded with biological
variability, hence the importance of technical replicates. Moreover, these technical
replicates are essential to assess reproducibility and thus evaluate the quality
of the experiment and, by consequence, of the whole study. We advise three
technical replicates (called injections/runs thereafter) per sample, which seems to
be a good compromise between economic concerns and robustness requirements.
Three replicates provide protection in case of one bad quality run and ensures
reproducibility. These technical replicates make the quantification of the variability
induced by the different pre-analytical steps possible. If there is a lack of technical
replicates, technical variability will be confounded with biological variability.
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2.3 Experimental Design

Experimental design must answer the biological question and take into account
the different sources of variability and in this way control and reduce technical
variability as much as possible.

It ensures that both technical and biological sources of variability can be
estimated. Different strategies, including replications, can be used for this purpose.
The first strategy is randomization, that is to say samples are acquired in a random
order. The aim is to avoid bias due to uncontrolled sources of variability. In case
of LC-MS/MS data, these technical sources of variability mainly come from the
chromatography column: aging or dirt due to incomplete washes may lead to a
modification of the retention time for the same peptide, or to a decrease of separation
capacity. Sample material batches of columns may also introduce variation when
columns must be replaced.

The second is blocking, which diminishes the risk of bias due to known sources
of variability. Imagine a longitudinal study with samples measured over time for
each of the patients. Data from the same patient must be acquired with the same
column and at the same time period.

If these recommendations are not observed it will not be possible to distinguish
technical variability from the variability of interest. A complete review of these
notions can be found in Oberg et al. [2].

Sampling variability and technical variability should be as low as possible so that
they do not hide the principal source of variability, the one linked to the biological
factor of interest. Technical variability can be controlled through framed procedures.
Sampling variability is determined by the population, and the sampling strategy
should cover the population as much as possible.

A preliminary study should be conducted to quantify the different sources of
variability and to define the number of replications needed. The question of the
calculation of sample size will be developed further in Sect. 4.4.

3 From Raw Data to Protein Quantification

Raw data are exported in proprietary data format. Proprietary data formats may be
difficult to handle with non-commercial software, mostly preferred by the scientific
community because of their transparency. Thus, the first step when dealing with
such data is to convert the raw files from raw proprietary file format to open
format like mzXML or mzML, which are common file formats for proteomics mass
spectrometric data. These files contain relevant information about MS and MS/MS
spectra corresponding to the acquisitions. MS/MS spectra will be used to identify
peptides. MS spectra will be used to quantify peptides.
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Once raw data is transformed, the following steps are followed:

• Peptide identification and validation
• Protein identification and validation
• Peptide and protein quantification

We describe here one possible workflow, but point out that it is one among other
possibilities.

3.1 Peptide Identification and Validation

Peptides are identified from MS/MS information by interrogating databases through
sequence search engines like Sequest, Comet, X! Tandem, or Mascot. The objective
of these algorithms is to match the spectra with peptide sequences referenced in
specific databases like UniProt. These search engines can also be combined, as
described later.

The principle of search engines is to match the MS/MS spectra with corre-
sponding peptide sequences from the protein sequence database. The quality of the
peptide-spectrum matches (PSM) is evaluated through a scoring function whose
calculation and parameters depend on the search engine. The evidence of correct
identifications is based on these scores. Rather than using these scores directly,
the PeptideProphet [3] algorithm provides an estimation of the confidence in the
identifications. This algorithm is part of the open-source Trans-Proteomic Pipeline
(TPP) software [4]. Based on a mixture-modeling approach (one distribution,
respectively, for correct and incorrect identifications), the algorithm assigns a
probability of correctness to each PSM and also gives a corresponding global False
Discovery Rate (FDR). It takes other parameters, like mass deviation, number of
missed cleavages, etc., into account when estimating the probabilities.

Peptides are now identified and the identifications are validated. Further peptide-
level probabilities can be computed through the iProphet algorithm, which is an
integral part of the TPP. This tool makes it possible to combine PSM scores from
multiple search engines. It also improves probability estimates given by Peptide-
Prophet by using additional information like the number of sibling search results
(identifications based on the output of multiple search engines for the same set of
spectra), the number of replicate spectra, and the number of sibling modifications
(peptides that are identified with different mass modifications), etc. [5].

3.2 Protein Identification and Validation

Protein inference can then be performed, using, for example, another TPP tool,
namely ProteinProphet [6]. Protein inference consists in assembling peptides
experimentally identified from tandem mass spectra to deduce the proteins that were
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originally contained in the sample. This makes it possible to estimate the probability
that one protein is present in one specific sample by adjusting the probabilities given
by PeptideProphet. The probability associated with one protein corresponds to the
probability that it is truly contained in the sample, and the probability that at least
one PSM related to the considered protein is correct. The final list of proteins is the
simplest one that can explain all of the peptides observed in the dataset.

3.3 Variability at the Identification Level

The list of peptides/proteins given at this stage constitutes the set among which
potential biomarkers will be selected. These lists differ from one search engine
to another because corresponding algorithms are not the same. This may disturb
the biologist, who expects only one list, however it is obtained. The interest of
combining several search engines, as proposed by the iProphet tool, becomes
apparent in this context, as it reinforces the identification results.

Samples are often peptide rich. Among all of the peptides contained in the
samples, only the most abundant peptides are retained for the MS/MS step and
further identification. The same peptide is thus not necessarily identified in all of
the injections, even if present because only the most intense peaks (the “top-20,”
for example, are commonly used) are fragmented for each MS scan. A particular
peptide may have a different measured intensity depending on the intensity of the
other peptides with which it is eluted. As a consequence, the same peptide is not
necessarily identified in all of the injections, even if present. On the other hand,
the more confident the identification, the more likely the peptide will be present
in the other runs. By confident we mean that the peptide is identified with a high
probability of correctness, or in other words a high likelihood that the peptide-
spectrum-match is correct. If a peptide is identified with little confidence in one
run, quantifying it in other runs may lead to useless information.

3.4 Missing Values

In the framework of label-free LC-MS/MS data analysis, missing values correspond
to peptides that are observed in some runs, but unobserved in other runs, for
different reasons partially described above. The origins of these missing values
are not well understood because there are many. It may be a chance result related
to the experiment or a true biological information and the peptide is unobserved
because of post-translational modification, sequence variations, enzymatic cleavage,
etc. Several explanations may thus be proposed:

• the peptide is missing in the sample
• the peptide is present in a detectable abundance but is in fact not detected or

poorly identified
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• the peptide is present but at a too low abundance to be detected by the instrument
(limit of detection).

The question is then: must a peptide be quantified in a run where it was not
identified, and if yes, in what manner? Different solutions can be found to deal with
this question [7]:

• Withdrawal of peptides that are not present in all of the runs. This is based on the
hypothesis that these peptides were subjected to measurement error in some runs;
they are thus considered as poor quality features and removed from the dataset.

• Imputation of the missing value, which can be done in several ways

– Use of the background by imputing the minimum of the abundance observed
on the other runs from the same condition. This is based on the hypothesis that
the peptide is missing because it is under the limit of detection.

– The method of the k-nearest neighbors (knn) can be used for this purpose
– One limit of this approach is that it modifies the mean and the variance

structure of the data.

• Modeling of the quantity of the peptide using other runs and under the normality
assumption.

• Transformation into a presence/absence information without further quantifica-
tion.

Filters can also be set up upstream to limit the number of missing values by
eliminating the least represented peptides. This filter can be based on the frequency
of occurrence of the peptides. For example, only peptides detected in 2 of 3 of the
runs for a given sample are conserved.

Each run is described by a list of peptides each characterized by its sequence, the
ID of the protein it is related to, its mass-over-charge, and its retention time.

Note that proteins identified on the basis of one peptide only may not be reliable
and need further confirmation.

3.5 Alignment Procedures

The objective of this step is to match the peptides identified in the different runs.
A particular peptide can be observed at different retention times depending on the
run it is identified because of uncertainties in peptides separation inherent to the LC
technology and resulting in changes in flow rate; this corresponds to elution time
drifts between the runs. In simplified terms, the same peptide may take different
times to cross the column. It will thus be analyzed by the mass spectrometer at
different times. The aim of the alignment procedure is to make identical peptides
correspond across the samples even if observed at slightly different times. Retention
times must thus be aligned so that each peptide has the same retention time over all
the runs within which it is identified. Note that m/z drifts are minor compared with
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retention times. This alignment step is essential to compare peptide quantification
in the different runs. As described by Lai et al. [8], several elution patterns can be
observed depending on the peptides.

Several methods are proposed to align runs. Lange et al. proposed a review of
the different strategies [9]. More recently, Smith et al. [10] referenced as many
as 50 algorithms. Therefore, we will not make a complete review of all available
algorithms, but limit ourselves to the major principles. Smith et al. detailed each
of them. The idea is to estimate a linear or non-linear function that corrects the
distortion observed from one run to another. A warping function is estimated by
minimizing an objective function. The objective of this “warping function” is to
modify the spectrum signal corresponding to peptides by monotonically shifting,
stretching, or squeezing them to find consensus features.

This can be done as follows:

• by using a reference run or not
• by successive paired alignments or simultaneous alignment of all the spectra
• by using the complete profiles or only specific peptides or landmarks in the

spectra.

Another approach corresponds to direct-match approaches. In this case, no
warping function is applied but a correspondence is achieved from run to run [10].

Each run is described by a unique list of peptides that must now be quantified.

3.6 Quantification

LC-MS/MS is used as a relative quantification tool. Quantification corresponds
to estimation of the abundance of one particular peptide in the sample it is
observed. However, mass spectrometry technology is not designed to give the exact
amount of a peptide in a sample; this is not possible because of differences in the
ionization efficiency and/or detectability of the many peptides in a given sample.
As a consequence, the technology cannot provide absolute—exact—quantification.
However, abundance of a single peptide is comparable from one run to another
and by extension from one condition to another. Mass spectrometry is thus used to
reflect relative differences in abundance of peptides from one condition to the other.
For that reason we speak about “relative” quantification. Most often biologists or
clinicians are interested in conclusions at the protein level. Protein quantification
may be derived from the quantification of peptides related to them.

Two different approaches are available for peptide quantification:

• Spectral counting, based on the number of identifications at the MS/MS level
related to a same peptide. The number of MS/MS spectra that match peptides
to a particular protein are then counted and this count is used to quantify the
abundance of the protein in the biological sample.
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• Abundances of peptides are quantified at the MS level. It is based on the intensity
of ions of one peptide given by the chromatogram.

In the following we will not discuss spectral counting.
Peptide quantification is usually based on the signal from eXtracted or Selected

Ion Chromatogram (XIC or SIC). This spectrum signal is first baseline- and noise-
corrected and peaks, corresponding to peptides, are then detected through different
algorithms [11, 12]. Once the peaks have been detected, peptide abundance is
estimated through peak width, height, or area, for example.

The quantification of the peptides then serves at basis for the quantification of
the proteins they are related to; this is the inference step. Three main strategies can
be used to infer protein quantification.

Additive

In this case, the abundances of peptides related to a single protein are combined in
an additive way. This can be done by taking the (standardized) sum from all or only
a subset of the most abundant peptides.

Reference

In this case, a specific peptide is chosen as a reference to standardize the abundance
of other peptides of the protein. The reference peptide can, for example, be chosen
as the one with the fewest missing values; peptides are normalized on this reference
and the median of the normalized peptides is used to quantify the protein. This
solution is, for example, implemented in DAnTE software [13].

Linear Model

In this case, the abundance of proteins is modeled. Peptides are regarded as repeated
measures of the protein and one linear model is fitted for each feature. The linear
model can be additive with or without interaction [14].

Without interaction the model can be written as :

yi:k D 	C gpi C errorik;

where yi:k is the average abundance over all peptides representing the considered
protein, observed for sample k coming from disease group i, 	 is the overall mean
abundance, gpi is the deviation due to disease group i, and errorik the error term.

With interaction it can be written as :

yijk D 	C gpi C pepj C .pep � gp/ij C Sk.i/ C errorijk;
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where yijk is the abundance of peptide j observed in disease group i for sample k,
.pep � gp/ij is the interaction term, Sk.i/ is the deviation of sample k from the overall
group mean abundance, and errorijk the error term. Sk.i/ can be modeled as a random
or a fixed effect depending on whether subjects are considered as a random selection
from larger underlying population or not.

Protein abundance is then given by yi:k. This approach is implemented, for
example, in R library MSstats [14, 15].

For more details about these models please refer to Clough et al. [14]

Summary

Matzke et al. [16] proposed a comparison of these different strategies. They
concluded that the choice of the quantification method has less impact than the
missing values imputation and the peptide filtering steps. Not all peptides should
be used for protein quantification and a filter on peptides can help by removing
poorly quantified peptides. For example, peptides can be filtered on the basis of
their coefficient of variation over technical replicates as proposed by Lai et al. [8]

Matzke et al. also concluded that the best method is the one that is the most
tightly controlled and easiest to set up.

Another question raised by the quantification step is the level at which quantifi-
cation is applied: at the peptide or at the protein level. The answer depends largely
on the biological question. Quantification of proteins can be seen as more precise
than that of peptides because it is obtained from many entities representing the
same protein. But for a particular protein, fold-changes may vary depending on the
peptide for true biological reasons. This can come about for different reasons: some
peptides are more variable than others in the same chromatographic conditions,
post-translational modifications, isoforms, and peptides shared by several proteins.
Biologists may be interested in accessing this level of information. For example, a
particular disease can be characterized by a variant or post-translational modifica-
tion of one particular peptide. In this context, peptides with extreme quantification
values can in reality have a biological meaning and therefore must not be discarded.

3.7 Normalization

Whatever the quantification method, raw abundances are commonly transformed in
the base 2 logarithm scale. The logarithmic transformation aims to remove excess
skewness and to obtain approximately normally distributed intensities. Base 2 is
used because further analysis uses fold-changes and interpretations are easier in
this basis. Normalization allows for the (partial) compensation of some instrument
fluctuations and takes into account potential differences in samples amounts. The
objective of this step is to retrieve systematic biases from the data, which is any non-
biological signal that affects the measure. These systematic errors can be due, for
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example, to sample processing conditions, instrument calibration, chromatographic
columns, or temperature variations. They manifest themselves in variations of peaks
intensities or retention time, measure precision, etc. [7, 17].

Several approaches are proposed.

Global Normalization

It is based on the hypothesis that the majority of the peptides do not vary; the
distribution of peptide abundance is thus assumed to be similar from one sample to
another. For this reason, abundance distribution is constrained to be centered around
a constant (mean or median, for example). This can be written as

y0
jk D yjk � 	k;

where yjk is the observed abundance for peptide j in sample k and 	k the mean (or
another chosen constant) of all peptides quantified in sample k.

This type of normalization may correct for differences in runs.

Quantile Normalization

It is also based on the hypothesis that the distribution of the peptide abundance
should be the same from one sample to another. In this case, distributions are
constrained to be exactly identical from one sample to another [18].

Using a Reference Spectrum

Normalization can also be performed by using a reference spectrum, either by linear
regression or by local regression. It is based on the “MA plot,” which plots M values
corresponding to the difference of log-intensities between the reference spectrum
and the current one on the Y axis, against A, the mean of the log-intensities, on the
X axis.

Linear regression is based on the hypothesis that systematic bias depends linearly
on the order of magnitude of peptide abundance. This approach is useful to retrieve
systematic bias-related carry-over in the LC column. Linear regression models the
linear relationship between M and A. The value of M for a peptide j is given by mj.
The corrected normalized value of M for peptide j (m0

j) is thus given by

m0
j D mj � m�

j ;

where m�
j corresponds to the estimation of mj given by the linear regression model.

Local regression is based on the hypothesis that systematic bias depends non-
linearly on the order of magnitude of peptide abundance. This approach is useful to
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retrieve systematic bias due to peptides that are measured close to the saturation
point or to background measurement. The concept is the same as for linear
regression, except that the regression is performed in a piecewise manner.

Using Singular Value Decomposition

Another type of approach was proposed by Karpievitch et al. [19, 20]. It is based on
singular value decomposition, as first proposed by Leek et al. in the context of DNA
microarrays [21]. There is no need to identify the origin of the bias. In a nutshell,
the effect of the factor of interest is estimated in the dataset through a specific model
linking intensities for the peptide and the experimental factors of interest. The part
of the data that was not explained by the model is decomposed into singular values
and retrieved from the original dataset. This approach is proposed in the DAnTE
software previously cited.

Summary

Each software suggests another approach. The relevance of one approach compared
with another may also depend on the dataset. It is thus of interest to use different
approaches and compare results. Chawade et al. proposed a tool for the simultaneous
evaluation of several normalization methods [22]. This evaluation is based on
quantitative and qualitative plots and guides the choice of the optimal normalization
method. Lai et al. [23] advocate skipping the normalization step rather than
normalizing a dataset under an incorrect hypothesis. For the authors, the appropriate
filtering of peptides is more important than the normalization step. As a remark,
Karpievitch et al. [7] recommended normalizing the data before imputing missing
values.

Some authors have proposed introducing proteins in known quantities into
samples and then using these as a normalization benchmark. We believe that these
added proteins may interfere with the other proteins of interest and prefer not to use
this strategy.

3.8 Conclusion

Numerous methods are available for this first part of the analysis. In a recent study,
Chawade et al. [24] showed that the choice of the data processing strategy had
an important impact on the final outcome. But at present, there is no consensus,
whatever the step considered. It may be of interest to combine different software
programs to optimize the whole workflow. The choice of method may also be
adapted to each specific study and different methods can be compared.

In general, the wisest thing to do is to choose the most tightly controlled method.
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In terms of software choice, the use of manufacturer software presents some
disadvantages: there may be a lack of precise documentation and of traceabil-
ity/reproducibility in cases of version changes as some parameters may not be
changeable. One advantage is that it may be an easy way for the biologist to
get preliminary results. Open-source software programs present all the advantages
and allow the combination of modular blocks to obtain a controlled “in house”
consensus.

Concerning formats, open-source formats allow data to be shared between
different software programs and different laboratories, which seems essential.

4 Biomarker Selection

Once peptides and proteins are quantified and corresponding intensities suitably
normalized, each sample is described by the abundance of a list of features that can
be peptides and/or corresponding proteins. The choice between peptides or proteins
as the statistical unit can be considered, as discussed in Sect. 3.6. In the following
section, we will therefore use the term “feature” and specify “peptide” or “protein”
if needed.

The abundances of these features are related to a factor of interest for which
biomarkers should be found. The next step is thus the choice of a suitable method
of analysis. The choice of the method must be dictated by the biological question
defined previously at the experimental design step.

Three main questions can be identified.

1. Data description. Non-supervised analysis approaches will be used for this
purpose.

2. Selection of biomarkers characteristic of one particular factor of interest. In this
case, differential analysis approaches will be used.

3. Selection of prognostic biomarkers able to predict the factor of interest. In this
case, supervised analysis approaches will be used.

The biological question defines the choice of the method, and not the opposite.

4.1 Data Description: Non-supervised Methods

Data description is the first step of the statistical analysis. The objective of this
preliminary step is to visualize the global structure of the data. The aim of these
methods is to cluster entities (resp. observations or features) in the space of resp.
features or observations. These are exploratory methods, with no a priori informa-
tion as input, hence the term “non-supervised” methods. We will describe two of
the most frequently used non-supervised methods, namely Principal Component
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Analysis (PCA) and Hierarchical Ascending Clustering. The objective is to give
an overview of these two methods without going into detail so as to enable the
interpretation of the corresponding results.

Hierarchical Ascending Clustering

The objective is to cluster similar entities into the same class. It results in the con-
stitution of a hierarchical tree called dendrogram. This dendrogram is constructed
iteratively: at each iteration the two most similar entities are gathered into the same
class. The algorithm begins with each entity (feature or observation) forming a class.
The algorithm ends when all the entities are clustered into a single unique class. The
notion of similarity is specified by the choice of the metric, which is a measurement
of similarity or dissimilarity. In cases of dissimilarity, the distance between two
entities is minimized (e.g., Euclidean distance) whereas in cases of similarity it
is maximized (e.g., correlation coefficient). Once this choice has been made, the
similarity between two classes must also be defined. For example, in the centroid
method, the distance between two clusters is defined by the distance between their
centroids. For complete and single linkage, the distance between two clusters is
defined, respectively, by the maximum and the minimum of the distances between
any two points, one from each of the clusters.

The choice of the metric depends on the questions raised by the dataset.

Principal Components Analysis

The objective of this method is twofold: 1-visualize the different sources of
variability that can be observed in the dataset. 2-reduce the dimension of the dataset.

The idea behind this approach is that observations cannot be visualized in
the space of the features, because they are too numerous. The idea is hence to
project observations into a lower space, this space being chosen as the one that
maximizes the projected variability of the data. The corresponding variables, called
components, are a linear combination of the original variables.

To go further, some authors have proposed a modification of PCA through
sparse PCA. In classical PCA, all of the variables of origin are conserved in the
components. In sparse PCA, the idea is to remove variables whose coefficients in
the linear combination are below a defined threshold from the components. In this
way, noisy variables are excluded from the PCA model, making the interpretation
easier [25].
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4.2 Differential Analysis

Multiple Testing

The objective here is to identify biomarkers related to the factor of interest. This is
a univariate approach, in which features are tested one by one through parametric or
non-parametric tests. It involves defining one null hypothesis H0 and its alternative
hypothesis H1 and leads to the definition of two types of error: Type I and Type
II. The first, denoted as ˛, corresponds to the incorrect rejection of a true null
hypothesis and is related to the p-value and to the number of tested hypothesis.
The second, denoted as ˇ, corresponds to the failure to reject a false null hypothesis
and is related to the power of the test defined as (1 � ˇ).

The testing of multiple hypotheses leads to four situations: True Positives which
correspond to truly differential selected variables, False Positives which correspond
to non-differential variables wrongly selected and are related to type I error, False
Negatives which correspond to truly differential selected variables not selected by
the test, and True Negatives which correspond to variables truly considered non-
differential. To take into account this context, the simultaneous testing of a large
number of hypotheses involves controlling type I error by adjusting raw p-values.
Two strategies have been proposed for this purpose, namely the Family Wise Error
Rate (FWER) and the False Discovery Rate (FDR). The first controls the probability
of at least one False Positive, while the second controls the expected proportion of
False Positives. A 5 % control of the FWER gives the confidence at 95 % that there
are no False Positives among selected features. A 5 % control of the FDR gives the
confidence that, on average, there are less than 5 % of False Positives. This control
is less conservative than the FWER and, for this reason, is preferred and commonly
used, through, for example, the Benjamini–Hochberg procedure [26].

4.3 Predictive Analysis: Supervised Methods

The objective of this approach is to classify a new observation into known
classes. As for differential analysis, classical methods must be adapted to the
high-dimensional setting. The high number of variables relative to the number of
observations produces multi-collinearity and optimism. Different strategies have
been proposed to deal with this issue.

1. Dimension reduction through selection or extraction of variables.
2. Specific methods that directly handle high-dimensions, for example, regulariza-

tion methods, or k-nearest neighbors.
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4.3.1 Dimension Reduction

Variable Selection Variable selection consists in selecting variables in a univariate
way (t-test, ANOVA, etc.). Selection is based on ranking of the variables according
to their relevance with regard to the factor of interest.

Variable Extraction Variable extraction consists in building new variables, called
components, which are a linear combination of the original variables; in this way,
observations are projected into a lower dimension space. This can be achieved
through Principal Components Analysis or Partial Least Squares (PLS) [27, 28],
for example. The first builds the components by maximizing the projected variance
of the data, whereas the second builds the components so as to maximize the
covariance between the response and the components. The major difference between
the two methods is that PLS components are optimized so as to be predictive of the
factor of interest.

The components are then considered the new variables that can be integrated into
classical models.

4.3.2 Regularization Methods

Regularization methods, like regularized linear or logistic regression, are based on
a penalized maximization of the likelihood to avoid overfitting. Regularization can
be performed through L1 (LASSO [29]) or L2 (ridge regression [30]) penalty. The
first leads to sparsity, thus variable selection, by shrinking the coefficients of non-
informative variables toward 0. The second only shrinks the coefficients but keeps
all of them in the model. By combining both penalties, the elastic net gives the
possibility of a compromise between the two approaches [31].

These methods can be combined with PLS to introduce sparsity into the
components, leading to sparse PLS; the combination of variable extraction and
selection makes it easier to interpret the components of the PLS [32, 33].

4.4 Power and Sample Size Calculation

Power is defined as the capacity of a test to highlight a differential effect when it
truly exists in the dataset. It corresponds to the control of type II risk. Power is
directly linked to the number of observations included in the study.

More precisely, the required number of samples to get robust results depends
on: the fold-change (FC) of interest ı, the desired power of the test (1 � ˇ),
the FDR value (q), the ratio between the expected number of differential and
non-differential proteins (m0=m1), the minimum number of peptides per protein,
the number of technical replicates L and biological replicates K, the number of
compared conditions J, and technical variability �2Error. All these parameters can
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then be linked by the following equation [34]:

ı D O�2Error

IKL
.t.1�ˇ;df / C t.�=2;df //

2;

with

˛ D .1 � ˇ/ � q

1C .1 � q/:m0=m1

;

and

df D IJKL.L � 1/C .I � 1/J.K � 1/;

This sample calculation is proposed in the R library MSstats [15].
In practice, the number of replicates is often limited by financial constraints. In

any case, if the number of replicates is fixed, biological replicates are to be preferred
over technical replicates; they will make it possible to detect smaller FC. However,
if the number of biological replicates is limited, technical replicates can help reduce
the detectable FC to a certain extent [2]. Note that increasing technical replicates
cannot compensate for lack of robustness of the experimental design and will be
useless in case of bad coefficient of repeatability between technical replicates.

As an example, Table 1 shows the evolution of the number of biological samples
needed to detect differential proteins given different FC, FDR (q), and power (1�ˇ).
This was calculated for a study with 252 proteins represented by a minimum of 1
peptide, 3 technical replicates per sample, and m0=m1 D 0:99. Calculations were
based on a preliminary study with two diagnostic groups of 10 and 17 patients,
respectively. This table shows the influence of the order of magnitude of the
parameters power FC and FDR. The higher the power, the more samples are needed.
The same occurs for the FDR. Finally, selecting biomarkers with weak FC requires
more samples.

Table 1 Number of required samples for varying FC, FDR (q), and power (1� ˇ)

FCD1:25 FCD1:5 FCD2
ˇD0:1 ˇD0:2 ˇD0:3 ˇD0:1 ˇD0:2 ˇD0:3 ˇD0:1 ˇD0:2 ˇD0:3

q D 0:01 519 440 129 157 118 112 53 45 40

q D 0:05 439 367 321 133 128 97 45 38 33

q D 0:1 402 334 290 122 101 88 41 34 30



196 C. Truntzer and P. Ducoroy

4.5 Importance of Validation

Models (and resulting candidates as biomarkers) must be internally and externally
validated. Internal validation consists in validating the model using the same dataset
whereas external validation consists in validating the model using a new dataset that
has never “seen” the model. External validation should be preferred but is not always
possible. In this case, internal validation must be performed by cross-validation by
splitting the dataset into a train and a test set.

The model must be robust, that is to say have good predictive properties for new
observations. The difference between the quality of adjustment and the quality of
prediction raises the question of optimism.

The discovery of new biomarkers should be performed into two steps:

1. Identification studies designed to select a list of candidates as markers to be tested
among a large number of features. These studies give a first estimation of the
strength of association between each feature and the factor of interest.

2. Validation studies designed to confirm the previously selected candidates as
biomarkers. These studies aim to re-estimate the strength of association of the
previously selected candidates on independent datasets, and thus confirm (or
invalidate) the relevance of candidates as markers.

Identification studies are based on sampling from the population. The selection
of relevant markers—here proteins—then relies on estimating the strength of
association between each feature and the factor of interest. Only features with a
significantly high enough strength of association are selected; variables are selected
as candidates because of their extreme strength of association. This leads to a
selection bias, which is all the greater when the study is small; the mean estimated
strength of association of selected features is greater than the “true” strength of
association.

Validation studies use independent datasets to re-estimate the strength of associ-
ation and to confirm the relevance of the selection of candidate markers, in this case
proteins. They show optimism if identification studies were wrongly calibrated. The
mechanism of variable selection induces optimism.

Truntzer et al. showed that this mechanism of selection was related to regression
toward the mean [35]. Optimism decreases when the size of the identification
study increases. It can be corrected by designing identification studies larger than
validation studies. This is shown in Fig. 4, from Truntzer et al. [35]. In this work,
the authors compared the estimated strength of association of variables selected
as potential biomarkers in the identification study, with the strength of association
of the same selected variables, but this time estimated on validation data. This
work was done on simulations in the context of survival data: each subject is
described by survival status and “omic” variables with known effects on survival.
“Omic” variables were divided between active and non-active variables, where
active variables correspond to variables that were predictive of survival. For more
details about the simulation process, please refer to Truntzer et al. [35].
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Simulated datasets were divided into identification and validation datasets and
the two following steps were repeated 200 times:

1. Step 1—on identification datasets: The strength of association (SA) between each
variable and the survival status was estimated through the regression coefficient
of univariate Cox survival models. Variables with significant regression coeffi-
cients were selected as potential marker candidates. Those variables may be true
or false positives according that they were simulated as active variables or not.

2. Step 2—on validation datasets: Univariate Cox models were estimated only
for candidate markers selected at the previous step to confirm on independent
datasets the effect on survival of the corresponding candidate biomarkers.

Figure 4 represents the distribution of the estimated SA on the identification
(horizontal hatching) and validation (diagonal hatching) datasets for candidate
markers selected at step 1. The vertical dotted line indicates the mean of the
distribution of the estimated SA computed on the validation simulated datasets.
The vertical continuous line indicates the value of the true simulated SA of
active variables. The upper panel of the figure shows the results obtained with
identification and validation datasets of, respectively, 100 and 1000 individuals.
In this case, for the identification sets, variables are selected in both extremes of
the estimates distribution, leading to a bimodal distribution. Many variables were
wrongly selected, and had far lower estimates on validation datasets. In fact, the
right mode mostly consists of the estimates of true positives, whereas the left mode
mostly consists of estimates of false positives. Increasing the sample size of the
identification data sets (1000 patients, bottom panel) SA are correctly estimated on
the identification sets, and thus, confirmed on the validation sets, even though they
are of smaller size. Selected variables are mostly true positives.

The identification step was improved by using larger sample sizes in the
identification step. Increasing the size of validation sets cannot improve the first
estimation obtained during the identification step.

5 Interpretation of Results

On completion of the statistical analysis, the statistician returns a list of proteins
that is not particularly informative if the proteins are not considered in the context
of the biological processes in which they are involved. Tools can thus be used to
1-integrate and visualize the results obtained by setting them in different biological
networks. 2-visualize the interaction between networks involved and visualize
signaling/metabolic pathways. This gives cohesion to the results and may allow
the biologist/clinician to open up new research perspectives. We will not go more
into detail here but want to point out that this part of the study is inseparable from
the statistical analysis. This implies bioinformatics tools that are not the subject of
this chapter. We can, however, cite, for example, the open-source software platform
Cytoscape (http://www.cytoscape.org/) [36].

http://www.cytoscape.org/
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nident=100, nvalid=1000

nident=1000, nvalid=100

−1.0 −0.5 0.0 0.5 1.0

−1.0 −0.5 0.0 0.5 1.0

Fig. 4 Distribution of the strength of association estimated on identification (horizontal hatching)
and validation (diagonal hatching) studies. The vertical dotted line indicates the mean of the
distribution of the estimated strength of association computed on the validation simulated datasets.
The vertical continuous line indicates the value of the true simulated strength of association of
active variables. The upper panel shows the results obtained with identification and validation
datasets of, respectively, nident D 100 and nvalid D 1000 individuals. The bottom panel shows
the results obtained with identification and validation datasets of, respectively, nident D 1000 and
nident D 100 individuals

6 Conclusion

Label-free LC-MS/MS is widely used for high-throughput quantitative proteomics.
It enables the relative quantification and comparison of the abundance of peptides
and/or proteins in complex biological mixtures representative of different biological
or clinical conditions of interest. Sample preparation and data acquisition are
straightforward and can be applied to sufficient number of samples to get robust
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studies. It is thus a method of choice for the discovery of new biomarkers.
Candidate biomarkers should then be validated as relevant biomarkers through other
technologies like electro-spray ionization mass spectrometer (ESI-MS) operating in
multiple reactions monitoring (MRM) mode, for example, which makes it possible
to have targeted absolute quantification for targeted proteins/peptides of interest.

To simplify the discussion, this chapter focused on between-group comparisons
when there are two groups. Once pre-processed, label-free LC-MS/MS data cor-
responds to a matrix of intensities with runs in rows and peptides or proteins in
columns. At this stage, all statistical methods developed in the context of high-
dimensional data can be used to deal with other biological questions, such as
continuous or survival outcome.

A large panel of statistical methods is proposed for the analysis of the datasets
generated by label-free LC-MS/MS. Each manufacturer sells their own mass
spectrometer with their own related analysis software. Each of these software
solutions was developed independently with the associated algorithms more or less
precisely described. In parallel, the scientific community develops open-source tools
for each of the different pre-processing and processing steps. These tools may be
embedded in open-source pipelines and it allows the user to pick among different
methods for each step. No consensus was obtained because of the heterogeneity
of the data, which does not lead to a “one size fits all” solution. As there is no
consensus, the objective was not to give a list of immutable solutions but to point
out the different questions raised by each stage and the major approaches that can
be used to tackle them. The most important task is to control the tools that are
employed and to use them to their best advantage by setting them up in appropriate
and personalized workflows.

In the field of label-free LC-MS biomarker discovery, the equipment and
corresponding pre-analytical methods are in constant evolution. Different mass
spectrometers dedicated to LC-MS/MS exist. They differ in their resolution and
sensitivity. We think that LC-MS/MS is a long-term approach for the discovery
of proteomic biomarkers. The biggest issue is the reproducibility of the results
over time because of the liquid chromatography step, but we imagine that future
technological improvements will solve these problems. The mass spectrometer will
also be more resolutive as well as faster in the analysis time.

So we guess that this technology will still have potential in the future.
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1 Introduction

Mass spectrometry (MS) can be used to study multiple biomolecules and is routinely
used to measure proteins, metabolites, and lipids [6, 10, 13, 14, 17, 26]. In addition,
it has become more common recently to collect disparate clinical measurements
and multiple omics data in the context of a single experiment. Building predictive
models from these datasets is challenging since often the data is heterogeneous
with different levels of variability and may have issues with missing values [29].
Thus, standard analysis and machine learning methods are often not appropriate or
capable of analyzing these collections of datasets. Thus, robust statistical integration
approaches are needed to identify the key panel of biomarkers related to the
phenotype of interest associated with the study (e.g., cancer, diabetes).

2 Classification via Maximum Posterior Probability

The development of classification algorithms is based on a training dataset com-
prised of P features, X D fx1, : : : ,xPg, for which a pre-defined number of categories
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are set for each sample, C D fc1, : : : ,cJg. There are many algorithms that are
available to generate classification functions to identify the most likely category
for a new test sample, x, for example, Naïve Bayes (NB), logistic regression, linear
discriminant analysis (LDA), support vector machines, K-nearest neighbors, and
random forests based on classification trees (RT). Any of these classifiers that
can produce a quantitative score associated with the likelihood that the sample x
is in each class can generate a posterior probability summarizing the probability
associated with each of the J classes [8, 16, 24]. The sample x can then be assigned
to the group with the maximum posterior probability. NB classifiers are both a
powerful classification methodology and simple to explain with respect to posterior
probability. NB classifiers assume features are independent given the categories
being classified:
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The probability of a given class given the observed data is the posterior probability
as given by Bayes Theorem:
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The predicted class is associated with the maximum of P
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. Since each

variable is treated independently, NB can be used on large collections of features,
continuous and discrete and has been shown to work well across various domains
[11, 19, 27, 28].

3 Parallel Posterior Probability Product Integration

One common strategy to integrate disparate data is to generate classification
models in parallel on independent data stream and then integrate at the posterior
probability level [1, 12, 28]. Therefore, specific datasets, such as targeted proteomics
and metabolomics, which may yield optimal prediction accuracies with different
algorithms, such as LDA and RT, respectively, can be used and integrated via
straightforward multiplication of the posteriors associated with each dataset for the
data associated with the test sample from each dataset j, xj.
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There are many other posterior probability combination rules that can be utilized,
such as averages, sums, maximums, and so forth [12], however in this circumstance
the benefits of classifier integration are demonstrated via a Posterior Product
Probability (P3).

4 Feature Selection

One key component of the development of predictive models using large numbers of
predictors is feature selection. There are a multitude of feature selection algorithms
that have been proposed and evaluated in biological applications [4, 21, 23]. Here a
common algorithm, recursive feature elimination (RFE) [5, 7, 18], will be discussed
as one example that is used extensively in biology with various machine learning
algorithms, such as LDA and SVMs [3, 7, 9, 22, 25, 30]. RFE is readily available
in most statistical programming languages and is simple to implement. RFE is an
algorithm that sequentially removes features that do not contribute, or contribute
the least, in discriminating between different classes. The discrimination between
classes is usually quantified as classification accuracy or the area under a receiver
operating characteristic (ROC) curve (AUC) derived via cross-validation (CV)
steps. RFE is a good option when evaluating all possible feature combinations is
computationally restrictive. It can be easily modified to terminate at specific criteria
or to evaluate all feature set sizes from P to one. An important component of
feature selection for data integration, however, is that the accuracy is measured in
the context of the combination of the disparate features in relation to the integrated
score (Eq. 2).

5 Case Study: Model Evaluation and Visualization

The Diabetes Antibody Standardization Program (DASP) is a collective effort to
evaluate and improve islet autoantibody assays of type 1 diabetes (T1D) [2, 15, 20].
T1D is diagnosed in a patient according to World Health Organization criteria
and samples were collected within 14 days of starting insulin. The initial dataset
contained 50 and 100 sera samples from T1D and control (CTRL) patients,
respectively, but was reduced to 40 and 79 to remove potential gender and age
effects. Three MS-based analyses were performed, lipidomics, metabolomics, and
targeted proteomics. Gas chromatography-MS was used to quantify hundreds of
lipids and metabolites via peak area estimation. For the purpose of this case study,
171 lipids and 149 metabolites that were observed with complete reproducibility
in our study were evaluated (i.e., there were no missing values in either dataset).
Targeted Liquid Chromatography Multiple Reaction Monitoring MS data of the
relative abundance of 52 peptides across the patient cohort was collected. Peptides
were also quantified by peak area. The peptide data was previously published [31].
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The data is first analyzed via standard NB -P3 on the concatenated data consisting
of the full 372 feature set. The NB model was fit using the “fitcnb” function in
MatLab, with default parameters, which models the predictor distribution within
each class as a Gaussian. The priors are derived empirically as frequencies of the
classes in the training data. The posterior probabilities were obtained from the
“predict” function with default parameters. Accuracy was measured as the AUC
returned from CV. Since separate iterations of CV will yield different results, the CV
was repeated 100 times to get a more robust metric of accuracy and the variability
associated with the AUC. This yielded an AUC of 	0.88 with a standard deviation
of 0.02. An AUC for a perfect classifier is 1.0 and 0.5 for a random classifier, thus
the full model based on all 372 features performs significantly better than a random
model.

Feature selection was then performed via RFE using the metric of optimization
also as average AUC from CV. In particular, at each iteration of RFE all remaining

m features in the model are removed iteratively, i.e., P
�

xi

ˇ̌̌
cj

�
is removed and m

AUC values are obtained. The feature for which the maximum AUC is observed is
removed and the process is repeated for the remaining m-1 features. Although rules
can be utilized with RFE to determine an end point, such as terminate the feature
select at the point that the AUC decreases by •, in this case the feature space was
small enough that RFE terminated with one feature. The optimal model was selected
to be the one with m features at which the AUC was maximum. Figure 1 gives a heat
map showing the distribution of the features selected at each iteration of the RFE as
split between the three datasets. The single most discriminative feature is a peptide
and the best two-feature model includes one peptide and one metabolite. In addition,
this shows the clear lower performance of the lipid data.

Fig. 1 Heatmap displaying the percentage of features from each of the three datasets. (a) All
features decreasing from 372 to one feature using RFE, thus the top row represents �46, �40, and
14 % since the individual datasets have 171, 149, and 52 features, respectively. (b) The features
decreasing from 20 to one feature after RFE has removed 352 features; the pure white on the
bottom right corner indicates that the last feature remaining (100 % representation) is a peptide
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Fig. 2 ROC curve of the optimal feature selection subsets as defined by RFE, requiring only
ten features for the integrated model, but requiring 14, 74, and 8 lipids (DL), metabolites (DM),
and peptide (DP), respectively, for the individual datasets to identify the optimal AUC via RFE.
Integrating features after individual RFE improves the AUC, but it is not statistically larger than
the full integrated model with ten features

Figure 2 displays an ROC curve of each individual dataset at the point they
reach the maximum AUC, which is 9.5 % of the lipids, 42.7 % of the metabolites,
and 15.1 % of the peptides. As seen in Fig. 2, the AUCs of both the metabolomic
and proteomic datasets are quite high, greater than 0.94, however; the integrated
model yields an AUC greater than 0.99 while only requiring a combination of ten
peptide and metabolite features. If features are selected based on individual RFE
analyses, the subset would have 96 features; 8, 74, and 14 peptides, metabolites,
and lipids, respectively. In this scenario, integrating the features into a single NB
classifier yields an AUC of 0.94. If only the subset of 82 peptides and metabolites
is used, the AUC improves to 0.98. However, based on a Wilcoxon signed rank
test the integrated model with only ten features is still significantly more accurate
(p < 1e-10).

Lastly, the datasets were integrated at the model level (Eq. 2). To perform this first
each full dataset was evaluated independently to identify the learning algorithms
(RT, LDA, NB) that performed best as measured by average AUC. The LDA was
fit using the “fitcdiscr” function in MatLab, with default parameters, which models
the posterior as the product of the multivariate normal distribution and the prior
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probability. The priors are derived empirically in the same manner as the NB model.
The RT was fit using the “TreeBagger” function in MatLab based on Brieman’s
method. In both cases, the posterior probabilities were obtained from the “predict”
function with default parameters. The RT posterior is computed as the fraction of
observations of a particular class in a tree leaf averaged across trees.

From this analysis an RT was found to work well for both the lipidomic and
metabolomic datasets, while a standard LDA was selected for the proteomics
data. To simplify the case study feature selection is not incorporated, but could
be by simply recursive feature elimination across the dataset. Figure 3 plots the
classification accuracy plots, which show the percentage of samples predicted in
each class [1]. The rows represent the total number in each group, 40 and 79 for
the CTRL and T1D, respectively, for this case and the colors indicate the fraction
classified in either of the two classes. A perfect classifier in this visualization would
have all white on the diagonal from top left to bottom right. For this case study
it is observed that the total classification accuracy (i.e., the percentage of both
groups correctly classified) is 69.8 %, 89.9 %, and 95.8 % for the lipid, metabolite,
and protein data, respectively. Integration based on P3 attained from each dataset
results in a total classification accuracy of 97.5 % (right). This type of analysis and
visualization allows the researcher to evaluate which samples are being misclassified
into which groups, which can be particularly powerful when more than two classes
are being classified. One key interesting difference between this approach and the
standard method of concatenating the features is that the AUC of the integrated
model is at 0.99 prior to any feature selection. Errors in one dataset are compensated
for by another.

6 Discussion

Data integration is becoming a necessity to address the complexity of the exper-
iments being performed via MS. MS is enabling HTP experiments that can
simultaneously measure various types of biomolecules and integrating these data
into an interpretable form requires the development of statistical methods that can
manage the differences in formats, resolutions, and data sizes from the different
instruments. Data fusion has the potential in many cases to give a more complete or
accurate model of the biological question of interest. For example, the diabetes case
could be accurately classified by a combination of just ten metabolites and peptides
while individual datasets required many more features. In general, the posterior
probabilities acquired from machine learning algorithms allow the uncertainty with
the classification of an individual sample to be these analyzed, as well as offering
a straightforward approach to directly integrate disparate data. However, like many
machine learning and integration algorithms there are many approaches that work
well for one dataset, but may perform differently in new circumstances, so all
analyses should be undertaken with care.
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Fig. 3 Heat maps display the classification accuracy for individual datasets (left) and the
integrated model (right). White diagonal from top left to bottom right indicates perfect accuracy
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Logistic Regression Modeling on Mass
Spectrometry Data in Proteomics
Case-Control Discriminant Studies

Bart J.A. Mertens

1 Introduction

Mass spectrometry is currently attracting much interest for its ability to simulta-
neously profile hundreds of proteins in tissue, urine, or serum samples [17] and
across a large range of protein masses. The human proteome is a potentially rich
source of diagnostic information and hence, this technology holds great promise
for the construction of diagnostic rules for the detection of pathological states,
by identifying differential peptide/protein expression through evaluation of mass
spectra. Such research is particularly relevant for the construction of new diagnostic
or screening tools in diseases where either no methods are available or when the
reliability of existing approaches is poor.

Good examples where advances in medical diagnosis are urgently needed are in
the early detection of cancer, such as breast and especially colon cancer. For colon
cancer, this applies as current diagnostic methods tend to detect pathology at an
advanced stage, which limits the impact of treatment regimes. Reliable diagnosis of
muscular dystrophy with simple noninvasive procedures is another such problem,
since current methods require muscle biopsies to be taken, which is a cumbersome
and unpleasant procedure for the patient. Furthermore, diagnosis is difficult and
prone to error, as it is based on extensive histology of the collected tissue samples.

In oncology, proteomic analysis of blood samples is of interest since it is
hypothesized that malignant or pre-malignant cells will interact with their cellular
environment, causing changes in enzymatic and protease activity. Such protein
fragments may be diffused into the blood circulation and as a consequence,
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proteomic mass spectrometry is particularly attractive in diagnostic research, since
it may be based on the analysis of sample materials which are easily available
within routine clinical practice, such as blood or urine samples. Similarly, muscular
dystrophy has a genetic basis which causes changes in the proteome of affected
muscle tissues throughout the body. By applying mass spectrometry on blood,
serum, or plasma samples, researchers seek to construct diagnostic approaches
which can be quickly, put to use in routine hospital practice, to either replace or
augment the presently applied diagnostic methods. In all these examples, a related
research objective is the identification of proteomic biomarkers.

We discuss data from two case-control experiments set up at the Leiden Univer-
sity Medical Center to evaluate potential of mass spectrometry-based diagnosis in
the above described examples: a colon cancer study and a mouse study on muscular
dystrophy. Statistical methodology is introduced for the calibration of discriminant
rules on the proteomics spectra in such case-control experiments. We will use the
colon cancer data to introduce the methodology. We propose and describe a post-
hoc data exploratory analysis of the results from application of such methodology.
Subsequently, results are contrasted with application on the experimental data in the
muscular dystrophy case-control study.

1.1 Mass Spectrometry Experimental Data

Mass Spectrometry and Data

Mass spectrometric measurement is based on the principle of ionizing prepared
samples (such as blood serum or plasma) through application of a high-energy
laser beam. The laser-induced ionization vaporizes the sample material to a cloud of
charged particles, part of which will consist of the protein fragments of interest. This
charged particle mixture is then accelerated down a so-called flight tube through
application of an electric field. For each particle within the vaporized mixture, the
time-of-flight may be recorded by means of a detector which is placed at the end of
the flight tube. The flight times themselves depend on the mass-to-charge (m/z)
ratios of particles. The spectrometer will convert the observed times-of-flight to
mass-to-charge values, which is achieved through a quadratic transformation, which
is calibrated prior to measurement by using test samples. The unit of measurement
at the mass-to-charge scale is Dalton (D).

In this manner, the spectrometer records, for each sample, a series of intensity
values on a pre-defined, fixed, and ordered set of contiguous bins which spans
the mass-to-charge interval of interest, which so discretizes the observed signal.
For each sample, the recorded intensity for any bin corresponds to the number of
particles detected within that bin’s mass-to-charge range and hence, we may think
of mass spectra as extremely high-dimensional histograms, as the number of bins on
the full mass-to-charge range will typically be in the thousands. From a substantive
scientific point of view, it is the mass-to-charge values which are of interest, as
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these may allow scientists to interpret spectra by identifying known combinations
(“fingerprints”) of intensity spikes at specified mass-to-charge values within the
spectra corresponding to known molecules. In practical clinical proteomics work,
however, we cannot always rely on known molecules being so readily identified
based on the spectrum alone. In such a case, subsequent sequencing must identify
the relevant peptides and this result must then in turn be compared with the observed
mass-to-charge ratio of relevant peaks within the spectrum.

To denote that the spectra are themselves generated from observed times-of-
flight, the acronym “TOF” is often used in connection to description of mass
spectrometry equipment. In this paper, MALDI-TOF spectra will be investigated.
The name “MALDI” is an explicit reference to the mixing of sample material with
an energy-absorbing material, typically referred to as “matrix,” which helps the
ionization process. Figure 1 gives an example of a mass spectrum obtained from
a patient blood serum sample. Clearly visible is an increase in intensities at the
lower mass-to-charge range (roughly 1000 up to 4000 Dalton), which is sometimes
referred to as “baseline” and gradually decays towards the higher mass-to-charge
values. Superposed on this baseline, a number of “peaks” can be identified of
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Fig. 1 Example of a MALDI spectrum. The rectangle to the left selects a spectral region between
1700 and 2000 Dalton, which is repeated as the enlarged rectangle in the upper right corner of
the plot
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varying intensities. The smaller rectangle at the left-side of the spectrum selects
a region ranging from 1700 up to 2000 Dalton, which is repeated enlarged in the
larger rectangle in the upper right corner of the same plot. At this scale, the so-
called baseline appears almost flat and the two peaks appear as narrow spikes of
approximately 20 Daltons wide, within the range selected . The main contribution to
the baseline effect is thought to be due to the ionization of matrix particles and thus
may be regarded as a nuisance effect which is not of direct interest to the analyst.

Proteomic Case-Control Experiments

We consider data from two case-control experiments recently carried out at the
Leiden University Medical Center. The first contrasts serum samples of 50 healthy
controls with those from 63 colon cancer patients in a randomized block design.
Chapter “Transformation, Normalization and Batch Effect in the Analysis of Mass
Spectrometry Data for Omics Studies” in this volume discusses the same data and
shows the experimental design (see Table 1, [15]) of this study. For each sample,
the corresponding spectrum was generated using MALDI-TOF mass spectrometry
(specifically an Ultraflex TOF/TOF instrument, Bruker Daltonics, equipped with a
SCOUT ion source which was operated in linear mode), after a series of serum pre-
treatment steps (bead-based fractionation, the primary purpose of which is to isolate
a specific group of peptides from the serum mixtures for further analysis). The entire
signal was discretized on a pre-defined and fixed grid of contiguous small bins,
which are about 1 Dalton wide at the lower end of the mass/charge axis, increasing
towards a bin width of about 2 Dalton at the upper end of the mass scale ranging
from 1000 up to 5000 Dalton. This gives a grid consisting of 2346 bins. Some mild
pre-processing steps were applied to the data prior to subsequent analysis. The
first step consisted of baseline removal through application of an asymmetric least
squares algorithm [7], in order to remove the matrix effect at lower mass-to-charge
values. Subsequently, spectra were standardized by subtracting the within-spectrum
medians and re-scaling using the within-spectrum interquartile ranges. Finally, a
log-transform was applied to these transformed spectral intensities. The latter steps
were taken to stabilize the variances which range several orders of magnitude
across the spectral range and to remove effects from differences in ionization levels
between samples. We refer to de Noo et al. [4] or the supplementary materials for
the precise details on design, measurement protocols, and sample processing.

Figure 2 shows a plot contrasting the sample mean spectra obtained from the
colon cancer case-control experiment, subsequent to the above pre-processing steps.
The plot reveals a large number of localized intensity peaks and graphical inspection
suggests several potential areas of differential expression. The selected area between
1300 and 1900 Dalton with corresponding subplot represents a spectral region for
which the more formal analyses presented subsequently in this paper confirms
differences in intensity levels between cases and controls.

The muscular dystrophy study has similar design and measurement procedures
and we will introduce details further on in the paper.
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Fig. 2 Mean spectra for each group separately within the colon cancer case-control experiment,
after pre-processing. We plot negative intensity value for the control group (bottom mean
spectrum). A number of spectral locations are identified which correspond to peaks with different
intensity levels between case and control samples

1.2 Statistics and Mass Spectrometry Proteomics

A key problem in proteomic spectra data analysis is the absence of good physical
models for the data generation process of mass spectral data, though some authors
have investigated model-based simulation exercises (see [3]). Should such models
be available, then they might be used as the basis for the data-analytic approach.
Good models are not available, due to the complicated nature of both the sample
preparation steps and the measurement generation processes on which mass spec-
trometry is based. For example, a precise understanding of the origins of the baseline
is lacking, although it is hypothesized that the matrix solution added to the sample
material is the main contributor to this effect. Likewise, the ionization process is
highly complex and subject to many effects, among which ionization suppression for
low abundant peptides, due to saturation effects caused by highly abundant proteins
within the sample mixtures (e.g., albumin in blood plasma).

This paper proposes an approach to calibration of logistic regression discriminant
models, based on an explicit parametrization of the vector of regression coefficients.
This allows us to incorporate knowledge on the nature of the spectral signal and
leads to more parsimonious models that tend to be more easily interpretable,
while maintaining predictive performance in comparison to standard logistic ridge
regression implementations. The remainder of the paper, first introduces the model
description as well as application in analysis of the colon cancer case-control
study discussed above [4]. After presentation of the first results, we consider a
sensitivity analysis. From the sensitivity study, a key feature of the methodology
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may be demonstrated which is that the model can identify distinct competing
predictors with similar predictive performance. We then contrast the methodology
with results obtained from more traditional forms of analysis referred to above,
specifically linear discriminant analysis with component reduction as well as double
cross-validatory penalized logistic ridge regression. Subsequently, we introduce
the muscular dystrophy case-control studies and evaluate the method on the mass
spectral data from these trials. The final discussion provides additional information
on computational issues and the connection with the wider functional data analysis
and chemometrics literature.

2 Conditional Modeling of Class Outcome Using
Mass Spectra

Let yi 2 f0; 1g, i D 1; : : : ; n be the binary class indicators denoting presence or
absence of the clinical condition of interest and n the sample size. We will write xi D
.xi1; : : : ; xiq/ for the associated intensities of the features in the mass spectrum from
each ith sample (after pre-processing), which is an ordered sequence of intensity
values on the grid selected to record the spectrum. The grid is a contiguous set of
small bins which span the range of the spectrum and is defined in advance of the
experiment and kept fixed across all samples. Similarly, we write m D fm1; : : : ;mqg
for the ordered set of ordinates of the bins along the mass axis corresponding to the
sequence of q measured intensity values from each sample. We consider the binary
regression model

yi 	 Bernoulli.pi/;

with

g.pi/ D �i;

where �i D xiˇ is a linear predictor, pi D P.yi D 1/ is the probability of being
a case, and g denotes a link function with ˇ a vector of regression parameters.
Specifying the link function as the logit g.p/ D log.p=.1 � p// delivers a logistic
regression model on mass spectra. Other link functions might also be considered,
such as g.p/ D ˆ�1.p/, with ˆ the cumulative standard normal distribution
function, which renders a probit model.

We parameterize the vector of regression parameters ˇ in terms of a set of
Gaussian basis functions along the mass/charge axis

 j.x; 	j; �j/ D e
� 1
2

.x�	j/
2

�2j ; for j D 1; : : : ; k;
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of finite dimension k, where the parameters	j and �j denote the locations and widths
(expressed as standard deviation) for j D 1; : : : ; k. Note that k is unknown and thus
itself a parameter of the model which is estimated. We now write the regression
parameter vector ˇ D .ˇ1; : : : ; ˇq/ as a linear combination

ˇ D
kX

jD1
˛j‰ j;

with

‰ j D . j.m1/; : : : ;  j.mq//
T ; for j D 1; : : : ; k:

The latter functions may be interpreted as operators on x and hence, we will write
‰ j.x/ D x‰ j for j D 1; : : : ; k: With this formulation, the linear predictor equation
may be rewritten as

�i D xiˇ D xi

kX
jD1

˛j‰ j D
kX

jD1
˛j‰ j.xi/;

which reveals the linear predictor as a linear combination of basis functions in x. For
full generality, we will also include an intercept term into the model by introducing
the constant term ‰0.xi/ D 1, such that the linear predictor becomes

�i D ˛0 C
kX

jD1
˛j‰ j.xi/ D

kX
jD0

˛j‰ j.xi/;

where ˛0 is the intercept term which augments the vector of regression parameters
˛ D .˛0; ˛1; : : : ; ˛k/

T . In the remainder of this paper and in order to simplify
terminology, we will also refer to the basis functions as “basis components,” though
it must be clearly understood that this is shorthand terminology at all times for “basis
function components within the regression coefficients” and that these constitute an
assumption at the level of the regression parameters.

2.1 Hierarchical Specification of Logistic Models

For reasons of computational efficiency, we employ a “linearizing” representation of
the previously described models based on auxiliary variables, instead of the explicit
formulation in terms of link function, as described in [10] and [1]. This is achieved
by rewriting the logistic model as

yi D 1 if zi > 0 and 0 otherwise;
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for an auxiliary variable zi D xiˇ C �i and �i 	 N.0; .2!i/
2/, where !i is a random

variable with the Kolmogorov–Smirnov distribution [6]. (Note the assumption
�i 	 N.0; 1/ would be simpler and give the probit model instead.) Within a fully
Bayesian paradigm, we will consider the quantities k, � D f	j; �jI j D 1; : : : ; kg
and ˛ as random variables. For logistic regression, we may then factorize the joint
distribution as

P.y j z;˛;�;!; k/P.z j ˛;� ;!; k/P.˛ j � ;!; k/

P.� j !; k/P.! j k/P.k/;

where y D .y1; : : : ; yn/, z D .z1; : : : ; zn/ and ! D .!1; : : : ; !n/. We have that

P.y j z;˛;�;!; k/ D P.y j z/;

P.z j ˛;�;!; k/ D P.z j ˛;�;!/;

P.˛ j �;!; k/ D P.˛ j �; k/;

P.� j !; k/ D P.� j k/

P.! j k/ D P.!/:

Furthermore, we will assume that P.˛ j �; k/ D P.˛ j k/, which yields the
hierarchical specification of the joint distribution of the logistic model

P.y j z/P.z j ˛;�;!/P.˛ j k/P.� j k/P.!/P.k/:

It is important to note that, except for the first term P.y j z/ and conditional on k,
the basis functions � and !, the remainder of the hierarchical structure specifies an
ordinary linear model with known variance. Figure 3 shows a representation of the
above hierarchical specification as a directed acyclic graph.

2.2 Prior Structure

To complete the hierarchical model, we specify a normal prior

.˛1; : : : ; ˛k/ 	 Nk.0; 
�
2Ik/;

on the regression parameters with � a known scale factor and 
 D 1=& a randomly
distributed re-scaling factor, such that & has a Gamma.a; b/ distribution, with a
and b two positive real numbers. We will restrict choice of these hyperparameters to
choices a D b, such that the prior mean on & will equal a=b D 1with variance a=b2.
The intercept is given a weakly informative normal prior ˛0 	 N.0; 102/. Note that
the dimensionality parameter k must also be given a prior belief, since it will itself
be estimated within the variable-dimension MCMC sampler. We specify a discrete
uniform hyperprior distribution for k on the set of integers f0; 1; 2; ::; kmaxg with
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Fig. 3 Graphical representation of the conditional dependence structure within the joint distribu-
tion for the logistic regression model

kmax a large positive integer. (An alternative specification here might be to give k a
Poisson distribution Poisson.�/ with possibly fixed small hyperparameter value �.)
For the prior distribution of location parameters 	j, j D 1; : : : ; k, we assume a
uniform discrete prior on the grid of location values m. For the prior distribution on
the width parameters �j, j D 1; : : : ; k, we postulate a truncated normal distribution

p.�j/ 	 �.�j � �/I.�j/;

for all j D 1; : : : ; k with I./ the heaviside function and �./ the standard normal
density. � is a positive parameter which denotes the prior mode of the width of basis
components within the regression parameter vector. We will return to some aspects
of prior choice in the data analysis section.

2.3 Variable Dimension MCMC Sampling for Logistic
Regression

A number of publications have discussed hybrid MCMC sampling methods for
variable dimension models over the past few years. We will therefore only describe
the basic ingredients and refer to [9, 19], and [5] among others, for more details. Our
approach essentially follows the methodology outlined by Holmes and Held [10],
and Denison et al. [5] for linear and probit models.
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Our hybrid MCMC sampler is based on a random choice between three simple
steps which either add (birth), remove (death), or move a basis component to the
model. Let 0 < bk < 1 and 0 < dk < 1 be probability threshold values for birth
and death, respectively, such that bk C dk � 1 for each k D 0; : : : ; kmax. We choose
b0 D 1, bkmax D 0, d0 D 0, dkmax D 0:5, and bk D dk D 1=3 for all other k.
We will write pk D p.k/ for the prior probabilities on model dimensionality k for
k D 0; : : : ; kmax. Then the basic step within the algorithm is to carry out a random
choice between possible move types conditional on the current state of the sampler
in the following manner:

Sample u from a U.0; 1/ distribution
If u � bk carry out a birth step
Else if bk < u � bk C dk carry out a death step
Else carry out a move step

For the birth step, we first propose a new component location 	kC1 from a discrete
uniform density on the set mnf	1; : : : ; 	kg, where f	1; : : : ; 	kg is the set of
locations which are currently selected to the model and subject to the additional
restriction that the new proposal must at least be 9 Dalton (D) removed from any of
the k locations f	1; : : : ; 	kg which are already present. If, subject to this restriction,
q� is the number of locations where we can still place a new component, retaining all
others, then the acceptance probability of a Metropolis–Hastings step for accepting
the proposal is

min

�
1;

pkC1
pk

q�

q

dk

bkC1
BF

�
;

where BF is the ratio of marginal likelihoods of the new proposed model to that of
the old, conditional on & , z and the parameters �j, j D 1; : : : ; k and !i, i D 1; : : : ; n.
For the death step, we analogously propose one of the existing k components at
random for deletion. The acceptance probability is identical to that for the birth step,
except that we invert the ratio inside the minimum. Likewise, for the move step we
pick one of the existing components at random and move it to an arbitrary choice
within the set mnf	1; : : : ; 	kg and subject to the previously described restriction.
The acceptance ratio is now simply min.1;BF/, with the BF the ratio of marginal
likelihoods for the model with the newly proposed location to that of the old model.

Subsequent to the above described Metropolis step we update the remaining
random variables �j, j D 1; : : : ; k, !i, i D 1; : : : ; n, z and the (re-)scaling factor
& , through Gibbs steps. It is of interest to note that the regression coefficients ˛ are
only required when updating z and the scale variables!i, i D 1; : : : ; n and & , as they
can be integrated out of the conditional Bayes factors. Hence, this allows for some
computational efficiency by only recomputing these terms every tenth iteration (for
example).
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3 Data Analysis and Application

3.1 The Colon Cancer Data

We applied the above model to the analysis of the colon cancer mass spectral data
within the mass/charge range between 1000 and 5000 Dalton, which contained
q D 2346 bins in our example and using kmax D 150. Prior choice of � is based
on the observation that peaks within the spectral data itself will have a typical width
of about 3 Dalton (as SD of a Gaussian). More precisely, there will tend to be a
gradual increase in peak width from lower to higher masses, but this is not a large
effect. It is important to acknowledge that � itself represents a prior assumption
on the regression coefficients instead. However, it is reasonable to assume that
within the confines of our model and if there is any differential expression of
peaks within the data and between groups this should give rise to components of
differential expression within the regression coefficient vector which are of similar
width. Hence we use � D 3 as prior choice, irrespective of the location of any
regression coefficient component proposed. Our prior choice of � originates from
the knowledge that approximately in the logistic model and conditional on the true
model we have that the variance–covariance structure of the regression parameter
vector .˛1; : : : ; ˛k/ is

n � .‰T‰/�1;

with ‰ D Œ‰1; : : : ;‰k�. The inverse cross-product for any basis function compo-
nent with width equal to 3 placed anywhere along the mass-charge axis is of order
10�3. Hence, taking into account that the sample size n D 113 suggests a prior
guess of �2 D 0:1. For the re-scaling parameter, we used a D b D 1 for the
analyses presented in the paper. However, rerunning the algorithm for other choices
showed that results were insensitive to choices in the range a D b D 0:001 up
to a D b D 3. The prior on & is likely to become extremely influential as a or b
becomes either much smaller than 0.0001 or larger than 3.

Identification of Differentially Expressed Mass Spectral Regions

Applying the above model to the colon cancer dataset, Fig. 4 shows for each
potential basis function location within the set m D fm1; : : : ;mqg the number
of times that location was selected into the model, across all models simulated
and expressed as a percentage of the total number of models considered. The
plot identifies two major discriminating sources of variation in the data, the first
centered at 1352.4 Dalton (corresponding basis function selected to nearly 25 %
of all models) and the second at 1867.2 Dalton (almost 15 % of all models). The
corresponding Fig. 5 shows the marginal mean of logistic regression coefficients
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across all simulated models, where m is an indicator identifying the model within the
set M of all simulated models. M is the total number of models simulated. The plot
reveals that the discriminating information corresponds to a contrast between bin
intensities centered at 1352.4 and 1867.2 Dalton. This interpretation can be easily
confirmed through a scatter plot of bin intensities at these locations (Fig. 6, left
plot). As can be seen, large intensities at 1352.4 Dalton for one group correspond
to small intensities at 1867.3 Dalton for the other group, and vice versa. We note
Figs. 4 and 5 also identify a number of other interesting locations in the spectra,
most notably a small contrasting in coefficients which corresponds to differential
spectral contrasting at locations 1450 and 1467.7 Dalton. There is some indication
of other separating regions in the spectra at 1265.7 Dalton and at 1780 Dalton,
though the evidence is not as strong. The corresponding bin locations are selected
to less than 5 % of all simulated models. For ease of comparison, the “inset”
graph in the lower right-hand corner of Fig. 5 displays and enlarges the fitted mean
discriminant coefficients within the region of 1300 up to 1900 Dalton, together
with the within-group mean spectra (below) (as in Fig. 2 also). As may be seen,
the identified discriminant locations correspond to spectral locations which may—
in hindsight—be confirmed as regions with large between-group differences in
mean spectral intensity. It is, however, of interest that the peak at 1352.4 Dalton
has smaller between-group separation in comparison to its immediate neighbor at
1467.7 Dalton, while the calibrated discriminant weights are, however, typically
larger at this location (1352.4 D). Also noteworthy is that the identified locations at
1450 and 1467.7 Dalton seem to correspond to two distinct peak intensities close
together in the spectra, which separate in the mean spectra of the cases group, while
they are not easily distinguished for the control group mean spectrum.
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Fig. 5 Plot of marginal mean discriminant coefficients versus mass-charge value. The “inset”
graph in the lower right-hand corner enlarges the fitted mean discriminant coefficients within the
region of 1300 up to 1900 Dalton, together with the within-group mean spectra (below) (as in
Fig. 2)

Evaluation of Classification Performance

To assign observations, we calculate for each observation the mean a-posteriori class
probabilities of group-membership. That is, we compute

P.yi D 1 j xi/ D
X
m2M

Pm.yi D 1 j xi/=M;

for all i D 1; : : : ; n, where Pm denotes the a-posteriori class probability calculated
from the mth model simulated within the MCMC chain and the sum is across all
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Dalton, using distinct plotting symbols to distinguish cases (closed circle) from controls (plus
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Table 1 Confusion table summarizing
classification performance of the logistic
regression discriminant model, based on
the mean a-posteriori class probabilities
across all simulated models

Predicted class cases Controls

True class Cases 58 5 63

Controls 4 46 50

62 51 113

models simulated. Using a cut-off value of 0.5 (e.g.) to assign observations based
on these mean a-posteriori class probabilities, we may now summarize classification
performance as shown in Table 1. Based on this assessment, we find a sensitivity and
specificity of both 0.92, such that the global misclassification error rate equals 0.08.
The Brier distance, defined as

B D 1

n

X
i

Œ1 � P.c.i/ j xi/�
2;

equals 0.066, where c.i/ denotes the true class label of the ith observation with
P.c.i/ j xi/ the mean a-posteriori class probability for the ith observation for the
true class. Figure 7 shows a Receiver Operating Curve (ROC) for the marginal mean
a-posteriori class probability. The Area Under the Curve (AUC) equals 0.978.
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Fig. 7 Empirical Receiver Operating Curve (ROC) for the marginal mean a-posteriori class
probability (left plot) and marginal density plots of calibrated a-posteriori class probabilities for
each observation separately displayed as gray-scale image. The first 63 observations are colon
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samples, and the 0.5 cut-off value, respectively

Sensitivity Analysis and Model Comparisons

The prior variance � D 
�2 on the regression parameters .˛1; : : : ; ˛k/ is highly
influential on the complexity of models simulated. This will happen, due to the
ridge-type prior N.0; 
�2Ik/, which will eventually force all regression parameters
towards zero as � ! 0. Similarly, however, we will also tend to reject more complex
models (in the sense of “more basis functions” and thus larger dimensionality k) as
� ! 1. This is because the ratio of marginal likelihoods (BF) of any .k C 1/-
dimensional model versus any k-dimensional model is inversely proportional to
the square root of the prior variance

p
�. This effect (sometimes referred to as

the Lindley effect [2, 11, 13]) will become stronger the greater the difference in
dimensionality between models compared and the larger � becomes.

There are several reasons why it is of interest to implement a sensitivity study
for the effect of this parameter. In this analysis, we repeat the above modeling
procedure, but this time keeping the variance � fixed and this for a number of values
across a finite grid. Table 2 shows some results across a grid ranging from 0.0001 up
to 100,000, each time increasing the magnitude by one order. Note that the extremes
of this table correspond to variances which would never be contemplated in practice
as reasonable prior choices, given our argument explained above in Sect. 3. The first
six columns give information on the typical model dimensionality of the simulated
models across 500,000 simulations. We give the minimum model dimensionality
observed, as well as the first, 2.5th, 5th, and 25th percentile and the median model
dimensionality k. The last four columns give the sensitivities, specificities, total
recognition rates, and Brier scores of the models. The distribution of k is right



228 B.J.A. Mertens

Table 2 Sensitivity analysis of logistic modeling results, using 
 D 1 and recele-
brating the model for different fixed values of � (and thus also � � �)

� min 1 2.5 5 25 50 Se Sp T B

0.0001 0 0 0 1 4 9 100 0 50 0:357

0.001 0 0 0 1 4 9 100 0 50 0:359

0.01 0 0 0 1 4 9 100 0 50 0:358

0.1 1 3 4 6 13 20 87:3 82:0 84:6 0:115

1 2 5 6 8 15 21 92:1 92:0 92:0 0:0647

10 2 6 7 9 15 20 98:4 94:0 96:2 0:0204

100 4 7 8 9 16 20 100 100 100 0:0204

1000 3 6 8 9 13 16 100 100 100 0:000375

10,000 2 2 2 2 2 5 100 94:0 97:0 0:0179

100,000 1 1 1 1 1 1 93:7 88:0 90:1 0:0731

Full model 1 4 6 7 14 20 92:0 92:0 92:0 0:066

The last line corresponds to results on the full model (� variable)

skewed and tends to favor larger values, which is a not unexpected feature of the
approach we will return to in more detail in the discussion.

As � increases from 0.0001 upwards, model dimensionality first increases, and
then tends to decrease again, from a variance of about 100 onwards. A-posteriori
plot summaries of the marginal posterior density of basis function component
locations selected (as in Fig. 4) for the first two models (� D 0.0001 up to 0.01) have
the appearance of a band of white noise (all locations equally unlikely a-posteriori)
(not shown—see supplementary materials). These models are clearly underfitting
the data, which can also be seen from the classification performance measures
selected. All observations are assigned to the largest group only for these three
models, which is due to the fact that no discriminant information is allowed into
the model due to the extreme penalization inherent in the choice of the variances.
As a consequence, we are effectively classifying with an “intercept-only” model,
which explains assignment to the largest group.

On the other hand, models corresponding to variances in the range 0.1 up to
10 do give interesting calibrations and are able to detect discriminant information
present in the data, as may also be seen from sensitivity and specificity measures.
Specifically, the output from the model corresponding to � D 1 is effectively the
same as shown before for our “full” model. We thus identify the same separating
functional components (centered at 1352.4 and 1867.2 Daltons) and marginal mean
regression vector ˇ as from the full model and shown in Figs. 4 and 5. This is not
surprising, because the typical a-posteriori variance simulated for the full model is
close to 1. Figure 8 displays a histogram of the a-posteriori simulated values on �
for the full model, which shows a clear shift upwards from our initial prior guess
0.1, with a mode at about 0.9.

The model corresponding to � D 0:1 is of interest as well, as the solution
contained within this calibration is remarkably similar to that from a “standard”
maximum likelihood logistic regression fit on a principal components reduction of
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the full spectral data. Figure 9 shows a plot of the a-posteriori marginal means
of regression coefficients obtained from this model. Below, we plot the first two
principal components computed from the complete matrix of spectral intensity
measurements (Fig. 10). As we can see, the first principal component summarizes
a strong peak at about 1467.7 Dalton, together with lesser contributions at 1352.4,
1207.1, 1867.2, and 1778.9 Dalton. The second component identifies a particularly
strong peak at 1867.2 Dalton, together with smaller contributions at 1778.9 and
1467.7 Dalton (among others). [Note chapter “Transformation, Normalization and
Batch Effect in the Analysis of Mass Spectrometry Data for Omics Studies” of this
volume [15] uses the same data in Figs. 2 and 3 and the discussion in the text that
refers to these.] The logistic discriminant fit on the full component decomposition
shows a similar behavior as observed in our model with � fixed at 0.1. This solution
contrasts locations at 1467.7 and 1867.2 Daltons, instead of the contrast between
1867.2 and the “smaller” contribution at 1352.4 Dalton as in our “full” solution
(� variable). This somewhat different contrasting within the maximum likelihood
logistic model comes from the fact that the fit is mainly driven by the first two
principal components. Note that the contrasting between the peaks found is already
inherent in the first two components. From this perspective, our initial guess on
the regression coefficients variance � D 0:1 would thus appear to correspond
(roughly) to a principal components-based solution. Calibration of our full logistic
model represents replacing the component at 1467.7 Daltons in favor of the smaller
contribution at 1352.4 Daltons, both of which may be identified within the first
principal component, however.

As we increase the variance � even further from a value of 10 upwards, we first
get increasingly complex model fits, which are likely to represent over-fitting of
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the data. Eventually, the effect of the prior variance becomes so strong (Lindley
effect) that the model dimensionality must collapse again and we are simulating
single-location models only (�=100,000). As Fig. 8 shows, however, these choices
are effectively excluded from our full model fit.

Comparison with Classical Linear Discrimination

It is of interest to compare our results with those obtained from a more traditional
analysis derived from classical Fisher linear discrimination. Such an analysis can
be implemented in the mass spectrometry context by formulating the discriminant
problem as assignment of an observation x to the group for which the smallest
distance measure

Dg.x/ D .x � �g/†
�1.x � �g/

T ;

is observed, where g denotes the group indicator, �g the population means, and
† the population within-group dispersion matrix which we assume equal across
groups. A formulation which is known to work well in spectrometry applications
is to estimate † through the observed pooled dispersion matrix S and then
first compute the component decomposition S D QƒQT where Q and ƒ D
diag.�1; : : : ; �r/ are the matrices of principal component weights (or loadings) and
variances, respectively, with �1 > : : : > �r > 0 and r the rank of the pooled
covariance matrix. The covariance matrix is then re-estimated by retaining only the
first 1 � l � r components from the decomposition, which gives us the sample-
based linear discriminant distance

bDg.x/ D .x � xg/S�1
.l/ .x � xg/

T ;

where S.l/ D Q.l/ƒ.l/QT
.l/ is the covariance matrix estimate based on the first l

components only. To simplify the discriminant rule even further, we will restrict
ƒ.l/ D I.l/ which reduces the allocation to linear discrimination using Euclidean
distance metric along the first l components. Dimension reduction methods based on
(principal) components have a long history of successful application in spectroscopy
applications generally and we refer the reader to texts by Stone and Jonathan
[20, 21], Martens and Naes [14], Krzanowski et al. [12] and Naes et al. [16] among
others, for an introduction to the field and further references.

We applied this method to the data using a combined double-cross-validatory
(leave-one-out) approach, which removes each observation in turn from the data,
after which the number of components to be retained (l) is estimated through a
secondary cross-validatory layer within the left-over set. The resulting discriminant
rule is then applied to the left-out datum in the “outer layer” within the double-
cross-validatory analysis. This procedure is then repeated across all observations in
order to calculate a fully validated error rate. Results from this analysis are similar
to those shown above for the full model and give a sensitivity of 0.87, a specificity of
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0.9, and total error rate of 0.89 (and roughly halfway between classification results
for our two “reduced models” corresponding to � D 0:1 and � D 1, respectively).

Double-cross-validation is joint calibration and validation of a (discriminant)
model and thus also gives information on the manner in which observations are
allocated. In this case, we can investigate the numbers of components l that are
chosen for the allocation of each observation. We find that for all observations,
double-cross-validation selects the first 2 components, except for 2 out of 113
observations for which only the first component is retained. In this way, double-
cross-validation identifies the first two principal components as summarizing the
main discriminatory information in the data. See Fig. 10 plotted above for a
graphical representation of these components in the previous section on our logistic
regression analysis on dimension reduction.

Investigation of the fitted discriminant weights based on a re-fitting of the above
described discriminant model on the first two principal components and the full data
gives near identical results as mentioned previously for the maximum likelihood
logistic discriminant model (and thus mainly identifying and contrasting peak
locations at 1467.7 and 1867.2 Dalton). As can be seen, these analyses are much
influenced by the first few principal components here. It must be noted, however,
that this property will likely apply to many of the classical discriminant methods
that could be applied here, besides the ones discussed. Similar behavior will tend
to be observed for quadratic discriminant methods or logistic regression methods as
pointed out by Goldstein and Smith [8], for example. In contrast, our method is more
“local” in the sense that it can investigate sets of contiguous bins without any explicit
or implicit reliance on the way in which peak variation and correlation within
the spectra is summarized within-components. On the other hand, cross-validatory
analysis of our approach would be a much more challenging task, although it is not
too difficult to calculate validated estimates of error based on a separate test set,
when available.

Model Dimensionality

An aspect of our model which is of interest is the a-posteriori distribution of k.
The skew of this distribution is large, but not unexpected. It is partly due to the
high number of “peak” contributions which may be identified within the first two
(separating) principal components (see discussion above) which indicates existence
of a larger number of distinct peak locations within the spectral data which correlate.
Another reason is the limited a-priori information on likely component locations
within the model. The phenomenon is similar to that in Bayesian calibration
of model dimensionality in mixture problems, and has also been discussed by
Richardson and Green [19], for example. It must be noted that this problem will
occur more generally than just within the full Bayes context alone, as remarked by
Cox, D.R. in discussion of the Richardson and Green paper [19]. This is due to the
intrinsic ill-conditioning of the dimension calibration within mixture models and
related-type problems. It implies we may only hope to interpret the left-hand side
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of this distribution with any reliability. The right-hand side is likely to become ever
more sensitive to prior assumption. For the present example and analysis, perhaps
the strongest conclusion which can be drawn from the posterior distribution on k is
that any reasonable model tends to rule out an intercept-only model.

On the other hand, there is no need to explicitly choose k as shown in the
above analysis in order to interpret the model, as such interpretation may be based
on evaluation of the marginal posterior distributions of regression coefficients.
In addition, analysis may always be augmented by a-posteriori evaluation which
departs from fully Bayesian paradigm, by restricting to specific values of k (or �).
For example, we may pick a minimal value of k and explore the changes within the
a-posteriori deviances

�2 log.P.y j z//;

for small perturbations to k around that chosen value. Doing this for the full model,
we find that the a-posteriori distributions of deviances are near-completely separated
between the intercept-only models (k D 0) and those for k D 1. In contrast,
a-posterior deviance distributions are overlapping for all models with k > 0. We
refer to [19] for further ideas along these lines and discussion by other authors on
this and other approaches.

3.2 The Dystrophic Mouse Data

For comparison, we investigated application of the same Bayesian logistic regres-
sion model to MALDI-TOF proteomic spectra from 18 dystrophin-deficient mdx
mice and 74 healthy control mice. Spectra were recorded from m/z 962 up to
11,223 Dalton, on a grid of 11,239 points. Similar pre-processing was applied as
previously explained for the colon cancer data prior to analysis. Figure 11 shows
the mean spectra as shown before for the colon cancer data. A number of peaks
are highlighted which are identified as differentially expressed between both groups
based on subsequent analysis.

We ran the algorithm using same prior settings as before (particularly �2 D 0:1

and a D b D 1 and a flat prior on model dimensionality k). Figures 12 and 13 show
the marginal densities of peak location selection and marginal regression coefficient
vector, respectively.

The results suggest only the two peaks at locations 3908 and 6830 Daltons can
suffice to summarize the discrimination between both groups. For comparison, we
show the regression coefficients (Fig. 14) from calibration of a standard logistic
ridge regression model, with the penalization parameter chosen from leave-one-out
cross-validation. The logistic ridge solution is—as one would expect—much less
sparse, though it does identify the two above found peaks as major contributors
to the regression coefficient vector. Several other locations, however, also have
large coefficients, especially in the high-mass region above 8000 Dalton. Repetition
of same calibration using the lasso penalty selects a “6-peaks model” model at
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Fig. 12 Marginal posterior density of peak component locations

locations 3113, 3909, 6839, 6840, 7510, and 8147. Both peaks at 3908 and 6830
Dalton turned out to be strong discriminators as seen in a scatterplot (Fig. 15). We
investigated the other identified peaks from the logistic ridge and lasso analysis also,
but did not find them to be of further interest as we could not confirm these to add
significantly to the discrimination.
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4 Discussion

4.1 Computation

We spent little effort trying to improve computational efficiency of our code. Even
so, calculations could easily be performed on a standard desktop personal computer
within one to 2 h at most. We were surprised at the speed and consistency of
convergence, even when starting from distinct initial solutions. Even smaller details
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within the marginal posteriors, such as the local contrasting between 1448.6 and
1471.5 Dalton, for example, visible in Fig. 5, are established in short runs of 50,000
simulations already. Results in this paper were based on much larger runs of up to
one million simulations.

4.2 Functional Data Analysis

There is an extensive literature on functional data analysis, which is of potential
interest to researchers in mass spectrometry proteomics. Our approach could
perhaps be termed a “pseudo-functional data analysis” [18] because we pose the
assumption on the behavior of the vector of regression coefficients.

Our experience has been that within the broad class of functional data analysis
approaches, the classical methods from chemometrics and analytical chemistry for
analyzing functional spectral data—typically based on some form of component
reduction and summarization—can be very powerful within mass spectroscopy
proteomics as well. Much of that work has been inspired by near infrared and
infrared spectroscopy, but not exclusively. As shown and for this experiment, our
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results are close but not quite identical to those derived with such methods. In
general we would expect the Bayesian method presented here to lead to more sparse
solutions, which may be a significant advantage when interpreting results.
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Robust and Confident Predictor Selection
in Metabolomics

J.A. Hageman, B. Engel, Ric C. H. de Vos, Roland Mumm, Robert D. Hall,
H. Jwanro, D. Crouzillat, J. C. Spadone, and F.A. van Eeuwijk

1 Introduction

Metabolomics is the simultaneous analysis of hundreds of metabolites present in
crude extracts, such as those from plants [1]. The so-called untargeted metabolomics
approach takes signals (e.g., Mass Spectrometry, NMR) from both known and
(many yet) unknown metabolites into consideration for data processing and
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interpretation. This provides detailed insight into metabolite differences and
similarities between crude extracts with a different sample background (genotype,
treatment). Variation in metabolite composition has been linked to genetic variation
[2], physiology of fruit ripening [3], quality of fresh food [4], key compounds in
hydrolysates [5], and processed food products [6, 7].

One application of untargeted metabolomics is to select metabolites (strongly)
correlating to sensory or phenotypical traits (response traits) that can be used as
predictive (bio)markers [8]. In subsequent research, metabolites selected in this way
can be monitored in a targeted way. They can, for example, be used to predict quality
of a crop or indicate whether a process has reached optimal product quality [8].
Typically, the goal is to select one or a few metabolites that can accurately predict a
sensory or other phenotypic trait [8].

Metabolic studies typically comprise small numbers of experimental units and
large numbers of measured metabolites. This increases the risk of selecting spurious
key metabolites that apparently have predictive value for the relatively small data set
at hand, but show poor predictive ability for future experimental units [9, 10].

A metabolite with the “best” predictive properties may not be the optimal
candidate for quantitative screening of new samples. The compound may be
unknown or there may be a lack of commercially available authentic standard for
quantification. Therefore, it is worthwhile to find alternative (identified) metabolites
with comparable predictive value. Because most metabolites are components in
biological pathways, e.g., a common biosynthesis pathway, it is expected that there
will be several metabolites showing similar predictive value [11].

As food chemists are generally interested in a small set of predictive metabolites,
some form of variable selection is needed. In the approach proposed in this chapter
we put an upper bound on the number of metabolites used for prediction in concert
with forward selection and linear regression, as a fast and straightforward method
[12, 13].

Typically, predictive power is inflated when the same observations that have
been used for selection of metabolites and model building are also used for model
validation [14]. In cross-validation, predictive quality is assessed by using part of
the observations for selection and model building and the remaining (small) part for
model validation. This offers a more reliable impression of the predictive value of
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a set of selected metabolites. Here we use an approach which comprises a double
cross-validation procedure [15] combining an inner cross-validation for control over
model complexity (the maximum number of selected metabolites), which is an
integral part of the variable selection procedure, with an outer cross-validation for
evaluation of predictive value.

To show the benefits of the proposed method, it has been compared to two
alternative methods. The first comparison is to a related standard variable selection
technique: stepwise regression. The second comparison is with a procedure in which
stepwise regression is combined with a single leave-one-out cross-validation. In the
next section, stepwise regression, leave-one-out cross-validation, and the proposed
method (LOO2CV-regression) are explained.

Although the proposed method yields a single final prediction model, in the outer
cross-validation procedure a multitude of regression models is generated (as will
be discussed in detail in the next section), each model comprising its own set of
selected metabolites. Metabolites that are selected more often, i.e., feature in more
of the generated regression models, are potentially more stable predictors for a trait
[10, 16, 17]. In the spirit of stability selection, a high frequency of inclusion can be
considered as an indication for the importance of these metabolites.

2 Theory

To decide which metabolites are most important for prediction of a trait, a regression
model is assumed that relates concentrations of the metabolites (or any subset of
metabolites) to the specific trait:

y D Xˇ C " (1)

Here, y is a vector with the response trait values, X is a matrix containing the
metabolite concentrations, ˇ is a vector of regression coefficients, and " is a vector
of error terms. Inspection of the regression coefficients suggests which metabolites
(potentially) have good predictive properties [10, 18].

When the number of units is relatively low compared to the number of metabo-
lites, regression coefficients ˇ in Eq. 1 cannot be estimated by ordinary least squares
and techniques such as ridge regression, principal component regression (PCR), or
partial least squares (PLS) may be considered instead [19]. Methods such as PCR
or PLS complicate the selection of highly predictive metabolites because of the
use of latent variables. Both the number of latent variables and the contribution of
metabolites to the latent variables need to be assessed. This adds an extra layer of
complexity to the prediction problem. However, when the number of metabolites in
the model is restricted to a relatively small subset (well below the number of units),
regression coefficients can be estimated again by ordinary least squares. Since we
aim for a computationally fast procedure, and cross-validation is computationally
demanding, we did not consider the use of elaborate variable selection techniques
such as those based on global optimizers [20], but restricted attention to the more
traditional methods for selection in regression. The present implementation of
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the proposed approach uses forward selection. Alternatives in the same vein are
stepwise regression, or all subsets regression, possibly in the form of a fast approach
like the branch and bound method of Furnival and Wilson [21].

2.1 Variable Selection by Forward and Stepwise Regression

Stepwise regression starts with an “empty” model. In subsequent steps metabo-
lites are added to the model or removed later on when their predictive power
diminishes in the presence of other selected metabolites. Addition or removal of
metabolites follows from F-tests with predefined significance levels. This iterative
procedure of adding and removing variables is repeated until the model cannot be
improved anymore (R2 does not change significantly). Stepwise regression has been
shown to be appropriate for selecting the smallest number of predictors that can
fit the data as well as if the whole data set was used, also in comparison to more
“modern” methods [18, 22]. For a more detailed explanation of stepwise regression
see [12, 19, 23]. Stepwise regression without the possibility of removing metabolites
is forward selection.

Our proposed procedure, in the form of forward selection with additional control
of model complexity (details will follow later), has been compared to stepwise
regression with the commonly chosen significance levels of 0.05 and 0.10 of F-tests
for inclusion of a metabolite or exclusion of an already selected metabolite. The
latter approach offers no explicit control on model complexity. Our procedure will
also be compared to stepwise regression coupled to a single cross-validation for
assessing predictive power, again without explicit control on model complexity.

2.2 Model Validation by Leave-One-Out Cross-Validation

An often used criterion for the performance of a regression model is (adjusted) R2,
which shows how much of the total variation in the observations of the response trait
can be explained by the metabolites. Part of the observations will be set aside as a
validation set. After fitting the model, observations in the validation set are predicted
and prediction errors are inspected. In metabolomics data sets, with only a modest
number of units, the reduction of units available for model building, i.e., variable
selection, has little appeal. To mitigate this problem, leave-one-out cross-validation
(LOOCV) can be used [19].

In LOOCV each observation is left out once as a validation set, while the
remaining (N � 1) observations are used for selection of metabolites and model
building (where N is the total number of observations). Using this selected model,
the left out observation (y) is predicted (Oy/ and the prediction error, the deletion
residual (y� Oy/, is calculated. This procedure (also called Jackknife [24]) is repeated
for all N observations, meaning that N regression models with different selected sets
of metabolites and N associated deletion residuals are obtained which are stored for
further use.
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Assessment of the Predictive Quality

Using the deletion residuals, the predictive quality is expressed in terms of the Q2

value [14]:

Q2 D 1 � ˙.yi � Oyi/
2

˙.yi � y/2
(2)

This quantity is somewhat similar to R2 but is expressed in terms of the mean square
error of prediction, rather than the residual sum of squares. A high value for Q2

(with 1 as maximum) means good predictive capacity for the procedure. Since Q2

is derived from predictions, it can be negative, indicating that no proper model for
prediction can be identified by the selection procedure.

Meta-Analysis of Generated Models

A leave-one-out cross-validation scheme yields as many regression models as there
are observations. In general, this allows for comparisons between the different
models and potentially gives insight into the quality of selected metabolites. One
way to perform this is to use the concept of stability-based selection [10, 17].
Frequencies by which metabolites were selected in the LOOCV models are
determined. A metabolite with a relatively high frequency is deemed to be more
important as a predictor.

The spread in the regression coefficients of metabolites that are selected in
multiple models will be summarized with 5 and 95 % percentiles, indicating the
sign and range for these coefficients.

2.3 Construction of the Prediction Formula
and Model Validation

In the proposed method, there is explicit control of the model complexity (the
number of selected metabolites in the model). This is most easily achieved for
forward selection, which is presently implemented. Firstly, we will describe the
construction of the prediction model. This will involve an LOOCV: an inner
LOOCV to determine the optimal model complexity. Secondly, we will describe
how the predictive value of the prediction model is evaluated. This will involve an
extra LOOCV: the outer LOOCV. It has to be stressed that the inner LOOCV is an
integral part of the construction of the prediction formula, while the outer LOOCV
is the “usual” cross-validation to evaluate the predictive value. So, two separate
calculations are made (1) the construction of the prediction formula, involving
the inner LOOCV only, and (2) the LOO2CV, involving both the inner and outer
LOOCV, to evaluate the predictive value. A flowchart of the proposed LOO2CV
procedure is given in Fig. 1 and schematically depicted in Fig. 2 and is explained in
more detail below. Pseudo code is also provided for the LOO2CV.
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Fig. 1 Flowchart of the
double cross-validation
model. The inner loop is
shown in the grey box
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Fig. 2 Schematic representation of the first iteration of the outer loop including all corresponding
inner loops. See text for details

Pseudo code: description of the double cross-validation

//start outer loop

for iD1 to N

set aside ith observation for prediction

use other N-1 observations to enter inner loop

//start inner loop

for jD1 to N-1

set aside jth observation for selection of model

complexity
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use other N-2 observations for model building

for hD1 to maximum of model complexity

using forward selection, create model with

complexity h using N-2 observations

get prediction and calculate residual for jth

observation

store residual and its corresponding model

complexity h

end

end

calculate RMSECV with stored residuals for the
different model complexities

determine model complexity that corresponds to the
lowest RMSECV value

using forward selection, create model based on N-1
observations with the chosen model complexity

//end inner loop

use final inner loop model to predict the ith

observation

store the prediction for the ith observation

store the selected metabolites in this model

end

//end outer loop

calculate Q2 with the stored predictions from the outer
loops

for all metabolites count how often they were selected
in outer loop models

create scatter plots from observations and predictions
from outer loops
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Construction of the Prediction Model

An LOOCV is used where each of the N units is left out in turn. A maximum ofp
N (rounded to the nearest integer below) selected metabolites are set for the

model complexity [13]. For the remaining (N � 1) units,
p

N regression models with
complexities running from 1 to

p
N (8 in our case) are constructed with forward

selection. The observation that is left out is predicted with each of these eight
models. Deletion residuals are calculated as the differences between the observation
that was left out and each of the eight predictions. For each complexity, the root
mean square error of cross-validation (RMSECV) is calculated as the square root
of the average of the associated N squared deletion residuals. The final complexity
chosen is the one with the smallest RMSECV. The prediction model is constructed
by forward selection with the final complexity applied to all N observations.

Evaluation of Prediction: Outer and Inner Cross-Validation

The outer LOOCV is for determining the predictive value of the prediction formula
for individual observations. Each observation is left out once, and the remaining
(N � 1) observations are used for model construction.

Figure 2 shows the first iteration of the outer loop, where observation 1 is set
aside and the observations 2 : : :N enter the inner loop. The inner loop results in
a regression model with a chosen model complexity as explained in the previous
section (but this time with one observation less). In the boxed area of Fig. 2, deletion
residuals (connected by line segments) are visualized in the residual vs complexity
plots. The resulting model is now used to predict the one observation that was left
out in the outer loop, e.g., observation 1 (top part of Fig. 2). The selected metabolites
and the deletion residual for the left out observation are stored and used later on in
the assessment of prediction and predictor quality. So, in the outer loop, each time
an observation is left out, a (slightly) different set of units enters the inner loop.
For each of these N sets, the optimal model complexity is determined afresh, and
the chosen complexity may differ from one set to another (because evaluation of
prediction error should include dimension selection).

2.4 Materials

The data used in this chapter originate from a study on liquors of 76 different
cocoa genotypes, provided by Nestle Research Centre. For all these genotypes,
metabolite profiles of the liquors, using both LCMS- and GCMS-based untargeted
metabolomics platforms, have been determined. For the liquors, sensory traits were
also determined by a trained sensory panel. We refer to [6, 25, 26] for the untargeted
data generation and pre-processing workflow. This consisted of (1) the LCMS and
GCMS analyses of the cocoa samples, (2) the Metalign-based untargeted peak
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picking, and (3) alignment followed by grouping of individual mass features into
the so-called reconstructed metabolites. For the present study, the sensory traits of
liquors such as fruity, spicy, and acidic are predicted using LCMS data (obtained
in negative ionization mode). Each metabolite from the LCMS data set is numbered
and preceded by an “LCMS neg” label, indicating the metabolite has been measured
using LCMS in negative ionization mode. This LCMS dataset consisted of 229
reconstructed metabolites.

A simulated trait was added to the three sensory traits. This simulated trait
was the sum of three arbitrarily selected metabolites labelled by LCMS neg 8,
17, and 199. Normally distributed noise was added such that the three metabolites
explained 80 % of the total sum of squares (around the mean) for each sensory trait
(and the noise the remaining 20 %).

The proposed method and the stepwise regressions used for comparison were
programmed in MATLAB version 7.14 [27]. All calculations were performed on an
Intel Xeon CPU at 2.67 GHz.

3 Results and Discussion

All traits have been analyzed with “plain” stepwise regression, with stepwise
regression in combination with LOOCV, and with the proposed method. Table 1
shows the results from the “plain” stepwise regression models, so without cross-
validation, applied to the liquor data obtained with LCMS for the traits fruity, spicy,
acidic, and the simulated trait. All selected metabolites are significant at the 0.05
significance level.

To predict the trait fruity, ten metabolites have been selected explaining up to
82 % of the variance. The biggest contribution comes from metabolites 994 and
1480. Trait spicy is predicted by just one metabolite (1036) with 31 % explained
variance, which is rather low. Trait acidic has 14 metabolites in the regression
model and 90 % explained variance. Metabolites 2126 and 44 explain most of the
variance. The model for the simulated trait has eight metabolites in it, including the
three metabolites (199, 17, and 8) that were used in the construction of the trait,
which shows that stepwise regression is indeed able to pick up relevant metabolites.
Metabolites 199, 17, and 8 account for 80 % explained variance which is exactly
what was put into this simulated trait. In the models for fruity, acidic, and the
simulated trait a rather large number of metabolites were selected. Typically the
first few metabolites have a large R2, while the metabolites added subsequently only
explain up to a few percent per metabolite. This suggests overfitting; metabolites
that explain only a few percent are unlikely to improve prediction of future
observations.

Stepwise regression was also used in combination with LOOCV. For the resulting
N models it is counted how often metabolites are selected. Corresponding regression
coefficients are collected and the 5th and 95th percentiles are calculated. For
the four traits, Table 2 shows an overview of selected metabolites together with
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Table 1 Selected
metabolites from stepwise
regression for the four
selected traits

Trait Metabolite ˇ SE(ˇ) R2

Fruity LCMS neg 994 0:89 0.14 48 %

LCMS neg 1480 �1:11 0.22 62 %
LCMS neg 2073 0:73 0.18 66 %
LCMS neg 1073 �0:37 0.15 69 %
LCMS neg 1644 �0:44 0.14 71 %
LCMS neg 2436 0:25 0.14 75 %
LCMS neg 2174 �0:9 0.19 78 %
LCMS neg 2213 0:29 0.13 80 %
LCMS neg 872 �1:04 0.49 81 %
LCMS neg 925 0:48 0.23 82 %

Spicy LCMS neg 1036 0:76 0.13 31 %
Acidic LCMS neg 2126 �0:76 0.16 63 %

LCMS neg 44 �0:75 0.27 74 %
LCMS neg 994 1:08 0.25 78 %
LCMS neg 2238 1:3 0.15 81 %
LCMS neg 2117 �1:34 0.3 82 %
LCMS neg 685 2:24 0.28 83 %
LCMS neg 801 �3:35 0.48 85 %
LCMS neg 1068 �2:72 0.52 85 %
LCMS neg 1781 2:43 0.36 87 %
LCMS neg 1592 �1:04 0.29 88 %
LCMS neg 1108 0:72 0.23 87 %
LCMS neg 2019 �0:68 0.25 89 %
LCMS neg 1009 1:22 0.48 90 %

Simulated LCMS neg 199 0:8 0.07 25 %

LCMS neg 17 0:84 0.07 44 %
LCMS neg 8 0:83 0.07 80 %
LCMS neg 1889 0:11 0.03 82 %
LCMS neg 1938 �0:11 0.03 83 %
LCMS neg 1285 0:11 0.04 85 %
LCMS neg 1892 0:04 0.02 86 %

Metabolites are listed in the order as included in
the model by stepwise regression. ˇ indicates the
corresponding regression coefficient, SE(ˇ) is the
associated standard error, and R2 is the percentage
variance explained for a given metabolite, including
all preceding ones

the selection frequencies and percentiles. Besides the metabolites selected by the
“plain” stepwise model (indicated with an asterisk), other metabolites are now also
selected. Typically most have low occurrences (less than 25 %), but some have
rather high occurrences (e.g., 1518 and 865 with 46 % and 45 %, respectively).
The metabolites already selected by “plain” stepwise regression do not always have
high occurrences in the LOOCV. Metabolites that are not often selected may have
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poor prediction ability for future observations. Metabolites that are chosen relatively
often are deemed more important predictors.

Table 3 shows the Q2 values obtained with stepwise regression and LOOCV. For
fruity Q2 is 0.20, for spicy Q2 is �0.058, indicating that fruity is hard to predict, and
that for spicy no suitable model could be found. For acidic and the simulated trait,
Q2 values are higher: 0.51 and 0.68, respectively. New observations can be predicted
reasonably well for the simulated trait. This probably stems from the way it was cre-
ated: the simulated trait is just the sum of three metabolites with added normally dis-
tributed noise. The Q2 value of 0.68 approaches the explained variance R2 of 0.80 of
the three metabolites that were used to create the trait. The other sensory traits can-
not be predicted up to this level, indicating that these traits are probably more com-
plex and possibly not well explained by an additive linear model. Based on the R2

values from the stepwise models (see Table 1) one could expect sizeable predictive
ability for the four traits, since most R2 values are close to one. However, based on
the Q2 values, predictive ability for acidic and the simulated trait may be considered
as acceptable, but for spicy it is poor. The somewhat low Q2 value for fruity indicates
that this trait can only be predicted with poor accuracy for new experimental units.

Significance levels for inclusion and exclusion were set at commonly chosen
values. Looking at the many metabolites that were selected with low occurrences,
there is the suggestion that this could be improved. The many metabolites with
low occurrences suggest some interchangeability between these metabolites for
explaining a part of the variance. These metabolites are probably not good stable
predictors for future experimental units and their selection is likely caused by the
chosen significance levels in the stepwise regression being too “lenient.”

The proposed approach (LOO2CV) attempts to remedy that situation by con-
trolling the model complexity (the number of included metabolites in the model).
Stepwise regression is now replaced by forward selection, and model complexity is
determined with a separate LOOCV.

Table 4 shows the chosen metabolites and regression coefficients for the predic-
tion models for the four traits. These models are created using forward selection
for complexities optimized using a single LOOCV procedure. From these LOOCV
procedures, the optimal complexities were determined to be two metabolites for
fruity, one for spicy, four for acidic, and five for the simulated trait. The prediction
models can be used in cases where it is desirable to yield a single model for, e.g.,
future predictions of (truly) new observations.

Table 5 shows the metabolites from the LOO2CV procedure together with
occurrences and 5 and 95 % percentiles for the regression coefficients. The selected
metabolites were also selected by the LOOCV procedure and nearly all by the
“plain” stepwise model. Occurrences still vary somewhat for selected metabolites,
but many of them have occurrences larger than 50 %. Looking at the Q2 values in
Table 3 we can see that all Q2 values have gone up compared to results from the
stepwise regression. In particular, for spicy the difference is rather striking, from a
negative Q2 value to (an admittedly still modest) Q2 of 0.20. Controlling the model
complexity with LOO2CV reduces the number of selected metabolites and increases
prediction quality, suggesting that the more relevant metabolites are selected.
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Table 2 Metabolites selected by stepwise regression in concert with LOOCV

Trait Metabolite Occurrence 5th percentile 95th percentile

Fruity LCMS neg 994* 99% 0:726 1:245

LCMS neg 2073* 89% 0:573 0:988

LCMS neg 1073* 71% �0:803 �0:356
LCMS neg 1644* 68% �0:621 �0:333
LCMS neg 1480* 66% �1:397 �0:851
LCMS neg 2436* 61% 0:246 0:487

LCMS neg 2174* 55% �0:961 �0:377
LCMS neg 2213* 49% 0:208 0:385

LCMS neg 872* 36% �2:258 �1:009
LCMS neg 1376 24% 0:474 1:106

LCMS neg 985 22% �1:167 �0:486
LCMS neg 1592 21% �1:435 �0:808
LCMS neg 1009 20% �3:431 �1:255
LCMS neg 440 14% 1:092 2:442

LCMS neg 925* 14% 0:464 0:696

LCMS neg 1068 13% �3:393 �1:321
LCMS neg 1534 12% �1:717 �0:967
LCMS neg 2227 11% 0:371 0:617

Spicy LCMS neg 1036* 76% 0:734 0:781

LCMS neg 1781 16% 0:899 1:613

LCMS neg 2126 14% �0:558 �0:193
LCMS neg 2324 11% �0:763 �0:259

Acidic LCMS neg 2126* 83% �1:082 �0:51
LCMS neg 2238* 61% 0:939 1:779

LCMS neg 2117* 55% �2:325 �1:111
LCMS neg 685* 54% 1:5 2:485

LCMS neg 801* 53% �3:472 �1:797
LCMS neg 994* 53% 0:762 1:341

LCMS neg 1068* 51% �5:161 �1:648
LCMS neg 44* 46% �4:332 �0:705
LCMS neg 1518 46% 0:752 2:752

LCMS neg 865 45% 0:971 2:298

LCMS neg 2209* 45% �1:276 0:905

LCMS neg 1108 43% 0:702 1:204

LCMS neg 2019* 42% �1:276 �0:641
LCMS neg 1781* 39% 1:849 3:836

LCMS neg 1592* 33% �1:582 �0:833
LCMS neg 1009* 30% 1:009 1:716

LCMS neg 1690 24% �1:367 �0:493
LCMS neg 423 16% �2:845 �0:809
LCMS neg 872 14% �2:054 �0:827
LCMS neg 2397 14% �0:503 0:377

(continued)
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Table 2 (continued) Simulated LCMS neg 8* 100% 0:825 0:934

LCMS neg 17* 100% 0:829 1:001

LCMS neg 199* 100% 0:739 0:842

LCMS neg 1938* 80% �0:185 �0:066
LCMS neg 1285* 75% 0:089 0:118

LCMS neg 1889* 70% 0:1 0:127

LCMS neg 1892* 61% 0:032 0:044

LCMS neg 995 34% 0:229 0:385

LCMS neg 1184 23% �0:413 �0:205
LCMS neg 2183 21% �0:154 �0:053
LCMS neg 2024 20% 0:075 0:152

LCMS neg 1614 16% 0:144 0:268

LCMS neg 1690 15% �0:166 �0:117
Occurrence indicates how often a metabolite has been
selected. 5th and 95th percentiles of associated regression
coefficients are presented as well. Metabolites marked with
an asterisk were also chosen in the “plain” stepwise approach

Table 3 Summary of Q2

values for stepwise regression
with LOOCV and the
proposed method consisting
of forward selection and
LOO2CV

Trait R2 stepwise Q2 LOOCV Q2 LOO2CV

Fruity 0.82 0:20 0.24
Spicy 0.31 �0:058 0.15
Acidic 0.90 0:51 0.58
Simulated trait 0.86 0:68 0.71

R2 values of stepwise regression are shown for reference

Every inner loop ends with a single model, for which the model complexity is
optimized. Figure 3 shows how often a certain model complexity has been selected
for any of these models. For the traits fruity and acidic, the complexity most often
chosen is two. For spicy, the most chosen model complexity is one. For the simulated
trait the most often chosen model complexity is five.

The construction and modelling of the simulated trait has been repeated a number
of times, each time with a new simulated noise. For these repeated simulated traits
the most often chosen model complexities were four and five (results not shown).
This indicates that the LOO2CV model is overfitting, since only three metabolites
were used in construction of it. Although the proposed approach mitigates the
problem of selection of spurious metabolites, it cannot completely remove the
problem. The latter is practically impossible: with many metabolites, there remains
ample opportunity to “model” part of the noise in the response trait.

For the simulated trait, the three metabolites used in construction of the trait
were selected in 100 % of all outer loop models. The 5th and 95th percentiles of
the coefficients of these metabolites are close to 1.0, which is in close agreement
with how this trait was established, as the sum of three metabolites, i.e., each with
coefficient 1.0. For the simulated trait, some extra metabolites were selected that
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Table 4 Selected
metabolites in the prediction
model, together with
regression coefficients (ˇ)
and their standard errors
(SE(ˇ))

Trait Metabolite ˇ SE(ˇ) R2

Fruity LCMS neg 994 0:79 0.19 48 %

LCMS neg 1480 �2:07 0.48 62 %

Spicy LCMS neg 1036 �0:62 0.21 31 %
Acidic LCMS neg 865 �0:50 0.31 63 %

LCMS neg 2209 1:87 0.22 74 %
LCMS neg 1518 1:20 0.53 78 %
LCMS neg 2126 �1:07 0.12 81 %

Simulated LCMS neg 199 0:50 0.09 25 %

LCMS neg 17 0:54 0.07 44 %
LCMS neg 8 0:66 0.06 80 %
LCMS neg 1938 �0:23 0.03 82 %
LCMS neg 1285 0:13 0.04 83 %

R2 is the percentage variance explained for each
metabolite including preceding ones

Table 5 Selected metabolites by the LOO2CV procedure

Trait Metabolite Occurrence 5th percentile 95th percentile

Fruity LCMS neg 994 100% 0:973 1:418

LCMS neg 1480 76% �1:461 �0:91
LCMS neg 1073 20% �0:552 �0:438
LCMS neg 2073 20% 0:635 0:896

LCMS neg 2436 11% 0:238 0:549

Spicy LCMS neg 1036 88% 0:732 0:785

LCMS neg 1781 12% 0:883 1:085

Acidic LCMS neg 865 95% 1:758 2:21

LCMS neg 2209 91% �1:382 �0:568
LCMS neg 1518 50% 0:862 2:133

LCMS neg 2126 41% �0:893 �0:699
Simulated LCMS neg 8 100% 0:847 0:97

LCMS neg 17 100% 0:852 0:985

LCMS neg 199 100% 0:753 0:897

LCMS neg 1938 79% �0:111 �0:039
LCMS neg 1889 70% 0:101 0:115

LCMS neg 995 25% 0:182 0:335

LCMS neg 1285 15% 0:093 0:116

LCMS neg 2183 14% �0:141 �0:057
Occurrence indicates how often a metabolite has been selected. 5th and 95th
percentiles of the regression coefficients of metabolites are shown as well
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Fig. 3 Counts of the chosen complexities from all final inner loop models

were not involved in the construction of the trait. They were chosen presumably
because they seem to model part of the 20 % added noise.

When we compare the metabolites chosen in the prediction models with the
results from the LOO2CV procedure, we can see that all metabolites from the pre-
diction models are also present in the metabolites selected by the LOO2CV method.
The difference is that the list of metabolites obtained with the LOO2CV method
is somewhat longer but the extra metabolites all have low occurrences. When we
combine the final model with the frequencies of inclusion from Table 5, we can
create a threshold rule for determining which metabolites are (most) valuable.
We suggest setting this threshold to 75 %, to include interesting metabolites with
some confidence while excluding metabolites that are not very stable. Using this
threshold, for fruity, the interest would be for metabolites 994 and 1480. For
predicting spicy, only metabolite 1036 is potentially interesting. The trait acidic
would be best predicted using metabolites 865 and 2209 (dropping metabolites
1518 and 2126 from the final model). For the simulated trait metabolites 8, 17,
199, and 1938 would be selected (dropping 1285 from the final model). Within each
set of metabolites, if limited resources are available for, e.g., follow-up research
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on selected metabolites, the interest would be in the metabolite with the highest
occurrence. When considering all dropped metabolites from the final models, we
can see that these metabolites have an added R2 value of 7 % or less, indicating that
these metabolites do not contribute that much in the final model.

We have discussed the list of chosen metabolites based on the outer loop because
it may provide extra information. For the data that we analyzed the list supports the
prediction models resulting from our proposed method. However, variation between
selected sets of metabolites induced by leave-one-out may not be large enough
to draw useful conclusions. Maybe leave-one-out should be reserved for model
validation and, e.g., leave 10 % out should be introduced in a third calculation to
obtain a more useful list of selected metabolites.

4 Conclusions

A novel approach has been proposed to select metabolites for their predictive
value for a trait. This method is based on forward selection in a multiple linear
regression setting and controls the number of selected metabolites in order to
reduce the risk of overfitting. The approach comprises two nested leave-one-out
cross-validation (LOOCV) steps; one inner LOOCV for control of the number of
selected metabolites (the complexity of the model) and the other outer LOOCV for
evaluation of predictive value of the selected prediction model (in terms of root
mean squared error).

By counting how often metabolites are selected in any of the models created in
the outer LOOCV, a list of metabolites with their frequency of inclusion can be
obtained. Metabolites in this list with a high frequency are considered more reliable
predictors. For follow-up research, e.g., targeted monitoring, those metabolites with
high frequencies are likely candidates to use. Further research will have to show
whether such a list, perhaps based on separate calculations with leave 10 % out,
provides information that might change the choice of variables in the final prediction
formula.

These techniques have been demonstrated on three real sensory traits in combi-
nation with LCMS data from cocoa liquor and one simulated trait. The simulated
trait confirms that relevant metabolites are picked up. The proposed approach
yields a more robust analysis, allowing for more confident predictor selection:
compared to “plain” stepwise regression and stepwise regression with LOOCV,
fewer metabolites are selected resulting in higher Q2 values.

Funding This project was financed by the Netherlands Metabolomics Centre (project NMC-
BS2a “Power analysis of metabolomics studies”) which is part of the Netherlands Genomics
Initiative/Netherlands Organization for Scientific Research.
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On the Combination of Omics Data
for Prediction of Binary Outcomes

Mar Rodríguez-Girondo, Alexia Kakourou, Perttu Salo, Markus Perola,
Wilma E. Mesker, Rob A.E.M. Tollenaar, Jeanine Houwing-Duistermaat,
and Bart J.A. Mertens

1 Introduction

Proteomics, metabolomics, and related omics research fields are revolutionizing
biomolecular research by the ability to simultaneously profile many compounds
within either patient blood, urine, tissue, or other. Increasingly, clinical studies
include several sets of such omics measures available for each patient, measuring
different levels of biology. In the last decade, much work has been done on accom-
modating one single high-dimensional source of (omic) predictors for prognosis.
Nowadays, one of the main challenges in predictive research is the integration of
different sources of omic biomarkers for the prediction of health traits.

Prediction with several omic sources involves a number of difficulties. First of
all, omic sets of predictors are typically high-dimensional (n < p, n sample size
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and p the number of predictors), and correlation between features is typically high
which requires the use of model building techniques beyond classical regression-
based methods. Furthermore, several potential predictor sets measured on the same
subjects may share (part of) the underlying biological information, which thus
introduces correlation between the distinct omic sources. Moreover, differences
on scales, normalization procedures, and other technical issues inherent to omic
research may play a role when trying to integrate information provided by several
omic sources. These issues may dramatically affect the gain in predictive ability of
a hypothetical “naive” combination, based on stacking all the available features, and
ignoring their different origin, specially in high-dimensional settings. For example,
one of the sources of predictors may be obscured by another one due to their
different dimensionality, noise level, and correlation between them.

In this work, we propose to replace the original (high-dimensional) sources of
predictors by their corresponding predicted values of the outcome based on single-
source prediction models and to combine those, with the intention of outperforming
single-omic prediction models. This approach has become relatively popular nowa-
days for combining predicted values obtained from different methods but based
on a common source of predictors [12, 14, 29] but it has been less applied in the
context of combination of predictions of a common outcome based on different
sources of predictors [20]. An important issue when fitting a model for combining
predictions which are themselves fitted is that it requires the calibration of each of
the single-omic-based predictions as well as the combined model using the same set
of observations. In this situation, the calibration of the resulting combination will
depend on the prior calibration using the single sources. This issue can be handled
by appropriate use of cross-validation techniques.

The former setting refers to the parallel combination of omic sources, in the sense
that both single-omic predictions are jointly considered, without imposing any “a
priori” hierarchy or different importance among them. Alternatively, combination
can be regarded as the sequential augmentation with new biomarkers of previously
calibrated prediction models based on a given omic dataset. In this way, the
first source of predictors is prioritized. Several examples may motivate such an
asymmetric approach to combination, such as the addition of more expensive
predictors to potentially improve the performance of a prediction rule based on more
economic sources or the addition of less reliable sources to models based on stable
and well-established markers. It seems clear that when a new molecular marker set
emerges due to (technical) advances in the field, it must then prove its worth in the
face of existing knowledge on the predictive capacity of an established biomarker
set. However, if a sequential augmentation outperforms the parallel combination in
terms of predictive performance is unclear.

Next, we present and discuss different strategies for the combination and
augmentation of single-omic prediction models in the context of classification
problems (binary outcome). We discuss their relations and differences and we
compare the considered methods by means of the analysis of two real datasets.
On the one hand, we revisit the problem of calibrating an early diagnosis tool for
breast cancer based on MS-based proteomics profiling. Specifically, we consider
the combination of two different sets of predictors, each obtained by different
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techniques of fractionation of the same spectrometry data (see for details [4, 20]).
On the other hand, we consider data from a population-based cohort, the Dietary,
Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome (DILGOM)
study, sampled from the Helsinki area, in Finland [9]. In this case, we consider
the combination of transcriptomics and metabolomics sources in the prediction of
obesity.

2 Methods

2.1 Double Cross-Validation Prediction

Let the observed data be given by .y;X1;X2/, where y D .y1; : : : ; yn/
| is a binary

outcome, yi 2 f0; 1g for i D 1; : : : ; n independent individuals and X1 and X2 are two
matrices of dimension n �p and n �q, respectively, representing two omic predictor
sources with p and q features. We assume that we are in a high-dimensional setting
(p; q > n) and that our objective is to enrich single-omic predictions pik D bP.yi D
1jXki/, k D 1; 2 by the combined use of the two distinct sources.

Two crucial difficulties in high-dimensional prediction problems are the control
of the optimal level of shrinkage (or in general, any tuning parameter � associated
with the statistical model f used to obtain estimates of y based on a single high-
dimensional source of predictors) and the quantification of the error of the resulting
predictions in new data. Double cross-validation algorithms [1, 11, 18–20, 25],
consisting of two (or more) nested loops, allow to handle both issues. In the inner
loop a cross-validated grid-selection is used to determine the optimal prediction
rule, i.e., for model selection, while the outer loop is used to estimate the prediction
performance by application of models developed in the inner loop part of the data
(training sets) to the remaining unused data (validation sets). In this manner, double
cross-validation is capable of jointly calibrating and assessing models in a predictive
sense, while also avoiding the bias in estimates of predictive ability which would
result from use of a single-cross-validatory approach only.

Next, we present two approaches for combination of omic-based predictions
of binary health traits, both based on the replacement of the original (high-
dimensional) sources of predictors by their corresponding estimated values of the
outcome based on single-source prediction models and the double cross-validation
principle. On the one hand, we consider parallel combination methods, in which
the outer cross-validation loop of the “double” cross-validation procedure is used to
calculate, in a first step, predictions of the outcome y of interest based on each of
the omic sources of predictors, X1 and X2, which are combined in a second step.
On the other hand, we consider a sequential combination of X1 and X2 in which the
double cross-validated predictions of y based on X1 (considered as primary source)
enter as an offset term (not refitted) in a second step in which X2 is evaluated as an
additional set of variables to predict y.
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2.2 Parallel Combination of Predictions

Firstly, we consider a parallel combination approach based on replacing the original
sets of predictors X1 and X2 with the sets of their corresponding estimated class
probabilities p1 D .p11; : : : ; p1n/

| and p2 D .p21; : : : ; p2n/
|. In a first stage, the

double cross-validated probabilities p1 and p2 are estimated by calibrating the
prediction model using each single predictor source X1 and X2 as input variables.
Subsequently, we combine the double cross-validated class probabilities either by
considering convex combinations of the estimated class probabilities or by using
them as new input variables for the construction of a final combined model.

Convex Combination via Linear Mixtures

A simple way to combine the cross-validated estimates p1 and p2 is to consider
linear mixtures of the separately calibrated class probabilities

pC D wp1 C .1 � w/p2 (1)

with pC D .pC1; : : : ; pCn/
| the newly combined class probabilities vector and w

some number in the interval Œ0; 1�. Since different choices of w result in different
prediction rules, we should choose w so that it optimizes the final prediction rule.
The parameter w can be considered as the optimal balance between the predictions
based on the two distinct sources X1 and X2. Note that the two extreme choices, for
which w is either 0 or 1, result in excluding X1 or X2 completely from estimating
the combined class probabilities vector pC .

In many applications, it has been observed that the predictive performance of
linear combinations of predictors are often insensitive to the exact values of their
weights w, i.e., quite large deviations from the optimal set of weights w often lead
to predictive performance not substantially worse than those obtained using optimal
weights. This phenomenon has been termed as the flat maximum effect [5, 6].
Specifically, if the correlations between p1 and p2 are high, the simple average
(w D 0:5) will be highly correlated with any other weighted sum of p1 and p2,
and hence the choice of weights will make little difference. Thus, averaging across
the estimated class probabilities is expected to result in improved estimates in many
omic settings. The main advantage of this approach lies in its simplicity, due to the
fact that no further optimization or cross-validatory scheme is required in order to
obtain an unbiased estimate of the predictive performance, since the double cross-
validatory nature of the estimated class probabilities is preserved entirely.

Model-Based Combination

A somewhat more sophisticated way to combine the cross-validated estimates, in
a parallel fashion, is to fit a (semi)parametric model, such as an ordinary logistic
regression model, to the set of double cross-validated class probabilities .p1;p2/.
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In this case, the original set of predictors is replaced with the set of estimated class
probabilities, reducing the dimensionality of the original data to a low-dimensional
space. The final combined class probabilities can then be derived by fitting the
logistic model

logit.pCi/ D ˛ C ˇ1logit.p1i/C ˇ2logit.p2i/ (2)

where logit.pki/ D log. pki
1�pki

/. To maintain the double cross-validatory nature of
the predictive performance evaluation we embed the logistic model calibrations
within an additional single cross-validatory loop, leaving out each cross-validated
pair (p1i,p2i) in turn and fitting the logistic model using the remaining pairs to obtain
the final (cross-validated) class probabilities pC D .pC1; : : : ; pCn/

|.
Attention must be brought at this point to the fact that, in the case of model-

based combination, the class probabilities .p1;p2/ are not only combined, as in the
case of convex combination, but also re-calibrated as suggested by Cox [3]. This re-
calibration aspect should be taken into account when interpreting the results from
this combination approach and when comparing them directly to the performance
measures of the calibrated, yet not re-calibrated model, based on X1 or X2 only. This
is of particular importance since fitting a model based on the set of the calibrated
estimates from a single predictor source, instead of the single predictor source itself,
could alter the final estimates. A more fair comparison thus would be the comparison
between the cross-validated predictions of the logistic model combination and the
cross-validated predictions of the re-calibrated logistic models using the estimates
from the first source only (p1) or the estimates from the second source only (p2)
such that

logit.pR
ki/ D ˛ C ˇ1logit.pki/ (3)

for k D 1; 2, with pR
ki the re-calibrated probabilities for the kth source. This type of

comparison would assess the extent of the re-calibration effect and would give us
insight in whether the improvement in prediction performance is due to combining
the cross-validated estimates using each different source or due to re-calibration.

2.3 Sequential Combination of Prediction

An alternative approach to the aforementioned parallel combination approach is to
consider the problem of combination of omic predictors in an “asymmetric” manner
by sequentially fitting prediction models based on different omic datasets. If we
focus on the study of two omic datasets, we can proceed as follows. Firstly, the
double cross-validated predictions of the outcome y based on the primary source,
X1, and a given model specification, p1 D .p11; : : : ; p1n/

| are estimated. Then, in a
second step we construct a second model based on X2 as predictor and devoted to
predict the variation of y which remains unexplained by X1. In the logistic regression
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context, this can be implemented by considering logit.p1/ as an offset term in a
regularized regression based on X2 for predicting y as follows:

logit.pCi/ D logit.p1i/C f .X2i/ (4)

The first source of omic predictors is hence prioritized by its inclusion as offset,
and hence not refitted in the second stage. This means that the second source of
predictors X2 is “added” to the previous fit based on X1, since the single-omic
prediction p1 is fixed in the second step.

As was the case in the model-based parallel combination presented in section
“Model-Based Combination,” the model in expression (2) contains p1 which is
fitted itself. Hence, following the lines of Sect. 2.1, we embed the estimation of
p1 in the double cross-validation loop to guarantee a realistic estimation of the
predictive performance of the sequential combination. Namely, we leave out each
cross-validated p1i and corresponding yi and X2i in turn and fit the regularized
regression model based on the remaining observations in X2 to get the final pC D
.pC1; : : : ; pCn/

|.

3 Performance Evaluation

The performance of prediction models can be summarized in several ways. Tradi-
tionally, two aspects have been considered as crucial when evaluating prediction
models for binary outcomes: calibration and discrimination (see [24], for a review).
Calibration refers to the quantification of how close predictions are to the actual out-
come, while discrimination focuses on determining to what extent individuals with
positive outcome have higher risk predictions than those with negative outcome. The
relation and differences among them has been object of extensive research in the past
years (see [22], and the references therein). Beyond calibration and discrimination,
other measures such as reclassification [21] and clinical usefulness [30] have been
proposed, but an exhaustive comparison of performance measures falls beyond the
scope of this work.

3.1 Calibration Measures

To evaluate the predictive performance of the different combination strategies
described in Sect. 2, and to compare them with single-omic predictive models, we
considered several calibration measures.

Denote by PRESS.y;p/ D Pn
iD1.yi � pi/

2 the prediction sum of squares based
on some arbitrary vector of predictions p D .p1; : : : ; pn/

|. The prediction sum of
squares is also denoted as Brier score, and it is usually used for reporting model
performance.
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Consider p0, the simplest cross-validated predictor of y based on an intercept-
only logistic model, corresponding to the classification rule based on assigning all
the observations to the majority class. Denote by CVSS.p1;p2/ D Pn

iD1.p1i � p2i/
2

the cross-validated sum of squared differences of two vectors of predictions p1
and p2.

For any vector p of predicted values of the outcome of interest, we define

Q2
p D CVSS.p;p0/

PRESS.y;p0/
D
PJ

jD1
P

i2S.j/ .pi � p0i/
2PJ

jD1
P

i2S.j/ .yi � p0i/
2
: (5)

where the computations of p0i, p1i, and p2i, i 2 S.j/ for each of the j D 1; : : : ; J
random splits S.j/ of the sample S are based on the observations not belonging to S.j/.
Intuitively, Q2

p1 and Q2
p2 can be regarded as cross-validation equivalents of the R2,

in which the performance of the model-based predictions are compared to the naive
predictions based on the prevalence of the outcome variable y. Analogously, Q2

pC

represents the predictive ability of the combination of X1 and X2, obtained with any
of the methods presented in Sect. 2.

Additionally, we evaluate the calibration of each of the combinations strategies
and for each individual source of predictors in terms of the deviance given by

Deviancep D �2
nX

iD1
yi log piC.1�yi/.log .1 � pi// D �2

nX
iD1

log.1�jyi�pij/ (6)

and which is evaluated in the cross-validated predicted probabilities.

3.2 Discrimination Measures

To quantify the discrimination ability of the different methods introduced in Sect. 2,
we use the c-statistic, the most commonly used summary of discrimination. The
c-statistic accounts for the proportion of individuals with y D 1 with higher
predicted probability than individuals with y D 0, among all possible pairs. It
also can be defined as the area under the receiver operating characteristic (ROC).
Specifically:

c � indexp D 1

n1n2

X
i2G1

X
j2G2

�
I
�
pi > pj

�C 0:5 � I
�
pi D pj

��
(7)

where G1 and G2 are the index sets for y D 1 and y D 0, respectively, and n1 and
n2 their respective sizes. The c-statistic is a measure of discrimination, that is, of
the extent the double cross-validated predictions are higher for individuals in the
groups defined by the outcome variable y and it varies from 0 and 1. A value of 0.5
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indicates that probabilities are distributed randomly among the two groups given by
y D 1 and y D 0, while a value equal to 1 indicates that all predicted probabilities
for individuals with y D 1 are higher than the probabilities assigned to individuals
with y D 0. A c-index below 0.5 indicates reverse ordering, i.e., probabilities for
individuals with y D 1 are lower than estimated probabilities for individuals with
y D 0. Because the c-index is invariant under monotone transformations, it provides
no information about calibration, however, separation among classes defined by the
outcome variable y is of great interest in diagnosis applications, for example.

4 Application

4.1 Data Presentation

Breast Cancer Data

The first study we consider is a clinical proteomics study conducted in the Leiden
University Medical Center, The Netherlands, which comprises 307 women, from
which 105 are breast cancer patients and 202 are healthy controls. In order to classify
participants as cancer cases or healthy controls, we use two different subsets of
proteins. Both were processed by MALDI-TOF mass spectrometry but they differ in
the techniques used for extraction, which yields different subsets of proteins suitable
for detection. On the one hand, we consider 48 protein measures resulting from the
use of weak-cation exchange magnetic beads for protein extraction (WCX). On the
other hand, the use of reversed-phased C18 magnetic beads (C18) resulted in 42
different measures (see [4, 20], for details).

We carried out two distinct analyses using the combination approaches described
in Sect. 2. As a first analysis, we adopted a parallel combination approach, and we
derived combinations of WCX and C18 bead processing measures based on a linear
mixture and model-based combinations, presented in Sect. 2.2. Additionally, we also
constructed a naive combination by stacking all the 90 available features without
distinguishing if they come from the same pre-processing method. Secondly, we
analyzed the data using the sequential approach revisited in Sect. 2.3. We considered
the WCX method as state-of-the-art technique which is treated as primary omic
source and we evaluated the added value of the features obtained with the C18
processing method. Alternatively, we turned around the roles of the available
sources by firstly fitting a model based on the C18 source of proteomic predictors.

DILGOM Data

In a second case study, we consider data from a population-based cohort, the
Dietary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome
(DILGOM) study, sampled from the Helsinki area, in Finland [9, 10]. We are
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interested in getting insight in the role of serum NMR metabolites measures
and gene expression levels in the prediction of obesity (defined in terms of the
Body Mass Index (BMI), specifically, an individual was considered to be obese
if BMI� 30). The metabolomic predictor data consists of quantitative information
on 139 metabolic measures, mainly composed of measures on different lipid
subclasses, but also amino acids, and creatine (see [9], for details). The gene
expression profiles were derived from Illumina 610-Quad SNParrays (Illumina
Inc., San Diego, CA, USA). Initially, 35,419 expression probes were available
after quality filtering (see [10], for pre-processing details). In addition to the pre-
processing steps described by Inouye et al. [10], we conducted a prior filtering
approach and removed from our analyses those probes with extremely low variation
(see [16], for details on the conducted pre-processing). As a result, we retained
measures from 7380 beads for our analyses. The analyzed sample contained n D
406 individuals for which both types of omic measurements and the outcome of
interest were available. From them 78 (19 %) were obese.

As for the breast cancer data, we performed both parallel and sequential
combinations of metabolome and gene expression for the prediction of obesity.
Specifically, we firstly obtained a naive, linear mixture, and model-based parallel
combinations of transcriptomics and metabolomics. Secondly, we analyzed the data
using the sequential approach revisited in Sect. 2.3. We considered the metabolic
profile as primary omic source for the prediction of obesity and evaluated the added
value of the blood gene expression profiles. Alternatively, we turned around the roles
of the omic sources, first fitting a model based on gene expression and then adding
the metabolome.

4.2 Model Choice: Logistic Regularized Regression

Several statistical methods are available to derive prediction models of binary out-
comes in high-dimensional settings. In this work, we focus on regularized logistic
regression models [7, 8, 15, 26]. For a given omic source of predictors X, f .X/ D Xˇ

and logit.pi/ D Xiˇ, with pi D bP.yi D 1jXi/. The estimation of ˇ is conducted by
maximizing the penalized log-likelihood

Pn
iD1 Œyi log.pi/C .1 � yi/ log.1 � pi/� �

�pen.ˇ/. The penalty parameter � regularizes the ˇ coefficients, by shrinking large
coefficients in order to control the bias-variance trade-off. We consider two different
(and widely used) penalization types. On the one hand, we use the ridge penalty
[8, 15], with pen.ˇ/ D jjˇjj22 D Pp

jD1 ˇ2j , i.e., a `2 type penalty. On the other hand,
we consider lasso regression [26], with pen.ˇ/ D jjˇjj1 D Pp

jD1 jˇjj, i.e., lasso
uses a `1 type penalty.

Note that other model building strategies for prediction of binary outcomes could
have been used in this framework, such as the elastic net penalization [31] by setting
˛ D 0:5, boosting methods [2, 13, 27], or random forests [1] among others.
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4.3 Results

The main findings from the analysis of the breast cancer data are summarized
in Tables 1 and 2, while Tables 3 and 4 show the results corresponding to the
DILGOM data. The top parts of the tables refer to the results obtained by using ridge
regression as model to derive the double cross-validated predictions and the bottom
parts of the tables refer to lasso regression. For both datasets, we provide results
of the individual performance (in terms of calibration and discrimination) of each
of the two considered omic sources, jointly with the evaluation of the previously
introduced strategies for (parallel and sequential) combination. In Tables 1 and 3,
the single-omic sources are evaluated in terms of the (non-re-calibrated) predictions
p1 and p2. Tables 2 and 4 contain the results for each single-omic source based on
re-calibrated probabilities, along the lines of expression (3).

Table 1 Breast cancer data

Single source Combination methods

Parallel Sequential

C18 WCX Naive Average Model-based WCX|C18 C18|WCX

Ridge Brier score 0.128 0.111 0.113 0:109 0:093 0:088 0:092

Deviance 253.36 227.25 231.07 226:92 201:00 188:50 199:55

c-index 0.879 0.911 0.900 0:925 0:922 0:933 0:922

Q2 0.304 0.360 0.354 0:286 0:559 0:519 0:537

Lasso Brier score 0.120 0.091 0.092 0:087 0:079 0:086 0:083

Deviance 253.46 198.50 204.41 190:30 179:85 209:63 192:16

c-index 0.877 0.929 0.919 0:939 0:939 0:920 0:939

Q2 0.522 0.567 0.582 0:463 0:609 0:673 0:703

Table 2 Breast cancer data

Re-calibrated single source Combination methods

Parallel Sequential

C18 WCX Naive Average Model-based WCX|C18 C18|WCX

Ridge Brier score 0.126 0.107 0.113 0:109 0:093 0:088 0:092

Deviance 249.69 224.47 231.07 226:92 201:00 188:50 199:55

c-index 0.875 0.906 0.900 0:925 0:922 0:933 0:922

Q2 0.441 0.500 0.354 0:286 0:559 0:519 0:537

Lasso Brier score 0.123 0.093 0.092 0:087 0:079 0:086 0:083

Deviance 254.12 205.96 204.41 190:30 179:85 209:63 192:16

c-index 0.872 0.926 0.919 0:939 0:939 0:920 0:939

Q2 0.430 0.549 0.582 0:463 0:609 0:673 0:703
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Table 3 DILGOM data

Single source Combination methods

Parallel Sequential

Transc Metab Naive Average Model-based MetabjTransc TranscjMetab

Ridge Brier score 0.142 0.116 0.134 0:120 0:114 0:113 0:114

Deviance 363.66 306.95 340.64 314:47 300:04 298:32 304:20

c-index 0.716 0.811 0.790 0:837 0:827 0:829 0:815

Q2 0.057 0.256 0.090 0:102 0:285 0:284 0:286

Lasso Brier score 0.146 0.121 0.132 0:123 0:121 0:123 0:124

Deviance 371.95 311.09 337.77 318:37 311:09 319:62 315:15

c-index 0.682 0.806 0.768 0:808 0:806 0:808 0:803

Q2 0.108 0.285 0.201 0:128 0:285 0:359 0:295

Table 4 DILGOM data

Re-calibrated single source Combination methods

Parallel Sequential

Transc Metab Naive Average Model-based MetabjTransc TranscjMetab

Ridge Brier score 0.142 0.117 0.134 0:120 0:114 0:113 0:114

Deviance 361.63 313.08 340.64 314:47 300:04 298:32 304:20

c-index 0.711 0.805 0.790 0:837 0:827 0:829 0:815

Q2 0.111 0.247 0.090 0:102 0:285 0:284 0:286

Lasso Brier score 0.147 0.122 0.132 0:123 0:121 0:123 0:124

Deviance 374.38 314.38 337.77 318:37 311:09 319:62 315:15

c-index 0.676 0.801 0.768 0:808 0:806 0:808 0:803

Q2 0.084 0.245 0.201 0:128 0:285 0:359 0:295

Breast Cancer Data

In the breast cancer setting, we observe a slightly better performance of the protein
fractionation WCX than the alternative C18, according to the two studied model
specifications (ridge and lasso regression) and regarding both re-calibrated and non-
re-calibrated results. Both sets of markers show similar and very good performance
in terms of discrimination (c � index around 0.91 for WCX and slightly inferior
for C18, with c � index around 0.88). WCX also outperforms C18 in terms of
Brier score, deviance, and Q2. In terms of model specification, lasso regression
seems to provide better results in the individual evaluation of each of the omic
sources (Table 1), specially in terms of calibration, but the two model specifications
behave similar when compared in terms of re-calibrated probabilities (Table 2).
Interestingly, re-calibration of the single-omic predictions is beneficial when using
ridge regression in terms of calibration, while discrimination becomes slightly
worse. On the other hand, re-calibration of single-source lasso-based predictions
is not beneficial (all the summary measures worsen with re-calibration).
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With regard to the combination strategies, we observe that the naïve combination
(stacking the two sources of predictors and conduct a new regularized regression
with common penalty) provides, in general, worse results compared to the alter-
native strategies for parallel combination (averaging and model-based), in terms of
both, calibration and discrimination measurements. In fact, the naïve combination
provides worse results than using WCX only.

The model-based parallel combination outperforms the (simpler) parallel com-
bination based on averaging in terms of calibration (smaller values of Brier score
and deviance and larger values of Q2), for both ridge and lasso specifications. The
difference between average and model-based is almost twofold for ridge regression,
while the difference is smaller for lasso regression (Q2 D 0:286 for averaging,
Q2 D 0:559 for the logistic regression combination.) Alternatively, if we focus on
the differences in discrimination ability, averaging seems to show a slightly better
performance than the model-based combination. The right part of Table 1 provides
the results from a sequential approach to the combination of omic predictors. Firstly,
we observe that, especially for the lasso specification, the order of introduction of
the predictors influences the resulting performance of the sequential combination.
We denote by C18|WCX the sequential combinations of WCX and C18, introduced
in Sect. 2.3, which treats WCX as primary source. Alternatively, WCX|C18 refers to
the sequential combinations of WCX and C18 which considers C18 as the primary
source. We observe that for the lasso specification, the sequential combination
C18|WCX provides better results than WCX|C18, both in terms of calibration and
discrimination. These results agree with the intuition that the preferable sequential
procedure is the one which starts using the omic source which optimizes the
performance when considered individually. Results are less conclusive when using
ridge regression as model to sequentially generate the predictions. The results are
less influenced by the order in the sequential procedure, and the summary measures
disagree with regard to the preferable strategy. WCX|C18 presents better results in
terms of Brier score, deviance, and c � index, while the Q2 is larger for C18|WCX.

Interestingly, the sequential combinations may outperform the parallel model-
based alternative. For ridge regression, we observe that the lowest Brier score
and deviance are reached by the sequential combination WCX|C18 (BS D 0:088,
Deviance D 188:50 for WCX|C18 versus BS D 0:093, Deviance D 201:00 for
the model-based parallel combination), and also the largest c-index (c � index D
0:933 for WCX|C18 versus c � index D 0:922 for the parallel combination). The
model-based parallel combination presents the best performance in terms of Q2

(Q2 D 0:559 for the parallel combination versus Q2 D 0:537 for the sequential
combination C18|WCX). When using lasso regression, the parallel combination
outperforms the sequential approach in terms of Brier score, and deviance, while
the sequential combination C18|WCX presents the best results in terms of Q2

(Q2 D 0:703 for C18|WCX versus Q2 D 0:609 for the model-based parallel
combination). The results in terms of discrimination measured through the c-index
are the same for both model-based parallel and sequential C18|WCX.
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Finally, note that the model-based combinations, both parallel and sequential out-
perform the single-omic models, even after accounting for re-calibration of those.
The average-based parallel combination seems also beneficial when focusing on
discrimination, but its appropriateness is questionable when focusing on calibration,
specially in terms of Q2, its performance is worse than the observed for single-omic
models.

DILGOM Data

In the DILGOM data, each of the considered sources of predictors (transcriptomics
and metabolomics) presents a considerably different performance. In terms of
discrimination, the metabolome itself presents a c-index around 0.81 while the
discriminatory ability of the transcriptomics is notably lower with c-index around
0.70. In the same line, we observed that the metabolomics predictors also outper-
form transcriptomics in terms of calibration. Note that the Q2 of metabolomics
is more than twice larger than the Q2 for transcriptomics. These differences are
observed with both studied methods, ridge and lasso regression.

The differences between metabolomics and transcriptomics remain approxi-
mately the same when focusing on re-calibrated single-omic predictions (Table 4).
In the DILGOM setting, re-calibration only improves the results obtained for
transcriptomics based on ridge regression. The performance of the re-calibrated
ridge-based model for metabolomics is slightly worse than the crude ones. As we
observed in the breast cancer settings, the re-calibration of single-source lasso-based
predictions is not beneficial.

The performance of the naïve method is clearly unsatisfactory, specially in terms
of calibration for the ridge specification. Focusing on Q2 as summary measure, the
behavior of the naïve combination (Q2 D 0:090) is far from the performance of the
best single-source model, based on metabolome, with Q2 D 0:256. Similar results
were found with regard to the Brier score and the deviance. Regarding calibration,
the performance of the naïve combination approach, even if sub-optimal, is better
when it relies on a lasso specification. For example, the naïve combination based on
lasso regression presents Q2 D 0:201, while for the metabolome-based model, we
found Q2 D 0:285. In terms of c-index, both lasso and ridge naïve combinations
behave similarly.

As in the breast cancer setting, we observe a better performance of the aver-
aging parallel combination in terms of discrimination, while the model-based
parallel combination outperforms averaging in terms of calibration. The sequential
approaches behave similar to the model-based parallel combination, with a slight
outperformance of the sequential approaches based on using transcriptomics first.

Specifically, even if the differences are slight, it seems that the strategy of first
fitting a model based on transcriptomics and adding metabolome in a second step
is the preferable one, for both ridge and lasso specifications. Moreover, lasso seems
to provide better estimates of calibration than ridge (Q2 D 0:359 for lasso versus
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Q2 D 0:284 for ridge), while the ridge specification provides larger discrimination
ability (c-index=0.829 for ridge versus c-index=0.808 for lasso). Nevertheless, for
the ridge specification the maximum c-index is reached by the average parallel
combination (c-index=0.837). For lasso regression, both average parallel and the
sequential combination MetabjTransc provide the same maximum c-index=0.808.

However, the benefit of using a combination of transcriptomics and
metabolomics instead of using metabolomics alone in order to classify individuals as
obese or not is arguable from the discrimination point of view, since the differences
in c-index are small. The improvement in calibration is also not clear, only in terms
of Q2 the combination of both sources seems to outperform the prediction based on
metabolites only.

5 Summary and Discussion

In this work, we have addressed the problem of integrating several omic sets in the
context of prediction of binary outcomes. Several methods for the combination of
single-source predictions have been presented, all relying on regularized regression.

First of all, we have considered two “parallel” combination approaches, in
which a new vector of predictions is obtained as a weighted sum of single-source
predictions of the outcome of interest. The specific weight may be fixed beforehand
(for example, averaging the single-source predictions) or estimated (model-based
parallel combination). For the latter, we considered a logistic regression model using
the individual predictions as covariates. Given that the single-source predictions
are fitted themselves, the model-based combination requires to be embedded in the
cross-validatory setting in order to obtain unbiased final combined predictions.

As an alternative to parallel approaches, we have considered a “sequential”
combination method consisting of choosing beforehand one of the omic sources
as “primary.” Namely, we propose to introduce the vector of individual predictions
based on the “primary” source as an extra covariate with fixed weight when fitting a
prediction model based on the “secondary” source of omic predictors. In the context
of logistic regularized regression models, this is implemented by considering the
vector of predictions based on the “primary” source as an offset term. As in the
model-based parallel combination, the use as covariate of a vector of predictions
(which are fitted themselves) requires an extra layer of cross-validation to embed
the uncertainty of calibrating the first source of predictors in the procedure.

We have applied the studied combination methods to two omic applications.
Firstly, we have revisited the problem of the combination of different fractionations
in proteomic spectrometry for breast cancer diagnosis. Secondly, we have evaluated
the possible combination of transcriptomics and metabolomics for the prediction of
obesity.
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Our results show that better predictions can be obtained by combining predictions
based on different omic sources, outperforming single-omic predictions. This seems
to be the case for the first of our applications, as combining two proteomic fractions
benefits breast cancer classification, from both discrimination and calibration points
of view. With respect to the DILGOM study, our results are less conclusive.
The sequential approach suggests that transcriptomics are of little use for improving
the predictive performance of a ridge or lasso model based on metabolomics
only. The reverse is not true, as enriching a transcriptomic-based predictor with
metabolomics measures leads to more accurate predictions.

The preferable method to conduct such combination seems to depend on the
aspect we focused on for the evaluation of the resulting models. In this work,
we have evaluated the resulting predictions in terms of discrimination and cali-
bration. For improving discrimination, measured through c-index, averaging single
predictions seems to be enough, and in fact, this simple method provides slightly
better results than the more sophisticated model-based parallel approach. In terms
of calibration, both parallel and sequential model-based approaches present better
and comparable (between them) performance than more simple approaches, as
averaging of individual predictions. As expected, the naïve approach, consisting of
stacking the omic sources ignoring their different origin, is highly misleading.

We have focused on combination approaches for the integration of different
sets of omic predictors. An alternative route, still based on regularized regression,
may be to consider different penalizations for each different omic dataset [17, 28].
A systematic comparison of these methods with combination approaches is left
as future research. Also, the analysis in this context of alternative model building
techniques which (to some extent) rely on the idea of combination of simple
classifiers such as random forests [1] and boosting [2, 27] is left as interesting line
of future research. Also, it would be interesting to consider modifications of the
currently used model-based parallel combination. For example, positively restricted
regression coefficients [12] or non-linear combinations of single-source predictions
could be considered.

Finally, we would like to highlight that we have focused on evaluating the
predictive ability of combinations of different omic-based predictions. Formally
testing the added predictive value of a given omic dataset on top of an established
one falls beyond the scope of this work. Recently, a test for added value based on
the sequential approach presented on Sect. 2.3. has been proposed for continuous
outcomes [23]. Its extension to binary outcome is left as a promising line of future
research.
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Statistical Analysis of Lipidomics Data
in a Case-Control Study

Bart J.A. Mertens, Susmita Datta, Thomas Hankemeier, Marian Beekman,
and Hae-Won Uh

1 Introduction

Lipids are essential components for cell functions such as storing energy, signaling,
and act as structural components of cell membranes. They can be found in bodily
fluids such as blood and plasma. These lipids are mostly molecules including fats,
waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), monoglyc-
erides, diglycerides, triglycerides, phospholipids, and others. Lipids are obtained,
for example, through our diet and can be modified by gene-coded enzymes. There
exist about 10,000 different lipids which are annotated in the most comprehensive
lipid database, LIPID MAPS [14, 24]. The LIPID MAPS consortium introduced
a unique 12-digit identifier to represent each lipid molecule [5, 6]. Tandem mass
spectrometry (MS/MS) fragment information for several lipid molecular species is
also available through LIPID MAPS. Lipids are not encoded by genes. In the past
decade, lipidomic and metabolomic research was overshadowed by the progress
of genomics. Many recent research projects, however, involve lipidomics research
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which aims to establish their biological role with respect to the expression of
proteins involved in lipid metabolism and function, which includes gene regulation
[13, 28].

Lipids have been implicated in many complex diseases such as cardiovascular
disease (CVD) due to atherosclerosis, the leading cause of fatality in the USA
and most developed western countries [29] and many other diseases. Hence, early
detection of patients through lipidomic biomarkers may improve prognosis and
reduce intervention-related fatality and morbidity with complex diseases such as
CVD. The overall lipidomic profile of a patient can be studied by analyzing the lipid
concentrations in bodily fluid samples, such as plasma, through mass spectrometry.

Differences in whole-body lipid metabolism between men and women have
long been recognized. For example, lower-body fat accumulation in women has
been observed, while there is more marked accumulation of intra-abdominal
visceral fat in men. Gender differences can typically be observed when com-
paring men with premenopausal women. Total cholesterol, LDL-cholesterol, and
triacylglycerol (TG) concentrations are lower for premenopausal women, while
HDL-cholesterol concentration is higher as compared to men [9]. Subsequently,
sex-specific approaches for the prevention, diagnosis, and treatment of diseases
have been examined for dyslipidemia, cardiovascular disease, metabolic syndrome,
and other conditions [2, 3, 18]. It is well known that total TG concentrations are
higher in men than in women. Given that the plasma lipidome contains dozens
of different triglyceride species that constitute the parameter of total TG [19, 20],
lipid differences between sexes at the molecular level are rather limited. Sugiyama
and Agellon [25] discussed how differences in the acquisition, trafficking, and
subcellular metabolism of fats in major organ systems can create overt sex-specific
phenotypes. Gonzalez-Covarrubias et al. [7] investigated which specific lipids
contribute to familial longevity and explored gender differences. Female offspring
shows higher levels of ether phosphocholine (PC) and sphingomyelin (SM) species
(3.5–8.7 %) and lower levels of phosphoethanolamine PE (38:6) and long-chain
triglycerides (TG) (9.4–12.4 %). These results were obtained by rather simple
statistical analysis using either univariate linear regression or logistic regression
depending on the outcome variable. In this chapter we discuss some aspects of data
analysis of lipidomics using mass spectrometry.

The structure of the remainder of this chapter is as follows. First we introduce
the Leiden Longevity study and the lipidomics data which is a component of this
study. The problem of missing values and their imputation is important for lipids
data and is discussed next. We then use the Leiden Longevity lipidomics study data
to illustrate key aspects of lipidomic data-based analysis. We explore the problem
of lipid selection and co-selection in a case-control design generated within the
Leiden Longevity Study, using a Bayesian model formulation. For our analysis, we
restrict to the females-only subset of the full dataset, in order to avoid the systematic
between-gender differences present in lipidomic expression discussed above.
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2 The Leiden Longevity Study

The Leiden Longevity Study included 421 Caucasian families consisting of long-
lived siblings together with their offspring and the spouses of the offspring. In
total 2415 members of long-lived families have been recruited consisting of the
offspring of long-lived siblings (n D 1671) and the partners of the offspring as
controls (n D 744). The Medical Ethical Committee of the Leiden University
Medical Center approved the study and informed consent was obtained from all
subjects. The final study data consists of 2201 participants, of which 1526 are
offspring of nonagenarian siblings (59 years ˙ 6.7), and 675 are controls (59 years
˙ 7.5). Citrate plasma was available and after quality control, plasma lipidome
measurements were generated. Lipidome analysis was performed in citrate plasma
by ultra-high pressure liquid chromatography coupled to mass spectrometry (UPLC-
MS) using an optimized version of the method reported by Hu et al. [8] and has been
described previously. Validation parameters were: linearity LPC (19:0), r2 > 0:99;
PC (34:0), r2 > 0:97; PE (34:0), r2 > 0:98; TG (45:0), r2 > 0:99; repeatability and
reproducibility, RSD < 15%. The r2 notation refers to r-squared statistics computed
between repeated measurements for the above set of lipids. The RSD is also
calculated based on these repeated measures. Lipid names and abbreviations were
assigned according to LIPID MAPS nomenclature (http://www.lipidmaps.org). The
following accepted abbreviations were used: phosphocholines, PC; sphingomyelins,
SM; triglycerides, TG; and phosphoethanolamines, PE. The alkyl ether linkage
is represented by the “O-” prefix, for example, PC (O-34:1), TG (O-50:2), the
numbers following the hyphen refer to the total number of carbons of the fatty
acyl chains followed by the number of double bonds of all the chains. Relative
lipid levels were calculated for a total of 131 lipids from six different classes: TG,
SM, PE, cholesteryl esters, lysophosphatidylcholines, and PC. Most lipid species
showed a right-skewed distribution. Hence, data were logarithmically transformed
prior to statistical analyses. Further, missing lipids values were imputed using the
Multivariate Imputation by Chained Equations (MICE) and location (mean) batch
adjustment was employed to correct for batch effects. For the current analysis, 332
female controls and 685 female offspring were analyzed, in which the status of
offspring and partner was used as the binary outcome. Hence, we considered the
relative levels of these 131 lipids with regard to the binary outcome (the status,
offspring of nonagenarians, and controls) to identify lipid species that associate
with familial longevity. For further details we refer to Gonzalez-Covarrubias et al.
[7]. To take into account the high correlation among lipid variables [7, Fig. 3], we
investigated use of a Bayesian model selection method instead of a “one-lipid-at-a-
time” method.

http://www.lipidmaps.org
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3 Missing Value Imputation in Lipidomics

Another example of the use of multiple imputation (MI) in lipidomics data is found
in the LUdwigshafen RIsk and Cardiovascular Health (LURIC) study [12]. The
main goal of this study was to identify network structure changes and lipidomic
biomarkers associated with cardiac arrest for patients with coronary artery disease
(CAD). In analyzing the data, the authors identified a large number of missing values
in the mass spectrometry data. One option to deal with such missing values is to
consider only the complete case analysis, which means we only use patients with
complete observation records. This can lead to a great reduction in sample size
and hence loss of precision. In most mass spectrometry platforms, missingness is
commonplace for proteomic, metabolomic, and lipidomic data.

Two sources of missingness are typically observed with mass spectral data. One
could be viewed as missingness purely at random while the other is due to either the
lower limit of quantification (LLOQ) of the instrument or the operator-determined
denoising cutoff. Very low-level concentrations are then considered too imprecise
when values are only known to be somewhere between zero and a known lower
limit of quantification (LLOQ). In such situations, this gives rise to left-censored
observations. Recent research by Kakourou et al. [10, 11] provides another good
example and extensive discussion on censored observations in (Fourier Transform)
mass spectrometry.

3.1 Imputation for Lipidomic Mass Spectrometry Data

In the presence of observations which are either completely missing or “partially
observed,” imputation can sometimes be performed prior to subsequent data
analysis. We assume the mass spectrometry data is properly pre-processed prior
to data imputation and that we have a case-control study. In general, we observe
a vector of binary responses Y D .y1; y2; : : : ; yn/

0, with the values yi, i D
1; : : : ; n indicating whether a patient is either case or control. The matrix X
contains the log-transformed lipid concentrations of the n patients. Let xij denote an
individual (log-transformed) concentration of lipid j for patient i within the matrix
X. Commonly, a substantial number of elements xij are not available due to either
partial or complete missingness. Hence, we may divide the x0s in two parts as xobs

and xmiss denoting the observed and the missing values, respectively. In the presence
of an assigned LLOQ, denoted by (say) lj, some of these values will be below lj and
thus left-censored, also referred to as non-detects. The LLOQ thresholds are set for
each platform and can vary between lipid species. The other type of missing values
are due to the elimination of observations not fulfilling the quality control standards
or not observed due to some random error. It is reasonable to regard the later to be
missing completely at random. We take these distinct types of missing values into
account in the imputation algorithm by imputing them in two different ways but
under the same imputation scheme.
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The above approach is often implemented in the statistical technique “Multiple
Imputation” (MI). Its theoretical foundation is well developed and is fully described
in several excellent references such as [23] or [4, 16, 17], among many others.
It has been widely used for omics data. In essence, MI calibrates the conditional
distribution of the unobserved data, and then generates random draws (simulations)
from this density which are then used to impute (replace) the non-observed data.
The imputation itself is repeated M � 1 times to account for the randomness
(uncertainty) of the imputation—hence the term “multiple” imputation. Thus, M
copies (or versions) of the imputed dataset are generated and each is then analyzed
separately—in principle—as if each were the complete data set. For example, should
we be interested in regression parameter estimates for some type of regression
model based on the (lipid) data, then M copies of the relevant parameter estimates
would be obtained with the above procedure. These need to be combined across
the M analyses on the respective imputed data sets, usually by taking the mean.
Likewise, an estimate of uncertainty of the combined estimate across imputations
should be computed, which adjusts for the uncertainty in imputation of the unknown
data. For mean estimates or regression parameter effects, standard errors can
usually be generated by suitable combination of within-imputation with between-
imputation variances, using Rubin’s rules [23]. We provide more details on the
imputation strategy below.

The construction of an appropriate (conditional) imputation distribution
(or model)

f .xmissjxobs; y; /;

where  denotes a set of unknown parameters, is key in multiple imputation. The
model in essence describes what values are credible for the unobserved data, given
the observed measurements. A simple approach to calibrate this model is by using
a set of univariate regression models (the imputation models), by considering each
incomplete variable at a time and then generate a prediction model for each such
partially observed variable. For continuous incomplete variables, this can be done
by fitting a linear regression of the target variable on the set of all other variables
within the problem (including the case-control outcome). For binary variables one
can use a logistic regression model. Note that in case-control studies (but similar for
ordinary linear regression or survival analysis, etc.), the outcome variable should
always be included in the predictor set for each of these imputations models, in
order to respect the association between outcome and predictors (the latter being
the lipids or omics data in our case). The above approach thus leads to imputation
through multiple chained (prediction) equations and is implemented in the package
(MICE) [21, 26, 27].

The procedure incorporates a random aspect, in that random draws are taken
from the conditional densities (regression models) for the unknown values and
using some suitably chosen starting values, but also iterative, in that the sequence is
left running to generate a number of updates sequentially, before the final imputed
values are stored. Thus, one first fills the data matrix with suitable starting values,
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and then simulates random draws for the unobserved entries and for each (partially
observed) variable at a time from the relevant corresponding regression model,
each time taking the full data matrix on all other measures (which includes the
outcome variable) as the predictor set. At each iteration, this predictor set contains
the current set of imputed values and the actually observed entries (which are of
course never updated and kept fixed throughout). This process is left to run until
some convergence criterion is met [1, 21]. For observations subject to a lower
detection limit LLOQ lj, the above procedure must be slightly modified to adjust
for this known limit. This can be done, for the left-censored values, by sampling
from the relevant conditional distribution (regression model), but only accepting the
thus simulated value if it falls below the known limit lj. If the condition is not met,
then one simply keeps sampling until the condition is satisfied.

3.2 Stacking the Multiple Imputed Data Sets

In the case of the LURIC data analysis in Kujala et al. [12] the ultimate goal of
the data analysis was to construct networks based on the lipidomics data and finally
find the differences between the networks of the case and control groups. So the
question was to determine how the distinct M multiple imputed data sets and their
respective analyses should then be combined, as it is not clear how to generalize
Rubin’s rules to this scenario. The concept of averaging a network does not appear
trivial. To address this issue, the authors applied the stacking-method proposed by
Wood et al. [30]. Instead of performing the downstream data analysis separately for
M sets of imputed values, one constructs a single data set containing Mn rows which
simply stacks the M simulated datasets (n is the sample size in the original data). It
can be shown that the stacking keeps the sample mean unchanged but reduces the
variability [12].

4 Case-Control Modeling for Lipids Data

4.1 Model Specification

Logistic Regression Model for Case-Control Outcome

We analyze the Leiden Longevity lipids case-control data. The objective of the
analysis is to assess whether the lipid data has added-value in the calibration
of the case-control probabilities, after correction for age and Framingham risk
score, which is known to be associated with the outcome. To implement this
assessment, we use an adaptation of the variable-dimension reversible jump logistic
regression model introduced in the chapter “Logistic regression modeling on
mass spectrometry data in proteomics case-control discriminant studies” [15].
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The variable-dimension model will allow lipids to be either selected, or completely
de-selected from the model, after correction for age and Framingham score.

As before, we have yi 	 Bernoulli.pi/, i D 1; : : : ; n with n D 1017 the sample
size and yi is the binary case-control indicator for each ith patient. In contrast to
the chapter “Logistic regression modeling on mass spectrometry data in proteomics
case-control discriminant studies” we now specify the regression directly on the set
of 131 (pre-processed) lipid measures as

logit.pi/ D ˛ C AgeˇAge C FRˇFR C ZF
Q̌
F C ZB

Q̌
B C XL

Q̌
L

where pi is the case-probability for the ith observation. The terms Age and FR
denote the ages and Framingham risk scores of individuals, with ˇAge and ˇFR the
corresponding regression effects. The term XL represents the unknown set of lipid
measures which are associated with the outcome, with regression coefficient vector

Q̌
L D .ˇ1; : : : ; ˇk/

which is of unknown dimension k. The fact that this dimensionality is considered
unknown is an intrinsic component of the Bayesian approach to modeling the
lipid data. This will allow us to assess the added-value of the lipids as described
further on. Note also that there is no use of basis functions as described in the
chapter “Logistic regression modeling on mass spectrometry data in proteomics
case-control discriminant studies” as regression is directly on the processed lipid
summary measures, which summarize the observed spectral data. The model
consists of a permanent adjustment

˛ C AgeˇAge C FRˇFR C ZF
Q̌
F C ZB

Q̌
B

and a variable-dimension component

XL
Q̌
L

with corresponding regression coefficient vector Q̌
L, which is also of variable

dimension. Note that the dimension k could be zero, i.e., XL is the empty set XL D Œ�.
Indeed this hypothesis is a primary objective of the analysis, which is to investigate
the probability support given by the data for the presence of an additional regression
effect, after correction for both age and the Framingham risk score. In the Bayesian
paradigm, we thus view the set XL, as well as the dimension parameter 0 � k � 131

and Q̌
L as unknown parameters of the model, which must be estimated from the

data. The terms

ZF
Q̌
F
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and

ZB
Q̌
B

denote random effects for family and batch effect, respectively. The family random
effect can be interpreted as correcting for systematic differences in outcome between
families, while the batch random effect is included to adjust for potential between-
batch variation left unaccounted for by the prior data processing. The term ˛ denotes
an intercept.

Prior Structure

We assume flat independent normal priors for the intercept, age, and Framing-
ham risk score regression coefficients. For the random batch and family effects,
we assume separate exchangeable normal priors centered at zero with separate
inverse chi-squared priors on the batch and family random effect variances.
A discrete uniform prior U.0; 1; 2; ::; 131/ is used for the model dimension k. For
the lipid regression parameters we use the exchangeable priors

ˇLj 	 N.0; �2L /; forj D 1; : : : ; k

with common inverse chi-squared prior on the variance.

MCMC and Convergence

The reversible jump implementation is analogous to that described previously in
the chapter “Logistic regression modeling on mass spectrometry data in proteomics
case-control discriminant studies” [15]. Specifically we use three distinct moves,
consisting of either adding, deleting, or interchanging (swapping) a randomly
chosen lipid from the current model state. Proposal move acceptances are obtained
from the conditional ratios of integrated likelihoods between the current and new
proposal regression models, conditional on the current values of k, �2L , �2B , and
�2F . Note that with the above prior specification, normal inverse scaled chi-squared
updating can be applied, conditional on the variance hyper-parameters. This implies
that the “conditional” acceptance rates do not require actual calculation of the
regression parameters on either the old or proposal models, as closed forms are
available for the integrated likelihood functions conditional on the above variance
terms. It leads to significant gains in computational speed. We use the auxiliary
variable construction with Kolmogorov–Smirnov prior on the normal variance to
obtain the logistic regression model form (see [15] for the details of the same
approach).
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We generated 200,000 initial burn-in samples which were discarded. Subse-
quently, we sampled three additional sets of simulations of 400,000 updates each
and sequentially, within this single chain. We compared the last set of 400,000
simulations with the first to assess convergence of simulations. Q-Q plots between
both sets were investigated, as well as kernel densities and autocorrelations on
model parameters (regression parameters, model variances, and selected model
dimensionality k) as well as on the Bernoulli deviance. Consistency of lipid selection
between both sets was investigated as well as mean marginal regression parameters.
No inconsistencies were detected. For inference, the three sets of updates were
combined into a single set of simulations (1.2 million samples) for posterior model
inference.

4.2 Posterior Inference for Lipids Regression Modeling

Model Dimension

The primary target of the posterior model inference is to establish evidence for the
presence of a lipid regression effect, after correcting for age and Framingham risk
score. Figure 1 shows to posterior density on model dimensionality k across sim-
ulations. The posterior probabilities on the NULL and non-NULL dimensions are
P.k D 0 j Data/ D 0:027 and 1 � P.k D 0 j Data/ D 0:973. Table 1 shows
percentiles of the posterior density of k. The lower 5 % bound indicates a minimum
dimensionality of 1.
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Fig. 1 Posterior probabilities of selected model dimensionalities plotted versus model dimension-
ality
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Table 1 Posterior percentiles of model dimensionalities

Percentile 1:0 2:5 5:0 10:0 25:0 50:0 75:0 90:0 95:0

Dimensionality k 0 0 1 1 2 3 6 9 11

Table 2 Posterior
probabilities of model
dimensionality and ratios
between subsequent model
dimensionality probabilities

k Posterior Exploratory “Bayes factor” (BF)

0 0:03 0:00

1 0:17 6:08

2 0:19 1:13

3 0:15 0:83

4 0:12 0:78

5 0:09 0:75

6 0:07 0:73

7 0:05 0:73

8 0:04 0:74

9 0:03 0:71

10 0:02 0:72

Use of Bayes factors to compare the between-dimensionalities posterior prob-
abilities is cumbersome in this example, as these are themselves affected by
the within-model variances and assumptions thereon. Table 2 shows posterior
probabilities on dimension in tabular form with ratios between subsequent posterior
probabilities denoted as “exploratory Bayes factor.” Note how only the transition
from a NULL to a one-dimensional model is associated with a substantial increase
in probability as expressed through the BF ratio. For all subsequent dimension
increments, these exploratory BF ratios are approximately 1 or smaller. The mean,
median, and modal posterior dimension k are 4.3, 3.7, and 2, respectively. All model
dimensions k > 4 have prob < max.prob.k//.

An alternative investigation of the impact of dimension on model fit can be
obtained from an analysis of the associated model deviances. We define the model
deviance as the deviance of any individual model within the sequence of MCMC
model updates. This sequence of deviances can then be investigated as any other
posterior summary. This is shown in Fig. 2 which plots kernel density estimates
for the posterior deviances between (conditional on) distinct model dimensionality,
starting from dimension k=0 and up to a dimensionality of ten lipids. The plots
confirm the summary measures from the posterior summaries on the dimension
parameter k above in that most improvement in model fit seems obtained from
the transition of a zero to a one-dimensional model, with marginal gains obtained
from a two-dimensional lipids model. We can thus conclude that there appears
to be evidence that the lipids are associated with the case-control outcome, after
correction for age and Framingham score and that a model with one or at most two
lipids should suffice to account for this extra information.
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Fig. 2 Kernel density estimates of model deviances conditional on model dimensionality. The
NULL (no lipids selected) model is plotted as red. Green is used for one-dimensional model
deviances and blue for all other dimensionalities

Lipid Selection

Having established the presence of a lipid effect, we may now address the question
“where does this extra information come from?” Figure 3 shows the marginal
posterior probabilities of inclusion of any specific lipid plotted versus the lipid
number (within the data matrix) (top plot) as well as a histogram of these posterior
probabilities (bottom plot). As can be seen there is only moderate evidence in favor
of specific lipids. This is due to substantial correlation between lipids.

Table 3 shows the top ten lipids selected to the models (left column), in
decreasing order of posterior probability of inclusion (right column). The table also
gives the lipid identity in the second column for this selection (LIPID MAPS). To
simplify, we will refer to lipids just by the lipid number (first column) in the text.

In addition, the table also shows effect estimates (B) for a between cases-and-
controls group comparison with associated standard errors (SE), p-values (P), and
(Bonferroni) corrected p-values from a classical mixed effect models fitted for each
lipid separately and using the lipid levels as outcome, correcting for the same
random (batch and family) and fixed effects (age and Framingham score). The
top-three lipids, 36, 107, and 108 would appear most interesting. Lipid selection
and ranking is identical for the top-three lipids between both analyses shown in
this table, though the probability calibrations are incomparable. Following the
top-three lipids, association between lipid ranking is much reduced between the
“multivariate” Bayesian and univariate mixed-model analyses and thus results in a
very different rankings between both.
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Fig. 3 Posterior probabilities of inclusion into the model for individual lipids. The top plot shows
posterior probabilities versus lipid number. The bottom plot is a histogram of these probabilities
across all 131 lipids in the analysis

Table 3 Table showing the top-ten selected lipids to the Bayesian model by lipid
number and lipid identification (left two columns)

Lipid nr. Lipid B SE P Bonferroni Pprob

36 GPCho (O-36:3) 0:07 0.02 8.7e�05 0.01 0.25

107 TG (54:7) �0:14 0.04 4.6e�05 0.006 0.25

108 TG (54:6) �0:15 0.04 8.2e�05 0.01 0.22

35 GPCho (O-36:4) 0:06 0.02 0.0006 0.08 0.11

118 TG (56:6) �0:10 0.03 0.0002 0.04 0.10

4 ChoE (22:6) �0:09 0.03 0.002 0.3 0.10

47 GPCho (38:6) �0:08 0.02 0.0007 0.1 0.09

62 SM (d18:1/15:0) 0:04 0.02 0.004 0.5 0.08

8 GPCho (O-16:0) 0:03 0.01 0.005 0.7 0.07

61 SM (d18:1/14:0) 0:03 0.02 0.02 2.7 0.06

Also shown are results from mixed models calculations for each lipid separately,
with “B” the between-group effect, “SE” the associated standard error, and
“P” and “Bonferroni” the standard p-values both with and without Bonferroni
correction. The right column shows the inclusion probabilities from the Bayesian
multivariate logistic regression model for each lipid
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Fig. 4 The left plot shows marginal mean regression coefficients from the Bayesian model
versus lipid number. The right plot shows the marginal mean regression coefficients versus the
corresponding probability of selection for that lipid

Lipid Regression Effect

We can compute mean marginal regression effects across models as shown in the
left-side plot of Fig. 4 for each lipid versus the lipid number. The right-side plot
in this figure plots the same mean marginal regression effects versus the posterior
probabilities of inclusion of the corresponding lipid into the model. Obviously,
higher absolute mean marginal effects sizes are associated with lipids which have
a higher posterior probability of selection, as one would expect. The top-three
most-selected lipids (36, 107, and 108) also have the highest absolute average
marginal effects. It must be noted that the averaging of the effects across all models,
irrespective of dimensionality, hides a dependence of the calibrated effect on the
dimensionality and hence also variance. This is shown in Fig. 5 which plots averaged
effects for the top-seven lipids conditional on the dimensionality of the model. The
plot shows another consequence of the association between variance and dimension.
Higher-dimensional models are associated with smaller effects, as they can spread
the effect across several (correlated) lipids. We can make a similar observation when
investigating lipid selection conditional on model size. As models become larger,
any individual lipid will have a smaller probability of being selected to the model
(Fig. 6). Nevertheless, lipids selected to the models tend to remain the same across
dimensions. Considering models with dimensions of 1 up to 5, the lipids 36, 107,
108, 47, and 35 are consistently among the top-ten selected lipids. Among these,
lipids 36, 107, and 108 are always the top-three most-selected lipids within models.
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Fig. 5 Marginal mean regression parameters of the top-seven most selected lipids, computed
conditional on fixed model dimensionalities (1–5) and plotted versus that model dimensionality
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Fig. 6 Probability of selection to the model for the top-seven most selected lipids, computed
conditional on fixed model dimensionalities (1–5) and plotted versus that model dimensionality

Lipid Co-selection

It is a particular feature of the Bayesian approach that we may not only investigate
the extent to which individual lipids are selected to the model, but also the extent
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Fig. 7 Image showing the probability of co-selection of each pair of lipids jointly to the model
(for models with dimensionality at least 2). Deeper red means higher frequency of selection of that
pair, while lighter colors shows lower probability. The horizontal and vertical axis are the lipid
numbers (1 to 131)

to which these are co-selected, or reversely, whether specific lipids tend to mutually
exclude one another within the same model. Figure 7 shows an image representation
of the matrix which stores the counts of the number of times two lipids are co-
selected to the model. Some lipids seem to be mutually exclusive, such as 35 and
36, or 107 and 108, or 61 and 62, for example. Other pairs, on the other hand, seem
to be more common. Examples are combinations of either 107 or 108 with 35 or
36. Another is 61 or 62 combined with either 107 or 108. Other interesting likely
pairs are 36 or 62 together with 4. Yet another example is 61 or 62 with 36. The
between-lipids correlations are an obvious driver behind these model selections. An
interesting graphical representation of such co-selection is shown in the undirected
graph Fig. 8. It represents frequently selected lipid pairs as connected through an
edge, after application of a minimal threshold on connectivity. Besides the often
occurring pairings, the image is also interesting for the connections which are absent
such as between 107 and 108 which tend to be mutually exclusive. Lipids 36, 107,
and 108 appear as obvious “hubs” in a network of co-selected lipids.
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Fig. 8 Lipid pairs with high
probability of co-selection to
the model shown in an
undirected graph, after
application of a minimum
threshold on connectivity.
High probability of
co-selection is shown through
the presence of an edge
between the corresponding
lipids
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5 Discussion

We have used a variable-dimension model to investigate added-value of lipids data,
in addition to age and Framingham risk score in a case-control study. The model
allows for assessment of optimal dimensionality of the lipid predictor set. We may
also investigate lipid selection and co-selection, which is more difficult to achieve
with classical regression approaches. The mutual exclusiveness of the lipids 35 and
36, 61 and 62, and 107 and 108 which was identified seems to have a biological
basis. The paired lipids have almost identical structures: lipid 35 (GPCho(O-36:3))
is a glycerophosphocholine that is an alkyl, acyl-sn-glycero-3-phosphocholine in
which the alkyl or acyl groups at positions 1 and 2 contain a total of 36 carbons and
3 double bonds, while lipid 36 (GPCho(O-36:2)) is exactly the same structure with
only 2 double bonds. Similarly, lipid 61 (SM(d18:1/14:0)) is a sphingomyelin d18:1
in which the amino group of sphingosine is substituted as tetradecanoyl (myristoyl)),
while lipid 62 (SM(d18:1/15:0)) is exactly the same structure in which the amino
group of sphingosine is substituted by a pentadecanoyl group. Finally, lipid 107
(TG(54:7)) is a triglyceride in which the three acyl groups contain a total of 54
carbons and 7 double bonds, while lipid 108 (TG(54:7)) is a triglyceride with the
same amount of 54 carbons but then contains 6 double bonds. Furthermore, the
co-selection of lipid 35/36 (glycerophosphocholines) and 107/108 (triglycerides) in
addition to the Framingham risk score seems to reflect the additional information
in the lipid measures. The fact that glycerophosphocholines and triglycerides are
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clearly different lipid species, and lipids 61/62 (sphingomyelins) may be somewhat
related to lipid 35/36, may explain why lipid 36, 107, and 108 appear as obvious
“hubs” in the network of 17 co-selected lipids.

It should be noted that only a single imputation was used in the analysis of the
Leiden Longevity study data. This was partly to reduce the computational overhead.
It should, however, be noted that within the Bayesian context, multiple imputation
can also be included as part of the model estimation procedure within the same
MCMC run. Rather than spend time to amend to software to implement this, but
certainly also for consistency with the original publication on this data, we decided
to only use the original single-imputed dataset used in the first publication [7].

We included a rather extensive discussion on use of multiple imputation for
(lipid)omic data in this paper. MI is useful for omic data which tends to contain large
numbers of non-detects or censored observations. It must, however, be remarked that
for left-censored observations due to detection limits, imputation of the detection
limit itself, half the detection limit, or zero, is sometimes considered. When the
lipids themselves are of interest (which lipids are associated with the outcome and
with which effect), as in this paper, then MI can be applied to reduce bias.

Finally we want to point out that the approach using variable-dimension mod-
eling discussed in this paper could be viewed as a Bayesian alternative to the
frequentist cross-validation-based methods discussed by Rodríguez-Girondo (this
volume [22]) to assess added-value of the lipids expression, after correcting for the
known Framingham risk score and age.
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